

Lecture Notes in Computer Science 3560
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Viktor K. Prasanna Sitharama Iyengar
Paul Spirakis Matt Welsh (Eds.)

Distributed Computing
in Sensor Systems

First IEEE International Conference, DCOSS 2005
Marina del Rey, CA, USA, June 30 – July 1, 2005
Proceedings

13

Volume Editors

Viktor K. Prasanna
University of Southern California
Department of Electrical Engineering, Los Angeles, California, 90089-2562, USA
E-mail: prasanna@usc.edu

Sitharama Iyengar
Louisiana State University
Department of Computer Science, Baton Rouge, LA 70802, USA
E-mail: iyengar@bit.csc.lsu.edu

Paul Spirakis
Research Academic Computer Technology Institute (RACTI) and Patras University
Riga Fereou 61, 26221 Patras, Greece
E-mail: spirakis@cti.gr

Matt Welsh
Harvard University
Division of Engineering and Applied Sciences, Cambridge MA 02138, USA
E-mail: mdw@eecs.harvard.edu

Library of Congress Control Number: 2005927485

CR Subject Classification (1998): C.2.4, C.2, D.4.4, E.1, F.2.2, G.2.2, H.4

ISSN 0302-9743
ISBN-10 3-540-26422-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26422-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11502593 06/3142 5 4 3 2 1 0

Message from the Program Chair

This volume contains the papers presented at the 1st IEEE International Con-
ference on Distributed Computing in Sensor Systems (DCOSS 2005), which
took place in Marina del Rey, California, from June 30 to July 1, 2005. DCOSS
focuses on distributed computing issues in large-scale networked sensor systems,
including systematic design techniques and tools, algorithms, and applications.

The volume contains 26 contributed papers, selected by the Program Com-
mittee from 85 submissions received in response to the call for papers. In ad-
dition, it also contains the abstracts of the invited poster on session entitled
“distributed sensor systems in the real world” and abstracts from the poster
session based on the response to call for posters.

I would like to thank all of the authors who submitted papers, our invited
speakers, the panelists, the external referees we consulted and the members of
the Program Committee. I am indebted to the Program Vice Chairs Sitharama
Iyengar, Pavlos Spirakis, and Matt Welsh for their efforts in handling the review
process and for their recommendations.

I would like to thank Mani Chandy for organizing a panel entitled “From
Sensor Networks to Intelligence.”

Several volunteers assisted us in putting together the meeting. I would like to
thank Bhaskar Krishnamachari for his inputs in deciding the meeting focus and
format, Loren Schwiebert for handling the student scholarships,
Wendi Heinzelman for publicizing the event, Amol Bakshi for many helpful sug-
gestions on the meeting focus and publicity, and Pierre Leone for his assistance
in putting together these proceedings.

It was a pleasure working with José Rolim, General Chair, and Sotiris
Nikoletseas, Vice General Chair. Their invaluable input in putting together the
meeting program and in shaping the meeting series is gratefully acknowledged.

I would like to acknowledge support from the US National Science Foundation,
Microsoft Research, and from the Centre Universitaire d’Informatique of the
University of Geneva.

Finally, I would like to thank my student Yang Yu for his assistance in
administering the manuscript management system.

The field of networked sensor systems is rapidly evolving. It is my hope that
this meeting series serves as a forum for researchers from various aspects of this
interdisciplinary field; particularly I hope it offers opportunities for those work-
ing in the algorithmic, theoretical and high-level aspects to interact with those
addressing challenging issues in complementary areas such as wireless networks,
signal processing, communications, and systems composed of these underlying
technologies.

July 2005 Viktor K. Prasanna, Program Chair

Organization

General Chair

Jose Rolim University of Geneva, Switzerland

Vice General Chair

Sotiris Nikoletseas University of Patras and CTI, Greece

Program Chair

Viktor K. Prasanna University of Southern California, USA

Program Vice Chairs

Algorithms:

Paul Spirakis CTI and University of Patras, Greece

Applications:

Sitharama Iyengar Louisiana State University, USA

Systems:

Matt Welsh Harvard University, USA

Steering Committee Chairs

Jose Rolim University of Geneva, Switzerland

Steering Committee

Josep Diaz UPC Barcelona, Spain
Deborah Estrin University of California, Los Angeles, USA
Phil Gibbons Intel Research, Pittsburgh, USA
Sotiris Nikoletseas University of Patras and CTI, Greece
Christos Papadimitriou University of California, Berkeley, USA

Organization VII

Kris Pister University of California, Berkeley,
and Dust, Inc., USA

Viktor Prasanna University of Southern California,
Los Angeles, USA

Posters/Presentations Chair

Bhaskar Krishnamachari University of Southern California, USA

Proceedings Chair

Pierre Leone University of Geneva, Switzerland

Publicity Chair

Wendi Heinzelman University of Rochester, USA

Publicity Co-chair

Erdal Cayirci Yeditepe University and Istanbul Technical
University, Turkey

Sanjay Jha Univeristy of New South Wales, Australia

Student Scholarships Chair

Loren Schwiebert Wayne State University, USA

Finance Chair

Germaine Gusthiot University of Geneva, Switzerland

Sponsoring Institutions

- IEEE Computer Society Technical Committee on Parallel
Processing (TCPP)

- IEEE Computer Society Technical Committee on Distributed
Processing (TCDP)

VIII Organization

- University of Geneva
- Research Academic Computer Technology Institute (RACTI)

Supporting Organizations

- US National Science Foundation
- Microsoft Research

Program Committee

Tarek Abdelzaher University of Virginia, USA
Micah Adler University of Massachussetts, Amherst,

USA
Prathima Agrawal Auburn University, USA
James Aspnes Yale University, USA
N. Balakrishnan Indian Institute of Science, India
Azzedine Boukerche University of Ottawa, Canada
Richard Brooks Clemson University, USA
John Byers Boston University, USA
Krishnendu Chakrabarty Duke University, USA
David Culler University of California, Berkeley, USA
Kevin A. Delin NASA/JPL, USA
Josep Diaz Technical University of Catalonia, Spain
Jeremy Elson Microsoft Research, USA
Deborah Estrin University of California, Los Angeles, USA
Deepak Ganesan University of Massachussetts, Amherst, USA
Johannes Gehrke Cornell University, USA
Phil Gibbons Intel Research, Pittsburgh, USA
Ashish Goel Stanford University, USA
Wendi Heinzelman University of Rochester, USA
Jennifer Hou University of Illinois at Urbana-Champaign,

USA
R. Kannan Louisiana State University, USA
Elias Koutsoupias University of Athens, Greece
Evangelos Kranakis Carleton University, Canada
P.R. Kumar University of Illinois at Urbana-Champaign,

USA
Margaret Martonosi Princeton University, USA
Rajeev Motwani Stanford University, USA
Badri Nath Rutgers University, USA
Stephan Olariu Old Dominion University, USA
David Peleg Weizmann Institute of Science, Israel
S. Phoha Pennsylvania State University, USA

Organization IX

Cristina Pinotti Università degli Studi di Perugia, Italy
Kris Pister University of California, Berkeley,

and Dust, Inc., USA
S.V.N. Rao Oak Ridge National Lab, USA
Satish Rao University of California, Berkeley, USA
Jim Reich Palo Alto Research Center, USA
Shivakumar Sastry University of Akron, USA
Christian Scheideler Johns Hopkins University, USA
John A. Stankovic University of Virginia, USA
Janos Sztipanovits Vanderbilt University, USA
Bhavani Thuraisingham National Science Foundation, USA
Jan van Leeuwen Utrecht University, The Netherlands
Jay Warrior Agilent Labs, USA
Peter Widmayer ETH Zurich, Switzerland
Jie Wu Florida Atlantic University, USA
Feng Zhao Microsoft Research, USA

Referees

Tarek Abdelzaher
Zoe Abrams
Micah Adler
Luzi Anderegg
James Aspnes
Amol Bakshi
Boulat Bash
Alan Albert Bertossi
Pratik Biswas
Paul Boone
Azzedine Boukerche
Richard Brooks
Scott Burleigh
John Byers
Jason Campbell
Krishnendu Chakrabarty
Bor-rong Chen
Stefano Chessa
Tai-Lin Chin
Maurice Chu
Mark Corner
Razvan Cristescu
Jun-Hong Cui
David Culler
Kevin Delin

Josep Diaz
Prabal Dutta
Jeremy Elson
Mihaela Enachescu
Deborah Estrin
Deepak Ganesan
Phil Gibbons
Ashish Goel
Benjamin Greenstein
Christopher Griffin
Tian He
Wendi Heinzelman
Bo Hong
Jennifer Hou
Sitharama Iyengar
Shaili Jain
Rajgopal Kannan
Elias Koutsoupias
Evangelos Kranakis
P.R. Kumar
Vatsalya Kunchakarra
Ioannis Lambadaris
Philip Levis
Kathy Liszka
Ting Liu

Xin Liu
Konrad Lorincz
Zvi Lotker
Samuel Madden
Geoff Mainland
Amit Manjhi
Pedro Marron
Richard Martin
Margaret Martonosi
Myche McAuley
Rajeev Motwani
Philip Moynihan
Michael Murphy
Badri Nath
James Newsome
Ioanis Nikolaidis
Mirela Notare
Regina O’Dell
Santosh Pandey
David Peleg
Shashi Phoha
Cristina M. Pinotti
Kristofer Pister
Rajmohan Rajaraman
Nageswara Rao

X Organization

Satish Rao
S.S. Ravi
Jim Reich
Jose Rolim
Shivakumar Sastry
Anna Scaglione
Christian Scheideler
Prashant Shenoy
Victor Shnayder
Mitali Singh
Priyanka Sinha

Sang Son
Pavlos Spirakis
John Stankovic
Ivan Stojmenovic
Janos Sztipanovits
Bob Veillette
Yong Wang
Jay Warrior
Mirjam Wattenhofer
Michele Weigle
Jennifer Welch

Matt Welsh
Cameron Whitehouse
Peter Widmayer
Alec Woo
Anthony Wood
Jie Wu
Qishi Wu
Yang Yu
Feng Zhao
Yi Zou

Table of Contents

Invited Talks

Algorithmic Problems in Ad Hoc Networks
Christos H. Papadimitriou . 1

Five Challenges in Wide-Area Sensor Systems
Phillip B. Gibbons . 2

Challenges in Programming Sensor Networks
Feng Zhao . 3

Regular Papers

Distributed Proximity Maintenance in Ad Hoc Mobile Networks
Jie Gao, Leonidas J.Guibas, An Nguyen . 4

Adaptive Triangular Deployment Algorithm for Unattended Mobile
Sensor Networks

Ming Ma, Yuanyuan Yang . 20

An Adaptive Blind Algorithm for Energy Balanced Data Propagation
in Wireless Sensor Networks

Pierre Leone, Sotiris Nikoletseas, Jos Rolim . 35

Sensor Localization in an Obstructed Environment
ChenWang , LiXiao , RongJin . 49

Stably Computable Properties of Network Graphs
Dana Angluin, James Aspnes, Melody Chan, Michael J. Fischer,
Hong Jiang, R ne Peralta . 63

Routing Explicit Side Information for Data Compression in Wireless
Sensor Networks

Huiyu Luo, Gregory Pottie . 75

Database-Centric Programming for Wide-Area Sensor Systems
Shimin Chen, Phillip B. Gibbons, Suman Nath . 89

Using Clustering Information for Sensor Network Localization
Haowen Chan, Mark Luk, Adrian Perrig . 109

é

é

XII Table of Contents

Macro-programming Wireless Sensor Networks Using Kairos
Ramakrishna Gummadi, Omprakash Gnawali, Ramesh Govindan 126

Sensor Network Calculus - A Framework for Worst Case Analysis
Jens B. Schmitt, Utz Roedig . 141

Design and Comparison of Lightweight Group Management Strategies
in EnviroSuite

Liqian Luo, Tarek Abdelzaher, Tian He, John A. Stankovic 155

Design of Adaptive Overlays for Multi-scale Communication in Sensor
Networks

Santashil PalChaudhuri, Rajnish Kumar, Richard G. Baraniuk,
David B. Johnson . 173

Fault-Tolerant Self-organization in Sensor Networks
Yi Zou, Krishnendu Chakrabarty . 191

TARA: Thermal-Aware Routing Algorithm for Implanted Sensor
Networks

Qinghui Tang, Naveen Tummala, Sandeep K.S. Gupta,
Loren Schwiebert . 206

Multiresolutional Filtering of a Class of Dynamic Multiscale System
Subject to Colored State Equation Noise

Design and Analysis of Wave Sensing Scheduling Protocols for
Object-Tracking Applications

Shansi Ren, Qun Li, Haining Wang, Xiaodong Zhang 228

Multiple Controlled Mobile Elements (Data Mules) for Data Collection
in Sensor Networks

David Jea, Arun Somasundara, Mani Srivastava 244

Analysis of Gradient-Based Routing Protocols in Sensor Networks
Jabed Faruque, Konstantinos Psounis, Ahmed Helmy 258

Analysis of Target Detection Performance for Wireless Sensor Networks
Qing Cao, Ting Yan, John Stankovic, Tarek Abdelzaher 276

Collaborative Sensing Using Sensors of Uncoordinated Mobility
Kuang-Ching Wang, Parmesh Ramanathan . 293

Peiling Cui, Quan Pan, Guizeng Wang, Jianfeng Cui 218

Table of Contents XIII

Multi-query Optimization for Sensor Networks
Niki Trigoni, Yong Yao, Johannes Gehrke,
Rajmohan Rajaraman

Alan Demers
. 307

Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor
Networks

Ping Ding, JoAnne Holliday, Aslihan Celik . 322

Distributed Greedy Algorithm for Connected Sensor Cover in Dense
Sensor Networks

Amitabha Ghosh, Sajal K. Das . 340

Infrastructure-Establishment from Scratch in Wireless Sensor Networks
Stefan Funke, Nikola Milosavljevic . 354

Short Papers

A Local Facility Location Algorithm for Sensor Networks
Denis Krivitski, Assaf Schuster, Ran Wolff . 368

jWebDust: A Java-Based Generic Application Environment for Wireless
Sensor Networks

Ioannis Chatzigiannakis, Georgios Mylonas, Sotiris Nikoletseas 376

Invited Posters

Networked Active Sensing of Structures
Krishna Chintalapudi, John Caffrey, Ramesh Govindan,
Erik Johnson, Bhaskar Krishnamachari, Sami Masri,
Gaurav Sukhatme . 387

Wireless Technologies for Condition-Based Maintenance (CBM) in
Petroleum Plants

SensorNet Operational Prototypes: Building Wide-Area Interoperable
Sensor Networks

,

A

Kannan Srinivasan, Möıse Ndoh, Hong Nie, Congying (Helen) Xia,
Kadambari Kaluri, Diane Ingraham . 389

Mallikarjun Shankar, Bryan L. Gorman,
Cyrus M. Smith . 391

XIV Table of Contents

Project ExScal
Anish Arora, Rajiv Ramnath, Prasun Sinha, Emre Ertin,
Sandip Bapat, Vinayak Naik, Vinod Kulathumani, Hongwei Zhang,
Mukundan Sridharan, Santosh Kumar, Hui Cao, Nick Seddon,
Chris Anderson, Ted Herman, Chen Zhang, Nishank Trivedi,
Mohamed Gouda, Young-ri Choi, Mikhail Nesterenko, Romil Shah,
Sandeep Kulkarni, Mahesh Aramugam, Limin Wang, David
Prabal Dutta, Cory Sharp, Gilman Tolle, Mike Grimmer,
Bill Ferriera, and Ken Parker . 393

NetRad: Distributed, Collaborative and Adaptive Sensing of the
Atmosphere Calibration and Initial Benchmarks

Michael Zink, David Westbrook, Eric Lyons, Kurt Hondl,
Jim Kurose, Francesc Junyent, Luko Krnan, V. Chandrasekar 395

Service-Oriented Computing in Sensor Networks

Wireless Sensors: Oyster Habitat Monitoring in the Bras d’Or Lakes

Heavy Industry Applications of Sensornets
Philip Buonadonna, Jasmeet Chhabra, Lakshman Krishnamurthy,
Nandakishore Kushalnagar . 401

Coordinated Static and Mobile Sensing for Environmental Monitoring
Richard Pon, Maxim A. Batalin, Victor Chen, Aman Kansal,
Duo Liu, Mohammad Rahimi, Lisa Shirachi, Arun Somasundra,
Yan Yu, Mark Hansen, William J. Kaiser, Mani Srivastava,
Gaurav Sukhatme, Deborah Estrin . 403

Contributed Posters

Ayushman: A Wireless Sensor Network Based Health Monitoring
Infrastructure and Testbed

Krishna Venkatasubramanian, Guofeng Deng, Tridib Mukherjee,
John Quintero, Valliappan Annamalai, Sandeep K. S. Gupta 406

Studying Upper Bounds on Sensor Network Lifetime by Genetic
Clustering

Min Qin, Roger Zimmermann . 408

Sensor Network Coverage Restoration
Nitin Kumar, Dimitrios Gunopulos, Vana Kalogeraki 409

Culler,

Jie Liu, Feng Zhao . 397

Diane Ingraham, Rod Beresford, Kadambari Kaluri, Möıse Ndoh,
Kannan Srinivasan . 399

Table of Contents XV

A Biologically-Inspired Data-Centric Communication Protocol for
Sensor Networks

Naoki Wakamiya, Yoshitaka Ohtaki, Masayuki Murata,
Makoto Imase . 410

RAGOBOT: A New Hardware Platform for Wireless Mobile Sensor
Networks

Jonathan Friedman, David Lee, Ilias Tsigkogiannis,
Dennis Chao,David Levin,

Sophia Wong,
William Kaiser,

Mani Srivastava . 412

Energy Conservation Stratedgy for Sensor Networks
Hyo Jong Lee . 413

Meteorological Phenomena Measurement System Based on Embedded
System and Wireless Network

Kyung-Bae Chang, Seung-Woo Shin,Il-Joo Shim, Gwi-Tae Park 414

An Architecture Model for Supporting Power Saving Services for
Mobile Ad-Hoc Wireless Networks

Nam-Soo Kim, Beongku An, Do-Hyeon Kim . 415

Distributed Recovery Units for Demodulation in Wireless Sensor
Networks

Mostafa Borhani, Vafa Sedghi . 417

System Integration Using Embedded Web Server and Wireless
Communication

Kyung-Bae Chang, Il-Joo Shim, Tae-Kook Kim, Gwi-Tae Park 420

Author Index . 421

Algorithmic Problems in Ad Hoc Networks�

Christos H. Papadimitriou

UC Berkeley
christos@cs.berkeley.edu

The ad hoc networks research agenda aligns well with the methodology and point of
view of theoretical computer science, for a variety of reasons: The resource frugal-
ity that permeates the theory of algorithms and copmplexity is a perfect match for the
regime of resource scarcity that is prevalent in ad hoc networks, imposed by small,
power-limited processors. The potentially large scale makes principled approaches more
attractive, and necessitates analysis – occasionally even asymptotic analysis. Also, the
interplay of geometry, graph theory, and randomness that is a characteristic of problems
arising in ad hoc networks creates many challenging problems amenable to mathemat-
ical treatment. And the field’s young age and lack of established paradigms further
foment and reward theoretical exploration. This talk will review recent work by the
author and collaborators on geographic routing and clock synchroniuzation.

� Research supported by NSF ITR grant CCR-0121555, and by a grant from Microsoft Research.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, p. 1, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Five Challenges in Wide-Area Sensor Systems

Phillip B. Gibbons

Intel Research Pittsburgh
phillip.b.gibbons@intel.com

Most sensor network research to date has targeted ad hoc wireless networks of closely
co-located, resource-constrained, scalar sensor motes. Such work has tended to over-
look the potential importance of wide-area sensor systems–heterogeneous collections
of Internet-connected sensor devices. A wide-area sensor system enables a rich collec-
tion of sensors such as cameras, microphones, infrared detectors, RFID readers, vibra-
tion sensors, accelerometers, etc. to be incorporated into a unified system capable of
accessing, filtering, processing, querying, and reacting to sensed data. The sensor sys-
tem can be programmed to provide useful sensing services that combine traditional data
sources with tens to millions of live sensor feeds.

While the unique and many challenges of resource-constrained sensor networks
are apparent, the limited research into wide-area sensor systems may indicate that re-
searchers have not seen any interesting challenges in such systems. After all, where
are the research challenges in sensor systems blessed with powerful, powered, Internet-
connected computers with significant memory and storage?

In this talk, I will describe five research challenges in wide-area sensor systems that
I believe are worthy of further pursuit. The challenges are: (1) scalability, (2) ease of ser-
vice authorship, (3) robustness/manageability, (4) actuation, and (5) privacy. Although
certainly not an exhaustive list, I believe these five make the case that wide-area sensor
systems are an interesting area with many challenges and open questions. In discussing
the research challenges, I will highlight techniques used to address some of the chal-
lenges within IrisNet [1, 2, 3, 4, 5], a wide-area sensor system we have developed over
the past three years.

References

1. IrisNet (Internet-scale Resource-Intensive Sensor Network Service). http://www.intel-
iris.net/.

2. S. Chen, P. B. Gibbons, and S. Nath. Database-centric programming for wide-area sensor
systems. In Proceedings of the First IEEE International Conference on Distributed Computing
in Sensor Systems, 2005.

3. A. Deshpande, S. K. Nath, P. B. Gibbons, and S. Seshan. Cache-and-query for wide area
sensor databases. In Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, pages 503–514, 2003.

4. P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. Irisnet: An architecture for a worldwide
sensor web. IEEE Pervasive Computing, 2(4):22–33, 2003.

5. S. Nath, Y. Ke, P. B. Gibbons, B. Karp, and S. Seshan. A distributed filtering architecture
for multimedia sensors. In Proceedings of the First IEEE Workshop on Broadband Advanced
Sensor Networks, 2004.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, p. 2, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Challenges in Programming Sensor Networks

Feng Zhao
Senior Researcher

Microsoft Research
zhao@microsoft.com

The proliferation of networked embedded devices such as wireless sensors ushers in an
entirely new class of computing platforms. We need new ways to organize and program
them. Unlike existing platforms, systems such as sensor networks are decentralized,
embedded in physical world, and interact with people. In addition to computing, energy
and bandwidth resources are constrained and must be negotiated. Uncertainty, both in
systems and about the environment, is a given. Many tasks require collaboration among
devices, and the entire network may have to be regarded as a processor.

We argue that the existing node-centric programming of embedded devices is in-
adequate and unable to scale up. We need new service architectures, inter-operation
protocols, programming models that are resource-aware and resource-efficient across
heterogeneous devices that can range from extremely limited sensor motes to more
powerful servers. I will supplement these discussions with concrete examples arising
from our own work and the work of others.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, p. 3, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Biography

Feng Zhao (http://research.microsoft.com/ zhao) is a Senior Researcher at Microsoft,
where he manages the Networked Embedded Computing Group. He received his PhD
in Electrical Engineering and Computer Science from MIT and has taught at Stan-
ford University and Ohio State University. Dr. Zhao was a Principal Scientist at Xerox
PARC and founded PARC’s sensor network research effort. He serves as the founding
Editor-In-Chief of ACM Transactions on Sensor Networks, and has authored or co-
authored more than 100 technical papers and books, including a recent book published
by Morgan Kaufmann - Wireless Sensor Networks: An information processing ap-
proach. He has received a number of awards, and his work has been featured in news
media such as BBC World News, BusinessWeek, and Technology Review.

Distributed Proximity Maintenance in Ad Hoc
Mobile Networks

Jie Gao1, Leonidas J. Guibas2, and An Nguyen2

1, ∗∗Center for the Mathematics of Information, California Institute of Technology,
Pasadena, CA 91125, USA
jgao@ist.caltech.edu

2 Department of Computer Science, Stanford University, Stanford, CA 94305, USA
{guibas, anguyen}@cs.stanford.edu

Abstract. We present an efficient distributed data structure, called the
D-SPANNER, for maintaining proximity information among communicating mo-
bile nodes. The D-SPANNER is a kinetic sparse graph spanner on the nodes that
allows each node to quickly determine which other nodes are within a given dis-
tance of itself, to estimate an approximate nearest neighbor, and to perform a
variety of other proximity related tasks. A lightweight and fully distributed im-
plementation is possible, in that maintenance of the proximity information only
requires each node to exchange a modest number of messages with a small num-
ber of mostly neighboring nodes. The structure is based on distance information
between communicating nodes that can be derived using ranging or localization
methods and requires no additional shared infrastructure other than an underlying
communication network. Its modest requirements make it scalable to networks
with large numbers of nodes.

1 Introduction

Collaborating intelligent mobile node scenarios appear in a wide variety of applica-
tions. Consider aircraft flying in formation: each plane must be aware of the locations
and motions of its neighbors in order to properly plan its trajectory and avoid colli-
sions. If some aircraft are fuel tankers, each plane may need to determine the nearest
tanker when its fuel is low. Or take the case of a search team in a rescue operation
where collaboration among team members is essential to guarantee coordinated search
and exhaustive coverage of the rescue area. Current research provides many other sim-
ilar multi-node collaboration examples, from the deployment of sensors in a complex
environment by a set of mobile robots [15] to the intelligent monitoring of forests by
suspended mobile sensors [16]. In all these scenarios a loosely structured collaborative
group of nodes must communicate in order to engage in joint spatial reasoning, towards
a global objective. The spatial reasoning required almost always involves proximity in-
formation — knowing which pairs of nodes are near each other. Proximity information
plays a crucial role in these scenarios because nearby nodes can interact, collaborate,
and influence each other in ways that far away nodes cannot.

�� Work was done when the author was with computer science department, Stanford University.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 4–19, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Distributed Proximity Maintenance in Ad Hoc Mobile Networks 5

Motivated by such examples, we consider in this paper the task of maintaining prox-
imity information among mobile nodes in an ad hoc mobile communication network.
We provide a data structure that allows each node to quickly determine which other
nodes are within a given distance of itself, to estimate an approximate nearest neighbor,
and to perform a variety of other proximity related tasks. As a matter of fact, proximity
is important not only for the tasks the network has to perform, such as those illustrated
above, but for building the network infrastructure itself. Mobile nodes typically use
wireless transmitters whose range is limited. Proximity information can be essential for
topology maintenance, as well as for the formation of node clusters and other hierarchi-
cal structures that may aid in the operation of the network. For example, it is sometimes
desirable to perform network deformation so as to achieve better topology with lower
delay [6].

There has not been much work in the ad hoc networking community on maintain-
ing proximity information. A closely related problem is to keep track of the 1-hop
neighbors, i.e. the nodes within communication range, of each node. This is a funda-
mental issue for many routing protocols and the overall organization of the network.
But even this simple problem is not easy. If nodes know their own positions and those
of their neighbors, then a node can be alerted by its neighbor if that neighbor is going
to move out of the communication range. But knowing when new nodes come within
the communication range is more challenging. A commonly used protocol for topology
discovery is for all the nodes to send out “hello” beacons periodically. The nodes who
receive the beacons respond and thus neighbors are discovered. However, a critical is-
sue in this method is how to choose the rate at which “hello” messages are issued. A
high beacon rate relative to the node motion will result in unnecessary communication
costs, as the same topology will be rediscovered many times. A low rate, on the other
hand, may miss important topology changes that are critical for the connectivity of the
network. Unfortunately, as in physical simulations, the maximum speed of any node
usually gates this rate for the entire system. Recently Amir et al. proposed a protocol
for maintaining the proximity between ‘buddies’ in an ad hoc mobile network so that a
node will be alerted if its buddies enter a range with radius R [2]. The basic idea is that
each pair of buddies maintains a strip of width R around their bisector. The bisector
is updated according to the new node locations when one of the nodes enters the strip.
Although the nodes move continuously, the bisector is only updated at discrete times.
This scheme, however, does not scale well, when the number of buddies is large — as
would be the case when we care about potential proximities among all pairs of nodes.

The general problem of maintaining proximity information among moving objects
has been a topic of study in various domains, from robot dynamics and motion planning
to physical simulations across a range of scales from the molecular to the astrophysical.
It would take us too far afield to summarize these background developments in other
fields on distance computations, collision detection, etc. One relatively recent develop-
ment in proximity algorithms that provides the basic conceptual setup for the current
work is the framework of kinetic data structures (or KDSs for short) [4, 14]. The central
idea in kinetic data structures is that although objects are moving continuously, an un-
derlying combinatorial structure supporting the specific attribute(s) of interest changes
only at discrete times. These critical events can be detected by maintaining a cached

6 J. Gao, L.J. Guibas, and A. Nguyen

set of assertions about the state of the system, the so-called certificates of the KDS,
and exploiting knowledge or predictions about the node motions. A certificate failure
invokes the KDS repair mechanism that reestablishes the desired combinatorial struc-
ture and incrementally updates the certificate set. Many KDSs related to proximity have
appeared in recent years [9, 5, 12, 13, 3, 1].

All current KDS implementations are centralized, requiring a shared or global event
queue where events are detected and processed. In our setting, a centralized event
queue would require that location/trajectory updates from all the nodes be sent to a
central location, leading to unacceptably high communication costs. These centralized
approaches are thus not directly applicable to ad hoc mobile networks, where a dis-
tributed implementation is always desirable and often necessary for the additional rea-
sons of fault tolerance and load balancing.

A first contribution of this paper is to extend traditional centralized kinetic data
structures to the domain of ad hoc mobile networks. We introduce the notion of dis-
tributed kinetic data structures (dKDSs for short) that demand no shared infrastructure
other than a communication network among the mobile nodes and are therefore ideally
suited to ad hoc mobile network settings. In a dKDS each node holds a small number of
the centralized KDS certificates that are relevant to its portion of the global state. The
KDS is maintained globally by exchanging messages among the nodes and updating the
local certificate sets. As with any KDS implementation, an important issue to address
is the interface between the KDS and the node motions — this directly determines the
complexity of predicting or detecting KDS certificate failures. We describe two pos-
sible interfaces between motion information and the kinetic data structure: the shared
flight-plan and the distance threshold motion models, each with its own advantages.

Our second contribution is the development of a lightweight and efficient distributed
kinetic data structure for proximity maintenance among mobile nodes. The structure is
based on our earlier work [10] on proximity maintenance in a centralized setting. In [10]
we introduced the DEFSPANNER data structure that forms a sparse graph spanner [8] of
the complete graph on the nodes, when edges are weighted via the Euclidean distance.
A spanner has the property that for every pair of nodes there is a path in the spanner
whose total length is a (1 + ε) approximation of the Euclidean distance between the
nodes. Thus the spanner implicitly and compactly encodes all distance information.
Here ε is a parameter that trades-off the approximation quality against the spanner size
(number of edges needed). The D-SPANNER structure introduced in this paper, a dKDS
for proximity maintenance among mobile nodes, represents a major reworking of our
DEFSPANNER structure so as to make it decentralized. This is a highly non-trivial task,
as classical KDSs gain much of their efficiency by assuming that failed certificates are
processed in exact chronological order, one at a time. Instead, in the distributed setting,
certificates may fail asynchronously at different nodes and the corresponding repair
processes will run in parallel and must be coordinated. To our knowledge, this is the
first distributed implementation of any KDS, attesting to the difficulty of the task.

Once we have a spanner data structure, we can efficiently answer many types of
proximity queries. Effectively, the spanner replaces an expensive continuous search
over the 2-D plane with a lightweight combinatorial search over the spanner subgraph.
For instance, the spanner can be used to detect and avoid collisions between moving

Distributed Proximity Maintenance in Ad Hoc Mobile Networks 7

vehicles, especially unmanned vehicles, a task that is very difficult for any kind of on-
demand discovery scheme. The spanner can do this, because only pairs of nodes with a
spanner edges between them can possibly collide [10]. The continuous maintenance of
the D-SPANNER guarantees that every possible potential collision is captured and pre-
dicted. As another example, a node u can locate all nodes within a distance d of itself
by just initiating a restricted broadcast along the spanner edges that stops when the total
distance traversed is (1+ ε)d. The set of nodes thus discovered is guaranteed to include
all nodes within distance d of u; a further filtering step can remove all false positives,
of which there will typically be few. The set of nodes within distance d can also be
maintained through time so that u gets alerted only when nodes join the set or drop off
from the set. Additionally, the D-SPANNER keeps track of a (1+ε)-nearest neighbor for
every node in the network at any time. The neighbor of p in the spanner with shortest
edge length is guaranteed to be within distance (1 + ε) the distance between p and q∗,
the true nearest neighbor of p. As shown in [10], the D-SPANNER gives us a nice hier-
archical structure over the nodes across all scales at any time, since it implicitly defines
approximate k-centers of the nodes for any given k. The D-SPANNER also gives a well-
separated pair decomposition [7], which provides an N -body type position-sensitive
data aggregation scheme over node pairs. For further discussion of all these properties
of the spanner, see [10].

In this paper we focus on the maintenance of the D-SPANNER in a distributed en-
vironment and analyze its maintenance and query costs. The spanner is overlayed on a
communication network among the nodes. We assume the existence of a routing proto-
col that enables efficient communication between a pair of nodes, so that the communi-
cation cost is roughly proportional to the distance between the communicating nodes.
The spanner is stored distributedly, having each node keep only its incident edges in
the spanner, and is maintained by relevant pairs of nodes exchanging update packets. A
query of the graph structure is performed by communicating with other mobile nodes
following the edges of the D-SPANNER structure. We show that the D-SPANNER has
the following attractive features:

– The D-SPANNER can be efficiently maintained in a distributed fashion under both
the shared flight-plan and the distance threshold models (these will be formally
defined below).

– The total communication cost for communicating the flight plans or location infor-
mation for the initial setup of the D-SPANNER is almost linear in the weight of the
minimum spanning tree of the network.

– Even though fixing a failed certificate may involve O(log n) nodes, the D-SPANNER

can be repaired in such a way that at any moment each node updates the D-SPANNER

locally using at most O(1) computation and communication steps. Furthermore,
multiple certificate failures can be fixed concurrently, without interference.

– The spanner structure is a hierarchy that scales well with the network size and the
geometry of the nodes. Due to the hierarchical structure of the spanner, far away
node pairs are updated less frequently than close-by pairs. Under reasonable mo-
tion assumptions, the communication cost related to the D-SPANNER maintenance
incurred by a node p is O(log n) for each unit distance that p moves.

8 J. Gao, L.J. Guibas, and A. Nguyen

These properties show that the spanner is a lightweight data structure that gracefully
scales to large network sizes. We validate these theoretical results with simulations of
D-SPANNERs on two data sets, one with generated vehicle motions and one with real
airline flight data. Our simulations show that, for both artificial and real-world data, the
D-SPANNER can be maintained efficiently so that, at any time step, only a tiny part of
the spanner needs to be updated. We observe that in practice, for reasonable data sets,
the spanner has a much smaller spanning ratio compared to the theoretical worst-case
bound discussed below. We also present some trade-offs in maintaining the D-SPANNER

on different data sets.

2 Distributed Kinetic Data Structures

In the classical KDS setting it is assumed that, in the short run, moving objects follow
motions that can described by explicit flight plans, which are communicated to the data
structure. Objects are allowed to modify their flight plans at any time, however, as long
as they appropriately notify the KDS. These flight plans form the basis for predicting
when the KDS certificates fail — a typical certificate is a simple algebraic inequality
on the positions of a small number of the objects. These predicted failure times become
events in a global event queue. Upon certificate failure, the KDS repair mechanism is
invoked to remove the failed certificate and update the structure as necessary.

In the distributed setting appropriate for ad hoc mobile communication networks, we
must distribute, and possibly duplicate the certificates among the mobile nodes them-
selves. Furthermore, we must give up the notion that we process certificate failures in
a strict chronological order, as nodes will process certificate failures independently of
each other, as they detect them. Although it is not so readily apparent, the classical
KDS setting depends quite heavily on the assumption that the KDS repair mechanism
is invoked after exactly one certificate failure has occurred. This will no longer be true
in the distributed case and thus the dKDS repair mechanism must be considerably more
sophisticated. As we already remarked, globally broadcast flight plans are not appro-
priate in a distributed setting. While in some applications, like a dKDS for aircraft, it
makes perfect sense to allow communicating aircraft to exchange flight plans, in oth-
ers, as in our rescue team example, only something much weaker can be assumed. In
the following we propose two motion models that are appropriate for ad hoc mobile
networks. They are shared flight plan model and distance threshold model.

The Shared Flight Plan Model: In this motion model we assume that nodes have flight
plans, but these are known only to the nodes themselves — unless they are explicitly
communicated to others. A node must incur a communication cost to transmit its flight
plan to another node. Furthermore, a node receiving a flight plan will assume that it
is valid until the plan’s owner communicates that the plan has changed. Thus each
node has the responsibility of informing all other nodes who hold its flight plan of any
changes to it.

Distributed Proximity Maintenance in Ad Hoc Mobile Networks 9

The Distance Threshold Model: In this weaker model we only assume that a node
knows its own position. Its prediction for future motion is either not available or too
inaccurate to be useful. A node u may communicate its current position to node v, as
needed by the dKDS. Associated with the (u, v) communication is a distance threshold
δ(u, v); node u undertakes to inform node v if it ever moves more than δ(u, v) from
the position previously communicated. Note that δ is a function of the pair of nodes —
different v’s may need updates about the changing position of u at different rates.

The evaluation and analysis of a dKDS is also somewhat different from the evalua-
tion of a traditional KDS. A KDS has four desired performance properties: efficiency,
responsiveness, locality and compactness [4]. In an evaluation of the properties of a
KDS, we usually assume that the nodes follow pseudo-algebraic motions1. Efficiency
captures how many events a KDS processes, as compared to the number of changes in
the attribute of interest. The responsiveness of a KDS measures the worst-case amount
of time needed to update its certificate cache after an event happens. Locality mea-
sures the maximum number of certificates in which one object ever appears. Finally,
compactness measures the total number of certificates ever present in the certificate
cache. Low values on these measures are still desirable properties for a dKDS. In the
distributed setting, however, we have to include communication costs. First, we want
to bound the total communication cost for exchanging flight plans or position infor-
mation. We compare this with the cost of the optimal 1-median of the communication
network2, which is a lower bound on the communication cost of sending all the flight
plans to a central server, assuming that no aggregation is done. The second difference
is that, when a certificate kept at node u fails, some certificates held at other nodes of
the structure may need to be updated. The cost of communication to the nodes keeping
these certificates must be taken into account in the processing cost of the event. Finally,
locality is an especially important property for a dKDS, since it determines how evenly
one can distribute the set of certificates among the mobile nodes. If a node u is involved
in certificates with too many other nodes, not only is u heavily loaded by holding many
certificates, but also the update cost for u’s flight plan changes is high, since u’s new
flight plan has to be delivered to many other nodes through costly communication.

There are also practical issues in maintaining a dKDS, because of the involvement of
an underlying communication network. Ideally we put the dKDS on top of a TCP-like
network layer, so that communication between nodes can be assumed reliable, without
packet loss. Otherwise when reliable communication is not available, packet delay and
loss must be considered in the process of the repair of the structure. We also assume
that the communication cost is proportional to the Euclidean distance between the two
communicating nodes — this is a reasonable assumption in dense networks. Finally,
given that the ad hoc network environment is inherently parallel, special care is needed
to make sure that KDS updates can handle race conditions and avoid deadlocks. Later
we use the D-SPANNER as an example to show how these issues are handled.

1 A motion is called algebraic with degree s if each coordinate of the motion is an algebraic
function of degree s or less. For a definition of pseudo-algebraic, see [4].

2 A 1-median of a graph G = (V, E) is defined as minv∈V

∑
u∈V

τ(u, v), where τ(u, v) is
the shortest path length of u, v.

10 J. Gao, L.J. Guibas, and A. Nguyen

3 The D-SPANNER and Proximity Maintenance

For an ad hoc mobile network, a spanner is a sparse graph on the nodes that approxi-
mates the all pairs of distances. Specifically, a (1 + ε)-spanner is a graph on the nodes
such that the shortest path distance between p and q in the spanner is at most (1 + ε)
times the Euclidean distance of p and q — (1 + ε) is called the stretch factor. In [10]
we proposed a (1 + ε)-spanner, called DEFSPANNER that can be maintained under
motion. In this paper, we show that the DEFSPANNER can also be maintained in a dis-
tributed fashion, where the nodes have no information about the global state and obtain
information only through communication steps whose cost must be taken into account.
This distributed version is denoted as a D-SPANNER. We emphasize that while there are
many maintainable proximity structures under the KDS setting, D-SPANNER is the first
kinetic structure of any kind that can be maintained distributedly. We start by reviewing
the centralized DEFSPANNER in [10].

3.1 D-SPANNER

The definition of DEFSPANNER [10] requires the notion of discrete centers. A set of
discrete centers with radius r for a point set S is defined as a maximal subset S′ ⊆ S
such that any two centers are of a distance at least r away, and such that the balls with
radius r centered at the discrete centers cover all the points of S. Notice that the set of
discrete centers needs not be unique.

The DEFSPANNER G on S is constructed as follows. Given a set S of points in the
d-dimensional Euclidean space, we construct a hierarchy of discrete centers so that S0

is the original point set S and Si is a set of discrete centers of Si−1 with radius 2i,
for i > 0. Intuitively, the hierarchical discrete centers are samplings of the point set
at exponentially different spatial scales. Then we add edges to the graph G between
all pairs of points in Si whose distance is no more than c · 2i, where c = 4 + 16/ε.
These edges connect each center to other centers in the same level whose distance is
comparable to the radius at that level. Since the set of discrete centers is not unique,
the DEFSPANNER is non-canonical. In fact, this is the main reason why DEFSPANNER

admits an efficient maintenance scheme.
The aspect ratio of S, denoted by α, is defined by the ratio of the maximum pair-

wise distance and minimum pairwise distance. In this paper we focus on point sets
with aspect ratio bounded by a polynomial of n, the number of nodes. This is a nat-
ural assumption on ad hoc mobile network because the maximum separation between
nodes is bounded due to the connectivity requirement of the network and the nodes
are physical objects so they usually have a minimum separation. Under this assump-
tion, log α = O(log n). When convenient, we assume that the closest pair of points has
distance 1, so the furthest pair of S has distance α.

We use the following notations throughout the paper. Since a point p may appear in
many levels in the hierarchy, when the implied level is not clear, we use p(i) to denote the
point p as a node in level Si. A center q(i) is said to cover a node p(i−1) if |pq| ≤ 2i.
A node p(i−1) may be covered by many centers in Si. We denote P (p) one of those
centers and call it the parent of p(i−1). The choice of P (p) is arbitrary but fixed. We
also call p a child of P (p). A node p is called a nephew of a node q if P (p) and q are

Distributed Proximity Maintenance in Ad Hoc Mobile Networks 11

neighbors. Two nodes p and q are cousins if P (p) and P (q) are neighbors. For a point p
in level Si, we recursively define P j−i(p) as the ancestor in level Sj of p(i) by P 0(p) =
p(i), P j−i(p) = P (P j−i−1(p)). We note that if p is in level i, p(j) = P (p(j−1)) for
each j ≤ i, i.e. p is the parent of itself in all levels below i. For notational simplicity,
we consider p a neighbor of itself in all levels in which it participates.

In [10], we show that a DEFSPANNER (and of course now its distributed version,
the D-SPANNER), has a spanning ratio of 1 + ε and a total of O(n) edges. A detailed
list of results from [10] is shown below.

Theorem 1 (in [10]). For a DEFSPANNER on a set of points S with aspect ratio α, the
following hold.

1. If q(i) is a child of p(i+1), then q(i) and p(i) are neighbors, i.e. there is an edge from
each point q to its parent.

2. If p and q are neighbors, then the parents P (p) and P (q) are neighbors.
3. The distance between any point p ∈ S0 and its ancestor P i(p) ∈ Si is at most

2i+1.
4. The hierarchy has at most �log2 α� levels.
5. Each node p has O(1) neighbors in any given level, and thus it has at most

O(log2 α) neighbors totally.
6. G is a (1 + ε)-spanner when c = 4 + 16/ε.

When the nodes move around, the discrete center hierarchy and the set of edges in the
DEFSPANNER may change. Nodes may lose neighbors or gain neighbors in the spanner.
Just as in our earlier discussion of maintenance of the 1-neighbors of a node, discover-
ing the loss of a neighbor is easy while detecting new neighbors is hard. What makes
the spanner work is the fact that property (2) above implies that before two nodes can
become neighbors at a given level, their parents must already be neighbors at the next
level up. Thus the search for new neighbor pairs can be confined to cousin pairs only.

The D-SPANNER has the same structure as the DEFSPANNER, though the inter-
nal constants involved in the structure are larger. The key difference between the D-
SPANNER and the DEFSPANNER is in the way the structure is stored and maintained.
In the centralized case, the spanner is fully repaired after every event, corresponding
to a single certificate failure. In the distributed setting, D-SPANNER is computed and
stored distributedly. In particular, each node only stores its own presence in the discrete
centers hierarchy and its edges on each level. Certificates are handled locally. When
a certificate fails, we communicate with other relevant nodes to have the D-SPANNER

repaired. Since the network is inherently parallel and communication takes finite time,
other certificates may fail concurrently and multiple repair processes may be active in
parallel. We introduce the notion of a relaxed D-SPANNER to enable multiple certifi-
cates failures to be handled simultaneously in the network.

3.2 Relaxed D-SPANNER

To make the maintenance manageable, we make use of a variant, the relaxed
D-SPANNER. The intuition is that whenever a certificate in a D-SPANNER fails it may
take O(log n) communications for the D-SPANNER to be repaired, and up to O(log n)

12 J. Gao, L.J. Guibas, and A. Nguyen

new edges may be established. Doing all that at once is not possible in a distributed
setting. Instead, the repair is done in stages; between stages we relax our constraints
on the spanner through the concept of a relaxed D-SPANNER. Relaxed D-SPANNERs
make it possible to deal with multiple certificate failures by encoding the simultaneous
failures with relaxed parents, the removal of which can be done in parallel.

Fix a constant γ > 2; we call a node q(i) a γ-relaxed parent, or simply a relaxed
parent, of p(i−1) if |pq| ≤ γ · 2i. A relaxed D-SPANNER is similar to a regular D-
SPANNER except that if a node p(i) is not covered by any node in Si+1, we do not
require p itself to be in Si+1 but only require p to have a relaxed parent in Si+1.

From (3) in Theorem 1, it is easy to see that for any node p, |pP i(p)| ≤ 2i+1 < γ·2i,
and thus we can intuitively think of the i-th level ancestors of a node p as its potential
relaxed-parent, if p is in level Si−1. When all nodes in a relaxed D-SPANNER have par-
ents, the relaxed D-SPANNER is a D-SPANNER. Analogous to (8) in Theorem 1, we can
prove that a relaxed D-SPANNER is by itself a (1+ε)-spanner when c = γ · (4+16/ε).

Theorem 2. A relaxed D-SPANNER is a (1 + ε)-spanner when c = γ · (4 + 16/ε).
When nodes move and some certificates fail, we first make the D-SPANNER into a

relaxed D-SPANNER which will be repaired after certain communications made to other
nodes. The notion of relaxed parents guarantees that the structure is not far away from
a real D-SPANNER so that local communications can fix it up, as the following lemma
suggests (with proof omitted).

Lemma 1. Let q be a relaxed parent of p in Si, and c > 4 + γ. If r is a parent of p,
then q and r are neighbors in Si+1. If p is inserted to Si+1, p(i+1)’s neighbors must be
cousins of q.

In the above description we always double the radius when we construct the discrete
centers hierarchy. In fact, we chose a factor of 2 just for the simplicity of explanation.
We could have chosen any factor β > 1 and construct a hierarchy of discrete centers
such that in level i, the nodes are more than βi apart, and the edges connect nodes that
are closer than c · βi. We would then call a node q in Si+1 a relaxed parent of a node
p in Si if |pq| ≤ γ · βi, where γ > β/(β − 1). We choose c > (2β + γ)/(β − 1) >
β(2β − 1)/(β − 1)2 so that D-SPANNER can be maintained.

3.3 The D-SPANNER Under the Shared Flight-Plan Model

The maintenance of the D-SPANNER in the centralized KDS framework was analyzed
in [10]. In the dKDS setting, the absence of a centralized event queue and the lack of
strict order in certificate failure processing invalidates much of the approach.

The basic idea for maintaining a D-SPANNER in a dKDS framework is as follows. Two
nodes always communicate their flight plans if they are involved in a certificate. When
the points move, the D-SPANNER is updated through a series of relaxed D-SPANNERs.
When a certificate in a D-SPANNER fails, one or more relaxed parents may appear in
the D-SPANNER, making it a relaxed D-SPANNER. Nodes in a relaxed D-SPANNER

communicates with each other to restore the structure to a D-SPANNER. During the
restoration, other certificates may fail. It is guaranteed, however, that we will eventually
get a D-SPANNER after a period of no additional certificate failures, provided that the
update time is small enough with respect to the velocity of the nodes and that c > 4+γ.

Distributed Proximity Maintenance in Ad Hoc Mobile Networks 13

We show that it only requires a constant number of communications to repair the
structure locally when a certificate fails or to transform one relaxed D-SPANNER to
another. We note that in a KDS setting c must be larger than 4 in order for the D-
SPANNER to be maintainable. In the dKDS setting, we require that c > 4 + γ > 6.
It worths pointing out that under the assumption that c > 4 + γ, a generic relaxed D-
SPANNER cannot be maintained in either the KDS framework or the dKDS framework.
We use a very specific series of relaxed D-SPANNERs during the maintenance of the
D-SPANNER in the dKDS framework to make things work.

The certificates in a dKDS are similar to the certificates in KDS. They are all dis-
tance certificates, asserting that the distances between given pairs of nodes are above or
below a certain threshold. A certificate about the distance between two nodes u and v
is stored in both the event queues of u and v. Since u and v have the flight plans of each
other, both of them can evaluate the first time when the certificate fails. Specifically, a
node p as a point in Si maintains four kinds of certificates:

1. Parent certificate: asserts that p is covered by its parent P (p) if p has one, i.e.,
|pP (p)| ≤ 2i+1;

2. Short edge certificates: assert that |pq| ≥ 2i for each neighbor q ∈ Si of p;
3. Long edge certificates: assert that |pq| ≤ c · 2i for each neighbor q ∈ Si of p;
4. Potential edge certificates: assert that |pq| > c · 2i for each non-neighbor cousin q

of p.3

When a certificate fails, each node involved in the certificate updates its event queue
and performs the updates to the D-SPANNER. The updates for the certificates are as
follows:

1. Parent events: When a parent certificate fails, we make the former parent a relaxed
parent.

2. Short edge events: When |pq| < 2i, the node with the lower maximum level, say p,
removes itself from Si. The children of p in Si−1 now have q as a relaxed parent,
and p(i−1) has q as its parent.

3. Long edge events: When |pq| > c · 2i, the edge is simply dropped. The long edge
certificate on pq is deleted from the certificate lists of both p and q. Accordingly
some potential edge certificates between the cousins of p, q are dropped also.

4. Potential edge events: When a potential edge fails, a new edge is simply added. p
and q communicate with each other about their children. A long edge certificate on
pq and potential edge certificates between the cousins of p, q will be added to the
certificate lists of both p and q.

For the first two types of certificate failure, the update introduces nodes with relaxed
parents. We can find the true parents for these nodes by the following procedure. For a
node p(i) with a relaxed parent q(i+1), we find a parent for p(i) using Lemma 1, namely,
looking among all neighbors of q(i+1) for one that covers p(i). If such a node is found,

3 Note that by (2) in Theorem 1, a pair of nodes cannot be neighbors before they first become
cousins. Thus the potential edge certificates capture all possible edges that may appear in the
near future.

14 J. Gao, L.J. Guibas, and A. Nguyen

p(i) has a parent. If not, p is at least 2i+1 away from every node in Si. Thus p must
be promoted to level Si+1. There are two possible cases. In the case when q(i+1) has
a parent r, it is easy to see that p(i+1) has r as a relaxed parent, and by Lemma 1, the
neighbors of p(i+1) can be found among the cousins of q(i+1). In the case when q only
has a relaxed parent, we have to wait until q(i+1) has a parent before p can be promoted
to level Si+1. Note that this is the only time when a node has to wait for another node.
When a node has to wait, it always waits for a node in one level higher. This monotonic
order guarantees that deadlock cannot occur. We note that the number of communica-
tions to search for a parent or to promote a node up one level is O(1). In the worst case,
a parent certificate failure may move a node all the way up the hierarchy. In the absence
of certificate failures that generate nodes with relaxed parents, all the nodes with relaxed
parents will eventually have parents, and thus we eventually obtain a D-SPANNER.

We currently do not handle the case when a relaxed parent of a node moves too far
from the node. We could avoid dealing with this situation by noting that when a node
p(i) first has a relaxed parent, the distance from it to the relaxed parent is always less
than 2i+2 < γ · 2i+1. If p and its relaxed parent move slowly enough or γ is large
enough, p finds a true parent before its relaxed parent moves far away from it. If p loses
its relaxed parent before it can find a parent, we can treat p as a newly inserted node and
use the D-SPANNER dynamic update as explained in [11].

3.4 The D-SPANNER Under the Distance Threshold Model

The distance threshold motion model allows even less information, when compared
with the shared flight plans motion model — a node only knows its current location.
For each level Si, we take a distance threshold di = μ · 2i, μ = (c − 4 − γ)/8, such
that for each certificate in Si involving a pair of nodes (u, v), we let u and v to inform
each other their locations whenever any of them moves a distance of di from the last
exchanged location.

Under this model, each node u predicts a certificate failure based on its current
location and the last communicated location of its partner v, denoted by v0. Node v
may have moved since the last time it posted its location. However |vv0| ≤ di. Since
u and v do not have the most updated locations of each other, they may not agree on
when a certificate on u, v should fail. For example, in u’s view of the world, a long edge
certificate on u, v fails, i.e., |uv0| ≥ c · 2i. Then u informs v of appropriate updates and
v changes its spanner edges. Although according to v it is possible that the long edge
certificate has not failed yet, we can still guarantee that |uv| ≥ (c−μ) ·2i. In summary,
under the distance threshold model, we maintain a μ-approximation to an exact D-
SPANNER: If a node p ∈ Si covers a node q, |pq| ≤ (1 + μ) · 2i; Two nodes p, q ∈ Si

have |pq| ≥ (1 − μ) · 2i; Two nodes p, q ∈ Si with an edge have |pq| ≤ (c + μ) · 2i;
Two nodes p, q ∈ Si without an edge have |pq| ≥ (c − μ) · 2i. Notice that when two
nodes p, q ∈ Si have a distance (c − μ) · 2i ≤ |pq| ≤ (c + μ) · 2i, p, q may or may not
have an edge.

In the global view, we maintain a μ-approximate D-SPANNER through a series of
γ-relaxed D-SPANNERs, with γ ≥ 2(1+μ). A μ-approximate D-SPANNER is a (1+ ε)
spanner for appropriately chosen parameters c, μ. The updates on certificates failures
are the same as in the shared flight plan model. The following lemma (with proof

Distributed Proximity Maintenance in Ad Hoc Mobile Networks 15

omitted) is a more general version of Lemma 1, which shows that a node with a relaxed
parent can either find a parent or promote itself to one level higher under the distance
threshold model.

Lemma 2. Let c > 4 + γ, and q be a relaxed parent of p1 in Si at time 1. Assume that
all points involved move less than di = μ · 2i, μ = (c − 4 − γ)/8, between time 1 and
time 2. At time 2, if r is a parent of p, then q and r are neighbors in Si+1; if p is inserted
to Si+1, p(i+1)’s neighbors must be cousins of q.

Since we have less information in the distance threshold model, communications
may be required for internal verification of the D-SPANNER, without resulting in any
combinatorial changes in its structure. The cost of maintaining the D-SPANNER in the
distance threshold model is the same as the cost of maintaining the D-SPANNER in the
shared flight-plan model plus the cost of regular position updates. In the next section
we will show a concrete bound on the maintenance cost.

3.5 Quality of Distributed Maintenance

In this subsection we study the memory, computation and communication cost of main-
taining a D-SPANNER.

Memory Requirement for Each Node: The total number of certificates at any time
is always linear in the number of nodes. Each node is involved in O(1) certificates for
each level it participates in. Since there are at most log α levels, each node only has
O(log α) certificates in its queue. The D-SPANNER thus scales well when the network
size increases.

The Startup Communication Cost for Exchanging Flight Plans: In order for the nodes
in a D-SPANNER to build their event queues, the nodes that are involved in a certificate
will have to inform each other of their flight plans. Note however, that communications
between two nodes are not of equal costs, with communications between far away nodes
costing more than those between close-by nodes. Under our assumption that the cost of a
multi-hop communication between two nodes is proportional to the Euclidean distance
between them, we show that the cost of exchanging flight plans between the nodes in a
D-SPANNER is low by the following theorem, whose proof is omitted.

Theorem 3. The total length of the edges in a D-SPANNER is at most O(log α) times
the total length of the minimum spanning tree (MST) of the underlying points. The
summation of the distances between all cousin pairs in a D-SPANNER is O(log α) times
the total length of the MST of the underlying points.

Notice that if we use the centralized KDS, the communication cost of every node
sending their flight plans (or locations) to a central server is at least the weight of the
optimal 1-median of the communication network, which is at least the weight of the
minimum spanning tree. On the other hand, it is not hard to construct an example4 such
that the optimal 1-median of the network has weight Ω(n) times the total length of the

4 Assume a list of nodes are staying on the x-axis with distance 1 between adjacent nodes. The
communication network is just the chain.

16 J. Gao, L.J. Guibas, and A. Nguyen

MST. With this in mind, Theorem 3 implies that, in both the shared flight plans and
distance threshold motion model, the startup communication cost of the D-SPANNER,
i.e., the cost of communicating the shared flight plans or locations between the pairs of
nodes in the certificates, is O(log α) times the weight of the MST. Thus by using the
distributed spanner we save substantially on the communication cost.

In the distance threshold motion model we update the locations of the nodes even if
no certificate failures happen. Since the distance threshold, di, depends exponentially
on i, the level number, nodes on higher levels update their positions less frequently but
their communication costs are higher. More precisely, assume that the highest level that
a node p appears is i. When p moves a distance d, the total cost of communicating its
locations to its neighbors is bounded by

∑i
j=1 O(c · 2j) · d/dj = O(di) ≤ O(d log α).

Thus the amortized communication cost of location updates for each node p is bounded
by O(log α) per unit distance that p moves.

The Total Number of Events Handled in a D-SPANNER: In [10] we showed that the
number of combinatorial changes of a (1 + ε)-spanner can be Ω(n2) and the number
of certificate failures of a D-SPANNER is at most O(n2 log n) under pseudo-algebraic
motion, where each certificate changes from TRUE to FALSE at most a constant number
of times. This claim is still true for the distributed environments. Thus the number of
events we process in a D-SPANNER is close to the optimum.

The Communication Cost of Certificate Updates in a D-SPANNER: In a D-SPANNER,
when a certificate fails, a node can repair the spanner locally with a constant number
of communications, though the repair may introduce relaxed parents which have to be
dealt with later. Each time a search for a true parent from a relaxed parent takes a con-
stant number of communications, and a node may actually get promoted all the way up
the hierarchy. In the worst case the node is promoted in O(log α) levels. We first note
that the cost of promoting a node up a level, introduced by resolving relaxed parents,
can be amortized on the short edge events where a node is demoted down a level, since
a node can not be demoted without first being promoted. Thus in the following study
we neglect the cost of fixing relaxed parents and only consider the communication cost
of repairing the certificates.

We bound the communication cost of certificates updates under pseudo-algebraic
motions. We examine the update costs for the certificates defined on a particular pair
of nodes p, q with p on level i. Nodes p, q may be involved in five different kinds of
certificates, as shown in section 3.3. In particular, we characterize the certificate failures
into three categories by the distance between p, q when the certificate fails: event A
includes the parent event with p being the parent of q and the short edge event; Event B
includes the long edge event and the potential edge event; Event C includes the parent
event with q being the parent of p. Notice that when event A happens, the distance
between p, q is exactly 2i. When event B happens, the distance between p, q is exactly
c·2i. When event C happens, the distance between p, q is 2i+1. Since p, q follow pseudo-
algebraic motion, the number of times that events A (or B, C) happens is only a constant.
Furthermore, it is not hard to see that between events in different categories, the distance
between p, q must change by at least 2i. Therefore, suppose the distance between p, q
changes monotonically by d, the update cost for certificates failures with p, q is bounded

Distributed Proximity Maintenance in Ad Hoc Mobile Networks 17

by O(c · 2i) · d/2i = O(d). Without loss of generality assume p moves faster than q,
then p moves at least a distance d/2. Thus we can charge the update cost to p so that p
is charged of communication cost O(1) for each unit distance p moves. Since p has a
constant number of neighbors in level i and p may appear in at most O(log α) levels,
we combine the costs in all levels together such that on average a node p with highest
level h incurs O(h) communication cost for each unit distance it moves. Therefore we
have the following theorem.

Theorem 4. Under pseudo-algebraic motion, the communication cost incurred by a
node p related to the D-SPANNER maintenance is at most O(log α) for each unit dis-
tance that p moves.

Several other networking issues need to be addressed regarding the D-SPANNER in
an ad hoc mobile network setting. These include load balancing, dynamic updates, and
trade-offs between maintenance and query costs. We have investigated these issues but
due to lack of space in these proceedings, we omit the discussion here. The reader is
referred to the full version of the paper [11] for the particulars.

4 Simulations

To show that the D-SPANNER is well behaved in practice, we computed and maintained
the D-SPANNER in two sets of simulations. The simulations validate our theory that the
D-SPANNER is a sparse structure that can be maintain efficiently under motion.

In the first simulation, we considered a set of moving cars in an 11 by 11 block
region of a city downtown. There were 20 one-lane road, 5 roads in each of the North,
South, East, and West directions. Cars entered the region on one side and left the region
on the other side. Each car moved at a random but constant speed between 0.2 and 0.3
block per second. Each car stopped if necessary to avoid collisions with other cars then
moved again at its assigned speed. We allowed cars to disappear (say to stop in parking
structures) within the city blocks. The number of cars n in the downtown area was a
parameter of the simulation. In our simulations, n took one of the following values:
30, 50, 100, 150, 200, and 250. We kept the number of cars in a simulation constant
by introducing a new car whenever some other car left the scene. We constructed and
maintained a D-SPANNER on the cars. We used β = 3 and c = 4.1, i.e. the nodes in
level Si were at least 3i apart, and edges in level Si were at most c · 3i long.

The degree of a node is proportional to its memory requirement and is also a mea-
sure of the work it does in maintaining the D-SPANNER. From Figure 1 (i), the average
degree of the nodes in the D-SPANNER was around 9. The D-SPANNER was thus rea-
sonably sparse, say comparing to planar graphs which have an average node degree of
6. The maximum degree of a node grew slowly when the number of cars increased. The
result agrees with the theory, which predicts that the size of the spanner is linear, and
the maximum degree grows as O(log n).

When β = 3 and c = 4.1, the theory predicts that the D-SPANNER has a spanning
ratio at most 16.36. The spanning ratio in our experiments was much smaller. In all
experiments, the spanning ratio fluctuated between 2 and 4 most of the time, and the
average spanning ratio over time was about 2.7.

18 J. Gao, L.J. Guibas, and A. Nguyen

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250

highest spanner degree
average spanner degree

Number of cars

av
er

ag
e

de
gr

ee
 o

ve
r

tim
e

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250

N
um

be
r

of
 e

ve
nt

s
(p

er
 s

ec
on

d)

Number of cars

change parent events
short edge events
long edge events
potential edge events

(i) (ii)

Fig. 1. (i) Average and maximum degree; (ii) Update frequency

Figure 1 (ii) shows the average number of events processed each second in the sim-
ulations. Even though the cars moved fast, the rate at which the events happened was
low, suggesting that the D-SPANNER was stable. We noted that most certificate failures
were among the long edge and the potential edge certificates. These two types of fail-
ures were cheap, as we only had to remove or to add an edge to the D-SPANNER to fix
them. There were much fewer failures of the other two types which gave rise to relaxed
parents and the involved procedure to remove them.

In the second set of experiment, we simulated a D-SPANNER on the flights in the
US. The flight trajectories were from real flight data on July 27, 2002. There were
from 4000 to 5000 air planes during the period of simulation. Each plane obtained its
location about once every 60 seconds, and the planes often moved at a speed from 300
to 500 miles per hour, a fairly high speed compared to the distance separating the air
planes. Under this condition, we traded in the query cost for lower maintenance cost
by only maintaining some higher levels of D-SPANNER. We artificially increased the
unit distance in the D-SPANNER and implicitly maintain all bottom edges. For each
node in the bottom level, we only maintained its parent in S1. The unit distance in the
modified D-SPANNER we maintained was 16 miles. We essentially fully maintained a
D-SPANNER on a dynamically selected set S1 of air planes that were at least 48 miles
from each other, and for each of those air planes, maintained a collection of air planes
it covered, i.e. air planes within its 48 miles radius.

As in the simulation for cars, we constructed a spanner with β = 3 and c = 4.1.
We found that on average there were about 14,000 edges in the modified D-SPANNER.
The spanning ratio of the D-SPANNER restricted to the nodes in level S1 was 3.15 on
average. Note that since there were many implicit edges, if we considered the entire
D-SPANNER with all those implicit edges, the spanning ratio would be much lower. Be-
cause we took a large value as the unit radius, the maintenance of the structure was rela-
tively cheap. The entire structure processed 3.98, 1.63, 3.03, and 2.88 events per second
for parent events, short edge events, long edge events, and potential edge events respec-
tively. We noted that from time to time, due to missing data, some planes changed their
positions too much between their consecutive position updates. When a node moved
more than a certain distance threshold, we removed the node from the D-SPANNER,
updated its position, then inserted it back to the D-SPANNER.

Distributed Proximity Maintenance in Ad Hoc Mobile Networks 19

Acknowledgements. The authors gratefully acknowledge the support of NSF grants
CCR-0204486 and CNS-0435111, as well as the DoD Multidisciplinary University Re-
search Initiative (MURI) program administered by the Office of Naval Research under
Grant N00014-00-1-0637.

References

1. P. Agarwal, J. Basch, L. Guibas, J. Hershberger, and L. Zhang. Deformable free space tilings
for kinetic collision detection. International Journal of Robotics Research, 21(3):179–197,
2002.

2. A. Amir, A. Efrat, J. Myllymaki, L. Palaniappan, and K. Wampler. Buddy tracking - efficient
proximity detection among mobile friends. In Proc. of the 23rd Conference of the IEEE
Communications Society (INFOCOM), volume 23, pages 298–309, March 2004.

3. J. Basch, J. Erickson, L. J. Guibas, J. Hershberger, and L. Zhang. Kinetic collision detection
between two simple polygons. In Proc. of the 10th ACM-SIAM symposium on Discrete
algorithms, pages 102–111, 1999.

4. J. Basch, L. Guibas, and J. Hershberger. Data structures for mobile data. J. Alg., 31(1):1–28,
1999.

5. J. Basch, L. J. Guibas, and L. Zhang. Proximity problems on moving points. In Proc. 13th
Annu. ACM Sympos. Comput. Geom., pages 344–351, 1997.

6. A. Basu, B. Boshes, S. Mukherjee, and S. Ramanathan. Network deformation: traffic-aware
algorithms for dynamically reducing end-to-end delay in multi-hop wireless networks. In
Proceedings of the 10th annual international conference on Mobile computing and network-
ing, pages 100–113. ACM Press, 2004.

7. P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42:67–90, 1995.

8. D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors, Handbook of
Computational Geometry, pages 425–461. Elsevier Science Publishers B.V. North-Holland,
Amsterdam, 2000.

9. J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Discrete mobile centers. Discrete
and Computational Geometry, 30(1):45–63, 2003.

10. J. Gao, L. Guibas, and A. Nguyen. Deformable spanners and applications. In Proc. ACM
Symposium on Computational Geometry, pages 190–199, June 2004.

11. J. Gao, L. J. Guibas, and A. Nguyen. Distributed proximity maintenance in ad hoc mobile
networks. http://graphics.stanford.edu/∼jgao/spanner-dcoss-full.pdf, 2005.

12. L. Guibas, J. Hershberger, S. Suri, and L. Zhang. Kinetic connectivity for unit disks. In Proc.
16th Annu. ACM Sympos. Comput. Geom., pages 331–340, 2000.

13. L. Guibas, A. Nguyen, D. Russel, and L. Zhang. Collision detection for deforming necklaces.
In Proc. 18th ACM Symposium on Computational Geometry, pages 33–42, 2002.

14. L. J. Guibas. Kinetic data structures — a state of the art report. In P. K. Agarwal, L. E.
Kavraki, and M. Mason, editors, Proc. Workshop Algorithmic Found. Robot., pages 191–
209. A. K. Peters, Wellesley, MA, 1998.

15. A. Howard, M. J. Matarić, and G. S. Sukhatme. An incremental self-deployment algorithm
for mobile sensor networks. Autonomous Robots Special Issue on Intelligent Embedded
Systems, 13(2):113–126, 2002.

16. W. J. Kaiser, G. J. Pottie, M. Srivastava, G. S. Sukhatme, J. Villasenor, and D. Estrin. Net-
worked infomechanical systems (NIMS) for ambient intelligence. CENS Technical Re-
port 31, UCLA, December 2003.

Adaptive Triangular Deployment Algorithm
for Unattended Mobile Sensor Networks�

Ming Ma and Yuanyuan Yang

Dept. of Electrical and Computer Engineering,
State University of New York, Stony Brook, NY 11794, USA

1 Introduction and Background
In recent years, wireless sensor networks are playing an increasingly important role in
a wide-range of applications, such as medical treatment, outer-space exploration, bat-
tlefield surveillance, emergency response, etc. [4, 5, 6]. A wireless sensor network is
generally composed of hundreds or thousands of distributed mobile sensor nodes, with
each node having limited and similar communication, computing and sensing capacity
[3, 7]. The resource-limited sensor nodes are usually thrown into an unknown envi-
ronment without a pre-configured infrastructure. Before monitoring the environment,
sensor nodes must be able to deploy themselves to the working area. Although sensor
nodes are designed with low power consumption in mind, they can survive only very
limited lifetime with current technologies [7, 8, 9]. Furthermore, low computing capac-
ity, limited memory and bandwidth of sensor nodes prohibit the use of high complexity
algorithms and protocols. All these special characteristics of sensor networks bring a
lot of challenges to developing reliable and efficient algorithms and protocols for such
networks.

� The research was supported in part by NSF grant numbers CCR-0207999 and ECS-0427345
and ARO grant number W911NF-04-1-0439.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 20–34, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Abstract. In this paper, we present a novel sensor deployment algorithm, called
adaptive triangular deployment (ATRI) algorithm, for large scale unattended mo-
bile sensor networks. ATRI algorithm aims at maximizing coverage area and min-
imizing coverage gaps and overlaps, by adjusting the deployment layout of nodes
close to equilateral triangulations, which is proved to be the optimal layout to
provide the maximum no-gap coverage. The algorithm only needs location in-
formation of nearby nodes, thereby avoiding communication cost for exchanging
global information. By dividing the transmission range into six sectors, each node
adjusts the relative distance to its one-hop neighbors in each sector separately.
Distance threshold strategy and movement state diagram strategy are adopted to
avoid the oscillation of nodes. The simulation results show that ATRI algorithm
achieves much larger coverage area and less average moving distance of nodes
than existing algorithms. We also show that ATRI algorithm is applicable to prac-
tical environments and tasks, such as working in both bounded and unbounded
areas, and avoiding irregularly-shaped obstacles.

Adaptive Triangular Deployment Algorithm for Unattended Mobile Sensor Networks 21

Although most of existing work on sensor networks currently is still at the laboratory
level, see, for example, UCB-smart dusts [1], MIT-μAMPS [2] , and UCLA-WINS [7],
it is expected that sensor network technologies will be applied widely in various ar-
eas in the near future [4, 5, 6]. One of the main functionalities of a sensor network is
to take place of human-being to fulfill the sensing or monitoring work in dangerous
or human-unreachable environments, such as battlefield, outer-space, volcano, desert,
seabed, etc. [4, 5, 6]. These environments usually have the following similarities: large
scale, unknown, and full of unpredicted happening events which may cause the sudden
failure of sensors. Unlike in a well-known environment, it is impossible to throw sensor
nodes to their expected targets in an unknown working area or provide a map of the
working area to sensor nodes before the placement. However, most of previous work in
this area assumed that all nodes are well-deployed or a global map is pre-stored in the
memory of all sensor nodes. In fact, in some situations the environment may be com-
pletely unknown to the newly coming sensor nodes. Without the control of the human
being, sensor nodes must be “smart” enough to learn the working area by themselves,
and deploy themselves to the expected working targets.

2 Related Work

There has been some previous work on the maximum coverage problem for sensor net-
works in the literature. Potential-field-based deployment algorithm [14] assumes that
the motion of each node can be affected by virtual force from other nodes and ob-
stacles. All nodes will explore from a compact region and fill the maximum working
area in a way similar to the particles in the micro-world. Although this approach can
maximize the coverage area, since the main idea of this algorithm is obtained from the
micro-world, the nodes in the network may oscillate for a long time before they reach
the static equilibrium state, like the particles in micro world. The oscillation of nodes
consumes much more energy than moving to the desired location directly. Moreover,
this algorithm can only be used in a bounded area, since nodes must be restricted within
the boundary by the virtual force from boundary. Without the boundary, each node will
not stop expelling others until there is no other nodes within its transmission range.
The Virtual Force algorithm (VFA) [17] divides a sensor network into clusters. Each
cluster head is responsible for collecting the location information of the nodes and de-
termining their targets. The cluster architecture may leads to the unbalanced lifetime of
the nodes and is not suitable for the networks that do not have powerful central nodes.
Constrained Coverage algorithm [15] guarantees that each node has at least K neigh-
bors by introducing two virtual forces. However, it still does not have any mechanism
to limit oscillation of nodes. Movement-Assisted Sensor Deployment algorithms [16],
which consist of three independent algorithms VEC, VOR and MiniMax, use Voronoi
diagrams to discover the coverage holes and maximize the coverage area by pushing or
pulling nodes to cover the coverage gaps based on the virtual forces. In the VEC algo-
rithm, the nodes which have covered their corresponding Voronoi cells do not need to
move, while other nodes are pushed to fill the coverage gaps. In VOR, nodes will move
toward the farthest Voronoi vertices. The MiniMax algorithm moves nodes more gently
than VOR, thereby avoiding the generation of new holes in some cases. Compared to

22 M. Ma and Y. Yang

potential-field-based deployment algorithm, movement-assisted sensor deployment al-
gorithms reduce the oscillation and save the energy consumed by node movement. All
three algorithms assume that each node knows its Voronoi neighbors and vertices. How-
ever, Voronoi diagram is a global structure, and all Voronoi vertices and cells can only
be obtained when the global location information of all nodes in the network is known
[13], which means that each node must exchange its current location information with
all other nodes to acquire its corresponding Voronoi vertices and cell. For each location
update message, it may take O(n) one-hop communications to reach all other nodes,
where n is the total number of nodes. In the case when the GPS system is unavail-
able, the error in one-hop relative locations of the nodes may be accumulated. Thus,
the error for two far away nodes may be significant. In addition, so far most existing
algorithms are only concerned with deploying nodes within a bounded area. VOR and
Minimax algorithms are based on Voronoi diagrams and require every Voronoi cell to be
bounded. However, by the definition of Voronoi graph [13], each periphery Voronoi cell
is unbounded, since it contains a Voronoi vertex at infinity. Thus, VOR and Minimax
algorithms cannot work correctly in this case.

Finally, though all the algorithms discussed above intended to maximize the node
coverage, minimize the coverage overlap and gap, and deploy nodes uniformly, they
did not answer a fundamental question in the deployment: what type of node layout can
provide the maximum coverage with the smallest overlap and gap? We will address this
issue in the next section.

3 Adaptive Triangular Deployment Algorithm

In this section, we first find out the optimum node layout for sensor deployment, and
then present the deployment algorithm based on this layout. We now give the assump-
tions used in this paper. In order to make the proposed algorithm work in the environ-
ment where the GPS system is unavailable, such as outer-space, seabed and in-door,
global location information should not be required. In the area without the GPS system,
we assume that each sensor can estimate the relative location information to nearby
nodes by detecting the relative distances and angles [12],[18]. In addition, we assume
that each node has a unique reference direction, which can be easily obtained from elec-
tronic compass. Each node is able to monitor a unit-disk-shape area centered at itself,
though our algorithm can work for other regular or irregular shapes of sensing area with
only a minor modification.

3.1 The Ideal Node Layout for Maximum Coverage

Similar to the deployment algorithms discussed in the previous section, one of the im-
portant goals of our algorithm is to maximize the coverage area. However, before we
design a maximum coverage algorithm, we need to know what type of node layout can
provide the maximum coverage for a given number of nodes. We assume that each node
can sense only a very limited disk-shaped range with radius r, called sensing range. In
order to find the ideal node layout for maximum coverage, we introduce the Delaunay
triangulation [13] to describe the layout of the network. Let N be the set of n nodes,

Adaptive Triangular Deployment Algorithm for Unattended Mobile Sensor Networks 23

which are randomly thrown in the plane, and T be a Delaunay triangulation of N, such
that no nodes in N are inside the circumcircle of any triangle in T . Suppose that a large
number of sensor nodes are randomly thrown in a two-dimensional field. The entire
sensing area can be partitioned into some Delaunay triangles, whose vertices represent
sensor nodes. We assume that the number of nodes is so large that the entire working
area consists of a large number of Delaunay triangles. We have the following theorem
regarding the optimum node layout.

