


7347-4_WSSAT_Unland_Titelei  18.7.2005  16:12 Uhr  Seite 1



Whitestein Series in Software Agent Technologies

Series Editors:
Marius Walliser
Monique Calisti
Thomas Hempfling
Stefan Brantschen

This series reports new developments in agent-based software technologies and agent-
oriented software engineering methodologies, with particular emphasis on applications in var-
ious scientific and industrial areas. It includes research level monographs, polished notes 
arising from research and industrial projects, outstanding PhD theses, and proceedings of
focused meetings and conferences. The series aims at promoting advanced research as well
as at facilitating know-how transfer to industrial use.

About Whitestein Technologies

Whitestein Technologies AG was founded in 1999 with the mission to become a leading
provider of advanced software agent technologies, products, solutions, and services for vari-
ous applications and industries. Whitestein Technologies strongly believes that software agent
technologies, in combination with other leading-edge technologies like web services and
mobile wireless computing, will enable attractive opportunities for the design and the imple-
mentation of a new generation of distributed information systems and network infrastruc-
tures.

www.whitestein.com

7347-4_WSSAT_Unland_Titelei  18.7.2005  16:12 Uhr  Seite 2



Software Agent-Based
Applications, Platforms
and Development Kits

Rainer Unland
Matthias Klusch
Monique Calisti
Editors

Birkhäuser Verlag
Basel • Boston • Berlin

7347-4_WSSAT_Unland_Titelei  18.7.2005  16:12 Uhr  Seite 3



Editors:

Rainer Unland
Universität Gesamthochschule Essen
Fachbereich Mathematik und Informatik
Schützenbahn 70
D-45117 Essen

Monique Calisti
Whitestein Technologies
Pestalozzistrasse 24
CH-8032 Zürich

2000 Mathematics Subject Classification 68T35, 68U35

A CIP catalogue record for this book is available from the Library of Congress,
Washington D.C., USA

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

ISBN 3-7643-7347-4  Birkhäuser Verlag, Basel – Boston – Berlin 

This work is subject to copyright. All rights are reserved, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, re-use of illustrations,
recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data 
banks. For any kind of use permission of the copyright owner must be obtained.

© 2005 Birkhäuser Verlag, P.O. Box 133, CH-4010 Basel, Switzerland
Part of Springer Science+Business Media
Cover design: Micha Lotrovsky, CH-4106 Therwil, Switzerland
Printed on acid-free paper produced from chlorine-free pulp. TCF°°
Printed in Germany 

ISBN-10: 3-7643-7347-4 e-ISBN: 3-7643-7348-2
ISBN-13: 978-3-7643-7347-4

9 8 7 6 5 4 3 2 1 www.birkhauser.ch

Matthias Klusch
German Research Center for Artificial 
Intelligence,
Deduction and Multiagent Systems
Stuhlsatzenhausweg 3
D-66123 Saarbrücken

7347-4_WSSAT_Unland_Titelei  18.7.2005  16:12 Uhr  Seite 4



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Agent Tool Kits I (Platforms)

Fabio Bellifemine, Giovanni Caire, Giosuè Vitaglione, Giovanni Rimassa
and Dominic Greenwood

The JADE Platform and Experiences with Mobile MAS Applications . . . . 1

David Šǐslák, Martin Rehák, Michal Pěchouček, Milan Rollo
and Dušan Pavĺıček

A-globe: Agent Development Platform with Inaccessibility
and Mobility Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Antonella Di Stefano and Corrado Santoro
Supporting Agent Development in Erlang through the eXAT Platform . . 47

Agent Tool Kits II (Development Environments)

Giovanni Rimassa, Monique Calisti and Martin E. Kernland
Living Systems� Technology Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

Vladimir Gorodetsky, Oleg Karsaev, Vladimir Samoylov, Victor Konushy,
Evgeny Mankov and Alexey Malyshev
Multi Agent System Development Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Josep Llúıs Arcos, Marc Esteva, Pablo Noriega,
Juan Antonio Rodŕıguez-Aguilar and Carles Sierra
An Integrated Development Environment for Electronic Institutions . . . 121

Agent Tool Kits III (Frameworks)

Lars Braubach, Alexander Pokahr and Winfried Lamersdorf
Jadex: A BDI-Agent System Combining Middleware and Reasoning . . . 143

Gaya Jayatilleke, Lin Padgham and Michael Winikoff
Component Agent Framework For Non-Experts (CAFnE) Toolkit . . . . . .169



vi Contents

Tools for the Integration of Web-Services and Agent Technology

László Zsolt Varga, Ákos Hajnal and Zsolt Werner
The WSDL2Agent Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Xuan Thang Nguyen, Ryszard Kowalczyk, Mohan Baruwal Chhetri
and Alasdair Grant

WS2JADE: A Tool for Runtime Deployment and Control of
Web Services as JADE Agent Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Tool Support for Agent Communication and Negotiation

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij, Valentin Robu
and Jan Treur

A System for Analysis of Multi-Issue Negotiation . . . . . . . . . . . . . . . . . . . . . . 253

Frank Teuteberg and Iouri Loutchko
FuzzyMan: An Agent-Based E-Marketplace with a Voice and
Mobile User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281

Heikki Helin and Mikko Laukkanen
Efficient Agent Communication in Wireless Environments . . . . . . . . . . . . . 307

Mobile Agent Tool Kits

Michael Zapf
AMETAS - The Asynchronous MEssage Transfer Agent System . . . . . . . 331

Peter Braun, Ingo Müller, Tino Schlegel, Steffen Kern, Volkmar Schau
and Wilhelm Rossak

Tracy: An Extensible Plugin-Oriented Software Architecture for
Mobile Agent Toolkits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Applications of Agent Technology

Danny Weyns, Alexander Helleboogh and Tom Holvoet
The Packet-World: A Test Bed for Investigating Situated
Multi-Agent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Pieter Jan ’t Hoen, Valentin Robu and Han La Poutré
Decommitment in a Competitive Multi-Agent Transportation Setting . . 409

Habin Lee, Patrik Mihailescu and John Shepherdson
Teamworker: An Agent-Based Support System for Mobile
Task Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .433

Author index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449



Preface

Intelligent agents and multi-agent systems (MAS) represent the next big step in
the development of next-generation software systems, especially when consider-
ing large scale distributed applications consisting of several sub-components with
behavior that is increasingly difficult to predict. This is supported by impor-
tant research and development results and reinforced by the increasing uptake
of agent-based solutions and services for real-world industries. In fact, software
agent technology successfully addresses a number of highly relevant issues, like ef-
ficient resource distribution, scalability, adaptability, maintainability, modularity,
autonomy, self-sustainability, and decentralized control, by providing powerful con-
cepts, metaphors and tools. The mentioned issues are often regarded as essential
non-functional properties of emerging software architectures and systems.

The high importance of agent-related research and development can be seen
from the fact that currently about 100 major projects are funded in Europe
only - see http://www.agentlink.org/resources/agentprojects-db.php - and more
than 100 academic and commercial software tools are publicly advertised - see
http://www.agentlink.org/resources/agent-software.php. And these numbers are
still growing. As a result of the enormous efforts the stage of maturation has
reached a level, which encourages commercial players to increasingly adopt multi-
agent systems concepts and technologies for the development of a variety of real-
world applications in different domains such as logistics, e-commerce, and en-
tertainment. In this perspective, concrete agent-driven research and development
results (such as applications, platforms, and development kits) substantially con-
tribute to promote the technology and increase its exploitation for industrial so-
lutions.

This book provides a first and comprehensive overview of existing software
agent development kits, environments, and applications. It is intended to be of
particular use for those who want to assess the maturity and state-of-the-art of
applied software agent technology. Both the software engineering and the user
perspective are covered by a carefully selected set of contributions reporting on
prominent examples of agent development environments, platforms, and toolkits
and deployed agent-based applications from various different application areas. In
particular, most of them have been either successfully demonstrated to the public
at the agent technology exhibition of the first German conference for Multi-Agent
system TEchnologieS (MATES 2004) in Erfurt, or won the prestigious system
innovation award of the international workshop series on Cooperative Information
Agents (CIA). Since this book concentrates on implemented systems most of them
are available on the Internet. Thus, at the end of each paper you will find all
relevant information about where to get the software on the Internet (if it is
available) and whom you may contact in case of questions.



viii Foreword

Contents

The book consists of seven chapters. The assignment of papers to chapters has
been a hard choice, since many papers fall into several categories. However, we
believe the final layout is the most reasonable one.

The first three chapters (with eight papers altogether) present toolkits for the
development of multi-agent systems. The toolkits are subdivided into three cate-
gories: platforms, development environments, and frameworks. An agent platform
is intended as the set of middleware components supporting the development of
(distributed) multi-agent applications. It provides all basic services, like agent life-
cycle management, communication, tasks scheduling, security, etc., to easily ini-
tialize and run multi-agent systems. A development environment usually supports
all phases in multi-agent system engineering, which comprises requirements engi-
neering, system design, development and deployment. Agent frameworks provide
a high-level programming environment consisting of a multi-agent system skeleton
that allows the programmer to easily extend it to a full-fledged MAS application.
Toolkits can also be differentiated according to their focus of support. In general,
it is possible to distinguish between middleware- and reasoning-oriented systems.
In this latter case, one emphasizes rationality and goal-directedness support for
agent development.

The first chapter focuses on agent platforms and starts with the paper The
JADE Platform and Experiences with Mobile MAS Applications by Fabio Bellifem-
ine, Giovanni Caire, Giosuè Vitaglione, Giovanni Rimassa, and Dominic Green-
wood. JADE is a well-known and well-established Java-based and FIPA-compliant
agent platform. The paper gives a comprehensive overview about the basic con-
cepts of JADE. Furthermore, it shows how JADE can be used on mobile networks.
Finally, it discusses possible application domains for JADE. The second paper A-
globe: Agent Development Platform with Inaccessibility and Mobility Support by
David Šǐslák, Martin Rehák, Michal Pechoucek, Milan Rollo, and Dušan Pavlicek
presents A-globe, a streamlined lightweight platform for MAS development, which
operates on normal PCs as well as on PDAs. After a comprehensive introduction
into the basic features of A-globe it is compared to some other agent platforms.
The next section concentrates on simulation support since A-globe provides a spe-
cial infrastructure for environmental simulation. The third paper in this chapter
Supporting Agent Development in Erlang through the eXAT Platform by Antonella
Di Stefano and Corrado Santoro motivates and presents first the agent program-
ming language Erlang. Then the agent programming platform eXAT that is based
on Erlang is discussed. eXAT especially emphasizes the implementation of agent
intelligence, behavior, and communication.

The second chapter is dedicated to development environments. The paper
Living Systems� Technology Suite (LS/TS) by Giovanni Rimassa, Monique Calisti,
and Martin E. Kernland describes the LS/TS set of components for the develop-
ment and deployment of products and systems based on software agent technology



Foreword ix

and autonomic computing. The paper not only gives a comprehensive overview
about the architecture and functionality of this package, but also discusses the
challenges that were to be addressed in order to develop the proposed software
methodology and infrastructure. The second paper by Vladimir Gorodetsky, Oleg
Karsaev, Vladimir Samoylov, Victor Konushy, Evgeny Mankov, and Alexey Maly-
shev presents the Multi-Agent System Development Kit (MASDK), a comprehen-
sive software tool kit for the development, implementation, and deployment of
multi-agent systems. The paper mainly concentrates on the development process,
which is heavily influenced by the Gaia methodology. It is conducted with the help
of a number of integrated editors (e.g., for the model, protocol, ontology, behavior,
and state transition development), which are described in detail. The third paper
An Integrated Development Environment for Electronic Institutions by Josep Llúıs
Arcos, Marc Esteva, Pablo Noriega, Juan Antonio Rodŕıguez-Aguilar, and Carles
Sierra presents a methodology and an integrated development environment for en-
gineering multi agent systems as electronic institutions. The latter defines a set
of artificial constraints that articulate agent interactions, defining what they are
permitted and forbidden to do. It defines a normative environment where hetero-
geneous (human and software) agents can participate by playing different roles
and can interact by means of speech acts. The integrated use of these tools is
illustrated using as an example the double auction market.

The third chapter starts with the paper Jadex: A BDI-Agent System Com-
bining Middleware And Reasoning by Lars Braubach, Alexander Pokahr, and Win-
fried Lamersdorf. The presented system Jadex relies on an arbitrary given agent
platform, e.g. JADE, however, extends it by providing tools to model agent ra-
tionality and goal-directedness. Its reasoning engine supports cognitive agents by
exploiting the BDI model. It permits to explicitly model such features as beliefs,
plans, goals or capabilities. The CAFnE toolkit is presented in the paper Com-
ponent Agent Framework For Non-Experts (CAFnE) Toolkit by Gaya Jayatilleke,
Lin Padgham. and Michael Winikoff. The vision of the authors is not only to
support developers in the initial application development but also to provide a
framework that facilitates domain experts themselves in making modifications to
a deployed system, in order for it to better fit needs which are identified as the
system is used. The system is introduced and its functionality is explained with
the help of an example system.

The forth chapter comprises two papers that show how Web-Services can
be integrated into agent technology. The paper The WSDL2Agent Tool by László
Zsolt Varga, Ákos Hajnal, and Zsolt Werner presents a bipartite tool for this
purpose. The WSDL2Jade part of the tool generates code for a proxy agent that
makes the Web service available in a multi-agent environment. The WSDL2Protégé
part of the tool translates a WSDL description to a Protégé project in order to
support its semantic enrichment. It generates a project file for the Protégé ontology
engineering tool in which the ontology of the Web service can be visualized, edited,



x Foreword

or exported to various formats. The second paper WS2JADE: A Tool for Run-
Time Deployment and Control of Web Services as JADE Agent Services by Xuan
Thang Nguyen, Ryszard Kowalczyk, Mohan Baruwal Chhetri, and Alasdair Grant
presents the WS2JADE framework. It permits the easy integration of Web services
into the JADE agent platform. In particular, the technical aspects of the run-time
deployment and control of Web services as agent services are discussed. The Web
service - agent integration capabilities of WS2JADE are demonstrated with simple
examples of Web service management including service discovery, composition, and
deployment with JADE agents.

Chapter five concentrates on Tool Support for Agent Communication and Ne-
gotiation. The paper by Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij,
Valentin Robu, and Jan Treur presents SAMIN, A System for Analysis of Multi-
Issue Negotiation. The agents in this system conduct one-to-one negotiations, in
which the values across multiple issues are negotiated on simultaneously. The paper
shows how the system supports both automated and human negotiation. To ana-
lyze such negotiation processes, the user can enter every formal property deemed
useful into the system and use the system to automatically check this property in
given negotiation traces. The paper also shows how to deal with incomplete infor-
mation and presents some experimental results about human multi-issue negoti-
ation. FuzzyMAN: An Agent-Based E-Marketplace with a Voice and Mobile User
Interface by Frank Teuteberg and Iouri Loutchko focuses on the conceptual foun-
dations and the architecture of an agent-based job e-Marketplace that supports
mobile negotiations. The negotiation model is based on many negotiation issues,
a fuzzy utility scoring method, and simultaneous negotiation with many negotia-
tion partners in an environment of limited negotiation time. The paper discusses
FuzzyMAN’s architecture, agents, negotiation model, and mobile and voice user
interfaces. Heikki Helin and Mikko Laukkanen deal in their paper with Efficient
Agent Communication in Wireless Environments. They propose a layered model
of agent communication in the context of the FIPA agent architecture. For each
layer of this communication stack an efficient solution for wireless agent communi-
cation is presented. Furthermore, the paper thoroughly analyzes the performance
of agent communication in slow wireless environments.

Chapter six contains two papers about tool kits for mobile agents. The pa-
per AMETAS - The Asynchronous MEssage Transfer Agent System by Michael
Zapf presents a development and runtime environment for creating and running
mobile, autonomous agents under Java 2. AMETAS defines three kinds of appli-
cation components: agents, user adapters, and services. Services are able to wrap
system-dependent resource accesses and provide functional enhancements while
user adapters integrate the human user into the agent environment. Techniques
of mediation are used to realize open applications; i.e. applications with an ever-
changing set of components. The discussed security system prevents illegal access
between users and defines the access control to resources. The other paper Tracy:
An Extensible Plugin-Oriented Software Architecture for Mobile Agent Toolkits



Foreword xi

by Peter Braun, Ingo Müller, Tino Schlegel, Steffen Kern, Volkmar Schau, and
Wilhelm Rossak presents a kernel-based tool kit that only provides fundamen-
tal concepts and functions common to all toolkits and abstracts from all of their
possible services. In particular, although Tracy was developed as a mobile agent
toolkit, its kernel abstracts from all issues related to agent mobility, delegating this
to an optional service implementation. This makes it possible to replace Tracy’s
migration service with another implementation and even to have two different mi-
gration services in parallel. Service implementations are developed as plug-ins that
can be started and stopped during run-time. The paper first discusses the set of
fundamental services. Then it is shown how they are realized in Tracy.

Chapter seven comprises three papers that are related to agent-based appli-
cations. Each of these papers also covers a research issue, however, discusses its
solution on the basis of an application. The Packet-World: A Test Bed for Inves-
tigating Situated Multi-Agent Systems by Danny Weyns, Alexander Helleboogh,
and Tom Holvoet presents as application area the packet world. The research aim
of the paper is to discuss how to model a distributed application as a set of co-
operating autonomous entities (agents), which are situated in an environment.
The Packet-World is used as a test bed to explore and evaluate a broad range of
fundamental concepts and mechanisms for situated MASs. The paper elaborates
on the structure of the environment, agents’ perception, flexible action selection,
protocol-based communication, execution control and timing, simultaneous ac-
tions and several forms of stigmergy. Decommitment in a Competitive Multi-Agent
Transportation Setting by Pieter Jan ’t Hoen, Valentin Robu, and Han La Poutre
discusses the decommittment issue on the basis of a large-scale logistics setting
(freight forwarding) with multiple, competing companies. It is shown in the paper
that decommitment as the action of foregoing of a contract for another (superior)
offer can reach higher utility levels in case of negotiations with uncertainty about
future opportunities. The paper Teamworker: An Agent-Based Support System for
Mobile Task Execution by Habin Lee, Patrik Mihailescu, and John Shepherdson
shows how a multi-agent based computer cooperative support system known as
TeamWorker can help to overcome the difficulties faced by mobile workers. Each
mobile worker is assigned a personal agent that can assist her/him during the
working day through appropriate service provision (based on current work con-
text), and through monitoring work progress to anticipate and undertake required
actions on the user’s behalf. A detailed presentation of the TeamWorker system is
given, including the benefits provided for a real life mobile business process.

As this book is a collaborative effort, the editors would like to thank foremost
the contributing authors for their outstanding contributions, and the reviewers
and publisher for their invaluable help and assistance during the whole project.
We also would like to thank Dr. Stefan Göller from Birkhauser Publishing Ltd. for
his outstanding support in producing this book.



xii Foreword

In summary, we hope that this book will be of substantial benefit for stu-
dents, software engineers, computer scientists, researchers (both academic and in-
dustrial), and IT experts, who are keen to learn about the deployment of software
agent technology for engineering complex solutions and systems.

Enjoy the reading!
Monique Calisti, Matthias Klusch, Rainer Unland

Zürich - Saarbrücken - Essen
Spring 2005



The JADE Platform and Experiences with 
Mobile MAS Applications 

Fabio Bellifemine, Giovanni Caire, Giosuè Vitaglione, 
Giovanni Rimassa and Dominic Greenwood 

 

Abstract. This paper draws a perspective about a software platform for multi-agent 
systems, called JADE. JADE is an Open-Source Java middleware very popular in the 
MAS research and development community, counting a lively and active user base. 
Here we will describe the JADE architecture, the main features provided by the 
platform, and some application domains from the Open Source community. 

1. Introduction 

JADE [1] is a middleware for the development of distributed multi-agent applications. 
According to the multi-agent systems approach, an application based on the JADE 
platform is composed of a set of cooperating agents, which can communicate with each 
other through message exchange. Each agent is immersed within an environment that 
can be acted upon and from whom events can be perceived. Intelligence, initiative, 
information, resources and control can be fully distributed on mobile terminals as well 
as on computers in the fixed network. The environment can evolve dynamically and 
agents appear and disappear in the system according to the needs and the requirements 
of the applications. 
JADE provides the basic services necessary for distributed peer-to-peer applications in 
the fixed and mobile environment allowing each agent to dynamically discover others 
and to communicate with them. From the application point of view, each agent is 
identified by a unique name and provides a set of services. It can register and modify its 
services and/or search for agents providing given services, it can control its life cycle 
and, in particular, communicate with all other peer agents by exchanging asynchronous 
messages, a widely accepted communication model for distributed and loosely-coupled 



2           F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood 

software components. Communication between the agents, regardless of whether they 
are running in the wireless or in the wireline network, is completely symmetric with 
each agent being able to both initiate an interaction and respond to it. JADE is fully 
developed in Java and is based of the following driving principles: 
� Interoperability. JADE is compliant with the FIPA specifications [2]. As a 

consequence, JADE agents can interoperate with other agents, provided that they 
comply with the same standard. 

� Portability. JADE provides a homogeneous set of APIs that are independent from 
the underlying network and Java edition. More in details, the JADE run-time 
provides the same API for the J2EE, J2SE and J2ME environment and it has been 
designed and optimized for low footprint and memory requirements. 

� Ease of use and faster time-to-market. The set of APIs has been designed with the 
goal of reducing the time to market for developing applications; therefore, they 
aim to hide the complexity of the middleware behind a simple and intuitive set of 
APIs. 

� Pay-as-you-go philosophy. Programmers do not need to use all the features 
provided by the middleware. Features that are not used do not require 
programmers to know anything about them neither they add computational 
overhead. 

After this introduction, the paper is organized as follows. Next chapter describes the 
high level components of the architecture. Then the evolution of distributed kernel on 
which the platform is based upon is analyzed and the new architecture based on a set of 
distributed coordinated filters is presented. Next chapter presents some of the most 
interesting platform-level services. Then, the split container architecture is presented 
and how it is suitable for mobile networks and devices, including how the platform is 
able to guarantee MSISDN-based1 identification of the peers. A categorization of the 
application domains where the platform and this technology provides highest payoff is 
then presented and, finally, the Open Source Community, the JADE Board, and the 
future roadmap are presented. 

2. JADE Architecture 

JADE includes both the libraries (i.e. the Java classes) required to develop application 
agents and the run-time environment that provides the basic platform-level services and 
that must be active on the device before agents can be executed. Each instance of the 
JADE run-time is called container (since it “contains” agents). The set of all containers 
is called platform and provides a homogeneous layer that hides from agents the 
complexity and the diversity of the underlying tiers (hardware, operating systems, types 
of network, JVM) as depicted in Figure 1. 

For bootstrapping and FIPA compliance purposes, one among these containers is 
labeled as Main Container; it must be the first to start up and all other containers 
                                                           
1 MSISDN stands for “Mobile Subscriber ISDN Number”. Basically it is the phone number of the 

SIM-card in the mobile phone. 



          The JADE Platform and Experiences with Mobile MAS Applications            3 

register with it at bootstrap time. The Main Container has the following specific 
responsibilities: 
� It manages the Container Table (i.e. the set of all the nodes that compose the 

distributed platform). 
� It manages the Global Agent Descriptor Table (i.e. the set of all the agents hosted 

by the distributed platform, together with their current location). 
� It manages the Message Transport Protocols Table (i.e. the set of all deployed 

message transport endpoints, together with their deployment location). 
� It hosts the platform Agent Management Service (AMS) agent, mandated by FIPA 

specifications as unique white page and life-cycle management agent. 
� It hosts the platform Default Directory Facilitator (DF) agent, mandated by FIPA 

specifications as default yellow page management agent. 
All the above operations are essential for correct and FIPA-compliant platform 

operation. Unfortunately, this also entails that, from a fault tolerance perspective, the 
Main Container is a sensible part of the platform, and a single point of failure for many 
tasks. For this purpose, the replication service, described in the followings, allows to 
monitor and replicate the main container responsibilities. 

Its distributed architecture allows deploying JADE platforms that run across multiple 
Java editions, from powerful servers to small mobile devices. The limited memory 
footprint, in fact, allows installing JADE on all mobile phones provided that they are 
Java-enabled. JADE is compatible with the J2ME CLDC/MIDP environment and it has 
already been extensively used on the field over GPRS network with several commercial 
mobile terminals. The JADE run-time memory footprint, in a MIDP1.0 environment, is 
around 45 KB, but can be further reduced until 20 KB using the ROMizing technique, 
i.e. compiling JADE together with the JVM [3]. JADE is extremely versatile and 
therefore, not only it fits the constraints of environments with limited resources, but it 
has already been integrated into complex architectures such as .NET or J2EE [4] where 
JADE becomes a service to execute multi-party proactive applications. 

3. Platform Kernel 

The platform is built on top of a distributed kernel that supports basic platform-level 
operations such as message delivery and agent life-cycle management. The current 
kernel architecture can be considered as the third generation of the kernel. The first 
generation of JADE had a monolithic distributed kernel and was only able to operate in 
the J2SE environment. The second generation had to target the whole spectrum of Java 
editions (from Micro-Edition to Enterprise Edition) and introduced the idea of having 
many platform profiles, that allowed choosing whether to include a feature or not. 
Though flexible enough, this second-generation kernel had a fixed feature set. Even if 
most features (agent mobility, event management, platform security) could be turned on 
or off, the kernel did not allow easy extension by including new platform-level services. 
In order to effectively address the more demanding requirements gathered from the first 
JADE-based systems, and also in order to promote an application model based on 
seamlessly situated agents, a third generation of JADE kernel was conceived and built. 



4           F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood 

This section outlines the resulting architecture, highlighting the design rationale backing 
up the major choices made. 

 

Platform

Homogeneous API

Multi-agent application Agent A

Agent B

Agent C

Agent D

Main

Container

Container Container

Wireless and wireline

Internet

Java J2SE J2EE J2ME

 
 

Fig. 1.  JADE Distributed Architecture 

3.1 Ideas and motivations 

The first, natural direction in designing the third generation JADE kernel was to strive 
for finer-grained modularity of the kernel features. Moreover, an open-ended set of 
kernel-level feature sets was envisaged, and a flexible deployment strategy was essential 
in targeting the hybrid wireless/wireline network. 

The first abstraction, adopted in order to give an extensible structure to the JADE 
kernel, is the Service. A JADE service groups together a set of features according to 
their conceptual cohesion, and is the kernel-level unit of deployment. Some sample 
JADE kernel services are agent management, agent mobility and event notification. 
These services closely correspond to the second-generation feature sets, but now they 
comply with a generic and extensible model that allows many more services to be 
developed and eases creating more complex ones, such as some of the services that will 
be described in the next sections. 

The second abstraction adopted to achieve the seamless distribution of agents in the 
platform is the Container. This concept was kept from the previous kernel versions, but 
now it has an enhanced semantics. While in first- and second-generation kernels a 
JADE container was meant to contain only agents, now a third-generation container 
holds both agents and services.  



          The JADE Platform and Experiences with Mobile MAS Applications            5 

From the previous requirements and the design vision, a set of desiderata for the new 
architecture was obtained: 
1. Different services can be composed together. 
2. Any subset of the available services can be deployed at any given container, 

possibly adding/removing a service during normal platform operation. 
3. Some services can be present only on a subset of the platform containers or can be 

present with different service levels at different containers. 
4. The services can run on the various Java editions supported by JADE, possibly 

with a graceful degradation on the more resource constrained devices. 

3.2 The distributed coordinated filters architecture 

Part of the inspiration needed to shape the new architecture was drawn from the 
research area about aspect-oriented programming [5]. The main tenet of aspect 
orientation is to promote separation of concerns, by writing software code as a 
collection of independently written aspects, expressing a different concern each. 

Aspects, though written separately, will then be combined together to yield the final 
application. The process of combining together the different aspects according to some 
rules is called aspect weaving. The aspect-oriented approach basically stems from a 
programming language viewpoint, and the first works such as AspectJ [6] use source 
code translators to perform compile-time aspect weaving. Another option would be to 
perform run-time aspect weaving through some kind of component composition 
technique; among these dynamic approaches, a pioneering work was made by Aksit and 
others [7] with the proposal of composition filters as a way to transparently extend 
object systems. 

 
 

 
 

Fig. 2. Distributed coordinated filters architecture of the JADE Kernel. 
 
 



6           F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood 

In Java-based aspect languages and systems, a third option is viable and has become 
very popular, that is, classload-time aspect weaving. Due to the lack of support in J2ME 
and considering that JADE struggles to provide all its features to users through nothing 
more than a Java API, the third generation JADE kernel architecture took the biggest 
inspiration from the composition filters approach. Basically each object is provided with 
two filter chains: an incoming chain whose filters are invoked whenever the object 
receives a method call, and an outgoing chain whose filters are invoked whenever the 
object is about to call some other object’s method itself. 

By mixing the composition filters approach with the distribution of services across 
containers, we obtained the Distributed Coordinated Filters architecture, sketched in 
Figure 2. 

 
In the figure above, every color refers to a specific kernel service, and every dotted 

line encloses a container. This means that, in the depicted example, the distributed 
platform has three services deployed on four containers. The various kernel operations 
are represented by commands, which flow across services in their container as shown by 
the vertical arrows. This accounts for the filtering aspect, just like in the original 
composition filters model. The horizontal arrows show that a single service (say, the 
one at the bottom) is actually distributed on several network nodes. We call Slice the 
part of a service that resides on a given node; the colored cubes in Figure 2 are exactly 
the service slices. Service slices and their interaction account for the distribution and 
coordination aspect in our model. 

The UML diagram in Figure 3 shows the general layout of the resulting solution. 
 
 

AgentPlatform

Service

1..*

ServiceSlice

1..*

n: Containern: Container

Agent

Container

1..*

1

0..*

1

0..*

MainContainer

1

1..* 1..*
1

0..*

1..*

0..*

1

1

supports

resides on

register with

lives in

 
Fig. 3. Main elements of the JADE Kernel. 



          The JADE Platform and Experiences with Mobile MAS Applications            7 

4. Platform Services 

The architecture of the JADE kernel enables the deployment of platform-level services 
at run-time: each container can be deployed with the necessary services, such as 
communication, replication, persistence, or security. Programmers can also implement 
and deploy their own application-specific services, where needed. 

The agent class usually accesses these platform-level services via a Service Helper 
that exposes all the methods available to the agent. In some cases (e.g. for the 
communication service), the methods are exposed by the Agent class itself, partly 
because of backward compatibility, partly because of easiness of use. 

For the sake of brevity, this section does not report the full list of available services 
but just some of the most relevant and representatives. 

4.1 Communication Service 

In order to communicate, an agent just sends a message to a destination agent. Agents 
are identified by a name (no need for the destination object reference to send a message) 
and, as a consequence, there is no temporal dependency between communicating agents. 
The sender and the receiver could not be available at the same time. The receiver may 
not even exist (or not yet) or could not be directly known by the sender that can specify 
a property (e.g. “all agents interested in football”) as a destination. Because agents 
identifies each other by their name, hot change of their object reference are transparent 
to applications. Despite this type of communication, security is preserved, since, for 
applications that require it, JADE provides proper mechanisms to authenticate and 
verify “rights” assigned to agents. When needed, therefore, an application can verify the 
identity of the sender of a message and prevent actions not allowed to perform (for 
instance an agent may be allowed to receive messages from the agent representing the 
boss, but not to send messages to it). All messages exchanged between agents are 
carried out within an envelope including only the information required by the transport 
layer. That allows, among others, to encrypt the content of a message separately from 
the envelope. 

The communication service is instantiated, by default, on every JADE container and 
it makes transparent to agents the location of communicating end points. Each agent 
owns a private queue that is filled by the communication service with incoming 
messages. Agents can access this private queue via any arbitrary combination of the 
following methods: polling-based, timeout blocking-based (i.e. blocks until a message 
arrives or until the given timeout expires), message-template based (i.e. it gets the first 
message in the queue that matches the passed message template). 

The structure of a message complies with the ACL language defined by FIPA [2] and 
includes fields, such as variables indicating the context a message refers-to and timeout 
that can be waited before an answer is received, aimed at supporting complex 
interactions and multiple parallel conversations. As a matter of fact, in order to further 
support the implementation of complex conversations, JADE provides a set of skeletons 
of typical interaction patterns to perform specific tasks, such as negotiations, auctions 



8           F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood 

and task delegation. By using these skeletons (implemented as Java abstract classes), 
programmers can get rid of the burden of dealing with synchronization issues, timeouts, 
error conditions and, in general, all those aspects that are not strictly related to the 
application logic. 

An analysis and a benchmark of Scalability and Performance of the JADE Message 
Transport System is reported in [8]. 

4.2 Security Service 

Security in JADE is, by nature, distributed and enabled by a set of services delineated 
by function. Those services are Authentication, Permission and Encryption, described as 
follows: 

The Authentication Service ensures that any user starting a JADE platform or 
container is legitimate within the computational system and takes responsibility for her 
actions, so as to be authorized to create agents within that platform. Being legitimate in 
the case of JADE authentication implies that the user is known to the system by having 
at least one valid identity and associated password. Authentication does not however 
imply any guarantees of behavior, this is managed by the Permission Service. The 
authentication mechanism itself is based on the Java Authentication and Authorization 

Service (JAAS) API [9] that enables enforcement of differentiated access control on 
system users. JAAS provides a set of de facto LoginModules; with the Unix, NT and 
Kerberos modules implemented in the current. The Unix and NT modules are Operating 
System dependent and are designed to use the identity of the user extracted from the 
current Operating System session. The Kerberos module is system independent in 
operation, but requires system-specific configuration prior to use. Such login modules 
usually require the user to enter some information as credentials, such as passwords or 
smart-cards. A variety of input methods have already been provided, including text, 
GUI and command-line, the latter available primarily for authenticating users on remote 
containers. The default configuration is such that if the user fails to be correctly 
authenticated, the system will exit and issue appropriate messages. 

Due to authentication, all components (containers and agents) in a JADE platform 
must be owned by an authenticated user. As an extension of this, the Permission Service 
provides a layer of control over the actions that agents can perform, either permitting or 
denying them according to stated rules. It is thus possible to selectively grant access to 
platform services or application resources. This ultimately implies that  permissions can 
be used to influence the structure of relationships between agents interacting within and 
across JADE platforms. The rules are typically stated in a system files according to 
standard JAAS policy file syntax [9], extended with a special policy model providing 
enhancements specifically useful to distributed agent applications. Two types of policy 
files can be used to grant permissions to agents: (1) The MainContainer policy file that 
specifies platform-wide permissions, e.g. "Agents owned by user Bob can kill agents 
owned by user Alice". (2) Container policy files that specify container-specific 
permissions, e.g. "Agents owned by user Bob can kill agents owned by user Alice on 



          The JADE Platform and Experiences with Mobile MAS Applications            9 

the local container"). Container policy files can also regulate access to local resources 
(JVM, file system, network, etc.).  

Finally, message privacy and integrity is managed by the Encryption Service, which 
provides reasonable security guarantees when sending a ACL messages between agents 
on the local, or a foreign, platform. Signatures are used to both ensure the identity of a 
message originator and the integrity of a message (confidence that data has not been 
tampered with during transmission). Encryption is used to ensure privacy of the 
message by protecting message data from eavesdropping (confidence that only the 
intended receiver will be able to read the clear message). In JADE both signature and 
encryption always apply to the entire payload of a message in order to protect all the 
information contained in the slots of the ACL message (content, protocol, ontology, 
etc.). The security-related information (such as the signature, the algorithm or the key) 
is placed into the envelope. Users themselves do not need to deal with the actual 
signature and encryption mechanisms, but just need to request a message to be signed or 
to check whether a received message has been signed. If some problems occur whilst 
signing, encrypting, verifying or decrypting a message, the message is discarded and a 
failure notice is returned to the sender. 

4.3 Agent Management and Migration Service 

The Agent Management service provides support for managing the life cycle of agents. 
Each agent owns and controls its thread of execution, and life-cycle transitions can only 
be initiated by the agent or requested to the AMS (provided that the requestor has the 
needed permissions). The platform takes care of hiding the object reference of the agent 
in order to avoid other agents, or other objects of the system, to take control and directly 
manipulate an agent by calling its public methods. Notice that these two features (i.e. 
owning the thread and keeping private the object reference) are needed in order to meet 
the agent autonomy requirement that each platform is requested to guarantee. 

In the J2SE and Personal Java environments, JADE supports mobility of code and of 
execution state so that an agent can stop running on a host, migrate its code and state on 
a different remote host, and restart its execution from the point it was interrupted 
(actually, JADE implements a form of not-so-weak mobility because the stack and the 
program counter cannot be saved in Java). This functionality allows distributing 
computational load at runtime by moving agents to less loaded machines without any 
impact on the application. In a similar way, agent cloning is support in order to clone 
agent state and code. 

4.4 Replication Service 

To keep JADE fully operational even in the event of a failure of the Main-Container, a 
Main Replication Service was included in the latest versions of the platform. With this 
service is then possible to start any number of Main Container nodes, which will 
arrange themselves in a logical ring so that whenever one of them fails, the others will 



10           F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood 

notice and act accordingly. Ordinary containers will be able to connect to the platform 
through any of the active Main Container nodes; the different copies will evolve 
together using cross-notification. Without Main Container replication, JADE platform 
has a star topology, while enabling Main Container replication turns the topology into a 
ring of stars, as shown in Figure 4. 

In the fault-tolerant configuration two or more Main Container nodes are arranged in 
a ring, and each node is monitoring its neighbour: if the node Main-Container-1 fails, 
the node Main-Container-2 will notice and inform all the other Main Container nodes, 
so that a smaller ring can be rebuilt with the surviving nodes. 

Peripheral containers can be arbitrarily spread among the available Main Container 
nodes. Any single peripheral container is connected to exactly one node and in absence 
of failures it is completely unaware of all the other copies. When a Main Container node 
fails, there will generally be some orphaned peripheral containers. They will attach 
themselves to another one among all the Main Container nodes present in the platform. 

JADE supports two policies in distributing the Main Container list to peripheral 
containers. A first option is to enable detection of changes to the list and notify 
peripheral containers. A second option is to pass the address list to peripheral containers 
at start-up time, avoiding notification traffic towards peripheral containers when the 
fixed list of Main Container nodes is known beforehand. 

Main-Container 

Container-1 

Container-2 Container-3 

Main-Container

Main-Container-2

Main-Container-1

Container-2

Container-3

Container-1

 

Fig. 4. Star topology (left) and ring of stars topology (right) 

4.5 Message-Content Management Service 

When an agent A communicates with another agent B, a certain amount of information I 
is transferred from A to B by means of an ACL message. Inside the ACL message, I is 
represented as a content expression consistent with a proper content language (e.g. SL) 
and encoded in a proper format (e.g. string). Both A and B have their own (possibly 
different) way of internally representing I. Taking into account that the way an agent 
internally represents a piece information must allow an easy handling of that piece of 



          The JADE Platform and Experiences with Mobile MAS Applications            11 

information, it is quite clear that the representation used in an ACL content expression 
is not suitable for the inside of an agent. In order to facilitate the creation and handling 
of messages content, JADE provides support for automatically converting back and 
forth between the format suitable for content exchange (including String, sequence of 
bytes, XML and the Resource Description Framework, RDF), and the format suitable 
for content manipulation (i.e. Java objects). This support is integrated with Protégé [10], 
an ontology creation graphical tool that allows also importing/exporting ontology in 
several formats, including the Web Ontology Language (OWL). 

This support for content languages and ontologies automatically performs all the 
necessary message format marshaling (and unmarshaling) as well as a number of 
semantic checks to verify that I is a well-formed piece of information, i.e. that it 
complies with the rules (for instance that the age of Giovanni is actually an integer 
value) of the ontology by means of which both A and B ascribe a proper meaning to I. 

 
 

Content slot of an 

ACLMessage 
Inside of an agent 

Information 
 represented as a string or 

a sequence of bytes 
(easy to transfer) 

Information 
 represented as Java objects 

(easy to manipulate) 

JADE support 
for content 

languages and 
ontologies 

 

Fig. 5. JADE support for content management. 

The conversion and check operations are carried out by a content manager helper 
object. The content manager provides a convenient interfaces to access the conversion 
functionality, but actually just delegates the conversion and check operations to an 
ontology (i.e. an instance of the Ontology class included in the 
jade.content.onto package) and a content language codec (i.e. an instance of the 
Codec interface included in the jade.content.lang package). More specifically, 
the ontology validates the information to be converted from the semantic point of view 
while the codec performs the translation into strings (or sequences of bytes) according 
to the syntactic rules of the related content language 

Notice that JADE is opaque to the underlying inference engine system, if inferences 
are needed for a specific application, and it allows programmers to reuse their preferred 
system. It has been already integrated and tested with Java Expert System Shell (JESS 



12           F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood 

[11]) and some Prolog environments; moreover, a separate academic add-on is 
available, which supports building rational agents [12]. 

4.6 Persistence Service 

Another important aspect that needs to be considered in order to support server-side 
applications is persistent data management. Nowadays the dominant infrastructure for 
this is a relational DBMS, with more recent extensions towards a less structured data 
model (mainly binary data and text). 

The persistence-related features were divided into two categories. First, there are 
system-level features, such as persistently storing agents and whole containers; then, 
there are application-level features concerning the persistent storage of application-
specific entities. In designing JADE Persistence Service, the focus for the API was kept 
on system-level features, with the rationale of avoiding redundant API wrapping, 
relying instead directly on some chosen persistence Java API for application-level 
features. 

The chosen persistence engine turned out to be Hibernate [13], for a number of 
reasons among which its plain persistent component model and its powerful object-
oriented query language were prominent. Using Hibernate data mapping capabilities, a 
model of the relevant JADE system-level entities (agents, containers, messages and 
others) was made. Then, a basic graphical tool was developed to allow easy 
management of persistent storage and both API-level and ACL-level access was granted 
to application programmers. The Persistence Service is distributed as an add-on to the 
main JADE package and is currently being evaluated and tried out by the JADE user 
community. 

4.7 Other services 

Several other platform-level services are available and the expandability of the kernel 
will facilitate several more to be implemented in the future. 

For instance, a Logging Service is available that exploits the capabilities of the 
java.util.logging package in order to enable management of per-class logging 
levels and logging handlers (e.g. different file names and file formats). A graphical tool, 
the LogManagerAgent, also allows modifying at run-time the logging configuration 
of each class, features that is very useful for on-the-site debugging. 

Of course, the platform also includes a naming service (ensuring each agent has a 
unique name) and a yellow pages service that can be distributed across multiple hosts. 
Federation graphs can be created in order to define structured domains of agent services. 



          The JADE Platform and Experiences with Mobile MAS Applications            13 

5. JADE for Mobile Networks 

Usage of JADE on mobile networks and resource-constrained mobile terminals needs 
the platform to properly address new non-functional issues, such as the memory and 
processing power limitations of mobile devices and the characteristics of wireless 
networks, specifically the commonplace General Packet Radio Service (GPRS) in terms 
of bandwidth, latency, intermittent connectivity and IP addresses variability. Inter-
container communication cannot be anymore assumed to be stable, persistent, and 
reliable as connectivity may suddenly drop because of dead spots. 

The Split Container execution mode faces these limitations by executing only a very 
small part of the container (called front-end) on the mobile terminal. The remaining part 
(called back-end) runs somewhere in the fixed network. As depicted in Figure 6, the 
front-end provides to agents living on the mobile phone the same APIs as a normal 
container: that makes the split container execution completely transparent to application 
agents. Similarly, a back-end behaves for the rest of the platform exactly as a normal 
container does: that makes the split container execution completely transparent to the 
rest of the platform.  The front-end and the back-end are linked together by means of a 
permanent connection. The front-end just communicates with the back-end that, instead, 
is responsible for interacting with the rest of the platform.  When the front-end of a split 
container is launched on a mobile device, it first needs to create its back-end on a host in 
the fixed network. In order to do that, it requires a normal JADE container to act as a 
mediator and to serve back-end creation requests. Any JADE container can act as 
mediator for several split containers, the only limitation being the number of 
connections that a single host is able to keep opened. 

 
 

FrontEnd  ContainerBackEnd

JADE APIs

“Split container”

JADE APIs

BackEnd

FrontEnd 

Mediator 

permanent      
bi-directional 
connection  

 

                                             Fig. 6. Split container architecture. 

 



14           F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood 

The split container approach provides a number of advantages: 
� Most of the container functionality (such as hosting the services and registering 

with the Main container) is delegated to the back-end. As a consequence, the 
front-end can be extremely lightweight and save resources for applications agents. 
Using obfuscation techniques, as described in [3], we were able to reduce the 
JADE footprint down to 43 Kbytes.   

� The front-end is able to detect a drop down of the connection with the back-end 
(e.g. because the user entered a dead spot), react, and automatically recover it, as 
soon as possible. 

� Both the front-end and the back-end can implement a store and forward 
mechanism so that any message, that was tried to exchange when the connection 
was temporarily down, is automatically buffered and delivered as soon as the 
connection is restored. 

� The IP address of the device is hidden by the back-end to the rest of the platform. 
Therefore a change of the device IP address is completely transparent to the 
applications and to the rest of the platform. 

� Last but not least, the split container approach allows the platform provider (likely 
the telecom operator) to keep control on the applications and the services provided 
over the platform. In fact, though completely peer-to-peer from a logical point of 
view, the communication between two agents on mobile devices always passes 
through the back-ends of the split containers. By plugging ad hoc services in the 
back-ends, the operator is in fact able to implement e.g. application-specific event-
based logging, billing, priority assignment mechanisms based on the user 
subscription. 

5.1 The PDP context manager module 

Multi-agent applications need to face the peer discovery problem, i.e. how a peer 
becomes aware of other peers to communicate with. Typically, this is solved by means 
of some sort of white pages and yellow pages services that require each peer to register 
and successively search for other peers. Mobile devices, however, are intrinsically 
identified by their user phone number, i.e. the MSISDN (Mobile Station International 
ISDN Number). For this reason, all mobile applications involving people whose phone 
numbers are known a-priori (e.g. applications involving a group of people) should not 
require any peer discovery mechanism: a peer acting on behalf of a user should be 
addressable by simply specifying the phone number of that user. 

JADE supports this MSISDN-based identification by means of the PDP (Packet Data 
Protocol) context manager module. When a mobile phone attaches to the GPRS 
network, it communicates with the operator’s SGSN (Serving GPRS Support Node) to 
request the creation of a PDP context. This is a logical association between the mobile 
phone and the network, including aspects such as routing, QoS and billing. The mobile 
phone request is passed to the GGSN (Gateway GPRS Support Node) to verify the 
GPRS account and assign an IP address to a new PDP Context. In general, the 
authentication is performed by using a RADIUS server connected to the GGSN. The 



          The JADE Platform and Experiences with Mobile MAS Applications            15 

JADE PDP context manager is a software module able to interact with the RADIUS 
Server. When a back-end creation is requested, the JADE container, which is acting as 
mediator, interrogates this module and gets back the MSISDN corresponding to the IP 
address the request comes from. In this way, JADE can use the device MSISDN to 
identify the starting split container and possibly force any agent starting on that 
container to comply with proper name space conventions based on the MSISDN. For 
example, an agent implementing a chat application may be named  <device msisdn>-

chat so that its name is known a priori by other chat agents on other devices. The PDP 
context manager module complies with a simple and well defined interface so that the 
actual implementation can be modified or even replaced depending on the operator 
network topology. 

Besides offering an intrinsic peer identification mechanism, the integration with the 
RADIUS Server also allows exploiting the GPRS authentication to authenticate JADE 
nodes. The advantage of this is threefold: 
� It is secure enough from the operator point of view since it relies on its standard 

authentication mechanism.  
� It allows the operator to easily manage access control lists of users/phone-number 

authorized to join the platform.  
� It does not require users to enter additional username and password to launch 

JADE based applications on their mobile devices.    

6. JADE Application Domains 

One of the main goals in developing a middleware is to maintain a high degree of 
openness and flexibility, making it applicable in as many different application domains 
as possible. We propose hereafter a first general categorization with no scientific 
completeness but just to provide a general understanding of the effectiveness of JADE. 
The highest payoff of adopting Agent Technology is expected in those cases where an 
interaction between numerous elements is required, and where an autonomous and 
dynamic adaptation to complex relations is needed. 

6.1 Mobile applications 

The focus here is supporting users on the move with a “personal agent” that helps its 
owner. Its goal is to facilitate the search and discovery of information through the 
interaction with other peers, being both other people and “service providers”. In general, 
JADE agents are extremely suited to act in the context of Mobile PIM – Personal 
Information Management: their ability of autonomous and proactive acting and 
seamless communications allows conceiving applications for everyday life organization, 
like meeting organizer, info search or services negotiation. 

Several examples illustrate the strengths of JADE peers acting as assistants for 
travelers, being private tourists or mobile workers. Other applications have been 
developed in the mobile work or sales support systems, in which agent duties are task 



16           F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood 

and information sharing and exchange. In the entertainment field, JADE middleware 
can either be the base for multiparty gaming applications, in which a real interaction 
between players is offered, or can be the building block for an enhanced kind of mobile 
community where peer-to-peer communication allows richer relationships amongst 
members. 

BTexact uses the JADE platform, and the LEAP add-on for mobile terminals, for its 
application supporting the coordination and the activities of a mobile workforce, 
including the distributed scheduling of jobs, job management on the fly, travel and 
knowledge management, and location-based coordination [14]. Telecom Italia LAB uses 
JADE for developing new mobile VAS (Value Added Services) for nomadic micro-
communities over Java-enabled mobile phones. 

6.2 Internet applications 

In the Internet domain several application concepts based on agent technology have 
been proposed during the years, as the main concept has been to beneficiate from the 
increased connectivity, in terms of bandwidth and relations amongst people. 

JADE-based systems allow end users to deal with the complexity and number of 
opportunities, and to exploit the possibility to seamlessly access remote resources and 
services. Key elements in JADE-based applications designing are direct communication 
support, smart information retrieval capabilities and negotiation techniques. Starting 
from these basic principles, various sectors have been considered such as e-learning or 
e-healthcare, and in general all the contexts of e-commerce/e-trading have been tackled. 
Moreover many of the considerations put forward in the mobile environment can been 
easily extended to a fixed consumption, allowing an integrated organisation of the 
personal and working life between PC and mobile devices. Lastly, the entertainment 
sector has been analysed starting from the obvious consideration on community 
services, multiparty gaming and content sharing applications. 

Whitestein Technologies AG uses the JADE platform in the health care field, in 
collaboration with Swisstransplant, the Swiss National Transplant Coordination centre 
for organ transplants, for an agent-based system for decision-making support in organ 
transplant centers. By combining agent technology, constraint satisfaction techniques 
and JADE capabilities, Whitestein implemented the Organ Transplant Management 
(OTM) solution [15]. 

6.3 Corporate applications 

The intelligent agents approach is an evident choice for business applications striving to 
enhance company productivity and efficiency. The point is easing collaboration and 
cooperation between systems and people in order to achieve better results. Many 
different examples of the usage of agent technology have been provided already in order 
to support company processes: when it comes the time to share information or 



          The JADE Platform and Experiences with Mobile MAS Applications            17 

coordinate tasks the deployment of JADE-based system becomes very effective and 
useful. 

Instances have been proposed in “soft contexts”, such as knowledge management and 
personnel administration or in general for the support to decision making processes. 
Other proposals have come in “harder” environments, including companies core 
processes, like logistic or production: valuable demonstrations concern systems for 
factory control, exploiting JADE capabilities in optimising tasks and coordinating 
resources. Interestingly enough, some JADE applications exceed even company 
boundaries supporting activities amongst different businesses: the ability of agents in 
the negotiation and information retrieval amongst services and resource providers leads 
to the construction of JADE-based supply-chain or e-procurement products. 

6.4 Machine-to-Machine applications 

In those cases where communication peers are machines instead of humans, JADE 
features can be exploited at its best. Autonomy and proactivity of agents play a crucial 
role in the management of complex systems: when the number of elements and the 
complexity of the relations raise, the opportunity of a distributed control significantly 
simplifies system operations. 

Complex algorithms and heavy elaborations, typically concentrated in a single 
central point can be spread among agents, increasing overall efficiency and system 
performance and reducing the risks connected with this concentration, thus increasing 
system fault tolerance and scalability. 

Classical examples in this context are automatic control or traffic management 
systems, but the helpfulness of JADE approach can go down in more depth: several 
studies are under way in order to extend P2P agents paradigm to network management, 
with the concept of peers mapping onto network equipments and interacting amongst 
them for resources optimizations and system control. 

Finally it’s interesting to cite the extensive application of agent models for simulation 
uses. The concept of numerous elements acting independently but together in the 
environment in which they are part of, easily applies to several contexts, from different 
science sectors (for instance biology, ecology and natural science in general) to social 
and economic studies. 

Rockwell Automation implemented the Manufacturing Agent Simulation Tool 
(MAST) [16] for the manufacturing control sector. The tool shows agents for basic 
material-handling components (e.g. a manufacturing cell, a conveyor belt, an AGV, 
etc.) capable of mutual collaboration on the product transportation via the exchange of 
messages. Agents are able to deal at run-time with dynamic changes and exceptional 
cases, such as failure detection and recovery, change of the layout of the factory’s shop 
floor, addition/removal of components or their interconnections. 



18           F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood 

6.5 JADE Community 

The evolution strategy of the JADE project, since its beginning, is based on a 
collaborative intent aimed at focusing the interest of an ever-growing community of 
users and developers. This community revolves around two focal points: the open 
source project and the JADE Governing Board. 

JADE is, in fact, distributed open source under the LGPL license. The aim of this 
license is to facilitate the creation of an open and effective platform with the help of a 
user community, while allowing everybody to base the business upon the applications. 
At the time of writing, more than 60,000 official downloads and several contributions 
from some tens of different companies and academic institutions have been counted, 
including complete subsystems (the so-called JADE add-ons), but much more are 
welcome and expected. 

The JADE Governing Board [1] is a not-for-profit agreement between a set of 
companies, all sharing the intent and the effort of promoting the evolution of this 
software tool and its adoption by the mobile telco industry as a java-based de-facto 
standard middleware for agent-based applications. The JADE Board governs and 
implements the evolution of the software deciding which features should be added next. 
At the time of writing, the Board is composed of 5 members: TILAB, Motorola, 
Whitestein Technologies AG, Profactor GmbH, France Telecom. Each member of the 
JADE Board has the advantage of contributing and voting about priorities, technical and 
strategic decisions about the evolution of the JADE Project. Board members shall agree 
with the governing rules and commit to a minimal amount of resources for development 
and promotion of JADE. The Board is open to all companies and organizations with a 
concrete business interest in JADE and that commit to its development and promotion. 

7. Conclusions and Future Roadmap 

The paper presented the architecture of the JADE platform with particular details on the 
new kernel, realized as a set of distributed coordinated filters. This new kernel enables 
composition of platform-level services and great extensibility and adaptivity to the 
requirements of the deployment environment. The specific case of the mobile networks 
and terminals has been presented by showing how the split container execution mode 
allows meeting the peculiar requirements of that deployment environment and the PDP 
context manager module has been described, that enables support for MSISDN-based 
identification. As any healthy software infrastructure, JADE is still evolving while 
trying to balance the need for change with the requirement to protect its users from 
backward-incompatible modifications. 

In order to manage the ever-increasing size and evolution of the project, a Governing 
Board was created as a not-for-profit agreement between companies that commit to the 
development and promotion of the platform. At the time of writing, the four main 
goals/directions of the project are the followings. The first goal is to consolidate the 
software platform by increasing the strength of features such as scalability, 
performance, robustness, security, integration with Web Services and network 



          The JADE Platform and Experiences with Mobile MAS Applications            19 

apparatuses; two new releases per year are expected to be distributed. The second goal 
is to develop new functionalities and integrate them into the middleware. In particular, 
the Board is already developing an intelligent communication layer based upon a 
semantics interpreter able to exploit the formal semantics of the FIPA Agent 
Communication Language. New developments are also planned on the collaboration 
and organization layers for improving the organization view of the multi-agent system. 
The third important goal is to further increase the level of participation and commitment 
of the Open Source Community. The Web-based infrastructure of the project will be 
extended with a sourceforge-like system what will enable each member of the 
community to submit a workplan for a new project and, if approved by the Board, have 
its own working space, including the CVS repository, the mailing list, the bug-tracking, 
the forum, etc. Finally, the fourth goal is to broaden the scope and the size of the JADE 
Board by welcoming new members and new proposals. 

 
References 
[1]  The JADE Project Home Page. Available at http://jade.tilab.com 
[2]  The Foundation for Intelligent Physical Agents. Available at http://www.fipa.org 
[3]  M. Berger et.al.. Porting Distributed Agent-Middleware to Small Mobile Devices. 

Workshop on Ubiquitous Agents, AAMAS2002, Bologna, July 2002 
[4]  D. Cowan, M. Griss, R. Kessler, B. Remick, B. Burg. A Robust Environment for Agent 

Deployment, AAMAS 2002 - Workshop on Challenges in Open Agent Environments, 
Bologna, Italy, July 2002 

[5]  Aspect-Oriented Software Development. Available at http://aosd.net 
[6]  G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold, “An Overview 

of AspectJ”, In Proc. ECOOP 2001, Budapest, pp. 327-353, June 2001. 
[7]  M. Aksit, K. Wakita, J. Bosch, L. Bergmans, A. Yonezawa. “Abstracting Object 

Interactions Using Composition Filters”. Proceedings of the ECOOP 1993 Workshop on 

Object-Based Distributed Programming, pp. 152-184, Springer-Verlag. 
[8]  G. Vitaglione, E. Cortese, F. Quarta, P. Vrba. Scalability and Performance of the JADE 

Message Transport System. Analysis of suitability for Holonic Manufacturing Systems. 
EXP - In Search of Innovation (Special Issue on JADE), Vol 3, Nr. 3, Telecom Italia Lab, 
Turin, Italy, September 2003, pp. 52-65.  

[9]  Java Authentication and Authorization Service (JAAS),http://java.sun.com/products /jaas 
[10]  Protégé, available at http://protege.stanford.edu 
[11] Jess, the Expert System Shell for the Java Platform. 

Available at http://herzberg.ca.sandia.gov/jess 
[12]  A. Pokahr, L. Braubach, W. Lamersdorf. Jadex: Implementing a BDI-Infrastructure for 

JADE Agents. EXP - In Search of Innovation (Special Issue on JADE), Vol 3, Nr. 3, 
Telecom Italia Lab, Turin, Italy, September 2003, pp. 76-85. 

[13]  The Hibernate Project Home Page. Available at http://www.hibernate.org 
[14] The mPower Project Home Page. 

Available at http://research.btexact.com/islab/IBSRpublic/MPower.html 
[15]  M. Calisti, P. Funk, S. Biellman, T. Bugnon. A Multi-Agent System for Organ Transplant 

Management. Available at http://www.whitestein.com/resources/papers/wssat03-
organtrans.pdf 

[16]  P. Vrba, MAST: Manufacturing Agent Simulation Tool, EXP - In Search of Innovation 

(Special Issue on JADE), Vol 3, Nr. 3, Telecom Italia Lab, Turin, Italy, September 2003. 
 



20           F. Bellifemine, G. Caire, G. Vitaglione, G. Rimassa and D. Greenwood 

Fabio Bellifemine, Giovanni Cairem and Giosuè Vitaglione 
Telecom Italia LAB  
Service Platforms 
Via G. Reiss Romoli 274 
10148 Turin 
Italy 
e-mail: {fabio.bellifemine, iovanni.caire, iosue.vitaglione}@tilab.com 
 
Giovanni Rimassa and Dominic Greenwood 
Whitestein Technologies AG  
Pestalozzistrasse 24  
8032 Zürich 
Switzerland 
e-mail: {gri, dgr}@whitestein.com 

 

Information about Software 

Software is available on the Internet as 
(   )    prototype version 
(X)  full fledged software (under LGPL license), version no: 3.3 
(X)  full fledged software (under commercial license), version no: 3.3 
(   )   Demo/trial version 
(   )   not (yet) available 

Internet address: http://jade.tilab.com 
Description of software: JADE is a middleware for the development of distributed 
multi-agent applications. It is available both for J2SE and J2ME Java platform.  
Download address: http://jade.tilab.com 

Contact person for question about the software: 
Name: Fabio Bellifemine 
email:  jade-board@avalon.cselt.it 
 



A-globe: Agent Development Platform with
Inaccessibility and Mobility Support

David Šǐslák, Martin Rehák, Michal Pěchouček,
Milan Rollo and Dušan Pavĺıček

Abstract. At present several Java-based multi-agent platforms from differ-
ent developers are available, but none of them fully supports agent mobility
and communication inaccessibility simulation. They are thus unsuitable for
experiments with large scale real-world simulation. In this chapter we de-
scribe architecture of A-globe, fast, scalable and lightweight agent develop-
ment platform with environmental simulation and mobility support. Beside
the functions common to most agent platforms it provides a position-based
messaging service, so it can be used for experiments with extensive environ-
ment simulation and communication inaccessibility. Simple benchmarks that
compare the A-globe performance against other available agent platforms are
also included.

1. Introduction

In this chapter we present A-globe [2], an agent platform designed for fast pro-
totyping and application development of multi-agent systems. A-globe provides
the same level of services as JADE, COUGAAR, FIPA-OS, JACK (see Section 3
for comparisons and references). Besides presentation of the system itself, we will
describe several application scenarios. The main focus of the A-globe developers
has been given to the following applications domains:

• simulation, especially simulation of the multi-agent environment and collec-
tive behavior of large communities

• scalability, high-number of fully fledged and fully autonomous agents, that
are loosely coupled with lightweight infrastructure

• agent migration persistence and code and state migration within the commu-
nication network as much as physical reallocation of the computational host
and thus modelling of partial and non-permanent communication inaccessi-
bility[13].



22 D. Šǐslák, M. Rehák, M. Pěchouček, M. Rollo and D. Pavĺıček

The platform provides functions for residing agents, such as communication
infrastructure, store, directory services, migration function, deploy service, etc.
Communication in A-globe is very fast and the platform is relatively lightweight.

A-globe platform is FIPA [6] compliant on the ACL level while it does not
support the FIPA specification for inter-platform communication, as the address-
ing and transport-level message encoding were simplified. Interoperability is not
necessary for development of the closed systems, where no communication outside
these systems is required. This is the case of e.g. agent-based simulations. For large
scale scenarios the interoperability also brings problems with system performance
where memory requirements, communication speed may become the bottleneck of
an efficient collective operation.

A-globe is suitable for real-world simulations including both static and mo-
bile units (e.g. logistics, ad-hoc networking simulation), where the core platform
is extended by a set of services provided by Geographical Information System
(GIS) and Environment Simulator (ES) agent. The ES agent simulates dynamics
(physical location, movement in time and others parameters) of each unit.

In this chapter you will learn about the architecture and more technical
details about the A-globe multi-agent platform (see Section 2), the comparison
with different available platforms will be provided (see Section 3). The last section
of this chapter will be devoted to simulation and two implemented simulation
scenarios (see Section 4).

2. System Architecture

The system integrates one or more agent platforms. The A-globe design is shown
in Figure 1. Its operation is based on several components:

• agent platform – provides basic components for running one or more agent
containers, i.e. container manager and message transport layer (section 2.1);

• agent container – skeleton entity of A-globe, ensures basic functions, com-
munication infrastructure and storage for agents (section 2.2);

• services – provide some common functions for all agents in one container;
• environment simulator (ES) agents – simulates the real-world environment

and controls visibility among other agent containers (section 4.1);
• agents – represent basic functional entities in a specific simulation scenario.

Simulation scenario is defined by a set of actors represented by agents re-
siding in the agent containers. All agent containers are connected together to one
system by the GIS services. Beside the simulation of dynamics the ES agent can
also control communication accessibility among all agent containers. The GIS ser-
vice applies accessibility restrictions in the message transport layer of the agent
container.



A-globe 23

. . .

...... ...

ES

Agent

GIS Master

Service

GIS Client

Service

GIS Client

Service

Container

Slave

Name 1

Container

Slave

Name 2

Container

Master

GISServer

GIS Client

Service

Container

Slave

Name N

Container Manager

Message Transport

Java Virtual Machine JVM

Container Man.

Msg. Transport

Platform 1 Platform 2

T o p i c  M e s s a g i n g
A

g
e
n
t

A
g
e
n
t

A
g
e
n
t

A
g
e
n
t

A
g
e
n
t

A
g
e
n
t

Figure 1. System Architecture Structure

2.1. Agent Platform

The main design goals were to develop the platform as lightweight as possible and
to make it easily portable to different operating systems and devices (like PDA).
The platform is implemented as an application running on Java Virtual Machine
(JVM 2 edition 5.0 or higher is required). Several platforms can run simultaneously
(maximum 1000) on one computer, each in its own JVM instance. When a new
agent container is started, we can explicitly specify in which platform it will be
created and run.

The platform ensures the functionality of the rest of the system using two
main components:

• Container Manager. One or more agent containers can run within single agent
platform. Container Manager takes care of starting, execution and finishing of
these containers. Containers are mutually independent except for the shared
part of the message transport layer. Usage of single agent platform for several
containers running on one computer machine is beneficial because it rapidly
decreases system resources requirements (use of single JVM), e.g. memory,
processor time, etc.

• Message Transport. The platform-level message transport component ensures
an efficient exchange of messages between two agent containers running in a
single agent platform (single JVM).



24 D. Šǐslák, M. Rehák, M. Pěchouček, M. Rollo and D. Pavĺıček

2.2. Agent Container

The agent container hosts two types of entities that are able to send and receive
messages: agents and services. Agents do not run as stand-alone applications. In-
stead, they are executed inside the agent containers, each agent in its own separate
thread. The schema of general agent container structure is shown in Figure 2. Con-
tainer provides the agents and services with several low level functions (message
transport, agent management, service management). Most of the higher level con-
tainer functionality (agent deployment, migration, directory facilitator, etc.) is
provided as standard container services.

Container Core ServiceService ManagerAgent Manager

Message Transportransport

Agents Services

SStore

Library ManagerLibrary Manager

Figure 2. The Agent Container Structure

The agent container components are:

• Container Core. The Container Core starts up and shuts down all container
components.

• Store. The purpose of Store is to provide permanent storage through interface
which shields its users from the operating system’s filesystem. It is used by all
container components, agents and services. Each entity in the agent container
(agent, service, container components) is assigned its own virtual storage,
which is unaffected by the others. Whenever an agent migrates, its store
content is compressed and sent to the new location.

• Library Manager. The Library Manager manages the libraries installed in
the container and monitors which agents/services use which library.

• Message Transport. The Message Transport is responsible for sending and
receiving messages from and to the container.

• Agent Manager. The Agent Manager takes care of creation, execution and
removal of agents on the container. It creates agents, re-creates them after
platform restart, routes the incoming messages to the agents, packs the agents
for migration and removes agent’s traces when it migrates out of the platform
or dies.

• Service Manager. The Service Manager takes care of starting and stopping
the services present in the agent container and their interfacing to other
container components. The user can start, stop and inspect the services using
a GUI. There are two types of services – user services and system services.



A-globe 25

Figure 3. Container GUI: Agent Information

The system services are automatically started by the container and form a
part of the container infrastructure (agent mover, library deployer, directory
services etc.). The system services cannot be removed. The user services can
be started by the user or any agent/service. The user services can be either
permanent (started during every container startup) or temporary (started
and stopped by an agent). In contrast to agents the services are not able to
migrate to other containers.

The container name must be unique inside one system built from several con-
tainers. This name is also used for determination of the specific store subdirectory
for the agent container and is registered with the Environment Simulator Agent.

2.2.1. Container GUI. The agent container has a graphic user interface (GUI),
which gives the user an easy way to inspect container state and to install or
remove its components (agents, services and libraries). The GUI could be shown
or hidden both locally and remotely (by message). The GUI screen shot is shown
in figure 3.

The window has two parts. The tree on the left side shows names of agents,
services and libraries present on the container. The right side shows detailed in-
formation about the object selected in the tree. Moreover, the agents and services
are allowed to create their own GUI without any restrictions.

2.2.2. Library Manager. The Library Manager is responsible for the libraries in-
stalled in the agent container and monitors the use of these libraries by agents
and services. Descriptor of each agent or service specifies which libraries the



26 D. Šǐslák, M. Rehák, M. Pěchouček, M. Rollo and D. Pavĺıček

agent/service requires. The Library Manager is also responsible for automatic li-
brary migration when the agent using this library migrates, as described in the
dedicated section 2.3. The user can add, remove and inspect libraries using the
container GUI.

LibrarySender

obtainLibrary(name)

request(TheLibrary)

done(TheLibrary)

Destination Container
Source

Container

LibraryManager LibraryRequesterClient

storeLibrary(TheLibrary)

obtainLibrary(name)

finished(result)

Figure 4. Library Deployment Sequence Diagram

Every new loaded library in A-globe container internally uses the library
name constructed from the original library name and SHA-1 hash [1] of the li-
brary content. The loaded library is automatically labelled with unique version
label constructed as ver{ver num in the container}@{container name}. This
way, two different libraries with same file name can be used in parallel within a
single A-globe platform. The library can be removed before a class loader opens
it. After opening, it can not be removed from the runtime environment. It can be
only removed at A-globe restart.

Class loader is defined for each agent and service. If an agent/service doesn’t
use any special library, it uses a bootstrap class loader. The bootstrap class loader
locates classes only in the name space defined in the path specified by the starting
CLASSPATH parameter or manifest CLASSPATH parameter in the JAR library used
by Java runtime. If an agent/service uses specific libraries, it has to define its
own class loader which tries to load classes in specified libraries. However, even
the agent specific class loader always prefers classes defined by the bootstrap class
loader. Therefore, default classes can not be ”overridden” - it has no sense to define
own java.lang.String class because it will never be actually loaded. In A-globe,
each agent (service) class loader defines agent/service class resolving name space.
The migration process and the message transport layer always use respective name
space.



A-globe 27

Agents Services

Agent Manager Service Manager

Container Core

Message Transport

Receiving

Thread

Incoming

Queue

Incoming

Queue

TCP/IP connections to

the other containers

Figure 5. Message Flow

Therefore, several agents with different versions of the same main class can
run in a single agent container.

2.2.3. Message Transport. The Message Transport is responsible for sending and
receiving messages. Shared TCP/IP connection for message sending is created
between every two agent containers hosted on different agent platforms when the
first message is exchanged between them. Messages between two agent containers
running in the same agent platform are passed via the platform-level message
transport component. The message flow inside the container is shown in figure 5.

The message structure respects FIPA-ACL [7]. Messages are encoded either
in XML or Byte64 format. Message content can be in XML format or String.
The structure of each message content in XML format is described by Document
Type Definition (DTD). For coding and decoding XML messages the Java APIs
for XML Binding (JAXB) [10] package is used. For transport, all binary data (e.g.
libraries, serialized agents, etc.) is encoded using the open source Base64 coding
and decoding routines.

The message transport layer takes care that all message are serialized (mar-
shaled) and deserialized (unmarshaled) in the appropriate class name space de-
pending on the sender and receiver agent/service’s class loader.

Agent may receive messages without using conversation discrimination (all
messages incoming to this agent are processed in one method), otherwise it must
use the conversation manager with tasks.

2.2.4. Conversation Manager and Tasks. Usually, an agent deals with multiple
jobs simultaneously. To simplify the development of such agents, A-globe offers
tasks. A task is able to send and receive messages and to interact with other tasks.



28 D. Šǐslák, M. Rehák, M. Pěchouček, M. Rollo and D. Pavĺıček

The Conversation Manager takes care of every message received by the agent to
be routed to the proper task. The decision, to which Task a message should be
routed, depends on the massage ConversationID. The ConversationID should
be viewed as a ’reference number’.

2.2.5. Agents. The agents are autonomous entities with a unique name and an
ability to migrate. There is a separate thread created for each agent. A wrapper
running in the thread executes the agent body. Whenever an agent enters an error
state or finishes its operation, the control is passed back to the wrapper, which han-
dles the situation. The return value of the agent state is used to determine agent’s
termination type (die, migrate, suspend). Therefore, potential agent failures are
not propagated to the rest of the agent container. Agents could be deployed to
remote containers.

Client ServiceManager Service

ServiceShell

getService()

getServiceShell()

create

serviceShell

serviceShell

Service Call

performOperation()

performOperation()

result

result

Figure 6. Service Shell Operation

2.2.6. Services. The services are bound to a particular container by their identifier.
The same service may be present at several containers and can be also deployed to
remote containers. Services handle the requests coming in two forms - as messages
or local interface calls.

The agents (and services or container components) have two ways to com-
municate with a service. Either via normal messages or by using the service shell.
The service shell is a special proxy object that interfaces service functions to a



A-globe 29

client. The UML sequence diagram of service shell creation and use is shown in
Figure 6.

The advantage of the service shell is an easy agent migration (for migration
description see section 2.3): while the service itself is not serializable, the service
shell is. When an agent migrates, the shell serializes itself with the information
what service name it was connected to. When the agent moves to the new location,
the shell reconnects to the same service at the new location. When a service is shut
down, it notifies it’s shells so that they refuse subsequent service calls.

There are several common services described in the table 1. These services
are automatically started by the agent container and provide common functions
for all agents.

Service name Description

container/command Service through which the container
core remotely receives commands
(show/hide GUI, shutdown)

container/directory It provides extended white pages and
directory pages services. It supports in-
accessible environment and uses visi-
bility updates provided by ES Visibil-
ity servers. The service is automatically
started on every client container.

container/library/directory Provides searching of library matching
some search criteria

container/deploy Service responsible for starting an agent
from agent info record

gis/master Master side of Environment Simulator
service

gis/client Client side of Environment Simulator
service

Table 1. System services description

2.2.7. Agent/Service Naming and Addressing. The agent name is globally unique
and is normally generated by the platform during agent creation. The service name
is unique only within one agent container (services cannot migrate) and is specified
by the service creator. The address has the following syntax:

aglobe://platform_ip:port/[agent|service]/name.

2.3. Agent Migration and Cloning Procedure

In order to successfully migrate, the agent has to support serialization. The Library
Manager takes care that all necessary libraries are transferred with the agent code.
The migration sequence is shown in Figure 7.



30 D. Šǐslák, M. Rehák, M. Pěchouček, M. Rollo and D. Pavĺıček

Return

getDestination()

packStore

moveAgent(agent)

agree(deployAgent)

obtainLibrary

finished

create

done(deployAgent)

remove

Source Container Destination Container

AgentOrig AgentManager MoverService

AgentMoved

DeployService LibraryManager

serializeAgent

request(deployAgent)

AgentFinished

Figure 7. Agent Migration

All exceptions that might occur during the process are properly handled and
the communication is secured by timeouts. If the migration cannot be finished for
any reason, the agent is re-created in its original container.

If the done message is successfully sent by the agent destination container
but never received by the source container, two copies of the agent emerge. If the
done message is received by the source container, but the agent creation fails at the
destination container, the agent is lost. These events can never be fully eliminated
due to the possible communication inaccessibility, but maximum caution was given
to minimize their probability.

When the migrating agent uses external libraries, the library manager service
(see Section 2.2.2) moves the necessary libraries not available on the new container
on behalf of the migrating agent. The migration process makes use of the Java
programming language features - serialization and externalization. Whenever an
agent migrates or a new agent(service) is deployed, the Library Manager checks
which libraries (including the library version) are missing on the container and
obtains them from the source container. The inter-platform functionality of the
Library Manager is realized though the service library/loader (this service is
present on every agent container). Library deployment sequence diagram is shown
in Figure 4.



A-globe 31

Agent cloning is analogous to the agent migration. The procedure differs only
in two points - the clone created on the remote can have a different name, specified
by the agent and the original agent is not removed at the end of the operation.

2.4. Sniffer Agent

The Sniffer Agent is an on-line tool for monitoring all messages and their trans-
mission status (delivered or not-reachable target). This tool helps find and resolve
communication problems in the system during the development phase.

The sniffer can be started only on an agent container where gis/master service
is running. After the sniffer starts, all messages between agents and services inside
any container or among two agent containers are monitored. Messages can be
filtered by the sender or receiver of the message. All messages matching the user-
defined criteria are shown in the sniffer GUI, as shown in Figure 8. The message
transmission status is visualized by the type of line. The color of the message
corresponds to the message performative.

Figure 8. The sniffer

2.5. Communication Analyzer

The sniffer agent provides a detailed overview of the communication between
agents. However, the amount of details provided by the sniffer, combined with
the column alignment of agents makes the global view of the interactions in the
community difficult to grasp. Quite often, we prefer to clearly see the intensity of
interactions between agents, rather than the details of individual communications.
This is exactly the service provided by the communication analyzer, as shown in
Figure 9. Communication Analyzer presents selected agents, filtered by a regular
expression, in a circle. Messages exchanged between agents influence the color and



32 D. Šǐslák, M. Rehák, M. Pěchouček, M. Rollo and D. Pavĺıček

the width of the links between communicating agents. In order to keep the im-
age updated, old messages fade away progressively and only the recent ones are
visible. Such visualization tool is important especially in situations with limited
accessibility, where the fragmentation of the community can be readily perceived.
For example in ACROSS scenario (see paragraph 4.2), we can observe the aver-
age number of agents participating in auctions or the lack of communication with
agents that are not considered to be trustful by others.

Figure 9. The Communication Analyzer user interface. Note
that two disjoint parts of the agent system can be clearly ob-
served, indicating possible communication failure.

3. Platform comparison

This section presents the results of comparison of available JAVA-based agent de-
velopment frameworks evaluated by an industry expert Pavel Vrba from Rockwell
Automation Research Center in Prague [21], which were carried out in a cooper-
ation with the Gerstner Laboratory.

These benchmarks were focused especially on the platform performance which
is a crucial property in many applications. Detailed description of the particular
features is beyond the scope of this chapter. Firstly, the particular benchmark
criteria, which the agent platform should provide are identified (e.g. small memory
footprint and message sending speed). These benchmarks were carried out for the
following agent platforms1 - JADE [9, 3], FIPA-OS [17], ZEUS [11], JACK [8] and

1GRASSHOPPER’s licence does not allow to use it for benchmarking and other comparison
activities.



A-globe 33

A-globe [2]. Shall be noted that the platforms feature various special capabilities
that are out of scope of the comparison (e.g. BDI capability in JACK). These
features can have an impact on the investigated performance measures.

serial [ms] parallel [s] serial [ms] parallel [s] serial [ms] parallel [s]

JA DE v 3.1 0,8 0,36 7,5 0,19 76,3 0,49
JA DE v 3.1

1 host, 2 JVM, RMI 10,3 4,92 111,9 6,35 1 190,5 7,14
JA DE v 3.1
2 hosts, RMI 5,79 3,30 68,8 3,71 770,3 2,48

FIPA -OS v 2.1.0 28,6 14,30 607,1 30,52 2 533,9 19,50
FIPA -OS v 2.1.0
1 host, 2 JVM, RMI 20,3 39,51 205,2 12,50
FIPA -OS v 2.1.0
2 hosts, RMI 12,2 5,14 96,2 5,36

ZEUS v 1.04 101,0 50,67 224,8 13,28
ZEUS v 1.04
1 host, 2 JVM, ? 101,7 51,80 227,9
ZEUS v 1.04
2 hosts, TC P/IP 101,1 50,35 107,6 8,75

JA CK v 3.51 2,1 1,33 21,7 1,60 221,9 1,60
JA CK v 3.51

1 host, 2 JVM, UDP 3,7 2,64 31,4 3,65 185,2 2,24
JA CK v3.51
2 hosts, UDP 2,5 1,46 17,6 1,28 165,0 1,28

AGlobe v 1.0 0,3 0,10 2,8 0,04 28,4 0,09
AGlobe v 1.0

1 host, 2 JVM, TC P/IP 2,4 0,33 24,6 0,88 242,7 0,98
AGlobe v 1.0
2 hosts, TC P/IP 2,2 0,33 13,9 0,31 96,5 0,44

JAVA-based Agent Development Toolkits/Platforms - Benchmark Results

Agent Platform agents: 1 pair
messages: 1.000 x

agents: 10 pairs
messages: 100 x

agents: 100 pairs
messages: 10 x

Message sending - average roundtrip time (RTT)PIII, 600MHz, 256MB

April 2004, Rockwell Automation in Prague

Table 2. Message delivery time results for selected agent platforms

3.1. Message Speed Benchmarks

The agent platform runtime, carrying out interactions, should be fast enough to
ensure reasonable message delivery times. The selected platforms have been put
through a series of tests where the message delivery times have been observed
under different conditions.

In each test, the so called average roundtrip time (avgRTT) is measured. This
is the time period needed for a pair of agents (let’s say A and B) to send a message
from A to B and get reply from B to A. The roundtrip time is computed by the
agent A when a reply from B is received as a difference between the receive time
and the send time. This message exchange was repeated several times (depending
on the type of experiment) and the results were computed as an average from all
the trials.

The overall benchmark results are presented in the Table 2. A more transpar-
ent representation of these results in the form of bar charts is depicted in Figure 10.



34 D. Šǐslák, M. Rehák, M. Pěchouček, M. Rollo and D. Pavĺıček

Average roundtrip time 1 host

0,8

28,6

101,0

2,1 0,3
7,5

21,7

2,8

224,8

0,0

50,0

100,0

150,0

200,0

250,0

]s
m[ 

T
T

R
gva

1 agent pair, 1000 messages

10 agent pair, 100 messages

JADE               FIPA-OS               ZEUS                  JACK                AGlobe

607,1

Average roundtrip time 2 hosts

5,79
12,2

101,1

2,5 2,2

68,8

96,2
107,6

17,6 13,9

0,00

25,00

50,00

75,00

100,00

125,00

]s
m[ 

T
T

R
gva

1 agent pair, 1000 messages

10 agent pair, 100 messages

JADE               FIPA-OS               ZEUS                  JACK                 AGlobe

Figure 10. Message delivery time - serial test results

Three different numbers of agent pairs have been considered: 1 agent pair (A-B)
with 1000 messages exchanged, 10 agent pairs with 100 messages exchanged within
each pair and 100 agent pairs with 10 messages per pair. Moreover, for each of
these configurations two different ways of executing the tests are applied.

In the serial test, the A agent from each pair sends one message to its B
counterpart and when a reply is received, the roundtrip time for this trial is com-
puted. It is repeated in the same manner N -times (N is 1000/100/10 according
to the number of agents). The parallel test differs in such a way that the A agent
from each pair sends all N messages to B at once and then waits until all N replies
from B are received.

Different protocols used by agent platforms for the inter-platform commu-
nication are mentioned: Java RMI (Remote Method Invocation) for JADE and
FIPA-OS, TCP/IP for ZEUS and A-globe and UDP for JACK. Some of the tests,
especially in the case of 100 agents, were not successfully completed mainly be-
cause of communication errors or errors connected with the creation of agents.
These cases are marked by a special symbol.

3.2. Memory requirements benchmark

This issue is mainly interesting for deploying agents on small devices like mobile
phones or personal digital assistants (PDAs) which can have only a few megabytes
of memory available. This issue is also important for running thousands of agents
on one computer at the same time. Approximate memory requirements per agent
can be seen in Figure 11.



A-globe 35

Memory requirements per agent

3,7

14,4

37,4

2,3 1,68

0

5

10

15

20

25

30

35

40

JADE         FIPA-OS         ZEUS          JACK           AGlobe

m
em

o
ry

 [
K

B
]

Figure 11. Approximate memory requirements per agent

4. Simulation

A-globe platform is primarily aimed at large scale, real world simulations with
fully fledged agents. To support this goal, it includes a special infrastructure for
environmental simulation. We will now describe this infrastructure, together with
two scenarios implemented using the platform, where we emphasize the concepts
used in the simulation of two very different environments for a multi-agent system.

4.1. Simulation support in A-globe

While designing the simulations in A-globe platform, we use agents not only to
play roles in the simulated world - actor agents but we also use them to implement
the world where the actor agents act. The agents used for the world simulation are
all located in a dedicated master container and are called Environment Simulation
agents.

These agents only rarely use messages to communicate with actor agents.
Instead, they communicate via topic messaging - container-to-container messaging
specifically reserved for environmental simulation, as shown in Figure 12.

Topic messaging is managed by GIS Service - a special service that is a
part of the A-globe platform and can be started in a container by specifying
an appropriate startup parameter. This parameter value determines whether the
container is a master, server side container or a client - normal container with
actor agents.

Client agents subscribe with GIS client service to receive various topics. If
such a topic is received by the container, it is distributed to all subscribed agents.
Note that all agents in the container receive the same value - this is appropriate
in our opinion, as the environment perception shall be identical for all collocated
agents. In addition, the agents who wish to act on the environment can submit
topics to the GIS service. These topics are then sent to all ES agents in the master
container subscribed to receive the topic.

In the nominal configuration, each ES agent manages an internal model of
the environment, updates the model with the actions received from actors and
submits the environment status to actors in their containers. Each ES agent can
handle one or more topics and one topic can be handled by more then one agent.



36 D. Šǐslák, M. Rehák, M. Pěchouček, M. Rollo and D. Pavĺıček

Figure 12. Topic messaging in A-globe

Specialized ES agents can also subscribe to receive local topics from other ES
agents. Typically, many specialized ES agents can receive position information
from position agent and use this data to submit appropriate localized environment
information to agents.

This approach scales fairly well with the community size. However, when the
environment becomes more complex, it is often not economic to handle the envi-
ronment simulation in the ES agents as the interactions become too cumbersome
and internal models too complicated. In this case, the server can use an appropri-
ate GIS server with an ES agent wrapper for simulation purposes. The ES agent(s)
is then responsible only for obtaining the information from the appropriate layers
of the GIS server and submitting them to corresponding topics. The use of the GIS
server is not without a cost - the integration with wrapper agent is rarely flawless
and shall be avoided for simple environments.

ES agent can be responsible for nearly any simulation layer, depending on
the wishes of the developers. However, a privileged place between ES agents is
occupied by accessibility agents, who control the existence of communication links
between containers holding the actors. Their prominence is caused by the fact that
the platform messaging layer is integrated with these agents through predefined
topics and any attempt to send a message to an agent in an inaccessible container
is automatically unsuccessful.

There are several ES agents implemented and some of them are provided as
a part of the A-globe platform package for optional use:



A-globe 37

Figure 13. Platform Visibility Matrix

• Manual (Matrix) ES Agent This agent provides simple user-checkable visibil-
ity matrix, as shown in Figure 13. The user simply checks which containers
can communicate together and which can not.

• Distance-based ES Agent This agent is a fully automatic environment simula-
tor. It receives positions of mobile agent containers representing mobile units
in virtual world and automatically controls accessibility between them. The
visibility is controlled by means of the simulation of the short range wireless
link. Therefore each container can communicate only with containers located
inside the predefined radius limit. As the containers move, connections are
dynamically established and lost.
Other visibility agents can be implemented for each specific simulation, pro-

vided that they respect the ontologies and protocols that apply for them.

4.2. ACROSS – Agent Complex Reasoning Simulation System

To illustrate the concepts of the platform design presented above, we will present
the ACROSS scenario that uses the above features to create a relatively rich world
where diverse types of agents can interact. Currently, we use this scenario as a com-
mon base for multiple research projects, where we need to investigate interactions
between a relatively high number of fully-fledged agents.

Figure 14. ACROSS scenario. The geography of the island is
modelled after the real Java island in Indonesia, with necessary
simplifications.



38 D. Šǐslák, M. Rehák, M. Pěchouček, M. Rollo and D. Pavĺıček

In our scenario, figure 14, we solve a logistics problem in a non-collaborative
environment with self-interested agents. Agents that are part of the scenario have
no common goals and their cooperation is typically financially motivated.

We have three types of information about each agent [15]. Public information
is available to all agents in the system. It includes the agent identity, services
proposed to other agents and other relevant characteristics it wishes to reveal.
Semi-private information is the information which the agent agrees to share with
selected partners in order to streamline their cooperation. In our case, resource
capacity cumulated by resource type is shared within transporters’ alliances (see
below). Private information is available only to agent itself. It contains detailed
information about agent’s plans, intentions and resources.

The following types of agents participate in the scenario as actors:
Location Agents: Location agents represent population and natural resources,

figure 15 (a). They create, transform or consume resources. As most location
agents are unable to completely cover the local demand, they acquire the
surplus goods from other locations through one round, sealed bid auctions
organized by buyers according to the FIPA CNP protocol [5]. As most Lo-
cation agents are physically remote, it is necessary to transport the acquired
goods from the provider to the buyer. In order to do so, location agents
contract ad-hoc coalitions of transporter agents to carry the cargo, figure 16.

Figure 15. (a) – Location and 3 Transporter agents in a village
container; (b) – a Driver agent in a car container

Transporter Agents: Transporter Agents are the principal agents in our sce-
nario. They use their resources - vehicles, driven by Driver agents - to trans-
port the cargo as requested by location agents. As a normal request exceeds
the size that may be handled by a single transporter, transporters must form
one-time coalitions in order to increase the coverage and thus to be chosen in
the auctions. All transporter agents are self-interested and they don’t wish to



A-globe 39

cooperate with all other transporters. They only pick the partners that are
compatible with their private preferences. The compatibility is checked us-
ing the public information available about the potential partner and agents’
private preferences.

While answering the calls for proposals, the agents must form the coali-
tions relatively fast and efficiently to submit their bid before timeout elapses.
Therefore, they use the concept of alliances, discussed in [15], to make the
process more efficient. Alliances are groups of agents who agree to exchange
the semi-private information about their resources in order to allow efficient
pre-planning before starting the coalition negotiation itself. Using the pre-
planning, negotiation can directly concentrate on optimization issues, rather
than starting from resource query, saving valuable time and messages.

Driver Agents: Driver Agents drive the vehicles owned by Transporter agents,
figure 15 (b). They handle path planning, loading, unloading and other driver
duties.

Figure 16. Location agents contract ad-hoc coalitions of trans-
porter agents to carry the cargo

Numbers of agents actually used can vary from project to project, but the
basic configuration uses 25 Location agents, each of them in separate container, 25
Transporter Agents distributed among Location agents’ containers and 65 Driver
Agents, each with its own container. Besides these ”active” agents, we do need
several services per container to implement platform functions like GIS, directory
or migration management. With the latest optimizations, this configuration runs
on a single PC, greatly facilitating the experiments.

Besides the agents mentioned above, several other agents are used for world
simulation purposes, as described in 4.1. ACROSS scenario is managed by the
following agents:

NodePod Agent simulates the positions and movements of all agent contain-
ers (see 2.2) in the simulated world. ACROSS world containers are positioned in the



40 D. Šǐslák, M. Rehák, M. Pěchouček, M. Rollo and D. Pavĺıček

graph. Location agents are placed in a selected node, while the vehicle containers
move through the graph following the edges - roads. For each moveable container,
at least one agent in this container must be able to communicate the decisions
about future directions to the NodePod agent and to handle events generated by
the NodePod upon arrival to the graph node. NodePod doesn’t take any part in
road planning or decision making - it plainly simulates the movements of agent
container support on the map following the orders from the Driver agents.

For large scale scenarios, we prefer to handle the movements of agents in a
central simulation element, rather than in the container itself. This approach, even
if slightly less flexible while adding new agents, pays off thanks to the important
savings in the number of messages necessary to run the simulation. In most cases,
we require the movements to be smooth, requiring at least 10 simulation steps
per second. If the movements are managed in a distributed manner, the system
would require 600 messages per second just to report the positions of containers.
Besides the sheer number of messages, we must take into account the fact that
many simulation agents require the knowledge of all agent’s position in order to
generate their output (for example accessibility). Synchronization then becomes
an important issue.

Besides the communication with driver agents, the NodePod agent also pro-
vides the updated positions of all containers to all other simulation agents in the
master container, especially to the Visibility Agent.

Accessibility Agent is an ES agent that simulates the accessibility between
the agent containers. It uses the position data received from NodePod ES agent
to determine the distance, updates the data with stochastic link failures specified
by the configuration parameter and sends the updates to the containers whose
accessibility has changed.

We shall note that the two types of inaccessibility - distance based or caused
by the link failures - have very different effects on the processes in the community.
In the first case, agents who are inaccessible cannot start any direct interaction and
this translates into the suboptimal performance of the system, according to the
standard economic theories. On the other hand, if the inaccessibility is stochastic,
the interactions can indeed start, but the actors must be aware of the possibility
that the link can be broken at any time. Therefore, the agents must adopt an
appropriate method for inaccessibility resolution, such as use of stand-ins (see
[18]), social knowledge or adopted interaction protocols.

Weather Agent maintains the model of the weather in the various parts of
the environment. The weather is generated once per each simulation day and
submitted to all Location containers. It is then used to adjust the production or
consumption of various resources.

Two additional modules are currently integrated with NodePod agent. The
3D visualizer module ensures the selection and formatting of the data for the
external visualizers. Besides the pure position data, this module receives the status
messages from agents and displays them in the appropriate visualizers. Due to the
intensive data flow between this module and external visualizers, we were forced



A-globe 41

to implement an efficient binary protocol for message sending. The time module
controls the speed at which the simulation runs. It maps the real time to physical
simulation step, therefore influencing the basic pace at which the system runs.
Besides this fundamental parameter, we can modify the second parameter, that
maps the simulation step to simulation day, used to trigger the recurrent agents’
actions, such as production or commercial exchanges.

Commercial Visualizer agent visualizes the auctions, including all bids and
selected winners, together with the coalitions of transporters that handle the trans-
portation, as shown in figure 17. It also presents the alliances and their formation
described above. In contrast to Sniffer or Communication analyzer agents, this
agent is scenario dependent. This makes its integration with other scenarios non-
trivial, but the specificity makes the presentation efficient and understandable.

Figure 17. The commercial visualizer GUI

Other ES agents may include for example a Bandit agent, implementing
the adversarial actions in the environment, or other various project dependent
simulators and visualizers.

4.3. Naimt – Naval Automation and Information Management Technology

Features of the A-globe platform were also verified on the simulation of iden-
tification/removal of mines situated in given area using a group of autonomous
robots. This simulation was developed within the Naval Automation and Infor-
mation Management Technology (NAIMT) project. This software simulation of
real-life hardware robots was required to enable scalability experiments and effi-
cient development and verification of embedded decision making algorithms.



42 D. Šǐslák, M. Rehák, M. Pěchouček, M. Rollo and D. Pavĺıček

The goal of the group of robots is to search the whole area, detect and remove
all mines located there. To allow mine removal a video transmission path must be
established between the base (operated by human crew that gives the robot a
permission to remove the mine) and the robot who has found the mine. Typically,
relying via the other robots is necessary, because the video transmission range
is limited (e.g. wi-fi connection or acoustic modems in underwater environment).
Figure 19 shows an example of robots transmitting a video to base. In this scenario
two types of communication accessibility are included:

• High bandwidth accessibility, necessary for video transmissions, very restrained.
• Signaling accessibility, used for coordination messages and position informa-

tion, is higher than video accessibility, but remains limited.

Figure 18. Relayed communication (link between the robot and
base through 4 relays)

All robots in the simulation are autonomous and cooperative. Their dedicated
components (coordinators) negotiate in peer-to-peer manner when preparing the
transmission path. A-globe ES agent and GIS services are utilized during this
phase to inform the robot about others within its video transmission range.

Each robot consists of several components, implemented as A-globe agents
running within one agent container:

• Robot Pod simulator, computing robot moves and updating its position with
GIS server via GIS service.

• Mine Detector simulator, providing the decision-making components with
information about found mines.



A-globe 43

• Video data acquisition and transmission element. This subsystem creates the
data feed form the source provided by the simulation and prepares transmis-
sion path by remotely spawning one-use transmission agents along the path.
Video is then transmitted as a stream of binary encoded messages.

• Robot Coordinator implementing search algorithm, transmission coalition
establishment and negotiation.
We are using three different approaches to distributed coordination in fixing

the ad-hoc data transmission feed. The most straightforward are the approaches
relying on a single agent mastering the planning process. Upon finding the mine,
it requests the other visible robots to move to a specific positions so that a high-
bandwidth transmission link between the mine and the base is established. In two
variants of this approach, we may emphasize either the communication quality
or the minimization of other robots’ actions disturbance. When we optimize the
communication quality, relay robots tend to be placed on the join between the mine
and the base so that the distance between the relays is minimized and minimal
possible number of robots is used. On the other hand, when we try to minimize
the impact on relay robots’ own plans, relays are spread in the area between the
transmission origin and target, in the proximity of their original areas. In the
third approach, the control over the feed planning is not centralized, but rather
passed along the communication link relays when the connection is constructed.
This approach is well adopted for the environments where the communication is
limited and the knowledge necessary for feed building is not common, but rather
distributed among robots.

Generality of the A-globe technology has been proved when migrating the
technology to the robocup soccer environment. The GIS server and ES agents
managing the position of the robots have been replaced by the information from
the robocup soccer camera. Similarly the nodepod agent has been directly coupled
with the hardware of the robocup soccer robots.

5. Acknowledgement

Authors wish to express acknowledgement to Rockwell Automation Research Cen-
ter in Prague for mutually beneficial cooperation in the platform evaluation process.
A-globe agent platform was developed within the project ”Inaccessibility in Multi-
Agent Systems” (contract no.: FA8655-02-M-4057). The NAIMT deployment has
been supported in part by ONR project no.: N00014-03-1-0292.

6. Conclusion

A-globe agent platform supports communication inaccessibility, agent migration
and deployment on remote containers. These features make A-globe a well suited
platform for simulation and implementation of physically distributed agent systems
with applications ranging from mobile robotics to environmental surveillance by



44 D. Šǐslák, M. Rehák, M. Pěchouček, M. Rollo and D. Pavĺıček

Figure 19. Relayed communication as simulated by Robocup
soccer robots. Robot movements and positions are derived from
hardware inputs. Base is in the upper-left corner.

sensor networks. A-globe was designed as streamlined lightweight platform which
will operate on classical (PC) as well as mobile devices (PDA).

FIPA compliance was not considered a key feature for the simulation-oriented
platform the A-globe is. However, in the course of the embedding process we
are currently planning to implement a dedicated platform service providing FIPA
compliance for external communication to cover the gap. Key features the platform
currently presents are full mobility support (2.3) and environmental simulation
support and platform-level inaccessibility control (4.1). The main driving force of
the platform development is the emphasis on easy simulation support and sharp
separation between the simulation parts and agent code. Agents that are developed
and validated in the simulated environment can be then easily deployed in the real
environment, where the GIS service will provide access to the local sensors instead
of the simulated values.

The ACROSS scenario is currently exploited with the Agent Technology
Group for investigating diverse research concepts in collective decision-making.
We study primarily various techniques for coping with agents’ communication and
coordination in inaccessible and adversarial environments. The remote presence
techniques include primarily the stand-in agent technology [16], [12], [18], while the
remote awareness concept includes mainly the methods for agents social knowledge
maintenance and acquainted models (e.g. the Tri-base Acquaintance Model [14]).

The ACROSS scenario is used as a benchmark for testing the agents meta-
reasoning capacities. The meta-reasoning agents are monitoring the communica-
tion exchange in order to reconstruct agents private knowledge. Meta-reasoning
in collaborative environments is used mainly for optimization of agents collective
behavior [19], [20]. The tri-base acquaintance model has been extended recently



A-globe 45

for representation of agents’ mutual trust and used for formation of trusted and
semi-trusted coalitions.

Within the NAIMT scenario, the A-globe agents have been used mainly for
studying the concept of distributed coordination in partially inaccessible environ-
ment. Various techniques of distributed planning, coordination and ad-hoc data
transmission processes are currently being investigated [4].

References

[1] FIPS PUB 180-1. Federal standard 180-1: Secure hash standard.
http://www.itl.nist.gov/fipspubs/fip180-1.htm, 1995.

[2] A-Globe. A-Globe Agent Platform. http://agents.felk.cvut.cz/aglobe, 2004.

[3] F. Bellifemine, G. Rimassa, and A. Poggi. Jade - a fipa-compliant agent framework.
In Proceedings of 4th International Conference on the Practical Applications of In-
telligent Agents and Multi-Agent Technology, London, 1999.

[4] J. M. Bradshaw, A. Uszok, R. Jeffers, and N. Suri. Representation and reasoning for
daml-based policy and domain services in kaos and nomads. In Autonomous Agents
and Multi-Agent Systems (AAMAS 2003), Melbourne, Australia, 2003. New York,
NY: ACM Press.

[5] FIPA. Fipa contract net interaction protocol specification. Foundation for Intelligent
Physical Agents, http://www.fipa.org/specs/fipa00029, 2002.

[6] FIPA. Foundation for intelligent physical agents. http://www.fipa.org, 2004.

[7] FIPA-ACL. Fipa agent communication language overview. Foundation for Intelligent
Physical Agents, http://www.fipa.org/specs/fipa00037, 2000.

[8] M. Fletcher. Designing an integrated holonic scheduler with jack. In Multi-Agent
Systems and Applications II., Manchaster, 2002. Springer-Verlag, Berlin.

[9] JADE. Java Agent Development Framework. http://jade.tilab.com, 2004.

[10] JAXB. JAVA API for XML Binding. http://java.sun.com/xml/jaxb, 2004.

[11] H. Nwana, D. Ndumu, L. Lee, and J. Collis. Zeus: A tool-kit for building distributed
multi-agent systems. Applied Artificial Intelligence Journal, 13(1):129–186, 1999.

[12] M. Pěchouček, M. Dob́ı̌sek, J. Lažanský, and V. Mař́ık. Inaccessibility in multi-agent
systems. In Proceedings of International Conference on Intelligent Agent Technology,
pages 182–188, 2003.

[13] M. Pěchouček, V. Mař́ık, D. Šǐslák, M. Rehák, J. Lažanský, and J. Tožička. In-
accessibility in multi-agent systems. final report to Air Force Research Laboratory
AFRL/EORD research contract (FA8655-02-M-4057), 2004.

[14] M. Pěchouček, V. Mař́ık, and O. Štěpánková. Role of acquaintance models in agent-
based production planning systems. In M. Klusch and L. Kerschberg, editors, Co-
operative Infromation Agents IV - LNAI No. 1860, pages 179–190, Heidelberg, July
2000. Springer Verlag.

[15] M. Pěchouček, V. Mař́ık, and J. Bárta. A knowledge-based approach to coalition
formation. IEEE Intelligent Systems, 17(3):17–25, 2002.



46 D. Šǐslák, M. Rehák, M. Pěchouček, M. Rollo and D. Pavĺıček

[16] M. Pěchouček, M. Rehák, M. Rollo, D. Šǐslák, and J. Tožička. Solving coordination
inaccessibility in coalition operations. In Knowledge Systems for Coalition Opera-
tioins 2004, pages 19–36. CTU, Prague, 2004.

[17] S. Poslad, P. Buckle, and R. Hadingham. The fipa-os agent platform: Open source
for open standards. In Proceedings of 5th International Conference on the Practi-
cal Applications of Intelligent Agents and Multi-Agent Technology, pages 355–368,
Manchaster, 2000.

[18] M. Rehák, M. Pěchouček, J. Tožička, and D. Šǐslák. Using stand-in agents in partially
accessible multi-agent environment. In Proceedings of Engineering Societies in the
Agents World V (to appear), October 2004.

[19] S. Russel and E. Wefald. Do the Right Thing: Studies in Limitted Rationality. The
MIT Press, Cambridge, MA, 1991.

[20] J. Tožička, J. Bárta, and M. Pěchouček. Meta-reasoning for agents’ private knowl-
edge detection. In M. Klusch, S. Ossowski, A. Omicini, and H. Laamanen, editors,
Cooperative Information Agent VII – Lecture Notes in Computer Science, LNAI
2782, Heidelberg : Springer-Verlag, 2003.

[21] Pavel Vrba. Java-based agent platform evaluation. In Mař́ık, McFarlane, and Valck-
enaers, editors, Holonic and Multi-Agent Systems for Manufacturing, number 2744
in LNAI, pages 47–58. Springer-Verlag, Heidelberg, June 2003.

Information about Software

Software is available on the Internet as
( ) prototype version
(•) full fledged software (freeware), version no.: 2.2
( ) full fledged software (for money), version no.:
( ) Demo/trial version
( ) not (yet) available

Internet address:
Description of software: Agent Platform A-globe
Download address: http://agents.felk.cvut.cz/aglobe

Contact person for question about the software:
Name: David Šišlák
E-mail: sislakd@feld.cvut.cz

David Šǐslák, Martin Rehák, Michal Pěchouček,
Milan Rollo and Dušan Pavĺıček
Gerstner Laboratory c©
Czech Technical University in Prague
Technická 2, Prague 6, 166 27 Czech Republic
e-mail: {sislakd, rehakm1, pechouc, rollo, pavlicd}@feld.cvut.cz



Supporting Agent Development in Erlang through
the eXAT Platform

Antonella Di Stefano and Corrado Santoro

Abstract. This work describes a new approach for writing multi-agent systems
considering the use of the Erlang programming language. An analysis of the
features of this language is provided, which shows that Erlang characteristics
allow a programmer to easily model and implement agent systems. Then, a
new agent programming platform, called eXAT—erlang eXperimental Agent
Tool—will be described. This platform has been designed by the authors to
support agent development and deploying with Erlang; the aim is to pro-
vide an all-in-one environment, allowing an agent designer to program agent
intelligence, agent behavior and agent communication with a single language.

Keywords. Rule-based agents, agent platforms, multi-agent systems, Erlang.

1. Introduction

To date, in the field of agent programming platforms and languages, two main
trends are registered [4]; many platforms are written using existing well-known pro-
gramming languages, such as Java or C++ [16, 1, 60, 9], while, on the other hand,
ad-hoc agent programming languages have been proposed [59, 48, 61, 56, 45, 49],
able to map agent-specific characteristics to native constructs. In the authors’
opinion, both of these approaches suffer of the same incompleteness problem. Plat-
forms typically realized with existing imperative languages often need to integrate
additional tools, able to model and handle other important aspects of agent pro-
gramming, like the intelligence. These additional tools are based on programming
languages and models strongly different than those of the platform. For exam-
ple, rule-production systems [2, 3, 7], which are often integrated together with
Java platforms, are based on a declarative/logic constructs. Another example is
JADEX [55], the BDI [57] extension for JADE [16], which forces the agent pro-
grammer to use XML and OQL. As a result, to develop a complete multi-agent
application, the programmer is forced to deal with several and heterogeneous lan-
guages and programming methodologies. As an alternative, agent programming



48 A. Di Stefano and C. Santoro

languages [23, 59, 48, 61, 56, 45, 49] are rich of agent-specific constructs but lack
statements and libraries needed for general-purpose applications. These languages
are specifically designed to model and implement agent’s mind, reasoning process
and behaviors. For this reason, they provide constructs to specify beliefs, intentions
and plans, to map actions deriving from the arrival of an ACL message, to for-
malize the agent’s reasoning process, etc. But, on the other hand, these languages
do not provide functions or libraries for e.g. building user interfaces, writing net-
work/Internet communication protocols, handling generic data in form of strings
or byte sequence, etc. Therefore, the integration of other environments is often
needed to build a complete software system. As a result, writing the various as-
pects of the same multi-agent application adopting a number of different languages
not only needs more sophisticated and elaborated design strategies, but often in-
troduces inefficiencies, since e.g. data needs to be converted when transferred from
the domain of a language to another.

The approach suggested by the authors is to combine, in a single program-
ming language, the ability of offering a general-purpose environment, with lan-
guage constructs and a programming philosophy able to express all the main
agent-related features. It was not necessary to design a new programming lan-
guage, but Erlang [14, 12, 8] has demonstrated to be a language very promising
for the development of agent systems [31]. Apart authors’ research [28, 30, 29],
the Erlang language has gained interest, in the agent community: it is cited in the
“Agent Software” list of the Agentlink web site [4] and some of its characteris-
tics (message reception and matching semantics) have inspired some concepts and
constructs of other agent programming language [48, 49]. A recent work [62] has
proposed an Erlang-based BDI tool.

This Chapter deals with the reasons that make Erlang suitable for modeling
all the aspects of multi-agent systems. To evaluate the real effectiveness of us-
ing Erlang in agent system implementation, an agent platform has been realized,
called eXAT—erlang eXperimental Agent Tool [6, 58, 28, 30, 29]1. Such a platform
(which is itself completely written in Erlang) provides an all-in-one environment to
program agent intelligence, agent behavior and agent communication. The Chapter
is structured as follows. Section 2 gives a brief overview of the Erlang language,
showing its syntax and main peculiarities; we also discuss the reasons that led
us to consider this language an interesting instrument to model and design agent
systems. Section 3 summarizes of the basic working scheme of the eXAT platform
and its components, sketching the agent model it supplies. An in-depth description
of the functionalities of eXAT is dealt with in Sections 4, 5 and 6, while Section 7
provides a qualitative comparison of eXAT with some other agent platforms and
agent programming languages. Section 8 concludes the Chapter.

1The platform is available through a BSD-style license and can be downloaded at http://www.

diit.unict.it/users/csanto/exat/.



Supporting Agent Development in Erlang 49

2. Erlang for Agents

2.1. Overview of the Language

Erlang is a functional language developed at Ericsson laboratories [14, 50, 8]. It was
initially designed with the aim of having a flexible language and runtime environ-
ment to implement the control system of telephone exchange equipments [12, 15];
the language was then extended in order to make it general-purpose.

Erlang derives from Prolog and borrows from this language the syntax, the
data types and the ability of handling symbols, but not the semantics: while Prolog
is logic, Erlang is functional. Erlang programming is based on functions that can
have multiple clauses. Each function clause can also have a guard, i.e. a boolean
expression representing a pre-condition to be met in order to activate the clause.
When a function is called, the matching clause (that also makes the guard true, if
present) is executed. Figure 1 reports a sample Erlang source that shows some of
the main features of the language. As it is shown in the Figure, each Erlang source
file, called module, starts with a declaration of the module name (which must be
the same of the source file) and the list of “exports”, that is the list of functions,
each with its arity2, which can be called by other modules. Then we have the
declaration and implementation of each function with the relevant clause. Each
function clause ends with a semicolon (;) while the last clause ends with a dot (.).

As for data, data types and variables, Erlang uses the same rules of Prolog. A
constant is represented with a (untyped) number or an atom, which is a lowercase
literal or any literal enclosed within single quotes (e.g. hello, ’wants-to-do’).
Variables are instead represented with uppercase literals. This syntax is used, in the

2number of arguments of the function.

�
-module ( samples ). % Module declaration
-export ([ fact /1, foo /2, sum /1, match_inform/1, execute /2]).

% List of function callable by another module

fact (N) when N == 0 - > 1;

fact (N) -> N * fact (N - 1).

foo (hello , X) -> io:format ("Say ’Hello ~w ’\n" , [X]);

foo (goodbye , X) -> io:format ("Say ’Goodbye ~w’\n" , [X]);

foo (_, X) -> io:format ("woops !\n").

sum ([]) - > 0

sum ([H | T]) -> H + sum (T).

match_inform ([$(,$i ,$n ,$f ,$o ,$r ,$m ,$ | T]) -> true;

match_inform (X) when islist (X) -> false .

execute ({X, ’wants -to-do’, Y}, {Y, ’is - feasible ’}) -> % .. do something
execute (_,_) -> false.

�� �

Figure 1. Some Examples of Erlang Code



50 A. Di Stefano and C. Santoro

specification of function clauses, to indicate if a parameter, given when the func-
tion is invoked, must match an actual value or it has to be bound to a variable; in
clause specification, the symbol “ ” plays the role of a wildcard (see functions fact
and foo in Figure 1). Basic Erlang types include also lists and tuples. Lists, syn-
tactically represented with square brackets [term1,term2,. . . ,termn], are handled
using the Prolog-style statement [H|T] = List (see the sum function in Figure 1,
that sums all the elements of a list). Erlang tuples are instead sequence of terms
enclosed in graph brackets, i.e. {term1,term2,. . . ,termn}; operations allowed on
tuples are (i) to separate elements, (ii) to get the length and (iii) to read the nth

element. Erlang also handles strings, which are treated as lists where each element
is the ASCII code of each character. String processing is thus performed using
list matching expressions. As an example, the function match inform in Figure 1
returns “true” if the argument is a string that begins with (inform3.

Even if Erlang is syntactically similar to Prolog, it features many differences
not only in semantics but also in other aspects, such as the concurrency and pro-
gramming model. Erlang programs are composed of a set of isolated processes that
share nothing and communicate one another by means of messages exchanged us-
ing smart and flexible language constructs. The process model and communication
abstraction are derived from CSP [46] and π-calculus [52]; however a programmer
is not forced to deal with such process calculi to design programs: a complete set
of library modules hides the details of the process model, facilitating the devel-
opment of concurrent Erlang programs. The Erlang concurrency constructs also
handles distribution transparently, by allowing a seamless communication among
processes belonging to different network nodes: the language constructs to perform
data exchange do not change if processes are remote instead of local.

In addition to the cited characteristics, Erlang programs feature portabil-
ity, since they are compiled in platform-independent (bytecoded) executable files
that can directly run using the Erlang virtual machine4. The Erlang runtime en-
vironment is also quite complete since it provides a very large number of libraries,
comparable to those of other more famous languages5.

2.2. Why Erlang?

This Section briefly discusses the reasons leading to choose Erlang for implement-
ing agent systems. Section 7, instead, will compare other agent platforms/lan-
guages with the eXAT/Erlang approach.

The first reason is tied to the agent model. By definition [44, 64], an agent
senses the environment and acts onto it on the basis of the inputs and its internal
state; thus, an agent behavior can be expressed by means of a function like

(Act, NewState) = f(Sense, CurrentState) (1)

3The symbol $x is a shortcut for the representation of the ASCII code of the letter x.
4The Erlang environment is provided for many platforms, such as Windows, Linux, BSD, Solaris,
VxWorks, etc.
5See the documentation provided in the Erlang web site [8].