Theorem 1. If all Delaunay triangles are equilateral triangles with edge length
√

3r,
the coverage area of n nodes is maximum without coverage gap.

Proof. Since the entire working area can be decomposed into a large number of Delau-
nay triangles, if we can prove that the no-gap coverage area in any Delaunay triangle is
maximized when the lengths of all its edges equal to

√
3r, then the maximum coverage

area of n nodes can be obtained. Let Cn0 , Cn1 and Cn2 be the circles centered at the
points n0, n1 and n2, respectively, which denote the sensing range of corresponding
nodes. Without loss of generality, we assume that circle Cn0 and circle Cn1 cross at
point O, where O and n2 locate on the same side of edge n0n1 as shown in Figure 1.
Let φ0 = � n2n0O, φ1 = � n0n1O and φ2 = � n1n2O. From Figure 1, since Cn0 and
Cn1 cross at O, we can obtain |n1O| = |n0O| = r. In order to maximize the area of the
triangle without coverage gap, |n2O| should equal r. The area of triangle Δn0n1n2, de-
noted as A(Δn0n1n2), can be calculated as the summation of the area of the following
three triangles Δn0n1O, Δn0n2O, and Δn2n1O.

A(Δn0n1n2) = A(Δn0n1O) + A(Δn0n2O) + A(Δn2n1O)
= r2(sin φ0 cos φ0 + sin φ1 cos φ1 + sin φ2 cos φ2)

=
r2

2
× (sin(2φ0) + sin(2φ1) + sin(2φ2))

Since |n1O| = |n0O| = |n2O| = r, we have φ0 + φ1 + φ2 = π
2 . It can be shown that

when φ0 = φ1 = φ2 = π
6 and the lengths of all three edges n0n1, n1n2 and n2n0 equal√

3r, the area of triangle Δn0n1n2 is maximized. Therefore, if all Delaunay triangles
are equilateral triangles with edge length

√
3r, the no-gap coverage area in a plane is

maximized.

φ

n

0n 1n

φ 2

φ 1

n 0C 1nC

n 2C

ο
0

2

Fig. 1. The maximum no-gap coverage area in a triangle can be obtained, if and only if the
lengths of all three edges of the Delaunay Triangle equal

√
3r

24 M. Ma and Y. Yang

We have considered the maximum coverage problem. Now we derive the minimum
average moving distance of the nodes under a uniform deployment density. We assume
that initially all sensor nodes are in a compact area near the origin of the polar coordinate
system and eventually will be deployed to a disk-shaped area S with radius D, that
is, the sensors are uniformly distributed over area S = πD2. We have the following
theorem regarding the minimum average moving distance.

Theorem 2. When sensor nodes are deployed from a compact area to a disk-shaped
area S with radius D, the minimum average moving distance of the nodes is 2D

3 .

Proof. When nodes are uniformly distributed over area S, the minimum average moving
distance Davg can be computed as the average distance from the origin of the polar
coordinate system. Let (ρ, θ) denotes the polar coordinate of the node. Thus,

Davg = E(ρ) =
∫ 2π

0

∫ D

0

ρ

πD2
ρdρdθ =

2D

3
(1)

By plugging S = πD2 into (1), we have

Davg =
2
3

√
S

π
(2)

It should be pointed out that Davg can be achieved only when every node directly
moves to its final position during the deployment. Thus it represents the minimum
average moving distance in the ideal situation. However, this optimum value is diffi-
cult to achieve when the final position of each node is unknown before the deploy-
ment and there are obstacles that may block the movement of the nodes. Nevertheless,
Davg can serve as a lower bound on the average moving distance of the nodes for any
deployment algorithm. We will compare our algorithm with Davg in the simulation
section.

3.2 The Triangular Deployment Algorithm

In this subsection, we introduce a simpler version of our adaptive triangular deployment
algorithm. We have known what type of node layout can maximize the coverage in a
plane. Now the problem is how to deploy nodes from a compact area or an irregular
layout to a perfect one. A large number of sensor nodes are usually randomly thrown
into the working area or placed in a bunch. As discussed earlier, exchanging global
location/topology information during such a dynamical deployment period would put a
heavy traffic burden to the network. In fact, each unicast communication between two
nodes in the network may need O(n) one-hop communications, where n is the network
size. Furthermore, when a bunch of nodes locate within a compact area and most of
them need to communicate with others at the same time, the communication will be
very inefficient due to the collision at the MAC layer [10]. Thus, the node movement
decision should be based on local information in the deployment process. Since the
location information is updated periodically, as a result, each node can only decide its
movement periodically.

Adaptive Triangular Deployment Algorithm for Unattended Mobile Sensor Networks 25

We now present an algorithm to deploy the sensor nodes close to a perfect equilat-
eral triangular layout with the maximum coverage. The basic idea of the algorithm is
to adjust the distance between two Delaunay neighbors to

√
3r in three different co-

ordinate systems, namely, XY , X
′
Y

′
and X

′′
Y

′′
, where the angles between X

′
-axis,

X
′′

-axis and X-axis are π
3 and 2π

3 , respectively. In Figure 2(a), the transmission range
of a sensor node is divided into six sector areas, called sectors 1 to 6 anticlockwise.
X-axis, X

′
-axis and X

′′
-axis symmetrically partition sectors 1 and 4, sectors 2 and 5,

and sectors 3 and 6. The radius of each sector equals the transmission range of the node.
The location of the nodes in sectors 1 and 4, sectors 2 and 5, and sectors 3 and 6, are
expressed by XY , X

′
Y

′
and X

′′
Y

′′
coordinates, respectively.

X−axis

Sector 1

Sector 2

Sector 3

Sector 4

Sector 5

Sector 6

π
6

0N π
6

Y 1
0Y

X 1 X 0

X −axis X −axis

δy 1

N 1

δy 1xδ 1 +

xδ 1

(a) (b)

R

X−axis

Fig. 2. Local movement strategies based on the location of one-hop neighbors

In each sector, the node adjusts its location along the corresponding axis based on
the location of its Delaunay neighbors. Since global location of all sensor nodes is
needed to determine Delaunay triangulations and Delaunay neighbors, in practice, we
use the nearest neighbors to the node in each sector instead of Delaunay neighbors.
For example, as shown in Figure 2(b), node N1 is the nearest neighbor of node N0 in
sector 1, where their coordinates in XY coordinate system are (X1, Y1) and (X0, Y0).
Let the location vector

−→
δx1 and

−→
δy1 denote vectors [(X1 − X0), 0] and [0, (Y1 − Y0)],

respectively. If |−→δx1 +
−→
δy1| <

√
3r, it means there is too much coverage overlap be-

tween node N0 and node N1. Thus, the movement of N0 should be opposite to N1 for
|−−→δx1−

√
3r

−−→
δx1
|−−→δx1| |

2 to reduce the coverage overlap. On the contrary, if |−→δx1 +
−→
δy1| >

√
3r,

a coverage gap may exist between node N0 and node N1. We let N0 move towards N1

for
|−−→δx2−

√
3r

−−→
δx2
|−−→δx2| |

2 to fill the coverage gap. Besides the movement on X-coordinate, the

movement vector of N0 projected on Y-coordinate equals
−→
δy1/2. Thus, the movement

vector of N0,
−→
δv1 =

−−→
δx1−

√
3r

−−→
δx1
|−−→δx1|+

−→
δy1

2 .
In general, for sector s, each node searches the nearest neighbor within the sector

and calculates the relative horizontal and vertical location vectors
−→
δxs and

−→
δys along its

26 M. Ma and Y. Yang

corresponding axis. Here,
−→
δxs and

−→
δys are expressed by relative coordinates correspond-

ing to sector s. The movement vector of a node in sector s,
−→
δvs, can be expressed as

−→
δvs =

−→
δxs −

√
3r

−→
δxs

|−→δxs|
+
−→
δys

2
(3)

After the movement vectors in all six sectors are obtained, they will be transferred into
uniform coordinates and added in order to obtain the total movement vector for the
current round. As will be seen in the simulation results, after several rounds of such
adjustments, the layout of the network will be close to the ideal equilateral triangle
layout. As a result, the coverage area of the network will be maximized.

3.3 Minimizing Oscillation

We have proved that equilateral triangular layout can maximize the coverage, and also
proposed a simple algorithm to adjust the network from an irregular layout to the ideal
equilateral triangle layout. However, since the global location information of the net-
work is difficult to obtain in the deployment process, it is impossible for each node to
move to its desired target directly. Thus, sensor nodes may move back and forth fre-
quently before it reaches its desired target. To make the algorithm suitable to real-world
applications, another important issue is to reduce the total moving distance of the nodes
in the deployment.

Recall that the moving strategy in our triangular deployment algorithm is that if
the horizontal distance between two neighbors are longer than

√
3r, the sensors will

move towards each other to shorten the gap between them. On the contrary, they will
move away from each other to reduce the coverage overlap. According to this strategy,
nodes move all the time, unless the network reaches the perfect layout or its maximum
rounds. In order to reduce the oscillation, we adopt a threshold strategy by using two
distance thresholds, T1 and T2, instead of

√
3r for making moving decisions, where

T1 =
√

3r + ε and T2 =
√

3r − ε, where ε is a small constant. As described in
Figure 3(a), the Y-coordinate d denotes the distance between the node and its nearest
neighbor. When two far away nodes move towards each other and the distance between
them decreases to T1, two nodes stop moving. On the other hand, when two close nodes
move apart and the distance between them increases to T2, they will stop and keep
the current distance between them. This moving strategy guarantees that the node will
not move if it locates between T1 and T2 away from its neighbors, so that the node
is affected less when its neighbors move slightly. If the adjustment granularity is too
small, which is given by Δd = T1 − T2 = 2ε, T1 and T2 are close to

√
3r at the

beginning of the deployment process.
However, if Δd is too large, it is impossible to adjust the network to the perfect

equilateral triangular layout. In order to solve this problem, we can let the thresholds
T1 and T2 be the function of time t. As shown in Figure 3(b), the adjustment granu-
larity decreases as time t increases. That is, T1 =

√
3r + ε(t) and T2 =

√
3r − ε(t),

respectively, where ε(t) is called threshold function. In practice, since the algorithm is
executed round by round, the threshold can be changed to a function of the number of
rounds. ε(Rdcur) =

√
3

4 r×e−Rdcur/Rdtotal is an example of the threshold function and

Adaptive Triangular Deployment Algorithm for Unattended Mobile Sensor Networks 27

will be used in the simulation in Section 4, where Rdcur and Rdtotal are the numbers
of the current round and the total round, respectively.

(b)

3 r

3 r

(t)

(t)

d

Time

T = 3 r 1

 2T = ε

 ε

3 r
3 r

d

Time

Move

Stop

Move

T = 3 r 1

 2T = ε

 ε

(a)

Fig. 3. Threshold strategy for reducing node oscillation

rL SR

L R

I

l

l l l

rr r

S

Fig. 4. Movement state diagram for reducing node oscillation. L: Move left; R: Move Right; SL

and SR: Stay; I: Initial state; l: Expected moving direction is left; r: Expected moving direction
is right

The second strategy, called movement state diagram, is to use a state diagram to
reduce the node oscillation. Each movement can be considered as a vector and be de-
composed into the projection vectors on X and Y coordinates. For X coordinate, nodes
can only move left or right. Oscillation exists when a node moves towards the opposite
direction of the previous movement. In order to avoid oscillation, nodes are not allowed
to move backwards immediately. Two state diagrams are applied in movement vectors
projected on X and Y coordinates separately. Figure 4 shows an example of movement
state diagram for X coordinate, which contains 5 states and is used in our simulation.
The diagram has 5 states: L, R, SL, SR and I , and two transitions l and r. L and R
denote the movement to the left and the right respectively. If the state of a node is SL

or SR, it has to stay where it is till the next round. I is the initial state. l and r represent
the moving decision to the left and the right made by the triangular deployment algo-
rithm. For example, a node plans to move left after running the triangular algorithm,
which means that the current transition is l. Then, it needs to check its current state on
its state diagram. If its current state is L, I or SL, the next state will go to L after the
transition l. A node can move left only when its next state is L. If the current state of
the node is SR or R, the next state will transit to SL or SR upon the transition l, re-
spectively. Thus, the node can not move until next round. The movement control on Y
direction follows a similar procedure. Simulation results in Section 4 show that the dis-
tance threshold strategy and movement state diagram strategy can reduce a significant
amount of movements during the deployment.

28 M. Ma and Y. Yang

3.4 Avoiding Obstacles and Boundaries

We have discussed how to deploy nodes in an open area. However, in most real-world
applications, the working area is more likely bounded partially or entirely. Also, some
irregularly-shaped obstacles may locate within the working area. In order to make
the deployment algorithm more practical, sensors must be able to avoid obstacles and
boundaries. Because an accurate map of the sensing area may not be always available
before the deployment, sensor nodes can detect obstacles only when they move close
enough to the obstacles. As discussed above, the triangular deployment algorithm can
only adjust the relative position of two sensor nodes. However, unlike sensor nodes, ob-
stacles and boundaries usually have irregular shapes and continuous outlines. In order
to enable the triangular deployment algorithm to adjust the relative positions between
sensor nodes and obstacles and boundaries with only a minor modification, the outlines
of obstacles and boundaries are abstracted as many virtual nodes, which surround ob-
stacles and boundaries closely. As shown in Figure 5, each small dotted circle around
obstacles and boundaries denotes a virtual node. In practice, after each sensor node
detects the outlines of obstacles or boundaries within its sensing range, from a sensor
node’s point of view, the outlines of obstacles or boundaries can be considered as a lot
of virtual nodes. Like real sensor nodes, these virtual nodes also “push” real nodes away
when real nodes locate too close to them, or “pull” real nodes close to them when real
nodes locate too far away from them. Similar to the basic triangular deployment algo-
rithm described earlier, after a real sensor node divides it sensing range into six sectors,
it takes account of both real nodes and virtual nodes in each sector of its sensing range.
When the real node finds other real or virtual nodes locate too close to itself in each
sector, it moves away from them. On the contrary, when it locates too far away from
other real or virtual nodes, it moves towards them to fill the coverage gap. One differ-
ence between the virtual nodes and the real nodes is that virtual nodes can not move.
Another difference between real nodes and virtual nodes is that virtual nodes can cover
a zero-size area. Thus, in order to avoid the coverage gap or overlap between real nodes
and virtual nodes, the distance between real nodes and virtual nodes should be adjusted
to

√
3r/2 instead of

√
3r, by decreasing the deployment radius rd from r to r

2 , where
the deployment radius rd is defined as the radius of the range the node should cover.
We can revise our algorithm as follows for deploying nodes in an area with obstacles.
In each sector, if the nearest neighbor of the node is a virtual node, the node sets its
deployment radius rd to r

2 . If its nearest neighbor is a real node, its rd still equals its
sensing radius r. And then, the node runs the triangular deployment algorithm by re-
placing r with rd. Figure 5 shows an example of the layout after nodes are deployed in
a partially bounded area with irregularly-shaped obstacles. We can see that the distance
between real nodes is still

√
3r, while the distance between real nodes and virtual nodes

(obstacles or boundaries) is
√

3r/2.
By applying distance threshold, movement state diagram and adaptive adjustment

strategies, we obtain the adaptive triangular deployment algorithm (ATRI) that is sum-
marized in Table 1. As will be seen in our simulation results, by incorporating these
strategies, our adaptive triangular deployment algorithm can drive nodes to avoid ob-
stacles in the area and deploy them with different densities based on the requirements
of tasks.

Adaptive Triangular Deployment Algorithm for Unattended Mobile Sensor Networks 29

Virtual Nodes
3 r
2

3 r

Obstacle

Boundary

Boundary

Real Nodes

Fig. 5. Examples of the adaptive deployment in a bounded area with obstacles

Table 1. Adaptive Triangular Deployment Algorithm

Adaptive Triangular Deployment Algorithm
for each round

for each node i = 1 to n
Broadcast “Hello” message containing its location information to its one-hop neighbors;
Receive “Hello” message from nearby nodes and obtain their location information;
Detect obstacles or boundaries within its sensing range and obtain location of virtual nodes;
Divide its transmission range into 6 sectors;
for each sector s = 1 to 6
Adjust its sensing radius rd adaptively based on location of virtual nodes;
Calculate the threshold value THR;

Calculate location vector
−→
δx and

−→
δy to its nearest neighbor/virtual node in the coordinate system;

if (0 < |δxs| ≤ |√3rd − THR|) or (|δxs| ≥ |√3rd + THR|)

Calculate and store the movement vector for sector s,
−→
δvs =

−→
δx−√

3rd

−→
δx

|−→δx|
+
−→
δy

2
;

else−→
δvs =

−→
0 ;

end if
Transfer movement vectors of all sectors into uniform coordinates;
Add them up to obtain the total movement vector for node i;
Check the state diagram to decide if move or not and make transitions on the state diagram;

Move;

4 Simulation Results

This section presents a set of experiments designed to evaluate the performance and
cost of the proposed algorithm. Besides the ideal flat open area, the simulation is also
run in the more practical environments, where irregularly-shaped obstacles may block
the movement of nodes. All sensor nodes are equipped with omnidirectional antennas,
which can reach as far as 8 meters away. Each sensor node can sense the occurring of
events within a radius of 3 meters away from itself. At the beginning of the experiments,

30 M. Ma and Y. Yang

a large number of nodes are randomly placed within a 1m×1m compact square which is
centered at point (25m, 25m). Then the nodes will explode to a large, evenly deployed
layout. In order to limit the oscillation of nodes, the same movement state diagram
depicted in Figure 4 is used in all scenarios. The distance threshold function ε(Rdcur) =√

3
4 rd × e−Rdcur/Rdtotal , where Rdcur and Rdtotal are the numbers of current round

and total round. We measure the total coverage area and the average moving distance
per node and compare them with existing algorithms.

4.1 Performance and Cost Evaluation

In this subsection, we compare the performance and cost of VEC and ATRI algorithms.
VEC algorithm has similar performance as VOR and Minimax algorithm in a bounded
area. In addition, like ATRI algorithm, VEC algorithm can be used in both unbounded
and bounded areas, while VOR and Minimax algorithms have to know the boundary
information. For the sake of simplicity, we did not take account of the communication
cost for exchanging location information and assume that location information is error-
free, though VEC algorithm needs global location information and is more vulnerable
to inaccurate location information than ATRI algorithm. In order to see the effects of
various node densities, 100 nodes are randomly placed into a 1m × 1m square around
point (25m, 25m) at the beginning, then they explode from a compact area to a large
area. Both algorithms run for 100 rounds. In order to evaluate the performance and
cost of the two algorithms, two metrics are measured for each simulation round: total
coverage area and average moving distance, which are defined as the coverage area of
100 nodes and accumulated moving distance per node from the beginning of the sim-
ulation. Figure 6(a) shows the total coverage area of both algorithms as the simulation
rounds increase. We can see that the total coverage of both algorithms increase rapidly
to as high as 2200m2 before round 40, and then go smoothly after round 40. At round
100, ATRI stops at around 2600m2, while VEC is close to 2500m2. From round 10

10 20 30 40 50 60 70 80 90 100
1200

1400

1600

1800

2000

2200

2400

2600

2800
(a) Total Coverage Area vs Number of Rounds

Number of Rounds

T
ot

al
 C

ov
er

ag
e

A
re

a
of

 1
00

 N
od

es
 (

m
2)

ATRI
VEC

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45
(b) Average Moving Distance vs Number of Rounds

Number of Rounds

A
ve

ra
ge

 M
ov

in
g

D
is

ta
nc

e
(m

)

ATRI
VEC
Optimum (ATRI)
Optimum (VEC)

Fig. 6. The total coverage area and average moving distance of ATRI and VEC algorithms for
100 runs of simulations

Adaptive Triangular Deployment Algorithm for Unattended Mobile Sensor Networks 31

−10 0 10 20 30 40 50 60
−10

0

10

20

30

40

50

60
(a) Round 20

−10 0 10 20 30 40 50 60
−10

0

10

20

30

40

50

60
(b) Round 40

−10 0 10 20 30 40 50 60
−10

0

10

20

30

40

50

60
(c) Round 60

−10 0 10 20 30 40 50 60
−10

0

10

20

30

40

50

60
(d) Round 80

Fig. 7. Triangular layout of 100 nodes at round 20, 40, 60 and 80

to 100, ATRI always leads VEC for about 50m2 to 100m2. Figure 6(b) describes the
average moving distance when simulation rounds range from 10 to 100. Average mov-
ing distance has the similar increasing trend as the total coverage area, as the simulation
rounds increase. In both algorithms, after round 60, nodes are deployed evenly and their
average distance is close to

√
3r. Most nodes do not need to move except minor adjust-

ments. As shown in Figure 7, after round 60, most nodes form the equilateral triangle
layout. There are no obvious changes between the layout of round 60 and that of round
80, because the layout of nodes is already very close to the ideal equilateral triangular
layout after round 60. In addition, from total coverage area of both algorithms, we also
calculate optimum average moving distances and plot them in Figure 6(b). As discussed
earlier, given a fixed total coverage area, the optimum average moving distance can be
calculated by (2). Recall that optimum average moving distances can only be obtained
when the working environment is well known and each node knows its expected target
before the deployment. Without the map of the environment, nodes have to move in a
zigzag manner, which leads to average moving distances of both algorithms are more
than optimum values. However, compared to VEC algorithm, ATRI still saves up to
50% of the optimum average moving distance from round 10 to 100.

32 M. Ma and Y. Yang

−20 −10 0 10 20 30 40 50 60 70
−20

−10

0

10

20

30

40

50

60

70
(a) Round 0

−20 −10 0 10 20 30 40 50 60 70
−20

−10

0

10

20

30

40

50

60

70
(b) Round 20

−20 −10 0 10 20 30 40 50 60 70
−20

−10

0

10

20

30

40

50

60

70
(c) Round 40

−20 −10 0 10 20 30 40 50 60 70
−20

−10

0

10

20

30

40

50

60

70
(d) Round 60

Fig. 8. Simulation results for non-uniform deployment: (a) Initial snapshot; (b) Round 20; (c)
Round 40; (d) Round 60

Table 2. Exploring sensing area with obstacles : Moving distance vs coverage area

Number of Rounds 20 40 60
Total Coverage Area (m2) 2032 3504 4415

Average Moving Distance (m) 17.45 33.33 46.13
Optimum Average Moving Distance (m) 16.95 22.26 25.00

4.2 Exploring the Area with Obstacles

In order to show that ATRI algorithm works well in the sensing area with obstacles,
a circular and a triangular obstacles are placed in the sensing area. As shown in Fig-
ure 8, the circular obstacle is centered at point (35m, 35m) with radius 8m. Vertices
of the triangular obstacle are (10m, 20m), (20m, 10m) and (20m, 20m), respectively.
Figure 8(a),(b),(c) and (d) show the deployment layouts at rounds 0, 20, 40 and 60,
respectively, where each “+” symbol denotes the position of its corresponding node. At
the beginning, similar to the previous scenario, 200 sensor nodes are randomly thrown
into a 1m × 1m square around point (25m, 25m). As the simulation runs, we can see
from Figure 8(b),(c) and (d) that, the total coverage enlarges round by round. At round

Adaptive Triangular Deployment Algorithm for Unattended Mobile Sensor Networks 33

60, nodes are evenly deployed and no nodes enter the triangular or the circular region
during the deployment. Though obstacles block the movement of some nodes, ATRI
algorithm still performs very efficiently. During the simulation, we measure total cov-
erage area and average moving distance at round 20, 40 and 60. In addition, we also
calculate optimum average moving distance by plugging total coverage area into (2).
All three metrics are shown in Table 2. In practice, optimum average moving distance
is difficult to reach unless the desired optimum position of each node is known before
the deployment and no obstacles block the movement of the nodes. In the situation that
the map of the environment is unavailable and the movement of some nodes is blocked
by obstacles, we can see that the movement cost of ATRI algorithm is very reasonable
compared to the optimum value.

5 Conclusions

In this paper, we have proposed a new adaptive deployment algorithm for unattended
mobile sensor networks, namely, adaptive triangular deployment (ATRI) algorithm. We
have introduced an equilateral triangle deployment layout of sensor nodes and proved
that it can produce the maximum no-gap coverage area in a plane. Although only the
location information of one-hop neighbors is used for the adjustment of each node,
the algorithm can make the overall deployment layout close to equilateral triangula-
tions. In order to reduce the back-and-forth movement of nodes, the distance threshold
strategy and movement state diagram strategy are proposed, which limit the oscillation
and reduce the total movement distance of nodes. ATRI algorithm can be used in both
bounded and unbounded areas. It also supports adaptive deployment. Without the map
and information of the environment, nodes can avoid obstacles. In addition, ATRI al-
gorithm is run in a completely distributed fashion by each node and based only on the
location information of nearby nodes.

References

1. http://robotics.eecs.berkeley.edu/ pister/SmartDust/, 2004.
2. http://www-mtl.mit.edu/research/icsystems/uamps/, 2004.
3. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor net-

works,” IEEE Communications Magazine, Aug. 2002, pp. 102-114.
4. A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. “Habitat monitoring:

Application driver for wireless communications technology,” Proc. 2001 ACM SIGCOMM
Workshop on Data Communications in Latin America and the Caribbean, April 2001.

5. S. Chessa and P. Santi, “Crash faults identification in wireless sensor networks”, Computer
Communications, Vol. 25, No. 14, pp. 1273-1282, Sept. 2002

6. L. Schwiebert, S. K. S. Gupta, and J. Weinmann, “Research challenges in wireless networks
of biomedical sensors,” Proc. ACM/IEEE MobiCom, pp. 151-165, 2001.

7. G. Asada, T. Dong, F. Lin, G. Pottie, W. Kaiser, and H. Marcy, “Wireless integrated net-
work sensors: low power systems on a chip,” European Solid State Circuits Conference, The
Hague, Netherlands, Oct. 1998.

34 M. Ma and Y. Yang

8. R. Min, M. Bhardwaj, N. Ickes, A. Wang, A. Chandrakasan, “The hardware and the net-
work: total-system strategies for power aware wireless microsensors,” IEEE CAS Workshop
on Wireless Communications and Networking, Sept. 2002.

9. The Ultra Low Power Wireless Sensor Project, http://www-mtl.mit.edu/jimg/project
top.html, 2004.

10. IEEE standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, IEEE Standard 802.11, June 1999.

11. E. D. Kaplan, ed., Understanding GPS – Principles and Applications, Norwood MA: Artech
House, 1996.

12. S. Capkun, M. Hamdi, J.P. Hubaux, “GPS-free positioning in mobile ad-hoc networks,” Proc.
Hawaii Int. Conf. on System Sciences, Jan. 2001.

13. M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf, Computational Geometry
Algorithms and Applications, Springer-Verlag, 1997.

14. A. Howard, Maja J. Mataric, and G. S. Sukhatme, “Mobile sensor network deployment using
potential fields: A distributed scalable solution to the area coverage problem,” Proc. DARS02,
Fukuoka, Japan, 2002, pp. 299-308.

15. S Poduri, and G. S. Sukhatme, “Constrained Coverage for Mobile Sensor Networks,” IEEE
Int’l Conference on Robotics and Automation, pp.165-172, 2004.

16. G. Wang, G. Cao, and T. La Porta, “ Movement-Assisted Sensor Deployment,” Proc. IEEE
Infocom, March 2004.

17. Y. Zou and K. Chakrabarty, “Sensor deployment and target localizations based on virtual
forces,” Proc. IEEE Infocom, 2003.

18. N. Bulusu, J. Heidemann and D. Estrin, “Adaptive beacon placement,” Proc. ICDCS-21,
Phoenix, Arizona, April 2001.

An Adaptive Blind Algorithm for Energy
Balanced Data Propagation in Wireless

Sensors Networks�

Pierre Leone1, Sotiris Nikoletseas2, and José Rolim1

1 Computer Science Department, University of Geneva,
1211 Geneva 4, Switzerland

2 Computer Technology Institute (CTI) and Patras University,
P.O. Box 1122, 261 10, Patras, Greece

Abstract. In this paper, we consider the problem of energy balanced
data propagation in wireless sensor networks and we generalise previous
works by allowing realistic energy assignment. A new modelisation of
the process of energy consumption as a random walk along with a new
analysis are proposed. Two new algorithms are presented and analysed.
The first one is easy to implement and fast to execute. However, it needs
a priori assumptions on the process generating data to be propagated.
The second algorithm overcomes this need by inferring information from
the observation of the process. Furthermore, this algorithm is based on
stochastic estimation methods and is adaptive to environmental changes.
This represents an important contribution for propagating energy bal-
anced data in wireless sensor netwoks due to their highly dynamic nature.

1 Introduction

Load balancing is a common important problem in many areas of distributed
systems. A typical example is that of shared resources such as a set of processors,
where it is of interest to assign tasks to resources without overusing any of them.
A related but different aspect of load balancing appears in the context of sensor
networks, where tiny smart sensors are usually battery powered: an important
goal of data processing is to balance the total energy consumed among the
entire set of sensors. However, limited local knowledge of the network, frequent
changes in the topology of the network and the specifications of sensors, among
others, make load balancing in sensors nets significantly different of classical load
balancing in distributed systems.

To our knowledge, these considerations were first pointed out in the field of
sensor networks in [9]. In this paper the authors deal with the problem of devis-
ing energy balanced sorting algorithms. In a subsequent paper [6] the authors

� This work has been partially supported by the IST Programme of the European
Union under contract numbers IST-2001-33135 (CRESCCO) and 001907 (DELIS).

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 35–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

36 P. Leone, S. Nikoletseas, and J. Rolim

deal with the problem of energy balanced data propagation in sensor networks.
They propose a randomised data propagation protocol and provide recursive and
closed form solutions for the appropriate data propagation probabilities.

Before describing our contributions we present the problem previously stated
in [6]. Formal definitions are deferred to the next section. An important area of
application of sensor networks is the monitoring of a given region. Tiny smart
sensors are scattered in a given region in order to detect and monitor some
phenomena. Once a sensor detects the occurrence of an event it is responsible
to inform (through wireless transmissions) a particular station (representing the
end users of the network), called sink, about the occurrence of this event. Since
the energy necessary to transmit a data through radio waves is proportional
to some power of the distance of transmission (usually square power), sensors
located far away from the sink are prone (if they would transmit directly to the
sink) to run out of their available energy before sensors located closer to the sink.
This leads to the idea that the data traffic has to be handled by the network
with multiple hops to the sink, allowing only short distance communication.
However, this strategy tends to overuse sensors located close to the sink since
these sensors have to handle the entire set of events. There is then a trade-off
between long and short distance communication to forward a data to the sink in
order to make the life time of the whole network longer. A possible probabilistic
protocol divides the set of sensors into slices or ring sectors [6]. The first slice is
composed of sensors at unit distance from the sink, the second slice of sensors at
distance 2, and so on. Here the distance is the maximal number of hops necessary
to send a data to the sink. Sensors may communicate directly to the sink with
probability (1− pi). In this case the consumed energy is proportional to i2 with
i is the slice number the sensor belongs to. In order to save energy, a sensor
can probabilistically decide with probability pi to transmit its data to a sensor
belonging to the next slice to the sink (slice i → slice i − 1). In this case the
amount of consumed energy is proportional to a constant which is assumed to
be 1 for convenience. This is illustrated in Figure 1. The problem is to determine
with which probability pi a sensor located in slice i has to transmit to the next
slice (or to directly transmit to the sink with probability 1 − pi) in order to
balance the consumed energy among all the sensors.

In the literature, probabilistic data propagation protocols are proposed, in [5]
(LTP, a local optimisation protocol) and [4] (PFR, a limited flooding protocol).
Both protocols are energy efficient and fault-tolerant, but tend to strain close
to the sink sensors. [1] proposes a variable transmission range protocol (VTRP)
that tends to bypass strained sensors lying close to the sink.

In [2] the authors propose a novel and efficient energy-aware distributed
heuristic (EAD), to build a special rooted tree with many leaves that is used
to facilitate data-centric routing. In [3] a new protocol (PEQ) is proposed that
uses a driven delivery of events mechanism that selects the fastest path and re-
duces latency. [7] inspired our work here since it proposes some stochastic models
(Markov chains, dynamic systems) for dynamic sensor networks.

An Adaptive Blind Algorithm for Energy Balanced Data Propagation 37

In this section, we generalise the energy balanced data propagation problem
by allowing unrestricted realistic energy assignment and we propose two new
probabilistic protocols, one of which is adaptive. Our analysis is based on the
modelisation of the process of energy consumption as a random walk in Rn.
The first algorithm we propose is relatively similar to the one suggested in [6]
and corresponds to offline computation of the probabilities pi of transmission
to the next slice. Although very easy to implement and fast in execution it
suffers from an important weakness; namely the probability of occurrence of
the events per slice, i.e. the probability λi have to be known. This particularity
allows very efficient computations of the probabilities pi. However, this property
is not realistic or at least we gain in flexibility and adaptability to devise an
algorithm able to solve the problem without any assumption concerning these
probabilities. The analysis of the problem is new and leads to a formal definition
of the problem of energy balanced data propagation.

The second algorithm is adaptive and based on stochastic approximation
methods. The algorithm does not assume that the probabilities of occurrence of
the events are known and infers their values from the observation of the events.
We refer to such an algorithm as blind algorithm for energy balanced data prop-
agation to stress the fact that there is no a priori knowledge on the statistics
concerning the localisation of the events. The algorithm can be accordingly im-
plemented on any given network and run on the fly, allowing online adaptation of
the parameters of the network. This characteristic is important if the parameters
of the network are prone to change (this appears frequently in sensor networks).
This algorithm is an important contribution of this section. Generally, adaptive
algorithms, like the one proposed here, are most appropriate for wireless sen-
sor networks because of their evolving nature due to dynamic properties of the
networks such as sensors failures, obstacles, etc., leading to topology changes.
We also formally define in a broader sense the problem of energy balanced data
propagation and show formally under which conditions the problem is well for-
mulated.

2 Framework and Formal Definition of the Problem

In this section we state formally the framework and notations and state the
problem of energy balanced data propagation in wireless sensor networks. Notice
that as a result of the analysis of the problem, that is presented in the next
section, we show that the problem as stated in this section is well formulated.

The number of slices is denoted by n. The main assumption we need in
this section is that the energy consumed per sensor to handle the data to the
sink is the same among sensors belonging to a particular slice. This means that
sensors belonging to the same slice exhaust their available energy more or less
simultaneously. Both following assumptions give sufficient conditions validating
this assumption. Notice that these assumptions are based on a probabilistic
selection of a sensor belonging to a slice for data transmission. Different protocols
can then be proposed.

38 P. Leone, S. Nikoletseas, and J. Rolim

S

1 1

1

2

2
2

2

2

2

2

2

Fig. 1. The sink (S) with the first two slices of sensors

We assume that the probability that an event is detected by a given sensor
depends uniquely on the slice the sensor belongs to. This means that we can
define and estimate λ1, λ2, . . . , λn (

∑
i λi = 1) where λi is the probability that

an event occurs in slice number i. For example, this property is satisfied if the
events are uniformly randomly distributed on the monitored region. Indeed, in
this particular situation, the probabilities λi are proportional to the area covered
by the i-th slice. Moreover, when a data is transmitted from slice i to slice i− 1
the selected sensor belonging to the slice i − 1 is uniformly selected among the
whole set.

The probability pi, i = 1, . . . , n denotes the probability that a sensor belong-
ing to the slice i sends a data to a sensor belonging to the “next” slice i−1. The
complementary probability 1 − pi denotes the probability that the sensor sends
the data directly to the sink. Then, when a data is handled by a sensor belonging
to the i-th slice the amount of consumed energy is a constant (assumed to be 1
for convenience) with probability pi and i2 with probability 1−pi. By definition
we have p1 = 1 because sensors belonging to the first slice can do nothing else
than transmitting to the sink.

The number of sensors belonging to the i-th slice is denoted by Si. It might
be the case that there is a strong relationship between Si, λi but this is not
essential.

The total energy available at the i-th slice is denoted by Ei, thus ei = Ei/Si

is the available energy per sensor. The energy can be seen as a given amount of
energy available at the start or as a rate of consumable energy.

An important aspect of our analysis is to model the energy consumption for
handling a given event as a random walk in Rn. We group the available scaled
energy of each slice as a vector

(
En/Sn, En−1/Sn−1, . . . , E1/S1

)T
. (1)

An Adaptive Blind Algorithm for Energy Balanced Data Propagation 39

To start, consider an event generated in the n−th slice and consider the
complete process of handling the data generated by the event to the sink. We
have different possibilities for the scaled energy consumed in the different slices
corresponding to the different paths of the data. The data is directly transmitted
to the sink with probability (1−pn). The corresponding consumed energy vector
per sensor is

(
n2/Sn, 0, . . . , 0

)T . The data can alternatively be transmitted to
the next (n − 1)−th slice from which it is directly transmitted to the sink with
probability pn(1 − pn−1) . The corresponding consumed energy vector in this
situation is

(
1/Sn, (n−1)2/Sn−1, 0, . . . , 0

)T . Repeating this enumerative process,
we describe all possible events with their probability and the corresponding
vector of energy consumed.

Formally, we denote the U = {U1, U2, . . .} the set of vectors describing the
energy consumption for handling an event. Denoting by Ω the set of possible
events we obtain a random variable Ω → U which describes the energy consumed
for handling an event. If we associate to each event its probability we have our
probability space (Ω,P(Ω), P).

The process of energy consumption is described as a random walk in Rn with
the energy consumed for handling m events in the form X1+X2+X3+ . . .+Xm,
where Xi are independent random realisations of the random variable Ω → U .
The law of large numbers implies that X1 + X2 + . . . + Xm → mE(X) thus, to
ensure energy balanced data propagation we must have

E(X) = λ
(
En/Sn, En−1/Sn−1, . . . , E1/S1)T . (2)

Intuitively, if the expected consumed energy does not satisfy (2) then there is
a slice in which sensors will run out the available energy, described by (1), before
the sensors belonging to others slices. The network stops working prematurely.
Moreover, if (1) describes the rate of consumable energy requirement (2) amounts
to preserving the ratio of consumed energy per slice. An energy assignment vector
is a vector of the form (1) meaning that the ratio of energy consumed in slice i
with respect to slice j should be Ei/Ej .

We later prove that that the set of admissible energy assignment vectors is
{v ∈ Rn : vi ≥ 0, ‖ v ‖= constant} and to each such vector there is a unique
assignment of the probabilities pi. Besides this existential result, we propose two
new protocols for calculating the optimal probabilities in an efficient manner.
The first protocol assumes a certain amount of local knowledge, while the second
one implicitly estimates the statistics of the events and is able to appropriately
adapt to changes in the network parameters.

3 An Aware Strategy for Balanced Energy Dissipation

To ensure energy balance we have to determine for each slice i the probability
of transmitting a given data to the next slice pi, the data being transmitted
directly to the sink with probability (1−pi). This section deals with this problem

40 P. Leone, S. Nikoletseas, and J. Rolim

assuming an a-priori knowledge of the probabilities λi of the distribution of
occurrences of the events among different slices. The first slice, located just
before the sink, has only to transmit the data to the sink directly (p1 = 1).
Hence, if n is the total number of slices we have n − 1 unknown probabilities
p2, . . . , pn. The other free parameter to be determined is the factor λ appearing
in (2).

Consider a node in the i-th slice which has to transmit a data. The data has
to be transmitted because of an event occurring in the i-th slice with probability
λi. The data can also be transmitted because it was previously generated by the
preceding (i + 1)−th slice. This occurs with probability λi+1 · pi+1. The event
can also be transmitted due to an event generated in the (i + 2)−th slice, this
occurs with probability λi+2 · pi+2 · pi+1 and so on up to the n−th slice. Then,
a data is transmitted from the i-th slice with probability

λi + λi+1pi+1 + λi+2pi+2pi+1 + . . . + λnpnpn−1 · . . . · pi+1. (3)

The mean dissipated energy per sensor on the i-th slice is of the form

pi
1
Si

+ (1 − pi)
i2

Si
. (4)

Then the mean energy dissipated in the i-th slice is of the form

(
λi + λi+1pi+1 + . . . + λnpnpn−1 · · · pi+1

)(
pi

1
Si

+ (1 − pi)
i2

Si

)
= λei, (5)

where the equality is imposed to ensure energy balanced data propagation through
the network. With pn+1 = λn+1 = 0 we define the xi value as

xi = λi + λi+1pi+1 + . . . + λnpnpn−1 · · · pi+1, (6)

which satisfies the recurrence relation

xi = pi+1xi+1 + λi, i = n, . . . , 1, (7)

with the convention pn+1 = 0. Solving (5) for pi, i = n, . . . , 2 we get

pi =
i2xi − Sieiλ

(i2 − 1)xi
=

i2

i2 − 1
− Siei

(i2 − 1)xi
λ, i = n, . . . , 2. (8)

Since p1 = 1 we solve (5) with i = 1 for λ and get

λ =
x1

S1e1
. (9)

This last equation is actually a constraint on λ. To investigate properties of this
constraint, we define a function (λ,E1, . . . , En) → λ′ = f(λ) by substituting λ
by λ′ in (9). A fixed point of this function, i.e. λ = f(λ), determines through (6)
and (8) a solution of our problem. The recursive scheme described in Figure 2

An Adaptive Blind Algorithm for Energy Balanced Data Propagation 41

calculates the value of the fixed point of this function. This algorithm is exe-
cuted by the sink based on the knowledge of the energy assignment vector, the
probabilities of occurrence of the events on the different slices and the number
of sensors per slices. This information may come directly from the sensors (both
at set-up or during protocol evolution) which know the slice they belong to.

Actually, there is a more efficient way of solving this problem, based on the
result of Proposition 1, as illustrated in Figure 3.

Proposition 1. The function f(λ) defined through equations (6), (8) and (9) is
linear. Then, we can write

f(λ) = a + bλ, (10)

with a and b real constants defined by

S1e1a =λ1 + λ2C2 + λ3C3C2 + . . . + λnCnCn−1 . . . C2, (11)
S1e1b = − D2 − D3C2 − D4C3C2 − . . . − DnCn−1 . . . C2, (12)

with

Ci =
i2

i2 − 1
, Di =

Siei

i2 − 1
. (13)

Proof. Let us fix a value of λ. Computing f(λ) amounts to recursively computing
the parameters xi for i = n, n − 1, . . . , 1 and then computing f(λ) with (9). We
prove by induction that the xi values are all linear in λ. For i = n, we get
xn = λn. So, the assertion is true for i = n Let us now assume it is true
for i = n, n − 1, . . . , k + 1. Using (7) and (8) we get xk = pk+1xk+1 + λk =
Ck+1xk+1 − Dk+1λ + λk, which is linear in λ establishing the first part of the
assertion. Since the xi are linear functions in λ we introduce the notation

xi = ai + biλ, i = n, . . . , 1. (14)

The coefficients ai and bi are recursively determined by

ai = λi + ai+1Ci+1, (15)
bi = bi+1Ci+1 − Di+1, (16)

with inital conditions an = λn and bn = 0 (i.e. xn = λn). These equations prove
(11) (12). To get (15) and (16), we write again (8) as pi = Ci − Di

xi
λ, which can

be inserted into formula (7) to obtain xi = λi + xi+1Ci+1 − Di+1λ. Inserting
(14) into this last equation leads to the recursive expression for ai and bi.

In the preceding computations, the dependence of the function f(λ) on the
total energy per slice (the Ei parameters) was not stated clearly, neither was
the physical interpretation of this vector. The next results show that the entries
of this vector are not important by themselves. What is important is the ratio
Ei/Ej between the total mean energy available at the i-th slice with respect to
the j−th slice.

42 P. Leone, S. Nikoletseas, and J. Rolim

Initialise p2, . . . , pn and λ
Initialise NbrLoop=1
while not convergence

x ← 0
for counter = n to 2

x ← x + λcounter

pcounter ← pcounter(λ, pcounter+1, . . . , pn) with (8)
x ← xpcounter

end for
x ← x + λ1

Compute λinter with (9)
λ ← λ + (λinter − λ)/nbrLoop
nbrLoop ← NbrLoop + 1

end while

Fig. 2. Pseudo-code for iterative solution of (2)

1. The Sink compute the fixed point of f(λ) defined in Proposition 1
2. The Sink sends to every sensor the relevant λ value
3. Each sensor computes its probability pi

Fig. 3. High-level description of the energy balanced data propagation protocol

Corollary 1. Consider two total energy assignment vectors which are linearly
dependent, ⎛⎜⎜⎜⎝

En

En−1

...
E1

⎞⎟⎟⎟⎠ = μ

⎛⎜⎜⎜⎝
E′

n

E′
n−1
...

E′
1

⎞⎟⎟⎟⎠ ,

with μ a real non-zero constant. Then, the fixed points, λ and λ′ of the functions

f(λ,E1, . . . , En) = λ, and f(λ′, E′
1, . . . , e

′
n) = λ′

are related by
λ′ = μλ. (17)

Moreover, the corresponding probabilities pi and p′i of transmitting directly to the
next slice are equal.

Proof. This follows from the result of theorem 1. The value of the fixed point
are given respectively by

λ =
a

1 − b
, and λ′ =

a′

1 − b′
.

Direct inspection of the expressions for the coefficients of both functions,
using Siei = Ei and S′

ie
′
i = E′

i shows that μa = a′ and b = b′ which implies

An Adaptive Blind Algorithm for Energy Balanced Data Propagation 43

(17). We know that the probabilities pi of transmitting directly to the next
slice depend only on the λ and λ′ values which are fixed points of the functions
f(λ,E1, . . . , En) = λ and f(λ′, E′

1, . . . , e
′
n) = λ′. By hypothesis, we know that

μλ = λ′. However, in the equations determining the p′is values only the products
λEi and λ′E′

i are involved. Since these products are equal the result is proved.
For the sake of completeness, we mention that we can also prove by induction
that the values xi and x′

i values are the same.

To conclude this section we finally state the result which shows how the
energy balanced data propagation problem can be well formulated.

Proposition 2. Given an energy assignment vector belonging to the set {v ∈
Rn : vi ≥ 0, ‖ v ‖= constant} then there exist unique probabilities pi, i =
2, . . . , pn to solve the energy balanced data propagation problem.

Proof. Probabilities pi are determined by the fixed point of the function defined
by proposition 1. This fixed point is unique because the function is linear. More-
over, with our hypothesis the parameters a and b, see (11) and (12), satisfy a > 0
and b < 0 implying the existence of a fixed point.

This result shows formally that the problem is well formulated and possesses a
unique solution if the energy assignment vector is restricted to belongs to the
set {v ∈ Rn : vi ≥ 0, ‖ v ‖= constant}.

4 A Blind Strategy for Balanced Energy Dissipation

In this section, we deal with the problem of the estimation of the probabilities pi

of transmitting a data directly to a sensor which belongs to the next slice being
blind to the probabilities λi of occurrence of events in a given slice. The blind-
ness assumption is more general and realistic and allows the design of adaptive
algorithms that appropriately adjust to the network parameters. However, we
do not estimate directly the λi probability but directly the values of xi (6). One
reason for this is that the xi values have probabilistic interpretation in terms of
the path of the data through the different slices of the networks.

Proposition 3. Consider an event occurring in slice i = 1, . . . , n with probabil-
ity λi. The event is handled by the network which conveys it to the sink. Define
Ai the event : ”The data passes through slice number i”, and 1i the indicator
function of event Ai. Then

Prob(1i = 1) = xi. (18)

Proof. To compute the probability that the data passes through slice i we can
pass in review the different scenarios leading to the realisation of the event Ai.
A necessary condition is that the event is generated in slice i, i + 1 , . . ., n. If
we denote Gi the event : ” The event is generated in slice i”, we have

44 P. Leone, S. Nikoletseas, and J. Rolim

Initialise x̃0 = λ, . . . , x̃n

Initialise NbrLoop=1
repeat forever

Send x̃i values to the stations which compute their pi probability
wait for a data
process the data
for i=0 to n

if the data passed through slice i then
X ← 1

else
X ← 0

end if
Generate R a x̃i-bernoulli random variable
x̃i ← x̃i + 1

NbrLoop
(X − R)

Increment NbrLoop by one.
end for

end repeat

Fig. 4. Pseudo-code for estimation of the xi value by the sink

Prob(1i = 1) =
n∑

j=i

Prob(1i = 1|Gj).

Because Prob(1i = 1|Gj) = λjpjpj−1 . . . pi+1 if j > i and Prob(1i = 1|Gi) = λi

the last equation leads to (18).

This result is useful for devising a blind strategy for balanced energy. Indeed,
from the sink point of view the realisation of the events Ai can be observed if
we assume that each sensor handling an event appends to the data associated
to it the slice number the stations belongs to.

We describe the blind algorithm for energy data propagation. The algorithm
does not know about the probability λi of occurrences of the events in the
slices and indirectly estimates them. The algorithm is illustrated in Figure 4 in
pseudo-code like form. The sink starts to assign values x̃i for the estimation of
the xi values and λ. For convenience, and since there are not intrinsic differences
between λ and xi we introduce the notation x0 = λ. Each sensor is assigned
a x̃i value depending on the slice number it belongs to and then computes the
probability pi of transmitting directly to the next slice using formula (8). As
already mentioned, sensors add information to the propagated data to make
possible for the sink to determine the slices a given data passed through. Based
on these observations the sink recursively estimates the probability that the data
passes through a given slice i. This probability is given by (see equation (6))

xi = λi + λi+1pi+1 + . . . + λnpnpn−1 · · · pi+1.

Here, we used xi without tilde to refer to the real probability of the event Ai

which is the observable event. Moreover, we have seen that they can be written
as (see equations (10)(14))

An Adaptive Blind Algorithm for Energy Balanced Data Propagation 45

xi = ai + biλ, i = 1, . . . , n, and, λ = x0 = a + bλ.

This means that from the point of view of the sink an event Ai occurs with
probability xi given above.

Proposition 4. The algorithm illustrated in Figure 4 converges in probability
to the solution of the energy balanced data propagation. Precisely this means that

Prob
(
(λn − a

1 − b
)2 > ε

)→ 0, when n → ∞,

with a and b defined in Theorem 1 and λn defined recursively by

λn+1 = λn +
1
n

(Xn − Rn),

with Xn a Bernoulli random variable with parameter a + bλn (the observable
event A1) and Rn a Bernoulli random variable with parameter λn (generated
internally by the sink).

Proof. Since the values x̃i for i = 1, . . . , n depend on the x̃0 = λ value it is
enough that the algorithm converges for λn. First notice that

E(Xn − Rn|λn) = a + (b − 1)λn.

So, we get

E
(
(λn+1− a

1 − b
)2|λn

)
= (λn− a

1 − b
)2+2

b − 1
n

(λn− a

1 − b
)2+

1
n2

E(Xn−Rn|λn).

Taking expectation in both sides of this equality we get

E
(
(λn+1 − a

1 − b
)2
)

=E
(
(λn − a

1 − b
)2
)

+ 2
b − 1

n
E
(
(λn − a

1 − b
)2
)

+
1
n2

E(Xn − Rn|λn)

= . . .

= E
(
(λ1 − a

1 − b
)2
)

+ 2(b − 1)
n∑

j=1

1
j
E
(
(λj − a

1 − b
)2
)

+
n∑

j=1

1
j2

E(Xn − Rn|λj)︸ ︷︷ ︸
bounded︸ ︷︷ ︸

convergent

.

Since b < 0 and E
(
(λn+1 − a

1−b)
2
)

> 0 the first sum on the right side of this
equation converges. Hence,

E
(
(λj − a

1 − b
)2
)→ 0 when j → ∞,

which implies the convergence in probability.

46 P. Leone, S. Nikoletseas, and J. Rolim

0 500 1000 1500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NbrLoop

la
m

bd
a

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NbrLoop

la
m

bd
a

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NbrLoop

la
m

bd
a

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NbrLoop

la
m

bd
a

Fig. 5. Numerical experiment of algorithms (λ in terms of number of loops) illustrated
in Figure 4 with 3, 10, 20, 30 slices from left to right and top to bottom

5 Numerical Experiments and Conclusion

Recursive stochastic estimation procedures are very useful for solving practical
problems and leads to adaptive protocols such that the one presented in Figure
4. The main drawback of these methods is the slow rate of convergence, typically
of order O(1/

√
n) and the lack of a robust stopping criterion. Intuitively, this

is due to the fact that the procedure tracks the true value of the parameter to
be estimated with correction of order O(1

n). This implies that the procedure is
robust in the sense that every possible value of the parameter is reached, but
makes the estimate of the number of steps necessary very difficult.

Numerical experiments are then presented in order to validate the efficiency
of the blind protocol introduced in this section. The framework we choose for our
experiment is the same as the particular one described in [6]. This framework
is realistic and allows us to compare our numerical results. The probability that
an event occurs in slice number i = 1, . . . , n is proportional to the area of this
slice and is given by λi = 2i−1

n2 . We choose to deal with energy balanced data
propagation and we have for the energy assignment vector

An Adaptive Blind Algorithm for Energy Balanced Data Propagation 47

E(X) = λ
(
En/Sn, En−1/Sn−1, . . . , E1/S1

)T = λ
(
1, 1, . . . , 1

)
.

We simulate the algorithm executed by the sink and illustrated in Figure 4.
We start by arbitrarily fixing x̃1 = 0.5 for i = 2, . . . , n and λ = 1. This last
choice corresponding to the worst a priori estimation possible. We simulate the
occurrence of the events with respect to the known probability λi. Notice that
these probabilities are known from the simulation but are undirectly estimated
by the algorithm (the sink). The path of the data generated by the event are
simulated using the successive values of the probabilities pi for i = 2, . . . , n
which are computed on the basis of the x̃i values using formula (8). Once the
path is simulated the sink updates the values of x̃i and a new event is generated.
We proceed the simulations for 3, 10, 20 and 30 slices. These experiments are
reported in figure 5. We observe from the experiments that, as expected, we
quickly get a good estimation of the value of λ but need many more iterations
to get high precision estimate due to the convergence of order O(1/

√
n).

We discussed in this section the problem of balancing the consumed energy
per sensors for the process of data propagation thourgh wireless sensor net-
works. The main novelty contained in this section is related to the very realistic
hypothesis that no a priori knowledge on the probability of the region in which
the events occur is known. We show that stochastic approximation methods can
be applied and lead to protocols able to estimate these probabilities. Although
high precision estimate needs many iterations of the estimation process, good
estimations are provided by the algorithm prior to convergence.

An other important point to develop is to estimate the energy consumed
before convergence of the algorithm and whether energy are wasted during this
period of time or not.

A possible extension of this problem is not to consider slices of sensors but to
consider all the sensors individually. In this situation, all the sensors have their
own energy restriction and their own probability of observing an event. In this
situation, it seems important that the algorithm can be devised in a distributed
way. Indeed, if sensors are considered individually the process of broadcasting
the xi values from the sink to the sensors leads to an important traffic of data
and it is likely that in this situation the impact of collisions cannot be longer
ignored. Moreover, in the situation described in this section we ignore problems
related to the size of the data sent to the sink. Indeed, when sensors add some
information to the propagated data, such as the slice number, the size of the data
can become prohibitive with respect to small memory capacity of smart sensors.
In our situation it seems likely that the number of slice is of reasonable order,
but if the sensors are individualised, the situation can prove to be very different.

References

1. T. Antoniou, A. Boukerche, I. Chatzigiannakis, S. Nikoletseas and G. Mylonas,
A New Energy Efficient and Fault-tolerant Protocol for Data Propagation in
Smart Dust Networks, in Proc. 37th Annual ACM/IEEE Simulation Symposium
(ANSS’04), IEEE Computer Society Press, pp. 43 52, 2004.

48 P. Leone, S. Nikoletseas, and J. Rolim

2. A. Boukerche, X. Cheng, and J. Linus, Energy-Aware Data-Centric Routing in
Microsensor Networks, in Proc. of ACM Modeling, Analysis and Simulation of
Wireless and Mobile Systems (MSWiM), pp. 42-49, Sept 2003.

3. A. Boukerche, R. Werner, N. Pazzi and R.B. Araujo, A Novel Fault Tolerant
and Energy-Aware Based Algorithm for Wireless Sensor Networks, First Inter-
national Workshop on Algorithmic Aspects of Wireless Sensor Networks (ALGO-
SENSORS), Turku, Finland, Lecture Notes in Computer Sciences 3121, Springer-
Verlag, July (2004).

4. I. Chatzigiannakis, T. Dimitriou, S. Nikoletseas, and P. Spirakis, A Probabilistic
Algorithm for Efficient and Robust Data Propagation in Smart Dust Networks,in
the Proceedings of the 5th European Wireless Conference on Mobile and Wireless
Systems beyond 3G (EW 2004), pp. 344-350, 2004.

5. I. Chatzigiannakis, S. Nikoletseas and P. Spirakis, Smart Dust Protocols for Local
Detection and Propagation, in the Proceedings of the 2nd ACM Workshop on
Principles of Mobile Computing (POMC), ACM Press, pp. 9-16, 2002.

6. C. Efthymiou, S. Nikoletseas and J. Rolim, Energy Balanced Data Propagation
in Wireless Sensor Networks, invited paper in the Wireless Networks (WINET,
Kluwer Academic Publishers) Journal, Special Issue on ”Best papers of the 4th
Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks
(WMAN 2004)”, to appear in 2005.

7. P. Leone, J. Rolim, Towards a Dynamical Model for Wireless sensor Network,
First International Workshop on Algorithmic Aspects of Wireless Sensor Networks
(ALGOSENSORS), Turku, Finland, Lecture Notes in Computer Sciences 3121,
Springer-Verlag, July (2004).

8. H. Robbins, S. Monro, A Stochastic Approximation Method, Ann. Math. Stat. 22,
400-407, 1951.

9. M. Singh, V. Prasanna, Energy-Optimal and Energy-Balanced Sorting in a Single-
Hop Wireless Sensor Network, In Proc. First IEEE International Conference on
Pervasive Computing and Communications - PERCOM, 2003.

Sensor Localization in an Obstructed
Environment

Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824

{wangchen, lxiao, rongjin}@cse.msu.edu

Abstract. Sensor localization can be divided into two categories: range-
based approaches, and rang-free approaches. Although range-based ap-
proaches tend to be more accurate than range-free approaches, they are
more sensitive to errors in distance measurement. Despite of the efforts on
recovering sensors’ Euclidean coordinates from erroneous distance mea-
surements, as will be illustrated in this paper, they are still prone to
distance errors, particularly in an obstruction abundant environment.
In this paper, we propose a new algorithm for sensor localization based
on Multiscale Radio Transmission Power(MRTP). It gradually increases
the scale level of transmission power, and the distance is determined by
the minimal scale of received signals. Unlike the range-based approaches,
which treat each measured distance as an approximation of the true one,
in our new approach, the measured distance serves as a constraint that
limits the feasible location of sensors. Our simulations have shown that
the MRTP-based approach is able to provide accurate and robust esti-
mation of location, especially in an area abundant in obstructions, where
most current approaches fail to perform well.

1 Introduction

One of the critical issues in sensor network research is to determine the physical
positions of sensors. This is because: (1) sensed data are meaningful to most
applications only when they are labeled with geographical position information;
(2) position information is essential to many location-aware sensor network com-
munication protocols, such as packet routing and sensing coverage. It has been
a challenging task to design a practical algorithm for sensor localization given
the constraints that are imposed on sensors, including limited power, low lost
and small dimension. Furthermore, algorithms may have to be applied to inac-
cessible areas where sensors are randomly deployed. The objective of this paper
is to design a localization algorithm, which can adapt to a complex terrain given
a very limited support in hardware infrastructure.

To reduce the cost and dimension of sensors, most work suggests reusing radio
signals for measuring the relative distance between adjacent sensors. However,
since the radio signals can be strongly affected by the environment, distances

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 49–62, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Wang Chen, Xiao Li, and Jin Rong

inferred from radio signals tend to be inaccurate and unreliable. In the con-
text of this paper, we categorize distance measurement errors into two groups:
micro-error refers to the case where the distance measurement is only slightly
affected by environments, such as atmospheric conditions, and the error is within
a tolerable extent; macro-error refers to the case when radio signals are severely
distorted by environments, such as obstructions, and measured distances are
significantly different from their actual values.

Many efforts have been made to recover sensors’ geographical coordinates
from the error-prone distance measurements using radio signals. The previous
work on sensor localization algorithms can be divided into two categories: the
range-based approaches, and the range-free approaches. Both typesof approaches
employ a few GPS-aided sensors as reference beacons, Physical positions of the
rest sensors are estimated based on the knowledge of their relative positions to
the beacons. They differ from each other in that the range-based approaches
utilize the measured distances between adjacent nodes for location estimation,
while the range-free approaches only consider the connectivity information.

To alleviate the errors in distance measurement, several algorithms have been
proposed in the range-based approaches. The main idea is to treat each measured
distance as an approximation of the true distance between two nodes, and the
optimal location of a sensor node is found by minimizing the difference between
the measured distance and the distance computed from the assumed location
of the sensor. In a measurement friendly environment, given multiple distance
measurements are available for each sensor node, errors from individual distance
measurement will be averaged out through the optimization procedure. As a re-
sult, accurate estimation of locations for sensor nodes can still be achieved with
micro-error distance measurements. However, as will be illustrated later, the re-
sults of range-based approaches can be dramatically deteriorated, if a macro-
error happens to one distance measurement, which is a common case in an ob-
structed environment. In summary, the current state-of-the-art range-based ap-
proaches can only handle micro-error distance measurements. Its accuracy can
be significantly degraded given distance measurements are macro-erroneous. The
range-free approaches can be viewed as binary versions of the range-based ap-
proaches: they only determine whether or not one sensor node is within the trans-
mission range of the other. They are less dependable on the accuracy of distance
measurement, and therefore are more robust to errors in the distance measure-
ment. In fact, our empirical studies have shown that the range-free approaches
can outperform the range-based approaches in a deployed area that is abundant
in obstructions and distance measurements tend to be macro-erroneous.

Because range-based approaches are sensitive to the reliability of measure-
ment, some sophisticated hardware is being developed to achieve reliable distance
measurement. On the other hand, the range-free approach reuses the wireless
communication radio to determine the connectivity between adjacent sensors
and requires no extra hardware support. Due to its simplicity, the range-free
approach is suitable for the applications where location accuracy is less critical
while the cost and dimension are the main concern.

50 W. Chen, X. Li, and J. Rong

Sensor Localization in an Obstructed Environment 51

In order to achieve the high accuracy as the range-based approaches and
maintain the measurement fault-tolerance as the range-free approaches, we pro-
pose a new algorithm for sensor localization based on the Multiscale Radio Trans-
mission Power (MRTP) of beacons. Unlike the range-based approaches, which
translate a distance from the Received Signal Strength Indicator (RSSI)[1], the
MRTP approach gradually increases a beacon’s transmission range by increasing
the scales of its transmission power, and the upper bound of the distances be-
tween a beacon and other sensors are determined by the minimal audible radio
signals received by the sensors. By using the discrete scale levels of transmis-
sion ranges to estimate distance between sensors, we reduce estimation errors
caused by the fluctuation in radio signals. Furthermore, unlike the range-based
approaches, where measured distances are used as approximation for the true
distances, In MRTP approach, measured distances only serve as upper bounds
for the true distances that define a set of feasible locations for sensors. By avoid-
ing approximating true distances with the measured distances, the MRTP ap-
proach will be resilient to the macro-error distance measurement, which usually
is significantly different with the true distance.

The rest of the paper is organized as follows. The previous work is reviewed
in Section 2. The proposed MRTP-based approach is detailed in Section 3. The
performance evaluation is conducted in Section 4. We conclude the work in
Section 5.

2 Related Work

As the first range-based approach, the Received Signal Strength Indicator(RSSI)
[1] based technique reuses the wireless communication infrastructure for mea-
suring distance between adjacent sensors. However, the distance estimated by
RSSI is usually inaccurate and unreliable[2][3]. This is because radio signals can
be severely affected by the layout of complex terrains such as obstructions and
shadow effects. To achieve better accuracy in distance measurement, Time of Ar-
rival (ToA) is proposed to estimate the transmission distance of radio or sound
signals based on their duration of flights. Since high precision clocks that measure
the flying time of radio frequency(RF) signals are not available yet, Ultrasonic
Time of Arrival (UToA) is adopted in the previous work[2][3][4]. Despite of its
high accuracy, the UToA requires extra hardware infrastructure, which usually
consumes more energy than other approaches. Furthermore, the UTOA-based
approaches suffer from a poor range and lack of support to omnidirectional mea-
surement.

To tolerate measurement errors in range-based approaches, statistic tech-
niques such as least squares are proposed to find sensors’ locations that can best
fit distance measurements. It has been pointed out in robust statistic[5] that re-
sults of lease squares analysis can be completely corrupted by a single outlier. In
this paper, we specialize this general idea in sensor localization and investigate

Compared to the range-based approaches, the range-free approaches are usu-
ally low cost and can achieve adequate accuracy of localization for certain sensor
network applications. Similar to the RSSI based technique, the communication
RF is reused in the range-free approaches. Instead of measuring the strength of
received signals, the range-free approaches determine the connectivity between
sensors by measuring the percentage of radio packets that are successfully re-
ceived. The determined connectivity information between different sensor nodes
is then used to estimate the relative positions for sensor nodes.

Obviously, the connectivity is a coarse description of the distance status
between sensors. To improve the accuracy for the range-free approaches, the
principles of compensating low capacity of individual nodes with high global re-
dundancy of the whole network is widely adopted in Centroid[6], DV-hop[7] and
APIT[8] localization algorithms. According to the Centroid algorithm, the po-
sition of a sensor node is roughly estimated as the centroid of a polygon whose
vertices are the beacons ”visible” to the node. The accuracy of the Centroid
algorithm is inversely proportional to the granularity of polygons formed by
beacons. Simulation shows that sufficient accuracy can be achieved only when
beacons are densely deployed. To have more beacons available to a sensor node,
the DV-hop algorithm computes the shortest multi-hop path between beacons
and the sensor node by flooding a radio signal initiated from the beacons. The
distances between beacons and the sensor node is then approximated as the
minimal number of hops multiplied with the average distance per hop. Assisted
by the DV-hop algorithm, distances from a sensor node to beacons can be ob-
tained even when they are far beyond the reach of radio signals. When quite a
few beacons are within the radio range of a sensor node, the sensor node can
be located within a certain number of triangles by the APIT algorithm. The
ultimate position can be further ”pinpointed” within the smaller intersection of
those overlapped triangles.

The above discussion is limited to distances and connectivity between bea-
cons and sensor nodes. Other approaches, such as Convex optimization[9] and
Multidimensional Scaling (MDS)[10][11][12], have been proposed to take into ac-
count the distance and connectivity information between non-beacon nodes to
further improve the accuracy in location estimation.

3 MRTP Algorithm for Sensor Localization

In order to motivate the new algorithm for sensor localization, we will first
briefly review the Maximum Likelihood Estimation (MLE) approach and the
Centroid approach, which are representatives of the range-based approaches and
range-free approaches, respectively. The detailed description of the MRTP-based
approach is presented after the overview of the existing algorithms.

how macro-errors impact final localization results. We also propose how to filter
out macro-errors in the specific context of sensor networks.

52 W. Chen, X. Li, and J. Rong

Sensor Localization in an Obstructed Environment 53

Fig. 1. MLE approach Fig. 2. Centroid approach

3.1 MLE Approach

The Received Signal Strength Indicator (RSSI) has been widely used for the sce-
nario when the radio signal is the only available resource for measuring distance
between sensor nodes. It utilizes the property that a radio signal attenuates ex-
ponentially during its transmission[13], and the distance between a sender and
receiver can be inferred from the attenuation of radio signals.

Due to the irregularity of radio propagation patterns, the distance converted
from the RSSI value is usually inaccurate. To reduce the impact of the inaccurate
distance measurement, several optimization algorithms have been proposed. One
example is the Maximum Likelihood Estimation (MLE) approach. It assumes that
each measured distance is an approximation of the corresponding true distance.
Thus, the optimal position for a sensor node is found by minimizing the differences
between the measured distances and the distances estimated using the assumed
position of the node. More formally, this idea can be described as follows:

Let {Pi, 1 ≤ i ≤ n} be the set of beacon nodes. Let P0 be the node whose
position is unkown, and P̂0 be its estimated position. For each beacon Pi, let di

be its measured distance to P0, and |P0Pi| be its estimated Euclidean distance
to node P0. To minimize the difference between the measured distances and the
estimated ones, we can refer to the following optimization problem:

P̂0 = arg min
P0

n∑
i=1

(|P0Pi| − di)2

Since the above objective function computes the aggregated difference be-
tween measured distances and the estimated ones, small errors in individual
distance measurement will be averaged out, and as a result will not affect the
accuracy of final estimated position significantly. Thus, the MLE approach tends
to be reasonably accurate given that the measured distances are micro-erroneous.

However, given an unfriendly measurement environment where distance mea-
surements are macro-erroneous, the accuracy of estimated positions based on the
MLE approach can be dramatically deteriorated. This idea is illustrated in Fig-
ure 1, where nodes P1, P2, P3 and P4 are beacons, and P0 is the sensor with un-
known position. Because P1 is hidden behind an obstruction, its radio signals will
be attenuated considerably. As a result, the measured distance between P1 and
P0 based on the RSSI will be much larger than its actual value. As a consequence,
the estimated position for P0, represented by the empty circle P ′

0 , is pushed far
away from its true position. This simple example indicates that the MLE ap-
proach is particularly fragile to the large errors caused by macro-error distance
measurements. In the above example, a single large error in distance measure-
ments can significantly distort the estimation of position, even all the rest mea-
surements are perfectly correct. The key reason for such a failure is because the
MLE approach treats every measured distance as an approximation of the true
distance, which is no longer true in macro-error distance measurement. Similar
to the MLE approach, the estimation results of Convex Optimization and MDS
may be corrupted by macro-error distance measurements between sensor nodes.

3.2 Centroid Approach

Different from range-based approaches, range-free approaches do not seek the ac-
curate distance measurement. Instead, they find out the connectivity information
between sensors by checking the percentage of radio packets that are successfully
received. A receiving sensor learns that it is within the radio transmission range
of a sender when the percentage exceeds a certain threshold. The connectivity
information is then aggregated to determine the location for sensor nodes. For
example, in the Centroid approach, the position of a sensor is estimated as the
centroid of the polygon that is formed by the surrounding ”visible” beacons.
Since the range-free approaches are less dependable on the accuracy of mea-
sured distances, they tend to be more resilient to the large errors in macro-error
distance measurements. To illustrate this point, a scenario similar to Figure 1
is shown in Figure 2. Considering two possibilities: 1) beacon P1 is visible to
sensor P0. Therefore P ′

0, i.e., the centroid of the quadrangle P1P2P3P4 , becomes
the estimated position. 2) beacon P1 is ”invisible” to P0. Then, the estimated
position will be P ′′

0 , the centroid of triangle P2P3P4. In either case, the location
estimated by the Centroid approach is closer to the true location than the MLE
approach. Clearly, the key reason for the robust performance of the range-free
approaches is because no attempt is made to measure the distance that can
approximate the true distance.

3.3 MRTP Approach

In order to achieve the high accuracy as the range-based approaches and mean-
while maintain the measurement fault-tolerance as most range-free approaches,
we propose a new localization algorithm, which uses distances as upper bound
constraints to confine a small area containing the estimated sensor. Two possible

54 W. Chen, X. Li, and J. Rong

Sensor Localization in an Obstructed Environment 55

Fig. 3. MRTP approach

techniques can be used to obtain the distance upper bound constraints between
beacons and a sensor. The first approach is to quantize the RSS into multiple
scales as illustrated in the work[14]. Each RSS scale is mapped to a distance,
which can be obtained through empirical test. When a sensor receives radio sig-
nals from a beacon, it compares measured RSS with empirical data. The distance
upper bound constraints can be obtained by finding out the smallest RSS scale
which is larger than measured RSS. The second approach is proposed when sen-
sor nodes are incapable of measuring RSS. The main idea is to gradually increase
the radio transmission power of sensors, until the radio packets can be ”heard” by
some receivers or the maximum transmission power is reached. Since each scale
of transmission power corresponds to certain transmission range, given that a
receiver receives a radio signal from a sender, it is able to infer, based on the scale
of received signal, within which range it is from the sender. To be more precise,
let P0 be the receiver with unknown position, and P1 be the sender. When P0

receives a signal from P1 at power scale level of m1, the following inequality will
hold for receiver P0, i.e., |P0P1| ≤ f(m1), where |P0P1| stands for the Euclidean
distance from receiver P0 to sender P1, and f(m1) is a function that maps the
transmission power scale level of signals into its transmission range, which can
be determined using empirical data. The above case can be generalized to mul-
tiple beacons, in which a different inequality constraint is introduced for every
beacon Pi. Let {m1,m2, . . . mr} be the set of signal levels that P0 has received
from beacons {P1, P2, . . . Pr}. Thus, the following set of inequalities will hold for
receiver P0, i.e. |P0Pi| ≤ f(mi) (1 ≤ i ≤ r).

However, the above set of inequality only determines the area that receiver
will stay in. In order to pin down the exact location, we need to further de-
cide which position among the confined area is more likely to be correct than
other positions. To solve this problem, we follow the Centroid approach, i.e.,
when a receiver detected a signal from a sender, it must be close to the sender.
Thus, within the determined area, we believe the position that is closest to all

‘audible’ senders is most desirable one. This simple idea can be formulated into
the following optimization problem, i.e.,

P̂0 = arg min
P0

r∑
i=1

|P0Pi|2 (1)

subject to |P0Pi| ≤ f(mi) ∀1 ≤ i ≤ r

The above optimization problem is a typical quadratic constraint and quadratic
programming (QCQP) problem and can be solved efficiently using second order
cone programming algorithms[15].

Compared to the range-free approach with uniform transmission power, the
MRTP approach is more accurate, especially when the receiver is close to sensors.
It is interesting to note that the Centroid approach can be viewed as a special case
of Equation (1) when all the upper bounds f(mi) = ∞. This result indicates that
the centroid approach can be viewed as a MRTP approach under the assumption
that the distance information is extremely inaccurate. However, in practice, by
scanning the transmission power from low to maximum, distance measurement
with reasonable accuracy can be achieved, at least for the beacon nodes that
are close to the receivers. Under that circumstance, we will expect the proposed
MRTP algorithm to provide more accurate estimation of location than the range-
free approach.

Compared to the MLE approach, the MRTP approach is more tolerant to
large errors in macro-error distance measurement. This is because the MLE
approach treats each estimated distance as an approximation of the true distance
and applies the maximum likelihood estimation to find a position such that
all estimated distances are fitted well. In the case of obstructions that block
between beacons and receivers, the estimated distances can be significantly far
away from the true distance. As a result, fitting location with regard to the
corrupted distance measures can significantly degrade the accuracy in location
estimation. An example of such a scenario is illustrated in Figure 1.

In contrast, in the proposed MRTP approach for location recover, we never
treat the estimated distance (i.e., f(mi)) as a good approximation of the true
distance. Instead, an estimated distance only provides the upper bound as to
which range the receiver will be away from the sender. Due to the competition
between different constraints and the objective function, only certain constraints
are effective to determine the receiver’s position and the rest inequalities are
ignored. To better illustrate this point, an example is shown in Figure 3, in
which an obstruction blocks between P4 and the receiver P0. As a result, more
transmission power is required to send the radio packets from P4 to P0, which
results that the measured upper bound is much larger than the actual distance
between P0 and P4. For the other three beacons P1 P2 and P3, since there is no
block of obstructions, more accurate upper bound estimation between them and
the receiver can be achieved. Since the distance between the receiver P0 and each
sender is less than the estimated upper bound, for each sender, we draw a circle
to represent the feasible area that receiver P0 can stay. The final admissible area

56 W. Chen, X. Li, and J. Rong

Sensor Localization in an Obstructed Environment 57

for P0 is the intersection of all circles. As indicated in Figure 3, because of the
loose upper bound estimation for the distance between beacon P4 and P0, the
circle for P4 has no impact in determining the final intersection. This analysis
indicates that the proposed algorithm is able to filter out certain erroneous upper
bound estimation, thus is more robust than the range-based approaches in an
environment where multiple obstructions exist and correct distance estimations
are difficult to obtain. The MRTP approach is based the assumption that RSS is
always attenuated by obstructions. However, radio signals may be strengthened
due to the multipathing phenomena, thus estimated distances may be smaller
than their true values. Distances with mixed errors make the sensor localization
more complicated. Further investigation is required to seek a complete solution
in such a complicated case.

4 Comparison of MLE, Centroid and MRTP in Large
Scale Simulations

In the simulations below, we compare the performance of three methods, includ-
ing MLE, Centroid algorithm and the MRTP approach. Radio signal is assumed
to be the only method for determining the relative positions of sensor nodes.
Nodes are randomly deployed in a 100m by 100m square area. The simulation is
repeated multiple times with different number of nodes and beacons. The metrics
defined below are used in our simulation:

– Estimation Error: the Euclidean distance between the estimated location
of a sensor node and its actual position. For the ith unknown node, it is
defined as σ2

i = (x̂i−xi)2 +(ŷi−yi)2, where (x̂i, ŷi) is the estimated location
and (xi, yi) is the real one.

– Average Estimation Error: the overall accuracy of a localization algo-
rithm. It is defined as σ2 =

∑N
i=1 σ2

i /N , where N is the total number of
unknown nodes.

1 2 3 4 5 6

x 10
−3

0.4

0.5

0.6

0.7

0.8

0.9

1

Beacon Density

Lo
ca

liz
at

io
n

R
at

e
%

Fig. 4. Impact of beacon density on local-
ization rate of the Centroid approach

1 2 3 4 5 6

x 10
−3

0

2

4

6

8

10

Beacon Density

A
vg

 E
st

im
at

io
n

E
rr

or
(m

) Centroid
MRTP

Fig. 5. Comparison of average estimation
error of the Centroid and MRTP approach

0 1 2 3 4
0

1

2

3

4

Scale Unit (m)

A
vg

 E
st

im
at

io
n

E
rr

or
(m

)

Fig. 6. Estimation error vs. scale unit of
MRTP

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

Measurement Deviation

A
ve

ra
ge

 E
st

im
at

io
n

E
rr

or
(m

)

Fig. 7. Average estimation error vs. mea-
surement deviation of MLE

– Median Estimation Error: the median value of ordered Estimation Errors
of all estimated sensors.

– Localization Rate: the ratio of successfully located nodes to the total
number of nodes.

– Radio Transmission Range: the maximum distance the radio signal can
be propagated from a beacon to any nodes.

– Beacon Density: the number of beacons per unit area.

4.1 Performance in Open Flat Area

We compare the performance of centroid, RSSI and MRTP algorithms in an
open flat area, where the radio signal propagation is slightly affected by the
atmospheric conditions such as temperature. This is related to the case where
estimated distance can be micro-erroneous, but not macro-erroneous.

As discussed before, the Centroid approach requires that at lest three beacons
as immediate neighbors for a sensor to locate itself. When the number of beacons
are fixed, we can increase the radio transmission range of each beacon to have
more beacons visible to sensor nodes, thus to locate more sensors. However,
a larger radio transmission range will increase the localization error. This is
because the measurement granularity of the Centroid approach is proportional to
the radio transmission range. Thus, a larger radio transmission range will result
in a coarser estimation of positions for sensor nodes. The above dilemma is due
to the uniform transmission range used by the Centroid algorithm. In a random
deployment, some sensor nodes are close to beacons, while others stay far away
from the beacons. For the nodes with multiple beacons in their vicinity, a shorter
radio transmission range is more preferable for better accuracy. For other nodes
far away from beacons, a longer radio transmission range is required for them
to be located. The only way to improve both Localization Rate and Estimation
Error in Centroid approach is to increase the Beacon Density, as proposed in [16].
Figure 4 and Figure 5 shows that both the Localization Rate and the Average
Estimation Error are improved as the number of beacons increases. By using
the non-uniform radio transmission range in each beacon, our MRTP algorithm

58 W. Chen, X. Li, and J. Rong

Sensor Localization in an Obstructed Environment 59

1 2 3 4 5 6

x 10
−3

0.5

1

1.5

2

2.5

Beacon Density

A
vg

 E
st

im
at

io
n

E
rr

or
(m

)

MLE
MRTP Scale=1m
MRTP Scale=0.5m

Fig. 8. Impact of beacon density on average
estimation error

0 1 2 3 4

x 10
−3

0

10

20

30

40

50

A
vg

 E
st

im
at

io
n

E
rr

or
(m

)

Beacon Density

MLE
Centroid
MRTP

Fig. 9. Performance comparison in an
obstructed environment

successfully conciliates the contradiction between the Localization Rate and the
estimation accuracy.

As illustrated before, the estimated location for an unknown node is confined
to the intersection of multiple circles. When a sensor node is close to multiple
beacons, an accurate estimation can be achieved since the intersection area is
tightly bound. By increasing the range of radio transmission of beacons, we are
able to reach the sensor nodes that are far away from all beacons, thus their lo-
cations can still be computed. Figure 5 shows that the MRTP approach achieves
significantly improved accuracy than the Centroid algorithm in estimating lo-
cations. It also indicates that the location accuracy tends to saturate when a
certain threshold of beacon density is reached. Our simulation also shows that
all unknown nodes can be located when the maximum transmission range of
each beacon covers the entire area. The MRTP algorithm outperforms the Cen-
troid algorithm because the multiscale radio transmission range provides more
distance knowledge than the fixed radio transmission range. When comparing
the performance of MRTP and MLE approaches, the accuracy of distance mea-
surement is also critical to the accuracy for location estimation. We define the
metrics below to represent the accuracy of distance measurement of MRTP and
MLE respectively.

– Scale Unit: the Scale Unit determines the length of increment in the trans-
mission range when a beacon’s transmission power scale is escalated to the
next adjacent level. Here, we assume that the increment in transmission
range is uniformly distributed.

– Distance Measurement Standard Deviation (DMSD): To simulate
the error in distance measurement of the RSSI that is caused by the radio’s
irregularity, a normal distribution is used to model the noise in measured
distance, with a mean at the true distance m and a standard deviation σ•m,
where coefficient σ is the noise factor.

Figure 6 and Figure 7 shows that the Average Estimation Error increases when
the Scale Unit and the coefficient σ of the DMSD increase. The simulation shows

−40 −20 0 20 40 60 80 100 120
−40

−20

0

20

40

60

80

100

120

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
0

10

20

30

40

A
vg

 E
st

im
at

io
n

E
rr

or
(m

)

Node ID

Fig. 10. Performance of the MLE approach

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

A
vg

 E
st

im
at

io
n

E
rr

or
(m

)

Node ID

Fig. 11. Performance of the MRTP
approach

MRTP and MLE achieve the same accuracy when the Scale Unit is 1m and the
coefficient is 0.1, which means the MRTP approach with Scale Unit of 1m has
the same localization accuracy as the MLE approach whose Standard Deviation
is 10% of the measured distance.

Figure 8 shows that the Average Estimation Error decreases, for both MRTP
and MLE, as the number of beacons increases. Note that according to Figure 8, a
steady decrease in the Average Estimation Error is observed for MLE, while the
performance of MRTP appears to saturate when the number of beacons exceeds
a certain threshold. This is because the MRTP approach treats the estimated
distance as an upper bound of the true distance. This assumption is no longer
true when the true distance is within the range of the random noise in distance
measurement. In contrast, since the MLE approach treats the measured distance
as approximation of true distance, the noise in distance measurement is averaged
out through solving the optimization problem in Equation (1). However, as we
will see later in this paper, we trade the accuracy of location estimation with
its fault-tolerance. From the analysis above, we can conclude that: in the open
flat area with fixed number beacons, MRTP approach can achieve more accurate
estimation result than Centroid approach, and the estimation accuracy of both
MRTP and MLE approaches are determined by the basic distance measurement
accuracy.

4.2 Performance in an Obstruction Abundant Environment

The simulation shows that in the flat open area, where the distance measurement is
slightly affected by some random factors, the location estimation accuracy of both

60 W. Chen, X. Li, and J. Rong

Sensor Localization in an Obstructed Environment 61

0 5 10 15 20
0

1

2

3

4

5
E

st
im

at
io

n
E

rr
or

(m
)

number of obstructs

Avg Estimation Error
Mean Estimation Error

Fig. 12. Impact of obstruction on estima-
tion error

1 2 3 4 5 6

x 10
−3

0

2

4

6

8

10

E
st

im
at

io
n

E
rr

or
(m

)

beacon density

Avg Estimation Error
Mean Estimation Error

Fig. 13. Impact of beacon density on esti-
mation error

MRTP and MLE approaches is determined by the basic distance measurement
accuracy. In such a case, the MRTP approach can be viewed as a multilevel
quantized MLE approach. It appears that MRTP approach is different from the
MLE approach only in the format of distance measurement. In this section, we
consider a realistic setup, in which multiple obstructions are placed to severely
deteriorate the accuracy of distance measurements. In other words, the distance
measurements can be macro-erroneous under this environment. The performance
comparison of MLE, Centroid and MRTP approaches is shown in Figure 9, which
illustrates thatMRTPoutperformsMLEinanobstructionabundant environment.

Figure 10 and Figure 11 show an example to compare MLE and MRTP,
where each gray bar represents an obstruction, and each solid line represents
the Estimation Error. The distribution of Estimation Errors is also shown at
the bottom of corresponding graph, which plots the Estimation Errors of all
nodes in the increasing order of the errors. The comparison demonstrates that
almost all the estimation results in MLE are severely corrupted, while more than
half of the sensor nodes are located with high accuracy in MRTP. Some of the
nodes in MRTP cannot estimate their position accurately because almost all the
beacons are invisible to those nodes; therefore the estimated node is not tightly
constrained in a small area. Figure 12 shows that both the Average Estimation
Error and the Median Estimation Error increase as the number of obstructions
increases. This is because more beacons are hidden behind the obstructions. As
shown in Figure 13, by increasing the Beacon Density in the deployed area,
the estimation accuracy can be improved because more beacons are seen by the
unknown nodes.

5 Conclusion

In this paper, we propose the MRTP sensor network localization algorithm,
which uses distance upper bound constraints to achieve accurate localization
results in a complex terrain, especially in an obstructed environment, where

most current approaches fail to perform well. The MRTP approach outperforms
previous approach in that the impact of macro-errors caused by obstructions can
be automatically filtered out in the localization algorithm, thus the accuracy of
the final localization results is achievable. The simulation shows that the MRTP
approach can achieve better localization results than both Centroid and MLE
approaches.

References

1. J. Hightower, C. Vakili, G. Borriello, and R. Want, “Design and calibration of
the spoton ad-hoc location sensing system,” CSE Techniuqe Report, University of
Washington, August 2001.

2. A. Savvides, C. Han, and M. B. Strivastava, “Dynamic fine-grained localization in
ad-hoc networks of sensors,” in Proc. MobiCom, 2001.

3. K. Whitehouse, “The design of calamari: an ad-hoc localization system for sensor
networks,” Master’s Thesis, University of California at Berkeley, 2002.

4. D. Moore, J. Leonard, D. Rus, and S. Teller, “Robust Distributed Network Local-
ization with Noisy Range Measurements,” in Proc. SenSys, 2004.

5. P. Huber, Robust Statistics. Wiley, New York, 1981.
6. N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less Low Cost Outdoor Localization

for Very Small Devices,” IEEE Personal Communications Magazine, 2000.
7. D. Niculescu and B. Nath, “Ad hoc Positioning System (APS),” in Proc. GLOBE-

COM, 2001.
8. T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. F. Abdelzaher, “Range-Free

Localization Schemes in Large Scale Sensor Networks,” in Proc. MobiCom, 2003.
9. L. Doherty, K. S. J. Pister, and L. E. Ghaoui, “Convex Position Estimation in

Wireless Sensor Networks,” in Proc. INFOCOM, 2001.
10. Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz, “Localization from mere

connectivity,” in Proc. MobiHoc, 2003.
11. Y. Shang and W. Ruml, “Improved MDS-Based Localization,” in Proc. INFO-

COM, 2004.
12. X. Ji and H. Zha, “Sensor Positioning in Wireless Ad-hoc Sensor Networks with

Multidimensional Scaling,” in Proc. INFOCOM, 2004.
13. S. Y. Seidel and T. S. Rappaport, “914 MHz Path Loss Prediction Models for

Indoor Wireless Communications in Multifloored Buildings,” IEEE Transactions
on Antennas and Propagation, vol. 40, pp. 209–217, 1992.

14. N. Patwari and A. O. Hero, “Using proximity and quantized rss for sensor local-
ization in wireless networks,” in Proc. WSNA, 2003.

15. M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of Second-
order Cone Programming,” Linear Algebra and its Application, 1998.

16. N. Bulusu, J. Heidemann, and D. Estrin, “Adaptive Beacon Placement,” in Proc.
ICDCS, 2001.

62 W. Chen, X. Li, and J. Rong

Dana Angluin, James Aspnes, Melody Chan, Michael J. Fischer,
Hong Jiang, and René Peralta

Yale University

Abstract. We consider a scenario in which anonymous, finite-state sens-
ing devices are deployed in an ad-hoc communication network of arbi-
trary size and unknown topology, and explore what properties of the
network graph can be stably computed by the devices. We show that
they can detect whether the network has degree bounded by a constant
d, and, if so, organize a computation that achieves asymptotically opti-
mal linear memory use. We define a model of stabilizing inputs to such
devices and show that a large class of predicates of the multiset of final
input values are stably computable in any weakly-connected network.
We also show that nondeterminism in the transition function does not
increase the class of stably computable predicates.

1 Introduction

In some applications, a large number of sensors will be deployed without fine
control of their locations and communication patterns in the target environment.
To enable the distributed gathering and processing of information, the sensors
must constitute themselves into an ad-hoc network and use it effectively. A fun-
damental question in this context is whether there are protocols that determine
enough about the topological properties of this network to exploit its full po-
tential for distributed computation, when sensors are severely limited in their
computational power.

We consider a model introduced in [1] in which communication is represented
by pairwise interactions of anonymous finite-state devices in networks of finite
but unbounded size. These systems correspond to sensor networks with inter-
mittent two-way communications between nearby nodes. A communication
graph describes which pairs of nodes are close enough to eventually interact.
Our goal is to explore what graph-theoretic properties of the communication
graph are stably computable, where a property is stably computable if all
sensors eventually converge to the correct answer. The model assumes that the
devices have no identifiers and only a few bits of memory each. Because each
device is so limited, their collective ability to achieve nontrivial computation
must be based on their capacity to organize a distributed computation in the
network.

Stably Computable Properties of
Network Graphs

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 63–74, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

nondeterministic Turing machine to simulate any protocol in the all-pairs com-
munication graph, in which every pair of vertices is joined by an edge [1]. In
contrast, we give a protocol that can determine whether the communication
graph is a directed cycle and if so, use it as a linear memory of O(n) bits, which
is asymptotically optimal in terms of memory capacity. More generally, we show
that for every d there is a protocol that can organize any communication graph
of maximum degree d into a linear memory of O(n) bits, also asymptotically
optimal.

For general communication graphs, we show that any property that is de-
termined by the existence of a fixed finite subgraph is stably computable, as
are Boolean combinations of such properties. In addition, there are protocols to
compute the following graph properties: whether the communication graph G
is a directed star, whether G is a directed arborescence, whether G contains a
directed cycle, and whether G contains a directed cycle of odd length. Further-
more, for any positive integer d, there is a protocol that stabilizes to a proper
d-coloring of any d-colorable graph, but does not stabilize if the graph is not
d-colorable.

In the model of [1], the sensor readings were all assumed to be available as
inputs at the start of the computation. In this paper, we extend the model to
allow for a more realistic scenario of stabilizing inputs, that may change finitely
many times before attaining a final value. In addition to allowing fluctuations
in the inputs, these results allow composition of stabilizing protocols: a protocol
that works with stabilizing inputs can use the stabilizing outputs of another
protocol. We generalize two fundamental theorems to the case of stabilizing
inputs: all the Presburger-definable predicates are stably computable in the
all-pairs graph, and any predicate stably computable in the all-pairs graph is
stably computable in any weakly connected graph with the same number of
nodes.

Another powerful tool for the design of protocols is to permit a nondetermin-
istic transition function; we give a simulation to show that this does not increase
the class of stably computable predicates.

Population protocols and similar models as defined in [1–3] have connections to
a wide range of theoretical models and problems involving automata of various
kinds, including Petri nets [4–7], semilinear sets and Presburger expressions [8],
vector addition systems [9], the Chemical Abstract Machine [10, 11] and other
models of communicating automata [12,13]. See [1] for a more complete discus-
sion of these connections.

The potential for distributed computation during aggregation of sensor data
is studied in [14, 15], and distributed computation strategies for conserving re-
sources in tracking targets in [16, 17]. Issues of random mobility in a wireless
packet network are considered in [18].

In this setting, the structure of the network has a profound influence on its
computational potential. If n is the number of vertices in the communication
graph, previous results show that O(log n) bits of memory are sufficient for a

64 D. Angluin et al.

1.1 Other Related Work

microelectromechanical sensors (MEMS) with wireless communication capacity,
where each sensor or “mote” contains sensing units, computing circuits, bidirec-
tional wireless capacity, and a power supply, while being inexpensive enough to
deploy massively.

We represent a network communication graph by a directed graph G = (V,E)
with n vertices numbered 1 through n and no multi-edges or self-loops. Each
vertex represents a finite-state sensing device, and an edge (u, v) indicates the
possibility of a communication between u and v in which u is the initiator and
v is the responder.1 We assume G is weakly connected, that is, between any pair
of nodes there is a path (disregarding the direction of the edges in the path).
The all-pairs graph contains all edges (u, v) such that u �= v.

We first define protocols without inputs, which is sufficient for our initial
results on graph properties, and extend the definition to allow stabilizing inputs
in Section 4.

A protocol consists of a finite set of states Q, an initial state q0 ∈ Q, an
output function O : Q → Y , where Y is a finite set of output symbols, and a
transition function δ that maps every pair of states (p, q) to a nonempty set
of pairs of states. If (p′, q′) ∈ δ(p, q), we call (p, q) �→ (p′, q′) a transition.

The transition function, and the protocol, is deterministic if δ(p, q) always
contains just one pair of states. In this case we write δ(p, q) = (p′, q′) and define
δ1(p, q) = p′ and δ2(p, q) = q′.

A configuration is a mapping C : V → Q specifying the state of each
device in the network. We assume that there is a global start signal transmitted
simultaneously to all the devices, e.g., from a base station, that puts them all in
the initial state and starts the computation. The initial configuration assigns
the initial state q0 to every device.

Let C and C ′ be configurations, and let u, v be distinct nodes. We say that
C goes to C ′ via pair e = (u, v), denoted C

e→ C ′, if the pair (C ′(u), C ′(v)) is in
δ(C(u), C(v)) and for all w ∈ V −{u, v} we have C ′(w) = C(w). We say that C

can go to C ′ in one step, denoted C → C ′, if C
e→ C ′ for some edge e ∈ E. We

write C
∗→ C ′ if there is a sequence of configurations C = C0, C1, . . . , Ck = C ′,

such that Ci → Ci+1 for all i, 0 ≤ i < k, in which case we say that C ′ is
reachable from C.

A computation is a finite or infinite sequence of population configurations
C0, C1, . . . such that for each i, Ci → Ci+1. An infinite computation is fair if
for every pair of population configurations C and C ′ such that C → C ′, if C

1 The distinct roles of the two devices in an interaction is a fundamental assumption of
asymmetry in our model; symmetry-breaking therefore does not arise as a problem
within the model.

Passively mobile sensor networks have been studied in several practical appli-
cation contexts. The smart dust project [19,20] designed a cloud of tiny wireless

Stably Computable Properties of Network Graphs 65

2 The Model of Stable Computation

infinitely often in a fair computation, then C ′ also occurs infinitely often in a
fair computation.

As an example, we define a simple deterministic leader election protocol that
succeeds in any network communication graph. The states of the protocol are
{1, 0} where 1 is the initial state. The transitions are defined by

(1) (1, 1) �→ (0, 1)
(2) (1, 0) �→ (0, 1)
(3) (0, 1) �→ (1, 0)
(4) (0, 0) �→ (0, 0)

We think of 1 as the leader mark. In every infinite fair computation of this
protocol starting with the initial configuration in any communication graph,
after some finite initial segment of the computation, every configuration has
just one vertex labeled 1 (the leader), and every vertex has label 1 in infinitely
many different configurations of the computation. Thus, eventually there is one
“leader” mark that hops incessantly around the graph, somewhat like an ancient
English king visiting the castles of his lords. Note that in general the devices
have no way of knowing whether a configuration with just one leader mark has
been reached yet.

Our protocols are not designed to halt, so there is no obvious fixed time at
which to view the output of the computation. Rather, we say that the output
of the computation stabilizes if it reaches a point after which no device can
subsequently change its output value, no matter how the computation proceeds
thereafter. Stability is a global property of the graph configuration, so individual
devices in general do not know when stability has been reached.2

We define an output assignment y as a mapping from V to the output
symbols Y . We extend the output map O to take a configuration C and produce
an output assignment O(C) defined by O(C)(v) = O(C(v)). A configuration
C is said to be output-stable if O(C ′) = O(C) for all C ′ reachable from C.
Note that we do not require that C = C ′, only that their output assignments be
equal. An infinite computation output-stabilizes if it contains an output-stable
configuration C, in which case we say that it stabilizes to output assignment
y = O(C). Clearly an infinite computation stabilizes to at most one output
assignment.

2 With suitable stochastic assumptions on the rate at which interactions occur, it is
possible to bound the expected number of interactions until the output stabilizes, a
direction explored in [1].

occurs infinitely often in the computation, then C ′ also occurs infinitely often
in the computation. We remark that by induction, if C

∗→ C ′ and C occurs

66 D. Angluin et al.

2.1 Leader Election

2.2 The Output of a Computation

The output of a finite computation is the output assignment of its last con-
figuration. The output of an infinite computation that stabilizes to output as-
signment y is y; the output is undefined if the computation does not stabilize to
any output assignment. Because of the nondeterminism inherent in the choice
of encounters, the same initial configuration may lead to different computations
that stabilize to different output assignments.

We are interested in what properties of the network communication graph can
be stably computed by protocols in this model. A graph property is a func-
tion P from graphs G to the set {0, 1} where P (G) = 1 if and only if G has
the corresponding property. We are interested in families of graphs, G1,G2, . . .,
where Gn is a set of network graphs with n vertices. The unrestricted family
of graphs contains all possible network communication graphs. The all-pairs
family of graphs contains for each n just the all-pairs graph with n vertices.
For every d, the family of d-degree-bounded graphs contains all the network
communication graphs in which the in-degree and out-degree of each vertex is
bounded by d. Similarly, the family of d-colorable graphs contains all the net-
work communication graphs properly colorable with at most d colors.

We say that a protocol A stably computes the graph property P in the
family of graphs G1,G2, . . . if for every graph G in the family, every infinite fair
computation of A in G starting with the initial configuration stabilizes to the
constant output assignment equal to P (G). Thus the output of every device
stabilizes to the correct value of P (G).

G

In this section, we show that the property of G being a directed cycle is stably
computable in the unrestricted family of graphs. Once a directed cycle is recog-
nized, it can be organized (using leader-election techniques) to simulate a Turing
machine tape of n cells for the processing of inputs, which vastly increases the
computational power over the original finite-state devices, and is optimal with
respect to the memory capacity of the network.

Theorem 1. Whether G is a directed cycle is stably computable in the unre-
stricted family of graphs.

Proof sketch: A weakly connected directed graph G is a directed cycle if
and only if the in-degree and out-degree of each vertex is 1.

Lemma 1. Whether G has a vertex of in-degree greater than 1 is stably com-
putable in the unrestricted family of graphs.

We give a protocol to determine whether some vertex in G has in-degree at
least 2. The protocol is deterministic and has 4 states: {−, I, R, Y }, where − is

Stably Computable Properties of Network Graphs 67

2.3 Graph Properties

3 Example: Is a Directed Cycle?

the initial state, I and R stand for “initiator” and “responder” and Y indicates
that there is a vertex of in-degree at least 2 in the graph. The transitions are
as follows, where x is any state and unspecified transitions do not change their
inputs:

(1) (−,−) �→ (I,R)
(2) (I,R) �→ (−,−)
(3) (−, R) �→ (Y, Y)
(4) (Y, x) �→ (Y, Y)
(5) (x, Y) �→ (Y, Y)

The output map takes Y to 1 and the other states to 0. State Y is contagious,
spreading to all states if it ever occurs. If every vertex has in-degree at most 1
then only transitions of types (1) and (2) can occur, and if some vertex has
in-degree at least 2, then in any fair computation some transition of type (3)
must eventually occur.

An analogous four-state protocol detects whether any vertex has out-degree
at least 2. We must also guarantee that every vertex has positive in-degree and
out-degree. The following deterministic two-state protocol stably labels each
vertex with Z if it has in-degree 0 and P if it has in-degree greater than 0. The
initial state is Z. The transitions are given by the following, where x and y are
any states:

(1) (x, y) �→ (x, P)

To detect whether all states are labeled P in the limit, we would like to treat
the outputs of this protocol as the inputs to a another protocol to detect any
occurrences of Z in the limit. However, to do this, the protocol to detect any
occurrences of Z must cope with inputs that may change before they stabilize to
their final values. In the next section we show that all the Presburger predicates
(of which the problem of Z detection is a simple instance) are stably computable
with such “stabilizing inputs” in the unrestricted family of graphs, establishing
the existence of the required protocol.

Similarly, there is a protocol that stably computes whether every vertex has
out-degree at least 1. By running all four protocols in parallel, we may stably
compute the property: does every vertex have in-degree and out-degree exactly
1? Thus, there is a protocol that stably computes the property of G being a
directed cycle for the unrestricted family of graphs, proving Theorem 1.

These techniques generalize easily to recognize other properties characterized
by conditions on vertices having in-degrees or out-degrees of zero or one. A
directed line has one vertex of in-degree zero, one vertex of out-degree zero, and
all other vertices have in-degree and out-degree one. An out-directed star has
one vertex of in-degree zero and all other vertices of in-degree one and out-degree
zero, and similarly for an in-directed star. An out-directed arborescence has one
vertex of in-degree zero and all other vertices have in-degree one, and similarly
for an in-directed arborescence.

Theorem 2. The graph properties of being a directed line, a directed star, or a
directed arborescence are stably computable in the unrestricted family of graphs.

68 D. Angluin et al.

In a later section, we generalize Theorem 1 to show that for any d there is a
protocol to recognize whether the network communication graph has in-degree
and out-degree bounded by d and to organize it as O(n) cells of linearly ordered
memory if so. We now turn to the issue of inputs.

We define a model of stabilizing inputs to a network protocol, in which the
input to each node may change finitely many times before it stabilizes to a final
value. We are interested in what predicates of the final input assignment are
stably computable. An important open question is whether any predicate stably
computable in a family of graphs is stably computable with stabilizing inputs in
the same family of graphs.

Though we do not fully answer this question, we show that a large class
of protocols can be adapted to stabilizing inputs by generalizing two theorems
from [1] to the case of stabilizing inputs: all Presburger predicates are stably
computable with stabilizing inputs in the all-pairs family of graphs, and any
predicate that can be stably computed with stabilizing inputs in the all-pairs
family of graphs can be stably computed with stabilizing inputs in the unre-
stricted family of graphs.

We assume that there is a finite set of input symbols, and each device has
a separate input port at which its current input symbol (representing a sensed
value) is available at every computation step. Between any two computation
steps, the inputs to any subset of the devices may change arbitrarily.

In the full paper, we define formally an extension of the basic stable com-
putation model that permits protocols with stabilizing inputs. This extension is
used to prove several results concerning such protocols, including:

Lemma 2. Any Boolean combination of a finite set of predicates stably com-
putable with stabilizing inputs in a family of graphs G1,G2, . . . is stably computable
with stabilizing inputs in the same family of graphs.

Theorem 3. For every nondeterministic protocol A there exists a deterministic
protocol B such that if A stably computes a predicate P with stabilizing inputs
in a family of graphs, then B also stably computes P with stabilizing inputs in
the same family of graphs.

The Presburger graph predicates form a useful class of predicates on the multiset
of input symbols, including such things as “all the inputs are a’s”, “at least 5
inputs are a’s”, “the number of a’s is congruent to 3 modulo 5”, and “twice the
number of a’s exceeds three times the number of b’s” and Boolean combinations
of such predicates. Every Presburger graph predicate is stably computable with
unchanging inputs in the all-pairs family of graphs [1].

Stably Computable Properties of Network Graphs 69

4 Computing with Stabilizing Inputs

4.1 The Presburger Predicates

We define the Presburger graph predicates as those expressible in the follow-
ing expression language.3 For each input symbol a ∈ X, there is a variable #(a)
that represents the number of occurrences of a in the input. A term is a linear
combination of variables with integer coefficients, possibly modulo an integer.
An atom is two terms joined by one of the comparison operators: <,≤, =,≥, >.
An expression is a Boolean combination of atoms.

Thus, if the input alphabet X = {a, b, c}, the predicate “all the inputs are
a’s” can be expressed as #(b) + #(c) = 0, the predicate that the number of
a’s is congruent to 3 modulo 5 can be expressed as (#(a) mod 5) = 3, and the
predicate that twice the number of a’s exceeds three times the number of b’s by
2#(a) > 3#(b).

In the full paper, we show:

Theorem 4. Every Presburger graph predicate is stably computable with stabi-
lizing inputs in the family of all-pairs graphs.

Theorem 5. For any protocol A there exists a protocol B such that for every
n, if A stably computes predicate P with stabilizing inputs in the all-pairs inter-
action graph with n vertices and G is any communication graph with n vertices,
protocol B stably computes predicate P with stabilizing inputs in G.

The following corollary is an immediate consequence of Theorems 4 and 5.

Corollary 1. The Presburger predicates are stably computable with stabilizing
inputs in the unrestricted family of graphs.

In Section 3 we showed that there is a protocol that stably computes whether
G is a directed cycle. If G is a directed cycle, another protocol can organize a
Turing machine computation of space O(n) in the graph to determine properties
of the inputs. Thus, certain graph structures can be recognized and exploited to
give very powerful computational capabilities.

In this section we generalize this result to the family of graphs with degree
at most d.

Lemma 3. For every positive integer d, there is a protocol that stably computes
whether G has maximum degree less than or equal to d.

Proof sketch: We describe a protocol to determine whether G has any
vertex of out-degree greater than d; in-degree is analogous, and the “nor” of
these properties is what is required. The protocol is nondeterministic and based
on leader election. Every vertex is initially a leader and has output 0. Each
leader repeatedly engages in the following searching behavior. It hops around

3 These are closely related to the Presburger integer predicates defined in [1]. Details
will be given in the full paper.

70 D. Angluin et al.

5 Computing in Bounded-Degree Networks

the vertices of G and decides to check a vertex by marking it and attempting
to place d + 1 markers of a second type at the ends of edges outgoing from the
vertex being checked. It may decide to stop checking, collect a set of markers
corresponding to the ones it set out, and resume its searching behavior. If it
succeeds in placing all its markers, it changes its output to 1, hops around the
graph to collect a set of markers corresponding to the ones it set out, and resumes
its searching behavior.

When two leaders meet, one becomes a non-leader, and the remaining leader
collects a set of markers corresponding to the ones that both had set out, changes
its output back to 0, and resumes its searching behavior. Non-leaders copy the
output of any leader they meet.

After the leader becomes unique and collects the set of markers that it and
the last deposed leader had set out, then the graph is clear of markers and
the unique leader resumes the searching behavior with its output set to 0. If
there is no vertex of out-degree greater than d, the output will remain 0 (and
will eventually be copied by all the non-leaders.) If there is some vertex of out-
degree greater than d, the searching behavior eventually finds it and sets the
output to 1, which will eventually be copied by all the non-leaders.

Note that this technique can be generalized (using a finite collection of dis-
tinguishable markers) to determine the existence of any fixed subgraph in G.
(For the lemma, the fixed subgraph is the out-directed star on d + 2 vertices.)
Another variant of this idea (mark a vertex and try to reach the mark by follow-
ing directed edges) gives protocols to determine whether G contains a directed
cycle or a directed odd cycle.

Theorem 6. There are protocols that stably compute whether G contains a fixed
subgraph, or a directed cycle, or a directed cycle of odd length in the unrestricted
family of graphs.

For bounded-degree graphs, we can organize the nodes into a spanning tree
rooted at a leader, which can then simulate a Turing machine tape of size O(n)
distributed across the nodes. This allows a population with a bounded-degree
interaction graph to compute any function of the graph structure that is com-
putable in linear space.

Theorem 7. For every positive integer d, there is a protocol that for any d-
bounded graph G stably constructs a spanning tree structure in G that can be
used to simulate n cells of Turing machine tape.

Proof sketch: The protocol is rather involved; details are deferred to the
full paper. We give an outline of the protocol here.

The starting point is to label the vertices of G in such a way that no two
neighbors of any vertex have the same label. A vertex can then send messages to
a specific neighbor by waiting to encounter another vertex with the appropriate
label.

To see that such a labeling exists, consider the graph G′ obtained from G by
ignoring the direction of edges and including an edge between any two nodes at

Stably Computable Properties of Network Graphs 71

distance 2 in G. A proper coloring of G′ will give the required labeling of G, and
the degree of G′ is at most 4d2, so G′ can be colored with 4d2 + 1 colors.

One part of the protocol eventually constructs a labeling of the desired kind
by using leader election and a searching behavior that attempts to find two
vertices at distance two that have the same label and nondeterministically relabel
both. Eventually there will be no more relabeling.

The other part of the protocol attempts to use the constructed labeling to
build a spanning tree structure in G. This is also based on leader election. Each
leader begins building a spanning tree from the root, recording in each vertex
the labels of the known neighbors of the vertex, and designating (by label) a
parent for each non-root vertex. The leader repeatedly traverses its spanning tree
attempting to recruit new vertices. When it meets another leader, one becomes
a non-leader and the other begins building a new spanning tree from scratch.

The labeling portion of the protocol is running in parallel with the tree-
construction, and it produces a “restart” marker whenever it relabels vertices.
When a leader encounters a “restart” marker, it deletes the marker and again
begins building a new spanning tree from scratch.

Eventually all the relabeling will be completed, and only one leader will re-
main, and the final spanning tree construction will not be restarted. However,
it is important that the spanning tree construction be able to succeed given
a correct labeling but otherwise arbitrary states left over from preceding span-
ning tree construction attempts. The leader repeatedly traverses the constructed
spanning tree, setting a phase indicator (0 or 1) at each pass to detect vertices
that are not yet part of the tree. An arbitrary ordering on the labels gives a
fixed traversal order for the spanning tree, and a portion of each state can be
devoted to simulating a Turing machine tape cell.

Because a leader cannot determine when it is unique, when the labeling is
stable, or when the spanning tree is complete, it simply restarts computation in
the tree each time it begins rebuilding a spanning tree. Eventually, however, the
computation has access to n simulated cells of tape.

Itkis and Levin use a similar construction in their self-stabilizing protocols
for identical nameless nodes in an asynchronous communication network (repre-
sented by an undirected, connected, reflexive graph G) with worst-case transient
faults [21]. In their model, in addition to a finite number of bits of storage, each
node x maintains a finite set of pointers to itself and its neighbors, and can
detect whether a neighbor y has a pointer to x and/or y, and can set a pointer
to point to the first (in a fixed ordering) neighbor with a given property. This
additional information about the graph structure permits them to exploit stor-
age O(|V |) in all cases. By comparison, in our model there are no pointers and
each device truly has only a constant amount of memory regardless of the size
and topology of the network. For this reason, in an all-pairs graph of size n, only
memory proportional to log n is achievable. So the bounded-degree restriction of
Theorem 7, or some other limitation that excludes the all-pairs graph, appears
to be necessary.

72 D. Angluin et al.

It is open whether every predicate stably computable with unchanging inputs in
a family of graphs is stably computable with stabilizing inputs in the same family
of graphs. For the family of all-pairs graphs, both classes contain the Presburger
predicates. It follows that if, in this family, some predicate is stably computable
with unchanging inputs but not with stabilizing inputs, that predicate would
not be Presburger. The existence of such a predicate would disprove a conjecture
from [1].

A natural measure of the information-theoretic memory capacity of a graph
G with a finite set of vertex labels L is the log of number of different isomorphism
classes of G with vertex labels drawn from L. If L has at least two elements,
the all-pairs graphs have memory capacity Θ(log n), which can be exploited for
computation in the setting of randomized interactions and computation with
errors [1]. When the cardinality of L is large enough compared to d (O(d2) suf-
fices), the memory capacity of d-degree bounded graphs is Θ(n), which we have
shown above can be exploited by protocols for stable computation. Are there
protocols to exploit the full-information theoretic memory capacity of arbitrary
network communication graphs?

An important future direction is to study the running time of protocols in
this model, perhaps under a stochastic model of pairwise interactions, as in the
model of conjugating automata [1].

Acknowledgments

James Aspnes was supported in part by NSF grants CCR-9820888, CCR-0098078,
CNS-0305258, and CNS-0435201. Michael J. Fischer and René Peralta were sup-
ported in part by NSF grant CSE-0081823. Hong Jiang was supported by NSF
grant ITR-0331548.

The authors would like to thank David Eisenstat for helpful comments on the
paper. The authors would also like to thank the anonymous referees for DCOSS
2005 for their many useful suggestions.

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: PODC ’04: Proceedings of
the twenty-third annual ACM symposium on Principles of distributed computing,
ACM Press (2004) 290–299

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Urn automata.
Technical Report YALEU/DCS/TR–1280, Yale University Department of Com-
puter Science (2003)

3. Diamadi, Z., Fischer, M.J.: A simple game for the study of trust in distributed
systems. Wuhan University Journal of Natural Sciences 6 (2001) 72–82 Also
appears as Yale Technical Report TR–1207, January 2001, available at URL
ftp://ftp.cs.yale.edu/pub/TR/tr1207.ps.

Stably Computable Properties of Network Graphs 73

6 Discussion and Open Problems

4. Bernardinello, L., Cindio, F.D.: A survey of basic net models and modular net
classes. In Rozenberg, G., ed.: Advances in Petri Nets: The DEMON Project.
Volume 609 of Lecture Notes in Computer Science. Springer-Verlag (1992) 304–
351

5. Esparza, J., Nielsen, M.: Decibility issues for Petri nets - a survey. Journal of
Informatik Processing and Cybernetics 30 (1994) 143–160

6. Esparza, J.: Decidability and complexity of Petri net problems-an introduction. In
Rozenberg, G., Reisig, W., eds.: Lectures on Petri Nets I: Basic models. Springer
Verlag (1998) 374–428 Published as LNCS 1491.

7. Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM
J. Comput. 13 (1984) 441–460

8. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages.
Pacific Journal of Mathematics 16 (1966) 285–296

9. Hopcroft, J., Pansiot, J.: On the reachability problem for 5-dimensional vector
addition systems. Theoretical Computer Science 8 (1978) 135–159

10. Berry, G., Boudol, G.: The Chemical Abstract Machine. Theoretical Computer
Science 96 (1992) 217–248

11. Ibarra, O.H., Dang, Z., Egecioglu, O.: Catalytic p systems, semilinear sets, and
vector addition systems. Theor. Comput. Sci. 312 (2004) 379–399

12. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the
ACM 30 (1983) 323–342

13. Milner, R.: Bigraphical reactive systems: basic theory. Technical report, University
of Cambridge (2001) UCAM-CL-TR-523.

14. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a scalable and
robust communication paradigm for sensor networks. In: Proceedings of the 6th
Annual International Conference on Mobile computing and networking, ACM Press
(2000) 56–67

15. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a Tiny AGgre-
gation service for ad-hoc sensor networks. In OSDI 2002: Fifth Symposium on
Operating Systems Design and Implementation (December, 2002)

16. Fang, Q., Zhao, F., Guibas, L.: Lightweight sensing and communication protocols
for target enumeration and aggregation. In: Proceedings of the 4th ACM Interna-
tional Symposium on Mobile ad hoc networking & computing, ACM Press (2003)
165–176

17. Zhao, F., Liu, J., Liu, J., Guibas, L., Reich, J.: Collaborative signal and information
processing: An information directed approach. Proceedings of the IEEE 91 (2003)
1199–1209

18. Grossglauser, M., Tse, D.N.C.: Mobility increases the capacity of ad hoc wireless
networks. IEEE/ACM Transactions on Networking 10 (2002) 477–486

19. Kahn, J.M., Katz, R.H., Pister, K.S.J.: Next century challenges: mobile networking
for “Smart Dust”. In: MobiCom ’99: Proceedings of the 5th annual ACM/IEEE
international conference on Mobile computing and networking, ACM Press (1999)
271–278

20. Chatzigiannakis, I., Nikoletseas, S., Spirakis, P.: Smart dust protocols for local
detection and propagation. In: POMC ’02: Proceedings of the second ACM inter-
national workshop on Principles of mobile computing, ACM Press (2002) 9–16

21. Itkis, G., Levin, L.A.: Fast and lean self-stabilizing asynchronous protocols. In:
Proceeding of 35th Annual Symposium on Foundations of Computer Science, IEEE
Press (1994) 226–239

74 D. Angluin et al.

Routing Explicit Side Information for Data
Compression in Wireless Sensor Networks

Huiyu Luo and Gregory Pottie

Uiversity of California, Los Angeles, Ca, 90095, USA
{huiyu, pottie}@ee.ucla.edu

Abstract. Two difficulties in designing data-centric routes [2, 3, 4, 5] in
wireless sensor networks are the lack of reasonably practical data aggre-
gation models and the high computational complexity resulting from the
coupling of routing and in-network data fusion. In this paper, we study
combined routing and source coding with explicit side information in
wireless sensor networks. Our data aggregation model is built upon the
observation that in many physical situations the side information that
provides the most coding gain comes from a small number of nearby sen-
sors. Based on this model, we propose a routing strategy that separately
routes the explicit side information to achieve data compression and cost
minimization. The overall optimization problem is NP hard since it has
the minimum Steiner tree as a subproblem. We propose a suboptimal
algorithm based on maximum weight branching and the shortest path
heuristic for the Steiner tree problem. The worst case and average per-
formances of the algorithm are studied through analysis and simulation.

1 Introduction

The need to lower the communication cost in wireless sensor networks has
prompted many researchers to propose data-centric routing schemes that can
utilize in-network data fusion to reduce the transmission rate. There are two
major difficulties in designing such routes. First, the lack of reasonably practical
data aggregation models has led researchers to use overly simplified ones [5,3,4,2].
For example, these models generally assume that sensors perform the same ag-
gregation function regardless of the origin of the fused data. As a remedy, [5]
suggests looking into models in which data aggregation is not only a function
of the number of sources but also the identity of the sources. Second, the re-
sulting optimization problem is often NP hard due to the coupling of routing
and in-network data fusion [2, 4]. Hence, algorithms that find exact solutions in
polynomial time are unlikely to exist. In this paper, we try to build computa-
tionally useful models and devise heuristic algorithms for the combined routing
and source coding problem.

Most previous work has considered using trees as the underlying routing
structure [2, 4, 5] probably due to the fact that trees are the optimal solution
to the shortest path problem and have been pervasive in network routing. How-
ever, in data-centric routing, trees are not necessarily optimal. In this paper, a

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 75–88, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

76 H. Luo and G. Pottie

Fig. 1. Three routing strategies: (a) shortest path tree; (b) optimal tree; (c) designated
side information transmission

simple strategy, which we call designated side information transmission (DSIT),
is proposed. This method results in a non-tree routing structure and tends to
distribute the traffic more evenly in the network. To motivate the idea and give a
preview of the paper, consider the example depicted in Fig. 1. The edges between
adjacent sensors (circles) have the weight ce = d, and the edges connecting a
sensor to the fusion center (square) have the weight ce = D. The rate at which
each sensor needs to transmit to the fusion center is R without any explicit side
information and r if explicit side information from an adjacent sensor is avail-
able. We postulate that side information from other sensors can be used to help
compress the data only when it is available at both the encoder (the sensor that
generated the data) and decoder (fusion center). Assume r � R and d � D.
The objective is to minimize the cost C =

∑
e cefe of routing all the data to

the fusion center, where fe is the rate at which data is transmitted across edge
e. Consider the following three strategies: (a) the shortest path tree is used; (b)
we compress data using explicit side information and optimize over all spanning
trees; (c) the data at each sensor is transmitted to an adjacent sensor to be used
as explicit side information whenever the coding gain outweighs the transmission
cost. This transmission to an adjacent sensor provides only explicit side infor-
mation and needs not be relayed to the fusion center. The routes corresponding
to the three strategies are shown in Fig. 1. Note that at least one sensor has
to transmit at rate R to the fusion center so that all the data can be correctly
recovered. The costs of the three strategies are:

Ca = 5RD

Cb = RD + 4rD + 4Rd + 6rd
Cc = RD + 4rD + 4Rd

The performance of (b) and (c) are about the same, and both are superior to
that of (a). It is also evident that (c) results in more evenly distributed traffic
than (b). This is because in DSIT, the communication to the fusion center is
separated from the explicit side information transmission, and can be routed
through any path.

There has been much recent research activity on data-centric routing. In [7],
the interdependence of routing and data compression is addressed from the

Routing Explicit Side Information for Data Compression 77

viewpoint of information theory. Clustering methods have been used by some
researchers to aggregate data at the cluster head before transmitting them to
the fusion center [8,9]. Since the cluster head is responsible for data aggregation
and relaying, it consumes the most energy. Hence, dynamically electing nodes
with more residual power to be cluster heads and evenly distributing energy con-
sumption in network is a major issue in these schemes. In [3], a diffusion type
routing paradigm that attaches attribute-value pairs to data packets is proposed
to facilitate the in-network data fusion. The correlated data routing problems
studied in [2, 4] are closely related to our work. In [2], the authors give a thor-
ough comparison of data-centric and address-centric methods and a overview of
recent effort in the field. [4] casts the data-centric routing problem as an opti-
mization problem and seek solutions to it when different source coding schemes
are applied. A similar optimization problem is also the subject of [5], where a
grossly simplified data model is assumed.

The rest of the paper is organized as follows. In section 2, we present our
network flow and data rate models. In section 3, an optimization problem is
formulated out of the DSIT strategy, and a heuristic algorithm is proposed. The
average performance of the heuristic algorithm is studied through simulations in
section 4. Section 5 concludes the paper.

2 Network Models

2.1 Network Flows

The sensor network is modelled as a graph G = (N , E). The node set N consists
of a set Ns of n sensors and a special node t acting as the fusion center. We
call a sensor active if it generates data. Denote by Na the set of active sensors.
Both active and non-active sensors can be relays. The edge set E represents
m communication links. Here, we assume all the links are bi-directional and
symmetric. If they are not, the network can be modelled as a directed graph,
and the derivation in this paper will apply similarly. We also assume the network
is connected so that data from any sensor can reach t. A weight ce is associated
with each edge e ∈ E . It represents the cost (e.g. power) of transmitting data at
unit rate across e. The flow fe is defined as the rate at which data is transmitted
across edge e ∈ E . Data generated by node i and terminating at node j are
denoted by f ij

e . In particular, we define f i
e = f it

e . Clearly, fe =
∑

i,j∈N f ij
e .

Supposing i, j ∈ Ns, denote by dij the minimum distance from i to j (i.e. the
sum of edge weights along the shortest path from i to j), and di the minimum
distance from i to t. The objective of our study is to minimize the total cost C
while routing all the data from active sensors to the fusion center.

C =
∑
e∈E

cefe (1)

78 H. Luo and G. Pottie

2.2 Source Coding with Explicit Side Information

Consider the problem of sampling a distributed field using wireless sensor net-
works. The measurements at sensors are coded and transmitted back to the
fusion center, and used to reconstruct the field under some distortion constraint.
There is likely to be a great deal of redundancy in the data collected by different
sensors, since they are observing some common physical phenomenon. Denote
by Xi the data stream produced by sensor i. (We assume Xi has been quantized
and has a discrete alphabet.) Assume Xi satisfies the ergodic condition so that
the results of statistical probability theory can be applied. In this paper, we con-
sider source coding with explicit side information. In other words, only when the
side information is available at both the encoder (the senor that generates the
data) and decoder (fusion center) can it be used to compress the data. Supposing
data stream Xk is entropy-coded using X1, X2, · · · , Xk−1 as side information,
we have the following:

fk = H(Xk|X1, X2, · · · , Xk−1) (2)

Since the data rate fk to the fusion center depends on the availability of data stream
Xi, i = 1, 2, · · · , k − 1 at k, there are 2k−1 possibilities. In an attempt to simplify
the data rate model and optimization, we assume that the the rate reduction pro-
vided by side information saturates as the number of helpers exceeds one:

fk =

{
bk
0 no side information;

minj bkj
1 Xj is available at k, and j ∈ Hk

(3)

in which bk
0 is the rate of coding Xk without any side information; bkj

1 (bkj
1 ≤ bk

0)
is the coding rate of Xk when only Xj , j ∈ Hk is available at k; Hk is the
set of sensors whose data is correlated with sensor k’s observations and can be
used as its side information. When side information from more than one sensors
is available, the one providing the most coding gain is used. In practice, the
information on the set of helping sensors Hk and the rate reduction provided by
their data can be obtained using specially designed coding schemes (e.g. [6]). In
many physical situations, sensor measurements are highly correlated only in a
small neighborhood. In others, although a large number of sensors have similar
measurements, the reproduction fidelity constraints often permit thinning the
number of active sensors so that again only a small number of sensors have
high correlation. As a result, Hk generally comprises a small number of sensors
that are close to sensor k. The quick saturation of coding gain provided by side
information indicates when the data stream at a nearby sensor is available as side
information, the additional coding gain provided by other sensors’ observations
is negligible. Note that bkj

1 can be about the same as or much less than bk
0

depending on source statistics. This greatly influences the route construction.
Since H(Xk) − H(Xk|Xj) = I(Xk, Xj) ≤ H(Xj), we assume bk

0 − bkj
1 ≤ bj

0.
Therefore, (bk

0 − bkj
1)dk ≤ bj

0dk, and there is no gain in feeding back explicit
side information from t to sensors. The total cost of routing data to t can be
decomposed as the sum of Cs representing the cost of routing side information
and Ct the cost of transmitting data to t.

Routing Explicit Side Information for Data Compression 79

C =
∑
e∈E

cefe = Cs + Ct (4)

where
Cs =

∑
i,j∈Ns

∑
e∈E

cef
ij
e , Ct =

∑
i∈Ns

∑
e∈E

cef
i
e (5)

In applying source coding with explicit side information to sensor networks,
we must avoid helping loops. In other words, if Xj ’s recovery relies on Xi, then
Xj cannot be used as the side information for compressing Xi. To formalize this
requirement, define a directed network Gh that consists of all the active sensor
nodes. In addition, if Xi is used as side information for coding Xj , a directed edge
(i, j) is formed from sensor i to sensor j. Then we have the following proposition:

Proposition 1: No helping loop is formed when using source coding with explicit
side information if and only if the directed network Gh contains no directed
cycles.

The proof is straightforward, and hence omitted. It is apparent that if
the underlying routing structure is a directed acyclic network (DAG), the
above proposition is automatically satisfied. For instance, spanning trees directed
toward the fusion center are DAG’s, so there will be no helping loops when using
trees to route data. However, in this paper the rule of no directed cycles needs
to be enforced explicitly.

3 Designated Side Information Transmission

3.1 Problem Formulation

In DSIT, we distinguish the data flow from sensor to the fusion center f i
e and

the transmission of explicit side information to other sensors f ij
e (i, j ∈ Ns).

The side information can only be provided by sensor to sensor transmissions f ij

not transmissions to the fusion center fk. With the network model defined as in
section 2, we formulate the following optimization problem.

Designated Side Information Transmission (DSIT)
GIVEN: A graph G = (N , E) with weight ce defined on each edge e ∈ E , a special
node t ∈ N acting as the fusion center, a set Hk of helping sensors and data
rate function fk as in Eq. (3) defined for each sensor k ∈ Ns = N \ {t}.
FIND: A set of routes transmitting the explicit side information among sensors
such that the total cost of routing data to the fusion center C =

∑
e∈E cefe is

minimized.
We will see in ensuing discussion that the transmission of explicit side infor-

mation has a Steiner tree problem embedded in it. Hence the overall problem
is NP hard. As a result, we will focus on building a heuristic algorithm for the
optimization.

80 H. Luo and G. Pottie

3.2 Heuristic Algorithm

The total cost can be decomposed into the cost of routing explicit side informa-
tion Cs and the cost of transmitting data to the fusion center Ct as in Eq. (4).
We first consider constructing routes from sensors to the fusion center. These
routes affect only Ct. In addition, as fk, k ∈ Na does not provide any side infor-
mation, its routing is decoupled from the data aggregation process. Hence, the
shortest path should be used to achieve the minimum Ct:

Ct =
∑

k∈Na

dkfk (6)

where dk is the minimum distance from sensor k to t, and fk is a function of
side information transmission. The design of routes for transmitting fk must take
place before that for side information transmission because the latter depends
on the distance information from the former.

Designing routes for side information transmission is more complicated. First,
it has the minimum Steiner tree as a subproblem. This is illustrated by the
following problem instance. Given network G = (N , E), we have a subset of the
active sensors S ⊂ Na, and there is a sensor u ∈ Na \ S. Assume Hk = u if
k ∈ S, and ∅ otherwise. In addition, we assume that the rate function and edge
weights are defined such that the cost of transmitting side information from u to
any sensor in S using appropriately chosen routes is less than the cost reduction
resulting from the coding gain of side information. The optimization problem
becomes constructing a subtree that connects u and the sensors in S, which is a
minimum Steiner tree. Therefore, the overall optimization problem is NP hard.
Second, we need to ensure that no helping loop can be formed while routing the
side information. This amounts to avoiding directed cycles in h according to
Proposition 1.

For a moment, we ignore the Steiner tree part, and use the shortest path
to route all the side information. This leads us to construct a network Ga as
follows. Ga includes the set of active sensors Na. In addition, for each ordered
pair of nodes (i, j) ∈ Na, create a directed edge (i, j) from sensor i to j and
assign the weight wij to represent the net coding gain resulting from routing
side information from i to j.

wij =

{
(bj

0 − bji
1)dj − dijb

i
0 i ∈ Hj

−dijb
i
0 otherwise

(7)

where bj
0, b

ji
1 and Hj are the data rates and set of helping sensors as in Eq. (3); dj

and dij are the minimum distances defined in section 2. Denote by Aa the set of
directed edges with wij > 0. A branching on the directed graph Ga = (Na,Aa)
is a set of directed edges B ⊆ Aa satisfying the conditions that no two edges in B
enter the same node, and B has no directed cycle. It is evident that a branching
on Ga represents a feasible set of routes for side information transmission. No
two directed edges in B entering the same node ensures that a sensor uses side
information from at most one helper and no directed cycle avoids the helping

G

Routing Explicit Side Information for Data Compression 81

loop. The problem of minimizing the total cost is equivalent to maximizing the
weight sum of the set of directed edges B that is a branching on Ga, which is the
so called maximum weight branching problem.

Maximum Weight Branching (MWB)
GIVEN: A directed graph Ga = (Na,Aa) with weight we defined on each directed
edge e ∈ Aa.

FIND: A branching B ⊆ Aa that maximizes
∑

e∈B we.
It has been shown that this problem can be solved efficiently [10]. Once the

optimal branching B is determined, we revert to using Steiner trees. Define Sk

as the set of sensors that receive side information from k based on the optimal
branching B. We use the shortest path heuristic proposed by [11] to construct
the subtree that connects k and Sk. This method has a worst case performance
ratio of 2. Our heuristic algorithm is a combination of the maximum weight
branching and the Steiner tree approximation. We state it as follows:

Designated Side Information Transmission Heuristic (DSIT Heuristic)
Given a network G = (N ,A) with edge weights and rate function properly
defined, carry out the following steps.

1. Find the shortest path from each active sensor to the fusion center. These
are the routes for transmitting data to the fusion center.

2. Construct a directed graph Ga = (Na,Aa). Na ⊆ N consists of all active
sensors, and Aa is the set of directed edges from i to j (i, j ∈ Na and i �= j)
whose weight wij defined as in Eq. (7) is greater than zero.

3. Find the maximum weight branching on Ga. Based on the optimal branching
B, determine the set of sensors Sk that each active sensor k ∈ Na transmits
side information to.

4. Run a shortest path heuristic for the Steiner tree problem to find the subtree
that connects k and the sensors in Sk.

3.3 Performance Analysis

Finding the maximum weight branching takes O(ma log na) time, where ma =
|Aa| and na = |Na|. (|S| is the number of elements in finite set S.) The shortest
path heuristic for a Steiner tree requires O(nan2) time. The actual running time
of the shortest path heuristic is in general much less because the number of
nodes involved in constructing the shortest path is often a lot fewer than n.
Regarding the performance of our heuristic algorithm compared to that of the
optimal solution, we prove the following proposition.

Proposition 2: The ratio of the cost CH resulting from our DSIT heuristic al-
gorithm and the minimum cost CMIN using the DSIT strategy is bounded by:

CH

CMIN
≤ M (8)

where M = max{1,maxk∈Na
|Sopt

k |}, the greater of one and the maximum num-
ber of sensors one sensor needs to transmit side information to in the optimal

82 H. Luo and G. Pottie

solution. The bound is tight in the sense that there is a network that attains the
worst performance ratio.

Proof: First, we note that Sopt
k is in general not the same as the Sk in our heuristic

algorithm. Consider the structure of an optimal solution. It can be given by the
set of sensors Sopt

k that each k ∈ Na sends explicit side information to. The side
information circulated within the group of k sensors in Sopt

k is routed using the
minimum Steiner tree. Denote by CST

k the sum of edge costs of these Steiner
trees (CST

k = 0 if Sopt
k = ∅). The data is transmitted to the fusion center using

the shortest path tree. Hence we can write the minimum cost as:

CMIN =
∑

k∈Na

fkdk +
∑

k∈Na

bk
0CST

k (9)

Instead of the Steiner tree, consider relying on a shortest path tree to route the
side information from k to the sensors in Sopt

k . Denote by CSPT
k the sum of edge

costs of such shortest path trees. The corresponding cost C ′ will be:

C ′ =
∑

k∈Na

fkdk +
∑

k∈Na

bk
0CSPT

k (10)

Since MkCST
k ≥ CSPT

k [11], where Mk = |Sopt
k |, we have

C ′

CMIN
≤ max{1, max

k∈Na

Mk} = M

On the other hand, CH is the optimal result of using the shortest path tree to
route the side information. Therefore, CH ≤ C ′. This gives rise to the bound
in Eq. (8). To show the bound is tight, we look at the example in Fig. 2. The
network setup is given in (a). The edge weights between sensors vk and uk

(k = 1, 2, 3) is 1. Other edges have weight δ � 1. All the sensors are active with
data rate R without side information and 0 when side information is available.
Denote U = {u1, u2, u3}, and V = {v1, v2, v3}. We assume Hk = U when k ∈ V

δ

δδ

δ δ

Fig. 2. A problem instance that approaches the worst performance ratio: (a) sensor
network setup; (b) routes of side information transmission using DSIT heuristic; (c)
routes of side information transmission in optimal solution

Routing Explicit Side Information for Data Compression 83

and ∅ when k ∈ U . In Fig. 2, (b) and (c) illustrate how side information is
transmitted in DSIT heuristic and optimal solutions. Therefore, CH = 3R+3Rδ
and CMIN = R + 5Rδ. When δ → 0, the ratio CH/CMIN approaches M = 3
asymptotically. In a similar fashion, problem instances with arbitrary values of
M can be devised. Q.E.D.

The worst case scenario in the proof can be avoided by changing the heuristic
algorithm to run multiple maximum weight branching and shortest path heuristic
iterations. At each iteration, only one sensor is added to Sk, k ∈ Na. However,
this greatly increases the computational cost. Moreover, the pathological case
in the proof rarely occurs in our assumed data rate model. The value of M is
expected to be small as one’s data helps mostly nearby sensors. Also since side
information is often circulated within one’s neighborhood, using shortest paths
to approximate a Steiner tree introduces a moderate amount of error. What
we are more interested in is the average behavior of the algorithm, which is
examined through simulations in the next section.

4 Simulations

In our simulations, we place (n + 1) nodes including the fusion center and n
sensors in an nd ×nd square, where nd = �√n + 1�. (Denote by �z� the smallest
integer such that �z� z, and �z� the largest integer such that �z� ≥ z.)
Supposing x̃i and ỹi, i = 1, · · · , n + 1, are random variables that are uniformly
distributed in [0, 1], the coordinates of node i is given by:

xi = [(i mod nd) − 1] + x̃i

yi = �(i − 1)/nd� + ỹi

We define a transmission radius rc. If two nodes are no more than rc away from
each other, direct communication between the two nodes is allowed. Otherwise,
a relay has to be used. Denote by de the length of edge e. When de ≤ rc,
the edge weight ce is proportional to dα

e , where α = 2 is the path loss factor.
When the number of sensors increases, the network covers a larger area while
maintaining the communication range and sensor to sensor spacing. A typical
100 node network constructed in this manner is depicted in Fig. 3. The node (in
lower left corner) with a letter ”t” next to it is the fusion center.

In our simulation, we assume that all the sensors are active. The helping
set Hi of sensor i is defined as follows. Any pair of sensors that are no more
than rd away from one another has a probability of 0.5 to be in the helping sets
of one another. Fig. 4 shows the resulting data correlation in the network. For
simplicity, we assume the data rate function is the same for all the sensors:

fk =

{
b0 no side information
βb0 with side information

(11)

where i ∈ Na and 0 ≤ β ≤ 1. Fig. 5 shows the maximum weight branching on
the network described in Fig. 3 and 4. The graph is a forest, and hence acyclic.

≥

84 H. Luo and G. Pottie

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

t

x

y

Fig. 3. A network of 100 nodes with rc =
√

5. Two nodes are connected if direct
transmission is allowed between the two

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

t

x

y

Fig. 4. This graph shows the correlation of data at different sensors when rd = 1.8.
Two nodes are connected by an edge if they are in the helping set Hi of one another

The root of each tree is indicated by a circle with a cross inside, from which
there is a simple path to any other member of the tree. Based on this rule, the
helping set Sk of each sensor k can be easily determined.

Routing Explicit Side Information for Data Compression 85

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

t

x

y

Fig. 5. A maximum weight branching on the network described in Fig. 3 and 4

We simulate for different network sizes and change the value of β. The per-
formance of DSIT heuristic is compared to that of the shortest path tree, in
which the same compression scheme based on explicit side information is used.
Define the cost ratio μ = CDSIT /CSPT . In Fig. 6, we plot μ against the number
of nodes in the network. DSIT heuristic outperforms the shortest path tree in all
cases. In addition, we observe that as the coding gain decreases (i.e. β increases),
μ drops. This is expected considering that DSIT becomes the shortest path tree,
which is also the optimum solution, when coding gain is zero. It is also noticed
that μ increases as the number of nodes increases. This is explained by looking
at a shortest path tree solution plotted in Fig. 7. The leaf nodes of a shortest
path tree are generally far away from the fusion center while the source coding at
these nodes receives no side information from other sensors. In contrast, in DSIT
(Fig. 5), the nodes that receives zero side information (the roots of the subtrees)
are mostly near the fusion center. As the network size increases, the leaf nodes
become farther and farther away from the fusion center. Consequently, CSPT

rises faster than CDSIT .

5 Discussion and Conclusion

The DSIT strategy relies heavily on our assumed network model, in particular,
the assumptions that data streams are highly correlated only when they are from
a small group of sensors close to one another, and thus the coding gain satu-
rates when the number of helpers exceeds one. Therefore, this scheme may not
be as effective in cases that deviate from these assumptions. Nonetheless, there

86 H. Luo and G. Pottie

40 60 80 100 120 140 160 180 200
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Network size

μ

β=0.1
β=0.2
β=0.4

Fig. 6. Plot μ = CDSIT /CSPT against network size for β = 0.1, 0.2, and 0.4

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

t

x

y

Fig. 7. The shortest path tree solution for the network described in Fig. 3 and 4

are practical reasons to consider this case. First, identifying the set of sensors
that provides most coding gain and then processing side information incurs cost.
The gain of an additional helper may not be enough to outweigh these costs.
Second, using more than one helper increases the complexity of the model and

Routing Explicit Side Information for Data Compression 87

the optimization. For example, it is possible to jointly code two helpers’ data if
they are to are be used as side information at the same sensor. If more than one
helper has to be considered, we speculate that the problem can be approached
in a multiple-step procedure. At each step, the number of helpers is restricted
to at most one, and an algorithm similar to our heuristic scheme is used. This
is an area that needs further research.

The decoupling of route design for fk from side information transmission
offers greater flexibilities than strategies based on trees. Unlike a tree structure
that bundles the network flows, the transmission of fk can virtually be routed
to t through any path. As a result, traditional address-centric routing schemes
that evenly distribute the traffic load and maximize node lifetime [12, 13] can
be applied. If the optimization objective is to maximize the network lifetime,
we surmise the DSIT can take into account both the energy reserve of sensor
nodes and source correlation. In contrast, address-centric routing focuses on node
energy, and data-centric routing concentrates on source correlation only.

As we discussed in section 2, the number of sensors with highly correlated
data can be brought down in a process of thinning the number of active sensors
based on the reconstruction requirement. This pre-routing step makes in practice
our procedure a two-phase operation. First determine the set of sensors that will
participate in the fusion, then design the routes for transmitting the data to the
fusion center. Currently, the first step is generally approached from a sampling
point of view [14] trying to meet the distortion constraint, while route design
attempts to minimize the energy consumption. It is of interest to ask whether
a combined approach will yield better results. [15] is an interesting preliminary
effort on that direction.

Acknowledgement

This material is based upon work supported by National Science Foundation
(NSF) Grant #CCR-0121778.

References

1. G. Pottie and W. Kaiser, “Wireless sensor networks,” Comm. ACM, vol. 43, no.
5, pp. 51-58, May 2000.

2. B. Krishnamachari, D. Estrin, and S. Wicker, “Modelling data-centric routing in
wireless sensor network,” USC Computer Engineering Technical Report CENG
02-14.

3. C. Intanagonwiwat, et al. “Directed diffusion for wireless sensor networking,”
IEEE/ACM Trans. Networking, vol. 11, no. 1, pp. 2-16, Feb 2003.

4. R. Cristescu, B. Beferull-Lozano, and M. Vetterli, “On network correlated data
gathering,” IEEE Infocom, Hongkong, March 7-11, 2004.

5. A. Goel and D. Estrin, “Simultaneous optimization for concave costs: single sink
aggregation or single source buy-at-bulk,” ACM/SIMA Symposium on Discrete
Algorithms, 2003.

88 H. Luo and G. Pottie

6. H. Luo, Y. Tong, and G. Pottie, “A two-stage DPCM scheme for wireless sensor
networks,” to appear in ICASSP 2005, Philadelphia, USA.

7. A. Scaglione and S. Servetto, “On the interdependence of routing and data
compression in multi-hop sensor networks,” ACM/IEEE Mobicom, 2002.

8. S. Bandyopadhyay and E. J. Coyle, “An energy efficient hierarchical clustering
algorithm for wireless sensor networks,” IEEE Infocom, 2003.

9. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient
communication procotol for wireless microsensor networks,” Hawaii Inter. Conf.
System Sciences, Jan. 4-7, 2000.

10. R. E. Tarjan, “Finding optimum branchings,” Networks, pp 25-35, vol. 7, 1977.
11. H. Takahashi and A. Matsuyama, “An approximate solution for the steiner

problem in graphs,” Math. Japonica, 24, No. 6, pp 573-577, 1980.
12. J. H. Chang, L. Tassiulas, “Energy conserving routing in wireless ad-hoc

networks,” IEEE Infocom, 2000.
13. S. Singh, M. Woo, C. S. Raghavendra, “Power-aware routing in mobile ad-hoc

networks,” ACM/IEEE Mobicom, 1998, Dallas, Texas.
14. R. Willett, A. Martin, and R. Nowak, “Backcasting: adaptive sampling for sensor

networks,” IPSN, 2004, Berkeley, Ca, USA.
15. D. Ganesan, R. Cristescu, and B. Beferull-Lozano, “Power-efficient sensor place-

ment and transmission structure for data gathering under distortion constraints,”
IPSN, 2004, Berkeley, Ca, USA.

16. T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley &
Sons, 1991.

17. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, 1979.

18. F. K. Hwang, D. S. Richards, and P. Winter, The Steiner Tree Problem,
North-Holland, 1992.

Database-Centric Programming for Wide-Area
Sensor Systems

Shimin Chen1, Phillip B. Gibbons2, and Suman Nath1,2

1 Carnegie Mellon University
{chensm, sknath}@cs.cmu.edu

2 Intel Research Pittsburgh
phillip.b.gibbons@intel.com

Abstract. A wide-area sensor system is a complex, dynamic, resource-rich col-
lection of Internet-connected sensing devices. In this paper, we propose X-Tree
Programming, a novel database-centric programming model for wide-area sen-
sor systems designed to achieve the seemingly conflicting goals of expressive-
ness, ease of programming, and efficient distributed execution. To demonstrate
the effectiveness of X-Tree Programming in achieving these goals, we have in-
corporated the model into IrisNet, a shared infrastructure for wide-area sensing,
and developed several widely different applications, including a distributed in-
frastructure monitor running on 473 machines worldwide.

1 Introduction

A wide-area sensor system [2, 12, 15, 16] is a complex, dynamic, resource-rich col-
lection of Internet-connected sensing devices. These devices are capable of collecting
high bit-rate data from powerful sensors such as cameras, microphones, infrared detec-
tors, RFID readers, and vibration sensors, and performing collaborative computation on
the data. A sensor system can be programmed to provide useful sensing services that
combine traditional data sources with tens to millions of live sensor feeds. An exam-
ple of such a service is a Person Finder, which uses cameras or smart badges to track
people and supports queries for a person’s current location. A desirable approach for
developing such a service is to program the collection of sensors as a whole, rather
than writing software to drive individual devices. This provides a high level abstraction
over the underlying complex system, thus facilitating the development of new sensing
services.

Recent studies [6, 11, 14, 18, 19, 32] have shown that declarative programming via
a query language provides an effective abstraction for accessing, filtering, and process-
ing sensor data. While their query interface is valuable, these models are tailored to
resource-constrained, local-area wireless sensor networks [6, 14, 18, 19, 32] or provide
only limited support, if any, for installing user-defined functions on the fly [6, 11, 18,
19, 32]. As a result, the programming models are overly restrictive, inefficient, or cum-
bersome for developing services on resource-rich, wide-area sensor systems. For exam-
ple, consider a wide-area Person Finder service that for update scalability, stores each
person’s location in a database nearby that location, for retrieval only on demand. To

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 89–108, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

90 S. Chen, P.B. Gibbons, and S. Nath

enable efficient search queries, the data can be organized into a location hierarchy with
filters associated with each node of the hierarchy. These filters summarize the list of
people currently within the node’s subtree and are used to limit the scope of a search
by checking the filters. Programming such filters, associating them with (all or parts
of) a logical/semantic hierarchy, installing them on the fly, and using them efficiently
within queries are not all supported by these previous models. Similarly, declarative
programming models designed for wide-area, resource-rich distributed monitoring sys-
tems [12, 28, 31] do not support all these features.

In this paper, we present a novel database-centric approach to easily programming a
large collection of sensing devices. The general idea is to augment the valuable declar-
ative interface of traditional database-centric solutions with the ability to perform more
general purpose computations on logical hierarchies. Specifically, application devel-
opers can write application-specific code, define on-demand (snapshot) and continu-
ous (long-running) states derived from sensor data, associate the code and states with
nodes in a logical hierarchy, and seamlessly combine the code and states with a stan-
dard database interface. Unlike all the above models (except for our earlier work [11])
that use a flat relational database model and SQL-like query languages, we use in-
stead the XML hierarchical database model. Our experience in building wide-area sens-
ing services shows that it is natural to organize the data hierarchically based on geo-
graphic/political boundaries (at least at higher levels of the hierarchy), because each
sensing device takes readings from a particular physical location and queries tend to
be scoped by such boundaries [13]. A hierarchy also provides a natural way to name
the sensors and to efficiently aggregate sensor readings [11]. Moreover, we envision
that sensing services will need a heterogeneous and evolving set of data types that are
best captured using a more flexible data model, such as XML. This paper shows how to
provide the above features within the XML data model.

We call our programming model X-Tree Programming (or X-Tree in short) because
of its visual analogy to an Xmas tree: The tree represents the logical data hierarchy of
a sensing service, and its ornaments and lights represent derived states and application-
specific codes that are executed in different parts of the hierarchy. Sensor data of a
sensing service is stored in a single XML document which is fragmented and distributed
over a potentially large number of machines. Xpath (a standard query language for
XML) is used to access the document as a single queriable unit. With X-Tree, user-
provided code and derived states can be seamlessly incorporated into Xpath queries.

There are three main contributions of this paper. First, we propose X-Tree Program-
ming, a novel database-centric programming model for wide-area sensor systems. Our
X-Tree solution addresses the challenge of finding a sweet spot among three important,
yet often conflicting, design goals: expressiveness, ease of programming, and efficient
distributed execution. As we will show in Section 2, achieving these three goals in the
same design is difficult. X-Tree’s novelty comes from achieving a practical balance
between these design goals, tailored to wide-area sensor systems. Second, we present
important optimizations within the context of supporting X-Tree that reduce the com-
putation and communication overheads of sensing services. Our caching technique, for
example, provably achieves a total network cost no worse than twice the cost incurred
by an optimal algorithm with perfect knowledge of the future. Third, we have imple-

Database-Centric Programming for Wide-Area Sensor Systems 91

mented X-Tree within IrisNet [2, 11, 13], a shared infrastructure for wide-area sensing
that we previously developed. We demonstrate the effectiveness of our solution through
both controlled experiments and real-world applications on IrisNet, including a pub-
licly available distributed infrastructure monitor application that runs on 473 machines
worldwide. A rich collection of application tasks were implemented quickly and exe-
cute efficiently, highlighting the expressibility, ease of programming, and efficient dis-
tributed execution that X-Tree provides.

The rest of the paper is organized as follows. Section 2 examines two application ex-
amples, describes the challenges and overviews our solution. After Section 3 provides
background information, Section 4 illustrates the programming interface, Section 5 de-
scribes our system support for distributed execution, and Section 6 discusses optimiza-
tions. Our experimental evaluation is in Section 7. Section 8 discusses related work.
Finally, Section 9 concludes the paper.

2 Example Applications, Challenges, and Our Solution

This section describes two representative wide-area sensing services (we use service
and application interchangeably) that we aim to enable. (Additional examples can be
found in [8]). We highlight the desirable properties of an enabling programming model,
challenges in achieving them, and our solution.

2.1 Applications

Person Finder. A person finder application keeps track of the people in a campus-like
environment (e.g., a university campus) and supports queries for the current location
of a person or the current occupants of a room. The application uses sensors like cam-
eras, microphones, smart-badges, etc. along with sophisticated software (e.g., for face
or voice recognition) to detect the current location of a person. For scalability, it is im-
portant that the sensor data is stored near their sources (i.e., stored by location) and is
retrieved only on-demand. One way to implement this application would be to maintain
a distributed database of all the people currently at each location. A query for some
person would then perform a brute force search of the entire database; such a query
would suffer from both a slow response time and high network overhead. A far more
efficient implementation would organize the distributed database as a location hierarchy
(e.g., the root of the hierarchy is the university, and the subsequent levels are campus,
building, floor, and room) and then prune searches by using approximate knowledge of
people’s current locations. Such pruning can be implemented by maintaining a Bloom
filter (a compressed bit vector representation of a set—similar to [23]) at every inter-
mediate node of the hierarchy, representing the people currently within that part of the
location hierarchy.

Infrastructure Monitor. A distributed infrastructure monitor [1] uses software sen-
sors [24] to collect useful statistics (e.g., CPU load, available network bandwidth) on
the infrastructure’s host machines and communication network, and supports queries on
that data. One way to scale such an application to a large number of hosts is to hierar-
chically organize the data. Figure 1 (right) shows part of the hierarchy used by IrisLog,

92 S. Chen, P.B. Gibbons, and S. Nath

Tree Representation:
<Country id="USA">

<Region id="East">
<Site id="CMU">

<Host id="CMU2">

... ...

</Site>
</Region>

</Country>
</PlanetLab>

... ...
... ...

... ...</Host>

<User id="user1" memUsage="20MB"/>

France ChinaUSA

West MiddleEast

MIT HarvardCMU

CMU1 CMU3CMU2

user1 user3user2

PlanetLab

Country

Region

Site

Host

User

<PlanetLab>

Fig. 1. An XML document representing IrisLog’s logical hierarchy

an infrastructure monitoring service deployed on 473 hosts in PlanetLab [3]. Infrastruc-
ture administrators would like to use such an application to support advanced database
operations like continuous queries and distributed triggers. Moreover, they would like
to dynamically extend the application by incorporating new sensors, new sensor feed
processing, and new aggregation functions, as needs arise.

2.2 Design Goals and Challenges

A programming model suitable for the above applications should have the following
properties. First, it should have sufficient expressive power so that application code can
use arbitrary sensor data and perform a rich set of combinations and computations on
that data. For example, applications may perform complex tasks (e.g., face recognition)
on complex data types (e.g., images), and/or combine application-specific states (e.g.,
Bloom filters) with standard database queries. Second, the model should support effi-
cient distributed execution of application code, executing a piece of computation close
to the source of the relevant data items. This exploits concurrency in the distributed en-
vironment, and saves network bandwidth because intermediate results (e.g., the location
of a person) tend to be much smaller than raw inputs (e.g., images of the person). Fi-
nally, the model should be easy to use, minimizing the effort of application developers.
Ideally, a developer needs to write code only for the core functions of the application.
For example, suppose she wants to periodically collect a histogram of the resource us-
age of different system components, but the infrastructure monitor currently does not
support computing histograms. Then it is desirable that she needs to write only the
histogram computing function, and have it easily incorporated within the monitor.