Supporting Agent Development in Erlang 51

start

state1
event1

action1

stop

event3

action3

event2

action2

(action1, state1) = f(event1, start)
(action2, stop)   = f(event2, start)
(action3, stop)   = f(event3, state1)

Figure 2. A Finite-State Machine and its specification using a
function with several clauses

Since, in the agents’ world, Act, NewState, CurrentState and Sense are discrete
variables, functions like (1) call for the use of the finite-state machine (FSM)
abstraction for a representation of agent behavior, and functions with multiple
clauses for a concrete specification and implementation of such an agent behavior.
We can represent a FSM with a directed graph, where vertexes represent states
and edges represent events triggering actions that lead to another state; using this
representation, each function clause written as (1) is indeed the specification of a
state transition, as the example in Figure 2 reports6. Such a model can be easily
implemented in Erlang by means of a direct one-to-one mapping of the (agent)
model provided by (1) to native language constructs, i.e. an Erlang function with
several clauses. As a reference, Figure 3 reports the realization, in Erlang, of the
FSM in Figure 2. The reader can appreciate the 1 : 1 mapping of the function f
to its implementation (in this case, the “action” is not a specific value returned
by the function, but each action is implemented in the body of the function); the
listing also shows the function execute fsm that concretely executes our FSM by
picking next event, calling function f and recursively calling itself (until the state
stop is reached). For reference, Figure 4 shows a (possible) Java implementation
of the same FSM: we can see that transitions are “hidden” in the body of the

6In the graph representing a FSM, we used the UML notation that indicates the initial state
with an edge exiting from a filled circle and the final state with an edge leading to a filled double
circle.

�
-module ( sample_fsm ).

-export ([ run /0]).

f(event1 , start ) -> % ... write the implementation of ’action1’
state1 ;

f(event2 , start ) -> % ... write the implementation of ’action2’
stop;

f(event3 , state1 ) -> % ... write the implementation of ’action3’
stop.

execute_fsm (stop) -> ok;

execute_fsm (CurrentState) -> Event = get_next_event(),

NextState = f(Event , CurrentState), execute_fsm (NextState ).

run () -> execute_fsm (start ).
�� �

Figure 3. Erlang implementation of the FSM in Figure 2



52 A. Di Stefano and C. Santoro

�
public class SampleFSM {

int EVENT1 = ...;

int EVENT2 = ...;

int EVENT3 = ...;

int START = ...;

int STATE1 = ...;

int STOP = ...;

int f(int event , int state ) {

switch ( state ) {

case START:

switch ( event ) {

case EVENT1 : do_action1 (); return STATE1 ;

case EVENT2 : do_action2 (); return STOP;

}

break;

case STATE1 :

switch ( event ) {

case EVENT3 : do_action3 (); return STOP;

}

}

}

public void run () {

int currentState = START;

while ( currentState != STOP ) {

int event = get_next_event ();

currentState = f(currentState , event );

}

}

}
�� �

Figure 4. A possible Java implementation of the FSM in Figure 2

switches of method f and not clearly visible as in Figure 3. Surely, we could
also consider a more “formally correct” Java implementation that maps events,
states and actions to classes/objects, and thus provides an object-based framework
for FSM specification and execution; but this would imply several source files,
a lot of code lines (more than those of the Erlang listing) and the needing of
handling an object model that could be complex. This is due to the fact that
each concept in Java (as in many other O-O languages) must be mapped onto
an object, and this often results in a framework with many classes. On the other
hand, symbolic languages, like Erlang, can represent concrete concepts directly
with symbols, thus facilitating the engineering and also reducing the lines of code
to be written and debugged. Moreover, the mechanism for identifying the function
clause that matches a call (which we exploit in specifying and executing a FSM)
is provided natively by Erlang: any other language not offering the same feature
could implement something similar with a library, but can neither overcome the
limitations of the language nor introduce new constructs7.

7This is true if we do not consider the possibility of building an interpreter, for function clauses,
which is implemented on the top of an existing language; but this is the same as defining and
using another language for our FSM specification and implementation. Thus, in this case, we
should evaluate the new language built and not the language used to write the interpreter.



Supporting Agent Development in Erlang 53

A second reason for choosing Erlang is the concurrency and programming
model. Erlang programming philosophy is based on decomposing a problem into
tasks, associating each task to a single Erlang process, and making processes
communicate in order to achieve the goal of the problem. Languages featuring
this characteristic are called by Joe Armstrong—one of the inventors of Erlang—
Concurrent-Oriented Programming Languages (COPL). He claims in [13] that “We
often write programs that model the world or interact with the world. Writing such
programs in a COPL is easy. First we perform an analysis, which is a three-step
process: 1. We identify all the truly concurrent activities in our real-world activity;
2. We identify all the message channels between the concurrent activities; 3. We
write down all the messages which can flow on the different channels. Now we write
the program. The structure of the program should exactly follow the structure of
the problem.” The reader can easily find, in this citation, many characteristics in
common with multi-agent system programming and design [64, 65, 66]. For exam-
ple, engineering a multi-agent system using the Gaia methodology [63, 66] implies
to derive, from a description of the system to be designed, (i) the roles to be
played by the various agents, then (ii) charge each roles with one or more tasks,
and finally (iii) identify the interactions that have to occur among agents playing
roles.

Other reasons making Erlang attractive are related to both its similarity with
Prolog and its built-in capability of identifying the function clause to be activated
(function clause matching). Such characteristics can be exploited for program-
ming both agent intelligence and agent behavior with the same language. As for
the former aspect, the design and implementation of agent intelligence should be
supported by a suitable artificial intelligence tool, such as a rule-production sys-
tem. To this aim, in many currently available agent platforms, which are mainly
Java-based, an integration with tools such as JESS [2], CLIPS [3] or Drools [7] (or
other ad-hoc approaches [55]) is mandatory. In this sense, Erlang function clauses
and clause matching mechanism are very suited to support the specification of
pre-conditions activating actions (coded in the body of the function), in the per-
fect style of rule-production systems. As an example, see the function execute in
Figure 1: here the first function clause can be seen as a pre-condition, like a Prolog
predicate, that triggers something. Such a characteristic eases the implementation
of expert systems or rule-production engines supporting agent reasoning. More-
over, this aspect, and in particular the matching capability, if related to the agent
model based on FSM, can be used, when designing the behavior of an agent, to
specify the conditions triggering change of state.

All the above argumentations highlight that Erlang possesses many inter-
esting features for the implementation of software agents; however, such a lan-
guage does not itself provide a complete runtime environment for the execution of
agent-based applications, but it only supports specific aspects of agent design and



54 A. Di Stefano and C. Santoro

implementation. Behaviors expressed with multiple functions clauses need a suit-
able engine to support their (autonomous) execution. Similarly, using functions
clauses as pre-conditions for rules is not sufficient to realize an expert system: an
appropriate library able to process these rules, also supporting a knowledge base,
is mandatory. This is supplied by eXAT, an agent platform realized by the authors
to provide a complete runtime environment, that will be described in the following
Sections.

3. An Overview of the eXAT Platform

eXAT is an agent platform that allows multi-agent application programming using
only the Erlang language; it provides a suitable support to realize agent intelli-
gence, agent behavior and agent collaboration. These main aspects rely on eXAT
agent’s model, which is sketched in Figure 5 and described below.

eXAT Platform

ERES Engines

Triggering Events
(assertion of facts

due to rule processing)

Agent Actions
(assert/retract facts)

ACL Communication
Module

Triggering Events
(reception of ACL

messages)

Agent Actions
(sending of ACL messages)

Agent Behaviors

Rational Effects
(ACL semantics)

Erlang-native IPC Mechanism

ACL Communication
Module

Agent Agent

Erlang Runtime
Environment

Figure 5. Agent Model in eXAT

As the Figure reports, the main components of an eXAT agent are the ERES
engines, which implement agent’s intelligence, and the behaviors, which imple-
ment agent’s computation. Such components are able to interact with the ACL
Communication Module, which is provided by the platform to support message ex-
changing among agents. All components of an agent and the ACL Communication
Module influence each other as briefly sketched below. An in-depth description of
the functioning and usage of such modules is instead provided in the subsequent
Sections.

ERES engines are rule processing systems supporting agent reasoning through
an Erlang library called ERES [5]. Each engine has its own rules and a knowledge
base that stores a set of facts; each fact is specified with an Erlang tuple or a
list. The knowledge base of an ERES engine, when associated to an agent, is thus
able represent the “mental state” of such an agent. Rules are written as function



Supporting Agent Development in Erlang 55

clauses and rule processing is based on checking that one or more facts, with certain
patterns, belong to the knowledge base and then executing the guarded action or
asserting new facts. An agent may use different ERES engines, each implementing
a different reasoning process; this can be used for the engineering of reasoning
processes that appear separated at initial design stage. In this case, the agent’s
mental state can be considered composed of the facts stored in the knowledge
bases of all the engines associated to the agent. The ERES module will be fully
described in Section 4.

Agent behaviors, expressed by using Erlang functions with multiple clauses
describing a FSM, implement the actions an agent has to perform to achieve its
goal and are processed by the behavior execution module of eXAT. Agent behav-
iors are subject to both the agent’s mental state and the occurrence of external
events ; these represents triggers, for the FSM, that cause action execution and
state change. Triggers relevant to agent’s mental state refer to the presence of one
or more facts in a given ERES engine. External events refer instead to the arrival
of an ACL message. Behavior engineering is made flexible by allowing a designer
to compose behaviors in sequence—to support serial activities—or in parallel—
to support multiple concurrent activities (e.g. handling of multiple simultaneous
interactions). Moreover, the concept of inheritance, typical of the object-oriented
programming paradigm, is introduced in eXAT to allow the specialization (exten-
sion) of a behavior by means of re-definition of one or more elements of the FSM
mapping function. To this aim, eXAT provides a library that, together with sup-
porting such a specialization, adds object-orientation capabilities to Erlang, thus
allowing classes to be written and objects to be instantiated as in Java/C++.
This feature combines the advantages of functional and object-based program-
ming in order to offer an agent development environment more flexible than that
of provided by a traditional object-oriented language. Behavior engineering and
functioning will be dealt with in Section 5.

To make agent collaboration possible, eXAT agent behaviors use the service
provided by the ACL module, which is responsible to support exchanging, composi-
tion, parsing and matching of ACL messages, according to the FIPA standard [38].
A set of functions are used to send and receive FIPA speech acts and bind the
reception of a specific message to a behavior event. The communication module
is able not only to trigger actions on the basis of the reception of a message but
also to concretely influence and check the agent’s mental state, following message
exchanging and according to FIPA-ACL semantics [38]. This is an important con-
tribution with respect to other agent platforms, which require this link to be made
“by hand” by agent designers. Messaging and semantic support will be described
in Section 6.



56 A. Di Stefano and C. Santoro

�
-module ( sample ).

-export ([ rule /3, purchasing /3]).

-rules ([ parents , purchasing ]).

parents ( Engine , {’child -of’, X, Y}, { female , Y}) ->

eres:assert ( Engine , {’mother -of’, Y, X});

parents ( Engine , {’child -of’, X, Y}, {male , Y}) ->

eres:assert ( Engine , {’father -of’, Y, X}).

purchasing ( Engine ,

[’has -goal ’, Agent , [ purchasing , Good , Price ]],

[’balance -of’, Agent , Balance ])

when ( Balance - Price ) > 3000) - >

eres:assert ( Engine , [ intends , Agent , [ purchase , Good ]]).
�� �

Figure 6. Some Sample Productions Rule in ERES

4. Supporting Intelligence with ERES

As introduced above, the ERES library supports the concurrent execution of mul-
tiple rule-processing engines. Each engine works on its own Knowledge Base (KB),
which stores a set of facts, and with one or more Production Rules. Each rule is an
Erlang function clause (the clause represents a predicate applied to the KB) and
its body can contain any Erlang statement as well as functions to manipulate the
KB of the engine, i.e. asserting another fact or retracting an existing fact. A rule
is expressed using the following form:

func name (Engine, FP1, FP2, . . . , FPn) when predicate ->
Body of the rule action

Here Engine is the (name of the) ERES engine the rule belongs to and FP1, FP2,
. . . , FPn are patterns matching facts: if the KB contains facts that match all the
patterns of the rule, the latter is activated and the function body is executed.

Such a rule specification model perfectly reflects the syntax and semantics
of well-known rule production systems [3, 2, 7]. As an example, let us suppose
we want to implement the following rule: If X is the child of Y and Y is female,
then Y is X’s mother; otherwise, if Y is male, then Y is X’s father. This rule can
be written using the two clauses of the function parents in Figure 6, given that
we represent the relations “child of”, “mother of”, “father of” and the “gender”
respectively with the Erlang tuples {’child-of’, X, Y}, {’mother-of’, X, Y},
{’father-of’, X, Y} and {female, X}, {male, X}. As another example, the
function purchasing in Figure 6 says that if an agent has the goal of purchasing
an item and the agent’s remaining balance is greater than 3000 ¤, then the agent
intends to buy that item.

Rules are pre-processed by the ERES module when the engine is started. This
aims at building a data structure suitable for efficiently finding rule clauses to be
fired, should a fact be asserted or retracted. The technique employed is a variation



Supporting Agent Development in Erlang 57

ERES
Engine

KB

Rules

User
Process

ERLANG NODE

User
Process

User
Process

ERLANG NODE

ERES
Engine

ERES
Engine

Rules

Rules

KB

KB

Figure 7. ERES Engines and User Processes

of the Forgy’s RETE algorithm [33] and exploits Erlang matching capabilities to
perform the selection and join operations8.

An additional features of ERES is the capability of realizing blackboard ar-
chitectures [24]. An ERES engines with no production rules can in fact behave as a
Linda tuple space [20], and thus used to perform coordination among activities of
an agent or among different agents that would not use message exchanging9. This
is an important additional characteristic of the platform since it provides a native
means to support many well-known agent coordination models [53, 19, 25, 54, 22].

From the runtime point of view, as Figure 7 reports, each ERES engine runs
on a separate Erlang process. A set of APIs is provided to allow user processes
to interact with running engines; such primitives include creating/destroying an
engine, adding a new rule, manipulating existing rules, asserting/retracting a fact,
checking for the presence of one or more facts with a given pattern, waiting for
the assertion of a fact with a given pattern, obtaining all the facts of the KB , etc.
(see [5, 58] for more details). According to Erlang distribution model, each ERES
engine can be also accessed by Erlang processes running on different network nodes
(see Figure 7).

5. Engineering Agent Behaviors

As introduced in Section 3, the overall computation of an agent is programmed
in eXAT by means of a set of behaviors, each modeled as a finite-state machine.
This philosophy is similar to that of other agent platforms [16, 1], but behavior
engineering is made more flexible in eXAT thanks to the integration of object-
oriented and functional/symbolic programming concepts.

An eXAT behavior is programmed using a set of Erlang functions that express
what are the events that, bound to certain states, trigger the execution of certain
actions and the change of state. Since an event is in general characterized by an
associated data, each event is defined by specifying its type and a data pattern, the

8See the citation for the details on the RETE algorithm.
9To this aim a set of Linda-like primitives (out, in, inp, rd and rdp) is also provided by the ERES
module.



58 A. Di Stefano and C. Santoro

latter indicating the template to be matched by the data in order to activate the
event itself. For example, the “arrival of an inform speech act” is an event whose
type is “arrival of any ACL message” and whose pattern specifies a matching be-
tween the performative name and the “inform” constant. This separation between
event types and data patterns allows behaviour specialization and promotes reuse,
as it will be detailed in Section 5.2. Event types handled by eXAT are:

• Reception of an ACL message (event type acl). The data pattern is a speci-
fication of how the triggering message has to be formed.

• Expiry of a given timeout (event type timeout). The data pattern is the
timeout value in milliseconds.

• Assertion of fact(s) (event type eres). The data pattern specifies the template
of the fact(s) that has to be asserted, in a given ERES engine, in order to
trigger the event.

• A silent (spontaneous) event (event type silent). This event type has no
associated data.

An eXAT behavior, expressed by modeling the FSM with a directed graph as
reported in Section 2.2, is represented by means of the following three functions,
action, event and pattern:

action : StateName → setof (EventName, ActionProcedure)
event : EventName → (EventType, PatternName)
pattern : PatternName → PatternSpecification
EventType ∈ {silent, eres, acl, timeout}

(2)

Function action returns the information related to the edges exiting the state name
(vertex) given as parameter; each information is composed of the name of the event
and the procedure implementing the action (the new state reached by the edge
after action execution is encoded by using an API function, called in the body of
action implementation). Function event gives, for each event name, the event type
and the name of the associated data pattern. Finally, function pattern returns, for
each pattern name, the relevant pattern specification, which is dependent of the
type of the event tied to the pattern itself.

It can be easily noted that the model above is different than that of for-
mula (1), however its semantics is the same: we have only separated the various
parts of a FSM in order to make specialization possible by means of inheritance.
As it will be detailed in Section 5.2, such a specialization process will imply to
change only one or more values returned by one or more functions in (2) of a
behavior already designed.

As an example of behavior engineering in eXAT, we report in Figure 8 a sim-
ple FSM with its implementation (ignore, for the moment, the Self parameter,
which is passed to all the functions reported in the listing, because its meaning
will explained in Section 5.2). As it can be noted, two clauses for action have



Supporting Agent Development in Erlang 59

start

purchase_item
eres:{balance, X > 3000}

do_purchase

timeout

back_to_start

acl:(request ... :language LISP ...)

do_giveup

stop

acl:(confirm ...)

do_giveup

�
-module ( sample1 ).

-export ([ action /2, event /2, pattern /2 , ...]).

action (Self , start ) -> [{ start_to_purchase_event , do_purchase },

{ start_to_stop_event , do_giveup }];

action (Self , purchase_item) ->

[{ purchase_to_start_event , back_to_start},

{ purchase_to_stop_event , do_giveup }].

event (Self , start_to_purchase_event ) -> {eres , balance_pattern };

event (Self , start_to_stop_event ) -> {acl , request_pattern};

event (Self , purchase_to_start_event ) -> { timeout , timeout_value};

event (Self , purchase_to_stop_event ) -> {acl , confirm_pattern}.

pattern (Self , balance_pattern) -> {my_engine , get ,

{balance , fun (X) -> X > 3000 end }};

pattern (Self , request_pattern) -> [# aclmessage { speechact = request ,

language = ’LISP’ }];

pattern (Self , timeout_value) - > 1000;

pattern (Self , confirm_pattern)-> [# aclmessage { speechact = confirm }].

do_purchase (Self , Event , Data , StateLeft ) ->

% perform action ...
% ... and set next state
object :do (Self , purchase_item).

back_to_start (Self , Event , Data , StateLeft ) ->

% set next state
object :do (Self , start ).

do_giveup (Self , Event , Data , StateLeft ) ->

% perform finalization ...
% ... and stop behaviour
object :stop ( Self).

�� �

Figure 8. A sample behavior in eXAT

been used, one for each behavior state name (state stop is the final state in which
the behavior is ended). Four clauses (the same of the number of transitions) are
instead used for functions event and pattern. The example also shows the way
in which patterns are specified: balance pattern is an ERES pattern indicat-
ing the assertion of fact {balance, X}, with X > 3000, while request pattern
specifies instead the matching of a “request” ACL message whose content field is
expressed in LISP. Pattern specification also allows complex matching expressions,



60 A. Di Stefano and C. Santoro

by means of the use of ’fun’ Erlang constructs, which define lambda functions (see
the balance pattern in Figure 8).

As the listing shows, each action is implemented in the function whose name
is specified in the behavior structure (do purchase, back to start and do giveup
in the example); the parameters given to these functions indicate, in order, the
event fired, the actual data bound to that event and the name of the FSM state in
which the event occurred. Action implementation has the responsibility of setting
the next state of the FSM; this is performed by using eXAT functions object:do or
object:stop, to respectively change the FSM’s state and terminate the behavior.

5.1. Composing Behaviors

The finite-state machine abstraction used to develop agent behaviors is a com-
mon (and simple) way to express agent computations. However, in the case of
engineering complex agent applications, the behaviors of involved agents could be
complex as well, thus needing a FSM composed of a large number of states and
transitions. Such a situation could present several difficulties during development
stage. In principle, the use of a single (even large) FSM could be not enough when
an agent computation has to be composed of concurrent activities, e.g. agents han-
dling multiple and concurrent interactions. Secondly, in many situations, parts of
an overall agent computation, which have been already designed, could be reused
in another different agent application (this is the case instance of standard FIPA
interaction protocols [43], such as the contract-net [39], the request protocol [41],
the English auction [40], etc.)10. Such considerations lead us to engineer an overall
agent computation through small and ready-to-use components, each one imple-
menting a simple and basic behavior, to be arranged in sequence—to support serial
activities—or in parallel—to support multiple concurrent activities11.

eXAT supports such a model by allowing the specification, in the body of an
action function, of the next behavior to be executed or the set of behaviors that
have to concurrently run. This is achieved by means of the function agent:behave,
which takes, as argument, a behavior name or a list of behavior names. Serial exe-
cution is supported by a sequence of agent:behave function calls, and specifying,
in each call, one of the behaviors to be executed12; parallel execution is instead
achieved by specifying the behaviors to be concurrently started in a list given as the
parameter of a single agent:behave function call. This function is synchronous,
that is, it triggers (sub-)behaviors execution and then waits for their completion.

As an example, the top of Figure 9 reports a behavior with two state tran-
sitions. The first transition is tied to the assertion of the fact {action, purchase},
which triggers (sub-)behavior b1; when the latter’s execution ends, behavior b2 is

10But reuse could be considered also for behavior patterns not strictly related to standard inter-
action protocols.
11This approach is equivalent to using subroutines and co-routines in traditional imperative
languages and it is also used in some agent platforms currently available, such as JADE [16].
12The execution order is obviously the same as the order of the function calls.



Supporting Agent Development in Erlang 61

started; then the state goes again to start. The second transition, tied to the re-
ception of a request speech act, triggers the parallel execution of behaviors b3 and
b4. Here the reader can note, in the listing, the use of the function agent:behave
to specify the sub-behaviors to be executed.

start

eres:{action, purchase}

do_purchase
stop

acl:(request ... :language LISP ...)

do_giveup

sub-behaviour "b1"

sub-behaviour "b3"

sub-behaviour "b4"

sub-behaviour "b2"

�
-module ( sample2 ).

-export ([ action /2, event /2, pattern /2 , ...]).

action (Self , start ) -> [{ start_to_start_event , do_purchase },

{ start_to_stop_event , do_giveup }].

event (Self , start_to_purchase_event ) -> {eres , action_pattern};

event (Self , start_to_stop_event ) -> {acl , request_pattern}.

pattern (Self , balance_pattern) -> {my_engine , get ,

{action , purchase }};

pattern (Self , request_pattern) -> [# aclmessage { speechact = request ,

language = ’LISP’ }].

do_purchase (Self , Event , Data , StateLeft ) ->

agent:behave (Self , b1),

agent:behave (Self , b2), % execute sub-behaviours in sequence
object :do (Self , start ).

do_giveup (Self , Event , Data , StateLeft ) ->

agent:behave (Self , [b3 , b4]), % execute sub-behaviours in parallel
object :stop ( Self).

�� �

Figure 9. Behavior Composition

5.2. Specializing Behaviors

Behavior composition, performed according to the concepts above, allows the “as-
is” reuse of the code of an existing behavior in several multi-agent applications.
However, in some cases, a behavior could not be designed so general to allow its
reuse for a specific purpose, but some changes need to be applied. In order to
make reuse possible also in these cases, eXAT allows behavior engineering using an
object-orient approach and, in particular, by means of virtual inheritance. Such a
concept is applied to create a new behavior b′, derived from b, that transforms the
FSM of b according to the following possibilities:

1. Adding new states and transitions;



62 A. Di Stefano and C. Santoro

start

purchase_item
eres:{balance, X > 3000}

do_purchase

timeout

back_to_start

stop

acl:(confirm ...)

do_giveup

acl:(request ... :language LISP ...)

do_giveup

acl:(refuse ...)

change event into

Figure 10. Behavior Extension

2. Removing existing states and/or transitions;
3. Modifying existing states and/or transitions by changing:

(a) the state reached by a transition;
(b) the action procedure bound to a transition;
(c) the event type bound to a transition;
(d) the data pattern bound to a transition;
(e) one or more elements of a data pattern.

Figure 10 depicts an example of such an extension: here we considered the reuse of
the FSM of Figure 8 by changing the timeout event into the arrival of a “refuse”
speech act.

Supporting such an extension concept is made possible in eXAT thanks to
the provided “object” module, which introduces object-orientation in Erlang pro-
grams; this module is intended for writing classes with attributes and methods,
also featuring virtual inheritance as in Java or C++. The object model provided
is similar to that of Java. A class is declared and implemented in a single Erlang
module (corresponding indeed to a single source file); it must define and export
the extends function, returning the name of the ancestor class/module13; then
functions declared in the module can be treated as methods by adding another
parameter, called Self, in function declaration: this parameter represents the ob-
ject’s instance within which the method is invoked and plays the same role of the
this keyword in C++ and Java. According to Erlang style, a method can have
multiple clauses and guards, and they play a fundamental role also in deriving
child classes: methods feature a fine grained overriding model, because we can
override all clauses of a method (the whole method), a single clause of a method,
or even add another clause to method. This characteristic provides a very flexi-
ble and expressive programming environment and it is an important feature that
cannot be obtained with a traditional object-oriented programming language14.

13This function may be not declared if the class/module has no ancestors.
14For instance, C++, Java or Python allow the definition of methods with different prototypes
and default parameters, but this is not the same as having different clauses.



Supporting Agent Development in Erlang 63

�
-module ( sample1_extended ).

-export ([ extends /1, event /2, pattern /2]).

extends () -> sample1 .

event (Self , purchase_to_start_event ) -> {acl , refuse_pattern}.

pattern (Self , refuse_pattern) -> [# aclmessage { speechact = refuse }].
�� �

Figure 11. Listing of the Behavior of Figure 10

Behavior engineering in eXAT exploits this Erlang-based object-oriented pro-
gramming capability: each behavior is indeed a class, all defined functions—action,
event, pattern and the functions implementing the actions—are methods15, and
behavior extension is performed by deriving that class and accordingly overriding
one or more methods or method clauses. In particular, FSM modifications at items
(1) and (2) of the list above (adding and removing states and transitions) can be
achieved by overriding existing (or adding new) clauses of the action method or
of the methods implementing the actions. Item (3a) can be realized by overriding
a method implementing the action. Finally, items (3b–e) can be implemented by
suitably overriding methods action, event, pattern or one of their clauses.

It is now easy to show how the behavior extension of Figure 10 can be im-
plemented. The code is reported in Figure 11 and shows how easy is to add the
desired feature: we extended the sample1 behavior in Figure 8 by overriding the
event clause relevant to the transition to be modified and then adding the needed
ACL pattern.

Behavior extension in eXAT allows the redefinition of not only single method
clauses, as it has been shown, but also single elements of data returned by action/2,
event/2 and pattern/2 functions. This ability, called partial redefinition, means
to change only some elements of the data returned by a function, e.g. one of the
couples {event, action} bound to a certain state, the event of such a couple, the
event type or the pattern name bound to a certain event, one element of a data
pattern, etc. As an example, if we would design a behavior like that of Figure 11
but for agents that speak only “Prolog”, we need to accordingly change only the
language slot of ACL patterns. This is made possible in eXAT by means of the use
of the function acl:refine that allows a single pattern specified in the ancestor
class to be refined: in our example, as reported in Figure 12, this function is used
to add a matching value for the “language” slot in ACL messages. Such a partial
redefinition capability implies a very flexible control on behavior engineering. This
feature is made possible thanks to the intrinsic characteristics of Erlang and is
hard to obtain with a traditional object-oriented language16.

15This is the reason why the sample codes in Figure 8 and 9 report function declarations with
Self as the first parameter.
16Indeed it could require a very complex object model to try to achieve a similar—but not the
same—flexibility.



64 A. Di Stefano and C. Santoro

�
-module ( sample1_extended_prolog_speaking ).

-export ([ extends /1, pattern /2]).

extends () -> sample1_extended.

pattern (Self , request_pattern) ->

acl :refine (Self , request_pattern , 1,

#aclmessage { language = ’Prolog ’});

pattern (Self , refuse_pattern) ->

acl :refine (Self , refuse_pattern , 1,

#aclmessage { language = ’Prolog ’}).
�� �

Figure 12. A more specialized behavior

6. Messaging and Semantics

eXAT agents interact through the exchange of ACL messages, in accordance with
the FIPA-ACL standard [38]. While message reception is performed by means of
the specification of an ACL message pattern that triggers an action in a behavior,
message sending is done through a set of functions of the eXAT “acl” module,
each function specialized to send a different speech act type and named like the
speech act it sends. So we have functions acl:inform, acl:cfp, acl:confirm,
acl:request, etc. All these functions take, as parameter, the message to be sent,
encoded in an Erlang form17. In the current version of eXAT, such messages are
sent using messaging primitives and the transport protocol natively provided by
the Erlang runtime system, so (at the moment) interactions are possible only
among eXAT agents. Interaction with agents running on other kind of platforms
is currently not supported, but a new eXAT release is under development18, which
will provide standard FIPA message transport protocols [37, 36] and message en-
coding [34, 35].

Since messaging relies on Erlang standard communication primitives, from
the point of view of the Erlang runtime, an agent is seen as a process whose
registered name corresponds to the name of the agent set by the programmer19.
This means that agent naming and addressing follow, in the current release of
eXAT, the same rules of process addressing in Erlang: a local agent is referred
using its name, while a remote agent is referred using a concatenation of its name,
the sign “@” and the name of the remote site in which the agent lives.

The messaging modules of the eXAT platform not only provide a simple
means to exchange messages with the right syntax, but they are also able to sup-
port message semantics. According to FIPA-ACL specification [38], eXAT includes
automatic checking of the feasibility precondition (FP) and the rational effect (RE)

17In particular, the Erlang record #aclmessage is defined, where each field corresponds a slot of
a standard ACL message, i.e. sender, receiver, content, language, etc.
18We plan to release this new version by June 2005.
19In Erlang, each process may be registered with a literal name so that message addressing is
performed using the registered name of the receiving process.



Supporting Agent Development in Erlang 65

relevant to each speech act sent. This is made possible by (i) providing an Erlang-
based syntax of SL sentences [42] and (ii) using an ERES engine (and in particular
the relevant Knowledge Base) as a representation of the mental state of an agent,
storing Erlang-translated SL sentences as facts20. Such a combination allows FPs
to be checked by looking at what is stored in the KBs representing the mental state
of sender and receiver agents, while REs can be supported by suitably updating
these KBs.

The use of ACL semantics in agent programming is an important support for
the engineering of “really rational” agents. In such agents, the deliver of a message,
on the basis of the semantics, is able to change receiver’s mental state; therefore,
agent reaction can be programmed on the basis of the semantic effect the message
has onto agent’s mental state [18, 17, 26]. As it is known, this ensures a decoupling
between messages and agent actions, allowing an agent to decide, on the basis of
its autonomous reasoning process, what to have to do when a message is received.
Such an ACL semantics support gives more autonomy and interaction awareness
to agents, and also allows a more flexible agent engineering. As an example, let
us suppose that we would like to design an agent that does something when “it
knows that a sentence is true”; let us also suppose that the sentence can be asserted
by either the agent’s reasoning process or the arrival of an inform message that
explicitly asserts the sentence. As in both cases the effect is “believing that the
sentence is true”, exploiting automatic processing of ACL semantics provided by
eXAT implies to write a behavior where the trigger is exactly what we need: the
assertion of the fact representing the sentence in the ERES engine representing the
agent’s mental state. Without such a built-in semantic support, we should have
used two triggers in the behavior—thus provoking a loss of generality—or add
another behavior that mimics inform RE—thus burdening the agent design and
implementation processes.

7. Related Work

Today there are many agent platforms and languages [4], so comparing eXAT with
all of them is quite difficult; we will instead concentrate our attention only on
some of the most widely known. In the following, we will distinguish approaches
that employ agent programming languages designed ad-hoc and agent platforms
built on the top of existing (and general purpose) programming languages. We
already dealt with the incompleteness problem of both approaches in Section 1,
which was the main reason driving us to search for an alternative; for this reason,
we will describe here only the differences the chosen agent languages and platforms
present with respect to our Erlang/eXAT approach.

20The translation from SL to Erlang is simple: each SL sentence, represented as a list “(a b

c ...)” is translated into an Erlang list, i.e. “[a, b, c, ...]”, while a parameter such as
“:paramname paramvalue” is translated into the Erlang tuple “{paramname, paramvalue}”.



66 A. Di Stefano and C. Santoro

7.1. Agent Programming Languages

The concept of software systems written using processes (agents) interacting through
the exchange of messages is not only a base of Erlang but also of some agent pro-
gramming languages. This basic model is derived from formal approaches, such
as CCS [51], π-calculus [52] and actor model [11]. The agent programming lan-
guages April [48] and Go! [49] follow these models. April is a symbolic language for
concurrent programming; not only its process model is similar to that of Erlang,
but also message matching constructs follow the same Erlang rules. Go! is instead
April enriched with logic functionalities, such as knowledge base representation
and (concurrent) reasoning capabilities, as in Parlog [23]. Go! allows a designer to
define functions, Prolog-like predicates and queries, i.e. the Prolog “goals”. Agent
programming in Go! is thus basically logic/declarative and supported by many
language constructs; it also allows to define objects as knowledge base elements,
like in CLOS [47] or CLIPS [3].

Agent0 [59], PLACA [61], AgentK [27] and 3APL [45] are high-level languages
for the design of goal-oriented agents. They are based on the BDI model [57] and
provide constructs for defining beliefs, intentions, plans, obligations, capabilities,
etc. Some of them integrate an agent communication language [32, 38] to allow
interoperability with other agents.

A different philosophy is instead the base of APL [21] and JACK [10]. Both
support the BDI model but the language is mainly Java-based, that is, it extend-
s/integrates Java and provides a compiler that transforms the source code into Java
executables. APL has its own grammar (similar to that of Java) which presents
ad-hoc statements to define agents with their beliefs, plans and goals; it also allows
Java constructs and standard JRE libraries in agent developing. JACK, instead,
extends the Java language by adding some constructs to define the agent-specific
features needed by the BDI model.

The programming model of these approaches is different than that of eXAT,
which instead clearly separates the behavioral part from the agent’s intelligence,
allowing the programmer to intervene on both. This means that eXAT provides a
“low-level” agent programming philosophy, in which the programmer can control
all agent parts with a grain finer than that of the cited languages, whose processing
mechanisms are built-in and not visible to (nor manageable for) the designer. In-
deed, an higher-level programming platform could be also obtained by integrating
eXAT with Erlang-based BDI tools, such as [62].

7.2. Agent Platforms

Among the agent platforms available today, it is worthwhile considering those
which comply with the FIPA agent interoperability standard [43]. For this rea-
son, here we will deal with JADE [16] and FIPA-OS [1], which are the most
widely known (Java-based) FIPA compliant platforms. Both take care of agent
interoperability and behavioral aspects but do not provide any support for agent
intelligence: it must be implemented by integrating external tools [2, 7, 55]. Also



Supporting Agent Development in Erlang 67

ACL semantics is not supported and must be done (by hand) by the programmer
when needed21.

As for behavior engineering, JADE supports FSM-based behaviors with in-
heritance and specialization. JADE behaviors are based on computations (sub-
behaviors) tied to each FSM state; such a computation specifies the action an
agent has to do when it reaches that state; the computation must also check and
generate the events that fire transitions to another state. A similar approach is
provided in FIPA-OS. Here computations are encapsulated into Task objects, each
having the responsibility of catching an event (i.e. the arrival of a message) and
starting another Task to perform the action and wait for the next event.

In both platforms, sub-behaviors (or Tasks) are strongly tied to the specific
FSM for which they are designed; eXAT instead provides a separation between
FSM structure and the tied computations: event generation and handling is not
a task of a user-defined computation but a native mechanism provided by eXAT,
while agent actions, that are bound to transitions, specify what agent has to do
after event occurrence. Such kind of structure allows an existing FSM to be used
with other actions—by overriding the methods defining the actions—or to use the
actions in another context—by calling the action method from another behavior22.

8. Conclusions

In this Chapter, a new approach for multi-agent system implementation with the
Erlang language has been described, supported through eXAT, a new experimen-
tal Erlang-based agent platform. The choices of developing a new platform and
employing Erlang have been motivated, by showing how the main characteristics
of this language can be exploited for agent implementation. On this basis, a model
for engineering agent behaviors has been provided, which considers the use of mul-
tiple finite-state machines whose events may be bound to ACL message reception
as well as be the result of a reasoning process of the agent. Behavior engineering is
also made flexible by allowing FSM composition and specialization. Such concepts
are altogether made available in eXAT by means of suitable libraries that permit
to design, with the same programming language and tool, agent intelligence, agent
behavior and agent communication. The advantages of the proposed approach are
clearly stated through the whole Chapter; eXAT characteristics have been also
compared to those of some other existing platforms and agent programming lan-
guages.

Acknowledgment

This work has been partially supported by the “WEBMINDS” FIRB research
project of the Italian MIUR.

21JADE board announced a new version of JADE with a native support of ACL semantics, but
this version has not been released yet (at the time this paper was written).
22A deeper comparison between eXAT and JADE, which includes also some code snippets, is
provided, for reader’s interest, in [28, 30, 29, 31].



68 A. Di Stefano and C. Santoro

Information about Software

Software is available on the Internet as
(*) prototype version

Internet address: http://www.diit.unict.it/users/csanto/exat/
Description of software: Erlang-based Agent Platform
Download URL: http://www.diit.unict.it/users/csanto/exat/download.html

Contact person for question about the software:
Name: Corrado Santoro
email: csanto@diit.unict.it

References

[1] http://fipa-os.sourceforge.net/. FIPA-OS Web Site., 2003.

[2] http://herzberg.ca.sandia.gov/jess/. JESS Web Site, 2003.

[3] http://www.ghg.net/clips/CLIPS.html. CLIPS Web Site, 2003.

[4] http://www.agentlink.org/resources/agent-software.php, 2004.

[5] http://www.diit.unict.it/users/csanto/eres.html. ERES Web Site, 2004.

[6] http://www.diit.unict.it/users/csanto/exat/. eXAT Web Site, 2004.

[7] http://www.drools.org. Drools Home Page, 2004.

[8] http://www.erlang.org. Erlang Language Home Page, 2004.

[9] http://www-2.cs.cmu.edu/∼softagents/, 2004.

[10] http://www.agent-software.com, 2004.

[11] C. Agha and C. Hewitt. Concurrent Programming using Actors. MIT Press, 1987.

[12] J. L. Armstrong. The development of Erlang. In ACM Press, editor, Proceedings of
the ACM SIGPLAN International Conference on Functional Programming, pages
196–203, 1997.

[13] J. L. Armstrong. Making Reliable Distributed Systems in the Presence of Software
Errors. PhD Thesis, Swedish Institute of Computer Science, Stockholm, Sweden,
2003.

[14] J. L. Armstrong, M. C. Williams, C. Wikstrom, and S. C. Virding. Concurrent
Programming in Erlang, 2nd Edition. Prentice-Hall, 1995.

[15] Joe Armstrong and Robert Virding. Erlang - An Experimental Telephony Program-
ming Language. In XIII International Switching Symposium, May 27-June 1, Stock-
holm, 1990.

[16] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with a
FIPA-compliant agent framework. Software: Practice and Experience, 31(2):103–128,
2001.

[17] Federico Bergenti. Formalizing the Reusability of Agents. In Andrea Omicini, Paolo

Petta and Jeremy Pitt, editor, 4th International Workshop Engineering Societies in
the Agents World (ESAW 2003). Springer, 2003.

[18] Federico Bergenti and Agostino Poggi. A Development Toolkit to Realize Au-
tonomous and Inter-operable Agents. In 5th International Conference on Au-
tonomous Agents (Agents 2001), Montreal, Canada, 2001.



Supporting Agent Development in Erlang 69

[19] G. Cabri, L. Leonardi, and F. Zambonelli. Mobile-Agent Coordination Models for
Internet Applications. IEEE Computer, 33(2), February 2000.

[20] N. Carriero and D. Gelernter. Linda in Context. Comm. ACM, 32(4), April 1989.

[21] J. Chang-Hyun and K. M. Geroge. Agent-based Programming Language: APL. In
2002 ACM Symposium on Applied Computing, Madrid, Spain, 2002.

[22] P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi, and A. Knoche. Coordinating Multi-
agent Applications on the WWW: A Reference Architecture. IEEE Transaction on
Software Engineering, 24(5), 1998.

[23] Keith Clark and Steve Gregory. PARLOG: Parallel Programming in Logic. ACM
Transactions on Programming Languages and Systems, 8(1):1–49, January 1986.

[24] Philip R. Cohen, Adam Cheyer, Michele Wang, and Soon Cheol. Baeg. An Open
Agent Architecture. In Micheal N. Huhns & Munindar P. Singh, editor, Readings in
Agents, pages 197–204, 1997.

[25] M. Cremonini, A. Omicini, and F. Zambonelli. Coordination and access control in
open distributed agent systems: The TuCSoN approach. In António Porto and Gruia-
Catalin Roman, editors, Coordination Languages and Models, volume 1906 of LNCS,
pages 99–114. Springer-Verlag, 2000.

[26] M. Dastani, J. van der Ham, and F. Dignum. Communication for Goal Directed
Agents. In Marc-Philippe Huget, editor, Communication in Multiagent Systems -
Agent Communication Languages and Conversation Policies, pages 239–252. LNCS,
2003.

[27] W. H. E. Davies and P. Edwards. Agent-K: an Integration of AOP and KQML.
In Y. Labrou and T. Finin, editors, CIKM’94 Workshop on Intelligent Information
Agents, Anaheim, CA, 1994.

[28] Antonella Di Stefano and Corrado Santoro. eXAT: an Experimental Tool for Pro-
gramming Multi-Agent Systems in Erlang. In AI*IA/TABOO Joint Workshop on
Objects and Agents (WOA 2003), Villasimius, CA, Italy, 10–11 September 2003.

[29] Antonella Di Stefano and Corrado Santoro. eXAT: A Platform to Develop Erlang
Agents. In Agent Exhibition Workshop at Net.ObjectDays 2004, Erfurt, Germany,
27–30 September 2004.

[30] Antonella Di Stefano and Corrado Santoro. Designing Collaborative Agents with
eXAT. In ACEC 2004 Workshop at WETICE 2004, Modena, Italy, 14–16 June 2004.

[31] Antonella Di Stefano and Corrado Santoro. On the Use of Erlang as a Promising
Language to Develop Agent Systems. In AI*IA/TABOO Joint Workshop on Objects
and Agents (WOA 2004), Turin, Italy, 29–30 October 2004.

[32] T. Finin and Y. Labour. A Proposal for a New KQML Specification. Technical
Report TR-CS-97-03, Computer Science and Electrical Engineering Dept., Univ. of
Maryland., 1997.

[33] C.L. Forgy. Rete: a fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, pages 17–37, 1982.

[34] Foundation for Intelligent Physical Agents. FIPA ACL Message Representation in
Bit-Efficient Encoding Specification —No. SC00069G, 2002.

[35] Foundation for Intelligent Physical Agents. FIPA ACL Message Representation in
XML Specification—No. SC00071E, 2002.



70 A. Di Stefano and C. Santoro

[36] Foundation for Intelligent Physical Agents. FIPA Agent Message Transport Protocol
for HTTP Specification—No. SC00084F, 2002.

[37] Foundation for Intelligent Physical Agents. FIPA Agent Message Transport Protocol
for IIOP Specification—No. SC00075G, 2002.

[38] Foundation for Intelligent Physical Agents. FIPA Communicative Act Library
Specification—No. SC00037J, 2002.

[39] Foundation for Intelligent Physical Agents. FIPA Contract Net Interaction Protocol
Specification—-No. SC00029H, 2002.

[40] Foundation for Intelligent Physical Agents. FIPA English Auction Interaction Pro-
tocol Specification—-No. SC00031F, 2002.

[41] Foundation for Intelligent Physical Agents. FIPA Request Interaction Protocol
Specification—-No. SC00026H, 2002.

[42] Foundation for Intelligent Physical Agents. FIPA SL Content Language
Specification—-No. SC00008I, 2002.

[43] Foundation for Intelligent Physical Agents. http://www.fipa.org, 2002.

[44] Stan Franklin and Art Graesser. Is it an Agent, or just a Program?: A Taxonomy
for Autonomous Agents. In Third International Workshop on Agent Theories, Ar-
chitectures, and Languages (ATAL). Springer-Verlag, 1996.

[45] K.V. Hindriks, F.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. Agent program-
ming in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

[46] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International,
1985.

[47] Sonya E. Keene. Object-Oriented Programming in Common Lisp. Addison-Wesley,
1989.

[48] Frank McCabe and Keith Clark. April: Agent Process Interaction Language. In N.
Jennings and M. Wooldridge, editor, Intelligent Agents. Springer, LNCS 890, 1995.

[49] Frank McCabe and Keith Clark. Go! - A Multi-Paradigm Programming Language
for Implementing Multi-Threaded Agents. Annals of Mathematics and Artificial In-
telligence, 41(2-4):171–206, August 2004.

[50] Mickaël Rémond. Erlang - Programmation. Eyrolles, 2003.

[51] R. Milner. Communication and Concurrency. Prentice Hall International, 1989.

[52] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Univ
Press, 1999.

[53] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Marco Cioffi, and Giovanni Rimassa.
Multi-agent infrastructures for objective and subjective coordination. Applied Arti-
ficial Intelligence, 18(9/10):815–831, October/December 2004.

[54] G. P. Picco, A. Murphy, and Roman G.-C. LIME: Linda Meets Mobility. In D. Garlan
and Los Angeles (USA) J. Kramer, eds., editors, 21th Intl. Conference on Software
Engineering (ICSE ’99), May 1999.

[55] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: Implementing a BDI-
Infrastructure for JADE Agents. Telecom Italia Journal: EXP - In Search of In-
novation (Special Issue on JADE), 3(3), Sept. 2003.

[56] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In Agents Breaking Away, pages 42–55. Springer-Verlag, LNAI 1038, 1996.



Supporting Agent Development in Erlang 71

[57] A. S. Rao and M. P. Georgeff. Modeling Rational Agents within a BDI-Architecture.
In R. Fikes J. Allen and E. Sandewall, editors, 2nd International Conference on
Principles of Knowledge Representation and Reasoning (KR’91). Morgan Kauffman,
1991.

[58] Corrado Santoro. eXAT: an Experimental Tool to Develop Multi-Agent Systems
in Erlang - A Reference Manual. Available at http://www.diit.unict.it/users/

csanto/exat/, 2004.

[59] Y. Shoham. AGENT-0: A Simple Agent Language and its Interpreter. In 9th National
Conference of Artificial Intelligence, Anaheim, CA, 1991. MIT Press.

[60] K. Sycara, M. Paolucci, M. van Velsen, and J. Giampapa. The RETSINA MAS
Infrastructure. Special joint issue of Autonomous Agents and Multi-Agent Systems
Journal, 7(1 and 2), July 2003.

[61] S. R. Thomas. The PLACA Agent Programing Language. In N. Jennings and M.
Wooldridge, editor, Intelligent Agents. Springer, LNCS 890, 1995.

[62] Carlos Varela, Carlos Abalde, Laura Castro, and José Gulias. On Modelling Agent
Systems with Erlang. In 3rd ACM SIGPLAN Erlang Workshop, Snowbird, Utah,
USA, 22 September 2004.

[63] M. Wooldridge, N. Jennings, and D. Kinny. The Gaia Methodology for Agent-
Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent Sys-
tems, 3(3), 2000.

[64] M. J. Wooldridge. Multiagent Systems. G. Weiss, editor. The MIT Press, April 1999.

[65] F. Zambonelli, N.R. Jennings, A. Omicini, and M.J. Wooldridge. Agent-oriented soft-
ware engineering for Internet applications. In A. Omicini, F. Zambonelli, M. Klusch,
and R. Tolksdorf, editors, Coordination of Internet Agents: Models, Technologies,
and Applications, chapter 13, pages 326–346. Springer-Verlag, March 2001.

[66] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Developing
multiagent systems: The gaia methodology. ACM Trans. Softw. Eng. Methodol.,
12(3):317–370, 2003.

Antonella Di Stefano and Corrado Santoro
University of Catania, Engieering Faculty
Viale Andrea Doria, 6
95125 - Catania, ITALY
e-mail: {ad, csanto}@diit.unict.it



Living Systems� Technology Suite

Giovanni Rimassa, Monique Calisti and Martin E. Kernland

Abstract. This chapter presents and discusses the Living Systems Technology
Suite, LS/TS, a solution for the development and deployment of products and
systems based on software agent technology and autonomic computing. LS/TS
comprises a software development methodology and a Java-based agent plat-
form with development tools. The focus of this paper is on the LS/TS agent
platform: the concepts, API and development tools that support the design
and implementation of multi-agent systems are described and discussed. This
chapter also lists a few significant challenges that a middleware for multi-
agent systems has to face, and also shows how each one of them is addressed
by the LS/TS agent platform.

Keywords. agent middleware, development tools, run-time environment, de-
velopment methodology.

1. Introduction

In recent years, Agent Oriented Software Engineering (AOSE) has been increas-
ingly adopted to provide solutions able to flexibly adapt in real-time to changing
and unforeseen run-time conditions and fluctuations in the ever more complex
and dynamic business world. However, in order to meet today’s stringent IT re-
quirements, a comprehensive and solid approach to agent-based software design,
development and deployment is needed. In this perspective, we have conceived
and developed the Living Systems Technology Suite, LS/TS, a comprehensive ap-
proach, including a development methodology and a Java-based set of components
and tools, for the professional development and deployment of products and solu-
tions based on software agent technology.

Before starting to develop agent-based solutions around 2000, we carried out
a comprehensive analysis of the prevailing research in agent technologies as well
as available platforms, tools, and methodologies, and put the result in contrast
to our comprehensive experience with real-world IT projects and the related cus-
tomer expectations. While agent technologies were progressing, they had to meet



74 Giovanni Rimassa, Monique Calisti and Martin E. Kernland

an established industrial IT world, with many stable, mission-critical systems and
networks in place that had grown over years, corporate IT strategies with defined
product sets from major players and vendors, and huge investments in systems and
know-how, resulting in challenging requirements for the still young agent technolo-
gies with respect to basic product quality, in particular regarding reliability and
failover, performance and scalability, security; business functionality, eg. transac-
tions, sessions, persistence; system administration functionality, eg. configuration
and diagnostic tools; migration and extension capabilities of existing operational
systems; integration with, and interfaces to, currently operational systems, prod-
ucts, and solutions; re-use of peoples know-how and experience, and organizational
and administrative procedures and tools; and adherence to industry standards.

By then, J2EE EJB application servers represented a state-of-the-art tech-
nology fitting the above requirements and expectations. However, it was evident
that J2EE could not be universal environment for any application domain, but
that J2SE support was also necessary. The Living System� Technology Suite , dis-
cussed in this paper, provides a solution that strives to fulfill the above challenging
requirements.

The rest of this chapter is organized as follows. Section 2 summarizes to-
day’s main business challenges and requirements in term of IT support. While,
as discussed, agent technology provides powerful concepts and techniques to build
effective solutions, it is also clear that several challenges lie ahead for agent-based
computing. The overall LS/TS architecture, presented in Section 3, has been con-
ceived with the aim to meet such challenges. To this purpose we defined the com-
mon agent layer as a way to express agent abstractions providing the foundation of
the LS/TS programming model, discussed in Section 3.1, and we decomposed the
overall LS/TS package into a development suite and and run-time suite, both pre-
sented in Section 3. Section 4 lists the engineering challenges posed by the LS/TS
goals and the market expectations, and details how LS/TS tackles each of them.
Finally, in Section 5, we discuss in more depth important features of LS/TS by
motivating our choices and highlighting future work before concluding the paper
with Section 6.

2. Challenges for Agent-Based Computing

In today’s complex and rapidly transforming markets, business organizations have
to face a variety of challenges, which can impose significant changes to their busi-
ness processes and structures. The main requirements, common to a large majority
of industries including telecommunications, logistics, financial services, manufac-
turing, healthcare, have been induced by several factors:

• Liberalization and market deregulation have been triggering fierce competition
leading to the need for quick and flexible reactions to customers expectations
and requirements. On the other hand, despite self-interest, many business



Living Systems� Technology Suite 75

organizations must often dynamically coordinate to achieve a comprehensive
service offering.

• High exposure to variability. Many businesses work under increasingly dy-
namic conditions, in which the diversity of constraints to be satisfied is not
always known a priori. This requires the capability to adapt business strate-
gies and solutions and often to operate in real-time (or nearly real-time)
mode.

• Growing diversity in market demand. This trend has been causing higher
differentiation and shorter life-cycle of offered products and services. As a
major consequence, business process management is becoming increasingly
complex.

• Explosion of available data. The extension of business horizons can produce
an exponential growth of information to be processed, which is often hetero-
geneous and distributed. This can become a quite challenging task especially
in real-time (or near to real-time) operational mode.

These factors translate into business organizations demanding more frequent adap-
tation from their software systems and hardware infrastructures, which are often
highly distributed, must be able to gather, analyze and visualize vast amounts
of data, interoperate with a large number of diverse technologies and tools, and
integrate different business processes at both intra- and inter-enterprise levels. In
particular, IT solutions are expected to provide easy adaptation of applications
and content to accommodate heterogeneous users expectations, backgrounds and
roles.

The problem is that today’s operational IT systems are usually based on tra-
ditional technologies unable to provide the required flexibility to meet the above
business needs. As a result, new software design, development and integration ap-
proaches are being pursued. As a key approach, agent technology provides powerful
metaphors, concepts and techniques for conceptualizing, designing and implement-
ing effective solutions meeting current business needs [21]. Agents facilitate one-
to-one mapping of real world business models into system components, can act
as smart decision making support elements in complex, dynamic, and networked
markets and can be delegated responsibility for performing tasks that would be
otherwise very difficult, time consuming, costly or just infeasible for humans. Var-
ious recent examples of industrial uptake of agent technology can be found in [1].

3. LS/TS Overview

One of the major goals of LS/TS is to provide agent technology relevant abstrac-
tions without introducing proprietary language extensions or even a new program-
ming language. As the base for LS/TS, the Java programming language was chosen
due to several reasons such as the wide acceptance and use of the language as well
as its portability. The agent-specific abstractions are implemented using standard
language capabilities, thus LS/TS applications are pure Java applications. LS/TS



76 Giovanni Rimassa, Monique Calisti and Martin E. Kernland

provides a Java library named Core Agent Layer, CAL, with implementations of
these new abstractions.

LS/TS provides a comprehensive development tool suite, the mentioned CAL
library, and a sound methodology. The Development Suite of LS/TS is based on
the Eclipse Java IDE [7]. This allows the agent technology relevant abstractions to
be managed on the tool level, by providing a new kind of view on the agent applica-
tion. This approach enables developers to directly handle these new abstractions,
while keeping the compiled Java application in line with the mainstream and open
development tool suite for the Java platform.

The methodological support consists of the UML-based Agent Modeling Lan-
guage, AML, and a comprehensive software development process called the Agent-
oriented Development Methodology, ADEM. AML [5] is a semi-formal visual mod-
eling language for specifying, modeling and documenting systems that incorporate
concepts drawn from multi-agent systems theory1.

3.1. The LS/TS Programming Model

The LS/TS architecture can be divided into two separate parts according to when
and by whom each component is used. On the one hand, the Development Suite
comprises the tool chain used by software developers at system construction time.
The Run-Time Suite, instead, is defined by all the LS/TS pieces working as an
integrated whole to aid application users and administrators at system operation
time. LS/TS is available in different editions, Personal, Business, and Enterprise,
as further explained in Section 3.2.

Figure 1 shows that there is a conceptual layer that belongs neither to the
development nor to the runtime domains. Rather, such a layer ties together the
two and ensures the conceptual integrity of both the developer artifacts (system
models and source code) and the user artifacts (actual executable modules, user
interfaces and user documentation). This conceptual layer hosts the programming
model of LS/TS.

This programming model’s most general component is the aforementioned
Common Agent Layer, CAL. Beyond being independent of the LS/TS Edition to
be applicable for J2SE and J2EE, the CAL is also open extensible.

The most general component belonging to LS/TS programming model is
the Common Agent Layer, CAL. Beyond being edition independent due to the
aforementioned challenge, the CAL also needs to be open and extensible.

The reason for this is that the notion of agency can be extremely general
and encompasses a whole host of biological, artificial and software entities. A
lot of very concrete and precisely defined agent models have been proposed by
researchers [11, 20, 10, 4], but sticking to a concrete agent model was felt to clash
with LS/TS goal of being widely applicable.

The chosen approach was instead a feature-based one, where a set of charac-
teristic properties are considered, and different software components are labelled

1For more detailed information on AML please refer to:
http://www.whitestein.com/pages/solutions/meth.html



Living Systems� Technology Suite 77

CAL

Personal
Edition

Core Agent Layer (CAL)

Java
J2EEJ2SE

CAL

Business
Edition

CAL

Enterprise
Edition

V
is

u
a
li
ze

r

Repository
M

o
d

e
le

r

D
e
v
e
lo

p
e
r

D
e
b

u
g

g
e
r

T
e
st

e
r

D
e
p

lo
y
e
r

Agent-oriented
Development
Methodology

Eclipse

AML

A
d

m
in

is
tr

a
to

r

Living Systems
Development

Living Systems
Run-time Suite

conceptual
layer

Suite

Figure 1. The overall structure of LS/TS

differently according to which properties they possess and which ones they do not.
Autonomy is perhaps the most significant feature of software agents, so the degree
of autonomy can be taken as the discriminating factor to impose some structure
on this classification.

The CAL contains three different agent types as the basic design elements,
having different properties each and providing a different set of functionality. De-
pending on the specific research area, researchers agree or disagree about the
agenthood of some of these types; the interested reader can refer to [17] to see
a not very recent but still fundamentally valid commentary concerning what is
considered to be an agent by different research groups. However, it is important
to remark that the taxonomy adopted in LS/TS is more motivated by application
requirements than from a systemic analysis of the multi-agent system research.

The three agent types supported by the CAL are as follows:

1. The Autonomous Agent represents a control element of the application logic,
able to sense its surroundings, act on them and also to coordinate with other
agents. This kind of agent, even when taken in its simplest form, exhibits a
high enough degree of autonomy to comply with the criteria of the weak agent
definition [22]. More powerful agent models, gifted with reasoning capabilities
and complying with the strong agent definition by [22] can be built on this
groundings.

2. The Servant Agent offers a view on application services and reactive func-
tionality, thereby exposing what are essentially passive computational units
as a part of the overall multi-agent system.



78 Giovanni Rimassa, Monique Calisti and Martin E. Kernland

3. The Data Agent aggregates data according to meaningful clusters, thus pro-
viding units of description that can be made to match relevant concepts of the
application domain or of the social organization chosen for the multi-agent
application.

3.2. LS/TS Editions

LS/TS addresses deployment variability by providing three different run-time en-
vironments, each for a different deployment scenario. The run-time environment is
the habitat of the agents and provides a messaging infrastructure, lookup services,
persistency services, etc. The messaging infrastructure enables asynchronous mes-
sage passing between the autonomous agents, which are the participants in this
peer-to-peer communication. The Federation feature of the run-time environment
allows connection to several other run-times. These run-times then form a group,
called a Federation. Within a Federation the agents can reach each other by peer-
to-peer messaging, no matter on which physical machine they actually reside (more
on the Federation feature can be found in Section 4.2).

The Enterprise Edition, is executed on J2EE application servers. Thus, the
run-time benefits from the features of the J2EE application server, such as con-
nectivity with other systems, transactions, resource management, etc.

The Business Edition runs on the Java 2 Standard Edition, and offer max-
imum programming flexibility while still ensuring powerful runtime services such
as resource control and monitoring or platform federation.

The Personal Edition is intended for technology exploration, solution proto-
types, and lightweight, personal applications. This edition does not provide data-
base connectivity. As part of the Development Suite the PE can serve as entry
level development environment, but is not licensable for production use.

Each run-time environment is able to execute any LS/TS agent application,
due to the unifying CAL layer. Each of the environments provides the full func-
tionality of CAL with differences in implementation sophistication.

This provides an easy upgrade to one of the other run-time environments
based on prevailing business and deployment needs. The three environments differ
regarding functionality for areas such as transaction management, client access,
fail-safe operation, clustering, and resource management.

3.3. The LS/TS Development Suite

The development suite, as shown in Figure 1, consists currently of five tools, four
of them are based on the Eclipse platform. The Modeler is based on Enterprise
Architect, a UML modelling tool from Sparx Systems [8]. With the Modeler tool,
the user creates a model of the agent application using AML. The created model
described by class, interaction, activity and state diagrams is then exported to an
intermediate format based on XML which is the input for the subsequent tools.

The Developer is the main design and implementation tool for the application
programmer. It is an extension to the standard Eclipse Java programming envi-
ronment, providing specific navigators, views, and manipulators of the Java code



Living Systems� Technology Suite 79

for the LS/TS agents. The Developer can import AML models from the Modeler
and automatically create the appropriate code structure. This template code is
then ready to be filled with the corresponding business logic of the application.
Extended search capabilities allow systematic discovery of specific Agent Logic
components, to explore who is the sender of a specific message, who is the receiver
of a specific message, etc.

The Debugger is an extension to the standard Eclipse Java debugger, with
direct support of the agent abstractions of the CAL and the logic of the agents.
As an example, it is possible to add a breakpoint to an agent that is only triggered
if a specific message sent from an agent arrives, or if an agent reads or writes a
specific value from its Agent Data Storage.

The Tester supports unit testing of single agents and their logics. It consists
of helper classes and mock objects that ease the creation of unit tests for LS/TS
specific agent logic.

Once an agent application has been implemented, the developer has to pack-
age it with the necessary third-party libraries, meta information about the agent
application, and run-time environment specific information. All this is handled by
the Deployer, a set of features integrated in the Developer tool. Here the decision
has to be made, on which edition of the run-time environment one wants to deploy
the agent application.

The operation of the run-time environment is assisted by the Administrator, a
tool which helps to visualize and control the ongoing execution of the application.
It is possible to see a list of the messages throughout the platform, both before
they are processed and after they have been delivered. An Inspector provides a
view of agent state, life-cycle management of an agent (e.g. stopping an agent),
etc.

4. Addressing Challenges with LS/TS

The market expectations put forward in Section 2 pose a set of non-trivial re-
quirements and constraints for a software infrastructure and methodology such as
the one offered by LS/TS. From a software engineering perspective, the following
technical challenges have to be faced:

1. Supporting agent technology relevant abstractions throughout the software life-
cycle, despite the assumptions made by traditional development environments.
The main clash here comes from the fact that traditional stepwise software
development methods and systems heavily decouple data flow, execution flow
and configuration flow and therefore cannot be effectively used to preserve
agent concepts and abstractions across the entire software life-cycle. The
effectiveness of agent technology is largely reliant upon the capability to hide
low-level technical details by capturing the application logic into abstractions
that can be understood by both users and developers.



80 Giovanni Rimassa, Monique Calisti and Martin E. Kernland

2. Providing comprehensive coverage of different application domains and de-
ployments. Because of the diversity of business requirements and the need
to integrate applications into different execution environments it is challeng-
ing to provide a solution that can offer an effective trade-off between these
aspects.

3. Augmenting the application semantics with agent concepts (such as pro-activi-
ty, asynchronous communication, etc.), while being hosted and acting within
the standard deployment solutions currently popular within IT environments.
Providing effective support to corporate customers with a new and more
flexible approach such as agent technology cannot be achieved without paying
careful attention to the whole system and legacy software integration.

4. Supporting a range of dynamic software component interactions in complex
environments, where different kinds of entities exist (agents, resources, ar-
tifacts, etc.) with varying degrees of autonomy. While modeling multi-agent
applications, one should avoid the pitfall of attributing agent properties to
domain elements that do not really have them, out of conceptual bias. This
‘everything is an agent ’ attitude can needlessly complicate applications and
systems.

5. Reconciling component autonomy and pro-activity with component manage-
ability. Those elements that actually end up being realized as autonomous
agents must not jeopardize the overall application predictability and should
also grant effective manageability of the deployed systems. This challenging
aspect is still an important open research topic [18], [19].

The Living System Technology Suite has been conceived and developed with
these issues in mind. In the following we aim at showing how the different soft-
ware engineering challenges outlined above are addressed by LS/TS features and
architecture.

4.1. Bringing Agent Abstractions to Developers

The first goal for a middleware trying to support a new way of building software
is, quite naturally, to provide a well defined yet easy to use way to express rele-
vant concepts through software constructs. Among the concepts that define and
characterize the multi-agent system approach to software development, the most
important one to be considered is of course the Autonomous Agent concept, which
is directly expressed by LS/TS. Figure 2 shows the Autonomous Agent within the
context of LS/TS runtime environment.

Its higher level of autonomy makes the Autonomous Agent very powerful as
it can plan its own execution. In combination with the other agent types listed in
Section 3.1, the Autonomous Agent can be used to control the execution of com-
plex agent applications. The programming model of LS/TS autonomous agents is
a natural one for software components that exhibit weak agency. An autonomous
agent, as it is perceived by LS/TS application developers, has the following fea-
tures.



Living Systems� Technology Suite 81

• Continuous execution. An autonomous agent follows a life-cycle such that it
is always running from its creation to its termination.

• Long-term state. An autonomous agent has state that captures its history
(past perceptions and actions); such state has a lifetime that is longer than
any single conversation or process the agent is involved in.

• Procedural autonomy. An autonomous agent does not rely on external threads
of control to execute its code; rather, it can choose when and whether to take
action or observe its environment.

• Message exchange. An autonomous agent can send and receive messages to
set up interactions with other peers.

While this programming model is natural and offers good abstractions to the
programmers developing multi-agent applications, a straightforward, naive imple-
mentation would fail to have the non-functional properties (scalability, robustness,
etc.) that are required if an agent platform is to effectively tackle the challenges
described at the beginning of Section 4.

Therefore, LS/TS Autonomous Agents have a composite structure, fostering
separation of concerns and allowing different levels of functionality in different
deployment environments. The Autonomous Agent consists of three components,
as illustrated in Figure 2.

1. The Agent Meta Information.
2. The Agent Data Storage.
3. The Agent Logic.

The Agent Meta Information holds all the pieces of information that are
necessary to maintain the properties of the Autonomous Agent programming ab-
straction. Such information includes, for example, the agent identity. The Agent
Data Storage keeps the long term agent state, and can leverage persistent stor-
age facilities when available. The Agent Logic contains all application relevant
information and functionality of the Autonomous Agent. This includes the agent
capabilities (i.e. what the agent can do) and the structure of the complex tasks
it can perform (composite actions and perceptions, interaction protocols, and the
like).

This means that the Agent Logic defines the type of the agent (Travel-
Agent, StockTradingAgent, etc.). Between agents of the same type (i.e., same
functionality, e.g. many stock trading agents that trade stocks in the name of
their user/owner), the only thing that would be different is the Agent Data Stor-
age, which contains the agent’s private information (e.g. stocks to trade, preferred
prices, trading strategy, stock owners contact information) and the Agent Meta
Information which determines the identity of the agent instance.

Another noteworthy aspect depicted in Figure 2 is the relationship between
an Autonomous Agent and the Agent middleware hosting it. Due to its active
nature, an LS/TS Autonomous Agent exposes features to the Agent middleware
but also uses some other ones provided by the LS/TS runtime.



82 Giovanni Rimassa, Monique Calisti and Martin E. Kernland

Run-time Environment

Agent Data StorageAgent Meta Information

Autonomous Agent

Agent Server Services Agent Services

communication()

directoryService()

persistencyService()

onCreate()

onDelete()

onMessage()

......

uses realizes

usesrealizes

0..*
1

1

1

1

1

1

0..*

Agent Logic

Figure 2. Autonomous Agent and its relationship with the host-
ing Agent middleware

Each Autonomous Agent provides a generic set of services, which is the in-
terface to the agent middleware: The life-cycle services (Agent Services in Figure
2) allow the agent middleware to control the execution of the agents and allow
the agent to execute appropriate logic when the state of its life-cycle changes. on-
Create() triggers the code that needs to be executed when the agent is created.
This is often some initialization sequence or sometimes even empty. onDelete()
triggers the code that needs to be executed when the agent is destroyed. This can
be some clean up code, closing down open connections, or making transient data
persistent. On the other hand, the run-time environment exposes some services
for Autonomous Agents to use, such as message based communication, a direc-
tory service and, depending on the concrete deployment configuration, persistence
facilities.

The Message Dispatching Agent Logic, MDAL, is the default agent logic pro-
vided by LS/TS to Autonomous Agent developers. It is expected to be effective
for a large set of application domains and environments, but can be extended or
replaced by the developer thanks to the open and extensible nature of the CAL.
In addition, other agent logic modules (eg. goal-oriented) will be available as part
of the LS/TS offering in the future.



Living Systems� Technology Suite 83

The MDAL allows for both message-triggered and conversation-triggered be-
haviour specification. Messages whose semantics are to be interpreted within a
wider scope (an agent conversation or any complex interaction) are named context
messages, whereas isolated messages that do not belong to an extended interaction
are called non-context messages.

The ContextSelector and the ContextFactory components work together to
create contexts on demand and to dispatch to existing contexts those messages that
are recognized as being a follow-up to an already started interaction. However,
the real core of the MDAL is the MessageHandler class. The Message Handler
implements some application logic that is triggered by a specified message.

An interaction with other agents can be handled by the Message Handler.
The interaction can take the form of a conversation where a sequence of commu-
nicative acts on some topic is executed. The delivery of a message created by a
communicative act is the message that is handled by the Message Handler. The
handling of the incoming message can include the sending of a reply to the coun-
terpart agent (continuation of the conversation). All received messages that belong
to the same conversation are handled in the same context by the same Message
Handler.

A fundamental aspect of agent interaction is to support composability of basic
conversations to yield aggregate ones. This feature is also required to enable goal
directed, plan executing agents that are not provided with exhaustive solutions to
their tasks but rather with building blocks and composition rules. LS/TS supports
interaction composability within the MDAL by the possibility to set up a parent-
child relationship between the Message Handlers.

The parent Message Handler can activate a new Message Handler and declare
it as a child. This causes the execution of the parent Message Handler to be
suspended until the execution of the child Message Handler is completed. When
the child Message Handler has completed execution the parent Message Handler
is automatically notified.

This type of relationship between handlers allows an easy implementation of
nested activities or interactions. For example, agent A is interacting with agent
B. At some point in this interaction agent B needs to obtain information from
agent C and cannot continue the interaction with A until it has the information
from C. Agent B can obtain this information only by starting an interaction with
agent C. Hence, a nested interaction with C is started. The interaction with A is
suspended, while the interaction with C is in progress.

4.2. Supporting Multiple Deployments and Domains

The second challenge presented above mentions different deployment scenarios
with specific requirements. The main way LS/TS copes with this challenge is by
making available the three aforementioned editions (see Section 3.2) that allow
tailored deployment and subsequent extensibility. Moreover, some more detailed
deployment options are available. In the following, three possible situations are



84 Giovanni Rimassa, Monique Calisti and Martin E. Kernland

presented, and for each one of them the solution with a LS/TS run-time environ-
ment is described.

• Persistent Deployment. In real-world production deployments, a strong em-
phasis is often put on avoiding data loss. For this first requirement, the En-
terprise Edition of LS/TS offers the possibility to execute the agents in a
persistent mode where the messages and the Agent Data Storages are kept
persistent. In addition, XA transactions are used to ensure that this data
stays in a consistent state. The result is that the agent application will not
lose any data, even if the JVM should crash. After restarting the application
server and the Enterprise Edition run-time, the agent application continues
to run as if nothing happened.

• Application-transparent Clustering. Often, the scenario presented above is
enough, however, a few production deployments require that the application
has a 24/7 uptime, meaning that it is constantly available. This requirement
can be met by running the Enterprise Edition in a clustered setup in order
to achieve failover capabilities. One possible setup is to have two run-time
nodes running on two different machines, both connected to the same JMS
server and database. Should one node fail, another one will take over after
a few milliseconds. The agent application will continue to run as though
nothing happened, as the relevant data of the application is persistent on the
database. This scenario, like the previous one, is transparent to the agent
application.

• Application-visible Federation. To further extend the application reach, in-
stead of simply adding more resources while still keeping the application
model of a single big and powerful machine hosting the whole application, the
LS/TS Federation feature can be exploited. This allows a set of loosely cou-
pled LS/TS run-time nodes to communicate with each other and to exchange
messages. Autonomous Agents and connected clients still see the individual
run-time, however, messages for agents not found on the run-time will be
forwarded to the other nodes in the Federation. LS/TS Federation enables
applications with a dynamic, non client/server deployment schema where
agents and the nodes hosting them can appear and disappear freely during
normal system operation, thus harnessing the true power and flexibility of
agent technology.

Another feature that adds to the flexibility of the run-times is their internal struc-
ture which consists of a microkernel, where functionality such as the messaging
infrastructure and directories is built as services that are loaded at startup time.
Thus, the run-time can be configured at startup time with a suitable set of services,
and several flavors of the same service can be available. The Personal Edition and
the Business Edition have both the same microkernel, but mostly different services.

The above list shows how LS/TS supports a multi-faceted set of deployment
configuration, that vary not just with respect to the host Java edition, but also



Living Systems� Technology Suite 85

with the non-functional properties desired for the application and even with the
distribution semantics (e.g. transparently replicated or visibly federated).

4.3. Extending Traditional Runtime Environments

As mentioned in Section 3, the LS/TS product offering comprises three different
run-time environments, the Personal Edition, the Business Edition, and the En-
terprise Edition. The Personal Edition is meant for prototyping and explorations
and is also embedded within the Development Suite so that simple applications
can be immediately executed, including directly in the Debugger. The Business
Edition is based on J2SE [13], just like the Personal Edition, however, it contains
more features and a more sophisticated implementation.

The Enterprise Edition is based on J2EE [14] and needs a J2EE application
server to run. Being hosted by an application server without exploiting proprietary
mechanisms implies that LS/TS Enterprise Edition only requires an application
server compliant with the EJB 2.0 specification [9]. The specification does not
allow the management of own threads of execution, as this resource should be
controlled by the application server. The consequence of this constraint is that an
LS/TS agent cannot have its own execution thread.

Supporting the autonomous agent abstraction and programming model, while
complying with J2EE imposed restriction results in an architecture where agents
do not exclusively own a thread. Threads are kept outside the agents and are given
to them when they need to execute some of their behavior. Each agent in turn
gives up its thread when it has finished with it.

A thread is passed to an agent whenever a new message arrives; moreover,
the agent application developer can register recurring notifications and define the
interval of how often these notifications should be delivered. Thus, the Autonomous
Agent never exclusively owns a thread for processing, but receives a thread for
processing when appropriate. The effect is similar with agent systems where the
agent exclusively owns the thread, because on the processor level, the threads
themselves receive a limited time-slice for processing which is scheduled by the
Java Virtual Machine (JVM) and by the operating system.

Another constraint of the EJB 2.0 specification led to a design decision com-
mon to all LS/TS run-times, namely to have only one message queue for all agent-
to-agent messages. The alternative would have been to equip every agent with its
on message inbox, however this was not feasible due to performance reasons as the
inboxes would have been required to persist inside the J2EE application server.

With the decision to have only one message queue, it was also possible to use
JMS as the messaging infrastructure. This allows the option to have the messages
persisted and handled by JMS. In addition, there is XA transaction support avail-
able for JMS messaging which brings the benefits mentioned above of incurring
no data loss.

Business and Enterprise Editions of LS/TS are equipped with resource man-
agement capabilities. The Enterprise Edition profits from the underlying appli-
cation server whereas the Business run-time has its own resource management



86 Giovanni Rimassa, Monique Calisti and Martin E. Kernland

service. Because of this resource management service, a virtually unlimited num-
ber of agents and messages can be sustained by the run-time environment.

Another issue that pertains to this challenge is integrating agent applications
or agent technology in general into existing solutions. One possible method to
achieve integration these days is to be accessible as a Web Service for other IT
systems. This can be achieved by using the Web Service Gateway (WSG) which
is included in the LS/TS offering. By configuring the WSG, specific Autonomous
Agents can be exposed as Web Services with a defined interface. Which agent and
how it is exposed is a question of the configuration. The agent does not need any
special special functionality as the Web Service call is transferred to a message.
Thus, for the agent the Web Service request seems like just another request from
another Autonomous Agent. The WSG runs independently of the run-time in a
separate servlet container, as it is based on the AXIS implementation of Apache [2].

A similar approach is chosen for the integration of external client application
that are not Web Services. Here, LS/TS provides a Java client library which al-
lows the client to connect to the run-time and send and receive messages just as
another agent. The connectivity is reached through synchronous RMI calls which
are managed inside the run-time and there transformed to asynchronous message
passing to the other agents. The identification of the client contains enough infor-
mation such that the agent is able to discover if the sender of a message is another
Autonomous Agent or an external client.

4.4. Covering the Autonomy Spectrum

When modeling real-world problems in complex application domains, agents are
an important concept to use, but they are by no means the only one. Rather, an
agent is quite a rich software component, so that several application parts cannot
comply with the requirements of even the weak definition of agency.

The Common Agent Layer accommodates not only Autonomous Agents as
the components applications are built from, but also Servant and Data Agents,
as listed in Section 3.1. Figure 3 shows a conceptual taxonomy of the agent types
supported by the CAL.

The intermediate (i.e. non leaf) nodes of the inheritance tree depicted in the
figure represent conceptual entities and are not provided as actual Java classes of
the LS/TS API. It is worth noticing how a first differentiation is made between
synchronously accessed and asynchronously accessed agents. Far from being just
a low-level synchronization issue, this distinction marks the very first step that
differentiates autonomous software components from reactive objects that obey
Design by Contract [16]. In [16] it is clearly shown how an asynchronous rendez-
vous between components (a separate feature call in Eiffel parlance) significantly
weakens the assumptions that can be made about program behaviour, thereby
loosening the coupling between components and increasing their autonomy.

Moreover, the conceptual taxonomy diagram shows that Autonomous Agents
can freely use (i.e. interact with) both other Autonomous Agents and simpler data
and servant agents. This highlights how Autonomous Agents mostly play the role



Living Systems� Technology Suite 87

BasicAgent

SynchronousAgent AsynchronousAgent

DataAgent ServantAgent AutonomousAgent

uses

uses

Figure 3. The conceptual taxonomy of agents in the CAL

of control supervisors, overseeing the behaviour of less autonomous components,
enacting meta-level policies that result in a software system that possesses the
self-CHOP qualities that are, e.g. advocated by autonomic computing proponents
[15]. As shown by the loop in the diagram, an Autonomous Agent can also exert a
relationship of command on another Autonomous Agent, thereby yielding support
for social organization modeling.

The Servant Agent and the Data Agent are rather similar in the access pat-
terns they allow. A Lookup Service is provided by the agent platform to contact
data and servant agents and then, a specific interface, dependent on the actual
kind of data or computation, is adopted. The Autonomous Agent, as described
in 4.1, offers instead a full fledged abstraction for those application components
that need to exhibit agency traits such as proactivity and interactive ability.

4.5. Managing Software Autonomy

Multi-agent systems are an approach to software construction that fosters loose
coupling and asynchronicity among components. While this is effective to develop
flexible applications in complex and highly dynamic environments, care has to be
taken not to compromise other needs in the area of control and management of
running applications.

The previously cited resource control features of LS/TS are a first, important
measure to put limits and constraints to what agents can do in term of resource
acquisition and consumption. However, powerful and effective support must also
be provided to system administrators, even more so in IT departments of larger
businesses where system management can easily become a daunting task without
proper help.



88 Giovanni Rimassa, Monique Calisti and Martin E. Kernland

Figure 4. Monitoring resource usage and inspecting agents with
the Administrator

The tool that allows managing an instance of LS/TS run-time environment
suite is the Administrator. The Administrator supports the operation of the run-
time, which is valuable during debugging, but also important for monitoring a
production deployment. The monitoring allows the gathering of data from the run-
time which concerns the application and the run-time itself (e.g. average processing
time of each agent per incoming message, number of messages in the message
queue, heap memory used, etc.). A special service collects this information during
run-time and the individual statistics can be turned on and off at run-time. In
this way, an operator can peek into the running application on demand without
consuming too many resources throughout the lifetime of the agent application, as
the additional information collection process is quite a costly operation regarding
CPU and memory resources. A feature that is valuable also for debugging purposes
is the Agent Data Storage inspector which shows the key-value pairs of the state
of the agent. Figure 4 illustrates these two features.

Another useful feature which is used during debugging is the so called message
history, which collects the messages that are processed by agents or clients. It is
possible to graphically visualize the peers of this messaging communication and
to inspect what kind of messages were sent (see Figure 5). The life-cycle of the
Autonomous Agent can be controlled as well, so in case e.g., too much resources



Living Systems� Technology Suite 89

Figure 5. Browsing the message history with the Administrator

are used by a particular agent, it can be stopped. The Administrator provides the
necessary functionality to achieve this, by e.g., monitoring the processing time or
by inspecting the messages sent, the operator can then in special cases decide to
stop the processing of an Autonomous Agent.

5. Discussion and Future Work

This section will discuss a few relevant topics stemming either from the LS/TS
architecture, features, or both. One first very important issue is the extent to which
non-autonomous entities should be considered when conceiving and designing a
middleware for multi-agent systems.

The multi-agent system approach draws conceptual inspiration from fields as
diverse as philosophy of language, social sciences and biology. Such a wide array
of inputs produce a very rich model for software applications. Within this model
there are a lot of entities that are not autonomous but still play a critical role
in affecting the overall system behavioural and non-functional properties. Some
of these entities are social roles, organizational units, coordination artifacts, goals
and mental states.



90 Giovanni Rimassa, Monique Calisti and Martin E. Kernland

The ADEM methodology supports most if not all of the above mentioned
non-autonomous entities at the modeling level; but this richness has to be matched
at the implementation level by some support for more than just software agents.
It is from this perspective that the LS/TS hierarchy of agent types can be better
understood: Servant Agent and Data Agent provide a simple way to implement
agent wrappers when interfacing with external systems.

Moreover, the LS/TS runtime itself, with its microkernel and service based
internal architecture provides a powerful means to embed non-autonomous com-
ponents within a multi-agent application. Currently the LS/TS services only serve
as a middleware deployment unit to grant Java multi-edition support; however
it is expected that a suitable API will be placed into these services to have them
appear as part of the agent environment so that autonomous agents can effectively
sense and act (and possibly coordinate) through LS/TS services.

Managing the clash between autonomy and control, as cited in Section 4, is
the fundamental principle driving the resource management in LS/TS. The goal is
to have applications programmed according to an agent-centric view where agents
manage resources, but also to have them administered according to a platform-
centric view where platforms manage agents. When such a goal is used to inspire
the concurrency model of the middleware, the cooperative intra-agent multitasking
with externalized threads used in LS/TS naturally ensues.

While generally applicable in the vast majority of cases, the adopted thread-
ing model could be unsuitable for some specific situations where an agent is to be
tightly bound to its perception and action channels, possibly with some response
time constraints. The issue is currently taken into account for some further evo-
lution of LS/TS; a first natural option would then be to have a special kind of
Autonomous Agent that has special status and is allowed to use one or more Java
threads permanently.

A second, less obvious, possibility would be to build a more flexible model
of agent perceptions and actions so that synchronization and timing constraints
can be attached to them, and have perceptor and effector components that can
enforce these constraints. Proceeding in this way, irregularities in the threading
model are pushed towards the agent/environment boundary so that the pollution
of the CAL model is minimized. Such an approach could also be applied to soft
or even hard real-time applications (if a suitable RTOS and realtime JVM are
available), because the real-time sensitive activities (e.g. periodic sampling from
a set of sensors with a rate-monotonic scheduling) would then be embedded in
suitable perceptors.

The interaction model exposed by the LS/TS platform is generic and only
comprises the fundamental messaging and scheduling features needed by software
agents. This choice does not commit to a specific agent model beyond ensuring
the basic agency properties, and allows the construction of heterogeneous multi-
agent systems where agents in different social positions have different internal
architectures.



Living Systems� Technology Suite 91

Currently, work is being undertaken at Whitestein to provide a set of higher
level features that will comprise new subsystems of LS/TS development and run-
time suites. These subsystems will provide ready-made support for semantic com-
munication in term of pre-defined communicative acts, ontology description frame-
works and interaction protocol specification. The same attention to open standards
that pervades LS/TS today also applies to the upcoming work, so special care is
being taken to leverage public efforts such as the W3C Semantic Web activity.

The ongoing work so far deals with the application programming and mid-
dleware levels of software development. In the near future, the strategy of relying
on the Java platform and refraining from using or inventing other programming
languages will be retained although the authors are aware of interesting efforts in
this area [6], [12].

6. Concluding Remarks

Dynamic markets are pressing for more dynamic and flexible IT solutions able to:

• Adapt, when circumstances change, their behavior by means of learning ca-
pabilities, continuous monitoring of the environment, reactive and proactive
actions.

• Customize offered products/services so that they better fit to specific users,
places, times and events by acquiring and making use of context-relevant
information.

Agent technology provides powerful abstractions and techniques for conceptual-
izing, designing and implementing effective solutions. However, in today’s highly
demanding IT environments, this requires a solid approach to designing, develop-
ing and deploying agent-based applications and systems.

This chapter introduced the Living System Technology Suite (LS/TS), which
has been conceived and implemented in the perspective of supporting professional
development of adaptive agent-based solutions for today’s dynamic and complex
business context. Beyond presenting the conceptual foundation of LS/TS and de-
scribing its various components, the main challenges faced during its development
have been discussed as well as the consequent choices made to meet them.

Acknowledgments

The authors wish to thank Stefan Brantschen and Thomas Haas for their valu-
able and precious contribution, support and guidance during the overall LS/TS
development project, and Dominic Greenwood for his precious suggestions and
comments on this paper.

Many thanks also to the whole LS/TS development team, namely Branislav
Hladky, Pavol Bernhauser, Milan Michalicek, Herbert Vojcik, Milos Volauf, Peter
Nather, Attila Strba, and Juraj Dzifcak, for their valuable work and efforts.



92 Giovanni Rimassa, Monique Calisti and Martin E. Kernland

References

[1] Agentlink News, Industrial Uptake of Agent Technology. Issue 16, December 2004

[2] Web Services Axis.
http://ws.apache.org/axis/

[3] Brantschen, S. and Haas, T. Agents in a J2EE World. Agentlink News #9, April
2003

[4] Brooks, Rodney A. Intelligence without Representation.
Artificial Intelligence, 47:139159, 1991.

[5] Červenka, Radovan, Trenčanský, Ivan, Calisti, Monique and Greenwood, Dominic
AML: Agent Modeling Language. Toward Industry-Grade Agent-Based Modeling.
AAMAS 2004 workshop on Agent Oriented Software Engineering (AOSE), July 2004,
New York, USA.

[6] Dastani, M., Van Riemsdijk, B., Dignum, F., and Meyer, J.J. A Programming Lan-
guage for Cognitive Agents: Goal Directed 3APL. Proceedings of the First Workshop
on Programming Multiagent Systems: Languages, frameworks, techniques, and tools
(ProMAS03). Melbourne, 2003.

[7] Eclipse web site.
http://www.eclipse.org/

[8] Enterprise Architect, Sparx System web site.
http://www.sparxsystems.com/

[9] Enterprise JavaBeans Technology documentation.
http://java.sun.com/products/ejb/docs.html

[10] Fischer, Klaus, Müller Jörg P., and Pischel, Markus. Unifying Control in a Layered
Agent Architecture. Agent Theory, Architecture and Language Workshop 95:240-252,
Montreal, August 1995.

[11] Jamali, Nadeem, Thati, Prasannaa and Agha, Gul A. An Actor-based Architecture for
Customizing and Controlling Agent Ensembles. IEEE Intelligent Systems 14:2(38-44)

[12] Jason: A Java-based agentSpeak interpreter used with saci for multi-agent distribu-
tion over the net.
Available at http://jason.sourceforge.net/

[13] Java 2 Platform, Standard Edition (J2SE).
http://java.sun.com/j2se/

[14] Java 2 Platform, Enterprise Edition (J2EE).
http://java.sun.com/j2ee/

[15] Kephart, J.O. and Chess D. M. The Vision of Autonomic Computing. Computer,
36(1):4152, 2003.

[16] Meyer, Bertrand Object Oriented Software Construction, 2nd Ed. Prentice Hall, 1997

[17] Petrie, Charles J. Agent-Based Engineering, the Web, and Intelligence. IEEE Expert,
11:6(24-29). IEEE Press, 1996.

[18] Proceedings of the AAMAS-03 Workshop on Autonomy, Delegation, and Control:
From Inter-agent to Organizations and Institutions, July 2003, Melbourne, Australia.

[19] Proceedings of the IJCAI-2001 Workshop on Autonomy, Delegation, and Control:
Interacting with Autonomous Agents, August 2001, Seattle, USA.



Living Systems� Technology Suite 93

[20] Rao, Anand S., and Georgeff, Michael P. BDI-Agents: from Theory to Practice.
Proceedings of the First Intl. Conference on Multiagent Systems. San Francisco,
1995

[21] Rajdou, Navi. Adaptive Agents Boost Supply Network Flexibility. Forrester Report,
March, 2002.

[22] Wooldridge, Michael, and Jennings, Nicholas R. Intelligent Agents: Theory and Prac-
tice.
Knowledge Engineering Review, 10:2(115-152). Cambridge Journals, 1995.

Information about Software

Software is available on the Internet as
( ) prototype version
( ) full fledged software (freeware), version no.:
(X) full fledged software (for money), version no.:
(X) demo/trial version
( ) not (yet) available

Internet address:
Description of software: http://www.whitestein.com/pages/solutions/ls ts.html
Download address:

Contact person for question about the software:
Name:
email: lsts@whitestein.com

Giovanni Rimassa
Whitestein Technologies AG
Pestalozzistrasse 24
8032 Zurich
Switzerland
e-mail: gri@whitestein.com

Monique Calisti
Whitestein Technologies AG
Pestalozzistrasse 24
8032 Zurich
Switzerland
e-mail: mca@whitestein.com

Martin E. Kernland
Whitestein Technologies AG
Pestalozzistrasse 24
8032 Zurich
Switzerland
e-mail: mek@whitestein.com



Multi Agent System Development Kit 

Vladimir Gorodetsky, Oleg Karsaev, Vladimir Samoylov, 
Victor Konushy, Evgeny Mankov and Alexey Malyshev 

Abstract. Recent advances in the area of multi–agent technology are attracting a 
growing attention and interest of both scientific community and industry. This 
interest is stipulated, on the one hand, by the steadily increasing capabilities of multi-
agent technology that offers a new paradigm and powerful means for design of large 
scale distributed intelligent systems, and, on the other hand, by the practical needs of 
industry to have a reliable and efficient technology to cope with new challenges of 
practice. At present, one of the most important research challenges is elaboration of 
powerful methodologies for agent-based systems engineering and development of 
efficient software tools supporting implementation and deployment of the multi-
agent systems. The paper presents one of such tools, Multi–Agent System 
Development Kit, based on and implementing Gaia methodology that supports the 
complete life cycle of multi-agent system engineering, implementation and 
deployment, and insures the integrity of all the solutions produced by designers at 
different stages of the development process. 

1   Introduction 

Although agent-oriented software engineering has been a subject of intensive research 
for over a decade, it has not yet reached the level of maturity required for it to be rated 
as an industrial technology. By now a lot of MAS software tools have been developed. 
Among them, the well-known and highly popular are AgentBuilder [20], Jack [18], 
JADE [3], ZEUS [9], FIPA-OS [13], agentTool [11], etc. An almost complete list of 
such software tools can be found in ([24], [25]). Nevertheless, in spite of the rich 
theoretical achievements in the area, there practically exist no Multi-Agent System 
(MAS) software tools capable of supporting the complete life cycle of industrial MAS 
comprising analysis, design, implementation, deployment and maintenance.  



96    V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev 

A capabilities study of the existing software tools allows to see a number of 
common disadvantages considerably decreasing their performance and degree of 
maturity. The first of such disadvantages to be mentioned, and a substantial one, 
consists in insufficient usage of the experience accumulated within the object–oriented 
approach and the existing (at least, de-facto) "standards" developed for the analysis, 
design and implementation stages that are commonly used in the information 
technologies [6]. The major source of it is the fundamental mismatch between the 
methods and the abstract conceptions used by the object-oriented approach [6], on the 
one hand, and by the agent-oriented approach ([22, 23]) on the other hand, explicitly 
shown in [21]. A number of initiatives is being currently undertaken to overcome this 
mismatch and to find an efficient solution. Among them, the most promising one is the 
initiative being jointly undertaken by two leading international organizations focused on 
standardization in the area of new information technologies, FIPA and OMG, as a part 
of project Agent UML [1].  

Another considerable disadvantage of the existing MAS software tools is a weak 
consistency of the solutions produced at the consecutive stages of a MAS application 
life cycle. As for this, a certain growth of research activity can be observed in the 
development of methodologies aimed at supporting the above mentioned consistency of 
the MAS life cycle, including the analysis, design, implementation, deployment and 
maintenance aspects. Some well-known methodologies of such kind are Gaia [21], 
MESSAGE [7], MaSE [12], Prometheus [19], Adelfe [4], Tropos [14], PASSI [8]. The 
core of the integrity maintenance problem is the necessity to automatically maintain the 
consistency of the solutions being produced at the different stages of the MAS 
development process. For example, while implementing MAS, it is necessary to strictly 
conform to the solutions produced at the analysis and design stages. Rational Rose 
software tool supporting an information system object-oriented analysis, design and 
implementation, can serve as a guiding line for this purpose. Comparison of MAS 
development tools and methodologies can be found in ([5], [10]).  

This paper presents the Multi-Agent System Development Kit (MASDK) that was a 
subject of research and development during the last four years. The first and second 
versions of MASDK [15] were practically used for fast prototyping of several MAS 
applications in different problem domains [16, 17]. The experience accumulated during 
this period as well as recent advances and trends in MAS methodology and technology 
made clear the fundamental drawbacks of the earlier versions and gave way to forming 
sound requirements for the next version of MASDK, version 3.0.  

For this version design some new trends and achievements in the agent-oriented 
software engineering methodology have been taken into account. In particular, the basic 
methodological principles of the Gaia methodology [21] have been implemented. 
Indeed, Gaia methodology consists of two basic stages of MAS development that are (1) 
analysis and (2) design. The analysis is aimed at reaching “an understanding of the 

system and its structure (without reference to any implementation detail)” [21]. This 
stage assumes development of abstract solutions and notions related to the system 
organization, i.e. identification of MAS tasks, description of role models, and 
interaction model [21]. An objective of the design stage is “to transform the abstract 

models derived during the analysis stage into models at a sufficiently low level of 



Multi Agent System Development Kit                                   97 

abstraction that they can be easily implemented” [21]. This stage assumes formal 
specification of agent models, service models, and acquaintance model.   

MASDK 3.0 software tool is currently being assessed and evaluated by means of 
developing of a number of multi-agent systems, e.g., for intrusions detection in 
computer network, for situation assessment and for business activity monitoring.  

This paper describes the MASDK 3.0 software tool, and with a certain focus on its 
correlation with the Gaia methodology. Section 2 outlines MASDK 3.0 software tool, 
technology supported by it, and abstract agent architecture. Section 3 covers the overall 
view of the specification structure of multi-agent systems developed using MASDK, 
outlines development methodology and its mapping with Gaia one.  The analysis and 
design stages, supported by MASDK and carried out through usage of a number of 
specialized graphical editors are considered in section 4. Section 5 outlines the 
implementation and deployment stages. Section 6 considers one of the most important 
problems of any MAS technology which consists in maintaining consistency of 
solutions produced at various technology stages; it is also shown in the section how the 
consistency is insured within a technology supported by MASDK. Related works and 
comparison of MASDK with some other tools is presented in Section 7. In conclusion 
the paper basic results are summarized.   

2   Outline of MASDK 3.0 Software Tool and Technology Supported  

MASDK 3.0 software tool consists of the following components (Fig.1): (1) System 
core which is a data structure designed for XML-based representation and storing of 
MAS formal specification; (2) Integrated set of graphical editors supporting the user's 
activity aimed at formal specifying of the MAS under development; (3) Library of C++ 
classes, comprising what is usually called Generic agent, corresponding to the reusable 

component common for all agents; (4) Communication platform to be installed in the 
computers, in the network, that are involved in the MAS being designed, and (5) 
Builder of software agent instances, that carries out (i) generation of source and 

MASDK 

System core: 
XML specification 

of MAS 

Integrated set of 
editors

Generic
agent

 Software agent 
builder

Communication
platform

Host
A A A

Host

A A A

Fig. 1. MASDK software tool components and their interaction 



98           V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

executable codes of software agents in C++ language and (ii) deployment of software 
agents over the earlier installed communication platform.  

Generalized architecture of the agents developed using MASDK is shown in Fig.2. 
It includes the following basic components:  

 invariant (reusable) component called Generic Agent,
 agent behavior model,  
 mental model of agent, 
 set of agent services represented in terms of state machines, and  
 library of auxiliary application-oriented functions.  

The Generic agent component which is the basic class for all agents is a reusable 
component of MASDK environment (Fig.1). This component can be thought of as 
engine that realizes a common (reusable) scenario of agent operation. It comprises the 
general functions that 1) support sending and receiving of messages, 2) initiate 
respective services of agents, control of their execution and process of interruptions 
depending on the current states of agents, 3) provide the interaction agents with human 
users, 4) provide access to 
agents’ data storages, etc.  

The Agent behavior model,
Mental model and State 
machines are intended for 
problem-oriented specification 
of agent. The agent behavior 
model specifies the states 
associated with providing the 
agent with respective services, 
the models of services being 
specified as state machines. 
The mental models comprise 
specification of notions, data 
storage structure, and the initial 
data and knowledge possessed 
by the agent. All three 
mentioned classes of 
components are developed by a designer using the integrated set of editors (Fig.1) and 
stored in system core (Fig.1) as XML-based specifications.  

The Functions specify agent operation in the states of state machines. They are 
coded in the usual way, i.e., in MASDK in C++ language, and can be of one of the two 
varieties: scripts and external functional components. Scripts are fragments of software 
code that are developed using corresponding MASDK editors and stored in the system 
core as entries of MAS XML-based specification. External functional components are 
developed out of the MASDK environment and viewed as components the execution of 
which is initiated by the agent during execution of scripts.  

A specification of MAS in MASDK includes specifications of agents and agent 

classes. Agents of each class have a common specification of the components 

Fig. 2. Agent architecture 

XML-based 
specification

Reusable 
component

Coded in 
C++

Generic agent 

Mental model 

State
machine

Functions 

State
machine

State
machine

Agent behavior model 



Multi Agent System Development Kit                                   99 

comprising the architecture of agent (Fig.2), except for the content of mental models, in 
particular – the initial data and the knowledge possessed by the agents. 

Software implementation of agents is performed by the Software agent builder 

component (Fig.1) in automatic mode. For each agent class, the software agent builder 
executes the three successive tasks:  
1. Generation of the source ++ code of the problem–oriented components of agent 

class, i.e. of the Agent behaviour model and all State machines. The main goal of 
this task is transformation of XML-based specifications of these components into 
source code in ++ on the basis of XSLT technology. 

2. Compilation of the C++ code of agent class into an executable code. For this 
procedure the following components are used as inputs: 

 Source C++ code of the problem–oriented components produced by the task 1;  
 Source C++ codes of particular functions;  
 Generic agent components, which are reusable components of MASDK.  

In case of an error, the generator analyses the compilation output file and localizes 
the state machine, also indicating the state which contains the error. If a syntax error 
is made by a designer who was responsible for specifying the algorithm of the agent 
behavior, the generator indicates the name of the state machine, its state and the 
number of the row, in which the designer made the error.  

3. Building the data storage (storages) specified in mental models of the agent class.  

3   Methodology of MAS development 

A MAS development process in MASDK can be technologically divided in to three 
stages. At the first stage a detailed design of the MAS is developed. In particular, this 
stage assumes the development of the models described in Gaia methodology [20], 
namely – role models, interaction model, agent models, service models, and 
acquaintance model. At that the service models of agent classes are described in greater 
detail than it is done with Gaia methodology. All activities at this stage are entirely 
carried out by the integrated set of editors (ISE) and the results (the detailed design of 
the MAS) are stored at the system core component in special XML-based language. The 
second stage consists in programming the particular components that can be derived 
from the detailed design of the MAS developed at the previous stage. The third stage 
consists in compiling and building the software agents.  

Thus, almost all development process is carried out based on the ISE component; so, 
let us discuss this component and the respective methodology of application systems 
development in detail. The set of editors comprising the ISE component can be divided 
into three categories (Fig.3): 1) the set of editors (MAS model, Protocol, Ontology
editors) aimed at describing abstract concepts and system organization, 2) the set of 
editors (Agent class behavior model, State machine, State, Private ontology editors) 
designed for description of concrete concepts and design of agent classes, and 3) the set 
of editors (Agents’ configuration and Agent mental model editors) aimed at building and 
deployment of the agents.  



100      V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

The enumerated set of editors provides the following methodology for MASs 
development that starts from the two initial stages (analysis and design) which are parts 
of Gaia methodology [21]. 

1) Analysis. The development process is initiated with the requirements statement and 
the results of role and interaction models specification that comprise an organizational 

model of the MAS. The respective activities are supported by the MAS model and the 
Protocol editors. 

2) Design. According to Gaia methodology the objective of this stage assumes 
development of agent, service and acquaintance models. The agent model development 
assuming determination of agent classes and instances of each from them is carried out 
using the MAS model and the Agents’ configuration editors. The service models are 

System level (Abstract concepts) 

System’s organization 

Agent class’s design (Concrete concepts)

MAS model 

Ontology 

Protocol 

Agent class behavior model 

Private ontology 

State
machine

State 1 

Protocol 

State
machine

… 

State k 

… 

… 

Fig. 3. Structure of graphic editors in MASDK and their mapping with Gaia methodology

State 1 

… 

State k

Gaia
methodology 

Analysis
stage

Design 
stage

Agents building 
and deployment 

Agents’ configuration 

Agent mental models 



Multi Agent System Development Kit                                   101 

developed using the Agent class behavior model editor and the acquaintance model with 
the aid of the MAS model one.   

3) Ontology description. Domain ontology description is specified by means of the 
Ontology editor and initially1 can be developed in parallel with stages 1 and 2. However 
there are relations between the models presupposes a certain sequence of their 
development. In particular, a detailed specification of communication acts of the 
protocols at later phases of development implies specifying of messages contents in 
terms of ontology notions. It means the respective notions of ontology have to be 
specified for doing it. The first three stages are designed for describing abstract concepts 
of the application system. The concrete concepts are developed through the following 
sequence of stages. 
4) State machine development (Service development). Each service identified at the 
design stage (stage 2) is developed as a state machine using State machine and State
editors. At that, such a state machine is described at the level of states and transitions 
between them without minor details of states implementation.  A service is associated 
with respective protocols and activities and, consequently, development of a state 
machine assumes relating each state to either communication act of some protocol or 
one of the activities. One communication act is related to only one state, while one 
activity can be related to several states. Transitions between states describe the scenario 
of the service execution. 

5) Private ontology development. Private ontology is required for specification of the 
notions used for describing the agent class mental model. At that, it involves private 
notions of the agent class and the notions inheriting ones from the shared ontology 
developed at stage 3. Private ontology development also assumes specifying a data 
storage scheme (or several storage schemes) of agent class.  

6) Agents initial mental model. This stage consists in describing initial data and 
knowledge of the agents. It must be noted that at the previous stages (namely – 4, 5) the 
agent classes have been specified and the agents of each class have no specifics except 
for their names. Therefore, the initial mental models of agents are their specifics that 
single out the agents of each class.  

7) Agent classes components programming. Components of each agent class that have 
to be specified in the usual way (in case of MASDK environment it consists in 
developing a code in C++ language) are identified as a result of stage 3 execution. All 
of them are either scripts of agent classes’ behavior in particular states of state machines 
or invoked from these scripts as external components. 

8) Agents code generating.  This function is executed automatically by Software agent 
builder component (Fig.1). 

9) Agents configuration and deployment. This stage assumes specifying the locations of 
agents, deploying of the agent according to the results, and filling in the storages of the 
agents with their initial mental models developed at stage 6. 

                                                          
1 Development process in MASDK can have iterative character. It means each model developed 

in process of MAS development can be refined repeatedly.  



102      V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

Thus a development of MAS in MASDK is generally reduced to development of 
mentioned problem-oriented components. It is carried out using of graphical editors 
through which the respective XML-based templates stored in system core are filled in. 
These graphical editors and structure of respective components are considered in the 
following section.  

4   Integrated system of editors 

MAS specification comprises a set of interrelated components that are developed based 
on respective template types and stored in the system core. Set of these components 
comprising MAS specification are depicted in the environment browser a screenshot of 
which with an abstract example is shown in Fig.4. Specification of each MAS includes 
the following components:   

 Domain ontology;
 Meta model of MAS describing its 

organization, namely – names of the 
identified roles, agent classes, protocols 
and relations between them; 

 Description of role models;
 Specification of protocols.

Model of each agent class comprises the 
following models: 

 Private ontology describing the notions 
and storages of mental model; 

 SM Manager (State Machines manager)

describing list of service names and 
scenarios of their execution; 

 Set of state machines, each of them 
specifying respective service;  

 Initial mental model of each agent from 
the class;

 Deployment model describing 
configuration of agents and their 
locations; 

 Host model describing necessary data of 
the hosts where agents are located.  

The integrated editors system consists of 
seven basic graphic editors corresponding to 
the respective classes of components 
constituting the specification of MAS under 
development. It means that the components of 

Fig. 4. Browser and System core 
content 



Multi Agent System Development Kit                                   103 

each class are developed using respective graphic editor (the main editor). Let us remark 
that according to the methodology of MAS development in MASDK described in 
section 3, a designer uses the same editors at all different stages of a process. Using a 
graphic editor implies using several auxiliary editors. These are used for specifying 
specific details of the components and not dealt with in detail in the paper.   

 

4.1   MAS model editor 

MAS model editor (Fig.5) and related to it the auxiliary editors (dialogs) are designed 
for description of the MAS organization, and they also support carrying out of the two 
initial stages of the development process: analysis and design partially. At the analysis 
stage these editors are used for specifying role and interaction models. The set of roles 
identified/found at this stage is presented in the upper part of the model editor window. 
In the current version of MASDK a model of each role is specified in the auxiliary 
editor according to the template which is an accessory of Gaia methodology as high-
level (textual) description. A formal specification of this template for graphic 

Fig. 5. MAS model editor 



104      V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

representation of the role models has been developed and after implementation of the 
respective editor it will be integrated in MASDK environment.   

Description of an interaction model is implemented using two editors. The MAS 
model editor allows to describe a high-level representation of this model. Such a 
representation assumes listing of all interaction protocols, specification of all 
participants of each protocol, and pointing out the roles that initiate these protocols. It is 
presented in the bottom part of the editor window (Fig.5). The initiators of the protocols 
are presented as triangles. A detailed specification of each protocol is executed using 
another editor which is described in the 
section 4.2.  

High-level representation of the 
interaction model in the model editor allows 
for considering additional useful tasks related 
to the specification of this model. In 
particular, one of these tasks deals with the 
possibility of describing the MAS behavior 
on the whole. This task is reduced to 
investigation of possible relations between 
protocols and using them for describing 
meta-scenarios of the MAS behavior. It is 
viewed as one of the possible improvements 
of MASDK environment in future. However, 
the current version already allows to analyze 
some aspects of this task. Presentation of the 
rectangles denoting protocols in proper order, 
and using different colors gives way to show 
protocols nesting. E.g., in the example the 
protocol 2 is specified as nested protocol in 
protocol 1. 

The above results, including the information about the found roles, the interaction 
protocols, mapping of the roles to the protocols and the textual description of the role 
models are used for defining the agent models, namely – the agent classes. According to 
the methodology this is considered to be a task of the design stage. The set of agent 
classes and assignment of roles to them are shown in the middle part of the MAS model 
editor window. Let us notice that any agent class may be able perform one or several 
roles. E.g., in the example, the agent class 3 is mapping two roles while two other agent 
classes are one-to-one mapping roles 1 and 2.  

4.2   Protocol Editor  

Detailed description of the roles interaction protocols is one of the key tasks of the 
analysis stage. Realizing the extremely high importance of this task was evidently one 
of the motives for the Agent UML project ([1], [2]) having been jointly initiated by 
FIPA and OMG. The project goal consists in extension of the UML language to agent-

Fig. 6. Protocol editor 



Multi Agent System Development Kit                                   105 

based system specification language, and one of the focuses of this Project is 
development of a language specially designed for specification of agent interaction 
protocols [2].  

MASDK 3.0 includes a graphic editor of protocols.  An example of a protocol 
graphic representation in Fig.6 within the window of editor in question is Contract Net 
Protocol. The current version of the implemented editor makes use of some basic 
constructs of Agent UML project. In particular, the basic capabilities of the roles 
interaction protocol are as follows: 1) the protocol is specified as a modified sequence 
diagram (Fig.6); 2) the message exchange scheme is specified using AND, OR and  XOR

connectors; 3) the participants of interaction protocols are roles; 4) the specification of 
message classes is implemented in ACL language. Some of the constructs being 
considered in Agent UML project and not included in current version of the protocol 
editor are several life lines of a role and nested protocols.  The first construct (several 
life lines of a role) will be included in the next version of the protocol editor. 
Specification of the nested protocols in MASDK is not regarded as a task being solved 
using the protocol editor. The interaction model in MASDK is specified at two levels 
and with usage of two editors respectively. The first level of an interaction model is 
specified using MAS model editor (Section 4.2), and detail specification of each 
protocol is carried out using protocol editor. At that, specification of nested protocols is 
a task related to the first level with usage of MAS model protocol. This possibility is 
described in Section 4.1. 

4.3   Ontology editor  

A sample snapshot of the window of this editor is given in Fig.7. It aims at introducing 
the shared application ontology notions and the relations between them, and at 
specifying the private ontologies of agent classes. Description of the notions assumes 
introducing attributes for them and specification of the attributes domains.  

The classes of relations are important characteristics of the ontology editor. At that, 
including them in MASDK suggests availability of respective mechanisms in the 
environment that have to provide for solving a number of tasks in which introduced 
relations are used. In particular, these mechanisms have to provide for solving the 
following tasks: 

 Insuring correctness of the relations specifications, i.e. checking of constraints 
specific for particular classes of relations, e.g., introducing an inheritance 
between notions should prohibit cycles generation.  

 Support of data storage structures generation aimed at storing the agent classes 
mental models.  

 Providing the necessary syntactic expressiveness of the agents' mental model 
specification language and an object–oriented style of access to the data storages.  

The existing version of MASDK includes the mechanisms that allow to implement 
these functions for processing inheritance relations. In the course of this processing, 
both single and multiple inheritance relations between the ontology notions are 
considered.  Development and implementation of the mechanisms of this kind for other 



106      V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

classes of relations (inclusion, association, etc) is in progress now, this task being 
considered as a high priority.  

The inheritance relations between the classes of ontology notions described using a 
respective graphic editor are depicted by arrows between the notions belonging to this 
relation (Fig.7).  

This editor is also used as the editor of agent class private ontology. Besides the 
abilities and functions discussed above, it is also able to perform the following 
functions.  

Since private ontology of an agent class can include not only specific notions but 
some notions of the shared part of the application ontology as well, the application 
ontology editor has to be able to select a subset of the application ontology notions in 
order to use them in the private ontology of an agent class. This function is the first 
additional one.  

The second additional function of the application ontology editor supports 
specification of the storage structure for the agent class mental model. To realize this 
function, specification of the notions and relations of the agent class private ontology is 
carried out. Later, while generating agent class instances, this specification is used for 
automated generation of respective storages for data and knowledge. The resulting data 
structures can be either relational data bases or XML files. 

Fig. 7. Ontology editor 



Multi Agent System Development Kit      107 

4.4   Agent Class Behavior Model Editor 

Agent class behavior model is designed for listing a set of agent class services and for 
specifying scenarios of their execution. A MAS model specification comprising the role 
models, the interaction model, and the assignment of roles to the agent classes form a 
basis for deriving a set of services for each agent class. Specification of agent class 
behavior model is carried out using graphic editor whose screenshot along with an 
abstract example of the model is shown in Fig.8. It should be noted that this editor only 
describes the name and conceptual description of services.   More detailed formal 
specification of each service is carried out as a state machine model, and to do this a 
state machine editor described in Section 4.5 is used.  

The main objective of the model consists in specifying scenarios of the derived 
services execution. It implies specifying the respective components defining the types of 
events initiating execution of services, and actions that can be or has to be performed 
during execution of the respective services. The model template includes the following 
kinds of such components. 
Input protocols  

This component lists the protocols in which the agent class under development is a 
participant and not an initiator. It is worth noting that this subset of protocols is derived 

Fig. 8. Agent class behavior model editor 



108     V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

from MAS model automatically. Based on the above this component specifying is 
reduced to mapping of each protocol from the list to respective service. This activity is 
carried out through the auxiliary dialog related to this component, and in the window of 
agent class behavior model editor such relations are shown as arrows between the Input 

protocols component and the respective services. Each protocol from the list is one-to-
one mapping respective service. At that each mapping implies the certain information 
for the service (state machine) development. It has to comprise states for processing of 
all protocol’s communication acts, and the first protocol’s act triggers execution of the 
service (state machine). 
Output protocols  

This component contains the list of the protocols in which the agent class under 
development is indicated as initiator. This component specifying is reduced to carrying 
out same activities as those being executed for Input protocol component specifying.  
This subset of protocols is automatically derived from the MAS model; each protocol 
from the list is one-to-one mapping respective service (state machine). This activity is 
carried out through the auxiliary dialog related to this component, and in the window of 
agent class behavior model editor such relations are shown as arrows between the 
respective services and the Output protocols component. Each mapping implies that the 
state machine realizing the service has to comprise states for processing of all protocol’s 
communication acts. 
User commands 

This component is used in case when the agent class under development has 
interface with user, and any services are triggered by him. The component specifying is 
reduced to 1) listing of user commands, 2) their one-to-one mapping to respective 
services (state machines), and 3) identifying states of agent class when the commands 
are accessible. Mechanism providing for a usage of the commands is realized as a 
reusable function of the generic agent component. In particular, it selects accessible 
commands depending on the agent state and presents them in the user interface of the 
Portal component described in Section 5.  In the window of the agent class behavior 
model editor such relations are shown as arrows between the User command component 
and respective services. 
User Interfaces 

This component represents the list and conceptual description of the user interface 
dialogs initiated by the agent class in question. The dialogs can either represent certain 
information for user or imply his response, e.g., while receiving certain data for 
subsequent operation. Mechanism supporting a usage of such dialogs is realized as a 
reusable function of the generic agent component as well. 
Pro-active model  

This component specifies possibility of agent’s class to initiate an execution of any 
services without environmental impacts like, e.g., receiving messages or user 
commands. The component specifying is reduced to listing rules like “When … if … 
then …”. The first condition (When) specifies either time instants or event initiating 
checking of the second condition (if). The second condition specifies the agent class 
mental state in which the service (state machine) indicated in the third part of the rule 



Multi Agent System Development Kit                                   109 

(then) has to be executed. The component specifying is carried out through the auxiliary 
dialog, and in the window of agent class behavior model editor such relations are shown 
as arrows between the Pro-active model component and the respective services. 
Mechanism providing for checking of these rules and initiating of the services is 
realized as a reusable function of the generic agent component as well. 
Environment events and Effects 

If agent is operating within an external environment then it can receive data from 
any external equipment (e.g., sensors) or/and their control. In this case it is necessary to 
specify interaction between agent class and external equipment, and the Environment 
events and Effects components are used then. These components specifying consists in 
1) listing of interaction acts, 2) their mapping to the respective services, and 3) 
specifying the interface trough which data exchange is executed. Carrying out the latter 
task is reduced to specifying of mechanisms supporting information receiving from and 
sending to external equipment and algorithms of such information processing. Such 
mechanisms are rather application dependent and therefore they have to be specified "ad 
hoc", however, the generic agent component includes some reusable solutions which 
can be used for doing it. 

Developing scenarios of the services execution implies specifying two kinds of 
relations: relations between components described above and services, and relations 
between services. The latter kind of relations is used to specify the following two cases: 

 synchronous initiation of nested services, and 
 asynchronous initiation of any service. 

Synchronous initiation of a nested service B by a service A means the following 
scenario of their execution. Execution of the service A is interrupted after initiation of 
the service B, and continued after the service B accomplishment. At that the service A
can use the results of the service B execution; the service can be considered as nested 
one in the following two cases: 1) when it provides for the execution of some other 
services, and 2) when it provides for the operation of an agent class related to any 
protocol. Asynchronous initiation of the service B by the service A can be considered if 
the results of the service B execution are not required for the service A execution. At 
that if some services are triggered by any service asynchronously then they will be 
executed in parallel. 

The following relation existing between liveness properties of a role model in Gaia 
methodology [21] and graphic notation used for specifying of the agent class behavior 
mode l are worth noting. On the one hand, “the atomic components of a liveness 
expression are either activities or protocols” [21]. On the other hand, components that 
are used for specifying of an agent class behavior model denote protocols, services

(some of them associated with activity execution), acts of agent class interaction with 
user and with external equipment. At that, a liveness expression includes the operators: 
“x followed by y”, “x or y occurs”, “x and y interleaved”, which can be specified via 
respective kinds of relations between components and services in the agent class 
behavior model. All above described relations between the liveness expressions and the 
agent class behavior models are used at the design stage of MAS development, and 
allow to account for the results received at the analysis stage.  



110      V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

4.5   State Machines Editor 

Specification of the agent class services is carried out in terms of state machines. This 
comprises the following activities: (1) specification of the set of state machine states; 
(2) specification of transitions and conditions determining the transition choice 
depending on the agent current state; (3) specification of the state machine (agent) 
behavior in each particular state.  

The first and second activities are executed by a designer of MAS. These activities 
are supported by graphic editor given in Fig.9. The third activity, on the contrary, is 
executed by a programmer trough respective dialogs.  

It should be noted that agent class behavior model, state machines and their states 
can be considered as different levels of description of agent class behavior. At that, 
agent class behavior model (Section 4.4) aims at describing agent class’s behavior on 
the whole. State machines are used to describe partial scenarios of agent classes, and 
states of state machines are used to describe partial functions executed within respective 
scenarios. Thus, the editor of state machines can be considered the graphic editor of 
partial behavior scenarios of agent classes. 

 Specification of state machine can use specific functions that perform actions of 

Fig. 9. State machine editor 



Multi Agent System Development Kit                                   111 

several specific classes, such as processing of one or more input messages, sending one 
or several messages, waiting for a response, invoking asynchronous process, initiating 
other state machine, etc. Specification of the functions of a kind can be based on the use 
of respective reusable components. Since functions in MASDK are described in terms 
of partial states, the environment includes several pre-defined different templates of 
states that are used to specify functions of respective classes. States specified according 
to different templates are highlighted in the window of an editor by different colors 
(Fig.9).  

Initial sketch of each state machine can be developed automatically. Component that 
carries out this activity uses as input data solutions developed at the previous stages of 
system development.  In particular, it analyzes agent class behavior model, and if the 
state machine under development is mapped to a protocol, analyzes specification of this 
protocol and generates states aimed at processing the protocol’s communication acts. At 
the following step, a designer develops in detail the above initial sketches of the state 
machines inserting auxiliary states and updating transitions scheme. 

Fig. 10. MAS configuration editor



112      V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

5   Deployment 

Deployment of MAS consists in carrying out the following functions: 
 Specification of the MAS configuration,  
 Specification of initial states of agent mental models, and  
 Generation and installation of software agents in the computer network 

according to the MAS configuration. 
MAS configuration is specified using graphic editor given in Fig.10. This editor is 

used for specification of the following data about agents: (1) agent's unique name; (2) 
indication of agent class, whose instance is the software agent, and (3) the host name 
and its Internet address where the software agent in question has to be situated. For 
example, Fig.10 shows a configuration where six agents are instances of two agent 
classes (one agent of the first class and five agents of the second class). The 
configuration assumes that agents are situated in a single host. 

It is important, that while having a set of agent classes developed an arbitrary 
number of different MAS configurations can be generated. They can differentiate in the 
number of agents of different classes and their allocation within Internet.  

Specification of initial states of agent mental models is the next step of MAS 
implementation preceding its deployment. At this step, data base of each agent destined 
for storing of its mental model is filled in, thus, forming initial state of its mental model. 
It is necessary to recall that the scheme of the aforementioned data base is given in 
terms of notions of private ontology of the respective agent class. The above activity 
can be carried out either through invariant user interface, which is not depended from a 
agent class storage schemes, or through interfaces tuned to peculiarities of the MAS in 
question, i.e., tailored for them. The last version is preferable when the number of 
private ontology notions and/or relations between them is too large.  

Executable code of the MAS of determined configuration is generated through 
special functional component of Software agent builder. Generation procedure results in 
filling in the initial states of software agents mental models.   

Before the deployment of MAS (installation of the software agents) within the 
particular computer network, communication platform has to be installed. For this 
purpose, a reusable component of MASDK called Portal is installed in all the 
computers where MAS is deployed. Installation of Portal is supported by a special 
function of the MASDK environment.  



Multi Agent System Development Kit                                   113 

Communication platform is destined to support the message passing (both local and 
remote) between MAS agents. It is important that the same communication platform can 
support operation of several multi-agent systems. Messages are transmitted between 
agents by portals these agents run on. TCP/IP is used to pass messages between agents. 
A message is represented as an XML with a proprietary structure. At the moment not an 
external message transmission protocol is supported. 

Portal is provided with a user interface (Fig.11), that supports the following 
functions:  

MM SAO P BM PO SM S

MM SAO P BMM PO SM S

Role 

Notions 

Protocol 

Notions 

Notions 

Event/activity 
classes

Interaction act 

Message class 

Event/activity 
classes

Notions 

Notions 

Legend:   
MM – mental model of MAS, SAO –shared application ontology, 
P – protocol, BM – agent class behaviour model, 
PO – private ontology of an agent class, SM – state machine, S – state of SM 

Fig. 11. Scheme of interrelations between components 



114     V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

 Initiating and shutting down the agents of a selected MAS;  
 Visualization of the available user commands of operating agents and activation 

of their performance.  

6   Maintenance of MAS Consistency 

An important problem of MAS development is the consistency maintenance. If 
consistency of the MAS project components is not maintained in the development 
process then total development efforts and costs can considerably increase. It should be 
noted that the MAS design processes can potentially be well structured, thus, allowing 
development of special mechanisms intended for consistency maintenance. Such a 
possibility is based on the use and evolution of abstract notion classes utilized in the 
methodology. Particularly, the list of these notion classes within MASDK environment 
includes: role, protocol (communication acts, classes of messages), agent class, 
auxiliary components of agent class behavior model (see subsection 4.4), state machine 
(state, specialized state class), ontology notions. The use of these abstract notions 
basically allows regarding the design process as specification of instances of the above 
abstract notions and establishing different interconnections between them. While 
establishing such interconnections, it is necessary to meet a certain set of requirements 
and constraints that are independent of application domain. Scheme of main 
interconnections between components used in MASDK is depicted in Fig.12. This 
provides a possibility to well maintain the MAS consistency.  

Within the MASDK 3.0 environment a special component called Master is used to 
practically exploit the above opportunity. It operates in two modes: (1) Consistency 
checking and (2) Design mastering. In the first mode, Master provides a designer with 
the list of consistency violations of various kinds, e.g., “Communication act of the 

protocol <name_of_the_act> is not provided with the respective function on the agent 
class side". While operating in the second mode, Master supports the necessary 
ordering of MAS design processes in the top-down style. At certain phases of design 
process this mode of operation allows Master, while accounting for already produced 

Fig. 12. User interface of the Portal component 



Multi Agent System Development Kit                                   115 

solutions, to automatically generate certain new solutions or their parts. For instance, if 
behavior model of an agent class is specified, Master can initiate generation of the 
respective set of states of state machine implementing the above behavior model.  

7   Related Work 

There are many tools for MASs development and each tool has its own features. We 
selected only tools that support visual designing and development. In the following 
sections we compare MASDK against 4 most known for us tools meeting the mentioned 
criterions. 

7.1   agentTool

agentTool [11] is a tool for analyzing, designing and implementing multi-agent 
systems by MaSE methodology. In contrast to MASDK, the analysis phase in agentTool 
starts from defining goals and use cases that should help to discover roles in the target 
MAS. MASDK doesn’t have analogues to goals and use cases. In agentTool after that 
each role is assigned goals it is responsible for and tasks are defined to achieve these 
goals. MASDK doesn’t have an analogue to a task. 

Then in both tools protocols are defined, but in agentTool only two roles can 
participate in a protocol. In contrast to agentTool, in MASDK a protocol is detailed 
down to communication acts. In agentTool it is also possible to define communication 
acts but only for agent classes irrelatively of any protocol. In both tools agent classes are 
defined by roles they play. 

Then in agentTool each agent class is refined by defining components it consists of. 
Those components as communication acts are specified using a finite state automaton. 
In MASDK this step is performed in “SM Manager” editors that have more formal 
structure and advanced facilities (see details in the corresponding chapter). 

At the end agentTool generates Java classes for agents and communication acts, 
which have to be filled in with implementation code. MASDK has built in editors for 
entering all required implementation code in C++ and allows to generate source code in 
C++ and to build executable modules. Also, MASDK has facilities to install a built 
MAS. 

Thus from our point of view agentTool has more expressive capabilities for 
analyzing and designing but those for implementation are incomplete. MASDK allows 
to develop a MAS ready for running but relationships between designing and 
implementation details aren’t so clear. 



116      V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

7.2   PTK 

PTK supports MAS development by PASSI [8] methodology. It is implemented as a 
Rational Rose plug-in and uses UML for step-by-step designing and development multi-
agent systems. 

PTK has good facilities to support all stages of MAS development. Development in 
PTK starts from problem domain analysis and from functional decomposition of the 
target MAS. Then roles, protocols and agent classes are discovered. In contrast to 
MASDK, PTK has good facilities for the analysis of functionality of the target MAS 
and for distribution of functions between roles and agents. 

An ontology in PTK is described by two diagrams: Domain Ontology and 
Communication Ontology. For each communication user has to define an ontology, a 
language and a protocol. In MASDK interactions between agents are fully described for 
roles these agents play. 

Every agent in PTK is described as a class. Agents’ behavior is displayed in one or 
more activity diagrams. However those diagrams have no affect on the classes. In 
MASDK agents’ structure and behavior are specified using state machines which are 
automatically transformed into executable modules. PTK also delivers template agents 
with corresponding facilities. Finally PTK generates classes for agents, tasks and 
ontology which should be completed in the Pattern Repository tool. Agents created in 
PTK can be executed on FIPAOS or JADE. 

From our point of view the design phase in PTK is more clear and useful for 
unskilled users but MASDK provides with more convenient facilities for 
implementation and deployment. 

7.3   JACK 

JACK [18] is a full-scale environment for MAS development using Java. It supports 
MAS development accordingly with BDI agent’s model. 

Analysis and design is performed in this tool using BDI concepts: Capability, Event, 
Plan, Agent. However there is no considerable distinction between analysis and design 
stages which can be done iteratively like in MASDK, because both systems support 
integrity. In contrast to MASDK, JACK was designed for reactive intelligent agents 
development. It allows to create variants of a plan to react on events. Those plans are 
used by the engine implemented in the generic agent for searching a way to reach a 
goal. In MASDK State Machine is an analogue of the plan but there is no an analogue to 
Capability (MASDK has some properties of Capability which are in the Role concept). 
MASDK is more useful when the system behavior and agents coordination with detailed 
description of protocols should be specified explicitly. There are no protocols in JACK 
but messages are treated as a kind of events. Both tools support full specification of 
implementation details. 

Thus both systems support full development cycle with iterative modifications. 
MASDK is more useful for systems with a strict coordination but JACK for reactive 



Multi Agent System Development Kit                                   117 

systems. Comparing to JACK, MASDK has more advanced system of graphic editors 
but language constructions in JACK are more elaborated. 

7.4   Zeus 

Zeus [9] is mostly intended for development of MASs concerning planning and 
especially distributed planning problems. A proprietary methodology with FIPA 
protocols support is used in Zeus. 

Development of a MAS in Zeus starts with Ontology description. Zeus allows to use 
single inheritance between notions and specify notion attributes with simple or user-
defined types (JavaObjects). Similar functionality is also implemented in MASDK. 

Then in Zeus agents are specified and the ontology notions are linked to them 
(MASDK has Private Ontology as an analogue). Protocols (any protocol can be one of 6 
predefined types) and strategies are indicated for the agents. MASDK doesn’t have an 
analogue to the ‘strategy’ concept. Zeus doesn’t support further detailing of agents but 
in MASDK there are SM-Manager and State Machine Editors for that purposes. 

At the next step project tasks are specified with connection to ontology notions and 
with execution restrictions. MASDK doesn’t have an analogue to a task. 

At last Zeus generates Java source code for the target MAS. It is possible to choose 
target platform: UNIX or Windows. 

Thus Zeus with its planning problems orientation gives an opportunity to concentrate 
more on a problem domain than on interactions between agents. In contrast to Zeus, in 
MASDK the designing phase is supported more deeply but protocols should be created 
from scratch using corresponding editors. Also, MASDK has no explicit analogue of the 
‘task’ concept. 

8   Conclusion 

MASDK environment presented in the paper possesses a number of practically 
important advantages allowing to noticeably decrease efforts and costs associated with 
the development of MASs of wide range. Among them, the most important ones are the 
following:  

1) Development process is carried out according to well grounded methodology, in 
our case the Gaia methodology, whose abstract notion classes determined at the 
analysis stage are further specialized and developed in depth at the stages of design and 
implementation.   

2) Graphical style of the development process supported by a number of user 
friendly editors of MASDK provides for clear and easy understandable presentation of 
MAS and its components along the whole development process. Together with the 
thorough and clear methodology graphical style provides for productive and effective 
cooperation between designer and programmer during the whole life cycle of MAS 
development.   



118      V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

3) Due to well structured set of abstract notion classes used in analysis and design 
processes, the MASDK environment provides for checking and maintenance of integrity 
of the development results at all stages of the process.  

4) Representation of interaction protocols that is a key task in any MAS 
specification is particularly based on solutions involving the existing experience of 
object-oriented approach whose main solutions are considered now as de-facto 
standards in information technology.  

5) One of the most important ideas of MASDK is reusability of solutions. Generic 
agent library, that integrates reusable solutions/software components, practically 
implements the reusability idea, thus, reducing development process to the specification 
of application-oriented data and knowledge. 

Currently the MASDK software tool is basically implemented and is validated based 
on development of MASs in such problem domains as information fusion and situation 
assessment, computer network security, agent-based business activity simulation and 
monitoring. 

Acknowledgment 

We wish to thank European Office of Aerospace Research and Development of the 
USAF (EOARD) and the Russian Academy of Sciences, Department of Information 
Technology and Computer Science (Project 4.3) for support granted. 

We also thank Cadence Design Systems Ltd. for its realistic assessment of the 
MASDK capabilities and its industrial perspectives as part of a joint project. It helped to 
determine needs and directions of further improvement of the platform and to prove the 
advanced solutions implemented. 

References 

 1.  Agent UML: http://www.auml.org/      
2.  Bauer, B., Muller, J. P., and Odell, J.: Agent UML: A Formalism for Specifying Multiagent     

Interaction. In: Ciancarini, P. and Wooldridge, M. (eds): Agent-Oriented Software 
Engineering, Springer-Verlag, Berlin, (2001) 91-103  

3.  Bellifemine, F., Caire, G., Trucco, T., and Rimassa, G.: Jade Programmer’s Guide. JADE 2.5 
(2002) http://sharon.cselt.it/projects/jade/ 

4. Bernon, C., Gleizes, M.P., Peyruqueou, S., and Picard, G.: Adelfe, a methodology for 
Adaptive Multi-Agent Systems Engineering. In: Third International Workshop “Engineering 
Societies in the Agents World” (ESAW-2002), Madrid, (2002)    

5.  Bitting, E., Carter, J., and Ghorbani, A. A.: Multiagent Systems Development Kits: An 
Evaluation. In: Proceedings of the 1st Annual Conference on Communication Networks & 
Services Research, Moncton, Canada, (2003) 80-92 

6.  Booch, G.: Object-Oriented Analysis and Design, 2nd ed., Addison-Wesley: Reading, MA, 
(1994)



Multi Agent System Development Kit                                   119 

7.  Caire, G., Leal, F., Chainho, P., Evans, R., Garijo, F., Gomez, J., Pavon, J., Kearney, P., 
Stark, J., and Massonet, P.: Agent-oriented analysis using MESSAGE/UML. In: Wooldridge, 
M., Ciancarini, P., and Weiss, G., (editors): Second International Workshop on Agent-
Oriented Software Engineering (AOSE-2001), (2001) 101-108 

8. Cossentino, M., Sabatucci, L., Sorace, S., and Chella, A.: Patterns reuse in the PASSI 
methodology. In: Fourth International Workshop Engineering Societies in the Agents World 
(ESAW'03), London, UK (2003) 294-310 

9.  Collis, J. and Ndumu, D.: Zeus Technical Manual. Intelligent Systems Research Group, BT 
Labs. British Telecommunications. (1999) 

10. Dam, K. H., and Winikoff, M.: Comparing Agent-Oriented Methodologies. In: Proceedings of 
the Fifth International Bi-Conference Workshop on Agent-Oriented Information Systems (At 
AAAMAS-03), Melburn (2003) 

11. DeLoach S. and Wood, M.: Developing Multiagent Systems with agentTool. In: 
Castelfranchi, C., Lesperance Y. (Eds.): Intelligent Agents VII. Agent Theories Architectures 
and Languages, 7th International Workshop, LNCS. Vol.1986, Springer Verlag, (2001)  

12. DeLoach, S. A., Wood, M. F., and Sparkman, C. H.: Multiagent systems engineering. In: 
International Journal of Software Engineering and Knowledge Engineering, 11(3), (2001) 
231-258

13. FIPA-OS: A component-based toolkit enabling rapid development of FIPA compliant agents. 
http://fipa-os.sourceforge.net/  

14. Giunchiglia, F., Mylopoulos, J., and Perini, A.: The Tropos software development 
methodology: Processes, Models and Diagrams. In: Third International Workshop on Agent-
Oriented Software Engineering, Jula (2002) 

15. Gorodetski, V., Karsaev, O., Kotenko, I., and Khabalov, A.: Software Development Kit for 
Multi-agent Systems Design and Implementation. In: Dunin-Keplicz, B., Navareski, E. (Eds.): 
From Theory to Practice in Multi-agent Systems. Lecture Notes in Artificial Intelligence, Vol. 
# 2296, (2002) 121-130 

16. Gorodetski, V., Karsaev, O.,  and Konushi, V.: Multi-Agent System for Resource Allocation 
and Schedulling. In: Lecture Notes in Artificial Intelligence, Vol. # 2691, (2003) 226-235 

17. Gorodetsky, V., Karsaev, O., and Samoilov, V.: Multi-agent Technology for Distributed Data 
Mining and Classification. In: Proceedings of the IEEE Conference Intelligent Agent 
Technology (IAT-03), Halifax, Canada, (2003) 438-441 

18. Jack. Jack intelligent agents – version 3.1, agent oriented software. Ltd., Australia, 
http://www.agent-software.com.au . 

19. Padgham, L. and Winikoff, M.: Prometheus: A pragmatic methodology for engineering 
intelligent agents. In: Proceedings of the OOPSLA 2002 Workshop on Agent-Oriented 
Methodologies, Seattle, (2002)  97-108 

20. Reticular Systems Inc: AgentBuilder An Integrated Toolkit for Constructing Intelligent 
Software Agents. Revision 1.3. (1999)  http://www.agentbuilder.com/. 

21. Wooldridge, M., Jennings, N.R., and Kinny, D.: The Gaia Methodology for Agent-Oriented 
Analysis and Design. In: Journal of Autonomous Agents and Multi-Agent Systems, Vol.3. 
No. 3 (2000) 285-312 

22. Woldridge, M.: Agent-based software engineering, In: IEEE Proc. Software Eng, 144(1), 
(1997) 26-37 

23. Woldridge, M., and Jennings, N. R.: Pitfalls of agent-oriented development. In: Proc. Second 
Int. Conf. On Autonomous Agents (Agents 98), Minneapolis/St Paul, MN, (1998) 385-391     

24. http://www.agentbuilder.com/AgentTools/index.html.
25. http://www.agentlink.org/resources/agent-software.php



120      V. Gorodetsky, O. Karsaev, V. Samoylov, V. Konushy, E. Mankov and A. Malyshev

Information about software 

Software is available in the Internet as: 

( )   prototype version 
( )   full fledged software (freeware), version no.: 
( )   full fledged software (for money), version no.: 
( )   Demo/trial version 
(x)  not (yet) available 

Contact person for question about the software: 

Name: Oleg Karsaev 
email: ok@mail.iias.spb.su 

Oleg Karsaev 
Laboratory of Intelligent Systems 
St. Petersburg Institute for Informatics and Automation 
14 Line, 39, St. Petersburg, 199178 
Russia
email: ok@mail.iias.spb.su 



An Integrated Development Environment
for Electronic Institutions

Josep Llúıs Arcos, Marc Esteva, Pablo Noriega, Juan Antonio
Rodŕıguez-Aguilar and Carles Sierra

Abstract. There is an increasing need of methodologies and software tools
that ease the development of applications where distributed heterogeneous
entities can participate. Multi-agent systems, and electronic institutions in
particular, can play a main role on the development of this type of systems.
Electronic institutions define the rules of the game in agent societies, by fixing
what agents are permitted and forbidden to do and under what circumstances.
The goal of this paper is to introduce an integrated development environment
that supports the engineering of electronic institutions.

Keywords. electronic institutions, multi-agent systems, software engineering.

1. Introduction

Multi agent systems (MAS) are systems composed of autonomous agents which
interact in order to satisfy their common and/or individual goals. A main fea-
ture of MAS is that the communication occurs at knowledge level and that they
use flexible and complex interactions among their components. Thus, the design
and development of MAS suffer from all the problems associated to the develop-
ment of distributed concurrent systems and the additional problems which arise
from having flexible and complex interactions among autonomous entities [12].
The complexity of designing multi-agent systems increases when we focus on open
systems [10]. Open multi agent systems are those in which the participants are
unknown in advance and can change over time. These systems are populated by
heterogeneous agents, generally developed by different people using different lan-
guages and architectures, representing different parties, and acting to maximise
their own utility. In order to cope with these problems appropriate methodologies
that allow the analysis and design of agent systems and software tools that support
their development life cycle are needed [12, 11].



122 J. Arcos, M. Esteva, P. Noriega, J. Rodŕıguez and C. Sierra

Human societies successfully deal with similar issues by deploying institu-
tions [16] that establish how interactions of a certain sort will and must be struc-
tured within an organization. Institutions represent the rules of the game in a
society, including any (formal or informal) form of constraint that human be-
ings devise to shape human interaction. Therefore, they are the framework within
which human interaction takes place, defining what individuals are forbidden and
permitted and under what conditions. Furthermore, human institutions not only
structure human interactions but also enforce individual and social behaviour by
obliging everybody to act according to the norms.

Hence, we advocate for the introduction of their electronic counterpart, namely
electronic institutions (EIs) [15, 19, 6], to establish the rules of the game in agent
societies. An EI defines a set of artificial constraints that articulate agent inter-
actions, defining what they are permitted and forbidden to do. An EI defines
a normative environment where heterogeneous (human and software) agents can
participate by playing different roles and can interact by means of speech acts [22].
Our actual experience in the deployment of actual-world MAS as EIs [20, 4] allow
us to defend the validity of this approach. Notice though, that as noted in [6, 19] we
believe that engineers need to be supported by well-founded tools. Hence, in this
paper we introduce an integrated development environment for EIs that supports
engineers through all the stages of the design and development of MAS.

As a case study we will use through this paper the Double Auction Market [8].
In this institution trader agents participate for selling and buying different com-
modities. The institution offers participating traders a brokering service in which
trader agents can register which commodities they are interested on selling and
buying. Therefore, when there are some trader agents interested in one commodity
the institution realises a double auction to facilitate the trading.

The paper is structured as follows. In section 2 we describe the components of
our EI model. From section 3 to 7 we outline the different stages for engineering EIs
and how the different software tools that we have developed support them. Finally,
in sections 8 and 9 we describe the related work and draw some conclusions.

2. Electronic Institutions. Fundamental Concepts

In this section we present a short description of electronic institutions (for further
details refer to [15, 19, 6]). To define an electronic institution it is necessary to de-
fine a common language that allows agents to exchange information, the activities
that agents may do within the institution and the consequences of their actions.
Our model of electronic institutions is based on four principal elements: a dialog-
ical framework, a set of scenes, a performative structure, and a set of normative
rules.

The dialogical framework defines the valid illocutions that agents can ex-
change and the participant roles as well as their relationship. By sharing a dia-
logical framework, we enable heterogeneous agents to exchange knowledge with



An Integrated Development Environment for Electronic Institutions 123

other agents. In the most general case, each agent immersed in a multi-agent en-
vironment is endowed with its own inner language and ontology. In order to allow
agents to successfully interact with other agents we must address the fundamen-
tal issue of putting their languages and ontologies in relation. For this purpose
we propose that agents share what we call the dialogical framework. EIs establish
the acceptable illocutions by defining the ontology (vocabulary) —the common
language to represent the “world”— and the common language for communica-
tion and knowledge representation. Moreover, the dialogical framework defines the
possible participating roles within the EI and the relationships among them. Each
role defines a pattern of behaviour within the institution, and any agent within an
institution is required to adopt some of them. The identification and regulation
of roles is considered as part of the formalisation process of any organisation [21].
In the context of an EI, we distinguish between two types of roles: internal and
external. The internal roles can only be played by what we call staff agents, i.e. the
agents that belong to the institution. We can regard them as the electronic version
of the workers in human institutions. Since an institution delegates its services and
duties to the internal roles, an external agent can never play an internal role.

The activities in an electronic institution are the composition of multiple,
distinct, possibly concurrent, dialogic activities, each one involving different groups
of agents playing different roles. For each activity, interactions between agents are
articulated through agents group meetings, which we call scenes, that follow well-
defined communication protocols. In fact, no agent interaction within an EI takes
place out of the context of a scene. We consider the protocol of each scene to model
the possible dialogic interactions between roles. In other words, scene protocols
are patterns of multi-role conversation. Then, they can be multiply instantiated
by different groups of agents. A distinguishing feature of scenes is that they allow
agents, depending on their role, either to enter or to leave a scene at some particular
moments(states) of an ongoing conversation.

A scene protocol is specified by a directed graph whose nodes represent the
different states of the conversation and the arcs are labelled with illocution schemes
or timeouts that make the conversation state evolve. Thus, at each point of the
conversation, it is defined what can be said, by whom and to whom. As we want
the protocol to be generic, state transitions cannot be labelled by grounded il-
locutions, instead illocution schemes have to be used, where, at least, the terms
referring to agents and time must be variables while the other terms can be vari-
ables or constants. Thus, the protocol is independent of concrete agents and time
instants. Moreover, arcs labelled with illocution schemes can have some constraints
associated which impose restrictions on the valid illocutions and on the paths that
the conversation can follow. This allows, for instance, to specify that in an auction
scene following the English auction protocol, buyers’ bids must be always greater
than the last submitted bid.

While a scene models a particular multi-agent dialogic activity, more complex
activities can be specified by establishing relationships among scenes which are
captured in the performative structure. In general, the activity represented by



124 J. Arcos, M. Esteva, P. Noriega, J. Rodŕıguez and C. Sierra

a performative structure can be depicted as a collection of multiple, concurrent
scenes. Agents navigate from scene to scene constrained by the rules defining the
relationships among scenes. In order to capture the relationship between scenes we
use a special type of scenes: transitions. The type of transition allows to express
agents synchronisation, choice points where agents can decide which path to follow
or parallelisation points where agents are sent to more than one scene. Transitions
can be regarded as a type of routers in the context of a performative structure.
Moreover, the very same agent can be possibly participating in multiple scenes at
the same time. Likewise, there may be multiple concurrent executions of a scene.
Therefore we must also consider whether the agents following the arcs from one
scene to another are allowed to start a new scene execution, whether they can
choose to join just one or a subset of the active scenes, or even join all the active
scenes.

A performative structure can be regarded as a network of scenes whose con-
nections are mediated by transitions that determine the role flow policy among
different scenes. That is, how agents depending on their role can move among the
different scenes and when new conversations can be started. Finally, an initial and
a final scene determine the entry and exit points of the institution respectively.

Agent actions in the context of an institution have consequences, usually
in the shape of compromises which impose obligations or restrictions on dialogic
actions of agents in the scenes wherein they are acting or will be acting in the
future. The purpose of normative rules is to affect the behaviour of agents by
imposing obligations or prohibitions. Notice that since we are considering dialogic
institutions the only actions we consider are the utterance of illocutions. Therefore,
we can refer to the utterance of an illocution within a scene or when a scene
execution is at a concrete state. The intuitive meaning of normative rules is that
if illocutions are uttered in the corresponding scene states, and some predefined
expressions are satisfied, then other illocutions satisfying other expressions must
be uttered in the corresponding scene states in order to fulfil the normative rule.

To summarise, the notions above picture the regulatory structure of an EI as
a “workflow” (performative structure) of multi-agent protocols (scenes) along with
a collection of (normative) rules that can be triggered off by agents’ actions (speech
acts). Notice too that the formalisation of an EI focuses on macro-level (societal)
aspects, instead of on micro-level (internal) aspects of agents.

3. Engineering Electronic Institutions

Next we detail the steps to be followed when engineering and subsequently execut-
ing institutions. These steps cover the engineering of both the institutional rules
and the participating agents. Thus, we propose the engineering of EIs through the
following stages:

• Specification. Formal specification of the institutional rules. In other words,
a formal specification of EIs concepts introduced in section 2. The result



An Integrated Development Environment for Electronic Institutions 125

is a precise description of the kinds and order of messages that agents can
exchange, along with a collection of norms to regulate their actions.

• Verification. Once specified an institution, it should go through a verifica-
tion process before opening it to participating agents. This step is twofold.
There is a first verification process focusing on static, structural properties
of the EI specification. A second verification process follows concerned with
the expected dynamic properties of the EI. We advocate that the dynamic
verification of EIs should be done by means of simulation, with the aim of ex-
ploring the institution performance with different populations of agents. The
institution designer should analyse the results of the simulation and eventu-
ally introduce changes in the specification if they differ from the expected
ones.

• Agent generation. Once the institution specification is validated, it can be
made available for agent participation. At this point, agent designers have to
implement their agents. We want to remark that we do not impose restrictions
on the type of agents that can participate in the institution. Hence, agent
designers can choose the language and architecture that better fulfill their
goals.

• Execution & Analysis. An EI defines a normative environment that shapes
agent interactions. As an institution will be populated at execution time by
heterogeneous and self-interested agents, we cannot expect that these agents
will behave according to the institutional rules encoded in the specification.
For this purpose, we advocate that the institution should be executed via an
infrastructure that facilitates agent participation, while enforcing the institu-
tional rules. Furthermore, it is important to give support to the monitoring
of EIs executions to detect agents’ misbehaviours and unexpected situations.

In order to facilitate the engineering of EIs we have developed a set of software
tools that give support to all the above-mentioned steps. These tools are integrated
in the Electronic Institutions Integrated Development Environment (EIDE). EIDE
allows for engineering both the institutional rules and the participating agents.
EIDE is composed of the following tools:

ISLANDER: A graphical tool that supports the specification and static verifi-
cation of institutional rules.

SIMDEI: A simulation tool to animate and analyse ISLANDER specifications.
In other words, SIMDEI supports the dynamic verification of ISLANDER spec-
ifications.

aBUILDER: An agent development tool that, given an ISLANDER specifica-
tion from an EI, generates agent skeletons. The generated skeletons can be
used either for EI simulations supported by SIMDEI or for actual executions
of the institution supported by AMELI.

AMELI: A software platform to run EIs. The platform facilitates agent partic-
ipation in the institution while enforcing the institutional conventions. Elec-
tronic institutions specified with ISLANDER are run by AMELI.



126 J. Arcos, M. Esteva, P. Noriega, J. Rodŕıguez and C. Sierra

Monitoring tool: A tool that permits the monitoring of EI executions run by
AMELI. It graphically depicts all the events occurring during an EI execution.
In what follows we describe how the different EIDE tools are employed for

the engineering of EIs. In order to illustrate how the different tools work, we use
the Double Auction Market.

4. Specification and Verification via ISLANDER

The specification and static verification of EIs is supported by ISLANDER [7].
As to the specification of EIs, the tool combines both graphical and textual spec-
ifications. More precisely, the tool permits the graphical specification of the roles
and their relationships, the scene protocols, and the performative structure. We
believe that graphical specifications facilitate the work of agent designers as they
are easier to create and to understand. In order to textually define the remain-
ing elements of a specification, the tool structures the way in which it has to be
introduced. Whenever possible, pop-down menus are used. This is used for fields
that contain references to other specified elements and for fields whose value is one
out of a predefined set. This facilitates the designer’s work because he has only to
select the element from a list and thus reduces typing errors.

ISLANDER supports the static verification of specifications by checking their
structural correctness. Thus, the tool carries out the following verifications:

• Integrity. The tool checks that cross references among the different elements
of the specification are correct. In other words, it checks that each element
which is referenced is actually defined.

• Liveness. It checks that agents will not be blocked at any point of the perfor-
mative structure, that each scene is reachable for each of its roles, and that
agents can always reach the final scene from each scene.

• Protocol Correctness. It checks that scene protocols are correctly specified.
That is, that each state of the graph is accessible from the initial state, that
a final state is reachable from each state and that the labels of the different
arcs are correctly specified according to the scene dialogical framework.

• Normative rules correctness. It checks that normative rules are specified
correctly and that agents can fulfill them. The later means that agents can
reach the scenes where they have to utter the illocutions for fulfilling each
normative rule.
Figure 1 depicts the graphical user interface of ISLANDER. The menus con-

tain the general operations of the application and they are similar to other ap-
plications. For instance, the file menu contains options to save the current spec-
ification, and open a new one, while the insert menu pemits the user to insert a
new EI component on the current specification. The tool bar contains icons for
a quick access to the operations. There is also a specific icon that activates the
verification process. On the project structure pane the user can see all the elements
and sub-elements that belong to the current specification ordered by category. It



An Integrated Development Environment for Electronic Institutions 127

Figure 1. Islander GUI

permits the user to navigate among them. When he changes the selection the
other panes are modified appropriately in order to show the information of the
selected element or sub-element. The graph editor pane supports the edition of the
graphical components of EIs, namely the edition of the graphical component of
performative structures, dialogical frameworks and scenes. The user can edit the
different graphs and modify them using the mouse. The graph editor pane is used
for the creation and modification of the graph topology while the textual infor-
mation associated to the graph is introduced and modified using the inspect pane.
For instance, the graph pane is used for adding a new node to the graph but the
name of the node is introduced using the inspect pane. Furthermore, the inspect
pane is used for the specification of the rest of the elements of an EI. Finally, the
verification message pane at the bottom of the figure, is used for showing the er-
rors when the user activates the verification of the current specification. Moreover,
ISLANDER allows the user to move to the element containing the error by simply
selecting the error message text. When a user selects an error all the panes of the
application are modified in order to show the element containing the error. Once
an EI has been specified and verified, the user can export the institution to XML,
employed at further stages of the development cycle.



128 J. Arcos, M. Esteva, P. Noriega, J. Rodŕıguez and C. Sierra

Figure 2. Double Auction Dialogical Framework

Summarising, ISLANDER supports the specification of EIs, facilitating the
designer’s work by combining graphical and textual specifications. Furthermore,
the verification process permits checking the correctness of the specifications. The
result of this stage is a sound, unambiguous and correct specification of the insti-
tutional rules. In the next subsections we present the specification of the double
auction market using ISLANDER.

4.1. Specifying the Double Auction Market

4.1.1. Dialogical Framework. Figure 2 depicts the specification of the Double Auc-
tion Market dialogical framework. Notice that there are four different roles, namely:
tradeMgr, trader, buyer and seller. They are specified graphically using the graph
editor pane. In order to differentiate between the internal and external roles, in-
ternal roles are displayed in yellow, while external roles are displayed in brown.
Hence, we can see that there is only one internal role (tradeMgr), whereas there
are three external roles (trader, buyer and seller). The tradeMgr role will be
played by a staff agent in charge of the brokering service and in charge of start-
ing and realising the double auctions. The rest of the roles will be played by the
external agents entering the institution for buying and selling commodities.

Furthermore, there are also some relationships among roles. On the one hand,
the tradeMgr and the trader roles are incompatible (denoted by the ssd relation
in figure 2) meaning that agents cannot play both roles within the institution. On
the other hand, the trader role subsumes (denoted by the sub relation in figure 2)
the buyer and seller roles, meaning that agents authorised to play the trader role
can also play the buyer and seller roles.



An Integrated Development Environment for Electronic Institutions 129

Figure 3. Double Auction Performative Structure

Finally, the specification contains the definition of the rest of the elements
of a dialogical framework, namely: the ontology, the content language and the
illocutionary particles. Concretely, the specification defines that the institution
ontology is the DAOntology, that the content language is PROLOG and that the
illocutionary particles are inform, failure and request.

4.1.2. Performative structure. Figure 3 shows the specification of the performative
structure of the Double auction market as shown by ISLANDER. Its activities are
represented by the meetingRoom scene, where traders are matched by the trade
manager based on their interests in commodities, and the tradeRoom scene, where
a Double auction is run to rule the trading. Observe that trading agents switch
their role to either buyer or seller when moving from the meetingRoom to the
tradeRoom. Notice too that while there is a sole execution of the meetingRoom
scene, multiple executions of the tradeRoom scene may occur, being dynamically
created depending on trading agents’ interests. Finally, the root scene and the
output scene represent the institution’s entry and exit points.

4.1.3. Double Auction Scene. Figure 4 depicts the specification of the double auc-
tion scene where commodities are traded following a double auction protocol. In
this protocol agents playing the buyer and seller roles have some time to submit
their offers, which are matched later on to decide which transactions are done.

The first issue to address when specifying a scene is the definition of the
roles that can participate in it and size of their populations. In this scene can
participate agents playing the tradeMgr, buyer and seller roles. The scene requires
the participation of exactly one agent playing the tradeMgr role, while there are
no constraints on the number of agents playing the buyer and seller roles (zero
is the default value for the Max field for a role meaning that there is no limit on
the number of agents that can participate playing the role). We can also observe



130 J. Arcos, M. Esteva, P. Noriega, J. Rodŕıguez and C. Sierra

Figure 4. Double Auction scene

that the dialogical framework, that will be used to construct the illocution schemes
labeling the arcs of the scene protocol, is the DoubleAuctionDF.

On the right part of the figure we can observe the specification of the scene
protocol introduced using the graph editor panel. The following labels are associ-
ated to the arcs:

1 inform(?s:seller, ?t:tradeMgr, offer(?offer))
2 inform(?b:buyer, ?t:tradeMgr, demand(?demand))
3 inform(?s:seller, ?t:tradeMgr, offer(?offer))
4 inform(?b:buyer, ?t:tradeMgr, demand(?demand))
5 [5000]
6 [5000]
7 inforn(?t:tradeMgr,all,performed contracts(?contract))

The scene starts at its initial state w0 where buyers and sellers can start to
submit their offers, labels 1 and 2. Notice that after the first offer is made the
scene will evolve to state w1, where they can continue submitting offers, labels
3 and 4, until the timeout specified by label 5 expires making the scene evolve
to w3. Furthermore, the connection from w0 to w3 labeled also with a timeout
guarantees that the scene will not be blocked if there are no offers. Once at state
w3 the tradeMgr calculates the contracts matching buyers and sellers offers using
the rules of the double auction protocol. The scene concludes when the tradeMgr
announces the contracts, label 7, making the scene evolve to its final state w2.

Finally, in the figure it can be observed that buyer and seller agents can enter
the scene at states w0 and w1, while they can leave the scene at the states w0
and w2. Complementarily, the tradeMgr agents can enter the scene at w0 and
can leave it at w2.



An Integrated Development Environment for Electronic Institutions 131

5. Dynamic verification via SIMDEI

While ISLANDER permits the static verification of EIs, their dynamic verification
is done via simulation. The purpose of the simulation is to study the dynamic be-
haviour and performance of the specified institution under different circumstances.
For instance, in the case of the double auction the institution designer could sim-
ulate the performance of the system with different populations of buyer and seller
agents.

Simulations of EIs can be run by means of the SIMDEI simulation tool that
we have developed over REPAST 1. Before running the simulation institution
designers must develop different type of agents playing the different institution
roles. This process is partially supported by the aBUILDER tool as explained in
the next section. It is a task of the institution designers to develop types of agents,
as similar as possible to the ones that will populate the institution when it will
be open to external agents. Once agents have been developed simulations can be
executed thanks to the SIMDEI simulation tool to conduct what-if analysis. The
institution designer is in charge of analyzing the results of the simulations and
return to the specification stage if they differ from the expected ones.

6. Agent development via aBUILDER

Once the institution has been specified and verified, it is time for designing the
agents. Notice that within an institution we distinguish between the internal roles
played by the staff agents and the external roles played by the external agents.
Since staff agents are those in which the institution delegates their services and
duties, they are necessary for the correct execution of the institution. Thus, it is
a task of institution designers to develop them. On the contrary, external agents
playing the external roles must be developed by the parties that they will represent.
At this point we want to remark that we do not impose restrictions on the type
of agents which can participate in the institution. Agent designers can choose the
language and architecture that is better to fulfill their goals as well as they can
use any software tools that facilitate their work. Therefore, it is not mandatory
for them to use the aBUILDER tool.

Agent development is partially supported by the aBUILDER tool. Notice
that an EI specification defines what agents can do within the institution but it
does not define how agents must take their decisions. For instance, the specification
of the double auction market defines how and when buyer and seller agents can
submit their offers on the double auction scene, but it is a decision of every agent to
decide which offers to submit. Of course, this will depend on each agent preferences
and on their decision making mechanisms, which are probably different for each
agent. Given an EI specification aBUILDER allows for defining agent skeletons

1http://repast.sourceforge.net



132 J. Arcos, M. Esteva, P. Noriega, J. Rodŕıguez and C. Sierra

Figure 5. aBUILDER GUI

that must be later on completed by agent designers with the decision making
mechanisms.

The current version of the aBUILDER tool permits to define agents composed
by tasks and behaviours. On the one hand, tasks define general activities for an
agent and each one can involve the participation in different scenes. On the other
hand, a behaviour defines what an agent will do within a scene. In other words, a
behaviour defines which information an agent stores from the received messages,
and which utterances it utters. Therefore, the tasks determine how agents will
be moving among the performative structure scenes, while the behaviours define
what agents will do within the different scenes.

In order to specify a task an agent designer has to define what the agent has
to do when leaving and entering scenes. On the one hand, it has to be specified
which scene to join next or which task to launch when the agent leaves a scene.
On the other hand, it has to be specified which behaviour to launch when the
agent enters the scene. In order to know the different scenes and the rest of the
institutional rules, the aBUILDER tool is capable of loading EIs specification as
generated by ISLANDER.

Figure 5 depicts the graphic user interface of the aBUILDER tool to design
agents for the Double Auction market. We can see on the left part the agents
being defined. Notice that the tool permits the definition of multiple agents at the
same time. In this case, two types of agents are defined, namely: traderAgent and



An Integrated Development Environment for Electronic Institutions 133

Communication Layer

S M
1

...

 ...

AMELI

Participating

Agents Layer

Institution

Specification

(XML format)

-

  ...

 ...

S M
m

I M T M
1

T M
k

G
1

G
n

  ...

G
i

A
i

A
1

A
n

-

P
u
b

lic
P

ri
v
a

te

 ...  ...

Agent

SkeletonsaBUILDER

ISLANDER

Figure 6. Electronic institution architecture

tradeMgrAgent. We can also observe the tasks and behaviours defined for each of
them. For instance, for the tradeMgr two tasks (MainTask and TradeTask), and
two behaviours (MeetingRoomPerf and TradeRoomPerf) are defined. When a
user selects any of them, its information is shown and can be modified on the right
part of the aBUILDER graphic user interface. Concretely, in figure 5 the informa-
tion shown on the right part correspond to the MainTask of the tradeMgrAgent,
which is the task that will be executed when it will enter in the institution. It can
be observed that three actions are defined within this task. The first one defines
that the agent will go to the meetingRoom scene when leaving the root scene.
The second one defines that the MeetingRoomPerf behaviour will be launched
when entering the MeetingRoom scene. Finally, the third one specify that the
TradeTask task will be launched when leaving the MeetingRoom scene.

Once all the tasks and behaviours have been specified the tool permits the
generation of code standing for agent skeletons for the different types of agents. In
the current version the code is generated in JAVA. The generated code is capable to
navigate through the institution performative structure and scenes, launching the
specified tasks and behaviours at the defined points. However, they must be filled
up with the decision making mechanisms before to send them to the institution.

Summarising, given an EI specification the aBUILDER tool supports the
definition of different types of agents and the generation of agent skeletons.

7. Execution and Analysis

7.1. Execution via AMELI

As depicted in figure 6, our architecture is composed of the following layers:



134 J. Arcos, M. Esteva, P. Noriega, J. Rodŕıguez and C. Sierra

• Participating agent layer. The agents taking part in the institution.
• Social layer (AMELI). An infrastructure that mediates and facilitates agents’

interactions while enforcing the institutional rules.
• Communication layer. In charge of providing a reliable and orderly transport

service. The current implementation can either use JADE [1] or a publish-
subscribe event model as communication layer.

Notice that unlike approaches that allow agents to openly interact with their
peers via a communication layer, we advocate for the introduction of a social
layer (AMELI ) which mediates agent interactions at run time. On the one hand,
AMELIprovides participating agents with information about the current execu-
tion. For instance, information about the participating agents within a scene exe-
cution. On the other hand, it enforces the institutional rules to the participating
agents. At this aim, AMELI keeps track of the execution state, and uses it along
with the institutional rules encoded in the specification to validate agents actions.

As we can observe in figure 6 AMELI is composed of the following types of
agents:

• Institution Manager (IM). It is in charge of starting an EI, authorising agents
to enter the institution, as well as managing the creation of new scene exe-
cutions. It keeps information about all participants and all scene executions.
There is one institution manager per institution execution.

• Transition Manager (TM). It is in charge of managing a transition control-
ling agents’ movements towards scenes. There is one transition manager per
transition.

• Scene manager (SM). Responsible for governing a scene execution (one scene
manager per scene execution).

• Governor (G). Each one is devoted to mediating the participation of an agent
within the institution. There is one governor per participating agent.

Since external agents can only communicate with their governors, we can re-
gard AMELI as composed of two layers: a public layer, formed solely by governors;
and a private layer, formed by the rest of AMELI agents, not directly accessible to
external agents. Furthermore, all these agents collaborate to guarantee the correct
evolution of an EI execuution.

Finally we want to outline the main features of our architecture:

• Domain independent AMELI can be used for the deployment of any speci-
fied institution without any extra coding. For this purpose, agents compos-
ing AMELI load institution specifications as XML documents generated by
ISLANDER. Thus, the implementation impact of introducing institutional
changes amounts to the loading of a new (XML-encoded) specification.

• Agent-architecture neutral Participating agents are only required to be ca-
pable of opening a communication channel with their governors.

• Scalable When employing JADE, the agents composing AMELI can be read-
ily distributed among different machines



An Integrated Development Environment for Electronic Institutions 135

Figure 7. Double auction market monitoring

• Communication neutral Participating agents regard our architecture as com-
munication neutral since they are not affected by changes in the communi-
cation layer.
The execution of an EI starts with the creation of an Institution Manager.

Once up, the institution manager activates the initial and final scenes launching
a scene manager for them. Thereafter, external agents can begin submitting to
the institution manager their requests to join the institution. When an agent is
authorised to join the institution, it is connected to a governor and admitted
into the initial scene. From there on, agents can move around the different scene
executions or start new ones according to the EI specification and the current
execution state.

7.2. Execution Monitoring

An EI execution can be monitored thanks to the monitoring tool that depicts
graphically all the events occurring at run time. Fairness, trust and accountability
are the main motivations for the development of a monitoring tool that registers
all interactions in a given enactment of an electronic institution [15, 19]. Giving
accountability information to the participants increases their trust in the institu-
tion. This is specially important for electronic institutions where people delegate
their tasks to agents. Furthermore, the tool permits them to analyse their agent(s)
behaviour within the institution in order to improve it. From the point of view



136 J. Arcos, M. Esteva, P. Noriega, J. Rodŕıguez and C. Sierra

of the institution designers, the tool is useful for testing the system and the staff
agents before making the institution available to external agents. Furthermore,
when the institution is running it can be used to detect unexpected situations and
fraudulent behaviours of external agents.

The monitoring tool displays all the interactions occurring in the different
scene and transition executions, along with agents’ movements among scenes. Fig-
ure 7 shows the monitoring of an execution of the Double Auction market. Frame
1 contains a list of the institution’s scenes and transitions along with their execu-
tions. The list includes a single execution of the meetingRoom scene (id 5 ) at state
W1. Furthermore, there are two different executions of the tradeRoom scene: one
ongoing execution (id 50 at the initial state), and a finished one (id 34). The figure
shows that while five agents (a trade manager –tradeMgr, two buyers, and two
sellers) have participated in scene execution 34, a single agent (a trade manager)
is waiting for buyers and sellers to join in scene execution 50. According to sec-
tion 7.1, there is a scene manager agent per ongoing scene execution (e.g. id 5, 50).
Besides, no scene manager agent is required any longer for scene execution 34 since
it is finished. Furthermore, there is one transition manager agent per transition.
Frame 2 depicts the events occurring during scene execution 34: agents’ entrance
(e.g. label 4), the utterance of valid (e.g. label 6) and wrong (e.g. label 5) illocu-
tions, transitions caused by timeouts (e.g. label 7), agents’ exit (e.g. label 8). We
must remind the reader that the coordinated activity of the scene manager of the
scene execution and the participating agents’ governors guarantee that all these
events abide by the scene specification. To illustrate the control of AMELI agents,
frame 3 visualises an illocution rejected because a constraint in the specification
is violated when buyer BIGWire attempts at submitting a demand of 0 units at
18 EUR. Since the scene manager evaluates the illocution as not valid, BIGWire
is informed by its governor about the failed action.

Finally we wan to remark that the tool also allows for the monitoring of the
participation of an agent within the institution. In this case, it shows the scenes
in which the agent has taken part, along with the messages that it has exchanged.

8. Related Work

Recently, a number of MAS methodologies —e.g. GAIA [26], Tropos [9], or [23]
to name a few— have been proposed. Most MAS methodologies are based on
strong agent-oriented foundations, however, while offering original contributions
at the design level, they tend to be unsatisfactory on a development level be-
cause of the lack of support to their design and implementation. Furthermore,
most MAS methodologies are agent-centered rather than community or socially-
centered, hence focus more on the internal aspects of agent functionality than on
the interaction aspects.



An Integrated Development Environment for Electronic Institutions 137

There are some agent infrastructures such as DARPA COABS [3] and FIPA
compliant platforms such as JADE [1] that deal with many issues that are es-
sential for open agent interactions —communication, identification, synchroniza-
tion, matchmaking— that can be used as building blocks for the development of
open multi-agent systems. These building blocks are arguably too distant from
organisation-centered patterns or social structures.

A different —and interesting— approach to a unified MAS development
framework are the protocol-centered approaches. The proposal by Hanachi [2] al-
lows for specifications of interaction protocols that need to be subsequently com-
piled into a sort of executable protocol brokers called moderators. In Tropos, the
specifications are transformed into agent skeletons that must be extended with
code, similar to the aBUILDER tool presented here. However, at execution time
there is no mechanism to ensure that agents follow the specification of the system.

Although some proposals agree on the need of adopting a social stance, as
far as we can tell the formal definition of organization-centered patterns and social
structures in general, along with their computational realization, remain largely
undeveloped (as noted in [26]).

In addition to these infrastructures and methodologies just mentioned, some
agent research has focused on the introduction of social concepts such as organiza-
tions (e.g. [18],[5]),or institutions (e.g. [25]), [14], [13]). Nonetheless, to the best of
our knowledge there are no tools supporting their computational realization, nor
a proper engineering methodology directly associated with them.

A promising line of work is the one adopted by Omicini and Castelfranchi
(e.g. [17]). It postulates some significant similarities with our EI approach: focus
on the social aspects of the interactions, a unified metaphor that prevails along
the development cycle, and the construction of tools to implement methodological
ideas. They discuss coordination artifacts and propose to develop them as devices
to wrap agents so that their interactions in a given MAS are subject to that
MAS protocol and keep an accurate picture of the interaction context2. While
their proposal mentions other conceptual design levels —and, consequently, other
devices— the actual development of the methodology and the associated tools
appears to be still rather tentative.

Finally, we believe that the most similar approach to ours is the one taken in
[24], where the authors take a declarative stance to specify both EIs and their par-
ticipating agents. Thus, Vasconcelos et al. propose a declarative means to represent
EIs whereby they can carry out automatic checks for desirable properties. They
also show how to exploit an EI specification to synthesise agents that conform to
the specification.

2These coordination artifacts are essentially what we call governors.



138 J. Arcos, M. Esteva, P. Noriega, J. Rodŕıguez and C. Sierra

9. Conclusions

In this chapter we have presented a technology that we have developed to address
the challenges of building open multi-agent systems. We do not claim to be deal-
ing with open systems in their full complexity, but rather addressing a restricted
—albeit significant enough— type of openness: that present in interactions that
involve autonomous, independent entities that are willing to conform to a com-
mon, explicit, set of interaction conventions. We will call these a-open systems3.
We argue that this type of multi-agent systems can be effectively designed and
developed as electronic institutions. Similarly, to human institutions in human so-
cieties, EIs define the rules of the game in agent societies, establishing what agents
are permitted and forbidden to do. In other word, an EI structures the valid in-
teractions that agents may have as well as defining the consequences of those
interactions. Therefore, an EI defines a normative environment that constraints
agents interactions at run time.

In order to cope with the complexity of engineering EIs, we early identified
the importance of developing software tools which give support to their design,
development and subsequent execution. Therefore, through this paper we have
presented an Electronic Institutions Integrated Development Environment (EIDE)
that supports the engineering of EIs. Through the paper we have presented the
different tools that compose EIDE, and we have illustrated how they work us-
ing as an example the Double Auction Market. Notice, that we advocate that
EIs engineering must start with a formal specification of the institutional rules
supported by ISLANDER. The result is a sound and unambiguos definition of
the institutional rules. Furthermore, ISLANDER also supports the static verifi-
cation of specifications, while dynamic verification is done via simulation using
the SIMDEI tool. Although, we do not impose constraints on the type of agents
that can partcipate in an EI, their design and development is partially suppported
by the aBUILDER tool. Finally, EIs can be executed thanks to AMELI, which
facilitates agent participation within an EI, while enforcing the institutional rules.
A main feature of AMELI is that it can be used for the execution of any specified
instituion without any extra coding. Furthermore, EI executions can be monitored
using the monitoring tool. To conclude, we want to point out that EIDE has proven
to be highly valuable in the development of actual-world e-commerce applications
such as the Multi-Agent System for Fish Trading (MASFIT) [4].

For further information and software downloads, the interested reader should
refer to http://e-institutions.iiia.csic.es.

10. Acknowledgements

Marc Esteva enjoys a Fulbright/MECD postdoctoral scholarship FU2003-0569.
The research reported in this paper is partially supported by the Spanish CICYT

3Openness is limited by the dscription to the conventions.



An Integrated Development Environment for Electronic Institutions 139

project Web-i (2) (TIC-2003-08763-C02-01). The authors would like to thank the
IIIA Technological Development Unit’s programmers for their valuable contribu-
tion to the development of EIDE.

References

[1] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with jade.
In C. Castelfranchi and Y. Lesperance, editors, Intelligent Agents VII, number 1571
in Lecture Notes in Artificial Intelligence, pages 89–103. Springer-Verlag, 2001.

[2] C. Sibertin-Blanc C. Hanachi. Protocol moderators as active middle-agents in multi-
agent systems. Journal of Autonomous Agents and Multiagent Systems, 8(2), March
2004.

[3] Control of agent-based systems. http://coabs.globalinfotek.com.

[4] Guifré Cuńı, Marc Esteva, Pere Garcia, Eloi Puertas, Carles Sierra, and Teresa
Solchaga. Masfit: Multi-agent systems for fish trading. In 16th European Conference
on Artificial Intelligence (ECAI 2004), Valencia, Spain, August 2004.

[5] V. Dignum. A Model for Organizational Interaction. PhD thesis, Dutch Research
School for Information and Knowledge Systems, 2004. ISBN 90-393-3568-0.

[6] M. Esteva. Electronic Institutions: from specification to development. PhD thesis,
Universitat Politècnica de Catalunya (UPC), 2003. IIIA monography Vol. 19.

[7] M. Esteva, D. de la Cruz, and C. Sierra. Islander: an electronic institutions editor.
In Proceedings of AAMAS 2002, pages 1045–1052, 2002.

[8] Daniel Friedman and John Rust, editors. The Double Auction Market: Institutions,
Theories, and Evidence. Addison-Wesley Publishing Company, 1991. Proceedings of
the Workshop on Double Auction Markets held June, 1991, Santa Fe, New Mexico.

[9] F. Giunchiglia, J. Mylopoulos, and A. Perini. The tropos software development
methodology: Processes. Technical Report 0111-20, ITC-IRST, November 2001.

[10] C. Hewitt. Offices are open systems. ACM Transactions of Office Automation Sys-
tems, 4(3):271–287, 1986.

[11] Carlos A. Iglesias, M. Garijo, and J. C. Gonzalez. A survey of agent-oriented method-
ologies. In J. P. Muller, M. Singh, and A. S. Rao, editors, Intelligent Agents V,
Lecture Notes in Artificial Intelligence. Springer-Verlag, 1999.

[12] Nicholas R. Jennings, Katia Sycara, and Michael Wooldridge. A roadmap of agent
research and development. Autonomous Agents and Multi-agent Systems, 1:275–306,
1998.

[13] Ismail Khalil-Ibrahim, Gabriele Kotsis, and Wieland Schwinger. Mapping abstrac-
tions of norms in electronic institutions. In Twelfth International Workshop on En-
abling Technologies: Infrastructure for Collaborative Enterprises, pages 30–35, Linz,
Austria, June 2003.

[14] Henrique Lopes-Cardoso and Eugénio Oliveira. Virtual enterprise normative frame-
work within electronic institutions. In 5th International Workshop on Engineering
Societies in the Agents World, Toulouse, October 2004.

[15] Pablo Noriega. Agent-Mediated Auctions: The Fishmarket Metaphor. Number 8 in
IIIA Phd Monograph. 1997.



140 J. Arcos, M. Esteva, P. Noriega, J. Rodŕıguez and C. Sierra

[16] D. North. Institutions, Institutional Change and Economics Perfomance. Cambridge
U. P., 1990.

[17] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castelfranchi, and Luca
Tummolini. Coordination artifacts: Environment-based coordination for intelligent
agents. In Third International Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS’04), pages 286–293, New York, USA, July 19-23 2004.

[18] H. Parunak and J. Odell. Representing social structures in uml. In Agent-Oriented
Software Engineering II. LNCS 2222, pages 1–16. Springer-verlag edition, 2002.

[19] Juan A. Rodŕıguez-Aguilar. On the Design and Construction of Agent-mediated Elec-
tronic Institutions. PhD thesis, Universitat Autonoma de Barcelona, 2001. Also as
IIIA Monograph N. 14.

[20] Juan A. Rodŕıguez-Aguilar, Pablo Noriega, Carles Sierra, and Julian Padget. Fm96.5
a java-based electronic auction house. In Second International Conference on The
Practical Application of Intelligent Agents and Multi-Agent Technology(PAAM’97),
pages 207–224, 1997.

[21] W. R. Scott. Organizations: Rational, Natural, and Open Systems. Englewood Cliffs,
NJ, Prentice Hall, 1992.

[22] J. R. Searle. Speech acts. Cambridge U.P., 1969.

[23] A. Sturm, D. Dori, and O. Shehory. Single-model mehtod for specifying multi-agent
systems. In Proceedings of AAMAS 03, pages 121–128, Melbourne, Australia, 2003.

[24] W. W. Vasconcelos, D. Robertson, C. Sierra, J Esteva, M. Sabater, and Wooldridge
M. Rapid prototyping of large multi-agent systems through logic programming. An-
nals of Mathematics and Artifical Intelligence, 41:153–169, 2004.

[25] Javier Vázquez-Salceda. The Role of Norms and Electronic Institutions in Multi-
Agent Systems. Whitestein Series in Software Agent Technology. Birkhäuser Verlag
AG, Switzerland, 2004.

[26] F. Zambonelli, N. Jennings, and M. Wooldridge. Developing multiagent systems: The
gaia methodology. ACM Transactions on Software Engineering and Methodology,
12(3):317–370, 2003.

Information about Software
Software is available on the Internet as

(X) prototype version
( ) full fledged software (freeware), version no.:
( ) full fledged software (for money), version no.:
( ) Demo/trial version
( ) not (yet) available

Internet address: http://e-institutions.iiia.csic.es
Description of software:

The electronic institutions development environment (EIDE) is a set of tools
aimed at supporting the engineering of intelligent distributed applications as elec-
tronic institutions. Software agents appear as the key enabler technology behind



An Integrated Development Environment for Electronic Institutions 141

the electronic institutions vision. Thus, electronic institutions encapsulate the co-
ordination mechanisms that mediate the interactions among software agents repre-
senting different business parties. The EIDE allows for engineering both electronic
institutions and their participating software agents. Notably, the EIDE moves away
from machine-oriented views of programming toward organizational-inspired con-
cepts that more closely reflect the way in which we may understand distributed
applications. It supports a top-down engineering approach: firstly the organization,
secondly the individuals. The EIDE is composed of:

ISLANDER.: A graphical tool that supports the specification of the rules and
protocols in an electronic institution.

AMELI.: Software platform to run electronic institutions. Once an electronic
institution is specified with ISLANDER is ready to be run by AMELI without
any programming.

aBUILDER.: Agent development tool.
SIMDEI.: Simulation tool to animate and analyze specifications created with

ISLANDER prior to the deployment stage.
Download address: http://e-institutions.iiia.csic.es
Contact point for question about the software:

email: eide@iiia.csic.es

Josep Llúıs Arcos
Artificial Intelligence Research Institute, IIIA
Spanish Council for Scientific Research, CSIC
08193 Bellaterra, Barcelona, Spain.
Voice: +34 93 580 95 70 Fax: +34 580 96 61
e-mail: arcos@iiia.csic.es

Marc Esteva
(uiuc) Graduate School of Library and Information Science
University of Illinois at Urbana-Champaign
501 E. Daniel Street, Champaign, IL 61820
Voice: +1 217 265 0235 Fax: +1 217 244 3302
e-mail: esteva@uiuc.edu

Pablo Noriega
Artificial Intelligence Research Institute, IIIA
Spanish Council for Scientific Research, CSIC
08193 Bellaterra, Barcelona, Spain.
Voice: +34 93 580 95 70 Fax: +34 580 96 61
e-mail: pablo@iiia.csic.es

Juan Antonio Rodŕıguez-Aguilar
Artificial Intelligence Research Institute, IIIA
Spanish Council for Scientific Research, CSIC
08193 Bellaterra, Barcelona, Spain.
Voice: +34 93 580 95 70 Fax: +34 580 96 61
e-mail: jar@iiia.csic.es



142 J. Arcos, M. Esteva, P. Noriega, J. Rodŕıguez and C. Sierra

Carles Sierra
Artificial Intelligence Research Institute, IIIA
Spanish Council for Scientific Research, CSIC
08193 Bellaterra, Barcelona, Spain.
Voice: +34 93 580 95 70 Fax: +34 580 96 61
e-mail: sierra@iiia.csic.es



Jadex: A BDI-Agent System Combining
Middleware and Reasoning

Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Abstract. Nowadays a multitude of different agent platforms exist that aim
to support the software engineer in developing multi-agent systems. Neverthe-
less, most of these platforms concentrate on specific objectives and therefore
cannot address all important aspects of agent technology equally well. A broad
distinction in this field can be made between middleware- and reasoning-
oriented systems. The first category is mostly concerned with FIPA-related
issues like interoperability, security and maintainability whereas the latter one
emphasizes rationality and goal-directedness. In this paper the Jadex reason-
ing engine is presented, which supports cognitive agents by exploiting the BDI
model and is realized as adaptable extension for agent middleware such as the
widely used JADE platform.

1. Introduction

Today various different agent platforms are available providing support for the
development of agent applications [21]. As agent orientation is a very broad field
covering topics concerning inter alia agent organizations, agent behaviour as well
as messaging it becomes obvious that most of these platforms focus on specific
objectives and therefore cannot address all important aspects of agent technology
equally well. Two important categories of platforms are middleware- and reasoning-
oriented systems.

The first category is mostly concerned with FIPA-related issues that address
interoperability and various infrastructure topics such as white and yellow page
services. Hence agent middleware is an important building block that forms a
solid foundation for exploiting agent technology. Most middleware platforms in-
tentionally leave open the issue of internal agent architecture and employ a simple
task oriented approach [2, 15, 32]. In contrast, reasoning-centered platforms fo-
cus on the behaviour model of a single agent trying to achieve rationality and



144 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

goal-directedness. Most successful behaviour models are based on adapted theo-
ries coming from disciplines such as philosophy, psychology or biology. Depending
on the level of detail of the theory the behaviour models tend to become compli-
cated and can result in architectures and implementations that are difficult to use.
Especially when advanced artificial intelligence and theoretical techniques such
as deduction logics are necessary for programming agents, mainstream software
engineers cannot easily take advantage of agent technology.

In this paper the Jadex agent framework is presented, which builds upon an
existing middleware agent platform and supports easy to use reasoning capabilities.
It adopts the BDI model [5] and combines it with state-of-the-art software engi-
neering technologies like XML and Java. In the following, section 2 motivates the
need for agent-oriented middleware. In section 3 reasoning approaches for agents
are sketched and the BDI fundamentals regarding the individual concepts and their
interrelationships are described. Section 4 explains the design and implementation
of the Jadex system by detailing the abstract architecture and several implemen-
tation aspects. In section 5 the approach taken by Jadex is classified and compared
to other approaches - in particular to the JACK agent framework. A summary and
an outlook describing ongoing work and planned extensions conclude the paper.

2. Agent Middleware

Typically middleware in the field of distributed systems is seen as“[...] network-
aware system software, layered between an application, the operating system, and
the network transport layers, whose purpose is to facilitate some aspect of coop-
erative processing. Examples of middleware include directory services, message-
passing mechanisms, distributed transaction processing (TP) monitors, object re-
quest brokers, remote procedure call (RPC) services, and database gateways.” 1

As agent orientation builds on concepts and technology of distributed sys-
tems middleware for agents is equally important for the realization of agent-based
applications. Thereby, the term agent middleware is used to denote common ser-
vices such as message passing or persistency management usable for agents. The
paradigm shift towards autonomous software components in open, distributed en-
vironments requires on the one hand new standards to ensure interoperability
between applications. On the other hand new middleware products implementing
these standards are needed to facilitate fast development of robust and scalable
applications. Agents can be seen as application layer software components using
middleware to gain access to standardized services and infrastructure.

The Foundation for Intelligent Physical Agents (FIPA) [28] is an international
non-profit organization providing standards for heterogeneous interacting agents
and multi-agent systems. Since 1997 a number of specifications have been released
which are replaced or updated regularly. The work on specifications focuses on

1http://iishelp.web.cern.ch/IISHelp/iis/htm/core/iigloss.htm



Jadex: A BDI-Agent System Combining Middleware and Reasoning 145

application as well as on middleware aspects. Specifications related to applica-
tions provide systematically studied example domains with service and ontology
descriptions. The middleware-related specifications address in detail all building
blocks required for an abstract agent platform architecture. This includes mecha-
nisms for agent management, as well as infrastructure elements such as directory
services and message delivery. Besides, there are extensive specifications on the
syntactic and semantic layer of agent communication. This concerns inter alia the
format and meaning of individual messages as well as the standard interaction
protocols providing a unified basis for agent communication and interaction.

The FIPA specifications have been implemented in a number of agent plat-
forms [2, 15, 32] and interoperability among those platforms has been shown, for
example in the agentcities network.2 In addition to the FIPA specifications, sev-
eral platforms also address further middleware issues and provide specialized solu-
tions, e.g. for security, persistency, or mobility. Although the available middleware
platforms therefore provide a solid basis for developing open, interoperable agent
systems, not all important aspects of agent development are supported equally
well. The middleware platforms provide generic abstractions for application inde-
pendent distribution and communication issues, but most of them realize a simple
task-based agent model. This approach allows decomposing the overall agent be-
haviour into smaller pieces and attaching them to the agent as needed. Addition-
ally, the tasks themselves can be implemented in an object-oriented language such
as Java allowing the software developer to easily start using the agent paradigm.
Once agent applications become more complex, another abstraction layer is needed
to support the implementation of high-level decision processes inside the agents.
Such abstractions are provided by cognitive agent architectures as described in the
next section.

3. Reasoning for Agents

To build agents with cognitive capabilities, several theories from different disci-
plines like psychology, philosophy and biology can be utilized. Most cognitive ar-
chitectures are based on theories for describing behaviour of individuals. The most
influential theories with respect to agent technology are the Belief-Desire-Intention
(BDI) model [5], the theory of Agent Oriented Programming (AOP) [31], the Uni-
fied Theories of Cognition (UTC leading to SOAR) [20, 23] and the subsumption
theory [9]. Each of these theories has its own strengths and weaknesses and sup-
ports certain kinds of application domains especially well. The Jadex reasoning
engine is based on the BDI model due to its simplicity and folk psychological
background as explained further in the following section.

2http://www.agentcities.net



146 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

3.1. BDI Foundations

The BDI model was conceived by Bratman as a theory of human practical reason-
ing [5]. Its success is based on its simplicity reducing the explanation framework
for complex human behaviour to the motivational stance [13]. This means that
the causes for actions are always related to human desires ignoring other facets
of human cognition such as emotions. Another strength of the BDI model is the
consistent usage of folk psychological notions that closely correspond to the way
people talk about human behaviour.

Beliefs are informational attitudes of an agent, i.e. beliefs represent the in-
formation, an agent has about the world it inhabits, and about its own internal
state. But beliefs do not just represent entities in a kind of one-to-one mapping;
they provide a domain-dependent abstraction of entities by highlighting important
properties while omitting irrelevant details. This introduces a personal world view
inside the agent: the way in which the agent perceives and thinks about the world.

The motivational attitudes of agents are captured in desires. They represent
the agent’s wishes and drive the course of its actions. Desires need not necessarily
be consistent and therefore may not be achieved simultaneously. A “goal delibera-
tion” process has the task to select a subset of consistent desires (often referred to
as goals). Actual systems and formal theory mostly ignore this step (with the ex-
ception of 3APL [11, 12]) and assume that an agent only possesses non-conflicting
desires. In a goal-oriented design, different goal types such as achieve or maintain
goals can be used to explicitly represent the states to be achieved or maintained,
and therefore the reasons, why actions are executed [8]. When actions fail it can
be checked if the goal is achieved, or if not, if it would be useful to retry the failed
action, or try out another set of actions to achieve the goal. Moreover, the goal
concept allows to model agents which are not purely reactive i.e., only act after the
occurrence of some event. Agents that pursue their own goals exhibit pro-active
behaviour.

Plans are the means by which agents achieve their goals and react to oc-
curring events. Thereby a plan is not just a sequence of basic actions, but may
also include more abstract elements such as subgoals. Other plans are executed
to achieve the subgoals of a plan, thereby forming a hierarchy of plans. When an
agent decides on pursuing a goal with a certain plan, it commits itself (momen-
tarily) to this kind of goal accomplishment and hence has established a so called
intention towards the sequence of plan actions. Flexibility in BDI plans is achieved
by the combination of two facets. The first aspect concerns the dynamic selection
of suitable plans for a certain goal which is performed by a process called “meta-
level reasoning”. This process decides with respect to the actual situation which
plan will get a chance to satisfy the goal. If a plan is not successful, the meta-level
reasoning can be done again allowing a recovery from plan failures. The second
criteria relates to the definition of plans, which can be specified in a continuum
from very abstract plans using only subgoals to very concrete plans composed of
only basic actions.



Jadex: A BDI-Agent System Combining Middleware and Reasoning 147

Algorithm 1 BDI-interpreter, taken from [29]

BDI-interpreter

Initialize-state();

repeat

options := option-generator(event-queue);

selected-options := deliberate(options);

update-intentions(selected-options);

execute();

get-new-external-events();

drop-successful-attitudes();

drop-impossible-attitudes();

end repeat

3.2. BDI Realization

The foundation for most implemented BDI systems is the abstract interpreter
proposed by Rao and Georgeff (see algorithm 1) [29]. At the beginning of every
interpreter cycle a set of applicable plans is determined for the actual goal or event
from the event queue. Thereafter, a subset of these candidate plans will be selected
for execution (meta-level-reasoning) and will be added to the intention structure.
After execution of an atomic action belonging to some intention any new external
events are added to the event queue. In the final step successful and impossible
goals and intentions are dropped. Even though this abstract interpreter loop served
as direct implementation template for early PRS systems [18], nowadays it should
be regarded more as an explanation of the basic building blocks of a BDI system.
Several important topics such as goal deliberation and the distinction between
goals and events are not considered in this approach.

4. Jadex Realization

The following sections present the motivation, architecture and execution model
of the newly developed reasoning engine Jadex (see also [27]). Details about the
integration of the reasoning engine into the platform are described in a separate
section. Afterwards some tools are introduced which offer extended support for
agent debugging.

4.1. Motivation and Project Background

In the context of the MedPAge project the need for an agent platform was iden-
tified that would support FIPA-compliant communication with a high-level agent
architecture such as BDI. The MedPAge (“Medical Path Agents”) project is part
of the German priority research programme 1083 Intelligent Agents in Real-World
Business Applications funded by the Deutsche Forschungsgemeinschaft (DFG). In
cooperation between the business management department of the University of
Mannheim and the computer science department of the University of Hamburg,



148 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Figure 1. Jadex abstract architecture

the project investigates the advantages of using agent technology in the context of
hospital logistics [24, 25]. The Jadex project started in December 2002 to provide
the technical basis for MedPAge software prototypes developed in Hamburg.

Addressing the need for an agent platform that supports both middleware
and reasoning, the approach chosen was to rely on an existing mature middle-
ware platform, which is in widespread use. The JADE platform [3] focuses on
implementing the FIPA reference model, providing the required communication
infrastructure and platform services such as agent management, and a set of de-
velopment and debugging tools. It intentionally leaves open much of the issues of
internal agent concepts, offering a simple task-based model in which a developer
can realize any kind of agent behaviour. This makes it well suited as a founda-
tion for establishing a reasoning engine on top of it. While the agent platform
is concerned with external issues such as communication and agent management,
the reasoning engine on the other hand covers all agent internals. Therefore the
architecture is to a large extent independent from the underlying platform.

4.2. Architecture Overview

In Fig. 1 an overview of the abstract Jadex architecture is presented. Viewed from
the outside, an agent is a black box, which receives and sends messages. Incoming
messages, as well as internal events and new goals serve as input to the agent’s
internal reaction and deliberation mechanism. Based on the results of the deliber-
ation process these events are dispatched to plans selected from the plan library.
Running plans may access and modify the belief base, send messages to other
agents, create new top-level or subgoals, and cause internal events. The reaction
and deliberation mechanism represents the only global component within Jadex.
All other components are contained in reusable modules called capabilities.



Jadex: A BDI-Agent System Combining Middleware and Reasoning 149

Figure 2. Composition of a Jadex agent

4.2.1. Agent Definition. To create and start an agent, the system needs to know
the properties of the agent to be instantiated. The initial state of an agent is de-
termined among other things by the beliefs, goals, and the library of known plans.
Jadex uses a declarative and a procedural approach to define the components of
an agent (see Fig. 2). The plan bodies have to be implemented as ordinary Java
classes that extend a certain framework class, thus providing a generic access to
the BDI specific facilities. All other concepts are specified in a so called Agent
Definition File (ADF) using an XML language that follows the Jadex meta-model
(described in [26]) specified in XML schema and allows for creating Jadex objects
in a declarative way. Within the XML agent definition files, the developer can use
expressions to specify designated properties. The language for these expressions is
Java extended with OQL constructs that facilitate e.g. the specification of queries.
In addition to the BDI components, some other information is stored in the defin-
ition files such as default arguments for launching the agent or service descriptions
for registering the agent at a directory facilitator.

The reaction and deliberation mechanism is generally the same for all agents.
The behaviour of a specific agent is therefore determined solely by its concrete
beliefs, goals, and plans. In the following each of these central concepts of the
Jadex BDI architecture will be described in detail.

4.2.2. Beliefs. One objective of the Jadex project is ease of usage. Therefore Jadex
does not enforce a logic-based representation of beliefs. Instead, ordinary Java ob-
jects of any kind can be contained in the beliefbase, allowing reuse of classes gen-
erated by ontology modeling tools or database mapping layers. Objects are stored
as named facts (called beliefs) or named sets of facts (called belief sets). Using
the belief names, the beliefbase can be directly manipulated by setting, adding, or



150 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Figure 3. Belief and belief set examples

removing facts. A more declarative way of accessing beliefs and beliefsets is pro-
vided by queries, which can be specified in an OQL-like language [4]. The beliefs
are used as input for the reasoning engine by specifying certain belief states e.g. as
preconditions for plans or creation conditions for goals. The engine monitors the
beliefs for relevant changes, and automatically adjusts goals and plans accordingly.
E.g. a belief change can trigger a goal’s creation or drop condition, or render the
context of a plan invalid leading to a plan abort.

In Fig. 3 some example belief and belief set declarations are depicted that
e.g. could be usable for realizing some kind of alarm clock agent. The belief
“alarm time” (lines 1-3) represents time in milliseconds and therefore requires
its value being of the Java class “long”. It provides already an initial fact (line
2) that will be initialized at the agent start-up. Hence the alarm time is set to
one hour in the future. For being able to check whether the alarm time has been
reached a dynamic “system time” belief is declared. Using an updaterate for this
belief leads to continuous reevaluations of the belief value (here every second).
For representing more than a single alarm time a belief set can be employed. The
“alarm times” belief set (lines 9-12) declares two alarm times as initial facts. Note
that these facts are only evaluated once and access the belief “system time” from
the beliefbase by using the reserved variable “$beliefbase”. If the number of initial
facts is unknown, it is also possible to retrieve those values dynamically. E.g. the
belief set “alarm time from db” queries a database to retrieve its initial facts.

4.2.3. Goals. Jadex follows the general idea that goals are concrete instantiations
of an agent’s desires. For any goal it has, an agent will more or less directly engage
into suitable actions, until it considers the goal as being reached, unreachable, or

01 <belief name=”alarm_time” class=”long”>
02 <fact>System.currentTimeMillis()+360000</fact>
03 </belief>
04
05 <belief name=”system_time” class=”long” updaterate=”1000”>
06 <fact>System.currentTimeMillis()</fact>
07 </belief>
08
09 <beliefset name=”alarm_times” class=”long”>
10 <fact>$beliefbase.system_time+360000*2</fact>
11 <fact>$beliefbase.system_time+360000*3</fact>
12 </beliefset>
13
14 <beliefset name=”alarm_times_from_db” class=”long”>
15 <facts>Database.queryAlarmTimes()</facts>
16 </beliefset>



Jadex: A BDI-Agent System Combining Middleware and Reasoning 151

not desired any more. Unlike most other systems, Jadex does not assume that
all adopted goals need to be consistent to each other. To distinguish between
just adopted (i.e. desired) but not yet active goals and actively pursued goals, a
goal lifecycle is introduced which consists of the goal states option, active, and
suspended [8]. When a goal is adopted, it becomes an option that is added to the
agent’s desire structure. A deliberation mechanism is responsible for managing the
state transitions of all adopted goals (i.e. deciding which goals are active and which
are just options). Some goals may only be valid in specific contexts determined by
the agent’s beliefs. When the context of a goal is invalid it will be suspended until
the context is valid again.

Based on the general lifecycle described above, Jadex supports four types
of goals, which exhibit different behaviour with regard to their processing as ex-
plained below. A perform goal is directly related to the execution of actions. There-
fore the goal is considered to be reached when some actions have been executed,
regardless of the outcome of these actions. An achieve goal is a goal in the tradi-
tional sense, which defines a desired outcome without specifying how to reach it.
Agents may try several different alternative plans, to achieve a goal of this type.
A query goal is similar to an achieve goal. Its outcome is not defined as a state
of the world, but as some information the agent wants to know about. For goals
of type maintain, an agent keeps track of the desired state, and will continuously
execute appropriate plans to re-establish the maintained state whenever needed.
More details about goal representation and processing in Jadex can be found in
[8].

Fig. 4 shows some goal declarations picking up the alarm clock agent example
again. For realizing the alarm functionality of the agent a “notify user” achieve-
ment goal (lines 5-10) is declared. It has the purpose to notify the user when the
alarm time has been reached. Hence, it has a creation condition that leads to a
goal instantiation when the alarm time is due (lines 6-8). The goal will be satisfied,
when the user is aware of the alarm (e.g. represented by a belief “user notified”),
which may be signaled to the agent by pressing some button of the alarm clock.
This is intuitively expressed with the goal’s target condition (line 9). If the user
does not respond to the alarm, the goal will be retried every ten minutes (cf.
retrydelay and exlude settings).

In response to this goal some plan has to be executed. Such a plan could
e.g. notify the user by playing one of her favorite songs. To achieve this the plan
has to ensure that the favorite song is available (e.g. as mp3 file) as well as it will
be played. For retrieving the favorite song a “retrieve song” query goal can be
used (lines 12-15), which requires as input the name of the song to retrieve (line
13) and gives back the song location (line 14). Note, that the direction attribute
is used to declare the “song” parameter as return value. Subsequent plans could
handle a “retrieve song” goal e.g. by simply fetching it from a local directory or by
downloading it from the internet. For playing the song a “play song” goal (lines
1-3) is provided. This goal is very simply as it just has one input parameter for



152 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Figure 4. Goal examples

the song file. Suitable plans supporting different sound formats could be provided
to actually play the music.

In addition to the alarm functionality, a ”keep clock adjusted” maintenance
goal (lines 17-21) could be used to ensure that the clock is in line with a reference
time. Therefore, a maintain condition is defined that is valid as long as system and
reference time do not differ more than 0.5 secs (line 19). Whenever this condition is
violated the goal will become active and trigger plan executions for synchronizing
the system clock.

4.2.4. Plans. The reasoning engine handles all events such as the reception of a
message or the activation of a goal by selecting and executing appropriate plans.
Instead of performing planning from first principles for each event, BDI systems
like Jadex use the plan-library approach to represent the plans of an agent. For each
plan a plan head defines the circumstances under which the plan may be selected
and a plan body specifies the actions to be executed. In Jadex, the most important
parts of the head are the goals and/or events which the plan may handle and a
reference to the plan body. Additionally, a context condition as well as variable
bindings can be specified in the plan head.

The agent programmer decomposes concrete agent functionality into separate
plan bodies, which are predefined courses of action implemented as Java classes.

01 <performgoal name=”play_song”>
02 <parameter name=”song” class=”MediaLocator”/>
03 </performgoal>
04
05 <achievegoal name=”notify_user” retrydelay=”600000” exclude=”never”>
06 <creationcondition>
07 $beliefbase.system_time==$beliefbase.alarm_time
08 </creationcondition>
09 <targetcondition>$beliefbase.user_notified</targetcondition>
10 </achievegoal>
11
12 <querygoal name=”retrieve_song”>
13 <parameter name=”song_name” class=”String”/>
14 <parameter name=”song” class=”MediaLocator” direction=”out”/>
15 </querygoal>
16
17 <maintaingoal name=”keep_clock_adjusted”>
18 <maintaincondition>
19 Math.abs($beliefbase.system_time-$beliefbase.reference_time)<500
20 </maintaincondition>
21 </maintaingoal>



Jadex: A BDI-Agent System Combining Middleware and Reasoning 153

01 /** Plan skeleton for an application plan. */

02 public class SomePlan extends jadex.runtime.Plan {
03

04 public void body() {
05 // Plan code.

06 }
07

08 public void passed() {
09 // Optional cleanup code in case of a plan success.

10 }
11 public void failed() {
12 // Optional cleanup code in case of a plan failure.

13 }
14 public void aborted() {
15 // Optional cleanup code in case the plan is aborted.

16 }
17 }

Figure 5. Plan body skeleton

Object-oriented techniques and existing Java IDEs can be exploited in the de-
velopment of plans. Plans can be reused in different agents, and can incorporate
functionality implemented in other Java classes e.g., to access a legacy system. To
access functionality of the Jadex system, a Java API is provided for basic actions
such as sending messages, manipulating beliefs, or creating subgoals.

The basic structure of a plan body is shown in Fig. 5. The plan body is a Java
class that extends the Jadex framework class “Plan” and hence has access to the
BDI specific methods provided by the Plan API. The domain specific behaviour of
the plan will be placed inside the mandatory body method (lines 4-6). Addition-
ally, the three methods passed() , failed() and aborted() are provided allowing a
plan to perform clean up operations (lines 8-16). These methods are invoked auto-
matically with respect to the plan’s final success state. If the body() method runs
through the passed() method is called, whereas the failed() method is called when
an uncatched exception occurs within the body() method. Finally, the aborted()
method is called, when plan processing was interrupted from outside. Two differ-
ent abort cases can be distinguished, either when the corresponding goal succeeds
before the plan is finished (i.e. its target condition is fulfilled) or when the plans
root goal is dropped.

As an example for a plan declaration in Fig. 6 the plan head (top, lines 1-6)
and plan body (bottom, lines 1-10) of a “notification” plan suitable for the above
described alarm clock agent are presented. The plan head is very simple in this
case and consists only of the obligatory body expression (line 2) that describes
how a plan body is created at runtime and how it is triggered (line 4). As the



154 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Figure 6. Plan head and body example

trigger refers to the “notify user” goal type it is applicable for each goal instance
of that type. The plan body is a Java class named “NotificationPlan” that extends
the Jadex framework class “Plan”. Inside the mandatory body() method the plan
creates and dispatches a “retrieve song” (lines 3-5) and a “play song” goal (lines
6-8). The plan will fail when either of the subgoals fail, because subgoal failures
raise BDI exceptions that need explicitly to be catched if the plan wants to proceed
execution in an error case.

4.2.5. Capabilities. For the purpose of reusability, Jadex supports a flexible module-
concept called capabilities [10], which enables the packaging of functionally related
entities (beliefs, goals and plans) into a cluster. A capability definition, written as
a separate XML document, is therefore very similar to an agent definition, and
usually represents a certain application functionality required by several different
agents (e.g., a generic negotiation mechanism). A capability provides a separate
namespace for the elements contained within, and therefore avoids name-clashes
with other capabilities. Agents can be composed of any number of capabilities,
that in turn may contain subcapabilities. For advanced settings it is even possible
to add or remove single capabilities at runtime.

Each capability exhibits to the superordinated capability a clearly defined
interface by distinguishing e.g. between goals or beliefs that can be used from the
outside, and those that are only visible to the capability itself. A fundamental
difference to the original capability concept of Busetta et al. is that to be used,
an element of an inner capability must be explicitly referenced in the scope of
the outside capability or agent (see Fig. 7). Any concrete element is internal per

01 <plan name=”notify”>
02 <body>new NotificationPlan()<body/>
03 <trigger>
04 <goal ref=”notify_user”/>
05 </trigger>
06 </plan>

01 public class NotificationPlan extends Plan{
02 public void body(){
03 IGoal retrieve = createGoal(“retrieve_song”);
04 retrieve.getParameter(“song_name”).setValue(“Jingle Bells”);
05 dispatchSubgoalAndWait(retrieve);
06 IGoal play = createGoal(“play_song”);
07 play.getParameter(“song”).setValue(retrieve.getParameter(“song”).getValue());
08 dispatchSubgoalAndWait(play);
09 }
10 }



Jadex: A BDI-Agent System Combining Middleware and Reasoning 155

Figure 7. Capability concept

default, meaning that it is visible only in the capability it is defined in. For example
internal beliefs are only accessible from plans that share the same scope (capability)
as the beliefs. To make an element accessible from the outer capability it needs
to be exported. Note that this only expresses the possibility to be used from the
outer capability. If the outer capability wants to use the exported element it has to
explicitly declare this by defining a place-holder (called reference) for the original
element. When for example a plan of the outer capability wants to access an
exported belief of the inner capability, the outer capability needs to define a belief
reference. This reference, acting as a proxy of the original element at runtime, has
to be supplied with its own symbolic name. To support usability, for the user (e.g.
a plan) it is transparent whether the element is a reference or a concrete element
because a unified view for both is provided.

Besides concrete elements a capability may also include abstract elements
that either require an element assignment from the outer capability or not (re-
quired vs. optional). If an element is abstract and optional the functionality of the
enclosing capability does not depend on that element and can be used without an
assignment for the element. Otherwise it is mandatory to provide an assignment.
E.g. abstract beliefs are a possibility to add knowledge into a capability from the
outside. A detailed description about the adapted capability concept can be found
elsewhere [7].

4.2.6. Complete Example Agent. In Fig. 8 the complete type declaration of a sim-
ple alarm clock agent (as introduced in the last section) is depicted. It has the
ability to notify a user at a specified alarm time by playing a song. In the agent tag



156 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Figure 8. Example agent definition



Jadex: A BDI-Agent System Combining Middleware and Reasoning 157

(lines 1-3) the type name “Alarmclock” and package name “jadex.examples.alarm-
clock” are defined. Additionally, the URL to the Jadex schema is declared for
validation purposes.

It consists of beliefs (lines 9-19) for the “alarm time” (lines 10-12), the dy-
namic “system time” (lines 13-15) and a flag indicating if the user has responded
to the notification (lines 16-18). The goals section (lines 21-35) contains the top-
level goal “notify user” (lines 22-27) which is created when the alarm time has
been reached. Additionally, the two subgoal types for retrieving (lines 28-31) and
playing a song (lines 32-34) are provided. The plans section (lines 37-54) contains
the corresponding plans that are capable of handling the goals. Note, that two
different plans are specified to handle a “retrieve song” goal. As no priorities are
specified for these plans, the order of declaration determines the execution order.
This means, only if the song could not be located on the hard disk (hd retrieve
plan, lines 42-45) it will be tried to load the song from the internet (web retrieve
plan, lines 46-49).

Together with the plan bodies (not shown here), the example provided in
this section can directly be executed. Therefore it is only necessary to compile the
plan classes with a normal Java compiler. Having started the JADE platform, the
Jadex remote monitoring agent (rma) allows for starting Jadex agents simply by
selecting agent models (ADFs) from a file-chooser.

4.3. Execution Model

For a complete reasoning engine several different components are necessary. The
core of a BDI architecture is obviously the mechanism for plan selection. Plans not
only have to be selected for goals, but for internal events and incoming messages
as well. To collect the incoming messages and forward them to the plan selection
mechanism a specialized component is needed. Another mechanism is required to
execute selected plans, and to keep track of plan steps to notice failures. In Jadex,
all of the required functionality is implemented in cleanly separated components.
The relevant information about beliefs, goals, and plans is stored in data structures
accessible to all these components.

Fig. 9 shows the interrelations between those components. The functional el-
ements of the execution model can also be found in the abstract BDI interpreter
presented in section 3.2. The difference between Jadex and the abstract interpreter
is, that in Jadex these functionalities are carried out independently by three dis-
tinct components (message receiver, dispatcher, and scheduler).

The message receiver has the purpose to take messages from the platform’s
message queue and create Jadex message events which are placed in the event list
(similar to the get-new-external-events() operation of the abstract interpreter). The
dispatcher continuously consumes the events from the event list and builds the
applicable plan list for each event (corresponds to the option-generator() function).
This is done by checking for all plans if the considered event or goal triggers the
plan and additionally if the plan’s pre- and context conditions are valid. Corre-
sponding plans are added to the list of applicable plans. In a subsequent step, the



158 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Figure 9. Jadex execution model

dispatcher selects plans to be executed (similar to the deliberate(options) operation)
by possibly utilizing meta-level reasoning facilities. This means that if more than
one plan is principally applicable for the given event or goal the decision process
is delegated to a user-defined meta-level reasoning plans. The meta-level reasoner
has the task to rank the plan candidates with respect to domain-dependent char-
acteristics.

The selected plans are placed in the ready list after associating the selected
plans to the corresponding events or goals, like it is done in update-intentions(selected-
options). This makes the plan aware of the goal or event to handle and allows for
reading goal or event details from within the plan body.

Finally, the scheduler takes the plans from the ready list and executes them
(corresponds to the execute() operation). Thereby, execution of plans is done step-
wise, which means that only one plan step of a single plan is executed uninterrupt-
edly. In contrast to the original approach, in which pre-defined actions are used as
plan steps, Jadex introduces the notion of dynamic plan steps, which will interrupt
a plan whenever relevant internal changes occur. Internal changes are considered



Jadex: A BDI-Agent System Combining Middleware and Reasoning 159

Figure 10. Integration mechanism

as relevant when such changes have side-effects, e.g. if a belief change triggers the
creation of a new goal.

Note, that the drop-impossible/successful-attitudes() operations of the abstract
interpreter are not part of the execution model, because in Jadex those operations
are carried out on-the-fly, whenever there are relevant changes in the agent’s beliefs.

4.4. JADE Integration

The integration of the Jadex BDI reasoning engine into JADE follows a generic
mechanism depicted in Fig. 10. It consists mainly of three distinct layers: The Host
Platform (here JADE), an Adapter Agent and the Jadex Agent which encapsulates
the BDI reasoning engine. The host platform is only capable to execute agents of
a certain type (here JADE agents). Therefore, a Jadex agent has to be wrapped
into an adapter agent which is generically done by providing necessary services for
the Jadex agent as well as for the adapter agent through small interfaces. Both
sides are aware of the other side only in terms of these interfaces to minimize
dependencies. In general the Jadex Agent Interface offers methods for performing
reasoning steps, whereas the Adapter Agent Interface provides notification and
message sending facilities.

The JADE adapter agent has the purpose to create an instance of the Jadex
engine with an agent definition file, which will be interpreted by the Jadex agent
to initialize its state. The above mentioned components are implemented in three
JADE behaviours of the adapter agent using functionalities from the reasoning
layer. In addition, there is a simple timing behaviour with the purpose to add



160 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

timeout events to the event list (e.g. when awaited messages do not arrive). Imple-
menting the functionalities into separate behaviours provides a clean design and
allows for flexible replacement of the behaviours with custom implementations,
e.g. alternative scheduling mechanisms could be tried out, using modified versions
of the corresponding behaviours.

The Jadex project facilitates a smooth transition from developing conven-
tional JADE agents to employing the mentalistic concepts of Jadex agents. All
available JADE functionality can still be used in Jadex plans. Moreover, it is pos-
sible to use some of the Jadex functionality e.g., the belief base or the goal base,
from conventional JADE behaviours. To use JADE behaviours in conjunction with
Jadex plans the message receiver behaviour supports filtering of incoming ACL
messages (see Fig. 9 at the top). It is necessary to sort out those messages which
are handled by plans and therefore have to be dispatched to the internal Jadex
system and keep the other messages available for the JADE behaviours.

Besides JADE, current work also addresses the integration of Jadex into
other host platforms. So far a standalone version and an integration for the DIET
platform [22] have been successfully realized. Support for other kinds of middleware
such as J2EE is also feasible.

4.5. Tool Support

The tool support for the Jadex BDI reasoning engine mainly focuses on the de-
bugging phase. For the development of Jadex agents ordinary Java IDEs such as
Eclipse can be used as plans are written in plain Java. For the creation of agent de-
finition files an XML editor is necessary, e.g. the XML-Buddy plug-in for Eclipse.
Provided that a sophisticated XML editor supporting strict schema validation is
used, editing becomes very comfortable as auto-completion can be utilized and
additionally specification errors are already reported at design time.

For the documentation of agent applications the Jadexdoc tool has been
developed (see Fig. 11). It is based on the Javadoc tool and extends it with agent
specific characteristics. For all application relevant agent and capability definition
files, documentation is generated that summarizes the BDI attitudes and provides
links to all used capabilities as well as ordinary Java classes (e.g. a belief class) for
which normal Javadocs are provided. Hence the tool enables an integrated view
for agent applications consisting of agents and objects.

As a Jadex agent is still a JADE agent, all available tools of JADE can
also be used to develop Jadex agents. Most of the JADE platform deals with
the external view of an agent, which does not differ between conventional JADE
agents and Jadex agents. E.g. the JADE sniffer agent allows for observing agent
communications by visualizing the message respective protocol-based interactions
and the dummy agent can be used to comfortably enter and send messages. Only
the JADE introspector agent is of limited use, because it only shows the four Jadex
standard behaviours and not the agent’s plans. To enable a comfortable testing
of Jadex agents three new tool agents have been developed: the BDI introspector,
the logger agent and the tracer tool.



Jadex: A BDI-Agent System Combining Middleware and Reasoning 161

Figure 11. Tool screenshots



162 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

The introspector’s purpose is twofold. First, it supports the visualization and
modification of the internal BDI concepts thus allowing inspection and reconfigu-
ration of an agent at runtime. Secondly, it simplifies debugging through a facility
for the stepwise agent execution. In the step mode it is possible to observe and
control each event processing and plan execution step having detailed control over
the dispatcher and scheduler. Hence it can be easily figured out what plans are
selected for an event or goal.

A big problem in debugging agent systems consists in the amount and se-
quence of outputs the agents produce typically on the console. With the help of
the logger the agent’s outputs can be directed to a single point of responsibility
at runtime. In contrast to simple console outputs, the logger agent preserves ad-
ditional information about the output such as its time stamp and its source (the
agent and method). Using these artifacts the logger agent offers facilities for fil-
tering and sorting messages by various criteria allowing a personalized view to be
created.

Third tool meant to support the debugging phase is the tracer. Based mainly
on ideas from [19] the tool offers the possibility to trace the dynamic behaviour
of agents, which means that relevant system changes like reading/writing a be-
lief, sending/receiving a message, pursuing some goal or plan are automatically
recorded and displayed. For visualization purposes either a graph structure con-
sisting of interconnected system changes or an agent-centered tree view are avail-
able. The tool can inter alia be used to understand why an agent has performed
some action (e.g. executed a plan), because the causes for the action are preserved.
Additionally, the graph-based visualization can be used to detect unwanted actions
(failures) within regular behaviour patterns.

5. Related Work

In Fig. 12, a general overview of several existing agent platforms is given with re-
spect to the dimensions application area (research vs. industrial use) and technical
focus (middleware vs. BDI approach).3 From this classification can be seen that
there currently is almost no connection between middleware and BDI systems. Es-
pecially for industrial use of agent technology, it is of importance that middleware
aspects like interoperability and security as well as aspects for rational decision
making are equally well supported. Against this background, a combination of
both research strands seems to be a promising approach.

To close the gap between middleware and reasoning two fundamentally dif-
ferent approaches exist. One possibility is to build agent platforms on top of an
established industry standard for component oriented software engineering like

3References to all depicted agent platforms can be found on the Jadex project page:
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/links.php



Jadex: A BDI-Agent System Combining Middleware and Reasoning 163

Figure 12. Classification of Agent Platforms

Java J2EE and therefore integrate agent technology in application server envi-
ronments. Typical representatives for this approach are Agentis4 and Whitestein’s
LivingSystems technology suite (LS/TS).5 The other possible approach is based on
existing (FIPA-compliant) middleware agent platforms and enhances them with
BDI-specific characteristics. Examples for this approach are Nuin [14] and Jadex.
In addition, with FIPA-JACK [33] a research approach exists, which enhances the
commercial JACK platform with FIPA communication capabilities.

Both integration techniques have different advantages and disadvantages,
hence there is not a single predominant solution. General advantages of the ap-
plication server approach are that industry-grade tools are available and can be
utilized to ensure several business critical properties like availability and fault-
tolerance. In addition, also development and management tools can be reused to
a certain degree. The main drawback of this approach is that it relies on stan-
dards for software components that have some similarities with agents, but still
need to be adapted to the agent paradigm. On the contrary, using existing agent
middleware as the foundation for reasoning has the advantage of being in line
with the FIPA-agent standards, but the available tools do not offer the same de-
gree of maturity yet. Due to the primary application domain of Jadex in which
FIPA-compliant communication is an essential criterion, Jadex originally took the
latter approach and is currently realized as a loosely coupled add-on to a mid-
dleware agent platform. Nevertheless, Jadex uses a generic integration mechanism

4http://www.agentissoftware.com/
5http://www.whitestein.com/



164 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

(as described in section 4.4) that allows for flexible adaptation to other kinds of
middleware.

Jadex and JACK

Concerning the available BDI-concepts, Jadex has many similarities with the com-
mercial JACK agent platform [17]. Therefore, Jadex will be compared with JACK
in the following in more detail.

On the conceptual level the JACK agent platform strictly adopts the BDI
interpreter cycle by Rao and Georgeff (see section 3.2) and provides a new agent
programming language (JAL) extending Java with BDI-specific file types (agents,
capabilities, events, beliefs, plans) and declarative statements. Therefore all of the
aforementioned file types including the plans are realized as JACK Framework
classes which have to be extended to build an application. JACK programs are
compiled to normal Java files with a precompiler and can subsequently be trans-
lated to Java classes using the normal Java compiler. In addition to agent-centered
BDI concepts, JACK also supports agent teams with the SimpleTeams approach
[16]. The runtime infrastructure of JACK consists of an environment for agent
execution and proprietary message transport. Management agents for yellow and
white pages services are not available. Further on, JACK offers tool support for the
development of agents with an integrated development environment (IDE) includ-
ing a graphical plan editor which allows for visual plan construction. Debugging
agent applications is alleviated with runtime tools for stepwise plan execution and
observing agent communications.

In contrast to JACK, Jadex does not adhere to the traditional BDI interpreter
in a strict manner, but defines separated responsibilities for the important parts
of the deliberation cycle. Also different from JACK, Jadex does not define a new
agent programming language, but uses a BDI metamodel defined in XML-schema
for agent definition and pure Java as implementation language for plans avoiding
the need for a precompiler. Jadex supports the same core BDI concepts (except
the team concepts) as JACK and additionally introduces several extensions. Most
interesting is the extension concerning explicit goal types, which alleviates the
disadvantage of treating goals only in the form of simple events [8] and which is
the basis for goal deliberation. Because Jadex runs on top of JADE it exhibits all
of its middleware features such as FIPA-compliant communication, management
agents for yellow and white pages services, security and persistency mechanisms.
The same applies for tool support, which means that all of the JADE tools can be
used with Jadex agents as well. Furthermore, Jadex provides additional debugging
support with the debugger and logger tools, but currently lacks visual tools for
agent development.

6. Conclusion and Outlook

This article presents an approach to the integration of an agent middleware with
a reasoning engine to combine the advantages of both strands. A motivation for



Jadex: A BDI-Agent System Combining Middleware and Reasoning 165

agent-oriented middleware and an overview of the BDI model was given, and the
design and realization of the Jadex BDI engine as an extension to the widely used
JADE agent platform was described. The Jadex system allows for the construc-
tion of rational agents, which exhibit goal-directed (as opposed to task-oriented)
behaviour. The construction of Jadex agents is based on well-established software
engineering techniques such as XML, Java and OQL enabling software engineers to
quickly exploit the potential of the mentalistic approach. The Jadex project is also
seen as a means for researchers to further investigate which mentalistic concepts
are appropriate in the design and implementation of agent systems. In addition to
its usage in context of the MedPAge project in Hamburg, several other institutes
have used Jadex to implement research systems. E.g., the Technical University of
Karlsruhe has used Jadex to implement an experimental system for representing
norms in multi-agent systems [30] and at the Delft University of Technology, Jadex
was used realize a personal travel assistant application [1].

The current version is Jadex 0.931, which can be freely downloaded un-
der LGPL license from the project homepage http://jadex.sourceforge.net/. It is
termed a beta stage release, what means that it has reached considerable stability
and maturity to be used in practical settings. Ongoing work currently focuses on
two aspects of the system: Extensions to internal concepts and additional tool
support. On the conceptual level extensions to the basic BDI-mechanisms are de-
veloped, such as support for planning, teams, and goal deliberation. In contrast
to other BDI agent systems Jadex supports an explicit and declarative represen-
tation of goals. It is planned to utilize this explicit representation by improving
the BDI architecture with a generic facility for goal deliberation which alleviates
the necessity for designing agents with a consistent goal set. Additionally, the ex-
plicit representation allows investigating task delegation by considering goals at
the inter-agent level.

Work on tools mainly addresses the usability of agent technology as a main-
stream software engineering paradigm. The tool support of Jadex currently focuses
on the testing phase supplying debugger, logger and tracer agents. To achieve a
higher degree of usability it is planned to support the design phase as well with a
graphical modeling tool based on the MDA-approach. Additionally, tools for doc-
umenting agents and deployment of multi-agent applications are being developed
[6].

Acknowledgement

This work is partially funded by the German priority research programme 1083
Intelligent Agents in Real-World Business Applications.

References

[1] M. Beelen. Personal Intelligent Travelling Assistant: a distributed approach. Master
of science thesis, Knowledge Based Systems group, Delft University of Technology,
2004.



166 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

[2] F. Bellifemine, G. Caire, and G. Rimassa. JADE: The JADE platform for mobile
MAS applications. In Net.ObjectDays 2004: AgentExpo, 2004.

[3] F. Bellifemine, G. Rimassa, and A. Poggi. JADE – A FIPA-compliant agent frame-
work. In 4th International Conference on the Practical Applications of Agents and
Multi-Agent Systems (PAAM-99), pages 97–108, London, UK, December 1999.

[4] M. Berler, J. Eastman, D. Jordan, C. Russell, O. Schadow, T. Stanienda, and
F. Velez. The Object Data Standard: ODMG 3.0. Morgan Kaufmann Publishers Inc.,
2000.

[5] M. Bratman. Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge, Massachusetts, 1987.

[6] L. Braubach, A. Pokahr, K.-H. Krempels, and W. Lamersdorf. Deployment of Dis-
tributed Multi-Agent Systems. In Fifth International Workshop on Engineering So-
cieties in the Agents World (ESAW 2004), 2004.

[7] L. Braubach, A. Pokahr, and W. Lamersdorf. Extending the Capability Concept for
Flexible BDI Agent Modularization. In Proceedings of the Third Workshop on Pro-
gramming Multiagent Systems: Languages, frameworks, techniques, and tools (Pro-
MAS05), 2005.

[8] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Representation for BDI
Agent Systems. In Proceedings of the Second Workshop on Programming Multiagent
Systems: Languages, frameworks, techniques, and tools (ProMAS04), 2004.

[9] R. Brooks. A Robust Layered Control System For A Mobile Robot. IEEE Journal
of Robotics and Automation, 2(1):24–30, March 1986.

[10] P. Busetta, N. Howden, R. Rönnquist, and A. Hodgson. Structuring BDI Agents in
Functional Clusters. In N. R. Jennings and Y. Lespérance, editors, Intelligent Agents
VI, Proceedings of the 6th International Workshop, Agent Theories, Architectures,
and Languages (ATAL) ’99, pages 277–289. Springer, 2000.

[11] M. Dastani and L. van der Torre. Programming BOID Agents: a deliberation lan-
guage for conflicts between mental attitudes and plans. In Proceedings of the Third
International Joint Conference on Autonomous Agents and Multi Agent Systems
(AAMAS’04), 2004.

[12] M. Dastani, B. van Riemsdijk, F. Dignum, and J.-J. Meyer. A Programming Lan-
guage for Cognitive Agents: Goal Directed 3APL. In Proceedings of the First Work-
shop on Programming Multiagent Systems: Languages, frameworks, techniques, and
tools (ProMAS03), 2003.

[13] D. Dennett. The Intentional Stance. Bradford Books, 1987.

[14] I. Dickinson and M. Wooldridge. Towards practical reasoning agents for the semantic
web. Technical Report HPL-2003-99, Hewlett Packard Laboratories, 2003.

[15] Emorphia Limited. FIPA-OS V2.1.0 Distribution Notes., 2001.

[16] A. Hodgson, R. Rönnquist, and P. Busetta. Specification of Coordinated Agent Be-
havior (The SimpleTeam Approach). In Proceedings of the Workshop on Team Be-
haviour and Plan Recognition at IJCAI-99, Stockholm, Sweden, 1999.

[17] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas. JACK Intelligent Agents -
Summary of an Agent Infrastructure. In Proceedings of the 5th ACM International
Conference on Autonomous Agents, 2001.



Jadex: A BDI-Agent System Combining Middleware and Reasoning 167

[18] F. Ingrand, R. Chatila, R. Alami, and F. Robert. PRS: A High Level Supervision
and Control Language for Autonomous Mobile Robots. In Proc. of the IEEE Int.
Conf. on Robotics and Automation, pages 43–49, Minneapolis, April 1996.

[19] D. Lam and K. Barber. Debugging agent behavior in an implemented agent sys-
tem. In Second International Workshop on Programming Multi-Agent Systems at
the Third International Joint Conference on Autonomous Agents and Multi-Agent
Systems, pages 45–56, New York, NY, July 20 2004.

[20] J. F. Lehman, J. E. Laird, and P. S. Rosenbloom. A gentle introduction to Soar, an
architecture for human cognition. Invitation to Cognitive Science, 4, 1996.

[21] E. Mangina. Review of Software Products for Multi-Agent Systems.
http://www.agentlink.org/resources/software-report.html, 2002.

[22] P. Marrow. The DIET project: building a lightweight, decentralised and adaptable
agent platform. AgentLink News, 12:3–6, April 2003.

[23] A. Newell. Unified Theories of Cognition. Harvard University Press, 1990.

[24] T. O. Paulussen, N. R. Jennings, K. S. Decker, and A. Heinzl. Distributed Patient
Scheduling in Hospitals. In G. Gottlob and T. Walsh, editors, Proceedings of the Eigh-
teenth International Joint Conference on Artificial Intelligence (IJCAI-03). Morgan
Kaufmann, 2003.

[25] T. O. Paulussen, A Zöller, A. Heinzl, A. Pokahr, L. Braubach, and W. Lamersdorf.
Dynamic Patient Scheduling in Hospitals. In M. Bichler, C. Holtmann, S. Kirn,
J. Müller, and C. Weinhardt, editors, Coordination and Agent Technology in Value
Networks. GITO, Berlin, 2004.

[26] A. Pokahr and L. Braubach. Jadex User Guide, Release 0.921, 2004.

[27] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: Implementing a BDI-
Infrastructure for JADE Agents. EXP – in search of innovation, 3(3):76–85, 2003.

[28] S. Poslad and P. Charlton. Standardizing Agent Interoperability: The FIPA Ap-
proach. In M. Luck et al., editor, 9th ECCAI Advanced Course, ACAI 2001 and
Agent Links 3rd European Agent Systems Summer School, EASSS 2001, Prague,
Czech Republic, July 2001, pages 98–117. Springer-Verlag: Heidelberg, Germany,
2001.

[29] A. Rao and M. Georgeff. BDI Agents: from theory to practice. In V. Lesser, edi-
tor, Proceedings of the First International Conference on Multi-Agent Systems (IC-
MAS’95), pages 312–319, San Francisco, CA, USA, 1995. The MIT Press: Cam-
bridge, MA, USA.