While achieving any one of the above goals is easy, it is challenging to achieve all
three in a single design. For example, one way to provide sufficient expressive power
is to enable collecting all relevant data items in order to perform centralized process-
ing, and using application code to maintain states (e.g., Bloom filters) outside of the
database. However, this approach not only rules out distributed execution, but it re-
quires developers to integrate outside states into query processing—a difficult task. To
understand the difficulty, consider the Bloom filters in the person finder application. To
employ pruning of unnecessary searches, an application developer would have to write
code to break a search query into three steps: selecting the roots of subtrees within the

Database-Centric Programming for Wide-Area Sensor Systems 93

hierarchy for which Bloom filters are stored using the database, checking the search
key against the Bloom filters outside of the database, and then recursively searching
any qualified subtrees again using the database. This is an onerous task.

Similarly, consider the goal of efficient distributed execution. Distributed execution
of aggregation functions (mainly with an SQL-style interface) has been studied in the
literature [4, 14, 18]. The approach is to implement an aggregation function as a set
of accessor functions (possibly along with user-defined global states) and to distribute
them. However, it is not clear how to distribute application code for a large variety
of possible application tasks that may access and combine arbitrary data items and
application-specific states. For example, under the existing approaches, it is difficult to
associate user-defined states (e.g. filters) with subsets of sensor readings. One could
argue that application developers should implement all aspects of the distributed exe-
cution of their code. However, this approach requires developers to track the physical
locations of stored sensor data and manage network communications, thus violating the
goal of ease of programming.

2.3 Our Solution

We observe that although there are a large variety of possible application tasks, many
tasks perform similar kinds of computations. For example, a common computation
paradigm is to combine a list of sensor inputs of the same type (e.g., numeric values)
to generate a single result (e.g., a histogram). Other common computation paradigms
include (1) computing multiple aggregates from the same set of data sources, and (2)
performing a group-by query, i.e., grouping data into classes and computing the same
aggregate for each class (e.g., computing the total CPU usage on all the machines in
a shared infrastructure for every user). Therefore, our strategy is to provide a higher
level of automation for common computation paradigms. In this regard, we are similar
to previous approaches [4, 14, 18].

As mentioned in Section 1, X-Tree employs XML to organize data into a logical
hierarchy, and the Xpath query language for querying the (distributed) XML database,
and hence requires techniques suitable for a hierarchical data model, unlike previous
approaches. To enable user-defined computations with XML and Xpath, it provides
two components. First, for common computation paradigms, X-Tree provides a stored
function component with a simple Java programming interface and extends the Xpath
function call syntax for implementing and invoking application code. Our implementa-
tion of X-Tree (denoted the X-Tree system) automatically distributes the execution of
this application code. Second, X-Tree provides a stored query component that allows
application developers to define derived states and to associate Xpath queries and appli-
cation codes with XML elements. In this way, developers can guide the distribution of
their code in the logical hierarchy of an XML document for arbitrary application tasks,
without worrying about the physical locations of sensor data and or any needed network
communication. Note that the physical locations of the sensor data can change over time
(e.g., for the underlying system’s load balancing, caching, etc.). Our implementation of
X-Tree works regardless of these dynamics and hides them from developers.

94 S. Chen, P.B. Gibbons, and S. Nath

3 Background: XML Model and Distributed Query Processing

An XML document defines a tree: Each XML element (tag-pair, e.g., <PlanetLab>,
</PlanetLab>) is a tree node, and its nested structure specifies parent-child relation-
ships in the tree. Every XML element has zero or more attributes, which are name-value
pairs. Figure 1 illustrates the XML document representing the logical hierarchy in Iris-
Log. The root node is PlanetLab. It has multiple country elements as child nodes, which
in turn are parents of multiple region elements, and so on. The leaf nodes represent user
instances on every machine.

We can use Xpath path expressions to select XML elements (nodes) and attributes.
In Xpath, “/” denotes a parent-child relationship, “//” an ancestor-descendant rela-
tionship, and “@” denotes an attribute name instead of an XML element name. For
example, /PlanetLab/Country[@id="USA"] selects the USA subtree. An individ-
ual sensor reading, which is usually stored as a leaf attribute, can be selected with
the whole path from root. //User[@id="Bob"]/@memUsage returns Bob’s memory
usage on every machine that he is using, as a list of string values. In order to com-
pute the total memory usage of Bob, we can use the Xpath built-in function “sum”:
sum(//User[@id="Bob"]/@memUsage). However, the handful of built-in functions
hardly satisfy all application needs, and the original centralized execution mode sug-
gested in the Xpath standard is not efficient for wide-area sensor systems.

IrisNet [2, 11, 13] supports distributed execution of Xpath queries, excluding func-
tions. We highlight some of the features of IrisNet that are relevant to this paper; our
description is simplified, omitting various IrisNet optimizations–see [11, 13] for further
details. Sensor data of a service is conceptually organized into a single XML docu-
ment, which is distributed across a number of host machines, with each host holding
some fragment of the overall document. Sensing devices, which may also be hosts of
XML fragments, process/filter sensor inputs to extract the desired data, and send update
queries to hosts that own the data. Each fragment contains specially marked dummy el-
ements, called boundary elements, which indicate that the true element (and typically
its descendant elements) reside on a different host. IrisNet requires an XML element to
have an id attribute unique among its siblings. Therefore, an element can be uniquely
identified by the sequence of id attributes along the path from itself to the document
root. This sequence is registered as a DNS domain entry, for routing queries.

To process an XML query, IrisNet extracts the longest query prefix with id attribute
values specified and constructs an id sequence. Then, it performs a DNS lookup and
sends the query to the host containing the element specified by the prefix; this host
is called the first-stop host. The query is evaluated against the host’s local fragment,
taking into account boundary elements. In particular, if evaluating the query requires
visiting an element x corresponding to a boundary element, then a subquery is formed
and sent to a host storing x. Each host receiving a subquery performs the same local
query evaluation process (including recursively issuing further subqueries), and then
returns the results back to the first-stop host. When all the subquery results have been
incorporated into the host’s answer, this answer is returned.

In the following, we describe X-Tree Programming within the context of IrisNet.
However, we point out that our solution is applicable in any XML-based database-
centric approach that supports in-network query processing.

Database-Centric Programming for Wide-Area Sensor Systems 95

4 X-Tree Programming

This section describes the two components of X-Tree, stored functions and stored
queries, for efficiently programming wide-area sensing services.

4.1 Stored Functions

The stored function component incorporates application-specific code. Its programming
interface is shown in Figure 2. A stored function can be invoked the same way as a built-
in function in a user query, as shown in Figure 2(a). The colon separated function name
specifies the Java class and the method major name of the application code. The seman-
tics is that the Input XPATH expression selects a list of values from the XML document,
the values (of type String or Node, but not both) are passed to the stored function as in-
puts, and the function output is the result of the invocation. Optional arguments to a
stored function are typically constant parameters, but can be any Xpath expressions
returning a single string value.

As shown in Figure 2(b), application developers implement three Java methods for
a stored function: init, compute, and final, which enable the decomposition of the stored
function computation into a series of calls to the three methods. For each output value of
the Input XPATH expression, the init method is called to generate an intermediate value.
Intermediate values are merged by the compute method until a single intermediate value
is left, which is then converted to the query result by the final method. The args array
contains the values of the arguments in the query. As shown in Figure 2(c), our X-Tree
system automatically performs this decomposition and distributes the execution of the
methods to relevant hosts where the data are located.1

init init init init init

compute compute

init
compute
final

myClass:mySF (Input_XPATH, arg0, arg1, . . .)

compute

final

arg0, arg1: args[]
output from
final

execution of the three methods to relevant hosts

myClass:mySF (Input_XPATH, arg0, arg1)

Input_XPATH: val

implement
App developers

(a) User query interface to invoke a stored function:

myClass {

}

mySF_init

)

(TYPE val, String[] args)

)

(c) Full picture:

The X−Tree system automatically distributes the

(b) Developers implement three methods for the stored function:
class

// if Input_XPATH selects attributes, then is

// convert an XPATH output value into intermediate format.

// merging them into a single intermediate value.
// perform computation on a set of intermediate values

String

String mySF_compute (String[]midVals, String[] args

String mySF_final (String midVal, String[] args

TYPE

// generate the query result from an intermediate value.

String
NodeTYPE// if Input_XPATH selects nodes, then is

Fig. 2. Stored function programming interface

1 For stored functions (e.g. median) that are difficult to decompose, application developers can
instead implement a local method which performs centralized computation.

96 S. Chen, P.B. Gibbons, and S. Nath

String (histogram_init String val, String[] args)

String histogram_compute (String[] midVals, String[] args)

String (Stringhistogram_final midVal, String[] args)

// merge multiple intermediate histograms given by midVals[] by summing up the counts of corresponding buckets.

// determine bucket B for val, create an intermediate histogram with B’s count set to 1 and all other counts set to 0.

// generate the query result from the final intermediate histogram.

myClass:histogram (Input_XPATH, "bucket boundary 0", "bucket boundary 1", ...)
// A set of numeric values is selected to compute the histogram.

class myClass { // args[] specifies the histogram bucket boundaries.

}

Fig. 3. Implementation of a histogram aggregate

Stored functions support the ability to perform computation on a single list of val-
ues selected by an Xpath query. Examples are numeric aggregation functions, such as
sum, histogram, and variance, and more complex functions, such as stitching a set of
camera images into a panoramic image [8]. Figure 3 illustrates the implementation of
a histogram aggregate. Here, the Input XPATH query selects attributes and thus the init
method uses String as the type of its first parameter. However, because arbitrary data
structures can be encoded as Strings, the interface is able to handle complex inputs,
such as images.

Compared to previous approaches for decomposing aggregation functions [4, 18],
our approach supports more complex inputs. For example, it allows computing func-
tions not just on values but also on XML nodes (Node as input type), which may con-
tain multiple types of sensor readings collected at the same location (e.g. all kinds of
resource usage statistics for a user instance on a machine). This improves the expres-
siveness of the query language; for example, several common computation paradigms
(e.g., computing multiple aggregates from the same set of data sources, and performing
group-by operations, as described in Section 6) can be specified within a given Node
context of the logical hierarchy.

4.2 Stored Queries

Stored queries allow application developers to associate derived states with XML ele-
ments in a logical hierarchy. Naturally, states derived from a subset of sensor readings
can be associated with the root of the smallest subtree containing all the readings.

These derived states can be either maintained automatically by our system or com-
puted on demand when used in queries. As shown in Figure 4(a), application developers
define a stored query by inserting a stored query sub-node into an XML element. The
stored query has a name unique within the XML element. The query string can be any
Xpath query. In particular, it can be a stored function invocation, and therefore devel-
opers can associate application codes with logical XML elements.

Figure 4(b) shows how to invoke an on-demand stored query. For each foo ele-
ment, our system retrieves the stored query string. Then it executes the specified query
within the context of the subtree rooted at the parent XML element (e.g., the foo
element).

Database-Centric Programming for Wide-Area Sensor Systems 97

foo

stored_query foo

stored_query

@bar
<foo>

query ="any xpath within foo’s subtree"

</foo>

<stored_query name="bar"

type ="on−demand/continuous"
mode ="polling/triggered if continuous"

(a) Application developers insert a stored query to node foo

period="xxx ms if continuous" />

add a stored query
to node foo

foo //foo/stored_query[@name="bar"]

(b) Invoke an on−demand stored query.

// Application developers
// can use continuous queries
// to maintain application−
// specific states

(c) The X−Tree system maintains the result of
a continuous query as a computed attribute

Fig. 4. Defining and using stored queries

For a continuous stored query, several additional attributes need to be specified,
as shown in Figure 4(a). The query can be either in the polling mode or in the trig-
gered mode. When the query is in the polling mode, the X-Tree system runs the query
periodically regardless of whether or not there is a data update relevant to the query.
When the query is in the triggered mode, the system recomputes the query result only
when a relevant XML attribute is updated. As shown in Figure 4(c), the result of a
continuous query is stored as a computed attribute in the database, whose name is the
same as the stored query name. A computed attribute can be used in exactly the same
way as a standard XML attribute. When adding a stored query, developers can also
specify a duration argument. The X-Tree system automatically removes expired stored
queries.

To support continuous stored queries, we implemented a continuous query scheme
similar to those in Tapestry [27], NiagaraCQ [7], and Telegraph CACQ [20]. However,
what is important for developers is that they can seamlessly use application-specific
states in any queries, including stored function invocations and other stored query dec-
larations, thus simplifying application programming.

4.3 Bottom-Up Composition of Application Tasks

Combining stored functions and stored queries, our solution supports bottom-up com-
position of application tasks that may combine arbitrary data items and application-
specific states. This is because:

– Application-specific states can be implemented as computed attributes and used in
exactly the same way as standard XML attributes.

– The Input XPATH of a stored function may be an on-demand stored query invoca-
tion; in other words, an on-demand stored query higher in the XML hierarchy may
process results of other on-demand stored queries defined lower in the XML hier-
archy. This gives application developers the power to express arbitrary bottom-up
computations using any data items in an XML document.

X-Tree Programming saves developers considerable effort. Developers need not
worry about unnecessary details, such as the physical locations of XML fragments,

98 S. Chen, P.B. Gibbons, and S. Nath

network communications, and standard database operations. They can simply write
code as stored functions and invoke stored functions in any user query. They can also
associate derived states with any logical XML elements without worrying about the
computation and/or maintenance of the states.

5 Automatically Distributed Execution of Application Code

Stored functions and stored queries can be dynamically added into applications. Devel-
opers upload their compiled Java code to a well-known location, such as a web direc-
tory. When a stored function invocation (or subquery) is received at a host machine, the
X-Tree system will load the code from the well-known location to the host.

Given a stored function invocation, the X-Tree system automatically distributes the
execution of the init, compute, and final methods to the relevant hosts where the data
are located. The idea is to call the accessor methods along with the evaluation of the
Input XPATH query, which selects the input data.

As shown in Figure 5(a), the stored function invocation is sent to the first-stop host
of the Input XPATH query (hosting the leftmost fragment in the figure). The system
employs the standard query processing facility (in our case, provided by IrisNet) to
evaluate the Input XPATH query against the local XML fragment. As shown in Fig-
ure 5(b), the results of querying the local fragment mainly consist of two parts: i) local
input data items (squares in the figure), and ii) boundary elements (triangles in the fig-
ure) representing remote fragments that may contain additional input data.

i i

c

ii i

c

i i

c

c

f

result

local values

init + compute remote query

(subXPATH2, arg0, ...)
myClass:mySF_midVal

remote query

myClass:mySF_midVal
(subXPATH1, arg0, ...)

compute

final

query

A document
fragment

(b) Evaluating the stored function at the first−stop hostthe stored function to where data is located
(a) The X−Tree system distributes the execution of

i: init c:compute f:final

Results of evaluating
Input_XPATH on the
local XML fragment

selected data item
boundary element

Fig. 5. Automatically distributed execution for myClass:mySF(Input XPATH, arg0, ...)

Next, the system composes a remote subquery for every boundary element, as shown
in the shaded triangles in Figure 5(b). There are two differences between a remote sub-
query and the original stored function invocation. First, the function name is appended
with a special suffix to indicate that an intermediate value should be returned. Second,
a subXPATH query is used for the remote fragment. Note that the latter is obtained us-
ing the standard distributed query facility. The system then sends the subqueries to the

Database-Centric Programming for Wide-Area Sensor Systems 99

remote fragments, which recursively perform the same operations. In the meantime, the
system uses the init and compute methods to obtain a single intermediate value from
the local data items.

Finally, when the intermediate results of all the remote subqueries are received, the
system calls the compute method to merge the local result and all the remote results into
a final intermediate value, and calls the final method to obtain the query result.

In summary, the X-Tree system automatically distributes the execution of stored
functions to where the data are located for good performance. This scheme works re-
gardless of the (dynamic) fragmentation of an XML document among host machines.

In addition to the above mechanism, application developers can use stored queries to
guide the distributed execution of their code. They can define at arbitrary logical XML
nodes stored queries that invoke stored functions. In this way, developers can specify the
association of application-specific code to logical nodes in the XML hierarchy. Upon a
reference of a stored query, the X-Tree system executes the stored function at the host
where the associated logical XML node is located. Moreover, the stored function calls
may in turn require results of other stored queries as input. In this way, developers can
distribute the execution of their code in the logical XML hierarchy to support complex
application tasks.

6 Optimizations

In this section, we first exploit the stored function Node interface to combine the com-
putation of multiple aggregates efficiently and to support group-by. Then we describe a
caching scheme that always achieves a total cost within twice the optimal cost.

6.1 Computing Multiple Aggregates Together and Supporting Group- y

In IrisLog, administrators often want to compute multiple aggregates of the same set of
hosts at the same time. A naive approach would be to issue a separate stored function in-
vocation for every aggregate. However, this approach uses the same set of XML nodes
multiple times, performing many duplicate operations and network communications.
Instead, like the usual mode of operation in any SQL-like language, the X-Tree system
can compute all the aggregates together in a single query through a special stored func-
tion called multi. An example query, for the total CPU usage and maximum memory
usage of all users across all hosts, is as follows:

myOpt:multi(//User, "sum", "cpuUsage", "max", "memUsage")

The init, compute, and final methods for multi are wrappers of the corresponding meth-
ods of the respective aggregate functions. A multi’s intermediate value contains the
intermediate values for the respective aggregate functions. Note that multi can be used
directly in any application to compute any set of aggregates.

Using similar techniques, we have also implemented an efficient group-by mecha-
nism, which provides automatic decomposition and distribution for grouping as well as
aggregate computations for each group. Please see [8] for details.

b

100 S. Chen, P.B. Gibbons, and S. Nath

6.2 Caching for Stored Functions

In IrisNet, XML elements selected by an Xpath query are cached at the first-stop host in
hopes that subsequent queries can be answered directly from the cached data. Because
stored queries may invoke the same stored function repeatedly within a short interval,
the potential benefits of caching are large. To exploit these potential benefits, we slightly
modify our previous scheme for executing stored functions. At the first-stop (or any
subsequent) host, the system now has three strategies. The first strategy is the distributed
execution scheme as before. Because IrisNet cannot exploit cached intermediate values,
this strategy does not cache data. The second strategy is to execute the Input XPATH
query, cache all the selected XML elements locally, and execute the stored function
in a centralized manner by invoking all the methods locally. The third strategy is to
utilize existing cached data if it is not stale, and perform centralized execution without
sending subqueries, thus saving network and computation costs. Cached data becomes
stale because of updates. In IrisNet, a user query may specify a tolerance time T to limit
the staleness of cached data. Associated with a piece of cached data is its creation time
and the piece is used to answer the query only if this time is within the last T time units.

Our system has to choose one of the strategies for an incoming query. For simplicity,
we shall focus on improving network cost. Assume for a given stored function invoca-
tion, the centralized strategy costs K times as much as the distributed strategy, and the
cost of a cache hit is 0. Moreover, we assume all queries have the same tolerance time
T. This defines an optimization problem: find an algorithm for choosing the strategy to
evaluate each incoming stored function so that the total cost is minimized.

To solve this optimization problem, we propose the algorithm in Figure 6(a). This
algorithm does not require any future knowledge. It only requires the X-Tree system
to keep per-query statistics so that the Y value can be determined. An example query
pattern and the algorithm choices are shown in Figure 6(b). The algorithm performs
distributed execution for the first K queries, then centralized execution for query K +
1, followed by a period of time T during which all queries are cache hits. Then the
cached data is too stale, so the pattern repeats. An interesting, subtle variant on this
pattern is when > K consecutive queries use distributed execution (as shown in the
rightmost part of the figure). This can arise because Y is calculated over a sliding time
window. However, because the algorithm ensures that any K+1 consecutive distributed
executions occur sparsely in a longer period of time than T, it is indeed better not to
cache during these periods. We prove the following theorem in the full paper [8].

if (tolerance time has passed) {
 Y = number of distributed executions
 in the previous T time
 if (Y < K)
 distributed execution (d)
 else centralized execution (c)
}
else cache hit (h)

T<T >T<T

(a) Our algorithm assuming no future knowledge

h h...h

K queries K queries

d...dc d...dc

T

>K queries

(b) Example query patterns and choices of our algorithm

d...dc

time

Fig. 6. Optimization for caching

Database-Centric Programming for Wide-Area Sensor Systems 101

Theorem 1. The algorithm in Figure 6(a) guarantees that the total cost is within twice
the optimal cost.

7 Evaluation

We have incorporated X-Tree Programming into IrisNet, and implemented the two ap-
plications discussed in Section 2. Although the Person Finder application is only a toy
prototype, the Infrastructure Monitor application (IrisLog) has been deployed on 473
hosts in PlanetLab and has been publicly available (and in-use) since September 2003.
The rich and diverse set of application-specific functions and states used by these ap-
plications (and others we studied [8]) supports the expressive power of X-Tree. The
ease of programming using X-Tree is supported by the small amount of code for im-
plementing these applications on our system: 439 lines of code for supporting Bloom
filters in Person Finder and 84 lines of code for communicating with software sensors
in IrisLog.

7.1 Controlled Experiments with Person Finder

We perform controlled experiments using the Person Finder application. For simplic-
ity in understanding our results, we disabled IrisNet’s caching features in all our ex-
periments. We set up an XML hierarchy with 4 campuses in a university, 20 build-
ings per campus, 5 floors per building, 20 rooms per floor, and on average 2 peo-
ple per room. Every room element contains a name list attribute listing the names
of the people in the room. We distribute the database across a homogeneous clus-
ter of seven 2.66GHz Pentium 4 machines running Redhat Linux 8.0 connected by a
100Mbps local area network. The machines are organized into a three-level complete
binary tree. The root machine owns the university element. Each of the two middle
machines owns the campus and building elements for two campuses. Each of the four
leaf machines owns the floor and room elements for a campus. In our experiments,
we issue queries from a 550MHz Pentium III machine on our LAN and measure re-
sponse times on this machine. Every result point reported is the average of 100 mea-
surements.

Stored Functions. In order to quantify the improvements in response times arising
from our scheme for distributed execution of stored functions, we compute an aggregate
function using two different approaches. The first approach uses the init/compute/final
programming interface, so that the computation is automatically executed in a dis-
tributed fashion. The second approach extracts all the relevant input values from the
database and performs a centralized execution2.

In order to show performance under various network conditions and application sce-
narios, we vary a number of parameters, including network bandwidth, input value size

2 We actually implemented this approach using the alternative local method in our Java pro-
gramming interface, which is equivalent to an implementation outside of the XML database
system that runs on the root machine.

102 S. Chen, P.B. Gibbons, and S. Nath

10
0

10
1

10
2

10
3

10
4

0

5

10

15

20

25

R
es

po
ns

e
tim

e
(s

ec
on

d)

Input value size (byte)

centralized
distributed

1

3

10

30

100

300

R
es

po
ns

e
tim

e
(s

ec
on

d)

centralized
distributed

100Kbps 1Mbps 10Mbps 100Mbps
Network bandwidth

0 0.5 1 1.5 2
0

5

10

15

20

25

30

R
es

po
ns

e
tim

e
(s

ec
on

d)

Computation time for every input (ms)

centralized
distributed

(a) Response time varying (b) Response time varying (c) Response time varying
input value size network bandwidth computation time

Fig. 7. Distributed vs. centralized execution

to the stored function, and computation time of the function. The aggregation function
we use models the common behavior of numeric aggregates (such as sum and avg), i.e.
combining multiple input values into a single output value of similar size. For these
experiments, every room element in the database contains a dummy attribute and the
aggregations use this attribute. In order to make the size of input values a meaningful
parameter to change, we choose to compute bit-by-bit binary OR on all the dummy at-
tributes in the database and update every dummy attribute with a string of a given size
before each experiment.

Figure 7(a) reports the response time of the two approaches while varying the length
of every input value from 1 byte to 10,000 bytes. Centralized execution requires all
input values to be transferred, while distributed execution only transfers intermedi-
ate results. As the input value size increases, the communication cost of the central-
ized approach increases dramatically, incurring large response time increases beyond
1000B. In contrast, distributed execution only suffers from minor performance degra-
dations.

Figure 7(b) varies network bandwidth for the 100B points in Figure 7(a) in order
to capture a large range of possible network bandwidth conditions in real use. The true
(nominal) network bandwidth is 100Mbps. To emulate a 10Mbps network, we change
the IrisNet network communication code to send a packet 10 times so that the effective
bandwidth seen by the application is 1/10 of the true bandwidth. Similarly we send a
packet 100 and 1000 times to emulate 1Mbps and 100Kbps networks. Admittedly, this
emulation may not be 100% accurate since the TCP and IP layers still see 100Mbps
bandwidth for protocol packets. Nevertheless, we expect the experimental results to
reflect similar trends. As shown in Figure 7(b), when network bandwidth decreases,
the performance gap between distributed and centralized execution increases dramat-
ically. When network bandwidth is 1Mbps or lower, which is quite likely in a wide
area network, distributed execution achieves over 2.5X speedups over the centralized
approach.

Figure 7(c) studies the performance for computation-intensive aggregation func-
tions. To model such a function, we insert a time-consuming loop into our aggregation

Database-Centric Programming for Wide-Area Sensor Systems 103

University Campus Building Mixed
0

1

2

3

4

5

R
es

po
ns

e
tim

e
(s

ec
)

LCA level

brute force search
prune with stored queries

Fig. 8. Pruning vs. brute force

Site Region Country Global
0

5

10

15

R
es

po
ns

e
T

im
e

(s
ec

)

Average
Parallel
Multi

Site Region Country Global
0

50

100

150

200

250

T
ot

al
 T

ra
ffi

c
(K

B
)

Average
Parallel
Multi

(a) Response time (b) Network traffic

Fig. 9. Calling multiple aggregates

function so that this loop is executed once for every input value in both the distributed
and the centralized approaches. Then we vary the total number of loop iterations so
that the whole loop takes 0, 0.5ms, 1ms, 1.5ms and 2ms, respectively, which models
increasingly computationally intensive aggregation functions. As shown in Figure 7(c),
distributed execution achieves over 1.7X speedups when the computation time is at
least 0.5ms per input. This is because distributed execution exploits the concurrency
in the distributed database and uses all seven machines, while the centralized approach
performs all the computation on a single machine.

Stored Queries. To study the benefit of stored queries, we compare the performance
of the brute force search approach and a pruning approach enabled by stored queries.
For the latter, we use continuous stored queries to maintain Bloom filters at the building
elements, and user queries check the Bloom filters using Xpath predicates. At a building
element, (sub)queries that do not pass the Bloom filter check are pruned.

We use a 550MHz Pentium III machine for generating background update requests
that model the movements of people. In the model, a person stays in a room for a period
of time, which is uniformly distributed between 1 second and 30 minutes, then moves to
another room. When making a move, the person will go to a room on the same floor, in
the same building, in different buildings of the same campus, and in different campuses,
with probabilities 0.5, 0.3, 0.1, and 0.1, respectively.

Figure 8 shows the performance comparison. We measure response times for queries
that look for a person in the entire university, in a particular campus, or in a particular
building. The mixed workload is composed of 20% university level queries, 30% cam-
pus level queries, and 50% building level queries. Because the scope (university, cam-
pus, or building) of a query is presumed to be an end user’s good guess of the person’s
location, we set up the queries so that a query would succeed in finding a person within
the given scope 80% of the time.

As shown in Figure 8, the Bloom filter approach achieves dramatically better per-
formance than the brute force approach for queries involving campus or university level
elements, demonstrating the importance of stored queries. The building level results are
quite close because pruning is less effective in a smaller scope and additional stored
procedure overhead almost offsets the limited benefit of pruning.

104 S. Chen, P.B. Gibbons, and S. Nath

7.2 Real World Experiments with IrisLog

Our workload consists of queries with four different scopes. The global queries ask for
information about all the PlanetLab hosts (total 473 hosts).3 The country queries ask
about the hosts (total 290 hosts) within the USA. The region queries randomly pick one
of the three USA regions, and refer to all the hosts (around 95 hosts per region) in that
region. Finally, the site queries ask information about the hosts (around 4 hosts per site)
within a randomly chosen USA site.

PlanetLab is a shared infrastructure; therefore all the experiments we report here were
run together with other experiments sharing the infrastructure. We do not have any control
over the types of machines, network connections, and loads of the hosts. Thus our experi-
ments experienced all of the behaviors of the real Internet where the only thing predictable
is unpredictability (latency, bandwidth, paths taken). To cope with this unpredictability,
we ran each experiment once every hour of a day, and for each run we issued the same
query 20 times. The response times reported here are the averages over all these measure-
ments. We also report the aggregate network traffic which is the total traffic created by the
queries, subqueries and the corresponding responses between all the hosts involved.

Calling Multiple Aggregates Using Multi. Figure 9 shows the performance of com-
puting a simple aggregate (average), computing four different aggregates (average, sum,
max, and min) using four parallel queries, and computing the same four aggregates us-
ing a single Multi query. For parallel queries, all the queries were issued at the same
time, and we report the longest query response time.

From the figure, we see that the average query response time is small consider-
ing the number and the geographic distribution of the PlanetLab hosts. There exists a
distributed tool based on Sophia [29] that can collect information about all PlanetLab
hosts. Sophia takes minutes to query all the PlanetLab nodes [9]. In contrast, IrisLog
executes the same query in less than 10 seconds.

Moreover, both the response time and the network overhead of the Multi operation
are very close to those of a simple aggregation and are dramatically better than the
parallel query approach. The Multi operation avoids the overhead of sending multiple
(sub)queries, as well as the packet header and other common metadata in responses. It
also avoids redundant selection of the same set of elements from the database.

We also studied the benefits on IrisLog of using our efficient group-by scheme. For
a group-by query over all the nodes, our scheme achieves a 25% speedup in response
time and an 81% savings in network bandwidth compared to the naive approach of
extracting all the relevant data and computing group-by results in a centralized way [8].

8 Related Work

Sensor Network Programming. A number of programming models have been pro-
posed for resource-constrained wireless sensor networks, including database-centric,

3 Although IrisLog is deployed on 473 PlanetLab hosts, only 373 of them were up during our
experiments. The query latency reported here includes the timeout period IrisLog experiences
while contacting currently down hosts.

Database-Centric Programming for Wide-Area Sensor Systems 105

functional, and economic models. The database-centric programming models (e.g., Tiny-
DB [18, 19], Cougar [6, 32]) provide an SQL-style declarative interface. Like X-Tree,
they require decomposing the target function into init/compute/final operators for effi-
cient distributed execution. However, the resource constraints of the target domain have
forced these models to emphasize simplicity and energy-efficiency. In contrast, X-Tree
is a more heavy-weight approach, targeted at resource-rich Internet-connected sensing
devices, where nodes have IP addresses, reliable communication, plenty of memory, etc.
The resource-rich target environment allows X-Tree, unlike the above systems, to sand-
box query processing inside the Java virtual machine and to transparently propagate and
dynamically load new aggregation operator code for query processing. Moreover, its
XML data model allows posing queries in the context of a logical aggregation hierarchy.
The functional programming models (e.g., programming with abstract regions [22, 30])
support useful primitives that arise in the context of wireless sensor network communi-
cation and deployment models. For example, the abstract region primitive captures the
details of low-level radio communication and addressing. However, the requirements of
wide-area sensing are different—generality is more important than providing efficient
wireless communication primitives. Moreover, it is more natural to address wide-area
sensors through logical hierarchy rather than physical regions. X-Tree aims to achieve
these requirements. Proposals for programming sensor networks with economic mod-
els (e.g., market-based micro-programming’s pricing [21]) are orthogonal to X-Tree.
We believe that X-Tree can be used with such economic models, especially within a
shared infrastructure (e.g., IrisNet [2, 13]) where multiple competing services can run
concurrently.

Distributed Databases. Existing distributed XML query processing techniques [11,
26] support only standard XML queries. In contrast, X-Tree’s query processing com-
ponent supports user-defined operations. X-Tree leverages the accessor function ap-
proach for decomposing numeric aggregation functions [4, 18], and supports a novel
scheme to automatically distribute the execution of stored functions. X-Tree’s stored
query construct has a similar spirit as the proposal for relational database fields to con-
tain a collection of query commands [25]. The original proposal aims to support clean
definitions of objects with unpredictable composition in a centralized environment. Be-
cause the logical XML hierarchy usually corresponds to real-life structures (such as ge-
ographical boundaries), X-Tree is able to support meaningful application-specific states
computed from subsets of sensor readings. Moreover, stored queries can be seamlessly
integrated into queries, and at the same time they can invoke application-specific code.
This enables developers to compose arbitrary bottom-up computations, and to guide the
distribution of application codes without knowing the physical layout of data.

Distributed Hierarchical Monitoring Systems. Astrolabe [28] allows users to use the
SQL language to query dynamically changing attributes of a hierarchically-organized
collection of machines. Moreover, user-defined aggregates can be installed on the fly.
However, unlike X-Tree, it targets applications where the total aggregate information
maintained by a single node is relatively small (≈ 1 KB), and the aggregates must be
written as SQL programs. Hi-Fi [12] translates a large number of raw data streams into
useful aggregate information through a number of processing stages, defined in terms
of SQL queries running on different levels of an explicitly-defined machine hierarchy.

106 S. Chen, P.B. Gibbons, and S. Nath

These processing stages can be installed on the fly. Both these systems target applications
where aggregate data is continuously pushed toward the end users. Along with such
push-queries, X-Tree targets pull-queries where relevant data is transferred over the
network only when a query is posed. SDIMS [31] achieves a similar goal as Astrolabe by
using a custom query language over aggregation trees built on top of a DHT. Moreover,
it provides very flexible push vs. pull mechanisms. User-defined functions are more
limited than with X-Tree, e.g., there does not appear to be an efficient means to perform
bottom-up composition of distinct user-defined tasks. Finally, X-Tree differs from all
three systems by using the XML data model and supporting a standard XML query
language; thus it supports using a logical hierarchy that can be embedded on an arbitrary
topology and a query language that incorporates the semantics of that hierarchy.

Parallel Programming. A number of programming models have been proposed to
automatically parallelize computation within restricted target domains. For example,
an associative function can be computed over all prefixes on an n element array in
O(log(n)) time on n/ log(n) processors using parallel prefix computations [5, 17]. In
the context of LANs, the MapReduce model [10], like X-Tree, requires programmers
to decompose the high level task into smaller functions. The MapReduce implemen-
tation then efficiently and robustly parallelizes the execution of those functions into
thousands of machines in a single cluster. X-Tree can be considered as a simplification
and distillation of some of these models based on our requirements. In particular, X-
Tree provides efficient in-network aggregation (through the compute function, which
MapReduce lacks), supports a standard query processing language, provides location
transparency, and is targeted toward wide-area networks.

9 Conclusion

In this paper, we present X-Tree Programming, a novel database-centric approach to eas-
ily programming a large collection of Internet-connected sensing devices. Our solution
augments the valuable declarative interface of traditional database-centric approaches
with the ability to seamlessly incorporate user-provided code for accessing, filtering,
and processing sensor data, all within the context of the hierachical XML database
model. We demonstrate the effectiveness of our solution through both controlled ex-
periments and real-world applications, including an infrastructure monitor application
on a 473 machine worldwide deployment. Using X-Tree Programming, a rich collec-
tion of application-specific tasks were implemented quickly and execute efficiently, si-
multaneously achieving the goals of expressibility, ease of programming, and efficient
distributed execution. We believe that X-Tree Programming will enable and stimulate a
large number of wide-area sensing services.

References

1. IrisLog: A Structured, Distributed Syslog. http://www.intel-iris.net/irislog.
2. IrisNet (Internet-scale Resource-Intensive Sensor Network Service). http://www.intel-

iris.net/.

Database-Centric Programming for Wide-Area Sensor Systems 107

3. PlanetLab. http://www.planet-lab.org/.
4. F. Bancilhon, T. Briggs, S. Khoshafian, and P. Valduriez. FAD, a powerful and simple

database language. In Proc. VLDB 1987.
5. G. E. Blelloch. Scans as primitive parallel operations. ACM Transaction on Computers,

C-38(11), 1989.
6. P. Bonnet, J. E. Gehrke, and P. Seshadri. Towards sensor database systems. In Proc. IEEE

Mobile Data Management, 2001.
7. J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query system

for Internet databases. In Proc. SIGMOD 2000.
8. S. Chen, P. B. Gibbons, and S. Nath. Database-centric programming for wide-area sensor

systems. Technical Report IRP-TR-05-02, Intel Research Pittsburgh, April 2005.
9. B. Chun. PlanetLab researcher and administrator, http://berkeley.intel-research.net/bnc/. Per-

sonal communication, November, 2003.
10. J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In

Proc. OSDI 2004.
11. A. Deshpande, S. K. Nath, P. B. Gibbons, and S. Seshan. Cache-and-query for wide area

sensor databases. In Proc. SIGMOD 2003.
12. M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi, E. Wu, O. Cooper,

A. Edakkunni, and W. Hong. Design considerations for high fan-in systems: The HiFi ap-
proach. In Proc. CIDR’05.

13. P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. Irisnet: An architecture for a world-
wide sensor web. IEEE Pervasive Computing, 2(4), 2003.

14. J. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond average: Toward sophisticated
sensing with queries. In Proc. IPSN 2003.

15. P. R. Kumar. Information processing, architecture, and abstractions in sensor networks. In-
vited talk, SenSys 2004.

16. J. Kurose. Collaborative adaptive sensing of the atmosphere. Invited talk, SenSys 2004.
17. R. E. Ladner and M. J. Fischer. Parallel prefix computation. J. of the ACM, 27(4), 1980.
18. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A tiny aggregation service

for ad-hoc sensor networks. In Proc. OSDI 2002.
19. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an acquisitional

query processor for sensor networks. In Proc. SIGMOD 2003.
20. S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously adaptive continuous

queries over streams. In Proc. SIGMOD 2002.
21. G. Mainland, L. Kang, S. Lahaie, D. C. Parkes, and M. Welsh. Using virtual markets to

program global behavior in sensor networks. In Proc. ACM SIGOPS European Workshop,
2004.

22. R. Newton and M. Welsh. Region streams: Functional macroprogramming for sensor net-
works. In Proc. ACM Workshop on Data Management for Sensor Networks, 2004.

23. S. Rhea and J. Kubiatowicz. Probabilistic location and routing. In Proc. INFOCOM 2002.
24. T. Roscoe, L. Peterson, S. Karlin, and M. Wawrzoniak. A simple common sensor interface

for PlanetLab. PlanetLab Design Notes PDN-03-010, 2003.
25. M. Stonebraker, J. Anton, and E. N. Hanson. Extending a database system with procedures.

ACM Transactions on Database Systems, 12(3), 1987.
26. D. Suciu. Distributed query evaluation on semistructured data. ACM Transactions on

Database Systems, 27(1), 2002.
27. D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki. Continuous queries over append-only

databases. In Proc. SIGMOD 1992.
28. R. van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A robust and scalable technology

for distributed system monitoring, management, and data mining. ACM Transactions on
Computer Systems, 21(2), 2003.

108 S. Chen, P.B. Gibbons, and S. Nath

29. M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An information plane for networked
systems. In Proc. Hotnets-II, 2003.

30. M. Welsh and G. Mainland. Programming sensor networks using abstract regions. In
Proc. NSDI 2004.

31. P. Yalagandula and M. Dahlin. A scalable distributed information management system. In
Proc. Sigcomm’04.

32. Y. Yao and J. Gehrke. Query processing in sensor networks. In Proc. CIDR 2003.

Using Clustering Information for Sensor Network
Localization�

Haowen Chan, Mark Luk, and Adrian Perrig

Carnegie Mellon University
{haowenchan, mluk, perrig}@cmu.edu

1 Introduction

Many wireless sensor network applications require information about the geographic
location of each sensor node. Besides the typical application of correlating sensor read-
ings with physical locations, approximate geographical localization is also needed for
applications such as location-aided routing [2], geographic routing [3], geographic rout-
ing with imprecise geographic coordinates [4, 5], geographic hash tables [6], and for
many data aggregation applications.

Manually recording and entering the positions of each sensor node is impractical
for very large sensor networks. To assign an approximate geographic coordinate to each
sensor node, many automated localization algorithms have been developed. To obtain
the information required for node locations, researchers proposed approaches that make

� This research was supported in part by CyLab at Carnegie Mellon under grant DAAD19-02-
1-0389 from the Army Research Office, and grant CAREER CNS-0347807 from NSF, and by
a gift from Bosch. The views and conclusions contained in this paper are those of the authors
and should not be interpreted as representing the official policies, either expressed or implied,
of Bosch, Carnegie Mellon University, NSF, the Army Research Office, the U.S. Government
or any of its agencies.

Abstract. Sensor network localization continues to be an important research
challenge. The goal of localization is to assign geographic coordinates to each
node in the sensor network. Localization schemes for sensor network systems
should work with inexpensive off-the-shelf hardware, scale to large networks,
and also achieve good accuracy in the presence of irregularities and obstacles in
the deployment area.

We present a novel approach for localization that can satisfy all of these
desired properties. Recent developments in sensor network clustering algorithms
have resulted in distributed algorithms that produce highly regular clusters. We
propose to make use of this regularity to inform our localization algorithm. The
main advantages of our approach are that our protocol requires only three
randomly-placed nodes that know their geographic coordinates, and does not
require any ranging or positioning equipment (i.e., no signal strength
measurement, ultrasound ranging, or directional antennas are needed). So far,
only the DV-Hop localization mechanism worked with the same assumptions [1].
We show that our proposed approach may outperform DV-Hop in certain
scenarios, in particular when there exist large obstacles in the deployment field, or
when the deployment area is free of obstacles but the number of anchors is limited.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 109 –125, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Algorithms that assume a flat, unobstructed deployment area experience serious
degradation in their position estimates in the presence of large obstacles and other ir-
regularities in the deployment area. Most of the localization algorithms in current liter-
ature have been evaluated only for deployments clear of obstacles. However, such ideal
deployments only represent the special case, while large obstacles are common in real-
istic settings. For a localization protocol to be practical, it is essential that it functions
even in the presence of such irregularities. As can be seen in Figure 7 of Section 4, our
algorithm has much better accuracy in recreating the topology of irregular deployments.

Generally, any algorithm that uses triangulation based on distance estimates to
known anchors falls victim to errors caused by obstacles. An anchor is defined as a
node that is aware of its own location, either through GPS or manual preprogramming
during deployment. An example of a distance-triangulation protocol is the Ad-hoc Posi-
tioning System (APS) described by Niculescu and Nath [1]. They describe three meth-
ods of performing the distance estimate, the most widely cited of which is the DV-Hop
method. DV-Hop uses a technique based on distance vector routing. Each node keeps
the minimum number of hops to each anchor, and uses the hop count as an estimate
of physical distance. Once a node has the estimated distance and location of 3 or more
anchors, it performs least-squares error triangulation to estimate its own position. Nag-
pal et al. [19] describe a similar scheme but improve the accuracy of the distance es-
timation by using the average hop count of all the neighbors of a node as a distance
estimate.

We present a localization scheme that requires no ranging or measuring equipment,
no long range beacons, and no centralized processing, and is able to operate with ar-
bitarily positioned anchor nodes. Furthermore, unlike DV-Hop, it makes no assump-
tions about the shape or internal topology of a deployment area: in particular, when the
deployment area is occupied by large, well-spaced obstacles, our scheme significantly
outperforms DV-Hop since it is able to re-create the physical topology of the network
where DV-Hop cannot. Our scheme is based on the novel approach of first performing
sensor node clustering on the network in order to create a regular structure of rep-
resentative nodes (called cluster-heads). To the best of our knowledge, this is the first
localization protocol that does not make any assumption on the sensor node’s hardware,
yet performs well in certain classes of irregular topologies.

2 Sensor Network Clustering

2.1 Clustering Goals

Performing clustering on a sensor network deployment prior to localization has two
advantages. First, it creates a regular pattern from which location information can be
extracted. Second, it helps reduce the amount of communication overhead since only
the cluster-heads need to be involved in the initial phase of the localization.

When a sensor network is first deployed, we cannot assume any regularity in the
spacing or the pattern of the sensor nodes. Figure 1(a) shows that after clustering, the

different assumptions: (1) quantitative ranging/directionality measurements [7–11]; (2)
long range beacons [12–16]; (3) centralized processing [17, 18]; and (4) a flat, unob-
structed deployment area. We do not discuss protocols related to cases (1)–(3) because
we are steering away from such assumptions.

110 H. Chan, M. Luk, and A. Perrig

(a) After clustering

A

B

F

C

G
E

D

(b) Expanded view

1 1.2 1.4 1.6 1.8 2

Edge Length scaled by Communication Range

0

0.05

0.1

0.15

0.2

Pe
rc

en
ta

ge

(c) Distribution of edge lengths

Fig. 1. Effects of clustering.

edges. The cluster-adjacency graph is mesh-like and has few crossing edges. Further-
more, the variance in the length of the edges between adjacent nodes is small. Fig-
ure 1(c) is a histogram of edge length. Most edges fall within 1.3 to 1.7 r, with r being
the maximum communication range between two nodes. The average edge length is
1.63 r and variance is 0.0309 r. Hence, the cluster-adjacency graph forms a regular
structure from which location information can be extracted. This regularity is degraded
slightly when the communication pattern is nonuniform (i.e., not a unit disk), or when
the node density is low, but in general the regularity of cluster-head separation is always
much greater than the distribution of physical distances between unclustered sensor
nodes.

2.2 Modifying the ACE Algorithm

We chose to modify ACE [20] for use in our localization algorithm, because ACE al-
ready produces clusters with highly regular separation. Our localization techniques are
not confined to the clusters produced by ACE; we can also use any other clustering
technique that produces clusters with highly regular separation, such as the algorithm
proposed by Younis and Fahmy [21].

A brief description of ACE is as follows (for details, please refer to the original
paper [20]). The algorithm proceeds in a fixed number of iterations. In each iteration,
sensor nodes gradually self-elect to become cluster-heads if they detect that many nodes
in their neighborhood do not belong to any cluster. To achieve regular separation, these
clusters then migrate away from other clusters by re-selecting their respective cluster-
heads.

We modified ACE to improve the regularity of the separation between cluster-heads.
First, we increased the number of iterations for ACE from 3 to 5, trading off increased
communication cost for increased regularity. We also modified the migratory mech-
anism by approximating a spring effect between adjacent clusters. This effect causes
clusters that are close together to migrate apart, and clusters that are too far apart to be
attracted. During the migration phase, each cluster-head evaluates the potential fitness

cluster-heads are regularly spaced throughout the network. We call two cluster-heads
adjacent if there exists some other sensor node that is within communication range of
both cluster-heads. Figure 1(a) shows the graph created by setting each cluster-head as
a vertex and connecting each pair of adjacent cluster-heads with an edge. We call this
graph the cluster-adjacency graph. The edges in the graph are called cluster-adjacency

Using Clustering Information for Sensor Network Localization 111

communication radius r; s can be estimated by counting the number of common nodes
in both clusters – the more common nodes, the closer the two clusters are. The final
modifier is calculated via the function g(s):

g(s) =

{
d(3(0.125− (1

2 (s − 1.5)2))) if s ≥ 1.5
d(12(0.125− (1

2 (s − 1.5)2))) − 1.125 if s < 1.5

Where d is the total number of nodes in the neighborhood of C. The constants used
above are empirically derived – their exact values are not important to the correctness
of the algorithm. Note that the function above reaches a maximum at s = 1.5, meaning
that clusters that are estimated to be more than 1.5r apart will attract each other, while
clusters that are less than 1.5r apart will repel each other.

3 Localization Procedure

In this section we describe how the localization algorithm proceeds after clustering
is complete. We first describe a naive version of our general approach using several
strong assumptions. In subsequent subsections, we will eliminate these assumptions
and improve the accuracy of our basic algorithm using more complex approaches.

3.1 The Basic Cluster Localization Algorithm

In this section we describe a high level overview of our general approach. Each of the
steps described in this section are naive approaches which we significantly improve in
subsequent sections.
Locally-Aware Anchors The algorithm starts from the anchor nodes, which are them-
selves cluster-heads and have knowledge of their geographical positions. We assume
that these are Locally-Aware Anchor Nodes, able to determine the geographical po-
sitions of all the cluster-heads adjacent to themselves. This could be performed by in-
stalling ranging and direction-finding hardware on the anchor nodes, or more practically
by pre-selecting the cluster-head nodes in their neighborhood and directly programming
these coordinates into the anchors. This increases the hardware or installation overhead
of the scheme, hence we eliminate this assumption in Section 3.4.

Expanding the Calibrated Set The anchor nodes and their adjacent cluster-heads form
an initial set of calibrated nodes which are aware of their positions. Given this base
set of calibrated nodes, our algorithm will continually expand this set until all cluster-
heads in the network have been calibrated. This is performed in a distributed manner
where each cluster-head calibrates itself if two or more of its adjacent cluster-heads
have successfully calibrated.

The self-calibration procedure uses the regularity of edge-lengths between cluster-
heads to perform a position estimate. As an example, Figure 1(b) shows node A along
with its adjacent neighbors, or its cluster-head neighborhood. If node A knows the
topological configuration of its cluster-head neighborhood as well as the estimated
physical positions of two neighbors, C and D, A can estimate its own position by as-

score of each candidate node C in its neighborhood. The score for each candidate C
is calculated as the total number of sensor nodes belonging to the cluster if C was to
become the next cluster-head, plus a modifier for each adjacent cluster of C. Let s be
the estimated separation between C and the adjacent cluster-head in terms of maximum

.

.

112 H. Chan, M. Luk, and A. Perrig

calibrated nodes grows until all cluster-heads in the network are calibrated. We present
an significantly improved method for position estimation in Section 3.3.
Refining the Position Estimate The initial position estimate is based on the early posi-
tion estimates of two neighbors. As more information becomes available, more cluster-
heads will be able to estimate their position, and some already-calibrated cluster-heads
may further refine their position estimate. Each cluster-head reacts to this new informa-
tion by recomputing its own position estimate. A simple way of improving the position
estimate would be to repeat the initial position estimation once for each adjacent pair
of calibrated cluster-heads in the calibrating node’s neighborhood, and then taking the
average position of these results. To prevent propagation of small changes, each node
only rebroadcast its updated position if its difference from the previous position is larger
than some threshold. When this occurs, we call it a major position update.

To improve the accuracy of this step, we have developed a more sophisticated algo-
rithm for performing position refinement which we present in Section 3.2.

Termination Each node continues refining its position until either of two conditions
occurs:

– The node has reached some maximum number of major position updates. We count
the number of major position updates, and when it reaches 10 in the case of re-
peated initial calibration (see Section 3.3) or 60 in the case of mesh relaxation (see
Section 3.2) then the node terminates and accepts its current estimated position as
its final position.

– The node has not received any position updates during the past time period. The
amount of time to wait is chosen to be equal to the maximum time that position
information needs to disseminate across the network, which is proportional to the
diameter of the network. If the node has not received any new updates within this
time frame after the last update, then there cannot be any further updates remaining
in the system, indicating convergence.

Calibration of Follower Nodes Thus far, locality calibration has only been performed
on the cluster-heads. When the cluster-heads have been fully localized, there remains
the final step of calibrating the non-cluster-head nodes (i.e., the follower nodes). Var-
ious methods exist for calibrating these nodes. In our algorithm, each node takes the
average of the estimated positions of all the calibrated nodes within its communication
range (including cluster-heads and other follower nodes). This produces a localization
accuracy for the non-cluster-head nodes that is very close to the localization accuracy
of the cluster-heads. When this step is complete, all the sensor nodes are localized.

3.2 Improved Position Refinement: Mesh Relaxation

We note that the goal of our algorithm is to solve for the geographical configuration of
cluster-heads that is most likely, given the adjacency information of all cluster-heads
and the position information of the anchors. We can approximate this solution by dis-
tributedly solving for the global configuration in which the square of the difference of
the length of each edge from the known average edge length l is minimized.

suming some pre-determined standard value l for the length of the edges AC and AD.
After A is calibrated, node B can similarly estimate its position based on positions of
C and A, further enabling node G to calibrate, and so on. In this manner, the set of

.

.

Using Clustering Information for Sensor Network Localization 113

relaxation is beyond the scope of this paper; we describe how the method is applied to
our localization protocol.

Each cluster-head is modeled as a mass point, and the distance between each pair of
adjacent cluster-heads is modeled as a spring of length equal to the average edge length
l. The calculation thus becomes equivalent to a physical simulation. Consider a cluster-
head A. It has some estimated coordinate pA,t at time t, and we wish to continue the
simulation to update its position in time t + δt. Let the set of A’s adjacent cluster-heads
be S. Each of the members of S will exert a force on A. According to Hooke’s law,
this force can be expressed as F = kΔx, with Δx defined as the displacement of a
spring from its equilibrium length (set at the average edge length l), and k is the spring
constant. Note that the value of k is irrelevant in this computation since we are looking
for the point where all forces are equalized, which would be the same for any value of
k. Hence, we let k = 1. The resultant force on A at time t is:

F A =
∑
B∈S

(|dB,A| − l)d̂B,A

The variable dB,A represents the 2-dimensional vector of the separation between the
estimated positions of cluster-heads B from A at time t, i.e., dB,A = pB,t − pA,t. The
variable d̂B,A represents the unit vector in the direction of B from A, and l is the known
average link length. We displace the position of A by qF A, a quantity proportional to
the resultant force on A. Hence, the updated position of A is pA,t+1 = pA,t + qF A. We
iterate this process until the change in position is below a threshold c.

The above algorithm is naturally parallelizable onto the cluster-heads; each cluster-
head A calculates the forces acting on itself based on the current estimated locations of
the nodes in its cluster-head neighborhood S and updates its own estimated position,
which is then sent as an update to all the members of S.

3.3 Improved Initial Calibration

While mesh relaxation produces accurate localization results, if it begins with a poor
initial estimated position, it takes many iterations to converge. Hence, having an initial
accurate estimate is essential to produce a workable algorithm. In this section we de-
scribe how to accurately make an initial estimate of a cluster-head’s position based on
the structure of the cluster-heads around it.

This algorithm consists of three steps. First, we acquire knowledge of a node’s two-
hop neighborhood to produce an ordered circular list of its adjacent cluster-heads. This
list corresponds to either a counter-clockwise or a clockwise traversal of the set of ad-
jacent cluster-heads. Then, we augment this list with some heuristic information about
the relative separations of each cluster-head from its predecessor and successor in the
circular list. Finally, the node calculates an estimate for its own position when two or
more of its neighbors are calibrated.
Ordering the adjacent cluster-heads To orient a given cluster-head A correctly within
the topology, we need to extract an ordering in its set of adjacent cluster-heads S. This
ordering will produce information that we will later use to derive a location estimate for
A based on the location estimates of the members of S.

To solve this problem, we use mesh relaxation, an approximation algorithm for find-
ing the least-squares solution to a set of pairwise constraints. Mesh relaxation has pre-
viously been studied for localization in robotics [22–24]. A general description of mesh

.

114 H. Chan, M. Luk, and A. Perrig

gorithm is to derive an ordering on the set that corresponds to either a clockwise or
counterclockwise traversal of the set, e.g., either (B, C, D, E, F) or (F, E, D, C, B).
Note that the ordering is on a circle hence any cyclic shift of a correct sequence is still
correct, e.g., (D, E, F, B, C).

We now introduce some terminology. Let the cluster-head for which we wish to
derive the ordered circular list be the calibrating node. The cluster-head neighbor-
hood of a cluster-head is the set of cluster-heads that are adjacent to it (recall that two
cluster-heads are considered adjacent if there exists some node which is in communi-
cation range of both of them). If two members of the cluster-head neighborhood of the
calibrating node are also adjacent, then we call them directly linked with respect to
the calibrating node. Examples of directly linked neighbors of the calibrating node A in
Figure 2(b) are B and C, or C and D. If two members of the cluster-head neighborhood
are not adjacent, but they are adjacent to another cluster-head that is not the calibrating
node, nor in the cluster-head neighborhood, then we call them indirectly linked with
respect to the calibrating node. For example, in Figure 2(b), B and F are indirectly
linked with respect to A since they are both adjacent to G. Finally, if two members
of the cluster-head neighborhood have no adjacent cluster-heads in common besides
the calibrating node, then they are unlinked with respect to the calibrating node. Un-
linked pairs are also called gaps since they represent a discontinuity in the cluster-head
neighborhood of a node.

At the beginning of the algorithm, each cluster-head communicates its neighbor-
hood information to all the members of its cluster-head neighborhood. Thus every
cluster-head is aware of its cluster-head topology up to two edges away. If the cluster-
adjacency graph has no cross edges in its physical embedding, then it is straightforward
to construct the ordered circular list of neighbors for a calibrating node. The calibrat-
ing node selects any neighbor as a starting point and traverses the set of neighbors by
selecting the next neighbor that has a direct or indirect link to the current node, then
appending it to the list. The selected neighbor then becomes the current node, and the
process is iterated until the traversal returns to the starting point, or the current node
has no direct or indirect links that have not already been traversed. In the latter case,
traversal is restarted from the starting point in the opposite direction, and the nodes vis-
ited are pre-pended to the sequence. Ambiguities may arise if there are crossing edges,
since in this case there may be more than one possible choice for the next node in the
traversal. However this occurs sufficiently infrequently that this choice can be resolved
easily. For example, we use the heuristic of choosing the node that has the most com-
mon neighbors with the calibrating node, and skipping over any alternative nodes (i.e.,
not including them in the traversal at all).

At the end of this step, we have constructed an ordered circular list of the cluster-
head neighborhood of a calibrating node. This list represents an initial estimate of the
local physical topology of cluster-heads around the calibrating node.

Assigning angles to adjacent cluster-heads The next step in obtaining a physical map-
ping of this topology is to assign angular separations between subsequent members of
the circular list. If all the cluster-heads in the list are all directly linked, we simply as-
sign equal angular shares to each sector. For example, in Figure 2(a), each sector is
given 60◦ for a total of 360◦.

Figure 2(b) shows the neighborhood of cluster-head A. It has 5 adjacent cluster-
heads, {B, C, D, E, F}. At the beginning of the protocol, A is aware of its neighbor-
hood set (e.g., {D, C, F, B, E}) but not its order. The objective of this step of the al-

.

Using Clustering Information for Sensor Network Localization 115

Fig. 2. a) Assignment of angular shares when there are 6 adjacent cluster-heads all directly linked.
The cluster-heads are assumed to be equally distributed, hence each angle is 360◦/6 = 60◦.
b) Assignment of 5 angular shares when there are 4 direct links and 1 indirect links. Angles
opposite to a direct link is denotes as α, and β represents the angle opposite to an indirect link.
c) Orienting A’s circular list direction. If A is clockwise from Q with respect to P , and P is
clockwise from A with respect to Q, then Q must be clockwise from P with respect to A

√
2l based on the intuition that the vertices forming an indirect link form a quadrilateral

with the typical shape of a square. Hence, if α is the angle assigned to a direct link,
then we should assign approximately β =

√
2α to an indirect link. Figure 2(b) shows

an example of a node having 5 neighbors where there are 4 direct links and 1 indirect
link, resulting in α = 66.5◦ assigned to the direct sectors and β = 94.0◦ assigned to
the indirect links.

In the case where there is a gap in the circular list (e.g., at the edge of the deploy-
ment area or next to an obstacle), we use the heuristic of assigning α = 60◦ to angles
subtended by direct links and β = 90◦ to angles subtended by indirect links.

When this portion of the algorithm is completed, every node has an ordered circular
list representing its cluster-head neighborhood, as well as an angle between each adja-
cent pair of members of the circular list, representing the estimated angular separation
of the pair.

Performing the position estimate At this point, the calibrating node is able to perform
an initial position estimate if two or more of the nodes in its cluster-head neighborhood
have already performed an initial position estimate. We call nodes which have success-
fully performed an initial position estimate, calibrated nodes. A calibrated node not
only has a position estimate but also has its circular list of its cluster-head neighborhood
ordered in the canonical direction (i.e., physically clockwise or counterclockwise). For
simplicity, we shall assume the canonical ordering is clockwise.

We first describe the algorithm using two calibrated nodes as reference nodes. Sup-
pose the calibrating node A has two calibrated nodes P and Q in its cluster-head neigh-
borhood. The first step in calibration is to orient A’s circular list in the canonical clock-
wise direction. P and Q transmit to A their estimated positions (xP , yP) and (xQ, yQ)
as well as their ordered cluster-head neighborhood list. These lists are ordered in the
canonical clockwise direction. A observes its own position in these lists and deduces
the ordering of its own list as follows. Figure 2(c) provides an illustration of the process.
Suppose in the list of P , A occurs after Q. Furthermore, in the list of Q, P occurs after

If there are one or more indirect links, we wish to assign larger angular shares to
sectors subtended by indirect links since indirect links are usually longer than direct
links. Letting the length of a direct link be l, we estimate the length of an indirect link as

.

116 H. Chan, M. Luk, and A. Perrig

180◦, then A needs to reverse its ordered list to put it in a clockwise order. The other
case (where P is clockwise from Q with respect to A) follows an analogous argument.

Once A has determined the canonically correct ordering of its cluster-head neigh-
borhood, it is now aware of which side of the line PQ it belongs. Hence, its initial
position estimate can be calculated using basic trigonometry from the positions of P
and Q and their estimated angular separation with respect to A. An estimate can be
computed in several ways. We describe the method that we chose. The angle PAQ is
known due to our angular assignment. Assuming that AP = AQ, we derive the angle
QPA. Given this angle and the estimated position of P and Q, we can compute the
angular bearing of A from P . We the compute A’s estimated position with respect to P
by assuming A’s displacement from P is the known average edge length l. If there are
multiple neighbors with known coordinates, we perform these operations once for each
of them, i.e., for each Pi, compute the angular bearing of A from Pi and estimate A’s
position as a displacement of l along that bearing. After each estimate is computed, the
final estimated position is calculated as the average (centroid) of all the estimates.

Repeated Initial Calibration We have found that this empirical process of estimating
position is highly accurate. In fact, we can use this algorithm for both the initial po-
sition calibration, and for position refinement instead of performing mesh relaxation.
When new information arrives as neighboring nodes update their positions, we merely
perform the same position estimation algorithm again to obtain the new estimate. This
process achieves comparable performance with mesh relaxation while incurring less
communication overhead.

3.4 Self-orienting Anchors

Thus far, we have assumed that the anchors are “locally aware” (i.e., know the physical
locations of all cluster-heads in their neighborhood), and that all nodes are aware of
the average edge length between any two adjacent cluster-heads. We now describe an
optimisation to remove these assumptions.

In this scheme, each anchor picks an arbitrary orientation and sets the average edge
length l to 1. It assigns estimated positions to all the cluster-heads in its neighbor-
hood according to the angular share system described in Section 3.3. Calibration then
proceeds with respect to each anchor as normal. When calibration is complete, each
cluster-head has formed a location estimate with respect to each anchor’s arbitrary co-
ordinate system. Specifically, each anchor is now calibrated with respect to every other
anchor’s coordinate system. All the anchors exchange this information along with their
known physical coordinates.

Now each anchor can proceed to orient and scale its coordinate system to best
fit the estimated positions of every other anchor under its coordinate system with its
known physical location. Specifically, consider some anchor A. Number the other an-
chors 1..m. After all calibration is complete, each of the other anchors sends to A their
respective estimated locations e1, e2, . . . , em under A’s arbitrarily chosen coordinate
system. Each of the other anchors also sends to A their respective actual physical loca-
tions, i.e., p1, p2, . . . , pm. Now, A finds a transform T characterised by a rotation θ, a

A. Hence we know that A is clockwise from Q with respect to P , and P is clockwise
from A with respect to Q, hence it must be that Q is clockwise from P with respect to A.
Hence, in the ordered list of A, if the angular displacement of Q from P is greater than

Using Clustering Information for Sensor Network Localization 117

.

T = argmin
G

m∑
i=1

(pi − Gei)2

At least 2 other anchors are needed to uniquely determine T . Once T is determined,
it is then flooded to the rest of the network to allow the other cluster-heads to convert
their estimated positions under A’s coordinate system to actual physical locations.

This procedure will result in each cluster-head having several estimates of its posi-
tion, one for each anchor. Based on the observation that position estimates increase in
error with increasing hop distance from the anchor, each cluster-head uses the estimate
associated with the closest anchor (in terms of cluster-head hop-count) and discards the
others.

4 Results

Based on various combinations of the optimizations described in Section 3, we imple-
mented three versions of our algorithm with various trade-offs:

1. Locally-Aware Anchors with Repeated Initial Calibration
2. Locally-Aware Anchors with Mesh Relaxation
3. Self-Orienting Anchors with Repeated Initial Calibration

With Locally-Aware Anchors, anchors are assumed to know the geographic posi-
tions of their immediate cluster-head neighborhood. This involves greater hardware or
set-up cost. Self-Orienting Anchors do not make this assumption, and are only assumed
to know their own geographic positions. The trade-off for removing this assumption is
slightly lower accuracy and a higher communication cost.

In Repeated Initial Calibration, nodes are first calibrated using the method described
in Section 3.3. When new information arrives and the nodes need to update their posi-
tion estimates, they simply perform the initial calibration algorithm again to compute
their new position. In Mesh Relaxation, the nodes are initialized similarly (i.e., using
the technique of Section 3.3). However, as new information gets updated in the network,
the nodes update their positions using mesh relaxation as described in Section 3.2. The
trade-off is that mesh relaxation is more accurate than repeated initial calibration when
using locally-aware anchors, but mesh relaxation requires more communication and
takes a longer time. We used standard 32-bit floating point numbers during the simu-
lated calculations, but we expect our results to hold also with lower levels of precision
or with fixed-point computations.

We did not investigate the performance of self-orienting anchors with mesh relax-
ation, since these two methods did not interact well together and resulted in both higher
communication overhead and less accuracy than self-orienting anchors with repeated
initial calibration.

We provide a detailed quantitative analysis of each of the three versions of our
algorithm. We evaluate our algorithms against the DV-Hop localization algorithm [1]
with the smoothing optimization described by Nagpal et al. [19], because this is the
only algorithm that also assumes no ranging/directional measurements, no long-range
beacons, and no centralized processing. We investigated the performance of DV-Hop

scaling factor c, and a bit r indicating whether or not reflection is needed, such that T is
the transform that yields the lowest sum of squared errors between Tei and pi for each
of the other anchors:

118 H. Chan, M. Luk, and A. Perrig

we show from our results, although DV-Hop often has better accuracy in deployment
settings with no obstacles and many well-placed anchors, our algorithms often outper-
form DV-Hop in more realistic settings in the presence of obstacles, irregularities and
randomly placed anchors.

4.1 Base Simulation Assumptions and Parameters

Our base simulation setup is described for reference; how we vary the parameters of
this base setup will be described later in each set of results. To evaluate the algorithms,
we set up experiments using a deployment of 10,000 nodes over a square region of
20r × 20r where r is the maximum communication radius. We do not assume that
nodes are synchronized in time; nodes would periodically run an iteration of the algo-
rithm regardless of the state of its neighbors. Anchor nodes are distributed randomly
throughout the deployment. The base setup does not include obstacles.

To simulate irregular communication range, we used the DOI model (or Degree of
Irregularity) described by He et al. [14]. The transmission range of a node is a random
walk around the disc, bounded by the maximum range rmax and minimum range rmin.
We chose to set rmin = 0.5rmax. Let the range of a node in the bearing θ (in degrees)
be rθ . We start with r0 = 0.5(rmin + rmax) and compute each subsequent rθ as a
random walk, i.e., rθ = rθ−1 + X(rmax − rmin)D where X is a random real value
uniformly chosen in the range [−1, 1] and D is the degree of irregularity (DOI). Note
that rtheta is not allowed to exceed rmax or go below rmin. rtheta represents only the
transmission range of a node; since our schemes require bidirectional communication,
we require both nodes to be within each other’s respective transmission ranges in order
to be able to communicate.

The metric for localization is the accuracy of the estimated position, which is mea-
sured as the distance between a node’s estimated position and its true location, divided
by maximum communication range r. The accuracy of a particular trial is measured as
the average error over all nodes in the deployment. We also measured how much the
average error varies among different trials.

4.2 Varying Number of Anchor Nodes in Uniform deployment

We varied the number of anchors from 3 to 7 to observe how accuracy is improved with
increasing number of anchors for each algorithm. We also studied how much the error
varies over different trials.

Figure 3 shows the average error for all four of our algorithms as well as DV-Hop
with normal anchors and with locally aware anchors. The average localization error
for all algorithms improves as the number of anchors increases. However, while the
performance of our algorithms remained relatively stable as the number of anchors
were varied, DV-Hop showed a very high sensitivity to the number of anchors. With
the minimum number of anchors (3), regardless of whether these anchors were locally
aware, DV-Hop typically incurs higher error than any of our algorithms. With 7 anchors,
however, DV-Hop’s average error improves to roughly half of ours. This suggests that
DV-Hop requires significantly more anchors than our protocols in order to be maxi-
mally effective. Furthermore, the rapid degradation of the performance of DV-Hop as
the number of anchors decreases indicates that it is not robust in scenarios where an-

using normal anchors, as well as with Locally-Aware anchors for some scenarios. As

Using Clustering Information for Sensor Network Localization 119

3 4 5 6 7
Number of Anchors

0

0.5

1

1.5

2
E

rr
or

DV-Hop
Locally-Aware, DV-Hop
Locally-Aware, Repeated Calculation
Self-Calibrating, Repeated Calculation
Locally-Aware, Mesh Relaxation

(a) DOI=0.05

3 4 5 6 7
Number of Anchors

0

1

2

3

4

E
rr

or

DV-Hop
Locally Aware, DV-Hop
Locally-Aware, Repeated Calculation
Self-Calibrating, Repeated Calculation
Locally-Aware, Mesh Relaxation

(b) DOI=0.20

Fig. 3. Average Error with Varying Number of Anchors

3 4 5 6 7
Number of Anchors

0

1

2

3

4

5

6

7

8

9

10

11

E
rr

or

DV-Hop
Locally-Aware, Mesh Relaxation

(a) Min and max avg. error

3 4 5 6 7
Number of Anchors

0

1

2

3

4
St

an
da

rd
 D

ev
ia

tio
n

of
 E

rr
or

DV-Hop
Locally-Aware, Repeated Calculation
Self-Calibrating, Repeated Calculation
Locally-Aware, Mesh Relaxation
Self-Calibrating, Mesh Relaxation

(b) Std Dev of avg. error

Fig. 4. Spread of Average Error for the different schemes, DOI=0.2

good performance even with a very small number of anchor nodes, indicating depend-
able performance even if anchor nodes are subject to failure.

Figure 3 also shows that our self-orienting algorithms exhibit slightly poorer but
comparable performance to the algorithms with locally aware anchors. This is an indi-
cation that the algorithms for self-orientation are reasonably effective.

Figure 4a shows how the accuracy varies throughout different trials, with the error
bars representing the minimum and maximum average error among all the trials. For
clarity only one of our algorithms is shown; the other three exhibit similar behavior.
Figure 4b graphs the standard deviation of the average error of each scheme over all
our trials. We observe that although the expected error of DV-Hop becomes lower than
our algorithms when five or more anchors are used, the variance is always much higher.
In the best case, DV-Hop generates extremely accurate estimates. However, DV-Hop’s
error in the worst case scenario is significantly higher than the worst case error of our
algorithm.

The intuition is that DV-Hop algorithm is more sensitive to the relative placement
of anchors since it uses triangulation from anchors to estimate each node’s position.
Triangulation provides highly inaccurate results when anchors are placed in a co-linear

chor node failure could be a factor. On the other hand, our algorithms provide uniformly

120 H. Chan, M. Luk, and A. Perrig

3 4 5 6 7
Number of Anchors

0

5

10

15

20

A
ve

ra
ge

 C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
pe

r
N

od
e

DV-Hop
Locally-Aware, Repeated Calculation
Self-Calibrating, Repeated Calculation
Locally-Aware, Mesh Relaxation

(a) DOI=0.05

3 4 5 6 7
Number of Anchors

0

5

10

15

20

A
ve

ra
ge

 C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
pe

r
N

od
e

DV-Hop
Locally-Aware, Repeated Calculation
Self-Calibrating, Repeated Calculation
Locally-Aware, Mesh Relaxation

(b) DOI=0.20

Fig. 5. Communication Overhead

fashion or are too close together. Clustering, on the other hand, has the advantage of
not being significantly effected by positioning of anchor nodes. In certain cases, an-
chor nodes placed near each other actually improves performance. Random placement
of anchor nodes thus proves to be a great advantage of cluster localization. As sensor
networks become commodity technologies, random placement of anchors will be de-
sirable because it allows for deployments by untrained personnel, instead of needing a
specialized engineer to plan the process.

4.3 Communication Overhead

We measured the communication overhead of each of our schemes. We note that the
overhead of performing clustering formed the bulk of our communications cost. Since
the subsequent localization only involves cluster-heads, the communication cost for
the network is low. An average of 9.11 communications per node were required for
our modified ACE clustering protocol, while the localization schemes at most require
about 3 more communications per node on top of that. Hence, all our schemes achieve
communication costs comparable to DV-Hop.

4.4 Obstacles

In this section, we study deployments with obstacles. Previously, we showed that DV-
Hop is often more accurate in the case where obstacles are absent from the deployment
field and numerous anchors are present. However, in more realistic scenarios, obstacles
of various size and shape can disrupt communication and consequently interfere with
localization.

Our 2 types of obstacles are walls and voids. Walls are represented as a line seg-
ment with length of 250 units, or half the length of the deployment field. Walls can be
oriented in any direction, and all communication through the wall is blocked. Voids are
areas of various fixed shapes that are off-limits during deployment. Our experiments
investigated the effect of irregularly placed walls and regularly-spaced voids on the
various schemes.

Since DV-Hop counts the number of hops between nodes to estimate distance, it
almost always overestimates distances when the 2 nodes are separated by some type of

Using Clustering Information for Sensor Network Localization 121

0 1 2 3 4 5 6
Number of Walls

0

0.5

1

1.5

2

2.5

3

E
rr

or
s

(r
)

DV-Hop
Locally-Aware, Repeated Calculation
Self-Calibrating, Repeated Calculation
Locally-Aware, Mesh Relaxation

(a) DOI=0.05

0 1 2 3 4 5 6
Number of Walls

0

1

2

3

4

E
rr

or
 (

r)

DV-Hop
Locally-Aware, Repeated Calculation
Self-Calibrating, Repeated Calculation
Locally-Aware, Mesh Relaxation

(b) DOI=0.20

Fig. 6. Accuracy with obstacles, 5 anchor nodes

obstacle. This is because DV-Hop uses hop count as an estimator of physical distance.
When an obstacle is between an anchor and a calibrating node, hop counts can be in-
flated leading to a large overestimate of the physical distance. This can negatively affect
the accuracy of the position estimation.

Clustering, on the other hand, is not significantly affected by obstacles. As shown in
Figure 7(c), the regular structure of cluster-heads are preserved around obstacles. Thus,
localization based on clustering typically has much better performance than DV-Hop
when faced with obstacles.

Figure 6 plots the accuracy of localization while increasing number of walls when
using 5 anchor nodes. Locally-Aware schemes had the best performance, consistently
outperforming DV-Hop whenever there are walls in the deployment area. The Self-
Orienting schemes did not do as well in this scenario, yielding slightly worse perfor-
mance compared with DV-Hop. In performing this series of tests, we observed the main
flaw of clustering localization: our schemes perform by creating a map of the deploy-
ment area at the cluster-head level, which represents a relatively coarse granularity of
resolution (about 1.5r). Hence, our schemes perform best when here is sufficient space
between obstacles to allow the regular but coarse structure of the clustering mesh to
pass through the gap. If obstacles are placed close together (e.g., a gap of less than one
communication radius), then the structure of cluster-heads through the gap may be too
coarse to allow cluster-head localization to traverse the gap, leading to a failure in lo-
calization for certain segments of the deployment area. The self-calibrating scheme is
particularly vulnerable to this effect since if an anchor is unable to find the estimated
positions of at least two other anchors, it is unable to calibrate its own relative coor-
dinate space and is thus almost useless for localization. Because the walls used in this
experiment are extremely long and placed independently at random, their placement
would occasionally create small gaps though which DV-Hop could perform localiza-
tion but our cluster-based schemes could not. This explains the relatively small degree
of the performance improvement of our schemes over DV-Hop in these scenarios.

Table 1 shows the average error for selected deployments of voids, which are more
well-spaced obstacles which were designed with sufficient gaps between obstacle fea-
tures to enable the coarse-grained clustering structure to pass through and map out the
entire deployment area. The name of each deployment represents what type of void is

122 H. Chan, M. Luk, and A. Perrig

(a) Actual (b) DV-hop (c) Cluster-
heads

(d) Localized

Fig. 7. Large Obstacles

Cross H S Thin S
DV-Hop 0.768 1.903 4.328 3.670
Locally Aware DV-Hop 0.686 1.650 5.145 3.575
Locally Aware, Mesh Relaxation 0.685 1.228 1.316 1.443
Locally Aware, R.I.C. 0.969 1.177 1.699 1.459
Self-Orienting, R.I.C. 1.235 1.469 2.951 2.919

Table 1. Average error for selected irregular deployments (5 anchors, DOI=0.05)

in the deployment field. For example, cross is a large void in the middle of the deploy-
ment field in the shape of a cross. H is an obstacle in the shape of a large capital H as
represented in Figure 7 and S is a similar large obstacle constructed in the shape of an
S using straight line segments. Figure 7(a) shows the actual deployment of nodes for
obstacle H. Figure 7(b) shows how DV-Hop is unable to reconstruct occluded areas.
Figure 7(c) shows that our cluster-head localization phase yields a good reconstruction
of the deployment area which leads to good localization accuracy for all nodes as shown
in Figure 7(d).

The experimental results confirm our hypothesis that for well-spaced, deeply con-
cave obstacles, clustering localization always performs significantly better than DV-
Hop, much greater than the improvement shown in Figure 6 where the obstacles were
not well-spaced. The Cross-shaped obstacle was sufficiently convex in shape that DV-
Hop retained relatively good accuracy and performed roughly as well as cluster local-
ization. However, both the H and S deployments possess deep cul-de-sacs which could
not be accurately triangulated by DV-Hop (see Figure 7(b)). However, our clustering
methods allowed our schemes to reconstruct the shape of the deployment area (see
Figure 7(c)) which yielded significantly better accuracies. The self-orienting schemes
suffered inaccuracies since occasionally some anchors were unable to deduce estimated
positions of at least two other anchors and were thus unable to self-calibrate. However,
this is not a fundamental weakness of clustering localization and can probably be ad-
dressed by more sophisticated self-calibration algorithms.

We hypothesize that the accuracy of cluster-localization is dependent on having
sufficient clearance space between obstacles to allow the regular cluster-head mesh
structure to pass through. To investigate the extent of this effect, we simulated our self-

Using Clustering Information for Sensor Network Localization 123

(a)

1 1.5 2 2.5 3 3.5
Corridor Width (r)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E
rr

or

(b) Corridor Experiment

0 20 40 60 80
Node Density

0

0.5

1

1.5

2

E
rr

or

DV-Hops
Locally-Aware, DV-Hops
Locally-Aware, Repeated Calculation
Self-Calibrating, Repeated Calculation
Locally-Aware, Mesh Relaxation

(c) Node Density

Fig. 8. Limitations of Cluster-Localization

sisting of two large square deployment areas joined by a long narrow corridor (see
Figure 8(a)). Only two anchors were placed in each each main deployment area; thus
cluster-localization can only be successful if sufficient information can pass through
the corridor to allow calibration of each anchor (unsuccessful nodes simply adopt the
location of the nearest anchor). The results are shown in Figure 8(b) for a DOI of 0.2.
As can be seen, accuracy degrades significantly when the corridor is too narrow to fit
a sufficient number of cluster-heads for the reconstruction of the cluster-head topol-
ogy; however once the corridor is sufficiently wide (2.5r in this case), the cluster-head
structure is able to reconstruct the shape of the corridor and yields accurate results.

We note that our schemes only yield high accuracy for sufficiently dense networks;
Figure 8(c) shows that at low densities (less than 30 nodes per circle of radius r), the
accuracy of cluster localization suffers while DV-Hop retains good performance. This
is because at low densities, clustering is not as tight, and hence the number of adjacent
cluster-heads is lower, leading to a more sparse cluster-head topology which yields less
information for localization.

5 Conclusion

Localization continues to be an important challenge in today’s sensor networks. In this
paper, we propose to use clustering as a basis for determining the position information
of sensor nodes. To the best of our knowledge, this is the first paper to consider this
approach. Our clustering-based approach has many benefits: it is fully distributed, it
provides good accuracy, it only requires that three randomly placed sensor nodes know
their geographic position information, and it works with standard sensor node hardware
without requiring any special hardware such as ultrasound or other ranging equipment.
Moreover, our approach provides accurate position information even in topologies with
walls and other concave structures, as long as the granularity of the obstacle features
are on the same order as the separation between cluster-heads.

calibrating scheme in a deliberately anomalous “dumbbell-shaped” deployment con-

124 H. Chan, M. Luk, and A. Perrig

References

1. Niculescu, D., Nath, B.: Ad hoc positioning system (APS). In: Proceedings of IEEE
GLOBECOM. (2001) 2926–2931

2. Ko, Y.B., Vaidya, N.: Location-aided routing (LAR) in mobile ad hoc networks. In: Pro-
ceedings of MobiCom, ACM (1998) 66–75

3. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless networks. In:
Proceedings of MobiCom. (2000) 243–254

4. Newsome, J., Song, D.: GEM: Graph embedding for routing and data-centric storage in
sensor networks without geographic information. In: Proceedings of SenSys. (2003) 76–88

5. Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing with-
out location information. In: Proceedings of MobiCom. (2003) 96–108

6. Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R., Shenker, S.: GHT: a
geographic hash table for data-centric storage. In: Proceedings of WSNA. (2002)

7. Capkun, S., Hamdi, M., Hubaux, J.P.: Gps-free positioning in mobile ad-hoc networks.
Cluster Computing 5 (2002)

8. Savarese, C., Rabaey, J., Langendoen, K.: Robust positioning algorithms for distributed
ad-hoc wireless sensor networks. In: Proceedings of the General Track: USENIX Annual
Technical Conference. (2002) 317–327

9. Savvides, A., Han, C., Srivastava, M.B.: Dynamic fine grained localization in ad-hoc sensor
networks. In: Proceedings of MobiCom. (2001) 166–179

10. Savvides, A., Park, H., Srivastava, M.B.: The n-hop multilateration primitive for node local-
ization problems. Mobile Networks and Applications 8 (2003) 443–451

11. Ji, X., Zha, H.: Sensor positioning in wireless ad-hoc sensor networks with multidimensional
scaling. In: Proceedings of IEEE Infocom. (2004)

12. Bahl, P., Padmanabhan, V.: Radar: an in-building RF-based user location and tracking sys-
tem. In: Proceedings of IEEE Infocom. (2000)

13. Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low cost outdoor localization for very small
devices. IEEE Personal Communications Magazine 7 (2000) 28–34

14. He, T., Huang, C., Blum, B., Stankovic, J.A., Abdelzaher, T.: Range-free localization
schemes for large scale sensor networks. In: Proceedings of MobiCom. (2003) 81–95

15. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The Cricket location-support system.
In: Proceedings of MobiCom. (2000)

16. Nasipuri, A., Li, K.: A directionality based location discovery scheme for wireless sensor
networks. In: Proceedings of WSNA. (2002) 105–111

17. Doherty, L., Pister, K.S.J., Ghaoui, L.E.: Convex position estimation in wireless sensor
networks. In: Proceedings of IEEE Infocom. (2001)

18. Shang, Y., Ruml, W., Zhang, Y., Fromherz, M.P.: Localization from mere connectivity. In:
Proceedings of MobiHoc. (2003) 201–212

19. Nagpal, R., Shrobe, H., Bachrach, J.: Organizing a global coordinate system from local
information on an ad hoc sensor network. In: Proceedings of IPSN. (2003)

20. Chan, H., Perrig, A.: ACE: An emergent algorithm for highly uniform cluster formation. In:
Proceedings of EWSN. (2004)

21. Younis, O., Fahmy, S.: Distributed clustering in ad-hoc sensor networks: A hybrid, energy-
efficient approach. In: Proceedings of IEEE Infocom. (2004)

22. Duckett, T., Marsland, S., Shapiro, J.: Learning globally consistent maps by relaxation. In:
Proceedings of IEEE ICRA. (2000)

23. Golfarelli, M., Maio, D., Rizzi, S.: Elastic correction of dead-reckoning errors in map build-
ing. In: Proceedings of IEEE ICRA. (1998)

24. Howard, A., Matarić, M., Sukhatme, G.: Relaxation on a mesh: a formalism for generalized
localization. In: Proceedings of IEEE IROS. (2001)

Using Clustering Information for Sensor Network Localization 125

Macro-programming Wireless Sensor
Networks Using Kairos

Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan

University of Southern California,
Los Angeles, CA

{gummadi, gnawali, ramesh}@usc.edu
http://enl.usc.edu

Abstract. The literature on programming sensor networks has focused so far on
providing higher-level abstractions for expressing local node behavior. Kairos is a
natural next step in sensor network programming in that it allows the programmer
to express, in a centralized fashion, the desired global behavior of a distributed
computation on the entire sensor network. Kairos’ compile-time and runtime sub-
systems expose a small set of programming primitives, while hiding from the pro-
grammer the details of distributed-code generation and instantiation, remote data
access and management, and inter-node program flow coordination. In this paper,
we describe Kairos’ programming model, and demonstrate its suitability, through
actual implementation, for a variety of distributed programs—both infrastructure
services and signal processing tasks—typically encountered in sensor network
literature: routing tree construction, localization, and object tracking. Our exper-
imental results suggest that Kairos does not adversely affect the performance or
accuracy of distributed programs, while our implementation experiences suggest
that it greatly raises the level of abstraction presented to the programmer.

1 Introduction and Motivation

Wireless sensor networks research has, to date, made impressive advances in platforms
and software services [1, 2, 3]. The utility and practicality of dense sensing using wire-
less sensor networks has also been demonstrated recently [4, 5, 6]. It is now time to
consider an essential aspect of sensor network infrastructure—support for programming
wireless sensor network applications and systems components at a suitably high-level
of abstraction. Many of the same reasons that have motivated the re-design of the net-
working stack for sensor networks (energy-efficiency, different network use models)
also motivate a fresh look at programming paradigms for these networks.

Two broad classes of programming models are currently being investigated by the
community. One class focuses on providing higher-level abstractions for specifying a
node’s local behavior in a distributed computation. Examples of this approach include
the recent work on node-local or region-based abstractions [7, 8]. By contrast, a sec-
ond class considers programming a sensor network in the large (this has sometimes
been called macroprogramming). One line of research in this class enables a user to
declaratively specify a distributed computation over a wireless sensor network, where

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 126–140, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Macro-programming Wireless Sensor Networks Using Kairos 127

the details of the network are largely hidden from the programmer. Examples in this
class include TinyDB [9, 10], and Cougar [11].

Kairos’ programming model specifies the global behavior of a distributed sensornet
computation using a centralized approach to sensornet programming. Kairos presents
an abstraction of a sensor network as a collection of nodes (Section 3) that can all be
tasked together simultaneously within a single program. The programmer is presented
with three constructs: reading and writing variables at nodes, iterating through the one-
hop neighbors of a node, and addressing arbitrary nodes. Using only these three simple
language constructs, programmers implicitly express both distributed data flow and dis-
tributed control flow. We argue that these constructs are also natural for expressing
computations in sensor networks: intuitively, sensor network algorithms process named
data generated at individual nodes, often by moving such data to other nodes. Allowing
the programmer to express the computation by manipulating variables at nodes allows
us to almost directly use “textbook” algorithms, as we show later in detail in Section 3.2.

Given the single centralized program, Kairos’ compile-time and runtime systems
construct and help execute a node-specialized version of the compiled program for all
nodes within a network. The code generation portion of Kairos is implemented as a
language preprocessor add-on to the compiler toolchain of the native language. The
compiled binary that is the single-node derivation of the distributed program includes
runtime calls to translate remote reads and, sometimes, local writes into network mes-
sages. The Kairos runtime library that is present at every node implements these run-
time calls, and communicates with remote Kairos instances to manage access to node
state. Kairos is language-independent in that its constructs can be retrofitted into the
toolchains of existing languages.

Kairos (and the ideas behind it) are related to shared-memory based parallel pro-
gramming models implemented over message passing infrastructures. Kairos is dif-
ferent from these in one important respect. It leverages the observation that most dis-
tributed computations in sensor networks will rely on eventual consistency of shared
node state both for robustness to node and link failure, and for energy efficiency. Kairos’
runtime loosely synchronizes state across nodes, achieving higher efficiency and greater
robustness over alternatives that provide tight distributed program synchronization se-
mantics (such Sequential Consistency, and variants thereof [12]).

We have implemented Kairos as an extension to Python. Due to space constraints
of this paper, we describe our implementation of the language extensions and the run-
time system in detail in a technical report [13]. On Kairos, we have implemented three
distributed computations that exemplify system services and signal processing tasks
encountered in current sensor networks: constructing a shortest path routing tree, local-
izing a given set of nodes [2], and vehicle tracking [14]. We exhibit each of them in
detail in Section 3 to illustrate Kairos’ expressibility. We then demonstrate through ex-
tensive experimentation (Section 4) that Kairos’ level of abstraction does not sacrifice
performance, yet enables compact and flexible realizations of these fairly sophisticated
algorithms. For example, in both the localization and vehicle tracking experiments, we
found that the performance (convergence time, and network message traffic) and ac-
curacy of Kairos are within 2x of the reported performance of explicitly distributed
original versions, while the Kairos versions of the programs are more succinct and, we
believe, are easier to write.

128 R. Gummadi, O. Gnawali, and R. Govindan

Macro-programming

Abstractions Support

Global
behavior

Local
Behavior

Composition Distribution
& Safe

Execution

Automatic
Optimization

Node-
independent
• TAG, Cougar
• DFuse
Node-dependent
• Kairos
• Regiment
• Split-C

Data-Centric
• EIP, State-
space
Geometric
• Regions, Hood

Sensorware
SNACK Mate

Tofu
Trickle
Deluge

Impala

Fig. 1. Taxonomy of Programming Models for Sensor Networks

2 Related Work

In this section, we give a brief taxonomy (Figure 1) of sensornet programming and place
our work in the context of other existing work in the area. The term “sensornet program-
ming” seems to refer to two broad classes of work that we categorize as programming
abstractions and programming support. The former class is focused on providing pro-
grammers with abstractions of sensors and sensor data. The latter is focused on provid-
ing additional runtime mechanisms that simplify program execution. Examples of such
mechanisms include safe code execution, or reliable code distribution.

We now consider the research on sensor network programming abstractions. Broadly
speaking, this research can be sub-divided into two sub-classes: one sub-class focuses
on providing the programmer abstractions that simplify the task of specifying the node
local behavior of a distributed computation, while the second enables programmers to
express the global behavior of the distributed computation.

In the former sub-class, three different types of programming abstractions have been
explored. For example, Liu et al. [15] and Cheong et al. [16] have considered node
group abstractions that permit programmers to express communication within groups
sharing some common group state. Data-centric mechanisms are used to efficiently im-
plement these abstractions. By contrast, Mainland et al. [8] and Whitehouse et al. [7]
show that topologically defined group abstractions (“neighborhoods” and “regions” re-
spectively) are capable of expressing a number of local behaviors powerfully. Finally,
the work on EIP [17] provides abstractions for physical objects in the environment,
enabling programmers to express tracking applications.

Kairos falls into the sub-class focused on providing abstractions for expressing the
global behavior of distributed computations. One line of research in this sub-class pro-
vides node-independent abstractions—these programming systems do not contain ex-
plicit abstractions for nodes, but rather express a distributed computation in a network-
independent way. Thus, the work on SQL-like expressive but Turing-incomplete query
systems (e.g., TinyDB [10, 9] and Cougar [11]), falls into this class. Another body of
work provides support for expressing computations over logical topologies [18, 19] or

Macro-programming Wireless Sensor Networks Using Kairos 129

task graphs [20] which are then dynamically mapped to a network instance. This repre-
sents a plausible alternative to macroprogramming sensor networks. However, export-
ing the network topology as an abstraction can impose some rigidity in the program-
ming model. It can also add complexity to maintaining the mapping between the logical
and the physical topology when nodes fail.

Complementary to these approaches, node-dependent abstractions allow a program-
mer to express the global behavior of a distributed computation in terms of nodes and
node state. Kairos, as we shall discuss later, falls into this class. As we show, these
abstractions are natural for expressing a variety of distributed computations. The only
other piece of work in this area is Regiment [21], a recent work. While Kairos focuses
on a narrow set of flexible language-agnostic abstractions, Regiment focuses on explor-
ing how functional programming paradigms might be applied to programming sensor
networks in the large, while Split-C [22] provides “split” local-global address spaces to
ease parallel programming that Kairos also provides through the remote variable access
facility, but confines itself to the “C” language that lacks a rich object-oriented data
model and a language-level concurrency model . Therefore, the fundamental concepts
in these two works are language-specific.

Finally, quite complementary to the work on programming abstractions is the large
body of literature devoted to systems in support of network programming. Such sys-
tems enable high-level composition of sensor network applications (Sensorware [23]
and SNACK [24]), efficient distribution of code (Deluge [25]), support for sandboxed
application execution (Maté [26]), and techniques for automatic performance adapta-
tion (Impala [27]).

3 Kairos Programming Model

In this section, we describe the Kairos abstractions and discuss their expressibility and
flexibility using three canonical sensor network distributed applications: routing tree
construction, ad-hoc localization, and vehicle tracking.

3.1 Kairos Abstractions and Programming Primitives

Kairos is a simple set of extensions to a programming language that allows program-
mers to express the global behavior of a distributed computation. Kairos extends the
programming language by providing three simple abstractions.

The first of these is the node abstraction. Programmers explicitly manipulate nodes
and lists of nodes. Nodes are logically named using integer identifiers. The logical nam-
ing of nodes does not correspond to a topological structure. Thus, at the time of pro-
gram composition, Kairos does not require programmers to specify a network topology.
In Kairos, the node datatype exports operators like equality, ordering (based on node
name), and type testing. In addition, Kairos provides a node list iterator data type for
manipulating node sets.

The second abstraction that Kairos provides is the list of one-hop neighbors of a
node. Syntactically, the programmer calls a get neighbors() function. The Kairos

130 R. Gummadi, O. Gnawali, and R. Govindan

runtime returns the current list of the node’s radio neighbors. Given the broadcast na-
ture of wireless communication, this is a natural abstraction for sensor network pro-
gramming (and is similar to regions [8], and hoods [7]). Programmers are exposed to
the underlying network topology using this abstraction. A Kairos program typically is
specified in terms of operations on the neighbor list; it may construct more complex
topological structures by iterating on these neighbors.

The third abstraction that Kairos provides is remote data access, namely the ability
to read from variables at named nodes. Syntactically, the programmer uses a variable
@node notation to do this. Kairos itself does not impose any restrictions on which re-
mote variables may be read where and when. However, Kairos’ compiler extensions
respect the scoping, lifetime, and access rules of variables imposed by the language it
is extending. Of course, variables of types with node-local meaning (e.g., file descrip-
tors, and memory pointers) cannot be meaningfully accessed remotely.

Node Synchronization: Kairos’ remote access facility effectively provides a shared-
memory abstraction across nodes. The key challenge (and a potential source of ineffi-
ciency) in Kairos is the messaging cost of synchronizing node state. One might expect
that nodes would need to synchronize their state with other nodes (update variable val-
ues at other nodes that have cached copies of those variables, or coordinate writes to a
variable) often. In Kairos, only a node may write to its variable, thus mutually exclusive
access to remote variables is not required; thereby, we also eliminate typically subtle
distributed programming bugs arising from managing concurrent writes.

Kairos leverages another property of distributed algorithms for sensor networks in
order to achieve low overhead. We argue that, for fairly fundamental reasons, distributed
algorithms will rely on a property we call eventual consistency: individual intermediate
node states are not guaranteed to be consistent, but, in the absence of failure, the com-
putation eventually converges. This notion of eventual consistency is loosely molded
on similar ideas previously proposed in well-known systems such as Bayou [28]. The
reason for this, is, of course, that sensor network algorithms need to be highly robust
to node and link failures, and many of the proposed algorithms for sensor networks use
soft-state techniques that essentially permit only eventual consistency.

Thus, Kairos is designed under the assumption that loose synchrony of node state
suffices for sensor network applications. Loose synchrony means that a read from a
client to a remote object blocks only until the referenced object is initialized and avail-
able at the remote node and not on every read to the remote variable. This allows nodes
to synchronize changed variables in a lazy manner, thereby reducing communication
overhead. However, a reader might be reading a stale value of a variable, but because of
the way distributed applications are designed for sensor networks, the nodes eventually
converge to the right state. Where this form of consistency is inadequate, we provide a
tighter consistency model, as described at the end of this section.

The Mechanics of Kairos Programming: Before we discuss examples of program-
ming in Kairos, we discuss the mechanics of programming and program execution (Fig-
ure 2). As we have said before, the distinguishing feature of Kairos is that programmers
write a single centralized version of the distributed computation in a programming lan-
guage of their choice. This language, we shall assume, has been extended to incorporate

Macro-programming Wireless Sensor Networks Using Kairos 131

Multi-hop wireless network

Centralized
Program

Annotated
Binary

Kairos Preprocessor & Language Compiler

Program Kairos Runtime

Thread
of

control

Sync
Read/Write

Cached Objects

Managed Objects

Queue Manager

Requests Replies

Sensor Node

Link with runtime
& distribute

Program Kairos Runtime

Thread
of

control

Sync
Read/Write

Cached Objects

Managed Objects

Queue Manager

Requests Replies

Sensor Node

Link with runtime
& distribute

Link with runtime
& distribute

Fig. 2. Kairos Programming Architecture

the Kairos abstractions. For ease of exposition, assume that a programmer has written
a centralized program P that expresses a distributed computation; in the rest of this
section, we discuss the transformations on P performed by Kairos.

Kairos’ abstractions are first processed using a preprocessor which resides as an
extension to the language compiler. Thus, P is first pre-processed to generate annotated
source code, which is then compiled into a binary Pb using the native language com-
piler. While P represents a global specification of the distributed computation, Pb is a
node-specific version that contains code for what a single node does at any time, and
what data, both remote and local, it manipulates.

In generating Pb, the Kairos preprocessor identifies and translates references to re-
mote data into calls to the Kairos runtime. Pb is linked to the Kairos runtime and can be
distributed to all nodes in the sensor network through some form of code distribution
and node re-programming facility [29, 25]. When a copy is instantiated and run on each
sensor node, the Kairos runtime exports and manages program variables that are owned
by the current node but are referenced by remote nodes; these objects are called man-
aged objects in Figure 2. In addition, it also caches copies of managed objects owned
by remote nodes in its cached objects pool. Accesses to both sets of objects are man-
aged through queues as asynchronous request/reply messages that are carried over a
potentially multihop radio network.

The user program that runs on a sensor node calls synchronously into Kairos runtime
for reading remote objects, as well as for accessing local managed objects. These syn-
chronous calls are automatically generated by the preprocessor. The runtime accesses
these cached and managed objects on behalf of the program after suspending the call-
ing thread. The runtime uses additional background threads to manage object queues,
but this aspect is transparent to the application, and the application is only aware of the
usual language threading model.

132 R. Gummadi, O. Gnawali, and R. Govindan

1: void buildtree(node root)
2: node parent, self;
3: unsigned short dist_from_root;
4: node_list neighboring_nodes, full_node_set;
5: unsigned int sleep_interval=1000;

//Initialization
6: full_node_set=get_available_nodes();
7: for (node temp=get_first(full_node_set); temp!=NULL; temp=get_next(full_node_set))
8: self=get_local_node_id();
9: if (temp==root)
10: dist_from_root=0; parent=self;
11: else dist_from_root=INF;
12: neighboring_nodes=create_node_list(get_neighbors(temp));
13: full_node_set=get_available_nodes();
14: for (node iter1=get_first(full_node_set); iter1!=NULL; iter1=get_next(full_node_set))
15: for(;;) //Event Loop
16: sleep(sleep_interval);
17: for (node iter2=get_first(neighboring_nodes); iter2!=NULL; iter2=get_next(neighboring_nodes))
18: if (dist_from_root@iter2+1<dist_from_root)
19: dist_from_root=dist_from_root@iter2+1;
20: parent=iter2;

Fig. 3. Procedural Code for Building a Shortest-path Routing Tree

3.2 Examples of Programming with Kairos

We now illustrate Kairos’ expressibility and flexibility by describing how Kairos may
be used to program three different distributed computations that have been proposed for
sensor networks: routing tree construction, localization, and vehicle tracking.

Routing Tree Construction: In Figure 3, we illustrate a complete Kairos program for
building a routing tree with a given root node. We have implemented this algorithm,
and evaluate its performance in Section 4. Note that our program implements shortest-
path routing, rather than selecting paths based on link-quality metrics [30]: we have
experimented with the latter as well, as we describe below.

The code shown in Figure 3 captures the essential functionality involved in con-
structing a routing tree while maintaining brevity and clarity. It shows how a centralized
Kairos task looks, and illustrates how the Kairos primitives are used to express such a
task. Program variable dist from root is the only variable that needs to be remotely
accessed in lines 18-19, and is therefore a managed object at a source node and a cached
object at the one-hop neighbors of the source node that programmatically read this vari-
able. The program also shows how the node and node list datatypes and their API’s
are used. get available nodes() in lines 6 and 13 instructs the Kairos preprocessor
to include the enclosed code for each iterated node; it also provides an iterator handle
that can be used for addressing nodes from the iterator’s perspective, as shown in line
12. Finally, the program shows how the get neighbors() function is used in line 12
to acquire the one-hop neighbor list at every node.

The event loop between lines 15-20 that runs at all nodes eventually picks a short-
est path from a node to the root node. Our implementation results show that the path
monotonically converges to the optimal path, thereby demonstrating progressive cor-
rectness. Furthermore, the path found is stable and does not change unless there are
transient or permanent link failures that cause nodes to be intermittently unreachable.

This event loop illustrates how Kairos leverages eventual consistency. The access
to the remote variable dist from root need not be synchronized at every step of the
iteration; the reader can use the current cached copy, and use a lazy update mechanism
to avoid overhead. As we shall see in Section 4, the convergence performance and the

Macro-programming Wireless Sensor Networks Using Kairos 133

1: void CooperativeMultilateration()

2: boolean localized=false, not_localizable=false, is_beacon=GPS_available();
3: node self=get_local_node_id();
4: graph subgraph_to_localize=NULL;

5: node_list full_node_set=get_available_nodes();
6: for (node iter=get_first(full_node_set); iter!=NULL; iter=get_next(full_node_set)))

//At each node, start building a localization graph
7: participating_nodes=create_graph(iter);
8: node_list neighboring_nodes=get_neighbors(iter);
9: while ((!localized || !is_beacon) && !not_localizable)
10: for (node temp=get_first(neighboring_nodes); temp!=NULL; temp=get_next(neighboring_nodes))

//Extend the subgraph with neighboring nodes
11: extend_graph(subgraph_to_localize, temp, localized@temp||is_beacon@temp?beacon:unknown);

//See if we can localize the currently available subgraph
12: if (graph newly_localized_g=subgraph_check(subgraph_to_localize))
13: node_list newly_localized_l=get_vertices(newly_localized_g);
14: for (node temp=get_first(newly_localized_l); temp!=NULL; temp=get_next(newly_localized_l))
15: if (temp==iter) localized=true;
16: continue;

//If not, add nodes adjacent to the leaves of the accumulated subgraph and try again
17 node_list unlocalized_leaves;
18: unlocalized_leaves=get_leaves(subgraph_to_localize);
19: boolean is_extended=false;
20: for (node temp=get_first(unlocalized_leaves); temp!=NULL; temp=get_next(unlocalized_leaves))
21: node_list next_hop_l=get_neighbors(temp);
22: for (node temp1=get_first(next_hop_l); temp1!=NULL; temp1=get_next(next_hop_l))
23: extend_graph(subgraph_to_localize, temp1, localized@temp1||is_beacon@temp1?beacon:unknown);
24: is_extended=true;
25: if (!is_extended) not_localizable=true;

Fig. 4. Procedural Code for Localizing Sensor Nodes

message overhead of loose synchrony in real-world experiments is reasonable. We also
tried metrics other than shortest hop count (such as fixing parents according to available
bandwidth or loss rates, a common technique used in real-world routing systems [3]),
and we found that the general principle of eventual consistency and loose synchrony
can be applied to such scenarios as well.

Let us examine Figure 3 for the flexibility programming to the Kairos model af-
fords. If we want to change the behavior of the program to have the tree construction
algorithm commence at a pre-set time that is programmed into a base station node
with id 0, we could add a single line before the start of the for(){} loop at line
7: sleep(starting time@0-get current time()). The runtime would then au-
tomatically fetch the starting time value from node 0.

DistributedLocalizationUsingMulti-lateration: Figure4givesacompletedistributed
program for collaboratively fixing the locations of nodes with unknown coordinates.
The basic algorithm was developed by Savvides et al. [2]. Our goal in implementing this
algorithm in Kairos was to demonstrate that Kairos is flexible and powerful enough to
program a relatively sophisticated distributed computation. We also wanted to explore
how difficult it would be to program a “textbook” algorithm in Kairos, and compare
the relative performance of Kairos with the reported original version (Section 4).

The goal of the “cooperative multi-lateration” algorithm is to compute the locations
of all unknown nodes in a connected meshed wireless graph given ranging measure-
ments between one-hop neighboring nodes and a small set of beacon nodes that already
know their position. Sometimes, it may happen that there are not enough beacon nodes
in the one-hop vicinity of an unknown node for it to mathematically laterize its loca-
tion. The basic idea is to iteratively search for enough beacons and unknown nodes in
the network graph so that, taken together, there are enough measurements and known
co-ordinates to successfully deduce the locations of all unknown nodes in the sub-graph.

134 R. Gummadi, O. Gnawali, and R. Govindan

Figure 4 shows the complete code for the cooperative multi-lateration algorithm.1

The code localizes non-beacon nodes by progressively expanding the subgraph,
(subgraph to localize), considered at a given node with next-hop neighbors of un-
localized leaf vertexes (unlocalized leaves), and is an implementation of Savvides’
algorithm [2]. The process continues until either all nodes in the graph are considered
(lines 20-25) and the graph is deemed unlocalizable, or until the initiator localizes itself
(using the auxiliary function subgraph check()) after acquiring a sufficient number
of beacon nodes. This program once again illustrates eventual consistency because the
variable localized@node is a monotonic boolean, and eventually attains its correct
asymptotic value when enclosed in an event loop. We also found an interesting evi-
dence to the value of Kairos’ centralized global program specification approach—we
encountered a subtle logical (corner-case recursion) bug in the original algorithm de-
scribed in [2] in a local (i.e., bottom-up, node-specific) manner, that became apparent
in Kairos.

Vehicle Tracking: For our final example, we consider a qualitatively different applica-
tion: tracking moving vehicles in a sensor field. The program in Figure 5 is a straight-
forward translation of the algorithm described in [14]. This algorithm uses probabilistic
techniques to maintain belief states at nodes about the current location of a vehicle in
a sensor field. Lines 14-16 correspond to step 1 of the algorithm given in [14–p. 7]
where nodes diffuse their beliefs about the vehicle location. Lines 17-21 compute the
probability of the observation zt+1 at every grid location given vehicle location xt+1 at
time t +1 (step 2 of the algorithm) using the latest sensing sample and vehicle dynam-
ics. Lines 23-25 compute the overall posteriori probability of the vehicle position on
the rectangular grid after incorporating the latest posteriori probability (step 3 of the
algorithm). Finally, lines 26-40 compute the information utilities, Ik’s, at all one-hop
neighboring nodes k for every node, and pick that k = argmax Ik that maximizes this
measure (steps 4 and 5). This node becomes the new “master” node: i.e., it executes the
steps above for the next epoch, using data from all other nodes in the process.

This program illustrates an important direction of future work in Kairos. In this al-
gorithm, the latest values of p(zt+1|xt+1)[x][y]@neighbors must be used in line 33 at
the master because these p(.)[x][y]’s are computed at each sensor node using the latest
vehicle observation sample. With our loose synchronization model, we cannot insure
that the master uses these latest values computed at the remote sensor nodes because
stale cached values may be returned instead by the master Kairos runtime, thereby ad-
versely impacting the accuracy and convergence time of the tracking application. There
are two possible solutions to this. One, which we have implemented currently in Kairos,
is to provide a slightly tighter synchronization model that we call loop-level synchrony,
where variables are synchronized at the beginning of an event loop (at line 11 of every
iteration). A more general direction, which we have left for future work is to explore
temporal data abstractions. These would allow programmers to express which samples

1 Of course, we have not included the low-level code that actually computes the range estimates
using ultrasound beacons. Our code snippet assumes the existence of node-local OS/library
support for this purpose.

Macro-programming Wireless Sensor Networks Using Kairos 135

1: void track vehicle()
2: boolean master=true;
3: float zt+1, normalizing const;
4: float p(xt |zt)[MAX X][MAX Y], p(xt+1 |zt)[MAX X][MAX Y],

p(zt+1 |xt+1)[MAX X][MAX Y], p(xt+1 ,zk
t+1 |zt)[MAX X][MAX Y], p(zk

t+1 |zt), p(xt+1 |zt+1)[MAX X][MAX Y];

5: float max Ik=Ik; node argmax Ik, self=get local node id();
6: node list full node set=get available nodes();
7: for (node iter=get first(full node set); iter!=NULL; iter=get next(full node set))
8: for (int x=0; x<MAX X; x++)
9: for (int y=0; y<MAX Y; y++)

10: p(xt |zt)[x][y]= 1
MAX X×MAX Y ;

11: for(;;)
12: sleep();
13: if (master)
14: for (int x=0; x<MAX X; x++)
15: for (int y=0; y<MAX Y; y++)

16: p(xt+1 |zt)[x][y]= ∑
0≤x′<MAX X

∑
0≤y′<MAX Y

δ (
√

x′2 + y′2 −
√

x2 + y2 − v)p(xt |zt)
δ (
√

x′2 + y′2 −
√

x2 + y2 − v)
;

17: zt+1=sense z();
18: normalizing const=0;
19: for (int x=0; x<MAX X; x++)
20: for (int y=0; y<MAX Y; y++)

21: p(zt+1 |xt+1)[x][y]= r
δa

[
Φ
(ahi−rz

rσ
)
−Φ

(alo−rz
rσ

)]
;

22: normalizing const+=p(zt+1 |xt+1)[x][y] · p(xt+1 |zt)[x][y];
23: for (int x=0; x<MAX X; x++)
24: for (int y=0; y<MAX Y; y++)

25: p(xt+1 |zt+1)[x][y]=
p(zt+1 |xt+1)[x][y]·p(xt+1 |zt)[x][y]

normalizing const ;

26: node list neighboring nodes=get neighbors(iter);
27: append to list(neighboring nodes, self);
28: max Ik=−∞; argmax Ik=self;
29: for (node temp=get first(neighboring nodes); temp!=NULL; temp=get next(neighboring nodes))

30: p(zk
t+1 |zt)=0;

31: for (int x=0; x<MAX X; x++)
32: for (int y=0; y<MAX Y; y++)

33: p(xt+1 ,zk
t+1 |zt)[x][y]=p(zt+1 |xt+1)[x][y]@temp·p(xt+1 |zt)[x][y];

34: p(zk
t+1 |zt)+=p(xt+1 ,zk

t+1 |zt)[x][y];
35: for (int x=0; x<MAX X; x++)
36: for (int y=0; y<MAX Y; y++)

37: Ik+ = log

⎡⎣ p(xt+1 ,zk
t+1 |zt)[x][y]

p(xt+1 |zt)[x][y]p(zk
t+1 |zt)

⎤⎦ · p(xt+1 ,zk
t+1 |zt)[x][y];

38: if (max Ik<Ik) argmax Ik=temp;
39: if (argmax Ik!=self) master=false;
40: master@argmax Ik=true;

Fig. 5. Procedural Code for Vehicle Tracking

of the time series p(.)[x][y] from remote nodes are of interest, while possibly allowing
Kairos to preserve loose synchrony.

4 Kairos Evaluation

We have implemented the programming primitives discussed in the previous section
in Python using its embedding and extendability API’s [31], and have experimented
with the three distributed algorithms described therein. More discussion about our im-
plementation and evaluation can be found in [13]. Our testbed is a hybrid network of
ground nodes and nodes mounted on a ceiling array. The 16 ground nodes are Star-
gates [32] that each run Kairos. In this setup, Kairos uses Emstar [33] to implement
end-to-end reliable routing and topology management. Emstar, in turn, uses a Mica2
mote [34] mounted on the Stargate node (the leftmost picture in Figure 6 shows a single
Stargate+Mica2 node) as the underlying network interface controller (NIC) to achieve
realistic multihop wireless behavior. These Stargates were deployed in a small area
(middle picture in Figure 6), making all the nodes reachable from any other node in

136 R. Gummadi, O. Gnawali, and R. Govindan

Fig. 6. Stargate with Mica2 as a NIC (left), Stargate Array (middle), and Ceiling Mica2dot Array
(right)

a single physical hop (we created logical multihops over this set in the experiments
below). The motes run TinyOS [35], but with S-MAC [36] as the MAC layer.

There is also an 8-node array of Mica2dots [37] mounted on a ceiling (rightmost
picture in Figure 6), and connected through a multiport serial controller to a standard
PC that runs 8 Emstar processes. Each Emstar process controls a single Mica2dot and
is attached to a Kairos process that also runs on the host PC. This arrangement allows
us to extend the size of the evaluated network while still maintaining some measure
of realism in wireless communication. The ceiling Mica2dots and ground Mica2s re-
quire physical multihopping for inter-node communication. The Mica2dot portion of
the network also uses physical multihopping for inter-node communication.

To conduct experiments with a variety of controlled topologies, we wrote a topol-
ogy manager in Emstar that enables us to specify neighbors for a given node and
blacklist/whitelist a given neighbor. Dynamic topologies were simulated by blacklist-
ing/whitelisting neighbors while the experiment was in progress. The end-to-end reli-
able routing module keeps track of all the outgoing packets (on the source node) and
periodically retransmits the packets until an acknowledgment is received from the des-
tination. Hop-by-hop retransmission by S-MAC is complementary and used as a per-
formance enhancement.

Routing Tree Performance: We implemented the routing tree described in Section 3.2
in Kairos, and measured its performance. For comparison purposes, we also imple-
mented One Phase Pull (OPP) [38] routing directly in Emstar. OPP forms the base-
line case because it is the latest proposed refinement for directed-diffusion that is de-
signed to be traffic-efficient by eliminating exploratory data messages: the routing tree
is formed purely based on interest–requests (interest messages in directed diffusion) that
are flooded to the network and responses (data) are routed along the gradients setup by
the interest. To enable a fair comparison of the Kairos routing tree with OPP, we also
implemented reliable routing for OPP.

We varied the number of nodes in our network, and measured the time it takes for
the routing tree in each case to stabilize (convergence time), and the overhead incurred
in doing so. In the case of OPP, the resulting routing tree may not always be the shortest
path routing tree (directed diffusion does not require that), while Kairos always builds
a correct shortest path routing tree. So we additionally measure the “stretch” (the aver-
aged node deviation from the shortest path tree) of the resulting OPP tree with respect to

Macro-programming Wireless Sensor Networks Using Kairos 137

0

5

10

15

20

25

0 5 10 15 20 25

Number of nodes

C
o

n
ve

rg
en

ce
 T

im
e

(S
)

Time K (after)
Time OPP (after)

Time OPP (before)

Time K

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

Number of Nodes

O
ve

rh
ea

d
 (

b
yt

es
)

Overhead K (after)

Overhead OPP (after)

Overhead OPP (before)

Overhead K (before)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30

Number of Nodes

O
P

P
 S

tr
et

ch

Stretch OPP (after)

Stretch OPP (before)

Fig. 7. Convergence Time (left), Overhead (middle), and OPP Stretch (right) for the Routing Tree
Program

the Kairos shortest path tree. Thus, this experiment serves as a benchmark for efficiency
and correctness metrics for Kairos’ eventual consistency model.

We evaluated two scenarios: first to build a routing tree from scratch on a quiescent
network, and second to study the dynamic performance when some links are deleted
after the tree is constructed. Figure 7 shows the convergence time (“K” is for Kairos, and
“before” and “after” denote the two scenarios before and after link failures), overhead,
and stretch plots for OPP and Kairos averaged across multiple runs; for stretch, we
also plot the OPP standard deviation. It can be seen that Kairos always generates a
better quality routing tree than OPP (OPP stretch is higher, especially as the network
size increases) without incurring too much higher convergence time (∼30%) and byte
overhead costs (∼2x) than OPP.

Localization: We have implemented the collaborative multilateration algorithm de-
scribed in Section 3.2. Since we did not have the actual sensors (ultrasound and good
radio signal strength measurement) for ToA (Time of Arrival) ranging, we hard-coded
the pairwise distances obtained from a simulation as variables in the Kairos program in-
stead of acquiring them physically. We believe this is an acceptable artifact that does not
compromise the results below. We perturbed the pairwise distances with white Gaus-
sian noise (standard deviation 20mm to match experiments in [2]) to reflect the realistic
inaccuracies incurred with physical ranging devices.

We consider two scenarios in both of which we vary the total number of nodes. In
the first case (left graph in Figure 8), we use topologies in which all nodes are localiz-
able given a sufficient number and placement of initial beacon nodes, and calculate the

0

5

10

15

20

25

30

35

40

45

10 12 14 16 18 20 22 24 26

Number of Nodes

A
ve

ra
g

e
E

rr
o

r
(c

m
)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

% of Beacons

%
 o

f
R

es
o

lv
ed

 N
o

d
es

Fig. 8. Average Error in Localization (L) and Localization Success Rate (R)

138 R. Gummadi, O. Gnawali, and R. Govindan

Table 1. Performance of Vehicle Tracking in Kairos

Avg Avg Avg Overhead
K ‖x̂MMSE − x‖ ‖x̂− x̂MMSE ‖2 (bytes)

12 42.39 1875.47 135
14 37.24 1297.39 104
16 34.73 1026.43 89
18 31.52 876.54 76
20 28.96 721.68 67
22 26.29 564.32 60
24 24.81 497.58 54

average localization error for a given number of nodes. The average localization error in
Kairos is within the same order shown in [2–Figure 9], thereby confirming that Kairos
is competitive here. Note that this error decreases with increasing network size as ex-
pected because the Gaussian noise introduced by ranging is decreased at each node by
localizing with respect to multiple sets of ranging nodes and averaging the results. In
the second scenario (right graph in Figure 8), we vary the percentage of initial beacon
nodes for the full 24 node topology, and calculate how many nodes ultimately become
localizable. This graph roughly follows the pattern exhibited in [2–Figure 12], thereby
validating our results again.

Vehicle Tracking: For this purpose, we use the same vehicle tracking parameters as
used in [14] (for grid size, vehicle speed, sound RMS, acoustic sensor measurement
simulations, sensor placement and connectivity, and Direction-of-Arrival sensor mea-
surements) for comparing how Kairos performs against [14]. A direct head-to-head
comparison against the original algorithm is not possible because we have fewer nodes
than they have in their simulations, so we present the results of the implementation in a
tabular form similar to theirs. We simulate the movement of a vehicle along the Y-axis
at a constant velocity. The motion therefore perpendicularly bisects the X-axis.

We do two sets of experiments. The first one is to measure the tracking accuracy as
denoted by the location error (‖x̂MMSE − x‖) and its standard deviation (‖x̂− x̂MMSE‖2)
as well as the tracking overhead as denoted by the belief state as we vary the number
of sensors (K). The main goal here is to see whether we observe good performance
improvement as we double the number of sensors from 12 to 24. As table 1 shows, this
is indeed the case: the error, error deviation, and exchanged belief state all decrease,
and in the expected relative order.

In the second experiment, we vary the percentage of sensor nodes that are equipped
with sensors that can do Direction-of-arrival (DOA) based ranging, and not just direction-
agnostic circular acoustic amplitude sensors. These results are described in [13].

5 Conclusion and Future Work

This paper should be viewed as an initial exploration into a particular model of macro-
programming sensor networks. Our contribution in this paper is introducing, describing,
and evaluating this model on its expressivity, flexibility, and real-world performance
metrics. Kairos is not perfect in that, at least in its current incarnation, it does not fully

Macro-programming Wireless Sensor Networks Using Kairos 139

shield programmers from having to understand the performance and robustness im-
plications of structuring programs in a particular way; nor does it currently provide
handles to let an application control the underlying runtime resources for predictability,
resource management, or performance reasons. Finally, while Kairos includes a middle-
ware communication layer in the runtime service that shuttles serialized program vari-
ables and objects across realistic multihop radio links, today, this layer lacks the ability
to optimize communication patterns for a given sensornet topology. Therefore, we be-
lieve that Kairos opens up several avenues of research that will enable us to explore the
continuum of tradeoffs between transparency, ease of programming, performance, and
desirable systems features arising in macroprogramming a sensor network.

References

1. J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchronization using refer-
ence broadcasts,” OSDI, 2002.

2. A. Savvides, C. Han, and S. Srivastava, “Dynamic Fine-Grained localization in Ad-Hoc
networks of sensors,” MOBICOM, 2001.

3. A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges of reliable multihop
routing in sensor networks,” SenSys, 2003.

4. N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and D. Estrin,
“A wireless sensor network for structural monitoring,” SenSys, 2004.

5. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless sensor
networks for habitat monitoring,” WSNA, 2002.

6. A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao, “Habitat monitoring:
application driver for wireless communications technology,” SIGCOMM Comput. Commun.
Rev., 2001.

7. K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood: a neighborhood abstraction for
sensor networks,” MobiSys, 2004.

8. M. Welsh and G. Mainland, “Programming sensor networks using abstract regions,” NSDI,
2004.

9. S. Madden, M. J. Franklin, J. Hellerstein, and W. Hong, “TAG: A tiny AGgregation service
for ad-hoc sensor networks,” OSDI, 2002.

10. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “The design of an acquisitional
query processor for sensor networks,” SIGMOD, 2003.

11. W. F. Fung, D. Sun, and J. Gehrke, “Cougar: the network is the database,” SIGMOD, 2002.
12. S. V. Adve and K. Gharachorloo, “Shared memory consistency models: A tutorial,” IEEE

Computer, vol. 29, no. 12, pp. 66–76, 1996.
13. R. Gummadi, O Gnawali, and R Govindan, ”Macro-programming Wirless Sensor Networks

using Kairos,” USC CS Technical Report Number 05-848, 2005,
http://www.cs.usc.edu/Research/ReportsList.htm.

14. J. Reich J. Liu and F. Zhao, “Collaborative in-network processing for target tracking,”
EURASIP, 2002.

15. J. Liu, M. Chu, J. Liu, J. Reich, and F.Zhao, “State-centric programming for sensor and
actuator network systems,” IEEE Perv. Computing, 2003.

16. E. Cheong, J. Liebman, J. Liu, and F. Zhao, “Tinygals: a programming model for event-
driven embedded systems,” SAC, 2003.

140 R. Gummadi, O. Gnawali, and R. Govindan

17. T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J. George, S. George, L. Gu, T. He,
S. Krishnamurthy, L. Luo, S. Son, J. Stankovic, R. Stoleru, and A. Wood, “Envirotrack:
Towards an environmental computing paradigm for distributed sensor networks,” ICDCS,
2004.

18. A. Bakshi, J. Ou, and V. K. Prasanna, “Towards automatic synthesis of a class of application-
specific sensor networks,” CASES, 2002.

19. A. Bakshi and V. K. Prasanna, “Algorithm design and synthesis for wireless sensor net-
works,” ICPP, 2004.

20. R. Kumar, M. Wolenetz, B. Agarwalla, J. Shin, P. Hutto, A. Paul, and U. Ramachandran,
“Dfuse: a framework for distributed data fusion,” SenSys, 2003.

21. R. Newton and M. Welsh, “Region streams: Functional macroprogramming for sensor net-
works,” DMSN, 2004.

22. http://www.cs.berkeley.edu/projects/parallel/castle/split-c/
23. A. Boulis, C. Han, and M. B. Srivastava, “Design and implementation of a framework for

efficient and programmable sensor networks,” MobiSys, 2003.
24. B. Greenstein, E. Kohler, and D. Estrin, “A sensor network application construction kit

(SNACK),” SenSys, 2004.
25. J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination protocol for network

programming at scale,” SenSys, 2004.
26. P. Levis and D. Culler, “Maté: a tiny virtual machine for sensor networks,” ASPLOS-X, 2002.
27. T. Liu, C. M. Sadler, P. Zhang, and M. Martonosi, “Implementing software on resource-

constrained mobile sensors: experiences with impala and zebranet,” MobiSys, 2004.
28. D. B. Terry, M. M. Theimer, K. Petersen, Demers Demers, M. J. Spreitzer, and C. Hauser,

“Managing update conflicts in Bayou, a weakly connected replicated storage system,” pp.
172–183, Dec. 1995.

29. P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: A self-regulating algorithm for code
propagation and maintenance in wireless sensor networks,” NSDI, 2004.

30. Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris, “A high-throughput
path metric for multi-hop wireless routing,” in Proceedings of the 9th ACM International
Conference on Mobile Computing and Networking (MobiCom ’03), San Diego, California,
September 2003.

31. Guido van Rossum and Fred L. Drake Jr., editors, “Extending and embedding the python
interpreter,” http://docs.python.org/ext/ext.html.

32. http://www.xbow.com/Products/XScale.htm.
33. J. Elson, S. Bien, N. Busek, V. Bychkovskiy, A. Cerpa, D. Ganesan, L. Girod, B. Greenstein,

T. Schoellhammer, T. Stathopoulos, and D. Estrin, “Emstar: An environment for developing
wireless embedded systems software,” CENS-TR-9, 2003.

34. http://www.xbow.com/Products/productsdetails.aspx?sid=72.
35. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System architecture

directions for networked sensors,” SIGOPS Oper. Syst. Rev., 2000.
36. W. Ye and J. Heidemann, “Medium access control in wireless sensor networks,” ISI-TR-580,

2003.
37. http://www.xbow.com/Products/productsdetails.aspx?sid=73.
38. J. Heidemann, F. Silva, and D. Estrin, “Matching data dissemination algorithms to applica-

tion requirements,” SenSys, 2003.

Sensor Network Calculus – A Framework
for Worst Case Analysis

Jens B. Schmitt1 and Utz Roedig2

1 Distributed Computer Systems Lab,
University of Kaiserslautern, Germany

2 Mobile & Internet Systems Laboratory,
University College Cork, Ireland

Abstract. To our knowledge, at the time of writing no methodology
exists to dimension a sensor network so that a worst case traffic sce-
nario can be definitely supported. In this paper, the well known network
calculus is tailored so that it can be used as a tool for worst case traf-
fic analysis in sensor networks. To illustrate the usage of the resulting
sensor network calculus, typical example scenarios are analyzed by this
new methodology. Sensor network calculus provides the ability to derive
deterministic statements about supportable operation modes of sensor
networks and the design of sensor nodes.

1 Introduction

1.1 Motivation

Decisions in daily life are based on the accuracy and availability of information.
Sensor networks can significantly improve the quality of information as well as
the ways of gathering it. For example sensor networks can help to get higher
fidelity information, acquire information in real time, get hard-to-obtain infor-
mation and reduce the cost of obtaining information. Therefore it is commonly
assumed that sensor networks will be applied in many different areas in the
future and they can be viewed as an important part in the vision of ubiqui-
tous/pervasive computing [1].

Application areas for sensor networks might be production surveillance, traf-
fic management, medical care or military applications. In these areas it is crucial
to ensure that the sensor network is functioning even in a worst case scenario. It
must be clear that the sensor network can support all possible communication
patterns that might occur in the network without being overloaded. If a sen-
sor network is used for example for production surveillance it must be ensured
that messages indicating a dangerous condition are not dropped. If functionality
in worst case scenarios cannot be proven, people might be in danger and the
production system might not be certified by authorities.

As it may be difficult or even impossible to produce the worst case in a real
world scenario or in a simulation in a controlled fashion an analytical framework

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 141–154, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

142 J.B. Schmitt and U. Roedig

is desirable that allows a worst case analysis in sensor networks. Network calculus
[4] is a relatively new tool that allows worst case analysis of packet-switched com-
munication networks. Network calculus has successfully been applied to model
wired IP-based networks built on QoS technologies like Integrated Services or
Differentiated Services [2],[3].

1.2 Goals

Our long-term goal is to develop a sensor network calculus that allows an ana-
lytical investigation of performance-related characteristics of wireless sensor net-
works. This paper represents the first step towards such a framework. As sensor
networks differ in many aspects from traditional wired IP-based networks, exist-
ing results from traditional network calculus cannot be transferred directly. In
particular, sensor networks have different constraints, such as battery powered
nodes and dynamic topologies. It is necessary to incorporate these constraints
in the framework, so that they can be analyzed. For these reasons the following
is presented in this paper:

An analytical framework based on network calculus to dimension sensor
networks, in particular taking into account the various trade-offs and
interdependencies between node power consumption, node buffer require-
ments and information transfer delay.

1.3 Problem Scope

Different applications running on top of a sensor network might have different
requirements regarding the information extracted from the field. One important
requirement is a bound on the maximum information transfer delay for data
delivery. If information is delayed too long on the transport path, the application
cannot use the information as it is considered out-dated. At each hop of the
transport path, a message can be delayed. If a sensor node that generates a
message is some hops away from the sink, the message delay accumulates over
the hops. If several messages are delayed in one node at the same time, buffer
space for the messages must be available. Thus, information transfer delay is
correlated with the buffer requirements of a sensor node. The delay in each node
is caused by two interdependent aspects. First, the delay depends on the traffic
that a node has to process (arrival rate). Second, the node needs a specific
amount of time to receive, process and send a message (service rate). The first
aspect depends on the network topology, as the traffic that enters a node might
be generated by several other nodes. The second aspect is dominated by the
reception delay caused by the common usage of duty cycles which defines the
power consumption of a sensor node.

Most energy in a sensor node is used for communication and one very effective
and generic way to solve the problem is to optimize power consumption on
the data link layer by implementing duty cycles. Thereby, the receiver alters
periodically between a power intensive idle mode (idle duration T1) and a power

Sensor Network Calculus – A Framework for Worst Case Analysis 143

saving sleep mode (sleep duration T2) state. Thus, the duty cycle δ is defined
as δ = T1/(T1 + T2) × 100[%]. To transmit, a sender has to catch the receiver
in its idle phase. This is achieved by using a long preamble in front of each
single message notifying the receiver of an incoming message. The need for the
long preamble implies that the effective channel bandwidth is reduced and the
information transfer delay is increased. The proportion between sleep and idle
phase defines the power consumption of a node and the possible forwarding rate
(service curve). The usage of duty cycles allows the lifetime of a node to be
stretched from several days to over one year [6]. Therefore nearly all practical
sensor networks in use today implement duty cycles as a method to extend the
network lifetime [13],[8].

1.4 Outline

In the remaining paper it is shown how network calculus can be tailored and ex-
tended so that a worst case analysis of the relevant quantities in sensor networks
is possible. Section 2 gives a brief summary of the network calculus and the basic
sensor network calculus approach is presented. Section 3 shows in detail how the
model is instantiated and applied. Section 4 presents some use cases that show
how the model can be used to analyze common real-world scenarios. Section 5
presents related work and Section 6 concludes the paper.

2 Sensor Network Calculus

2.1 Background on Network Calculus

Network calculus is the tool to analyze flow control problems in networks with
particular focus on determination of bounds on worst case performance. It has
been successfully applied as a framework to derive deterministic guarantees on
throughput, delay, and to ensure zero loss in packet-switched networks [4]. Net-
work calculus can also be interpreted as a system theory for deterministic queue-
ing systems, based on min-plus algebra. What makes it different from traditional
queueing theory is that it is concerned with worst case rather than average case
or equilibrium behaviour. It thus deals with bounding processes called arrival
and service curves rather than arrival and departure processes themselves.

Next some basic definitions and notations are provided before some
basic results from network calculus are summarized. In depth results can be
found in [4].

Definition 1. The input function R(t) of an arrival process is the number of
bits that arrive in the interval [0, t]. In particular R(0) = 0, and R is wide-sense
increasing, i.e. R(t1) ≤ R(t2) for all t1 ≤ t2.

Definition 2. The output function R∗(t) of a system S is the number of bits
that have left S in the interval [0, t]. In particular R∗(0) = 0, and R is wide-sense
increasing, i.e. R∗(t1) ≤ R∗(t2) for all t1 ≤ t2.

144 J.B. Schmitt and U. Roedig

Definition 3. Min-Plus Convolution. Let f and g be wide-sense increasing and
f(0) = g(0) = 0. Then their convolution under min-plus algebra is defined as

(f ⊗ g)(t) = inf
0≤s≤t

{f(t− s) + g(s)}

Definition 4. Min-Plus Deconvolution. Let f and g be wide-sense increasing
and f(0) = g(0) = 0. Then their deconvolution under min-plus algebra is defined
as

(f � g)(t) = sup
s≥0

{f(t + s)− g(s)}

Now, by means of the min-plus convolution, the arrival and service curve are
defined.

Definition 5. Arrival Curve. Let α be a wide-sense increasing function such
that for t < 0. α is an arrival curve for an input function R iff R ≤ R⊗α. It is
also said that R is α-smooth or R is constrained by α.

Definition 6. Service Curve. Consider a system S and a flow through S with
R and R∗. S offers a service curve β to the flow iff β is wide-sense increasing
and R∗ ≥ R⊗ β.

From these, it is now possible to capture the major worst-case properties
for data flows: maximum delay and maximum backlog. These are stated in the
following theorems.

Theorem 1. Backlog Bound. Let a flow R(t), constrained by an arrival curve
α, traverse a system S that offers a service curve β. The backlog x(t) for all t
satisfies:

x(t) ≤ sup
s≥0

{α(s)− β(s)} = v(α, β) (1)

v(α, β) is also often called the vertical deviation between α and β.

Theorem 2. Delay Bound. Assume a flow R(t), constrained by arrival curve
α, traverses a system S that offers a service curve β. At any time t, the virtual
delay d(t) satisfies:

d(t) ≤ sup
s≥0

{inf{τ ≥ 0 : α(s) ≤ β(s + τ)}} = h(α, β) (2)

v(α, β) is also often called the horizontal deviation between α and β.
As a system theory network calculus offers further results on the concate-

nation of network nodes as well as the output when traversing a single node.
Especially the latter for which now the min-plus deconvolution is used will be
of high importance in the sensor network setting as it potentially involves a
so-called burstiness increase when a node is traversed by a data flow.

Sensor Network Calculus – A Framework for Worst Case Analysis 145

Theorem 3. Output Bound. Assume a flow R(t) constrained by arrival curve
α traverses a system S that offers a service curve β. Then the output function
is constrained by the following arrival curve

α∗ = α� β ≥ α (3)

Theorem 4. Concatenation of Nodes. Assume a flow R(t) traverses systems S1

and S2 in sequence where S1 offers service curve β1 and S2 offers β2. Then the
resulting system S, defined by the concatenation of the two systems offers the
following service curve to the flow:

β = β1 ⊗ β2 (4)

2.2 Sensor Network System Model

In this paper the common class of single base station oriented operation models is
assumed. Within the traffic that is modeled only the sensor reports are taken into
account. Traffic generated from the base station towards the nodes (e.g. interests
[16] to set up the network structure and configure the nodes) is explicitly not
taken into account. This is considered feasible based on the assumption that the
traffic flowing towards the sensors is magnitudes lower than traffic caused by the
sensing events. Furthermore, it is assumed that the routing protocol being used
forms a tree in the sensor network.1Hence N sensor nodes arranged in a directed
acyclic graph are given.

Each sensor node i senses its environment and thus is exposed to an input
function Ri corresponding to its sensed input traffic. If sensor node i is not a
leaf node of the tree then it also receives sensed data from all of its child nodes
child(i, 1), . . . , child(i, ni), where ni is the number of child nodes of sensor node
i. Sensor node i forwards/processes its input which results in an output function
R∗

i from node i towards its parent node.
Now the basic network calculus components, arrival and service curve, have

to be incorporated. First the arrival curve ᾱi of each sensor node in the field has
to be derived. The input of each sensor node in the field, taking into account its
sensed input and its childrens input, is given by:

R̄i = Ri +
ni∑

j=1

R∗
child(i,j) (5)

Thus, the arrival curve for the total input function for sensor node i is given by:

ᾱi = αi +
ni∑

j=1

α∗
child(i,j) (6)

1 If multiple sinks are assumed one simple way to use the following methodology would
be to analyze each tree resulting from a given sink in isolation and later on additively
combine interesting quantities as for example buffer requirements at a certain sensor
node.

146 J.B. Schmitt and U. Roedig

Candidates for actual arrival curves on the sensed input are discussed in
Section 3.1.

Second, the service curve has to be specified. The service curve depends on
the way packets are scheduled in a sensor node which mainly depends on link
layer characteristics (see Section 1.3). More specific, the service curve depends
on how the duty cycle and therefore the energy-efficiency goals are set.2 Again
the discussion of actual candidates for sensor node service curves is deferred to
Section 3.2 when the whole sensor network calculus framework has been pre-
sented. Finally, the output of sensor node i, i.e. the traffic which it forwards to
its parent in the tree, is constrained by the following arrival curve:

α∗
i = ᾱi � βi =

⎛⎝αi +
ni∑

j=1

α∗
child(i,j)

⎞⎠� βi (7)

In order to calculate a network-wide characteristic like the maximum informa-
tion transfer delay or local buffer requirements especially at the most challenged
sensor node just below the sink (which is called node 1 from now on) an iterative
procedure to calculate the network internal flows is required:

1. Let us assume that arrival curves for the sensed input αi and service curves
βi for sensor node i, i = 1, . . . , N , are given.

2. For all leaf nodes the output bound α∗
i can be calculated according to (3).

Each leaf node is now marked as “calculated”.
3. For all nodes only having children which are marked “calculated” the output

bound α∗
i can be calculated according to (7) and they can again be marked

“calculated”.
4. If node 1 is marked “calculated” the algorithm terminates, otherwise go to

step 3.

After the network internal flows are computed according to this procedure,
the local worst case buffer requirements Bi and per node delay bounds Di for
each sensor node i can be calculated according to Theorem 1 and 2:

Bi = v(ᾱi, βi) = sup
s≥0

{ᾱi(s)− βi(s)} (8)

Di = h(ᾱi, βi) = sup
s≥0

{inf{τ ≥ 0 : ᾱi(s) ≤ βi(s + τ)}} (9)

To compute the total information transfer delay D̄i for a given sensor node i
the per node delay bounds on the path P (i) to the sink need to be added:

D̄i =
∑

i∈P (i)

Di (10)

2 The service curve might further depend on whether more advanced sensor network
characteristics like in-network processing, e.g. for aggregation or even prioritization
of some traffic is provided.

Sensor Network Calculus – A Framework for Worst Case Analysis 147

The maximum information transfer delay in the sensor network can then
obviously be calculated as

D̄ = max
i=1,...,N

D̄i (11)

Discussion. Readers very knowledgeable in network calculus may wonder about
the hop-by-hop calculation of the total delay as specified in (11) and whether
it would not be possible to derive a network-wide service curve based on the
concatenation result of Theorem 4. While due to the traffic aggregation inside
the network the concatenation result cannot be applied directly, there is in fact a
way to still derive a network-wide service curve based on modified service curves
that take into account the effects of cross-traffic on a data flow [4]. However,
the bounds achieved in this way are not necessarily lower than for (11). This
depends on the actual parameters of arrival and service curves. Furthermore, we
believe that the hop-by-hop calculation will lend itself better towards integrating
in-network processing into future, more elaborate extensions of the model.

Often, sensor network applications may regard message transfer delay only
as a constraint and primarily care about maximizing their lifetime. The length
of the duty cycle, and thus the energy consumption properties of the sensor
nodes, are incorporated into the service curve as will be discussed in Section 3.2.
Hence, instead of calculating delay bounds and buffer requirements as described
above, the calculations could also start with a given delay/buffer requirement
and work out the length of the duty cycle and thus the power consumption level
and therefore the network lifetime.

3 Instantiating the Model

Before progressing to some numerical examples the abstract sensor network cal-
culus model needs to be instantiated with concrete arrival and service curves. In
the following subsections these crucial aspects and their influence on the worst
case behaviour of the system are discussed in a qualitative fashion before in
Section 4 more quantitative results are presented.

3.1 Arrival Curve Candidates

Maximum Sensing Rate. The simplest option in bounding the sensing input
at a given sensor node is based on its maximum sensing rate which is either
due to the way the sensing unit is designed or limited to a certain value by
the sensor network application’s task in observing a certain phenomenon. For
example, it might be known that in a temperature surveillance sensor system,
the temperature does not have to be reported more than once per second at
most. The arrival curve for a sensor node i corresponding to simply putting a
bound on the maximum sensing rate is given by

αi(t) = pit = γpi,0(t) (12)

148 J.B. Schmitt and U. Roedig

Note that the assumption is made that each sensor node has its individual
arrival curve respectively maximum sensing rate.

This arrival curve can be used in situations where all sensor nodes are set up
to periodically report the condition in a sensor field. Thereby each sensor has a
maximum possible rate with which the sensing information can be reported.

Average Sensing Rate. Depending on the sensor network application the
maximum sensing rate arrival curve might lead to very conservative bounds if
the maximum sensing rate is only rarely the actual sensing rate. In this situation
it would be much more useful if the arrival curve could be based on the average
sensing rate. Additionally there should be permission of some short-term fluc-
tuations if the sensing must be intensified for certain periods of high activity
in the field. However, in order to avoid the use of the maximum sensing rate
arrival curve it is crucial that the time during which the average sensing rate
may be exceeded can be upper bounded. In many applications that should be
possible since after some time the phenomenon will disappear again or has to
be acted on such that it disappears again (e.g. in a sensor network that also
comprises actuators). The arrival curve that captures the average sensing rate
with short-term fluctuations for sensor node i is given by

αi(t) = sit + bi = γsi,bi
(t) (13)

This affine arrival curve can be shown to be equivalent to the famous to-
ken/leaky bucket as it is known from traditional traffic control [4]. It allows
sensing at a higher rate than si for short periods of time but in the long run
only allows sensing at the average rate si.

This arrival curve can be used to describe situations in which sensors usually
report with a low rate. If a phenomenon is detected in the vicinity of the sensor,
the sensing rate is increased for a fixed amount of time.

Discussion. The set of sensible arrival curve candidates is certainly larger than
the arrival curves described above. The more knowledge on the sensing operation
and its characteristics is incorporated into the arrival curve for the sensing input
the better the worst case bounds become. We consider it a strength of the sensor
network calculus framework that it is open with respect to arbitrary arrival
curves. On the other hand, the options presented above may be sufficient in a
large number of sensor network scenarios.

3.2 Service Curve Candidates

The service curve captures the characteristics with which sensor data is for-
warded by the sensor nodes towards the sink. It abstracts from the specifics and
idiosyncracies of the link layer and makes a statement on the minimum service
that can be assumed even in the worst case.

Rate-Latency Service Curve. A typical and well known example of a service
curve from traditional traffic control in a packet-switched network is given by

βR,T (t) = R(t− T)+ (14)

Sensor Network Calculus – A Framework for Worst Case Analysis 149

where the notation (x)+ denotes x if x ≥ 0 and 0 otherwise. This is often also
called a rate-latency service curve and results from the use of many popular
packet schedulers (for example Weighted Fair Queueing (WFQ) [11]) many of
which can be generalized as guaranteed rate or latency rate schedulers [9], [10].
While for sensor networks there may often be neither a necessity nor the re-
sources (e.g. energy, computational power, memory capacity) for a sophisticated
scheduling algorithm like WFQ, the class of rate-latency service curves is still
very interesting. This is due to the fact that the latency term nicely captures the
characteristics induced by the application of a duty cycle concept. Whenever the
duty cycle approach is applied there is the chance that sensed data or data to be
forwarded just arrives after the last duty cycle (of the next hop!) is just over and
thus a fixed latency occurs until the forwarding capacity is available again. In the
simple duty cycle scheme presented in Section 1.3 this latency would need to be
accounted for for all data transfers since the preamble length is fixed, in schemes
where the data is repeated for a certain amount of time and a feedback from
the receiver signals when the sender can stop this repetition, the latency would
really represent a worst case scenario as just mentioned. For the forwarding ca-
pacity it is assumed that it can be lower bounded by a fixed rate which depends
on transceiver speed, the chosen link layer protocol and the duty cycle. So, with
some new parameters the following service curve at sensor node i is obtained:

βi(t) = βfi,li(t) = fi(t− li)+ (15)

Here fi and li denote the forwarding rate respectively forwarding latency for
sensor node i.

4 Sensor Network Calculus at Work

In this section some numerical examples for the previously presented sensor net-
work calculus framework are described. These examples are chosen with the
intention of describing realistic and common application scenarios, yet they are
certainly simplifying matters to some degree for illustrative purposes. As men-
tioned in the previous sections, the sensor network calculus framework allows,
from a worst case perspective, to relate the following local characteristics:

– Sensing Activity : this parameter is described in the framework by the arrival
curve concept;

– Buffer Requirements: the buffer requirements of each node are described by
the backlog bound;

to the following global characteristics:

– Information Transfer Delay: the delay in each node is described by the delay
bound;

– Network Lifetime: the energy consumption is described by the duty cycle
represented in the service curve.

150 J.B. Schmitt and U. Roedig

The goal in using sensor network calculus is to determine specific values
for these characteristics for a given application scenario. The scenario itself is
characterized by further constraints such as topology and routing.

4.1 Basic Scenario

The intention of this example is to analytically explore the possible range of the
characteristics discussed above in a realistic scenario. Thereafter it is analyzed
in which operation range a state of the art sensor node could be used to form
the sensor field.

Topology and Routing. The sensor field is assumed to be a grid, the distance
between the sensors is d. Fig. 1 shows the lower half of a grid shaped sensor field
with the base station (sink) located in its center. The size of the field is 8d× 8d,
containing N = 80 sensors each with an idealized transmission range of

√
2d.

For the routing protocol, the Greedy Perimeter Stateless Routing (GPSR)
protocol is used [12]. All nodes in GPSR must be aware of their position within
a sensor field. Each node communicates its current position periodically to its
neighbors through beacon packets. In the given static scenario, these beacons
have to be transmitted only once. Upon receiving a data packet, a node analyzes
its geographic destination. If possible, the node always forwards the packet to the
neighbor geographically closest to the packet destination. If there is no neighbor
geographically closer to the destination, the protocol tries to route around the
hole in the sensor field. This routing around a hole is not used in the described
topology. In Fig. 1 the resulting structure of the communication paths is shown.

Fig. 1. Sensor Field with Grid Layout

Sensing Activity. It is assumed that the sensor field is used to collect data
periodically from each of the sensors. Each sensor can report with a maximum
report frequency of p. Thus, the maximum sensing rate arrival curve described
by (12) is used to model the upper bound of the sensing activity of each node
in the sensor field. A homogeneous field is assumed, hence

αi(t) = pt = γp,0(t) (16)

Sensor Network Calculus – A Framework for Worst Case Analysis 151

Each node additionally receives traffic from its child nodes according to the
traffic pattern implied by the topology and the routing protocol (see 1). There-
fore, the arrival curve ᾱi for the total input of a sensor node i is given by equation
(6). Later it will be shown in detail how the relevant ᾱi can be calculated.

Network Lifetime. To achieve a high network lifetime a duty cycle of δ = 1%
is set for the nodes in the network. As a sensor node, the Mica-2 [13] platform
is assumed. Mica-2 supports a link speed of 19.2 kbit/s. The minimum idle time
of the transceiver is T1 = 11[ms] (3ms to begin sampling, 8ms minimum pream-
ble length), the corresponding sleep time is T2 = 1085[ms]. Thus, a maximum
packet forwarding rate of 0.89[packets/s] (f = 258[bit/s]) can be achieved.3The
resulting latency for the packet forwarding is l = T1 + T2. This packet forward-
ing scheme can be described by the rate-latency service curve as described by
equation (15) in Section 3.2:

βi(t) = βf,l(t) = f(t− l)+ = 258(t− 1.096)+[bit] (17)

Calculation. After defining the scenario, the sensor network calculus frame-
work can now be used to evaluate the characteristics of interest and their in-
terdependencies. Goal of the calculation is to determine these characteristics
at the sensor node with the worst possible traffic conditions. In this example
this is the node s10. If the characteristics in this node are determined and the
node is dimensioned to cope with them, all other nodes in the field (assuming
homogeneity) are dimensioned properly as well.

To calculate the total traffic pattern, the algorithm described in Section 2.2
has to be used. First the output bound α∗

40 of the leaf node s40 has to be
calculated using (16), (17) and (3):

α40 = γp,0, β40 = βf,l = β, α∗
40 = α40 � β40 = γp,pl (18)

The output bound for node s40 is also the output bound for the other leaf
nodes (e.g. α∗

40 = α∗
41 = α∗

42 = α∗
43). Now the output bounds for the nodes one

level higher in the tree can be calculated using equation (18), (16), (17) and (7):

ᾱ30 = γp,0 + 3α∗
40 = γp,0 + 3γp,pl = γ4p,3pl, α∗

30 = ᾱ30 � β = γ4p,7pl (19)

The calculation can now be repeated until node s10 is reached: . . .

ᾱ10 = γp,0 + 2α∗
21 + α∗

20 = γ16p,34pl, α∗
10 = ᾱ10 � β = γ16p,50pl (20)

After the arrival curve for node s10 is calculated, the worst case buffer re-
quirements B10 and the information transfer delay D can be calculated according
to equation (8) and (9):

3 Values are taken from the TinyOS code (CC1000Const.h). The packet length is 36
bytes, the preamble length for 1% duty cycle is 2654 bytes.

152 J.B. Schmitt and U. Roedig

B10 = v(ᾱ10, β) = 50pl

D10 = h(ᾱ10, β) = l +
34pl

f
, D20 = h(ᾱ20, β) = l +

13pl

f

D30 = h(ᾱ30, β) = l +
3pl

f
, D40 = h(ᾱ40, β) = l

D = D40 + D30 + D20 + D10 = 4l +
50pl

f

Discussion. Now, after all nodes are calculated, it is possible to determine
specific values for the characteristics of interest for the given application scenario.
Furthermore it is possible to evaluate how these factors influence each other.
As mentioned above, due to the channel speed and the selected duty cycle,
the effective maximum forwarding speed is f = 258[bit/s]. The arrival rate of
packets cannot be higher than the maximum forwarding speed. A higher arrival
rate would result in an infinite queueing of packets. Therefore the sensing rate
must be set such that 16p ≤ f . In the following, the highest possible integral
sensing rate is assumed: p =
f/16� = 16[bit/s]. This first result already shows
the limits of this specific sensor field regarding its maximum sensing frequency.
Translated in TinyOS packets with a standard size of 36 byte, the result shows
that each sensor can only send a packet every 18 seconds.

The backlog bound at node s10 is now given by: B10 = 50pl = 876.8[bit].
This result can be translated into TinyOS packets with the standard size of
36 byte. In this case, �3.04 = 4 packets must be stored in the worst case
in node s10. As a Mica-2 node provides per default only a buffer space of
one, a node modification would be necessary to support the described sce-
nario in the worst case. The maximum information transfer delay is given by:
D = 4l + 51pl

f = 7.85[s].
To improve the backlog bound and the information transfer delay, the duty

cycle used in the nodes can be modified. Of course the improvements have to
be paid in this case with a higher energy consumption in the nodes and thus a
shorter network lifetime. If the duty cycle is set to 11.5%4, a maximum packet
forwarding rate of 0.54[packets/s] (f = 2488[bit/s]) can be achieved. The re-
sulting delay for the packet forwarding is l = T1 + T2 = 11 + 85 = 96[ms].
Now the following is obtained: B10 = 50pl = 76.8. In this case now, only 1
TinyOS packets needs to be stored in node s10 even under worst case con-
ditions. The information transfer delay is now given by: D = 4l + 51pl

f =
0.41[s].

4 A duty cycle value offered by the TinyOS code for the Mica-2.

Sensor Network Calculus – A Framework for Worst Case Analysis 153

5 Related Work

To the knowledge of the authors, there are currently no tools available that allow
a systematic and general analysis of the worst case traffic conditions in a sensor
network. However, for the analytical investigation of very specific properties of
a sensor network or sensor node prior work exists. Some research work proposes
models that have the ability to predict the reliability of messages. In [14] for
example it is shown how the reliability can be calculated and controlled by ad-
justing the message forwarding schemes. Another research field is the prediction
of traffic patterns in sensor networks so that data aggregation can be performed.
In [15] for example it is described how traffic patterns at nodes can be predicted
and modified such that an efficient data aggregation is possible.

In this paper, network calculus is tailored for the purpose of establishing a
very generic framework to analyze traffic patterns in a wireless sensor network.
To our knowledge only one publication [17] exists in the context of wireless sensor
networks that uses network calculus as analytical tool. The latter paper deals
with the very different problem of developing a theoretically sound congestion
control in distributed sensor networks. The authors make some basic observations
on their flow controller using network calculus but do not consider to actually
model the sensor network itself using network calculus which has been the goal
of the paper at hand.

6 Conclusion and Outlook

An analytical framework based on network calculus to dimension sensor net-
works has been presented. Using real world examples it has been shown how
to apply the framework for practical problems in sensor network dimensioning.
More specifically, it has been demonstrated how the various trade-offs and inter-
dependencies between node power consumption, node buffer requirements and
information transfer delay can be described using the sensor network calculus
framework.

In this paper, the focus has been set on network dimensioning. However, the
presented framework can be used as well for e.g. on-line admission control. In
such a case, the sensor network calculus framework can for example be used to
dynamically decide if or if not an interest can be served by the sensor network. A
further application might be in topology control, where the respective decisions
may also be driven by how the system behaves in the worst case.

References

1. M. Weiser. The computer for the 21st century. Scientific American, 265(3):94-104,
September 1991.

2. R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architec-
ture: an Overview. RFC 1633, June 1994.

154 J.B. Schmitt and U. Roedig

3. K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differentiated Ser-
vices Field (DS Field) in the IPv4 and IPv6 Headers. Proposed Standard RFC
2474, December 1998.

4. J.-Y. Le Boudec and P. Thiran. Network Calculus - A Theory of Deterministic
Queueing Systems for the Internet. Springer, Lecture Notes in Computer Science,
LNCS 2050, 2001.