[30] T. Schubert. Normen zur Überwachung und Steuerung autonomer Multi-Agenten
Systeme. Diplomarbeit, Institut für Programmstrukturen und Datenorganisation,
Fakultät für Informatik, Universität Karlsruhe (TH), 2004. (in German).

[31] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92, 1993.

[32] Tryllian Solutions B.V. The Developer’s Guide, 2004.

[33] K. Yoshimura. FIPA JACK: A plugin for JACK Intelligent Agents. Technical report,
RMIT University, 2003.



168 Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Information about Software

Software is available on the Internet as:

( ) prototype version
(x) full fledged software (freeware), version no.: 0.931
( ) full fledged software (for money), version no.:
( ) Demo/trial version
( ) not (yet) available

Internet address:

Description of software: http://jadex.sourceforge.net
Download address: http://sourceforge.net/projects/jadex

Contact person for question about the software:

Name: Lars Braubach / Alexander Pokahr
email: {braubach — pokahr}@informatik.uni-hamburg.de

Lars Braubach, Alexander Pokahr and Winfried Lamersdorf
Distributed and Information Systems Group
Computer Science Department, University of Hamburg
Vogt-Kölln-Str. 30, 22527 Hamburg
Germany
e-mail: {braubach, pokahr, lamersd}@informatik.uni-hamburg.de



Component Agent Framework for Non-Experts
(CAFnE) Toolkit

Gaya Jayatilleke, Lin Padgham and Michael Winikoff

Abstract. Developing agent-oriented systems is still a difficult task. However,
a component-based approach can help by supporting both modular modifica-
tion of existing systems and construction of new systems from existing parts.
Component Agent Framework for non-Experts (CAFnE) is such a framework
that uses concepts from model-driven development and component based soft-
ware engineering to allow domain experts to easily assemble agent systems.
Here we look at the implementation of the framework in the form of the
CAFnE toolkit that provides the domain experts with the necessary tools to
build and modify agent applications.

1. Introduction

Agents are a powerful technology with many significant applications, both demon-
strated and potential [12, 13]. However, building and modifying agent systems
currently requires substantial expertise in one or more agent development plat-
forms. The complex domains where agents are used often have requirements that
change as the understanding of the system grows. Agent systems are inherently
modular and well suited to the gradual development of the system as specialised
situations are recognised and appropriate behaviour specified. Typically domain
experts (e.g. meteorologists, scientists, accountants) or users identify and require
these changes once the system is deployed. The need for an agent software devel-
oper to make these modifications slows down the evolution of the system, as well
as increasing the cost. Our vision is to develop a framework that facilitates domain
experts themselves in making modifications to a deployed system, in order for it to
better fit needs which are identified as the system is used. This paper describes the
Component Agent Framework for non-Experts (CAFnE) Toolkit which supports

This work was supported by the Australian Research Council (Linkage Grants LP0347025 and
LP0453486) in collaboration with the Australian Bureau of Meteorology and Agent Oriented
Software Pty. Ltd. We would also like to thank the reviewers for their valuable comments.



170 Gaya Jayatilleke, Lin Padgham and Michael Winikoff

this ongoing modification of an application by domain experts. The Toolkit is also
used by developers in the initial application development. The motivation for this
work comes from the experience in working with several groups of domain experts
and in particular the meteorologists we worked with in developing a weather alert
system described in [16].

The Toolkit is based on an underlying framework where agent systems are
made up of well defined small components, with structured support for modifying
or adding these in well defined ways. For example, assume that we have a definition
for a goal, which is based on a description of the world in terms of a set of attributes.
A domain expert wishing to add a new goal could then be presented with a menu
of the attributes from which to choose a combination that specifies the goal state.
In order to build plans to achieve this goal, the domain expert can be presented
with the set of existing actions and (sub)goals which affect the relevant attributes.

The components within our framework are of a relatively fine granularity in
order to support the domain experts in the required ways. Unlike components in
traditional Object Oriented Software Engineering, these are not reusable binary
units of composition, as supporting code reuse is not our primary objective. The
purpose of our components is to allow structured and guided modification of an
application in appropriate ways.

Some of the components we use (e.g. plans, agents, goals) are an integral
part of existing agent development platforms, but others (e.g. actions, protocols,
environment) are more implicit. Making them explicit in our tool assists the agent
software developer in building well structured applications that lend themselves
to ongoing modification as the application develops in scope and complexity.

Entity

{Attributes}
Entity

 {Attributes}

Entity

{Attributes}

Environment

Beliefs
(View)

Trigger
(Events & Goals)

Plan

Step

Agent A

StepStepAction

Message

TriggerAgent B

Figure 1. Simplified model of an agent in our framework

Our starting point for component definition was the smart framework of
Ashri and Luck [15]. However we have modified and extended this framework based
on a case study of a meteorological application, typical of the kind of system we



Component Agent Framework for Non-Experts (CAFnE) Toolkit 171

aim to support. We have excluded the smart component types that correspond
to core functions of an agent platform, such as the action selection function. Such
components are provided by the agent platform and are not usually modified by
application developers, let alone domain experts, so are irrelevant for our purposes.
Definitions of the application-specific component types, such as goals and plans,
have been modified in some cases based on our explorations of actual needs within
the example meteorology application. Figure 1 shows this simplified model of an
agent that we use in our framework. The components in this model are described
in section 2.

In describing the CAFnE toolkit we draw on the meteorology application to
illustrate and exemplify the functionality of CAFnE. We provide a brief description
of this application in order to support our later examples. In the rest of the paper
we then describe our underlying component model, the CAFnE toolkit and how it
is used to both build and modify an agent system. Finally we compare our work
to that of others and describe areas of ongoing and future work.

1.1. Meteorology Alerting System

Currently, human forecasters receive a large range of information from many
sources such as radar, automated weather stations, lightning, and volcanic ash
advisories. The weather alert system1 [16] aims to reduce the information over-
load experienced by human forecasters by filtering information and automatically
generating a range of alerts.

The system receives information from a range of sources including:

• Automated Weather Stations (AWS) which produce regular readings includ-
ing temperature, pressure, and wind speed and direction.

• Terminal Aerodrome Forecasts (TAF) which are regularly-issued forecasts for
airports, and contain pressure and temperature predictions.

• Thunderstorm alerts.

The system is structured as an open agent system implemented in JACKTM

[5] where each agent subscribes to information sources. For example, one of the
agent types subscribes to AWS and TAF information, and checks for consistency
between the forecasts (TAF) and the actual weather readings (AWS). If a signifi-
cant inconsistency is detected it sends an alert event. Forecasters’ GUIs subscribe
to alert events. Example situations that result in alerts are inconsistencies between
forecasts (TAF) and data readings (AWS) and extreme weather conditions such
as high wind speed or thunderstorms.

1The weather alert system is part of the research project Open Agent Architectures for Intelligent
Distributed Decision Making which is funded by the Australian Research Council (Linkage Grant
LP0347025, 2003-2005) and is joint work with the Australian Bureau of Meteorology (Australia’s
national weather service, www.bom.gov.au) and Agent Oriented Software Pty. Ltd. (www.agent-
software.com).



172 Gaya Jayatilleke, Lin Padgham and Michael Winikoff

Application Instances

<<instance of>>

VicWAnalyzer

MyWeatherData ProcessAlert_1

WindAlert_1

<<instance of>>

M0

Type Instances

<<instance of>>

WeatherAnalyzer

WeatherData ProcessAlert

WindAlert

<<instance of>>

M1

Component Types

Agent    Belief    Trigger   Plan  Step
M2

Domain Dependent Platform Independent

Domain and Platform Independent

Domain and Platform Dependent

Figure 2. Layered Component Definitions

The key issues include ensuring that the system is resilient to various forms
of failure (i.e. is robust); reducing “alert pollution”, that is trying to avoid over-
loading the human forecasters with too many alerts whilst ensuring that essential
information is delivered; and ensuring that the system is extensible.

This application has in fact undergone a range of developments since the
initial implementation, and we are in the process of modelling these in CAFnE as
they occurred in practice, as a form of partial evaluation of the toolkit.

2. Understanding the Toolkit

In order to understand how the CAFnE toolkit works, it is important to have an
idea about the underlying model that the toolkit is based on.

2.1. Component Model

Based on the simplified agent model shown in Figure 1 and the outcome of the
analysis of the weather application (refer to section 1.1) we found a basic set of
components that can be used to define and build an agent application. This set
of component types comprise: attribute, entity, environment, goal, event, trigger,
plan, step, belief and agent. In order to use these basic component types in a way
that resolves the issues stated in section 1, we adopt a model driven approach.

The components are defined in a layered manner similar to the levels M0,
M1 and M2 defined in the Model Driven Architecture (MDA) of the Object Man-
agement Group (OMG). Figure 2 shows the levels in our model (left side) and
examples of entities in each layer (right side). The name of the corresponding
MDA level name is given in a circle. It is important to note that we have not
defined our levels using the Meta Object Facility (MOF) on which the MDA is



Component Agent Framework for Non-Experts (CAFnE) Toolkit 173

based on [14]. A rigorous comparison of the MDA levels and our levels is out of
the scope of this paper and we leave it as future work.

At the meta-meta level (M2 equivalent) we define the domain-independent
generic component types found in our study. These generic types are then used in
the meta level (M1 equivalent) to define domain dependent component types. For
example, using the M2 level component type Agent we can define a WeatherAn-
alyzer type at the M1 level in the meteorology application domain. The M0 level
defines the runtime components of the system which are bound to a domain as well
as a runtime platform. These components are defined based on the M1 level type
instances using instantiation. For example an instance of the WeatherAnalyzer
type could be created at runtime as VicWAnalyzer.

We use XML DTD and XML as languages for providing definitions at the
M2 and M1 levels respectively2. The reasons for selecting XML as the definition
language for components are three fold. As stated earlier, our interest is in defining
components at a descriptive level rather than at a platform level. For this XML
provides an inherently structured language for specifying the anatomy of each
component. This is also one of the reasons for deciding against a formal language
such as Z (“Zed”) [21] (used by smart for defining its components) which is more
suitable for defining process than structure. Secondly, using technologies such as
XSLT (XSL-Transformations) it is easier to transform the XML definitions of the
components to executable code. This process is shown in Figure 3. The XML com-
ponent definitions generated by the top level development tool can be converted
into executable code of an existing agent programming language by the Transfor-
mation module. This way we are able to leverage an existing agent platform for
executing our component agents. For example, in our initial implementation of
CAFnE, we are transforming the component definitions to JACK agent language
[5] code. Thirdly, XML is well supported by tools and is also well established in
mainstream software engineering.

In the rest of the section we provide the XML DTD definitions and a brief
description of each base component type (M2 level). Interested readers can find a
more comprehensive description and examples in [11].

2.1.1. Attributes, Entities and Environments: A defining characteristic of agents
is that they are situated in an environment (usually highly dynamic). Therefore
we need an effective way to model and represent the Environment. Our definition
of an Environment is with respect to an agent in the system and not with respect
to an observer of the system. smart provides two environment definitions: as a
set of Attributes; or as a set of Entities, where an Entity is a group of Attributes.
Based on the above we define an Attribute type as a tuple:

<!ELEMENT Attribute (%ID;)>

<!ATTLIST Attribute Type CDATA #REQUIRED>

<!ENTITY % ID "(#PCDATA)">

2See http://www.w3.org/TR/2004/REC-xml-20040204/ for a specification of XML and DTD



174 Gaya Jayatilleke, Lin Padgham and Michael Winikoff

Where ID refers to a unique identifier used to identify an Attribute. Type refers
to the domain the Attribute value belongs to. An Entity can be defined as being
a collection of Attributes:
<!ELEMENT Entity (Attribute)+>

<!ATTLIST Entity ID CDATA #REQUIRED>

2.1.2. Goals: A goal can be seen as a set of attributes that describes a desired state
of the world that the agent needs to bring about, so long as a failure condition is
not satisfied [23]. Hence a Goal can be defined as:
<!ELEMENT Goal (Attributes, Success?, Failure?)>

<!ELEMENT Attributes (Attribute+)>

<!ELEMENT Success (#PCDATA)>

<!ELEMENT Failure (#PCDATA)>

<!ATTLIST Goal ID CDATA #REQUIRED>

Where ID is a “Goal Identifier” used to identify a goal and Success and Failure
are (optional) boolean expressions that state the success and failure conditions of
the Goal respectively.

2.1.3. Events: An Event is a notification of a certain state of the agent or of its
environment. Based on our definitions, an Event type can be defined as:
<!ELEMENT Event ((Attributes|Entities)+, Step?)>

<!ELEMENT Attributes (Attribute+)>

<!ELEMENT Entities (Entity+)>

<!ELEMENT Step (#PCDATA)>

<!ATTLIST Event ID CDATA #REQUIRED>

where the Attributes and Entities describe the state being notified by the Event
and the optional Step (see section 2.1.5 for Step definition) provides a way to
specify a reflexive action. A reflexive action is when an action is executed directly
as a result of an event occurrence without invoking a plan.

We also define a Trigger which invokes a plan (see section 2.1.4 for the de-
finition of a plan). A Trigger can be either an Event or a Goal, This is only an
addition to our terminology and not a component in its own right.

2.1.4. Plans: A Plan responds to a predefined Trigger (i.e. achieves a Goal or
handles an Event) by executing a sequence of “steps” (a step is a generalised form
of an action defined in section 2.1.5). Based on this definition we represent a Plan
as:
<!ELEMENT Plan (Context, Steps)>

<!ELEMENT Context (#PCDATA)>

<!ELEMENT Steps (Step+)>

<!ATTLIST Plan ID CDATA #REQUIRED>

<!ATTLIST Plan Trigger_ID CDATA #REQUIRED>

Where Context is a boolean expression that specifies the state in which this plan is
applicable and Steps specify the sequence of steps to be executed by the plan. The
parameters ID and Trigger ID refer to the identifier of the plan and the identifier
of the Trigger being handled by the plan respectively.



Component Agent Framework for Non-Experts (CAFnE) Toolkit 175

2.1.5. Steps: A Step is an atomic process that changes the internal or external
environment of the agent. This is a generalisation of an Action which in our model
is a special Step type that changes the external environment. Other Step types
include belief revision, firing sub goals, messaging and logical conditions. A Step
can be formalised as below:
<!ELEMENT Step (Input*, Output*, Instructions, Outcome)>

<!ELEMENT Input (Attribute+)>

<!ELEMENT Output (Attribute+)>

<!ELEMENT Instructions (#PCDATA)>

<!ELEMENT Outcome (#PCDATA)>

<!ATTLIST Step ID CDATA #REQUIRED>

<!ATTLIST Step Type (action | trigger | revision ...) #REQUIRED>

Where Input specifies which Attributes are required to carry out the step (e.g.
WindSpeed). Output specifies a set of attributes that will be bound to values as a
result of the step execution. Outcome is a post condition of the step represented
as a boolean expression in terms of the beliefs. Instructions specify the execution
process of the step; i.e. the code that implements the step.

2.1.6. Beliefs: An agent’s Beliefs are used to store the agent’s view of its environ-
ment, as well as its internal state. We use the relational model to structure the
Attribute tuples that represent beliefs. Hence a Belief set can be defined as:
<!ELEMENT Belief (Attribute+, Keys)>

<!ELEMENT Keys (Key+)>

<!ELEMENT Key (#PCDATA)>

<!ATTLIST Belief ID CDATA #REQUIRED>

Where the set of Attributes (denoted by Attribute+) defines a tuple in the Belief
set and the Keys define a subset of the attributes that acts as a key.

2.1.7. Agent: An agent in our framework is a collection of triggers (goals and
events), plans and beliefs. Hence an agent type in our model can be defined as
below:
<!ELEMENT Agent (Triggers+, Plans+, Beliefs+)>

<!ELEMENT Triggers (Handles*, Posts*)>

<!ELEMENT Handles (Event_ID | Goal_ID)+>

<!ELEMENT Posts (Event_ID | Goal_ID)+>

<!ELEMENT Event_ID (#PCDATA)>

<!ELEMENT Goal_ID (#PCDATA)>

<!ELEMENT Plans (Plan_ID)+>

<!ELEMENT Plan_ID (#PCDATA)>

<!ELEMENT Beliefs (BeliefSet_ID)+>

<!ELEMENT BeliefSet_ID (#PCDATA)>

<!ATTLIST Agent ID CDATA #REQUIRED>

2.2. Toolkit Design

The CAFnE (Component Agent Framework for non-Experts) toolkit that supports
the above model driven components, consists of three main modules.



176 Gaya Jayatilleke, Lin Padgham and Michael Winikoff

Transformation Rule
(as XSLT)

Transformation Rule
(as XSLT)

Executable Agent Code

XML Component
Definitions

XML Component
Definitions

Domain Specific
Component

Definitions (in XML)

XML Component
Definitions

XML Component
Definitions

Component Type
Definitions

(as XML DTD)

Transformation Rules
(as XSLT)

Transformation
Module

CAFnE Development Tool

Transformation Rule
(as XSLT)

Transformation Rule
(as XSLT)

Executable Binary
Components

Transformation
Configuration

(as XML)

UI Module

Component Definition Generation
Module

Figure 3. An Overview of the Component Toolkit

1. UI Module
2. Component Definition Generation (CDG) Module
3. Transformation Module

The UI Module allows the user to easily specify domain specific instances
(i.e. M1 level components) of the base component types, with minimal or no use
of complex programming constructs. Although we use an XML based specification
to define these components, the users do not write XML or require any XML knowl-
edge. We believe that, in addition to having a simple and clear set of component
definitions, a smart GUI plays a major role in making agent development more
accessible to non-experts. Although the UI Module of the currently implemented
prototype is limited in this aspect, we intend to improve it in the future. A more
detailed example of how the UI Module is used to encode an agent application is
covered in section 3.

The Component Definition Generation (CDG) Module is responsible for gen-
erating the appropriate XML specifications for the components defined by the
users via the UI Module. In other words, the output of the CDG Module is an
XML file that complies to a specific DTD for each component that the user has
defined using the UI Module.



Component Agent Framework for Non-Experts (CAFnE) Toolkit 177

Example: Consider an Event type instance called “envWindData” that noti-
fies an agent about the wind speed at a given location on a given date and time.
Following is the XML specification for this event generated by the CDG Module.

<Event ID="envWindData">
<Attributes>
<Attribute Type="String">Location</Attribute>
<Attribute Type="int">WindSpeed</Attribute>
<Attribute Type="String">Date</Attribute>
<Attribute Type="String">Time</Attribute>
</Attributes>

</Event>

The CDG Module saves each component specification as an XML file named
as “[component ID].XML”. In an actual CAFnE project these files are saved under
a special folder named “Definitions” inside the relevant project folder.

The Transformation Module is one of the key apparatus in our model driven
component based development. It is used to transform the platform independent
XML specifications to an executable agent language code. In a nutshell, this is
achieved by applying a set of XML-Transformations (XSLT) to the XML compo-
nent specifications generated by the CDG Module. However, it is not a straight
forward process as writing a set of XSLT scripts. The main challenge is the number
of transformations required to obtain the relevant target platform constructs from
the XML component specifications. One issue is that there is not always a one-to-
one relationship between a CAFnE component and a target platform construct.
This is mainly due to the variations in existing BDI agent platforms such as JACK
and Jadex. For example, to implement a Goal defined in CAFnE, both an event
and a plan in JACK are required. Therefore the Transformation Module needs to
know which transformations are to be applied to a given component specification
to obtain the required target platform constructs. One way to achieve this is to
hard code this into the Transformation Module. This has the obvious disadvan-
tage of needing a separate Transformation Module for each target platform. We
have taken a different approach, where transformation settings for a given tar-
get platform are provided as input to the Transformation Module. This is shown
in Figure 3 as “Transformation Configuration” which is an XML file that speci-
fies the transformations applicable for a given component specification and also
some of the output details as file name extensions. A part of a ‘Transformation
Configuration” file for generating JACK agent language code is shown below:

<Transformation>
<module type="Agent">
<T outputExt="agent" prefix="" xslFile="agent.xsl"/>

</module>
<module type="Plan">
<T outputExt="plan" prefix="" xslFile="plan.xsl">

<Filter xslFile="Plan_Beliefs.xsl"/>



178 Gaya Jayatilleke, Lin Padgham and Michael Winikoff

envWindData.xml

(A CAFnE Event definiton)

envWindData.event

(A JACK Event definiton)

Transformation

<T outputExt="event" prefix="" xslFile="event.xsl"/>

Figure 4. A Simple Transformation

<Filter xslFile="Plan_Trigger.xsl"/>
<Filter xslFile="Plan_Revision.xsl"/>
<Filter xslFile="Plan_Message.xsl"/>
<Filter xslFile="Plan_Action.xsl"/>

</T>
</module>
<module type="Event">
<T outputExt="event" prefix="" xslFile="event.xsl"/>
<T outputExt="plan" prefix="" xslFile="step_Plan.xsl"/>

</module>
...
...

</Transformation>

A <module> tag refers to the component type the transformation is applicable
to and a <T> tag contains the details of of the transformation for a given <module>.
The “xslFile” attribute in the <T> tag points to the XSLT script that needs to be
applied by the Transformation Module. The output of applying a single transfor-
mation listed by a <T> tag is a single file in the target agent platform (see Figure
4).

A <Filter> tag refers to a filter (cascaded transformation) process within
a transformation. This is useful in breaking an otherwise long, complex transfor-
mation into small manageable transformations. This helps a developer who has to
write these transformations, to easily decompose them into smaller transforma-
tions. For example, in the above configuration file, a Plan type is transformed to
JACK code using five cascaded transformations, listed as filters, that each trans-
forms a specific aspect of the Plan specification to JACK agent language code.
Both types of transformations (i.e. direct and filter based) are implemented in
the CAFnE Transformation Module using the Xalan-Java library for XSLT and
XPath 3. The XSLT script “event.xsl” shown in Figure 4 is listed below to give
the reader an idea of a simple XSLT script in CAFnE used for generating JACK
agent language code.
<xsl:stylesheet xmlns:xsl="http://www.w3.org/..." version="1.0">

<xsl:output method="text" indent="no"/>

<xsl:template match="Event">

public event <xsl:value-of select="@ID"/> extends MessageEvent

3http://xml.apache.org/xalan-j/



Component Agent Framework for Non-Experts (CAFnE) Toolkit 179

{

#set behavior ApplicableChoice first;

<xsl:apply-templates select="Attributes"/>

public boolean _$pseudo;

<xsl:variable name="attNum">0</xsl:variable>

#posted as

fire(<xsl:for-each select="//Attributes/Attribute">

<xsl:value-of select="@Type"/> a<xsl:number count="Attribute"/>

<xsl:if test="position()!=last()">, <xsl:text>&#x20;</xsl:text>

</xsl:if> </xsl:for-each>, boolean _pseudo)

{

<xsl:for-each select="//Attributes/Attribute">

<xsl:value-of select="."/>=a

<xsl:number count="Attribute"/>;

</xsl:for-each>_$pseudo=_pseudo;

<xsl:if test="not(boolean(//Event/Step))">

_$pseudo=false;

</xsl:if>

}

}

</xsl:template>

<xsl:template match="Attributes">

<xsl:apply-templates select="Attribute"/>

</xsl:template>

<xsl:template match="Attribute">

public <xsl:value-of select="@Type"/><xsl:text>&#x20;</xsl:text>

<xsl:value-of select="."/>;</xsl:template>

</xsl:stylesheet>

A developer needing to transform a CAFnE application to a specific agent
platform (e.g. Jadex [18]) needs to write a new set of XSLT scripts and update
the “Transformation Configuration” file to reflect the applicable transformations
for each component type to obtain the correct set of executable code. Once these
files are provided, a non-Expert using the CAFnE tool can specify, generate and
transform component definitions via the same CAFnE user interface.

3. Using the CAFnE Tool to Build and Modify Agents

In this section we take a more detailed look at the UI Module of the CAFnE
toolkit. First we look at the steps involved in building an agent application using
the toolkit. Then we look at five detailed examples of how an existing CAFnE
based agent application can be easily modified using the tool.

3.1. Building an Agent Application

Building an application within the CAFnE framework can be broken down into
four broad steps. It is important to note that CAFnE does not enforce a particular



180 Gaya Jayatilleke, Lin Padgham and Michael Winikoff

methodology for arriving at a design for the agent application. However due to its
foundations in BDI principles, we recommend the use of a mature methodology
which supports the design of BDI agents, such as Prometheus4[17] to be used as
a guideline. The four steps are as follows:

1. Visual Modeling
2. Component Encoding
3. Transformation
4. Compilation in target platform

3.1.1. Step 1: Visual Modeling: The first step in developing an agent system in our
framework is to design the overall structure of the multi-agent system, and of the
agent types in the system. The most effective way to achieve this is to use a tool
that allows visual manipulation of components. The current version of CAFnE UI
Module does not provide this facility yet and hence we use the Prometheus Design
Tool (PDT)5 for this purpose. We intend to integrate the visual modeling aspects
of the PDT into the CAFnE tool in the future.

Using the visual modeling features provided, a user can design an agent ap-
plication by manipulating the various components visually. As we have provided a
clear set of component types and their relationships, it is easier to integrate them
visually to obtain a skeleton application based on component type instances. Pro-
viding the finer internal details of the components is achieved in step 2, Component
Encoding.

PDT allows the user to drill down and look at the definitions diagrammati-
cally at various levels. While it is not feasible to describe the many features of PDT
here, we provide an overview of how the Weather Alert application is designed in
PDT.

Example 1: Designing of the Weather Alert System
The current version of the Weather Alert system built using the CAFnE frame-
work is a simpler version of the system described in section 1.1, which is the one
currently being deployed. The system consists of three types of Agents:

• WeatherAnalyzer: This Agent type receives wind speed readings as an Event
type called envWindData from the environment. The WeatherAnalyzer agent
type processes this data by firstly classifying the Strength of the wind speed
as HIGH, MID or LOW based on a set of threshold values stored in a be-
liefset. Secondly by looking at past wind readings stored in a beliefset, it
also determines if the wind speed is increasing or decreasing (referred to as
WindTrend). Finally, it sends these details to an Alerter agent type using an
Event (called NotifyWindData).

4While Prometheus is not intended for non-experts, using it as a guide in the design process can
help in the systematic development of an agent system
5PDT is a supporting design tool for the Prometheus agent development methodology; it is freely
available from http://www.cs.rmit.edu.au/agents/pdt



Component Agent Framework for Non-Experts (CAFnE) Toolkit 181

WeatherAnalyser NotifyWindData Alerter

RegionalWindAlert

RegionalWeatherAgent

Agent Trigger

envWindData

Percept

Figure 5. Application Overview

• Alerter: This Agent type is responsible for notifying the various regions6 un-
der the weather system’s surveillance. Each of these regions are represented
by an Agent of type RegionalWeatherAgent. The Alerter Agent notifies the
RegionalWeatherAgent Agents of the wind level based on a notification crite-
ria for each region. For example, an alert is sent to the RegionalWeatherAgent
for the Victoria region if there have been no alerts sent in the past 10 minutes
and if the wind speed is both HIGH and increasing.

• RegionalWeatherAgent: These Agents represent each region under the Weather
system’s watch. At present, these Agents are responsible for displaying an
alert to the meteorologist, formatted based on the severity of the alert.
We used the visual modeling utilities in PDT to design the above application.

The resulting system overview diagram is shown in Figure 5. The three types of
Agents in the system and events passed between them are also shown. A drilled
down view of the Agent type Weather Analyzer with its internal components is
shown in Figure 6.

3.1.2. Step 2: Component Encoding: The objective of this step is to provide the
finer details of the components identified in visual modeling phase. This is done
using the CAFnE UI Module shown in Figure 7.

The main window of the CAFnE UI Module shown in Figure 7 is populated
with the component definitions from our Weather Alert System. It is important
to understand the functions of the two tree-view windows on either side of the
main window. The tree window on the right (called the “Agent World”) lists all

6The regions are the various states of Australia.



182 Gaya Jayatilleke, Lin Padgham and Michael Winikoff

UpdateWindHistory

TriggerenvWindData
Percept

ProcessWindData

UpdateWindHistory_New UpdateWindHistory_Old

UpdateLatestWindData

WindInfo LatestWind WindStabilityParams

UpdateWindTrend

UpdateLatestWind

NotifyWindData

BeliefSet Plan

UpdateWindTrendData

Figure 6. WeatherAnalyzer Agent

the Attributes and Steps used by the agent application. These are the two basic
component types which the other component types (such as Plans, Events, Goals,
and Agents) are based on.

Attributes can be added and updated freely (using the New menu option) by
a user. It is essential that all Attributes used in the application are defined prior to
usage. Grouping of Attributes as Entities is not supported in the current version
of the toolkit and will be included in the future.

The bottom half of the right tree window lists all the Steps used in the
application. As can be seen, Steps are categorized as one of Belief Steps (which can
add, read, update or remove information in belief data), Message Steps (including
a send step for sending messages), Trigger Steps (including raise and subgoal
steps for firing triggers in asynchronous and synchronous modes), Logical Steps
(include condition step for expressing boolean expressions) and Action Steps. All
Step categories apart from Action are generic to all agent applications. Hence
those are built into the CAFnE tool. However Action Steps are domain specific
since they are concerned with the environment in which the application is run.
Therefore Actions need to be provided for each application-domain separately.

Action steps can encapsulate complex executable code, which is normally de-
veloped by expert developers. The idea here is for an expert developer to provide
the non-Expert with a set of domain specific Action Steps that can be utilized in



Component Agent Framework for Non-Experts (CAFnE) Toolkit 183

Figure 7. CAFnE Toolkit

formulating plans7. Therefore Actions (Steps in general) provide a level of granu-
larity for the non-experts to encode plans that can solve domain problems, without
delving into complex programming. However, the framework does allow the use of
target platform code (as in Java or JACK) as Steps. This provides the flexibility
for the users who can program in these languages. In the current version, each
action is implemented as a Java class. The framework does not enforce a certain
way of creating Actions as long as they can be invoked within a Plan and adhere
to the Step definition given in Section 2.

Figure 8 shows the XML Step definition for findWindStrength action and its
Java class implementation. The findWindStrength Step is used to find the Strength
of a wind speed reading by comparing the speed to an upper bound value (above
which the Strength is set to HIGH) and a lower bound value (below which the
Strength is set to LOW). For each input and output Attributes of the Action,
there is a corresponding set or get method in the class. Further, each Action class

7There might be cases where Actions can be reused across domains. In either case, Actions need
to be developed by an expert developer.



184 Gaya Jayatilleke, Lin Padgham and Michael Winikoff

<Step ID="findWindStrength" Type="action">
<Input>

         <Attribute Type="int">WindSpeed</Attribute>
   <Attribute Type="int">WindStrength_LowerBound</Attribute>
   <Attribute Type="int">WindStrength_UpperBound</Attribute>
</Input>
<Output>
   <Attribute Type="String">WindStrength</Attribute>
</Output>

</Step>

public class findWindStrength {
    private int WindStrength_LowerBound;
    private int WindStrength_UpperBound;
    private String WindStrength;
    private int WindSpeed;

    public findWindStrength() {...}
    public void setWindSpeed(int wSpeed){...}
    public void setWindStrength_LowerBound(int lBound){...}
    public void setWindStrength_UpperBound(int uBound){...}
    public String getWindStrength(){...}

    public void execute(){...}
}

XML Definition of findWindStrength Action Java implementation of findWindStrength Action

Figure 8. Step Specification

contains a special execute method that carries out the processing required by the
Action. All Actions used by the CAFnE toolkit are listed in a file named Steps.xml,
which the toolkit uses to list the available actions. A developer who requires to
add new Actions to CAFnE needs to first create the necessary Java classes and
then include entries into the Steps.xml file, similar to the one on the left side of
Figure 8.

The left hand side tree window (called the “Agent Application”) in Figure
7 shows the various component instances, grouped at the top level based on the
time of the development phase when they are defined. Under Design Time you
find the type instances of the five base component types (Plan, Belief, Goal, Event
and Agent). Under Runtime Initialization you find the definitions for the run-time
instances of Agent types. This window provides easy access to all the component
instances in the application for maintenance purposes. Some of the many features
available to users when defining these component instances are discussed in ex-
amples below. As stated in section 2.2, the component instances defined here are
saved as XML files in the relevant project folder.

Once all the component type instances defined in the visual modeling step
are encoded as CAFnE constructs using the UI Module, the application is ready to
be transformed. The two examples given below show how the CAFnE UI Module
is used to create an Event and an Agent.

Example 2: Defining the Event type NotifyWindData
The Event type NotifyWindData is used by the Agent type WeatherAnalyzer to
notify the Agent type Alerter of the recently received wind data (see Figure 5).
NotifyWindData needs to contain data about the location, date, time, strength and
wind trend of the recent wind reading. Hence it needs to contain the Attributes
that represent these different data.

The Event type creation frame in CAFnE UI Module is shown in Figure 9,
which can be invoked via the “Tool” sub menu on top main menu bar. As all
the Attributes are defined, a user only has to provide an Event name and then



Component Agent Framework for Non-Experts (CAFnE) Toolkit 185

Figure 9. Event type creation frame

select the necessary Attributes from the drop down menu in the frame. Further,
a user can also select a single action as a Reflex action for an Event as explained
in Section 2.1 under the Step definition. The resulting XML specification for this
Event type is given below:
<Event ID="NotifyWindData">

<Attributes>
<Attribute Type="String">Location</Attribute>
<Attribute Type="String">Date</Attribute>
<Attribute Type="String">Time</Attribute>
<Attribute Type="String">WindStrength</Attribute>
<Attribute Type="String">WindTrend</Attribute>

</Attributes>
</Event>

Example 3: Defining the Agent type WeatherAnalyzer
The Agent type WeatherAnalyzer is the key processing Agent type in the Weather
application. It receives data from the environment and redirects it to other Agents
after performing some pre-processing. As can be seen on the design diagram in
Figure 6, the WeatherAnalyzer Agent type has several Plans, Events and Belief-
Sets.

The CAFnE toolkit provides a single frame interface (shown in Figure 10) to
easily define an Agent type. The approach taken here is to define an Agent type
by selecting the Triggers and Plans used by the agent. The rest of the dependent
component types used by the Agent type are automatically derived by the tool
based on the dependencies. This allows a user to think of an Agent type in terms
of the Triggers and Plans it uses, without worrying about the other components.



186 Gaya Jayatilleke, Lin Padgham and Michael Winikoff

Figure 10. Agent type creation frame

For instance, when the user selects the Trigger UpdateWindHistory as one of the
Triggers handled by the WeatherAnalyzer agent type, the tool automatically adds
the two Plans and the BeliefSet needed to achieve this (see Figure 6 to see the
relationship between the UpdateWindHistory Event and the relevant Plans and
BeliefSets).

3.1.3. Step 3: Transformation: The Transformation step applies the transforma-
tion process described in section 2.2 to the XML files generated in the Component
Encoding step. This process is integrated into the toolkit and is accessible via the
“Tools” menu. The Transformer module included in the current version of CAFnE



Component Agent Framework for Non-Experts (CAFnE) Toolkit 187

toolkit only supports the JACK agent language. Hence the result of the trans-
formation step is a set of JACK language source files saved in a folder named
“Runtime” inside the corresponding CAFnE project folder.

3.1.4. Step 4: Compilation in target platform: If the transformation step com-
pletes without any errors, then the agent application is ready to be compiled into
executable code. This process will depend on the target language used by the
users. For our current version we use the JACK agent language compiler which
is accessible via the “Compile” button in the Transformation window or through
an operating system shell window. Once the application is successfully compiled,
it can be run by calling the appropriate start up command as required by the
runtime platform and the agent application.

3.2. Modifying the Weather Alert System

Most of the time the non-Experts who use agent systems are faced with situations
requiring modifications to be made to an existing system, rather than building
agent applications from scratch8. Therefore the underlying concepts of CAFnE
and the toolkit are developed keeping this aspect in mind. The clear internal and
external structures of the components make it easy for a non-Expert to modify
them easily, without delving into programming.

In the rest of the section we look at two examples of simple modifications
made to the Weather Alert system using the CAFnE tool.

Example 4: Adding a new Agent type instance

Figure 11. Agent
Instances

Assume an instance of the Weather
Alert system with a single instance of the
WeatherAnalyzer Agent type (refer to Ex-
ample 3 for details of this Agent type). In an
environment where a vast number of wind
data events is generated rapidly, it makes
more sense to have more than one instance
of this agent type to handle the environment
data. This provides a load balancing mech-
anism that allows for efficient handling of
wind data. However the number of Agent
instances required can not be correctly esti-
mated at design time and a better indicator
of this is the responsiveness of the system
at runtime. Therefore a user might need to

add instances of WeatherAnalyzer Agent type to maintain a desired level of re-
sponsiveness, once the system is in use9.

8This aspect was highlighted in detail in the Introduction section
9While this process can be automated, we look at the more simple solution of manually adding
Agent instances



188 Gaya Jayatilleke, Lin Padgham and Michael Winikoff

The existing instances of Agents are listed on the left side tree window of the
CAFnE UI Module (See Figure 11) under Agent Instances. A new Agent instance
can be added using the “Tool” menu. The Agent instance creation frame is shown
in Figure 12 (left side window). A user only needs to give a name for the instance
(i.e. iWAnalyzer2) and then select from a drop down list the type of the instance
(i.e. WeatherAnalyzer). When an Agent type is selected, the tool lists the BeliefSets
used by the Agent type under the “Beliefs” pane. If these BeliefSets need to be
populated with an initial data set, the user can do so by clicking on the “Edit
Data Set” button and then using the frame shown on the right side of the Figure
12. This provides an easy way to enter and modify any start up data required by
the agent.

Figure 12. Creating an Agent type instance

Example 5: Modifying the ProcessWindData Plan
Plans are the means of specifying processes in our model of agents and hence are
the component type most likely to be modified by users to obtain new forms of
behaviors from agents. Here we look at changing the plan called ProcessWindData
used by the WeatherAnalyzer Agent type.

The ProcessWindData plan handles the Event type envWindData that it re-
ceives from the environment (see Figure 6 on page 182). As can be seen in Figure
6, the ProcessWindData Plan fires three internal Events (UpdateWindHistory, Up-
dateWindTrend and UpdateLatestWind) and an external Event (NotifyWindData)
sent to the Agent type Alerter (see Figure 5). The purpose of the internal Events is



Component Agent Framework for Non-Experts (CAFnE) Toolkit 189

to update some BeliefSets and calculate the Strength and WindTrend values (see
the description of the WeatherAnalyzer in Example 1 for the meaning of Strength
and WindTrend). The external Event NotifyWindData is used to notify the Alerter
Agent type of the Strength and WindTrend of the most recent wind reading.

UpdateWindHistory

TriggerenvWindData
Percept

ProcessWindData

UpdateWindHistory_New UpdateWindHistory_Old

UpdateLatestWindData

WindInfo

WindCutOffData

WindStabilityParams

UpdateWindTrend

UpdateLatestWind

NotifyWindData

BeliefSet Plan

UpdateWindTrendData

LatestWind

CompareWindReading

Step

Figure 13. Modified WeatherAnalyzer Design

The above version of the ProcessWindData Plan sends a notification to the
Alerter Agent type regardless of how low the wind reading from the environment
is. This causes an unnecessary number of messages, which can be reduced by
modifying the ProcessWindData plan. The proposed change is, not to send a no-
tification if the wind reading is less than a predefined lower bound value. To make
this cut off process more streamlined, the lower bound value is selected based on
the location of the wind data.

The first step in making this change is to modify the agent design to reflect
the changes. We do this by modifying the WeatherAnalyzer Agent type design
using our visual modeling tool (i.e. PDT). The modified design is shown in Figure
13 (note the changes compared to Figure 6).

Once the design is changed, it can be encoded in CAFnE components using
the UI Module. As can be seen we need a new BeliefSet named WindCutOffData
that should contain the Attributes Location and WindSpeed CutOff. Using the
process shown in Example 1, a user can create the new BeliefSet. Once the new
BeliefSet is added, it can be populated using the data entry feature available in
the Agent instance creation process (see Example 4).



190 Gaya Jayatilleke, Lin Padgham and Michael Winikoff

Figure 14. Plan Edit

To edit the ProcessWindData Plan, a user needs to double click on the Plan
name in the left tree window. This invokes a Plan edit frame similar to the one
shown on the left side of Figure 14. Now the user can add the new Steps by
clicking the “Add” button. The frame on the right side of Figure 14 shows the
screen for adding/editing a Step. Here it shows the screen for adding the “read”
Step for reading the cut off value (given as wCutOff ) for the given region (given
as thisEvent.Location) from the new WindCutOffData beliefset. Similarly a logical
Step for comparing the wCutOff value with the current wind speed reading (given
as thisEvent.WindSpeed) can also be added. It is important to note that the Step
addition screen is made easier with the user only needing to select values from
drop down lists most of the time.

A partial XML specification for this new Plan, generated by the tool is given
below. We have only listed the six Steps, leaving out the specifics of the inputs.
The <Plan> tag includes the identifier and the Trigger handled by this plan. The
<Context> tag which defines the plan context is set to true in this case to indicate
that this will respond to the envWindData event, unconditionally. All the Steps
executed in this plan are included under the <Steps> tag as <Step> elements.
<Plan ID="ProcessWindData" Trigger_ID="envWindData">

<Context>true</Context>

<Steps>

<Step ID="subgoal" Type="trigger">

<Trigger>UpdateWindHistory</Trigger>

<Inputs>

<Input ID="Location" Type="String">thisEvent.Location</Input>

<Input ID="Date" Type="String">thisEvent.Date</Input>



Component Agent Framework for Non-Experts (CAFnE) Toolkit 191

<Input ID="WindSpeed" Type="int">thisEvent.WindSpeed</Input>

</Inputs>

</Step>

<Step ID="subgoal" Type="trigger">

<Trigger>UpdateLatestWind</Trigger>

</Step>

<Step ID="subgoal" Type="trigger">

<Trigger>UpdateWindTrend</Trigger>

</Step>

<Step ID="read" Type="belief">

<BeliefSet>WindCutOffData</BeliefSet>

</Step>

<Step ID="condition" Type="logical">

</Step>

<Step ID="send" Type="message">

<Trigger>NotifyWindData</Trigger>

<Destination>iAlerter</Destination>

</Step>

</Steps>

</Plan>

4. Related Work

Component Based Software Engineering is a well-established technology within
object-oriented software engineering [10], and has also been explored in relation
to Agent Oriented Software Engineering. However none of the approaches that
we have seen have provided the right combination of simplicity and expressivity
to support non-experts in modification of evolving agent applications in the way
that we envision. Agent component systems such as dMARS [7], Paradigma [1],
DESIRE [3], JAF [22], Jadex [18] and others [8, 20] have focused on making agent
architectures modular, rather than on making applications developed using these
architectures modular. These approaches make it easier to change the core func-
tionality of the agent architecture such as how the agent selects actions and how the
agent perceives the world. However, they do not support domain-oriented struc-
turing and changes of an agent application through components as in developing a
weather event monitor agent from existing weather-related components. In other
words they are not intended for non-experts. Another common problem faced in
using these systems is the loosely defined nature of components such as actions.
While most of these systems use actions as the primitive atomic behaviours used
by agents (frequently contained in Plans), they do not provide a definition for a
self-contained action at the implementation level. For instance, in dMARS, where
there is clear semantics for an action, they are implemented as action formulae
[4], which are not easy for a non-expert to use. Another important aspect missing
in these systems is the lack of a clear definition for the Environment the agent is
embedded in. Most of the time it is left to the agent developer to come up with a
model for the environment. In CAFnE we provide a means for defining the Envi-
ronment with a set of Attributes and provide a way to easily refer to them within



192 Gaya Jayatilleke, Lin Padgham and Michael Winikoff

other components. This simple referential model allows non-Experts to visualise
the agent application and the Environment as one rather than creating separate
models.

The smart framework [15] on which Paradigma [1] is based provides an
extensive set of components for defining an agent. However we find that some of
these are not relevant for our purpose, as they define underlying infrastructure
components such as AgentPerception and AgentState, rather than those required
for a particular application. Other components are not defined in sufficient detail,
or in a way that facilitates their use for building and modifying applications.
These include components such as Actions, Plans and Events. We have however
taken aspects of the smart framework as a starting point and further developed
or modified these in line with what we perceive as necessary for providing the
concrete implementation support desired.

Another category of work has focused on providing agent toolkits with gen-
eral purpose agent components for expert agent programmers. This category in-
cludes toolkits such as ABLE (Agent Building and Learning Environment) [2] and
ZEUS [6]. Both these tools provide graphical interfaces with an extensive set of
components mostly comprising core processing elements such as communication,
learning and planning based on Java. ZEUS provides more support for multi agent
communication and collaboration while ABLE specialises in agent learning. These
prepackaged components help the expert to rapidly develop agent systems via
component reuse. However they can only be used by expert programmers who are
skilled in object-oriented languages such as Java and agent concepts. Therefore
these tools do not provide an answer to our problem of supporting non-expert
users.

The only work that we are aware of that develops a component framework
aimed at applications, rather than agent architectures, is [9]. This work views
each agent as consisting of a number of Activity components, where an activity
is basically a tree of Decision components leading to a Behaviour component.
Although this work is promising, defining an agent with only Activity, Decision and
Behaviour components seems too limited in implementing complex agent systems.
For example, it is not clear how agent beliefs (i.e. agent’s view of the world) are
maintained and also how proactive (goal-oriented) behaviour can be implemented.
As a whole, it is not clear how the three component types can be used to implement
flexible behaviours as supported by architectures such as the Belief Desire Intention
(BDI) architecture [19].

5. Conclusion and Future Work

This paper described the “Component Agent Framework for non-Experts (CAFnE)”
and the toolkit that implements it. CAFnE provides a model-driven component-
based approach for building and modifying agent systems, mainly targeting the
domain expert users with a limited knowledge in agent programming. While there



Component Agent Framework for Non-Experts (CAFnE) Toolkit 193

has been other work done on component based agent systems, our focus is on two
main areas. Firstly, our aim is to provide a structured and an easy to use set of
components for the use of non-experts. Secondly, our components are at a level
that describes an agent application rather than an agent architecture. In other
words, our interest is not in components that contribute to an execution platform
of agents (which is an area for expert developers). CAFnE provides a set of ba-
sic component types, namely attribute, entity, environment, trigger (goal, event),
plan, step, belief and agent that can be used to build an agent application. In
order to use these components to build and modify agents, we provide the CAFnE
toolkit. The current prototype version of the CAFnE toolkit contains methods for
easily defining and modifying an agent system without delving into complex agent
programming.

There are four directions for future work. Firstly, we intend to improve the
UI Module of the CAFnE toolkit by adding new features such as integrated visual
modeling (now done using PDT). Secondly, there are aspects of the underlying
framework that can be improved. One such area that we regard as essential is
an easy to use mechanism to define and implement protocols for inter-agent com-
munication. Other important platform changes include a richer Plan language for
controlling Step execution and transformation modules to support other BDI ex-
ecution platforms such as Jadex. Thirdly, we will investigate ways in which the
effects of a change to an application can be explored and visualised. Finally, we in-
tend to evaluate the effectiveness of CAFnE by providing a group of meteorologists
with an extended version of the Weather Alert system and asking them to make
changes to the system. If they are able to successfully make changes, without any
intervention from a programmer, then we will consider the approach to be highly
successful. Initial indications are that this seems very possible.

References

[1] R. Ashri, M. Luck, and M. d’Inverno. Infrastructure support for agent-based de-
velopment. Foundations and Applications of Multi-Agent Systems, LNAI2403, pages
73–88, 2002.

[2] J. Bigus, D. Schlosnagle, J. Pilgrim, W. Mills, and Y. Diao. ABLE: A toolkit for
building multiagent autonomic systems. IBM Systems Journal, 41(3):350–371, 2002.

[3] F. M. Brazier, C. M. Jonker, and J. Treur. Principles of component-based design of
intelligent agents. Data Knowledge Engineering, 41(1):1–27, 2002.

[4] A. Brenton. The dMARS plan language reference manual (dMARS v1.6.12). Tech-
nical report, Australian Artificial Intelligence Institute, 1996.

[5] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas. JACK Intelligent Agents
- Components for Intelligent Agents in Java. Technical report, Agent Oriented
Software Pty. Ltd, Melbourne, Australia, 1998. Available from http://www.agent-
software.com.

[6] J. Collis and D. Ndumu. The zeus agent building toolkit: Zeus technical manual
(release 1.0). Technical report, British Telecommunications PLC, 1999.



194 Gaya Jayatilleke, Lin Padgham and Michael Winikoff

[7] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of
dMARS. In M. Singh, A. Rao, and M. Wooldridge, editors, Intelligent Agents IV:
Proceedings of the Fourth International Workshop on Agent Theories, Architectures,
and Languages, pages 155–176. Springer-Verlag LNAI 1365, 1998.

[8] K. Erol, J. Lang, and R. Levy. Designing agents from reusable components. In Pro-
ceedings of the Fourth International Conference on Autonomous Agents. Barcelona,
Spain, 2000.

[9] H. J. Goradia and J. M. Vidal. Building blocks for agent design. In Fourth Interna-
tional Workshop on AOSE, pages 17–30. AAMAS03, July 2003.

[10] G. T. Heineman and W. T. Council. Component-Based Software Engineering:
Putting the Pieces Together. Addison-Wesley Publishing Company, ISBN: 0-201-
70485-4, 2001.

[11] G. Jayatilleke, L. Padgham, and M. Winikoff. Towards a component-based devel-
opment framework for agents. In Proceedings of the 2nd German Conference on
Multiagent System Technologies (MATES), Erfurt, Germany, 05 2004. Springer.

[12] N. Jennings and M. Wooldridge. Applications of intelligent agents. In N. R. Jennings
and M. J. Wooldridge, editors, Agent Technology: Foundations, Applications, and
Markets, chapter 1, pages 3–28. Springer, 1998.

[13] N. R. Jennings. An agent-based approach for building complex software systems.
Communications of the ACM, 44(4):35–41, April 2001.

[14] A. Kleppe, J. Warmer, and W. Bast. MDA Explained, The Model Driven Archi-
tecture: Practice and Promise. Addison-Wesley Publishing Company, ISBN: 0-321-
19442-X, 2003.

[15] M. Luck and M. d’Inverno. Understanding Agent Systems. Springer, ISBN
3540419756, 2001.

[16] I. Mathieson, S. Dance, L. Padgham, M. Gorman, and M. Winikoff. An open meteo-
rological alerting system: Issues and solutions. In Proceedings of the 27th Australasian
Computer Science Conference, Dunedin, New Zealand, Jan. 2004.

[17] L. Padgham and M. Winikoff. Developing Intelligent Agent Systems: A Practical
Guide. John Wiley and Sons, ISBN 0-470-86120-7, 06 2004.

[18] A. Pokahr and L. Braubach. Jadex: User guide (release 0.92). Technical report,
Distributed Systems Group, University of Hamburg, Germany, 05 2004.

[19] A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In Proceedings
of the First Intl. Conference on Multiagent Systems. San Francisco, 1995.

[20] N. Skarmeas and K. L. Clark. Component based agent construction. International
Journal on Artificial Intelligence Tools, 11(1):139–163, 2002.

[21] J. M. Spivey. The Z Notation: A Z Reference Manual. Prentice Hall International,
1989.

[22] T. Wagner, B. Horling, V. Lesser, J. Phelps, and V. Guralnik. The Struggle for
Reuse: Pros and Cons of Generalization in TÆMS and its Impact on Technology
Transition. Proceedings of the ISCA 12th International Conference on Intelligent
and Adaptive Systems and Software Engineering (IASSE-2003), July 2003.

[23] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative & proce-
dural goals in intelligent agent systems. In Proceedings of the Eighth International



Component Agent Framework for Non-Experts (CAFnE) Toolkit 195

Conference on Principles of Knowledge Representation and Reasoning (KR2002),
Toulouse, France, Apr. 2002.

Gaya Jayatilleke
School of Computer Science and Information Technology,
RMIT University,
GPO Box 2476V, Melbourne, VIC 3001, Australia
Tel: +61 3 9925 3781

e-mail: gjayatil@cs.rmit.edu.au

Lin Padgham
School of Computer Science and Information Technology,
RMIT University,
GPO Box 2476V, Melbourne, VIC 3001, Australia
Tel: +61 3 9925 3214

e-mail: linpa@cs.rmit.edu.au

Michael Winikoff
School of Computer Science and Information Technology,
RMIT University,
GPO Box 2476V, Melbourne, VIC 3001, Australia
Tel: +61 3 9925 9651

e-mail: winikoff@cs.rmit.edu.au



 

The WSDL2Agent Tool 

László Zsolt Varga, Ákos Hajnal and Zsolt Werner 

Abstract. The WSDL2Agent tool is used to help the integration of existing web 
services into agent based systems. The input to the WSDL2Agent tool is the WSDL 
file of a web service and the tool provides two types of output. The WSDL2Jade part 
of the tool generates code for a proxy agent that makes the web service available in 
multi-agent environment. The WSDL2Protégé part of the tool generates project file 
for the Protégé ontology engineering tool in which the ontology of the web service 
can be semantically enriched, visualized, or exported to various formats. In this paper 
we present the technical details of the code generators and the application scenario of 
the tool. 

1. Introduction 

The creation and popularity of web services are growing rapidly, and recently, web 
service interface is more and more often provided for internet services in addition to the 
traditional web interface. Interest in agent technology is also increasing both in the field 
of research (grid, semantic web, AI) and industry (ontology modelling, service 
integration). This motivated us to create the WSDL2Agent tool, which can be used in 
the integration of existing web services into agent based systems. This way we help to 
bridge the gap between existing non-agent systems and agent systems. With the help of 
this tool existing web services can be integrated into agent systems and agents will have 
access to a wide range of existing services. Moreover agent system developers may con-
centrate on adding intelligent functions to these services by combining and extending 
them. The idea of using agents to enable advanced operational modes of web services is 
advocated by several researchers [1][2] and also by the Web Services Architecture 
specification of the W3C [3]. 

The WSDL2Jade tool is applicable to create proxy agents for arbitrary web services. 
The proxy agent is able to accept client agent requests to invoke the web service, call 
the web service, and send the web service results back to the client agents (illustrated in 
Figure 3). The proxy agent thus wraps the web service invocation code into an agent 



                       László Zsolt Varga, Ákos Hajnal and Zsolt Werner 

 

198

 

shell and operates like a FIPA agent: it can be deployed on an agent platform, 
communicates with other agents using FIPA standard Agent Communication Language 
(ACL) [4], and has a public ontology that defines the messages it understands. 

The WSDL2Protégé tool is applicable to create Protégé [5] project file from the 
WSDL file of an arbitrary web service. This project file can then be opened in the 
Protégé knowledge-base modelling environment, where the ontology of the original 
WSDL document can be prepared and edited (as shown in Figure 2). In addition, 
Protégé is able to export the ontology in various formats, such as RDF, OIL, 
DAML+OIL, or OWL. Using the Ontology Bean Generator plug-in [6] of Protégé an 
agent skeleton can be created from the Protégé project file. 

The main contribution of this paper is the detailed description of a technology to 
integrate web services into agent systems, the implementation of the technology in the 
WSDL2Agent tool, applying the tool to the Google web service as well as 
demonstrating in a simple application how an agent can integrate existing web services 
and add new functionality to them by combining them. As we will see in the related 
work section, these contributions are novel. 

In section 2 we shortly sum up the background information needed to use the 
WSDL2Agent tool. In section 3 we describe how to use the WSDL2Agent tool. Based 
on this information you can generate your own code on the web site of the tool. Section 
4, 5 and 6 describe in detail how the WSDL2Agent tool generates code. You will need 
this information to understand, possibly modify and deploy the generated code. Section 
4 describes how the WSDL2Agent tool reads and interprets WSDL files. Section 5 
describes how the WSDL2Jade tool generates the code, while section 6 details how the 
WSDL2Protégé tool generates the project file. Section 7 shows a demo agent system 
integrating web services. Section 8 discusses related work and section 9 concludes the 
paper. 

2. Background 

In this section we are going to introduce web services, agents, the JADE agent platform 
and the Protégé knowledge engineering environment, because the WSDL2Agent tool 
builds on them. 

2.1 Web Services and the WSDL 

The purpose of web services [3] is to provide some document or procedure-oriented 
functionality over the network. The web service is an abstract notion of certain 
functionality, the concrete piece of software implementing the web service is called 
provider agent, while other systems that wish to make use of the web services are called 
requester agents. Requester agents can interact with the provider agent via message 
exchange using SOAP (Simple Object Access Protocol) messages typically conveyed 
over HTTP. The interface of the web service is described in machine-readable format by 
a WSDL (Web Services Description Language) document. It defines the service as a set 



The WSDL2Agent Tool                                                              

 

 199 

of abstract network end-points called ports and a set of operations representing abstract 
actions available at these ports. For each operation the possible input and output 
messages are defined and decomposed into parts. The data types of parts are described 
using the XSD (XML Schema Definition) type system, which may be either built-in 
XML data types or custom, even nested structures: complex types or arrays. The 
abstract definitions of ports, operations, and messages are then bound to their concrete 
network deployment via extensibility elements: internet location, transport protocol, and 
transport serialization formats. 

The definition of the web service interface in the WSDL is encapsulated by a single 
<definitions> element in which the <service> element contains the internet address of 
the web service in the location attribute of the <soap:address> element. The <portType> 
element consists of the list of the operations (<operation> elements) provided by the 
web service, for which input and output message types are associated via the <input> 
and <output> elements. Message types are described by individual <message> 
elements; each containing a list of named parts with either a built-in XML type or a 
complex type. Complex types must be defined in the <types> section of the WSDL that 
may form structures or arrays. Finally, the <binding> element of the WSDL is appli-
cable to specify the encoding style and namespace for each operation input and output 
message. 

2.2 Agents 

The notion of agent emerged from many different fields including economics, game 
theory, philosophy, logic, ecology, social sciences, computer science, artificial 
intelligence and later distributed artificial intelligence. In all these fields an agent is an 
active component that behaves intelligently in a complex environment to achieve some 
kind of goal. Experts from the different fields tend to agree that the most important 
characteristics of agents are those which are defined by Wooldridge and Jennings [7]. 
First of all an agent is a computer system situated in some environment. The agent is 
reactive, which means that it is capable of sensing its environment and acting on it. The 
agent can autonomously act in its environment and make decisions itself. The agent has 
design objectives and can decide itself how to achieve them. While taking the decisions 
the agent is not just passive, but can take initiatives towards its goals. The agent has 
social abilities and can interact with the actors in its environment. 

The need for interoperable agent communication created the Foundation for 
Intelligent Physical Agents (FIPA) [8] standardization body. The aim of FIPA is to 
develop software standards for heterogeneous and interoperating agents and agent 
systems, in order to enable the interworking of agents and agent systems operating on 
platforms of different vendors in industrial and commercial environments. As a result of 
the FIPA standardization activity, many research labs and industrial organizations 
started to develop competing agent platforms independently all over the world. FIPA 
standard agent platforms provide an environment where agents can be deployed and 
with the help of the agent platform services they can interact with other agents on any 



                       László Zsolt Varga, Ákos Hajnal and Zsolt Werner 

 

200

 

FIPA standard agent platform in a FIPA conformant way achieving agent 
communication level interoperability.  

Agents are starting to become highly relevant to bodies such as the World Wide Web 
Consortium (W3C) and the Global Grid Forum (GGF). The convergence between grid 
and agents is of interests, because agent systems require robust infrastructure and Grid 
systems require autonomous, flexible behaviours [9]. Developments such as web 
services and semantic web services [10][11] also investigate many of the issues which 
have already been addressed by agent technologies. 

2.3 JADE 

JADE (Java Agent DEvelopment Framework, http://jade.tilab.com/) is a software 
framework that complies with the FIPA specifications and provides a middleware to 
help in the implementation of multi-agent systems. The agent platform is fully 
implemented in Java. Software agents also written in Java can be deployed and run in 
JADE. The agent platform can be distributed across machines and the configuration can 
be controlled via a remote GUI. In addition to JADE's core functionality, a set of 
graphical tools are available which support the debugging and deployment phases. For 
agent developers JADE provides libraries through which agents can easily communicate 
with other agents due to the built-in message handling, composition and decoding 
functionalities. 

We chose JADE as the target platform for the proxy agent in the WSDL2Agent tool 
because of the above features, and also because this agent platform is the most widely 
used, as shown by the statistics of the Agentcities worldwide testbed. Chosing JADE as 
the target platform does not put much restriction on the deployment of the generated 
agents. Although the generated proxy agent (described in section 5) is required to run in 
JADE, client agents wishing to communicate with the proxy agent can still run on any 
FIPA compliant platform.  

2.4 Protégé 

Protégé (http://protege.stanford.edu/) is an ontology engineering tool developed at 
Stanford Medical Informatics, and though it has historically been used in the area of 
biomedical applications, nowadays it is widely used as knowledge-base modelling 
environment in different application areas as well. Since Protégé's internal model is 
based on a meta model similar to the object-oriented and frame-based systems, it is 
basically applicable to design and represent ontologies consisting of classes (frames), 
properties (slots), property characteristics (facets and constraints), and instances. With 
Protégé, designers can build, edit, maintain, and visualize ontologies representing the 
formal model of the knowledge domain on a graphical user interface, which tasks would 
require large amount of manual work otherwise, especially in the case of real-world 
applications. In addition, due to the extensibility of the platform, Protégé can import 



The WSDL2Agent Tool                                                              

 

 201 

existing ontologies from, and export a Protégé ontology to various formats (such as 
CLIPS, XML, UML, OIL, DAML+OIL, RDF, OWL) via plug-ins. 

3. Using WSDL2Agent 

In this section we are going to describe the engineering process of the integration of 
web services into agent system and then how you can use the WSDL2Agent tool to 
generate the code for this process. 

3.1 Engineering Process 

The architecture of web service integration into agent systems is shown in Figure 1. 
Each Web Service is represented by a Proxy Agent. The Proxy Agent is able to receive 
web service invocation requests in FIPA Agent Communication Language (ACL), 
invoke the web service using the Simple Object Access Protocol (SOAP) and then 
return the result in FIPA ACL. These proxy agents basically have the same functionality 
as the web service, but they are able to communicate in FIPA ACL. In order to add 
autonomous and proactive features to web services, we imagine that an Agent with 
Agent Logic is also developed. The Agent with Agent Logic is the client agent of one or 
more Proxy Agents and provides intelligent services to the Client Agent which might be 
either a user interface agent or any other agent in the agent system. 

 
  

Web 
Service 

Web 
Service 

Agent with 
Agent Logic 

Client 
Agent 

FIPA 
ACL 

SOAP 

Proxy 
Agent 

Proxy 
Agent

FIPA
ACL

WSDL 

Generate wrapper 
ontology (1) 

Generate agent code 
and SOAP call (2)

Generate 
extended 
ontology 

template (3) 

Extend ontology Code intelligence 

 

Fig. 1. Web services integrated into agent systems 

The two most important software components in our agent system implementation 
are the ontology code and the agent code. The ontology code implements the way the 
agents encode, decode and interpret the content of ACL messages. The agent code 
implements the actions taken by the agent. In the case of the Proxy Agents there are 
direct mappings from web service definitions to ontology code and web service 
invocation to agent code, because the Proxy Agent converts the web service protocol to 
ACL messages and the only type of action it takes is the web service invocation. These 



                       László Zsolt Varga, Ákos Hajnal and Zsolt Werner 

 

202

 

mappings are described in section 5. The WSDL2Agent tool generates the code for the 
ontology between the Proxy Agent and the Agent with Agent Logic (indicated with No. 
1 in Figure 1), as well as the code of the Proxy Agent (indicated with No. 2 in Figure 1). 

While communicating with its clients, the Agent with Agent Logic will use an 
ontology similar to the wrapper ontology possibly extended with a few other concepts, 
actions and elements, because the Agent with Agent Logic also uses the web service 
results. The WSDL2Protégé tool generates a template for the ontology between the 
Agent with Agent Logic and its clients (indicated with No. 3 in Figure1). The Ontology 
Bean Generator can be used to generate the code template of the Agent with Agent 
Logic. The agent logic has to be added by the developer both to the extended ontology 
and the Agent with Agent Logic.  

3.2 Generating Code with WSDL2Agent 

The WSDL2Agent tool is available on-line at the internet location 
http://sas.ilab.sztaki.hu:8080/wsdl2agent. You can upload your WSDL file to the tool in 
two different ways: either by specifying the URL of the file, or directly uploading the 
file itself. Then select the output you need: either WSDL2Jade to generate the code for 
the Proxy Agent and its ontology, or WSDL2Protégé to generate the Protégé project 
files for the template of the extended ontology. 

3.2.1 WSDL2Jade Output 
The WSDL2Jade tool web application returns the generated files in a zipped archive. 
Section 5 will describe how these files are generated. Here we give you a summary of 
the files in order to give you an overview. You may want to come back here and read 
again this description after reading section 5. 

The webserviceontology directory in the archive contains the Java files belonging to 
the ontology, which is further decomposed into service/port/operation directory 
hierarchy in order to separate AgentAction, Predicate and Concept classes 
corresponding to different operations (and to avoid file name conflict). In the case of 
complex types a separate service/port/operation/soap directory contains the Java classes 
needed by the SOAP-based communication. And finally, the 
webserviceontology/service directory contains the WebServiceOntology.java file that 
registers the ontology of the web service, and the common ErrorPredicate.java file. 

The code of the proxy agent is placed in the webserviceagent directory, and two 
batch files are provided in the root directory to help in compiling (compile.bat) and 
running (run.bat) the proxy agent. The WSDL2Jade tool automatically replaces the 
(potential) Java keywords in the WSDL (by appending the "_value" suffix to such 
strings) resulting in syntactically correct Java sources. The compilation also creates a jar 
archive of the ontology which can be published to client agents wishing to contact the 
proxy agent.  

The web page of the WSDL2Agent tool describes how to write a test client agent to 
invoke the services of the wrapper agent. You can directly copy and paste the code of a 
test client agent from the documentation section of the web site. 



The WSDL2Agent Tool                                                              

 

 203 

3.2.2 WSDL2Protégé Output 
The WSDL2Protégé tool generates a Protégé project that consists of three files called: 
webservice.pprj, webservice.pont, webservice.pins. To load the project into Protégé, 
open the file webservice.pprj. The project contains ontology elements, classes (a.k.a. 
frames) describing the communication with the web service. In order to be able to use 
the Ontology Bean Generator plug-in, the generated web services ontology complies 
with the predefined ontology hierarchy of the Ontology Bean Generator. Figure 2 shows 
an ontology generated by WSDL2Protégé loaded into Protégé. After editing this 
ontology you can generate an agent code template using the Ontology Bean Generator 
plug-in. 

 

Fig. 2. The model in Protégé visual development environment 

4. WSDL Parsing 

In this section we describe how the WSDL2Agent tool builds an internal model of the 
web service description in the WSDL file. The WSDL2Jade and WSDL2Protégé tools 
use this internal model to generate code. In order to be able to process any WSDL file, 
the most critical is the parsing of complex and array types. 

All parsing takes place in org.sztaki.wsdl2jade.WsdlParser, which is supported by 
some helper classes mostly for storing data. The processing starts with a call to one of 
parseWsdlFile(), parseWsdlURI() or parseWsdlInputStream(), depending on the 
physical source of the WSDL. All the three methods return an 
org.sztaki.wsdl2jade.Wsdl instance, after reading in the WSDL definition 



                       László Zsolt Varga, Ákos Hajnal and Zsolt Werner 

 

204

 

(javax.wsdl.Definition) from the source and calling processDefinition() in the same 
class. 

The processDefinition() processes the <definitions> element of the WSDL, and 
builds the WSDL model in the memory, which is then returned as result. In the 
outermost loop, it iterates through the services javax.wsdl.Definition. Inside of the loop, 
there is another loop iterating over the ports. It reads the <soap:address location=""> 
extensibility element from the port body; the binding; sets transport and style of the 
port; gets the operations of the newly-read binding. As there can be more than one 
operations associated with a binding, it iterates over them. It sets the soap action for the 
operation, sets soap:body encodingStyle and namespace of the port and processes the 
input and output parts by calling processInputAndOutputParts(). 

The latter two are of extreme importance because of the complex type system a 
WSDL can have. The processInputAndOutputParts() processes all <part>'s of the 
passed <input> / <output> tags. Uses a boolean to decide between input and output. The 
method is not recursive because Part objects can not reference (contain) other Part 
objects, unlike with the case of ComplexType objects (and <complexType> tags). This 
is where we decide whether the part in question is a complex type or an array (or the 
combination of both). Depending on this, we give a further call to 
processComplexType(). 

The processComplexType() is passed a newly created ComplexType instance and a 
String denoting the "name" attribute of a <complexType> in the WSDL file. We search 
for this <complexType> in the entire XML document. Upon finding it, we decide 
whether it's an array declaration or a standard <complexType> with <elements> (see 
section 5.4 on array handling). In both cases, the enclosed type information is read and 
if any <element> (or, in the case of an array declaration, the <attribute> tag) references 
another <complexType>, another instance of ComplexType is created. After that, the 
method is recursively called back. 

Please note that we do exactly the same as in processInputAndOutputParts() before 
starting recursion over with the slight difference that we have a Hashtable instead of a 
pair of Strings to be set because parts and complex types are inherently the same. 

5. The WSDL2Jade Tool 

The WSDL2Jade tool is applicable to create a proxy agent, which is able to accept client 
agent requests, call a web service, and send the web service results back to the client 
agent. The proxy agent, wrapping the web service invocation code into an agent shell, 
works like an ordinary agent: it can be deployed in an agent platform and it 
communicates with other agents using FIPA ACL. The code generated by the 
WSDL2Jade tool uses the FIPA SL content language [12] supported by JADE. In multi-
agent systems web services can be accessed easily by simply communicating with the 
proxy agent. Agent programmers can thereafter focus on the agent logic, which results 
in faster and more reliable development, since they do not have to implement 
occasionally complicated SOAP web service invocation code each time an agent wishes 
to use web services. 



The WSDL2Agent Tool                                                              

 

 205 

The WSDL2Jade tool is available on the internet, and developers only need to submit 
the WSDL file of the web service (or its URL) to get the complete Java sources 
composing the proxy agent. After compilation, the proxy agent can be deployed in the 
JADE agent platform. The ontology of the proxy agent can be published for potential 
client agents, who are then able to communicate with the proxy agent: compose requests 
and interpret reply messages, that is, to use web services. Figure 3 illustrates how the 
proxy agent interacts with client agents and the web service. 

 

Fig. 3. The interaction of the proxy agent, the client agent, and the web service 

The web service data types defined in the WSDL are mapped to ontology data types. 
The concrete mapping is discussed in the next sections. The web service invocation is 
mapped to an ACL message of FIPA REQUEST type corresponding to an agent action. 
The returned web service result is mapped to an ACL message of FIPA INFORM type 
corresponding to a predicate in the ontology. The proxy agent receives the FIPA 
REQUEST, interprets it according to the ontology, invokes the web service on the port 
defined in the WSDL, encodes the result of the web service invocation into a FIPA 
INFORM of the ontology and returns the result. 

The codes presented in the next sections are generated by the WSDL2Jade tool for 
the web services of Google. The interface of the services is defined by the WSDL 
description located at http://api.google.com/GoogleSearch.wsdl. The Google Web API 
consists of three operations called doGoogleSearch, doGetCachedPage, and 
doSpellingSuggestion. The doGoogleSearch operation is applicable to search in 
Google's index of web pages by submitting a query string (and search parameters) for 
which Google sends the set of search results back. The doGetCachedPage operation 
returns the cached contents of a specified URL when Google's crawlers last visited the 
page; and finally, the doSpellingSuggestion operation can be used to obtain spell 



                       László Zsolt Varga, Ákos Hajnal and Zsolt Werner 

 

206

 

correction for the submitted expression. For more information about Google web 
services refer to [14]. 

5.1 The Agent Code 

The source code of the proxy agent can be divided into two main sections: agent setup 
code and ontology code described in the following section. After parsing the submitted 
WSDL file and building an internal model, the WSDL2Jade tool is capable of 
generating all the sources automatically, by adapting a previously constructed internal 
code skeleton using the actual information in the WSDL. The source code complies 
with the guidelines of the JADE [13] Programmer's Guide. 

The agent code is contained by the generated Java class called 
WebServiceNameAgent (where WebServiceName is the name attribute of the service 
element in the WSDL), which is responsible to start the proxy agent in the agent 
platform. In the setup method, the proxy agent registers the language (the FIPA standard 
SL codec), registers the ontology, and specifies the behaviour of the agent 
(addBehaviour), defining its life-cycle (e.g. OneShotBehaviour, CyclicBehaviour) and 
functionality. The corresponding part of the source code of the proxy agent generated 
for the Google web services [14] is illustrated below: 

class GoogleSearchServiceAgent extends Agent { 
  ContentManager manager = getContentManager(); 
  void setup() { 
    manager.registerLanguage(new SLCodec()); 

manager.registerOntology(WebServiceOntology.getInstance
());
    addBehaviour(new HandleRequestBehaviour(this)); 
  }

The behaviour of the agent is determined by the inner class called 
HandleRequestBehaviour, which extends JADE's CyclicBehaviour so that the agent 
accepts messages in infinite loop. In the action method of the HandleRequestBehaviour 
class the agent handles the incoming messages. In accordance with standards used in 
agent technology and considering the protocol of web service message exchange, a 
client request message has to be mapped to the FIPA REQUEST type message, and the 
proxy agent's answer message conforms with the FIPA INFORM type message, 
respectively. In JADE, REQUEST type messages contain a single Java object 
implementing JADE's AgentAction interface, and INFORM messages contain an object 
implementing the Predicate interface. Since a web service may contain several 
operations (these are the actual functions that can be invoked) the WSDL2Jade tool 
assigns a unique OperationNameAgentAction - OperationNamePredicate pair of classes 
to each operation (where OperationName string is the name attribute of the operation 
element in the WSDL).  

When a client request message arrives (and the action method is invoked), the proxy 
agent can thus decide which web service operation has to be called by simply matching 



The WSDL2Agent Tool                                                              

 

 207 

the incoming AgentAction class instance (which is the ContentElement object extracted 
from the message) against potential AgentAction classes assigned to different 
operations: 

void action() { 
  ACLMessage msg =

receive(MessageTemplate.MatchPerformative(ACLMessage.RE
QUEST));
  ContentElement ce = 
manager.extractContent(msg).getAction();
  if (ce instanceof DoGoogleSearchAgentAction)...
  if (ce instanceof DoGetCachedPageAgentAction)...
  if (ce instanceof DoSpellingSuggestionAgentAction)...

The proxy agent can then create a call object (in the appropriate if branch), set the 
matching operation name (the name attribute of the related operation element in the 
WSDL), and from the AgentAction class it can read and add the required input 
parameters to the call object (params.add). This sequence corresponds to a standard 
web service call using SOAP. Note that since field types in the AgentAction class sent 
in the ACL message may be incompatible with the types required by Apache Axis 
SOAP implementation (used by the proxy agent), instead of the ordinary getter methods 
the generated _SOAP postfixed getter methods are applied here, which return data with 
type conforming to Axis (detailed in the next section). The operation can be invoked 
after setting the internet address of the web service (setTargetEndpointAddress), which 
can be found in the location attribute of the soap:address element: 

org.apache.axis.client.Call call = 
service.createCall();
call.setOperationName(new QName("urn:GoogleSearch",
"doGoogleSearch"));
params.add(ce.getKey_SOAP());
params.add(ce.getQ_SOAP());
...
call.setTargetEndpointAddress(
    new URL("http://api.google.com/search/beta2"));
...
resp = call.invoke(paramsObject); 

If the web service call is successful (no exception is thrown), a new Predicate object 
is created representing the related operation output into which the web service result 
(resp object) is written. Finally, an INFORM message is constructed with the Predicate 
object (fillContent), and sent back to the client agent (createReply). The proxy agent, 
like in the case of reading the input parameters, uses the generated _SOAP postfixed 
setter method to write the received SOAP-type data into the ACL-compatible Predicate 
class.  



                       László Zsolt Varga, Ákos Hajnal and Zsolt Werner 

 

208

 

DoGoogleSearchPredicate result = new 
DoGoogleSearchPredicate();
result.setReturn_value_SOAP(resp);
ACLMessage answerMsg = msg.createReply(); 
answerMsg.setPerformative(ACLMessage.INFORM);
manager.fillContent(answerMsg, result); 
send(answerMsg);

If the web service call fails for some reason, an error message, containing a dedicated 
ErrorPredicate class (with the description of the AxisFault) is returned.  

5.2 XML Data Types in ACL Messages 

The data types and data structures used by web service inputs and outputs are described 
by the WSDL file using XML Schema [15] language. We chose the Apache Axis 
implementation of SOAP to invoke and pass parameters to (or receive from) the web 
service in the proxy agent. Accordingly, Java sources (classes and field types) 
representing the XML types in the WSDL have to conform to the JAX-RPC 
specification [16] defining the XML-Java bindings. For example, in the case of a 'string' 
XML type, Axis assumes a java.lang.String object representation of the data used in the 
interaction with web service. Note that these bindings apply to the communication 
between the proxy agent and the web service. 

On the agent side, however, data types used in the ACL messages have to be matched 
against the data types available in JADE, which supports five (symbolic) types called: 
STRING, INTEGER, FLOAT, BOOLEAN and DATE. As with the XML-Java bindings 
in Axis, JADE also prescribes how these symbolic data types have to be represented in 
the underlying Java code: STRING corresponds to String, INTEGER can be 
implemented by either Integer or Long, FLOAT can be either Float or Double, 
BOOLEAN corresponds to Boolean, and, finally, DATE must be implemented by 
java.util.Date class.  

When creating the WSDL2Jade tool we had to decide how to represent XML types in 
JADE messages; and how to translate SOAP to ACL messages, and vice versa. In Table 
1 we summarized the XML-JADE type mapping used by the WSDL2Jade tool.  

Note that these associations may result in imprecise translation in some cases (e.g. 
integer, decimal) due to the limited number of data types available in JADE. (The 
encoding of such data types in strings would change the original semantic that we tried 
to avoid.) In practice, however, this mapping is still applicable to convert SOAP and 
ACL messages satisfactorily. 

As an example, part of the XML definition of the input message of the 
doGoogleSearch operation is shown below: 

<message name="doGoogleSearch"> 
  <part name="key" type="xsd:string"/>
  <part name="start" type="xsd:int"/>
  <part name="filter" type="xsd:boolean"/>
  ... 
</message>



The WSDL2Agent Tool                                                              

 

 209 

 

Table 1. XML-JADE type mapping 

XML  

(WSDL) 

JAVA REPRESEN-

TATION(AXIS) 

JADE 

ONTOLOGY 

JAVA REPRE- 

SENTATION 

(JADE) 

string java.lang.String STRING java.lang.String 
integer java.math.BigInteger INTEGER java.lang.Long 
int java.lang.Integer INTEGER java.lang.Integer 
long java.lang.Long INTEGER java.lang.Long 
short java.lang.Short INTEGER java.lang.Integer 
decimal java.math.BigDecimal INTEGER java.lang.Long 
float java.lang.Float FLOAT java.lang.Float 
double java.lang.Double FLOAT java.lang.Double 
boolean java.lang.Boolean BOOLEAN java.lang.Boolean 
byte java.lang.Byte INTEGER java.lang.Integer 
dateTime java.util. 

GregorianCalendar 
DATE java.util.Date 

base64Binary byte[] STRING java.lang.String 
hexBinary byte[] STRING java.lang.String 
unsignedInt java.lang.Long INTEGER java.lang.Long 
unsignedShort java.lang.Integer INTEGER java.lang.Integer 
unsignedByte java.lang.Short INTEGER java.lang.Integer 
time java.util. 

GregorianCalendar 
DATE java.util.Date 

date java.util. 
GregorianCalendar 

DATE java.util.Date 

anySimpleType java.lang.String STRING java.lang.String 
 
The WSDL2Jade tool generates the following AgentAction class wrapping the above 

input parameters:  

class DoGoogleSearchAgentAction implements AgentAction{
java.lang.String key = null; 

  void setKey (String param) { key = param; } 
  String getKey () { return key; } 
  String getKey_SOAP () {
    String jadeSlot = this.key;
    String soapSlot = jadeSlot; 
    return soapSlot; 
  } 
java.lang.Integer start = null; 

  ... 
java.lang.Boolean filter = null; 

  ...



                       László Zsolt Varga, Ákos Hajnal and Zsolt Werner 

 

210

 

As it is seen, in the AgentAction class (used in the incoming ACL messages) fields 
are created with names corresponding to the name attribute of the part element and with 
type corresponding to the JADE Java type associated to the XML type in the WSDL. In 
addition to the simple getter and setter methods (used by JADE) for each field a _SOAP 
postfixed getter method is generated through which the proxy agent can access the data 
contained in the field in the Java type required by Axis (although in this example JADE 
and XML Java types coincide). In the case of an incoming message the proxy agent can 
thus easily pass web service input parameters to Axis using the _SOAP getter methods.  

Similarly, in the Predicate classes (used in the answer ACL messages) _SOAP setter 
methods are generated by the WSDL2Jade tool, which expect SOAP Java type input 
parameters and set the related JADE type field. The proxy agent in this way can directly 
fill JADE type fields with SOAP Java type web service results. 

Note that base64binary and hexBinary XML types, are represented by strings in the 
ACL messages, which contain the base64 encoded form of the original byte arrays (by 
convention). The encoding/decoding is performed automatically by the proxy agent. 
This is illustrated in the doGetChachedPagePredicate class: 

class DoGetCachedPagePredicate implements Predicate { 
java.lang.String return_value;

  void setReturn_value (String param) { return_value = 
param; } 
  String getReturn_value () { return return_value; } 
  void setReturn_value_SOAP (byte[] soapSlot){
    String jadeSlot = new String 
            (starlight.util.Base64.encode(soapSlot)); 
    this.return_value = jadeSlot; 
  } 
}

5.3 Complex Type Concepts 

In the case of simple web services, operation inputs and outputs can be wrapped 
completely in the fields of the related AgentAction or Predicate classes. In the <types> 
section of the WSDL file, however, web service providers may define custom structures 
composed of built-in XML types or further complex types (nested to arbitrary depth). 
Since such compound data structures cannot be represented by a single, primitive Java 
type, separate Java classes are created by the tool for each complex type. The Java type 
of the field corresponding to an input or an output parameter in the 
AgentAction/Predicate classes can be a basic Java type (as listed in Table 1), or a 
reference to a Java class representing the compound structure, depending on whether it 
is a built-in XML type or a complex type message part. 

For example, in the WSDL file of Google web services we can find the following 
complex type definitions for ResultElement and DirectoryCategory: 



The WSDL2Agent Tool                                                              

 

 211 

<types>
  <xsd:complexType name="ResultElement">
    <xsd:element name="summary" type="xsd:string"/> 
    <xsd:element name="URL" type="xsd:string"/> 
    <xsd:element name="directoryCategory"
          type="typens:DirectoryCategory"/>
    ... 
  </xsd:complexType> 
  <xsd:complexType name="DirectoryCategory">
    <xsd:element name="fullViewableName"
                       type="xsd:string"/> 
    ... 
  </xsd:complexType> 
  ... 
</types>

The WSDL2Jade tool generates the following two classes (getter and setter methods 
are omitted here): 

class ResultElement implements Concept { 
  java.lang.String summary = null; 
  java.lang.String uRL = null; 
  DirectoryCategory directoryCategory = null; 
 ... 
}
class DirectoryCategory implements Concept { 
  java.lang.String fullViewableName = null; 
  ... 
}

Note that, Java classes belonging to complex types have to implement JADE's 
Concept interface (instead of AgentAction or Predicate interfaces), but fields are 
generated in the same way as was described at the AgentAction and Predicate classes. 

Since web services can interpret structures containing SOAP Java types only, when a 
data structure needs to be forwarded to the web service (or structured web service 
results need to be sent back to the client agent), the proxy agent has to translate whole 
structures. For this reason the WSDL2Jade tool actually generates two classes for each 
complex type: one corresponding to the structure that can be used in ACL messages 
(shown above) and one corresponding to the structure that can be used in SOAP 
messages containing SOAP Java types only. To avoid confusion, these latter classes are 
named with a _SOAP postfix. Fields in these classes are named in the same way as in 
the corresponding JADE classes, but contain SOAP Java type fields (according to the 
associations in Table 1). 

To make the conversion of whole objects easier for the proxy agent, in JADE classes 
two additional methods are generated: getSOAPClone and set_SOAP. Through them, a 
complete SOAP type clone object can be obtained from the set of JADE type fields, and 
all the JADE type fields can be filled from a SOAP type counterpart object. Both of 
these methods execute a sequence of elementary type conversions steps for class fields 
(as described before). Proxy agents can thus read and write structured data as easily as 
obtaining and setting primitive JADE and SOAP Java type fields.  



                       László Zsolt Varga, Ákos Hajnal and Zsolt Werner 

 

212

 

The source code of the _SOAP classes belonging to ResultElement and 
DirectoryCategory complex types are shown below (getter and setter methods are 
omitted here) 

class ResultElement_SOAP { 
  java.lang.String summary = null; 
  java.lang.String uRL = null; 
  DirectoryCategory_SOAP directoryCategory = null; 
  ... 
}
class DirectoryCategory_SOAP { 
  java.lang.String fullViewableName = null; 
  ... 
}

The getSOAPClone, set_SOAP methods of the ResultElement class is illustrated 
below (ommitting the previously listed fields here): 

class ResultElement implements jade.content.Concept { 
ResultElement_SOAP getSOAPClone () { 

    ResultElement_SOAP clone=new ResultElement_SOAP();
    clone.summary = this.getSummary_SOAP(); 
    clone.uRL = this.getURL_SOAP(); 
    clone.directoryCategory = 
this.getDirectoryCategory_SOAP();
    ... 
    return clone; 
  } 

  void set_SOAP(ResultElement_SOAP param) { 
    setSummary_SOAP(param.summary); 
    setURL_SOAP(param.uRL); 
    setDirectoryCategory_SOAP(param.directoryCategory); 
    ... 
  } 
  ... 
}

5.4 XML Arrays and ACL Lists 

Web service operations may require or return arrays of data as input or output 
parameters. Such structures of the web service are also declared in the <types> 
section of the WSDL file, where either arrays of built-in XML types or arrays of 
complex types can be declared. They can even be multi-dimensional. 

In ACL SL messages, however, we cannot use arrays (there is no such structure), 
therefore we have to represent arrays used in SOAP messages by lists in JADE. In the 
corresponding Java classes the WSDL2Jade tool therefore assigns list type fields 
(implemented by jade.util.leap.ArrayList) to array type elements in the WSDL. The type 
of the objects wrapped by the list is the JADE Java type corresponding to the built-in 



The WSDL2Agent Tool                                                              

 

 213 

XML type (or the Java class created for the complex type) of which the array is 
composed. For example, in the case of int[] array in the WSDL, the corresponding list is 
allowed to contain java.lang.Integer objects.  

In contrast to the ordinary getter and setter methods (operating simply on ArrayLists) 
the get_SOAP/set_SOAP methods expect and return arrays of the related SOAP Java 
type objects (corresponding to the built-in XML type). These are used in the 
communication with the web service. The latter methods, on the one hand, create arrays 
from lists, or lists from arrays, respectively; and, on the other hand, perform the ele-
mentary type conversions for each object (SOAP-JADE) contained in the array or list 
depending on the direction of the transformation. Note that in the case of an array of 
complex types the elementary type conversion uses the get_SOAPClone/set_SOAP 
methods of classes assigned to complex types. The proxy agent can thus access array 
type objects as simple as in the scalar case, produce web service required arrays from 
lists, and create lists from the web service result arrays. 

For example, the following array of complex type declaration can be found in 
GoogleSearchResult complex type: 

<xsd:complexType name="GoogleSearchResult"> 
 <xsd:element name="resultElements" 
type="typens:ResultElementArray"/>
 ... 
</xsd:complexType>

<xsd:complexType name="ResultElementArray"> 
 <xsd:complexContent> 
  <xsd:restriction base="soapenc:Array"> 
   <xsd:attribute ref="arrayType" 
arrayType="typens:ResultElement[]"/>
   <xsd:attribute ref="soapenc:arrayType" 
         wsdl:arrayType="typens:ResultElement[]"/> 
 ... 
</xsd:complexType>

<xsd:complexType name="ResultElement"> 
 ... 
</xsd:complexType>

The generated source code implementing WSDL arrays as lists is shown below: 

class GoogleSearchResult implements Concept { 
  ArrayList resultElements = null; 
  void setResultElements (ArrayList param)
    { this.resultElements = param; } 
  ArrayList getResultElements () { return 
this.resultElements; } 
  void setResultElements_SOAP (ResultElement_SOAP[] 
param) {...} 
  ResultElement_SOAP[] getResultElements_SOAP () {...} 

The WSDL2Jade tool is also capable of processing multi-dimensional array 
declarations in the WSDL, although they occur rarely in practice. Multi-dimensional 



                       László Zsolt Varga, Ákos Hajnal and Zsolt Werner 

 

214

 

arrays are represented by lists of lists in the JADE, where each list contains lists 
corresponding to the representation of one lower dimensional array. For example, the 
two-dimensional array int[][] is represented by a list of objects each containing a list of 
java.lang.Integer objects. Since ArrayLists cannot be nested directly in JADE (it is not 
possible to register such structures in the ontology), each list has to contain dedicated 
objects which may then wrap further lists inside. The two-dimensional integer array is 
thus represented by a list of Integer1DArray objects, where an Integer1DArray object 
contains a single list type field containing java.lang.Integer objects. These intermediate 
array-wrapper classes (such as Integer1DArray) are also created by the tool 
automatically. As described in the case of one-dimensional arrays, the related _SOAP 
getter and setter methods are generated in the multi-dimensional case as well. They 
expect and return multi-dimensional arrays of SOAP Java types in this case. 

5.5 Agent Ontology and Registration 

The set of Java classes corresponding to web service inputs (AgentActions), outputs 
(Predicates), and complex types used in web service messages (Concepts) is called the 
ontology of the proxy agent (and also the ontology of the web service). 

When the proxy agent starts up, it has to register its ontology first to be able to 
serialize/deserialize objects in agent messages by JADE. In the ontology registration 
code each class has to be added to JADE's knowledge base by submitting the class name 
and schema type (among of AgentActionSchema, PredicateSchema, ConceptSchema) 
information, and each field has to be specified in the registered classes by submitting 
the field name, symbolic field type (such as STRING, INTEGER, or the referenced 
schema name) and cardinality data (in the case of lists; optional otherwise). Note that 
cardinality attribute is also used to indicate optional elements in the WSDL 
(minOccurs="0").  

A part of the ontology registration code (WebServiceOntology.java) generated by the 
WSDL2Jade for Google web services is shown below: 

class WebServiceOntology extends Ontology { 
  WebServiceOntology (Ontology base) { 
    add(new AgentActionSchema
       ("GoogleSearchPortDoGoogleSearchAgentAction"), 
       DoGoogleSearchAgentAction.class); 
    as=(AgentActionSchema) getSchema 
       ("GoogleSearchPortDoGoogleSearchAgentAction"); 
    as.add("key", (PrimitiveSchema) 
getSchema(BasicOntology.STRING),
           ObjectSchema.OPTIONAL); 
    ... 
}



The WSDL2Agent Tool                                                              

 

 215 

6. WSDL2Protégé 

The WSDL2Protégé tool can be used to create the model of the web service ontology 
for the submitted WSDL file in the form of a Protégé project file, which can then be 
opened in Protégé knowledge engineering environment. The model can be visualized 
and edited on demand, furthermore, JADE agent code can be generated using the 
Ontology Bean Generator plug-in. Protégé is also applicable to export the web service 
ontology to various formats, such as RDF, OIL, DAML+OIL, or OWL. 

The WSDL2Protégé tool utilises the same WSDL parser as the WSDL2Jade tool, but 
generates a different output from the WSDL description. In this section we will focus on 
the Protégé file generation part, therefore the description will be shorter to reduce space. 

6.1 The Model 

The generated Protégé ontology follows the pattern of the ontology generated by the 
WSDL2Jade tool. For input and output messages the conversion assigns Protégé frames 
(corresponding to classes) with slots (corresponding to fields) representing message 
parts. Frames assigned to operation input messages are called AgentActions, and frames 
created for output messages are called Predicates in accordance with the conventions 
used in agent technology and the WSDL2Jade tool. Since frame and slot names must be 
globally unique in the knowledge domain, frame names are composed of the port name 
and operation name strings (in the WSDL) which is followed by either the AgentAction 
or Predicate strings. Slot names start with the container frame name and this is followed 
by the part name as specified in the WSDL file. Web service invocation faults are 
represented by the ErrorPredicate frame. 

6.2 XML Data Types and Protégé slots 

Protégé supports four basic types for slots: BOOLEAN, FLOAT, INTEGER, STRING 
(and a type called ANY, which can hold a value with any basic type). This implies that 
message parts and complex type elements in the WSDL have to be represented by such 
slot types.  

In Table 2 we summarized the designed Protégé slot representations of the built-in 
XML types (using ANY where the XML type cannot be represented correctly  in 
Protégé) used by the WSDL2Protégé tool. 

6.3 Complex Type Frames 

Complex types defined in the WSDL are represented by frames with slots 
corresponding to the contained elements. Since complex type names are unique in the 
WSDL, frame names get the name attribute of the complex type simply, but slot names 
must still be prefixed with the container frame name. To message parts and complex 



                       László Zsolt Varga, Ákos Hajnal and Zsolt Werner 

 

216

 

type elements referring to another complex type in the WSDL the WSDL2Protégé tool 
assigns slots with a special type called CLASS and restricts the slot's Allowed Parents 
facet to the frame corresponding to the referenced complex type. Other built-in XML 
type elements in complex type definitions are represented simply by slots with type 
associated according to Table 2.  

Table 2. XML-Protégé type mapping 

XML (WSDL) Protégé slot type 

string STRING 
integer INTEGER 
int INTEGER 
long INTEGER 
short INTEGER 
decimal INTEGER 
float FLOAT 
double FLOAT 
boolean BOOLEAN 
byte INTEGER 
dateTime ANY 
base64Binary ANY 
hexBinary ANY 
unsignedInt INTEGER 
unsignedShort INTEGER 
unsignedByte INTEGER 
time ANY 
date ANY 
anySimpleType ANY 

6.4 XML Array and Multiple Cardinality Slots 

Array type fields in the WSDL are represented by slots with multiple cardinality 
(available in Protégé as a slot attribute), as with the list representation of arrays used by 
the WSDL2Jade tool. In the case of a one-dimensional array a single, multiple 
cardinality slot is created with type corresponding to the type of the array elements. For 
n-dimensional arrays, however, intermediate frames have to be created to represent 1, 2, 
..., n-1 dimensional arrays where each frame contains a single, multiple cardinality, 
CLASS type slot referencing to the frame corresponding to the one-lower dimensional 
array (except for the one-dimensional case). For example, in the case of a two-
dimensional integer array, an intermediate frame called Int1DArray is created with an 
INTEGER type, multiple cardinality slot, and the slot corresponding to the 2-
dimensional array is implemented by a multiple cardinality, CLASS type slot with 
Allowed Parents: Int1DArray. 



The WSDL2Agent Tool                                                              

 

 217 

6.5 The Structure 

Frames are organized in a predefined structure required by the Ontology Bean 
Generator plug-in to be able to generate JADE code. In this structure all the frames of 
the ontology are the child classes of a special frame called Concept. Frames 
representing complex types are directly inherited from Concept. Frames corresponding 
to operation input messages are the subclasses of the dedicated frame called 
AgentAction (which is a child class of Concept), frames representing operation output 
messages are the subclasses of the frame called Predicate (also extending Concept). 
Finally, a so-called AID class instance must be present for the successful agent code 
generation with the Ontology Bean Generator plug-in. 

Figure 2 in section 3 shows the model generated by the WSDL2Protégé tool for 
Google web services in Protégé visual development environment. As it is seen in Figure 
2, three AgentAction frames and three Predicate frames are created for the web service 
operations of the Google web services. Other frames representing complex types 
(GoogleSearchResult, ResultElement, DirectoryCategory) are inherited from the 
abstract Concept frame. Slots within the frames got a unique name and the associated 
Protégé type in accordance with Table 2. The cardinality of the slots is also set: single in 
the scalar case, but multiple in the case XML of arrays. 

If we export the generated ontology from Protégé into OWL format, then we can 
publish the ontology. Part of the OWL representation of the 
GoogleSearchPortDoGoogleSearchAgentAction agent action together with the key 
property is the following: 

<owl:Class
rdf:ID="GoogleSearchPortDoGoogleSearchAgentAction">
 <rdfs:subClassOf> 
  <owl:Class rdf:about="#AgentAction"/> 
 </rdfs:subClassOf> 
</owl:Class>

<owl:FunctionalProperty rdf:ID= 
   "googleSearchPortDoGoogleSearchAgentAction_key"> 
 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/
>
 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#DatatypePro
perty"/>
 <rdfs:domain

rdf:resource="#GoogleSearchPortDoGoogleSearchAgentActio
n"/>
</owl:FunctionalProperty>



                       László Zsolt Varga, Ákos Hajnal and Zsolt Werner 

 

218

 

The return value of the GoogleSearchPortDoGoogleSearchAgentAction agent action 
is the GoogleSearchPortDoGoogleSearchPredicate. Its OWL representation as 
generated by the WSDL2Agent tool and exported from Protégé is the following: 

<owl:Class
rdf:ID="GoogleSearchPortDoGoogleSearchPredicate">
 <rdfs:subClassOf rdf:resource="#Predicate"/> 
</owl:Class>
<owl:ObjectProperty rdf:ID="googleSearchPort 
               DoGoogleSearchPredicate_return_value"> 
 <rdf:type rdf:resource= 
 "http://www.w3.org/2002/07/owl#FunctionalProperty"/> 
 <rdfs:domain rdf:resource= 
     "#GoogleSearchPortDoGoogleSearchPredicate"/> 
 <rdfs:range rdf:resource= 
     "http://www.w3.org/2002/07/owl#Class"/> 
 <protege:allowedParent 
rdf:resource="#GoogleSearchResult"/>
</owl:ObjectProperty>

7. Web Service Integration Demo Application 

WSID (Web Service Integration Demo) system [17] composed of agents and web-
services illustrates the application concept of the WSDL2Agent tool. The Google web 
service used in the previous sections demonstrates how the proxy agent is generated, 
while the WSID system shows how an agent can integrate existing web services and add 
new functionality to them by combining them.  

The WSID Agent uses two existing web services: the FinancialFunctions web service 
and the NumberSpeller web service, both of them publicly available [18]. The 
FinancialFunctions web service provides several different operations to calculate some 
finance related numeric information such as deposit future value, deposit present value, 
etc., according to the submitted input parameters (value, rate, payment, etc.). The 
NumberSpeller web service simply transforms the submitted integer number to a spell 
form in the specified language. The Intelligent Financial Agent (IFA) adds to existing 
financial web services the possibility to make textual reports in the user's language by 
combining it with the NumberSpeller web service.  

The WSID system is shown in Figure 4. The IFA has a web front-end, but client 
agents can also directly access its services. 

Both web services have their own wrapper agent in the agent system. The user can 
select from a web page the financial operation which he wants to do and the language 
for the textual report. This information is sent to the central node of the system: the 
Intelligent Financial Agent. The IFA first invokes the FinancialFunction Wrapper Agent 
and then, after having received the numeric result, sends it to the NumberSpeller 
Wrapper Agent. This way the IntelligentFinancial agent is able to provide a financial 
textual report in the user's language on the web page. 



The WSDL2Agent Tool                                                              

 

 219 

 

 

Fig. 4. The web service integration demonstration application architecture 

8. Related work 

Our work was partly stimulated by similar work within the Integrating Web Services 
Working Group of the Agentcities project [19] as well as an initiative for a similar 
interest group of the World Wide Web Consortium. This working group proposed a 
gateway approach [21][1] for the problem of agent and web services integration, and 
decomposed the problem into two parts: 1) software agents utilize web services, 2) 
software agents offer web services. The WSDL2Jade tool was implemented 
independent of the gateway approach in order to allow the deployment of mass amount 
of agents in the Agentcities testbed from existing web service applications. Moreover 
the WSDL2Jade tool is the first and most elaborated implementation to generate proxy 
agents for the utilisation of web services. It is expected that the JADE system will 
include similar component in the future. 

The WSDL2Protégé part of the tool can be used to generate the basis for the Web 
Service Modelling Framework (WSMF) elements of semantic web services [11]. The 
WSDL2Protégé tool helps to translate a WSDL description to a Protégé project file and 
load in into Protégé where a semantic enrichment can be done easily. Once the semantic 
enrichment is complete, the goal repository, the ontology of the content language for the 
communication between proxy agents and mediators, as well as the skeleton of a proxy 
agent code can be derived [22]. 

The WSDL2DAMLS tool described in [20] can also be used to migrate web service 
descriptions to semantic web service descriptions, because it can directly generate a 
DAML-S description form a WSDL file. The WSDL2DAMLS tool also needs human 
intervention, because the WSDL file does not contain the needed semantic information. 
Although the WSDL2DAMLS tool produces a DAML-S file, it does not support the 
creation of the elements of the WSMF model. 

JSP Page 

Intelligent 

Financial 

Agent 

Client 

Agent 

NumberSpeller 

Wrapper Agent 

FinancialFunction 

Wrapper Agent 

NubmerSpeller 

web-service 

FinancialFunction

s 

CLIENT 
PLATFORM 

JADE 
PLATFORM 

WEB-SERVICE 
PLATFORM 



                       László Zsolt Varga, Ákos Hajnal and Zsolt Werner 

 

220

 

9. Conclusions 

The WSDL2Agent tool helps to integrate existing web services into agent systems. It 
was developed to help the deployment of mass amount of agent systems in the 
Agentcities worldwide testbed [19]. The WSDL2Jade part of the tool is the first and 
most elaborated implementation to generate proxy agents for the utilisation of web 
services. The WSDL2Protégé part is the only tool to translate a WSDL description to a 
Protégé project in order to support its semantic enrichment. In this paper we gave a 
detailed technical insight into the operation and usage of the tool. 

The WSDL2Agent tool can link agent systems to other technologies as well. We 
have investigated in [22] how the tool can be used to migrate web services into the 
semantic web services world [10][11]. The WSDL2Agent tool is useful in grid 
environments as well. Users have reported to use the WSDL2Agent in grid systems by 
converting GWSDL files into WSDL descriptions and then applying the WSDL2Agent 
tool on the WSDL files. This way WSDL2Agent helps the integration of grid 
applications into agent systems. The WSDL2Agent tool therefore becomes more and 
more important by supporting the integration of existing systems (either web services or 
grid applications) into agent applications. 

We are planning to investigate how to give better support for semantic web services 
and grid applications. Currently WSDL2Agent supports WSDL1.1. Support for the 
recently published WSDL 2.0 specification is also planned. 

Acknowledgement 

The authors wish to acknowledge the collaboration of the partners in the projects where 
the development of WSDL2Agent was started. These partners are AITIA Rt., Széchényi 
National Library, T-Systems Dataware Ltd., and the core partners of the Agentcities 
project. We also thank Eric Pantera for developing the WSID application. 

 
 

László Zsolt Varga, Ákos Hajnal, Zsolt Werner 
Computer and Automation Research Institute 
Kende u. 13-17 
1111 Budapest 
Hungary 
e-mail: {laszlo.varga|ahajnal|werner}@sztaki.hu

 



The WSDL2Agent Tool                                                              

 

 221 

References 

[1] Lyell, M., Rosen, L., Casagni-Simkins, M., Norris. D.: “On software agents and web 
services: Usage and design concepts and issues” In Proc. of the 1st International Workshop 
on Web Services and Agent Based Engineering, Sydney, Australia, July 2003. 

[2] Maximilien, E.M., Singh, M.P.: “Agent-based architecture for autonomic web service 
selection” In Proc. of the 1st International Workshop on Web Services and Agent Based 
Engineering, Sydney, Australia, July 2003. 

[3] Web Services Architecture, W3C Working Group Note 11 February 2004, 
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/ 

[4] Foundation for Intelligent Physical Agents: “FIPA ACL Message Structure Specification”,   
http://www.fipa.org/specs/fipa00061/, (2002) 

[5] Gennari, J., Musen, M., Fergerson, R., Grosso, W., Crubézy, M., Eriksson, H., Noy, N., Tu. 
S.: “The evolution of Protégé-2000: An environment for knowledge-based systems 
development” International Journal of Human-Computer Studies, 58(1):89-123, 2003. 

[6] van Aart, C.J., Pels, R.F., Giovanni C. and Bergenti F.: “Creating and Using Ontologies in 
Agent Communication” Workshop on Ontologies in Agent Systems 1st International Joint 
Conference on Autonomous Agents and Multi-Agent Systems, 2002. 

[7] Wooldridge, M., Jennings, N.R.: “Intelligent Agents: Theory and Practice” The Knowledge 
Engineering Review, 10(2), 115-152., 1995 

[8] Dale, J., Mamdani, E.: “Open Standards for Interoperating Agent-Based Systems” In: 
Software Focus, 1(2), Wiley, 2001. 

[9] Foster, I., Jennings, N. R., Kesselman, C.: “Brain meets brawn: Why Grid and agents need 
each other” Proceedings of the 3rd International Conference on Autonomous Agents and 
Multi-Agent Systems, New York, USA, 8-15., 2004. 

[10] OWL-S Coalition “OWL-S 1.1 Release” http://www.daml.org/services/owl-s/1.1/ 2004 

[11] Bussler, C., Maedche, A., Fensel, D.: “A Conceptual Architecture for Semantic Web 
Enabled Web Services” ACM Special Interest Group on Management of Data: Volume 31, 
Number 4, Dec 2002. 

[12] Foundation for Intelligent Physical Agents: “FIPA SL Content Language Specification”,    
http://www.fipa.org/specs/fipa00008/, (2002) 

[13] Bellifemine, F., Poggi, A., Rimassa, G.: "JADE - A FIPA-compliant agent framework", In 
Proc. of the Fourth International Conference and Exhibition on the Practical Application of 
Intelligent Agents and Multi-Agents (PAAM'99), London, UK, (1999) pp. 97-108. 

[14] Google Web API, http://www.google.com/apis/ 

[15] W3C Working Draft "XML Schema Part 1: Structures", "XML Schema Part 2: Datatypes",   
http://www.w3.org/TR/xmlschema-1/,   http://www.w3.org/TR/xmlschema-2/ 

[16] WebServices – Axis, http://ws.apache.org/axis/ 

[17] Web Service Integration Demo, http://sas.ilab.sztaki.hu/wsid/ 

[18] Alphabeans web services  (See the "Run the demos" section at the URL below.)   
http://www-106.ibm.com/developerworks/webservices/demos/alphabeans/  

[19] Willmott, S.N., Dale, J., Burg, B., Charlton, P., O'brien, P.: "Agentcities: A Worldwide Open 
Agent Network", Agentlink News 8 (Nov. 2001) 13-15,  

http://www.AgentLink.org/newsletter/8/AL-8.pdf 



                       László Zsolt Varga, Ákos Hajnal and Zsolt Werner 

 

222

 

[20] Paolucci, M., Srinivasan, N., Sycara, K., Nishimura, T.: “Toward a Semantic Choreography 
of Web Services: From WSDL to DAML-S” Proc. of the First International Conference on 
Web Services (ICWS'03), Las Vegas, Nevada, USA, June 2003, pp 22-26. 

[21] Agentcities Task Force. Integrating Web Services into Agentcities Recommendation.  
http://www.agentcities.org/rec/00006/actf-rec-00006a.pdf, 2003. 

[22] Varga, L.Z., Hajnal, A., Werner, Z.: "An Agent Based Approach for Migrating Web Services 
to Semantic Web Services", Lecture Notes in Computer Science Vol. 3192, C. Bussler, D. 
Fensel (Eds.), Artificial Intelligence: Methodology, Systems, and Applications 11th 
International Conference, AIMSA 2004, Varna, Bulgaria, September 2-4, 2004, Proceedings, 
pp. 371-380., ISBN-3-540-22959-0 

 

Information about Software 

Software is available on the Internet as 
prototype version 

Internet address: 
Description of software: The WSDL2Agent tool is available on-line on the 
Internet. The input to the WSDL2Agent tool is the WSDL file of a web service. 
The WSDL file can either be uploaded to the web site of the tool or specified with 
an URL. The tool provides two types of output in a downloadable zip file. The 
WSDL2Jade part of the tool generates the code of a proxy agent that makes the 
web service available in multi-agent environment. The WSDL2Protégé part of the 
tool generates project file for the Protégé ontology engineering tool in which the 
ontology of the web service can be visualized, edited or exported to various 
formats. 
Online availability address: http://sas.ilab.sztaki.hu:8080/wsdl2agent/ 

Contact person for question about the software: 
email: wsdl2agent@sas.ilab.sztaki.hu 



WS2JADE: A Tool for Run-time Deployment 
and Control of Web Services as JADE Agent 
Services 

Xuan Thang Nguyen, Ryszard Kowalczyk,  
Mohan Baruwal Chhetri and Alasdair Grant 

Abstract. Web services and software agent technologies are two areas that have at-
tracted substantial research and industry interests in recent years. On the one hand, 
the Web services technology is gaining popularity because of its well-defined infra-
structure aiming at enabling interoperability among heterogenous applications. On 
the other hand, the agent technology aims at providing intelligent autonomous capa-
bilities for distributed components. A combination of these two technologies could 
create an environment where Web services and agents can employ and compliment 
each others’ strengths. In this chapter, we propose a framework called WS2JADE for 
integrating Web services and the JADE agent platform. In particular, the technical 
aspects of run-time deployment and control of Web services as agent services with 
WS2JADE are presented. We relate our framework to other solutions in the area and 
show how new emerging Web services management technologies can be used with 
WS2JADE for enabling Web services management with agents. The management 
capabilities are demonstrated with simple examples of using WS2JADE for service 
discovery, composition and deployment with JADE agents. 

1 Introduction 

With the emergence of Web service standards, the universal interoperability between 
distributed applications is fast becoming a reality. Web services follow a loosely cou-
pled integration model and use industry-standard protocols to facilitate the seamless 
integration of heterogeneous systems within and across organisations. While the Web 
service technology offers many distinctive advantages and benefits, it still has certain 
limitations potentially hindering its broader adoption in more complex applications. In 
particular it involves the limited support for the management of the discovery, composi-
tion and execution of Web services (e.g. [1, 18, 24, 25]).  
 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

224

The agent technology offers abilities of intelligent operations, interactions and coopera-
tion between autonomous components that can be used in automating management tasks 
and business processes, and has also been recognized as a promising technology for 
managing Web services [9, 10, 17, 25]. However, because Web services and agents 
were originally developed separately with different standards and specifications their 
integration is not straightforward. Realising the benefits of integrating these two tech-
nologies, significant research has been carried out in this direction. The Agentcities 
Web Service Working Group’s project [4] is an example of such an effort aiming at 
addressing the issue of Web services and agents integration. More recently, Agentcities 
has also created openNet [26] that provides a test-bed environment for integrating soft-
ware agents, Web services and Semantic Web services. The integration of software 
agents and services in general has been proposed by Luck et al. [20] as one of the major 
tasks for the agent community. The main obstacles in integrating Web services and 
agents are the mismatches in description and communication used by these two tech-
nologies. One way to overcome these obstacles can be a proxy-based integration ap-
proach that allows the two technologies to evolve in parallel without imposing any re-
strictions on either, providing the gateway to bridge the Web services and agents.  
 
Web services can work across organizations and be composed to create new Web ser-
vices. There are business scenarios in which many Web services from different admini-
stration domains need to be tied together in cross-organisational business processes or 
complex composite applications. Consequently, Web services management becomes a 
complex task that requires a high level of intelligent capabilities and automation sup-
port. The emerging Web services management technologies, such as WS-Management 
[1] and Web Services Distributed Management (WSDM-MUWS [24], WSDM-MOWS 
[25]), define additional interfaces for Web services needed for their management. How-
ever they do not specify the management mechanisms, i.e. ‘how’, ‘when’ or ‘why’ these 
Web services can be managed. The agent technology is well poised to fulfil this role and 
support Web services with the required management mechanisms. If agents were able to 
interact with Web services, the agent technology could be integrated into the Web ser-
vice management model effectively and used to manage Web services. 
 
In this paper, we propose a framework for integrating Web services and FIPA compliant 
software agents, which offers many advantages over previous solutions. Specifically it 
enables run-time deployment and control of Web services as agent services. The man-
agement of Web service discovery, composition and execution can be performed both at 
the agent service and the Web service levels. Section 2 overviews the related work in 
the area of integrating Web services and agent technologies. Section 3 presents the pro-
posed framework called WS2JADE and its technical aspects. Section 4 discusses the 
need for Web service management and current standards available for Web service 
management. It also discusses how and why agent technology, and in particular 
WS2JADE can support Web service management. Section 5 demonstrates the specific 
capabilities of WS2JADE with simple examples of Web service management including 
service discovery, composition and deployment with JADE agents. Finally, concluding 
remarks and an outline of the future work are presented in Section 6. 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

225 

2 Related Work 

The agents and Web services communication, and a synthesis of the agents and Web 
services have been addressed in a number of works. In [11], the authors discuss the 
“agentification” for Web services, in which the legacy systems could be re-engineered 
into agent-based Web services. In [10] an agent-based architecture is proposed for the 
selection and composition of Web services. The trend of using agents to monitor and 
control Web services composition has been increasing recently, evidenced by a number 
of other publications (e.g. [12, 27, 28]). In most of those works however, agents do not 
conform to any specific standard and details of using agents to invoke Web services are 
not formally described. The general assumption is that any agent can request any Web 
service by acting as the Web service’s client. In practice, if this assumption held then 
the agents’ code would need to contain the Web service invocation code. For FIPA-
compliant agent systems, this also means that in addition to agent communication lan-
guages, the agents’ programmer need to consider the low level details of Web services 
invocation. There have been attempts to provide a framework in which agents and Web 
services, with separation of concerns in their implementations, can communicate with 
each other. A symmetric integration of Web services and FIPA-compliant agent plat-
forms has been proposed in [4] as a high-level architectural recommendation from the 
Agentcities [3]. It is the fact that Web services were developed without the concept of 
agents (i.e. FIPA agents) and can exist without agents. The symmetric architecture takes 
this into consideration and also that many Web service clients may have autonomous 
characteristics of agents without conforming to the FIPA specifications. A proxy-based 
approach allows the two platforms to be evolved in parallel without imposing any re-
strictions on each other.  

FIPA Agent Service Environment Web service Environment

FIPA Agent

FIPA

Service

FIPA

Directory

Facilitator

UDDI

Registry

Web service

Client

Web service

FIPA Agent

Service to

Web service

Gateway

Web service

to FIPA

Agent

Service

Gateway

FIPA Agent Service Environment Web service Environment

FIPA Agent

FIPA

Service

FIPA

Directory

Facilitator

UDDI

Registry

Web service

Client

Web service

FIPA Agent

Service to

Web service

Gateway

Web service

to FIPA

Agent

Service

Gateway

 

Fig. 1.  FIPA Agents – Web services Integration Architecture [4] 

A FIPA agent service environment can exist in parallel with a Web service environment 
as depicted in Figure 1 [4]. The “FIPA Agent Service to Web service Gateway” on the 
border between the two environments allows a FIPA agent to access Web services by 
translating ACL messages into Web service invocations. In the other direction, the 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

226

“Web Service to FIPA Agent Gateway” exposes and registers agent services in UDDI 
Registry Server so that any Web service client can use them. Following the Agentcities 
recommendations, two separate solutions have been proposed to solve two ends of the 
problems for the FIPA compliant JADE agent system. One solution exposures Web 
services to JADE agents [19] and JADE agent services to Web services [7, 8, 33]. 
Whitestein Technology has proposed WSAI (Web Service agent Integration) [33] and 
WSIGS (Web Service Integration Gateway Service) [7], and has already released the 
tool WSAI as an open source code in its first version. WSIGS is under development and 
its architecture has been published in [7] and [8]. WSDL2JADE has been released by 
Sztaki [19] as an online program that converts WSDL file to JADE classes. It takes a 
Web service address as an input and generates outputs of JADE agent code and agent 
ontology for the Web service. However, there is no run-time deployment capability. 
 
WSAI [33] allows Web service clients to use JADE agents’ services. In order to do this, 
WSDL files are generated for these agent services. Technically, at this stage WSDL 
files are created manually from the agents’ behaviors. It also requires “interface agents” 
to communicate with a target agent. These “interface agents” are created and destroyed 
per Web service client invocation of the agent service. However it appears that the prac-
ticability of WSAI is limited. This is because of the default single-threaded mode of 
JADE agent, and the asynchronous and stateful nature of agent communication do not 
fit well in the current implementation stage of Web service communication model, 
which is stateless and mostly synchronous. There have been discussions of asynchrony 
versus synchrony in agents and Web services in [4]. WSIGS [7] is under development at 
the writing time of this paper. WSIGS proposes an architecture for the bi-directional 
integration without special agents, and provides a set of codecs that do the translation 
between the agents’ ACL (Agent Communication Language) and Web services’ calls.  
To be visible in both environments, WSIGS is registered as a special agent service in 
FIPA DF (Directory Facilitator) and as a special Web service endpoint in UDDI directo-
ries. When an agent wants to invoke a service (Web service) registered in WSIGS regis-
try, the request is passed on to WebServiceInvocation, a component of WSIGS, to per-
form the actual Web service invocation. There is no active discovery mechanism pro-
vided in WSIGS. Services in one environment need to be registered by their owners in a 
public directory before they can be seen in the other environment. 

 
The area of Web services management has attracted substantial effort from industry and 
significant research among academic communities. Web services-based applications can 
work across enterprise boundaries more now than any other types of applications. How-
ever, being distributed and dynamic in nature, Web services require an efficient man-
agement model that can integrate seamlessly and work dynamically in a distributed en-
vironment. There have been two main approaches in tackling this problem and they are 
complimentary to each other. In the first approach, management is done through Service 
Level Agreement (SLA) or service contracts. This approach assumes that control over 
Web services is not visible to external managers and service management is enforced 
through agreement terms (rewards, penalty, preference, etc) specified in the contracts. 
Current work on this approach can be found in [15] and [37]. In the second approach, 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

227 

external mangers can exert direct control over a Web service. For this to happen, the 
Web service that needs to be managed must expose some manageability interfaces. This 
approach is the latest emerging management model from industry, supported for exam-
ple by two specifications, Web Services Distributed Management (WSDM) [22] origi-
nally from HP and WS-Management [1] from Microsoft. At this initial stage, WS-
Management and WSDM appear to overlap in a number of aspects. 

 
WS2JADE proposed in this paper aims at enabling seamless and dynamic Web services 
and agent technology integration, and is geared for agent-based management of Web 
services. To do this, it utilizes useful features from emerging Web service management 
models; especially Web services based management models like WSDM and WS-
Management. It provides facilities to integrate with future implementation of WSDM 
and WS-Management, and offers the deployment of Web services as agent services at 
run-time. It is the first step towards the ultimate goal of automation of Web service 
management using agents. WS2JADE does not automatically provide intelligent algo-
rithms for Web services management. However, it provides a gateway for the existing 
management algorithms to be employed in the multi-agents environment. With 
WS2JADE, an overlay management network of agents can be formed to manage the 
Web services network and communicate with the underlying management of Web ser-
vices. 

3 WS2JADE: Web Services-Agents Integration 

This section describes the proposed approach for the integration of Web services and 
JADE agents with WS2JADE. From an architectural perspective, WS2JADE, in accor-
dance with [4], forms a gateway between a Web service and FIPA agent service. As 
depicted in Figure 2 there are two distinct layers in WS2JADE: the interconnecting 
layer and the management layer. These two layers provide facilities to connect the Ser-
vice Oriented Layer (Web services) and the JADE agent layer together. 

 
The layer which contains entities that directly and dynamically interconnect Web ser-
vices and agents is the Interconnecting Layer. The management layer, being static, cre-
ates and manages those dynamic interconnecting entities. In WS2JADE, the intercon-
necting entities consist of special agents, ontology and protocol specifications. We call 
these special agents WSAG (Web Service Agents). WSAG are the agents capable of 
communicating with and offering Web services as their own services.  The combination 
of the static and dynamic layers is a distinct feature of WS2JADE as compared to earlier 
tools mentioned in the previous section. The WS2JADE management layer is capable of 
active service discovery, and automatically generating and deploying WSAG at runtime.  
It is an improvement over WSDL2JADE since it can automate the agent deployment 
process. Instead of being passive like WSIG, the WS2JADE is designed to actively dis-
cover Web services and generate equivalent Web services if required. Also, each 
WSAG is multi-threaded to take an advantage of supporting concurrent requests of Web 
services and has its own Web service invocation module. 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

228

Agents

Onto protocols

Onto mapping

Mgmt

   Intrt Generator
      Service Asgmt

Mgmt

Web Service

Data types choreography

O
n

to
lo

g
y

C
a
rd

in
a
li

ty

Web Service

Layer

WS2JADE

Management Layer

WS2JADE

Interconnecting Layer

JADE layer

W
S

2
J
A

D
E

 

Fig. 2. WS2JADE layer mapping 

 
Figure 2 shows that WS2JADE management can be looked at from a different perspec-
tive as a layer which is capable of projecting the Web services (or any service-oriented 
environment) layer into the JADE agent layer. The result of this projection is repre-
sented by the interconnecting entities. As depicted in that figure, three mappings are 
carried out by WS2JADE during the projection: ontology mapping, interaction map-
ping, and assignment mapping. These mappings are handled by three main components  

 
 

JADE Platforms

W
e
b

 s
e
rv

ic
e
 E

n
v
ir

o
n

m
e
n

t

 

  

WS2JADE

In
te

ra
ti
o

n
 T

ra
n

s
la

to
r

O
n

to
lo

g
y
 G

e
n

e
ra

to
r

C
a

rd
in

a
lit

y
 M

a
n

a
g

e
r

DFClient

Agent

WSAG

UDDI

WSAG

In
te

ra
c
t 
P

ro
t

O
n

to

 
 

Fig. 3. WS2JADE components 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

229 

 
 
that form the WS2JADE management layer: ontology generation and management 
component, interaction translation component, and the service assignment management 
component. These components interact with each other and provide the WS2JADE 
management part as shown in Figure 3. 
 
Figure 3 presents the different components within WS2JADE system and how they are 
linked to JADE agent system. The vertical rectangular box depicts WS2JADE, the hori-
zontal one depicts JADE. Note that the overlap between WS2JADE and JADE consists 
of components in the WS2JADE interconnecting layer: generated interaction protocols, 
ontologies, and WSAG. Figure 3 also illustrates a scenario for WS2JADE operation, in 
which a client agent searches for some service on DF. The DF can trigger WS2JADE to 
look up for available services in the Web service environment. If some Web services are 
found, their corresponding ontology and interaction models are generated. Also, a 
WSAG capable of accessing the Web service is generated.  This WSAG registers the 
Web service as its service on DF, and communication between the client agent and this 
WSAG can start if the client agent wants the service.  The following subsections discuss 
each WS2JADE component in more details.  

3.1 Ontology Generation and Management 

The ontology generator is responsible for ontology generation and ontology manage-
ment. It translates data and its structure from Web service WSDL interfaces into mean-
ingful information for agents. A detailed explanation of WSDL can be found in WSDL 
specification [9]. WSDL describes abstract concepts and concrete entities. The abstract 
concepts are port type, operation, message and data type. The concrete entities are data 
encoding style, transport protocol and network address. In WS2JADE, the abstract con-
cepts are relevant for the ontology mapping management as agents need to know how to 
invoke the operations of a Web service. The concrete entities are handled by the interac-
tion generator and management component. WS2JADE ontology generator and man-
agement component converts Web services’ data types, and the operation inputs and 
outputs into the agent ontologies. The corresponding WSDL port type is tagged in the 
structure of the ontologies. Since JADE is implemented in Java, JADE ontologies are 
often represented as Java classes, which are convenient for JADE agent’s manipulation 
and processing. Alternatively, it can be in other formats such as RDFS [34] and OWL 
[35] for interoperability with other FIPA compliant agent platforms provided that there 
are suitable codec plug-ins. Our WS2JADE toolkit supports JADE native ontology and 
OWL. To generate ontologies in Java, a WSDL data type is converted to a concept in 
agent ontologies. Two concepts are generated for each WSDL operation. One is for the 
operation input message and the other is for the output message. WSDL data types can 
be built-in XML types. The list of built-in simple XML data types are defined in the 
XML schema specification [29]. We map these built-in simple data types to Java primi-
tives that are supported by JADE ontology representation. For XML data types that are 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

230

not built-in, special customized Java classes are used, for examples, Beans, Enumera-
tion Holders and Facet classes.  
 
The following is an example of generated ontology for a XML type Enumeration de-
fined as: 

<s:simpleType name="Mode"> 

 <s:restriction base="s:string"> 

 <s:enumeration value="On" /> 

 <s:enumeration value="Off" /> 

 </s:restriction> 

</s:simpleType>

The generated ontology concept in a Mode class extends from JADE Concept class: 

public class Mode implements jade.content.Concept{ 

ModeFacet facet=null; 

java.lang.String enumEle; 

 public Mode(){} 

 public java.lang.String getEnumEle(){return enumEle;} 

 public void setEnumEle(java.lang.String enumIn){ 

  this.enumEle = enumIn; 

 } 

}

This Mode class has a facet defined as in ModeFacet class, which restricts the value of 
enumEle slot in Mode concept to one of values in the xml Enumeration.  

public class ModeFacet implements jade.content.schema.Facet{ 

public void validate(jade.content.abs.AbsObject abs, 
jade.content.onto.Ontology onto) throws 
jade.content.onto.OntologyException { 

try { 

 jade.content.abs.AbsPrimitive p = 
jade.content.abs.AbsPrimitive) abs; 

 boolean valid = false; 

 java.lang.String obj=p.getString(); 

 if(obj.equals("On")) 

 valid = true; 

 if(obj.equals("Off")) 

 valid = true; 

 if (!valid) { 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

231 

 throw new jade.content.onto.OntologyException("Facet 
restriction violated"); 

  } 

 } 

 catch (Exception e) { 

 throw new 
jade.content.onto.OntologyException("Invalid Facet Object", 
e);

  } 

 } 

}

Generating an ontology in the OWL format is simpler than in Java classes because 
OWL and WSDL both use XML. Similar to JADE ontology generation approach, data 
types and messages in WSDL are mapped to concepts in OWL. There is a one-to-one 
relationship between concepts in the ontologies generated in Java and OWL. OWL is 
still very new and subjected to changes; however we share the belief that it will con-
tinue to play an important role in Semantic Web with an increasing support from agent 
communities.  

 

In addition to the ontology generation, the ontology management is important in 
WS2JADE. WS2JADE organises generated ontologies in an efficient way. For data 
types that can be shared among different Web services, the corresponding generated 
ontology concepts are shared and form a common ontology base. This means that every 
time a new Web service is presented as an agent service, part of the existing ontology 
base and domain knowledge can be reused for this new service. Also, this allows the 
ontologies to be structured in a manageable way. 

3.2 Interaction Translation 

The interaction translation component handles the conversion from Web service com-
munication into agent communication. Specifically, it converts Web service transport 
messages into ACL envelopes, and Web service interaction patterns into agent proto-
cols. These correspond to two sub-functionalities: language translation and interaction 
pattern conversion.  

3.2.1 Language Translation 

 
To translate Web service transport messages (commonly SOAP) into agent ACL mes-
sages, the SOAP envelope is first projected into the Java language and then into ACL. 
We do not translate SOAP directly into ACL for two reasons. Firstly, we want to reuse 
our generated ontologies and the existing Java implementations of SOAP. Secondly, we 
want to make use of the agent’s capabilities to understand and process the messages 
according to its own logic (in addition to language translation) before forwarding them. 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

232

This is best done by translating SOAP and ACL into Java – the native language for 
JADE.  

 

SOAP - JAVA

BPEL - AUML

AUMLWSCL

ACL - JAVA

WSAG

SOAP ACL
WS

Agent Logic

ACL - SOAP

Language Translation

 

Fig. 4. Language Translation 

Figure 4 shows that when a WSAG receives a SOAP message, it uses the Language 
Translation component to convert this message directly to ACL and send to the client 
agent. It can also perform some reasoning and modification on the message by convert-
ing the message to Java classes before any translation into ACL. In the Language Trans-
lation part of the interaction translation component, Axis’ JAX-RPC (Java API for 
XML based Remote Procedure Call [30]) implementation and an extension of JADE 
ontology package are used to support SOAP to JAVA translation. Axis is one of the 
most popular open source implementations of SOAP today. On the one hand, JAX-
RPC, led by Sun, is a specification of Web Service Invocation framework in Java. In 
JAX-RPC specification, at the client side, Java to XML translation in remote method 
call is done through a mapping from Java client stubs to the SOAP message representa-
tion. On the other hand, in JADE, information represented in JADE ontology-supported 
classes (Java objects) can be converted to different ACL content languages, including 
SL and LEAP. We can see from Figure 4, that language translation is leveraged by the 
reuse of many existing technologies instead of reinventing the wheel. SOAP-ACL trans-
lation is done by piping SOAP-JAVA and ACL-JAVA translation together. The main 
task of the language translation component is to map the Axis stubs to JADE ontologies.  
However, due to the restrictions of JADE ontology and JAX-RPC classes it is not easy 
to convert data between them. In particular, an automation of the conversion process for 
any data types is difficult. Hence, we use special classes which represent the ontology 
facets to preserve precisions in the conversion process. There has been a similar discus-
sion in [19] for Sztaki’s WSDL2JADE. Complex data mapping in WS2JADE (for ex-
ample  mapping of Axis Holder and Enumeration types to JADE ontology concepts and 
classes)  is done recursively through simple data type. 

 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

233 

3.2.2 Interaction Pattern Translation 

  
In the interaction pattern translation component, WS2JADE focuses on choreography. 
By “choreography” we mean the required patterns of interactions among parties. It is in 
contrast to “orchestration” that describes how a composite Web service is constructed 
from other atomic services. For a composite Web Service, choreography is obtained by 
looking from an outsider’s perspective. It tells the Web service clients different steps of 
how to use a composite service. 

 
We have mapped simple interactions implicitly described in WSDL documents into 
standard FIPA interaction protocols [14]. Web service (WSDL version 1.2) provides 
four types of operations: one-way, request-response, solicit-response, and notification. 
In the one-way operation, a Web service client sends a request without receiving any 
response from the Web service. In the request-response, the client sends a request and 
receives a response synchronously. In the solicit-response, the Web service sends a so-
licit request to the client and receives a response. In the last type, notification, the Web 
service notifies the client without receiving any response. These four types of Web ser-
vice operations lead to three common interaction patterns in practice: request-response, 
solicit-response, and subscribe-notification. The request-response and solicit-response 
interaction patterns correspond to those of Web service operation types. The subscribe-
notification interaction describes the conversation style in which a client registers to the 
Web service in order to receive notifications when some event occurs.  Table 1 summa-
rizes the mapping of these interactions styles to agent protocols. More information on 
FIPA Request Interaction protocol and Subscribe Interaction protocol can be found in 
[14].  

Table 1. Interaction pattern mapping 

Web Service Interaction Patterns Agent Protocols 
Request-Response FIPA Request Interaction Protocol 
Solicit-Response FIPA Request Interaction Protocol 
Subscribe-Notification FIPA Subscribe  Interaction Protocol 

3.3 Service Assignment Management and Service Discovery 

The Service Assignment Management component is responsible for the cardinality 
mapping and service deployment management. The cardinality mapping manages M:N 
relationship between Web services and WSAG. Offering the same Web services on dif-
ferent WSAG allows better load balancing and reduces probability of service access 
failure when some WSAG are down. Offering more than one Web service on a proxy 
agent allows related Web services to be grouped together. The cardinality mapping of 
M:N permits a number of Web services can be offered and duplicated as services of 
different WSAG. This relationship is managed through a registry that keeps records as 
triples of the Web service, a WSAG that offers this Web service, and a new name for 
the Web Service in the agent platform. The service assignment management also pro-



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

234

vides a tool for deploying and destroying WSAG. It assigns Web services to a WSAG 
informing it which ontologies should be used for the newly assigned Web Service. If an 
assigned Web service is reported to be no longer available, the service deployment 
management removes the service from the list of the offered services of WSAG and 
from the DF. 

 
The Service Discovery component is designed to discover Web services. It is essentially 
a piece of software that can use Web service discovery protocols and translate the re-
ceived information into agent service descriptions for the DF.  As mentioned earlier, we 
prefer an active discovery model rather than waiting for services to be registered.  At the 
time of this writing, Web service discovery protocol is complex and subject to change 
with the latest revised version of WS-Discovery [17] specification which uses multicast 
protocols. Traditional Web service discovery mechanism of UDDI shares a common 
model with agent DF in the sense of accessing the directory. However, UDDI has 
evolved away from the concept of a “Universal Business Directory” that represented a 
master directory of publicly available services as DF still is.  Most P2P based and mul-
ticast discovery protocols prove that requesting service providers to register the services 
is not always the case. Because UDDI implementations are widely available at this 
stage, in WS2JADE version 1.0 the Web services discovery is available as a UDDI 
proxy agent. This agents supports special discovery services which can be configured to 
proxy to any UDDI version 2 servers, including Microsoft and IBM UDDI inquiry serv-
ers.  

3.4 Remarks 

As mentioned earlier and discussed in [4], the main difficulties in integration of Web 
services and FIPA compliant agent platforms are the mismatches in communication and 
descriptions. These are summarized in Tables 2 and 3, respectively. For translation from 
a Web service to an agent service, WS2JADE handles these mismatches through its 
different components. Although the current version of WS2JADE is operational and 
offers many advantages over other tools, it can still be improved in a number of areas. 
 
For example to increase the ontology reuse and avoid redundancy, the semantic map-
ping management component can be extended to detect semantic equivalence of two 
syntactically different generated concepts and keep one of them only. In [14], the au-
thors focus on this topic and outline some approaches to achieve this. The current ver-
sion of WS2JADE has not yet implemented that specific feature but future versions will 
include it. 

Table 2. Communication Mismatch 

FIPA agent communication W3 Web Service communication 

ACL/IIOP+HTTP SOAP/HTTP 

Asynchronous Synchronous/Asynchornous 
Stateful Stateless 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

235 

 
Another area is the interaction pattern translations. Web Service Choreography Descrip-
tion Language (WS-CDL) [36] has been under development for some time. WS-CDL is 
considered as a layer above WSDL in the Web service technology layer hierarchy. It 
describes a set of rules to explain how different partners may act in a conversation. 
W3C recommends it as a necessary complement to BPEL and programming languages 
like Java that only describe one endpoint, and not the whole system of interaction. 

Table 3. Description Mismatch 

FIPA Agent Service W3 Web Service 

Name – Name of the service Names of services, port types, operations, etc. 
Type – Type of the service Type – Container of data type 

Protocols – List of supported proto-
cols 

Message – Abstract, typed definition of data 

Ontologies – List of supported on-
tologies 

Operation – Abstract description of action 

Languages – List of supported con-
tent languages 

Port Type – Abstract set of operations 

Ownership – The owner of the ser-
vice 

Binding – Protocol & data format specs for a port
type 

 Port – Single endpoint as combination of a binding
and a port type. 

 
In the WS2JADE approach, we plan to convert BPEL4WS and WS-CDL (however not 
at this stage of WS-CDL development) into agent Unified Modeling Language (AUML 
[5]) for the overall protocol representation in UML template. AUML is an extension of 
UML language for agents and has been used as a standard language to describe FIPA 
interaction protocols. The interaction translation will keep generated AUML documents 
in its protocol specification repository which can be looked up by client agents (or the 
client agents’ designers) before using the service. In this version of WS2JADE we have 
not implemented the translation of WSCL to AUML. One reason for this is the instabil-
ity and immaturity in Web Service Choreography as evidenced by the suppression of 
WSCI (Web Service Choreography Interface) and WSCL (Web Service Choreography 
Language) [2] by WS-CDL [36] which is still in the first draft version.   

4 Management of Web Services 

In this section we first discuss existing standards for the management of Web services 
and how these standards can be implemented. Then we discuss why agents are suited 
for Web service management and how agent systems, in particular JADE, can fit into 
emerging management models and take advantage of them by using WS2JADE. 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

236

4.1. Web Services Management Frameworks with Web Services  

Web services represent vital resources for any business organization and are prevalently 
used to carry out business processes and transactions between businesses or within an 
enterprise. When they interact with other Web services, they form a logical network 
which can be distributed across enterprises. From the business organization’s view 
point, the ability to manage such a logical network, and automate and integrate various 
internal functions is very critical in order to provide Web service security, usability and 
reliability. In order to achieve this, there is a need for standards and tools which allow 
the management of Web services. At present, there are very few standards which ad-
dress the management of business processes or the underlying application services they 
rely on. The very nature of Web services makes this task (of managing Web services) 
all the more challenging. Some of the characteristics of Web services which contribute 
to this challenge include distributed nature, extensibility, standardization and discovery 

[22]. 
 

Application

User

Application

Manager

Web

service

Endpoint A

Web

service

Endpoint B

Application Service

Implementation

Application

Manageability

Implementation

EPR

to A

uses

m
a
n

a
g
eM

an
ag

ea
bi
lit
y

 R
ef

er
en

ce

EPR

to B

 
 

Fig. 5. Management of a Web service or a resource exposed as a Web service using a Web service 
[22] 

Hewlett-Packard has proposed the Web Services Management Framework (WSMF) 
which is a logical architecture for the management of resources [22]. Extending this 
work further, with the support from other companies including IBM and DELL, HP has 
released the Web Services Distributed Management (WSDM) specification which de-
fines how the management of any resource can be accessed via web service protocols – 
Management Using Web Services (MUWS) [24] and how Web services can be man-
aged using Web services – Management of Web Services (MOWS) [25]. The specifica-
tion was submitted to Organization for the Advancement of Structured Information 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

237 

Standards (OASIS) and has been accepted as a standard. Microsoft, in collaboration 
with various IT companies has released its own SOAP-based protocol for managing 
systems (including Web services) called Web Services for Management (WS-
Management) [1]. WS-Management shares the basic idea with WSDM in identifying a 
manageable resource and communicating with it.  

 

As shown in Figure 5, each time a resource is exposed as a Web service or a Web ser-
vice is made available, it also provides a reference to its manageability endpoint. The 
Application Manager can find this reference to the Application Manageability Imple-
mentation, and then performs management actions on the application by exchanging 
messages with Web service endpoint B (manageability endpoint). In more complex sce-
narios, the Application Manager can find out the relationships among different applica-
tion processes from their manageability interfaces and use them as the inputs for a more 
dynamic management algorithm. 

4.2 Enabling Web Service Management with WS2JADE 

This part discusses the application of agent technology for Web service management 
and WS2JADE capability in integrating with emerging Web services based manage-
ment models. This discussion is a significant departure from previous discussions on 
how Web services can be accessed and used by agents since management functionalities 
discussed so far are on the agent service level. In this part, we discuss how agent-based 
management can be carried out on the Web services level. 

 
A management system, in general, requires some level of automation. In an ideal situa-
tion, it should be able to diagnose faults and take appropriate correction actions. A soft-
ware agent is an autonomous software entity or computer system situated in some envi-
ronment. Therefore a management system itself or its sub-components shares the fun-
damental characteristic of an agent. As a result, modelling management systems as 
agents or agent systems is a natural choice. There have been many management systems 
with agents. Examples are Sun’s Java Management Extension (JMX) [31]-a new feature 
in version 5.0 of Java 2 platform and McAfee’s ePolicy Orchestrator [21] software. In 
JMX, a given resource is instrumented by Java objects known as Managed Beans, or 
MBeans. These MBeans are registered and managed by management agents, known as 
JMX agents. The specification provides a set of services for JMX agents to manage 
MBeans. In ePolicy Orchestrator, Anti-Virus software on client PCs are monitored by a 
set of agents for possible virus outbreaks. In these examples, the management environ-
ments in which the managed objects (MBeans, Anti-Virus software) reside do not scale 
up globally. In particular, the environment is limited to Java programming languages for 
JMX and to a local computer for ePolicy Orchestrator. Consequently, the management 
agents in these local environments do not need to follow well-defined standards. How-
ever, Web services environment can span organizational boundaries, and hence, its 
management agents, if implemented, should exhibit social capabilities with a common 
global standard such as FIPA specifications so that coordination can take place at a 
level. web services management is a broad term which covers different areas such as 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

238

                

  

Resource-
WS

Resource-

WS
Resource-

WS

Mgmt-WS
Mgmt-WS

  

W
S

2
J
A

D
E

F
IP

A
 c

o
m

p
li
a

n
t

M
A

S

W
S

M
g

m
t

W
e

b
 s

e
rv

ic
e

E
n

v
ir

o
n

m
e

n
t

 

Fig. 6. WS2JADE for WS Management 

access mechanism (authentication, authorization, etc), provisioning (SLA management, 
execution monitoring, etc), and composition (composition structure, conversation rela-
tionships, etc). As mentioned before, the MUWS 1.0 specifications define how to repre-
sent and access manageability interfaces of resources as Web services. The MOWS 1.0 
specification defines how to consider Web services as resources and how to describe 
and access that manageability interfaces using MUWS. They together provide the Web 
services managers with one set of protocols and semantic instrumentation to manage 
Web services based applications and processes across enterprise and organizational 
boundaries. However, to what extent a manageability interface can be exposed to exter-
nal managers and how the Web services managers coordinate and manage their Web 
services efficiently and intelligently are not in the scopes of these specifications. In 
other words, while these web service management standards define the interfaces 
needed for managing a web service, they do not specify ‘how, ‘when’ or ‘why’ a web 
service should be managed. If we look at the attributes of software agents, we can see 
that they are often characterized by their ‘intelligent and social capabilities’ and exhibit 
autonomous, goal-driven behaviour. Hence multi-agent systems fit into the web service 
management picture provided they can use the manageability interface. The agents can 
coordinate, cooperate and negotiate on how much visibility of a management interface 
should be exposed, and make plans of how to manage Web services. Direct Web service 
manipulations are supported by management infrastructures which implement WSDM 
or WS-Management. Figure 6 presents this Web services management model with the 
support from WS2JADE. In the top layer of WS2JADE and FIPA compliant MAS, 
available AI techniques can be implemented and distributed among FIPA compliant 
agents, these agents communicate with WS2JADE agents to get access to the manage-
ability interfaces of manageable Web services in the second layer of Web service Man-
agement. They then coordinate and manage the Web services in the bottom layer. Note 
that these are logical layers. In some implementation, services in the Web service man-
agement layer can be the same with services in the bottom layer. 

 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

239 

AgentActionConcept

WSResource

WSResourceInspection

WSResourceManagementAction

WSManagement

WSRelationship

WSResourceGet

WSResourceEnumerate WSResourcePull

WSManagementAction

WSResourceDelete

WSResourceCreate

WSResourceUpdate

WSManagementAction

WSStop

WSStart

RelationshipGet

 

Fig. 7. WS Management Ontology Model 

 
We believe a Web based management of Web services model, such as WSDM or WS-
Management, has a great potential to be widely adopted by software vendors in the fu-
ture. Hence, we have implemented an ontology base for Web services management in 
WS2JADE. The ontology structure was designed after a careful review of both WSDM 
and WS-Management specifications to combine common and important management 
elements in these specifications. Figure 7 partially presents this ontology structure. As 
illustrated from the figure, WSResource and WSRelationship are important concepts for 
Web service management. They extend from the WSManagement concept which serves 
as a root concept of all other content elements. WSResource defines a distinct type of 
management attributes exposed by a manageable Web service. WSRelationship class 
represents relationships between two Web services or two Web services resources.  At 
the lowest level, three types of relationships are defined: includesOf, dependsOn (be-
tween two Web services), and correlatesWith (between two Web services resources). 
“includesOf” relationship between two Web services means that the first Web service is 
composite and it has the second Web service in its composition structure. “dependsOn” 
relationship keeps track of relationships hidden by virtualization process. A “corre-

latesWith” relationship indicates a correlation between property values of two Web ser-



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

240

vices’ resources. WSManagementAction is the root concept where all other manage-
ment actions subclass from. These management actions include WSResourceCreate, 
WSResourceDelete, and WSResourceUpdate which correspond to resource manage-
ment functions of creating, deleting, and setting a resource in WSDM and WS-
Management. Also, for resource enumerations, WSResourceEnumerate establishes the 
resource enumeration context and WSResourcePull iterates over an enumeration result 
set. Depending on how much control over a service that a manageability interface has, 
the Web service management ontology can be further extended. FIPA compliant agents 
and WS2JADE agents use the ontology to communicate on Web service management 
related information. Whether a direct control of Web service is required, WS2JADE 
agents translate the control information into management actions available in WSDM or 
WS-Management. With the help of Web service management ontology and the man-
agement model outlined in Figure 6, management reasoning and access for Web service 
control can be decoupled and handled separately. 

5 Demonstration 

This section demonstrates the Web service - agent integration capabilities of WS2JADE 
with simple examples of Web service management including service discovery, compo-
sition and deployment with JADE agents. It describes how Web services can be ac-
cessed and used by JADE agents and how other agents can use this advantage to build 
value-added services in composition.  
 
The Find-and-Bind example demonstrates Web services discovery and deployment by 
JADE agents. A client agent searches for Web services on the UDDI agent in 
WS2JADE and then accesses and uses these Web services through a newly generated 
agent. The new agent is created, deployed, and registered in the DF (Directory Facilita-
tor) by WS2JADE at run time.  It offers services equivalent to the Web services in terms 
of functionalities except that they can be used by other agents. Then we demonstrate an 
example for building a composite service from different Web services with the use of 
WS2JADE.  In our scenario, three agents have a plan on how to compose different Web 
services to form a valued-added service. It uses WS2JADE to discover Web services 
and then bind these Web services to the abstract services in the plan. Sample Web ser-
vices used in this demonstration are Amazon Web Service, PayFriend and GlobalTrans-
ports Web service. A client agent can search for and view different items from Amazon, 
pay for them through PayFried service and order with GlobalTransports Web service.   

5.1. Deployment of Web Services as JADE Agent Services 

WS2JADE provides a tool for deploying and controlling Web services as agent ser-
vices. This tool is provided through the combination of the service assignment mapping 
and the interaction pattern management components. It allows JADE agents to deploy 
Web services on the fly. The libraries which enable this tool are found in the cia-



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

241 

mas.wsjade.management package while the main class for the graphical user interface is 
ciamas.wsjade.management.utils.Admin. The deployment of Web services with 
WS2JADE is explained in the remainder of this section. 

 

 

Fig. 8. WS2JADE Admin Console showing service deployment interfaces. 

At first, the gateway agent container is started and the WSAG agents are deployed on it. 
Once the WSAG agents have been created, they are ready to deploy Web services as 
agent services. After the Web services have been deployed as agent services, they are 
ready for use by client agents. Each time a Web service is deployed as a JADE agent 
service, ontology packages are generated and compiled. These ontology packages can 
then be sent to a public Web server where they are available for download and use by 
the client agents. As mentioned before, at this stage ontologies are available as Java 
classes (JADE native ontology) and as OWL files. 
  
Since the WSAG (essentially JADE) agents are multithreaded, they can offer/service 
multiple Web services at the same time. During the deployment of these Web services, 
each service is assigned a different agent-service name. The agent-service name can be 
the same as the Web service. If two WSAG agents deploy the same Web service, they 
must use different names. The screen shots in Figure 8 show two WS2JADE consoles: 
one is for local and the other is for remote management. Local management means that 
WS2JADE’s WSAG agents are deployed to run on the local machine. Remote man-
agement allows an administrator to activate/deactivate the WSAG agents and control 
their services remotely. Remote management also requires correct authentications. Au-
thentication details are stored in .authen file under WS2JADE root folder. As can be 
seen from the screenshot, in the left console for the local management, the agentList tab 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

242

shows the deployed WSAG agents named EbookSearcher, StockQouteagent along with 
the services they provide namely Ebook (hidden) and GetQoute services. The WSList 
tab (its content is invisible in the screenshot) shows the list of deployed Web services 
along with their WSDL address. The generated ontology for each Web service in OWL 
format can be viewed by clicking on the agent providing the service.  In the right con-
sole for the remote management, the Google Web service at 
http://api.google.com/GoogleSearch.wsdl is deployed as a service of a WSAG agent 
named GoogleAgent.  

5.2 Discovery of Web Services 

The Universal Description, Discovery and Integration (UDDI) specifications define a 
way to publish and discover information about Web services. Actually the UDDI itself 
is a Web service which provides SOAP interfaces for publishing Web services and que-
rying about Web services. The UDDI inquiry interface in WSDL format is published by 
UDDI.org and can be found at http://www.uddi.org. The UDDI registry can be used to 
search for services, service providers or tModels by name or by browsing categoriza-
tions. Since the UDDI itself is a Web service, it can be deployed as an agent service 
with WS2JADE. Once this is done, JADE agents can then query this agent service for 
services or service providers dynamically. Whenever a new Web service is registered 
with the UDDI registry, it can be discovered by the WSAG agent upon inquiry by a 
client JADE agent.  
 
The interaction flow is illustrated in the Figure 9. From the client agent side, it needs to 
do a search on UDDI agent (step 1) for a wanted Web service (e.g. Google). After get-
ting search results back (step 2) from UDDI agent, the client agent, based on its own 
reference, determines a service it wants to use and queries the WSManager agent on 
how to use this Web service. The WSManager agent informs the client the address of 
the agent which can offer a proxy service of this Web service (step 4). The client now 
can start to use the service (step 5 and 6). To examine what happen inside WS2JADE, 
as mentioned before, WS2JADE proxies the MS UDDI (step 1A) through UDDI agent 
as default to fulfil the client request at step 1. After step 3, the WS Manager creates a 
new agent and deploys a new agent service that is a proxy of the wanted Web service. 
The WS Manager also registers this agent on the DF. The address of this agent is re-
turned back to the client agent. WS invocation is again done indirectly through the 
proxy service of the newly generated agent. The UDDI agent can also be configured to 
use UDDI servers different than Microsoft’s one. 
  
The screenshots in Figure 10 show the interface for a client Agent which can do the 
search for a service with key words for the service name, business name, or tModel. 
This WSAG agent has deployed the Microsoft test UDDI which is available at 
http://test.uddi.microsoft.com and hence, clients can query this UDDI agent for details 
about different services and service providers. As can be seen, a search for services 
starting with Google returned 4 results.  

 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

243 

 

   

Client

Agent

UDDI

Agent

MS

UDDI

Google

WS

G
o
o

g
le

 P
ro

x
y

A
g
e

n
t WS

Manager

1
. S

e
a
rc

h
 fo

r G
o
o

g
le

2
. 
S

e
a

rc
h

R
e
s
u
lt

3
. A

s
k
 fo

r u
s
e

4
. 

In
fo

rm
 a

d
d

re
s
s

o
f 
 A

G

1
A

. S
e

a
rc

h
 M

S
 U

D
D

I

1
B

. 
S

e
a

rc
h
 R

e
s
u
lt

Register

3A. Create
& Register

5
. R

e
q

u
e
s
t

6. Reply

5
A

. R
e
q

u
e

s
t

5
B

. 
R

e
s
p

o
n

s
e W

S
2

J
A

D
E

 

Fig. 9. Find and Bind 

The client agent now can use the remote service deployment capability of WS2JADE to 
request for a wanted Web service to be deployed as an agent service. This can be done 
by making a request to the Manager agent as shown in figure 8 as explained previously. 
The Manager agent, after successfully deploying the Web service, informs the client 
agent the address of the targeted agent and the location of the ontology used to access 
the service.  

5.3 Composition of Web Services  

A user can enter keywords that are used in search requests on Amazon and can add 
items returned in the search results to a remote shopping cart. When they have finished 
adding items to the shopping cart they can pay for the items and organize delivery. This 
demonstration is a next step of the previous one. We have a scenario in which three 
agents: P , A, and G, have a composition plan for offering online item purchase. Such a 
plan needs to take into account online payment transaction and product delivery. In the 
plan, P is responsible for client payment. A is responsible for shopping cart. G is re-
sponsible for item delivery. The interaction sequence is depicted in Figure 11. First, the 
client agent searches for the products and add them to its shopping cart (step 1 and 2, 
repeated). Once the client agent does a checkout, agent A informs it payment details 
with agent P. The client agent then contacts P to do payment. After the payment is 
made, agent P informs agent A whether the payment is successful (step 6.1). If it is, 
agent A sends a message to agent G and asks for item delivery. 
 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

244

 

Fig. 10. Screenshot of a client interface querying the UDDI WSAG agent to search for services 

    

   

 
Client Agent

A

 AgentP

Agent
G

Agent

1
. S

e
a

rc
h
 Ite

m
s

2
. 

S
e

a
rc

h
 R

e
s
u

lt
s

3
. 
C

h
e

ck
 o

u
t

4
. P

a
y
m

e
n
t D

e
ta

ils

5
. P

a
y

6
. 
R

e
c
e
ip

t

6.1. Inform Payment 7. Inform Transport

 

Fig. 11. Composition Plan 

At the abstract level, no concrete implementation of services is described in the plan. 
Because the main purpose of this demonstration is to show how Web services can be 
invoked and composed by agents, we focus on the interaction sequences only and as-
sume that the plan is encoded in some format that the agents can understand. The ser-
vices these agents are going to use are Web services. The agents P, A, and G, based on 
the requirements of their own services, try to find and bind Web services.  How this can 
be done with WS2JADE is explained in the first demonstration. Hence, we skip these 
steps and assume that after find-and-bind steps, agent P becomes a proxy of PayFriend 
Web service, agent A becomes a proxy of Amazon Web service, and agent G becomes a 
proxy of GlobalTransport Web service as depicted in Figure 12. The composite service 
now can now be executed. Since this is merely a demonstration, transactions are pref-
erably not committed. PayFriend Web service and GlobalTransport Web service are 
developed by us to emulate essential functionalities in the interfaces of PayPal and 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

245 

Global Transport Web services, however, without real transactions to any banks. Pay-
Friend and GlobalTransport Web services and Amazon Web service can be found at: 

 

W
S

2
J
A

D
E

   

   

 
Client Agent

Amazon

 ClientPayFriend

 Client GlobalTransports

Client

PayFriend WS Amazon WS GlobalTranpsorts WS

1
. S

e
a

rc
h
 Ite

m
s

2
. 

S
e

a
rc

h
 R

e
s
u

lt
s

3
. 
C

h
e
c
k
 o

u
t

4
. P

a
y
m

e
n
t D

e
ta

ils

5
. P

a
y

6
. 
R

e
c
e
ip

t

6.1. Inform Payment 7. Inform Transport

 

Fig. 12. Composition Service 

PayFriend Address: 
 http://mercury.it.swin.edu.au:8080/axis/services/PayFriend?wsdl  

GlobalTransport Address: 
 http://mercury.it.swin.edu.au:8080/axis/services/GlobalTransports?wsdl  
Amazon Web Service Address:  
 http://soap.amazon.com/schemas2/AmazonWebServices.wsdl 

 
Additional information of PayPal and GlobalTransport Web services are provided in the 
links below. To use the PayPal service, users need to subscribe to PayPal developer 
network for a developer key.  
 
PayPal Web service: 
 https://www.paypal.com/cgi-bin/webscr?cmd=p/pdn/devcentral_landing-outside 

Global Transport Web service:  
 http://transportal.russia.webmatrixhosting.net/default.aspx?static=webservices 
 
The screenshots in Figure 13 show the enactment of a composite Web service. The se-
quences can be explained as following. A user can enter keywords that are used in 
search requests on Amazon and can add items returned in search results to a remote 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

246

shopping cart. When they have finished adding items to the shopping cart they can pay 
for the items and organize delivery. The screenshots in Figure 13 and 14 show the result 
of a composite service invocation by the Client agent. The user clicks ‘Search’ trigger-
ing the Client to send a request to the Amazonagent to search Amazon. The Amazona-
gent then forwards the request to AmazonProvider who handles the Web service invoca-
tion calls. A list of results is then returned to the client via the Amazon agent. A user 
can then add items to the shopping cart, which triggers another request to the Amazon 
Web service resulting in the contents of a remote shopping cart being updated with the 
selected item. Clicking ‘Checkout’ causes the Client to send a request message to the 
PayFriend agent. After PayFriend has completed the payment transaction it sends an 
acknowledgement to the Amazon agent that forwards a request to the GlobalTransports 
agent who invokes the web service call that organises delivery of the purchased items. 
A receipt message from the PayFriend agent and delivery acknowledgment message 
from the GlobalTransports agent are then sent to the Client agent and the GUI updated 
with dialogs indicating to the user that the transaction is complete. 

 
 

Fig. 13. Screenshot showing a composite service offered by different WSAG agents 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

247 

 

Fig. 14. Screenshot showing the result of a composite service invocation by the Client 
agent 

6. Conclusion 

The paper presents a framework and toolkit called WS2JADE for integrating Web ser-
vices and JADE agents. In contrast to other solutions like WSDL2JADE or WSIGS, 
WS2JADE provides facilities to deploy and control Web services as agent services at 
run time for deployment flexibility and active service discovery. WS2JADE also pro-
vides a management ontology base for integrating with any future implementations of 
emerging distributed WS management standards which employ Web services such as 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

248

OASIS’s WSDM. The future of intelligent agents with autonomous capabilities, which 
manage and access the widespread Web services infrastructure, is promising. 
WS2JADE demonstration with simple examples of service discovery, composition and 
deployment with agents shows how the toolkit achieves first steps in that direction. It 
demonstrates how Web services can be accessed and used by JADE agents and how 
other agents can take this advantage to build value-added services.  
 
Since Web services is a volatile area with rapid changes and many specifications in WS-
* domain (such as WS-Agreement Specification, WS-Resource Framework) need to be 
implemented and tested out, WS2JADE has been designed to accommodate future plug-
in components. However, there are still software features and design areas that require 
new solutions, implementations or further improvements. In particular, Web services 
negotiation, semantic processing, and full integration with WSDM specification will be 
our next focus for WS2JADE. Web services negotiation will give WS2JADE agents the 
ability to read, understand contracts, and employ negotiation mechanisms to contract 
Web services and their compositions according to WS-Agreement specification. Seman-
tic processing capability will improve the ontology management component in structur-
ing ontology trees and possibly merging related ontologies. We are looking forward for 
a wide adoption of WSDM or WS-Agreement specifications for a global level of WS 
management with FIPA compliant agent systems. We hope that WS2JADE can be ap-
plied in more real-world examples to make contribution into agent-based Web services 
and business process management in particular and practical applications of multi-agent 
systems in general. 

Acknowledgments 

This work is part of the Adaptive Service Agreement and Process Management in Ser-
vices Grid project CG060081. This project is proudly supported by the Innovation Ac-

cess Programme - International Science and Technology established under the Austra-
lian Government’s innovation statement, Backing Australia's Ability. 

References 

1 A., Arora, et al, Web Services for Management (WS-Management) available at  
http://www.intel.com/technology/manage/downloads/ws_management.pdf  accessed on 6th 
April 2005. 

2 A., Banerji, et al, Web Services Conversation Language (WSCL) 1.0, available at 
http://www.w3.org/TR/2002/NOTE-wscl10-20020314/ accessed on 25th April 2005 

3 agentLink, European Co-ordination Action for agent-based computing, available at 
http://www.agentlink.org/ accessed on 25th April 2005 

4 Agentcities Web Services Working Group, “Integrating Web services into agentCities”, 
Technical Recommendation available at http://www.agentcities.org/rec/00006/ accessed on 
25th April 2005 



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

249 

5 B. Bauer, J.P Muller, and J. Odell, agent UML: formalism for specifying multiagent soft-
ware systems, in agent-Oriented Software Engineering, Ciancarini, P. and Wooldridge, M., 
Editors. LNCS, Vol 1957, 2001, Springer, pp. 207-221. 

6 WS2JADE, Web services to agents http://www.it.swin.edu.au/centres/ciamas, accessed on 
24th April 2005.  

7 D. Greenwood, M. Calisti, “An Automatic, Bi-Directional Service Integration Gateway”, In 
The 1st International workshop on Web Services Agent-Based Engineering (WSABE’ 
2004) held in conjunction with The 3rd  International Joint Conference on Autonomous 
Agents and Multi-Agent Systems, New York, USA, 2004. Available at  
www.agentus.com/WSABE2004/program/, accessed on 25th April 2005. 

8 D. Greenwood, M. Calisti, “Engineering web service - agent integration”, IEEE Systems, 
Cybernetics and Man Conference, the Hague, Netherlands, Oct, 2004, pp.1918-1925 

9 E. Christensen et al., Web Service Description Language (WSDL 1.1), available at 
http://www.w3.org/TR/wsdl , accessed on 5th April 2005. 

10 E.M. Maximilien and M.P. Singh, “Agent-based architecture for autonomic web service 
selection”. In The 1st International Workshop on Web Services and Agent-based Engineer-
ing (WSABE’2003) held in conjunction with The 2nd International Joint Conference on 
Autonomous Agents and Multi-Agent Systems, Melbourne, Australia, 2003. Available at 
www.agentus.com/WSABE2003/program/maximilien.pdf, accessed on 25th April 2005. 

11 F., Cheng, H., Guo, B., Xu, “Agentification for Web Services”, Proc. 28th Annual Interna-
tional Computer Software and Applications Conference (COMPSAC'04) ,Hong Kong, Sept 
2004, pp.514-519  

12 F., Ishikawa, N., Yoshioka, Y., Tahara, S., Honiden, “Mobile agent System for Web Ser-
vices Integration in Pervasive Networks”, International Workshop on Ubiquitous Comput-
ing (IWUC 2004), April, 2004, Porto, Portugal, pp.38-47 

13 F., Ishikawa, N., Yoshioka, Y., Tahara, S., Honiden, “Toward Synthesis of Web Services 
and Mobile agents”, In Proc. of the 2st International Workshop on Web Services and agent 
Based Engineering (WSABE’04), New York, 2004. Available at 
http://www.agentus.com/WSABE2004/program/. 

14 Foundation for Intelligent and Physical agents. Interaction Protocol Specification, 
http://www.fipa.org/repository/ips.php3  

15 H. Ludwig, “Web Services QoS: External SLAs and Internal Policies: Or, How Do We 
Deliver What We Promise?”, Proc. 4th IEEE Int’l Conf. Web Information Systems Eng. 
Workshops, IEEE CS Press, 2003, pp. 115–120. 

16 I., Foster, N.R., Jennings, C., Kesselman, “Brain Meets Brawn: Why Grid and agents Need 
Each Other”,  The Third International Joint Conference on Autonomous agents and Multi 
agent Systems, AAMAS’04, July, 2004, New York, USA, pp.8-15.  

17 J.,Beatty, et al., Web Services Dynamic Discovery (WS-Discovery) available at 
http://msdn.microsoft.com/ws/2004/10/ws-discovery/, accessed on 24th April 2005. 

18 J., Cao, et al., Composing Web Services Based on agents and Workflow, M. Li et al., 
(Eds.), GCC2003, Springer-Velag Berlin Heidelberg, 2004, pp 948-955. 

19 L. Zs. Varga,Á. Hajnal, "Engineering Web Service Invocations from agent Systems". Pro-
ceedings of the 3rd International Central and Eastern European Conference on Multi-agent 
Systems, CEEMAS 2003, Prague, Czech Republic, June, 2003, pp. 626-635. 

20 M., Luck, P., McBurney, C., Preist, “Agent Technology: Enabling in Next Generation 
Computing”, Sections 4.5.2, agentLink, 2003, pp. 23-26. 

21 McAfee, McAfee® ePolicy Orchestrator®, available at  
http://www.mcafeesecurity.com/au/products/mcafee/mgmt_solutions/epo.htm, accessed on 
24th April 2005. 



X. T. Nguyen, R. Kowalczyk, M. B. Chhetri and A. Grant 

 

250

22 N., Catania et al. An Introduction to WSDM-MOWS and WSDM-MUWS available at 
http://devresource.hp.com/drc/specifications/wsdm/index.jsp, accessed on 24th April 2005. 

23 N. Cavantzas et al. Web Services Choreography Description Language Version 1.0, 
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041012/, accessed on 24th April 2005. 

24 OASIS TC, Web Services Distributed Management: Management Using Web Service 
(MUWS 1.0) Part 1 & 2, OASIS standard at 
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm, accessed on 24th 
April 2005.  

25 OASIS TC, Web Service Distributed Management: Management of Web Services (WSDM-
MOWS) 1.0, OASIS standard at 
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm, accessed on 24th 
April 2005.  

26 OpenNet Test-bed Initiatives: http://x-opennet.org/  
27 P. Buhler, J.N. Vidal, and H. Verhagen, "Adaptive workflow= web services + agents",   In 

Proc. of the International Conference on Web Services, Las Vegas, U.S.A, July 2003, pp. 
131-137. 

28 P. Buhler, J.N. Vidal, and H. Verhagen, "Enacting BPEL4WS Specified Workflows with 
Multi-agent Systems" , In Proc. of the 2st International Workshop on Web Services and 
agent Based Engineering, New York, 2004. Available at  
www.agentus.com/WSABE2004/program/, accessed on 24th April 2005. 

29 P. V. Biron, K. Permanente, and A. Malhotra, XML Schema Part 2: Data types Second 
Edition, http://www.w3.org/TR/xmlschema-2/, accessed on 24th April 2005. 

30 Sun Microsystems, Inc. Java API for XML-Based RPC (JAX-RPC), available at  
http://java.sun.com/xml/jaxrpc/index.jsp  

31 Sun Microsystems, Inc. Java Management Extension (JMX), available at  
http://java.sun.com/products/JavaManagement/, accessed on 24th April 2005. 

32 Telecom Italia Lab. JADE (Java Agent Development Framework), available at  
http://sharon.cselt.it/projects/jade/, accessed on 24th April 2005.  

33 Whitestein Information Technology Group AG. Web services agent Integration Project 
available at http://wsai.sourceforge.net/index.html, accessed on 24th April 2005.  

34 World Wide Web Consortium, RDF Vocabulary Description Language 1.0: RDF Schema, 
available at http://www.w3.org/TR/rdf-schema/, accessed on 24th April 2005. 

35 World Wide Web Consortium, OWL Web Ontology Language Overview available at 
http://www.w3.org/TR/owl-features/, accessed on 24th April 2005. 

36 World Wide Web Consortium, Web Services Choreography Description Language Version 
1.0, available at http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/, accessed on 24th 
April 2005. 

37 X., Gu, Klara N.N., Chang, C., Ward, “QoS-Assured Service Com-position in Managed 
Service Overlay Networks”, in Proc. of 23rd IEEE International Conference on Distributed 
Computing Systems (ICDCS 2003), Providence, Rhode Island, May, 2003, p.194.  



WS2JADE: A Tool for Run-Time Deployment and Control of Web services 

 

251 

Information about Software 

Software is available on the Internet as 
(x)   prototype version 
(  )   full fledged software (freeware), version no.: 
(  )   full fledged software (for money), version no.: 
(  )   Demo/trial version 
(  )   not (yet) available 

 
Internet address: 

Description of software: 
  http://www.it.swin.edu.au/centres/ciamas/tiki-index.php?page=ws2jade-proj  
Download address:  
 http://www.it.swin.edu.au/centres/ciamas/tiki-index.php?page=ws2jade  

 
Contact person for question about the software: 

Name: Xuan Thang Nguyen 
Email: xnguyen@ict.swin.edu.au 

 
Xuan Thang Nguyen 
Faculty of Information and Communication Technologies  
Swinburne University of Technology 
Melbourne VIC 3122, Australia. 
e-mail: xnguyen@ict.swin.edu.au 
 
Ryszard Kowalczyk 
Faculty of Information and Communication Technologies  
Swinburne University of Technology 
Melbourne VIC 3122, Australia. 
e-mail: rkowalczyk@ict.swin.edu.au 
 
Mohan Baruwal Chhetri  
Faculty of Information and Communication Technologies  
Swinburne University of Technology 
Melbourne VIC 3122, Australia. 
e-mail: mchhetri@ict.swin.edu.au 
 
Alasdair Grant 
Faculty of Information and Communication Technologies  
Swinburne University of Technology 
Melbourne VIC 3122, Australia. 
e-mail: 4103515@swin.edu.au 



 

 
 
 
 
 

A System for Analysis of Multi-Issue 
Negotiation 

Tibor Bosse, Catholijn M. Jonker, Lourens van der Meij,  
Valentin Robu and Jan Treur 

Abstract. This paper presents a System for Analysis of Multi-Issue Negotiation 
(SAMIN). The agents in this system conduct one-to-one negotiations, in which the 
values across multiple issues are negotiated on simultaneously. It is demonstrated 
how the system supports both automated negotiation (i.e., conducted by a software 
agent) and human negotiation (where humans specify their bids). To analyse such 
negotiation processes, the user can enter any formal property deemed useful into the 
system and use the system to automatically check this property in given negotiation 
traces. Furthermore, it is shown how, compared to fully closed negotiation, the effi-
ciency of the reached agreements may be improved, either by using incomplete pref-
erence information revealed by the negotiation partner or by incorporating a heuris-
tic, through which an agent uses the history of the opponent's bids in order to guess 
his preferences. 

1.  Introduction 

Negotiation is a process by which a joint decision is made by two or more parties [9]. 
Typically each party starts a negotiation by offering the most preferred solution from 
the individual area of interest. If an offer is not acceptable by the other parties they 



T. Bosse, C.M. Jonker, L. van der Meij, V. Robu and J. Treur 
 

254 

make counter-offers in order to move them closer to an agreement. The field of negotia-
tion can be split into different categories, e.g. along the following lines: 

• one-to-one versus more than two parties 
• single- versus multi-issues 
• closed versus open 
• mediator-based versus mediator-free 

The research reported in this article concerns one-to-one, multi-issue, (partially) 
closed, mediator-free negotiation. For more information on negotiations between more 
than two parties (e.g., in auctions), the reader is referred to, e.g., [12]. In single-issue 
negotiation, the negotiation focuses on one aspect only (typically price) of the concept 
under negotiation. Multi-issue negotiation (also called multi-attribute negotiation) is 
often seen a more cooperative form of negotiation, since often an outcome exists that 
brings joint gains for both parties, see [10]. 

Closed negotiation means that no information regarding preferences is exchanged 
between the negotiators. The only information exchanged is formed by the bids. In 
partially open negotiation some information regarding preferences is exchanged, and in 
completely open negotiation all information is exchanged. More information about 
(partially) open negotiations can be found, e.g., in [7] and [10]. However, the trust nec-
essary for open negotiations is not always available.  

The use of mediators is a well-recognised tool to help the parties in their negotia-
tions, see e.g., [6, 10]. The mediator aims for a deal that is fair to all parties. Reasons 
for negotiating without a mediator can be the lack of a trusted mediator, the costs of a 
mediator, and the hope of doing better than fair with respect to personal gain.  

The literature on closed, multi-issue, one-to-one negotiation without mediators 
covers both systems to (partially) automate the negotiation process, and more analytic 
research focused on properties of the negotiation process and negotiation space. Based 
on a literature study and on our own analysis, a number of properties are presented here 
that focus largely on the dynamics of the negotiation process itself and on the results of 
the negotiation.  

The SAMIN system presented in this paper has been developed to support and 
formally analyse such negotiation processes, i.e., multi-issue, (partially) closed, one-to-
one negotiations without mediators. The system requires three types of input: 

(1) a negotiation trace (or a set of traces) 
(2) a set of dynamic properties considered relevant for the negotiation process 
(3) the negotiation profiles of the participants 
A trace is a sequence of bids by the negotiators. A dynamic property is an (infor-

mal, semi-formal or formal) expression that might or might not hold for a certain trace. 
An example of a simple dynamic property is bid-alternation, i.e., after communicating a 
bid to another agent, the agent remains silent until it has received a new bid from the 
other agent. A negotiation profile is a description of the preferences of the agent within 
the particular negotiation domain. The profiles together define the space of possible and 
efficient outcomes and are, therefore, essential for the creation of a complete analysis of 
the performance of a negotiator. 

The most important measure of efficiency in bilateral negotiations, cf. [21], is 



A System for Analysis of Multi-Issue Negotiation 
 

255 
 

 
Pareto-efficiency.  An outcome is said to be Pareto-efficient if the utility of any party 
cannot be improved without a loss of utility for another. The set of all Pareto-efficient 
outcomes form the Pareto-efficient frontier. The distance of an outcome to the Pareto 
frontier gives a measure of efficiency of a bid.   

The SAMIN system consists of three components: an Acquisition Component, an 
Analysis Component and a Presentation Component. The Acquisition Component is 
used to acquire the input necessary for analysis. The Analysis Component performs the 
actual analysis, and the Presentation Component presents the results of the analysis in a 
user-friendly format. 

SAMIN can check automatically whether selected properties hold for the traces 
under analysis. Such an analysis provides a means to improve bidding strategies and 
bidding protocols, both for human negotiators and for software agents in automated 
negotiation systems. Beside introduction of the SAMIN system, a subgoal of this paper 
is to report some results of such analyses, focusing both on human and automated nego-
tiators. Regarding human-human negotiation, the results will be presented of applying 
SAMIN in the analysis of empirical traces obtained from an experiment in multi-issue 
negotiation about second hand cars. In the experiment the efforts of 74 humans negoti-
ating against each other have been analysed using SAMIN. Regarding automated nego-

tiation, SAMIN has been used to analyse the efficiency of the reached agreements by 
software agents, in order to improve the strategies of these software agents. To this end, 
a mechanism has been modelled in which agents are able to use any amount of incom-
plete preference information revealed by the negotiation partner. It is shown that the 
outcome of such a negotiation can be further improved by incorporating a "guessing" 
heuristic, by which an agent uses the history of the opponent's bids to predict his prefer-
ences. Experimental evaluation shows that the combination of using incomplete prefer-
ence information with the guessing heuristic leads to agreement points close to or on the 
Pareto Efficient Frontier. 

In Section 2 formalisation of negotiation process dynamics will be discussed in 
terms of negotiation states, transitions, and traces. Section 3 explains the formal 
specification of dynamic properties and presents example dynamic properties relevant 
for (partially) closed multi-issue one-to-one negotiations. The architecture of the 
SAMIN system is presented in Section 4. Section 5 illustrates how SAMIN can be used 
to analyse human negotiation processes. Some experiments in human multi-issue 
negotiation are described and analysed, and the results of the analysis are discussed. 
Next, Section 6 shows how SAMIN can be used to analyse automated negotiation 
processes. It is shown how software negotiators can be improved using two strategies 
(guessing and limited information sharing) that can be used alone, or in combination. 
Finally, Section 7 discusses related work, and Section 8 provides conclusions and some 
planned future work. 



T. Bosse, C.M. Jonker, L. van der Meij, V. Robu and J. Treur 
 

256 

2. Formalising Negotiation Process Dynamics 

Negotiation is essentially a dynamic process. To analyse those dynamics, it is, 
therefore, relevant to formalise and study dynamic properties of such processes. For 
example, how does a bid at a certain point in time compare to bids at previous time 
points? The formalisation introduced in this section is based on the notion of 
negotiation process state, negotiation transition and negotiation trace. 

2.1   Formalising States of a Negotiation Process 

The state of a (one-to-one) negotiation process at a certain time point can be described 
as a combined state consisting of two states for each of the negotiating agents:  
S = < S1, S2 > , where S1 is the state of agent A, and S2 is the state of agent B. 

Each of these states include, 
• the agent’s own most recent bid 
• its evaluation of its own most recent bid 
• its evaluation of the other agent’s most recent bid 
• the history of bids from both sides and evaluations 
To describe negotiation states a state ontology Ont is used. Example elements of 

this ontology are a sort BID for bids, and relations such as utility(A, b, v) expressing that 
A’s overall evaluation of bid b is a real number v between 0 and 1. Based on this 
ontology the set of ground atoms At(Ont) can be defined. A state is formalised as any 
truth assignment: At(Ont) → {t, f}  to this set of ground atoms. The set of all states 
described by this ontology is denoted by States(Ont).

2.2   Negotiation Transitions 

A particular negotiation process shows a sequence of transitions from one state S from 
States(Ont) to another (next) state S’ from States(Ont). A transition S → S’ from a state S 
to S’ can be classified according to which agents are involved. During such a transition 
each of the main state components (S1, S2) of the overall state S may change. The 
simplest types of transition involve a single component transition. For example, when 
one agent generates a bid, while the other agents is just waiting: a transition of type S1

→ S1 or S2 → S2. Next come transition types where both components are involved. For 
example, when a communication from agent A to agent B takes place, changing the state 
S2 of agent B: a transition of type S1 x S2 → S2. Notice that in principle, also more 
complex transition types are possible, involving changes of both state components at 
the same time, i.e., S1 x S2 →  S1 x S2. In organised cooperations between multiple 
agents the complexity of the types of transitions is often limited by regulation of the 
organisation. For example, in organised negotiation processes, usually it is assumed in 
the protocol that after communicating a bid to the other agent, the agent remains silent 
until it has received a new bid from the other agent (see the dynamic property ‘bid 
alternation’ in Sections 3 and further below). Such an assumption about the protocol 
implies that the transitions involved in the negotiation are only of the simpler types 



A System for Analysis of Multi-Issue Negotiation 
 

257 
 

 
mentioned above. 

2.3   Negotiation Traces 

Negotiation traces are time-indexed sequences of negotiation states, where each 
successive pair of states is a negotiation transition. To describe such sequences a fixed 
time frame T is assumed which is linearly ordered. A trace T  over a state ontology  Ont  
and time frame T  is a mapping T : T → STATES(Ont), i.e., a sequence of states T t (t ∈ T) in  
STATES(Ont). The set of all traces over state ontology Ont is denoted by TRACES(Ont).  
Depending on the application, the time frame T may be dense (e.g., the real numbers), 
or discrete (e.g., the set of integers or natural numbers or a finite initial segment of the 
natural numbers), or any other form, as long as it has a linear ordering. 

3. Dynamic Properties of Negotiation Processes 

This section presents a classification of dynamic properties of negotiation processes 
along with examples of each class. Before presenting the classification and the specific 
dynamic properties of negotiation, the formal method for specifying those properties is 
presented. 

3.1 Specification of Dynamic Properties 

Specification of dynamic properties of a negotiation process can be done in order to 
analyse its dynamics, for example to find out how certain properties of a negotiation 
process as a whole relate to properties of a certain subprocess, or to verify or evaluate a 
negotiation model. To formally specify dynamic properties that express characteristics 
of dynamic processes (such as negotiation) from a temporal perspective an expressive 
language is needed. To this end the Temporal Trace Language TTL is used as a tool; cf. 
[5], which is briefly defined as follows. 

The set of dynamic properties DYNPROP(Ont) is the set of temporal statements that 
can be formulated with respect to traces based on the state ontology Ont in the following 
manner. Given a trace T over state ontology Ont, a certain state of the agent A during a 
negotiation process at time point t is indicated by state(T,  t,  A). In the third argument, 
instead of A also specific parts of A can be used, such as input(A), or output(A), which refer 
to observations and actions by A, respectively. These state indicators can be related to 
state properties via the formally defined satisfaction relation |=, comparable to the 
Holds-predicate in the Situation Calculus: state(T,  t, A) |= p denotes that state property p 
holds in trace T at time t in the state of agent A. Based on these statements, dynamic 
properties can be formulated in a formal manner in a sorted first-order predicate logic 
with sorts T for time points, Traces for traces and F for state formulae, using quantifiers 
and the usual first-order logical connectives such as ¬, ∧, ∨, , ∀, ∃. As an example, 
consider the dynamic property bid alternation, which states that for all two different 



T. Bosse, C.M. Jonker, L. van der Meij, V. Robu and J. Treur 
 

258 

moments in time t1, t3, that A generates a bid, there is a moment in time t2, with t1 < t2 
< t3, such that A received a bid generated by B. In formal TTL-format, this property is 
expressed as: 

 

bid_alternation(γ:TRACE) ≡
∀ A, B: AGENT, ∀ b1, b3: BID, ∀ t1, t3: time : 
t1 < t3 & 

state(γ, t1, output(A)) |= to_be_communicated_to_by(b1, B, A) & 

state(γ, t3, output(A)) |= to_be_communicated_to_by(b3, B, A)  

∃b2: BID, ∃t2: time : t1 < t2 < t3 &

state(γ, t2, input(A)) |= communicated_to_by(b2, A, B)
 

Usually for reasons of presentation dynamic properties are expressed in informal or 
semi-formal forms. 

3.2 Classes and Examples of Dynamic Properties of Negotiation 

The properties relevant for analysing the dynamics of (partially) closed multi-issue one-
to-one negotiation, can be divided into the following types: 

Bid properties give some information about a specific bid. They are usually de-
fined in terms of the negotiation space and the profiles of the negotiators. Bid prop-
erties concern, for example, the Pareto efficiency of a bid. 
Result properties are a subset of the set of bid properties, concerning only the last 
bid of a negotiation process (i.e., the final agreement). 
Bid comparison properties compare two arbitrary bids with each other. An exam-
ple is domination: a bid b1 dominates a bid b2 with respect to agents A and B iff 
both agents prefer bid b1 over bid b2; see below for a formalisation 
Step properties are a subset of the set of bid comparison properties, concerning 
only the transitions between successive bids. Hence, they are restricted to the com-
binations of bids of one party that directly follow each other. 
Limited interval properties concern parts of traces. Basically, they state that each 
step in a certain interval satisfies a certain step property. For instance: a negotiation 
process is Pareto-monotonous for the interval [t1, t2] iff for all successive bids b1, b2 
in the interval b2 dominates b1 (see below). 
Trace properties are a subset of the set of limited interval properties, concerning 
whole traces. 
Multi-trace properties compare the dynamics observed in more than one trace. An 
example is Better Negotiator: agent A is a better negotiator than agent B iff in more 
than 60% of the negotiations between A and B, the deal reached is more to the ad-
vantage of agent A than of agent B. 
Protocol properties specify certain constraints on the negotiation protocol. A 
specific instance is: over time the bids of negotiators A and B alternate. 
Note that the first two types are basically static properties, whereas the other types 

are dynamic properties: they specify behaviour over time. In [1] for each of these types 
a number of properties are described in detail, both in informal and in formal notation. 
In this paper, only a small selection of relevant properties is presented. 

 

configuration_differs(b1:BID, b2:BID) ≡



A System for Analysis of Multi-Issue Negotiation 
 

259 
 

 
∃a: ISSUE, ∃v1, v2: VALUE :

value_of(b1, a, v1) & value_of(b2, a, v2) & v1 ≠ v2
 

This bid comparison property states that two bids b1 and b2 differ in configuration 
iff there is an issue that has a different value in both bids. For example, in bid b1 the 
value of the issue “color” is “red”, whereas in bid b2 this value is “blue”. Similar prop-
erties can be defined stating that two bids differ in configuration in at least x issues. 
This property can also be used as a building block to specify a step property, e.g. “in the 
view of agent A, agent B varies the configuration, but not the utility”. Such a property 
are useful to find out what kind of opponent the negotiator is dealing with. 

 

strictly_dominates(b1:BID, b2:BID, A:AGENT, B:AGENT) ≡
∀vA1, vA2, vB1, vB2 : real : 

util(A, b1, vA1) & util(A, b2, vA2) & util(B, b1, vB1) & util(B, b2, vB2)   vA1 > vA2  &  vB1 > vB2
 

This bid comparison property states that a bid b1 dominates a bid b2 with respect to 
agents A and B iff both agents prefer bid b1 over bid b2. This notion is related to Pareto 
Efficiency, see e.g., [10]. The property could also be changed to weakly_dominates by 
changing the > sign into the  sign. Moreover, it can be used as a building block to 
specify step properties, limited interval properties (see the next property), and trace 
properties. 

 

strict_pareto_monotony(γ:trace, tb:time, te:time) ≡
∀t1, t2: time, ∀A, B: AGENT, ∀b1, b2: BID : 

[ tb ≤ t1 < t2 ≤ te & is_followed_by(γ, A, t1, b1, B, t2, b2) ] 

 state((γ, t2) |=  strictly_dominates(b2, b1, A, B)
 

This limited interval property makes use of the previous property. It states that a 
negotiation process γ is strictly Pareto-monotonous for the interval [t1, t2] iff for all suc-
cessive bids b1, b2 in the interval b2 dominates b1. By choosing for tb and te respec-
tively the start and end time of the process, the property can be transformed into a trace 
property. Generally, traces that satisfy this property are not abundant in (human) real 
world multi-issue negotiations, since if the profiles of the two parties are strongly op-
posed (with emphasis on the same issues), even in multi-issue situations a gain for the 
one often implies a loss for the other. If, however, the profiles are less opposed, Pareto-
monotony may occur. 

 

pareto_inefficiency(γ:trace b:BID, A:AGENT, B:AGENT, ε:real) ≡
∀vA, vB : real : 

util(A, b, vA) & util(B, b, vB)   pareto_distance(vA, vB) = ε
 

This bid property informally states that with respect to agents A and B, the Pareto 
inefficiency of a bid b is the number ε that indicates the distance to the Pareto Efficient 
Frontier according to some distance measure d in utilities. Here, d(b1, b2) is the distance 
between the bids b1 and b2 when viewed as points in the plane of utilities. The function 
to measure the distance in the plane can still be filled in, e.g., the sum of absolute 
differences of coordinates, or the square root of the sum of squares of the differences, 
or the maximum of the differences of the coordinates. The Pareto Efficient Frontier is 
the set of all bids b for which there is no other bid b’ that dominates b. Hence, in case 
the Pareto Inefficiency of a bid is 0, there is no other bid that dominates it. By filling in 



T. Bosse, C.M. Jonker, L. van der Meij, V. Robu and J. Treur 
 

260 

the resulting agreement of a negotiation for bid b, the property is transformed into a 
result property. In general, determining the number ε for which this property holds is a 
good measure for checking the success of the negotiation process. In a similar way, the 
property nash_inefficiency can be formulated, which calculates the distance from a 
certain bid to the Nash Point. This is the point (on the Pareto Efficient Frontier) for 
which the product of both utilities is maximal, see e.g., [10]. 

4.  The SAMIN Architecture 

SAMIN is a Prolog-based software environment that has been designed at the Vrije 
Universiteit Amsterdam for the analysis of multi-issue negotiation processes. Section 
4.1 describes the role SAMIN can take in an analysis setting of negotiation processes. 
Next, Section 4.2 presents a top level overview of the SAMIN architecture. Basically, 
the system consists of three components: an Acquisition Component, an Analysis Com-

ponent and a Presentation Component. These components are described in more detail 
in Sections 4.3, 4.4, and 4.5, respectively. 

4.1  SAMIN in its Environment 

The SAMIN system has been designed to work together in interaction with a human 
analyst and either human or software agent negotiators. As depicted in Figure 1, the 
analyst determines the properties that SAMIN is to use in the analysis of negotiation 
processes. He or she can select (and if necessary adapt) properties from SAMIN’s li-
brary, or can construct new properties with the help of SAMIN’s special dynamic prop-
erty editor. SAMIN can only analyse a negotiation process if it has access to the profiles 
used by the different parties, and the bids exchanged between the parties. SAMIN does 
not influence the negotiation while it is being carried out, it only observes either during 
the negotiation, or afterwards. 

The analysis result of one or more negotiations is presented to the human analyst. 
The analyst can use that result for purposes within Cognitive Science (e.g., to analyse 
human negotiation processes and train human negotiators) or Artificial Intelligence 
(e.g., to improve the strategies of software agents). Interesting for the future might be to 
present the results directly after the conclusion of the negotiation to a software agent 
negotiator that is capable of learning so that the agent can use the result to improve its 
negotiation skill by itself. A negotiation process can be monitored directly by SAMIN 
(if the agents allow interfacing), or the negotiation trace can be written to a file and be 
analysed in hindsight by SAMIN. The current version of SAMIN is developed espe-
cially for closed multi-issue one-to-one negotiations, entailing that the only information 
exchanged between the negotiators are the bids.  

The input required by SAMIN (see Figure 1) consists of properties, profiles, and 
traces of bids. Its output consists of an analysis that can be presented in a user-friendly 
format (see Section 4.4 and 4.5). As mentioned before, SAMIN offers the user both a 
library of properties to choose from and a dynamic property editor to create new prop-



A System for Analysis of Multi-Issue Negotiation 
 

261 
 

 
erties. Profiles can be obtained in two ways. Either the negotiator presents a pre-
specified profile to SAMIN or the negotiator can use SAMIN’s interactive profile editor 
to create it in SAMIN. Pre-specified profiles have to be in a format recognised by 
SAMIN. The trace of bids required by SAMIN can be obtained by SAMIN monitoring 
the bids exchanged between the negotiators during the negotiation process. This only 
requires the bids to be in a format recognised by SAMIN and the possibility to “over-
hear” the communication between the negotiators. Another possibility is that the bids 
exchanged during a negotiation process are stored in a special file. If the bid-traces are 
in the right format, SAMIN can perform analysis on one or on a combination of such 
traces after the negotiation has been completed. If the negotiators wish to do so, they 
can use SAMIN’s bid ontology editor to define what a bid should look like, before 
entering the negotiation phase. Construction of bid ontology and the profiles is part of 
the pre-negotiation phase [10]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. SAMIN in its environment 

4.2  Top Level 

At the top level, SAMIN consists of three components: an Acquisition Component, an 
Analysis Component and a Presentation Component, see Figure 2. Here, the solid 
arrows indicate data flow. The dotted arrows indicate that each component can be 
controlled separately by the analyst. The Acquisition Component is used to acquire the 
input necessary for analysis. The Analysis Component is used to perform the actual 
analysis (i.e., checking which properties hold for the negotiation process under 
analysis). Finally, the Presentation Component is used to present the results of the 
analysis in a user-friendly format. Furthermore, SAMIN maintains a library of 
properties, templates of properties, bid ontologies, and profile ontologies (not shown in 
Figure 2). The working of the three components will be described in detail in the next 
sections. 

bids

SAMIN

profileprofile 

analysisproperties

negotiator negotiator

analyst 



T. Bosse, C.M. Jonker, L. van der Meij, V. Robu and J. Treur 
 

262 

 
 
 
 
 
 
 
 

Figure 2. Global Overview of the SAMIN architecture 

4.3   The Acquisition Component 

The acquisition component is used to obtain the required input for the analysis. It con-
sists of an ontology editor, a dynamic property editor and a trace determinator.  

The ontology editor is used for the construction of bid ontologies and profile on-
tologies necessary to automatically interpret the bids exchanged by the negotiators, and 
to automatically interpret the profiles of the negotiators. The ontology editor is typically 
used to construct a bid ontology and a profile ontology, thus allowing the user to iden-
tify the issues to be negotiated, the values that each of these issues can take, and the 
structure of bids, in the bid ontology. Furthermore, in specifying the profile ontology 
the user identifies the possible evaluations that can be given to values, and the utility 
functions of bids.  

The dynamic property editor supports the gradual formalisation of dynamic proper-
ties in TTL format. The editor offers a user interface that allows the analyst to construct 
dynamic properties, represented in a tree-like format. 

The trace determinator can be used interactively with the analyst to determine what 
traces to use in the analysis. The user can interactively locate the files containing the 
traces to be checked. The traces themselves can be of three categories: (human) empiri-
cal traces, simulated traces, and mixed traces. An empirical trace is the result of an 
existing human negotiation process. A simulated trace is the result of an automated 
negotiation process. A mixed trace is the result of a human negotiating with a software 
agent. To support the acquisition of traces of all three types, a dedicated interface has 
been created for SAMIN. 

4.4 The Analysis Component 

The analysis component currently consists of a logical analyser that is capable of 
checking properties against traces. To this end, the tool takes a dynamic property in 
TTL format and one or more traces as input, and checks whether the dynamic property 
holds for the traces. 

Traces are represented by sets of Prolog facts of the form holds(state(m1, t(2)), a, true)

where m1 is the trace name, t(2) time point 2, and a is a state property as introduced in 
Section 3.1. The above example indicates that state formula a is true in trace m1 at time 

analysis presentationacquisition

control

SAMIN 



A System for Analysis of Multi-Issue Negotiation 
 

263 
 

 
point 2. The Analysis Component basically uses Prolog rules for the predicate sat that 
reduce the satisfaction of the temporal formula finally to the satisfaction of atomic state 
formulae at certain time points, which can be read from the trace representation. Exam-
ples of such reduction rules are: 
 

sat(and(F,G)) :- sat(F), sat(G). 
sat(not(and(F,G))) :- sat(or(not(F), not(G))). 
sat(or(F,G)) :- sat(F). 
sat(or(F,G)) :- sat(G). 
sat(not(or(F,G))) :- sat(and(not(F), not(G))). 

 

In addition, if a dynamic property does not hold in a trace, then the software reports the 
places in the trace where the property failed. 

4.5 The Presentation Component 

The presentation component currently includes a tool that visualises the negotiation 
space in terms of the utilities of both negotiators. This visualisation tool plots the bid 
trajectory in a 2-dimensional plane, see Figure 3. The utilities are real values that indi-
cate how a particular bid is evaluated by a negotiator. Details about the calculation of 
utilities are provided in the next Section. 

In Figure 3, the seller’s utility of a bid is on the horizontal axis, and the buyer’s util-
ity is on the vertical axis. The light area corresponds to the space of possible bids. In 
this area, each curve is a continuous line, corresponding to a different combination of 
discrete issues. The specific position on the line is determined by the continuous issue 
‘price’. Since in this particular domain 4 discrete issues with 5 possible values occur 
(see next section), there are already 625 (= 54) different curves. In this Figure, the se-
quences of actual bids made by both buyer (left) and seller (right) are indicated by the 
dark points that are connected by the two angular lines. The upper-left point indicates 
the buyer’s first bid, and the lower-right point indicates the seller’s first bid. The dotted 
line indicates the Pareto Efficient Frontier according to the profiles of the negotiating 
agents, and the short dark lines show the distance from each bid to this frontier. The 
small dot that is plotted on the Pareto Efficient Frontier (on the right) corresponds to the 
Nash Point. From this picture, it is clear that both negotiators make more and more 
concessions (their bids converge towards each other). Eventually, they reach a point 
that does not lie on the Pareto Efficient Frontier, but is rather close to it anyhow. 

 



T. Bosse, C.M. Jonker, L. van der Meij, V. Robu and J. Treur 
 

264 

 
 

Figure 3.  Visualisation Tool 

 

5.  Human Multi-Issue Negotiation Experiments 

To illustrate the use of analysing human multi-issue negotiation processes, SAMIN has 
been applied in a case study. As mentioned in Section 4, the analysis component of 
SAMIN takes traces and formally specified dynamic properties as input and checks 
whether a property holds for a trace. Using automatic checks of this kind, some of the 
properties provided in Section 3 have been checked against empirical traces generated 
by students during practical sessions in multi-issue negotiation. The domain of the case 
study, a negotiation about second hand cars, is presented in detail in Section 5.1. Sec-
tion 5.2 describes the setup of the experiments performed in the case study. The analyti-
cal results of the acquired traces will be shown in Section 5.3. 

Nash 
Point

Seller’s 
bids 



A System for Analysis of Multi-Issue Negotiation 
 

265 
 

 

5.1 Domain: second hand cars 

The protocol used in the experiments is an alternating-offers protocol. In this type of 
negotiation, a bid has the form of values assigned to a number of issues of the object 
under negotiation. Here, the object of negotiation is a particular second hand car. 
Within this domain, the relevant issues are cd_player, extra_speakers, airco, tow_hook and 
price. Consequently, a bid consists of an indication of which CD player is meant, which 
extra speakers, airco and tow hook, and what the price of the bid is. The goal of the 
negotiators is to find agreement upon the values of the four accessories and the price. 
Here, the price issue has a continuous value, whilst the other four issues have a discrete 
value from the set {good, fairly_good, standard, meager, none}. These values are assumed 
to be objective indicators from a consumer organisation, so there can be no discussion 
about whether a certain CD player is good or fairly good. 

Before the negotiation starts, both parties specify their negotiation profile: for all 
issues with discrete values they have to assign a number to each value, indicating how 
satisfied they would be with that particular value for the issue (e.g. “I would be very 
happy to buy/sell a good CD player, a bit less happy with a fairly good CD player, …” 
and so on). The buyer also has to indicate what is the maximum amount of money (s)he 
would be willing to spend. Moreover, both parties have to assign a number to each of 
the issues, indicating how important they judge that issue (e.g. “I don’t care that much 
which CD player I will buy/sell”). Notice that this does not conflict with the above 
statements. An example negotiation profile for a buyer is shown in Figure 4. In addition 
to this negotiation profile, the seller is provided with a financial profile. This is a list of 
all issues, where for each issue it is indicated how much it costs, both to buy it and to 
build it into the car. Since we focus on closed negotiation, none of the profiles will be 
available for the other party. However, SAMIN has access to both profiles. 

When both parties have completed their profiles, the negotiation starts. To help 
human negotiators generating their bids, the system offers a special tool that calculates 
the utility of a bid before it is passed to the opponent.  
The utility UB of a bid B is defined by the weighted sum over the issue evaluation values 
EB,j for the different issues denoted by: UB = Σj wj  EB,j. The weight factors wj are based on 
the issue importance factors. Here scaling takes place (the sum of weight factors is 
made 1, and the evaluation values EB,j are between 0 and 1) so that the utility is indeed 
is between 0 and 1; for more details, see [4]. Since the negotiators have individual ne-
gotiation profiles, for each bid the seller’s utility of the bid is different from the buyer’s 
utility of the bid. 

 



T. Bosse, C.M. Jonker, L. van der Meij, V. Robu and J. Treur 
 

266 

 

Figure 4.  Example Buyer’s Negotiation Profile 

Besides for facilitating the bidding process, the profiles are used by SAMIN to ana-
lyse the resulting traces. For example, to check whether the property Pareto-Monotony 
holds (i.e., “For each combination of successive bids b1, b2 in the trace, both agents 
prefer bid b2 over bid b1”), the software must have a means to determine when an agent 
“prefers” one bid over another. 

5.2 Experimental setup 

Participants. 74 subjects participated in the experiment, in three different sessions. All 
sessions took place during a master class for students of the final classes of the VWO (a 
particular type of Dutch High School). The age of the students mostly was 17 years, but 
varied between 14 and 18 years. Most of them were males. In the first session, in March 
2002, 30 students participated. In the second, in March 2003, 28 students participated. 
In the third session, in November 2003, 16 students participated. 

 



A System for Analysis of Multi-Issue Negotiation 
 

267 
 

 

 

Figure 5.  Example Negotiation Trace 

Method. Before starting the experiment, the participants were provided some back-
ground information on negotiation, and in particular about multi-issue negotiation. 
Some basic negotiation strategies were discussed. In addition, the second hand car ex-
ample was explained. Then they were asked to start negotiating, thereby taking a profile 
in mind (that had to be specified first) aiming at obtaining the best possible deal, with-
out showing their own profile to the opponent. The negotiation process was performed 
using different terminals over a network, which allowed each participant to negotiate 
with another anonymous participant. All negotiators could input their bids within a 
special interface. The resulting negotiation traces were logged by the system, so that 
they could be re-used for the purpose of analysis. A screenshot of an example negotia-
tion trace is depicted in Figure 5. This trace is shown from the perspective of the buyer. 
In the upper part of the window, the buyer’s own bids are displayed, including the 
buyer’s utility for each bid. In the middle part, the bids of the seller are displayed, in-
cluding the buyer’s utility for each bid. The lower part consists of the bidding interface, 
which allows the buyer to input his bid and pass it to the seller. 



T. Bosse, C.M. Jonker, L. van der Meij, V. Robu and J. Treur 
 

268 

5.3  Results of the Human Experiments 

Using the SAMIN prototype, a number of relevant dynamic properties for multi-issue 
negotiation (also see Section 3) have been checked against the traces that resulted from 
the experiments. The results indicate that humans find it hard to guess where the Pareto 
Efficient Frontier is located. Due to space limitations, the detailed results are not shown 
in this paper. The interested reader is referred to [1]. 

6  Using Incomplete Information  

The above sections concentrate on the analysis of human negotiations. In the current 
chapter it is shown how SAMIN can be used to analyse software negotiations. To this 
end, a particular software agent for negotiation was implemented and its performance 
was evaluated using SAMIN.  

The software agent uses incomplete information in order to improve the outcome of 
automated multi-issue negotiations. The rationale for this research line is that in many 
electronic applications only a limited degree of trust exists between parties. This does 
not hold for many applications, where only a limited degree of trust exists between 
parties in sharing preference information. The reasons for this may be endogenous to 
the negotiation (e.g., fear the other may abuse this information to get a better deal) or 
exogenous (e.g., privacy concerns).  

In classical multi-issue-utility theory ([21]), the solution proposed is the use of an 
independent mediator, which both parties can trust to reveal their preferences. The 
problem with this approach in an electronic or open system setting is that it can be 
difficult to establish whether a mediator is indeed impartial or more trustworthy than the 
negotiation partner himself. For example, an agent may have no way of knowing if the 
solutions proposed by the mediator are not biased towards the other or that his 
preference information will not be stored and used for other purposes. By contrast, our 
approach is to use a distributed design, in which each agent computes its own bids, 
using the information available about the preferences of the opponent. We take into 
account two different types of (incomplete) information:  
• Partial profile information, which is communicated by the negotiation partner 

himself in the beginning of the negotiation.  
• Profile information, which can be deduced (learned) from successive bids during the 

negotiation itself. Here we start from the assumption that the way the negotiation 
partner is bidding may reveal something about his preferences. For this mechanism 
we use the term “guessing” to clearly show it is a heuristic. 

 
In our current work we preferred the heuristic approach to designing automated 
negotiation, since we feel this allows more flexibility. This position is supported, 
among others, by [17] who clearly show that “what is required are agent architectures 
that implement different search mechanisms, capable of exploring the set of possible 
outcomes under both limited information and computation assumptions”. However, this 



A System for Analysis of Multi-Issue Negotiation 
 

269 
 

 
does not mean we ignore the results from game theory: they are present in both 
measuring the efficiency of reached agreements (e.g., Pareto-efficiency) and in 
analysing some properties of our mechanism (incentive compatibility properties). To 
analyse the effectiveness of the strategies and the impact of revealing small bits of 
information in the negotiation, the strategies were implemented and tested within the 
environment of the SAMIN system. 

6.1 Background of the model 

As in the human experiments, our negotiation follows an alternating-offers protocol. A 
bid in such a negotiation has the form of values assigned to a number of issues. If the 
negotiation is about the sale of a car, then the relevant issues are again: CD player, extra 
speakers, airco, tow hook, price. Thus, a bid consists of an indication of which CD 
player is meant, which speakers, airco and tow hook, and what the price of the offer is.  

Although the examples given are based on this domain, our negotiation model and 
its description presented in this chapter are generic. Instantiations in other domains are 
possible and have been considered – for example an employer and employee 
negotiating about work shifts and overtime pay (work performed in collaboration with 
Almende B.V, Rotterdam).  

The current model represents an extension of the negotiation model presented in 
[4]. This paper presents two main directions in which the model was adapted (in [14]), 
after the publication of the original research: 
• A mechanism where the agents are allowed to exchange and take into account 

partial preference information from the negotiation partner was modelled. 
• A novel “guessing” heuristic by which an agent can estimate the preferences of the 

other using his past bids was proposed and tested. 
Both for the original work and the extension, the DESIRE design method and software 
environment [15] were used to design the agents. Although we also cover some 
elements of the existing model, we only do so very briefly, to allow more extensive 
explanations for the parts that were added or adapted from the original research. For 
further details readers are asked to consult [4, 14, 26]. 

Our negotiation model works by performing computations on two levels: the 
overall bid level and the issue level. This involves first evaluating the utility opponent’s 
previous bid, and then planning the target utility for the own next bid. Finally, the 
configuration of the next bid will be selected such that it fits this target value. In the 
design of our agent, these steps are modelled as separate components and our 
presentation follows this structure. 

6.2 Bid Utility Determination and Planning 

The evaluation for each issue is computed based on an evaluation function, specified by 
the agent owner (user) in the beginning of the negotiation. This function takes the 
generic form eval: VS -> E, where VS is either a finite set of discrete values or an 



T. Bosse, C.M. Jonker, L. van der Meij, V. Robu and J. Treur 
 

270 

infinite set of continuous values, while E = [0,1]. For example, in our domain 
accessories have discrete values (quality levels, assigned an evaluation by the user), 
while issues such as mileage or price are continuous, and their utility is computed by a 
continuous function. Next, the utility of the opponent’s previous bid is computed. The 

overall utility UB of a bid B is taken as a weighted sum of the issue evaluation values 
EB,j for the different  issues j:  UB = Σj  w j  E B, j. Here all weights w j are normalized 
importance factors based on the raw importance factors pk for the different issues 
(provided by the user through an interface in the beginning of the negotiation): w j = p j

/ Σk p k 
Finally a target evaluation is computed for the agent’s next bid.  For determination 

of the next bid’s target utility TU the following formula is used: TU  = UBS +  CS, with 
UBS the utility of the agent’s  own last bid, and the concession step CS determined as:  
CS  = β (1 - µ / UBS)* (UBO - UBS), where UBO is the utility of the opponent’s last bid, 
with respect to the agent’s own utility function. Factor β stands for negotiation speed, 
while factor (1 - µ /UBS) expresses that the concession step will decrease to 0 if the UBS 
approximates a minimal utility µ. The minimal utility is a measure of how far 
concessions can be made. 

6.3 Issue Planning 

The Issue Planning component is shown in Figure 6. Here, the arrows denote data flow. 
This component determines the values of issues for the next bid, in such a way that the 
utility of the next bid equals the target utility. This is done in two steps: first a target 
evaluation is computed per issue, based on the target evaluation planned for the whole 
bid. Next,  issue values are chosen with the evaluation closest to the target evaluations 
(for all issues except price). The configuration of the next bid is then completed by 
selecting a value for price, such that the utility of the final bid fits exactly its target. 

In order to make better directed concessions, in planning the target evaluation for 
each issue we take into account not only the own preference weight of the agent, but 
also the weight of the opponent. If the opponent is not willing to reveal her preference 
weight for some (or maybe all) issues, an estimation of these weights is computed in 
“Estimation of Opponent’s Parameters” component. The role of the “Guess 
Coefficients” component is to analyse the way the opponent is bidding and to provide 
some extra information to be used for estimating these private preference weights. 

 



A System for Analysis of Multi-Issue Negotiation 
 

271 
 

 

  Configuration
  Planning 

Issue Planning

Target 
Evaluation 

Planning 

    Guess 
     Coefficients

 Provision of 
 Initial Guess

 Information 

Estimation of  
Opponent’s Parameters 

 

Figure 6.  Internal composition of Issue Planning 

6.3.1  Target Evaluation Planning 

This component outputs a target evaluation for each issue in the next bid, based on the 
bid target value. 

The target issue evaluation is determined in two steps. First a basic target issue 
evaluation for each issue is computed as:  

BTE j  =  EBS, j +  (αj / N) (TU  - UBS) 
In the above formula EBS, j represents the evaluation for issue j in the agent’s own 

previous bid, UBS the overall evaluation of the agent’s previous bid, while TU 
represents the target utility for the next bid (as shown in Section 6.2). The parameter αj

is chosen as αj = (1 - w j) (1 - EBS, j), where the first parameter expresses the influence of 
the user’s own importance factor, while the second factor assures that the target 
evaluation values remain scaled in the interval between 0 and 1. Parameter N is a 
normalization factor, defined as: N   = Σj w j αj. By this choice we ensure that the 
following relation always holds: Σj w j BTEj = TU (for a full proof of this property we 
refer the reader to [4]). 

The Basic Target Evaluation, however only takes into accounts the own preference 
weights of the agent. Using only this value would work, but tests showed that it leads to 
sub-optimal results, since the preferences of the other are not considered in any way 
when making concessions. To improve on this, the following solution was 
implemented. For each issue j ∈ I (where I denotes the set of all issues) a Preference 
Difference Coefficient δj is computed as: 

δ j  = (W other, j  - Wown,j ) / (W other, j  + Wown,j )

This coefficient (scaled between -1 and 1) expresses how different the preferences 
of the two parties for each issue are. Positive values for δj denote a stronger preference 



T. Bosse, C.M. Jonker, L. van der Meij, V. Robu and J. Treur 
 

272 

of the negotiation partner for issue j, while negative values denote a stronger own 
preference for this issue.  

The concession to be made in each issue j ∈ I depends on a parameter called 
configuration tolerance, denoted as τj ∈ [-1,1]. The tolerance parameter is chosen to be 
issue-specific, in order to better differentiate the amount of concessions between issues. 
Therefore, for each issue j∈I, the configuration tolerance depends on the preference 
difference coefficient of that issue, according to the following formula: τj  =   τgen * (1 + 
δj) 

Here the parameter τgen represents the general tolerance, used by the agent for all 
issues j. The general tolerance is always chosen between 0 and 0.5 and also gives a 
measure of how fast the agent is willing to make concessions. Values closer to 0 will 
denote an agent who is less willing to make concessions, while values closer to 0.5 will 
denote an agent who is interested to reach a deal quickly.  Since δj ∈ [-1,1] the tolerance 
for any issue j is scaled between 0 and 2*τgen. 

Finally, the target evaluation for each issue j is computed. This is done by taking 
into account both the basic target issue evaluation (as described above) and a 
concession to the issue evaluation from the previous bid of negotiation partner, as 
follows: TEj  =  (1 - τj) BTE j +   τj EBO, j 

Here BTE j is the basic issue evaluation for issue j and EBO,j is the evaluation for 
issue j from the opponent’s previous bid. From the above formula, one can see that 
values of the configuration tolerance τj close to 0 signify that mostly the user’s own 
importance factors are taken into account, while values close to 1 shows that maximum 
possible concession is made towards the other’s value. And since τj depends directly on 
δj, it is the difference in preference for each issue that determines how much concession 
should be made. 

Within the Target Evaluation Planning component we have assumed that the 
opponent’s preference weights for an issue are known. However, if the other is not 
willing to share his weights for some (or all) issues, then they will need to be estimated. 

6.3.2  Estimation of Opponent’s Parameters and Guessing 

The role of these components is to determine, for those issues for which the opponent 
was not willing to reveal his preference weights, an estimation of those weights (namely 
of the parameter W other, j  needed in the equation above). 

We denote by Iknown the set of issues for which the opponent was willing to 
reveal his importance weights in the beginning of the negotiation and by Iunknown the 
issues whose preference weights are kept private. Since all preference weights are 
normalised (see Section 6.2), the sum of weights for the private issues is computed as:  
Σj∈Iunknown W j =  1 - Σk∈Iknown W k. 

For the issues with private weights, the remaining weight Σk∈Iknown W k  needs to be 
divided between them. This is the goal of the guessing mechanism, which is more 
formally defined in [14]. Intuitively the idea is to divide the remaining weight based on 
the perceived concessions the opponent makes during the negotiation. Each discrete-
valued issue is assigned a qualitative value from the set {good, fairly good, standard, 



A System for Analysis of Multi-Issue Negotiation 
 

273 
 

 
meager, none}. Each party in the negotiation assigns to these values a numerical 
evaluation from 0 to 100, independent from the issue weight.  For example, if “good” 
has for the buyer an evaluation of 100, and “standard” the evaluation 60, and the weight 
of the CD player issue is 60 out of a total of 300 (or normalised form 0.2), then a good 
CD player will bring an evaluation of 0.2*100=20 to the total utility, while a standard 
one an evaluation of 0.2*60=12. So a buyer that concedes during the negotiation, for 
the issue CD player, from “good” to “standard” makes a global utility concession of 8. 

However, the Seller, in a closed negotiation setting does not know either the weight 
of the issue CD player, nor does he know the evaluations the Buyer has assigned to 
values such as “good”, “fairly good” or “standard”. However, he can compare 
concessions between issues, based on the fact that, for a certain price level, buyers 
always prefer better quality issues than worse ones.  

For example, suppose two issues: CD player and Tow Hook have both unknown 
(i.e. not revealed) utility weights. Initially the Buyer asks for both issues the quality 
“good”. However, for one issue, say CD player, she is only willing to concede from 
“good” to “fairly good”, while for the other, say Tow Hook, she is willing to concede 
from “good” to “standard”. The seller in this example can infer that the CD player is 
more important to this particular buyer than the Tow Hook, because a rational buyer 
gives in first in the issues which are less important to her.  

A formal description of this mechanism, as well as the experimental results from 
the tests performed to validate our model are given here for reasons of space, but the 
interested reader is asked to consult [14].   

6.4  An example negotiation trace 

The model presented above was tested along several dimensions, such as: 
•  The number of issue weights revealed 
•  Whether guessing is used or not 
•  The choice for the issue importance factors 
•  The evaluations for the issue value levels 
Due to space limitation, we do not give a full discussion of these results here. For a 

full discussion of our experimental results, we ask the reader to consult [14]. In this 
section we illustrate the functioning of our model through a complete example trace, as 
produced by our simulation tool. Tables 1 and 2 below describe the evaluations which 
are given by the 2 parties to their agents, though the input interface.  

 
 Tow hook     Airco Extra speakers  CD player Price 

BUYER     90  90  15    15 300 
SELLER 15  15  90    90 300 

Table 1.  Importance factors assigned to different issues by the Buyer and Seller 

 
 



T. Bosse, C.M. Jonker, L. van der Meij, V. Robu and J. Treur 
 

274 

     Good   F. good   Standard   Meager    None 
BUYER 100   85  70  50   0 
SELLER   30   65  80  65 100 

Table 2.  Evaluation given by each side for each qualitative value of the 4 issues: Tow hook, CD 
player, Extra speakers and Airco 

As can be seen from Table 2, we assume a business model in which the Seller 
prefers to sell the car for a standard price – and not have to install extra accessories, but 
he is willing to do so in order to sell it.   

Table 3 provides the complete trace of this negotiation from the perspective of the 
Buyer, while Table 4 does the same from that of the Seller. The vertical columns show 
the bids made by the two parties in successive rounds.  

 

BUYER  1 2 3 4 5 Closing 

bids       

price 18000 17450 17968 18047 18083 18083

tow hook good fairly 
good

fairly 
good

fairly 
good

fairly 
good

fairly 
good

airco good standard standard standard standard standard

speakers good meager none none none none

CD
player 

good meager none none none none

utilities 

own bid 1 0.9203 0.9130 0.9094 0.9068 0.9068

seller’s 
bid 

0.7407 0.8782 0.8830 0.8864 0.8889 0.8889

Table 3.  The negotiation trace: BUYER’s perspective 

Figure 7 provides a visualization of the negotiation progress in the joint utility 
space (as automatically produced by the implementation in our software environment). 
For clarity, only the first 3 bids of the Buyer and the first 2 of the Seller are shown. The 
rest lie in the straight line between these 2 points. An interesting effect is that, in this 
example, after establishing mutually agreeable values for the discrete-value issues 
(accessories), the agents seem to “walk” the Pareto-efficient frontier towards each 
other’s bid. This corresponds to the haggling about the price from rounds 3-5 in Tables 
3 and 4. 

 
 
 
 
 
 

 



A System for Analysis of Multi-Issue Negotiation 
 

275 
 

 

   SELLER round 1 2 3 4 5 accept:5 

bids       

price 16900 18468 18404 18359 18325 18083

tow hook none fairly 
good

fairly 
good

fairly 
good

fairly 
good

fairly 
good

airco none standard standard standard standard standard

speak-
ers

none none none none none none

CD
player 

none none none none none none

utilities       

own bid 1 0.9378 0.9296 0.9238 0.9195 0.8884

buyer’s 
bid 

0.3167 0.5932 0.8737 0.8838 0.8884 0.8884

Table 4.  The negotiation trace: SELLER’s perspective 

 

2

1 

1

3

0.3

0.7

1

0.8

0.9

0.4 0.5 0.6 0.7 0.8 0.9 1

BUYER 

SELLER

Pareto-efficient 
frontier 

Final agreement 
point 

 
Figure 7.  Utility space corresponding to the example trace from Tables 3/4 

7  Related Work  

This section discusses the literature on the analysis of negotiation processes. Moreover, 
it reviews automated negotiation systems that use incomplete information described in 
the literature and compares them to our own. 

In the literature on negotiation a number of systems are described. Sometimes it is 
stated what properties these systems have, sometimes not. If properties are mentioned 



T. Bosse, C.M. Jonker, L. van der Meij, V. Robu and J. Treur 
 

276 

they can be of different types, and also the justifications of them can be of different 
degree or type. This section discusses the literature on properties of negotiation and 
analytical results of implemented systems and of human case studies.  

Faratin, Sierra, and Jennings [2] concentrate on many parties, many-issues, single-
encounter closed negotiations with an environment of limited resources (time among 
them). Agents negotiating using the model are guaranteed to converge on a solution in a 
number of situations. The authors do not compare the solutions found to fair solutions 
(Nash Equilibrium, Maximal Social Welfare, Maximal Equitability), nor whether the 
solutions are Pareto Efficient.  

Klein, Faratin, Sayama, and Bar-Yam [6] developed a mediator-based negotiation 
system to show that conceding early (by both parties) often is the key to achieving good 
solutions. Hyder, Prietula, and Weingart [3] showed that substantiation (providing ra-
tionale for your position to persuade the other person to change their mind) interferes 
with the discovery of optimal agreements.  

Weingart et al. [13] found that the Pareto efficiency of agreements between naïve 
negotiators could be significantly improved by simply providing negotiators with de-
scriptions of both integrative and distributive tactics. Although Pareto efficiency was 
positively influenced by the tactics, Pareto optimality was only minimally affected. 
Compared to [8, 11, 12], the properties identified in this paper are geared towards the 
analysis of the dynamics of the negotiation process, whereas theirs are more oriented 
towards the negotiation outcome, rationality and use of resources.  

In [19], a model for bilateral multi-issue negotiation is presented, where issues are 
negotiated sequentially. The issue studied is the optimal agenda for such a negotiation 
under both incomplete information and time constraints. However a central mediator is 
used and the issues all have continuous values. The effect of time on the negotiation 
equilibrium is the main feature studied, from both a game-theoretic and empirical 
perspective. In earlier research [20] a slightly different model is proposed, but the focus 
of the research is still on time constraints and the effect of deadlines on the agents’ 
strategies. This contrast with our model, where efficiency of the outcome and not time 
is the main issue studied. This is because we found that, due to our cooperative 
assumption, a deal is usually reached in maximum 10-15 steps, if the negotiation speed 
and tolerance parameters are suitably calibrated. 

A direction of work directly related to our guessing heuristic (introduced in Section 
6) is represented by [17] and [18]. Like [17] we start from the perspective of distributed 
negotiation, which eliminates the need of a central planner. As in [17], we also take the 
heuristic approach and we model agents that are able to jointly explore the space of 
possible outcomes with a limited (incomplete) information assumption. In [17], this is 
done through a trade-off mechanism, in which the agent selects the value of its next 
offer based on a similarity degree with previous bids of the opponent. In our design, we 
do no explicitly model trade-offs, yet the same effect is achieved through the 
asymmetric concessions mechanism. An advantage of our model over [17] is that we 
allow agents to take into account not only their own weights, but also those of the 
opponent in order to compute the next bid.  In this way agents may exchange partial 
preference information for those issues for which their owners feel this does not violate 



A System for Analysis of Multi-Issue Negotiation 
 

277 
 

 
their privacy. Also the initial domain information for the issues with discrete 
(“qualitative”) values is different. In [17], this consists of fuzzy values, while in our 
model it is a partial ordering of issue weights. 

8  Conclusions and Future Work 

The contribution of this work consists of a more systematic approach to the analysis of 
the negotiation process. Different types of properties are identified and for each class a 
number of properties are defined. The System for Analysis of Multi-Issue Negotiation 
(SAMIN) is presented and applied in two ways: to analyse human negotiation in a case 
study and to analyse the effectiveness of guessing and limited information exchange as 
implemented in a number of software agents. SAMIN consists of three components: an 
Acquisition Component to acquire the input necessary for analysis, an Analysis Com-
ponent to perform the actual analysis, and a Presentation Component to presents the 
results of the analysis in a user-friendly format. 

The system has proved to be a valuable tool to analyse the dynamics of human-
human closed negotiation against a number of dynamic properties. Our analysis shows 
that humans find it difficult to guess where the Pareto Efficient Frontier is located, 
making it difficult for them to accept a proposal.  Although humans apparently do not 
negotiate in a strictly Pareto-monotonous way, when considering larger intervals, a 
weak monotony can be discovered. Such analysis results can be useful in two different 
ways: to train human negotiators, or to improve the strategies of software agents. 

The strategies tested using software agents showed that the original agents for 
closed multi-issue negotiation (used in the ABMP system, see [4]), when playing 
against each other, score better than the human subjects (in human-human negotia-
tions). The software agents were subsequently augmented with a guessing strategy and 
with the ability to share a bit of information regarding their issue weights. The results 
show that both strategies increase the effectiveness of the negotiation. 

Currently, SAMIN is being used to analyse the dynamics of humans negotiating 
against software agents of the ABMP system (with and without the guessing strategy, 
also in setting in which limited preference information is shared). Future research is to 
analyse the dynamics of other types of (e.g., more experienced) human negotiators. 
Furthermore, the system needs to allow heterogeneous agents, so that a competition of 
negotiating agents can be set up and the results of that competition formally analysed. 
In future, SAMIN will be extended with training facilities for human negotiators, allow-
ing to test the effectiveness of training methods for negotiation. As a simple extension, 
for example, if a dynamic property checked in a trace turns out to fail, a more detailed 
analysis can be given of the part(s) of the formula that cause(s) the failure. Finally, we 
plan to extend SAMIN to provide feedback to a negotiator who is in the middle of a 
negotiation process, where SAMIN only has access to the same information as the ne-
gotiator. 



T. Bosse, C.M. Jonker, L. van der Meij, V. Robu and J. Treur 
 

278 

References 

[1] Bosse, T., Jonker, C. and Treur, J., Formalisation of Dynamic Properties of Multi-Issue 
Negotiations. Vrije Universiteit Amsterdam, Department of Artificial Intelligence. Technical 
Report, 2004. 

[2] Faratin, P., Sierra, C., and Jennings, N.R., Negotiation decision functions for autonomous 
agents. In: International Journal of Robotics and Autonomous Systems, vol. 24(3-4), 1998, 
pp. 159 – 182. 

[3] Hyder, E.B., Prietula, M.J., and Weingart, L.R., Getting to Best: Efficiency versus Optimal-
ity in Negotiation, In: Cognitive Science, vol. 24 (2), 2000, pp. 169 – 204. 

[4] Jonker, C.M., Treur, J., An Agent Architecture for Multi-Attribute Negotiation. In: B. Nebel 
(ed.), Proceedings of the 17th International Joint Conference on AI, IJCAI'01, 2001, pp. 
1195 - 1201. 

[5] Jonker, C.M., and Treur, J., Compositional Verification of Multi-Agent Systems: a Formal 
Analysis of Pro-activeness and Reactiveness. International Journal of Cooperative Informa-

tion Systems, vol. 11, 2002, pp. 51-92.  
[6] Klein, M., Faratin, P., Sayama, H., and Bar-Yam, Y., (2001), Negotiating Complex Con-

tracts. Paper 125 of the Center for eBusines@MIT.  http://ebusiness.mit.edu.  
[7] Kowalczyk, R, Bui, V., On Constraint-Based Reasoning in e-Negotiation Agents. In: Dig-

num, F, and Cortés, U., (eds.), Agent-Mediated Electronic Commerce III, Current Issues in 

Agent-Based Electronic Commerce Systems, Lecture Notes in Computer Science, vol. 2003, 
Springer – Verlag, pp. 31-46. 

[8] Lomuscio, A.R., Wooldridge, M., and Jennings. N.R., (2000), A classification scheme for 
negotiation in electronic commerce, In: International Journal of Group Decision and Nego-

tiation, vol. 12(1), January 2003. 
[9] Pruitt, D.G., Negotiation Behavior, Academic Press, 1981. 
[10] Raiffa, H., Lectures on Negotiation Analysis, PON Books, Program on Negotiation at Har-

vard Law School, 513 Pound Hall, Harvard Law School, Cambridge, Mass. 02138, 1996. 
[11] Rosenschein, J.S., and Zlotkin, G., Rules of Encounter: Designing Conventions for Auto-

mated Negotiation among Computers. The MIT Press, Cambridge, MA, 1994. 
[12] Sandholm, T., Distributed rational decision making, In: Weiss, G., Multi-agent Systems: A 

Modern Introduction to Distributed Artificial Intelligence, MIT Press, 1999, pp. 201-258. 
[13] Weingart, L.R., Hyder, E.H., and Prietula, M.J., Knowledge matters: The effect of tactical 

descriptions on negotiation behavior and outcome. In: Journal of Applied Psychology, vol. 
78, 1996, pp. 504-517. 

[14] Jonker, C., Robu, V. – “Automated multi-attribute negotiation with efficient use of incom-
plete preference information”, Proceedings of the 3rd International Conference on Autono-

mous Agents and Multi-Agent Systems (AAMAS-04), New York, July 2004. 
[15] Brazier, F.M.T., Jonker, C.M., and Treur, J. “Compositional Design and Reuse of a Generic 

Agent Model”,  Applied Artificial Intelligence Journal, vol. 14, 2000, pp. 491-538. 
[16] Byde, A., Kay-Yut Chen – “AutONA: A System for Automated Multiple 1-1 Negotiation”, 

Fourth ACM Conference on Electronic Commerce, pp. 198-199. 
[17] Faratin, P., Sierra, C. and Jennings, N.  Using Similarity Criteria to Make Issue Trade-offs in 

Automated Negotiations. Journal of Artificial Intelligence vol. 142 (2), 2003, pp. 205-237. 
[18] Faratin, P., Sierra, C. and  Jennings, N.  “Using Similarity Criteria to Make Negotiation 

Trade-Offs”,  Proceedings of ICMAS-2000,  Boston, MA., 119-126. 
[19] Fatima, S. S., Wooldridge, M. and Jennings, N. R.. “Optimal Agendas for Multi-Issue Nego-

tiation”. In Proceedings of the Second International Conference on Autonomous Agents and 

Multiagent Systems (AAMAS-03), Melbourne, July 2003, pp. 129-136. 



A System for Analysis of Multi-Issue Negotiation 
 

279 
 

 
[20] Fatima, S., Wooldridge, M. and  Jennings, N. R.. “Optimal Negotiation Strategies for Agents 

with Incomplete Information” . In  Intelligent Agents VIII, Springer-Verlag LNAI, vol. 2333, 
pp 377-392, March 2002 

[21] Raiffa, H. – “The art and science of negotiation”, Harvard University Press, Cambridge, 
Mass., 1982.  