5. Chipcon SmartRF CC1000 Data Sheet. Chipcon, www.chipcon.com. 2002.
6. Crossbow Technology INC. Smart Dust Training Seminar. Tutorial at the 1st IEEE

European Workshop on Wireless Sensor Networks (EWSN2004), Berlin, Germany,
January 2004.

7. J. Polastre. Design and Implementation of Wireless Sensor Networks for Habitat
Monitoring. Masters Thesis. University of California, Berkeley. Berkeley, CA. May
23, 2003.

8. A. Barroso, J. Benson, T. Murphy, U. Roedig, C. Sreenan, S. Bellis, K. De-
laney, B. OFlynn. The DSYS25 Sensor Platform. Demo at the SenSys2004.
http://www.cs.ucc.ie/˜ur1/pages/publications/files/sensys04barroso.pdf

9. P. Goyal, S. S. Lam, and H. Vin. Determining End-to-End Delay Bounds in Het-
erogeneous Networks. In Proceedings of Network and Operating System Support
for Digital Audio and Video, 5th International Workshop, NOSSDAV95, Durham,
New Hampshire, USA. Springer LNCS 1018, April 1995.

10. D. Stiliadis and A. Varma. Latency-Rate Servers: A General Model for Anal-
ysis of Traffic Scheduling Algorithms. IEEE/ACM Transactions on Networking,
6(5):611624, October 1998.

11. Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and Simulation of
a Fair Queueing Algorithm. In Proceedings of ACM SIGCOMM, pp. 3-12, August
1989.

12. B. Karp and H. T. Kung, ”GPSR : greedy perimeter stateless routing for wireless
networks,” in Mobile Computing and Networking, pp. 243-254, 2000.

13. Crossbow Technology INC. Mica-2 Data Sheet. Crossbow,
14. http://www.xbow.com.
15. B. Deb, S. Bhatnagar and B. Nath. ReInForM: Reliable Information Forwarding

using Multiple Paths in Sensor Networks. In Proceedings of the 28th Annual IEEE
conference on Local Computer Networks (LCN 2003), Bonn, Germany, October
2003.

16. U. Roedig, A. Barroso, and C. J. Sreenan. Determination of Aggregation Points in
Wireless Sensor Networks. In Proceedings of the 30th Euromicro Conference (EU-
ROMICRO2004), Rennes, France, IEEE Computer Society Press, August 2004.

17. C. Intanagonwiwat, R. Govindan and D. Estrin. Directed Diffusion: A Scalable and
Robust Communication Paradigm for Sensor Networks In Proceedings of the Sixth
Annual International Conference on Mobile Computing and Networks (MobiCOM
2000), August 2000, Boston, Massachusetts.

18. J. Zhang, K. Premaratne and Peter H. Bauer. Resource Allocation and Conges-
tion Control in Distributed Sensor Networks - a Network Calculus Approach. In
Proceedings of Fifteenth International Symposium on Mathematical Theory of
Networks and Systems, University of Notre Dame, August 12-16, 2002.

Design and Comparison of Lightweight Group

Management Strategies in EnviroSuite�

Liqian Luo, Tarek Abdelzaher, Tian He, and John A. Stankovic

Department of Computer Science, University of Virginia,
Charlottesville, VA 22904

{ll4p, zaher, th7c, stankovic}@cs.virginia.edu

Abstract. Tracking is one of the major applications of wireless sensor
networks. EnviroSuite, as a programming paradigm, provides a compre-
hensive solution for programming tracking applications, wherein moving
environmental targets are uniquely and identically mapped to logical
objects to raise the level of programming abstraction. Such mapping is
done through distributed group management algorithms, which organize
nodes in the vicinity of targets into groups, and maintain the uniqueness
and identity of target representation such that each target is given a
consistent name. Challenged by tracking fast-moving targets, this paper
explores, in a systematic way, various group management optimizations
including semi-dynamic leader election, piggy-backed heartbeats, and im-
plicit leader election. The resulting tracking protocol, Lightweight Envi-

roSuite, is integrated into a surveillance system. Empirical performance
evaluation on a network of 200 XSM motes shows that, due to these op-
timizations, Lightweight EnviroSuite is able to track targets more than 3
times faster than the fastest targets trackable by the original EnviroSuite
even when 20% of nodes fail.

1 Introduction

The increasing popularity of sensor networks in large-scale applications such as
environmental monitoring and military surveillance motivates new high-level
abstractions for programming-in-the-large. As a result, several programming
models that encode the overall network behavior (rather than per-node behav-
iors) have been proposed in recent years. Examples include virtual machines
[1][2], and database-centric [3][4][5], space-centric [6][7], group-based [8][9], and
environment-based [10] programming models, which offer virtual machine in-
struction sets, queries, sensor node groups and environmental events, respec-
tively, as the underlying abstractions with which the programmer operates.
These abstractions capture the unique properties of distributed wireless sensor
networks and expedite software development.

� The work reported in this paper is funded in part by NSF under grants CCR-0208769
and ITR EIA-0205327.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 155–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

156 L. Luo et al.

An important category of sensor network applications involves tracking en-
vironmental targets. In these applications, some internal representation of the
external tracked entity is maintained such as a state record, a logical agent, or a
logical object representing the physical target. A given target in the environment
should be represented uniquely and its identity should be preserved consistently
over time. One way to ensure unique, consistent representation is to relay all
sensor readings to a centralized base-station which runs spatial and temporal
correlation algorithms to infer the presence of targets, assign them unique iden-
tities, and maintain such identities consistently. Such a centralized approach,
however, is both inefficient and vulnerable. In addition to relying on a single
point of failure, it results in excessive power consumption due to communication
with a centralized bottleneck and may unduly increase latency, especially when
targets move far away from the base-station.

To avoid these limitations, in EnviroSuite, we take the alternative approach
of processing target data at or near the location where the target is sensed.
Hence, appropriate distributed group management policies are needed to ensure
the uniqueness and identity of target representation such that targets are given
consistent names and sensors agree on which target they are sensing. This paper
systematically investigates different system optimizations in the design of such
group management algorithms in a sensor network. The resulting tracking sys-
tem, Lightweight EnviroSuite, is used in a sensor network surveillance prototype
that has since been transferred to the Defense Intelligence Agency (DIA). It is
evaluated on a sensor network of 200 XSM motes [11]. Results from field tests
of the overall system are provided, focusing on tracking performance. (Other
performance aspects of the system such as efficacy of energy management algo-
rithms will be reported elsewhere.) It is seen that realistic targets can indeed be
tracked correctly despite environmental noise using low-range sensors. Our field
test results show that even when 20% of nodes fail, Lightweight EnviroSuite is
able to track targets more than 3 times faster than the fastest targets trackable
by the original EnviroSuite, due to the optimizations described in this paper.
The improved tracking coincides with reduced communication cost.

The remainder of the paper is organized as follows. Section 2 presents the
background information and enumerates limitations of the original EnviroSuite.
Section 3 explores group management strategies and their effects that consti-
tute Lightweight EnviroSuite. Section 4 analyzes the performance results of a
surveillance system that is constructed from Lightweight EnviroSuite. Finally,
Section 5 supplies a summary and concludes the paper.

2 Background

Target tracking has received special attention in recent ad hoc and sensor net-
works literature. Many prior approaches (e.g., in the ubiquitous computing and
communication domains) focused on tracking cooperative targets. Cooperative
targets are those that allow themselves to be tracked typically by exporting a
unique identifier to the infrastructure (such as a cell-phone number). Examples

of cooperative targets include cell phones, RFID tags [12] and smart badges [13].
Since such devices are preconfigured with a unique identity, the tracking prob-
lem is generally reduced to that of locating the uniquely identified device and
performing hand-offs if needed (e.g., in cellular phones). In contrast, our goal
is to track non-cooperative targets such as enemy vehicles that do not broad-
cast self-identifying information. The presence and identity of such targets can
only be inferred from sensory signatures, as opposed to direct communication
with the target. Tracking non-cooperative targets is more challenging due to the
difficulty in associating sensory signatures with the corresponding targets (e.g.,
all tanks look the same to our unsophisticated motes). The presence of target
mobility further complicates the tracking problem.

One of the first research efforts on group management for non-cooperative
target tracking has been conducted by researchers at PARC [14]. Their group
management method dynamically organizes sensors into collaborative groups,
each of which tracks a single target. Typical tracking problems such as multi-
target tracking and tracking crossing targets are solved elegantly in a distributed
way. Other approaches to target tracking include [15] which presents a particle
filtering style algorithm for tracking using a network of binary sensors which
only detect whether the object is moving towards or away from the sensor.
A scalable distributed algorithm for computing and maintaining multi-target
identity information in described in [16]. In [17] a tree-based approach is proposed
to facilitate sensor node collaboration in tracking a mobile target.

The authors have investigated the tracking problem in several of their own
prior publications. Similar to [8], in [18] we present a set of group management
algorithms which form sensor groups at the locations of environmental events of
interest and attach logical identities to the groups. Based on [18], EnviroTrack
[19] proposes an environmental computing paradigm which facilitates tracking
application development. EnviroSuite [20] further extends the paradigm to sup-
port a broader set of applications that are not limited to target tracking. Geared
for tracking of fast-moving targets with low communication cost on available
hardware platforms that have limited sensing and communication abilities, this
paper proposes lightweight group management algorithms for EnviroSuite. Op-
timizations described in this paper may be applicable to other systems such as
[8] as well.

The design of EnviroSuite assumes that each node can independently detect
the potential presence of a target (subject to false alarms). For example, the
presence of a magnetic signature, motion, and engine sound can be independently
detected by each XSM mote to signify the potential presence of a nearby moving
vehicle in a desert surveillance scenario. It is further assumed that sensor readings
do not interfere with each other. Hence, tracking reduces to the problem of
correct mapping of nodes that detect target signatures to the actual physical
target identities responsible for these signatures. EnviroSuite therefore organizes
nodes that detect targets of interest into groups, each representing one target.

Different from traditional centralized tracking schemes, the data association
between targets and groups in EnviroSuite is done in a distributed way. Namely,

Design and Comparison of Lightweight Group Management Strategies 157

158 L. Luo et al.

all nodes that sense a target and can communicate directly assume that they
sense the same target and consequently join the same group. The resulting aggre-
gate behavior is that connected regions of sensors that sense the same signature
are fused into the same group. Observe that when the target moves, group mem-
bership changes reflecting the changing set of sensors that can sense it at the
time. A leader is elected for the group among the current members. A leadership
hand-off algorithm ensures that group state is passed to each new leader.

In this paper, we focus on point targets (i.e., those approximated by a point
in space, such as a vehicle), as opposed diffuse region targets (given by an area,
such as a chemical spill). It is assumed that the communication range of a node
is sufficiently larger than its sensing range. Hence, all group members sensing
a point target are within each other’s radio range. Consequently, the data dis-
semination scheme within each group can simply use local broadcast to share
sensory information. The leader performs data fusion in an application-specific
manner to collect higher-level target information. Geographic forwarding [21] is
used for communication with destinations external to the group. For example,
in the evaluation section, each group leader estimates target position by aver-
aging locations of group members and sends the result to remote base-stations
periodically. Extensions of this scheme to diffuse region targets are described
elsewhere [20].

This section briefly reviews the EnviroSuite programming paradigm and its
core component, MGMP (multi-target group management protocol). It also ana-
lyzes and evaluates the limitations of MGMP when facing the practical require-
ments of a typical surveillance system.

2.1 EnviroSuite Abstractions and Challenges

EnviroSuite [20] is an object-based framework that supports environmentally im-

mersive programming for sensor networks. Environmentally immersive program-
ming refers to an object-based paradigm in which logical objects and objects
representing physical environmental entities are seamlessly combined. Hence,
EnviroSuite differs from other object-based systems in that its objects may be
representations of elements in the external environment. At the implementation
level, such objects are maintained by the corresponding group leaders. Upon de-
tection of external elements of interest, nodes detecting the element self-organize
into a group. The group leader in EnviroSuite dynamically creates an object
instance to represent the tracked target. The group management protocol main-
tains a unique and identical mapping between object instances (or group lead-
ers) and the corresponding environmental elements they track, such that object
instances float across the network geographically following the elements they
represent. This co-location is ideal for the execution of location sensitive ob-
ject code that carries out sensing and actuation tasks. Objects encapsulate the
aggregate state of the elements they represent (collected and stored by group
leaders), making such state available to their methods. They are therefore the
units that encapsulate program data, computation, communication, sensing and
actuation. Object instances are destroyed when their corresponding environmen-

tal elements leave the network. This occurs naturally when the membership of
the corresponding sensor group is reduced to zero.

Objects can be point objects (created for mobile targets that dynamically
change their geographical locations), region objects (mapped to static or slowly
moving regions), or function objects (not mapped to an environmental element).
EnviroSuite is able to support both point objects and region objects in the
same framework due to their similarities. Namely, (i) the corresponding external
elements are detected by a group of geographically continuous nodes, and (ii)
the aggregate state of the elements are collected by group leaders. However, the
focus of this paper is on target tracking applications. Hence, we discuss mainly
maintenance of point objects.

The biggest problem faced in EnviroSuite is the challenge of maintaining a
unique and identical mapping between each object and the corresponding envi-
ronmental element despite of distribution and possible mobility in the environ-
ment. In the rest of this paper, a target refers to a geographically continuous
activity in the physical environment that persists over some interval of time.
Object uniqueness dictates that each target be represented and that it be rep-
resented by exactly one logical object instance. Object identity dictates that the
mapping between targets and objects be immutable. In other words, a target is
always mapped to the same object instance identified by its object ID.

The problem of object uniqueness and identity is complicated by several
factors. One is the need for seamless object migration across nodes as the target
moves. Another is that sensor nodes that become aware of an external target
should be able to tell whether it is a target previously seen by other neighboring
sensors or not. Otherwise, an incorrect target list will be collectively maintained
or an incorrect mapping will result between targets and objects. In the following
we describe a solution to these problems.

2.2 MGMP and Its Limitations

The core component of EnviroSuite previously proposed by us is a set of multi-
target group management protocols, named MGMP, which resolves the object
uniqueness and identity problem. When predefined target signatures are detected
by a set of nearby nodes, MGMP reacts by creating a group attached with
a unique object ID. The set of nodes become group members, whose task is
to periodically sense, calculate and report predefined object attributes (such as
temperature, location, etc.) to the group leader. These reports are called member

reports. A single leader is elected among these members to uniquely represent
the group as one object to the external world. To avoid electing a node that is
imminently going out of sensing range which results in yet another election, it is
preferred to elect nodes near the target. Though current leader election doesn’t
enforce such preference, it can be easily adapted to do so if distances to the
target can be inferred from detection results.

The leader is responsible for the maintenance of object attributes. It records
member reports keeping only the most recent one from each member. It period-
ically creates a digest of the reports, and either keeps it as the internal state or

Design and Comparison of Lightweight Group Management Strategies 159

160 L. Luo et al.

Fig. 1. Node state transitions in MGMP Fig. 2. States of nodes around a target

sends it to the external world (e.g., base stations) based on user specification.
These reports are called leader reports. The leader is also responsible for object
uniqueness and identity maintenance. It periodically sends leader heartbeats to
nodes within half an object resolution (in meters, defined by users) to advertise
the object ID as well as its internal states. By design, half the object resolu-
tion must be larger than twice the sensing range such that every member can
receive leader heartbeats. Nodes within half the object resolution, which cannot
sense, but are aware of the target through heartbeats, are called group followers

as distinguished from members. Follower nodes are prevented from spawning
new groups. Follower nodes are centered around the leader since leader locations
provide a good approximation of target positions. Though centering around the
target would be a better solution, given the fact that both communication range
and sensing range are irregular, the extra complexity required to do so is not
worth it.

Nodes dynamically join or leave the group whenever they detect or lose the
target. If a leader loses the target, it sends out a RESIGN message to request
a leadership handoff. Upon the reception of such messages, the most current
members reelect a new leader to take over leadership. Figure 1 illustrates the
complete node state transitions in MGMP and Figure 2 depicts a typical node
state distribution around a target. MGMP employs two important strategies to
enhance robustness in the face of failures:

1. Dynamic Leader Election: Leaders are always dynamically elected among
all current members. There are no pre-designated leader candidates. When
leader election starts, each member sets a timer at random from 0 up to
maximum back-off time and, when the timer expires, claims its leadership
by messages, the reception of which terminates other members’ timers as well
as their unsent messages. This strategy ensures robustness to node failures.

2. Periodic Leader Heartbeats: Leaders periodically send out heartbeats so
that leader failure can be detected by neighboring nodes.

The main goal of our deployed system is to alert a military command and
control unit of the occurrence of targets of interest in hostile regions. Targets of
interest may include civilian persons (unarmed), armed persons or vehicles. The
system is required to obtain and report current positions of such targets to a

remote base station to create tracks in real time. Several application requirements
must be satisfied to make this system useful in practice. First, the application
must have the ability to track typical military vehicles with velocities varying
from 5 mph to 35 mph. Object uniqueness and identity must be ensured. Second,
in our application, real-time updates on target trajectory must be sent to a
base-station to be used by other devices such as cameras, which requires high
accuracy and low reporting latency. Given the severely constrained bandwidth of
current mote platforms, the communication cost should be minimized to reduce
communication latency and maximize information throughput.

Does MGMP satisfy these requirements? We first try to answer the question
through experimental results on TOSSIM [22]; a simulator for TinyOS [23] that
emulates the execution of application code on the motes. Our experiments consist
of 120 nodes deployed in a 30×4 grid 10 meters apart. Sensing range is set to be
1 grid length and communication range is 3 grid lengths. These settings reflect
our real system where sensor devices are deployed in a grid 10 meters apart,
sensing range is around 10 meters, and communication range is approximately
30 meters. We simulate a target moving across the field in a straight line to test
tracking performance. The target is tracked with a sensor polling period of 0.02 s.
Consistent with the real system requirements, members report to leaders their
own locations twice a second. Leaders triangulate received locations to estimate
target position and report estimations to the base station (located in a corner
node) twice a second. The same testbed is used in later sections to evaluate new
schemes.

Figure 3 shows the number of objects formed for the single target during
its presence in the field. The uniqueness of target representation requires that
only one object be formed. As is seen in figure, this is not always the case.
The number of objects formed is one at lower target velocities, but it increases
as target velocity increases. This violation is due to the difficulty in reaching
agreement on target identity quickly enough which leads some sensors to believe
that they are seeing different targets. The effects of maximum back-off time are
more subtle. As is seen from Figure 3, if maximum back-off time is too small
such as 0.2 s, the number of objects generated can be large since multiple nodes
may become leaders and create new groups at the same time to represent the
same target. If it is too large, fast targets may move out of the sensing range of
a node before its back-off timer expires, so that the current object is lost and
spurious ones are created. In theory, it is possible to derive the appropriate back-
off time analytically for a particular target velocity. The main idea is that leader
migration (via election and hand-off) should be faster than target speed for the
target to never escape its tracking group. Nevertheless, such a derivation would
have to be experimentally validated since it is difficult to account for various
imperfections such as the irregularity of the sensing and communication ranges
and the non-uniform distributions of nodes in practice.

Observe that no back-off timer value in Figure 3 can maintain object unique-
ness at target speeds more than 1 grid length per second (grid/s) or 22 mph
(since grid length is 10 meters). These results are far from the desired perfor-

Design and Comparison of Lightweight Group Management Strategies 161

162 L. Luo et al.

Fig. 3. Number of objects for varied max-
imum back-off time and target velocities

Fig. 4. Number of messages for varied
heartbeat periods and target velocities

mance (35 mph). The overhead of dynamic leader election is the main reason why
better results cannot be achieved, since long leader-election delays slow down the
migration of groups, thus making fast-moving targets untrackable.

Figure 4 depicts the number of control messages (leader heartbeats and other
group maintenance messages) and data messages (member reports and leader
reports) sent during the presence of a target. The number of data messages de-
creases with increasing target velocity, because it is proportional to the duration
of target presence due to periodicity of member reports and leader reports. The
number of control messages exhibits similar trends since heartbeats that dom-
inate control messages are also periodic. Obviously, control messages also de-
crease with longer heartbeat periods. However, minimizing communication cost
by indefinitely increasing heartbeat periods is not feasible since longer heartbeat
periods increase the vulnerability to message loss.

The above observations give insights into improvements to EnviroSuite that
enhance tracking performance and reduce communication cost while maintaining
robustness to failures. These improvements are described next.

3 Group Management Strategies in Lightweight

EnviroSuite

This section explores in more detail the performance problems of current strate-
gies, proposes a series of new strategies, and applies them one by one to Enviro-
Suite to verify their individual effects on the current system. These new group
management strategies, as a whole, constitute a very practical and efficient ver-
sion of EnviroSuite, called Lightweight EnviroSuite.

3.1 Semi-dynamic Leader Election

Dynamic leader election, as the main factor that limits tracking performance
of MGMP, affects the maintenance of object uniqueness and identity in two
ways. First, it causes long leader handoff delays. In dynamic leader election,
all members are competitors for leadership. Hence, consensus has to be achieved
among all on a single leader. Obviously, the more members participate, the slower

Design and Comparison of Lightweight Group Management 163

Fig. 5. Node state transitions for semi-
dynamic leader election

Fig. 6. Number of objects for varied tar-
get velocities and candidate densities

the consensus. Second, it increases the possibility of message collisions since all
members are exchanging messages to compete for leadership.

A better solution is to allow only a portion of all members to compete for
leadership, which we call semi-dynamic leader election. Semi-dynamic leader
election includes an initialization phase which pre-elects a portion of the nodes
to be candidates (the potential competitors for leadership); others become non-

candidates. The pre-election of candidates is similar to dynamic leader election
in EnviroSuite. Each node sets a random timer and, when the timer expires,
claims itself as a candidate. Nodes within distance x that receive this claim mes-
sage become non-candidates. Ideally, the algorithm elects at least one candidate
within any circular area of radius x. We call this x the candidate density. The
node state transition changes accordingly as shown in Figure 5. Transitions to
Leader-Candidate occur only when the corresponding nodes are candidates.
Null nodes become Members instead of Leader-Candidates when they are non-
candidates. Since only Leader-Candidate nodes attend leader election, these
changes make candidates the only ones competing for leaderships.

Figure 6 illustrates the number of objects created for targets with different
velocities when different candidate densities are set. Semi-dynamic leader elec-
tion allows for a smaller maximum back-off time (set to 0.2 s in the following
experiment) in leader election due to a reduced number of competitors. The
Density = 0.5 grid curve performs the same as dynamic leader election since
all nodes are candidates (maximum back-off time is set to 0.6 s for better per-
formance in this case). As seen from Figure 6, a proper candidate density, say
1.0 grid, makes the semi-dynamic scheme outperform the dynamic one.

Observe that, a very low candidate density results in worse performance than
dynamic leader election since candidates are so scarce that, in most groups, no
leader is elected to maintain objects. We call the phenomenon a leader desert.
The dark grey circle in Fig. 7 shows a leader desert where no candidate exists. If
the target moves further to the right and gets detected by the nearest candidate
outside the follower set, a spurious object is created by the candidate since it
is not aware of the existing object. Even when candidate density is 1.0 grid, a
leader desert still appears occasionally, which hurts object uniqueness slightly.

Strategies

164 L. Luo et al.

Fig. 7. Leader desert Fig. 8. Comparison of number of mes-
sages for different target velocities

This explains why semi-dynamic leader election performs a little worse when
target velocity is 0.5 grid/s. The leader desert problem is solved in later sections.
As a side-effect, semi-dynamic leader election also results in lower communication
cost since fewer control messages are sent to compete for leadership, which is
shown in Fig. 8.

On the disadvantage side, robustness to node failures is expected to degrade
when using semi-dynamic leader election due to a higher vulnerability to failures
of leader candidates. However, this can be partially compensated by executing
candidate pre-election more frequently. We discuss the overall failure robustness
of the new scheme in later sections.

3.2 Piggy-Backed Heartbeat

Periodic leader heartbeat entails big overheads that are not affordable in appli-
cations with severe bandwidth constraints. Yet, it plays the most critical role in
MGMP. First, it recruits followers to prevent these boundary nodes from cre-
ating spurious groups. Second, its periodicity makes leader failures perceivable,
and thus recoverable. Third, the periodicity also improves robustness to mes-
sage loss. Therefore, the challenge is how to reduce overhead while retaining the
advantages of frequent heartbeats.

Fortunately, another component in MGMP exhibits the behavior of sending
periodic messages; namely, object attribute collection. Members periodically send
sensed attribute data to leaders and leaders periodically aggregate received data,
process it, and send results to the external world if required. If heartbeats can
be piggy-backed into these member reports and leader reports, periodic heart-
beat becomes almost free. We call this new scheme piggy-backed heartbeat, where
heartbeats are transformed into leader heartbeats (heartbeats piggy-backed into
leader reports) and member heartbeats (heartbeats piggy-backed into member
reports). Leader desert is no longer an obstacle to object state dissemination,
since members take over this task during leader absences. Since object unique-
ness is ensured through leader uniqueness, members are only allowed to repeat
heartbeats originated from leaders and leaders are still the only authority that
may update object information.

165

Fig. 9. Object maintenance in semi-
dynamic leader election

Fig. 10. Comparison of communication
overhead

In the piggy-backed heartbeat scheme, member heartbeats and leader heart-
beats are treated differently: only the reception of leader heartbeats transits
pre-elected candidates from state Null to Follower, while member heartbeats
transits them into an intermediate state, called Null-Follower. If a node de-
tects a target while in this state, it transits to Leader-Candidate to compete for
leadership. This is unlike a regular Follower, which becomes a Member upon
target detection. Without these changes, member heartbeats may transit all po-
tential leaders to Follower state and then to Member upon the detection of the
target, making the group follow a target without any leaders.

The aforementioned efforts make the piggy-backed heartbeat scheme a big
improvement in object maintenance. Compared with the maximum trackable ve-
locity seen in MGMP (1 grid/s), this improved version maintains object unique-
ness and identity for targets with velocities up to 8 grid/s as shown in Figure 9.
Figure 10 suggests another big improvement in reducing control messages.

3.3 Implicit Leader Election

It is possible to further reduce the protocol costs by employing an implicit leader

election scheme. An assumption is made in this scheme that monitoring tasks
are periodic and that after each period monitoring results are communicated
by each tracking group to the external world. This assumption is reasonable
since periodicity is a typical property of sensor network applications. The scheme
allows candidates to start the execution of leader tasks such as data aggregation,
whenever they detect the target. Note that, their task periods are unsynchronized
since nodes usually do not begin to sense the target at exactly the same time. As
a result, multiple but limited potential leaders are executing tasks in a group.
At any point in time, if the node that first reaches the end of a task period sends
out a result report, other neighboring nodes including other potential leaders
simply accept the results and become inactive in their current task periods,
which prevents them from reporting the same redundant results when finishing
their periods. Hence, the external world sees the illusion of a single group leader.

Figure 11 illustrates an example. Candidate A senses the target from time
0 to 2.5 and B from 0.25 to 3.5. The length of task period is 1. Both A and
B are initially active. At time 1, A reaches the end of its period and sends a
result report. Receiving this report, B admits A as the current leader, accepts

Design and Comparison of Lightweight Group Management Strategies

166 L. Luo et al.

Fig. 11. An example of implicit leader
election

Fig. 12. Node state transitions for im-
plicit leader election

Fig. 13. Object maintenance in implicit
leader election

Fig. 14. Comparison of communication
overhead

A’s results and makes itself inactive, which makes B silent at time 1.25 when
it finishes its task period. Similarly B is still silent in the next period since A
sends a message first. Finally, A quits the leader competition at time 2.5 when
it loses the target. B continues A’s work and reports the results at the end of
its third period (time 3.25). This way, tasks are executed continuously between
different leaders, the results of which are exposed to the external world at a rate
(3/3.5 ≈ 0.9 report/s) that is very near to the defined rate (1 report/s).

Figure 12 depicts the new node state transition graph. activate() is called
by each node when beginning a new task period. Different from all previous
versions, intermediate states (LeaderCandidate, ResigningLeader) no longer
exist since implicit leader election eliminates the need for nodes to stay at the
LeaderCandidate state sending CANDIDATE messages to compete for leadership
and to stay at ResigningLeader sending RESIGN messages to start new leader
election. The elimination of control messages further improves communication
performance as shown in Figure 14. Meanwhile, a comparable performance in ob-
ject maintenance (maximum trackable velocity 8 grid/s) is achieved as Figure 13
shows.

Note that implicit leader election can not be applied to applications where
duplicate execution of tasks is not allowed or where tasks are not periodic. How-
ever, since the EnviroSuite compiler [20] has the ability to dynamically select

167

modules during compilation based on programmer’s application definition, a
version without implicit leader election can be composed in such cases.

Overall, due to the optimizations mentioned above, Lightweight EnviroSuite
achieves roughly an order of magnitude improvement in maximum trackable ve-
locity (8 grid/s compared with 1 grid/s in EnviroSuite). The number of messages
per second for targets at 0.5, 1 and 2 grid/s is reduced 25%, 12% and 37%,
respectively.

3.4 Failure Tolerance

This section discusses the overall robustness of Lightweight EnviroSuite to typ-
ical failures in the sensor network: message loss and node failures. Message loss
harms object maintenance by making the existence of the current leader unno-
ticed by other candidates, which may result in multiple nodes sending duplicate
leader reports in the same period to the external world. However, the external
world can always recognize duplicate reports through version numbers attached
in the reports. Message loss can also prevent nodes on a group’s outer bound-
aries from getting heartbeats. Consequently, these nodes may not become aware
of the object and create spurious objects. However, Lightweight EnviroSuite al-
lows members to disseminate heartbeats, which maintains a comparatively high
heartbeat frequency and makes the possibility that a node fails to get any heart-
beats very low. At the same time, objects attach their ages, which increase with
the increase of finished task periods, to heartbeats. Object information from
younger objects is discarded in favor of older ones. Therefore, spurious objects
are eventually terminated due to their young ages.

Fig. 15. Performance of object mainte-
nance for varied message loss

Fig. 16. Performance of object mainte-
nance for varied node failures

Lightweight EnviroSuite is also robust to node failures. As stated earlier, it
can go through leader deserts without losing object information or terminating
task execution. In a similar way, it is able to overcome node deserts smaller than
half an object resolution. Although we may temporarily lose track of the target
inside a node desert, the target and its associated object can be picked up again
in most cases after passing the node desert.

Experimental results confirm our conclusions as shown in Figure 15 and Fig-
ure 16. Lightweight EnviroSuite shows consistently good performance in object

Design and Comparison of Lightweight Group Management Strategies

168 L. Luo et al.

maintenance for targets with velocities up to 4 grid/s. However, after velocities
exceed 8 grid/s, surprisingly bigger message loss results in fewer objects. This is
because the number of objects is counted based on leader reports at the base
station and a higher message loss results in fewer received leader reports, and
thus fewer observed objects. For node failures up to 50%, Lightweight Envi-
roSuite exhibits comparable performance at velocities between 1 and 4 grid/s.
However, when target velocities are as low as 0.5 grid/s, higher node failures do
hurt performance. That is because higher node failures result in larger node or
leader deserts. Slower targets may fail to cross the deserts before followers forget
about the object.

4 System Evaluation

We integrated Lightweight EnviroSuite into an energy-efficient surveillance sys-
tem, called Vigilnet [24], subsequently transitioned to the DIA. In December
2004, in the process of technology transition, we deployed 200 XSM motes run-
ning the Vigilnet system on sandy and grassy roads with a 3-way intersection
and collected performance data in field tests. Figure 17 depicts the deployment
of the system. Nodes are approximately deployed in a grid 10 meters apart,
covering one 300-meter road and one 200-meter road. Each rectangular dot rep-
resents one XSM mote in the field. Several base-stations were deployed. Some
nodes are missing in the GUI because they are turned off to emulate failures.

The XSM mote extends the MICA2 platform [25] by improved peripheral
circuitry, new types of sensors and better enclosures. It communicates approxi-
mately 30 meters when deployed on grassy ground. The primary goal of the field
test is to evaluate system ability to detect, classify and track one or multiple
moving targets, which can be either SUVs, persons or persons carrying a ferrous
object (suggestive of a weapon).

Fig. 17. System deployment

4.1 Overview of Vigilnet

Vigilnet is implemented on top of TinyOS. Figure 18 shows the layered archi-
tecture of Vigilnet. Components colored in dark grey are those implemented by
Lightweight EnviroSuite.

169

Fig. 18. System architecture of Vigilnet

Time synchronization (Time Sync), localization (Localization), and commu-
nication (MAC, Robust Diffusion Tree, Asymmetric Detection, and Report En-
gine) services constitute the lower-level components that are the basis for imple-
menting higher-level services. Power management (Radio-Base Wakeup, Sentry
Service, Power Mgmt, and Tripwire Mgmt), target classification (Sensor Drivers,
Frequency-filter, Continuous Calibrator, Classification, and False Alarm Filter-
ing Engine) and tracking (Group Mgmt, Tracking, and Velocity Regression) com-
prise main higher-level services. Target classification detects and classifies three
types of targets with the help of collaborative group management provided by
Lightweight EnviroSuite. Tracking components are responsible for estimating
target positions and calculating target velocities.

Overall the system consists of 21,457 lines of source code, among which 2,884
are contributed by Lightweight EnviroSuite. The executable binary of Vigilnet
occupies 85,926 bytes of code memory and 3,154 bytes of data memory, which can
easily fit into XSMs equipped with 4KB data memory and 128KB code memory.

4.2 Tracking Performance Evaluation

Consistent with simulation, tracking modules in Vigilnet report to the base sta-
tion estimations of target positions twice every second to provide sufficient data
for false alarm processing and classification. A spanning-tree based routing [24]
is used to disseminate such reports. The communication latency of these reports
plays a critical role in achieving good tracking performance. Therefore, we sug-
gest that when the system scales up to cover bigger fields, multiple base stations
should be deployed. The false alarm filtering engine component executed in the
base mote filters these reports and slows down the report rate to upper layers to
once every 3 seconds due to bandwidth limitations. Target velocity calculation
takes such reports as inputs.

Table 1 lists the comparison of tracking performance between Vigilnet
equipped with the original EnviroSuite (measured at a previous field test con-
ducted in August 2003) and Vigilnet equipped with Lightweight EnviroSuite.
As is seen, without Lightweight EnviroSuite the maximum trackable velocity is
about 5 to 10 mph, while the new Vigilnet system tracks targets up to 35 mph.

Design and Comparison of Lightweight Group Management Strategies

170 L. Luo et al.

Table 1. Tracking performance comparison

Target vel. Vigilnet with EnviroSuite Vigilnet with Lightweight EnviroSuite

5 mph successful successful
10 mph partially successful successful
20 mph failed successful
30 mph untested successful
35 mph untested partially successful

Table 2. Tracking performance of Vigilnet with Lightweight EnviroSuite

Target type Avg. tracking errorStd. dev. of tracking errorsActual vel.Calculated vel.

walking person 6.19 meter 3.28 meter 3±1 mph 2.9 mph

running person 6.67 meter 3.89 meter 7±1 mph 6.9 mph

vehicle 7.06 meter 3.98 meter 10±1 mph 10.5 mph

vehicle 5.91 meter 3.02 meter 20±1 mph 23.5 mph

two 1 5.58 meter 4.76 meter 10±1 mph 9.2 mph
vehicles 2 6.33 meter 3.52 meter 10±1 mph 9.9 mph

Note that, the success of tracking is an end-user metric measured by the ac-
curacy of position and velocity calculations, which depend on several factors
besides EnviroSuite group management protocols. A track is said to be success-
ful only when the final calculated velocity within a 20% error. Due to the limited
length of the field and the fixed report rate (once every 3 seconds), velocity cal-
culation does not perform well when the velocity reaches 35 mph. However, the
tracking performance of Lightweight EnviroSuite itself is actually better than
the reported results for the integrated system.

Table 2 shows in more details the tracking performance of the new Vigilnet
system. As seen, tracking errors are between 5.5 meters and 7.5 meters. These
results were collected with 20% of the nodes randomly turned off to emulate
failures. In all listed targets whose velocities vary from 3 mph to 20 mph, the
maximum error of velocity calculation is less than 10%, which reflects the good
tracking performance supplied by Lightweight EnviroSuite.

To give a more concrete view of the tracking performance of Lightweight En-
viroSuite, Figure 19 shows the tracking trajectories for the following scenarios:
(i) one vehicle drives across the field from left to right; (ii) two vehicles keep a dis-
tance of about 50 meters before they separate (the first one goes from left to right
and turns right at the intersection and the second one goes from left to right). In
the one-vehicle-tracking case, the rugged trajectory in the center of the horizon-
tal road shows explicitly that existing node failures do affect tracking accuracy.
The two-vehicle-tracking case proves the ability of Lightweight EnviroSuite to
track multiple targets with the same sensory signatures as long as they keep a
distance (50 meters) that is more than half an object resolution (set to 30 meters
in the system). This was deemed sufficient by the client for operational use.

171

Fig. 19. Tracking trajectories for one vehicle and two vehicles

Field test results show that Lightweight EnviroSuite successfully improves the
maximum trackable speed from near 10 mph to near 35 mph. Given our 10-meter-
apart grid deployment and 20% node failures, tracking errors are still as small
as about 6 meters and the maximum error in velocity calculation doesn’t exceed
10%. These results from physically deployed systems validate that Lightweight
EnviroSuite is practical, effective, and efficient on current hardware with limited
communication and sensing capabilities. In this paper, we did not supply an ex-
perimental comparison between EnviroSuite and other high-level sensor network
programming systems. This is, in part, due to the difficulty in porting application
code across the different systems. If applications are re-implemented (as opposed
to ported), it is hard to separate the effects of application-level implementation
decisions from the inherent strengths and weaknesses of the underlying program-
ming frameworks when interpretting performance comparison results.

5 Summary

Research on programming paradigms and frameworks in sensor networks has
been very active in recent years. This paper presents our effort in improving an
existing programming paradigm (EnviroSuite) into a more practical and efficient
version (Lightweight EnviroSuite) that can be directly utilized to build practical
large-scale systems with realistic requirements. The resulting version is shown to
be efficient via experimental testing on a physically deployed large-scale surveil-
lance system consisting of 200 XSM motes. This is one of the first attempts to
use high-level sensor network programming languages in building and deploying
real sensor network applications.

References

1. Boulis, A., Srivastava, M.B.: A framework for efficient and programmable sensor
networks. In: OPENARCH ’02. (2002)

2. Levis, P., Culler, D.: Mate: a virtual machine for tiny networked sensors. In:
ASPLOS. (2002)

3. Li, S., Son, S.H., , Stankovic, J.: Event detection services using data service mid-
dleware in distributed sensor networks. In: IPSN ’03. (2003)

Design and Comparison of Lightweight Group Management Strategies

172 L. Luo et al.

4. Madden, S.R., Franklin, M.J., Hellerstein, J.M., , Hong, W.: The design of an
acquisitional query processor for sensor networks. In: SIGMOD. (2003)

5. Yao, Y., Gehrke, J.E.: The cougar approach to in-network query processing in
sensor networks. In: Sigmod Record, Volume 31, Number 3. (2002)

6. Welsh, M., Mainland, G.: Programming sensor networks using abstract regions.
In: NSDI ’04. (2004)

7. Newton, R., Welsh, M.: Region streams: functional macroprogramming for sensor
networks. In: DMSN ’04: Proceeedings of the 1st international workshop on Data
management for sensor networks, New York, NY, USA, ACM Press (2004) 78–87

8. Liu, J., Liu, J., Reich, J., Cheung, P., , Zhao, F.: Distributed group management
for track initiaition and maintenance in target localization applications (2004)

9. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: A neighborhood abstrac-
tion for sensor networks. In: MobiSYS ’04. (2004)

10. Liu, J., Chu, M., Liu, J., Reich, J., Zhao, F.: State-centric programming for sensor-
actuator network systems. In: IEEE Pervasive Computing. (2003)

11. XSM motes: (http://www.cast.cse.ohio-state.edu/exscal/index.php?page=main)
12. Stockman, H.: The active badge location system. In: Proceedings of the IRE.

(1948) 1196–1204
13. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system

(1992)
14. Liu, J., Chu, M., Liu, J., Reich, J., Zhao, F.: Distributed state representation for

tracking problems in sensor networks. In: IPSN ’04. (2004)
15. Aslam, J., Butler, Z., Constantin, F., Crespi, V., Cybenko, G., Rus, D.: Tracking a

moving object with a binary sensor network. In: SenSys ’03, New York, NY, USA,
ACM Press (2003) 150–161

16. Shin, J., Guibas, L., Zhao, F.: A distributed algorithm for managing multi-target
identities in wireless ad-hoc sensor networks. In: IPSN ’03. (2003)

17. Zhang, W., Cao, G.: Optimizing tree reconfiguration for mobile target tracking in
sensor networks. In: INFOCOM ’04. (2004)

18. Blum, B., Nagaraddi, P., Wood, A., Abdelzaher, T., Son, S., Stankovic, J.: An
entity maintenance and connection service for sensor networks. In: MobiSys ’03.
(2003)

19. Abdelzaher, T., Blum, B., Cao, Q., Evans, D., George, J., George, S., He, T.,
Luo, L., Son, S., Stoleru, R., Stankovic, J., Wood, A.: Envirotrack: Towards an
environmental computing paradigm for distributed sensor networks. In: ICDCS
’04. (2004)

20. Luo, L., Abdelzaher, T., He, T., Stankovic, J.A.: Envirosuite: An environmentally
immersive programming framework for sensor networks. (In: Submitted to ACM
Transactions on Embedded Computing Systems)

21. Karp, B.: Geographic Routing for Wireless Networks. PhD thesis, Harvard Uni-
versity (2000)

22. Levis, P., Lee, N., Welsh, M., , Culler, D.: Tossim: Accurate and scalable simulation
of entire tinyos applications. In: SenSys ’03. (2003)

23. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System archi-
tecture directions for networked sensors. In: ASPLOS-IX, New York, NY, USA,
ACM Press (2000) 93–104

24. He, T., Krishnamurthy, S., Stankovic, J.A., Abdelzaher, T., Luo, L., Stoleru, R.,
Yan, T., Gu, L., Hui, J., Krogh, B.: Energy-efficient surveillance system using
wireless sensor networks. In: MobiSYS ’04, New York, NY, USA, ACM Press
(2004) 270–283

25. UC Berkeley. MICA motes: (http://www.tinyos.net/scoop/special/hardware/)

Design of Adaptive Overlays for Multi-scale
Communication in Sensor Networks

Santashil PalChaudhuri�, Rajnish Kumar��, Richard G. Baraniuk���,
and David B. Johnson�

�Rice University, Department of Computer Science, Houston, TX 77005-1892
��Georgia Institute of Technology, College of Computing, Atlanta, GA 30332-0280

���Rice University, Department of Electrical and Computer Engineering,
Houston, TX 77005-1892

Abstract. In wireless sensor networks, energy and communication bandwidth
are precious resources. Traditionally, layering has been used as a design principle
for network stacks; hence routing protocols assume no knowledge of the appli-
cation behavior in the sensor node. In resource-constrained sensor-nodes, there
is simultaneously a need and an opportunity to optimize the protocol to match
the application. In this paper, we design a network architecture that efficiently
supports multi-scale communication and collaboration among sensors. The archi-
tecture complements the previously proposed Abstract Regions architecture for
local communication and collaboration. We design a self-organizing hierarchi-
cal overlay that scales to a large number of sensors and enables multi-resolution
collaboration. We design effective Network Programming Interfaces to simplify
the development of applications on top of the architecture; these interfaces are
efficiently implemented in the network layer. The overlay hierarchy can adapt to
match the collaboration requirements of the application and data both temporally
and spatially. We present an initial evaluation of our design under simulation to
show that it leads to reduced communication overhead, thereby saving energy. We
are currently building our architecture in the TinyOS environment to demonstrate
its effectiveness.

1 Introduction

Sensor networks [1] consist of a large number of small, low-powered wireless nodes
with limited computation, communication, and sensing abilities. Their ubiquitous, on-
demand sensing capabilities have enabled numerous new applications, from vibration
monitoring throughout buildings in active earthquake zones to air pollution tracking
to microclimate investigations in tropical rain forests. In a battery-powered sensor net-
work, energy and communication bandwidth are a scarce resources. Thus there is a need
and opportunity to adapt the networking to match the application in order to minimize
the resources consumed and extend the life of the network.

Sensor network applications have several characteristics that distinguish them from
other networks (such as LANs or ad hoc wireless communication networks) and make
matching the networking to the application challenging. For example, different appli-
cations demand a wide range of different communication patterns among the nodes,

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 173–190, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

174 S. PalChaudhuri et al.

including data aggregation, dissemination, attribute-based routing, local collaboration,
and multiple resolution. Several networking protocols have been developed to handle
these kinds of communication efficiently. However, since each involves widely different
communication abstractions and trade-offs, no single protocol can be optimized for all
applications. Moreover, many distributed signal processing applications demand multi-
ple communication patterns. Finally, designing or matching protocols to applications is
a very difficult task for applications developers.

In this paper, we propose an adaptive network architecture that matches the com-
munication characteristics of many different applications by optimizing based on appli-
cation feedback. We design a hierarchical overlay to handle aggregation, dissemination,
and multiple resolution, and we leverage the Abstract Region [2] architecture to handle
local collaboration between nodes. These overlays coexist and serve different purposes;
together they efficiently support a wide range of different application data communi-
cation patterns. To simplify the application design, we provide a set of Network Pro-
gramming Interfaces to abstract the details of low-level communication. Applications
specify their communication needs through these interfaces; the architecture then uses
this information to optimize the communication data flow.

Many applications, such as large-scale collaborative sensing, distributed signal pro-
cessing, and data assimilation, require the sensor data to be available at multiple resolu-
tions, or allow fidelity to be traded-off for energy efficiency. We form a self-organizing
network hierarchy that can scale to very large numbers of nodes using multi-scale
data communication. Our multi-scale hierarchical overlay adapts to form clusters such
that data communication becomes efficient. While a self-organized hierarchy has been
known to scale well, ours is the first proposal to align the network hierarchy with the
application data flow.

After overviewing related work in Section 2, we describe our hierarchical overlay
in Section 3. Section 4 details our initial design evaluation. We conclude and suggest
directions for future work in Section 5.

2 Related Work

Various protocols and architectures have been proposed over the years for sensor
networks. Earliest were the diffusion class [3] of algorithms, which are effective in
aggregation and dissemination communication abstractions but cannot support multi-
resolution communication required by many applications. There are various ways of
implementing these diffusion algorithms depending on the application behavior, such
as two-phase pull, one-phase pull, and push. The specific diffusion behavior can be
chosen by the application to match its requirements [4]. GARUDA [5] is an archi-
tecture that handles reliable delivery of downstream data under various notions of
reliability.

Fractional Cascading [6] and DIMENSIONS [7] have recently been proposed to
handle multi-scale data communication. We extend their design, which is essentially
for storage and retrieval of sensor data, to have more general applicability. Their archi-
tecture is based on a regular grid structure and assumes regular data sampling. However,
practical multiscale transforms need to accommodate networks with arbitrary irregular

Design of Adaptive Overlays for Multi-scale Communication in Sensor Networks 175

placement of sensors; we achieve this using our self-organizing hierarchy. Our archi-
tecture adapts to the node collaboration requirements to make the networking more
efficient, which is not addressed in these two previous approaches.

SDIMS [8] is another hierarchical approach that is more targeted toward wired net-
works but can be adapted for wireless sensor networks. This approach provides a flex-
ible API for configuration but does not address the adaptibility to application require-
ments. It does have a tunable interface for a tradeoff between latency and overhead for
added flexibility.

The goal of Abstract Regions [2] is to simplify the application design by providing
abstract interfaces to hide the details of low-level communication. It proposes the
concept of neighborhood as a programming unit, and shows how various applications
can be efficiently written using it. Many applications need multi-resolution data though,
and our architecture addresses the abstraction requirement for such applications. The
Abstract Region concept of neighborhood is thus complementary with our approach,
and both together cover a much wider range of application requirements. Hood [9] is
another approach to providing a programming abstraction, but it is also targeted toward
neighborhood-based programming models only.

3 Hierarchical Overlay

We design the hierarchical overlay for efficient aggregation, dissemination, and multiple
resolution of application data. In this overlay, a self-organizing hierarchical clustering
is formed, inspired by the self-organization component of protocols like Safari [10] and
L+ [11].

The hierarchy is a recursive organization of nodes into cells, cells into supercells,
and so on, based on an autonomous self-election of a subset of the nodes into drums,
and iteratively drums self-electing to become higher level drums, and so on. The drum
is also called the parent for all nodes within it’s cell. Figure 1 shows an example cell
hierarchy. In the figure, nodes 1, 2, 3, 4, 5, and A group together to form a cell (called
fundamental cell) with node A being the drum for the cell. Each of the drums in the
network, namely nodes A, B, C, and D form a higher level cell with node C being the
drum for that higher-level cell (called a super-cell). This hierarchy formation goes on
iteratively until all the nodes come under one highest level cell. The self-selected drums
aid in this hierarchy formation by sending periodic beacon packets.

Each node can be thought of as a level 0 cell and a level 0 drum (level 0 drums do not
send beacon packets). Every level k drum is at the same time also a level i drum, for all
i < k. This hierarchy formation algorithm is distributed, with no central coordination.
Drums of the same level are roughly uniformly spaced, with higher level drums more
sparse than lower level drums. A coordinate of any drum at level i is the concatenation
of the coordinate of the level i + 1 drum with which it associates, along with a unique
identifier. This unique identifier can be any random string large enough to avoid col-
lisions. We use an address assignment technique proposed in TreeCast [12], whereby
the nodes are given compact addresses minimizing the length of address strings. Vari-
ous sensor applications require the identifiers of nodes along with their values, and this
technique leads to efficient encoding of the identity (and location) of the nodes.

176 S. PalChaudhuri et al.

6

A

B

C

D

1

2
3

4

5

Cell I

Cell III

Cell II

Cell IV
Super-Cell I

Fig. 1. Cluster hierarchy

In the initial startup period, each drum sends beacon packets (beacons) periodically,
containing the beacon sequence number, the drum level, and a hop count, which aids in
the hierarchy formation. These beacons are forwarded by all nodes within the hop count
limit or those within the cell defined by the parent of the drum sending the beacon.
In Figure 1, the beacons from node B reach all the nodes in super-cell I. The beacons
sent during this initial phase also give the shortest path from any drum of level i to its
associated higher level drums and the drums in the same level within it’s super-cell.

Algorithm 1 shows the Cluster Formation algorithm. A drum of level i is denoted by
drumi, and drum0 denotes the nodes. Beacons sent by drumi are denoted by beaconi.
D1 is the fundamental cell diameter and is dependent of the cluster size required by the
application.

The drums wait a random time between 0 and Tmax, before deciding whether to
become a higher level drum or associate with another drum. The association scope of the
drums, determined by the hop limit of the beacons, increase geometrically with the level
of drum. Decreasing α increases the number of levels in the hierarchy while reducing
the number of nodes in each level, whereas increasing the α has the opposite effect.
Lines 8-10 of the algorithm ensure that the beacons of any drum reach all nodes within
its super-cell. Lines 11-13 ensure that no drums of same level form too close to each
other, as that reduces the efficiency of the clustering. Lines 14-16 make the hierarchy
evolve such that the drums are always associated with closest higher level drum. The
number of levels formed in the hierarchy is of O(log(N)), where N is the number of
nodes in the network. As a simple analysis of the cost of the algorithm, if instantaneous
propagation is assumed, then all leveli drums are separated by Di hops, with very high
probability, and so the total startup phase is of O(Tmax log(N)). Therefore the latency
can be made smaller by reducing Tmax to an optimal value.

For null Selectors, the hierarchy formed can be analyzed using the Random Se-
quential Adsorption (RSA) model, since under the instantaneous propagation approxi-
mation, the hierarchy formation conforms to the RSA model [10]. The average number
of level 1 drums formed is

Design of Adaptive Overlays for Multi-scale Communication in Sensor Networks 177

Algorithm 1. Cluster Formation
1: repeat
2: Drumi wait for a random time up to Tmax

3: if Drumi does not hear a higher level drum beacon, or is not the highest level drum then
4: Steps up to leveli+1 and starts sending periodic beacons with hop limit of Di+1 =

α ×Di = αi ×D1

5: else
6: Associates with the nearest drumi+1.
7: end if
8: if Drumi hears any non-duplicate beacon by a drum in it’s super-cell then
9: Drumi forwards the beacon.

10: end if
11: if Drumi hears any beaconi < Di hops away then
12: The drum with the lower id steps down to leveli−1

13: end if
14: if Drumi hears any beaconi+1, which is closer than current beaconi+1 then
15: Drumi associates itself with the closer drum
16: end if
17: until All nodes are assigned stable coordinates

n = 0.547

(
N

π
D2

1
4

ρ

)
(1)

where N is the number of nodes in the network, ρ is the node density in hop-metric
sense, its value depending on the transmission range and spatial density of nodes. When
applied to multiple levels of the hierarchy, this gives us

ni

ni+1
=

(Di+1

Di

)2

(2)

where ni is the number of level i drums.

3.1 Adaptive Hierarchy

During startup, each drum sends beacon packets periodically, which are forwarded by
all nodes based on a policy of geographical (hop count) proximity. These beacons then
induce a cell hierarchy that is proximity based. In various sensor network applications,
proximity is a good measure of correlation and hence of data interchange. So, the above
approach of cell structure formation matches the collaboration between and nodes.

In many other applications though, the collaboration and communication take place
between nodes based on various other constraints. For example, nodes with similar
magnetic field or temperature readings within a neighboring scope might need to com-
municate more often. So, if the clustering hierarchy matches the collaborative set of
nodes, communication can be efficiently abstracted and implemented. We use some
application specified filters, called Selectors, to align this hierarchy to match the collab-
oration and communication sets of nodes.

178 S. PalChaudhuri et al.

Algorithm 2. Recluster (Selectors)
1: Drum sends out beacons with Selectors
2: Nodes matching the Selectors (re)select the Drum as their parent
3: if Any node become orphan or cell is sub-optimal then
4: It sends Solicit Beacons with specified Selectors
5: Nodes matching the Selectors respond with Beacons
6: Choose the drum most suitable with respect to the Selectors, and become a child of the

drum
7: end if

We define a Selector as a tuple of 〈 attribute, value, operator 〉, where attribute is
any application specified variable, and value is a valid element from the range of the
attribute. The operator is a binary operation (such as >, <, or =) with value being one
of the operands. We extend the definition of a Selector to form:

Selectors = Selectors∧ Selectors | Selectors∨ Selectors | Selectors | Selector | null
The values for the attributes are assumed to be shared between the application, sen-

sor hardware, and the networking layer at a node, which enables the Selectors to be
evaluated at the networking layer. An operator needing a time-series of previous at-
tribute values might entail the sharing of whole data structures of application computed
values. Currently only scaler operators are supported; more complex operators could
have application-defined call-back functions to enable them to be evaluated by the ap-
plication.

The beacons of drums are forwarded by a node if the hop count in the beacon packet
is less than a specific value and the specified Selectors evaluates to true for the attribute
values in that node. For an empty Selectors, the effect is to forward the beacons based
only on hop count.

Reclustering of the network hierarchy to adapt it closely to the communication flow
is initiated by the application locally in cells where adaptation is needed. This is best
judged by the application, as the networking layer does not have any knowledge of the
application logic or how the sensed values influence the communication. Algorithm 2
shows the Recluster Algorithm. The parameters for cluster formation are changed lo-
cally to reflect current communication patterns. The Selectors encode the criterion for
the new cluster formation in the Split Phase of the algorithm. After reclustering, some
nodes might become orphans (nodes without parent) or some cells might be smaller
than optimal. These nodes or cells then merge with neighboring cells meeting the cri-
terion in the Merge Phase of the algorithm. This reclustering is triggered by the ap-
plication locally, and only occurs in the cells needing it for efficiency. The rest of the
clusters in different areas are not changed. Hence, this reclustering takes place locally
only where necessary and invokes no long range messaging.

3.2 Network Programming Interfaces

We design a set of address-free Network Programming Interfaces (NPIs) to adhere to
the paradigm that communication for the typical sensor network applications should be
expressed without referencing specific nodes [13]. The interest is in data over space and
time, rather than individual node values. The subject of direct one-to-one communica-

Design of Adaptive Overlays for Multi-scale Communication in Sensor Networks 179

tion has been extensively studied in the literature, and we will not propose any new pro-
tocol for this but will leverage the existing body of work. We provide primitives to ease
the programmability in a sensor network, by capturing the interfaces that are needed by
sensor applications in general. Abstract Regions [2] proposed a flexible means of node
addressing, by supporting data sharing using a tuple-space-like programming model.
Their approach is similar to the MPI approach for parallel machines, by hiding the de-
tails of the sharing primitives. We support similar primitives and extend them for our
multi-scale architecture, although sharing is explicit using put and get primitives, to
provide a more efficient implementation of the programming model. The two groups of
interfaces we support are discovery and communication.

Each of the interfaces can be implemented in either blocking or non-blocking fash-
ion. In non-blocking mode, the operation is invoked through a command, and when the
operation is complete, a callback is invoked on the original requesting component. In
blocking mode, the operation may block and then resume on an interrupt either by a
timer or message arrival. The blocking mode is significantly easier to program, as in the
non-blocking mode the programmer has to handle the synchronization and callback ex-
plicitely. TinyOS [14] supports the non-blocking concurrency model, but a lightweight
thread-like abstraction called Fiber [2] has been implemented recently as a blocking
model.

Figure 2 shows the virtual hierarchy schematic of Figure 1, which will help explain
the interfaces. All the levels above level 0 are virtual, and the nodes only exist at the
lowest level.

Peer Level 1

C

A B C D

1 2
3

4

5

A

6

B

Level 0

Level 1

Level 2

Cell Level 2
Cell Level 1

Fig. 2. Virtual hierarchy

Discovery Interfaces. Discovery interfaces can be invoked by any node to give itself
information about related nodes. This information is gathered periodically, with a pe-
riod as specified by the application, and the application is informed of any changes in
the information. This procedure is continuous, either triggered by node failures or addi-
tions. The information might contain the identifiers of the set of nodes, their locations,
link quality and number of hops to each of them, and resource (e.g., remaining battery
or available sensors) present in each of them. The information learned from these dis-
covery interfaces can be used to configure the Selectors with any specified criterion. For

180 S. PalChaudhuri et al.

example, the Selectors might be specified to filter nodes within a specified geographical
distance or with higher than a specific link quality. There are three possible interfaces
supported. As a node can be simultaneously in different levels, a level is specified for
each interface to specify the level for which the information is required. The format for
representing the gathered information is dependent on the implementation.

– Parent Information (Level): Returns information about the parent of the node at the
specified level. For example in Figure 2, this interface when invoked on node 6
with level 1 returns information about node B, and with level 2 returns information
about node C.

– Peer Information (Level): Returns information about the peers of the node at the
specified level. For example in Figure 2, this interface when invoked on node B at
level 1, returns information on the set of nodes A, B, C and D.

– Cell Information (Level): Returns information about the cell of the node at the spec-
ified level. For example in Figure 2, this interface when invoked on node A, returns
information on the set of nodes 1, 2, 3, 4, 5 and A.

Communication Interfaces. In our multi-scale architecture, we support both kinds of
communication models: Put and Get. In Put, a node sends data to its cell, parent, or
peers, whereas in Get, a node solicits data from its cell, parent, or peers. The Put in-
terfaces correspond to the push paradigm, and the Get interfaces correspond to the pull
paradigm that has been proposed by the diffusion type of algorithms [3]. We support
both types, as different applications might be optimized using different paradigms, as
pointed out by by Heidemann et. al [4]. In some situations where the data generation
rate is infrequent and unknown, polling using Get will be inefficient; using Put by the
source of the data when the data is generated will be optimal. In another scenario, where
the data generation rate is high and consumption rate is low, pushing data using Put will
entail redundant data communication; using Get by the consumer of the data when the
data is required is optimal in this case. The Put Interface can be implemented in multiple
ways: stored locally, sent immediately to the designated scope, or cached at different
intermediate locations. Similarly, the Get Interface implementation might involve ei-
ther fetching remote data or local retrival. The specific implementation depends on the
application characteristics.

We also support Reduction interfaces that use an associative operator (such as sum,
max, or min) to reduce an attribute across all the nodes in a specified region. This Re-
duction interface can be implemented using Get and Put, but efficient implementations
can take advantage of local reductions while propagating the values. This abstraction
also provides ease of programmability.

There are three groups of primitives a node might address: its parent, its peers, or its
cell. This leads to six different interfaces for Put and Get. Reduction interfaces are done
on either cells or peers. All examples below refer to Figure 2. For node A, the parent is
node C; the peers at level 1 are B, C and D; and the peers at level 0 as well as the cell at
level 1 are nodes 1, 2, 3, 4, and 5.

– PutParent (Attribute, Value): The value of the attribute is sent to the parent node.
When called on Node A, the data is sent to node C.

Design of Adaptive Overlays for Multi-scale Communication in Sensor Networks 181

– PutCell (Level, Selectors, Attribute, Value): Level can be at most one level higher
than the node using this interface. So, a node of level0 can send message to the
fundamental cell. In general, a drumi can send message to all nodes in the same
leveli+1 cell. For Node A, PutCell called with level 1 delivers data to nodes 1, 2,
3, 4 and 5, while called with level 2 delivers data to all the nodes marked by Cell
level 2. The targeted nodes can filter the receipt of the Data using the Selectors.

– PutPeer (Level, Selectors, Attribute, Value): The level can be at most same as the
level of the node using the interface. This interface provides the same functionality
as PutCell for level0 nodes. For node A, level 1 delivers the data to nodes B, C and
D (Peer Level 1).

– GetParent (Attribute): The value of the attribute is solicated from the parent node.
– GetCell (Level, Selectors, Attribute): Level can be at most one level higher than the

node using this interface. In this interfaces, Data is received from the cell nodes
matching the Selectors.

– GetPeer (Level, Selectors, Attribute): The level can be at most same as the level of
the node using the interface. This interface provides same functionality as GetCell
for level0 nodes.

– ReduceCell (Level, Selectors, Attribute, Operator): This interface is applied on the
attribute for all nodes in the cell specified by level and Selectors. And the reduced
attribute value is stored locally. For example for operator max, the maximum at-
tribute value within the cell is returned by this interface.

– ReducePeer (Level, Selectors, Attribute, Operator): Similar interface where the
scope is all the peer nodes at the specified level.

3.3 Efficient Communication Operations

The Network Programming Interface in the previous section is used by the applications
to form a clustered hierarchy and to adapt it for efficient communication. In this section,
we describe mechanisms for efficiently supporting the different communication inter-
faces. We assume the existence of bidirectional wireless links, which is true for most
commonly used wireless MAC protocols.

– With the parent node: The drum beacons that are used to form the cluster hierarchy
is utilized to route from and to parent node, by following the path or reverse path of
the beacons respectively. If the path breaks, due to nodes in the path moving away
or dying, then local route repair is done to find a new route. The drum whose path
breaks, sends out beacons for a short interval to repair the broken path.

– With the peer nodes: At any level, the peer nodes need to be able to communicate
with each other efficiently. This is achieved by expanding the scope of the beacons
for the drums. The beacon packet of a level n drum is also forwarded by all nodes
in the level n + 1 cell of the originating drum. The reverse path is followed to
reach each peer. This is only done in the startup period or when a path breakage
is detected. Multicasting at network or MAC layer (if possible) is done to prevent
duplicate packets along common part of the paths. For example in Figure 1, beacon
packets from node A in cell I is flooded to the whole super-cell I. And hence B, C
and D know of the shortest path to A.

182 S. PalChaudhuri et al.

1

1

A

B

DC

E1

1

1

f2

f1
1

1

(a) Full Connectitivy
in the graph

1

1

A

B

DC

E1

1

(b) MST based com-
munication. Maximum
Latency: 4-hops. Total
Cost: 4-broadcasts

1

A

B

DC

E1

1

1

f2

f1
1

1

(c) SPF based com-
munication. Maximum
Latency: 3-hops. Total
Cost: 5-broadcasts

Fig. 3. Example topology connecting peer nodes (A, B, C, D and E) and forwarding nodes (f1
and f2)

The above technique leads to minimum latency communication from any node
to the rest of it’s peers, using shortest path. But, it also leads to higher cost in terms
of number of forwards. Alternatively a Minimum Spanning Tree can be formed
between the peer nodes. This leads to lesser number of forwards, but also leads to
higher maximum latency. Figure 3 shows an example topology to illustrate this.
This tradeoff can be exposed for the application to choose from.

– Within the cell: Communication from any node to the whole cell can be achieved
by simple flooding within the scope of the cell, whereby each node forwards a
packet exactly once. However, this is very sub-optimal and leads to many redundant
broadcasts specially in a dense network. We describe next our strategy for optimal
cell flooding.

Optimal Cell Flooding. Typical broadcasting using simple flooding, where each node
forwards a packet exactly once, leads to broadcast storm problems [15] and is very
energy inefficient. To form a more efficient flooding algorithm, there has been substan-
tial work with regard to carefully choosing the forwarding nodes to reduce the number
of forwards without reducing it’s effectiveness. Williams and Camp [16] categorized
the techniques recently. In probability-based methods, nodes forward with some vari-
able probability parameter chosen randomly or depending on the number of broadcasts
heard. In area-based methods, distance or location of the nodes are taken into account by
the node before deciding on forwarding. Both of these methods are completely localized
without the need for any coordination. In neighbor knowledge methods, a distributed
algorithm forms a Connected Dominating Set (CDS) to choose a subset of nodes to
be forwarders. This has more overhead than the previous methods, but leads to more
optimal flooding due to better knowledge about the neighborhood. Ideally, a Minimal
Connected Dominating Set (MCDS) will give the most efficient set of nodes to forward
packets such that all nodes are reached. Building a MCDS is an NP-Complete prob-
lem, however, and the problem gets harder in sensor networks in the absence of global

Design of Adaptive Overlays for Multi-scale Communication in Sensor Networks 183

knowledge. There has been a significant body of work on approximating the MCDS
using heuristics [17].

There are two types of neighbor knowledge methods proposed: Relaying in which
a node determines the forwarding status of it’s neighbors, and Pruning in which a node
makes a local decision on it’s forwarding decision. Multipoint relaying is an efficient
approach for relaying, and has been used in the OLSR ad hoc network routing proto-
col [18]. The re-broadcasting nodes are explicitly chosen by the upstream nodes, either
via “hello” packets, or within the header of each broadcast packet. In relaying, there is
either additional overhead in each packet to designate the forwarding nodes, or relevant
state that has to be maintained by each node. The statelessness of protocols has prime
importance in an unreliable network of sensor nodes, as a stateless protocol never op-
erates on out of date state. In the pruning methods, nodes decide on their own locally
whether to forward or not, leading to better reliability in the face of failure. There is
automatic correction for small changes and robustness to big changes. Nodes can go
to sleep independently in pruning methods, but there needs to be additional coordina-
tion in relaying methods so that no delegated forwarder is sleeping. In the absence of
MAC layer multicast for pruning, nodes have to broadcast every packet for which all
the neighbors have to process the packet before knowing that they are not designated
forwarders. And finally, a comparison paper [16] showed very similar performance for
both of the methods. We chose to use pruning method for the above reasons.

Various approaches for pruning based broadcasting use knowledge of k-hop neigh-
borhood information, m-hop last visited nodes information for each packet, and priority
between nodes. Larger value of k leads to more optimal forwarding set, but also entails
higher cost for maintaining this neighborhood information. Larger value of m is also
useful, but entails packet overhead. Wu and Dai [19] have proposed a generic scheme
to cover all pruning based approaches. A node determines it’s forward status by finding
existing replacement paths between all pairs of its k-neighbors. If all the replacement
path nodes have higher priority values than itselt or is already visited, then the node
chooses to be a non-forwarder. Else, it forwards.

In designing an efficient flooding algorithm, the factors we chose were the follow-
ing. The computational complexity is O(k2) for such algorithms, thereby dictating a
small value of k. Also, recent proposals for sensor network MAC protocols [20, 21]
maintain a 2-hop neighborhood to deal with efficient assignment of conflict-free slots.
We choose value of k to be equal to 2. The information for m equal to 1 is available
at no cost when the packet is received, by looking at the source. A greedy approach
is taken to prioritize the nodes based on their degree of connectivity. Our solution is
similar to the approach taken in the Scalable Broadcast Algorithm [22]. In a more or
less static network, the neighborhood information is invariant. On detection of neigh-
borhood change, this two-hop neighborhood is recalculated by all nodes broadcasting
their neighborhood nodes. Our Cell Flood Algorithm is shown in Algorithm 3.

maximum(|NX − NA|forX ∈ NA

⋂NB) is the maximum number of additional
nodes that can be covered by any node which has received a broadcast from nodeA and
is in the neighborhood of nodeB . Greedy approach is in choosing the broadcasting node
in line 5 of the algorithm, by favoring the node with maximum additional coverage. In
Line 6, S is updated every time the node receives a broadcast of the packet from any

184 S. PalChaudhuri et al.

Algorithm 3. Cell Flood Algorithm

Require: NodeB receives a broadcast packet from a neighbor nodeA

Require: NB be the set of 1-hop neighbors of nodeB .
Require: SB is a set of nodes in the 1-hop neighborhood which have not yet received the packet

1: if NodeB has handled the same broadcast packet before then
2: NodeB silently drops the packet
3: else
4: NodeB calculates a timer proportional to the ratio(

maximum(|NX−NA|forX∈NA
⋂ NB)

|NB−NA|

)
5: Till timer expires, nodeB updates SB when it hears any other neighbor broadcast, using

the neighborhood information
6: if SB = ∅ then
7: NodeB silently drops the packet
8: else
9: NodeB rebroadcasts the packet with some jitter

10: end if
11: end if

neighboring node. Elements of S which are present in the N of the neighboring node
are removed. If S becomes empty, the packet it dropped, else the packet is forwarded.

Proof of full coverage: Every node in the network checks it’s neighborhood to
determine whether all neighbors have received a packet, and forwards the packet if
there is any uncovered node in the neighborhood. Hence, all the neighbors of any node
in the network receives the packet. As the full network is an union of the neighborhood
of all the nodes, hence all the nodes in the network are covered.

Optimality of coverage: The proposed greedy heuristic leads to a approximate MCDS
for the graph. Analysis of the approximation bound gives log(n) times the cardinality
of the optimal MCDS solution, where n is the number of nodes in the graph. The proof
is similar to the optimality proof for Multipoint forwarding [23] .

Optimal Selectors Implementation. Selectors filter can be specified in some of the
communication interfaces. If the filter is null, then the communication operations are
efficiently implemented as elaborated previously. If this filter is not null but has a Selec-
tors, then this scope (termed Selectors scope) is a subset of the scope with null selector
(termed null scope). The communication operation can be done assuming null selector,
and filtered at each node. This is not most efficient, specially is the Selector scope is sig-
nificantly less than null scope. We implement the scoping of the Get and Put operations
using the following technique.

If operations with any Selectors filter is invoked the first time, the communication
has to be delivered in the null scope as there is no knowledge of the location of the
nodes matching the Selectors. But, for frequently invoked Selectors filters, an opti-
mized implementation is done to cover the matching nodes only. If any particular Se-
lectors if invoked frequently at any particular node, a trigger is set. The first packet

Design of Adaptive Overlays for Multi-scale Communication in Sensor Networks 185

being delivered after this trigger is set includes a DoReinforment flag. All the nodes
matching this Selectors filter, sends a Reinforced message back to the source, specify-
ing the Selectors. All the nodes through which this Reinforced message passes back are
part of the forward set of nodes for the specified Selectors. All the subsequent pack-
ets with this Selectors, has a OnlyReinforced flag and is forwarded by the forward
set of nodes only. This is remembered for a specific interval, greater than the period
specified in the communication interface, if present. Periodically the DoReinforcement
flag is set again and forwarded by all nodes to account for any change in topology or
interest.

3.4 Multi-scale Application

To demonstrate the effectiveness of the network programming interfaces, we describe
a distributed wavelet compression algorithm which can effectively use the interfaces
to optimize the communication. Multi-resolution data analysis, processing and com-
pression is useful for various sensor network applications. A lot of previous work on
wavelet-based processing in sensor networks have assumed regularly-spaced data.

Recently, Wagner et. al. [24] have proposed a haar wavelet based multi-scale data
analysis which enables irregular wavelet transform. In the bottom-up approach of that
algorithm, all the sensors in the fundamental cell sends their sensor readings to the
drum for that cell using PutParent. The locations and identifiers of the nodes are also
available to the drum through the Discovery interface. The drum calculates the scal-
ing coefficient describing the average reading of the cluster and the wavelet coefficient
encoding the deviations from the average readings. These scaling coefficients are then
passed up the hierarchy using the Parent interfaces, and similarly computed. In the top-
down approach of the algorithm, querying is from the top-level and drilling down until
the requisite resolution of the data is obtained. This is achieved using the GetPeer in-
terfaces. Finest resolution is obtained if query goes down until the fundamental cell
level.

For any compression, maximum efficiency with minimal loss is achieved when
many data points are similar enough to be represented with one data point. When com-
pressing a field of sensor data, various regions in space might have similar readings.
So, if there is one cluster for each region, the region might be efficiently represented
by a single value. But, if one cluster encompasses two different regions with divergent
values, compression is not so efficient. The reclustering technique is used here such
that each cluster has similar values and hence efficient representation. Locally near the
region boundaries clusters are aligned with the regions.

4 Initial Design Evaluation

We have performed an initial evaluation of the design of our architecture by simulating
the adaptive overlay formation in the ns-2 simulator. We are currently implementing
the protocol and interfaces in TinyOS. A full evaluation of our architecture will then be
possible by modifying existing and new sensor network applications to use this archi-
tecture.

186 S. PalChaudhuri et al.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500

N
um

be
r

of
 r

et
ra

ns
m

itt
in

g
no

de
s

Number of nodes in the network

Regular Flood Algorithm
Cell Flood Algorithm

Fig. 4. Number of retransmitting nodes with increasing network size

4.1 Cluster Operations

In this section, we evaluate communication operations. In particular, we show the effec-
tiveness of the Cell Flood Algorithm. To flood a particular cell with or without Selectors,
this algorithm builds an approximate Minimum Connected Dominating Set. Thereby,
the number of forwarding nodes is reduced without compromising the quality of the
flood. Figure 4 shows the number of retransmitting nodes with increasing network size.
The area of the network is kept constant while increasing the number of nodes, thereby
increasing the node density. For a regular flooding algorithm, where each node for-
wards a packet exactly once, the number of forwarders is exactly equal to the number
of nodes. In our Cell Flood Algorithm, the number of retransmitting nodes grows very
slowly with increasing network size. The percentage of retransmitting nodes decreases
with increasing network size, thereby showing good scalability.

4.2 Hierarchy Formation

In this section, we show the effectiveness of our hierarchy formation. Figure 5 shows
the hierarchy formed for an example topology. 500 nodes are evenly distributed in an
area of 3000 meters by 3000 meters. The radio range is taken to be 250 meters. Each
part of Figure 5 shows the first and second level clusters formed, along with rays con-
necting each node to it’s parent. Figure 5(a) shows the clustering for D1 equal to 1 hop,
Figure 5(b) for D1 equal to 2 hops, and Figure 5(c) for D1 equal to 3 hops. As the
number of hops allowed in the fundamental cell increases, the size of it increases along
with decrease in the number of levels in the hierarchy.

Figure 6 illustrates the number of drums at each level of the hierarchy as a percent-
age of the total number of nodes in the network. This is shown for increasing networks
sizes, with the node density kept constant. As shown in the analysis in Equation 2, the
number of drums in increasing levels decreases quadratically. Larger the network, lesser

Design of Adaptive Overlays for Multi-scale Communication in Sensor Networks 187

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

(a) D1 is 1 hop

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

(b) D1 is 2 hops

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

(c) D1 is 3 hops

Fig. 5. Example topology with different values of D1

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5

P
er

ce
nt

ag
e

of
 d

ru
m

s
in

 d
iff

er
en

t l
ev

el
s

Drum Level

200 Nodes
300 nodes
400 nodes
500 nodes

Fig. 6. Percentage of nodes which are drums are various levels

is the percentage of drums at each level. In this scenario, the value of α, which is the
ratio between the beacon hop limits for consecutive drum levels, is taken as 2.

Figure 7 shows the latency for cluster formation with increasing network size. Here
again, in all the networks sizes, the density is kept constant. The higher the level of
drum, the longer it takes to stabilize. This is because the higher level drums are further
spread apart and have larger beaconing intervals, which makes any change in higher lev-
els propagate more slowly. The startup latency increases slowly with increasing network
size. For the scenario sizes experimented with, the drum level 3 for all network sizes get
stable at the same time. The cost of cluster formation arises from the beaconing during
this phase, and hence is directly proportional to the length of time it takes to stabilize.

This also illustrates the effect of local change for adapting the hierarchy to com-
munication requirements. The local clustering changes take place at a lower latency as
shown in the figure. Therefore adaptivity of the clustering can be achieved with low
latency, and hence also with low cost.