 
Tibor Bosse 
Vrije Universiteit Amsterdam, Department of Artificial Intelligence 
De Boelelaan 1081a 
1081 HV Amsterdam 
The Netherlands 
e-mail: tbosse@cs.vu.nl 
 
Catholijn M. Jonker 
Radboud Universiteit Nijmegen, Nijmegen Institute for Cognition and Information 
Montessorilaan 3 
6525 HR Nijmegen 
The Netherlands 
e-mail: C.Jonker@nici.ru.nl 
 
Lourens van der Meij 
Vrije Universiteit Amsterdam 
The Netherlands 
e-mail: lourens@cs.vu.nl 
 
Valentin Robu 
CWI, National Center for Mathematics and Computer Science 
Kruislaan 403 
1098 SJ Amsterdam 
The Netherlands 
e-mail: robu@cwi.nl 
 
Jan Treur 
Vrije Universiteit Amsterdam 
The Netherlands 
e-mail: treur@cs.vu.nl 
 
Software is available on the Internet as 
 (X) Demo/trial version 
 
Internet address for download: 
 http://www.few.vu.nl/~wai/samin 
Contact point for questions about the software: 
 http://www.few.vu.nl/~wai/samin  



FuzzyMAN: An Agent-based E-Marketplace 
with a Voice and Mobile User Interface  

Frank Teuteberg and Iouri Loutchko 

Abstract. The popularity of wireless devices stimulates widespread efforts to de-
velop voice and mobile user interfaces for software systems in general and for e-
marketplaces in particular. This paper focuses on conceptual foundations and the ar-
chitecture of an agent-based job e-marketplace supporting mobile negotiations. The 
negotiation model is based on many negotiation issues, a fuzzy utility scoring 
method, and simultaneous negotiation with many negotiation partners in an envi-
ronment of limited negotiation time. The design and implementation of voice and 
mobile user interfaces for accessing information on an e-marketplace called Fuz-

zyMAN (Fuzzy Multi-Agent Negotiations) is described. A comparison of techno-
logies for the development of voice and mobile user interfaces is given. 

Keywords: software agents, e-marketplace, mobile negotiations, multimodal user in-
terfaces, VoiceXML, J2ME, XHTML, XSLT. 

1 Introduction 

Recent advances in digital speech processing technologies and standards such as SALT 
(Speech Application Language Tags) [1] and VoiceXML (Voice Extensible Markup 
Language) [2] enable developers to enhance mobile applications with voice user inter-
faces to interact with e-marketplaces and other applications. 
Mobile and especially voice-based access to e-marketplaces has several advantages in 
comparison to web-based access. Voice user interfaces enable users to directly access 
information via spoken commands instead of browsing through several drop down 
menus before coming to the desired information. Furthermore, handicapped persons 
(e.g. blind persons) who are unable to access e-marketplaces due to physical disabilities 



282                                      Frank Teuteberg and Iouri Loutchko 

may gain access through voice-enabled mobile devices. The mobile and voice user 
interfaces described in this paper allow users to access applications such as e-
marketplaces in a manner appropriate to the users’ situation, for example, using speech, 
keyboard, web browser, or stylus. 
In this paper, we also demonstrate the concepts of a multi-agent approach to electronic 
marketplaces using a prototype of a job e-marketplace called FuzzyMAN (Fuzzy Multi-
Agent Negotiations). On the FuzzyMAN marketplace users create their individual 
agents that then act autonomously and proactively. Mobile, voice-enabled, and web-
based user interfaces can be used to initialize the agents, manage them, and receive their 
feedback. Once initialized, the agents continuously search for new positions (employ-
ees’ agents) or for new employees (employers’ agents). To achieve their objectives (in 
our case, to find an appropriate position or an appropriate employee) the agents negoti-
ate about the conditions of a contract according to several criteria like salary per hour, 
working hours per week, and social benefits. As soon as a suitable position or a suitable 
candidate for a vacant position is found, the agents inform their owners about the condi-
tions of the contract. Other useful features are that users can permanently monitor the 
performance of their agents and the situation on the marketplace, and that they may 
change their preferences for salary per hour, working hours per week, the negotiation 
tactics employed by their agents, the dates their agents expire, etc. 
The remainder of this paper is organized as follows. In section 2, we describe Fuz-
zyMAN's architecture. Section 3 discusses some essential features of the agents acting 
on the FuzzyMAN e-marketplace. Section 4 introduces the underlying multilateral ne-
gotiation model. Section 5 focuses on the design and implementation of voice and mo-
bile user interfaces based on VoiceXML and J2ME technology. In section 6 research 
efforts of other researchers related to our work are described. In the final section some 
experimental results, further research questions, and some concluding remarks are 
given.   

2 FuzzyMAN's Architecture  

The agent-based e-marketplace FuzzyMAN was developed in a research project sup-
ported by the German Research Foundation and can be accessed through web-browsers 
as well as mobile devices. 
The FuzzyMAN marketplace is a multi-agent system with the architecture shown in 
figure 1. In this section we describe the structure and functionality of the marketplace. 
The architecture includes both a specific mediator agent playing the role of a market 
coordinator and agents representing individual users with their own goals and tactics. 
The mediator is a centralized ‘super-agent’ handling the communication of other agents.  
Initially, all users have to register when entering the marketplace to create their own 
agents on the server. Employees' agents search for adequate jobs and employers' agents 
offer jobs. Each agent is uniquely identified by an agent-id. Users may access Fuz-
zyMAN through mobile, voice-enabled, and web-based interfaces. Here the user can 



FuzzyMan: An Agent-based E-Marketplace with a Voice and Mobile User Interface 283 

create an agent, set the agent's preferences, change personal settings, and access infor-
mation provided by the agent. 
An agent created by a user contacts the mediator agent to enter his profile, the user's 
data, and/or job offers or search requests into the database. The agents' preferences are 
used by the mediator agent to find and rank agents suitable for negotiations.  
The mediator agent continuously seeks for pairs and/or groups of employees' and em-
ployers' agents with corresponding preferences. It initiates and manages the negotiations 
in different threads once suitable agents are found. After several rounds of exchanging 
offers and counter-offers, the negotiation process either ends with an agreement be-
tween an employer's and an employee's agent in the ideal case, or terminates without 
success. The mediator agent and the agents’ owners are informed about the negotiation 
results.   
The entire negotiation process comprises several stages, including: 

 Discovery of potential negotiation partners in a pre-selection process with the 
help of the mediator agent. 

 Determination of the negotiation issues through a communication process 
based on FIPA-ACL/XML (FIPA-ACL = FIPA Agent Communication Lan-
guage [3]; XML = Extensible Markup Language). 

 Automated negotiation by exchanging XML messages with values of negotia-
tion issues generated by means of the agents’ tactics. 

FuzzyMAN

Client
(JSP Web form)

ID 20001

20001

Employer's Agent

ID 20002

20002

Employee's Agent

ID 10001

10001

ID 10002

10002

Middleware (ODBC)

Mediator Agent

Message Box
FIPA-ACL/XML

FIPA-ACL/XML (inform, tell, ask etc.) FIPA-ACL/XML

N
e
g

o
ti

a
ti

o
n

 R
o

o
m

SQLSQL

message box

Database (MS SQL Server)

H
T

T
P

-

u
n

d
T

C
P

-r
e
s

p
o

n
s
e

s

H
T

T
P

-

a
n

d

T
C

P
-r

e
q

u
e

s
ts

Agents Skills Professions Users Strategies

message box

message boxmessage box

Employee's AgentEmployer's Agent

Results

XHTML MP, VoiceXML, J2ME Client

Fig. 1.  Multi-agent system architecture 

FuzzyMAN is a platform-independent application implemented in Java. In order to 
make FuzzyMAN widely accessible, the implementation was based on the following 
technologies:



284                                      Frank Teuteberg and Iouri Loutchko 

 FIPA-ACL: Used as the agent communication language. 
 XML: Used as the data interchange language for representing and processing fuzzy 

negotiation vocabulary from a syntactic and a semantic perspective. In XML do-
main-specific entities, attributes, and relationships between entities can be defined 
with tags like <salary>, <profession>, etc. The XML content of messages is con-
structed based on Document Type Definitions (DTDs). DTDs can be used as tem-
plates to define content models, the valid order of elements, and the data types of 
attributes. 

 JDBC (Java Database Connectivity): Used to access FuzzyMAN’s relational data-
base from Java. 

 MS SQL Server 2000: Used as database management system. 
 JSP (Java Server Pages): Used for the generation of dynamic content from the data-

base, writing to the database, and for the web forms to enter user data. 
 XSLT, XHTML, VoiceXML, Java 2 Platform Micro Edition (J2ME): Used for 

realizing mobile and voice user interfaces. 
FuzzyMAN is currently running on a server with a Windows 2000 operating system, 40 
GB hard disk, Intel Pentium processor 1 Ghz and 256 MB DDR-RAM. The system was 
developed and tested using the following software versions: Java Software De-
velopment Kit 1.3, Tomcat Server 3.3, Internet Explorer 5.5 and 6.0. 
The underlying database mainly stores information that is needed for the agents to do 
their work. This information includes, for example, preferences set by the users and 
statistical data about earlier negotiation results.  Figure 2 gives an overview of the data-
base tables and their interrelations in UML (Unified Modeling Language) notation. 

0..*0..*

SellAgentSkills

AgentID
Basic
Good
Excellent

1

1

SellAgent

AgentID
SalaryMin
BenefitMin
Age
Experience

has

1

0..1

Result

ResultID
AgentID
AgentID_Partner
Salary
Benefits
Hours
Start
End
Satisfaction
Strategy
TimeAtDisposal
TimeElapsed
TransferBytes
NumberOfPartners
NumberOfMatched
Status

0..*

0..*

AdditonalSkills

SkillsID
Engish
German

User

UserID
Passwd
Email

0..*

1

Professions

ProfID
English
German

0..*

1 Strategies

StrategyID
English
German
Param

0..*

0..*
ProfessionalSkills

SkillsID
German
English

1

1

Agent

AgentID
AgentName
isActive
UserID
ProfID
EarliestStart
LatestStart
EarliestEnd
LatestEnd
HourMin
HourMinOpt
HourMixOpt
HourMaxOpt
HourMax
SalaryOpt
BenefitOpt
PeriodFactor
HourFactor
SalaryFactor
BenefitFactor
Deadline
StrategyID

is a

achieves

has

Agent_Profession

applies

has

0..*

BuyAgent

AgentID
SalaryMax
BenefitMax
AgeMin
AgeMinOpt
AgeMax
ExpMin
ExpOpt
AgeFactor
ExpFactor
ProfSkillsFactor
AddSkillsFactor

is a

0..*

BuyAgentSkills

AgentID
Required
Desirable

has

initialized by

0..*

1

Fig. 2.  Schema of the underlying database in UML notation 



FuzzyMan: An Agent-based E-Marketplace with a Voice and Mobile User Interface 285 

The multiplicity specifications used in figure 2 indicate how many elements (entities) of 
one database table (relation) may be connected to the elements of another database 
table. Multiplicity in UML is analogous to cardinality in other modeling languages. 
Professions, skills and strategies of agents (sell agents = employees' agents; buy agents 
= employers' agents) are stored in the database in both English and German to enable 
bilingual user interfaces. 

3 FuzzyMAN's Agents 

3.1   Employees’ and Employers’ Agents  

In this section, some essential features of the agents acting on the FuzzyMAN e-mar-
ketplace are discussed. Two types of agents have to be considered:  
a) employees’ and employers’ agents that communicate and negotiate with each other to 
achieve their respective objectives, and  
b) a mediator agent responsible for managing the other agents, collecting statistical 
information, and selecting candidate agents for a specific negotiation process. We give a 
short overview of both agent types.  
The architecture of employees’ and employers’ agents consists of three main modules: a 
communication module, a module for interaction with the agents’ owners, and a nego-
tiation module.  
Whereas the communication module governs the exchange of messages between agents, 
the interaction module is responsible for communication between an agent and its 
owner. Interaction is bilateral: Users can manage their agents through the user interfaces 
(mobile, voice-enabled, and web-based user interfaces) and agents can contact their 
owners in certain situations (e.g. successful negotiation, approaching the deadline) via 
e-mail or SMS. A part of the web-based user interface is illustrated in figure 3. Users 
can manage their agents through this interface, including initializing, updating, and 
deleting agents. 
For example, to initialize an employee’s agent as in figure 3, the user has to specify the 
profession (e.g. "network administrator"), preferred employment dates, number of 
working hours per week, expectations about the salary per hour and social benefits, age, 
professional experience, and expiration date of the agent. Then information about pro-
fessional skills (like knowledge of Unix, Java, SAP R/3) and additional skills (like for-
eign languages, driving license, flexibility), divided into three categories (basic, good, 
or excellent level of knowledge), has to be entered. Finally, the user specifies the tactic 
that the agent is supposed to employ in the negotiation process, and the weights for the 
negotiation issues, i.e. salary, employment period, working hours, and social benefits. 
The negotiation module consists of three components: negotiation object, decision-
making model, and negotiation protocol.  



286                                      Frank Teuteberg and Iouri Loutchko 

Fig. 3.  Part of the input form for initialization of a new employee’s agent 

The negotiation object is characterized by four issues: salary per hour, number of work-
ing hours per week, duration of the employment, and social benefits. We note that nei-
ther the specific types of negotiation issues nor their number are essential for the nego-
tiation model under consideration; the same model can be used in other situations with 
different negotiation issues. 
The decision making model consists of an assessment part (that evaluates an offer re-
ceived and determines the corresponding action) and of an action part (that either gener-
ates and sends a counter-offer or stops the negotiation).  
The value of negotiation issues is modeled by scoring functions. Larger scoring function 
values for particular issues reflect their suitability for negotiation. The scoring functions 
represent private information not known by and not given to other market participants.  
For illustration, an example of a scoring function that can be used by employees’ agents 

on the FuzzyMAN marketplace is presented in figure 4, where n
Minh , n

Maxh , n
MinOpth _ ,

n
MaxOpth _  are the employee's minimal, maximal, and optimal number of working hours 

per week.  The parameter hn defines an employee's level of satisfaction with the worst 

case regarding the number of working hours per week.  
In a real negotiation, different negotiation issues are of different importance to each 
partner. To model this situation, the notion of relative importance that a participant 
assigns to an issue under negotiation is introduced. 
Using such scoring functions and the relative importance of issues under negotiation, a 
general scoring function is defined. The general scoring functions of FuzzyMAN’s 
agents are additive functions [4] summing the scoring functions for individual negotia-
tion issues multiplied by their weights (or their relative importance) that are kept in the 
interval [0, 1]. The sum of these weights is taken to be equal to 1. We note that this 



FuzzyMan: An Agent-based E-Marketplace with a Voice and Mobile User Interface 287 

method of defining a general scoring function can only be used when the negotiation 
issues are independent, as they are in the FuzzyMAN marketplace.  

Fig. 4. Scoring function for negotiation issue "number of working hours/week" 

The scoring functions are used both in the pre-selection procedure and in the negotiation 
process, in the latter case to evaluate the offers received from other agents. The pre-
selection procedure is described in the next section. 

3.2   Mediator Agent and Pre-selection Procedure  

The most important functionalities of the mediator agent are management of other 
agents, collecting statistical information, and pre-selection of agents for a negotiation. In 
this part of the paper we focus on the pre-selection procedure that plays an essential role 
in the negotiation protocol.  
Pre-selection means selecting and ranking those agents of the marketplace that will start 
a specific negotiation over certain issues with a given agent. In the pre-selection proc-
ess, factors like profession, age, working experience, professional and additional skills 
of the potential employees are taken into consideration. The values of these factors are 
fixed on the employees’ side and cannot be involved directly in the negotiation process 
although they are very important for the employment process.  

n
Minh n

MinOpth _
n

MaxOpth _
n
Maxh

hn

0

1



288                                      Frank Teuteberg and Iouri Loutchko 

For the ranking of employees’ agents, additional scoring functions for age, working 
experience, professional and additional skills have to be constructed [5]. Then an ex-
tended set of weights (relative importance) of negotiation and pre-selection issues is 
defined for each employer’s agent: In addition to the weights introduced before, this set 
contains the relative importance of the employee’s age, of his or her working experi-
ence, and professional and additional skills. 
For evaluation of an offer received by an employer’s agent from an employee’s agent, 
the extended scoring function in form of the sum of the general scoring function and the 
“fixed” scoring function is used. The “fixed” scoring function takes into consideration 
the fixed characteristics of the employees like their age, working experience, and pro-
fessional and additional skills. Like the general scoring function described before, the 
“fixed” scoring function employed by the FuzzyMAN’s agents is also an additive func-
tion.  
For a given employer’s agent an order of the set of all employees’ agents is introduced 
according to the following rule: 

An employee’s agent y is more preferable for the employer’s agent than another em-

ployee’s agent z  (or equally preferable) if and only if the value of the “fixed” scoring 

function for the agent y is greater than (or equal to) the value of the same function for 

the agent z . In this case, the relation between the two employees’ agents is denoted by 

y z  (or by y = z ).

Using the above procedure, an ordered sequence 1n , 2n , 3n ,…, ln  of employees’ 

agents is determined for a particular employer’s agent. This sequence is sorted ac-
cording to the level of suitability as a negotiation partner for the employer’s agent de-
termined for each employee's agent:  

                                       1n 2n 3n … ln .                                                (3.1)     

The results of the pre-selection procedure are heavily used in the multilateral negotia-
tion protocol. 

4   Negotiation Model  

In this section, the negotiation protocol underlying the agents’ negotiation on the Fuz-
zyMAN marketplace is briefly presented. A detailed discussion of the multilateral nego-
tiation protocol can be found in [5].  
In general, there might be several employees who are interested in a position offered by 
an employer. Vice versa, several employers might be interested in a certain employee. 
So the negotiation model underlying a job marketplace should be a multilateral one.  
First we discuss how the agents generate their offers and counter-offers, i.e. their nego-
tiation strategies. A negotiation strategy consists of choosing an appropriate negotiation 
tactic depending on the time and other environmental conditions like the situation on the 
e-marketplaces, the number of negotiating agents, or the status of the current negotia-



FuzzyMan: An Agent-based E-Marketplace with a Voice and Mobile User Interface 289 

tions. The simplest negotiation strategy is a constant one, i.e. only one negotiation tactic 
is employed all the time. By a negotiation tactic a vector function with several compo-
nents is understood. These components determine the way the agent changes the values 
of the negotiation issues (in the case of FuzzyMAN's agents: salary per hour, number of 
working hours per week, employment duration, and social benefits) over time. 
In the literature various cases of negotiation tactics are discussed (see for example [6]).
Families of tactics which can be employed by agents are time-dependent, resource-
dependent, and behavior-dependent tactics. An important family of tactics consists of 
functions which are only time-dependent, i.e. neither the status of the marketplace nor 
the status of the negotiation influences the negotiation.  
On the FuzzyMAN marketplace agents employ constant strategies with time-dependent 
tactics in the form: 

           )()( 12

/1

1 ff
tt

tt
ftf

InitMax

Init −
−

−+=
β

, :f [ ]MaxInit tt , → [ 1f , 2f ].         (4.1) 

Tactics of this form are often used in the literature about agents’ negotiations. Other 
approaches to define time-dependent tactics have also been proposed, but the formula 
(4.1) suited our purpose best because it describes the whole spectrum of time-dependent 
tactics. In formula (4.1), 1f , 2f  are user-defined values of the negotiation issue (mini-

mal and maximal values of a certain negotiation issue for a given agent), [ ]MaxInit ttt ,∈
where Initt  is the time the agent was initialized by the user, Maxt  is the time the agent 

has to complete the negotiation (deadline), and 0>β  is a parameter that determines 

how the agent changes the values for the given negotiation issue over time. The larger 
the value of the parameter β  is, the sooner the agent is ready to make larger concessions 

in the negotiation process.  
For multilateral negotiations in FuzzyMAN we employ a negotiation protocol based on 
the bilateral protocol described in [6] (see also [7] for an extended version of this proto-
col) and a partial order of the set of all employees’ agents generated by the pre-selection 
procedure discussed in section 3.2.  
The general idea behind the bilateral negotiation protocol is that two agents partici-
pating in the negotiation sequentially send each other offers and/or counter-offers. To 
generate the offers negotiation tactics are used. The decision to accept or reject an offer 
received from the other agent is based on scoring functions constructed according to the 
agents’ preferences, restrictions, goals, and relative importance of negotiation issues. A 
negotiation is completed either if an offer is accepted by one of the agents (negotiation 
is successful) or if one of the agents reaches its deadline (negotiation fails). For a formal 
presentation of the protocol for bilateral negotiation see [6]. 
On the FuzzyMAN marketplace, a multilateral negotiation is modeled as a finite set of 
bilateral negotiations between employers’ and employees’ agents. However, these bilat-
eral negotiations are not independent, but are influenced by other ongoing bilateral 
negotiations, just as they would be on a real marketplace. 



290                                      Frank Teuteberg and Iouri Loutchko 

In the following, the general idea of the multilateral negotiation protocol for multiple 

issues is outlined. The interested reader is referred to [5] for details. Suppose Maxt  is the 

deadline of an employer’s agent and 1n , 2n , 3n ,…, ln is the ordered sequence of the 

employees’ agents suitable for negotiation with the given employer’s agent and ranked 

by the pre-selection procedure: 1n 2n 3n … ln . The idea behind the protocol 

is that the total value of offers the employer’s agent sends at a particular time itt = ,

ni ,....,1,0=  ( n  = number of negotiation steps) to the employees’ agents it is negotiat-
ing with should be the same for all offers. The total value of an offer takes into consid-
eration both the negotiation issues and the pre-selection issues (e.g. age, working ex-
perience, etc.) which are not involved directly in the negotiation. 
If a new employer’s agent comes to the marketplace, the mediator agent first performs 
the pre-selection procedure for it. Then the newcomer starts negotiation according to the 
multilateral negotiation protocol. When a new employee’s agent comes, the pre-
selection procedure is performed for every employer’s agent once again.  As a result, 
the newcomer may become involved in negotiations with one or several employers’ 
agents.  
In the case that an agent accepts an offer sent to it by one of the agents it is negotiating 
with, the agent stops negotiating with all other agents and informs those agents through 
a special message about the cancellation of the negotiation process. If such a cancella-
tion message comes from one of the agents, that agent is withdrawn from the set of 
agents negotiating with the agent that received the cancellation message. Likewise at 

time ntt = , ≥nt Maxt the agent stops the negotiation with all agents it was negotiating 

with and informs those agents about the cancellation of the negotiation process. 
According to the bilateral negotiation protocol both employees' agents and employers’ 
agents always send offers they themselves are satisfied with. Therefore, as soon as an 
offer is accepted by one of the agents, the agent that sent the offer and the agent that 
received the offer come to an agreement. Another point to mention is that the offers an 
agent receives are evaluated first-in-first-out: An offer received earlier than another one 
is evaluated first and corresponding actions are taken prior to the evaluation of the sec-
ond offer. 
Representing and processing negotiation vocabulary in electronic marketplaces is a 
difficult task. The explicit specification of common syntax and semantics of negotiation 
vocabulary is commonly referred as the ontology problem [8], which is still one serious 
problem in the area of multi-agent research. The problem is to ensure that the negotia-
tion partner have the same understanding of the negotiation issues (e.g. "salary", "extra 
pay" etc.). On our marketplace we apply an XML-based approach for representing and 
processing fuzzy negotiation vocabulary from a syntactical and semantical perspective. 
The vocabulary is represented in a fuzzy way to make electronic negotiations more 
flexible. As a tag-based language for describing tree structures with a linear syntax, we 
use XML for the representation of ontologies and inter-agent communication during the 
negotiation process. XML provides the ability to define negotiation ontologies and to 



FuzzyMan: An Agent-based E-Marketplace with a Voice and Mobile User Interface 291 

declare entities, entity attributes and relationships between entities. See [9] for details 
about the XML representation and its advantages in inter-agent communication.   
Figure 5 illustrates our approach to represent an agent’s fuzzy scoring function in a 
linear tree structure. An employee’s agent searching for a specific job can apply an 
XML representation of a fuzzy scoring function to describe its preferences. In fuzzy set 
theory [10] a fuzzy set is described by a membership function, which can be approxi-
mated by a set of points. To each of those points a unique degree of membership is 
assigned. For example, a fuzzy term like ‘average’ of the linguistic variable working 
hours per week may have an attached degree of membership of 0 to 1 within the interval 
[30, 35]. Membership degrees between those specified points can be calculated by in-
terpolation. 

fuzzy_variable_definition
fuzzy_variable_definition

linguistic_variable_name
linguistic_variable_name

unit
unit

value_type
value_type

fuzzy_term
fuzzy_term

fuzzy_set_definition
fuzzy_set_definition

max
max

min
min

utility_degree_of_membership
utility_degree_of_membership

trapezoidal
trapezoidal

point
point value

value

continious
continious

1..n

Fig. 5. Representation of a fuzzy scoring function in linear tree structure 

5 Mobile and Voice User Interfaces 

In this section, we describe the design and implementation of voice and mobile user 
interfaces for FuzzyMAN.  
Mobile Negotiations (M-Negotiations) is an emerging research area that bridges the 
domains of Internet and Mobile Computing in order to provide time and location inde-
pendent mobile negotiation services to users. 
However, limited screen sizes or low data rates associated with mobile devices are some 
of the shortcomings which have to be addressed in this research area. Furthermore, 
mobile devices are equipped with different browsers that support various markup lan-
guages and media formats. Thus, the content has to be generated in different markup 
languages that fit the specific browsers. When delivering information it is necessary to 
address the diversity of mobile devices such as limited data input capabilities, small 
displays, limited graphical capabilities, small memory, limited processing power, etc. 



292                                      Frank Teuteberg and Iouri Loutchko 

Currently, we are doing research to present the XML formatted data of FuzzyMAN 
depending on the relevant features for different devices such as browser type, size of 
displays, graphical formats, etc. To realize device dependent transformations of the 
XML formatted data into formats such as WML and XHTML we apply XSLT 
stylesheets [11] and XPath [12]. XPath defines mechanisms for addressing specific 
elements in XML documents whereas XSLT specifies transformations on XML docu-
ments. In XSLT, rules are described for transforming the XML-based source document 
(also called source tree) into a new document structure (also called result tree). The 
transformation process is achieved by means of templates, which match some set of 
elements of the source document and then describe the transformation by associating 
patterns and styles with the templates to transform the XML-formatted data into multi-
ple formats such as HTML, XHTML, WML, VoiceXML [13], etc.
One of our research goals in the FuzzyMAN project was to employ different tech-
nologies for implementation of the user interfaces on mobile devices, to analyze them 
and to compare them with each other.   
FuzzyMAN's mobile user interfaces are available in the form of J2ME applications, 
voice user interfaces and dynamic pages displayed in different (mobile) browsers in 
HTML and XHTML to allow voice and mobile access to FuzzyMAN depending on the 
users' preferences and devices. Java 2 Micro Edition (J2ME) defines the minimum re-
quired Java technology components and libraries for small and resource constrained 
mobile devices. Java language, core libraries, input/output, networking, and security are 
the primary topics addressed by the J2ME specification [14]. 
In our approach, details about mobile devices such as the device manufacturer and the 
version of the mobile browser used are based on the HTTP headers (e.g. the UserAgent 
header). These HTTP headers are delivered when the user accesses the FuzzyMAN e-
marketplace via the HTTP protocol. They help to automatically detect the most appro-
priate presentation form. Figure 6 shows the basic scheme for content presentation de-
pending on the device type and browser. 

FuzzyMAN

ID 20001

20001

Employer's Agent

ID 20002

20002

Employee's Agent

ID 10001

10001

ID 10002

10002

Middleware (ODBC)

Mediator Agent

Message Box
FIPA-ACL/XML

FIPA-ACL/XML (inform, tell, ask etc.) FIPA-ACL/XML

N
e
g

o
ti
a

ti
o

n
 R

o
o
m

SQLSQL

message box

Database (MS SQL Server)

Agents Skills Professions Users Strategies

message box

message boxmessage box

Employee's AgentEmployer's Agent

Results

XHTML, VoiceXML

HTML

XSLTXML

FuzzyMAN

Content Content

Transformation

Content

Presentation

Fig. 6. Process of Content Transformation 

In all cases the content requested by the user is first presented as an XML document. 
Using XSLT stylesheets [11] this document is then transformed into multiple formats 



FuzzyMan: An Agent-based E-Marketplace with a Voice and Mobile User Interface 293 

such as HTML, XHTML or VoiceXML according to the information about the user’s 
device and its browser. Finally, the content in the corresponding format is delivered to 
the user and presented on their end device.

5.1 Mobile User Interfaces 

 
Fig. 7. FuzzyMAN’s mobile front-end 



294                                      Frank Teuteberg and Iouri Loutchko 

Figure 7 illustrates FuzzyMAN’s mobile front-end showing a selection of mobile user 
interfaces. Users can manage their agents through this mobile interface, including ini-
tializing, updating, and deleting agents as well as retrieving a statistical overview of the 
marketplace. The functionality of the mobile front-end is the same as the Web front-end 
which is described in section 3.1.  
Figure 8 shows the presentation of FuzzyMAN's Login User Interface on a PDA. 

Fig. 8. PDA with FuzzyMAN's Login User Interface 

Figure 9 illustrates the mobile user interface of the German version of FuzzyMAN giv-
ing a statistical overview. This user interface is developed by means of J2ME technol-
ogy, which inherits Java's rich graphic libraries and thus enables developers to present 
statistics as diagrams. The distribution of the 5 top positions that employees’ agents are 
searching for is represented. 

Fig. 9. Mobile User Interface with Statistical Overview 



FuzzyMan: An Agent-based E-Marketplace with a Voice and Mobile User Interface 295 

5.2 Voice User Interfaces 

In this section, we describe a voice user interface for FuzzyMAN based on VoiceXML 
technology [2]. 
Voice enabled user interfaces have several advantages over traditional interfaces, for 
example: 
 More convenient access to information on e-marketplaces in situations in which the 

interaction with graphical user interfaces via mobile devices is not possible (e.g. 
while driving a car). 

 Voice enabled access to e-marketplaces is also possible by handicapped persons 
who are not able to use traditional user interfaces. 

 Automatic voice-enabled services on e-marketplaces are available 24 hours a day 
and 7 days a week without the need for additional human operators (e.g. in call cen-
ters).

Automatic speech recognition technologies allow users to access e-marketplaces using 
their voice. A speech recognition engine processes speech as input to an application 
(e.g. an e-marketplace) and translates it into text. At present, even the best speech rec-
ognition engines do not achieve speech recognition rates of 100 %. Therefore, voice-
based e-marketplaces have to cope with recognition errors and the dialog flow has to be 
considered very carefully. 
A typical dialog between a user (U) and the FuzzyMAN e-marketplace (F) is illustrated 
in figure 10. The right window in figure 10 shows the dialog flow represented by means 
of VoiceXML. 

Fig. 10. Code Snippet in VoiceXML 

…<form id="Login"> 

<block>Welcome to FuzzyMAN</block> 

<field type="digits" name="txtPassword"> 

  <prompt>Please enter your Password… 

  <help>... Please select Help ...</help>… 

 <filled> 

  <if cond="Password==6567"> 

    <goto next="menu.jsp"/> 

      <else/> 

        <block>Registration failed</block> 

    <goto next="#Login"/>... 

LoginF: Welcome to FuzzyMAN  

Please enter your     

Password 

U: four five eight 

F: Registration failed 

Please enter your Pass-

word 

U: six five six seven 

  XSLT 

VoiceXML Browser FuzzyMAN Server



296                                      Frank Teuteberg and Iouri Loutchko 

VoiceXML documents such as a statistical overview were extracted from FuzzyMAN's 
database in XML format and were transformed into VoiceXML using predefined XSLT 
templates as illustrated in figure 11. Tags in the XML document (e.g. Dialog) are 
matched with templates that determine the corresponding processing of user data or the 
next step in the dialog flow that has to be taken. 

Fig. 11. XSLT document for transformation 

Figure 12 illustrates the process of a speech-based dialog with FuzzyMAN using a voice 
user interface via a mobile device. The user (U) dials the phone number of the 
VoiceXML interface, which answers giving the user the opportunity to choose between 
several options. By means of the speech recognition engine the VoiceXML interface 
interprets the user’s answer (e.g. "Statistical overview") and makes an HTTP request to 
the FuzzyMAN server where the appropriate XML document contains the statistical 
overview. The speech recognition engine needs so-called utterances and grammars in 
order to process spoken input and translate it into statements that the underlying pro-
gram can execute. Utterances are streams of speech delimited by two periods of silence 



FuzzyMan: An Agent-based E-Marketplace with a Voice and Mobile User Interface 297 

(at the beginning and at the end of the stream). Grammars are finite sets of words ex-
pected as the user's spoken input.
The VoiceXML interface produces speech output based on the corresponding XML 
documents transformed by means of XSLT into a VoiceXML document. In order to 
realize the voice user interface for FuzzyMAN requests we used the IBM Voice Server 
Development Kit [15], which fully supports the VoiceXML standard.  Additionally, 
grammars used as input to the Automatic Speech Recognition engine were developed. 

(1) F: "Welcome to FuzzyMAN.Choose an option:
Statistical Overview,…, or Help.“

(2) U: "Statistical Overview“

(5) F:"Total number of agents:450…“

Fuzz yMAN

Client

(JSP Web for m)

ID 20001

20001

Employer's Agent

ID 20002

20002

Employee's  Agent

ID 10001

10001

ID 10002

10002

Midd leware (ODBC )

Mediator Agent

Message Box
FIPA-AC L/XML

FIPA-ACL/XML (in form, tell, ask e tc.) FIPA-ACL/XML

N
e

g
o

tia
tio

n
 R

o
o
m

SQLSQL

message box

Database  (MS SQL Serv er)

H
T

T
P

- 
u

n
d

T
C

P
-r

e
s

p
o

n
s

e
s

H
T

T
P

- 
a

n
d

T
C

P
-r

e
q

u
e

s
ts

Agents Sk ills Professions Users S trategies

message box

message boxmessage box

Employee's  AgentEmploy er's Agent

Results

XHTML MP, VoiceXML, J2ME Client

(4) Voice XML document with

statistical overview

(3) http://wi05.euv-frankfurt-
o.de:7080/agent/

dialog.jsp?name=statisticalOverview

FuzzyMAN ServerMobile Device

VoiceXML interface

HTTP client services

VoiceXML interpreter

VoiceXML software

Speech recognition

engine

Network infrastructure

Fig. 12. Voice XML interface 

5.3. Comparison of Technologies 

In this section, we give a short comparison of the technologies we have applied to de-
velop voice and mobile user interfaces for FuzzyMAN. Table 1 provides an overview of 
relevant criteria to compare the core technologies that can be employed to implement 
such user interfaces. 
One of the main advantages of XHTML MP is that it enables precise positioning of text, 
graphics, borders, and other elements on the screen. In addition, colors can be used for 
better formatting of content on mobile devices with color capability. 
J2ME inherits Java's rich graphic libraries and thus enables developers to significantly 
improve both the appearance and functionalities of the application's GUI on mobile 
devices. J2ME, for example, has a rich set of facilities allowing the presentation of 
diagrams based on statistics as described in section 5.1. Thus, J2ME is a good choice for 
visually representing numeric data. 
VoiceXML can be used in situations where users might be simultaneously involved in 
several other activities (e.g. while driving a car) or where a task is complex and graphi-
cal user interfaces are not effective. However, flexibility and efficiency of using the 
VoiceXML technology is limited, because there is no possibility to speed up the interac-
tion (e.g. to shorten the predefined dialog significantly).  
At present, the use of voice user interfaces is not universally successful, because the 
dialog flow is a deterministic one. More flexible dialogs and sophisticated conversations 
would be desirable. Expert users have to use the voice interface in almost the same way 
concerning the dialog flow as the novice user. 



298                                      Frank Teuteberg and Iouri Loutchko 

During the test phase of the FuzzyMAN voice user interface we observed that correct 
voice recognition is heavily dependent upon the length of words and the similarity of 
words within a dialog. Therefore, it was necessary to replace similar words with less 
problematic synonyms (e.g. employee and employer agent replaced by buy and sell 
agent) to improve the recognition rate. Thus, we achieved quite good voice recognition 
rates of approximately 80 %. 
In summary, the technology choice is heavily dependent upon the graphical aspects (e.g. 
diagrams have to be presented), the desired access mode (voice or mobile), and the 
application domain. 

Criteria/Requirements 
XHTML 

MP 
J2ME VoiceXML 

Learning curve 
(Mobile and voice application 
development simplicity)  

+++ + ++ 

Capabilities of designing 
graphical user interfaces 

++ ++ 

Ease of use (navigation 
through menus) 

++ ++ + 

Extensibility +++ ++ 

Availability of code examples  ++ ++ ++ 

Portability and Interoperability ++ +++ + 

Flexibility and Efficiency of 
use

+++ ++ +

Standardization of  technology 
W3C Stan-
dard 

Proprietary
standard devel-
oped and pro-
moted by SUN

W3C Stan-
dard 

Development environments 
(selection)

Nokia WAP 
toolkit, 
Openwave 
Mobile SDK 

J2ME wireless 
toolkit, 
JBuilder 

IBM Voice 
server de-
velopment 
toolkit 

Legend: +++: very good: ++: good; +: satisfactory; : not available  
 

Table 1. Comparison of Technologies for Mobile and Voice User Interfaces 

6 Related Work  

In this section, we provide an overview of related work in the context of agent-based e-
marketplaces focusing on systems that  support the users' mobility.



FuzzyMan: An Agent-based E-Marketplace with a Voice and Mobile User Interface 299 

Most of today’s electronic marketplaces either do not use agent technology at all or they 
employ only restricted forms of this technology. For example, some online auctions can 
be regarded as multi-agent e-marketplaces. However, they are of a very simple type. 
The only issue under consideration is the price. Additional issues like terms and condi-
tions, payment method, who will pay for shipment, timings, penalties, etc. are not taken 
into account. In the business-to-business area, for example, those issues play an essen-
tial role; sometimes they are even more important than the price. For such situations the 
agent models employed by today's marketplaces are not appropriate. 
Several approaches to agent-mediated negotiation on electronic marketplaces have been 
introduced in the literature, see for example, [5-7] and [16-25]. In [26] a multi-agent 
system and analysis for multidimensional matchmaking in the human resources applica-
tion domain is introduced. In [27] the negotiating environment Fuzzy eNAs (Fuzzy e-
Negotiation Agents) is presented. Agents representing buyers and sellers can autono-
mously negotiate with fuzzy constraints and preferences in bi-lateral negotiations. 
In fact, there is no single best approach or technique for automated negotiation. The 
negotiation strategies and protocols need to be set according to the situation and ap-
plication domain. At present, the research activities in the area of agent-based e-mar-
ketplaces providing mobile and/or voice user interfaces are in an early stage [28]. We 
could not found any references to agent-based e-marketplaces with voice user interfaces 
in the literature. However, there are some agent-based e-marketplaces with mobile inter-
faces like Agora [29] (providing access to stationary agents via PDAs), Impulse [30], 
and MB (an agent-based framework for mobile commerce) [31].  
Agora is a research project conducted at HP Labs where some applications of agent 
technology to mobile shopping are investigated. The mobile users of the Agora system 
can interact with the online store services through their personal digital assistants (PDA) 
from anywhere and anytime. The base of the Agora system is intelligent agents that 
represent both customers and the store. They participate in online auctions to bid for 
desired products based on customers’ preferences. The agents have been implemented 
with a multi-agent system Zeus from BT Labs [32] and additional Java-based support 
software. 
Impulse [30] is a project at MIT Media Lab that explores a scenario in which the buying 
and selling agents can run on wireless mobile devices and engage in multi-parameter 
negotiation for comparison-shopping at the point of purchase. In fact, the FuzzyMAN 
project uses the same approach differing only in that the point of sale is a fixed one, i.e. 
the FuzzyMAN e-marketplace.  
MB, an agent-based framework for mobile commerce, provides a general architecture 
for developing applications employing mobile agents. MB agents can be of three differ-
ent types. The device agent is a stationary agent that resides on a mobile device and 
provides access to wireless services such as location-based comparison-shopping. The 
service agents are owned by service providers and handle service requests from the 
users. The courier agents are lightweight mobile agents that can migrate from a service 
agent to a mobile device in order to establish communication with the user. MB has 
been implemented with the use of Java-based tools including Aglets SDK for service 
agents and KVM SDK for the device agent and courier agents. 



300                                      Frank Teuteberg and Iouri Loutchko 

For more examples we refer the interested reader to [28] where several other multi-
agent systems using mobile agents/mobile devices are discussed and compared.  

7 Conclusion, Future Work and Open Research 

Questions  

7.1 Towards Efficiency Criteria 

There is no single best negotiation protocol which is suitable for all negotiation sce-
narios. Standard ways to measure the efficiency of a negotiation protocol are, for exam-
ple, symmetry, pareto-efficiency, and computational efficiency. 
Our negotiation protocol is symmetric. No agent within both groups of agents (em-
ployers' and employees' agent) will be privileged with regard to others within these 
groups. However, the agents in both groups are treated differently. Employees’ agents 
with low-ranking positions on the employers’ agents’ sequence lists must wait before 
they receive their first offers, because employers' agents start their simultaneous ne-
gotiation processes only with the highest ranked employees' agents. Therefore, the 
group of employers' agents has a superior position in our marketplace relative to the 
group of employees' agents. However, our proposed concept is comparable to real life 
employment situations. Employees also have to wait before they are invited to inter-
views with different employers. 
A negotiation outcome is said to be pareto-efficient if there is no other outcome that will 
make at least one agent more satisfied without making at least one other agent less satis-
fied. Our proposed multilateral negotiation model is in most cases pareto-efficient but 
not in all: Assuming an employer's agent A receives two offers, one from employee's 
agent B (under deadline pressure) and one from employee's agent C (with a longer 
deadline) and both offers have equal utility values for the three agents A, B and C. In 
our proposed multilateral negotiation model, employer's agent A will choose the first 
offer in its message box. With regard to pareto-efficiency it would be better to choose 
the offer from employee's agent B, which has the earlier deadline, because the em-
ployee's agent C (with the longer deadline) has a better chance to reach an agreement 
before its deadline with another employer's agent and to achieve the same or even a 
better utility value. In the case that agent A chooses employee's agent B it is possible 
that agent B failed and due to its deadline pressure reach a utility value of 0 (e.g. no 
agreement). So in this special negotiation scenario there could be an outcome that will 
make employer's agent A and employee's agent C just as satisfied while making em-
ployee's agent B (under deadline pressure) more satisfied. However, in our multilateral 
negotiation protocol other agents’ deadlines (as well as their tactics) are private infor-
mation (as in real life negotiation situations for jobs). Therefore, we had to make a deci-
sion between pareto-efficiency in all negotiation scenarios and information privacy. 



FuzzyMan: An Agent-based E-Marketplace with a Voice and Mobile User Interface 301 

Agents are not cooperative or benevolent on our job marketplace, because each agent 
wants to get the agreement which satisfies its preferences best. If the negotiation tactic 
of agent A is known to agent B, agent A may be at a significant disadvantage. 
An agent could get a better deal when putting negotiation partners under deadline pres-
sure by not revealing his true negotiation deadline. However, on our job marketplace an 
employee's agent, for example, is unaware of the number of employees’ agents simulta-
neously negotiating with one of its negotiation partners. Due to this lack of information 
agents on our marketplace reply to an offer immediately.  
Concepts for concealing the agents' true preferences and deadlines or selfish negotiation 
behavior are not implemented yet. In this way the negotiation model can be extended. 
However, a negotiation model supporting selfish agents is not necessarily optimal with 
respect to reaching the best negotiation outcome for both negotiation parties (employ-
ees' and employers' agents) in terms of pareto-efficiency.  
We have conducted a set of simulation experiments to evaluate our negotiation model.  
The values and parameters for our simulation experiments were generated automati-
cally, because we had no real employees and employers with real data available. Since 
there are infinitely many potential negotiation situations in which we can evaluate our 
negotiation model, we had to limit the possible values of the agents’ utility functions for 
each issue. Therefore, we generated these values automatically based on empirical sta-
tistics. For example, to generate values for the issue working hours per week, we used 
empirical statistics from Germany’s Federal Statistical Office, describing the distribu-
tion of German employees’ working hours per week. 900 agents were initialized for our 
simulation experiments. 
The main experimental results can be summarized as follows: 
 The utility degrees of agreements achieved by agents only shortly before the end of 

their negotiation time (deadline) are on an average only 80 % of the utility degrees 
of agreements achieved by agents just at the beginning of their negotiation proc-
esses.

 Agents willing to make concessions early at the beginning of their negotiation 
processes have the best chance to achieve an agreement. Only a few deals were 
made when at least one negotiation partner was not willing to make concessions or 
both negotiation partners have applied divergent tactic functions. 

 ‘Extreme’ tactical behavior (not willing to make concessions) results in a higher 
standard deviation with regard to achieved utility degrees. Agents unwilling to 
make concessions obviously have a higher risk of being unable to achieve an 
agreement during their disposable negotiation time. On the other side, when these 
agents achieve agreements the observed utility degrees were 20 % above the av-
erage utility degrees. 

For more statistical results we refer the interested reader to [33] where simulation re-
sults of the FuzzyMAN marketplace were presented.  
FuzzyMAN is a complete, robust, and working prototype of an agent-based electronic 
marketplace. In October 2002 the FuzzyMAN marketplace was made available for the 
scientific community in the Internet. Initially 200 employees’ and 100 employers’ 
agents were generated. Since then, 154 new agents were added by anonymous users 
from the scientific community to the FuzzyMAN marketplace. The current negotiation 



302                                      Frank Teuteberg and Iouri Loutchko 

statistics are as follows: 116 out of 454 agents on our marketplace were successful and 
achieved agreements (contracts) before they reached their deadlines. The average utility 
value (in %) of agreements achieved by successful agents is 65 %. This low average 
utility value and low rate of matched agents is due to the divergent agent profiles initial-
ized by their users. Most employees’ agents failed in finding negotiation partners be-
cause the employers’ agents looked for employees with different professional back-
grounds.  

7.2 Future Work and Open Research Questions 

During the test phase of FuzzyMAN a number of starting points for improvements of its 
performance were observed. The following is a summary of these points: 

Multimodality: At present, a mobile user has the possibility to interact with Fuz-
zyMAN via either speech, web, or mobile browser. The next step to be considered in 
future work is multimodal access to the FuzzyMAN e-marketplace. Multimodal access 
means that content (e.g. a statistical overview) is displayed on the (mobile) browser and 
at the same time delivered and explained via speech. The main advantages of multimo-
dal access via one (mobile) user interface are a better understanding and memorization 
of the delivered information [34].  
Natural Language Understanding: The voice user interface presented in this paper is 
not capable of free speech input.  The user can only choose one of the valid predefined 
responses specified by the corresponding grammar. More sophisticated approaches like 
Natural Language Understanding [35] could accelerate and improve the user interaction 
with regard to a natural way of communication.  

Personalization: Personalization usually means adjustment of system functionalities to 
individual preferences. Adjustment of content display, output formatting, choice of 
exposed services, or creation of personal views on services that FuzzyMAN provides 
are some typical examples of personalization. By applying XSL:FO (XSL Formatting 
Objects), for example, it would also be possible to transform XML documents into for-
mats such as PDF, RTF, SVG, etc., which are currently not supported by FuzzyMAN. 
More complex personalization concepts would require acquisition of the users’ personal 
preferences and characteristics, e.g. competences, interests, preferred devices and 
browsers, or other relevant information with the aim to utilize them by interacting with 
FuzzyMAN. To take advantage of this extended personalization concept FuzzyMAN 
could use information stored in either static user profiles, which have been created 
based on the users’ input, or in dynamic profiles, for which information is gathered 
through permanent observation of the users’ behavior within the system. FuzzyMAN 
could use these profiles to personalize services according to user preferences.   

Session management: Another concept closely related to personalization is the man-
agement and tracking of state and context of users’ interaction with FuzzyMAN in the 
form of ‘personalized’ session management. FuzzyMAN provides mobile and voice-
enabled access to its services. Thus, maintaining state spanning multiple connections  is 
very important to avoid loss of information by almost uncontrollable breaks in wireless 
connections (e.g. by passing through a tunnel, transferring from one wireless hot-spot to 



FuzzyMan: An Agent-based E-Marketplace with a Voice and Mobile User Interface 303 

another). It is personalized and persistent management of interaction state and context 
that would allow FuzzyMAN's users to resume their work at the next available opportu-
nity. 

Peer-to-Peer mobile communication infrastructure: FuzzyMAN's agents are not 
lightweight enough to directly operate and negotiate on mobile devices. At present, 
there are too many problems which have to be solved to realize a scenario of mobile 
agents migrating between a Peer-to-Peer communication infrastructure of mobile de-
vices and negotiating on the mobile devices. In such a scenario, a central server would 
no longer pose a bottleneck. Furthermore, user sensitive data (e.g. user pro-
files/preferences) would be stored on various mobile devices and not in one central 
database, where such data could be misused by violating privacy issues. Issues that still 
have to be solved to realize such a scenario are, for example, security, bandwidth and 
performance issues. Furthermore, the heterogeneity and diversity of mobile devices 
must also be addressed. 

FuzzyMAN is available at http://www.wiwi.euv-frankfurt-o.de/wi-www/agent.htm. 
Interested readers are welcome to create their own agents, send them out to negotiate, 
watch their behavior, and see if they are successful in their negotiations. 

Acknowledgements  

We are very grateful to the German Research Foundation that supported our work 
through grant no. Ku 569/15-1 and to Karol Fil for useful discussions concerning our 
implementation of voice and mobile user interfaces. 

References 

[1]  SALT Forum, Speech Application Language Tags 1.0 Specification; available at: 
http://www.saltforum.org/saltforum/downloads/SALT1.0.pdf, 2003. 

[2]  VoiceXML Forum, Voice eXtensible Markup Language; available at: 
http://www.voicexml.org/specs/VoiceXML-100.pdf, 2003. 

[3]  FIPA − Foundation for Intelligent Physical Agents. FIPA Specifications, 2003; available at: 
http://www.fipa.org/specifications/index.html, 2003. 

[4]  Bichler, M. and Kalagnanam, J., Bidding Languages and Winner Determination in Multi-

attribute Auctions, 2004. To appear in: European Journal of Operational Research. (IBM 
Research Report RC22478); http://ibis.in.tum.de/staff/bichler/docs/RC22478.pdf. 

[5]  Kurbel, K. and Loutchko, I., Multi-agent negotiation under time constraints on an agent-

based marketplace for personnel acquisition. In: Dittmar, T., Franzzyk, B., Hofmann, R. et 
al. (Eds.): Proceedings of the 3rd Intern. Symposium on Multi-Agent Systems, Large Com-
plex Systems, and E-Business (MALCEB), 2002, 566-579. 

[6]  Faratin, P., Sierra, C., and Jennings, N. R., Negotiation decision functions for autonomous 

agents. Robotics and Autonomous Systems 24 (1998), 159-182. 



304                                      Frank Teuteberg and Iouri Loutchko 

[7] Fatima, S., Wooldridge, M., and Jennings, N. R., Multi-issue negotiation under time con-

straints. In: Proc. 1st Int. Joint Conf. On Autonomous Agents and Multi-Agent Systems, 
2002, Bologna, Italy, 143-150. 

[8]  Nwana, H. S. and Ndumu, D. T., A perspective on software agent research. The Knowl-
edge Engineering Review 14 (1999) 2, 125-142. 

[9]  Glushko, R. J., Tenenbaum, J. M., and Meltzer, B., An XML Framework for Agent-based E-

commerce. CACM 42 (1999) 3, 106-114. 
[10] Zadeh, L., Fuzzy Sets. Journal of Information and Control 8 (1965), 338-353.
[11]  W3C, XSL Transformation, Version 1.0; available at: http://www.w3.org/TR/xslt, 2003. 
[12]  W3C, XPath; available at: http://www.w3.org/TR/xpath, 2002. 
[13]  W3C, Voice Extensible Markup Language (VoiceXML), Version 2.0; available at: 

http://www.w3.org/TR/voicexml20/, 2003. 
[14]  Sun Microsystems, Java 2 Platform, Micro Edition (2004); available at: 

http://java.sun.com/j2me, 2004. 
[15]  IBM, Voice Server Software Development Kit, (2002); available at:  

http://www-3.ibm.com/software/voice/, 2002. 
[16]  Adams, G., Rausser, G., and Simon, L., Modelling Multilateral Negotiation: An Applica-

tion to California Water Policy. J. Economic Behaviour and Organization 10 (1996), 97-
111.

[17]  Aknine, S., Pinson, S., and Shakun, M. V., An extended multi-agent negotiation protocol.

International Journal on Autonomous Agents and Multi-Agent Systems 8 (2004), 5-47. 
[18]  Anthony, P. and Jennings, N. R., Evolving Bidding Strategies for Multiple Auctions. In: van 

Harmelen, F. (Ed.), Proc. 15th European Conf. Artificial Intelligence, IOS Press: Amster-
dam, 2002, 178-182.  

[19]  Faratin, P., Automated Service Negotiation Between Autonomous Computational Agents.
PhD thesis, Univ. of London, Queen Mary College, 2000.  

[20]  Faratin, P., Sierra, C., and Jennings, N. R., Using similarity criteria to make trade-offs in 

automated negotiations. Artificial Intelligence 142 (2002), 205-237. 
[21]  Fatima, S., Wooldridge, M., and Jennings, N. R., An agenda based framework for multi-

issues negotiation. Artificial Intelligence Journal 152 (2004), 1-45. 
[22]  Jennings, N. R., Faratin, P., Lomuscio, A. R., Parsons, S., and Wooldridge, M., Automated 

negotiation: prospects, methods and challenges. Group Decision and Negotiation 10

(2001), 199-215.  
[23]  Kraus, S., Strategic negotiation in multi-agent environments. The MIT Press, Cambridge, 

Massachusetts, 2001.  
[24]  Raiffa, H., The art and science of negotiation, Harvard University Press, 1982. 
[25]  Sandholm, T., Agents in electronic commerce: component technologies for automated 

negotiation and coalition formation. Autonomous Agents and Multi-Agent Systems 3 

(2000), 73-96.  
[26]  Veit, D., Matchmaking in Electronic Markets: An Agent-Based Approach towards Match-

making in Electronic Negotiations. Lecture Notes in Artificial Intelligence, Vol. 2882, 
Springer: Berlin, 2003. 

[27]  Kowalczyk, R. and Bui, V., On Fuzzy e-Negotiation Agents: Autonomous negotiation with 

incomplete and imprecise information. DEXA Workshop on e-Negotiation, UK, 2000. 
[28]  Kowalczyk, R., Ulieru, M., and Unland, R., Integrating Mobile and Intelligent Agents in 

Advanced e-Commerce: A Survey; available at: http://citeseer.nj.nec.com/551656.html, 
2002.

[29]  Fonseca S., Griss M., Letsinger, R., An Agent-Mediated E-Commerce Environment for the 

Mobile Shopper. HP Technical Report HPL-2001-157, 2001. 



FuzzyMan: An Agent-based E-Marketplace with a Voice and Mobile User Interface 305 

[30]  Maes, P., Youll, J., and Morris, J., Impulse: Location-based Agent Assistance; in: Software 
Demos, Proc. of the 4th Int. Conf. on Autonomous Agents, June 2000; available at: 
http://citeseer.nj.nec.com/youll00impulse.html. 

[31]  Mihailescu, P. and Binder, W.: A Mobile Agent Framework for M-Commerce. Agents in 
E-Business (AgEB-2001), Workshop of the Informatik 2001, Vienna, Austria, 2001; avail-
able at: http://www.ifi.unizh.ch/events/GI/GI01/Proceedings/mihailescu.pdf.

[32]  Nwana, H. S., Ndumu, D. T., and Lee, L. C., ZEUS: A Tool-Kit for Building Distributed 

Multi-Agent Systems. Applied Artificial Intelligence Journal 13 (1999), 129-186. 
[33]  Teuteberg, F., Experimental Evaluation of a Model for Multilateral Negotiation with Fuzzy 

Preferences on an Agent-based Marketplace. In: Müller, J., Maass, W., Schmid, B., and 
Pavlikova, L. (Eds.): Electronic Markets: The International Journal of Electronic Com-
merce & Business Media 13 (2003) 1, 21-32. 

[34]  Jankowska, A. M. and Dabkowski, A., Voice User Interfaces for Mobile ERP System. In: 
Branki, C. et al. (Eds.), MKWI 2004, Vol. 3, Duisburg, Essen, 2004, 44-53. 

[35]  IBM, An Introduction to IBM Natural Language Understanding, IBM White Paper, 2001; 
available at: http://www-3.ibm.com/software/voice/. 

Frank Teuteberg 
Research Center for Information Systems in Project and Innovation Networks (ISPRI) 
c/o Department of Business Administration/E-Business and Information Systems 
University Osnabrueck 
Katharinenstr. 1, D-49074 Osnabrueck, Germany 
e-mail: frank.teuteberg@uos.de 

Iouri Loutchko 
Department of Business Informatics 
European University Viadrina Frankfurt (Oder) 
POB 1786, D-15207 Frankfurt (Oder), Germany 
e-mail: loutchko@uni-ffo.de 

Information about Software 

Software is available on the Internet as 
(X)  prototype version 
( )   full fledged software (freeware), version no.: 
( )   full fledged software (for money), version no.: 
( )   Demo/trial version 
( )   not (yet) available 

Description of software:
FuzzyMAN is an implementation of an electronic marketplace where software 

agents negotiate, buy, and sell. The marketplace is open for public access. That is, you 
can create your own agents, provide them with your personal preferences, send them out 
to negotiate, and watch what they are doing. The application domain we chose is buying 
and selling "labour". Agents act for employers (looking for employees) and employees 
(looking for jobs). Negotiation models cover both bilateral and multilateral negotiations 



306                                      Frank Teuteberg and Iouri Loutchko 

about multiple issues, based on fuzzy logic. XML is used as the agent communication 
language. User interfaces for accessing information on the e-marketplace are web-, 
voice and mobile interfaces. 

Access address:
http://www.wiwi.euv-frankfurt-o.de/wi-www/agent.htm  

Contact person for question about the software: 
Name: Frank Teuteberg 
email: frank.teuteberg@uos.de 



Efficient Agent Communication in Wireless
Environments

Heikki Helin and Mikko Laukkanen

Abstract. In wireless environments, communication should be tailored to en-
able an efficient use of scarce and fluctuating data communication resources.
In this chapter we consider software agent communication in such environ-
ments. We introduce a layered model of agent communication in the context of
the FIPA agent architecture. We have designed and implemented efficient so-
lutions for wireless agent communication for each layer of this communication
stack. Further, we thoroughly analyze the performance of agent communica-
tion in slow wireless environments. The analysis shows that agent commu-
nication in wireless environments could be improved significantly as long as
all communication layers in the agent communication stack are appropriately
taken into account.

1. Introduction

The progress in wireless network technologies and mobile devices changes the ways
in which people access services. A user may access the same services as she would
using her desktop computer, but in the nomadic environment she is able to do so
anywhere, at any time and even using a variety of different kinds of devices. Such an
environment places new challenges on the architecture implementing the services.
Nomadic environments differs from stationary environments in two fundamental
ways. Firstly, the user may be situated in an environment, where multiple data
communication networks may be available. Because of the different network types
and characteristics of the networks, for instance the values of Quality-of-Service
(QoS) parameters may change dramatically based on the network that the user is
currently connected to. Secondly, the user may access the services using a variety
of different mobile or stationary devices. The characteristics and limitations of
a device dictates the constraints on how the user is able to access the services
and what kind of content the user is provided with. Further, the other contextual
parameters, such as user preferences, need to be taken into account. For instance,



308 Heikki Helin and Mikko Laukkanen

Figure 1. Agent communication layers

the user may prefer not having pictures at all, even if the terminal device and
network connection would allow them.

We consider agent-to-agent communication over a wireless communication
path. In wireless environments, the agents need to communicate efficiently and
the communication should be reliable. Therefore, the communication stack should
be tailored for the wireless environment. We will take a rather pragmatic view of
agent communication. In particular, we neither consider why the agents are com-
municating, nor we consider the semantics of the messages. However, we assume
that agents are communicating with each other and that at least a part of the
communication path is implemented using wireless technology.

The rest of this chapter is structured as follows. In Section 2 we introduce a
layered model of agent communication. Sections 3, 4, 5, 6, and 7 provide a per-
formance analysis of message transport protocols, message envelopes, agent com-
munication languages, content languages, and interaction protocols, respectively.
Section 8 describes related research on using communicating agents in wireless
environments. Finally, Section 9 summarizes our contributions.

2. Layered Model of Agent Communication

2.1. Overview of Agent Communication Stack

Figure 1 depicts a layered model of agent communication. The transport and
signaling protocol layer should provide an efficient and reliable data transport
service. Usually this layer should be transparent to agents. Therefore, the agents
are typically unable to optimize anything at this layer by themselves. Given this,
we will not discuss issues on this layer in more detail here. An overview of transport
protocol issues in wireless environments can be found in [33], as an example.

A message transport protocol (MTP) defines the structure of messages sent
using a transport protocol. Typically the MTP implicitly defines the transport



Efficient Agent Communication in Wireless Environments 309

protocol as well. Should this not be the case, the agents must agree on which
transport protocol to use. FIPA has specified three message transport protocols:
IIOP [10], HTTP [9], and WAP [11]. The transport layer and the message transport
protocol layer do not necessarily differ at all from the communication in traditional
distributed systems. What makes the agent communication different is how the
communication above these two layers is modelled. Once the agents have agreed on
these two protocols, they are able to transmit data between each other. However,
to be able to exchange arbitrary data does not mean that agents can communicate
meaningfully.

Given that several message transport protocols can be used, and these pro-
tocols can have different behaviour, FIPA has defined the concept of an envelope.
The message envelope defines how the message should be routed, for example,
among other parameters. The message envelope is sometimes independent of the
MTP, but sometimes they are tightly coupled. An example of tight coupling is
the IIOP protocol in the FIPA architecture. In this MTP, the message envelope is
built-in to the protocol definition, that is, the IDL interface defines the structure of
the message envelope. In this particular case, the tight coupling is well justified. In
what follows, we assume that any concrete message envelope encoding can be used
with any MTP with an obvious exception of IIOP MTP. This assumption gives us
more freedom, but also introduces a problem that communicating agents should
be able to agree on which concrete message envelope encoding to use. However,
we do not consider that problem here.

Agent Communication Language (ACL) defines both the syntax and the se-
mantics of agent messages. Several agent communication languages are developed,
such as FIPA-ACL [13] and KQML [25]. The ACL layer consists of two sub-layers:
An abstract layer that defines the semantics of the language and a concrete layer
that defines the syntax of the language. For example, the abstract FIPA-ACL de-
fines the message semantics, but is unconcerned with the encoding of the message;
another layer defines the syntax of messages. FIPA has specified three encoding
schemes for FIPA-ACL: String-based [5], XML-based [6], and bit-efficient [4].

Typically, an ACL lacks means for defining the content of the message. For
example, by using the request communicative act in FIPA-ACL, the sender of
the message applies to the receiver to perform some action. In ACL, the sender
defines that the message is a request-message, but says nothing about the action
that the receiver should perform. The action is described in the content language.
FIPA content language library defines several content languages [14]. Each of these
languages has one concrete encoding scheme, but in the future they may have dif-
ferent encoding schemes. To define the message content, the content language
alone is insufficient, as it typically fails to define the terminology used in commu-
nication. Therefore, to have a common understanding of the message content, the
communicating agents should share a common ontology.

The agent communication typically falls into common patterns. In FIPA spec-
ifications, these are called interaction protocols. Perhaps more typically in the



310 Heikki Helin and Mikko Laukkanen

literature these are called conversation protocols or conversation patterns. An in-
teraction protocol defines a common pattern of conversations used to perform a
task.

If only those choices defined by FIPA for various layers are taken into account,
there are a total of 60 different possible combinations. If proprietary choices are
taken into account, the number of possible combinations explodes drastically. Now,
the problem is how the agents can efficiently agree on different issues. Usually, the
environment reduces the appropriate possibilities. For example, when operating
in a wireless environment, encoding schemes and protocols designed for these en-
vironments should be used. In these cases, the selection can be done using prior
knowledge. On the other hand, even if the agent itself is operating in a wireless
environment, the peer agent may be operating in a wireline environment and es-
pecially it may be unaware of the possibility of a wireless environment. In these
cases, perhaps the best approach is to use a gateway that can perform necessary
translations between incompatible choices [24, 27].

2.2. Analytical Performance Model

In wireless environments, the agents need to communicate efficiently and the com-
munication should be reliable. Therefore, the communication stack discussed above
should be tailored for the wireless environment. At the conversation layer commu-
nications patterns should be optimized so that agent message exchanges are carried
out with a minimal number of round-trips. This is especially important when us-
ing a high-latency communication path. It is important to notice, that ‘minimal’
here does not necessarily mean the absolute minimal value; sometimes it is better
to use more round-trips to achieve a better result. The encoding of the content
language, the agent communication language, and the message envelope should
be selected so that the scarce communication path is utilized as efficiently as pos-
sible. The MTP should be able to transfer messages over a wireless link reliably
and efficiently. As noted earlier, selecting a message transport protocol may affect
the selection of a transport protocol. For example, if the transport protocol is also
reliable in wireless environments, the MTP implementation can be much simpler.
Typically, however, this is not the case, and therefore reliability should be imple-
mented into the MTP. In the following sections, we discuss these issues in more
detail, and point out some optimization techniques.

The size of an agent message consists of six parts:

Dmsg = Dtp + Dmtp + Denv + Dacl + Dcl + Dont (1)
To exchange messages efficiently, the Dmsg should be minimized, which can be

achieved by minimizing each component on the right side of the equation. Firstly,
Dtp defines the overhead caused by the transport protocol. This component is
typically dependent of other components. For example, one can easily determine
the size of a TCP segment header. However, the total size of the other components
defines how many TCP segments are necessary to transmit the whole message.
Obviously, there are also other aspects that affect, such as the MTU size. Secondly,



Efficient Agent Communication in Wireless Environments 311

Dmtp defines the overhead caused by the MTP. This is typically independent of
other components; especially in each MTP defined by FIPA there is at most one
MTP header by an agent message. Thirdly, Denv and Dacl define the overhead
caused by the message envelope and the ACL, respectively. Fourthly, Dcl and
Dont, the overhead caused by the content language and the ontology, respectively.
Dont depends on Dcl because typically the content language defines how the terms
in a given ontology are encoded into the message.

In the following sections, we consider reducing the overhead caused by each
component. However, it is important to notice that although sometimes a minimal
encoding of a given component is inappropriate. There are at least two reasons
for this. Firstly, the computing power needed to encode the component may be
too much compared to saving gained from efficient encoding. For example, assume
the size of a given component is x bytes and the link bandwidth is 2x bytes
per second. Now, if the component is encoded more efficiently giving the output
size 3/4x bytes, but the encoding time is 1/2 second, obviously the encoding was
unnecessary and, more importantly, harmful. Such situation is likely when using
mobile phones with very limited processing power. Secondly, having an efficient
non-standard encoding scheme deteriorates interoperability. This is especially true
in the transport protocol layer and in the message transport protocol layers, as
usually network components that are not aware of agent systems must understand
these layers. For example, although it is possible to define a transport protocol
especially suitable for agent messages, such a protocol probably will not be widely
accepted by the Internet community, and therefore it is an unattractive choice.
On the other hand, the encoding of an ACL is an “agent-level” issue, and thus we
have more freedom at that layer, as an example.

3. Message Transport Protocol Layer

In comparing the performance of the MTPs, we conducted exhaustive experi-
ment in a simulated wireless environment. From possible MTPs, we selected IIOP,
HTTP, Persistent HTTP (P-HTTP), WAP (CFW), Java RMI, and MAMAv2,
which we will next analyze thoroughly. The IIOP and HTTP will used as specified
by FIPA. The persistent HTTP (P-HTTP) is similar to that of HTTP protocol,
but the sender does not close the TCP socket after receiving the reply, but uses the
same TCP socket for subsequent messages. However, for each interaction proto-
col, two TCP sockets are needed, since the P-HTTP protocol allows only sending
messaging to one direction over one TCP socket. The WAP implementation used
in our evaluation is a WAP emulator in which message sequences are same as in
WAP protocol. Therefore, we assume that the performance of our implementa-
tion and a real WAP are similar, since the protocol overhead as well as message
sequences in these two protocols are about the same. Java RMI, although being
a non-standard option, is taken into account because it is used in many FIPA-
compliant agent platforms for intra-platform communication (e.g., in Jade [1]).



312 Heikki Helin and Mikko Laukkanen

Figure 2. High-level overview of the MTP experiment configuration

The MAMAv2 protocol is designed by authors [26]. The objective of this protocol
is to provide efficient and reliable agent message transport services over a (slow)
wireless link for higher layers. As a basic service, the protocol offers a bi-directional
semi-reliable message channel for the message transmission over a (wireless) link.

We use a typical client-server scenario to perform experiments, where the
client (initiator) is executed at a mobile node and the server (participant) in an
access node (see Figure 2). Each MTP we analyze using 8 different wireless network
configurations (connection rates 9600bps, 28,800bps, 57,600bps, and 115,200bps;
each with two propagation delay values (150ms and 300ms)), with three different
conversation patterns (see Figure 3), and four different message payload sizes.
The wireless link is simulated using the Seawind wireless link simulator [29]. Each
experiment is repeated 11 times, but only 10 last repetitions are taken into account.
The reason for this is that most of the software is implemented in Java and Java
does some (heavy) initialization when particular classes are used first time.

In each case, four different payloads (message envelope + ACL) will be used.
The smallest payload is about 0.5 kilobytes and largest about 10 kilobytes. Using a
different size of ACL message generates different payload size, that is, the message
envelope is constant through the experiment, about 250 bytes. However, the actual
payload varies depending on the MTP. For example, in the IIOP protocol, the
message envelope is expressed in terms of IDL. This means that fields are encoded
using binary codes, and therefore the message envelope size in the IIOP protocol
case is slightly smaller than with other MTPs. On the other hand, each MTP adds
its own overhead. For example, in the HTTP protocol, the message headers are
expressed using ASCII characters, which obviously increases the actual payload.
This can be seen especially in those experiments where the message payload is
small.

In the first test case, we initiate a FIPA-Query protocol [21] by sending a
query message to the participant. The participant replies by sending back an
inform message to the initiator (see Figure 3 (a)). The purpose of this test is
to measure the round-trip time in agent communication. In the second test case,
we initiate a FIPA-Request protocol [22] by sending a request message to the



Efficient Agent Communication in Wireless Environments 313

(a) (b) (c)

Figure 3. Message exchanges in interaction protocols used in
the MTP evaluation

participant. The participant replies by sending back an agree message1 and an
inform message to the initiator (see Figure 3 (b)). Although this protocol is quite
similar to that of the first case, this case is taken into account, as the FIPA-Request
protocol is perhaps the most widely used interaction protocol in the FIPA archi-
tecture. In the last test case, we use a subscription protocol, where the initiator
first sends a subscribe message, to which the participant replies by sending back
a sequence (15) of inform messages to the initiator (see Figure 3 (c)).

3.1. Simple Round-Trip Case

Figure 4 compares the selected MTPs using FIPA-Query interaction protocol with
9600bps speed. Clearly, RMI protocol is the most inefficient. For example, having
only 0.5kb payload and the slowest link, it takes more than 10 seconds to finish this
interaction. Similarly, HTTP protocol is somewhat inefficient when the payload is
small. This is due the fact that the protocol needs to open two TCP sockets, which
takes most of the time when having small payload. However, for example in case
(a) with 10kb payload, the HTTP is almost as efficient as MAMA and IIOP. In
addition, the protocol overhead is bigger in HTTP, as HTTP headers are ASCII
strings as well as MIME boundaries. MAMAv2 and IIOP protocols are about
equally fast in these measurements. In the MAMAv2 protocol, no TCP sockets
are opened during the interaction, but an existing TCP socket is used for all
communication. IIOP protocol needs to open two TCP sockets. However, as noted
earlier, the first interaction is not taken into account, and therefore IIOP performs
reasonably well. The performance of the CFW protocol is the best in all cases,
as was expected. However, it is important to note that the CFW protocol lacks
sufficient reliability, and therefore its implementation is insufficient for real-life use,
and therefore it is not directly comparable with other MTPs in this experiment.
P-HTTP protocol is omitted in this case, as its performance would be exactly the
same as HTTP protocol’s. The results of FIPA-Query interaction using connection
speeds 28,800bps, 57,600bps and, 115,200bps are similar to those of 9600bps.

Especially when the payload is small, an MTP that opens a new TCP socket
for each message are highly inefficient. This was expected, because opening a TCP

1Although the agree message in the FIPA-Request protocol is optional, we use it here to show
the negative effect of opening an “unnecessary” TCP socket in some MTPs.



314 Heikki Helin and Mikko Laukkanen

0,5kb 2kb 5kb 10kb
0

10000

20000

30000

40000

50000

60000
ms 

0

10000

20000

30000

40000

50000

60000
ms 

CFW
MAMA
IIOP
HTTP
RMI

(a) 9600bps (300ms)

0,5kb 2kb 5kb 10kb
0

10000

20000

30000

40000

50000

60000
ms 

0

10000

20000

30000

40000

50000

60000
ms 

CFW
MAMA
IIOP
HTTP
RMI

(b) 9600bps (150ms)

Figure 4. Comparison between MTPs using query interaction
with 9600bps connection speed

socket takes one round-trip, which is about 600 milliseconds when having 300
milliseconds propagation delay. Furthermore, in these cases, two TCP sockets are
needed for sending two messages, which means that almost 1.5 seconds is needed
just for opening the TCP socket. For example, when the payload is small, those
MTPs that do not need to open a TCP socket for each message can complete the
whole interaction in less than 1.5 seconds. Therefore, it is obvious that opening
a new TCP socket per message is highly inefficient in environments where the
propagation delay is relatively large.

3.2. FIPA-Request Case

Figure 5 compares MTPs using FIPA-Request interaction protocol using connec-
tion speed 28,800bps. As noted earlier, this interaction is quite similar to that of
FIPA-Query; the only difference is that the participant sends two replies instead
of one as in FIPA-Query interaction. Given the similarities of the interaction pro-
tocols, the results are also very similar. A difference to FIPA-Query case is that in
this experiment we also used P-HTTP MTP. As can be seen, the results P-HTTP
are quite similar to those of HTTP. This was expected, as the only difference be-
tween these two MTPs is that HTTP needs to open two TCP sockets for replies
where as P-HTTP needs only one. The results of FIPA-Request interaction using
other connection speeds are similar to those of 28,800bps.

3.3. Subscription Case

Figure 6 compares MTPs using the subscription interaction protocol using con-
nection speeds 57,600bps and 115,200bps. In these results the effects of opening
a TCP socket for each message can be seen clearly. The performance of HTTP
and RMI is significantly worse than that of CFW, MAMAv2, IIOP, and P-HTTP.
The performance of P-HTTP is slightly worse than that of MAMAv2 and IIOP.
This was expected since the actual payload is larger in P-HTTP because of HTTP
headers. Furthermore, because of this, the relative difference is bigger when the



Efficient Agent Communication in Wireless Environments 315

0,5kb 2kb 5kb 10kb
0

5000

10000

15000

20000

25000

30000
ms 

0

5000

10000

15000

20000

25000

30000
ms 

CFW
MAMA
IIOP
PHTTP
HTTP
RMI

(a) 28,800bps (300ms)

0,5kb 2kb 5kb 10kb
0

5000

10000

15000

20000

25000

30000
ms 

0

5000

10000

15000

20000

25000

30000
ms 

CFW
MAMA
IIOP
PHTTP
HTTP
RMI

(b) 28,800bps (150ms)

Figure 5. Comparison between MTPs using request interaction
with 28,800bps connection speed

0,5kb 2kb 5kb 10kb
0

10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
ms 

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
ms 

CFW
MAMA
IIOP
PHTTP
HTTP
RMI

(a) 57,200bps (300ms)

0,5kb 2kb 5kb 10kb
0

10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
ms 

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
ms 

CFW
MAMA
IIOP
PHTTP
HTTP
RMI

(b) 57,200bps (150ms)

0,5kb 2kb 5kb 10kb
0

10000

20000

30000

40000

50000

60000

70000

80000
ms 

0

10000

20000

30000

40000

50000

60000

70000

80000
ms 

CFW
MAMA
IIOP
PHTTP
HTTP
RMI

(c) 115,200bps (300ms)

0,5kb 2kb 5kb 10kb
0

10000

20000

30000

40000

50000

60000

70000

80000
ms 

0

10000

20000

30000

40000

50000

60000

70000

80000
ms 

CFW
MAMA
IIOP
PHTTP
HTTP
RMI

(d) 115,200bps (150ms)

Figure 6. Comparison between MTPs using subscription inter-
action with 57,600bps and 115,200bps connection speeds

actual payload is smaller. For example, in 28,800bps connection speed with 300ms
delay, the P-HTTP is about 2.2 times slower than MAMAv2 when the payload is
0.5kb, but only about 1.1 timer slower when the payload is 10kb. The actual time



316 Heikki Helin and Mikko Laukkanen

difference in both cases is about the same—about five seconds, which is due to
more inefficient TCP socket usage in P-HTTP.

When there are more messages that just one or two in simple interactions
between the mobile node and the fixed network, the difference between CFW, MA-
MAv2, IIOP, and P-HTTP is insignificant. P-HTTP performs slightly worse the
MAMAv2 and IIOP, mainly because of additional payload caused by HTTP head-
ers and message envelope and ACL part separation mechanisms. On the other
hand, the implementation of P-HTTP is much simpler than the other two pro-
tocols. Furthermore, the P-HTTP can be improved by carefully selecting which
HTTP headers should be included in the message. If the communication is only
between a mobile node and selected access node at the fixed network, not all HTTP
headers mandated by FIPA specification [9] are necessary. Additionally, in such
environments, the performance of P-HTTP can be improved by using the same
TCP socket for messaging in both directions. Using HTTP or RMI is clearly not
an option in such wireless environments we tested in this experiment, because of
the bad performance.

4. Message Envelope Layer

In this section, we present a performance evaluation of message envelope encoding,
and give a short analysis of the results. The selected encoding schemes are analyzed
in number of output bytes needed for transmitting the message envelope.

We selected five different encoding schemes for the evaluation: IDL [10], Bit-
efficient [7], XML [8], Binary-XML, and serialized Java object. In the FIPA-IIOP
MTP [10], the message envelope is encoded to the GIOP message and all field
codes are binary data. Therefore, this encoding is expected to be quite efficient in
the number of bytes it produces. The syntax of the bit-efficient envelope is similar
to that of FIPA-ACL [4]. This allows implementations to use (at least partially)
same parser for envelopes as for ACL messages. XML DTD for message envelope
is defined in [8]. This encoding scheme is expected to be highly verbose. Given
the verbose syntax of XML, several binary-XML encoding schemes have been
developed. For this evaluation, we choose the one provided by the WAP Forum [36].
This encoding allows two different ways to encode the message. Firstly, binary-
XML can be used with or without special encoding tokens. We will evaluate both
of these options, although neither of them is a FIPA standard. The last encoding
scheme, serialized Java object, is not a FIPA standard, but it is widely used in
intra-platform communication. The actual object we will use in this experiment is
Jade’s Envelope class [1].

All the experiments are conducted in a Linux environment using the Jade
agent platform (version 2.5) [1] with JDK1.3. Here we do not analyze other aspects
of concrete message envelope syntaxes, such as construction or parsing time of a
message envelope. The main reason for this is that most of the encoding options
used in this evaluation are experimental software, and therefore we believe that



Efficient Agent Communication in Wireless Environments 317

Table 1. Comparison of FIPA message envelope transport en-
coding options

Bit-Efficient IIOP bXML bXML XML Object
(w /codes) (plain)

Case 1 33 153 90 205 346 1421
(464%) (273%) (621%) (1048%) (4306%)

Case 2 179 337 262 473 671 1694
(188%) (146%) (264%) (375%) (946%)

Case 3 694 973 843 1154 1844 2790
(140%) (121%) (166%) (266%) (402%)

the results would not been comparable. We analyze construction and parsing times
of ACL messages in the next section. As the encoding options for ACL are similar
to those of message envelopes, similar results are expected.

We chose three different message envelopes for this experiment. The first case
can be considered as a minimal message envelope. Additionally, the field values
are minimal, that is, only a one byte in the most cases. This, obviously, is not a
realistic message envelope, but was chosen to demonstrate the relative difference
of the additional overhead caused by different encoding schemes. The second one
is the same as the first one, but the field values are more realistic. The last case
covers all the aspects of the message envelope.

Table 1 gives the number of bytes of message envelope transport syntaxes
in three cases using all the selected encoding options. The bit-efficient message
envelope is the most compact in all cases. This was expected. However, when
the message envelope size increases, the relative difference decreases, especially
when compared to IDL and binary XML. The reason for this is, that in the case
of big message envelope, the ratio between additional overhead and the message
envelope information content (i.e., the field values) increases. None of the selected
encoding schemes handles the information content efficiently. As was also expected,
the XML encoding and Java object serialization produces big message sizes. But,
again, the relative difference decreases when the message envelope size increases.
However, for example, in the case of Object serialization, the output size is still
about four times bigger than the output size of bit-efficient encoding even in the
case of big envelope. The binary-XML encoding shows its power in the case where
the information content is small. In these cases using predefined tokens, the output
size is much smaller than using the same encoding without predefined tokens. Also,
using binary-XML with predefined the output is smaller than in the case of IDL
encoding. Without predefined tokens, the output size of binary-XML is bigger than
using IDL encoding.



318 Heikki Helin and Mikko Laukkanen

5. Agent Communication Layer

In this section, we analyze the performance of different ACL encoding options. We
selected four test cases to find out the performance of different encoding options.
These test cases are the same as in message envelope experiment. Then, we selected
five alternative methods to encode FIPA-ACL messages, which we compare against
the bit-efficient encoding, totaling six different methods for ACL encoding. Firstly,
the string-based FIPA-ACL encoding is measured. Especially we use the string
encoding as provided by the Jade agent platform. Secondly, a standard XML-based
FIPA-ACL encoding is measured. Thirdly, the binary-XML encoding is measured.
As with the message envelope experiment, we use binary-XML both with special
encoding tokens and without them. Fourthly, the standard Java serialization to
output Jade’s ACLMessage class is measured. Although this method is not a FIPA-
compliant way to exchange ACL messages, it is, for example, used in Jade’s internal
communication when the agents are located on different hosts but belong to the
same agent platform (that is, when Java RMI is used). Lastly, as the string-based
messages are text information, we also analyze the deflate compression algorithm
to compress the ACL messages. The implementation of this algorithm is the one
included in JDK1.3 (DeflaterOutputStream). Notice that this encoding is not a
FIPA-compliant solution. In this case, we also analyzed two different cases. In the
first case, the message to compressed in encoded using the string encoding and
in the second case using the XML encoding. In both cases, the message stream is
reset after each message, which means that the same code table cannot be used
in subsequent message. In the measurements, we use Intel Pentium II (366Mhz)
laptop (Toshiba Portégé 7020CT) with 128Mb of main memory, Linux 2.2.14,
JDK1.3 and Jade 2.3 Agent Platform.

5.1. Results Encoded Output Size

Table 2 shows the results of the output size measurement in bytes. In this case,
we use the bit-efficient FIPA-ACL without a dynamic code table. We will analyze
the effects of using the code table later. As can be seen in Table 2, the bit-efficient
encoding gives the smallest output in all cases, as was expected. However, the
difference between binary-XML with special tokens and the bit-efficient encoding
is insignificant. Also, the difference between the deflate encoding and the bit-
efficient is small. But, neither the deflate encoding nor the binary-XML are a FIPA-
compliant solutions, and therefore cannot be used in a general case. The XML
encoding output size is about twice as big as the string-based encoding. This was
also expected. The serialized ACLMessage output size is notably big. This is because
the Java serialization outputs the class description to each ObjectOutputStream
to which the serialized objects are written. However, the class description is output
only once to each stream, that is, if two or more objects are written to the same
stream, the class description is written only once. In our measurements, we use
a different stream for each message, and therefore several class descriptions are
needed. While this may seem unfair, it is actually the most common case. For



Efficient Agent Communication in Wireless Environments 319

Table 2. The output size in bytes

Case 1 Case 2 Case 3 Case 4

Bit-efficient Send 175 161 167 503
Recv 371 168 1800 2339

bXML Send 195 (111%) 182 (113%) 188 (113%) 565 (112%)
Recv 409 (110%) 188 (188%) 2000 (111%) 2597 (111%)

bXML(plain) Send 353 (202%) 342 (212%) 348 (208%) 1043 (207%)
Recv 722 (195%) 345 (205%) 3570 (198%) 4637 (198%)

XML Send 638 (365%) 626 (383%) 632 (378%) 1896 (377%)
Recv 1294 (348%) 630 (375%) 6420 (357%) 8344 (357%)

String Send 351 (212%) 339 (211%) 345 (207%) 1035 (206%)
Recv 720 (194%) 343 (204%) 3550 (197%) 4613 (197%)

String (cmpr) Send 204 (117%) 203 (126%) 211 (126%) 618 (122%)
Recv 422 (113%) 208 (124%) 2165 (120%) 2795 (120%)

ACL Object Send 1408 (805%) 1380 (857%) 1392 (834%) 4172 (829%)
Recv 2854 (769%) 1394 (830%) 14144 (786%) 18384 (786%)

Table 3. Time to construct the messages (in milliseconds)

Bit-efficient String String (deflate) ACL object

Send Recv Send Recv Send Recv Send Recv

Case 1

3.24 4.42 4.22 6.30 9.40 12.64 107.62 117.92
(130%) (143%) (290%) (286%) (3321%) (2668%)

Case 2

3.16 3.35 4.14 4.30 9.28 9.88 106.76 106.12
(131%) (128%) (294%) (295%) (3379%) (3168%)

Case 3

3.32 11.68 4.32 21.46 9.24 38.30 106.36 149.82
(130%) (184%) (278%) (328%) (3204%) (1283%)

Case 4

5.20 14.56 7.94 26.98 15.68 47.86 115.64 163.24
(152%) (199%) (301%) (329%) (2223%) (1121%)

example, when using Java RMI, a separate ObjectOutputStream has to be created
for each invocation.

5.2. Constructing and Parsing Messages

In the second measurement, we analyze how long it takes to construct the output
for different encoding schemes. The XML-based encoding schemes are left out in
these measurements, as the parsers for these are too experimental for the results
being comparable to other encoding schemes. Table 3 provides the results of these
measurements. Each test is repeated 50 times and results (averages) are given in
milliseconds. In these measurements we first create a Jade ACLMessage object of a



320 Heikki Helin and Mikko Laukkanen

Table 4. Time to parse the messages (in milliseconds)

Bit-efficient String String (deflate) ACL object

Send Recv Send Recv Send Recv Send Recv

Case 1

16.14 18.32 24.70 31.08 27.48 40.48 144.88 151.58
(153%) (170%) (170%) (220%) (898%) (827%)

Case 2

16.04 15.60 24.66 24.84 27.74 27.60 143.68 144.38
(154%) (159%) (173%) (177%) (896%) (926%)

Case 3

15.42 41.24 24.88 93.08 27.68 186.76 144.02 211.22
(161%) (226%) (180%) (453%) (934%) (512%)

Case 4

20.86 49.40 36.36 125.98 52.72 262.98 158.52 233.28
(174%) (255%) (252%) (532%) (759%) (472%)

FIPA-ACL message and then generate the encoded output of the message from this
object. The time to create the ACLMessage object is not calculated in the results.
As can be seen in Table 3, the bit-efficient encoding is the fastest in all cases,
but the difference to the string-based encoding is insignificant. This was expected,
since creating a string-based FIPA-ACL message is just outputting strings; there
is little to optimize. The low performance of the deflate algorithm is due to a fact
that after uncompressing the message, it still have to be parsed in order to create
a Java object. This phase is included in the process of parsing the bit-efficient
encoding. Furthermore, the deflate algorithm gives a slightly larger output than
the bit-efficient encoding scheme (see Table 2). Creating serialized objects is also
surprisingly slow. The reason for this is that creating a new ObjectOutputStream
is a slow operation.

In the third measurement, we measure the parsing time of an encoded mes-
sage, that is, how long it takes to create a Jade ACLMessage object from an encoded
stream. In all cases, the data is first read into a memory buffer, and the time needed
for this is excluded in the results. Table 4 gives the results of this measurement.
Again, the bit-efficient encoding is the fastest. Further, in this measurement it is
much faster than any other encoding scheme we measured. The main reasons for
this are that (1) a very few string comparisons are needed to parse the message
and that (2) our bit-efficient FIPA-ACL implementation, instead of allocating new
memory, tries to reuse already allocated memory whenever possible. The method
is an efficient method for optimizing Java programs.

5.3. Effects of Dynamic Code Table in Bit-efficient ACL

In all the cases analyzed above we used the bit-efficient FIPA-ACL encoding with-
out the dynamic code table. Before the measurements, we believed that using the
dynamic code table should give a better compression ratio, but the code table



Efficient Agent Communication in Wireless Environments 321

Table 5. Number of bytes using different cache sizes

No cache 28 29 210 215

Send Recv Send Recv Send Recv Send Recv Send Recv

Case 1

175 371 175 249 175 257 175 257 175 257
(100%) (67%) (100%) (69%) (100%) (69%) (100%) (69%)

Case 2

161 168 161 168 161 168 161 168 161 168
(100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

Case 3

167 1800 167 792 167 864 167 864 167 864
(100%) (44%) (100%) (48%) (100%) (48%) (100%) (48%)

Case 4

503 2339 354 1063 364 1152 364 1152 364 1152
(70%) (45%) (72%) (49%) (72%) (49%) (72%) (49%)

management might slow down both constructing the output and parsing the input
as the code table is implemented in Java. However, as the result will show, the
code table management slows down neither constructing time nor parsing time.

First, we analyze the size of the encoded message. As can be seen in Table 5,
using the code table provides a more compact output, but only if there are enough
messages to encode. This can be seen especially in the Case 4, where the coding
scheme without the code table provides 2339 bytes of output in incoming traffic,
while using the code table provides 1063 bytes of output. Using the code table
with a larger size than 28 gives a slightly larger output, because of the two-byte
cache indexes. However, when encoding a large number of messages, it is expected
that using a larger code table give a more compact output.

Next we analyze how long it takes to construct the encoded output using
different cache sizes. Table 6 shows the results of this measurement. A coding
scheme without a code table is fastest when having only one or at most a few
messages. This was expected, since when the code table is used, the encoder tries
to find every string in the code table, which takes some time. However, when there
are several messages and the encoder actually finds something in the code table,
the process of constructing messages becomes faster. The reason for this is that
when the encoder should output a string to the encoded message, it must copy
it there, while if the string is found in the code table, it only has to output the
corresponding index to the encoded message (one or two byte(s)). Similar results
are also achieved when the parsing time is measured (see Table 7). The difference,
however, is less significant than in constructing messages. The reason for this is
that the code table lookups are much faster when decoding the message.



322 Heikki Helin and Mikko Laukkanen

Table 6. Time to create messages using different cache sizes (in milliseconds)

No cache 28 29 210 215

Send Recv Send Recv Send Recv Send Recv Send Recv

Case 1

3.40 4.40 4.12 4.96 4.22 4.98 4.28 5.10 4.20 5.24
(121%) (112%) (124%) (113%) (125%) (116%) (124%) (119%)

Case 2

3.30 3.36 4.10 4.24 4.14 4.18 4.12 4.14 4.08 4.24
(124%) (126%) (125%) (124%) (125%) (123%) (124%) (126%)

Case 3

3.28 11.78 4.24 9.92 4.18 9.96 4.20 9.98 4.12 10.00
(129%) (84%) (127%) (85%) (128%) (85%) (126%) (85%)

Case 4

5.16 14.54 5.88 12.06 5.98 12.16 6.00 12.18 5.84 12.14
(114%) (83%) (116%) (84%) (116%) (84%) (113%) (83%)

Table 7. Time to parse messages using different cache sizes (in milliseconds)

No cache 28 29 210 215

Send Recv Send Recv Send Recv Send Recv Send Recv

Case 1

13.78 15.14 13.84 14.68 13.90 14.76 13.88 14.64 13.94 14.74
(100%) (97%) (101%) (97%) (101%) (97%) (101%) (97%)

Case 2

13.80 13.88 13.88 13.94 13.94 13.88 13.90 13.90 13.82 13.90
(101%) (100%) (101%) (100%) (101%) (100%) (100%) (100%)

Case 3

13.80 25.12 13.92 19.26 14.00 19.64 13.90 19.78 13.92 19.76
(101%) (71%) (101%) (78%) (101%) (79%) (101%) (79%)

Case 4

16.14 28.88 15.56 21.68 15.70 22.06 15.72 22.26 15.74 22.16
(96%) (75%) (97%) (76%) (97%) (77%) (98%) (77%)

6. Content Language Layer

A content language is used to express the actual content of a communication be-
tween agents. Each language specified in the FIPA-CLL [14] has only one concrete
transport encoding syntax. Further, in each case either a string s-expression or
XML is used. Given this, they are not in general suitable for environments where
slow wireless links are involved. Obviously, having an efficient encoding of the
message envelope and the FIPA-ACL does not help much, if the actual message
content is expressed using a verbose encoding.



Efficient Agent Communication in Wireless Environments 323

In following, we explore different options for encoding FIPA-SL and FIPA-
CCL. We believe that the results can be generalized to any similar content lan-
guage. In this experiment, we evaluate only the output size of different encoding
options. Other features, such as the parsing time, are excluded because lack of
mature enough implementations.

6.1. The Case of FIPA-SL

For FIPA-SL content language [23] evaluation we choose four different encoding
schemes for FIPA-SL. Firstly, the standard s-expression is evaluated. This encoding
option is the only one specified by FIPA. Secondly, we use deflate algorithm to
encode the s-expression syntax. As the s-expression syntax is string, we believe
that this option can give good results. Thirdly, we use XML encoding. Lastly, we
use binary-XML. As with the message envelope encoding and FIPA-ACL encoding,
we use binary-XML both with and without special encoding tokens.

For the experiment, we choose three FIPA-SL expressions, that is, message
contents. The first two are simple and typical messages used with communication
with the AMS. The third expression is a somewhat more complicated and contains
more data than the other expression.

Table 8 shows the results of the output size measurements in bytes. The
s-expression encoding and binary-XML with special tokens gives a similar per-
formance; binary-XML being slightly better. Although s-expression encoding is
plain text encoding, it does not contain that much additional overhead. On the
other hand, the source format, that is XML, for binary-XML is so verbose, that
even the binary version cannot produce small output. The output of the XML
encoding is the largest, as was expected. The deflate algorithm gives better output
if the message to encode is large enough. But even if the message is small, the
deflate algorithm is only a slight worse than binary-XML and s-expression encod-
ing schemes. Given this, it seems that using the deflate algorithm to encode the
message content is the best solution when sending messages over a (slow) wireless
link. Obviously, the deflate algorithm needs more processing power than the other
options, because after the message content is decompressed, it still have to be
parsed. Therefore, if the processing power is limited, the s-expression seems to be
the best solution, assuming that the message content is relatively small.

6.2. The Case of FIPA-CCL

For FIPA-CCL content language [12] evaluation, we choose the same options as
with the case of FIPA-SL. However, the s-expression encoding is excluded, as there
is no s-expression syntax for FIPA-CCL. Obviously, we could define such syntax,
but there is no real reason for doing so. Therefore, the encoding options we will use
in the FIPA-CCL experiment are XML, binary-XML (with and without special
encoding tokens), and deflated XML.

For the experiment, we choose three FIPA-CCL expressions, which are not
semantically the same as in the case of FIPA-SL experiment. We could not use
the same expression as in the case of FIPA-SL experiment, because these two



324 Heikki Helin and Mikko Laukkanen

Table 8. Comparison of selected FIPA-SL encoding options in
number of bytes

S-Expression bXML bXML (plain) Deflate XML

Example 1 222 172 303 224 558
(77%) (136%) (101%) (251%)

Example 2 229 177 314 232 572
(77%) (137%) (101%) (250%)

Example 3 682 661 865 378 2275
(97%) (127%) (55%) (334%)

Total 1133 1010 1482 456 3405
(89%) (131%) (40%) (301%)

Table 9. Comparison of selected FIPA-CCL encoding options in
number of bytes

bXML bXML(plain) Deflate XML

Example 1 335 548 297 885
(164%) (89%) (264%)

Example 2 433 676 340 1125
(156%) (79%) (260%)

Example 3 418 679 336 1122
(162%) (80%) (268%)

Total 1186 1903 486 3132
(160%) (41%) (264%)

content languages are developed for different purposes. The results of the output
size measurements in bytes of the FIPA-CCL experiment are given in Table 9. The
results are similar to those of the FIPA-SL experiment. The deflate algorithm and
binary-XML with special tokens gives similar output. The binary-XML without
special tokens is slightly worse and plain XML encoding is much worse than any
other option.

7. Conversation Layer

Ongoing conversations between agents often fall into typical patterns, which can
be described as a series of states linked by transitions. Given the certain state
of a conversation, the participants can send and/or expect only certain messages.
These patterns of message exchange are called interaction protocols [17]. FIPA
has defined several interaction protocols, including simple ones such as FIPA Re-
quest [22] and FIPA Query [21], and more complicated ones such as FIPA Contract
Net [18] and FIPA Auction English [16].

The use of interaction protocols eases the agent implementation, especially,
when an agent is performing tasks that are irrelevant in achieving its goal, such



Efficient Agent Communication in Wireless Environments 325

Figure 7. FIPA Contract Net interaction protocol

as the registration into a management system or into a directory service. In these
cases, by carefully following the interaction protocol, an agent does not have be
“smart” to take care of necessary administrative tasks.

The FIPA Contract Net protocol [15] is FIPA’s version of the most well-
known task sharing protocol called contract net [35]. In the FIPA Contract Net
interaction protocol the initiator (contractor) sends a “call for proposals” (cfp) to
several participants (contractees) requesting proposals to perform a given action
(see Figure 7). The participants send their proposals back to the contractor. From
these proposals, the contractor selects the most desired one, and sends an accept-
proposal message to the sender of the selected proposal and a reject-proposal
message to the others. Furthermore, the contractor can define a timeout for how
long it will wait for proposals. If it does not receive all proposals in this time, it
selects one from the received ones and rejects all subsequent proposals. Finally,
the selected contractee sends an inform message to the contractor once it has
performed the requested action.

Now, let us assume that the contractor resides at the mobile node, and n of
the contractees resides in the fixed network. To finish the protocol, about n ∗ 3
messages are sent over the wireless link. If we assume that one message contains



326 Heikki Helin and Mikko Laukkanen

2 kilobytes of data and n is 10, more than 60 kilobytes of data is transferred over
the link to accomplish the protocol. Having a slow link, such as a GSM data link,
it takes more than one minute just to send these messages.

Interaction protocols could be improved for wireless environments. The main
idea here is to reduce messages sent over wireless communication path. For exam-
ple, the contractor can nominate a proxy agent in a fixed network to accomplish
the interaction protocol, or using mobile agent technology the contractor can itself
migrate to the fixed network and communicate with contractees over the fixed
network. In both cases, some additional data is sent over the link. Nominating
another agent to accomplish the interaction protocol needs some messages, and
if the contractor migrates over the link, its code and state is transferred over the
link.

The FIPA Propose protocol [20] was defined with slow wireless links in mind.
In a way, it is a version of FIPA Contract Net protocol, where the cfp commu-
nicative act as well as the last inform communicative act are removed. In this
protocol, the initiator agent sends a propose communicative act to the participant
agent proposing that it (the initiator) will perform some action. The participant
agent may either accept (accept-proposal) or reject (reject-proposal) this
proposal.

The interaction protocol in a nomadic environment can be selected based on
the current situation. For example, having a low-bandwidth connection, an agent
can choose an interaction protocol that requires modest bandwidth, but therefore
produces only sub-optimal results. Alternatively, when using more bandwidth is
possible, an agent can choose an interaction protocol that requires more bandwidth
and thereby produces better results. This selection, however, involves a careful
analysis of the protocol; how many round-trips are necessary and how much data
is needed. Additionally, some of this analysis must be done at the runtime, as it
is impossible in general to predict the way possible opponents act.

8. Related Work

LEAP (Lightweight Extensible Agent Platform) [2] was the first FIPA compliant
agent platform running on PDAs and mobile phones. For agent communication
in wireless environments, the LEAP platform provides a protocol called JICP [3]
for intra-platform communication. This protocol seems to be efficient in number
of overhead bytes, but on the other hand, this protocol—even though designed
for unreliable wireless communication paths—provides insufficient reliability. For
example, messages might get duplicated during an unexpected disconnection, that
is, the same message may get delivered to the ultimate destination more than once.

MicroFIPA-OS [32] is an agent development toolkit and platform based on
the FIPA-OS toolkit. This system targets at medium to high-end PDA devices
that have sufficient resources to execute PersonalJava compatible virtual machine.



Efficient Agent Communication in Wireless Environments 327

The MicroFIPA-OS architecture is extensible by plugging in components that ei-
ther replace or extend the architecture. An example of this kind of contribution is
FIPA Nomadic Application Support [19], which provides support for wireless envi-
ronments, including components for efficient message transport over slow wireless
communication paths [31]. For example, The FIPA Nomadic Application Support
incorporates the bit-efficient envelope and ACL messages discussed earlier.

Yet another example of providing an agent platform to wireless environments
is A-Globe [34]. Unlike LEAP and MicroFIPA-OS, A-Globe is not FIPA compliant
agent platform. However, this relaxation gives more freedom to design components
for wireless communication and therefore more efficient solution can be made. The
obvious drawback is that agent on A-Globe platform cannot directly communicate
with agent residing on LEAP or MicroFIPA-OS platforms.

Several other attempts have been developed in order to enable agents in
small devices (e.g., PDAs and mobile phones). However, very seldom the properties
of wireless communication paths are taken appropriately into account, but these
systems rely on communication solutions designed for reliable and fast wireline
connections.

Another option for agent communication is to use Web Services standards for
delivering ACL messages between agents [28]. However, when considering wireless
communication paths, the same problems as with FIPA-style communication will
remain (see for example [30]).

9. Conclusions

We performed a performance analysis of agent communication in wireless environ-
ments. At the lowest layer—transport and signaling layer—the agent communica-
tion should not be different from the communication in other distributed systems;
hence we gave only a brief overview of this layer’s issues. At the MTP layer, we
examined the MTPs specified by FIPA and provided an exhaustive performance
evaluation of various protocols. Further, we have designed and implemented a MTP
called MAMAv2, which performs well in slow wireless networks. At the message
envelope layer and the ACL layer, the most important factor in nomadic environ-
ments is efficiency, assuming that the MTP layer provides sufficient reliability as
it should. We compared standard message envelope transport encoding options,
and concluded that the bit-efficient encoding is the most efficient in number of
bytes. The bit-efficient envelope encoding scheme is designed and implemented by
us. The XML envelope syntax, as was expected, was the most verbose syntax.
Similar comparison was made with ACL transport encoding options, providing
similar results. Furthermore, we showed that bit-efficient ACL transport encoding
is not only more space-efficient but also more efficient to process. For example,
parsing bit-efficiently encoded messages is faster than parsing any other standard
transport encoding. Space-efficiency is naturally an important feature in nomadic
environments, but faster handling of messages becomes important when either the



328 Heikki Helin and Mikko Laukkanen

processing power is limited or a great deal of messages should be handled. The
former is true in today’s low-end mobile devices and the latter can be expected to
happen in the future when agent technology is employed on a large scale. The bit-
efficient ACL encoding scheme is designed and implemented by us, and it is freely
available for Jade agent platform. Finally, we performed a similar performance
analysis of two content languages, namely FIPA-SL and FIPA-CCL. For these
languages, we have designed and implemented binary-XML encoding schemes,

References

[1] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. JADE — A FIPA-
compliant agent framework. In Proceedings of the 4th International Conference on
the Practical Applications of Agents and Multi-Agent Systems (PAAM-99), pages
97–108, London, UK, 1999. The Practical Application Company Ltd.

[2] Federico Bergenti, Agostino Poggi, Bernard Burg, and Giovanni Caire. Deploying
FIPA-compliant systems on handheld devices. IEEE Internet Computing, 5(4):20–
25, 2001.

[3] Giovanni Caire, Nicolas Lhuillier, and Giovanni Rimassa. A communication protocol
for agents on handheld devices. In Workshop on Ubiquitous Agents on Embedded,
Wearable and Mobile Devices, Bologna, Italy, July 2002.

[4] Foundation for Intelligent Physical Agents. FIPA ACL Message Representation in
Bit-Efficient Specification. Geneva, Switzerland, October 2000. Specification number
XC00069.

[5] Foundation for Intelligent Physical Agents. FIPA ACL Message Representation in
String Specification. Geneva, Switzerland, November 2000. Specification number
XC00070.

[6] Foundation for Intelligent Physical Agents. FIPA ACL Message Representation
in XML Specification. Geneva, Switzerland, October 2000. Specification number
XC00071.

[7] Foundation for Intelligent Physical Agents. FIPA Agent Message Transport Envelope
Representation in Bit Efficient Specification. Geneva, Switzerland, November 2000.
Specification number XC00088.

[8] Foundation for Intelligent Physical Agents. FIPA Agent Message Transport Envelope
Representation in XML Specification. Geneva, Switzerland, November 2000. Speci-
fication number XC00085.

[9] Foundation for Intelligent Physical Agents. FIPA Agent Message Transport Protocol
for HTTP Specification. Geneva, Switzerland, October 2000. Specification number
XC00084.

[10] Foundation for Intelligent Physical Agents. FIPA Agent Message Transport Protocol
for IIOP Specification. Geneva, Switzerland, November 2000. Specification number
XC00075.

[11] Foundation for Intelligent Physical Agents. FIPA Agent Message Transport Protocol
for WAP Specification. Geneva, Switzerland, October 2000. Specification number
XC00076.



Efficient Agent Communication in Wireless Environments 329

[12] Foundation for Intelligent Physical Agents. FIPA CCL Content Language Specifica-
tion. Geneva, Switzerland, October 2000. Specification number XC00009.

[13] Foundation for Intelligent Physical Agents. FIPA Communicative Act Library Spec-
ification. Geneva, Switzerland, November 2000. Specification number XC00037.

[14] Foundation for Intelligent Physical Agents. FIPA Content Languages Specification.
Geneva, Switzerland, October 2000. Specification number XC00007.

[15] Foundation for Intelligent Physical Agents. FIPA Contract Net Interaction Protocol
Specification. Geneva, Switzerland, October 2000. Specification number XC00029.

[16] Foundation for Intelligent Physical Agents. FIPA English Auction Interaction Proto-
col Specification. Geneva, Switzerland, October 2000. Specification number XC00031.

[17] Foundation for Intelligent Physical Agents. FIPA Interaction Protocol Library Spec-
ification. Geneva, Switzerland, October 2000. Specification number XC00025.

[18] Foundation for Intelligent Physical Agents. FIPA Iterated Contract Net Interac-
tion Protocol Specification. Geneva, Switzerland, October 2000. Specification number
XC00030.

[19] Foundation for Intelligent Physical Agents. FIPA Nomadic Application Support Spec-
ification. Geneva, Switzerland, November 2000. Specification number XC00014.

[20] Foundation for Intelligent Physical Agents. FIPA Propose Interaction Protocol Spec-
ification. Geneva, Switzerland, October 2000. Specification number XC00036.

[21] Foundation for Intelligent Physical Agents. FIPA Query Interaction Protocol Speci-
fication. Geneva, Switzerland, October 2000. Specification number XC00027.

[22] Foundation for Intelligent Physical Agents. FIPA Request Interaction Protocol Spec-
ification. Geneva, Switzerland, October 2000. Specification number XC00026.

[23] Foundation for Intelligent Physical Agents. FIPA SL Content Language Specification.
Geneva, Switzerland, November 2000. Specification number XC00008.

[24] Foundation for Intelligent Physical Agents. FIPA Messaging Interoperability Service
Specification. Geneva, Switzerland, August 2001. Specification number PC00093.

[25] Rich Fritzson, Tim Finin, Don McKay, and Robin McEntire. KQML — A language
and protocol for knowledge and information exchange. In Proceedings of the Thir-
teenth International Workshop on Distributed Artificial Intelligence, pages 126–136,
Seattle, WA, USA, July 1994.

[26] Heikki Helin. Supporting nomadic agent-based applications in FIPA agent archi-
tecture. PhLic. Thesis, Series of Publications C, Number C-2001-63, University of
Helsinki, Department of Computer Science, Helsinki, Finland, December 2001.

[27] Heikki Helin and Stefano Campadello. Providing messaging interoperability in FIPA
communication architecture. In Krysztof Zieliński, Kurt Geihs, and Aleksander Lau-
rentowski, editors, New Developments in Distributed Applications and Interoperable
System. Proceedings of the Third IFIP TC6/WG6.1 International Working Confer-
ence on Distributed Applications and Interoperable Systems (DAIS’01), pages 121–
126, Krakow, Poland, September 2001. Kluwer Academic Publishers.

[28] Michael N. Huhns. Agents as web services. IEEE Internet Computing, 6(4):93–95,
2002.

[29] Markku Kojo, Andrei Gurtov, Jukka Manner, Pasi Sarolahti, Timo Alanko, and
Kimmo Raatikainen. Seawind: A wireless network emulator. In Proceedings of 11th



330 Heikki Helin and Mikko Laukkanen

GI/ITG Conference on Measuring, Modelling and Evaluation of Computer and Com-
munication Systems, Aachen, Germany, September 2001.

[30] Mikko Laukkanen and Heikki Helin. Web services in wireless networks—what hap-
pened to the performance? In Liang-Jie Zhang, editor, Proceedings of the Interna-
tional Conference on Web Services (ICWS’03), pages 278–284, Las Vegas, USA, June
2003. CSREA Press.

[31] Mikko Laukkanen, Heikki Helin, and Heimo Laamanen. Supporting nomadic agent-
based applications in the FIPA agent architecture. In Cristiano Castelfranci and
W. Lewis Johnson, editors, Proceedings of the First International Joint Conference
on Autonomous Agents & Multi-Agent Systems (AAMAS 2002), pages 1348–1355,
Bologna, Italy, July 2002.

[32] Mikko Laukkanen, Sasu Tarkoma, and Jani Leinonen. FIPA-OS agent platform for
small-footprint devices. In John-Jules Meyer and Milind Tambe, editors, Intelligent
Agents VIII, Proceedings of the Eighth International Workshop on Agent Theories,
Architectures, and Languages (ATAL-2001), volume 2333 of Lecture Notes in Arti-
ficial Intelligence, pages 447–460. Springer-Verlag: Heidelberg, Germany, 2002.

[33] G. Montenegro, S. Dawkins, M. Kojo, V. Magret, and N. Vaidya. Long thin networks.
Request for Comments 2757, January 2000.

[34] David Šǐslák, Milan Rollo, and Michal Pěchouček. A-globe: Agent platform with
inaccessibility and mobility support. In Matthias Klusch, Sascha Ossowski, Vipul
Kashyap, and Rainer Unland, editors, Cooperative Information Agents VIII, pages
199–214, 2004.

[35] R. G. Smith. The contract net protocol: High level communication and control in a
distributed problem solver. IEEE Transactions on Computers, C-29(12):1104–1113,
December 1980.

[36] Wireless Application Protocol Forum. Binary XML Content Format Specification,
November 1999. Version 04-Nov-1999.

Information about Software

Software is available on the Internet as
( ) prototype version
(•) full fledged software (freeware), version no.: N/A
( ) full fledged software (for money), version no.:
( ) Demo/trial version
( ) not (yet) available

Internet address:
Description of software: Bit-efficient encoding of ACL messages for Jade
Download address: http://jade.tilab.com/

Heikki Helin and Mikko Laukkanen
TeliaSonera Finland
P.O.Box 970
FIN-00051 Sonera
Finland
e-mail: Heikki.J.Helin@teliasonera.com, Mikko.Laukkanen@teliasonera.com



AMETAS – the Asynchronous MEssage
Transfer Agent System

Michael Zapf

Abstract. AMETAS is a Java-based environment for creating and running
mobile, autonomous agents. Some of its characteristic aspects are the 3-tier-
oriented structure of applications, the restriction to pure message passing
between the components, the security subsystem, and the flexible mediation
subsystem which may employ declarative type descriptions for finding agents.
In this article we will provide details about these aspects, also including ap-
plication notes.

Keywords. Mobile autonomous agents, message passing, type system, security.

1. Introduction

AMETAS, an acronym for “Asynchronous message transfer agent system” was
created at the University of Frankfurt as a platform for exploring concepts for
agent type systems. Since 2002, AMETAS is distributed by the company accsis
GmbH [1].

The latest versions of AMETAS requires the use of a Java Runtime Environ-
ment 1.4 or higher. All applications written for AMETAS are created within Java,
including features like JNI (Java native interface) for specific solutions beyond the
capabilities of pure Java programming.

The main target of AMETAS is not to provide an environment for lean,
highly efficient, mobile agents. Instead, the system encourages a definite notion of
agent-oriented software engineering which puts emphasis on the autonomy of each
part of a multi-agent application.

AMETAS does not require agents to implement specific patterns of behavior,
and it does not provide auxiliary components for supporting deductive algorithms
for distributed problem solving. This does not mean that AMETAS may not be
used to write intelligent agents. Neither is it required to write agents which migrate
at some point of their lifetime. Intelligence and mobility are matters of design



332 Michael Zapf

ration tools

Configur−

Place Name

System

Admin.

interface

Migration

Connector

Mediator

Driver

User

Place

Driver

Messaging

Identities

Java VM / Operating system / Devices

Policies Security

Events

Driver

Figure 1. AMETAS components

and implementation of applications. To enforce autonomy, in our view the most
important aspect of agent programming, the system provides a strict separation
of the components and creates dedicated thread groups for each agent. Moreover,
the system handles all mobility-related issues because Java does not offer suitable
features for mobile code in current distributions. Implementing aspects like beliefs,
desires, intentions is up to the individual application design.

For the following descriptions we assume that the reader is familiar with the
basic ideas of agent theory and programming [16, 10], so we will keep the general
basics short.

2. System Architecture

At first we provide some information about the general system architecture.

2.1. Components

Basically, the AMETAS architecture differentiates between
• static parts: These parts provide the infrastructure for the applications, but

they are not part of any specific application. They comprise the core compo-
nents as well as supporting services.

• dynamic parts: These are the applications, which may consist of user inter-
faces, software agents, services.

Creating an AMETAS application means to implement these dynamic components.
The static parts are expected to be available during execution time and form the
execution environment for any AMETAS application. Figure 1 shows the basic
components of the AMETAS environment. On the bottom, the infrastructure is
drawn, consisting of the hardware, the operating system, and the Java virtual
machine which cares for a platform-independent operation of the agent system. The
part which is located between the applications and the infrastructure is commonly



AMETAS – the Asynchronous MEssage Transfer Agent System 333

called place, a term which has already been in use since early mobile agent system
implementations like Telescript1.

Places offer basic services to the application objects which are called Place
Users2. Each of these Place Users is run by a driver which is equipped with an
own thread group for allowing concurrent operation. Places offer the post office for
maintaining the message system as well as an event system which may be utilized
for notifying components about interesting changes in the environment. This is, for
instance, useful for an efficient processing of Place Users which wait for incoming
messages.

The security system is responsible for isolating the Place Users from each
other, and to prevent illegal access of the Place Users on the place. The recent
version applies various security features of the current Java 2 environment. The
configuration is controlled by setting up policies which, for example, define the
association of privileges and permissions to identities. The security subsystem is
discussed in more detail in section 5.

If agents want to migrate, the places take care of the connection activities,
marshalling and demarshalling and other protocol-related issues. Not only the code
but also the state of the agent needs to be encoded and transmitted, and there are
migration parameters concerning the security level and remote signing features.
On arrival, the place resumes the execution of the agent.

Place addressing is organized by a dedicated naming system called Place
Name System. This system abstracts from host-bound addresses and ports and
allows to assign symbolic names to places. The Place Name System may also be
dynamically updated.

Each place offers a connection point for attaching user and administration
interfaces. These interfaces may be attached and detached during the runtime
period of a place without interfering with the applications. Various configuration
tools allow to create Place User code packages, to administrate the Place Name
System, or to configure the security subsystem.

2.2. Place addressing

Place addressing is important in the situation
• when an administrator or user contacts a place using a user interface, and
• when agents migrate between places.

As the AMETAS infrastructure is based on separate processes on network
locations – the places –, referencing cannot just rely on host adressing (like within
DNS). Generally, one network node (i.e. one host) may run several places. These
places are distinguished by the associated connection sockets. Thus, there is no
single well-known port.

1Telescript is one of the first mobile agent systems, created by General Magic. Unfortunately,
General Magic has completely dropped their engagements and do not offer any further informa-
tion on Telescript.
2The term is capitalized in order to avoid confusion with “people using a place”.



334 Michael Zapf

Dynamic IP addresses are another problem. Usually, IP addresses are dy-
namically assigned for dial-up connections. An agent system like AMETAS may
consist of several components on different network nodes, some of them at loca-
tions without permanent IP address. This means that agents may fail to reach a
node which has changed its address.3

Symbolic names are commonly used to solve the problem of changing identi-
fiers (like network locsations). A mapping is used to associate the symbolic name
to the network location and port number. This mapping is organized by the Place
Name System, a mechanism similar to the Domain Name System. The symbolic
name used in AMETAS is called PNS name or fully qualified place name.

There is one major difference between the (standard) DNS and the PNS
systems. As places may change their network address because of dynamic IP ad-
dress allocation, the PNS entries may be updated by the places on address change.
Agents which try to reach a place will never get into contact with these details;
they will just continue to use the PNS name.

The Place Name System is a hierarchical name space, similar to DNS, but
is not depending on DNS naming. PNS domains need not be related to any DNS
domain. The hierarchical structure is required to prevent a single point of failure,
but also to control the propagation of changes of the mapping within a limited
area of the name space.

Example. The place first shall be contained in a domain called samples.ametas.
This yields the name first.samples.ametas. In PNS, there could be a mapping
first.samples.ametas. → myhost.ametas.de:1024.

When an agent wants to travel to this place, it would use a command like
m Driver.go(“first.samples.ametas”);

Technically speaking, the PNS is run by a collection of server processes, the Place
Name Servers, which serve a part of the name space. Requests for name resolution
are directed to one PNS server which may then attempt to resolve the name by
itself, or delegate the request to another PNS server.

2.3. Message exchange

Components in client-server applications or object systems communicate by using
procedure or method calls, or they utilize shared memory. Within object systems,
this is often realized by variables of class scope.

As agent systems are mainly written in Java, and as Java runs applications
as one single process, possibly with several execution threads, all components of
an agent system may use one of these mechanisms to move information. For ex-
ample, some systems allow the application programmer to subclass provided agent
base classes, adding application-specific methods which are intended to be called
by other components, notably also by other agents. In order to propagate the
new agent methods, features like interface repositories may be used, or the Java
Reflection API could serve to discover these methods.

3These concerns have lost some of their severity due to the success of the DynDNS system [4].



AMETAS – the Asynchronous MEssage Transfer Agent System 335

Sender

Category

Privileges

Deletability Options

TTL

Subcategory

Receiver

Sender place

Delivery place

Sender context

Reply−To

Identifier

Body

Receiver context

Figure 2. Message structure

AMETAS is not the only system to provide message passing between compo-
nents, but it actually restricts the communication to message passing only. This
delivers the name “Asynchronous Message Transfer Agent System”. Unlike many
other systems, AMETAS disallows agents to offer application-specific methods,
while internal objects of the place certainly make use of all kinds of communica-
tion patterns. Thus, sender and receiver achieve a spatial and temporal decoupling.
Figure 2 shows the structure of a message. Messages consist of two main parts, the
message header and the message body. The header consists of the following fields:

Sender ID of the sender of the message
Receiver ID of the receiver of the message
Identifier ID of this message
Reply-To ID of another message which this message is (semantically) re-

lated to
Deletability Determines which component may delete the message if it is ad-

dresses to a set of receivers
TTL Time period after which the message is removed within the sys-

tem
Privileges Set of privileges which were granted to the sender at the time of

sending
Category Kind of message
Subcategory Kind of message
Options Options of message processing
SenderPlace Place where this message has been submitted (for remote dis-

patching)
DeliveryPlace Place where this message has been retrieved
Contexts Sender and receiver contexts for conversations

Some of these header fields are automatically filled in by the system, especially
to prevent spoofing attacks or illegal claim of privileges. These fields are category,



336 Michael Zapf

sender, identifier, privileges, sender place, delivery place. The other fields may be
set by the application.

The message body is nothing but an array of object references, technically
speaking, java.lang.Object[]. This seems to provide a great amount of flexibility, but
there is one important issue: As all components are loaded by their own classloader,
there is no way of referencing the same class for different communication partners.
Even if it were possible to transmit class definitions along with messages, there
could be name clashes in the receiver’s name space. Therefore, all objects which are
sent in the body of a message must be defined by classes which are reachable for all
components. These are the classes contained in the Java Runtime Environment,
base and support classes of AMETAS, or other classes within the classpath.

Within the place, the post office is responsible for storing incoming messages
in the mailboxes (which are simple queues) specified by the receiver address. When
a message is sent to another component, the message is actually held within the
local post office, and it is up to the recipient to get this message from the post
office. In order to avoid polling, an event system may be utilized, but ultimatively,
the recipient must actively retrieve the message. Messages may only be dispatched
locally, so for dispatching across places, agents may be used (so-called messengers).

3. The Anatomy of AMETAS Applications

One basic feature of AMETAS is the distinction of application components in three
categories: agents, user adapters, and services. All members of these categories are
summarized under the term Place User, or PU for short, and share some important
properties:

• the execution mechanism: Every Place User has a special method called in-
voke which is called by the place (by a newly created thread inside the place)
to start it.

• the way they are maintained inside the place: All Place Users are managed
and maintained by the place in the same way and at the same layer.

• the addressing scheme: Every Place User has a unique identifier (its Place
User ID). Other Place Users and the place may identify and address it via
this Place User ID.

• the way of communicating: Place Users use the post office of the local place
to exchange messages.

3.1. Place User addressing

Each Place User is assigned a unique identifier. This identifier, called the Place
User ID or PUID, is created using a timestamp and the local address (for providing
uniqueness).

PUIDs provide a Place User with an identity within AMETAS. In that way,
they could be considered to be like references for normal objects, but in this case,



AMETAS – the Asynchronous MEssage Transfer Agent System 337

Type

description
Mediator

PUID

PUID

PUID

Results

Request

PUID

new

Place

(Driver)

requestPU−

Startup
tiation

Instan−

Figure 3. Getting the PUID

referring to a complete aggregation. The PUID is necessary to communicate with
the Place User because it serves as the recipient identifier in AMETAS messages.

There are basically two ways to get the PUID of a Place User, as shown in
Figure 3. In the first case, a new Place User is created. The Place User which
initiates the creation gets the associated new PUID as a return value. This allows
the “parent” to address the “child”. After receiving a message from the parent,
the child also knows the parent’s ID.

In the second case, no new Place User is created, but there is a component
called mediator which looks up a Place User using an abstract description. Thus,
we have basically a local, internal directory service of Place Users. If the description
is too general, the mediator possibly returns multiple PUIDs, and the requestor
must decide which is the best fit.

3.2. Storing Place Users

Place Users consist of a well-defined set of classes which are aggregated during
implementation time. These aggregations depend strongly on staying together – it
would cause a fatal failure if an agent “lost” a class during migration. Therefore,
in AMETAS, all classes belonging to a Place User are put into a data structure
which may be stored and loaded from the file system, and also be sent through
socket connections to allow for migration of agents.

These packages are called Signed Place User Containers or SPU containers
or SPUs, for short. An SPU has a structure similar to a JAR file, but apart from
storing class definitions and other plain data files, it has some important features:

• It may contain more than one PU : Agents may take other agent definitions
with them and release (spawn) them at a remote location.

• SPUs contain privilege lists for starting and running this PU (see section 5.2).
• SPUs provide type descriptions for their contained PUs. These descriptions

are used for mediation purposes (see section 4).

SPUs are cryptographically signed. These signatures are known as author signa-
tures. It is possible to restrict the access to places to Place Users which are signed
by known authors.



338 Michael Zapf

3.3. Agents

In the literature, the notion of agenthood has been widely discussed throughout the
last years, but finally getting to no clear definition which is commonly accepted or
even acceptable [16, 10]. Due to the different background of the researchers who
are concerned with agent technology, each researcher has some domain-specific
minimum requirements for entities to be agents.

3.3.1. Agenthood. One coarse distinction resulted from the two fractions of re-
searchers coming from the AI (artificial intelligence) domain, and from the DS
(distributed systems) domain. Agents coming from the former ones are sometimes
called intelligent agents, while those from the latter are were commonly referred
to mobile agents. Within AMETAS, both notions are just attributes for agents.
AMETAS supports the notion of agenthood in two ways:

• implementation-related : by providing a base class for agents; so any entity
utilizing this base class to derive a subclass is called agent ;

• paradigm-related : agents are autonomous, self-contained components which
communicate with other Place Users with the intention to fulfil a given task.

AMETAS follows a very strict notion of agenthood. The reason to split the ap-
plication components in three different kinds of Place Users was to clearly define
which parts can fulfill the agenthood property, thus eligible to be called agents,
and which parts cannot.

The first and indispensable property of agents is autonomy.

By autonomy we describe the fact that an agent’s behavior is completely defined
within the agent itself and that the agent always keeps the power to decide how
to continue with the plan. The agent need not explicitly define a data structure
to be called a plan, but every agent must be written as if all initiative originates
from within the agent’s behavior, trying to achieve the goals of the plan.

The autonomy principle is the primary reason to restrict communication
between components to a message passing pattern, because all other kinds of
communication (like referencing and method invocation, sockets, pipes) establish
a binding between the partners which limit the agent’s choice of actions (like
migrating away) until the communication is finished.4

3.3.2. Example. Programming an agent is pretty straight-forward. An agent may
consist of one object or a collection of objects which are kept together as one
well-defined aggregation. This aggregation gets an identifier and is, from now on,
understood to be the agent as such. On the technical side, the agent must enclose
exactly one instance of a class which is subclassed from AMETASAgent. Figure 4
gives an example of a simple agent.

4Various strategies have emerged to handle this problem; some agent systems introduce proxies
to forward data, see also [3].



AMETAS – the Asynchronous MEssage Transfer Agent System 339

import AMETAS.agentdev.*;

import AMETAS.data.*;

public class MyAgent extends AMETASAgent {
AMETASPlaceUserID m idSender = null;

public void invoke() {
AMETASMessage[] ames = m Driver.getMessages(true);

if (ames!=null) {
m idSender = ames[0].getSenderID();

Object[] aBody = { ’’Going to place1’’ };
AMETASMessage mes = new AMETASMessage(m idSender, aBody);

m Driver.depositMessage(mes);

}
try {

m Driver.go(’’place1’’);

// This line after go is never reached

}
catch(Exception e) {

m Driver.output(’’Migration failed.’’);

}
}

}

Figure 4. Simple Agent implementation

The behavior of an agent is defined within its programming code, which
is located within the invoke method. This method is automatically called after
instantiating the agent.

• First, this agent gets all messages which are addressed to it – it reads its
mailbox. It is assumed for this simple example that the topmost message
(the first to be deposited) is the only interesting one.

• If there are messages, it gets the sender identifier of this message, creates a
message containing the string “Going to place1” and sends it to the bearer
of the identifier. If there are no messages, it skips this step.

• Now it migrates by calling the driver method go. Any exception (e.g. caused
by an unreachable place) will be caught by the catch block, outputting a text
to the log file.
When the execution thread leaves the invoke method (and when there are

no more threads left), the agent is terminated and garbage-collected.
The output operation shown in Figure 4 actually creates a log file entry. This

is only useful for demonstration and debugging purposes, because no other Place
User may react on this output, and the place administrator may have decided
to block outputting to the log. Information exchange should only happen using
messages.

3.3.3. Migration mechanism. As can be seen in Figure 4, the execution never
reaches the line after go: Either go succeeds – then the execution will resume with



340 Michael Zapf

calling invoke again; or, if go fails, an exception is thrown. A successful go makes
the place forcefully stop all threads5 associated to this agent, serializing the state,
retrieving the set of class definitions, and using a migration protocol to transfer
these components to a remote place. This migration is only successful if the remote
place actually accepts the agent; otherwise, the migration is aborted, and the agent
may continue execution.

This kind of migration is commonly called weak migration [9]. AMETAS
does not support strong migration; it is not possible to write an agent which
continues execution right after the command which caused the migration. Using
special programming patterns like context-oriented programming6, handling weak
migration may become as intuitive as handling strong migration.

3.4. User adapters

User adapters allow users and Place Users to interact. More than that, these
components are used to integrate users and components from outside the agent
environment into the system. For users, this is usually achieved by creating a
user interface, while for components, the adapter defines an application interface.
The structure of both interfaces is completely application-dependent, allowing to
integrate existing external components into the agent system.

With user adapters, users get a tool for communicating with agents in exactly
the same way as agents communicate among themselves. Different from agents,
user adapters are entitled to access system resources like a graphics display or var-
ious input devices like mouse or keyboard. But they cannot migrate. In principle,
the main application areas of user adapters are:

1. translating user actions into messages which are understood by Place Users;
for instance, a click on a button is translated into an action which entails a
message to be submitted to an agent;

2. translating Place User messages into a human-readable and interpretable
form; an array of host names might be represented as a sorted list on a user
interface.

User integration is fully transparent within the agent system. It does not matter
for the agent application whether a message is sent to an agent or whether it should
go to a user, because the details of presentation are completely encapsulated in a
user adapter. Users might even choose a suitable adapter to represent the results
of an agent computation without any changes in the application.

Invoking a user adapter is equal to invoking an agent: After instantiating the
user adapter, the invoke method is called; the user adapter should then prepare and
display a user interface. However, due to the nature of interactive user interfaces,
user adapters must rely on event processing when processing user actions. The

5Forceful termination of threads is deprecated [15]. However, avoiding to externally kill threads
puts the responsibility of cleaning up running threads to the application, which means some
restructuring of currently running applications. The removal of forceful thread termination is
scheduled for the next major release of AMETAS.
6See more on context-oriented programming on our web site [1].



AMETAS – the Asynchronous MEssage Transfer Agent System 341

public class WalkerAdapter extends AMETASUserAdapter

implements AMETASNotifiable, WindowListener, ActionListener {

/** Main method of the Place User. */

public void invoke() {
m frmMainFrame = new JFrame("WalkerAdapter");

m frmMainFrame.addWindowListener(this);

// ... further graphic programming

m frmMainFrame.show();
try { m Driver.registerEventListener(...); }
catch (Exception ex ) {

// could not register for events

}
// now wait here

m Driver.idle();

}

/** Invoked when there is an AWT event like button push. */

public void actionPerformed(ActionEvent e) {
if (e.getSource() == m btnStart) {

m txfOutput.setText("Waiting for answer...");

m btnStart.setEnabled(false);

// send the agent ...

}
}

/** Invoked when there is an AMETAS event, like agent arriving. */

public void notifyListener(AMETASEvent evt) {
// called when there is an interesting event,

// e.g. when the agent returned

}

/** When window is closed, terminate the user adapter. */

public void windowClosing(WindowEvent e) {
m Driver.wakeup();

// makes driver return from invoke

}
// further event handling methods

}

Figure 5. User adapter code

window system creates additional threads which poll input widgets and update
screen display.

Again, when the user adapter driver leaves the invoke method, all threads
belonging to the user adapter are forcefully terminated and all top-level windows
are closed. Of course, the window system threads continue running.

Figure 5 shows an excerpt of the code of a sample user adapter. Within
the invoke method, the graphical user interface is created and shown. In order to



342 Michael Zapf

prevent the driver thread from leaving the invoke method, it should be put to sleep
(using the idle method). From now on, the user adapter turns to event processing:
Events from the window system represent user actions, and events from the agent
system may, for instance, be incoming requests or replies from agents, or arriving
and departing agents.

3.5. Services

The third kind of Place Users are called services. In general, a service is understood
as a component which implements a specific functionality which it provides for
other components on request. The usual processing is to receive the request, process
it, and then formulate a response for the requestor. This communication pattern is
referred to as the request-response pattern. AMETAS services consist of two parts,

• the service manager, and
• service objects.

3.5.1. Service managers and service objects. The service manager is provided by
the AMETAS system core, while the service objects contain the actual application-
specific implementation. Unlike agents, services may not migrate; they are firmly
installed within their execution environment. This allows to create services which
provide platform-dependent functionalities to the rest of the agent system – by
using native code or calling specific system services.

For creating a service, the application author does not write a Place User. The
service manager is the subclassed Place User, provided by the core. The service
object is subclassed from the AMETASServiceObject class. All service objects are
instances of the same service object class.

The implementation differs in so far that instead of implementing the invoke
method of a Place User, the startService method of the AMETASServiceObject
class must be implemented which is executed whenever a message is received by
the service manager and dispatched to this service object.The initService method
is called when the service is initially started and is normally used for reading
configuration data for the service.

Each Place User is run by one driver thread. For services which adopt a
request-response behavior pattern, it is recommended to run additional threads
which allow the service to accept further messages while still processing some
messages from previous invocations. Threads may also be utilized to make the
service become initiative, i.e. the service starts a communication with another
component. This can be triggered by some background job while no message is
coming in. These additional threads are also required if the service is intended
to monitor some changes outside of the agent environment which shall lead to a
reaction of the service.

3.5.2. Sharing and sessions. The service manager resembles the object adapters
of CORBA [11]. As such, it also controls the activation modes. Services may be
used for information exchange between Place Users. There is only one Place User
representing the service, so when multiple PUs want to communicate with the



AMETAS – the Asynchronous MEssage Transfer Agent System 343

public class TranslatorService extends AMETASServiceObject {
private Hashtable m htbDict;

//

public void initService(Vector vctServiceParams) {
m htbDict = new Hashtable();

m htbDict.put("Haus","house");

m htbDict.put("Hund","dog");

m htbDict.put("Katze","cat");

m htbDict.put("Maus","mouse");

}
//

public void startService(AMETASMessage msgClient) {
Object[] aBody = msgClient.getBody();

if (aBody[0].equals("TRANSLATE")) {
String sWordBack = (String)(m htbDict.get(aBody[1]));

if (sWordBack == null) {
sWordBack = "No translation for \’" + aBody[1] + "\’";

}
String[] asAnswer = { "TRANSLATION", sWordBack };
depositMessage(new AMETASMessage(msgClient.getSenderID(),

msgClient.getID(), asAnswer));

}
}

}

Figure 6. Implementation of a simple translation service

same service, it is important to decide whether all these PUs consider this service
as one service in a global scope (within the place), or as their service within a local
scope. By the first meaning, there should be one common (shared) service object,
while by the second meaning, there should be one service object instance per PU
which issued a request to the service. Depending on the sender of the request, the
service manager dispatches the request to the associated service object instance.

Interactions between PUs may consist of more than one request. In that case,
the whole communicative act should be handled by the same service object. This
is possible by establishing a session between the partners. The service object will
be retained as long as the partner has not closed the session. Sharing and session
establishment may be combined: SHARED (with no session), SHARED SESSION,
NON SHARED, or NON SHARED SESSION. The mode is defined within the
service type definition in the SPU.

3.5.3. Example. Figure 6 shows an example service. The initService method is
used for initializing the service object before any request comes in. The startService
method is called for each incoming message. This service should be implemented
as a SHARED service.

For the sake of simplicity, we omit error handling and assume that the in-
coming request has the expected format, i.e. it always consists of two strings, the



344 Michael Zapf

first one being the constant TRANSLATE, the second one the string to be trans-
lated. After looking up the corresponding translation, the service submits a reply
message to the requestor.7

3.6. Interaction with the environment

We need to consider external entities which are not modelled as Place Users,
namely the operating system and devices or other processes outside the Java envi-
ronment. PUs normally may not get into contact with these external entities due to
security restrictions. However, agent applications somehow need to get information
from outside or change the configuration of the environment.

Most agent systems do not restrict the access of agents to external entities.
For example, to get in contact with the user, some systems allow agents to open
graphical user interfaces. In this case, user interactions may be described as text
input actions or button push actions or the like for input, or drawing graphs for
output. AMETAS hides all these different kinds of interactions by the user adapter
concept.

Besides user interfaces, some data exchange may involve files or sockets. The
communication with these external entities may be hidden within services, as de-
scribed above. This means that all device-specific communication is effectively hid-
den as Place User-internal communication. To the outside, only AMETAS message
exchange is visible.

For the message-based communication between the parts of the application,
it is irrelevant which kinds of external entities are involved. Any other external
application, even a complete CORBA system or .NET environment, may commu-
nicate with AMETAS-internal agent applications using a specific user adapter or
service.

Another example of resource integration may be found in the implementation
of NetDoctor [17]. Here, a side-band communication channel is established between
places for immediate information transmission (if sending an agent is considered
to be too costly). This is quite comfortable for network administrators when they
want to get a current view on the network status. The communication endpoints
(the sockets) are hidden inside specific services. That is, whenever a message is
send to such a communication service, it transmits the contents to another com-
munication service, depending on the destination information. The receiving ser-
vice creates a new message, packing the received data into the message. Within
the agent system, the transmitting service just looks like a data sink, while the
receiving service plays the role of a data source. Within the agent system, the
communication stays message-oriented.

7The requestor’s address can be found within the header of the incoming message.



AMETAS – the Asynchronous MEssage Transfer Agent System 345

4. Mediation

In section 3.1, we already discussed ways to get the address of a Place User, the
PUID. In most applications we encounter the problem how to find the right agents
and services. Taking a look at the illustration of NetDoctor (Figure 8, later in this
article), it becomes obvious that the MobileManager agent does not necessarily
know the PUIDs of all components, because some might have been started at some
time after the MobileManager was created.

When the MobileManager agent arrives at some place, it must at first deter-
mine the addresses of the other Place Users. One comfortable way to solve this
problem is to let the application start the Place Users, which keeps newly created
PUID for subsequent communication. Specifically, the methods

AMETASPlaceUserID requestPUStartup(...)
AMETASPlaceUserID spawnAgent(...)

are called by the parent PU, returning the PUID of the created PU (as described
in section 3.1). This identifier is then passed by a message to the other agents.

The situation is a bit different with services. Services are sometimes started
on start-up of the place itself, so no application gets the required PUIDs on the
start event. Moreover, when applications are reconfigured by new components,
these new components need to find out how to get the required addresses for
communication.

AMETAS supports the discovery of components by mediation.

4.1. Mediator

Mediation, sometimes also known as trading [12], is a process which has the goal to
get a concrete address from an abstract description, using some instance (called the
mediator or trader) which is able to perform this translation. Actually, in practise,
it means to find one or more objects that fit to some description and hence allow
the requestor to get in communication with these objects. The more specific the
descriptions are, the smaller the result sets become. We need to distinguish between
two kinds of mediation:

• instance mediation, and
• type mediation.

Instance mediation delivers a set of identifiers of matching instances. In AMETAS,
a list of PUIDs is returned after submitting a mediation request to the mediator.
The result of a type mediation may be a set of new descriptions (e.g. PU package)
which allow to create an instance; such an instance would then be discovered in
the corresponding instance mediation process. For example, while the result in the
first case would be the PUID of the (running) SNMPService, in the second case
one would receive the SPU name (of the SPU containing the classes) in order to
launch the SNMPService.

The AMETAS place registers the type descriptions enclosed within the SPU
files and the types of the running PUs in a type repository. Services are registered
using the description of the associated service object, which is mapped to the



346 Michael Zapf

public void invoke() {
...

boolean bSearchInstance = true;

AMETASMediationRequest mr = new AMETASMediationRequest(

"SNMPService", bSearchInstance);

AMETASMediationResult[] amrs = m Driver.request(mr);

if (amrs == null || amrs.length == 0) {
m Driver.output("SNMPService not found.");

}
else {

AMETASPlaceUserID idSNMP = amrs[0].getPlaceUserID();

// create a message for the SNMP service

// ...

}
...

}

Figure 7. Using mediation to find a service

PUID of the service manager. As soon as a PU is started, the PUID is registered,
and the PU is available for mediation.

Mobility is a difficult issue for mediation. The requestor may not rely on the
actual presence of an agent whose ID has been returned in a previous mediation
response, because the agent might have migrated away in the meantime. For this
reason, agent descriptions are stored for some predefined period of time, after
which they are discarded. Messages sent to these addresses will be stored in the
mailbox system, waiting for the agent to return. The client agent may also check
whether the returned address refers to a present agent, but this is only a hint (the
agent could still escape after the check). Agents which terminated at the local place
(by themselves or by a forceful kill) cause the PUID to be immediately removed
so that this outdated ID will not be returned as a mediation result any more.

4.2. Mediation process

In order to initiate a mediation process, the requestor formulates a mediation re-
quest. The request contains a description which is matched against the descriptions
collected in the repository by the mediator. The matching procedure depends on
the actual mediator implementation – the mediator may reject descriptions which
it does not understand. The mediation request also informs the mediator whether
instance or type mediation shall be used.

Figure 7 shows how to use mediation within a Place User implementation.
In this example, the PUID of the SNMPService is requested. If there is no such
service, an empty array is returned. If the mediation failed for some other reason,
null is returned.



AMETAS – the Asynchronous MEssage Transfer Agent System 347

4.3. String types

The simplest descriptions for types are string types. A string type may be just the
name of the Place User, for example, KQMLService or SNMPQueryAgent.

The mediation procedure only needs to check which Place Users have the
same name in their string type. A string type contains an instance of the class
StringType. To simplify, string types are always assumed when using strings in the
description, so the following lines are equivalent:

mrq = new AMETASMediationRequest("SNMPService",bRunning);
mrq = new AMETASMediationRequest(new

AMETASType(new StringType("SNMPService")),bRunning);

Strings are, in general, just a sequence of characters, without any specific structure.
AMETAS defines a structure on string types which may be used for mediation.
This structure defines a string type to consist of three parts. For example,

Name Messenger
Instance michael01
Group SystemAgents

forms this string: Messenger#michael01/SystemAgents.
Using this substructure, mediation can become quite powerful. For example,

the mediator may retrieve all instances of the same SPU, it may find all agents
which belong to some predefined group, or – when setting the instance specification
to be the starter identity name – you can find all Place Users of some specific user.
For a mediation request, the wildcard symbol * may be used, and the string must
be passed to the mediator within a mediation request.

• Messenger#*/* will return all Place Users named Messenger, regardless of
the group or the starter.

• *#michael/* will return all Place Users of any name or group, provided that
they have the instance name michael (which could identify the starter).

4.4. Hybrid types

While strings are a very simple means of finding the desired Place User, there is a
considerable drawback: How do you know which Place User does which job? In the
case of a closed system, the situation is clear. You can just define that all services
named SNMPService must provide some required functionality. But in an open
system, new agents arrive, others depart, further agents come with familiar names
but do quite different things. Who has the right to name his service SNMPService?

In AMETAS, a declarative type system was introduced, described in detail
in my Ph.D. thesis [18]. The principle behind this type system is that

• structural compatibility of communication is a requirement for cooperative
problem solving in a collection of agents, but

• semantic information is important to avoid unwanted matches of seemingly
compatible requirements.



348 Michael Zapf

Abstracting from communication connection details (which is realized within
AMETAS by enforcing message passing), the ways how the components commu-
nicate may be characterized. Actually, messages consist of message items which
have some specific data type, so the first requirement for compatibility is that all
received items have types compatible with the expectations of the recipient.

Moreover, as agents are expected to keep their state, they are stateful objects.
This means that there is a protocol for communicating with the agent, considering
incoming and outgoing messages.

Finally, most users may have no idea which messages are exchanged by the
desired agents. They do not look for agents to comply to some protocol but to
perform some job. This boils down to describing the semantics of the agent. Besides
the overall meaning of the agent, it is possible to describe the meaning of agent
states, incoming and outgoing messages, and senders and receivers which have
been specified within the protocol description.8

5. Security

As AMETAS agents are mobile Java programs, they may perform any action that
a Java program is able to do. If the underlying operating systems implements
certain security policies, these policies may serve to restrict the possible actions
caused by agents on the Virtual Machine. For example, when a place runs as a
Unix process, the place and all objects on it will receive the exact set of privileges
assigned to the owner of the process. This means that all agents are allowed to
access the files of the place starter.

This kind of security is obviously insufficient, lacking an appropriate granular-
ity. It cannot distinguish between the starter of a place and the agent owners. This
could be disastrous when a place is started by the system administrator (root):
The immigrated agents could perform administrative tasks and probably damage
the underlying system. Obviously, there is a need for appropriate security precau-
tions. The AMETAS security subsystem relies on the Java Security Architecture
of Java 2 [14].

5.1. Basic principles

By the term privilege we define a property that must be assigned to a principal
in order to let it perform a specified set of actions within the agent system. These
actions are starting, stopping. and communicating with a given set of PUs.

A privilege is always referred to by a name and may imply permissions which
are required to access resources via the Java Runtime Environment. Thus, having
some privilege may imply to be able to write to a file if the appropriate permission
is implied by the privilege. The following statements summarize the basic ideas of
the security system:

8Describing the Hybrid Type System is far beyond the scope of this article. Please see [18, 19, 1]
for more details.



AMETAS – the Asynchronous MEssage Transfer Agent System 349

• The system distinguishes between user, author, and place identities.
• It is the sole responsibility of the place to grant privileges at runtime. Each

place decides by itself whether a privilege is granted or refused.
• Only users may be assigned privileges by places. Users must be known to the

place.
• Places are entitled to reject Place Users from unknown authors.
• Users may delegate a subset of their privileges to Place Users.
• Place Users may restrict the set of privileges delegated to them.
• Place Users may require a minimum set of privileges in order to be started

or used.
• Place Users may never possess more privileges than the user who started

them. The granted privileges always depend on the set of privileges granted
to this user at the current place.

All remaining aspects of the security system are based upon these principles.

5.2. Privileges of agents and user adapters

Privilege processing is equal for agents and user adapters. There are two sets of
privileges called start privileges and runtime privileges.

In order to start an agent or a user adapter and become the owner, the
principal (user) must have been granted at least the set of start privileges of this
PU. This set is declared within the SPU container. If the user does not have these
privileges, the start of the PU is denied.

By launching a Place User like an agent or a user adapter, the user becomes
the owner of the PU. First, the owner automatically signs the code of the Place
User so that the ownership can be determined at other places. Second, the set of
available privileges is retrieved, according to the owner of the PU, from the local
policy definition. Thus, it is irrelevant which privileges were active at other places:
After arriving at a new place, the maximum set of privileges is never bigger than
the set which is locally granted for this user.

After starting the Place User, all following actions – like launching further
PUs – originate from within the Place User. As the PU acts on behalf of the user,
it is reasonable to restrict the set of privileges of the PU to the set of privileges
associated to the user. This is called privilege delegation.

The PU may restrict the set of delegated privileges. The maximum set of
privileges which are in effect is called runtime privileges. This set is also defined
within the SPU container. The effective privilege set is the intersection between
the set of user privileges and runtime privileges.

It is possible to define a runtime privilege set which is bigger than the set of
start privileges. This may be useful if an application shall be started by users with
different privilege sets. If started by highly privileged users, the application gains
more privileges; for normal users, the application gets fewer privileges. In fact, the
set of runtime privileges and start privileges need not be related to each other in
any way.



350 Michael Zapf

5.3. Privileges of services

Privilege handling of services is substantially different from the privilege handling
of agents or user adapters. The reason is that services are considered to be started
on behalf of the place, not of the user, although the user may trigger the launch
of the service. Services are considered to be extensions of the place functionality.

Services also define two privilege sets, again called start and runtime priv-
ileges. Unlike the situation with agents or user adapters, the start privilege set
does not determine whether the service is started; services are often automatically
started at place startup. Instead, the start privileges control whether messages
arrive at the service or not. A PU is only entitled to send a message to a service
if the effective privilege set of the PU contains the start privileges of the service.
Moreover, the runtime privileges play another role for services as well: The runtime
privilege set is always the effective set for any requestor of the service.

The advantage is that it is not necessary to grant all kinds of privileges to a
user who wants his agent to utilize a lot of services. Instead, the service acts like
a set-uid program in UNIX: Using services, Place Users may get (indirect) access
to facilities which they may not directly access.

5.4. Access control mechanism

There are two interesting situations which we take a brief look at: starting a Place
User, and agents which arrive at a place.

5.4.1. Starting Place Users. Each time a PU is requested to start, the place loads
the SPU which is referred to by its file name, and uses this file in memory to
set up a codesource. Each PU gets an own ClassLoader which retrieves all classes
from this codesource, so agents are effectively isolated against each other: The
classloaders create an implicit name space which prevents addressing of classes
within other classloaders, i.e. within other PUs. That way, any kind of referencing
is prevented. 9

Each SPU is verified by its list of cryptographic signatures. There may be
a set of signatures from different identities; if the authentication policy requires a
known author, one of these signatures must be valid and coming from an identity
known to this place. After this verification, the sets of start and runtime privilege
names are retrieved and put into the protection domain of this PU.

The privileges of the user (who requested the start of the PU) are retrieved
from the access control policy definition. Provided that they are a superset of
the start privileges, the Place User class is loaded from the codesource and is
finally instantiated. The runtime privileges as defined in the protection domain
are intersected with the user privileges and form the effective privilege list. Just
before start, the system signs the SPU on behalf of the user and transmits this
signature along with the SPU. The signature allows to identify the user as the
actual owner of this agent instance.

9This gives reason to the fact that you cannot send application-defined objects in messages: the
receiver has no chance to get the class definition.



AMETAS – the Asynchronous MEssage Transfer Agent System 351

When a Place User attempts to access a resource which is protected by Java’s
security system, the AccessController of Java consults the associated protection
domain of the Place User. The protection domain checks the required permission
against the permissions set previously created from the effective privilege list,
which is created using the mapping of privileges to permissions within the policy
definition.

There are specific permissions which are forbidden for agents in order to pre-
vent direct resource access. For example, agents may never access files, or sockets,
or the window system. The protection domain of an agent will ignore any grant of
such permission induced by a privilege definition.

5.4.2. Incoming agents. When agents immigrate from other places, they may have
enjoyed a higher degree of freedom than at the new place. The reason is that the
access control decision only depends on the current place’s policy definitions, not
on those from the place where the agent came from.

After instantiation, the agent SPU was signed by the user who started it.
This signature is transferred to the new place by which that place determines the
owner of the agent. Similar to the local start situation, the SPU is accepted at the
new place and used to create a codesource instance, along with a new classloader.
The place retrieves the definition of runtime privileges from the SPU and, by
intersecting with the local access policy for this user, creates the new effective
privilege set.

5.5. Signing of remote agents

Mobile AMETAS agents may carry other agent definitions piggy-backed with
them. These agent definitions are contained within the SPU containers. When
the agent is at a remote place, it may launch such an internal agent, which could,
for instance, return to the initial place where the carrier agent started.

In this case, however, owners may not reliably sign the agent – because the
signature would need to be done remotely. AMETAS allows to transmit the private
key along with the agent – if this is desired. As the transmission of private cryp-
tographic data is inherently dangerous to the security of the application, remote
signing is not recommended. AMETAS places refuse the transmission of private
cryptographic keys when the transmission channel is not encrypted. The built-in
migration protocol may utilize common cryptographic algorithms as provided by
the Java cryptography extension (JCE).

Unsigned agents cannot be associated reliably to some user. A possible trust
model must enclose the remote places as trustful, which would lead to the con-
clusion that remote agent instantiation in a non-trusted environment must be
generally discouraged.



352 Michael Zapf

6. Applications

The design principles for AMETAS applications resemble the three-tier principle
[5]:

• User adapters provide the presentation logic.
• Agents are the data processing tier.
• Services are used as an interface to the system and deliver or store data.

One interesting feature is that, for example, the user adapter may be replaced,
as long as the new one is compatible to the rest of the application in the way as
expected from the original one. Speaking in terms of the mediation support (cf.
section 4), any subtype instance of the expected Place User is applicable.

6.1. Sample application

For multi-agent applications, it is usually required to define a coordinating in-
stance which controls the message flows between the application parts. While the
AMETAS post office is suitable to store messages for some time, it is not intended
for long-time storage. In addition, due to the nature of mobile and distributed
applications, it is unclear whether an application has terminated in the meantime.
It is advisable to have this control be done by a dedicated Place User. Which Place
User kind to choose depends on the application scenario:

• Agents are not dependent on the presence and attention of a human user.
• User adapters may not only display results but also collect information and

achieve control of the whole application.
• Services may be a good choice if the coordination also requires external data

retrieval, and if the collected data are to be provided to requesting other
Place Users.

Figure 8 shows an example of an agent application with some coordination tasks.
This example refers to the NetDoctor project [17] which employed mobile agents
for enhancing SNMP network management.

In NetDoctor, classic SNMP agents10 communicate via services with AME-
TAS agents. These SNMPServices provide an interface which translates SNMP
operations and data into AMETAS messages and vice versa. Instead of using one
fully-featured AMETAS agent, there are specialized agents, each for handling one
specific part of system management, e.g. checking memory usage, CPU load, net-
work transmissions, or device access. One of the agents acts as a coordinator by
collecting the data from the sub-agents and evaluating whether the given informa-
tion shall be considered normal or alarming.

While the services are started together with the places, the agents are sent
to the places by the user adapter, allowing a simple software deployment process,
keeping the codebase updated. Note that the administrator who watches the sys-
tem state on his user interface – provided by the user adapter – may log out and

10Note that the term “agent” again shows a different meaning.



AMETAS – the Asynchronous MEssage Transfer Agent System 353

CPUAgent

MemoryAgent

Coordinator

SNMPService MobileManager

User adapter

Place

Figure 8. Multi-agent application

close the user adapter, while the management system continues working. The task
of coordination is up to the local coordinator agents.

The coordinator has a limited set of measures which may be applied if the sys-
tem state requires corrections. If the coordinator fails, it sends a messenger agent
back to the administrator, asking for help. The administrator may then decide to
send a specifically prepared MobileManager which performs the required correc-
tive actions. Failing again, the administrator may choose another MobileManager
version or try to fix the problem by himself.

Agent applications should be designed to be multi-agent applications when-
ever some functionality shall be modularized, allowing to replace parts during
runtime. It should be considered that migrations cause noticeable network load
which, in turn, justifies the usage of smaller, specialized agents, even though this
requires additional coordinating agents.

6.2. Using AMETAS in projects

We used the agent system successfully in several national and international projects.
Some examples are listed below.

• The IntraManager [6] is an extension of the NetDoctor application for net-
work management. It uses neural networks in mobile agents to detect pat-
terns in the behavior of computer networks and tries to predict failures. This
project was run by the University of Frankfurt in cooperation with Deutsche
Flugsicherung.

• The VOTEC project [7, 8] was targeted towards creating new collaborative
working environments with 3D user navigation in a VRML scene. Agents were
used to handle personal profiles of members of this working environment.
The project was run by the GMD institute SIT (now Fraunhofer SIT), using
AMETAS as the infrastructure.



354 Michael Zapf

• The UNITE project [13], an IST project in the 5th EU Framework Pro-
gramme, was also concerned with providing users with a virtual office en-
vironment. AMETAS was used as the implementation base. Here, the agent
infrastructure was not only used to handle personal profiles but also to create
a flexible, distributed middleware for plugging in collaboration tools and for
dynamically adapting the group network topology. When users joined other
users in some virtual office, their agents negotiated the appropriate commu-
nication channels.

7. Summary and Outlook

This article provided an overview on AMETAS, a development and runtime envi-
ronment for the creation of mobile autonomous agents. A comprehensive system
overview would be out of the scope of this article, so we refer to the web site [1]
for up-to-date documentation.

AMETAS defines three kinds of application components: agents, user adapters,
and services. While services are able to wrap system-dependent resource accesses
and provide the place with a functional enhancement, user adapters integrate the
human user into the agent environment. Communicating with users is not a spe-
cial case anymore because this adapter makes users appear as Place Users. Finally,
agents are implemented as being autonomous, and while they may migrate, they
have the hardest restrictions concerning resource access. All these components,
called Place Users, communicate solely via messages.

The benefit of this handling is clear: All resource usage is hidden within
services (or user adapters), which avoids problems with remote resource access for
agents. Finally, it is easier to replace components, especially to introduce new and
enhanced versions of components.

AMETAS uses techniques of mediation to realize open applications (i.e. ap-
plications with an ever-changing set of components) by providing a means to de-
termine the address of some Place User referred to by an abstract description. This
description reaches from simple strings to complex declarative type specifications,
using message format, protocol, and semantic information.

The security system prevents illegal access between Place Users and defines
the access control to resources. However, there are no precautions to cope with
places which attack agents (malicious places) – this is still an open research field,
and, as quite some years have gone by, probably never gets to some generic solution.

In the past years up to now, AMETAS proved the applicability of its prin-
ciples, even in some international projects. Currently, AMETAS still evolves; the
next version is planned to allow to use more externally provided services, including
external public key infrastructures, directory and naming services.

AMETAS is one of many approaches to support the creation of autonomous
and mobile software agents, so a list of related work would quickly grow long.



AMETAS – the Asynchronous MEssage Transfer Agent System 355

A good overview may be found on the web page of the AgentLink III European
Coordination Action [2].

References

[1] accsis GmbH: AMETAS web site, http://www.ametas.info/

[2] AgentLink III Coordination action in the 6th Framework Programme;
http://www.agentlink.org/

[3] J. Baumann, K. Rothermel: The Shadow Approach: An Orphan Detection Proto-
col for Mobile Agents. In: Mobile Agents Second International Workshop, MA 98,
Stuttgart 1998.

[4] Dynamic Network Services, Inc. http://www.dyndns.org/.

[5] W. Eckerson: Three-Tier Client/Server Architecture: Achieving Scalability, Perfor-
mance, and Efficiency in Client-Server Applications. In: Open Information Systems
10 3 (1995), January, No. 20

[6] K. Herrmann, K. Geihs: Integrating Mobile Agents and Neural Networks for Proac-
tive Management, Third IFIP WG 6.1 International Working Conference on Distrib-
uted Applications and Interoperable Systems, Krakow, Poland 2001.

[7] M. Hoffmann, M.-L. Moschgath, R. Reinema: A Security Infrastructure for the Vir-
tual Project Office; Proceedings of the IEEE International Conference on Software,
Telecommunications and Computer Networks (SoftCOM 2000) Split, Croatia, Oc-
tober 2000

[8] M. Hoffmann, R. Reinema: A Multi Agent Architecture for a Virtual Project Of-
fice; International ICSC Symposium on Multi-Agents and Mobile Agents in Virtual
Organizations and E-Commerce (MAMA 2000), Wollongong, Australia; December
2000

[9] T. Illmann, M. Weber, F. Kargl, T. Krueger: Migration of Mobile Agents in Java:
Problems, Classification and Solutions. In: International ICSC Congress: Intelligent
Systems & Applications ISA 2000, Wollongong, Australia, Volume 1, ICSC Academic
Press, December 2000.

[10] H. S. Nwana: Software Agents: An Overview. In: Knowledge Engineering Review 11
(1996), September, No. 3, pp. 1-40. http://agents.umbc.edu/introduction/ao/

[11] Object Management Group: The Common Object Request Broker Architecture and
Specification. Revision 2.4.1. November 2000. OMG Formal Document 2000-11-03

[12] Object Management Group: Trading Object Service Specification. Version 1.0, May
2000. OMG Formal Document 00-06-27

[13] R. Reinema, S. Trpe, R. Wolf, M. Zapf: UNITE - An Agent-Oriented Teamwork
Environment. Mobile Agents for Telecommunication Applications, 4th International
Workshop (MATA 2002), Barcelona, Spain.

[14] Sun Microsystems: Java 2 Security Architecture. Located under Java documentation,
http://java.sun.com/docs/

[15] Sun Microsystems: Why Are Thread.stop, Thread.suspend, Thread.resume and Run-
time.runFinalizersOnExit Deprecated? Java 2 Platform Documentation, specifically



356 Michael Zapf

http://java.sun.com/j2se/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html,
2005.

[16] M. J. Wooldridge: Agent-based software engineering. In: IEE Proceedings on Soft-
ware Engineering 144 (1997), No. 1, pp. 26-37

[17] M. Zapf, K. Herrmann, and K. Geihs: Decentralized SNMP Management with Mo-
bile Agents. Proceedings of the International Symposium on Integrated Network
Management (IM’ 99) Boston/USA, 1999.

[18] M. Zapf: Typisierung autonomer Softwareagenten (Ph.D. thesis). Johann Wolfgang
Goethe-Universitt Frankfurt/Main. Verlag dissertation.de; www.dissertation.de.
ISBN 3-89825-402-X, 2001.

[19] M. Zapf and K. Geihs: What Type Is It? A Type System For Mobile Agents. 15th
European Meeting on Cybernetics and Systems Research (EMCSR), Vienna 2000.

Information about Software

Software is available on the Internet as
( ) prototype version
(X) full-fledged version (free for non-commercial use), version no.: 2.6
( ) full-fledged version (for money), version no.:
( ) Demo/Trial version
( ) not (yet) available

Internet address:
Description of software: AMETAS run-time environment and software development

kit, documentation, and samples
Download address: http://www.ametas.info/, Download section

Contact point for questions about the software
info@ametas.info

Michael Zapf
accsis GmbH
Kühhornshofweg 8
60320 Frankfurt
Germany
e-mail: zapf@accsis.de



Tracy: An Extensible Plugin-Oriented Software
Architecture for Mobile Agent Toolkits

Peter Braun, Ingo Müller, Tino Schlegel, Steffen Kern,
Volkmar Schau and Wilhelm Rossak

Abstract. In this chapter we propose a software architecture for mobile agent
toolkits and describe our Tracy toolkit as a reference implementation of this
architecture. Agent toolkits mainly consist of a software system that forms an
agency, which is responsible to host mobile and stationary software agents. In
contrast to most architectures developed so far, which already define a large
set of services for agent migration, communication, and security, we propose
to employ a kernel-based approach. The kernel only provides fundamental
concepts common to all agent toolkits and abstracts from any of these ser-
vices. In particular, although Tracy was developed as a mobile agent toolkit,
its kernel abstracts from all issues related to agent mobility, delegating this to
an optional service implementation. This makes it possible to replace Tracy’s
migration service with another implementation and even to have two differ-
ent migration services in parallel. Service implementations are developed as
plugins that can be started and stopped during run-time. We have already
developed almost a dozen plugins for agent migration, communication, au-
thentication and authorization, and security solutions, only to name a few.
We believe that this architecture is a useful foundation for research on agent-
related topics as it allows research groups to implement their own results as
a service which can be used by other groups running an agent system based
on the same architecture.

1. Introduction

Mobile agents have been introduced as a design paradigm for distributed appli-
cations [35]. A mobile agent is a program that can migrate from host to host in
a network of heterogeneous computer systems and fulfill a task specified by its
owner. It works autonomously and can communicate with other agents and host
systems. During the self-initiated migration, the agent carries its code and some
kind of execution state with it. What comprises the execution state depends on the



358 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

underlying programming language and is, in the case of most Java-based toolkits
for example only the serialized agent (an agent is an object of a specific class)
and does not contain information about the state of the Java virtual machine. On
each host they visit, mobile agents need a special software that we name agency,
which is responsible to execute agents, provides a safe execution environment, and
offers several services for agents residing on this host. A mobile agent system is
the set of all agencies together with agents running on these agencies as part of
an agent-based application. To refer to a specific project or product, for example
Aglets [23] or Grasshopper [3], we use the notion agent toolkit.

For some years, mobile agents have been a hot topic in the domain of dis-
tributed systems. Reasons were problems more traditionally designed distributed
systems, especially client/server systems, might have to handle work-load, the
trend to open large numbers of customers direct access to services and goods, and
user mobility. Mobile agent technology can help to design innovative solutions in
these domains by complementing other approaches, simply by adding mobility of
code, machine based intelligence, and improved network- and data-management
capabilities. We have seen tremendous research effort, for example, in the area of
mobile agent security, where sophisticated security protocols were developed to
solve the problem of malicious agencies (that try to attack visiting agents) and
malicious agents (that try to attack hosting agencies) [17]. Other research topics
are, for example, performance aspects of mobile agents [6], in which inherent draw-
backs of mobile agents are tackled using sophisticated migration strategies, mobile
agent communication [2], or control issues [1], which targets at the development
of algorithms to trace mobile agents while roaming the Internet.

However, the interest in mobile agents as a design paradigm for distributed
systems seems to have dwindled over the last years. The number of research groups
working on mobile agent related topics is becoming smaller, some conferences and
workshops cease to exist or are aligned with more general topics regarding mobility
of code or mobility of devices. It is argued that mobile agents were not able to
satisfy some of the main expectations, for example regarding their ability to reduce
network traffic overhead. Vigna [34] states that mobile agents are very expensive
and provide worse performance in the general case than other design paradigms,
as for example remote procedure call or remote evaluation. Compare Vigna’s early
work regarding network load of different design paradigms [33] and a discussion
of his approach in [6]. He also points to security problems, which are unlikely to
be solved completely and will, therefore, impede the acceptance of mobile agents.
Other authors try to get to the bottom of the problem of decreasing acceptance
and discuss whether mistakes of the research community have caused the current
disappointing situation. For example, Roth [29] questions Java to be the best
programming language to cope with unresolved security problems. Johansen [19]
points out that far too many groups have focused on the development of yet
another prototype of a mobile agent toolkit with only small contributions to the
fundamental research questions. In fact, the current situation is characterized by
a few tens toolkits. Although this number reflects an enormous research output



Tracy: A Software Architecture for Mobile Agent Toolkits 359

by different groups all over the world, it also reveals premature status of research
and a not-existent coordination between projects.

We agree with Johansen about the high number of research prototypes and
their negative effect to the research community. However, many research groups
were obliged to develop their own prototype because of the lack of any reference
architecture for mobile agent toolkits as well as the absence of an open and ex-
tendable implementation of a mobile agent toolkit. Therefore, each research group
working on core research problems rather than application development was com-
pelled to develop its own prototype and due to the high complexity and limited
resources this prototype is more a proof-of-concept implementation focusing on a
single research issue and leaving out elementary functional components necessary
for a full mobile agent toolkit. Only to name two examples, we mention Semoa [30]
as a system with a very strong focus on security issues and our first implementation
of Tracy [7] which was designed around early ideas regarding high-performance mi-
gration protocols. At first, agent communication was not in the focus of neither
of these systems–but added later in both of them. Other groups focused on agent
tracing and communication problems, for example [25], but their algorithms are
not adopted in other toolkits so far. We see these isolated islands of research as
another obstacle for the acceptance of mobile agents as there is no single mobile
agent toolkit available that provides at least an almost up-to-date set of features
and research results.

To amend this situation, one of the most important challenges of our Tracy
project is to develop a reference architecture for mobile agent toolkits. This archi-
tecture is leveraging off of previous work done by the Tracy team in designing the
first Tracy architecture [7] and benefits from experiences learned when porting it
to mobile platforms and investigating feasibility to use Tracy within an electronic
commerce application [22]. Our model for agencies consists of a very small kernel
which defines only imperative functions of an agency and the concept as well as the
life-cycle of agents. As part of our model, we define the concept of services, which
implement additional functionality on top of the kernel. The model does not de-
fine anything related to specific services, for example agent communication, agent
migration, or agent tracing, except of an interface for services to communicate to
the kernel.

The Tracy toolkit, which is the reference implementation of our new agency
model, has a plugin-oriented software architecture. Each service in the meaning
of our model is implemented as a plugin, which can be dynamically started and
stopped at runtime. As part of the Tracy implementation, we have developed more
than a dozen plugins for various services. An interesting result regarding mobile
agent toolkits was that it is possible to design an agency without considering
mobility of agents–and later to plugin this new service without any modification
of the kernel.

The remainder of this book chapter is structured as follows: We start by
giving a state-of-the-art overview of other approaches to build interoperable and
component-oriented mobile agent toolkits. After that we introduce our agency



360 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

model and describe the Tracy mobile agent toolkit, which is a reference implemen-
tation of our model. We will also introduce some of the most important software
components that come along with Tracy already. Finally, we describe our expe-
rience with our agency model and the Tracy toolkit in building a mobile agent
based application for mobile users.

2. Related Work

In this section, we will give a concise overview of the development of software
architectures of mobile agent toolkits in the past few years. We choose this presen-
tation style to demonstrate our kernel-based software architecture as the evolution
of current mobile agent toolkit design.

In our opinion, the timely development of mobile agent toolkits can be
roughly distinguished into an early, a current, and a next generation phase. The
early phase from the mid 1990s till the end of the 1990s is characterized by the de-
velopment of first complex mobile agent toolkits, such as AgentTcl [15], Aglets [23],
and Grasshopper [3]. The main goal of these systems was to provide a basic set
of functions and features for the development of mobile agent based applications.
Therefore, early toolkits offer only a small but inflexible interface via a mobile
agent class, which encapsulated access to the functionality of the toolkit. It is dif-
ficult to add (e.g. a tracking mechanism) or to change functionality (e.g. replace
the existing mobility or communication model), or to adapt the toolkit to specific
requirements (e.g. to downsize it for resource-limited mobile devices).

After the mobile agent community recognized the drawbacks from the early
mobile agent toolkits, the current phase begun at the end of the 1990s [18,30]. Now
mobile agent toolkits are developed using a component-oriented architecture. Most
systems still use a layered architecture, with a migration layer and communication
layer below, a layer for agent management functionality in the middle, and a basic
service layer on top [5, 20]. Each layer consists of a set of components, which im-
plement the layer’s functionality. Following this, the problems of first mobile agent
toolkits with respect to flexibility, extensibility, and adaptability were improved.
However, only for each mobile agent toolkit itself. For, the problem of exchanging
functionality and interaction between different mobile agent toolkits still remains
unresolved. The main reason for this problem is a high coupling between internal
components and different definitions of component interfaces in these mobile agent
toolkits.

Some mobile agent toolkits even implement standards to amend the inter-
operability problems, such as MASIF [24] or FIPA [26], originally developed for
multi agent systems. Both standards do not solve the given problems in a suitable
manner. MASIF has not been accepted because it relies too much on further OMG
specifications such as CORBA and IDL, increasing the effort for the development of
a mobile agent toolkit with aspects not belonging to the basic principles of mobile
agents. FIPA, implemented for example by Jade [4], is also too complex because



Tracy: A Software Architecture for Mobile Agent Toolkits 361

it defines a large set of system internal architectural and design constraints, for
example regarding agent communication. This is a problem especially with respect
to researchers who have their main focus on a single problem in the mobile agent
domain not willing to implement all mandatory parts of the specification.

Thus, we are still looking for an approach that might solve the problems
identified in the introductory section. This is the reason why we believe that mobile
agent toolkits should enter a next generation phase in which the focus changes
from trying to uniform system design to specify only a very small set of kernel
functionality accessed through a lean interface, reducing the coupling between
system components. Functionality can be added in a very flexible way with software
components.

3. JAM – A New Model for Agencies

In this section we will introduce JAM (Java Agency Model), which is a new Java-
based model for agencies for mobile and intelligent software agents. Our goal is
to define a model that consists of the smallest number of interfaces and classes
and only defines an imperative set of functional and non-functional requirements
in order to execute software agents. In the following, we restrict ourselves to Java-
based mobile agent toolkits, because Java has become the de-facto standard for
programming mobile agents; almost all new toolkits developed in the last six years
are programmed in Java. The reasons for this are many built-in functions, for ex-
ample object serialization, dynamic class loading, and the sand-box security mech-
anism, which simplify the development of mobile agent toolkits. The restriction to
Java makes sense, since we focus on the exchangeability of service components and
the exchangeability of software agents on the level of implementations. Therefore,
our model must be seen orthogonally to other models and standards, for example
FIPA [26] and MASIF [24], which specify communication protocols and migration
protocols, respectively.

Current models for agencies and collections of design issues for mobile agent
toolkits [16, 21], already include design decisions for several high-level services.
This notion will be used in the rest of this book chapter as synonym for optional
functions offered by an agency and used by agents in order to fulfill their task.
Services are for example migration, communication, agent tracking, persistency,
region management, etc. We see as major drawback of these current agency model
that they create many dependences between actually independent services. The
resulting agency implementation is more monolithic, because services are not rep-
resented by independent software components. In fact, our model abstracts from
these services and in contrast attempts to move as many functional requirements
of a mobile agent toolkit into optional services.

As motivated in the introduction, we want to address the possibility to ex-
change research results between research projects in form of software components
and software agents. Therefore, we propose to split an agency into a single kernel



362 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

(compare [11] for an introduction to kernel-based software architectures) and sev-
eral optional service components, each implementing a single service. The kernel
only provides the basic environment for running agents, maintaining a directory of
agents currently residing at this agency, defines and monitors an agent’s life-cycle
and defines a basic interaction model for agents and services. It might even be
argued that maintaining an agent directory should not be part of the kernel but
provided as a service. However, the kernel must maintain such a directory in any
way, because it has to wait cooperatively for all agents to terminate, if the agency
shuts down.

Upon that kernel, each software component provides an additional service
that extends the functionality of the agency. The resulting model for an agency
has, therefore, a layered design, where the kernel can be seen as lowest layer. On
top of the kernel, all service components form the middle layer. Finally, agents are
executed as part of the agency and form the topmost layer, where they can only
access services but not the kernel anymore. Actually, it must be stressed that our
model does not distinguish between mobile and stationary software agents. As a
consequence, our system could be seen to be more a multi-agent toolkit instead of
a mobile agent toolkit.

In the rest of this section we will define the basic concepts and functions of
a kernel and we will define interfaces for services to communicate to the kernel.
Finally, we will also explain how agents can communicate to services. We start
with the description of the basic abstractions that form an agency, i.e. kernel,
services, and agents. For the following, compare Fig. 1.

3.1. Kernel

We assume that every agency has a name, which comprises of a logical agency
name and the full qualified domain name of the underlying host. For example, if the
logical agency name is goldeneye and the host name is fleming.cs.uni-jena.de, then
the full agency name is goldeneye.fleming.cs.uni-jena.de. The name of an agency
must not change during runtime. It must be allowed to start multiple agencies on
a single host but the model does not define how this is done in practice.

The kernel consists of two classes. Class Kernel is responsible to maintain a
directory of all agents currently residing at this agency and all services currently
connected to the kernel. Class Context is used as mediator for agents to access
the agency and services (compare Sec. 3.2 and Sec. 3.3 for more information).
The kernel retains several information about agents, for example name, time of
creation, permissions, and owner.

The kernel is responsible to start and stop agents and to control an agent’s
life-cycle (which is explained later). The kernel is also responsible to generate agent
names, which must be globally unique in the whole agent system. The model
does not define how agent names are computed but enforces that they can be
represented as String objects. The kernel must create a new class loader for each
agent to ensure that agents cannot access each other via direct method calls and
to assign each agent an individual set of permissions. In Java terms this is named



Tracy: A Software Architecture for Mobile Agent Toolkits 363

IContext

Context

Kernel

ServiceComponent

Services

*

Agents

*

*

Runnable

m
ai

nt
ai

ns

m
ai

nt
ai

ns

IServiceContext

IAgentContext

us
es

uses

delegates context requests

*

ob
se

rv
es

 a
nd

 u
se

s

Kernel

Figure 1. Design of our agency model as UML class diagram.
For sake of simplicity, we omit methods and stereotypes.

a sandbox. Each agent is assigned an own thread of control when it is executed,
which must be placed in an own thread group in order to prevent illicit access of
agents to each other.

3.2. Services

On top of the kernel there are several service components that can be plugged into
an agency. Each service component provides a specific service (which is identified
by a service name) and extends the functionality of the agency. It bears a unique
name, which is used to unambiguously identify a service component, if necessary.
Usually, agents and other service components only use the service name to select a
single component that provides this service. Assume for example the case, that an
agency provides two migration components, both accessible under service name
migration. To disambiguate components with the same service name, it is also
allowed to address a service by its full service name, which is name.servicename.



364 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

When a service component is started, it is loaded using a new class loader in
order to separate it from other components and agents. Note that the model does
not define when a service component is started. It is possible to launch an agency
with a predefined set of services or to allow to start dynamically on demand. Each
service component obtains a reference to the kernel.

Service components can start and stop agents (simply by calling the corre-
sponding kernel methods), request a list of all agents currently residing at this
agency and a list of all services and service components. Our agency model also
defines the reverse communication direction using the observer pattern. A service
component can register with the kernel to become notified in case of specific events.
A description of the most important events follows in the next section.

Our agency model defines a loose coupling between services components
among each other and between agents and services. Direct method calls are pro-
hibited and replaced by so-called context objects, comparable to proxies. Each
service component has to provide two interfaces: an agent context interface and a
service context interface. The first interface must extend interface IAgentContext
(defined as part of the kernel package) and defines methods of this service to be
used by agents, whereas the second interface must extend interface IServiceCon-
text (part of the kernel package) and defines methods to be used by other service
components. For example, a service for agent migration defines an agent context
interface with methods to set the migration destination and a communication
service defines an agent context interface with methods to post a message. The
communication service also enables other service components to send messages to
agents and, therefore, defines a service context interface, which includes a method
to send a message.

The main advantage of this concept is that agents and service components do
not hold strong references to another service component, which makes it possible
to invalidate a context object, if a client must not use this service any more and
to even exchange a service during runtime without giving notice to the agent or
other services. In contrast to other agency models, we propose to use method
calls rather than asynchronous messages as convenient means of communication
between service components as well as between agents and service components.
Our agency model is open to enable communication via asynchronous messages
using an appropriate service component.

Finally, we have to describe how services and agents can obtain such a context
object to access a service. For services this is straightforward, because the kernel
provides a method to request a service context object of another service. In case
of agents this is more complex, because agents do not have any reference to the
kernel. We give an example of an agent requesting a service context object in the
following section.

3.3. Agents

As common to all agency models, each agent must have a globally unique name or
id which must not change during the life-time of an agent. As already mentioned



Tracy: A Software Architecture for Mobile Agent Toolkits 365

above, our model does not define how to create such a name, but we recommend
to use a combination of user given agent nick names and implicit names that are
computed by the agency and that guarantee uniqueness. The full agent name must
be representable as a String object.

Agents are represented by objects of a specific class, as in every agency model.
However, in our model, agent classes must only implement interface Runnable, i.e.
they must provide at least a single public method run, which serves as central
starting point. Mobile agents must implement the Serializable interface too. We
abstain from defining any base class for all agents, as for example class Agent or
MobileAgent as done for example in the Aglets model. Such a base class already
defines several methods to access services, for example methods to communicate
or methods to initiate the migration process. Although this might simplify agent
programming, it also creates a dependence between agents and services that we
want to avoid. Such a base class also prevents to add new services for agents as
this would entail to modify the base class which would then lead into an incom-
patibility between agents migrating to other agencies. The consequence of agents
as Runnables is of course, that an agent is unaware of itself and its environment. It
does know neither its name nor its hosting agency and must use services to obtain
these information.

The life-cycle of an agent actually consists only of two states. The first one is
Running which is characterized by assigning a thread to this agent that executes
agent’s run method. After this method has terminated, the agent might switch to
state Waiting where no thread is assigned to this agent or the agent’s thread is
waiting to become activated again. Thus, the agent is now only a passive object
that is waiting for a message or another external signal or event. Details about the
life-cycle will be presented in the following section, when we introduce the basic
functions of an agency.

If an agent wants to communicate to a service, a similar technique is used
as for services. As an agent object does not have a reference to any object of the
agency, there must be a static method which is provided by class Context and
which is named getContext. Consider the following example:

public class MyAgent implements Runnable
{

public void run()
{
IAgentMessageContext cxt;

cxt = (IAgentMessageContext)Context.getContext("message");

cxt.sendMessage( ... );
}

}



366 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

The agent requests a context object of a service that has registered itself under
service name message and uses it to send a message. We omit to discuss problems
that arise from many service components providing the same service and we also
omit to print parameters of method sendMessage for sake of simplicity.

Method getContext delegates the task of requesting an agent context object
to class Kernel, which first identifies the agent that has requested a context by
determining the current thread (the kernel maintains a directory for this). Second,
the kernel asks the agency, which itself selects the service component that provides
the requested service message and asks this component for an agent context object,
which is then returned to the agent. If the agent requests a context object from this
service component for the first time, it is created. In the other case, the component
must return the same object as before.

We face two problems with this first example. First, if there is no service com-
ponent providing a service under the given name, then class IAgentMessageContext
does not exist. Second, the service registered under the given name message does
return a context object that is not assignable to variable cxt. The first problem can
be solved by Java’s dynamic class loading concept. The class of type IAgentMes-
sageContext is not loaded until it is accessed, which is in the above example not
before the type cast. If the agent first verifies that a service with the given name
exists, then this problem can be solved. The second problem can be solved by
comparing class names. The following example shows the resulting code sequence:

public class MyAgent implements Runnable
{

public void run()
{
IAgentMessageContext cxt;

if( Context.existsContext("message", "IAgentMigrationContext" ))
{

cxt = (IAgentMessageContext)Context.getContext("message");

cxt.sendMessage( ... );
}

}
}

We omit to print full qualified package names in this example. First, the agent
verifies that there is (i) a component providing service message and (ii) this com-
ponent has created a context object which is assignable to an object of class
IAgentMessageContext (we omit package names here).



Tracy: A Software Architecture for Mobile Agent Toolkits 367

3.4. Functions of an Agency

In this section we will define how kernel, service components, and agents interact
with each other. We will describe the basic functions according to the agent’s
life-cycle.

3.4.1. Registering an Agent. Registering an agent can be done by services in two
ways. In the first case, an agent (as Java object) has not been instantiated yet. To
register an agent, a nick name, the name of the agent’s main class and a URL where
the agent’s classes can be found must be specified. The agent object is instantiated
and a full agent name is computed. In the second case, the agent has already been
instantiated by a service component and must now be registered with the kernel.
In this case, the agent already has a full name. In both cases, the agent is finally
enrolled with the agent directory and then started (explained below).

Before an agent is registered, all service components are informed that have
been registered a listener for this event. Each service can access all information
about the agent and is now able to vote against registering. For example, a service
that scans an agent’s code for pattern of malicious behavior, is able to prevent
registering and starting of this agent. If no service has voted against, the agent is
registered with the local agent directory. Finally, a second event is fired, by which
registered services are informed about the finalization of the registering process.
For example, a graphical user interface can now update its list of agents.

Finally, the agent switches to state Running, which is described in the next
section.

3.4.2. Running an Agent. When an agent is started, its run method is invoked
within an own thread of control. The model does not define, whether it must be
same thread that executes the agent during its whole life-time, or thread-pooling
is allowed. The latter technique is preferred due to performance reasons. As agents
must be strongly separated from each other, no two agent threads must be member
of the same thread group. While the agent is running, it can request context objects
from services as shown above.

3.4.3. Termination of Agent’s Main Method. Every time, an agent’s method run
terminates, it is decided whether the agent should be killed (i.e. deleted from the
agent directory and finally garbage collected) or remain as passive object. It is
important to note that this decision is not only up to agents but is influenced
by the service components. The protocol that is proposed for this can be seen
as a voting protocol that works as follows (compare Fig. 2). The kernel asks all
service components sequentially about the local status of the agent by calling
method getState. A component might announce that it wants the agent to be
immediately restarted again (return value restart), or to continue to live without
restart (passivate), or raise no objection to kill the agent (terminate).

If there is at least one service component that wants the agent to be re-started,
then agent’s method run is invoked immediately again. If no service component
wants the agent to be restarted, but there is at least a single one that wants the



368 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

agent to continue to live, then the agent’s thread might terminate or wait and the
agent continues to live as passive object waiting to become started again. For ex-
ample, as long as an agent has pending messages, a communication service should
prevent the agent from being terminated. If no component raises an objection to
kill the agent, the agent is removed from the agency and is eventually garbage
collected.

Agency

getState
Survival

Migration

getState

Restart

getState

Passivate

Communication

TerminateK
er

ne
l

Figure 2. This figure illustrates the voting protocol that is used
by the kernel to decide on the next state of an agent. The figure
shows three service components to show the three different agent
status results. In this case, the result of the voting protocol will
be restart.

We want to mention two consequences of this protocol. First of all, if an agent
wants to survive termination of its run method, then it must have registered with
some service by requesting a context object. Second, as long as an agent possesses
at least a single context interface, it cannot die.

3.4.4. Agent Termination. If the voting protocol results in terminating an agent,
all registered observers are notified about this event to perform some final clear-
ance and then de-register the agent. This notification process is implemented as
a transaction using a two-phase commit protocol. In the first phase, each service
component is preparing to delete the agent’s context object. Only if all service
components are ready to delete, the agent’s context is deleted and the transaction
is committed. Otherwise, if any component raises an exception, the transaction is
rolled back and the agent is re-started again.

Figure 3 shows as an example the case of three service components, amongst
others a migration component. During the first phase of the two-phase commit
protocol, the migration component starts the migration process, if the agent has
defined a migration destination in its context object. It uses the information stored
in the agent’s context object in order to open a network connection to the migra-
tion destination. After that, the agent’s code and data are sent to the destination
agency. On the destination site, the migration component might inform the kernel



Tracy: A Software Architecture for Mobile Agent Toolkits 369

(named lock in the figure) about the in-migration, for example to let the kernel
validate the agent name. During this first phase of the protocol, the migration
process is not finalized and the network connection between sender and receiver
agency is not closed. In case of any error during the migration process, this service
throws an exception. When the transaction is then committed, the migration com-
ponent sends a command to the destination which finalizes the migration process
and starts the agent. Otherwise, in case of an error during the first phase of the
protocol, a different command is sent to roll back the whole migration process at
the destination agency.

Agency

K
er

ne
l

Migration

Place
Commit

Prepare

Prepare

Commit

Start Migration

Commit Migration

Lock

Run

K
er

ne
l

Place

Migration

Agency

Figure 3. This figure illustrates the two-phase commit protocol
that is used to stop agents.

3.5. Summary

In this section we have defined basic principles of our new agency model. Our aim
was to identify the smallest common denominator of typical functions of an agency.
The model specifies that an agency consists of three entities, i.e. the kernel that is
responsible to execute agents and control their life-cycle, service components that
provide high-level functions of the agency, and finally defines the main interface
that all agents have to implement. Further, the model defines how these entities
communicate to each other. The model does deliberately not define any high-level
functions of an agency, as for example migration or communication and it does
define only basic requirements related to security.

We see as main advantages of our new approach the following aspects.
1. Agent toolkits that conform to our new agency model are compatible to each

other which actually has two aspects. First, it means that service components
developed for one toolkit are applicable in all other agent toolkits too. We
believe that it will be possible to enable exchange of research results on the
basis of such software components in future. Second, agents and therefore
complete agent-based applications are executable on every other toolkit too.
The only requirement is that both toolkits provide the same set of high-level
services.

2. A second advantage of our approach is that agent toolkits become very mod-
ular, as there is only a very small imperative kernel which forms the basis for



370 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

many service components to be added on. This modular architecture makes it
very easy to port an agent toolkit to other devices, as components no longer
needed can be simply removed. If it is too heavy-weighted for a resource lim-
ited mobile device for example, it can replaced by another component with
less functionality and of less size.

3. Finally, every research group working on core research problems of mobile
agents can implement their research results, for example new protocols for
location-transparent communication as a service component and distribute it
with other research groups. It is not necessary for them to implement other
service components or even a complete agent toolkit by themselves.

4. The Tracy Toolkit

Tracy is a mobile agent toolkit designed according to the model defined in the
last section. In this section, we will mention details of the Tracy implementation
and especially describe several service components that have already been imple-
mented.

4.1. The Tracy Kernel

The kernel of Tracy mainly consists of an implementation of the Context class men-
tioned in the previous section, classes for agent and service management (ASM),
and a thread pool. In total, the kernel only consist of about 3000 lines of Java
code.

If an agent switches from state Waiting to state Running, a sleeping thread
from the thread pool is activated to execute the agent. After agent’s method run
has terminated, this thread is responsible to carry out the voting protocol. If the
agent is not started immediately again (transition back to state Waiting), the
thread is given back to the thread pool. The thread pool is initialized with a pre-
defined number of threads (this number can be configured) and adapts dynamically
to load variances.

The ASM classes are responsible to maintain a directory of all agents and
service components. These classes communicate with the thread pool in order to
execute agents. Agent names are defined to consist of the agent’s nick name and
a hash value that is computed over the agent’s classes, the home agency’s name,
and the start time, to which the name of the home agency is appended. The ASM
classes are also responsible to initiate the start of service components, which are
named plugins in Tracy, because they can be started and stopped dynamically dur-
ing runtime. Important functions of the kernel are guarded using Java permissions,
so that it is possible, for example to prohibit plugins to start or kill agents.

4.2. Tracy Plugins

As part of the Tracy project, we have already defined several high-level service
components and correspondent interfaces for context objects. They range from
very simple plugins that provide agents access to the hosting agency to complex



Tracy: A Software Architecture for Mobile Agent Toolkits 371

services to manage overlay networks of agencies. In our opinion, this makes Tracy
a comprehensive agent toolkit that can be used for the development of real-world
applications yet. For each of these services, Tracy provides a default implementa-
tion as plugin. In Tracy, a plugin is deployed as JAR file, which contains a manifest
to define the service name, version and author information, and dependences on
other plugins, which are then started automatically before. In the following, we
describe some of the most important plugins.

4.2.1. Place. The Place plugin provides agents an interface to the hosting agency
to obtain information about themselves, their environment, and other agents. As
already mentioned above, agents are innately blind, i.e. they are not aware of their
environment and do not even know their name. Using this plugin, an agent can
retrieve its name, name of its home and current agency and a list of all other
agents and services currently residing on this agency.

4.2.2. Survival. The most important feature of the Survival plugin is to prevent
an agent from being disposed after its run method has terminated. This plugin can
also be used to schedule agent execution in the future. For example, an agent can
define that it wants to be started once at a specific time or after some time interval.
Additionally, an agent can also define that it wants to be started periodically.

4.2.3. Migration. The migration plugin that is used in Tracy is based on the
Kalong migration component that is the result of a research project on high-
performance mobility models and migration protocols [6, 9]. The main difference
of Kalong as compared to other mobility models is that it provides a flexible and
fine-grained migration protocol, which leads to a higher migration performance of
mobile agents and to a flexible implementation of security protocols.

Current mobility models only offer a single migration strategy. For example,
in Grasshopper the agent migrates only with its data but without any code, which
is then dynamically loaded on demand (pull migration strategy). Other systems
always transmit the agent as a package of code and data to the next destination
agency (push migration strategy). In [8], we proofed that none of these simple
migration strategies leads to an optimized network load and transmission time and
proposed in the thesis that mobile agents should be able to adapt their migration
strategies according to specific environmental parameters, as for example, the code
size of each class, the probability that a class is used at the next destination,
network bandwidth and latency, etc.

Therefore, Kalong defines a virtual machine for agent migration with a small
set of methods to fully conduct the migration process by the agent or by the
agent programmer. A program for this virtual machine is called migration strategy
and we have already implemented several migration strategies, where the simplest
ones just implement the simple migration techniques of Aglets and Grasshopper
and the most sophisticated ones take several parameters into account, for example
code execution probability, which is determined by static program analysis, and
network bandwidth and latency information. In [6] we presented results of several



372 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

experiments, where mobile agents migrate in wide-area networks using Kalong and
need about 30% to 50% less execution time for a complete round-trip than using
simple push or pull-based strategies.

The Kalong component defines hot spots within the migration protocol,
where each message that is sent or received via network is processed by a pipeline
of so-called protocol extensions. Every protocol extension can modify network mes-
sages, for example compress, sign, or encrypt it. In [6] we already presented first
protocol extensions for agent authentication, code signing and protecting data
items against illicit tampering. We are currently working on adapting more so-
phisticated security protocols, especially path history [27], execution tracing [32],
environmental key generation [28], and state appraisal [14].

The migration plugin also provides the possibility to use various network
transmission protocols and we have already implemented support for TCP and
SSL. As a feature provided in order to make programming of mobile agents more
convenient, we have implemented transparent agency name resolution. The pro-
grammer of a mobile agent can address a destination agency using the full agency
name without a port number on which the destination agency is listening for in-
coming request–instead of the full qualified domain name together with a port
number as it is used in most other agent toolkits.

4.2.4. Agent Authorization. Security is a non-functional requirement of software
systems and therefore cannot be implemented in a single software component,
but is distributed over the kernel and several services. Some basic requirements
concerning agent security were already introduced in the kernel and we mentioned
that some security protocols can be implemented as extensions of the migration
component.

Another component that is considered with security is agent authorization,
which defines which permissions are granted to an agent. This service is an example
of a component that might vote against starting an agent, if, for example, the agent
is included on some black-list of possibly malicious agents. Otherwise, this service
assigns permissions to the agent with regard to the agent’s name and owner, its
path history [12] and the result of code inspections done in the Kalong component.

4.2.5. Communication. The communication service developed as part of the Tracy
toolkit supports the transfer of asynchronous messages between agents and ser-
vices. Every agent has a message box in which new messages are stored. The agent
can decide on its own how to handle these messages. It can decide to accept mes-
sages or not by closing its message box (even temporarily). So, the autonomy of
an agent can be preserved. To send a message, the agent needs to know the name
of the receiving agent.

This service does not support any kind of remote communication, i.e. an
agent cannot send messages to another agent residing on a different agency. Even
if both agencies were to reside on the same host sending messages between them
would not be possible. We are currently working on an extension of this plugin



Tracy: A Software Architecture for Mobile Agent Toolkits 373

Figure 4. Example of two Tracy domains: Each contains a do-
main server and several domain nodes. Each node is registered
at exactly one domain server. Agent server dagobert resides in
the intersection of two domains and could be either registered at
pluto, or at james.

which also allows remote communication using a forwarding pointer concept as
already proposed by [25].

4.2.6. Tracy Domain Service. To manage logical Tracy networks we implemented
the domain management service, which is completely implemented using station-
ary and mobile agents. A domain is a set of agencies that are connected in a
local subnetwork. All agencies in one domain must be pairwise reachable by a
UDP multicast. However, not all pairs of agencies in one local subnetwork must
be member of the same domain–several logical Tracy networks can exist in one
subnetwork independently. The domain management service is the basis for a com-
prehensive directory service in which each agency publishes services it offers for
mobile agents [13].

A logical Tracy network consists of several agencies, which can either be in
the role of the unique domain server, or in the role of a domain node. A domain
server is responsible to manage a list of all registered domain nodes, whereas a
domain node only knows its domain server. When a domain service is started, it
first sends a UDP multicast message to all computers in the local subnetwork, see
Fig. 4. If there already exists a domain server, this one will answer by sending
a UDP package to the sender. This package contains the name of the agency on
which the domain server resides. In a second step, the new agency sends a mobile
agent to the domain server with the task to register it over there. If no domain
server exists in the local subnetwork the new agency will become a domain server
itself. As can be seen in Fig. 4, an agency (dagobert) can be in the intersection
of two domains. The UDP multicast would be answered by more than one domain
server. In this case the new agency is registered at the domain server which has
answered the UDP multicast first. This makes sense, because Tracy domains should



374 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

Figure 5. The screen shot shows an example of the Tracy Web
interface, showing the list of agents currently residing at agency
MainAgency.

contain servers that are situated locally and request time is a good indicator for
this metric.

To build larger Tracy networks, domain servers can be connected dynamically.
At the time, this process must be performed manually. For the future, we plan to
build up larger Tracy networks by using mobile agents that explore the agent
system and connect domain servers according to quality of services and quality
of network connections. Note, that for an agent it is not necessary to follow this
domain server connections to migrate to another agency–this can be done directly,
as in a peer-to-peer network. The structure of a Tracy network is only important to
explore new agencies in an unknown environment. The Tracy system contains all
agencies, even if they could not find each other because they are in different logical
Tracy networks–nevertheless it is possible for them to exchange mobile agents.

4.2.7. Other Services. Other services that are already defined and implemented
as part of the Tracy project allow

• to send emails to arbitrary users using the SMTP protocol,
• to send short messages via a SMSC (using a SOAP Web service),
• multi-user management including dynamic permission management,
• to administrate an agency using a text-based user interface via Telnet proto-

col,



Tracy: A Software Architecture for Mobile Agent Toolkits 375

• to load public keys from a LDAP server (this is used by some security en-
hancements of the migration plugin),

• to launch agents automatically when an agency starts,
• to administrate an agency using the SOAP protocol.

As an application of the last service, we have already implemented a Web-
based user interface, where Java servlets communicate to an agency using SOAP.
Fig. 5 shows a screen shot of the Tracy Web interface.

5. Proof-of-Concept

This section describes an application scenario to mainly express two things: First
and most significant to give evidence that our service-based approach does work
and second to emphasize the applicability of well-structured mobile agent frame-
works in production.

Thus, we have designed and implemented an application offering mobile ser-
vices for customers of a fictive railway company on top of our mobile agent toolkit
Tracy. The main goal of that application is to provide a passenger while travel-
ing with in-time information about schedules and state of potential or prospective
trains he is going to use during his journey. That passenger can use mainly two
functions with our application directly from his mobile device. On the one hand
he is able to compose complete time tables including departure and arrival times,
transfers, platform numbers, etc., and on the other hand the application can be
configured to observe train states to provide the passenger with latest information
regarding train delays or breakdowns giving a passenger an opportunity to react
on those incidents and to keep his journey efficient.

When we have a closer look at our application it can be recognized that two
different types of agencies are needed. On the railway company’s side we need a
high performance and high scaling agency able to host thousands of concurrent
agents, each represents a single user. Additionally, the company’s agency offers
services for mobile agents to access the time table database and to compose sched-
ules. Finally, it offers a service for mobile agents to register with some kind of
notification manager in order to retrieve information about train latencies.

In contrast, a small agency is needed on the customer’s side, which easily
adapts to the restricted resources, such as low processor performance and limited
memory. That client agency has to provide also additional services, i.e. to connect
to other local applications (e.g. PIMs) and to enable communication with the
user via a graphical interface. We have chosen a PDA as basic hardware for our
application in the first phase because it offers sufficient resources for running Java
programs and hosting mobile agents. In a next step our client agency could be
further downsized to another version which can be executed on even smaller Java-
capable devices, for example mobile phones.



376 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

Mobile agents are used as information carriers between passenger and com-
pany agency in order to transmit schedules and delay information from the com-
pany agency to the client agency and to transmit schedule requests and observation
configurations from the client agency. Additionally, mobile agents offer additional
functionality to passengers, such as the opportunity to re-plan a journey if a train
delays. Following this, both agencies need to implement a migration service.

At this point the advantages of a fully service-based approach for designing
agent toolkits are brought to bear. Obviously we have two different implementa-
tions of our agency model both able to run the same migration service. The only
service running on the PDA agency is the migration service that we were able to
adopt to the restrictions of the mobile device and new Java version successfully.

Let’s have a look at a concrete scenario. Imagine a salesman to plan a busi-
ness trip by train from Jena to Hamburg. We presume he is already a customer of
our fictive railway company and has yet a Tracy agency installed on his PDA. A
day before traveling the salesman assigns a mobile agent via the graphical interface
of our application to obtain the schedule for his journey. Therefore, he parame-
terizes the mobile agent with details about start location and destination, date,
and prospective departure and arrival time. Then the mobile agent migrates to the
railway company’s agency, interacts there with appropriate services for composing
the schedule, and returns back onto the PDA for presenting the information to its
owner. We assume the salesman has got a connection with two transfers.

The salesman creates a mobile agent and configures it to observe the state
of all trains involved in his journey and starts it in the morning before the travel
begins. The mobile agent determines the unique train identifiers and migrates again
to the railway company’s agency. This time the mobile agent subscribes to a certain
service for being provided with information regarding to all incidents influencing
the salesman’s trip. If an event occurs, for example the second train delays 15
minutes, the mobile agent receives a notification from the service, migrates back
onto the PDA and presents that information audio-visually. Thus, the salesman
can react on this event, for example by notifying his business partners about his
delay or even by looking for other transport opportunities to keep the time loss
to a minimum. Of course, the scenario is a simple one. However, behind that idea
there is much potential for further more sophisticated services for mobile users.

6. Conclusions

The main motivation for the work presented in this chapter was the lack of any
widely accepted implementation of a mobile agent toolkit that can be used by
researchers to implement and test their own research results. Our thesis is that
research on mobile agents will benefit from our kernel-based approach, in which we
only define basic concepts and functions common to all toolkits. Core services, for
example agent migration, communication, management of logical agency networks,
and parts of security issues are implemented as software components. All research



Tracy: A Software Architecture for Mobile Agent Toolkits 377

groups still working on core research topics related to mobile agents are invited to
contribute to our idea by implementing their own research results as plugins for
Tracy.

In our opinion, our Tracy approach differs from already existing models for
mobile agent toolkits in the following aspects: Current models for agencies [3, 16]
include design decisions for several core services already. We see as major draw-
back of such an agency model that it creates many dependences between actually
independent services. In fact, our model abstracts from these services and in con-
trast attempts to move as many functional requirements of a mobile agent toolkit
into such services. To extend the discussion of related work started in Sec. 2, we
mention two mobile agent toolkit that also claim to employ a kernel-based ap-
proach, namely JavaSeal [10] and MobileSpaces [31]. In both toolkits a kernel is
defined comprising of core functionality and additional basic services. In JavaSeal
these services are migration, communication, and security–in MobileSpaces it is
mainly migration, as services are implemented as mobile agents in this toolkit. Our
approach goes a step further by defining core services such as migration and com-
munication as exchangeable components that are not part of the kernel. Besides,
services are clearly distinguished from agents.

Finally, we mention Semoa [30] as an example of another extendable toolkit.
Agents are also represented as Runnables in Semoa and the concept to decouple
agents and services using context objects is comparable to our approach. Agents
offer application-specific services by registering a service object with the single
environment. We see as main difference to our approach that Semoa handles
application-specific services and the two core services for agent migration and
communication differently. Whereas the first class of services can be plugged into
the system during runtime, core services seem to be strongly coupled into the de-
sign of the whole toolkit. In Tracy, we do not distinguish between these two classes
of services and migration and communication are both optional services.

References

[1] Joachim Baumann. Mobile Agents: Control Algorithms, volume 1658 of Lecture Notes
in Computer Science. Springer-Verlag, 2000.

[2] Joachim Baumann, Fritz Hohl, Nikolaos Radouniklis, Kurt Rothermel, and Markus
Straßer. Communication concepts for mobile agent systems. In Kurt Rothermel and
Radu Popescu-Zeletin, editors, Proceedings of the First International Workshop on
Mobile Agents (MA’97), Berlin (Germany), April 1997, volume 1219 of Lecture Notes
in Computer Science, pages 123–135. Springer-Verlag, 1997.

[3] Christoph Bäumer, Markus Breugst, Sang Choy, and Thomas Magedanz. Grasshop-
per — A universal agent platform based on OMG MASIF and FIPA standards.
In Ahmed Karmouch and Roger Impey, editors, Mobile Agents for Telecommunica-
tion Applications, Proceedings of the First International Workshop (MATA 1999),
Ottawa (Canada), October 1999, pages 1–18. World Scientific Pub., 1999.



378 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

[4] Fabio Bellifimine, Giovanni Caire, Agostino Poggi, and Giovanni Rimassa. Jade – A
White Paper. EXP in search of innovation, 3(3):6–19, 2003.

[5] Diego Bonura, Leonardo Mariani, and Emanuela Merelli. Designing modular agent
systems. In Proceedings of Net.ObjectDays, Erfurt (Germany), September 2003,
pages 22–25, 2003.

[6] Peter Braun. The Migration Process of Mobile Agents–Implementation, Classifica-
tion, and Optimization. PhD thesis, Friedrich-Schiller-Universität Jena, Computer
Science Department, May 2003.

[7] Peter Braun, Jan Eismann, Christian Erfurth, and Wilhelm R. Rossak. Tracy – A
Prototype of an Architected Middleware to Support Mobile Agents. In Proceedings
of the 8th Annual IEEE Conference and Workshop on the Engineering of Computer
Based Systems (ECBS), Washington D.C. (USA), April 2001, pages 255–260. IEEE
Computer Society Press, 2001.

[8] Peter Braun, Christian Erfurth, and Wilhelm R. Rossak. Performance Evalua-
tion of Various Migration Strategies for Mobile Agents. In Ulrich Killat and Win-
fried Lamersdorf, editors, Kommunikation in verteilten Systemen (KiVS 2001), 12.
Fachkonferenz der Gesellschaft für Informatik (GI), Fachgruppe Kommunikation und
verteilte Systeme (KuVS) unter Beteiligung der VDE/ITG, Hamburg (Germany),
February 2001, Informatik Aktuell, pages 315–324. Springer Verlag, February 2001.

[9] Peter Braun, Ingo Müller, Sven Geisenhainer, Volkmar Schau, and Wilhelm R.
Rossak. Agent migration as an optional service in an extendable agent toolkit archi-
tecture. In Ahmed Karmouch, Larry Korba, and Edmundo Madeira, editors, Pro-
ceedings of the First International Workshop on Mobility Aware Technologies and
Applications (MATA 2004), Florianopolis (Brazil), October 2004, volume 3284 of
Lecture Notes in Computer Science, pages 127–136. Springer Verlag, 2004.

[10] Ciaran Bryce and Jan Vitek. The JavaSeal mobile agent kernel. In Dejan S. Miloji-
cic, editor, Proceedings of the First International Symposium on Agent Systems and
Applications (ASA’99)/Third International Symposium on Mobile Agents (MA’99),
Palm Springs (USA), October 1999, pages 103–116. IEEE Computer Society Press,
1999.

[11] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-oriented Software Architecture: A System of Pattern. John Wiley and
Sons, 1996.

[12] Guy Edjlali, Anurag Acharya, and Vipin Chaudhary. History-based access control for
mobile code. In Jan Vitek and Christian D. Jensen, editors, Internet Programming
– Security Issues for Mobile and Distributed Objects, volume 1603 of Lecture Notes
in Computer Science, pages 413–432. Springer-Verlag, 1999.

[13] Christian Erfurth, Peter Braun, and Wilhelm R. Rossak. Migration Intelligence for
Mobile Agents. In Artificial Intelligence and the Simulation of Behaviour (AISB)
Symposium on Software mobility and adaptive behaviour. University of York (United
Kingdom), March 2001, pages 81–88, 2001.

[14] William M. Farmer, Joshua D. Guttman, and Vipin Swarup. Security for mobile
agents: Authentication and state appraisal. In Elisa Bertino, Helmut Kurth, Gian-
carlo Martella, and Emilio Montolivo, editors, Proceedings of the Fourth European



Tracy: A Software Architecture for Mobile Agent Toolkits 379

Symposium on Research in Computer Security (ESORICS 1996), Rome (Italy), Sep-
tember 1996, volume 1146 of Lecture Notes in Computer Science, pages 118–130.
Springer-Verlag, 1996.

[15] Robert S. Gray, George Cybenko, David Kotz, and Daniela Rus. Agent Tcl. In
William R. Cockayne and Michael Zyda, editors, Mobile Agents: Explanations and
Examples, pages 58–95. Manning Publications, 1997.

[16] Dieter K. Hammer and Ad T. M. Aerts. Mobile Agent Architectures: What are
the Design Issues? In Proceedings International Conference and Workshop on
Engineering of Computer-Based Systems (ECBS’98), Maale Hachamisha (Israel),
March/April 1998, pages 272–280. IEEE Computer Society Press, 1998.

[17] Wayne A. Jansen. Countermeasures for mobile agent security. Computer Communi-
cations: Special Issue on Advances in Research and Application of Network Security,
23(17):1667–1676, 2000.

[18] Mehdi Jazayeri and Wolfgang Lugmayr. Gypsy: A component-based mobile agent
system. In Proceedings of the 8th Euromicro Workshop on Parallel and Distributed
Processing (PDP), Rhodos (Greece), January 2000, 2000.

[19] Dag Johansen. Mobile agents: Right concept, wrong approach (panel). In Anupam
Joshi and Hui Lei, editors, IEEE International Conference on Mobile Data Manage-
ment (MDM’04), Berkeley (USA), January 2004, pages 300–301. IEEE Computer
Society Press, 2004.

[20] Neeran M. Karnik. Security in Mobile Agent Systems. PhD thesis, Univeristy of
Minnesota, Department of Computer Science, 1998.

[21] Neeran M. Karnik and Anand R. Tripathi. Design Issues in Mobile Agent Program-
ming Systems. IEEE Concurrency, 6(6):52–61, 1998.

[22] Ryszard Kowalczyk, Bogdan Franczyk, Andreas Speck, Peter Braun, Jan Eismann,
and Wilhelm R. Rossak. InterMarket: Towards Intelligent Mobile Agent-based e-
Marketplaces. In Proceedings of the 9th Annual Conference and Workshop on the
Engineering of Computer-based Systems (ECBS-2002), Lund (Sweden), April 2002,
pages 268–275. IEEE Computer Society Press, 2002.

[23] Danny B. Lange and Mitsuru Oshima. Programming and Deploying Java Mobile
Agents with Aglets. Addison-Wesley, 1998.

[24] Dejan S. Milojicic, Markus Breugst, Ingo Busse, John Campbell, Stefan Covaci,
Barry Friedman, Kazuya Kosaka, Danny Lange, Kouichi Ono, Mitsuru Oshima,
Cynthia Tham, Sankar Virdhagriswaran, and Jim White. MASIF: The OMG Mo-
bile Agent System Interoperability Facility. In Kurt Rothermel and Fritz Hohl, edi-
tors, Proceedings of the Second International Workshop on Mobile Agents (MA’98),
Stuttgart (Germany), September 1998, volume 1477 of Lecture Notes in Computer
Science, pages 50–67. Springer-Verlag, 1999.

[25] Luc Moreau. A Fault-Tolerant Directory Service for Mobile Agents based on For-
warding Pointers. In The 17th ACM Symposium on Applied Computing (SAC’2002)
— Track on Agents, Interactions, Mobility and Systems, Madrid (Spain), March
2002, pages 93–100, 2002.

[26] Paul O’Brien and Richard Nicol. FIPA – towards a standard for software agents. BT
Technology Journal, 16(3):51–59, 1998.



380 P. Braun, I. Müller, T. Schlegel, St. Kern, V. Schau and W. Rossak

[27] Joann J. Ordille. When agents roam, who can you trust? In Proceedings of the
First Conference on Emerging Technologies and Applications in Communications,
Portland, Oregon (USA), May 1996, 1996.

[28] James Riordan and Bruce Schneier. Environmental key generation towards clueless
agents. In Giovanni Vigna, editor, Mobile Agents and Securtiy, volume 1419 of Lec-
ture Notes in Computer Science, pages 15–24. Springer-Verlag, 1998.

[29] Volker Roth. Obstracles to the adoption of mobile agents (panel). In Anupam Joshi
and Hui Lei, editors, IEEE International Conference on Mobile Data Management
(MDM’04), Berkeley (USA), January 2004, pages 296–297. IEEE Computer Society
Press, 2004.

[30] Volker Roth and Mehrdad Jalali. Concepts and architecture of a security-centric
mobile agent server. In Proceedings of the Fifth International Symposium on Au-
tonomous Decentralized Systems (ISADS 2001), Dallas, (USA), March 2001, pages
435–442. IEEE Computer Society Press, 2001.

[31] Ichiro Satoh. An architecture for next generation mobile agent infrastructure. In Pro-
ceedings of International Symposium on Multi-Agent and Mobile Agents in Virtual
Organizations and E-Commerce (MAMA’2000), pages 281–287, 2000.

[32] Giovanni Vigna. Protecting mobile agents through tracing. In Christian Tschudin,
Joachim Baumann, and Marc Shapiro, editors, 3rd ECOOP Workshop on Mobile
Object Systems: Operating System support for Mobile Object Systems, Jyvälskylä
(Finland), June 1997, 1997.

[33] Giovanni Vigna. Mobile Code Technologies, Paradigms, and Applications. PhD the-
sis, Politecnico di Milano (Italy), February 1998.

[34] Giovanni Vigna. Mobile agents: Ten reasons for failure (panel). In Anupam Joshi
and Hui Lei, editors, IEEE International Conference on Mobile Data Management
(MDM’04), Berkeley (USA), January 2004, pages 298–299. IEEE Computer Society
Press, 2004.

[35] James E. White. Mobile agents. In Jeffrey Bradshaw, editor, Software Agents, pages
437–472. The MIT Press, Menlo Park, CA, 1996.

Information about Software

Software is available on the Internet as
( ) prototype version
(x) full fledged software (freeware), version no.: 1.0.1-40
( ) full fledged software (for money), version no.:
( ) Demo/trial version
( ) not (yet) available

Internet address: http://www.mobile-agents.org
Description of software: Tracy mobile agent toolkit
Download: http://www.mobile-agents.org
Contact point for question about the software:
Name: Peter Braun
Email: braun@mobile-agents.org



Tracy: A Software Architecture for Mobile Agent Toolkits 381

Peter Braun
Faculty of Information and Communication Technologies
Swinburne University of Technology
Hawthorn, Victoria 3122, Australia
e-mail: pbraun@ict.swin.edu.au

Ingo Müller
Faculty of Information and Communication Technologies
Swinburne University of Technology
Hawthorn, Victoria 3122, Australia
e-mail: imueller@ict.swin.edu.au

Tino Schlegel
Faculty of Information and Communication Technologies
Swinburne University of Technology
Hawthorn, Victoria 3122, Australia
e-mail: tschlegel@ict.swin.edu.au

Steffen Kern
Friedrich Schiller University Jena, Computer Science Department
Ernst-Abbe-Platz 2, 07743 Jena, Germany
e-mail: steffen.kern@informatik.uni-jena.de

Volkmar Schau
Friedrich Schiller University Jena, Computer Science Department
Ernst-Abbe-Platz 2, 07743 Jena, Germany
e-mail: volkmar.schau@informatik.uni-jena.de

Wilhelm Rossak
Friedrich Schiller University Jena, Computer Science Department
Ernst-Abbe-Platz 2, 07743 Jena, Germany
e-mail: rossak@informatik.uni-jena.de



The Packet-World: A Test Bed for
Investigating Situated Multi-Agent Systems

Danny Weyns, Alexander Helleboogh and Tom Holvoet

Abstract. Research on situated multi-agent systems investigates how to model
a distributed application as a set of cooperating autonomous entities (agents)
which are situated in an environment. Many fundamental issues remain un-
revealed in this research area. A profound understanding of these issues,
however, is necessary before situated multi-agent systems can be applied to
industry-strength applications. We use the abstract application called the
Packet-World quite extensively as a test bed for investigating, experimenting
and evaluating fundamental concepts and mechanisms. Examples are active
perception, decision making of situated agents, synchronization of simulta-
neous actions and indirect coordination. The Packet-World has direct con-
nections with real-world applications, such as the decentralized control of a
warehouse transportation system through unmanned vehicles. In this article,
we describe the Packet-World and we give an overview of our research for
which we have used the Packet-World as a test bed.

Keywords. test bed, situated multi-agent system, environment, perception, ac-
tion selection, protocol-based communication, synchronization, simultaneous
actions, stigmergy, automated warehouse transportation system, automatic
guided vehicle.

1. Introduction

In the last 15 years, multi-agent systems (MASs) have been put forward as a par-
adigm to tackle the increasing complexity of distributed applications. An agent as
an autonomous entity, capable of interacting with other agents in order to satisfy
its design objectives, is a natural concept to manage complexity in a decentralized
manner. Agents encapsulate their own behavior and are able to adapt to changes in

This work was completed with the support of the Concerted Research Action on Agents for
Coordination and Control project and the Egemin Modular Controls Concept project.



384 Danny Weyns, Alexander Helleboogh and Tom Holvoet

their environment. Although MASs have already been applied with success in prac-
tice, many issues remain open for further research. One thing that researchers and
application developers have made clear is that MASs are very complex systems.
Test beds are important for investigating, experimenting and evaluating funda-
mental concepts and mechanisms of MASs. In the end, however, the benefits of
obtained research results should/must be demonstrated in real-world applications.

Our research focusses on situated MASs, i.e. MASs in which agents are ex-
plicitly placed in an environment. In this article, we present the Packet-World.
The Packet-World is a test bed for investigating situated MASs, developed in
Java. We show how the Packet-World has inspired our research during the last
three years, and we explain how we have used the test bed for the evaluation of
our work. Examples concepts and mechanisms we discuss are active perception,
decision making of situated agents, synchronization of simultaneous actions and
indirect coordination. In a current research project with an industrial partner, we
investigate how the paradigm of situated MASs can be applied to the control of
automated transportation systems that use automatic guided vehicles (AGVs) to
transport loads through a warehouse. In this project, we can validate many of our
research results obtained in the Packet-World in a complex real-world case. The
AGV case shows that the Packet-World can serve as an abstract application that
represents a family of real-world applications for which situated MASs may be a
suitable solution.

This article is structured as follows. Section 2 briefly introduces situated
MASs. In Section 3 we present the Packet-World. Section 4 discusses the under-
lying reference architecture of the Packet-World. Next, we elaborate on the main
architectural concerns in the Packet-World in Section 5. Section 6 zooms in on
advanced forms of collaboration. In Section 7, we illustrate the analogy between
the Packet-World an an automated warehouse transportation system. Finally, we
draw conclusions.

2. Situated Multi-Agent Systems

A situated MAS is a computing system composed of a (distributed) environment
populated with a set of localized agents that cooperate to solve a complex problem
in a decentralized way. Situated agents are entities that encapsulate their own
behavior and maintain their own state. They have local access to the environment,
i.e. each agent is placed in a local context which it can perceive and in which it
can act and interact with other agents. A situated agent does not use long-term
planning to decide what action sequence should be executed, but instead it selects
actions on the basis of its position, the state of the world it perceives and limited
internal state. In other words, situated agents act in the present, “here” and “now”.
Intelligence in a situated MAS originates from the interactions between the agents,
rather then from their individual capabilities.



The Packet-World: A Test Bed for Investigating Situated MASs 385

The approach of situated MASs has a long history. R. Brooks [6][7] identified
the key ideas of situatedness, embodiment and emergence of intelligence. L. Steels
[25] and J. L. Deneubourg [11] introduced the basic mechanisms for agents to co-
ordinate through the environment: gradient fields and marks. P. Maes [19] adopted
the early robot-oriented principles of reactivity in a broader context of software
MASs. K. Rosenblatt and D. Payton [23], T. Tyrrell [26], T. Balch and R. Arkin
[3] and many others explored the underlying fundamentals of reactivity and sit-
uatedness and developed new architectures for situated agents that enable better
adaptive behavior and support more flexible design than the early-days hard-wired
stimulus-response structures. A. Drogoul [12], M. Dorigo [9], V. Parunak [20] and
many other researchers drew inspiration from social insects and adopted the prin-
ciples in situated MASs.

Situated MASs have been applied with success in practical applications over
a broad range of domains. Some examples are: manufacturing control [21], supply
chains systems [24], network support [5] and peer-to-peer systems [2]. The benefits
of situated MAS are well known, the most striking being efficiency, robustness and
flexibility. In [35], M. Wooldridge points to a number of limitations of situated
MASs. Wooldridge argues that situated agents take into account only local, current
information and thus inherently must take a “short-time” view for decision making.
However, complex problem domains suitable to apply agent-technology, such as
manufacturing control or ad-hoc networks, are by their very nature distributed
and highly dynamic. In such domains it is questionable whether it is feasible or
even useful for agents to collect global information or to have a “long-term” view on
the situation. Another problem raised by Wooldridge is that there is no principled
methodology to engineer situated agents, in particular with respect to desired
overall behavior of the system. The relationship between the local interactions of
agents and the global behavior of the MAS is indeed a complex open problem in
need of extensive further research.

3. The Packet-World Test Bed

In [17], M. Huhns and L. Stephens propose a research exercise to tackle a number
of open research questions regarding situated MASs. The problem domain of this
exercise is composed of a two-dimensional grid consisting of packages and destina-
tions. In this domain, robots must move the packages to the correct destination.
The goal of the exercise is to investigate under which conditions the robots will
develop social conventions and how the robots can take advantage of information
communicated with each other. This exercise was our inspiration for developing
the Packet-World.

3.1. Basic Setup of the Packet-World

The basic setup of the Packet-World consists of a number of differently colored
packets that are scattered over a rectangular grid. Agents that live in this virtual
world have to collect these packets and bring them to the correspondingly colored



386 Danny Weyns, Alexander Helleboogh and Tom Holvoet

(a) A Packet-World of 10x10. (b) Local view of agent 8.

Figure 1. Example of the Packet-World.

destination. We call a job the task of the agents to deliver all packets in the world.
Fig. 1(a) shows an example of a Packet-World of size 10x10 with 8 agents. Colored
rectangles symbolize packets that can be manipulated by the agents and circles
symbolize destinations.

In the Packet-World, agents can interact with the environment in a number
of ways. Agents are allowed to make one step at a time to a free neighboring cell.
If an agent is not carrying any packet, it can pick up a packet from one of its
neighboring cells. An agent can put down a packet it carries at one of the free
neighboring cells, or of course at the destination point of that particular packet.
Finally, if there is no sensible action for an agent to perform, it may wait for
a while and do nothing. Besides acting in the environment, agents can also send
messages to each other. In particular agents can request each other for information
about packets or destinations, or ask to set up collaborations. Performing actions
requires energy. Therefore agents are equipped with a battery. The energy level of
the battery is of vital importance to the agents. The battery can be charged at
one of the available battery chargers. Each charger emits a gradient. The gradient
values of all battery chargers are combined into a single gradient field. To navigate
towards a battery charger, the agents follow the field in the direction of decreasing
gradient values. In the example of Fig. 1 there is only one charger, indicated by
a battery symbol. The value of the gradient field is indicated by a small number
in the bottom left corner of each cell. The intensity of the field increases further
away from the charger.

It is important to notice that each agent of the Packet-World has only a
limited view on the world. The view-range of the world expresses how far, i.e. how



The Packet-World: A Test Bed for Investigating Situated MASs 387

many squares, an agent can perceive its neighborhood. Figure 1(b) illustrates the
limited view of agent 8, in this example the view-range is 2.

The goal of the agents is to perform their job efficiently, i.e. with a minimum
number of steps, packet manipulations and message exchanges. We monitor the
Packet-World via two counters that measure the efficiency of the agents in per-
forming their job. A first counter measures the energy consumed by the agents.
Stepping with a packet or without a packet, picking up a packet or putting it down
and communicating messages all have an energy cost. As a default, when an agent
makes a step without carrying a packet it consumes one unit of energy, stepping
with a packet requires two units of energy. The energy required to pick up a packet
or to put it down is also one unit. Finally, waiting and doing nothing is free of
charge. The second counter measures the number of messages sent. By default,
this counter simply increments for each message that is transferred between two
agents. The overall performance can thus be calculated as a weighted sum of all
energy-consuming activities.

3.2. Objectives of the Packet-World

In the past, several other test beds for MASs have been developed. The most
famous is probably the “Tileworld” [22]. The original Tileworld consists of a grid
of cells on which an agent has to pick up and move tiles toward holes. The tiles and
holes appear and disappear at rates determined by parameters of the simulator.
These parameters enable the user to tune the experiments in order to examine
particular aspects of interest. The Tileworld has been used for evaluating several
kinds of agent architectures, see e.g. [18].

In contrast to the Tileworld, in which only one agent operates, in the Packet-
World a collection of agents has to solve the problem. Central to the Packet-World
is global problem solving using local interaction between the situated agents. The
focus of the Packet-World is on “conceptual exploration” of situated MASs, rather
than on “testing”. During the last three years, we have applied the Packet-World
as a test bed for investigating the following issues in situated MASs: (1) perception
of the environment; (2) (simultaneous) actions; (3) direct and indirect communica-
tion; (4) timing issues and execution control; (5) different forms of collaborations;
and (6) adaptability. In the course of this research, we have introduced several ex-
tensions to the Packet-World, such as “heavy packets” that must be manipulated
by two agents simultaneously, or pheromones, flags and gradient fields to enable
agents to coordinate indirectly, etc.

4. Underlying Reference Architecture of the Packet-World

In this section, we discuss the underlying reference architecture of the Packet-
World. First we clarify the main characteristics of the reference architecture. Then
we give a graphical overview of the architecture and briefly explain the essential
building blocks and their interrelationships.



388 Danny Weyns, Alexander Helleboogh and Tom Holvoet

4.1. Characteristics of the Reference Architecture

The early school of reactive MASs originated from the rejection of classical agency
based on symbolic AI. Nowadays, the original opposition tends to evolve towards
convergence and integration. A pioneer of this synergetic vision on MASs is J. Fer-
ber [13]. In line with this evolution we developed a new perspective on situated
MASs, resulting in a reference architecture with the following main characteristics:

1. The environment is modeled as a first-class entity with its own processes
that manage the state of the environment. The environment is observable to
the agents and serves as a regulating entity, i.e. it defines the rules for, and
enforces the effects of, the agents’ (inter)actions.

2. The situated agents as well as other processes can be active in the environ-
ment, asynchronously as well as simultaneously.

3. The situated agents are approached as social entities capable to commit to
one another in their situated context.

4. The reference architecture is developed according to state-of-the-art software
engineering principles and complies with the rules of separation of concerns
and reuse-ability.

4.2. Overview of the Reference Architecture

Figure 2 depicts a high-level overview of the reference architecture for situated
multi-agent systems [30]. We use a model for action that is based on Ferber’s
theory of influences and reactions [13]. According to this theory, agents produce
influences in the environment and subsequently the environment reacts by com-
bining the influences to deduce a new state of the world from them. The reification
of actions as influences enables the environment to combine simultaneously per-
formed activity in the system.

The architecture integrates three primary abstractions: agents, ongoing activ-
ities and the environment. First we look at the agent architecture. The Perceptioni

module maps the local state of the environment onto a percept for the agent. We
use a model for active perception that enables an agent to direct its perception at
the most relevant aspects in the environment according to its current task. We dis-
cuss perception in the Packet-World in Section 5.2. The KnowledgeIntegrationi

module uses the most recent percept to update the current knowledge of the agent.
The Decisioni module is responsible for action selection. The decision module is
set up as a free-flow activity tree. To enhance the social behavior of the agents, we
extended free-flow trees with the concepts of a role and a situated commitment. A
role maps on a subtree that covers a logical functionality of the agent. A situated
commitment enables an agent to bias its action selection towards the actions of
the role it plays in the commitment. We elaborate on agent’s decision making in
the Packet-World in Section 5.3. The Communicationi module takes care of the
communicative interactions. The communication module processes incoming mes-
sages and produces outgoing messages according to well-defined communication
protocols. Agents typically modify their state (current knowledge and/or situated



The Packet-World: A Test Bed for Investigating Situated MASs 389

Figure 2. Overview of the Reference Architecture.

commitments) based on the commutative interactions. We discuss communication
in the Packet-World in Section 5.4.

Next to agents, the architecture integrates the concept of an ongoing activity
to model other processes that may produce activity in the system. Examples of
ongoing activities are moving objects, evaporating pheromones or environmental
variables such as temperature. An ongoing activity is defined by an Operationj .
Ongoing activities produce influences in the environment depending on the current
state of the environment. We discuss several kinds of ongoing activities in the
Packet-World in Section 6.2.

The MessageDelivering module of the environment handles message trans-
port. The Collector module collects the influences of agents and ongoing activities
in the MAS and passes sets of simultaneously performed activity to the Reactor
module. The Reactor calculates, according to a set of domain specific laws, the
reaction, i.e. state changes in the environment. Dealing with actions in the Packet-
World is the subject of Section 6.1. To determine the simultaneity of actions, the
architecture supports three forms of synchronization: (1) global synchronization,
i.e. all agent act in lock step; (2) regional synchronization, i.e. agents form synchro-
nized groups on the basis of their current locality; and (3) fine-grained synchroniza-
tion based on logical time. We elaborate on synchronization in the Packet-World
in Section 5.5.

5. Architectural Concerns in the Packet-World

In this section, we discuss the architecture of the Packet-World. The architecture
of the Packet-World is a concrete instantiation of the reference architecture for



390 Danny Weyns, Alexander Helleboogh and Tom Holvoet

(a) Environment structure decomposed in layers. (b) Integrated representation in

the Packet-World.

Figure 3. Layered model of the environment.

situated MAS as presented in the previous section. Subsequently, we zoom in on
the following concerns: structure of the environment, perception, agent’s decision
making, communication, execution control and timing.