188 S. PalChaudhuri et al.

 15

 20

 25

 30

 35

 40

 45

 50

 150 200 250 300 350 400 450 500 550

C
lu

st
er

 fo
rm

at
io

n
La

te
nc

y
(s

ec
on

ds
)

Size of the network

Drum Level 1
Drum level 2

Drum Level 3

Fig. 7. Cluster formation latency with increasing size of network

5 Conclusion and Future Work

In this paper, we have motivated the need for a multi-scale architecture for sensor net-
works. Apart from enabling multi-resolution collaboration, a clustering hierarchy al-
lows the network to scale to a very large number of sensors. Our architecture design
adapts to the communication and collaboration requirements of the application, reduc-
ing communication energy and bandwidth usage. Our architecture also provides an ab-
straction to its low-level networking aspects, thereby simplifying application design.

We are currently implementing the architecture in TinyOS. We are using the fibers
as blocking threads to implement Abstract Regions. This will enable us to deploy real
applications and quantify the utility of our abstractions and adaptation interface. Cur-
rently, our evaluation is limited by the constraints of the ns-2 simulator.

In this paper we have not addressed sensor network reliability or QoS requirements.
These are important aspects that deserve attention. We plan to develop abstractions
with tunable parameters through which the application can control the trade-off be-
tween resource usage and accuracy/reliability. Abstract Regions currently provides a
tuning interface, but it entails the application to specify low-level parameters such as
number of retransmissions. We intend to build tunable parameters at a higher level,
which will enable the application to set goals, which will be automatically translated by
the networking layer into the low-level parameters.

The Selectors implementation is currently fairly straightforward. The need to share
attributes between hardware, application, and networking layer remains. This has been
tackled previously in various approaches towards cross-layer design. However, there is
ample scope for formalizing these cross-layer interactions and implementing them in
an efficient way. Very complicated non-scalar Selectors can be supported by a fallback
function provided by the application or by a loadable kernel module written by the
application writer.

Design of Adaptive Overlays for Multi-scale Communication in Sensor Networks 189

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: A
survey. Computer Networks 38 (2002) 393–422

2. Welsh, M., Mainland, G.: Programming sensor networks using abstract regions. In: NSDI.
(2004) 29–42

3. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: A scalable and robust
communication paradigm for sensor networks. In: Proceedings, Sixth Annual Int. Conf. on
Mobile Computing and Networking (MobiCOM ’00), Boston, Massachussetts, USA (2000)
56–67

4. Heidemann, J., Silva, F., Estrin, D.: Matching data dissemination algorithms to application
requirements. In: SenSys ’03: Proceedings of the 1st international conference on Embedded
networked sensor systems, ACM Press (2003) 218–229

5. Park, S.J., Vedantham, R., Sivakumar, R., Akyildiz, I.F.: A scalable approach for reliable
downstream data delivery in wireless sensor networks. In: MobiHoc ’04: Proceedings of
the 5th ACM international symposium on Mobile ad hoc networking and computing, ACM
Press (2004) 78–89

6. Gao, J., Guibas, L.J., Hershberger, J., Zhang, L.: Fractionally cascaded information in a sen-
sor network. In: IPSN’04: Proceedings of the third international symposium on Information
processing in sensor networks, ACM Press (2004) 311–319

7. Ganesan, D., Greenstein, B., Perelyubskiy, D., Estrin, D., Heidemann, J.: An evaluation
of multi-resolution storage for sensor networks. In: SenSys ’03: Proceedings of the 1st
international conference on Embedded networked sensor systems, ACM Press (2003) 89–
102

8. Yalagandula, P., Dahlin, M.: A scalable distributed information management system. In:
SIGCOMM ’04: Proceedings of the 2004 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, ACM Press (2004) 379–390

9. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstraction for
sensor networks. In: MobiSYS ’04: Proceedings of the 2nd international conference on
Mobile systems, applications, and services, ACM Press (2004) 99–110

10. Du, S., Khan, M., PalChaudhuri, S., Post, A., Saha, A., Druschel, P., Johnson, D.B., Riedi,
R.: Self-organizing hierarchical routing for scalable ad hoc networking. Technical report,
Rice (2004)

11. Chen, B., Morris, R.: L+:scalable landmark routing and address lookup for multi-hop
wireless network. Technical Report MIT-LCS-TR-837, Laboratory for Computer Science
Massechusetts Institute for Technology (2002)

12. PalChaudhuri, S., Du, S., Saha, A., Johnson, D.: Treecast: A stateless addressing and rout-
ing architecture for sensor networks. In: Proceedings of the 4th International Workshop on
Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN). (2004)

13. Culler, D., Shenker, S., Stoica, I.: Creating an architecture for wireless sensor networks. In:
http://today.cs.berkeley.edu/SNA/. (2004)

14. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture direc-
tions for networked sensors. In: ASPLOS-IX: Proceedings of the ninth international con-
ference on Architectural support for programming languages and operating systems, ACM
Press (2000) 93–104

15. Ni, S.Y., Tseng, Y.C., Chen, Y.S., Sheu, J.P.: The broadcast storm problem in a mobile ad
hoc network. In: MobiCom ’99: Proceedings of the 5th annual ACM/IEEE international
conference on Mobile computing and networking, ACM Press (1999) 151–162

16. Williams, B., Camp, T.: Comparison of broadcasting techniques for mobile ad hoc networks.
In: MobiHoc ’02: Proceedings of the 3rd ACM international symposium on Mobile ad hoc
networking & computing, ACM Press (2002) 194–205

190 S. PalChaudhuri et al.

17. Blum, J., Ding, M., Thaeler, A., Cheng, X.: Connected Dominating Set in Sensor Networs
and MANETs. In: Handbook of Combinatorial Optimization (Editors D.-Z. Du and P. Parda-
los), Kluwer Academic Publisher (2004) 329–369

18. Clausen, T., (editors), P.J., Adjih, C., Laouiti, A., Minet, P., Muhlethaler, P., Qayyum, A.,
L.Viennot: Optimized link state routing protocol (olsr). RFC 3626 (2003) Network Working
Group.

19. Wu, J., Dai, F.: Broadcasting in ad hoc networks based on self-pruning. In: Proceedings of
Infocom ’03. (2003)

20. Bao, L., Garcia-Luna-Aceves, J.J.: A new approach to channel access scheduling for ad
hoc networks. In: MobiCom ’01: Proceedings of the 7th annual international conference on
Mobile computing and networking, ACM Press (2001) 210–221

21. Rajendran, V., Obraczka, K., Garcia-Luna-Aceves, J.J.: Energy-efficient collision-free
medium access control for wireless sensor networks. In: Sensys ’03: Proceedings of the
first international conference on Embedded networked sensor systems, ACM Press (2003)
181–192

22. Peng, W., Lu, X.C.: On the reduction of broadcast redundancy in mobile ad hoc networks.
In: Poster at MobiHoc ’00: Proceedings of the 1st ACM international symposium on Mobile
ad hoc networking & computing, IEEE Press (2000) 129–130

23. Qayyum, A., Viennot, L., Laouiti, A.: Multipoint relaying for flooding broadcast messages
in mobile wireless networks. In: HICSS ’02: Proceedings of the 35th Annual Hawaii In-
ternational Conference on System Sciences (HICSS’02)-Volume 9, IEEE Computer Society
(2002) 298

24. Wagner, R., Sarvotham, S., Baraniuk, R.: A multiscale data representation for distributed
sensor networks. In: Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Philadelphia (2005)

Fault-Tolerant Self-organization in
Sensor Networks�

Yi Zou and Krishnendu Chakrabarty

Department of Electrical and Computer Engineering,
Duke University, Durham, NC 27708, USA

{yz1, krish}@ee.duke.edu

Abstract. Sensor nodes in a distributed sensor network can fail due to
a variety of reasons, e.g., harsh weather conditions, sabotage, battery
failure, and component wear-out. Since many wireless sensor networks
are intended to operate in an unattended manner after deployment, fail-
ing nodes cannot be replaced or repaired during field operation. There-
fore, by designing the network to be fault-tolerant, we can ensure that a
wireless sensor network can perform its surveillance and tracking tasks
even when some nodes in the network fail. In this paper, we describe a
fault-tolerant self-organization scheme that designates a set of backup
nodes to replace failed nodes and maintain a backbone for coverage and
communication. This scheme has been implemented on top of an energy-
efficient self-organization technique for sensor networks. The proposed
fault-tolerance-node selection procedure can tolerate a large number of
node failures, without losing either sensing coverage or communication
connectivity.

1 Introduction

Wireless sensor networks can be deployed to provide continuous surveillance and
monitoring over a designated area of interest [1]. Many wireless sensor nodes
have low cost and small form factors [1]; therefore, they can be deployed in large
numbers with high redundancy. Since nodes are deployed in a redundant fashion,
not every node in the network needs to be active for sensing and communication
all the time. The operational lifetime of the network can be increased by selecting
only a subset of nodes active, while keeping the other nodes in a sleep state. Fewer
active nodes also places less demand on the limited network bandwidth.

Since a wireless sensor network should ideally perform surveillance tasks in
an unattended manner, it needs to operate a long as possible, even when many

� This research was supported by DARPA, and administered by the Army Research
Office under Emergent Surveillance Plexus MURI Award No. DAAD19-01-1-0504.
Any opinions, findings, and conclusions or recommendations expressed in this pub-
lication are those of the authors and do not necessarily reflect the views of the
sponsoring agencies.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 191–205, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

s

192 Y. Zou and K. Chakrabarty

sensor nodes fail. This motivates our work on fault-tolerant self-organization.
Most recent work aims to provide fault tolerance in the deterministic deployment
of sensor nodes [6, 13]. Much less attention has been devoted to distributed
protocols that can replace failing nodes in the network with spare nodes. Failing
sensor nodes result in coverage loss and breakage in communication connectivity,
hence there is a need for a node replacement protocol and self-organization
scheme that designates nodes as fault tolerance (spare) nodes.

This paper presents a fault-tolerant self-organization scheme that ensures
communication connectivity and sensing coverage when nodes fail, either se-
quentially or simultaneously. We first present analytical results to characterize
the extent of redundancy needed for fault tolerance. We then describe a dis-
tributed scheme that achieves fault tolerance by selecting fault tolerance nodes
that can replace failing nodes. We show that the proposed approach provides
communication connectivity and sensing coverage even when up to Ω nodes fail,
where Ω is a user-defined parameter.

The paper is organized as follows. In Section 2, we briefly describe related
prior work. In Section 3, we present the background and assumptions used in this
paper work. Section 4 describes fault tolerance for communication connectivity.
Section 5 addresses the fault tolerance for sensing coverage. We present simula-
tion results for the proposed distributed self-organization technique in Section
6. Section 7 concludes the paper and outlines directions for the future work.

2 Related Work

Energy-efficient self-organization in wireless sensor networks has received con-
siderable attention in the literature [1, 9, 12, 14, 15]. Energy considerations have
been used to find a set of (active) nodes that can form a backbone for the net-
work [2, 3, 15, 16, 19]. The selection of active nodes to guarantee both sensing
coverage and communication connectivity has been studied in [10, 17, 18, 21]. A
recent approach distinguishes connectivity from sensing, and determines the con-
figuration of the nodes with considerations in both communication connectivity
and sensing coverage [18].

Fault-tolerance in distributed sensor networks has received relatively less
attention [6, 13]. Problems studied include the characterization of sensor fault
modalities, fault-tolerance in multiple-sensor fusion [13], and reliable informa-
tion dissemination [6]. Recent work for fault-tolerance in wireless sensor networks
can be categorized as being focused on fault detection [4, 7, 8] or fault-tolerant
operations [11,20]. In [7], the authors present various fault tolerance techniques
at different levels, including the physical layer for communication, hardware
components of a sensor node, system software such as the embedded operat-
ing system, middleware, and applications. In [8], the authors consider faults
in node sensor measurements and develop a distributed Bayesion algorithm to
detect and correct such faults. [4] also addresses a similar fault detection prob-
lem, and presents a crash identification mechanism. In [20], the authors show
that a sensor network with n nodes is asymptotically connected if each node

Fault-Tolerant Self-organization in Sensor Networks 193

is directly connected to at least 5.1774 log n neighboring nodes. [11] shows that
for a wireless sensor network with n nodes, the connectivity probability with
up to k failing nodes is at least eeα

when the transmission radius r satisfies
nπr2 ≥ lnn + (2k − 1) ln lnn − 2 ln k! + 2α. However, prior work has not char-
acterized the redundancy necessary for fault tolerance, and no distributed self-
organization protocol has directly considered this issue.

3 Preliminaries

The discussions in this paper are based on the following assumptions. The ad
hoc sensor network is deployed with sufficient nodes such that the network is
connected. All sensor nodes have the same maximum communication range rc

and maximum sensing range rs. We represent the surveillance field by a 2D grid,
whose dimension is given as X × Y . Let G = {g1, g2, · · · , gm} be the set of all
grid points, and m = |G| = XY . We use S to denote the set of n sensor nodes
that have been placed in the sensor field, i.e., |S| = n. A node with id k is
referred to as sk (sk ∈ S, 1 ≤ k ≤ n). Let dk

i be the distance between the grid
point gi and the sensor node sk. In the graph representation G(V,E) for a set
S of nodes, we use the vertex v ∈ V in the graph model interchangeably with
its corresponding node s ∈ S. We model sensing coverage using the probability
pk

i that a target at grid point gi is detected by a node sk. pk
i is defined as:

pk
i = e−αdk

i if dk
i ≤ rs and pk

i = 0 otherwise, where α is a parameter representing
the physical characteristics of the sensor [21, 22]. Assume that Si is the set of
nodes that can detect grid point gi; thus the detection probability pi(Si) for grid
point gi is evaluated as: pi(Si) = 1−∏sk∈Si

(1− pk
i).

Note that all sensors are assumed to be statistically independent in their
detection processes. We assume that there exists a subset of active sensor nodes
that provides a backbone for sensing coverage and communication connectivity.
This can be achieved using techniques described in [10, 17, 18, 21]. The failure
of these active nodes can result in loss of connectivity and/or loss of sensing
coverage. We use Sa (Ss) to denote the set of active (sleeping) nodes determined
by such active nodes selection algorithms, and the following discussion assumes
that Sa and Ss have already been determined. We consider the threshold pth to
be a parameter underlying a successful sensing coverage over the sensor field. The
following conditions are implicitly satisfied: 1) ∀gi ∈ G and Si ⊆ Sa, pi(Si) ≥ pth;
2) ∀sk ∈ Sa is connected.

We focus here on fault-tolerant self-organization, where both sensing coverage
and connectivity are preserved with the support from the designated fault toler-
ance (FT) nodes when active nodes fail. We refer to this as the fault-tolerance-
nodes-selection (FTNS) problem. The proposed distributed FTNS algorithm is
executed after Sa and Ss are determined, where a set St of nodes is designated to
be FT nodes (backup nodes for active nodes). These FT nodes provide fault toler-
ance for the existing active nodes. They need not be active unless the active nodes
that they are supporting fail. They can run in a power-saving mode and periodi-
cally query whether the active nodes are still alive using very limited bandwidth.

194 Y. Zou and K. Chakrabarty

Note that simultaneous failures of nodes in Sa and St may result in loss
in sensing coverage or breakage in communication connectivity since FT nodes
are not backed up by nodes in St. However, if only FT nodes fail or FT nodes
and their non-neighboring active nodes fail, the sensing coverage and communi-
cation connectivity are still guaranteed. Furthermore, the proposed distributed
algorithm can be applied in a repeated manner to select more FT nodes for the
previously selected FT nodes.

We assume that the number of nodes initially deployed in the sensor field is
sufficient to achieve fault-tolerant operations, i.e., we have enough sleeping nodes
available to select as FT nodes. Some observations and additional definitions are
listed below:

– It is trivial to see that if all failing nodes are sleeping nodes, the existing
active nodes can tolerate the failure of up to |Ss| nodes.

– We define the maximum number of active nodes that can fail simultaneously
without losing sensing coverage or communication connectivity as the degree
of fault tolerance (DOFT), denoted by Ω (Ω ≥ 1).

– The nodes that are selected from the set of sleeping nodes to obtain a Ω-
DOFT wireless sensor network are referred to as Ω-fault-tolerant (Ω-FT)
nodes. We denote the set of Ω-FT nodes as SΩ

t .
– Let S0

t = φ and SΩ
a = SΩ

t ∪ Sa. It follows that SΩ
a provides a solution

to the Ω-DOFT FTNS problem. In other words, a Ω-DOFT FTNS-derived
sensor network is still connected and provides undiminished coverage of the
surveillance area if any Ω active nodes fail.

4 Connectivity-Oriented Fault Tolerance

In this section, we focus on the analysis of fault tolerance for communication
connectivity. The discussion on fault tolerance for sensing coverage is presented
in next section.

4.1 An Upper Bound on the Number of Fault Tolerance Nodes

We first consider the case of 1-DOFT, i.e., Ω = 1. Let Nk be the set of neighbors
for sk, Na

k be the set of active neighbors, and Ns
k be the set of sleeping neighbors.

Let Δk be the number of neighboring nodes for sk, Δa
k be the number of active

neighboring nodes for sk, and Δs
k be the number of sleeping neighboring nodes

for sk. In other words, Δk = |Nk|,Δa
k = |Na

k |, and Δs
k = |Ns

k |. It is trivial to
see that ∀sk ∈ S,Δk ≥ 1 otherwise S is not connected. Thus communication
connectivity is not affected if any node in Ss fails. This is also true if multiple
nodes in Ss fail. Therefore any number of sleeping nodes in Ss can fail either
sequentially or simultaneously. This implies that only active nodes need to be
considered as failing nodes for the analysis of connectivity fault tolerance.

It can be seen that, if ∃sk ∈ S such that Δk = 1, then Ω-DOFT (Ω ≥ 1)
cannot be achieved for the network since when this neighbor node of sk fails, sk is
disconnected from the rest of the network [22]. For any wireless sensor network

Fault-Tolerant Self-organization in Sensor Networks 195

with Sa (Sa �= φ), ∀sk ∈ S, sk is connected to at least one node in Sa, i.e.,
Δa

k ≥ 1. Therefore, Δk ≥ Δa
k ≥ 1. In the sensor network with Sa as backbone

for both sensing and communication, if sk /∈ Sa, i.e., sk is a sleeping node, we can
expect Δk > 1 due to the need for sensing coverage; otherwise an active node
must be located exactly at the same location as sk. This observation leads to a
lower bound on the node density required in the sensor field for fault tolerance.
This lower bound can be used as a necessary condition for the fault-tolerant
sensor node deployment.

Consider a total of n nodes with communication radius as rc each in a sensor
field with area A. In order to achieve Ω-DOFT (Ω ≥ 1), a lower bound on the
total number of nodes n in the sensor field is given by n ≥ 3A

πr2
c
. The proof, which

can be found in [22], is straightforward and is therefore omitted. For example,
consider the extreme case of A = πr2

c . For this case, we must have n ≥ 3. This is
obviously true since if there are only two nodes, neither of them can fail. In the
following discussion, we assume that the initial sensor deployment has provided
a sufficient number of nodes for fault tolerance. Our goal is to designate extra
sleeping nodes as back-up nodes, i.e., FT nodes, to provide fault tolerance when
currently-selected active nodes fail. We also need to minimize the number of FT
nodes. Before we present bounds on the number of FT nodes needed to achieve
Ω-DOFT, we state the following theorem. The proof of the theorem can be found
in [22].

Theorem 1. Let sk ∈ S be a node in the sensor network. Let the region that
lies within the communication range rc of sk be A∗

k and let S∗ be the set of nodes
within A∗

k. Assume that all nodes in S∗ are connected to each other, i.e., ∀si, sj ∈
S, there exists a routing path from si to sj. In order to ensure communication
connectivity between the nodes in S∗ if sk fails, it is sufficient to have 10 nodes
(not counting sk) in A∗

k.

Based on Theorem 1, we can derive the upper bound on the number of FT
nodes needed within the communication region of an arbitrarily-chosen node.
Assume that Nk is the set of neighbor for sk ∈ S. Consider the special case
where S = Nk ∪{sk}, i.e., all nodes in S \ {sk} are neighbors of sk. Suppose the
nodes in Nk are not connected. When sk fails, ∃si, sj ∈ Nk such that no routing
can be formed between si and sj . Thus fault tolerance can only be achieved
if there is sufficient node density in the network. Let Γk be the number of FT
nodes required for an arbitrarily-chosen node sk in a 1-DOFT sensor network.
Next we present a sufficient condition on Γk in the following theorem.

Theorem 2. The network is 1-DOFT with respect to the failure of any node
sk ∈ Sa if ∀sk ∈ Sa, the nodes in Nk are connected and Γk ≥ 10.

The proof of Theorem 2 can be found in [22]. Generally, we have ∀sk ∈
Sa, |Δa

k| ≥ 1 since |Sa| > 1, which implies the following corollary [22].

Corollary 1. When the number of active nodes is greater than one, i.e., |Sa| >
1, the sensor network is 1-DOFT with respect to the failure of any node sk ∈ Sa

if ∀sk ∈ Sa, Nk is connected and there are 9 or more FT neighbor nodes for sk.

196 Y. Zou and K. Chakrabarty

Corollary 1 shows that Δa
k is a measure of the communication connectivity

support provided by the active neighbors of sk when sk fails. In fact, Δa
k >

0 implies that there exists built-in fault tolerance for sk. The fault tolerance
provided by the active neighbors in Na

k decreases the maximum number of FT
nodes needed when sk fails. Note that the above is true only for Ω = 1 since
when Ω > 1, nodes in Na

k may also fail at the same time when sk fails. Both
Theorem 2 and Corollary 1 assume that when sk ∈ Sa fails, the selected FT
nodes for sk do not fail. Since FT nodes are selected to provide fault tolerance
for active nodes in Sa, their own failures are not considered in the analysis.
However, the same procedure of selecting FT nodes for active nodes in Sa can
be applied repeatedly to select more FT nodes in a sequential manner for more
failing nodes.

Our goal in this paper is to develop a distributed self-organization algorithm,
where nodes rely only on single-hop knowledge within their neighborhood. There-
fore, we allow each active node sk ∈ Sa to select FT nodes only from its sleeping
neighbors. Recall that we denote the set of FT nodes in a Ω-DOFT sensor
network FT nodes as SΩ

t . Let NΩ
k be the set of FT neighbors for an arbitrarily-

chosen sk ∈ Sa in a Ω-DOFT network. Obviously, NΩ
k ⊆ Ns

k and Γk = |NΩ
k |.

When each active node finds its corresponding NΩ
k , the set SΩ

t is determined,
i.e., SΩ

t = ∪∀sk∈Sa
NΩ

k , where the total number of FT nodes in this Ω-DOFT
sensor network is |SΩ

t |. Next, we derive an upper bound on the total number of
FT nodes needed for the entire sensor network. For 1-DOFT case, this bound is
obtained directly from Theorem 3, as shown in below.

Theorem 3. Consider a wireless sensor network consisting of n nodes each with
communication radius rc. Let the set of nodes be denoted by S. Assume that all
nodes in S are connected, i.e., ∀si, sj ∈ S, there exists a routing path from si to
sj. Let G(V,E) be the connected graph corresponding to S, i.e., |V | = |S| and
vk is the vertex representing sk ∈ S, where ∀u, v ∈ V, (u, v) ∈ E if d(u, v) ≤ rc.
Assume that Sa is the set of (active) backbone nodes. The subgraph corresponding
to Sa is denoted by Ga(Va, Ea), where Ga is a CDS of G. Let S1

t be the set of
nodes selected as FT nodes to achieve 1-DOFT. An upper bound on the total
number of FT nodes needed to achieve 1-DOFT is given as

|S1
t | ≤

{
10, if |Va| = 1;
9|Va| − |Ea|, if |Va| > 1. (1)

The proof the theorem can be found in [22]. Next, we consider a more general
fault tolerance scenario where Ω > 1. Note that we assume |Sa| ≥ Ω for the
analysis of Ω-DOFT; otherwise Ω-DOFT is not meaningful. In the following,
we determine the number of nodes Γk needed for an arbitrarily-chosen active
node to achieve Ω-DOFT in its communication region. Note that for a Ω-DOFT
sensor network, if ∃sk ∈ Sa such that Ω > Δa

k, the DOFT in the communication
region of sk is at most Δa

k +1. However, when Ω-DOFT is achieved for the entire
sensor network, fault tolerance with the maximum number of failing nodes in
the communication region of sk is automatically achieved. In the following, we

Fault-Tolerant Self-organization in Sensor Networks 197

assume that Δa
k ≥ Ω − 1 to simplify the discussion. Note also that since Ω > 1,

we have |Sa| > 1. Therefore we can ignore the special case where only one node
is active and all other nodes are placed within its communication range.

Theorem 4. The network is Ω-DOFT (Ω > 1) with respect to failures of any
Ω nodes inside the communication region of an arbitrarily-chosen sk ∈ Sa (1 <
Ω ≤ Δa

k + 1), if the nodes in Nk are connected and Γk ≥ Ω. Moreover, Γk is
lower-bounded by the following:

Γk ≥
⎧⎨⎩

Ω + 9, if sk fails and Ω = Δa
k + 1;

Ω + 8, if sk fails and Ω < Δa
k + 1;

Ω, if sk does not fail.
(2)

The proof of Theorem 4 is given in [22]. Bounds on the total number of FT
nodes needed to achieve Ω-DOFT (Ω > 1 and |Sa| ≥ Ω > 1) can be derived
in a similar way, where details of this part can be found in [22]. Again, note
that it is possible that ∃sk ∈ Sa such that Δa

k + 1 < Ω. In this case, since the
maximum number of failing nodes within the communication region of sk is at
most Δa

k + 1, Ω-DOFT for sk refers to the failure of up to Δa
k + 1 nodes inside

the communication region of sk, and the failure of Ω − (Δa
k + 1) nodes outside

the communication region of sk.

4.2 Lower Bound on the Number of Fault Tolerance Nodes

To reduce energy consumption, it is desirable to minimize the number of FT
nodes needed, i.e., to minimize the size of SΩ

t . In this section, we present a lower
bound on the number of FT nodes needed to achieve the required Ω-DOFT
(Ω ≥ 1) in wireless sensor networks. Let Nf

k ⊆ Na
k be the set of failing active

neighbors of sk, i.e., Sf = ∪sk∈Sa
Nf

k . Let NΩ
k ⊆ Ns

k be the set of FT nodes for
sk, i.e., SΩ

t = ∪sk∈Sa
NΩ

k .
We know from previous subsections that ∀sk ∈ Sa, FT nodes of sk keep

all neighbors nodes of sk in Nk connected. This implies that the subgraph rep-
resenting NΩ

k is a CDS of the subgraph representing Nk. When Ω = 1, the
minimization of |SΩ

t | is equivalent to finding the MCDS for the subgraph repre-
senting Nk for each active node sk ∈ Sa. However, since no failing active node
has any failing active neighbors for Ω = 1, such an MCDS for sk also contains
existing active neighbors in Na

k as existing dominating nodes. Let S1
t be the

set of nodes selected as FT nodes to achieve 1-DOFT in the sensor network. It
then easy to see that a lower bound on the total number of FT nodes needed to
achieve 1-DOFT, i.e., |S1

t |, is given by:

|S1
t | ≥

{
1, if |Sa| = 1;
0, if |Sa| > 1. (3)

Note that the best case of |S1
t | = 0 when |Sa| > 1 rarely happens in practice,

because it requires that neighbors of any active node are also neighbors of at least
another active node. This implies that all nodes are within a circle of radius rc.
Since |Sa| > 1, this makes the other |Sa| − 1 nodes unnecessary. It is possible to

198 Y. Zou and K. Chakrabarty

have several such nodes but if |Sa| is very large, there will be a significant energy
overhead for these nodes. When Ω > 1, the analysis is more complicated because
when an active node sk fails, some active neighbors in Na

k may also fail at the
same time. To simplify the discussion, we define function M as S̄a = M(S, Sa),
where 1) Sa ⊆ S̄a; 2) The subgraph representing S̄a is a connected dominating
set (CDS) of the graph representing S; 3) For all possible sets that satisfies 1)
and 2), S̄a has the smallest size.

We refer to determining S̄a as a constrained minimum connected dominating
set (constrained MCDS) problem. Note that if Sa = φ, then S̄a is the MCDS
of S. To achieve Ω-DOFT (Ω ≥ 1) in the wireless sensor network, we need to
find the set of FT nodes SΩ

t such that SΩ
t =

⋃
∀Sf⊆Sa,|Sf |≤Ω M(S \Sf , Sa \Sf).

Let Nf
k ⊆ Na

k be the set of failing active neighbors of sk. We can obtain a
lower bound on the number of FT nodes needed to achieve Ω-DOFT (Ω > 1)
as follows [22]:

|SΩ
t | ≥ |

⋃
∀|Sf |≤Ω,Sf⊆Sa

M(S \ Sf , Sa \ Sf)| (4)

Note that if Ω = |Sa|, Sa \ Sf = φ, then |SΩ
t | ≥ |M(S \ Sa, φ)|.

4.3 Connectivity-Oriented Selection of Fault Tolerance Nodes

Since the CDS and MCDS problems for a given graph are NP-complete [5,3,19],
finding the constrained MCDS described earlier to achieve Ω-DOFT as shown in
Equation (4) is also NP-complete. When only single-hop knowledge is available,

for any sk ∈ Sa, there are a total of
∑Ω

i=1

(|Na
k |
i

)
possible combinations of

failing nodes for sk; as a result, the total number of possible combination of failing

nodes for all the active nodes is
∑

∀sk∈Sa

(∑Ω
i=1

(|Na
k |
i

))
. Each evaluation

requires the finding of the MCDS for neighbors of the failing node. Even though
failing active nodes may share many neighbors, a thorough evaluation in this
way is still computationally very expensive.

For a wireless sensor network with a set Sa of active nodes serving as a
backbone, the maximum number of nodes that can fail is |Sa|. We propose the
following distributed procedure to achieve fault tolerance for the simultaneous
failure of up to |Sa|. The proposed distributed procedure is based on the algo-
rithm from [19]. The procedure contains three steps as shown in Fig. 1.

In Step 1 of Fig. 1, each active node selects a FT node for any of its dis-
connected active neighbors. We refer to this type of FT nodes as gateway FT
nodes since they provide alternative routing paths for active neighbors of the
failing node. When that potential failing node actually fails, the network traffic
from the failing node to its active neighbors can still be delivered. Though the
first type of FT nodes are able to take care of the routing data originating from
failing active nodes, they are not necessarily connected among each other and
are not necessarily connected to sleeping neighbors of the failing active node.

Fault-Tolerant Self-organization in Sensor Networks 199

Step 2 in Fig. 1 deals with this problem by using a modified version of the algo-
rithm proposed in [19], which proposed a distributed approach for constructing
the CDS for a connected but not completely connected graph. In the worst case,
when all nodes in Sa fail at the same time, the subgraph representing FT nodes
should be a CDS of the subgraph representing Ss. We can therefore utilize the
algorithm proposed in [19] with the target graph representing Ss. Note that in
Step 2, we have already found gateway FT nodes, therefore Step 2 needs only
check for connectivity of disconnected FT nodes. To ensure that the proposed
distributed procedure is also applicable to more general scenarios, Step 3 is added
to handle the case that the subgraph representing Ss is a completely connected
graph. Also note that the proposed connectivity-oriented fault tolerance nodes
selection procedure in Fig. 1 is designed in a distributed manner since it requires
only local knowledge for each node. The local knowledge can be obtained upon
the initialization stage of sensor networks by methods such as integrating the
neighbor information into the HELLO message. We next prove that the pro-
posed distributed procedure achieves |Sa|-DOFT for a wireless sensor network
with the set of active nodes given by Sa.

Theorem 5. Consider a wireless sensor network with n nodes, each with com-
munication radius rc, denoted by the set S. Assume that all nodes in S are
connected, i.e., ∀si, sj ∈ S, there exists a routing path from si to sj. Assume
that Sa is the set of active nodes as a backbone that keeps all nodes connected.
Assume that St is the set of FT nodes obtained from the distributed FT nodes
selection procedure given by Fig. 1. The set St achieves Ω-DOFT in this wireless
sensor network, where Ω = |Sa|.

Proof: Since the maximum number of nodes that can fail is |Sa|, we only
need to consider the case that the selected FT nodes in St are able to keep
the network fully connected when all nodes in Sa fail. Let Gs(Vs, Es) be the
subgraph representing Ss = S \ Sa and Gt(Vt, Et) be the subgraph representing
St. To prove that Gt is a CDS of Gs, we first show that Gt is connected, then
we show that for any v ∈ Vs, v is either in Vt or adjacent to a vertex in Vt.

Consider any u, v ∈ Vt. Since Gs is connected, ∃P (u, v) as the shortest path
from u to v in Gs, where P (u, v) ⊆ Vs is the set of the vertices in the path.
If |P (u, v)| = 2, the theorem is trivially proved. Assume |P (u, v)| ≥ 3, and let

Distributed FT nodes selection procedure

Step 1. ∀sk ∈ Sa, for each pair of disconnected active neighbors, sk selects si ∈ Ns
k

as a FT node if si connects both.
Step 2. ∀sk ∈ Ss,

Step 2.1. if has two disconnected FT neighbors, then sk assigns itself as FT node;
Step 2.2. if has two disconnected FT neighbor node and sleeping node, then sk

assigns itself as FT node;
Step 3. ∀sk ∈ Ss, if sk has no FT neighbors, then sk assigns itself as FT node.

Fig. 1. Distributed connectivity-oriented fault tolerance nodes selection procedure

200 Y. Zou and K. Chakrabarty

P (u, v) = {u, u1, u2, · · · , v}. Consider predecessor vertices of u in P (u, v), i.e.,
u1. Since u ∈ Vt, from Step 2 in Fig. 1, u1 has to be in Vt, irrespective of
whether u2 is in Vt. The same argument holds for u2. Doing this repeatedly, we
have ∀w ∈ P (u, v), w ∈ Vt, i.e., P (u, v) ∈ Vt. Next, ∀v ∈ Vs, from Step 3 in Fig.
1, v has at least one FT neighbor. Therefore, Gt is a CDS of Gs.

5 Coverage-Centric Fault Tolerance

In Section 4, we have discussed the Ω-DOFT problem for fault-tolerant commu-
nication connectivity of up to Ω active nodes failing simultaneously (Ω > 1).
However, we should also take fault tolerance for sensing coverage into account
to achieve the surveillance goal over the field of interest. This implies that the
nodes selected as FT nodes must be able to provide enough sensing coverage
over the areas that were originally under the surveillance of the Ω failing active
nodes.

5.1 Loss of Sensing Coverage

Recall the collective coverage probability for a grid point gi defined in Section
3. Since only active nodes in Sa perform communication and sensing tasks, the
collective coverage probability for gi is actually from nodes in Sa

i , where Sa
i ⊆ Si

is the set of active nodes that can detect gi. When nodes fail in the network,
the set of active nodes that can detect gi, i.e., Sa

i , changes with time, which
subsequently changes the sensing coverage over that grid point. Let qi(S) be a
mapping from a set S of nodes to the coverage probability for grid point gi, pi(t)
be a mapping from a time instant t to the coverage probability for grid point gi,
and S(t) be a mapping from a time instant t to a set of nodes. Then Si(t) is the
set of nodes that can detect grid point gi at time instant t. For example, if at
time instant t, only nodes in the subset Sa

i , i.e., active nodes, detect grid point
gi, therefore Si(t) = Sa

i and pi(t) = qi(Si(t)) = qi(Sa
i). Therefore, as shown in

Section 3, coverage probability of gi under the fault tolerance constraint is a
function of time given by pi(t) = qi(Sa

i (t)) = 1−∏sk∈Sa
i (t)(1− pk

i), where Sa
i (t)

is the set of active nodes that can still detect gi at time instant t. Therefore,
the goal is to ensure that the selected FT nodes and existing active nodes, i.e.,
SΩ

a = Sa ∪SΩ
t , are able to keep the sensor field adequately covered whenever up

to Ω active nodes fail. Thus, successful sensing coverage over the sensor field for
FTNS in wireless sensor networks is indicated by ∀gi ∈ G, pi(t) ≥ pth, where pth

is the coverage probability threshold defined in Section 3. Theorem 6 shows the
relationship between the loss of sensing coverage and the fault-tolerant operation
in wireless sensor networks.

Theorem 6. Consider a wireless sensor network with n nodes, each with com-
munication radius rc, denoted by the set S. Assume that all nodes in S are
connected, i.e., ∀si, sj ∈ S, there exists a routing path from si to sj. Let G be
the set of all the grid points in the sensor field. Let Si be the set of nodes that

Fault-Tolerant Self-organization in Sensor Networks 201

can detect the grid point gi ∈ G initially after the deployment. Let Si(t) be the
set of nodes that can detect gi at time t, and Sf

i (t) be the set of failing active
nodes for gi at time t. Throughout the operational life time of a sensor network,
∀gi ∈ G, the following must be satisfied for any time instant t:

pf (t + 1) ≤ pi(t)− pth

1− pth
. (5)

where pi(t) = 1−∏sk∈Si(t)
(1− pk

i) and pf (t + 1) = 1−∏sk∈Sf
i (t+1)(1− pk

i).

Proof: Consider time instants t and t + 1. Obviously we have Si(t) ⊆ Si and
Si(t) = Si(t + 1) ∪ Sf

i (t + 1). Then we have

pi(t) = 1−
∏

sk∈Si(t)

(1− pk
i) = 1−

∏
sk∈Si(t+1)

(1− pk
i)

∏
sk∈Sf

i (t+1)

(1− pk
i).

Let pf (t) = 1−
∏

sk∈Sf
i (t)

(1− pk
i) and pf (t + 1) = 1−

∏
sk∈Sf

i (t+1)

(1− pk
i). So

pi(t) = 1− (1− pi(t + 1)) (1− pf (t + 1)) = pf (t + 1) + pi(t + 1)(1− pf (t + 1)).

Therefore, pi(t + 1) = pi(t)−pf (t+1)
1−pf (t+1) , thus

pi(t + 1) ≥ pth ⇒ pi(t)− pf (t + 1)
1− pf (t + 1)

≥ pth,

which implies that

pf (t + 1) ≤ pi(t)− pth

1− pth
.

From the proof of Theorem 6, we see that pf (t+1) represents the sensing coverage
loss at time t + 1 at grid point gi caused by the failing nodes in Sf

i (t + 1). To
satisfy the coverage probability threshold requirement, pf (t+1) must not exceed
pi(t)−pth

1−pth
. In other words, if we can bound the coverage loss pf (t) below pi(t)−pth

1−pth

during the operational lifetime of the sensor network for all grid points on the
field, the sensor network is able to tolerate up to Ω nodes failing simultaneously.
When pi(t) drops, the bound on the coverage loss from failing nodes at the next
time instant, i.e., pf (t + 1), becomes tighter since pi(t)−pth

1−pth
decreases when pi(t)

decreases. This can also be used as a warning criteria to inform the base station
whether a current node may lose sensing coverage over its sensing area.

Note that the fault tolerance problem for sensing coverage differs from the
fault tolerance problem for communication connectivity discussed in Section 4
since there is no direct relationship between the number of failing nodes and
the coverage loss pf (t). For example, for gi with |Si(t)| = 1, pi(t) might be the
same as pj(t) for gj where |Sj(t)| = 1, 2, 3 or even higher. This is due to the fact
that for any grid point gi, pi(t) is not directly related to the number of nodes
that can detect gi but rather to the distances from these nodes to gi defined in
Section 3.

202 Y. Zou and K. Chakrabarty

5.2 Distributed Approach

We next propose a coverage-centric fault tolerance algorithm that can be ex-
ecuted in a distributed manner, and requires much less computation than the
centralized case. Without loss of generality, assume rc ≥ 2rs, i.e., Si ⊆ Nk. For
grid point gi ∈ Ak corresponding to node sk ∈ Sa

i ⊆ Sa, the maximum cover-
age loss happens when all nodes in Sa

i fail. In this case, the coverage loss for
gi, denoted as qi(Sa

i), is given as qi(Sa
i) = 1 −∏sk∈∪Sa

i
(1 − pk

i). Let SΩ
i ⊆ Ss

i

be the set of FT nodes for grid point gi. The coverage compensation from SΩ
i ,

denoted as qi(SΩ
i), is given as qi(SΩ

i) = 1 −∏sk∈SΩ
i

(1 − pk
i). Let qi(Sa

i ∪ SΩ
i)

be the coverage from both active nodes and the FT nodes for gi. Similarly,
qi(Sa

i ∪ SΩ
i) = 1 − ∏sk∈Sa

i ∪SΩ
i

(1 − pk
i). Assuming that the maximum cover-

age loss happens at time instant t + 1, i.e., Si(t) = Sa
i ∪ SΩ

i ,Si(t + 1) = SΩ
i ,

and Sf (t + 1) = Sa
i , then accordingly, we have corresponding expressions as

pi(t) = qi(Sa
i ∪ SΩ

i), pi(t + 1) = qi(SΩ
i), and pf (t + 1) = qi(Sa

i). From Equation
(5), if the following is satisfied for all grid points in the sensing area of sk, i.e.,
Ak, then the node sk is able to tolerate the maximum number of failing active
nodes within its own sensing area without losing sensing coverage. This is shown
as: qi(Sa

i) ≤ qi(S
a
i ∪SΩ

i)−pth

1−pth
(∀gi ∈ Ak). This evaluation procedure is per grid

point, which can be executed on either a sleeping node or an active node. For
any gi ∈ G, only one node needs to perform the selection of FT nodes for gi.
This implies that total number of nodes required for executing such evaluation
procedure is � |G|

|Ak| or � A
πr2

s
 where A is the area of the surveillance field (assum-

ing that either rc ≥ 2rs or � 2rs

rc
-hop knowledge is available). Fig. 2 shows the

pseudocode for the coverage-centric fault tolerance nodes selection algorithm.
Note that in Fig. 2, there is no need to calculate qi(Sa

i) every time since it
is available from the previous stage when Sa is determined [22]. Further com-
putation can be reduced by temporarily storing the qi(SΩ

k) for the current grid
point for evaluation at the next grid point, where qi(SΩ

i ∪ SΩ
k) can be obtained

by qi(SΩ
i ∪ SΩ

k) = qi(SΩ
i) + qi(SΩ

k)− qi(SΩ
i)qi(SΩ

k).

Procedure DistCovCentricFTNSelection (sk)

01 Set SΩ
k = φ;

02 For ∀gi ∈ Ak

03 If qi(S
a
i) ≤ qi(S

Ω
k)−pth

1−pth
Continue; End

04 For ∀SΩ
i ⊆ Ss

i \ SΩ
k

05 If qi(S
a
i) >

qi(S
Ω
i ∪SΩ

k)−pth

1−pth
Continue; End

06 Set SΩ
k = SΩ

k ∪ SΩ
i ; Break;

07 End
08 End

Fig. 2. Pseudocode for the distributed coverage-centric fault tolerance nodes selection

Fault-Tolerant Self-organization in Sensor Networks 203

Note that similar to the connectivity-oriented fault tolerance nodes procedure
in Fig. 1, the coverage-centric fault tolerance nodes selection procedure in Fig.
2 is also designed in a distributed manner. However, it must be noted that the
one-hop communication neighbors of a node might be different from its sensing
neighbors due to the relationship of the node’s sensing radius and communication
radius [21, 22]. If rc < 2rs, it is necessary for sk to know locations of nodes up
to � 2rs

rc
 hops from it to evaluate its coverage redundancy [21,22].

6 Simulation Results

We next evaluate the proposed distributed FTNS procedure using MatLab and
the data collected in ns2 for distributed coverage-centric active nodes selection
(CCANS) procedure described in [21]. The data from CCANS contains locations
of sensor nodes after deployment and their final state decisions. There are 150,
200, 250, 300, 350, and 400 nodes in each random deployment, respectively, on a
50× 50 grid representing a 50m× 50m sensor field. All nodes have the same max-
imum communication radius rc = 20m and maximum sensing range rs = 10m.
The value of Ω is set to the number of active nodes, i.e., Ω corresponds to the
the maximum number of active nodes that can fail simultaneously. Figures 3(a)–
3(c) show the simulation results for distributed fault-tolerance self-organization
procedure.

Fig. 3(a) shows the results obtained for connectivity-oriented selection of FT
nodes. Note that the percentage of FT nodes decreases nearly at the same rate
as the percentage of active nodes. This is because the connectivity-oriented FT
nodes selection algorithm is executed in a distributed manner and each node uses
only one-hop knowledge. Note also that the percentage of FT nodes is lower than
the percentage of active nodes determined by CCANS. This is because CCANS
considers both communication connectivity and sensing coverage in selecting

150 200 250 300 350 400
8

10

12

14

16

18

20

22

24

Number of total nodes

P
er

ce
nt

ag
e

of
 a

ct
vi

e
an

d
fa

ul
t t

ol
er

an
ce

 n
od

es CCANS Active Nodes
FT Nodes for Connectivity Only

(a)

150 200 250 300 350 400
10

12

14

16

18

20

22

24

Number of total nodes

P
er

ce
nt

ag
e

of
 a

ct
vi

e
an

d
fa

ul
t t

ol
er

an
ce

 n
od

es CCANS Active Nodes
FT Nodes for Coverage Only

(b)

150 200 250 300 350 400
0

5

10

15

20

25

30

Number of total nodes

P
er

ce
nt

ag
e

of
 a

ct
vi

e
an

d
fa

ul
t t

ol
er

an
ce

 n
od

es CCANS Active Nodes
FTNS Stage 1
FTNS Stage 2
FTNS Final

(c)

Fig. 3. Simulation results: (a) Percentage of fault tolerance nodes for communication
connectivity only (b) Percentage of fault tolerance nodes for sensing coverage only (c)
Percentage of fault tolerance nodes for the FTNS algorithm (with both coverage and
connectivity concerns)

204 Y. Zou and K. Chakrabarty

active nodes. Fig. 3(b) shows the results for coverage-centric selection of FT
nodes. The percentage of FT nodes is nearly the same as the percentage of active
nodes obtained from the CCANS algorithm. This is due to the fact that we have
rc = 2rs in this scenario. As shown in [22], when rc = 2rs, the connectivity
is automatically guaranteed by the subset of nodes needed to maintain sensing
coverage.

Fig. 3(c) presents the result for the distributed FTNS algorithm. It consists
of two stages, which are referred to as “FTNS Stage 1” and “FTNS Stage 2”,
respectively, in Fig. 3(c). The FTNS Stage 1 corresponds to the connectivity-
oriented selection of FT nodes and FTNS Stage 2 corresponds to the coverage-
centric selection of FT nodes. The FT nodes that have already been selected in
Stage 1 are checked first in Stage 2 to see if they already provide enough sensing
coverage for fault tolerance. This decreases the number of FT nodes needed for
Stage 2 of coverage-centric FT nodes selection. From Fig. 3(c), the total number
of FT nodes selected for both connectivity and coverage is only slightly higher
than the number of original active nodes.

7 Conclusions

In this paper, we have investigated fault tolerance for coverage and connectivity
in wireless sensor networks. Fault tolerance is necessary to ensure robust opera-
tion for surveillance and monitoring applications. Since wireless sensor networks
are made up of inexpensive nodes and they operate in harsh environments, the
likely possibility of node failures must be considered. We have characterized the
amount of redundancy required in the network for fault tolerance. Based on an
analysis of the redundancy necessary to maintain communication connectivity
and sensing coverage, we have proposed the FTNS algorithm for fault-tolerant
self-organization. FTNS is able to provide a high degree of fault tolerance such
that even when all of these active nodes fail simultaneously, coverage and connec-
tivity in the network are not affected. We have implemented FTNS in MatLab
and presented representative simulation results.

References

1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor
networks,” IEEE Comm. Magazine, pp. 102–114, 2002.

2. K. M. Alzoubi, P. J. Wan, and O. Frieder, “Distributed heuristics for connected
dominating sets in wireless ad hoc networks,” J. Comm. Net., vol. 4, pp. 1–8, 2002.

3. V. Bharghavan and B. Das, “Routing in ad hoc networks using minimum connected
dominating sets,” Proc. IEEE ICC, pp. 376–380, 1997.

4. S. Chessa and P. Santi, “Crash faults identification in wireless sensor networks,”
Computer Communications, vol. 25, no. 14, pp. 1273–1282, 2002.

5. M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to the
theory of NP -completeness, W. H. Freeman and Co., 1979.

Fault-Tolerant Self-organization in Sensor Networks 205

6. S. S. Iyengar, M. B. Sharma, and R. L. Kashyap, “Information routing and relia-
bility issues in distributed sensor networks,” IEEE Trans. Signal Processing, vol.
40, no. 2, pp. 3012–3021, 1992.

7. F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli, “Fault tolerance in
wireless ad-hoc sensor networks,” Proc. IEEE Sensors, 2002,

8. B. Krishnamachari and S. S. Iyengar, “Distributed Bayesian algorithms for fault-
tolerant event region detection in wireless sensor networks,” IEEE Trans. Com-
puters, vol. 53, pp. 241–250, March 2004.

9. C. Gui and P. Mohapatra, “Power conservation and quality of surveillance in target
tracking sensor networks,” Proc. MobiCom, pp. 129–143, 2004.

10. H. Gupta, S. R. Das, and Quinyi Gu, “Connected sensor cover: self-organziation of
sensor networks for efficient query execution,” Proc. MobiHoc, pp. 189–200, 2003.

11. X. Y. Li, P. J. Wan, Y. Wang, and C. W. Yi, “Fault tolerant deployment and
topology control in wireless networks,” Proc. IEEE MobiHoc, pp. 117–128, 2003.

12. J. Polastre, J. Hill and D. Culler, “Versatile low power media access for wireless
sensor networks,” Proc. SenSys, pp. 95–107, 2004.

13. L. Prasad, S. S. Iyengar, R. L. Rao, R. L. Kashyap, “Fault- tolerant sensor inte-
gration using multiresolution decomposition,” Physical Rev. E, vol. 49, 1994.

14. K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari. “Energy-efficient for-
warding strategies for geographic routing in lossy wireless sensor networks,” Proc.
SenSys, pp. 108–121, 2004.

15. S. Slijepcevic and M. Potkonjak, “Power efficient organization of wireless sensor
networks,” Proc. ICC, pp. 472–476, 2001.

16. I. Stojmenovic, M. Seddigh, and J. Zunic, “Dominating sets and neighbor elimina-
tion based broadcasting algorithms in wireless networks,” Proc. IEEE Intl. Conf.
System Sciences, 13(1), pp.14–15, 2002.

17. D. Tian and N. D. Georganas, “A node scheduling scheme for energy conservation
in large wireless sensor networks,” Wireless Comm. Mob. Comp., vol. 3, pp.271-
290, 2003.

18. X. R. Wang, G. L. Xing, Y. F. Zhang, C. Y. Lu, R. Pless, and C. Gill, “Integrated
coverage and connectivity configuration in wireless sensor networks,” Proc. Proc.
IEEE SenSys, pp.28–39, 2003.

19. J. Wu, “Extended dominating-set-based routing in ad hoc wireless networks with
unidirectional links,” IEEE Trans. Par. Dist. Comp., vol. 22:1-4, pp.327-340, 2002.

20. F. Xue and P. R. Kumar, “The number of neighbors needed for connectivity of
wireless networks,” Wireless Networks vol. 10, no. 2, pp. 169–181, 2004.

21. Y. Zou and K. Chakrabarty, “A distributed coverage- and connectivity-centric
technique for selecting active nodes in wireless sensor networks,” accepted for pub-
lication in IEEE Trans. Computers, 2005.

22. Y. Zou, “Coverage-driven sensor deployment and energy-efficient information pro-
cessing in wireless sensor networks,” Ph.D Thesis, Duke University, Dec. 2004.

TARA: Thermal-Aware Routing Algorithm for
Implanted Sensor Networks�

Qinghui Tang, Naveen Tummala, Sandeep K.S. Gupta1,
and Loren Schwiebert2

1 Arizona State University, Tempe AZ 85287, USA
{qinghui.tang, naveen.tummala, sandeep.gupta}@asu.edu

2 Wayne State University, Detroit, MI 48202
loren@cs.wayne.edu

Abstract. Implanted biological sensors are a special class of wireless
sensor networks that are used in-vivo for various medical applications.
One of the major challenges of continuous in-vivo sensing is the heat
generated by the implanted sensors due to communication radiation and
circuitry power consumption. This paper addresses the issues of rout-
ing in implanted sensor networks. We propose a thermal-aware routing
protocol that routes the data away from high temperature areas (hot
spots). With this protocol each node estimates temperature change of
its neighbors and routes packets around the hot spot area by a withdraw
strategy. The proposed protocol can achieve a better balance of temper-
ature rise and only experience a modest increased delay compared with
shortest hop, but thermal-awareness also indicates the capability of load
balance, which leads to less packet loss in high load situations.

1 Introduction

An implanted biomedical sensor is a device that detects, records and transmits
information regarding a physiological change in the biological environment. It
also finds its usages in various medical applications like retinal prosthesis [1],
and cancer detection. Sensors work cooperatively by exchanging information
and monitoring environmental changes, so wireless communication is necessary
for reliable data communication amongst sensors.

The routing problem in wireless sensor networks has been well studied. Most
of the routing protocols in wireless sensor networks are designed to satisfy power
efficiency or delay constraints. None of them consider the possibility of haz-
ardous effects resulting from communication radiation and power dissipation of
implanted sensors. In our previous work [2], we show the communication schedul-
ing among sensors should consider the cluster leadership history and sensor lo-
cations to minimize thermal effect on the surrounding tissues.

Radio signals used in wireless communication produce electrical and magnetic
fields. The human tissue will absorb radiation and experience temperature rise

� This work is supported in part by NSF grants ANI-0086020.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 206–217, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

TARA: Thermal-Aware Routing Algorithm for Implanted Sensor Networks 207

when exposed to electromagnetic fields. Even with modest heating, some organs
which are very sensitive to temperature rise due to lack of blood flow to them, are
prone to thermal damage (e.g., lens cataract [3]). Continuous operation of sensor
circuitry also contributes to the temperature rise of tissues. Specific Absorption
Rate (SAR, unit is W/kg) is a measure of the rate at which radiation energy is
absorbed by the tissue per unit weight. The relationship between radiation and
SAR is given by

SAR =
σ |E|2

ρ
(W/kg) , (1)

where E is the induced electric field by radiation, ρ is the density of tissue and
σ is the electrical conductivity of tissue. Many countries and organizations set
strict standards for peak values of SAR. Experiments show exposure to an SAR
of 8W/kg in any gram of tissue in the head or torso for 15 minutes may have a
significant risk of tissue damage [4].

In this work, our purpose is to reduce the possibility of overheating and we
are the first to consider thermal influence in a sensitive application environment.
We demonstrate the thermal effects caused by sensors implanted in a biologi-
cal body. We first obtain a radiation model of a communication antenna. With
the Finite-Difference Time-Domain method (FDTD) we can calculate the tem-
perature rise and SAR of each implanted sensor node by using Pennes bioheat
equation [5]. Then we propose Thermal-Aware Routing Algorithm (TARA) to
handle packet transmission in the presence of temperature hot spots. Extensive
simulations were conducted to verify and compare its performance with short-
est hop algorithm. The smaller maximum temperature rise and smaller average
temperature rise of TARA indicate that TARA is a safer routing solution for im-
planted applications. Although our protocol has higher transmission delay, it also
introduces less traffic congestion into the network because thermal-awareness of
TARA technically equals to load balancing capability (the more traffic a node
handles, the more energy is consumed and the more heat is generated. Balancing
temperature rise equals to balancing traffic load).

In Section 2, we give a brief overview of related work and classification of the
hot spot routing problem. We describe our system model and proposed thermal-
aware routing protocol in Section 3. We also discuss how to calculate SAR and
temperature rise in Section 3. Simulation results and comparison with shortest
hop algorithm is presented in Section 4. We conclude in Section 5.

2 Related Work

Ad-hoc routing has been studied extensively for ad-hoc networks and sensor net-
works. In most situations, energy-efficiency, delay constraints, and transmission
hops are design constraints. Those algorithms are not appropriated for in vivo
biomedical sensors since they did not consider that even though some routes are
eligible choices for light traffic and shorter delay, the temperature is already so
high that further operation of those forwarding nodes is unbearable.

208 Q. Tang et al.

2 3

6

4

5

1

7

(a) Area Hotspot

2 3

6

4

5

1

7

(b) Link Hotspot

Fig. 1. Difference between area hot spot and link hot spot (a) all links are broken,
node 2 is not accessible (b) some links are broken, node 2 is accessible

Thus we realized there are existing two hot spot routing problems in the
networking field, namely, area hot spot and link hot spot. We believe current
research on ad-hoc routing or sensor network routing focus only on link hot spot
problem where only some network links of a node suffer congestion and packet
loss, whereas other links are still available. Figure 1 shows the difference between
area hot spot and link hot spot. In the former, the area surrounding node 2 is the
hot spot region, and all links connecting with node 2 are disconnected thus node
2 is isolated from network. Whereas in link hot spot as shown in Figure 1(b),
only some links connecting node 2 with the outside network are disconnected;
node 2 is accessible and qualified as a forwarding node (e.g., route 6->2->5 is
still available).

It may seem that since a load balancing routing algorithms distributes packets
evenly, implying even distribution of power consumption due to communication
and data processing, it can also minimize temperature rise. However, this is
not always true. For instance, as shown in Figure 1(b), route 1 → 4 → 5 and
1 → 2 → 5 can be used to balance traffic. If we assume node 2 already suffers
from temperature rise due to previous packet forwarding from node 4 to node
7, then node 2 is no longer available for load balancing and forwarding packets
between node 1 and node 5.

Some heuristic protocol, e.g., the clustering-based protocol LEACH [6] can
evenly distribute the energy consumption among the sensors in the network
on a long term basis (large time scale). But on short term (small time scale),
since the rotation of cluster head is made randomly, it is highly possible that
some high temperature nodes are selected as the cluster lead. Similarly, the
”Energy Equivalence Routing” proposed by Ding et al. [7] adjusts routing path
periodically to balance energy consumption among sensors, but may not satisfy
short time temperature rise criteria. Woo et al. [8] suggested link connectivity
status (based on wireless signal quality) should be maintained in a neighborhood
table regardless of cell density. In our study, link connectivity also depends on
environment temperature and node distribution density plays a critical role in
temperature change. Estrin et al. [9] mentioned that the deployment of sensors

TARA: Thermal-Aware Routing Algorithm for Implanted Sensor Networks 209

becomes a form of environmental contamination, and the emission of active
sensors could be harmful or disruptive to organisms. Thus environmental impact
of sensor networks needs to be examined in more details. Our protocol considers
such new constraint of implanted applications, and tries to reach load balancing
and temperature rise balance in a smaller time scale to reduce bio-safety risk.
We expect our work will motivate further research attention in this field. Also
we believe there are some similar scenarios where communication or operation
of network will cause environmental disturbance which is undesired:

– In drug development or food processing, some enzymes are used as
catalysts or ingredients. Enzymes are extremely sensitive to the change of
environment, such as pH value and temperature. Embedded sensors are used
for reagent delivery, and quality monitoring or quality control.

– In protein crystal growth, Micro-Electro Mechanical Systems (MEMS)
and sensors are embedded to control and monitor the growth process [10].
Temperature is one of the critical factors leading to successful crystal growth.
Obviously we hope to minimize the heating influence resulting from the
operation of embedded MEMS and sensors.

3 Thermal Aware Routing Protocol

3.1 System Model

The temperature surrounding the sensor nodes can be measured by using a tem-
perature sensor inside the sensor node’s circuitry, but this will enlarge the sensor
size and increase complexity of the sensor circuit. So in our model we assume
that we cannot measure the temperature surrounding the sensor node. Temper-
ature is estimated by observing sensor activities. In our model, we assume that
the dielectric and perfusion properties of the tissues are known. The locations
of the biosensors are predefined as they are physically implanted rather than
randomly dropped as in some other sensor applications.

As shown in Figure 2, distributed sensors are implanted inside biological
tissues, and continuously generate packets that need to be sent to the edge of
the network, where a gateway node aggregates data and transmits to a base
station, which is located outside the body. Each sensor has an omnidirectional
antenna and no sensor node is disconnected from the network. We assume no
collision happens due to simultaneously transmission.

3.2 Temperature Estimation

We identify two major sources that cause the heating effects: the radiation from
the sensor node antenna and the power dissipation of sensor node circuitry.

Radiation from the Antenna. We assume that the sensor node has a short
dipole antenna consisting of a short conducting wire of length dl with a sinusoidal

210 Q. Tang et al.

6

1

2
3

4
5

12

7

8
9 10 11

1413

Hotspot

Warm Region

Gateway

Fig. 2. System model: all data packets are forwarded to the gateway. Nodes inside the
hotspot region are disconnected from other nodes

drive current I. To analyze the effect of radiation on the tissue, we assume the
tissue to be homogeneous with no sharp edges or rough surfaces. The space
around the antenna is divided into near field and far field. The extent of the
near field is given by d0 = λ

2π , and λ is the wavelength of the RF used by
wireless communication. SAR in the near field and far field is given by [11]:

SARNF =
σμω

ρ
√

σ2 + ε2ω2

(
Idl sin θe−αR

4π

(
1

R2
+
|γ|
R

))2

(2)

and [12]:

SARFF =
σ

ρ

(
α2 + β2

√
σ2 + ω2ε2

Idl

4π

)2 sin2 θe−2αR

R2
. (3)

where R is the distance from the source to the observation point, θ is the an-
gle between the observation point and the x-y plane, and γ is the propagation
constant1.

We assume our two-dimensional control volume located at the x-y plane and
the control volume is perpendicular to the small dipole, thus we can safely assume
the radiation pattern is omnidirectional on the 2D plane and sin θ = 1. The near
field or the far field radiation of the sensor’s transmitter causes the heating of
the tissue because of the absorption of the radiation. The Specific Absorption
Rate is used to estimate the potential heat effect on the human tissue.

Power Dissipation by Sensor Node Circuitry. The power dissipation of
sensor circuitry will raise the temperature of sensor nodes. The power consumed
by the sensor circuitry divided by the volume of sensor, is the power dissipation

1 Given by γ = α + jβ, phase constant β is given as [13] β =

ω
√

με
2

[√
1 +

(
σ
ωε

)2
+ 1

]1/2

(rad/m).

TARA: Thermal-Aware Routing Algorithm for Implanted Sensor Networks 211

density, denoted as Pc, which depends on its implementation technology and
architecture. In our analysis, we have considered the typical power consumption
for a regular sensor circuitry operation.

3.3 Calculating Temperature Rise

The above mentioned sources of heating the tissue can cause a rise of temper-
ature of the sensor and its surrounding area. The rate of rise in temperature is
calculated by using the Pennes bioheat equation [5] as follows:

ρCp
dT

dt
= K �2 T + ρSAR− b(T − Tb) + Pc + Qm (W/m2) . (4)

In this equation, ρ is the mass density, Cp is the specific heat of the tissue,
K is the thermal conductivity of the tissue, b is the blood perfusion constant,
which indicates how fast the heat can be carried away by blood flow inside the
tissue, and Tb is the temperature of the blood and the tissue.

On the left side of Eq. (4), dT
dt is the rate of temperature rise in the control

volume. Terms on the right side indicate the heat accumulated inside the tissue.
K �2 T and b(T − Tb) are the heat transfer due to the conduction and the
blood perfusion, respectively. ρSAR, Pc and Qm are the heat generated due
to the radiation, the power dissipation of circuitry, and the metabolic heating,
respectively

Finite-Difference Time-Domain (FDTD) [14] is an electromagnetic modeling
technique that discretizes the differential form of time and space, which can
also be used for heating application. The entire problem space is discretized
into small grids. Each grid is marked with a pair of coordinates (i, j). Due to
space limitation, we show only the result of the new bioheat equation after some
manipulations:

Tm+1(i, j) =
[
1− δtb

ρCp
− 4δtK

ρCpδ2

]
Tm(i, j) (5)

+
δt

Cp
SAR +

δtb

ρCp
Tb +

δ

ρCp
Pc

+
δtK

ρCpδ2

[
Tm(i + 1, j) + Tm(i, j + 1)

+Tm(i− 1, j) + Tm(i, j − 1)

]
,

where Tm+1(i, j) is the temperature of the grid (i, j) at time m + 1, and δt is
discretized time step, δ is the discretized space step (i.e., the size of the grid).

From (5), we can find the temperature of the grid point (i, j) at time m + 1,
which is a function of the temperature at grid point (i, j) at time m, as well as
a function of the temperature of surrounding grid points ((i + 1, j), (i, j + 1),
(i− 1, j), and (i, j − 1)) at time m. Once we know the properties of the tissue,
the properties of blood flow, and the power or heat absorbed by the tissue, we
can estimate the temperature at a given time and whether the heat effects would
cause any damage to the surrounding tissues.

212 Q. Tang et al.

3.4 Protocol Description

In our protocol the forwarding is based on localized information of the temper-
ature and hop counts to the destination. High temperature node identified as
hot spot by its neighbors, and this information will be spread to other nodes
by withdrawn packets. Once the temperature drops down, the neighboring node
will inform other nodes about the new availability of the path.

Setup Phase. In the setup phase, by exchange neighborhood information, each
sensor collects information to form its own neighbor nodes list, and also knows
the number of hops to other nodes and who is the next hop for a specified
destination address.

Data Forwarding. Each node sends a reading to the gateway node in either of
these two circumstances: when there is a change in the sensed reading or when
a base station sends a signal to the node asking for the data. It is assumed that
each node knows the location of the gateway. When a node receives a packet
that is destined to the gateway, it selects the next node based on the minimal
temperature criteria. Any packets destined to the hot spot node will be buffered
until the estimated temperature drops. If the buffered packet exceeds its time
constraint, it is dropped. Any packet whose destination is not a hot spot node but
the next hop is hot spot will be withdrawn and returned to the previous hop node.

Hot spot Detection. Each node listens to its neighbors’ activity, counting
the packets they transmitted and received. Based on this activity each node can
evaluate the communication radiation and power dissipation of its neighbors, and
estimate their temperature changes by using FDTD. Once the temperature of
one neighbor exceeds a predefined threshold, the node would mark that neighbor
as a hot spot. Also, if no activity happens the temperature of the neighbor will
gradually drop, and the neighbor will be removed from the hot spot list once its
temperature is beneath some threshold.

To reduce network overhead and save energy the node will not actively broad-
cast the hot spot information to other nodes. But if the temperature drops be-
neath the threshold, the node will notify its neighbor of this new availability
information.

Withdrawal. In certain circumstances, a node might receive a packet where it
does not have any next hop to forward to or all the nodes in the forwarding
set are in the hot spot region. During such a situation, the node returns the
packet to the previous node. The previous node tries to forward the packet to
another available next hop node, or returns the packet to its previous node if no
next hop available. Hot spot information will be carried with packets to inform
precedent nodes about the hot spot. If a node (namely, A) send a withdraw
packet to another node (namely, B), when temperature drops down later, node
A is responsible for notifying B that the clear of the hot spot.

Example. As shown in Figure 2, when node 1 has a packet for node 14, it
chooses node 6 since node 2 is inside the warm region, which means that the

TARA: Thermal-Aware Routing Algorithm for Implanted Sensor Networks 213

Table 1. Parameters and their values used in Simulation

Parameter Property value

εr Relative permittivity at 2MHz or 2.45GHz 826 or 52.73
PNL Power consumption of non-leader sensor node 1mW

Cp Specific heat 3600
[

J
kg◦C

]
K Thermal conductivity 0.498

[
J

ms◦C

]
b Blood perfusion constant 2700

[
J

m3s◦C

]
Tb Fixed blood temperature 37 ◦C
ρ Mass density 1040 kg

m3

σ Conductivity at 2MHz or 2.45GHz 0.5476 or 1.7388
[

S
m

]
PL Power consumption of Leader node 5 mW
T1 Leader Time 600 sec
δ Control Volume cell size 0.005 m
δt Time step of FDTD 10 sec
I0 Current provided to sensor node antenna 0.1 A

temperature is above the normal temperature but not as critical as hot spots.
When the packet reaches node 12 through the path 1→6→8→12, computa-
tion of temperature at node 12 reveals that the temperature of the next hop
is too high to perform any forwarding operation. Then node 12 returns the
packet along its origin route, until a node has a next hop available to forward
data (node 6 in this case). During this withdrawal phase the packet direction
is set to be negative. Any node receiving a negative direction packet knows
that it is a back routed packet and updates within itself the hot spot infor-
mation obtained from the packet (the high temperature at node 9 and node
13). Now if the node 7 has a packet for node 14, it sends the packet to node
8, which should forward the packet to node 12. But the hot spot information
obtained from the previous withdrawal packet makes node 8 select node 6 as a
next hop.

4 Simulation

We modeled a two-dimensional area with 12 nodes implanted. The simulation
program was developed on Matlab. We use the tissue properties and wave propa-
gation characteristics shown in Table 1. We used various scenarios with different
node locations and took the average to plot the graphs. We compared shortest
hop protocol with our approach as it demonstrates the trade-off. Maximum tem-
perature rise and average temperature rise are used as metrics for measuring the
performance of the proposed protocol.

Maximum Temperature Rise is the highest temperature rise inside the
whole network area. It captures the effectiveness of a routing protocol to direct
data away from the hot spots. As shown in Figure 3, the maximum temperature
rise of TARA is much lower than the shortest hop, which can be attributed

214 Q. Tang et al.

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

R
is

e
in

 te
m

pe
ra

tu
re

 C

Seconds

"Shortest hop"
"TARA"

Fig. 3. Maximum temperature rise of
TARA (dotted line) is lower than that of
Shortest hop (solid line) because TARA
directs packets away from hotspot area

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

R
is

e
in

 te
m

pe
ra

tu
re

 C

Seconds

"Shortest hop"
"TARA"

Fig. 4. Average temperature rise of
TARA (dotted line) is lower than that of
Shortest path (solid line) because the lat-
ter excessively uses the same path

to TARA’s selecting the next node that has the least temperature residue and
avoiding further deterioration of the overheated area.

Average Temperature Rise is used to estimate the average amount of
heat generated at each point inside the network. As shown in Figure 4, TARA
has a lower average temperature than the shortest hop whose continuing usage
of the same shortest path creates an overheated area.

Notice that in Figure 3, TARA experiences a flat temperature history during
time period from 3000 seconds to 5000 seconds. This can be explained as: be-
cause part of the network reaches the temperature threshold, TARA is trying to
route packets through other low temperature area, thus the peak temperature of
network is keeps unchanged; at the same time period, average temperature is still
rising as shown in Figure 4 since network operation is continuously introducing
heat into the network.

Figure 5 and Figure 6 demonstrate the temperature rise distribution inside
the network. Figure 5 demonstrates that temperature rise is relatively evenly
distributed in the whole area since the thermal-awareness of TARA avoids in-
troducing the overheated area. Several temperature peaks of Figure 6 indicate
the unawareness of the overheated area of the Shortest Hop algorithm, which
may lead to thermal damage to human tissues. We also notice that the gateway
node at coordinates (6, 6) is always experiencing the highest temperature rise
since it is responsible for gathering and forwarding all data to basestation. In
practice, the gateway node is located near the surface of the body, where better
heat conduction and ventilation will counteract the overheating problem.

Delay Performance. In this section, we explain the simulation results of our
protocol implemented on Crossbow MICA2 sensor motes. The aim is to
demonstrate the trade-off between delay/throughput and temperature rise. We
use the average delay and percentage of packets meeting the deadline as the
metrics to demonstrate the performance of protocols. First, we introduce only
one constant flow of traffic, travelling across the network. As shown in Figure 7,
for various deadline constraints, more packets of Shortest Hoop meet the dead-

TARA: Thermal-Aware Routing Algorithm for Implanted Sensor Networks 215

1

2

3

4

5

6

1

2

3

4

5

6
0

0.05

0.1

0.15

0.2

X−Axis

Y−Axis

Temperature
 Rise
 in C

Fig. 5. Temperature distribution of
TARA: temperature rise is relatively
even in the whole area since the thermal-
awareness of TARA avoids introducing
the overheated area

1

2

3

4

5

6

1

2

3

4

5

6
0

0.05

0.1

0.15

0.2

0.25

X−Axis

Y−Axis

Temperature
 Rise
 in C

 Temperature Rise in Greedy Algorithm

Fig. 6. Temperature distribution of
Shortest Hop: several temperature
peaks indicate the unawareness of the
overheated area

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 340 360 380 400 420 440 460 480

%
 o

f
pa

ck
et

s
m

ee
tin

g
de

ad
lin

e

Deadline in msec

"Shortest Hop"
"TARA"

Fig. 7. Performance of TARA and Short-
est Hop with only one constant traffic flow
traveling across the network, TARA expe-
riences a higher loss due to larger delay

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 150 200 250 300 350 400 450 500 550 600

%
 o

f
pa

ck
et

s
m

ee
tin

g
de

ad
lin

e

Deadline in millisecond

"Shortest Hop"
"TARA"

Fig. 8. Delay performance with low
traffic: unlike Shortest Hop, thermal-
awareness of TARA equals to load bal-
ancing, thus fewer packets are lost due to
congestion

line than that of TARA because its packets travel along the shortest path, and
TARA experiences a higher loss due to larger delay.

Secondly, we introduce randomly generated traffic of about 100 bytes/second
from different nodes of the network. From Figure 8 we can see more packets of
TARA meet the delay deadline than that of Shortest Hop. This is because the
greedy approach of Shortest Hop results in congestion in some shortest paths,
whereas TARA’s thermal-awareness also indicates its load balancing capability
which results in less congestion and less packet loss.

When the deadline is shorter than 400 millisecond, under the same percentage
of packets meeting deadline, e.g., 70%, our proposed protocol only experiences a
modest increase in packet delivery times (50 millisecond) while evenly distribut-
ing load among the sensors to satisfy the temperature rise constraint.

216 Q. Tang et al.

 10

 20

 30

 40

 50

 60

 70

 80

 100 150 200 250 300 350 400 450 500 550 600

%
 o

f
pa

ck
et

s
m

ee
tin

g
de

ad
lin

e

Deadline in millisecond

"Shortest Hop"
"TARA"

Fig. 9. Delay performance with high
traffic: unlike Shortest Hop, thermal-
awareness of TARA equals to load bal-
ancing, thus fewer packets are lost due to
congestion

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12

A
ve

ra
ge

 D
el

ay
 in

 m
ill

is
ec

on
d

Packet Source Node ID

"Shortest Hop"
"TARA"

Fig. 10. Although Shortest Hop experi-
ences higher packet loss, but those sur-
vived packets have smaller tranmission
delay compared with TARA

Figure 9 shows the percentage of packets meeting the deadlines with a higher
traffic of about 250 bytes/second. TARA still has a higher percentage of packets
meeting the deadline than shortest-hop routing. Figure 8 and Figure 9 also
conclude that TARA can achieve load balancing and temperature rise balance
simultaneously.

Although the shortest hop algorithm has higher packet losses, from another
perspective, those packets who survive the congestion and the buffer overflow
have smaller delay. To demonstrate this, we also calculated the average delay for
packets generated from different nodes. As shown in Figure 10, average packet
delay of Shortest Hop is smaller that TARA. But it also shows that TARA from
different source nodes only suffers a modest delay than that of Shortest Hop
routing. This means TARA is promising at reaching temperature rise balancing
without significant degradation on delay performance.

5 Conclusion

This paper presents a new thermal-aware routing protocol TARA for implanted
biosensor networks. TARA takes into consideration the heating factors resulting
from the operation of sensor nodes and routes data to minimize thermal effects
in a heat-sensitive environment. It also introduces less traffic congestion in the
network because thermal-awareness of TARA technically equals to a load bal-
ancing capability. TARA is compared with a shortest-hop routing protocol. The
smaller maximum temperature rise and average temperature rise of TARA in-
dicate that TARA is a safer routing solution for implanted applications without
significant degradation on delay performance. Next, we will improve the TARA
protocol to consider more design constraints, such as multipath routing [15],
energy consumption, link distance among sensors and the channel estimation
mechanism. We will extend our investigation by comparing TARA with other
routing protocols in terms of energy-efficiency, overhead, recovery time, etc.