5.1. The Structure of the Environment

A first concern we have investigated with the Packet-World is the structure of
the environment. The environment of the Packet-World has a grid structure. We
have modeled the environment as a collection of grid layers [27], see Fig. 3(a).
Each layer hosts a particular kind of item1. Examples are an agent-layer, a packet-
layer, a pheromone-layer etc. Relations can be defined between items in different
layers, e.g. an agent in the agent-layer can hold a packet in the packet-layer. The
aggregate of layers populated with items and their interrelationships represent the
state of the world as it can be perceived by the agents. Each layer defines a set of
constraints on the items for that layer, e.g. two packets can not be located on the
same location in the packet-layer. In addition, the combined locations of items in
different layers can be constrained. An example of an inter-layer constraint is: an
agent can not be located on the same position as a destination (since agents are
not allowed to move across a destination).

The layered structure of the environment has several advantages. First of all,
it improves extensibility and re-usability. It is relatively simple to add a new layer
to the environment when needed, and layers can be reused over different versions
of the Packet-World. Second, the layered structure simplifies the generation of
agent’s perception and the calculation of effects of actions. Since we allow an
agent to perceive its environment selectively, only the corresponding layers of the
environment have to be taken into account to generate a perception. The laws
that apply when agents act in the environment are made explicit by means of the

1Item is the generic type for objects and agents in the Packet-World.



The Packet-World: A Test Bed for Investigating Situated MASs 391

Figure 4. Perceptioni module at the top, with a detail of
Sensingi module at the bottom.

constraints defined for each particular layer, and the constraints defined between
layers. We further elaborate on these issues in the next sections.

5.2. Perception

Perception in software MASs is a relatively unexplored research domain. We inves-
tigated perception in the Packet-World and developed a model for active percep-
tion that enables an agent to direct its perception according to its current tasks.
Figure 4 gives an overview of the perception module of an agent [33]. The module
for perception is decomposed into three functional modules: sensing, interpreting
and filtering.

Sensingi maps the state of the environment to a representation. The mapping
of state to a representation depends on two factors. First the agent can select a set
of foci. Focus selection enables an agent to direct its perception, it allows the agent
to sense the environment for specific types of information. Examples of foci in the
Packet-World are see(ai, range) and smell(ai, range). The focus see(ai, range)
expresses that agent ai intends to perceive all “visible” items within a distance de-
fined by range measured from its current position. Examples of visible items in the
Packet-World are packets, destinations, battery chargers or other agents. With the
smell(ai, range) focus, the agent expresses its intention to smell its neighborhood,
typically to sense pheromones (see Section 6.2). Second, the representation of the
environment state is composed according to a set of perceptual laws. A perceptual
law constrains the composition of a representation according to the requirements



392 Danny Weyns, Alexander Helleboogh and Tom Holvoet

of the modeled domain. As such, perceptual laws are an instrument for the de-
signer to model domain-specific constraints on perception. Contrary to physical
sensing that incorporates such constraints naturally, in virtual environments we
have to model the constraints explicitly. An example of a perceptual law in the
Packet-World is a law that specifies which items agents are able to “see” in their
neighborhood. If e.g. an agents ai requests a perception with a focus see(ai, 5) and
the general view-range is four, the law will cut off the perceived area to a range of
four cells relative to the agents current location. But if the agent requests a percep-
tion with focus see(ai, 2), the returned representation will contain all visible items
within a range of two cells. The generation of a representation is a responsibility
of the environment and is handled by the PerceptGenerator, see Fig. 4.

The second functionality of perception is Interpreting. Interpreting maps a
representation to a percept. To interpret a representation, agents use descriptions.
Descriptions are blueprints that enable agents to extract percepts from representa-
tions. Percepts describe the sensed environment in the form of expressions that can
be understood by the internal machinery of the agent. An example is a representa-
tion that contains a number of packets in a certain area. The agent that interprets
this representation may choose a description to interpret the distinguished packets
or another description to interpret the group of packets as a cluster.

The third and final functionality of active perception is Filtering. By select-
ing a set of filters, an agent is able to select those items of a percept that match
specific selection criteria. Each filter imposes conditions on the elements of a per-
cept. These conditions determine whether the elements of a percept can pass the
filter or not. For example, an agent that has selected a focus to visually perceive
its environment and that is currently interested in the agents within a range of
two cells can select an appropriate filter select(“Agent”, 2).

5.3. Agent’s Decision Making

Another architectural concern we have investigated with the Packet-World is deci-
sion making. The model for agent’s action selection in the Packet-World is based
on free-flow trees [23]. Since existing free-flow trees are designed from the view-
point of individual agents, they lack support for explicit social behavior. To enable
explicit social behavior for situated agents, we have extended free-flow trees with
the concepts of a role and a situated commitment [31]. Fig. 5(a) depicts a simplified
partial action selection model for an agent in the Packet-World.

The tree is composed of nodes which receive information from internal and
external stimuli in the form of activity. The activity values of internal stimuli are
directly derived from the agent’s current knowledge, the values of external stimuli
are indirectly derived from perception, via the KnowledgeIntegration module. The
nodes feed their activity down through the hierarchy. When the activity flow arrives
at the action nodes, i.e. the leaf nodes of the tree, a winner-takes-it-all process
decides which action is selected. Fig. 5(b) depicts in detail how the DeliverPacket
node collects its activity from a parent node and the “carry packet”” stimulus, and
feeds the combined activity down in the hierarchy.



The Packet-World: A Test Bed for Investigating Situated MASs 393

(a) Free-flow tree. (b) Detail of the flow.

Figure 5. Action selection for an agent in the Packet-World.

We define a role as a subtree in the hierarchy that covers a logical functionality
of the agent. The root node of such a subtree is denoted as the top node of the
role. A role is named after its top node. A role may consist of a set of sub-roles,
and sub-roles of sub-sub-roles, etc. All roles of the agent are constantly active
and contribute to the final decision making by feeding subsets of actions with
activity. However the contribution of each role depends on the activity it has
accumulated from the affecting stimuli of its nodes. In the example, there are three
roles demarcated by dotted triangles. In the role Individual, the agent searches
for packets and brings them to the destination. The role of Chain is composed of
two sub-roles: Head and Tail denoting the two roles of agents in a collaboration
to pass packets along a chain. Such a collaboration enables these agents to deliver
packets more efficiently at the destination. Finally, in the role of Maintain the
agent recharges its battery.

A situated commitment defines a relationship between one role, i.e. the goal
role, and a non-empty set of other roles of an agent, i.e. the source roles. Each
link between a source role and the commitment has a weight factor that deter-
mines the extent of influence of the associated role on the situated commitment.
Situated commitments have a name. Explicitly naming the commitments enables
agents to set up mutual commitments in a collaboration. However, a single agent
can also commit to itself. The connector Charging in Fig.5(a) denotes the sit-
uated commitment of an agent to itself to recharge its battery. The connectors
HeadOfChain and TailOfChain denote the mutual situated commitments of
two agents to collaborate in a chain. The situated commitment HeadOfChain in
the example, connects the single source role Individual with the goal role Head.
Charging on the other hand connects two source roles with one goal role.

Besides a name, each situated commitment is characterized by a relations
set, a context, an activation condition, a deactivation condition, a status (acti-
vated or deactivated) and an addition function. To illustrate these characteristics,



394 Danny Weyns, Alexander Helleboogh and Tom Holvoet

consider agent 6 in Fig.1(a) that commits to be HeadOfChain in a collaboration
to pass yellow packets along a chain with agent 5. The relations set contains the
identity of the related agent(s) in the situated commitment. The relations set of
agent’s 6 commitment is the singleton containing agent 5. The context describes
contextual properties of the situated commitment. Applied to the example, the
context of the situated commitment denotes that yellow packets are passed along
the chain. Activation and deactivation conditions are boolean expressions based
on internal state, perceived information and/or received data of a message. When
the activation condition becomes true, the situated commitment is activated. The
situated commitment then injects an additional amount of activity in the goal role
defined by the addition function. The weight factors of the links from the source
roles determine the fraction of the activity level of the top node of each source
role that is taken into account by the addition function. The top node of the goal
role combines the additional activity of the situated commitment with the regular
activity accumulated from its stimuli. The activation condition for the situated
commitment of agent 6 in the example, is the receipt of agent’s 5 confirmation to
collaborate. As soon as the deactivation condition becomes true, the situated com-
mitment is deactivated. Then the situated commitment no longer influences the
activity level of its output node. The deactivation condition of the commitment of
agent 6 is a change in the environment that indicates that the collaboration has
finished, e.g. agent 5 has left its post to recharge its battery.

In general, one agent can be involved in different situated commitments at
the same time. The top node of one role may receive activity from different situ-
ated commitments and may pass activity to different other situated commitments.
Activity received through different situated commitments is combined with the
regular activity received from stimuli into one result.

Summarizing, agents typically agree on mutual situated commitments in a
collaboration via direct communication, which is discussed in the next section.
Once activated, the situated commitment will affect the selection of actions. The
situated commitment induces extra activity in the hierarchy, favoring action selec-
tion described by the goal role of the situated commitment. Traditional approaches
of commitment oblige agents to communicate each other explicitly when the con-
ditions for a committed cooperation no longer hold. For a situated commitment
it is typically the local context in which the involved agents are placed that regu-
lates the duration of the commitment. This approach fits the general principles of
situatedness and robustness of situated multi-agent systems.

5.4. Protocol-Based Communication

Communication in multi-agent systems is traditionally based on speech act theory
[1]. Speech act theory treats communication as actions and these communicative
acts are considered in isolation. In practice, however, speech acts are mostly part
of series of logically related communicative acts. We used the Packet-World to
study communication in terms of protocols. Communication protocols emphasize
the relationship between the exchanged messages in communicative interactions.



The Packet-World: A Test Bed for Investigating Situated MASs 395

(a) Communication log. (b) Packet-World situation.

Figure 6. Communication in the Packet-World.

We define a communication protocol as a set of protocol steps [32]. A protocol
step is a tuple (conditions,effects), with conditions a set of boolean expressions
that determine whether the protocol step is applicable. Conditions are based on
received messages, the agent’s available roles, and the agent’s state (i.e. its current
knowledge and the status of its situated commitments). Effects are the results of
the application of the protocol step, i.e. the composition of a new message and/or
the modification of the agent’s state. A communicative interaction (conversation)
is initiated by the initial step of a communication protocol. At each stage in
the conversation there is a limited set of possible protocol steps. Terminal states
determine the end of a conversation.

As an example, let us look at the communication protocol to set up a chain
for passing packets in the Packet-World, see Fig. 6. In the depicted situation,
the conditions for agent 4 to set up a chain are fulfilled. Therefore it sends a
cooperation request to agent 3, the candidate tail. cooperation request is the initial
step of the communication protocol. In the Packet-World agents use a simple
FIPA-ACL-like communication language. The basic version of this language allows
agents: (1) to request each other for information about packages or destinations,
and (2) to set up chains to pass packets to each other. The third line in Fig. 6(a)
depicts the cooperation request of agent 4. chain refers to the kind of cooperation
that is requested, red is the color of the packets to be passed, 7/2 are the current
x/y-coordinates of agent 4 and 8/3 are the coordinates of the destination for
red packets. Agent 3 then investigates the proposal. Since it is able to pass two
red packets to agent 4, agent 3 sends an accept coopeartion request and activates
the situated commitment TailOfChain, as shown in Fig. 5(a). The fifth line in
Fig. 6(a) shows that agent 3 accepts the request for cooperation. After receiving
the acceptance, agent 4 activates the situated commitment HeadOfChain. In the
mean time, agent 3 itself has requested agent 2 to cooperate in the chain, see line



396 Danny Weyns, Alexander Helleboogh and Tom Holvoet

4. But, since agent 2 has no packets to pass, it refuses the cooperation and sends
a refuse cooperation request, see the bottom line in the log panel.

After the mutual commitments between agent 4 and agent 3 are activated,
the cooperation is settled and continues until the situated commitments get de-
activated. Deactivation may be communicated explicitly by “end of cooperation”
messages, but may also be induced by changes in the environment. For example,
in case agent 3 has passed all packets and leaves its position to find new work, or
in case one of the agents runs out of energy and leaves its position to recharge its
battery, the other agent will detect this change and will terminate the conversation
and that ends the cooperation.

5.5. Execution Control and Timing

A radically different concern investigated in the Packet-World, is execution con-
trol and timing for situated MASs. The relative timing and order in which var-
ious agents perform activities in the Packet-World, is completely arbitrary due
to thread scheduling, message transport delays and variable processor loads in
the execution platform. Providing execution control mechanisms is necessary to
enforce requirements with respect to relative timing and order, e.g. for enabling
repeatable simulation results and reliable testing. Three different approaches of
execution control are supported in the Packet-World: global synchronization, re-
gional synchronization and synchronization based on logical time.

5.5.1. Global Synchronization. Global synchronization enforces all agents in the
Packet-World to act at one global pace. All agents are synchronized with each other
and perform actions simultaneously. In each cycle, each agent performs one action,
after which the actions of all agents are processed and the cycle restarts. The
main advantage of this approach is its simplicity. However, global synchronization
severely limits the agent’s autonomy, since agents cannot decide themselves when
to perform an action. Moreover, as all agents are forced to act at the pace of
the slowest agent in the entire MAS, the efficiency of acting is low. Finally, in a
distributed setting this approach scales badly since the centralized synchronizer is
a bottleneck and a single point of failure.

5.5.2. Regional Synchronization. Compared to global synchronization, regional
synchronization [28, 8] allows synchronization to be more selective, increasing the
efficiency of acting for the agents. Regional synchronization is based on the char-
acteristic that agents within a situated MAS typically perceive and act locally.
In the Packet-World, a regional synchronization algorithm allows each agent to
synchronize with all agents within its perceptual range, and in turn, these agents
synchronize with all agents within their perceptual range, and so on. Applied to
an example: with a view size of 2 in Fig. 7, we have three regions of synchronized
agents, indicated by different colors: region 1 consisting of agent 1, agent 4 and
agent 5, region 2 consisting of agent 2, agent 3 and agent 6, and finally agent 7
forms region 3 on its own, since it is currently out of range of all other agents. All



The Packet-World: A Test Bed for Investigating Situated MASs 397

Figure 7. Regional synchronization in the Packet-World.

agents within the same region are synchronized with each other and act simulta-
neously, performing actions at the same pace. Different regions on the other hand
are asynchronous: the agents within region 1 act at their own pace, independent of
the pace of the agents in region 2 or region 3. Note that the regions are dynamic
and have to be kept up-to-date as agents move. For instance, if agent 7 performs a
step in the northern direction, it enters the perceptual range of agent 3, and hence
regions 2 and 3 merge. The cost of regional synchronization is an overhead of com-
munication to maintain regional groups of synchronized agents. The advantage of
regional synchronization is its scalability, as no central synchronizer is employed.
However, since the execution of different regions is asynchronous, the relative tim-
ing and order of actions performed by agents belonging to different regions is not
guaranteed. For a quantitative evaluation of regional synchronization we refer to
[28].

5.5.3. Synchronization Based on Logical Time. Global and regional synchroniza-
tion does not take into account the nature of the actions agents perform, the han-
dling of (simultaneous) actions does not reflect the characteristics of the actions
in the real world. For example, suppose that in the real-world a step represents
travelling a distance of 10 meters at a speed of 1 meter per second, and picking up
a packet takes 5 second. In this case, it takes an agent 2 times longer to perform
a step than to pick up a packet. Synchronization based on logical time [16] allows
the developer to customize the timing for each action and for each agent, such
that the characteristics of the real world are reflected in the model.

In the Packet-World, synchronization based on logical time is supported by
means of (1) semantic duration models which allow the developer to describe the
desired timing characteristics for the Packet-World, and (2) a mechanism that inte-
grates all synchronization functionality transparently into the MAS. Consequently,



398 Danny Weyns, Alexander Helleboogh and Tom Holvoet

Figure 8. Synchronization based on logical time. The white
parts of the infrastructure are hidden from the developer.

the timing of the Packet-World can be changed without requiring changes in the
agents. Moreover, the complexity of all underlying synchronization infrastructure
can be hidden from the developer.

We explain the working of a prototype [15] that was developed and that uses
AspectJ to integrate this approach of synchronization in the Packet-World, see
Fig. 8. First, the developer specifies a particular Semantic Duration Model for
each agent within the MAS. Semantic duration models enable the developer to
express a duration for each of the activities2 the agent can perform. The duration
of an activity of an agent is the period of logical time it takes until the effects
of that activity are noticeable. For each agent ai, the semantic duration model is
described in terms of a list of (ci

j , r
i
j)-tuples, with ci

j mapping to a Java method
that the agent executes to perform a particular activity with semantic meaning,
and ri

j a constant denoting the logical duration of that activity. For example, in
Fig. 8, the model specifies that performing a move action in the Packet-World
takes a logical time of 5 units for agent a1, compared to 6 units for agent a2.

Based on a semantic duration model of all agents within the MAS, an Aspect
and a Time Monitor are generated for each agent (see Fig. 8). The Time Monitor
of agent ai contains a logical clock for that agent. At the start of the simulation,
the logical clocks of all agents are zero. The goal of the Aspect on the other hand
is to notify the Time Monitor of all activities the corresponding agent executes.

2With the term activities, we refer to all internal deliberation an agent can perform, as well as

all actions on the environment and all perception of the environment, insofar they are considered
semantically relevant for the simulation.



The Packet-World: A Test Bed for Investigating Situated MASs 399

Therefore, the Aspect weaves code into all methods that are defined as activities
ci
j of the agent. The goal of the inserted code is to block the execution of the agent

as soon as it decides to perform an activity cj
i and to notify the Time Monitor,

which then advances the agent’s logical clock with a value of rj
i . For example, a

simulation starts and agent a1 performs a move action while agent a2 picks up
a packet. Both actions are intercepted and blocked, causing the logical clock of
agent a1 to be advanced to 5 and that of agent a2 to 2.25. The notification of the
Time Monitor and the blocking of an agent’s execution by the inserted code is
represented graphically for agent a1 by the arrowed lines in Fig. 8. The MAS Time
Synchronizer ensures that all activities are not executed out of logical clock order.
The MAS Time Synchronizer continuously inspects the logical clocks of all agents,
and unblocks agents for which it is safe to proceed. In our example, agent a2 has
the smallest logical clock and hence is allowed to proceed. Consequently, agent a2

is allowed to perform the pick-up packet action that was previously blocked, and
a2 continues by performing a move afterwards. This causes the execution of agent
a2 to be intercepted again, and its logical clock to be advanced to 8.25. The MAS
Time Synchronizer compares this value with the logical clock of agent a1, which
still has a value of 5. This causes the execution of agent a1 to be unblocked while
agent a2 remains blocked. Consequently, agent a1 performs the move, followed
by picking up a packet. At this moment, the logical clocks of both agents are
8.25. Both agents are unblocked and hence the pick-up packet action of agent
a1 and the move of agent a2 are simultaneous actions as they occur at the same
moment in logical time. Note that, to allow agents to perform simultaneous actions
deliberately, agents must have an activity at their disposal to wait for a particular
logical duration without action. This fine-grained level of synchronization comes
at the cost of a scalability comparable to that of global synchronization.

6. Advanced Collaborations in The Packet-World

In the previous section, we discussed several forms of simple collaborations between
agents in the Packet-World. Examples are the exchange of information about pack-
ets and destinations, or the formation of chains to deliver packets more efficiently.
In this section, we zoom in on more advanced forms of collaboration in the Packet-
World. First we illustrate collaborations based on simultaneous actions, after that
we elaborate on different forms of collaborations based on stigmergy.

6.1. Simultaneous Actions in the Packet-World

Introducing the possibility for agents to act simultaneously opens up new perspec-
tives on collaboration. We extended the Packet-World in several ways to enable
agents to act simultaneously. One extension is the possibility for two neighboring
agents to transfer a packet directly to one another. An example in Fig. 9 is agent
1 that passes the packet it carries to agent 8. Such a transfer only succeeds when
the involved agents act together, i.e. agent 1 has to pass the packet while agent



400 Danny Weyns, Alexander Helleboogh and Tom Holvoet

Figure 9. Simultaneous Actions in the Packet-World.

8 accepts the packet. Another extension is the introduction of “heavy” packets,
denoted in Fig. 9 by the larger rectangles. Contrary to regular packets, to pick
up a heavy packet, two agents have to lift up the packet together, each of them
at a short side of the packet. Agents that carry a heavy packet can only move
together in the same direction. As for regular packets, heavy packets can be put
down at any free cell or at the delivering point of the packet. However, to put
down a heavy packet, both agents have to release the packet simultaneously. An
example in Fig. 9 are agents 2 and 7 that make a step with the large packet they
carry. Such a step only succeeds when both agents step in the same direction. In
the depicted situation, this could correspond to a direction southwest towards the
destination of the packet they carry.

6.1.1. Support for Simultaneous Actions. To avoid race conditions, all access to
shared state must be controlled. Current mechanisms for access control (locks,
semaphores, monitors, etc.) provide support for interleaving concurrent access to
shared state. As such, additional support is needed for simultaneous actions whose
combined effect differs from performing these actions sequentially. To enable si-
multaneous actions: (1) agents must be able to act together and (2) the outcome
of simultaneous actions must be in accordance with the laws of interaction that
apply for the MAS.

Enabling agents to act together requires (1) a model that prescribes the condi-
tions to determine which actions happen simultaneously, i.e. the synchronization
model; (2) support to reify actions; and (3) a runtime mechanism that resolves
which actions satisfy these conditions. In Section 5.5, we discussed three different
models for synchronization we have applied in the Packet-World: global synchro-
nization, regional synchronization and synchronization based on logical time.



The Packet-World: A Test Bed for Investigating Situated MASs 401

Figure 10. Dealing with Simultaneous Actions in the Packet-World.

Ensuring the correct outcome of simultaneous actions requires additional
support of the environment. Fig. 10 depicts the model we have used to deal with
simultaneous actions in the Packet-World [29]. When an agent invokes an action
in the environment, that action is reified as an influence and collected by the
influence collector. When the collector has received a complete set of influences
from a set of simultaneously acting agents3, it passes the set to the reactor. The
reactor combines the influences with the valid action laws. The resulting effects
are passed to the effector that updates the state of the environment. For a detailed
discussion on the infrastructure for simultaneous actions we refer to [29][30].

6.2. Stigmergy: Flags, Gradient Fields and Pheromones

The concept of stigmergy was first introduced by P. Grassé [14] to describe the
indirect communication among individuals in social insect colonies. In the con-
text of MAS, stigmergy is applied as various forms of indirect communication by
means of markers in the environment. Stigmergy enables agents to influence each
others behavior indirectly through manipulation of the state of (marks in) the
environment, while in learning approaches such as [4] agents modify their own
internal state based on feedback received from the environment. To evaluate the
applicability of stigmergy as a means for communication between situated agents,
we studied the use of three kinds of environmental markers in the Packet-World:
flags, gradient fields and synthetic pheromones [10].

3For global synchronization, a set contains an influence of each agent in the MAS; for regional

synchronization a set contains the influences of all agents of a region; for synchronization based
on logical time all the influences with the same logical time belong to a set.



402 Danny Weyns, Alexander Helleboogh and Tom Holvoet

(a) Flag-based stigmergy. (b) Pheromone trails.

Figure 11. Stigmergic communication in the Packet-World.

6.2.1. Flags. A first and most simple form of indirect communication are flags
which the agent can place in the environment. In the Packet-World, the use of
flags was studied as a means to solve the “sparse world” problem. The sparse
world problem arises when only a couple of packets are left. The behavior of the
agents then becomes inefficient. Most agents keep searching aimlessly for packets,
wasting their energy. When several agents detect one of the few packets remaining,
all of them run towards it, while in the end only one of them is able to pick it up.
To cope with the sparse world problem, agents can use flags to mark a part of the
world in which no more packets are present. By placing flags, the agents divide
the world in two zones: a marked and an unmarked zone. Agents avoid the marked
zone, and only consider the unmarked zone for further exploration. The agents’
behavior for placing flags had to satisfy two requirements. First, the destinations
must at all times be part of the unmarked zone. Otherwise, the agents would
forever try to search for the unmarked zone, even if all packets were collected.
Second, and for the same reason, there can only be one unmarked zone: all cells
belonging to the unmarked zone are connected. We tested various behaviors for
the agents with different strategies for placing flags. The best results were obtained
with a behavior maintaining an unmarked zone which always has a convex shape,
see Fig. 11(a). To obtain this solution, agents start placing flags in empty corners.
Extra flags are placed between other flags or between (flags and) the borders of
the world. The shortest path between the remaining packets on the one hand and
the destinations on the other hand always lies entirely within the unmarked zone
(because of its convex shape) and hence is never excluded.



The Packet-World: A Test Bed for Investigating Situated MASs 403

Figure 12. Gradient field emitted by battery chargers.

6.2.2. Synthetic Pheromones. A second important form of indirect communication
is the use of synthetic pheromones, see Fig. 11(b). Analogous to flags, pheromones
are markers that agents can place in the environment. However, pheromones ex-
hibit a number of additional characteristics: evaporation, aggregation and diffu-
sion. Evaporation means that the strength of pheromones diminishes over time.
Aggregation on the other hand means that different pheromones at the same cell
are combined into a single pheromone with increased strength. Finally, diffusion
means that pheromones deposited at a particular cell are spread to neighboring
cells over time, making it more likely that agents further away can perceive them.
Evaporation and diffusion are examples of ongoing activities, see Section 4. In the
Packet-World, the use of pheromones is studied to construct trails between clus-
ters of packets on the one hand and destinations on the other hand. The agents
first search for the destination, and then start forming a pheromone trail while
searching for packets. In this way, the pheromone trail will lead from the desti-
nation towards the packet cluster. Once a packet has been found, the agent can
easily deliver the packet by following the pheromone trail back to the destination.
In this way, pheromones provide a means for stigmergic coordination between the
agents which goes beyond the limitations of the agents’ locality in the environment.
On the way back from a packet cluster towards the destination, the pheromone
trail is reinforced. Shorter trails are reinforced more regularly than longer trails,
and hence tend to be more attractive. In the Packet-World, three different types
of pheromones are supported: undirected pheromones, unidirectional pheromones
and omnidirectional pheromones. Undirected pheromones are only characterized
by a strength. Unidirectional pheromones contain a strength as well as a static
direction pointing to one of the neighboring cells. Omnidirectional pheromones on
the other hand are not limited to a single direction, but contain a probability
distribution for all (eight) possible directions.



404 Danny Weyns, Alexander Helleboogh and Tom Holvoet

6.2.3. Gradient Fields. A third form of indirect communication are gradient fields.
In the Packet-World, gradient fields are used by agents to retrieve battery chargers.
All agents in the Packet-World are equipped with a battery. The battery provides
each agent with the energy necessary to perform actions. At regular times, agents
have to recharge their battery to prevent it from running out of energy. In order to
do so, particular cells on the grid are equipped with a battery charger. Each battery
charger emits a gradient that propagates throughout the environment. The effects
of all battery chargers are combined into a single gradient field. Gradients fields
are constructed only relying on local propagation between neighboring cells, while
taking the effect of obstacles into account. In Fig. 12, the value of the gradient field
is depicted in the bottom left corner of each cell. The value of the gradient field on
each cell represents the minimal distance of that cell to a battery charger. Agents
compare the minimal distance to a battery charger with their remaining battery
level to estimate the urgency for charging the battery. To navigate towards a
battery charger, the agents follow the field in the direction of decreasing gradients.

7. From the Packet-World to an Automated Warehouse
Transportation System

The results of our study of the Packet-World as a test bed for situated MAS
are currently being validated in a research project in cooperation with Egemin4,
an industrial expert in automating warehouse transportation systems using auto-
matic guided vehicles (AGVs) [34]. An AGV is an unmanned, computer-controlled
transportation vehicle that uses a battery as energy source. AGVs have to perform
transportation tasks. Such a transportation task consists of picking up a load at
a particular location in the warehouse and bringing it to a particular destination.
To move from one location to another, AGVs use a complex network of predefined
road segments and crossroads. The problem context is highly dynamic. First, the
environment continuously changes, as road segments can get congested or blocked
because of fallen products or broken down AGVs. Second, the task stream con-
tinuously changes as transportation tasks are created on demand. Third, AGVs
can become temporarily unavailable for reasons of maintenance or battery charg-
ing. The responsibilities of the AGV-system thus are: (1) allocating transportation
tasks to AGVs; (2) completing those tasks; (3) avoiding collisions and deadlock;
and (4) charging the batteries of AGVs on time.

Today, the design of automated warehouse transportation systems is based
on a centralized control system for the AGVs, using one planner which controls
all AGVs. The central system gathers all relevant information and controls the
actions of each AGV. The goal of the project is to investigate the feasibility of
decentralize system control using a situated MAS, aiming to improve flexibility.

There is a clear connection between the Packet-World and an industrial au-
tomated warehouse transportation system. First, AGVs as well as agents in the

4http://www.egemin.com



The Packet-World: A Test Bed for Investigating Situated MASs 405

Packet-World are situated in an explicit environment. Second, the AGVs as well
as the Packet-World agents have to perform transportation tasks in that envi-
ronment. Third, the automated warehouse transportation system as well as the
Packet-World are decentralized systems; both AGVs and Packet-World agents only
have a limited, local view on the environment. Fourth, both AGVs and Packet-
World agents use a battery as an energy source that has to be recharged at reg-
ular times. Fifth, both applications have a constrained topology. Whereas a grid
is employed in the Packet-World, the automated warehouse transportation sys-
tem has a graph-like topology consisting of nodes (crossroads) and edges (road
segments). The main difference between both systems is that AGVs have to deal
with the ongoing problem associated with a continuous stream of transportation
tasks, whereas in the Packet-World, the stream of transportation tasks is finite
and arises as agents detect packets and destinations.

8. Conclusions

In this article, we presented the Packet-World. We illustrated the use of the Packet-
World as a test bed in our research to explore and evaluate a broad range of
fundamental concepts and mechanisms for situated MASs. We elaborated on the
structure of the environment, agents’ perception, flexible action selection, protocol-
based communication, execution control and timing, simultaneous actions and
several forms of stigmergy.

The Packet-World can be considered as an abstract application for a fam-
ily of complex distributed applications. We illustrated the direct connections of
the Packet-World with an industrial automated warehouse transportation system.
Currently, our research results obtained from the Packet-World are applied in this
real-world application.

A Java implementation of the Packet-World is available5 under GNU General
Public License (GPL).

Acknowledgment

We would like to thank the members of the AgentWise task force at DistriNet
labs, K.U.Leuven for their contribution to the work presented in this article. Many
thanks also to Eva Weyns for the graphical design of the Packet-World.

References

[1] J. L. Austin, How To Do Things With Words. Oxford University Press, UK (1962).

[2] O. Babaoglu, H. Meling and H. Montresoret, Anthill: A Framework for the De-
velopment of Agent-Based Peer-to-Peer Systems. 22th International Conference on
Distributed Computing Systems, Vienna, Austria (2002).

5https://sourceforge.net/projects/packet-world



406 Danny Weyns, Alexander Helleboogh and Tom Holvoet

[3] T. Balch and R.C Arkin, Communication in Reactive Multiagent Robotic Systems.
Autonomous Robots 1(1) (1994), 27–52.

[4] H.R. Berenji and D. Vengerov, Cooperation and Coordination Between Fuzzy Rein-
forcement Learning Agents. 8th IEEE Conference on Fuzzy Systems, Korea (1999).

[5] E. Bonabeau, F. Hnaux, S. Gurin, D. Snyers, P. Kuntz and G. Theraulaz, Routing
in Telecommunications Networks with Ant-Like Agents. IATA (1998), 60–71.

[6] R.A. Brooks, Intelligence Without Representation. Workshop in Foundations of Ar-
tificial Intelligence, Dedham, MA (1987).

[7] R.A. Brooks, Intelligence Without Reason. MIT AI Lab Memo No. 1293 (1991).

[8] L. Claesen, Regional Synchronization in the Packet-World. Master thesis Katholieke
Universiteit Leuven (2004), available in English.

[9] M. Dorigo and L.M. Gambardella, Ant Colony System: A Cooperative Learning Ap-
proach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Com-
putation 1(1) (1997), 53-66.

[10] J. De Meulenaere, Stigmergy Applied in the Packet-World. Master thesis Katholieke
Universiteit Leuven (2003), only available in Dutch.

[11] J.L. Deneubourg, A. Aron, S. Goss, J.M. Pasteels and G. Duerinck, Random Be-
havior, Amplification Processes and Number of Participants: How they Contribute
to the Foraging Properties of Ants. Physics 22(D) (1986), 176–186.

[12] A. Drogoul and J. Ferber, Multi-Agent Simulation as a Tool for Modeling Societies
Decentralized A.I. 4, Elsevier (1992).

[13] J. Ferber, Multi-Agent Systems, An Introduction to Distributed Artificial Intelligence.
Addison-Wesley, Great Britain (1999).

[14] P. Grassé, La theorie de la Stigmergie: Essai d’interpretation du Comportement des
Termites Constructeurs. Insectes Sociaux, Vol. 6 (1959).

[15] A. Helleboogh, T. Holvoet and D. Weyns, Time Management Support for Simulat-
ing Multi-Agent Systems., AAMAS Workshop on Multiagent and Multiagent-based
Simulation, New York (2004).

[16] A. Helleboogh, T. Holvoet and D. Weyns, Towards Time Management Adaptability
in Multi-Agent Systems. AISB 2004 Fourth Symposium on Adaptive Agents and
Multi-Agent Systems, (2005).

[17] M. Huhns and L. Stephens, Multiagent Systems and Societies of Agents. Multia-
gent Systems, A Modern Approach to Distributed Artificial Intelligence, MIT Press
(2000).

[18] D. Kinny, Measuring the Effectiveness of Situated Agents. Technical Report 11, Aus-
tralian AI Institute, Carlton, Australia (1990).

[19] P. Maes, Modeling Adaptive Autonomous Agents. Artificial Life Journal 1(1-2), MIT
Press, Cambridge, MA (1994), 135–162.

[20] V. Parunak, Go to the Ant: Engineering Principles from Natural Agent Systems.
Annals of Operations Research 75 (1997), 69–101.

[21] V. Parunak, A.D. Baker and S.J. Clark, The AARIA Agent Architecture: From Man-
ufacturing Requirements to Agent-Based System Design. Workshop on Agent-Based
Manufacturing, ICAA98, Minneapolis, MN (1998).



The Packet-World: A Test Bed for Investigating Situated MASs 407

[22] M. Pollack and M. Ringuette, Introducing the Tileworld: experimentally evaluating
agent architectures, Eighth National Conference on Artificial Intelligence, CA (1990).

[23] K. Rosenblatt and D. Payton, A fine grained alternative to the subsumbtion archi-
tecture for mobile robot control. IEEE Joint Conference on Neural Networks, (1989).

[24] J.A. Sauter and V. Parunak, ANTS in the Supply Chain. Workshop on Agent based
Decision Support for Managing the Internet-Enabled Supply Chain, WA (1999).

[25] L. Steels, Cooperation between distributed agents through self-organization. First Eu-
ropean Workshop on Modeling Autonomous Agents in a Multi-Agent World, Elsevier
Science Publishers, Holland (1990), 175–196.

[26] T. Tyrrell, Computational Mechanisms for Action Selection. PhD dissertation, Uni-
versity of Edinburgh (1993).

[27] B. Vandeweerdt, A Model for the Environment in Reactive Multi-Agent Systems.
Master thesis Katholieke Universiteit Leuven (2003), only available in Dutch.

[28] D. Weyns and T. Holvoet, Regional Synchronization for Simultaneous Actions in Sit-
uated Multi-Agent Systems. 3rd International/Central and Eastern European Con-
ference on Multi-Agent Systems, Czech Republic, LNCS 2691 Springer (2003).

[29] D. Weyns and T. Holvoet, A Model for Simultaneous Actions in Situated Multi-Agent
Systems. 1st International German Conference on Multi-Agent System Technologies,
Germany, LNCS 2831 (2003).

[30] D. Weyns and T. Holvoet, A Formal Model for Situated Multi-agent Systems. Fun-
damenta Informaticae 63(2-3) (2004), 125-158.

[31] D. Weyns, E. Steegmans and T. Holvoet, Combining Adaptive Behavior and Role
Modeling with Statecharts. 3th International Workshop on Software Engineering for
Large-Scale Multi-Agent Systems, ICSE, Scotland (2004).

[32] D. Weyns, E. Steegmans and T. Holvoet, Protocol Based Communication for Situated
Multi-Agent Systems. 3th International Joint Conference on Autonomous Agents and
Multi-Agent Systems, New York (2004), 118–127.

[33] D. Weyns, E. Steegmans and T. Holvoet, Towards Active Percption in Situated Multi-
Agent Systems. Journal on Applied Artificial Intelligence 18(8-9) (2004), 867–883.

[34] D. Weyns, K. Schelfthout and T. Holvoet, Decentralized Control of E’GV Trans-
portation Systems. 4th Joint Conference on Autonomous Agents and Multi-Agent
Systems, Industry Track, Utrecht, (2005).

[35] M. Wooldridge, An Introduction to MultiAgent Systems. John Wiley and Sons, Eng-
land (2002).

Information about the Software

The software of the Packet-World is available on the Internet as full fledged soft-
ware (under GNU General Public License), version no.: 1.0. The Internet address
is: https://sourceforge.net/projects/packet-world/
The Packet-World is a 100% Java test bed for investigating situated multiagent
systems. The tool allows users to experiment with various aspects of multiagent
systems, incl. agent architectures, stigmergy, communication, etc. For questions
about the software, please email : danny.weyns@cs.kuleuven.ac.be



408 Danny Weyns, Alexander Helleboogh and Tom Holvoet

Danny Weyns
Katholieke Universiteit Leuven
Department of Computer Science
Celestijnenlaan 200A, 3001 Leuven
Belgium
e-mail: danny.weyns@cs.kuleuven.ac.be

Alexander Helleboogh
Katholieke Universiteit Leuven, Belgium
e-mail: alexander.helleboogh@cs.kuleuven.ac.be

Tom Holvoet
Katholieke Universiteit Leuven, Belgium
e-mail: tom.holvoet@cs.kuleuven.ac.be



Decommitment in a Competitive Multi-Agent
Transportation Setting

Pieter Jan ’t Hoen, Valentin Robu and Han La Poutré

Abstract. Decommitment is the action of foregoing of a contract for another
(superior) offer. It has been analytically shown that, using decommitment,
agents can reach higher utility levels in case of negotiations with uncertainty
about future opportunities. We study the decommitment concept for the novel
setting of a large-scale logistics setting with multiple, competing companies.
Orders for transportation of loads are acquired by agents of the (competing)
companies by bidding in online auctions. We find significant increases in profit
when the agents can decommit and postpone the transportation of a load to
a more suitable time. Furthermore, we analyze the circumstances for which
decommitment has a positive impact if agents are capable of handling multiple
contracts simultaneously. Lastly, we present a demonstrator of the developed
model in the form of a Java Applet.

1. Introduction

Multi-agent systems (MASs) have emerged as an important paradigm for mod-
elling decentralized, real-time optimization problems. Several lines of work have
addressed the application of multi-agent systems (MASs) [21, 8, 16, 27] in the logis-
tics of the transportation sector, a challenging area of application. The transporta-
tion sector is very competitive and profit margins are typically low. Furthermore,
the planning of operations is a computationally intensive task which classically
is centrally organized. Such centralized solutions can however quickly become a
bottleneck and do not lend themselves well to changing situations. For example,
a centralized planner may not be well suited for incident management, or exploit-
ing new profitable opportunities. This last issue is of great importance as a large
proportion of the orders for transportation originate in the course of operation.
MASs can overcome these challenging difficulties and offer new opportunities for
profit by the development of robust, distributed market mechanisms [5, 25]. In this
paper, we use as model online, decentralized auctions where agents bid for cargo



410 Pieter Jan ’t Hoen, Valentin Robu and Han La Poutré

in a MAS logistics setting. We study a bidding strategy which is novel for such a
large scale setting.

In [23, 2, 24], a leveled commitment protocol for negotiations between agents
is presented. Agents have the opportunity to unilaterally decommit contracts, at
the price of a prenegotiated penalty. That is, they can forgo a previous contract
for another (superior) offer. Sandholm et al. have shown formally using a game
theoretical analysis for a constrained number of agents that by incorporating this
decommitment option the degree of Pareto efficiency of the reached agreements
can increase. Agents can escape from premature local minima by adjusting their
contracts. In this work, decommitment is the possibility of an agent to forgo a
previously won contract for a transport in favor of a more profitable load.

We show in a series of computational experiments that significant increase in
performance (profit) can be realized by a company with agents who can decommit
loads, as opposed to a company with agents that only employ the option of regular,
binding bidding. As a necessary precondition for this gain, the experiments show
that decommitment is only a clearly superior strategy for an agent close to the
limit of its capacity. This is a new, general result for agents capable of handling
simultaneous tasks. Furthermore, we claim that the increase in performance for our
(abstract) model can be seen as a lower bound for expected increased performance
in practice. We substantiated this statement through experiments in [18] that show
that the relative impact of a decommitment strategy increases with the complexity
of the world. We hence expect a decommitment strategy to be very effective in
highly stochastic environments, i.e the real world.

The remainder of this paper is organized as follows. Section 2 presents the
transportation model that we use in this paper. The market mechanism is de-
scribed in Section 3. Section 4 briefly discussses other multi-agent systems applied
in logistics, focusing on market-based approaches. Section 5 presents a Java applet
build to visualize the problem domain and online bidding complexity as presented
in Sections 2 and 3. Section 3 details our application of decommitment in a mar-
ket setting. Section 7 discusses a required precondition for a successful decommit-
ment strategy by an agent capable of handling multiple tasks concurrently. The
computer experiments are presented in Section 8. Section 9 contains concluding
remarks.

2. The Logistics Model

In this section, we present the transportation model that is used in this paper. We
have kept the transportation model, the market mechanism, and the structure of
the bidding agents relatively simple to keep the analysis as transparent as possible.
Some extensions of the basic model are further discussed in Section 8, where we
show that performance can increase significantly when a decommitment strategy
is used. We expect the (positive) effect of decommitment to increase when the
complexity of the transportation model increases as the uncertainty of possible



Decommitment in a Competitive Multi-Agent Transportation Setting 411

future events consequently increases. In [18] we investigated some venues to further
substantiate this claim.

2.1. Overview

The world is a simple n by n grid. This world is populated by trucks, depots with
cargo, and competing companies. The trucks move over the grid and transport
cargo picked up at the depots to destinations on the grid. Each truck is coupled
with an agent that bids for cargo for its “own” truck.1 The trucks are each owned
by one of the companies. The performance of a company is measured by the
total profits made by its fleet of owned trucks. We consider (for simplicity and
to facilitate the analysis of the model’s results) that all companies consist of the
same number of (identical) trucks.

2.2. Performance Indicators

Poot et al. [19] give an extensive list of performance measures for the transporta-
tion of cargo found in literature. The indicative performance measures from this
list that we consider are (i) the profit made as a function of the total number of
transported loads, (ii) the profit as a function of the bulk of the transported loads,
and (iii) the costs as a function of the distance traveled for the made deliveries.
We have used profit as the most important indicator for measuring the outcome
of our simulations. Here we assume that the raw profit made by a transporta-
tion company provides a good overall indication of how efficiently it organises its
operations.

2.3. Cargo

Loads for pickup prior to delivery by the trucks are locally aggregated at depots.
Such an aggregation procedure is for example used by UPS,2 where cargo is first
delivered to one of the nearby distribution centers. Warehousing, where goods
from multiple companies are collected for bundled transport, is another, growing
example. This aggregation can take place over relatively short distances or over
more substantial distances (e.g., in case of international transport). In general,
the origin of loads will not be randomly distributed but clustered, depending on
population centers and business locations [14]. We thus also consider depots as
abstractions of important population or business centers. Section 8 presents such
a model.

Like most regular mail services (e.g., UPS) and many wholesale suppliers,
we employ a model of “next day delivery”. In the simulations, each depot has a
number of loads available for transport at the start of the day. Furthermore, new
orders can also arrive for transport in the course of the day.

According to [29], transportation is dominantly limited in one dimension for
roughly 80% of the loads. In Europe, this dimension is volume; in the United

1In the text, we sometimes blur the line between the agent and its truck.
2See www.ups.com.



412 Pieter Jan ’t Hoen, Valentin Robu and Han La Poutré

States this dimension is weight.3 We hence use a model where we characterize the
cargo (and the carrying capacity of the trucks) in only one dimension, which we,
without loss of generality, call weight.

2.4. The Transporters

The trucks drive round trips in the course of a day. Each individual truck starts
from the same initial location each day, to return to this location at the end of the
day. Multiple round trips on the same day are allowed, and taken into consideration
in the planning, as long as sufficient time remains to complete each trip the same
day.

Alternative distributions of the trucks (e.g., dynamically changing over time)
can of course occur in practice. Such distributions, however, significantly compli-
cate the analysis of the model’s results, especially over multiple days. Furthermore,
a repeating pattern is common as population and business centers do not change
dramatically overnight. In our simulations, the trucks start their trips at the de-
pots. This is in line with the tendency of companies to base their trucks close to
the sources of cargo (to maximize operational profits).

Legal restrictions typically limit the number of hours that truck drivers can
work per day. There may also be a maximum distance which can be driven in one
day. In addition, speed limits need to be taken into account. We set the length of a
typical working day of eight hours. We also assume (for simplicity) that the trucks
travel with a constant “average” speed. These two assumptions determine that
the total distance on the grid which can be travelled by any truck in a simulation
“day” is limited.

2.5. Computing the Cost of Routing

The costs of the trucks, are in our model, strictly dependent on the distance which
the truck needs to cover in a day to deliver commited loads. Supposing a truck
agent is already commited to delivering n loads, the cost of a (n+1)th load is
computed as the additional cost of modifying its path to consider the new load.
In the general case, this problem is NP-complete, even for a single truck, since it
is equivalent to a Travelling Salesman Problem.

An insertion algorithm (where we attempt to insert the new load at each
point in the existing plan) provides a reasonably good heuristic for this problem
in many cases. However, it may be the case that after obtaining a new order, by
modifying the path for already existing loads, an agent may obtain lower costs. In
order to overcome this, we make the following choice: if the number of loads to plan
by the truck is at most 8, then we compute, by brute force, the best possibility for
the ordering of the load pickup and deliveries, which guarantees the most efficient
route. If the total number of cargo to consider in the route exceeds 8 loads, then

3Private communication with E. Tempelman, author of [29].



Decommitment in a Competitive Multi-Agent Transportation Setting 413

the insertion heuristic is used for the current plan, since computing all re-ordering
possibilities becomes computationally prohibitive. 4

The value of the cost of acquiring a new load computed by the truck is an
important measure in our model, because it is used by the truck agent to compute
its bid in the distributed auctions (as shown in Section 3).

3. The Market Mechanism

Each piece of cargo is sold in a separate auction. Auctions for loads are held in
parallel and can continue over several rounds. The auctions continue until all cargo
is sold or until no further bids are placed by the agents in a round. After a load is
sold, it awaits pickup at its depot and is no longer available for bidding.

Agents are not allowed to bid for bundles of cargo. Such a combinatorial
auction type is as yet beyond the scope of our research because the number of
different bidding options is huge (at peak 300 pieces of cargo are offered in the
experiments, yielding an intractable number of bundles for each of which traveling
salesman problems have to be solved.).5 We also do not allow agents to participate
simultaneously in multiple auctions with all implied complications [20, 4, 28]. An
agent’s valuation for a load is typically strongly dependent on which other loads are
won, and at what cost. For this reason, and for the sake of computational feasibility,
we allow each agent to place a bid for at most one load in each round of auctions.
Our agents can thus be seen as computationally and rationally bounded, although
they repair (some of) their non-optimal local decisions through a decommitment
strategy (see Section 3).

Each piece of cargo is sold in a separate Vickrey auction. In this auction
type, the highest bidder wins the contract but pays the second-highest price.6 In
our model, neither the number of participants nor the submitted bids are revealed
by the auctioneer.7 An attractive property of the one-shot (private-value) Vickrey
auction is that it, for certain restrictions, is a (weakly) dominating strategy to
bid the true valuation for the good [32, 10].8 Another attractive property of the
Vickrey auction is that a limited amount of communication between the auctioneer

4We acknowledge other heuristics for this problem could be implemented, but we leave this to

future research
5Determining the winners of a combinatorial auction is NP-complete. There has recently been a
surge of research in this area, however. A fast algorithm for winner determination has for instance

been proposed in [26].
6Ties are broken at random.
7We do not use or reveal sensitive business information in our market mechanism. When exten-

sions of the model are considered (e.g., models where companies receive information about their

competitors’ actions and behavior) privacy issues should be taken into account.
8It is important to note here that the Vickrey auction has some known deficiencies. Furthermore,

limitations of the protocol may arise when the Vickrey protocol is used for automated auctions

and bidding is done by computational agents [22]. These aspects deserve further attention for
future implementations.



414 Pieter Jan ’t Hoen, Valentin Robu and Han La Poutré

and the bidders is required (as opposed to, for example, the “open-cry” English
auction).

The agents use the following strategy in each bidding round. First, they
determine the valuation of each piece of cargo which is offered in an auction. The
valuation of an added load is equal to added profit for this load (the amount of
money which the truck receives when the load is delivered minus the additional
costs associated with the new path). The application of more elaborate valuation
functions can also be useful. For example, the value of a load can increase when
the truck, by transporting the extra load, can move cheaply to an area of the grid
with a high density of depots. Another venue of research is in the line of COIN [33],
where the aim would be to modify the agents’ valuation function to let them more
efficiently cooperate as one company. Such refinements of the agent’s valuation
function form an interesting topic for further studies.

There is however obviously an incentive for a company to avoid competition
between its own trucks. As part of its strategy, the agents of each company there-
fore makes a pre-selection that determines which agents are allowed to bid for the
company in each auction. In this pre-selection phase, the company compares the
valuations of the company’s agents for the available cargo. The agent with the
highest valuation (overall) then bids (its valuation) in the proper auction. This
auction is then closed for other agents of the same firm. In this manner, we elim-
inate the possibility that the no. 2 in the auction, who determines the price, is
an agent from the same company. The agents then repeat this procedure to select
a second agent, which is allowed to bid in another auction, etc. Using this strat-
egy, the agents of a company distribute themselves over a larger set of auctions
than would otherwise be the case. This, in general, also increases the competition
between the trucks of different companies.

4. Market-Based Approaches in Logistics Problems: A Review

Although there are many agent platforms have been proposed for automating
transportation logistics and supply chain management [9, 11, 13, 30], many con-
sider the problem from the perspective of software design or design of the com-
muication protocols used, while others take a more hierarchical approach to plan-
ning, using more conventional OR techniques. By contrast, our work is focused on
simulating bidding strategies and/or different market mechanisms which can be
present in such a setting. We provide a tool to simulate and visualise the effect of
market-based planning in a distributed transportation scenario.

A line of work related to ours is that of holonic agent systems [3, 11]. In this
approach, the domain is modelled through holonic agents or holons, composed of
several sub-agents performing different tasks. The agent representing the head of
the holon has the task of coordinating the activities of the other sub-agents, nego-
tiating on behalf of the holon etc. (for example, a company agent can be modelled
to coordinate and optimize the plans of individual truck agents). By contrast, our



Decommitment in a Competitive Multi-Agent Transportation Setting 415

approach is more decentralised: each truck agent is responsible for optimizing its
own plan based on local order information, while overall coordination between
these plans is assured though distributed market mechanism (i.e. the auctions).
The idea of using micro-markets to coordinate activities within a company (as
well as between companies) has also been employed in [15]. This paper succesfully
shows, in the context of the supply chain trading agent competition, that sub-
dividing decisions within a company into smaller agents and coordinating them
through internal markets can lead to better performance than more hierarchical
planning approaches. Another succesful application of market-based scheduling
[16] proposes an auction-based design applied to decentralized train scheduling.

Other lines of research related to ours are those which propose extensions of
the Contract Net Protocol (CNP) [8, 17, 1]. The work of Aknine et all [1] proposes
an extended multi-agent negotiation protocol (an extension of the original CNP),
and applies it to negotiations over tasks between managers and contractors. Pe-
rugini et al. [17] propose a decentralised approach to transportation scheduling in
military logistics. A Provisional Agreement Protocol (PAP) is proposed in order
to facilitate negotiation between manager agents, which contract out transporta-
tion tasks to actual transportation agents. There are some differences between the
approaches discussed above and the one discussed in this paper. First, these ap-
proaches (at least [8, 1]) refer mostly to the cooperative case, and in this setting
the problems of self-interest or strategic behaviour by the agents does not need to
be considered. Second their main focus is on bid syncronisation issues (which can
appear in distributed settings), while our approach is mostly focused on efficiency
of market mechanism and bidding strategies.

The next section introduces an applet demonstrator of the concepts intro-
duced in Section 2 and the online auctions. The behavior of the trucks and the
results of their bids can be interactively studied.

5. The Visualisation Environment

In order to get a more tangible impression of the complexity of the domain and
the routing decisions of the agents, we have developed a graphical front end for
our simulator, as depicted in Figure 1. This has the form of a Java Applet.

5.1. Overview

The visualisation space is partitioned into several panels (see Fig. 1):

• A central panel which shows the movement of all the trucks in the simulated
“world”.

• A side panel (leftmost) which shows detailed information about the route of
one of the trucks, as selected by the user.

• Two smaller information panels (rightmost), which provide details about the
general state of the simulation and the degree to which the trucks are filled
at any point from their existing capacity.



416 Pieter Jan ’t Hoen, Valentin Robu and Han La Poutré

Figure 1. Overview of the software visualisation environment.
The central panel shows the routes taken by 2 trucks during the
day, while the left side panel shows the detailed route calculation
performed for a truck selected by the user.

• A control panel, featuring a combination of buttons, check-boxes and drop-
boxes to control the simulation.
The demo can be run in one of two modes. The first of these is interactive:

the user explores the evolution of paths of different trucks through the buttons
provided. This allows a more fine-grained exploration of the strategies used by
the trucks. The second is more dynamic: the simulation runs independently in a
loop, controlled by a system timer. This allows a more general impression of the
functioning of the system.

5.2. The information panels

Figure 1 illustrates the whole visualisation tool, Figure 2 gives a view of the central
panel with paths for 3 trucks shown, while Figure 3 illustrates the evolution of
paths (i.e. re-routing) computations taken by a single truck, as a result of winning
several loads in auctions.



Decommitment in a Competitive Multi-Agent Transportation Setting 417

Figure 2. The central panel showing the paths taken during a
turn by 2 trucks. The coloured dots represent the current positions
of the trucks.

All figures contain several elements. Small, green, open boxes represent the
basic location units (i.e. drop off points of cargo) available in the system. The
depots are represented by larger, filled in boxes. A depot is yellow by default
unless the agent is currently located at the depot in which case the box is colored
white.

Arrows are used to indicate pickup and delivery of items of cargo. As defined
in Section 2, all cargo originates at depots and pickup is represented by a green
arrow (pointing up). A drop off of a load is represented by a yellow arrow (pointing
down). The current location of each truck is given by a large coloured circle, which
also gives the percentage of filling capacity. The route of the agent during the course
of the day is depicted by an individually colored line (different for each truck) that
is either solid or dotted. A solid line represents a part of the path already traversed
during a simulation “day”. A dotted line represents the planned route (i.e. that
part of the route which the truck plans to still traverse, given the auctions it has
won so far).



418 Pieter Jan ’t Hoen, Valentin Robu and Han La Poutré

5.3. Evolution of the path for one truck

As described in Section 3, the agents acquire cargo by participating in a sequence
of online auctions. After each won auction the planned path of the truck evolves
(i.e. is expanded), to incorporate the newly won loads. The truck which has the
lowest cost of expanding its path in order to include a new load wins the respective
auction. In Figure 3, we show how a user can explore the evolution of the path
step by step, for one truck, after a number of loads (in this case 4) has been won.
The user can visualize how the truck computes the extension of its path - which
gives an important insight into the routing algorithm.

Figure 3. Exploring step-by-step the evolution of the route for
one truck

6. The Decommitment Strategy

Contracts are typically binding in traditional multi-agent negotiation protocols
with self interested agents. In [23, 25, 2], a more general protocol with continuous
levels of commitment is proposed and analyzed. The key ingredient of this protocol
is the option to break an agreement, in favor of, hopefully, a better deal, at the
possible cost of a prenegotiated penalty. We refer the interested reader to [31] for an
execellent overview of the literature on the decommitment concept. Furthermore,
this work addresses an interesting application of the decommitment concept in a



Decommitment in a Competitive Multi-Agent Transportation Setting 419

collaborative setting, as opposed to the more competitive setting we consider, for
a multi-agent sytem where decommitment is used to repair use of detectors to
reflect new conditions.

In our experiments, an agent with a decommitment strategy can improve
its immediate profits by bidding for a new load with the additional possibility to
discard a load to which it committed earlier. The agent is hence more flexible in
the choice of loads to choose to bid on, at the cost of discarding a previously won
bid. This allows an agent to avoid delivery of a previously won load which has
become less than optimal due to results of continuing auctions. Furthermore, it
allows an agent to consider loads earlier not available for auction while an agent
without the decommitment option may not be able to adapt to new opportunities.
Figure 4 illustrates such a situation, visualised by our software. This shows both
the original path planned by a truck agent, and the extended path computed in
order to reach a new load. The load to be delivered at the location shown in a red
double circle was decommitted.

Trust and reputation are however of importance in the world of (electronic)
contract negotiation [12, 6]. A bad track-record can, for example, lead to the
shunning of a party in negotiations. How an auctioneer or a client will change its
attitude towards a party which in the past has decommitted from a negotiated con-
tract has to be quantified for specific areas of application. For example, for many
bulk transports, a delayed delivery is not too detrimental as another transporter
can easily be found and the transport does not have a tight delivery schedule. This
is however not the case for expensive, quickly perishable goods.

In our market mechanism, we circumvent the above quantification issue. We
achieve this by delivering decommitted cargo by a truck of the same company as
the truck that decommitted the load (with consideration of delivery constraints).
We thus “hide” the process of rejecting deals from the customer who offered the
load at auction: a truck only postpones the transport of decommitted cargo until
another truck of the same company becomes available. A company that uses a de-
commitment strategy in this fashion retains its reputation and performs according
to the contract. For more complex scenario’s (not considered here) where there
is no “hiding” the decommitment and where a good cost function is available to
quantify the impact of decommitment on trust, we however expect the benefits of
a decommitment strategy to increase. The agents then have more options available
to optimize their choice of loads.

The “hiding” of the decommitment strategy is achieved by internal reauc-
tioning of loads. Decommitted cargo is once again offered in a Vickrey auction.
This auction is, however, only accessible for agents of the company which should
deliver the load. The auctions for decommitted cargo thus serve as internal re-sale
markets for companies. Effectively, through a “hidden” decommitment strategy,
tasks are redistributed between the agents of one company. Implicitly, the agents
renegotiate their concurrent plans.

The bids for decommitted cargo, calculated as for “regular” auctions, are
made in terms of “blue”(i.e., fake) money as the contract for transportation has



420 Pieter Jan ’t Hoen, Valentin Robu and Han La Poutré

Figure 4. View of a decommitment situation. The truck agent
decommits from the load shown through a red circle in favour of
another opportunity further away (the direction marked by green
arrow)

already been won by the company. Full competition between all agents of one com-
pany is allowed and all agents of the same company can enter a bid for transporting
the previously decommitted load. This system ensures that the most viable agent
of the company transports the load. A high bid price is not an issue as the internal
auctions for decommitted loads are held with “blue” money, and the costs are fic-
tional. We however require that new bids for decommitted cargo (in terms of blue
money) exceed the original bid costs (in terms of real or “green” money). This rule
is used to ensure that the original bidding costs for winning the decommitted load
in the original auction are covered. The internal resale auctions of decommitted
loads are held in parallel with the public auctions as experiments showed that
this as a good approach to maintain a sufficient degree of competition with the
other companies on the auctions for publicly available loads. As an alternative,



Decommitment in a Competitive Multi-Agent Transportation Setting 421

a decommitted load could be offered in a public auction to other companies, i.e.
outsourcing, a common practice in the transportation world.

For simplicity and from a computational viewpoint, we allow agents to discard
only one load in each round of bidding. Furthermore, only loads which have been
won but are not yet picked up can be discarded, to avoid the possible extra cost
of unloading. Decommitment is hence an administrative action.

Furthermore, we do not allow agents to decommit cargo which must be de-
livered today (see Section 2.1) to minimize the chance of a too-late delivery. Ad-
ditionally, we have constrained the possible backlog of decommitted loads by only
allowing a decommitment by an individual truck if the total number of currently
unassigned, decommitted loads does not exceed the number of trucks in the com-
pany.9 This approach leads to good results: In the computational experiments less
than 0.2% of the decommitted loads were delivered too late. Penalties for too-
late delivery will hence have to be exorbitant in order to offset the benefits of
decommitment presented in Section 8.

7. Conditions for Decommitment

We observe in the computational experiments that decommitment of a load oc-
curs predominantly when trucks are close to filling their maximum capacity. To
understand this result, it is useful to first consider two extreme situations: (i) an
extreme shortage of available cargo and (ii) an extreme excess of available cargo
(relative to the carrying capacity of the trucks).

In case of an extreme shortage of loads, a truck will not decommit a load as
it has a large excess capacity: it is more profitable to add a load to a relatively
empty truck than to replace one load by another one. In the other case of a large
selection of loads to choose from, a new load, which (closely) fills the remaining
capacity of the truck is mostly available. Again, decommitment does not occur as
adding a load which fits is more profitable than fine tuning profits at the cost of
another load which is dropped.

Figure 5 illustrates the impact of decommitment for a range of offered loads
for a single truck to bid on. We plot the number of transported loads as a function
of the number of loads presented. On the far left, the number of available loads is
low. As a consequence, the available loads are almost all picked up and transported.
If the production rate increases, we move to the right in Figure 5. The (positive)
effect of decommitment then increases, until the trucks reach their capacity limits.
On the far right in Figure 5, the number of offered loads is very high. In this
case (an excess of cargo), the added value of decommitment also decreases as
the maximum number of tasks that the truck is able to handle can be achieved.
Note that for specific scenario’s a slightly higher performance can be reached than
without the use of a decommitment strategy, but in the limit of available loads
(tasks) the added benefit of decommitment will disappear.

9Alternative, more sophisticated heuristics are a topic of research.



422 Pieter Jan ’t Hoen, Valentin Robu and Han La Poutré

200

250

300

350

400

450

500

550

600

650

700

2 20 40 60

Number of loads produced

N
u

m
b

er
 o

f 
L

o
ad

s 
tr

an
sp

o
rt

ed

Decommitment

Regular

Figure 5. The added value of decommitment for a wide range of
number of offered loads for one truck. The decommitment strategy
only has a strong impact for a subset of the range of number of
offered loads.

Hence, we hypothesize a decommitment strategy is most beneficial when a
truck is close to reaching its maximum capacity and has a limited number of extra
tasks to choose from. We believe this is a general result for an agent capable
of doing multiple tasks in parallel. This hypothesis must be kept in mind when
evaluating whether to apply a decommitment strategy in novel settings.

In our experiments, we observe for a company with multiple trucks, the use
of a decommitment strategy only has a strongly positive effect when a significant
fraction of its trucks actually decommit loads. When the supply of loads during
one day approximately matches the carrying capacity of the trucks, the above
condition is met. We note in real-life situations that there are often economic
incentives which drive the market to such a balanced situation, if supply and
demand do not match. Hence, a decommitment strategy can be expected to have
an impact in real markets.

In our simulations, we keep the number of companies and trucks constant
when observing the performance of the companies over a number of days. In case
of a balanced market, this implies that the amount of cargo which is transported
per day is relatively constant. To this end, we search for an equilibrium “produc-
tion” of new cargo. In a sense, this is a reversion of the normal market operation.
The addition or removal of a truck is however an operation with a large impact. It
is not straightforward to formulate criteria in terms of profits which make the addi-
tion/removal of a truck an issue, especially over a short time period. Furthermore,
differentiation between the various companies in composition makes evaluation of



Decommitment in a Competitive Multi-Agent Transportation Setting 423

the experiments non trivial. We hence set the production level at a good initial
estimate and adapt towards the equilibrium for the strategy used.

In our experiments, this equilibrium of supply and demand is achieved by
setting the production level of loads to match the approximate carrying capacity
of the trucks, while as yet not using a decommitment strategy. An initial number
of loads is generated and new loads are produced in the course of the day. The level
of production is chosen so as to arrive at a constant number of loads available for
transport the next day (within 5% of the initial number of loads available). When
this constraint is met, the number of loads and the carrying capacity of the trucks
on the grid are in equilibrium over the days of the simulation. With the derived
production schedules, we rerun the experiments, but with the additional possibility
of a truck to decommit an earlier won bid. The performance of the regular bidding
strategy versus the decommitment strategy can then be calculated.

8. Experimental Results

In this section, we study the performance of companies that use a decommitment
strategy relative to companies which do not. Section 8.1 contains results for a
Sugarscape-like model. In this model, the edges of the transportation grid are
connected (to suppress boundary effects). In Section 8.2 we consider a finite-size
model with a Gaussian distribution of the production. In Sections 8.1–8.3, we fur-
ther investigate the effect of decommitment for these two models (as a function
of the number of depots and the number of trucks per depot. Special cases of
the models are further presented in [18]. We conclude with Section 8.4 on perfor-
mance of the decommitment strategy for domains with larger uncertainty. Similar
results for the above two models were also found using benchmark data from
www.opsresearch.com and
www.sintef.no/static/am/opti/projects/top/vrp/ for
location of depots and scheduling of loads. We feel that our results hence hold
for a wide scheme of settings as long as the number of offered loads meets the
requirements given in Section 7.

In the experiments, the performance of the bidding strategies is tested over a
period of days (15) in order to measure not only immediate performance but also
the effect of a bid (or decommitment) over a longer time period. All companies
place an equal number of trucks at each depot for fair competition. Unless stated
otherwise, we use one truck per depot per company. We refer to the full paper [18]
for the experimental setting details.

8.1. A Sugarscape-like Model

We first consider a “Sugarscape-like”grid [7]. Like in Sugarscape, we connect the
edges of the grid (to suppress boundary effects). In addition, trucks can only
move along the grid lines (i.e., they cannot move diagonally). We place the depots
with equal spacing on the grid (the distance is 2 nodes); each depot also has



424 Pieter Jan ’t Hoen, Valentin Robu and Han La Poutré

the same production rate. With these assumptions, we obtain a highly symmetric
“transportation world”.

The performance of the Sugarscape model for one company without and with
a decommitment strategy is summarized in Table 1 for respectively 4, 9, and 25
depots. We consider two companies in these experiments of which only one can
use a decommitment strategy. In Table 1, we report the number of transported
loads and the profit that is generated (in 1000 monetary units), with and without
use of a decommitment strategy. Note that the grid is already filled densely in
case of 25 depots (out of 100 possible locations). Competition between the two
companies then becomes intense and profit margins drop as competition in the
auctions increases.

Table 1. Results for a Sugarscape model.

depots decommitment? loads profit
4 no 940 91
4 yes 987 99

increase 5% 8.7%
9 no 1826 420
9 yes 1920 446

increase 5.1% 10.6%
25 no 3704 585
25 yes 4197 627

increase 10.6% 7.1%

8.2. A Gaussian Distribution Model

The Sugarscape transportation model of Section 8.1 is highly stylized. For exam-
ple, boundary effects are suppressed by using a toroidal grid, depots are equally
spaced, production is uniform, and trucks can only move along the grid lines. We
investigate in this section whether the decommitment strategy also works for a
transportation model which does not make these limiting assumptions.

This alternative model consists of a plain square grid. The trucks can move in
arbitrary directions on the grid, as long as they do not exceed the grid’s boundaries.
The depots are placed at random locations on the grid. Furthermore, we do no
longer assume that production is uniform. Instead, we assume that the spatial
production rate follows a Gaussian distribution (with its peak in the center of the
grid) and then assign each new load to the nearest depot for transportation10.
Such a model is representative of a large city or a major business center which
is surrounded by smaller cities or businesses [14]. The remainder of this paper
discusses results obtained for this model.

Figure 6 shows the profits made by a company (with and without the use of
a decommitment strategy) as a function of the number of depots on the grid. Note

10Production is maximized by maximizing the standard deviation of the Gaussian.



Decommitment in a Competitive Multi-Agent Transportation Setting 425

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

3 4 5 6 7 8 9

Number of depots

P
ro

fi
t

Decommit
Regular

Figure 6. Profits made by a company (with and without decom-
mitment) as a function of the number of depots on the grid.

the positive effect of decommitment on a company’s profit. This effect becomes
especially large in case of a densely filled grid. In the experiments, we observed
on average one decommitment per truck per day, increasing to a maximum of
three per day for a densely filled grid. Results for more than two companies show
similar trends for the decommitting company. Figure 7 shows that the number of
transported loads also increases when a company uses a decommitment strategy.

It is also important to note that the use of decommitment by one company
can decrease the performance of the non-decommitting companies. This loss can
amount to half the increase in profit of the company who uses a decommitment
strategy. This effect is of importance when the margin for survival is small and
under-performing companies may be removed from the field.

8.3. Multiple Trucks at Depots

In the previous experiments, only one truck per company was stationed at each
depot. Figure 8 shows how a firm’s profit depends on the number of trucks per
depot, with and without decommitment. Note that the effect of the decommitment
strategy clearly increases as the number of trucks on the grid increases.

8.4. Decommitment With Larger Uncertainty

In this final section, we investigate two changes in the transportation model which
further increase the impact of the decommitment strategy. We first consider a price
function for which the correct prediction of future loads becomes more important
due to a greater difference in the price of individual loads. Secondly, we investigate
the impact of restricting the available information to the agents by limiting the
distance over which an agent can sample the grid for available loads.



426 Pieter Jan ’t Hoen, Valentin Robu and Han La Poutré

0

5000

10000

15000

20000

25000

30000

3 4 5 6 7 8 9

Number of depots

N
u

m
b

er
 o

f 
L

o
ad

s

Decommit

Regular

Figure 7. Number of transported loads as a function of the num-
ber of depots on the grid. Decommitment has a clear positive
effect: the number of carried loads increases significantly.

0

20000

40000

60000

80000

100000

120000

140000

3 4 5 6 7 8 9

Number of depots

P
ro

fi
t

Decommit-3
Regular-3
Decommit-2
Regular-2
Decommit-1
Regular-1

Figure 8. Influence of the number of trucks per depot on the
profit made by a company, with and without decommitment. The
number of trucks per depot is indicated in the figure’s key.

In Figure 9, we show the strong relative increase in profits when a quadratic
price function is used.11 A similar effect as visible in Figure 9 occurs if the price

11The price for a load l is 40+weight(l)2+ distance(l) as opposed to the usual 40+weight(l)+
distance(l).



Decommitment in a Competitive Multi-Agent Transportation Setting 427

0

50000

100000

150000

200000

250000

300000

350000

3 4 5 6 7 8 9

Number of depots

P
ro

fi
t

Decommit-Quad

Regular-Quad

Decommit-
Linear
Normal-Linear

Figure 9. The effect of decommitment in case of linear and non-
linear (quadratic) price functions.

for delivery increases sharply as the deadline for delivery approaches. In both cases
there is a strong incentive for agents to correctly anticipate which profitable loads
will still appear.

Additional experiments also show that the effect of decommitment increases
if the truck’s agents are more “myopic”. Truck agents can decide to limit their
bidding range due to communication overhead or a lack of computational resources.
In Figure 10, we show the impact of decommitment when an agent only considers
loads for pickup which are not too far away from its current location.12 This figure
shows that the absolute and relative impact of decommitment increases in this
case, as an agent is less able to observe the available loads and thus makes less
optimal choices in the course of time, which need to be repaired.

9. Conclusions and Discussion

We study the use of a decommitment strategy in case of on-line bidding for cargo
by agents in a multi-company, multi-depot transportation setting. In our model,
an agent bidding for a truck can decommit a load in lieu of a more favorable
item of cargo. We observe significant increases in profit that scale with the size of
operations and uncertainty of future prospects. The observed profit margins are
significant in the competitive market of transport where a 4% profit is considered
exceptional. For example, the average profit margin before taxes for the Dutch
road transport sector (from 1989 to 1999) was only 1.6% [29]. Adoption of a
decommitment strategy can thus give a company a significant edge.

12We use an operating range of one quarter of the size of the grid.



428 Pieter Jan ’t Hoen, Valentin Robu and Han La Poutré

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

3 4 5 6 7 8 9
Number of depots

P
ro

fi
t

Decommit

Regular

Decommit-
Myopic
Regular-
Myopic

Figure 10. The role of decommitment in case of “myopic” bid-
ding agents.

For specific applications beyond that of our model and for novel areas, the
added value of decommitment, and the circumstances where it can be applied
successfully should be studied further. However, based upon our computational
experiments, we hypothesize that the positive impact of a decommitment strat-
egy increases with the complexity of the operating domain, as it then becomes of
greater importance to have the opportunity to roll-back a previous sub optimal
decision [24]. Furthermore, we currently shield the reputation of a company by
hiding the decommitment strategy by internal resale of decommitted loads. With-
out this hiding, the impact of a decommitment strategy can further increase, of
course dependent upon the possible penalties incurred for specific domains.

We also observe that decommitment has the highest impact when an agent
is close to its maximum capacity for handling multiple contracts in parallel. With
sufficient capacity, it is often more beneficial to add an extra contract than to
replace a won contract in favor of a superior offer. Hence, for multi-agent systems
where agents are capable of handling several tasks simultaneously, a decommitment
strategy can be expected to have its largest impact when the agents are operated
at (almost) full capacity.

The efficient routing of cargo has a long history within Operational Research
(OR). Classical OR techniques with their centralized coordination and computa-
tion are however not as well suited to cope with the dynamics of incidence manage-
ment or for exploiting new opportunities on-line as an agent-based approach can
be. A non trivial, but fruitful line of future research is a full combination of both
worlds. Issues which then to be addressed are the intertwining of optimizations by
individual agents and the capabilities of OR to (re)calculate efficient schedules for



Decommitment in a Competitive Multi-Agent Transportation Setting 429

(a subset of) the agents. We expect the application of a decommitment strategy
in such a complex world to have a clear, added benefit.

References

[1] S. Aknine, S. Pinson, and M. F. Shakun. An extended multi-agent negotiation pro-
tocol. Autonomous Agents and Multi-Agent Systems, 8(1):5–45, 2004.

[2] M. Andersson and T. Sandholm. Leveled commitment contracts with myopic and
strategic agents. Journal of Economic Dynamics and Control, 25:615–640, 2001.

[3] H.-J. Bürckert, K. Fischer, and G. Vierke. Teletruck: A holonic fleet management
system. In Proceedings of the 14th European Meeting on Cybernetics and Systems
Research, pages 695–700, 1999.

[4] A. Byde, C. Preist, and N. R. Jennings. Decision procedures for multiple auctions.
In Autonomous Agents & Multiagent Systems, pages 613–622, part 2. ACM press,
2002.

[5] S. Clearwater, editor. Market based Control of Distributed Systems. World Scientific
Press, Singapore., 1995.

[6] C. Dellarocas. Goodwill hunting: An economically efficient online feedback mecha-
nism in environments with variable product quality. In W. Walsh, editor, Proceedings
of the 4th Workshop on Agent Mediated Electronic Commerce at AAMAS 2002. Lec-
ture Notes in Artificial Intelligence from Springer-Verlag volume 2531, pages 238–
252. Springer, 2002.

[7] J. Epstein and R. Axtell. Growing Artificial Societies: Social Science From The
Bottom Up. Brookings Institution, 1996.

[8] K. Fischer, J. P. Müller, and M. Pischel. Cooperative transportation scheduling, an
application domain for DAI. Journal of Applied Artificial Intelligence, special issue
on intelligent agents, 10(1), 1996.

[9] T. R. Fox M. S., Barbuceanu M. Agent-oriented supply-chain management. Inter-
national Journal of Flexible Manufacturing Systems, 12:165–188, 2000.

[10] P. Klemperer. Auction theory: a guide to the literature. Journal of economic surveys,
pages 227–286, 1999.

[11] M. Klusch and A. Gerber. Casa: Agent-based integrated services network for timber
production and sales. IEEE Intelligent Systems, 17(2), 2002.

[12] L. Mui, A. Halberstadt, and M. Mojdeh. Notions of reputation in multi-agents sys-
tems: A review. In Autonomous Agents & Multiagent Systems. ACM press, 2002.

[13] S. Ossowski, A. Fernández, J. M. Serrano, J.-L. P. de-la Cruz, M.-V. Belmonte, J. Z.
Hernández, A. Garćıa-Serrano, and J.-M. Maseda. Designing multiagent decision
support system - the case of transportation management. In Proceedings of the Third
International Conference on Autonomous Agents & Multiagent Systems (AAMAS),
New York, pages 1470–1471, 2004.

[14] H. S. Otter, A. van der Veen, and H. J. de Vriend. ABLOoM: Location behaviour,
spatial patterns, and agent-based modelling. Journal of Artificial Societies and Social
Simulation, 4(4), 2001.



430 Pieter Jan ’t Hoen, Valentin Robu and Han La Poutré

[15] F. D. P. Keller and D. Precup. Redagent-2003: An autonomous supply-chain man-
agement agent. Proceedings of the Third International Conference on Autonomous
Agents & Multiagent Systems (AAMAS), New York, pages 1182–1189, 2004.

[16] D. C. Parkes and L. H. Ungar. An auction-based method for decentralized train
scheduling. In Proceedings 5th International Conference on Autonomous Agents
(Agents’01), 2001.

[17] D. Perugini, D. Lambert, L. Sterling, and A. R. Pearce. Agent-based global trans-
portation scheduling in military logistics. Proceedings of the Third International Con-
ference on Autonomous Agents & Multiagent Systems (AAMAS), New York, pages
1278–1279, 2004.

[18] P.J. ’t Hoen and La Poutré, J.A. A decommitment strategy in a competitive multi-
agent transportation setting. In Proceedings of the 5th Workshop on Agent Mediated
Electronic Commerce at AAMAS 2003, volume 3048 of Lecture Notes in Artificial
Intelligence, pages 56–72. Springer, 2003.

[19] A. Poot, G. Kant, and A. Wagelmans. A savings based method for real-life vehi-
cle routing problems. Technical Report EI 9938/A, Erasmus University Rotterdam,
Econometric Institute in its series Econometric Institute Reports, 1999.

[20] C. Preist, C. Bartolini, and I. Phillips. Algorithm design for agents which participate
in multiple simultaneous auctions. In Proceedings of Agent Mediated E-Commerce,
LNAI 2003, page 139 ff, 2001.

[21] T. Sandholm. An implementation of the contract net protocol based on marginal
cost calculations. In Proceedings of the 12th International Workshop on Distributed
Artificial Intelligence, pages 295–308, Hidden Valley, Pennsylvania, 1993.

[22] T. Sandholm. Limitations of the vickrey auction in computational multiagent sys-
tems. In 2nd International Conference on Multiagent Systems (ICMAS-96), pages
299–306. AAAI Press, 1996.

[23] T. Sandholm and V. Lesser. Issues in automated negotiation and electronic com-
merce: Extending the contract net framework. In Proceedings of the First Interna-
tional Conference on Multiagent Systems., pages 328–335, Menlo park, California,
1995. AAAI Press / MIT Press.

[24] T. Sandholm and V. Lesser. Leveled-commitment contracting, a backtracking in-
strument for multiagent systems. AI Magazine, Fall 2002:89–100, 2002.

[25] T. Sandholm and V. R. Lesser. Leveled commitment contracts and strategic breach.
Games and Economic Behavior, 35:212–270, 2001. Special issue on AI and Econom-
ics. Early version: Advantages of a Leveled Commitment Contracting Protocol in
the proceedings of the National Conference on Artificial Intelligence (AAAI), pp.
126–133, Portland, OR, 1996.

[26] T. Sandholm, T. Suri, S. Gilpin, and A. Levine. CABOB: A fast optimal algorithm for
combinatorial auctions. In International Joint Conference on Artificial Intelligence
(IJCAI), 2001.

[27] J. Sauer, T. Freese, and T. Teschke. Towards agent-based multi-site scheduling.
In ECAI 2000 European Conference on Artificial Intelligence 14th Workshop, New
Results in Planning, Scheduling and Design (PUK2000), 2000.

[28] P. Stone, R. Schapire, J. Csirik, M. Littman, and D. McAllester. ATTac-2001: A
learning, autonomous bidding agent. In W. Walsh, editor, Proceedings of the 4th



Decommitment in a Competitive Multi-Agent Transportation Setting 431

Workshop on Agent Mediated Electronic Commerce at AAMAS 2002. Lecture Notes
in Artificial Intelligence from Springer-Verlag volume 2531, pages 143–160. Springer,
2002.

[29] E. Tempelman. Daf-trucks- where materials make money. In Second Workshop on
Cold and Hot Forging of Light-Weight Materials, Delft, from the ICFG (International
Cold Forging Group), 2002.

[30] I. J. Timm, editor. Proceedings of the Workshop on Agent Technologies in Logistics.
ECAI, 2002.

[31] M. van Dyne. Negotiated Decommitment in a Collaborative Agent Environment. PhD
thesis, University of Kansas, 2003.

[32] W. Vickrey. Counterspeculation, auctions and competitive sealed tenders. Journal
of Finance, 16:8–37, 1961.

[33] D. Wolpert, K.Tumer, and J. Frank. Using collective intelligence to route internet
traffic. In Advances in Neural Information Processing Systems-11, pages 952–958,
Denver, 1998.

Software is available on the Internet as
( ) prototype version
( ) full fledged software (freeware), version no.:
( ) full fledged software (for money), version no.:
( ) Demo/trial version
(*) not (yet) available

Internet address for description of software:
http://homepages.cwi.nl/ robu/netobjectdays2004/NetObjectDaysPresentation.ppt

Pieter Jan ’t Hoen
CWI, Centre for Mathematics and Computer Science
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
e-mail: hoen@cwi.nl

Valentin Robu
CWI, Centre for Mathematics and Computer Science
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
e-mail: robu@cwi.nl

Han La Poutré
CWI, Centre for Mathematics and Computer Science
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands, and
TU Eindhoven,
De Lismortel 2, 5600 MB Eindhoven, The Netherlands.
e-mail: hlp@cwi.nl



 

TeamWorker: An Agent-Based Support System 
for Mobile Task Execution 

Habin Lee, Patrik Mihailescu and John Shepherdson 

Abstract. An organization’s mobile workforce is a vital asset, as it is in the front line 
liaising with customers, and driving the sale of an organization’s products and/or ser-
vices. Despite this, the IT support provided to mobile workers is often inferior to that 
available to office-based workers. Mobile workers operate in an unreliable environ-
ment, and as such require differing types of support. Within this paper we present a 
multi-agent based computer cooperative support system known as TeamWorker 
which can help overcome the difficulties faced by mobile workers. Within this sys-
tem, each mobile worker is assigned a personal agent that can assist her/him during 
the working day through appropriate service provision (based on current work con-
text), and through monitoring work progress to anticipate and undertake required ac-
tions on the user’s behalf. A detailed presentation of the TeamWorker system is 
given, including the benefits provided for a real life mobile business process. 

1 Introduction 

A mobile workforce differs significantly from an office-based workforce. Mobile work-
ers operate within an uncertain computing environment where both network and compu-
tational resources are lower, when compared to an office-based workforce that typically 
works within a reliable computing environment [2]. Mobile workers also behave differ-
ently to office based workers due to their frequent movements, and physical isolation 
from other workers. As a result mobile workers require additional IT support, as they are 
typically in the front line interacting with customers and driving the products/services 
offered by an organization. 

Despite this, the support provided for a mobile workforce is often substandard when 
compared to that given to an office based workforce. Agent technology has been used to 
support business processes for the last decade. Huhns and Singh [3] summarize the state 



                     Habin Lee, Patrik Mihailescu and John Shepherdson 434 

of the art in agent-based workflows. Jennings et al. [4] insist that a multi-agent system 
has the necessary features for the support of modern dynamic business processes and 
propose a suitable multi-agent system architecture. Khoshafian and Buckiewicz [5] high-
light some of the limitations faced by a mobile workforce. Firstly, the intelligence of an 
agent can be used to transparently monitor the actions of the user, and determine an 
appropriate course of action based on the current work context. Secondly agents have the 
ability to support different types of interaction protocols that can be used to coordinate 
the activities of distributed users. Finally, the autonomy of an agent can be used to in-
crease the usability of a system for a user by optimizing the interaction types based on 
the constraints of the mobile computing device. 

This paper proposes a multi-agent based Computer Supported Cooperative Work 
(CSCW) system called TeamWorker that supports the coordination of mobile workers. 
A personal agent plays a central role within the TeamWorker system, in that each mobile 
worker is assigned their own personal agent which assists them during their working 
day. Each personal agent is deployed on a mobile computing device which enables a 
mobile worker to access the system regardless of his or her location. In this paper we 
will discuss all aspects of the TeamWorker system, including both technical and non-
technical details such as how the system improves the working practices of mobile 
workers.  

In the following section we will introduce the TeamWorker system, and follow up in 
section three with a discussion of the mobile business process which this system sup-
ports. In section four we present an architectural overview of the TeamWorker system, 
and provide technical details such as the structure of the personal agent. In section five 
we provide a detailed explanation as to how the TeamWorker system supports the speci-
fied mobile business process, and then we conclude this paper. 

2 Introduction to the TeamWorker System 

The TeamWorker system has been designed to support a business process where mobile 
workers are the primary participants. Mobile workers are grouped together into teams to 
complete jobs within a certain geographically area. Each team has a leader who oversees 
the progress of their team, ensuring that jobs are completed, and acting as the first point 
of contact for team members. Each mobile worker is assigned their own personal agent 
which will guide them during the execution of their jobs during the working day. A 
personal agent resides within a mobile computing device and provides a number of ser-
vices such as job retrieval, job update, and job closure. The TeamWorker system has not 
been developed from scratch, rather it has been derived from a platform called mPower 
[6]. The mPower platform is a component-based framework that can be used to support a 
mobile business process by modeling the interactions amongst participants via a linked 
set of conversational messages. The mPower platform has been implemented using an 
existing multi-agent system called JADE-LEAP [1] that has been designed to operate on 
a variety of mobile computing devices, such as a cell phone or a personal digital assis-
tant (PDA). The mPower platform is composed of four layers: 
1. Foundation: This layer provides infrastructure support for the upper three layers. It 

relies on the functionality provided by the JADE-LEAP platform such as message 



TeamWorker: An Agent-Based Support System for Mobile Task Execution              435 

composition, message delivery, ontology/language support, and agent manage-
ment. 

2. Component: This layer provides reusable components known as conversational 
components (C-COMs) which provide a common set of functionality that can be 
used within any type of application domain. For example, a C-COM that provides 
the ability to retrieve and add information from/to a knowledge source regardless 
of the information type. A C-COM is made-up of two parts, an interaction protocol 
that defines the sequence of asynchronous messages between participating roles, 
and role components that undertake the necessary actions to fulfill the provided 
service. Further information on C-COMs can be found within [7]. 

3. Generic workflow: This layer provides a generic set of pre-defined high-level 
workflows that can be applied to business processes in similar domains. Each ge-
neric workflow aims to complete a higher-level business goal as opposed to an in-
dividual C-COM which completes a specific service, and as such a generic work-
flow is composed of a set of linked C-COMs. 

4. Application: This layer is where applications can be composed such as the Team-
Worker system. An application can be developed by selecting only the required 
features (such as ontology support, used to devise domain-specific ontologies) 
from each of the lower three layers. 

Further information on the mPower platform can be found within [6]. 

3 Mobile Business Process 

Within this section we will present an overview of a real life mobile business process 
within British Telecommunications plc (BT) and discuss how TeamWorker has been 
applied to support it. 

3.1 Telecommunications Service Provision and Maintenance 

BT operates a large mobile workforce to maintain its network and provide telecommuni-
cations services to residential and business customers across the UK. Every day thou-
sands of engineers perform tens of thousands of tasks. The process begins when either a 
customer or an engineer requests the provision of a new service, or repair of an existing 
service. Once a new job is created (either manually by a call centre operator or automati-
cally) it is placed within a job pool. This job is then assigned to a particular engineer by 
a centralized workflow management system, based on criteria such as the skills required 
to complete the job, and the location of the job. In some cases a job may require two or 
more engineers, and may also involve multiple locations such as a telephone exchange 
and the customer’s premises. 

Engineers receive their jobs by connecting to the centralized workflow management 
system using a laptop, at the start of the working day either via a GSM or PSTN connec-
tion. Once a job is completed, the engineer closes the job with the appropriate informa-
tion such as the cause of the fault, equipment used, hours worked, etc. If new jobs arrive 
during the day they are kept in an engineers queue until they are manually retrieved, 



                     Habin Lee, Patrik Mihailescu and John Shepherdson 436 

otherwise a phone call is made to inform the engineer that s/he has new work (depending 
on the urgency of the new job). 

As engineers infrequently use their laptops due to network (high access cost, slow 
network access, etc), and physical factors (size of laptop prevents use during job execu-
tion), a number of issues arise. Firstly, engineers often have an out of date view of their 
assigned work, and do not have visibility as to what other engineers within their area are 
working on. Therefore if the engineer’s schedule has been altered s/he will only be 
aware of the change when s/he connects to the centralized workflow system, or by a 
phone call. Secondly, if an engineer knows that they cannot complete an assigned job, 
his/her only recourse is to initiate several mobile phone calls to other engineers (which 
increases costs). There is no support within the current system to transparently trade jobs 
amongst engineers. Finally, the inability of engineers to update their progress in real 
time limits the visibility management have, and therefore hampers their ability to re-
spond to changes such as informing customers as to the progress of their requests (i.e. 
when an engineer will arrive), and assigning new urgent jobs to the appropriate engi-
neers. 

3.2 Application of the TeamWorker System 

The TeamWorker system was designed to improve many of the working practices of BT 
field engineers. Improvement falls into three areas: 
1. Team working/coordination: Currently, in principal engineers are assigned to 

teams, however due to the limitations of the current system (as discussed in the 
previous section), they typically work alone. The TeamWorker system addresses 
this issue by providing a set of coordination services such as job trading, job assis-
tance, and organizing meetings (work or social) that enable engineers to interact 
with each other in real time. 

2. Work visibility: As the TeamWorker system supports the ability to communicate 
over a GPRS network, engineers can benefit from the always-on aspect. Therefore, 
engineers not only have the ability to access the latest job information, including 
any changes to their schedules (which can be automatically pushed out to them), 
but also be able to update their progress in real time. In addition, management has 
greater visibility as to what is occurring in the field, and can respond to changes 
more quickly. 

3. Work flexibility: As the TeamWorker system has been developed for use within 
mobile computing devices, engineers can take the device with them regardless of 
whether they are at a customer's premise, or up a pole. This not only enables engi-
neers to access the system at any time and any place, but also increases their reach-
ability when other engineers or management need to get in touch with them. 

4 Technical Overview of the TeamWorker System 

Within this section we firstly provide a high level architectural overview of the Team-
Worker system, followed by a brief technical overview in section 4.1. Finally in section 
4.2 the internal structure of the personal agent is discussed. 



TeamWorker: An Agent-Based Support System for Mobile Task Execution              437 

4.1 Architectural Overview of TeamWorker 

The TeamWorker system is split into two parts: 1) a front-end part that executes within a 
mobile computing device (one for each engineer), and 2) a backend part that executes 
within a server, or set of servers (for all engineers). Both parts communicate securely 
over a network such as GPRS, via a VPN connection. Each front-end part contains a 
single agent, while the backend part contains a number of agents that may be distributed 
on a set of servers (depending upon the deployment options). Each agent provides a 
specific type of service. When an engineer wishes to access a service, a request is sent 
from her/his front-end agent to the corresponding backend agent which fulfils the service 
request by accessing resources within the Corporate Intranet such as a database, or a 
legacy system. Figure 1 provides the architectural overview of the TeamWorker system. 

 

 

Fig. 1. Architectural overview of the TeamWorker system. 

Within the front-end part of TeamWorker, JADE-LEAP runs in split-container mode, 
which reduces both the level of computing resources required and the time taken to reg-
ister the agent with the agent management system (AMS) of the main container. Using 
this runtime configuration mode, a single TCP socket connection is established from the 
front-end to the back-end, and maintained for the duration of the application. All re-
quests and responses are transmitted over this TCP socket. Both push and pull commu-
nication modes are supported. If a network disconnection occurs (i.e. no network cover-
age), messages are buffered at both-ends, and re-connection occurs automatically. Both 
the buffering and re-connection timings are configurable. Finally, only a single instance 
of the front-end is permitted, to not only conserve computing resources, but to also re-
duce the level of confusion for users as to which instance of the application they were 
using when they return from using other external applications. The backend part is com-
prised of approximately six agents, each of which provides a set service. Those services 
are: 

Public

Internet 

LEAP 

computer

GPRS 

provider 

network

MSP’s firewall

Corporate firewallWireless VPN

VPN Authentication

Front-end

Engineer

Engineer

Front-end

Engineer

Engineer

Intranet

Back-end

Database

Legacy 

Systems



                     Habin Lee, Patrik Mihailescu and John Shepherdson 438 

1. User authorization: Before an engineer is able to access any other services s/he 
must firstly be authenticated. Once authenticated, an engineer is assigned a role 
that determines which services s/he can access. 

2. Job management: This is the most frequently used service, as it enables engineers 
to retrieve their jobs, and also update job progress. 

3. Job trading: This service enables an engineer to trade her/his jobs within the team. 
There are two types of job trades: 1) mini, and 2) maxi. 

4. Notification: As new jobs enter the job pool during the day, this service ensures 
that they can be notified to the appropriate engineer. There are two types of notifi-
cations: 1) new job, and 2) urgent job. 

5. Subscription: Once an engineer is authorized s/he is automatically subscribed to a 
number of services such as notification, based on her/his assigned user role. 

6. Team list: This service keeps track of the status of each engineer, with regards to 
who is currently logged into the system. This presence information can be used in a 
variety of ways such as when an engineer wishes to request assistance during the 
execution of a job. 

4.2 Technical Overview of TeamWorker 

The TeamWorker system has been developed using the Java programming language. 
The front-end part has been implemented using the Foundation profile [9] of the Java 2 
micro edition (J2ME) platform, while the backend part has been implemented using the 
Java 2 standard edition (J2SE) platform version 1.4.1. Both parts use version 3.2 of the 
JADE-LEAP platform. The front-end part has been tested on a number of mobile com-
puting devices that operate on the Microsoft Pocket PC 2002, and 2003 OS. This in-
cludes consumer devices such as the Compaq IPAQ, the O2 XDA I and II, and the Pana-
sonic P2 (a non-consumer device). The underlying Java virtual machine (VM) used to 
execute the front-end part is the IBM J9 version 2.1 VM. A number of optimizations as 
discussed in [8] have been applied to the front-end part of the TeamWorker system in 
order to improve performance. Table 1 provides a breakdown summary of the total size 
of both the front-end and backend part of the TeamWorker system, including the size of 
the mPower and JADE-LEAP runtime libraries. 

A modular approach has been employed to both simplify the maintainance and instal-
lation of new features such as C-COM services to the front-end part of TeamWorker. For 
example, each C-COM service is deployed independently within its own individual jar 
file. Using this approach, if a C-COM service needs to be updated, only the jar file needs 
to be replaced, and not the entire front-end part of TeamWorker. There is no fixed limit 
on the number of C-COM services or user interface screens that can be used within 
TeamWorker, instead it is dependent on the available computing resources. 

4.3 Internal Overview of Personal Agent 

The core of the TeamWorker system is the personal agent which is responsible for as-
sisting an engineer during her/his working day by not only providing access to useful 



TeamWorker: An Agent-Based Support System for Mobile Task Execution              439 

services, but also by monitoring the engineer’s progress and taking autonomous action. 
To achieve this the personal agent is comprised of three specific roles: 
1. User manager: The user manager is responsible for managing a user’s preferences 

by monitoring her/his interaction with the user interface. Through observing a 
user’s interaction behavior over a period of time, the user manager can build an in-
teraction profile, and is better able to tailor the application’s functionality to meet 
the needs of the user. For example, if the user manager observes that the user sel-
dom views the routing information for a job, it may decide to only download this 
information on demand and not when the job details are first downloaded. All in-
teraction with the user interface pass through the user manager. 

2. Coordination manager: The coordination manager is responsible for fulfilling a 
service request by selecting a goal plan that meets the requirements of the re-
quested service from a list of available goal plans. Each goal plan contains details 
of the tasks involved and their execution sequence. Typically a task will execute 
one or more C-COMs, or access a resource from the Resource Manager or interact 
with the user during its execution. An exception handler is provided within the co-
ordination manager that will process any failures that occur during the goal-
achieving phase of a goal plan. 

3. Resource manager: The resource manager is responsible for managing all the re-
sources required to support the execution of the personal agent, and any applica-
tion-specific components such as user jobs, C-COMs, and third party programs. 

 
Front-end Component name Physical size 

TeamWorker 
• Personal agent 
• User Interface 
• C-COM (services) 

 
84 kb 
209 kb 
118 kb 

mPower 138 kb 
JADE-LEAP 309 kb 
Total 858 kb 
Back-end Component name  

TeamWorker 241 kb 
MPower 138 kb 
JADE-LEAP 1593 kb 
Total 1972 kb 

Table 1. Runtime size of TeamWorker system. 

In order to increase the autonomy of a personal agent, a clear separation between itself 
and the underlying user interface was created. This provides a number of development 
and runtime benefits, such as: 1) the user interface can be developed independently from 
the internal workings of the personal agent by a non-agent developer; 2) the personal 
agent is capable of operating on a diverse set of mobile computing devices; and 3) dur-
ing its execution the personal agent could move to another mobile computing device if a 
failure occurs (e.g. a battery runs flat). As both the personal agent and the user interface 



                     Habin Lee, Patrik Mihailescu and John Shepherdson 440 

run within separate threads, an asynchronous event-based mechanism is used for com-
munication. There are four standard events that can be generated. These are: 
1. Goal event: This is generated when a goal plan needs to be created in order to 

fulfill a service. For example when an engineer wishes to retrieve work assigned to 
her/him. 

2. User interface event: Whenever an action on the user interface needs to be per-
formed this type of event is generated. For example, when the results from a ser-
vice call are available they are sent back to the user interface to be displayed to the 
user. 

3. Resource event: This is generated whenever a resource needs to be accessed or 
modified. For example, when the coordination manager needs to execute a C-COM 
to complete a goal plan. 

4. System event: This represents a system level event that typically is generated ex-
ternally from the personal agent. For example, when the network has been discon-
nected. 

All events are captured by the personal agent, which acts as a sensor that collates, re-
cords, and forwards the events to the appropriate destination, as shown in figure 2. 

5. Support for Mobile Business Process 

Within the remainder of this paper we discuss step by step how the TeamWorker system 
supports the lifecycle of an engineer’s job from its inception to its completion. 
 

Fig. 2. Internal structure of the TeamWorker system personal agent. 

UI Event
Goal Event

User Interface Event Goal 

Event

Resource 

Event

Resource 

Event

Message from other agents
Sensor Agent External

Agent Internal

User

Manager

User

Preference

User

Manager

User

Preference

User

Preference

Coordination

Manager

Coordination

Engine

Goal

Plan

Exception

Handler

Coordination

Manager

Coordination

Engine

Goal

Plan

Exception

Handler

User Interface Manager

Resource

Manager

Personal

Job Queue

C-COM Pool 

Resource

Manager

Personal

Job Queue

C-COM Pool C-COM Pool 



TeamWorker: An Agent-Based Support System for Mobile Task Execution              441 

5.1 Job Creation 

When a new job is created (usually as the result of a Customer request), it is placed 
within a job pool where it is scheduled overnight by a centralized workflow management 
system. At the start of the day, a job agent from the TeamWorker system retrieves these 
scheduled jobs, including a list of engineers who have been roistered to work for the day. 
The job details and engineer data are stored within a relational database, ready to be sent 
to an individual engineer as they log into the system. To compliment the job creation 
process, a future enhancement of the TeamWorker system will include the ability for 
engineers to create new jobs, e.g. on noticing damage to a network element. We will 
now discuss how jobs are delivered to engineers. 

5.2 Job Delivery 

Jobs are delivered to engineers using two well-known communication modes: 1) Push, 
and 2) Pull. In the push mode, jobs are dispatched transparently to an engineer from the 
backend part as they become available, while in the pull mode jobs are dispatched (if 
available) to the engineer when requested manually. When an engineer logs into the 
system at the start of the day (as shown on the left hand side of figure 3), a list of any 
jobs assigned to her/him are delivered once s/he are authenticated (push mode). In addi-
tion to this, if the engineer is assigned the team leader role, s/he will also receive the list 
of jobs assigned to the team. The right hand side of figure 3 shows the view an engineer 
has available to them to view the jobs assigned to them. This view is identical when 
viewing both personal jobs and team jobs. 

Currently within the TeamWorker system there are two business rules that determine 
how and when jobs are delivered to engineers. Either jobs are delivered directly to engi-
neers, or via the team leader. When jobs are delivered via the team leader, the team 
leader has the ability to check the job assignments, and perform job re-allocation at 
her/his discretion. This is useful if a team member is absent as typically the team leader 
will be notified and s/he is then able to immediately make the necessary job reallocations 
to ensure that jobs are completed on time. New business rules for job delivery may be 
added to the TeamWorker system at any time based on the working practice of the tar-
geted organization. 

An engineer is able to refresh her/his job queue manually, by selecting the refresh 
menu item from the queue menu. There are two types of refresh modes available: 
1. Heavy refresh: This mode retrieves all the job details from the backend part regard-

less of the job list that is currently available locally. This type of refresh is per-
formed automatically when an engineer logs into the system. 

2. Light refresh: This mode only retrieves new job information from the backend, by 
comparing what is available locally and at the backend part. 

5.3 Job Execution 

A number of services are provided within the TeamWorker system that assist an engi-
neer during the execution of her/his work. Within the following subsections we discuss 



                     Habin Lee, Patrik Mihailescu and John Shepherdson 442 

four such services beginning with how the TeamWorker system provides engineers with 
the required knowledge to complete their assigned jobs. 

 

 

Fig. 3. Screenshots of the user authorization and job queue screen. 

5.3.1 Job Details 
Each job contains a set of information that provides an engineer with the knowledge that 
helps them to complete it. This information is broken down into a number of categories, 
such as customer information, routing information, and job summary. Within the 
TeamWorker system this information is presented to the engineer using tabbed folders, 
where each category is presented to the user in an individual tab as shown in figure 4. 
The lower right arrow buttons enable the engineer to scroll through the available infor-
mation categories. The majority of the information presented is read only. However 
there are a few fields available that can be edited such as the status of a job, and when a 
job has been completed. An engineer is able to view the job details via the job queue 
screen as shown in the right hand side of figure 3. 

 
In addition to viewing job information, an engineer is also able to enter notes for a job. 
This information can be specific to a job or to a location. For example, an engineer may 
add a note that a cable at the job location needs to be replaced soon. This information is 
useful for other engineers who may in future receive a job in the similar location. A 
future enhancement of the note taking function is to enable engineers the ability to add a 
digital photograph or small video clip instead of a plain text note. 



TeamWorker: An Agent-Based Support System for Mobile Task Execution              443 

 

 

Fig. 4. Screenshot of the job details screen. 

5.3.2 Job Trading 
Job trading enables engineers to trade jobs amongst themselves. This is very useful when 
an engineer realizes that s/he cannot complete an assigned job, and rather than missing 
the appointment time, s/he can instead ask if a colleague is willing to complete the job. 
Two types of job trading services have been implemented, 1) mini trade, and 2) maxi 
trade. In a mini job trade an engineer offers a job to other engineers within their team 
who meet certain criteria. For example, an engineer who has the right skills to complete 
the job, or an engineer who is within close proximity of the job. New criteria may be 
added depending upon the working practice of the organization. An engineer can trade a 
job by selecting it from the job queue screen, and then choosing the mini trade menu 
item as shown on the left hand side of figure 5. Once an engineer has initiated a mini job 
trade, s/he can keep track of the progress of this trade by switching to the coordination 
view screen as shown on the right hand side of figure 5.  

 



                     Habin Lee, Patrik Mihailescu and John Shepherdson 444 

 

 

Fig. 5. Screenshot of a mini job trade. 

 An engineer who receives a mini job trade offer is able to view the offer within the 
same coordination view screen as shown on the right hand side of figure 5. From this 
screen an engineer is able to view the job details and decide whether or not s/he is will-
ing to accept the job. To view the jobs, an engineer highlights the job proposal and se-
lects the view button, then is presented with a dialog that shows all the job details as per 
figure 4, with the exception that an engineer cannot edit any fields. Once an engineer 
accepts a mini job trade proposal, all the other engineers who received the same one will 
receive a notification informing them that it has now been withdrawn. 
 A maxi job trade is an alternative job trading option for an engineer, as instead of 
sending an offer to several of their peers, a single offer is sent directly to their team 
leader, who will be asked to re-assign the job on their behalf. This can be useful when an 
engineer’s mini job trade repeatedly fails. When a team leader receives a maxi job trade 
offer s/he can view the job details in the same way as with a mini job trade. However 
s/he will have the ability from within this view to reassign the job. As with both job 
trade types, there is a time limit on the offer. Finally additional business rules may be 
added to the job trading process that determines how it operates. For example, one such 
rule could be that jobs cannot be traded more than three times, or an engineer who al-
ready has four jobs is not able to accept or receive a job trade. 



TeamWorker: An Agent-Based Support System for Mobile Task Execution              445 

5.3.3 Request Assistance 
When a job requires two or more engineers to complete, engineers are able to request 
assistance from their colleagues. This coordination service is similar to the job trading 
service in that engineers who require assistance send a request that contains such infor-
mation as the job type and location, and when assistance is required to their peers. Once 
an engineer receives a job assistance request it appears within their coordination view 
screen (as shown in the right hand side of figure 5), where s/he can view the details and 
decide if s/he is willing to assist. As with the mini job trade service, once an engineer 
accepts this request, the job assistance request will be withdrawn from other engineers. 

5.3.4 Job State Update 
To provide greater visibility as to the progress of jobs within the field, engineers are able 
to update the progress of their assigned jobs. There are six available job states: 
1. Unpublished: This is the initial job state of a job when it enters the TeamWorker 

system. 
2. Published: Once a team leader publishes a job, its job state changes to published 

which enables an engineer to retrieve the job or for it to be pushed out automati-
cally. 

3. Activated: Once a team member receives a job its state is set to activate, to indicate 
it has been received. 

4. Executed: This job state is used to indicate that an engineer is currently executing a 
job. 

5. Negotiated: This job state is used to show that a job is currently under negotiation 
(that is either a mini or maxi job trade is occurring). 

6. Closed: This job state is used to represent that a job has been completed. 
An engineer can change the status of a job by firstly viewing the details of the job 

and then selecting the appropriate job state from a combo box as shown on the left hand 
side of figure 6. Once the progress of a job has been changed, a team leader is able to 
view these changes by refreshing the team job queue. A sample screenshot of this view 
is shown on the right hand side of figure 6. 

5.4 Job Closure 

Once an engineer has completed a job s/he is able to close the job and capture closure 
information such as the time taken to complete the job, the cause of the fault, materials 
used etc. In addition, an engineer is also able to capture customer feedback. Information 
such as if they were satisfied with the level of service received, consent for an engineer 
to dig, and the cost of non-contractual work can be captured directly by an engineer once 
a job is completed. 



                     Habin Lee, Patrik Mihailescu and John Shepherdson 446 

 

 

Fig. 6. Screenshot of job state update. 

5.5 Job Injection 

Within the course of the day new jobs may arrive in the job pool, which need to be de-
livered to engineers. The TeamWorker system supports two forms of job injection: 
1. Normal: In normal job injection mode, jobs have already been assigned to engi-

neers and only need to be delivered. As with the job delivery (discussed in section 
5.2), there are two business rules that determine how jobs are delivered to engi-
neers: 1) directly to engineers, or 2) via the team leader. The left hand side of fig-
ure 7 shows job injection when the business rule is set to ‘via the team leader’, and 
the right hand side of figure 7 shows direct job injection to team members. 

2. Urgent: In urgent job injection mode, jobs have not yet been assigned to an engi-
neer rather they have been assigned to a team. In this case a mini job proposal is 
generated automatically by the system and sent to members of the team that meet 
certain criteria. If no one accepts this urgent job after the expiry time, its priority 
will be raised, resulting in a maxi trade request being generated. 



TeamWorker: An Agent-Based Support System for Mobile Task Execution              447 

 

 

Fig. 7. Job injection screenshot. 

Conclusion 

This paper provides details about an agent based computer supported cooperative system 
known as TeamWorker, which supports mobile business processes. Agent technology 
plays a key part in the TeamWorker system, as each mobile worker is assigned a per-
sonal agent, which negates some of the problems experienced within the mobile comput-
ing environment (in particular usability, device adaptability, communications efficiency 
and computing resource requirements). A technical overview of the TeamWorker system 
was presented, and a detailed description as to how the system supports a real life tele-
communications mobile business process was given. An internal trial of the system has 
been conducted in order to assess the technical qualities and potential business benefits 
of agent technology in general and the TeamWorker application in particular. 

References 

1. Berger, M., Rusitschka, S., Schlichte, M., Toropov, D., and Watzke, M. (2003). Porting 
Agents to Small Mobile Devices - The Development of the Lightweight Extensible 
Agent Platform. EXP in search of innovation special issue on JADE, vol. 3, no. 3, pp. 
32-41. 



                     Habin Lee, Patrik Mihailescu and John Shepherdson 448 

2. Forman, G. and Zahorjan, J. (1994). The Challenges of Mobile Computing. IEEE Com-
puter, Vol. 27, No. 4, pp. 38-47, April. 

3. Huhns, M.N. and Singh, M.P.: Workflow Agents. IEEE Internet Computing, 2 (4), 
(1998) 94-96. 

4. Jennings, N. R., Norman, T. J., Faratin, P., O’Brien P. and Odgers, B.: Autonomous 
agents for business process management. Int. Journal of Applied AI 14(2), (2000) 145-
189. 

5. Khoshafian, S. and Buckiewicz, M.: ‘Introduction to Groupware, Workflow, and Work-
group Computing’, John Wiley & Sons, Inc (1995). 

6. Lee, H., Mihailescu, P. and Shepherdson, J.W.: mPower: A Component-based Frame-
work for the Development of Multi-Agent Systems, BT Technology Journal, 23 (3), Oct. 
2003.. 

7. Lee, H., Mihailescu, P. and Shepherdson, J.W. (2003). Conversational Component-based 
Open Multi-agent Architecture for Flexible Information Trade. Lecture Notes in Artifi-
cial Intelligence (LNAI) 2782, 109-116. 

8. Mihailescu, P., Lee, H. and Shepherdson, J.W. (2004). Hold the sources: A Gander at 
J2ME Optimisation techniques, Proceedings of the 1st International Workshop on Ubiq-
uitous Computing, pp 73 – 82, April. 

9. Sun. (2002). JSR 46 J2ME Foundation Profile. http://jcp.org/en/jsr/detail?id=46. 
 

Author Affiliations 
Intelligent Systems Research and Innovation Centre 
British Telecommunications plc 
B62 MLB1/pp12, Adastral Park 
Martlesham Heath, Ipswich 
Suffolk, IP5 3RE, UK 
Ha.lee@bt.com 
patrik.2.mihailescu@bt.com 
john.shepherdson@bt.com 
 

Information about Software 

Software is available on the Internet as 
(  )   prototype version 
(  )   full fledged software (freeware), version no.: 
(  )   full fledged software (for money), version no.: 
(  )   demo/trial version 
(X)   not (yet) available 

Contact person for question about the software: 
Name: John Shepherdson 
Email: john.shepherdson@bt.com 

 



Author Index

Arcos, Josep Llúıs 6 Müller, Ingo 15
Bellifemine, Fabio 1 Nguyen, Xuan Thang 10
Bosse, Tibor 11 Noriega, Pablo 6
Braubach, Lars 7 Padgham, Lin 8
Braun, Peter 15 Pavlicek, Dušan 2
Caire, Giovanni 1 Pechoucek,Michal 2
Calisti, Monique 4 Pokahr, Alexander 7
Chhetri, Mohan Baruwal 10 Poutre, Han La 17
Di Stefano, Antonella 3 Rehák, Martin 2
Esteva, Marc 6 Rimassa, Giovanni 1, 4
Gorodetsky, Vladimir 5 Robu, Valentin 11, 17
Grant, Alasdair 10 Rodŕıguez-Aguilar, Juan 6
Greenwood,Dominic 1 Rollo, Milan 2
Hajnal, Ákos 9 Rossak, Wilhelm 15
Helin, Heikki 13 Samoylov,Vladimir 5
Helleboogh,Alexander 16 Santoro, Corrado 3
Holvoet, Tom 16 Schau, Volkmar 15
Jayatilleke, Gaya 8 Schlegel, Tino 15
Jonker, Catholijn M. 11 Shepherdson, John 18
Karsaev, Oleg 5 Sierra, Carles 6
Kern, Steffen 15 Šǐslák, David 2
Kernland, Martin E. 4 ’t Hoen, Pieter Jan 17
Konushy, Victor 5 Teuteberg, Frank 12
Kowalczyk, Ryszard 10 Treur, Jan 11
Lamersdorf, Winfried 7 van der Meij, Lourens 11
Laukkanen, Mikko 13 Varga, László Zsolt 9
Lee, Habin 18 Vitaglione, Giosuè 1
Loutchko, Iouri 12 Werner, Zsolt 9
Malyshev, Alexey 5 Weyns, Danny 16
Mankov, Evgeny 5 Winikoff, Michael 8
Mihailescu, Patrik 18 Zapf, Michael 14



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