TARA: Thermal-Aware Routing Algorithm for Implanted Sensor Networks 217

References

1. Schwiebert, L., Gupta, S.K.S., Auner, P.S.G., Abrams, G., Lezzi, R., McAllister, P.:
A biomedical smart sensor for visually impaired. In: IEEE Sensors 2002, Orlando,
FL., USA (2002)

2. Tang, Q., Tummala, N., Gupta, S.K.S., Schwiebert, L.: Communication scheduling
to minimize thermal effects of implanted biosensor networks in homogeneous tissue.
IEEE Tran. Biomedical Eng. (accepted for publication)

3. Hirata, A., Ushio, G., Shiozawa, T.: Calculation of temperature rises in the human
eye for exposure to EM waves in the ISM frequency bands. In: IEICE Trans. Comm.
Volume E83-B. (2000) 541–548

4. International Electrotechnical Commission IEC: Medical Electrical Equipment,
Part 2-33: Particular Requirement for the Safety of Magnetic Resonance Systems
for Medical Diagnosis IEC 60601-2-33. 2nd edn. (1995)

5. Pennes, H.H.: Analysis of tissue and arterial blood temperature in the resting
human forearm. Journal of Applied Physiology 1.1 (1948) 93–122

6. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient commu-
nication protocol for wireless microsensor networks. In: Proc. 33rd Hawaii Int’l
Conf. System Sciences. Volume 8., IEEE Computer Society (2000) 8020

7. Ding, W., Iyengar, S.S., R. Kannan and, W.R.: Energy equivalence routing in
wireless sensor networks. Journal of Microcomputers and Applications: Special
issue on Wireless Sensor Networks (2004)

8. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable mul-
tihop routing in sensor networks. In: SenSys ’03, ACM Press (2003) 14–27

9. Estrin, D., Michener, W., Bonito, G.: Environmental cyberinfrastructure needs for
distributed sensor networks. A report from a national science foundation sponsored
workshop (2003)

10. Tseng, F.G., Ho, C.E., Chen, M.H., Hung, K.Y., Su, C.J., Chen, Y.F., Huang,
H.M., Chieng, C.C.: A chip-based-instant protein micro array formation and de-
tection system. In: Proc. NSTI Naotech’04. Volume 1., Boston (2004) 39–42

11. Prakash, Y., Lalwani, S., Gupta, S.K.S., Elsharawy, E., Schwiebert, L.: Towards
a propagation model for wireless biomedical applications. In: IEEE ICC 2003.
Volume 3. (2003) 1993–1997

12. National Council on Radiation and Measurements: A Practical Guide to the Deter-
mination of Human Exposure to Radio Frequency Fields. Report no. 119. NCRP,
Bethseda, MD (1993)

13. Ulaby, F.T.: Fundamentals of Applied Electromagnetics. Prentice-Hall (1999)
14. Sullivan, D.M.: Electromagnetic Simulation Using the FDTD Method. IEEE Press

(2000)
15. Ganesan, D., Govindan, R., Shenker, S., Estrin, D.: Highly-resilient, energy-

efficient multipath routing in wireless sensor networks. SIGMOBILE Mob. Com-
put. Commun. Rev. 5 (2001) 11–25

Design and Analysis of Wave Sensing Scheduling
Protocols for Object-Tracking Applications

Shansi Ren, Qun Li, Haining Wang, and Xiaodong Zhang

College of William and Mary,
Williamsburg, VA 23187 USA

{sren, liqun, hnw, zhang}@cs.wm.edu

Abstract. Many sensor network applications demand tightly-bounded object de-
tection quality. To meet such stringent requirements, we develop three sensing
scheduling protocols to guarantee worst-case detection quality in a sensor net-
work while reducing sensing power consumption. Our protocols emulate a line
sweeping through all points in the sensing field periodically. Nodes wake up when
the sweeping line comes close, and then go to sleep when the line moves forward.
In this way, any object can be detected within a certain period. We prove the cor-
rectness of the protocols and evaluate their performances by theoretical analyses
and simulation.

1 Introduction

Detecting and tracking moving objects is a major class of applications in sensor net-
works. Many of these applications demand stringent object detection quality. A simple
solution to meeting required object detection quality is full sensing coverage, in which
intruding objects can be timely detected . However, full sensing coverage requires that a
large portion of the sensors remain awake continuously, resulting in energy inefficiency
and short system lifetime. As an alternative approach, probabilistic sensing coverage
has been recently proposed in [5, 12]. Instead of staying awake all the time, nodes can
periodically rotate between active state and sleeping state to conserve energy while
meeting the object detection quality requirement. Compared with full sensing cover-
age, probabilistic sensing coverage leads to significant energy conservation and much
longer system lifetime.

The previous work on probabilistic coverage focused on providing average-case
object detection quality for surveillance applications. Thus far, little attention in the
literature has been paid to designing protocols that guarantee bounded worst-case ob-
ject detection quality. Many military surveillance applications, however, often demand
such stringent object detection quality requirements, e.g., an enemy vehicle must be de-
tected in one minute. To address this problem, we propose wave sensing, a new sensing
scheduling scheme under probabilistic coverage to provide bounded worst-case object
detection quality. In this scheme, at any moment, active nodes on the sensing field form
connected curves. These curves move back and forth both horizontally and vertically
across the field, so that every geographical point is scanned at least once within a lim-
ited amount of time. In this way, the wave sensing scheme can guarantee that an object

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 228–243, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Design and Analysis of Wave Sensing Scheduling Protocols 229

is detected with certainty (i.e., 100% probability) in a given observation duration, and
the distance it traversed before detection is bounded.

Specifically, we develop three wave sensing schedules to provide guaranteed worst-
case object detection quality in terms of sufficient phase and worst-case stealth dis-
tance1. We prove several properties of these schedules, and mathematically analyze
their average-case object detection quality. We also investigate energy consumption
of the wave protocols. Our protocol design and analyses provide insights into the in-
teractions between object detection quality, system parameters, and network energy
consumption. Given a worst-case object detection quality requirement, we are able to
optimize average-case object detection quality as well as network energy consumption
by choosing appropriate network parameters. We evaluate the performance of the wave
protocols through extensive simulation experiments.

The rest of the paper is organized as follows. We formulate the object detection and
tracking problem in Section 2. Three wave sensing scheduling protocols are presented
and analyzed in Section 3. In Section 4, we investigate average-case object detection
quality of the protocols under a model for wave sensing protocols. We evaluate the
performance of the protocols in Section 5. Section 6 sketches related work. Finally, we
conclude our work in Section

2 Object Detection and Tracking Problem Formulation

We assume that sensors are randomly and independently deployed on a square sensing
field. The field can be completely covered when all nodes are active. Considering the
vastness of the sensing field, the size of a moving object is negligible. In a sensing
schedule, a node periodically wakes up and goes to sleep to conserve energy.

We define two metrics to characterize average object detection quality:
• Detection Probability (DP). The detection probability is defined as the probability

that an object is detected in a given observation duration.
• Average Stealth Distance (ASD). The average stealth distance is defined as the

average distance an object travels before it is detected for the first time.

For worst-case object detection quality of the network, we have the following two
metrics:
• Sufficient Phase (SP). The sufficient phase is defined as the smallest time duration

in which an object is detected with certainty no matter where the object initially
appears on the field.

• Worst-case Stealth Distance (WSD). The worst-case stealth distance is defined as
the longest possible distance that an object travels before it is detected for the first
time.

Taking energy constraints into account, we further define the following metric:
• Lifetime. The system lifetime is the elapsed working time from system startup to

the time when the object detection quality requirement cannot be met for the first
time, with the condition that live nodes continue their current sensing periods.

1 Sufficient phase and worst-case stealth distance are formally defined in Section 2.

230 S. Ren et al.

In our previous protocol design of the random and the synchronized schedules in
[12], we focused on how to meet the requirements of detection probability, average
stealth distance and energy consumption. However, worst-case object detection quality
metrics, such as sufficient phase and worst-case stealth distance, are not bounded in
these protocols. Given an observation duration, an object can escape the detection; it
can also travel an infinite distance even its average stealth distance is small. In practice,
many applications demand stringent requirements on worst-case object detection qual-
ity. For example, an object must be detected in 10 seconds with certainty. Therefore, we
aim to design sensing scheduling protocols that achieve a bounded sufficient phase and
worst-case stealth distance, while minimizing energy consumption of the system.

3 Design of Wave Sensing Protocols

In this section, we present three wave sensing protocols. The main idea behind these
protocols is as follows. When the distance between any two nodes is less than their
sensing diameter 2R, their sensing ranges intersect and form a connected region. If
currently-active nodes make up a connected stripe with two ends on opposite borders
of the field, the stripe divides the field into two halves. Under such a circumstance, in
a sufficiently long time duration, an object can be detected when it crosses this stripe.
For any specified continuous curve with two ends on opposite borders of the field, it is
always possible to find a set of nodes whose sensing ranges completely cover this curve
under the assumption that the field are completely covered when all nodes wake up. To
further reduce the detecting time, we allow the curve to move so that every geographical
point on the field can be scanned at least once, without leaving any sensing hole in a
limited amount of time. We define the curve (line) to be covered as the active curve
(line), and define the union of the sensing ranges of all active sensors that cover the
active curve (line) as the hot region.

We aim to design protocols that ensure: 1) the hot region should have no sensing
hole in it; 2) the hot region should be as thin as possible in order to save the network en-
ergy consumption; 3) the active curve should move circularly like sea waves, so that the
object can be detected rapidly and energy consumption variance among nodes is small.

3.1 Line Wave Protocol Design

In this protocol, we make two assumptions. First, we assume that every node on the
field has a timer that is well synchronized with others. The global timer synchronization
techniques of [8] can be used in this protocol. Second, we assume that every node is
aware of its own geographical location on the field through some method, either by GPS
or some other localization techniques.

Line Wave Protocol Description. In the line wave protocol, the active curve is a
straight line, as shown in Fig. 1. This protocol is specified as follows.

1. At the system startup time, all nodes synchronize their timers, and obtain their
geographical coordinates. There are two active lines on the two opposite borders of
the field moving towards the center. All nodes are informed of the initial positions,

Design and Analysis of Wave Sensing Scheduling Protocols 231

ad

line
new active
lineold active

Fig. 1. Line wave protocol il-
lustration

C

(a) All points in C are between
two lines.

p2p1 p

ad

old line new line

L

p1
C

p

new line

L
(b) Some points are in between,

some are on left of old line.

old line

ad
old line

p1

new line

p

ad

C

L
(c) Some points are in between,

some are on right of new line.

Fig. 2.There is no sensing hole in hot regions of the line wave
protocol

the settling time, and the advancing distance (ad) of the active lines. Note that
ad < 2R.

2. Every node computes current positions of the active lines based on its timer and the
information of the active lines it obtained. Then, it calculates if its sensing range
intersects the active lines. If there is intersection, this node wakes up.

3. After the active lines have stayed at their current positions for their settling time,
they move forward with a distance ad towards the field center. When they reach the
center, they go back to the field borders. Step 2 repeats.

Note that a sleeping node periodically wakes up to receive new messages addressed
to it. Sensing tasks are distributed to all nodes, thus energy consumption variance among
nodes is kept small.

Bounded Sufficient Phase and Worst-Case x Stealth Distance. We define the x
stealth distance as the distance a moving object travels on x-axis before it is detected.
A handoff is defined as the process when active lines advance to their new positions, all
nodes covering the new lines wake up, and those nodes covering old lines only go to
sleep.

Theorem 1. In the line wave protocol, the sufficient phase of any moving object is
bounded by 2P , where P is the wave sensing period. In other words, the moving object
can always be detected in 2P .

Proof: Consider the handoff process of an active line in the line wave protocol. Suppose
this line moves from left to right. We denote the old active line as ol, and denote the
new active line as nl. Note that the distance between ol and nl is less than 2R. We first
prove that there is no sensing hole in the union of ol’s hot region and nl’s hot region.

We use contradiction in the proof. Suppose there is a sensing hole H in the sensing
range union. Consider a point p ∈ H . When all nodes on the field wake up, the field
can be completely covered. Thus, there must exist a sensor s that can cover p when it
wakes up. Denote the circle of s’s sensing range as C. We know that C either intersects
ol or nl or both. If not, there could be several cases.

– All points in C are between ol and nl, as shown in Fig. 2(a). Consider the diameter
of C on x-axis. Because the diameter has a length of 2R, while the distance between

232 S. Ren et al.

ol and nl is less than 2R, the diameter must intersect at least one of these two lines.
Then s must be active. This contradicts the assumption that p is not covered.

– Part of points in C are between ol and nl, and part of points in C are on the left of
ol, or on the right of nl. Then we choose a point p between ol and nl, and a point
on the left of ol, as shown in Fig. 2(b), or a point on the right of nl, as shown in
Fig. 2(c). Denote this point as p1. We draw a line to connect p and p1, then this
line must intersect either ol or nl. Thus, s should be active. This contradicts the
assumption that p is not covered.

– All points in C are totally on the left of ol, or on the right of nl. This is impossible,
because it contradicts the assumption that p is covered by s.

Therefore, there is no sensing hole in the hot regions of ol and nl.
We next prove an object can be detected in 2P . As shown in Fig. 3, in a handoff

process, the field is divided by the four active lines into five regions, denoted as A, B,
C, D, and E, respectively. Consider the initial position O1 of the moving object.

– If O1 ∈ A ∪ E, after one scanning period P , O1 ∈ C. After another period P ,
C = φ. This means that the trajectory of this object must have intersected one of
the active lines, thus has been detected.

– If O1 ∈ B ∪ D, it is covered by the sensing ranges of active sensors, thus has
already been detected.

– If O1 ∈ C, then after one scanning period P , C = φ. This means that the trajectory
of this object has encountered one of the active lines at least once, thus has been
detected.

In summary, the object can always be detected in 2P . �

Lemma 1. The worst-case x stealth distance is less than 2vP . If the object moves along
a straight line with an even speed v, the worst-case x stealth distance is less than L.

Proof: According to Theorem 1, the object is detected in 2P time. The distance that
the object travels in 2P is 2vP .

Suppose that the object travels along a straight line, and it takes 2P to detect this
object. In the first P , when the object is behind one of the active lines and is chasing
that line, it can travel at most L

2 on x-axis without being detected. In the second P ,
the object is between the two active lines, the maximum x distance it can travel is L

2 .
Therefore, the object can travel at most L on x-axis before being detected. �

3.2 Stripe Wave Protocol Design

One restriction of the line wave protocol is the precision requirement on node coordi-
nates. To relax this constraint, we design a stripe wave protocol. In this protocol, stripes,
instead of lines, are covered by active sensors, as shown in Fig. 4. When the stripe width
is larger than the required coordinate precision, object detection quality can be achieved.

In the stripe wave protocol, nodes wake up if their sensing ranges intersect active
stripes. The width of active stripes is twice of their advancing distance. In this way,
there is an overlap between the old stripe and the new stripe. All the other procedures
remain the same as those of the line wave protocol.

Design and Analysis of Wave Sensing Scheduling Protocols 233

A B C D E

O2

O1

L

Fig. 3. The object is
detected in the line
wave protocol

old stripe new stripe

Fig. 4. The sensing
stripe handoff in the
stripe wave protocol

wave front
s

moves to right

Fig. 5. The wave
front moves in the
distributed wave
protocol

s

t
o

old wave front curve

new wave front wave

Fig. 6. An active sen-
sor activates a set of
nodes to cover its
wave front curve

Sufficient Phase and Worst-Case x Stealth Distance of Stripe Wave Protocols. If
one active stripe stays in a place for the same amount of time, and advances the same
distance in the same direction as the active lines of the line wave protocol. Then for any
point p on the field, if p is covered in the line protocol, it is also covered in the stripe
protocol. From Theorem 1 and Lemma 1, we can have the following two corollaries.

Corollary 1. In the stripe wave protocol, the sufficient phase of a moving object is at
most 2P , where P is the wave sensing period. In other words, the moving object can
always be detected in a duration of 2P .

Corollary 2. The worst-case x stealth distance is less than 2vP . If the object moves
along a straight line with an even speed, then the worst-case x stealth distance is less
than L.

3.3 Distributed Wave Protocol

As described above, the line wave and stripe wave protocols require global clock syn-
chronization. To relax such requirement, we design a distributed wave protocol that can
be implemented locally on each individual node, and does not need timer synchroniza-
tion among nodes.

Hot Regions and Wave Fronts. In this distributed wave protocol, there are two con-
tinuous active curves with two ends on two opposite borders of the field. These two
curves scan the sensing field periodically, so that every point can be covered at least
once during one wave sensing period. A set of sensors wake up to cover these curves.
We define the hot region of an active curve as the union of sensing ranges of active
sensors covering this curve, and define the wave front of the curve as the boundary of
its hot region in its moving direction. Fig. 5 illustrates the wave front of a hot region
moving to the right. Since the active curve is continuous, the wave front is continuous as
well. For an active curve scanning the field from left to right, its wave front also moves
from left to right.

Active Curves Move Forward. Here we describe how an active curve moves forward
in our distributed wave protocol. Consider an active sensor s that has part of its sensing

234 S. Ren et al.

circle on the wave front of the active curve. As shown in Fig. 6, we define the wave
front curve of s as the part of its sensing circle on the wave front. Before s goes to
sleep, it finds all nodes whose sensing ranges intersect its wave front curve to wake up.
After those sensors become active, part of their sensing circles become part of the new
wave front. For example, in Fig. 6, before s goes to sleep, it finds node t and node o to
wake up because the sensing ranges of t and o intersect the wave front curve of s. In
this way, the wave front of an active curve always moves forward, eventually it reaches
the center vertical line of the field. The same process repeats afterwards.

Note that a sensing hole is a set of continuous points on the field that have not been
covered in one scanning period. We have the following theorem.

Theorem 2. In the distributed wave protocol, the wave front of an active curve can
scan the whole sensing field in an finite time without leaving any sensing hole.

Proof: Consider an active sensor s that has part of its sensing circle on the wave front.
We claim that s can always find a set of sensors that have not waked up in current
scanning period to cover s’s wave front curve.

Let P (t) be the set of points on the field that have been sensed at time t in current
scanning period, then we have P (t) ⊂ P (t + Δt), where Δt is a time increment. In
other words, the wave front always moves forward and does not go back. For any point
p on the field, p ∈ P (t) ⇒ p ∈ P (t + Δt). This implies that if a point p ∈ P (t), then p
is behind the wave front at time t+Δt. Therefore, the sensors that had already waked up
and gone back to sleep in the past cannot cover points on the current wave front. Since
any point on the field is within the sensing range of some sensor, there must exist a set
of sensors that can cover s’s wave front. Thus, we can find sensors that had not waked
up to cover s’s front wave curve at time t + Δt. On the other hand, according to the
design of this distributed wave protocol, the wave front is continuous with two ends on
the opposite borders of the field. Therefore, no sensing hole will be created in this dis-
tributed protocol. �

Lemma 2. In one scanning period, every node on the field wakes up exactly once, and
consumes the same amount of energy given that they stay awake for the same amount
of time.

Proof: We assume that no two sensor nodes are located at the same geographical coor-
dinates. We only consider one of the active curves, since the proof can be applied to the
other curve due to the symmetry. When a node goes to sleep, it always activates those
nodes ahead of the wave front to cover its wave front curve. We use induction to prove
that the nodes behind the wave have already waked up once.

– Base. At system start-up time, the active curve is on a side border of the square.
Only a set of nodes wake up to cover this curve, and all other nodes have not waked
up yet.

– Induction step. Suppose at time t, all nodes behind the wave front have waked up
once and only once. Consider the next earliest moment that one active node on the
wave front goes to sleep. It activates all nodes that can partly cover its wave front
curve. Because these newly-activated sensors are ahead of the wave front, they were
in sleeping mode before time t, and have just waked up at t.

Design and Analysis of Wave Sensing Scheduling Protocols 235

On the other hand, if a node has not waked up yet, its sensing range must intersect
the wave front curve of some node m at some moment t′, where t′ is less than the
scanning period. Therefore, it will be activated by node m at some moment. �

We directly obtain the following conclusion from Lemma 2.

Corollary 3. The scanning period of this distributed wave protocol is less than wt · n,
where wt is the active duration of nodes in one scanning period and n is the total
number of nodes on the sensing field.

3.4 Partially-Covered Sensing Field

In the partially-covered sensing field, only if the object moves in the covered region,
can it be detected in a bounded time with a bounded worst-case stealth distance before
detection by using three sensing protocols proposed above.

4 Modeling and Analysis of Wave Sensing Scheduling Scheme

From the earlier protocol design, we know that the scanning period P of the line wave
and stripe wave protocols is independent of sensor locations on the field. However, in
the distributed wave protocol, the scanning period P is decided by the sensor locations,
not controlled by the protocol itself. In this section, we first establish a model for the line
wave and stripe wave protocols, then we analyze average-case object detection quality
and energy consumption properties of the wave schedules under this model.

In the model, nodes are assumed to be densely deployed on a square field so that the
field can be completely covered when all nodes wake up. The field is divided into many
identical stripes (in the one-dimensional (1-d) wave schedule) or squares (in the two-
dimensional (2-d) wave schedule), in each of which there are active lines periodically
moving through with a constant speed, as shown in Fig. 7 and Fig. 8. The parameters
of the model are listed in Fig. 11.

Vw Vw Vw VwVw Vw Vw Vw

L L L L

Fig. 7. 1-d wave
schedule illustration

vw

vw vw
vw

vw vw

vw

vw

vw

vw
vw vw vw

vw
vw

vw

Fig. 8. 2-d wave
schedule illustration

o

L
x−axis

v

θ

v

w

Fig. 9. DP and ASD
analysis of the 1-d
wave schedule

vw

vw

vw

vw

o

(x,y)

v

θ

L

y−axis

x−axis

L

Fig. 10. DP and ASD
analysis of the 2-d
wave schedule

In the 1-d wave schedule, the sensing field is divided into multiple parallel vertical
stripes with widths of L, as shown in Fig. 7. Two active lines start from the two borders

236 S. Ren et al.

parameter meaning

d density of sensors
R sensing radius of a sensor
v speed of a moving object
P scanning period of the scheme
f active ratio of sensors in P

vw wave line scanning speed
ta observation duration
wt line (curve) settling time
L side length of a stripe or a square

Fig. 11. Model parameters of the wave protocols

DP ASD
d ↑ → →
R ↑ → →
v ↑ ↑ ↑
ta ↑ ↑ →
wt ↑ ↓ ↑

Fig. 12. DP and ASD change
when parameters increase in the
model

of each stripe moving towards the stripe center with a constant speed vw. Once they
reach the center, the process starts over again. In the 2-d wave schedule, the sensing
field is divided into multiple equally-sized squares with side lengths of L, as shown in
Fig. 8. Four active lines start from the four borders of the square moving towards the
square center. Once they reach the center, they return to the borders, and the process
repeats. Note that the width of hot regions is negligible considering the vastness of the
stripes and the squares.

From the model, we know that P = L
2vw

, and f = 4R
L .

4.1 1-d Wave Schedule Analysis

Now we mathematically analyze the DP and ASD of the 1-d wave schedule under our
model.

Detection Probability. Consider the sensing stripe where the object is located. We
view this stripe as a Euclidean coordinate space with an origin on its left border, as
shown in Fig. 9. Note that L is negligible compared to the height of the stripe. Two
active lines move from the two borders of the stripe towards the center with a speed of
vw. We define mod(z1, z2) as the remainder of z1 divided by z2 for any two variables
z1 and z2.

Suppose at system startup time 0, the object is located at (x, y), and the two active
lines are on the two borders of the stripe. Let t be the time when we start observation,
where 0 ≤ t ≤ 2P . At time t, the x-coordinates of the two active lines are mod(vwt, L

2)
and L−mod(vwt, L

2). Since the object can move in any direction, we denote the angle
between its moving direction and the x-axis as θ. Then the x-coordinate of the object is
x + vt cos θ at time t. If the object and one of the active lines meet at time t′, then we
know x + vt′ cos θ = mod(vwt′, L

2), or x + vt′ cos θ = L−mod(vwt′, L
2).

Define the meeting function ti(x, θ) as the time it takes for the ith wave line to meet
the object from the system startup time, where i = 1, 2. We know whether the object is
detected depends on the observation duration ta. If ta < t1(x, θ) and ta < t2(x, θ), the
object cannot be detected. Otherwise, it can be detected.

Design and Analysis of Wave Sensing Scheduling Protocols 237

Suppose after tm time, the moving object is detected. Denote tm1 and tm2 as the
time for the object to meet the left active line and the right active line, respectively. Then
we have x+vtm1 cos θ = mod(vwtm1,

L
2) and x+vtm2 cos θ = L−mod(vwtm2,

L
2).

Thus, tm(x, θ, t) = min(tm1(x, θ), tm2(x, θ))− t.
We define a new boolean detecting function D(θ, x, t) as follows:

D(θ, x, t) =
{

1, when ta ≥ tm(x, θ, t).
0, when ta < tm(x, θ, t).

To get the detection probability DP, we integrate D(θ, x, t) over t, x, and θ, respec-
tively. Therefore, we can get the following theorem.

Theorem 3. In the 1-d wave schedule, DP =
∫ 2P
0 dt

∫ L
0 dx

∫ 2π
0 D(θ,x,t)dθ

4πPL .

Average Stealth Distance. Consider the distance dis this object travels in the observa-
tion duration ta, we have dis = vtm(x, θ, t). To derive the average stealth distance, we
integrate this dis over the ranges of the three variables θ, x, and t, respectively. Then
we have the following lemma.

Lemma 3. In the 1-d wave schedule, ASD =
∫ 2P
0 dt

∫ L
0 dx

∫ 2π
0 vtm(x,θ,t)dθ

4πPL .

Sufficient Phase and Worst-case x Stealth Distance. From the analyses of the line
wave and stripe wave protocols, we have the following corollaries.

Corollary 4. The sufficient phase in 1-d wave schedule is less than 2P .

Corollary 5. In the 1-d wave schedule, the worst-case x stealth distance is upper
bounded by min(2vP, L).

4.2 2-d Wave Schedule Analysis

In the 2-d wave schedule, the sensing field is divided into repetitive grid squares so that
an object can be detected more quickly.

Detection Probability. Suppose we start our observation at time t, where 0 ≤ t ≤ 2P .
We consider the square where the moving object is located, and view it as a Euclidean
coordinate space with an origin on its left bottom corner. Assume the object is located
at (x, y) with a moving speed of v, where 0 ≤ x ≤ L, 0 ≤ y ≤ L. Denote the angle
between its moving direction and the x-axis as θ.

At time t′, the location functions of the four active lines are: x(t′) = mod(vwt′, L
2);

x(t′) = L −mod(vwt′, L
2); y(t′) = mod(vwt′, L

2); and y(t′) = L −mod(vmt′, L
2).

The coordinates of the object are: x + vt′ cos θ, y + vt′ sin θ. If the object is not de-
tected, it must be inside the square whose borders are the four active lines, as shown
in Fig. 10. Thus, we have mod(vwt′, L

2) < x + vt′ cos θ < L − mod(vwt′, L
2), and

mod(vwt′, L
2) < y + vt′ sin θ < L−mod(vwt′, L

2). Otherwise, if these conditions are
not satisfied, the object is detected.

238 S. Ren et al.

Denote tm1, tm2, tm3, and tm4 as the time when the object meets the four active
lines respectively, then we have: x + vtm1 cos θ = mod(vwtm1,

L
2); x + vtm2 cos θ =

L − mod(vwtm2,
L
2); y + vtm3 sin θ = mod(vwtm3,

L
2); and y + vtm4 sin θ = L −

mod(vwtm4,
L
2). The time it takes to detect the object when starting observation from

t can be calculated as: tm(x, y, θ, t) = min(tm1, tm2, tm3, tm4)− t.
We define a detection boolean function

D(x, y, θ, t) =
{

1, if ta ≥ tm(x, y, θ, t).
0, if ta < tm(x, y, θ, t).

Similar to the 1-d wave analysis, we can get the following theorem immediately.

Theorem 4. In the 2-d wave schedule, DP =
∫ 2P
0 dt

∫ 2π
0 dθ

∫ L
0 dx

∫ L
0 D(x,y,θ,t)dy

4πPL2 .

Average Stealth Distance. The average detecting time is DT (x, y, θ, t) =∫ 2P
0 dt

∫ 2π
0 dθ

∫ L
0 dx

∫ L
0 tm(x,y,θ,t)dy

4πPL2 . Therefore, we have the following lemma.

Lemma 4. In the 2-d wave schedule, ASD =
∫ 2P
0 dt

∫ 2π
0 dθ

∫ L
0 dx

∫ L
0 vtm(x,y,θ,t)dy

4πPL2 .

Sufficient Phase and Worst-Case Stealth Distance. Similar to the analyses in the line
wave and stripe wave protocols, we have the following bounds for sufficient phase and
worst-case stealth distance.

Lemma 5. In the 2-d wave schedule, the sufficient phase of an object is not greater
than 2P . In other words, when ta > 2P , the object is detected with certainty.

Proof: Consider the initial location O1 of the object when we start our observation.
We define interior squares as the shrinking squares with the active lines as their
borders.

– If O1 is inside an interior square, the object will meet one of the active lines after a
period P , thus will be detected.

– Suppose O1 is outside all interior squares. After one period P , if it meets the active
lines, it is detected. If it is not detected in one P , then it enters one interior square.
After another P , this object will be detected.

Therefore, its sufficient phase is not greater than 2P . �

Corollary 6. In the 2-d wave schedule, the worst-case stealth distance is less than 2vP .
If the object moves along a straight line with a constant speed, then its worst-case
stealth distance is less than

√
2L.

Proof: The first part is a direct conclusion from Lemma 5. Suppose the object moves
a time of 2P before being detected. In the first P , the object can move a distance of at
most

√
2L
2 , which is the half of the diagonal length of the square. In the second P , the

object can move at most
√

2L
2 as well. Therefore, the object can move at most

√
2L. �

Design and Analysis of Wave Sensing Scheduling Protocols 239

4.3 Node Remaining Energy and System Lifetime

Let T be the continuous working time of a node, and all nodes have the same T . Then
in the wave schedules, in the ith period, nodes have remaining energy in the range
[T − ifP, T − (i − 1)fP] for 1 ≤ i ≤ T

fP . A node will last for T
fP periods, thus its

working time is T
fP · P = T

f . This implies that the system lifetime is LT = T
f .

5 Evaluation of Wave Protocols

We conduct extensive simulation experiments to verify our analyses and to evaluate
the wave protocols. We assess the average-case object detection quality based on the
simulation results of DP and ASD.

In our experiments, we generate a 200 × 200 grid field, and randomly place d ×
40, 000 sensors on it. One constraint on these sensors is that when all of them are active,
their sensing ranges should be able to cover the whole sensing field. A small object
moves along a straight line with a constant speed v. We generate two active sensing
lines or stripes at the two borders of the field moving towards the center periodically. We
run each simulation for hundreds of times. We use the ratio of times of detection over
the number of experiments to estimate DP, and use the average non-detecting distance
to estimate ASD. Since we have given upper bounds on the SP and the WSD in the
protocol design part, we do not evaluate them in our experiments. Effects of system
parameters on DP and ASD of the line wave and stripe wave protocols are listed in
Fig. 12.

5.1 Comparison of the Three Wave Protocols

Different from the line wave and stripe wave protocols, the wave sensing period of the
distributed wave protocol depends on geographical locations of the nodes. We compare
the wave sensing period of these three protocols under the following parameter setting:
d = 0.3, R = 1.5, wt = 0.5, and vw = 5.4. We find that Pline = 74.8, Pstripe = 75.3,
and Pdist = 71.5. This means the distributed wave protocol scans the field faster than
the other two protocols at the cost of extra energy consumption.

To compare the DP, ASD, and energy consumption of different wave protocols, we
use the same set of parameters except P for one simulation scenario. In the line wave
and stripe wave protocols, ad is slightly less than 2R. Note that L = 200, and P = 2L

vw
.

DP and ASD Results. In all our experiments on DP, we restrict that ta < P to make
sure that DP varies between 0 and 100%. Figures 13 and 14 demonstrate that all three
protocols have close DP and ASD results. However, the distributed wave protocol per-
forms slightly different from the other two protocols, it has a higher DP and a lower
ASD. When either v or ta increases, DP increases too, which is shown in Fig. 13(a).
Fig. 13(b) shows that a larger wt incurs a smaller DP. On the other hand, a larger v
incurs a larger ASD, as shown in Fig. 14(a). Interestingly, the ASD increases linearly
when node settling time wt increases, as we can observe from Fig. 14(b). This is be-
cause for a larger wt, it takes longer for an active line or stripe to scan the field than a
smaller wt, thus the object can travel a longer distance.

240 S. Ren et al.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

d
e

te
c
ti
o

n
 p

ro
b

a
b

ili
ty

moving object speed v

line wave, ta=0.4
stripe wave, ta=0.4

dist. wave, ta=0.4
line wave, ta=0.8

stripe wave, ta=0.8
dist. wave, ta=0.8

(a) DP when varying v. d =
0.3, R = 1.5, wt = 0.05, vw = 50.

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

d
e

te
c
ti
o

n
 p

ro
b

a
b

ili
ty

covering line wakeup time wt

line wave
stripe wave

dist. wave

(b) DP when varying wt, d =
0.3, R=1.5, v=1, ta =8, vw =5.

Fig. 13. DP of the wave protocols when varying different parameters

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 1.2 1.4 1.6 1.8 2 2.2 2.4

a
v
e
ra

g
e
 s

te
a
lt
h
 d

is
ta

n
c
e

moving object speed v

line wave
stripe wave

dist. wave

(a) ASD when varying v.
d = 0.3, R = 1.5, wt =
0.5, vw = 50.

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

a
v
e

ra
g

e
 s

te
a

lt
h

 d
is

ta
n

c
e

covering line wakeup time wt

line wave
stripe wave

dist. wave

(b) ASD when varying wt,
d = 0.3, R = 1.5, v =
1, vw = 5.

 0

 5000

 10000

 15000

 20000

 400 405 410 415n
u
m

b
e
r

o
f
n
o
d
e
s
 w

it
h
 e

n
e
rg

y
 l
e
s
s
 t
h
a
n

node remaining energy

line wave
stripe wave

dist. wave

(c) Node energy cumulative
distribution. d = 1, R =
1, wt = 1.

Fig. 14. ASD and node energy distribution when varying different parameters

Node Energy Distribution Result. All nodes have the same energy E at the beginning,
and node energy consumption rate is er = C · R3 · 2R

vw
/ L

2vw
= 4CR4

L , where C is a
constant being dependent on hardware design of the sensor nodes. We set C = 0.00625.
We draw the node energy cumulative distribution in Fig. 14(c) to further show energy
variance among nodes. For any curve point in this figure, its x value represents the node
remaining energy, and its y value represents the number of nodes with energy less than
the value specified by the x-axis. We observe that the remaining energy of most nodes
is around the average node energy of the network. On the other hand, the node energy
distribution of the distributed wave protocol has a narrower range than those of the other
two wave protocols.

5.2 Comparison of Line Wave, Random, and Synchronized Schedules

In [12], we have formally studied the random sensing schedule and the synchronized
sensing schedule. In Figures 15 and 16, we compare the analytical DP and ASD results

Design and Analysis of Wave Sensing Scheduling Protocols 241

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 2 4 6 8 10 12 14 16 18

d
e

te
c
ti
o

n
 p

ro
b

a
b

ili
ty

moving object speed v

line wave
random

synchronized

Fig. 15. DP when varying v. d = 1, R =
0.75, ta = 0.4, wt = 0.01, vw = 2

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a
v
e

ra
g

e
 s

te
a

lt
h

 d
is

ta
n

c
e

moving object speed v

line wave
random

synchronized

Fig. 16. ASD when varying v. d =
1, R = 0.75, wt = 0.01, vw = 2

of the line wave schedule, the random schedule, and the synchronized schedule, respec-
tively, when varying v and fixing all other parameters. We observe that, with a small
v, the line wave schedule and the random schedule have a larger DP than the synchro-
nized sensing schedule; however, as v increases, the synchronized schedule begins to
catch up the line wave schedule, and eventually outperforms it. Similarly, the line wave
schedule has a smaller ASD for small v. When v increases, the ASD of the line wave
schedule exceeds that of the random sensing schedule, and the synchronized schedule
has a larger ASD than the other two schedules.

6 Related Work

Extensive work has been conducted on object-tracking with different approaches: sys-
tem design and deployment [6, 13], design of high tracking-precision protocols [2], de-
sign of energy-efficient tracking protocols [11], and design of protocols to exploit node
collaborations [3, 7, 9, 10, 17]. In [11], Pattem et al. proposed duty-cycled activation
and selective activation algorithms to balance tracking errors and energy expenditure.
Gui et al. [5] studied the quality of surveillance of several sensing scheduling protocols.
[13] is a work covering design of hardware, networking architecture, and control and
management of remote data access. Increasing the degree of sensing coverage can usu-
ally improve object detection and tracking quality. Along this direction, many power-
efficient sensing coverage maintenance protocols [1, 4, 14, 15] have been proposed in
the literature. Yan et al. [15] presented an energy-efficient random reference point sens-
ing protocol to achieve a targeted coverage degree. In [16], Zhang and Hou studied the
system lifetime of a k-covered sensor network, and proved that it is upper bounded by
k times node continuous working time.

7 Conclusion

In this paper, we designed three wave sensing scheduling protocols to provide bounded
worst-case object detection quality for many surveillance applications. One of the pro-

242 S. Ren et al.

tocols is distributed and can be implemented locally on each individual node. In these
protocols, sensing field is scanned by a set of connected active sensors periodically.
In addition, we characterized the interactions among network parameters, and ana-
lyzed average-case object detection quality and energy consumption of the protocols.
We proved the correctness of the proposed protocols and evaluated their performances
through extensive simulations.

Acknowledgment

We are grateful to the anonymous reviewers for their constructive comments and sug-
gestions. We also acknowledge William L. Bynum for reading an earlier version of the
paper. This work is partially supported by the U.S. National Science Foundation under
grants CNS-0098055, CCF-0129883, and CNS-0405909.

References

1. Z. Abrams, A. Goel, and S. Plotkin. Set k-Cover algorithms for energy efficient monitoring
in wireless sensor networks. In Proceedings of IPSN’04.

2. J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and D. Rus. Tracking a moving
object with a binary sensor network. In Proceedings of ACM SenSys’03.

3. R. Brooks, P. Ramanathan, and A. Sayeed. Distributed target classification and tracking in
sensor networks. In International Journal of High Performance Computer Applications, spe-
cial issue on Sensor Networks, 16(3), 2002.

4. P. B. Godfrey and D. Ratajczak. Naps: scalable, robust topology management in wireless ad
hoc networks. In Proceedings of IPSN’04.

5. C. Gui and P. Mohapatra. Power conservation and quality of surveillance in target tracking
sensor networks. In Proceedings of ACM MobiCom’04.

6. T. He, S. Krishnamurthy, J. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru, T. Yan, L. Gu, J.
Hui, and B. Krogh. Energy-efficient surveillance system using wireless sensor networks. In
Proceedings of ACM/USENIX MobiSys’04.

7. D. Li, K. Wong, Y. Hu, and A. Sayeed. Detection, classification and tracking of targets in dis-
tributed sensor networks. In IEEE Signal Processing Magazine, pages 17–29, March 2002.

8. Q. Li and D. Rus. Global clock synchronization in sensor networks. In Proceedings of IEEE
INFOCOM’04.

9. J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao. Distributed state representation for tracking
problems in sensor networks. In Proceedings of IPSN’04.

10. J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao. Distributed group management for track
initiation and maintenance in target localization applications. In Proceedings of IPSN’03.

11. S. Pattem, S. Poduri, and B. Krishnamachari. Energy-quality tradeoffs for target tracking in
wireless sensor networks. In Proceedings of IPSN’03.

12. S. Ren, Q. Li, H. Wang, X. Chen, and X. Zhang. Analyzing object detection quality under
probabilistic coverage in sensor networks. In Proceedings of IWQoS’05.

13. R. Szewczyk, A. Mainwaring, J. Polastre, and D. Culler. An analysis of a large scale habitat
monitoring application. In Proceedings of ACM SenSys’04.

14. X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill. Integrated coverage and connec-
tivity configuration in wireless sensor networks. In Proceedings of ACM SenSys’03.

Design and Analysis of Wave Sensing Scheduling Protocols 243

15. T. Yan, T. He, and J. Stankovic. Differentiated surveillance for sensor networks. In Proceed-
ings of ACM SenSys’03.

16. H. Zhang and J. Hou. On deriving the upper bound of α-lifetime for large sensor networks.
In Proceedings of ACM MobiHoc’04.

17. W. Zhang and G. Cao. Optimizing tree reconfiguration for mobile target tracking in sensor
networks. In Proceedings of IEEE INFOCOM’04.

Multiple Controlled Mobile Elements (Data Mules) for
Data Collection in Sensor Networks

David Jea, Arun Somasundara, and Mani Srivastava

Networked and Embedded Systems Laboratory,
Department of Electrical Engineering, UCLA
{dcjea, arun, mbs}@ee.ucla.edu

Abstract. Recent research has shown that using a mobile element to collect and
carry data mechanically from a sensor network has many advantages over static
multihop routing. We have an implementation as well employing a single mobile
element. But the network scalability and traffic may make a single mobile element
insufficient. In this paper we investigate the use of multiple mobile elements. In
particular, we present load balancing algorithm which tries to balance the number
of sensor nodes each mobile element services. We show by simulation the benefits
of load balancing.

1 Introduction

Recently there has been an increased focus on the use of sensor networks to sense
and measure the environment. Some practical deployments include NIMS [1], James
Reserve [2]. Both these deployments focus mainly on the problem of habitat and envi-
ronment monitoring. In most cases the sensors are battery-constrained which makes the
problem of energy-efficiency of paramount importance.

There are multiple ways in which the sensor readings are transferred from the sen-
sors to a central location. Usually, the readings taken by the sensor nodes are relayed to
a base station for processing using the ad-hoc multi-hop network formed by the sensor
nodes. While this is surely a feasible technique for data transfer, it creates a bottleneck
in the network. The nodes near the base station relay the data from nodes that are farther
away. This leads to a non-uniform depletion of network resources and the nodes near
the base station are the first to run out of batteries. If these nodes die, then the network is
for all practical purposes disconnected. Periodically replacing the battery of the nodes
for the large scale deployments is also infeasible.

A number of researchers have proposed mobility as a solution to this problem of data
gathering. Mobile elements traversing the network can collect data from sensor nodes
when they come near it. Existing mobility in the environment can be used [3, 4, 5, 6]
or mobile elements can be added to the system [7, 8, 9], which have the luxury to be
recharged. This naturally avoids multi-hop and removes the relaying overhead of nodes
near the base station. In addition, the sensor nodes no longer need to form a connected
network (in a wireless sense). Thus a network can be deployed keeping only the sensing
aspects in mind. One need not worry about adding nodes, just to make sure that data
transfer remains feasible.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 244–257, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Multiple Controlled Mobile Elements 245

But this technique of using mobile elements comes at a cost of increased latency for
data collection. As a result, this is more suitable for delay tolerant networks [10], for
instance, habitat monitoring [1, 2] mentioned earlier.

In this paper we consider using multiple mobile elements for purposes of data col-
lection. We first briefly review our prior work on single mobile element [7] in Sect. 3.
Next we describe the necessity of using multiple mobile elements for scalability reasons
in Sect. 4. When multiple mobile elements are used to collect data from sensor nodes
(# sensor nodes � # mobile elements), it is better to have the mobile elements serve
more or less the same number of nodes. We describe these ideas of load balancing in
Sect. 5. The operation with load balancing is described precisely in Sect. 6. We present
simulation methodology and results in Sect. 7, and finally end with conclusions and
some directions for future work in Sect. 8. We begin with presenting the related work.

2 Related Work

Various types of mobility have been considered for the mobile element. These can
be broadly classified as random, predictable or controlled. An algorithm for routing
data among randomly mobile users was suggested in [11] where data is forwarded to
nodes which have recently encountered the intended destination node. Random mo-
tion of mobile entities was also used for communication in [4, 5], where the mobile
entities were zebras and whales. An important difference in these two from others is
that the sensor nodes themselves are mounted on the mobile entities (animals), and the
goal is to track their movements. In [3], randomly moving humans and animals act as
“data mules” and collect data opportunistically from sensor nodes when in range. How-
ever, in all cases of random mobility, the worst case latency of data transfer cannot be
bounded.

Predictable mobility was used in [6]. A network access point was mounted on a
public transportation bus moving with a periodic schedule. The sensor nodes learn the
times at which they have connectivity with the bus, and wake up accordingly to transfer
their data.

Controlled mobility was considered in our previous work [7], where a robot acts as
a mobile base station. The speed of the mobile node was controlled to help improve net-
work performance. This is briefly summarized in the next section. Controlled mobility
was also used in [8], where a mobile node is used to route messages between nodes in
sparse networks. However, all nodes are assumed to have short range mobility and can
modify their locations to come within direct range of the mobile node which has long
range mobility and is used for transferring data.

In [12], mobile nodes in a disconnected ad hoc network modify their trajectories to
come within communication range, and [13] considered moving the intermediate nodes
along a route, so that the distances between nodes are minimized and lower energy is
used to transmit over a shorter range. This system also assumes that all nodes are mo-
bile, which may be expensive or infeasible in many deployments where node locations
depend on sensing or application requirements. A mobile base station was also used in
[9] to increase network lifetime. A scheduling problem for the mobile node with buffer
constraints on static nodes and variable sampling rates at each static node is studied

246 D. Jea, A. Somasundara, and M. Srivastava

in [14]. Connectivity through time protocols were proposed in [15] that exploit robot
motions to buffer and carry data if there is no path to the destination.

Henceforth, we will use the term data mule, borrowed from [3] to denote a mobile
element.

3 Single Data Mule

For sake of completeness and having continuity, we briefly describe the single con-
trolled data mule approach in this section. Sensor nodes are deployed in an area, and
are sampling the physical phenomenon. There is a data mule whose job is to collect data
from these sensor nodes. The data mule moves in a straight line up and down. The op-
eration can be divided into two parts: Network algorithms (specifies how sensor nodes
interact with each other and the data mule) and Motion Control algorithms (specifies
how the data mule moves)

3.1 Network Algorithms

The network may be such that some sensor nodes may never hear the data mule directly.
In this situation, they transfer the data through other nodes, which can directly hear the
data mule. The algorithm can be divided into three phases:

1. Initialization: This is used to find out the number of hops each node is from the path
of the data mule (initialized to ∞). The data mule moves broadcasting the beacons
(with hop count as 1). All nodes which hear it mark the hop count, and also rebroad-
cast it (after incrementing the hop count). A node which hears a beacon with hop
count less than what has, updates itself (also noting the node from which it came).
At the end of this phase, all nodes know if they are on path of data mule (at 1 hop).
If they are not on path of the data mule, they know the parent through which to reach
a node which is on path. Basically, this is tree building, with number of trees being
equal to the number of nodes on path of the data mule. All nodes are members of
exactly one tree.

2. Local multihops: Each of the trees formed above do a local multihop within them-
selves, with the root of the tree collecting data of its children nodes. Directed Diffu-
sion [16] is suitable for this.

3. Data Collection by Data Mule: After one round of initialization phase, the data
mule moves polling for data. The nodes which hear the data mule respond with the
data (their own and that of their children). To prevent loss of data due to data mule
going out of range, we can have a acknowledgement based scheme.

Once the initialization phase is over, the other two proceed in parallel.

3.2 Motion Control Algorithms

Motion can be controlled in two dimensions: space (where the data mule goes), and
time (how or what speed the data mule moves). By fixing the path to be a straight line,
we need to decide the speed. Two options are possible:

Multiple Controlled Mobile Elements 247

1. Fix the round trip time (RTT) of the data mule. With this, there are few approaches
possible.

– We can traverse the path at a fixed speed (at which we get maximum efficiency
from the data mule). Suppose this takes time T (< RTT). Then we have RTT −T
spare time. We can divide this time equally among all nodes. The data mule would
stop for this time at each node. We do not assume that the data mule knows the
node locations. So we stop when we first hear from a node.

– Alternately, we can cover the trail at constant speed (Length of path / RTT), and
not stop at any node.

– Finally, we can also have an adaptive speed control algorithm, where the data mule
would normally move at twice the speed above. This leaves RTT/2 time to service
the nodes by stopping at them. This time can be divided among a subset of the
nodes, from which the mule had collected less data than a threshold in the previous
round. Thus unlike the first case, the sets of nodes at which the mule would stop
would change with each round.

We have not gone into details of the above algorithms. Our earlier paper [7] can
be referred where we have implemented a version of these ideas. Although two nodes
are one hop from the data mule, the time which the data mule stays in their contact
may vary, depending on the distance of the node to the path. One way to take care of
this is adaptive motion control mentioned above. The mule would have collected less
data from a node which is far from the path, and in the next round would stop at it,
giving it more time. Nevertheless, this approach only tries to maximize the amount
of data collected. It does not guarantee that all the generated data is collected.

2. Give an equal amount of service time to each node (with the mule stopping for this
amount of time at each node). The service time for a node can be set equal to Buffer
size / Communication data rate. This would ensure that the data mule is able to col-
lect all the data. The mule can collect data even when it is moving, and this can be
considered as a bonus. As mentioned before, all nodes need not be one hop from the
data mule. For this, the root of the trees (all roots are one hop from the data mule) can
be given time equivalent to the number of nodes in its tree. The RTT would depend
on number of nodes in the network.

4 Multiple Data Mules

The single data mule approach presented in the previous section does not scale well.
Suppose the density of the network increases due to increasing number of nodes. Con-
sidering the approach of fixed round trip time for data mule, there are more nodes from
which data has to be collected, in the same amount of time. This leads to loss of data
due to buffer overflows at the nodes. If the second approach of stopping at each node is
used, the data mule will take a longer time to complete a round. In this case, although
at time of each service, the buffer of a node is cleared, it may not be possible for the
data mule to return to this node before its buffer fills again. Again this leads to loss of
data. Another issue arises if the network is deployed over a larger area. The distance

248 D. Jea, A. Somasundara, and M. Srivastava

over which the data mule moves increases. The battery capacity may not be sufficient
for moving this length, requiring recharge on the path.

These problems can be addressed by using multiple data mules. A trivial solution
would be dividing the area into equal parts and having one data mule in each. This
solves the problem if the nodes are uniformly randomly deployed, so that each mule
gets approximately same number of nodes to service. Each mule covers the same area.
Now each mule can independently run the same single mule algorithms presented in
the previous section. To analytically calculate the required number of data mules, let us
define the following:

– num nodes nodes are deployed in an area of l × l units.
– A data mule moves in a straight line from one end to another and back at speed s.
– Time to fill a node’s buffer is buffer fill time. This can be calculated using the

sampling period and buffer size. We assume that all nodes are sampling at the same
rate.

– Time for the data mule to empty a node’s buffer is service time given by
buffer size/communication data rate. Let us assume the second form of mo-
tion control (Sec. 3.2), where the data mule stops at each node for this amount of
time.

– Round trip time (RTT) for the data mule will be (l/s)+(num nodes×service time)+
(l/s).

Now, if RTT ≤ buffer fill time, one data mule will suffice. Otherwise,
�RTT/buffer fill time mules would be required.

Two things are to be noted with respect to the last calculation. Firstly, in the expres-
sion for round trip time, the first two terms denote the time it takes the data mule to
move from one side of the area to the other along with time for data collection. The
last term denotes the time to come back to the starting point. There is no data collection
in the reverse path, so as to approximate the whole motion to a closed loop. Secondly,
some nodes may not be able to communicate directly to the data mule. The data of these
nodes will be available at root of the tree this node belongs to using local multihopping.

Node N1

Node N2

Node N3

Node N4

Node N5

path of Data Mule M1

path of Data Mule M2

Fig. 1. Nodes between 2 mules

Table 1. Hop count at nodes in Fig. 1

Nodes Data Mule M1 Data Mule M2
N1 1 5
N2 2 4
N3 3 3
N4 4 2
N5 5 1

Multiple Controlled Mobile Elements 249

(The root will be on path of data mule as mentioned in previous section). A related
issue is the fact that a node will belong to more than one tree (one tree per data mule).
In such cases, the node will send data towards the closer data mule. This is illustrated
in Fig. 1, with the 2 data mules moving on straight line paths. Table 1 shows the hop
count variable at each of the sensor nodes N1−N5 due to the two data mules. As can
be seen N1, N2 will be serviced by M1, and N4, N5 by M2. N3 is at equal hop count
from both the data mules. Such ties can be broken randomly.

5 Load Balancing

The previous section made the case for using multiple data mules. If the nodes are
uniformly randomly distributed, then the obvious thing to do is to divide the area into
equal regions.

But in practice, at real deployments it may not be so trivial. Firstly, the nodes need
not be uniformly deployed. They will be placed by the field experts such as the biolo-
gists. They would want to deploy nodes in areas where they suspect interesting activities
to take place. This will naturally lead to non-uniform placement. In addition, in these
environments it may not be feasible to have the data mule trails according to system
designer’s requirements.

5.1 Problem Description

We are given a set of nodes deployed in an area, and straight line paths for the data
mules (M1,M2, ...) to move (which are not necessarily equally spaced). We assume
for simplicity that each node is one hop away from atleast one data mule (and atmost
two data mules). Fig. 2 describes the scenario with three data mules M1,M2,M3. The
various regions are marked A−H . Table 2 describes the various regions, and the data
mules they can talk to. The regions which are serviced by a single data mule have no
choice. The nodes in these regions will be called non shareable nodes. But the nodes
in regions which are serviced by 2 data mules, can be attached to either of them. Such
nodes are called shareable nodes. The goal is to find the data mule assignment for these
shareable nodes, so that each data mule services approximately same number of nodes.

5.2 Why It Is Important

Consider a simple scenario with 50 nodes and 2 data mules M1,M2. Suppose M1
has 25 non shareable nodes, M2 has 5 non shareable nodes, and 20 nodes are shared
between them. If these 20 nodes are equally divided between the two data mules, M1
will end up servicing 35 nodes and M2 15 nodes. Consider M1. If we use the approach
of fixed round trip time for the data mule, the time given to each node will be reduced.
On the other hand, if we use the approach of stopping at each node (for amount of time
required to empty its buffer), the round trip time of the data mule will increase, leading
to possibility of buffer overflows, when the data mule returns to service them. Instead,
if both the data mules serviced 25 nodes, the above mentioned problem will be solved.
For this to happen, all 20 shareable nodes are to be serviced by M2.

250 D. Jea, A. Somasundara, and M. Srivastava

Region B

Region C

Region D

Data Mule M1

Region E

Region F

Region G

Region H

Region A

Data Mule M2

Data Mule M3

Fig. 2. Problem description

Table 2. Illustration of Fig. 2

Region Visible Data Mule(s) Region type
A M1 non shareable
B M1 non shareable
C M1, M2 shareable
D M2 non shareable
E M2 non shareable
F M2, M3 shareable
G M3 non shareable
H M3 non shareable

Load balancing is common concept in distributed systems [17]. In our case, the tasks
are the servicing of sensor nodes, and the processing elements (PEs) are the data mules.
In addition, there are constraints on the tasks, as to which PEs can process them. This
refers to the fact that sensor nodes (if they are shareable) can only be serviced by 2 data
mules.

6 Multiple Data Mules with Load Balancing

We now describe the multiple data mule approach with load balancing. This is one of
the main contributions of this paper. This can be divided into five parts: initialization,
leader election, load balancing, assignment, and data collection.

6.1 Initialization

The data mules make a round broadcasting the beacons. The nodes which can hear,
reply back with their id’s. The data mules note down the list of distinct node id’s they
got the response from. At the end of this round, each data mule has a list of nodes which
are one hop from its path.

6.2 Leader Election

We assume that the data mules are equipped with powerful radios, and can communi-
cate with each other. They elect a leader among themselves, and everyone sends the
information gathered in the initialization round to the leader. The data mule with the
smallest id becomes the leader in our case.

6.3 Load Balancing

The leader data mule has the information of all the data mules. For each data mule i, the
leader can classify its nodes into 2 classes: shareable nodes and non shareable nodes.
The shareable nodes can further be classified as being shared with previous or next data
mule. Let us define an array structure DM , of size equal to number of data mules (N).
The structure DM [i], denoting data mule i has the following members:

Multiple Controlled Mobile Elements 251

– non shareable nodes denotes the set of nodes it is solely responsible.
– shareable nodes neg denotes the set of nodes it shares with the previous data mule

i− 1. For DM [1], this is a null set.
– shareable nodes pos denotes the set of nodes it shares with the next data mule i+1.

For DM [N], this is a null set.
– non shareable load denotes the size of the set non shareable nodes.
– shareable load neg denotes the size of the set shareable nodes neg.
– shareable load pos denotes the size of the set shareable nodes pos.

The above variables are calculated by the leader, and form the input to the load
balancing algorithm. It may be noted that DM [i].shareable nodes neg & DM [i−
1].shareable nodes pos are same. Similarly, DM [i].shareable nodes pos is same
as DM [i + 1].shareable nodes neg.

– my shareable load neg denotes the number of nodes this data mule is responsible
for out of shareable load neg.

– my shareable load pos denotes the number of nodes this data mule is responsible
for out of shareable load pos.

– my total load is the total number of nodes this data mule will be responsible for. It
is the sum of non shareable load, and the above two variables.
These three variables evolve as the algorithm proceeds.

Initially all data mules are in the same single group, with first mule called the
start mule, and last one called the end mule. The idea is to make the load of (num-
ber of nodes serviced by) each data mule equal to the average load of that group.
This may not always be possible. For instance, consider the simple scenario with 50
nodes and 2 data mules M1,M2. Suppose M1 has 35 non shareable nodes, M2 has
5 non shareable nodes, and 10 nodes are shared between them. The best possible re-
sult would be to assign all the 10 shareable nodes to M2, making it responsible for 15
nodes, and M1 for 35 nodes. In such a case, we divide the original group into two, and
try to balance the load of each group recursively. The recursion is terminated when we
reach the last mule of the group.

Table 3. Meaning of flag variables for a mule

Flag If Flag is TRUE If Flag is FALSE

start flag my shareable load neg = shareable load neg my shareable load neg = 0

end flag my shareable load pos = shareable load pos my shareable load pos = 0

The group splitting happens when we reach a mule such that the minimum load
it should take is more than the group average. We form two groups with this mule
belonging to the first group. This mule becomes the end mule of the first group. Also,
the load this mule shared with the next mule is given completely to the next mule, which
becomes the start mule of the second group. A group can also split when we reach a
mule such that the maximum load it can take is less than the group average. Here again
we form two groups with this mule belonging to the first group. But now this mule takes

252 D. Jea, A. Somasundara, and M. Srivastava

ALGORITHM: Load Balance(start mule, end mule, start flag, end flag)

1. Initialize group has split to FALSE
2. Calculate the average load of this group group avg, as shown in Fig. 4.
3. Reset the following variables:

– DM [start mule..end mule].my shareable load neg
– DM [start mule..end mule].my shareable load pos
– DM [start mule..end mule].my total load

4. Repeat the following for i = start mule..end mule
(a) if group has split is TRUE, return.

– This is to terminate recursion, when we come to next iteration of for loop during back
tracking of recursion.

(b) Calculate the minimum load that can be assigned to this mule.
i. If i = start mule AND start flag = TRUE

A. DM [i].my shareable load neg = DM [i].shareable load neg
ii. Else If i �= start mule

A. DM [i].my shareable load neg =
DM [i].shareable load neg − DM [i − 1].my shareable load pos

iii. DM [i].my total load =
DM [i].non shareable load + DM [i].my shareable load neg

(c) If i = end mule
i. If end flag = TRUE

A. DM [i].my shareable load pos = DM [i].shareable load pos
B. DM [i].my total load+ = DM [i].my shareable load pos

ii. Return
(d) If DM [i].my total load > group avg

– The load on this mule is more than group average; we split into two groups.
i. Set group has split = TRUE

ii. Call Load Balance(start mule, i, start flag, FALSE)
iii. Call Load Balance(i+1, end mule, TRUE, end flag)

• All nodes shared between mules i and i + 1 is taken by mule i + 1.
(e) Else (i.e. if DM [i].my total load ≤ group avg)

i. Calculate the extra load that can be given to this mule.
– extra load = group avg − DM [i].my total load
– DM [i].my shareable load pos =

min(extra load, DM [i].shareable load pos)
– DM [i].my total load+ = DM [i].my shareable load pos

ii. If DM [i].my total load < group avg
– The maximum load this mule can have is less than the group average. Here also, we

split into two groups.
A. Set group has split = TRUE
B. Call Load Balance(start mule, i, start flag, TRUE)
C. Call Load Balance(i+1, end mule, FALSE, end flag)

• All nodes shared between mules i and i + 1 is taken by mule i.
iii. Else (i.e. if DM [i].my total load = group avg, continue

– We continue to check mule i + 1

END

Fig. 3. Load Balancing Algorithm

Multiple Controlled Mobile Elements 253

ALGORITHM: Calculate group average

– Input parameters: start mule, end mule, start flag, end flag
– Procedure:

1. Initialize group load =
∑end mule

i=start mule DM [i].non shareable load
2. Switch depending on (start flag, end flag)

• (TRUE, TRUE)
∗ group load+ =

∑end mule
i=start mule DM [i].shareable load neg+

DM [end mule].shareable load pos
• (TRUE, FALSE)

∗ group load+ =
∑end mule

i=start mule DM [i].shareable load neg
• (FALSE, TRUE)

∗ group load+ =
∑end mule

i=start mule DM [i].shareable load pos
• (FALSE, FALSE)

∗ group load+ =
∑end mule

i=start mule+1 DM [i].shareable load neg

3. group avg = group load
end mule−start mule+1

– Return group avg

END

Fig. 4. Algorithm for calculating group avg in step 2 of Fig. 3

all the load it shares with the next mule. We use two flags start flag, and end flag
to denote these states. Mules are affected by these flags only if they are start mule,
or end mule respectively. Table 3 describes these variables. Initially, when there is
only one group comprising all the mules, the values of these flags do not matter, as the
start mule (mule #1) does not have any predecessor, and end mule (mule #N) does
not have any successor.

The precise algorithm is given in Fig. 3. Initially, it is invoked with parameters
(1, N, FALSE,FALSE)1. The algorithm has comments explaining each of the steps,
and is also described below. One thing to be noted is the use of local boolean variable
group has split. There are recursive calls inside the for loop in step 4. If it goes in-
side recursion, there is no more meaning for the current group. When control comes
back to this for loop again during backtracking of recursion, we should not process the
remaining mules in the for loop. Step 4.a achieves this.

We begin by calculating the group average in step 2, making sure not to count share-
able nodes twice. The average depends on the two flag values, as shown in Fig. 4. We
next run a loop for all nodes in the group. First, we calculate the minimum load the
mule under consideration should take (step 4.b). In particular, if this mule is not the
start mule, 4.b.ii.A calculates the part of of shareable load which the previous mule
did not take.

The group splitting can happen in two cases. Firstly, if the minimum load (which
was calculated in step 4.b) that has to be assigned to the mule under consideration is
more than the group average. When this happens we break into two groups, and the

1 as mentioned previously, the two flags do not matter initially.

254 D. Jea, A. Somasundara, and M. Srivastava

mule under consideration becomes part of the first group. This is shown in 4.d in the
algorithm. We recursively call the algorithm for the two groups. If the above does not
happen, we try to assign some shareable load , which this shares with the next mule, as
shown in 4.e.i. Now the other reason of splitting can arise. If the maximum load that
can be assigned to this mule is less than the group average, we split into two groups, as
shown in 4.e.ii.

The current recursion ends when we reach end mule in step 4.c. In addition, if the
end flag is TRUE, we add some more load, as shown in 4.c.i.A. This is in accordance
to Table 3.

The worst case complexity of this load balancing algorithm is O(n2), where n is the
number of data mules. This occurs when the group splitting always happens such that
one of the resultant groups has only one mule, and the other group has all the remaining
mules.

6.4 Assignment

The load balancing algorithm of the previous subsection outputs three counts for each
data mule: my shareable load neg, my shareable load pos, my total load. Now
we have to find the corresponding sets i.e.my shareable nodes neg and
my shareable nodes pos. Two data mules would be sharing some nodes. These nodes
are ordered by node id. The idea is to assign the first part of this ordered set to the first
mule (resulting in DM [i].my shareable nodes pos), and the second part to the sec-
ond mule (resulting in DM [i + 1].my shareable nodes neg). The size of the two
parts depends on the counts mentioned above. Finally, each data mule is responsi-
ble for nodes in the three sets: non shareable nodes, my shareable nodes neg, and
my shareable nodes pos. After the assignment has taken place, the leader can inform
all the data mules, the set of nodes they have to service.

6.5 Data Collection

With the assignment done, the data mules traverse their paths, polling for data. The
shareable sensor nodes do not know which of the two data mules they belong to. The
nodes respond for data when they hear the poll packet. The data mule will send back
an acknowledgement only if it is responsible for servicing that node. The sensor node
marks the data mule from which it hears an acknowledgement, and does not respond to
poll packets from the other data mule in future.

7 Simulation Methodology and Results

We now present our simulation methodology. We implemented our algorithms in TinyOS
[18]. The simulator used is TOSSIM [19]. The advantage of this combination is that, the
same TinyOS code can be put on real sensor nodes. To simulate mobility, we use tython
[20]. We consider three schemes for sharing the shareable load between data mules.

Multiple Controlled Mobile Elements 255

Table 4. Simulation Results

Data Mule M1 Data Mule M2 Data Mule M3 Data Mule M4

non shareable load 13 5 5 9
shareable load neg 0 3 3 2
shareable load pos 3 3 2 0
FCFS 16 8 5 11
Equal Sharing 15 8 7 10
Load Balancing 13 9 9 9

1. First Come First Serve (FCFS): The shareable sensor node will get attached to the
data mule from which it hears the beacon packet first in the Initialization round of
data mules (Sect. 6.1).

2. Equal sharing: Each adjacent data mules have a set of shareable nodes between them.
Here, half the shareable nodes are assigned to one data mule, and the other half to
the other mule.

3. Load balancing: Result of applying the load balancing algorithm of Sect. 6.3.

For the simulation topology, we had 40 sensor nodes, and 4 data mules, M1−M4. The
nodes are randomly distributed inside the 100x100 grid region from (24, 30) to (76, 70).
M1 moves from (32, 10) to (32, 90), M2 moves from (44, 90) to (44, 10), M3 moves
from (56, 10) to (56, 90) and M4 moves from (68, 90) to (68, 10). To have effect of
closed-loop path, whenever a data mule reaches its end point, we immediately place it
at the starting point, from where it starts moving again. The nodes are placed inside a
smaller region than whole grid to avoid edge-effects.

The result after the leader mule (M1) gets information from other data mules is
shown in upper half of Table 4. This result depends on topology. Now we execute
the three schemes of load sharing presented above, resulting in my total load values
shown in lower half of Table 4. As can be seen, the result of load balancing does not
necessarily result in equal distribution of load, because non shareable load of M1 is
more than the group average. This results in group splitting, and we end up balancing
the load of the second group.

With these three node assignments to mules, we ran the experiment for 5 rounds,
with the first strategy mentioned in Sect. 3.2 of fixed round trip time. The RTT was set
to 120 time units, and it took each mule 40 time units to complete a round. This gave
80 time units for stopping at the nodes, which was divided equally among the nodes to
be serviced. Fig. 5 shows the average number of packets received per node per round,
at each of the data mules. Results are shown for the three assignments. It is evident that
load balancing leads to more uniformity. Although data mules 2, 3, 4 service the same
number of nodes (9) in the load balanced case, we see a minor variation. This is due to
fact that we are collecting data even when moving, in addition to when being stopped.
So if the nodes assigned to M4 are closer to its path (when compared to nodes assigned
to M3 and its path), we end up collecting more data at M4.

256 D. Jea, A. Somasundara, and M. Srivastava

0 1 2 3 4 5
50

52

54

56

58

60

62

64

66

68

70

Data Mule ID

A
ve

ra
ge

 #
 o

f p
ac

ke
ts

 p
er

 n
od

e
pe

r
ro

un
d

FCFS
Equal
Load Balanced

Fig. 5. Simulation Results

8 Conclusions and Future Work

Deployments of sensor networks are taking place. Using a controlled mobile element
is a promising approach to collect data from these sensor nodes. We showed that as the
network scales, using a single mobile element may not be sufficient, and would require
multiple of them. The sensor nodes and (or) the mobile elements may not be uniformly
placed in practice, necessitating the use of load balancing, so that each mobile element
as far as possible, serves the same number of sensor nodes. We gave a load balancing
algorithm, and described the mechanism these multiple mobile elements can be used.
Finally we presented simulation results justifying our approach.

The work presented here can be extended in many directions. For load balancing,
we can remove the assumption that each sensor node can talk to at least one mobile
element. This will lead to case similar to Figure 1. Now, when doing load balancing, we
also need to consider the cost of doing multihop, to reach either of the mobile elements.
We can also extend to cases where mobile elements can be added or removed once the
system is in operation. Node dynamics can be handled by running the initialization and
load balancing periodically.

References

1. Kaiser, W.J., Pottie, G.J., Srivastava, M., Sukhatme, G.S., Villasenor, J., Estrin, D.: Net-
worked Infomechanical Systems (NIMS) for Ambient Intelligence. Technical Report 31,
Center for Embedded Networked Sensing, UCLA (2003)

2. Cerpa, A., Elson, J., Estrin, D., Girod, L., Hamilton, M., Zhao, J.: Habitat Monitoring:
Application Driver for Wireless Communications Technology. In: SIGCOMM Workshop on
Data Communications in Latin America and the Caribbean. (2001)

Multiple Controlled Mobile Elements 257

3. Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data MULEs: Modeling a Three-tier Architec-
ture for Sparse Sensor Networks. In: IEEE Workshop on Sensor Network Protocols and
Applications (SNPA). (2003)

4. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L., Rubenstein, D.: Energy-efficient Com-
puting for Wildlife Tracking: Design Tradeoffs and Early Experiences with Zebranet. In:
ACM ASPLOS. (2002)

5. Small, T., Haas, Z.: The Shared Wireless Infostation Model-A New Ad Hoc Networking
Paradigm (or Where there is a Whale, there is a Way). In: ACM MobiHoc. (2003)

6. Chakrabarti, A., Sabharwal, A., Aazhang, B.: Using Predictable Observer Mobility for Power
Efficient Design of Sensor Networks. In: IPSN. (2003)

7. Kansal, A., Somasundara, A., Jea, D., Srivastava, M., Estrin, D.: Intelligent Fluid Infrastruc-
ture for Embedded Networks. In: ACM MobiSys. (2004)

8. Zhao, W., Ammar, M., Zegura, E.: A Message Ferrying Approach for Data Delivery in
Sparse Mobile Ad Hoc Networks. In: ACM MobiHoc. (2004)

9. Luo, J., Hubaux, J.P.: Joint Mobility and Routing for Lifetime Elongation in Wireless Sensor
Networks. In: IEEE INFOCOM. (2005)

10. Fall, K.: A Delay-Tolerant Network Architecture for Challenged Internets. In: ACM SIG-
COMM. (2003)

11. Dubois-Ferriere, H., Grossglauser, M., Vetterli, M.: Age Matters: Efficient Route Discovery
in Mobile Ad Hoc Networks Using Encounter Ages. In: ACM MobiHoc. (2003)

12. Li, Q., Rus, D.: Sending Messages to Mobile Users in Disconnected Ad-hoc Wireless Net-
works. In: ACM MobiCom. (2000)

13. Goldenberg, D., Lin, J., Morse, A.S., Rosen, B., Yang, Y.R.: Towards Mobility as a Network
Control Primitive. In: ACM MobiHoc. (2004)

14. Somasundara, A., Ramamoorthy, A., Srivastava, M.: Mobile Element Scheduling for Ef-
ficient Data Collection in Wireless Sensor Networks with Dynamic Deadlines. In: IEEE
RTSS. (2004)

15. Rao, N., Wu, Q., Iyengar, S., Manickam, A.: Connectivity-through-time Protocols for Dy-
namic Wireless Networks to Support Mobile Robot Teams. In: IEEE ICRA. (2003)

16. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed Diffusion: A Scalable and Robust
Communication Paradigm for Sensor Networks. In: ACM MobiCom. (2000)

17. Shirazi, B.A., Hurson, A.R., Kavi, K.M.: Scheduling and Load Balancing in Parallel and
Distributed Systems. IEEE Computer Society Press (1995)

18. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture direc-
tions for network sensors. In: ACM ASPLOS. (2000)

19. Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: accurate and scalable simulation of entire
tinyOS applications. In: ACM Sensys. (2003)

20. Demmer, M., Levis, P.: Tython scripting for TOSSIM (2004) Network Embedded Systems
Technology Winter 2004 Retreat.

Analysis of Gradient-Based Routing Protocols in
Sensor Networks�

Jabed Faruque, Konstantinos Psounis, and Ahmed Helmy

Department of Electrical Engineering,
University of Southern California, Los Angeles, CA 90089

{faruque, kpsounis, helmy}@usc.edu

Abstract. Every physical event results in a natural information gradi-
ent in the proximity of the phenomenon. Moreover, many physical phe-
nomena follow the diffusion laws. This natural information gradient can
be used to design efficient information-driven routing protocols for sen-
sor networks. Information-driven routing protocols based on the natural
information gradient, may be categorized into two major approaches: (i)
the single-path approach and (ii) the multiple-path approach. In this
paper, using a regular grid topology, we develop analytical models for
the query success rate and the overhead of both approaches for ideal and
lossy wireless link conditions. We validate our analytical models using
simulations. Also, both the analytical and the simulation models are used
to characterize each approach in terms of overhead, query success rate
and increase in path length.

1 Introduction

Sensor networks are envisioned to be widely used for habitat and environmental
monitoring where the attached tiny sensors sample various physical phenomena.
More specifically, advances in the MEMS technology make it possible to develop
sensors to detect and/or measure a large variety of physical phenomena like tem-
perature, light, sound, radiation, humidity, chemical contamination, nitrate level
in the water, etc. Every physical event leaves some fingerprints in the environment
in terms of the event’s effect; e.g., fire increases the temperature, chemical spilling
increases the contamination, nuclear leakage increases the radiation so on. More-
over, most of the physical phenomena follow the diffusion law[13][14] with dis-
tance, i.e., f(d) ∝ 1

dα , where d is the distance from the point having the maximum
effect of the event, f(d) is the magnitude of the event’s effect, and α is the expo-
nent of the diffusion function that depends on the type of effect and the medium;
e.g., for light α = 2, and for heat α = 1. Hence, routing protocols used in sensor
networks for habitat and environmental monitoring applications can exploit this
natural information gradient to efficiently forward the queries toward the source
of the event. Throughout this document the term “source” is used to refer to the
source of the event; e.g., the contaminant, the epicenter of an earthquake, etc.

� This research has been partially supported by NSF award 0435505.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 258–275, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Analysis of Gradient-Based Routing Protocols 259

Traditional data-centric routing protocols for sensor networks are basedmostly
on flooding [1] or random-walks [3], [4]. However, these approaches do not uti-
lize the domain-specific knowledge, i.e., the information gradient about the mon-
itored phenomenon. Here, we keep our focus on the routing protocols that exploit
the information gradient to route a query efficiently in sensor networks from the
sink to the source.

In real life, sensors are not always perfect and are subject to malfunction due
to obstacles or failures. Also, the characteristics of the sensor nodes, e.g., limited
battery life, the energy expensive wireless communication, and the unstructured
nature of the sensor network, make the data-centric routing protocols based
on the information gradient a challenging problem. Several routing protocols
have been proposed to exploit the information gradients. These query routing
protocols use greedy forwarding and can be broadly classified in two categories:
(1) Single-path approach[5][6][8], where the query reaches the source from the
sink through a single path, and (2) Multiple-path approach[7], where the query
uses multiple paths to reach the source.

In this paper, we do not aim to design new routing protocols per se. Rather,
the objective of the research is the evaluation and the analysis of the general
approaches to route a query using the natural information gradient in the sensor
networks. In particular, we use probabilistic modeling methods to derive ana-
lytical expressions for the energy overhead and the query success rate of each
approach. Also, we compare the performance of the query routing approaches
using carefully selected performance metrics. Our analysis is validated through
extensive simulations. For the analysis and the simulations, we only consider
sensor networks with static nodes, which is usually the case for environmental
monitoring, and we assume that the queries are triggered from a sink to identify
the origin (i.e., source) of the event, after the event’s occurrence. To keep the
analysis simple, we ignore potential packet collisions, which can be (and usually
is) effectively reduced by inserting a random delay time before forwarding the
query packet. However, wireless link loss is considered in both the analysis and
the simulations. The main contributions and findings of this paper include:

– Analytical models for the query success rate and the overhead of the single-
path and the multiple-path approaches to route a query using the informa-
tion gradients in sensor networks. Validation of the analytical models using
extensive simulations.

– Performance analysis of both routing approaches using the analytical models
and simulations in ideal and lossy link conditions.

– In the ideal wireless link case, it is found that the multiple-path approaches
are more energy efficient than the single-path approaches when the source is
relatively close to the sink. Also, the multiple-path approaches yield shorter
paths than the single-path approaches. Further, as the number of malfunc-
tioning nodes in the network increases, the query success rate of the multiple-
path approaches degrades a lot slower than that of the single-path approaches.

– In the lossy wireless link case, the query success rate of the single-path ap-
proachesdropsdrasticallywhile themultiple-pathapproachesarequite resilient.

260 J. Faruque, K. Psounis, and A. Helmy

2 Related Work

Several approaches have been proposed for routing in sensor networks. The major
difference between the information-gradient based approach[5][6] and the
flooding[1][2] and the random-walks[3][4][9] based approaches is that the former
uses the sensors measurements about the event’s effect for routing decisions. In
[9], Servetto and Barrenechea have shown that multiple random-walks improve
load balancing and minimize latency with increased communication cost. Also,
they analyzed the random-walk approach in regular/irregular and static/dynamic
grid topology, but they did not consider the existence of information gradients.
We now briefly summarize previously proposed gradient based routing protocols.

Chu, Hausseker and Zhao propose CADR (Constrained Anisotropic Diffusion
Routing) mechanism[5], especially designed for localization and target tracking.
CADR uses a proactive sensor selection strategy for correlated information based
on a criterion that combines information gain and communication cost. CADR is
a single path greedy algorithm that routes a query to its optimal destination using
the local gradients to maximize the information gain through the sensor network.

Later work by Liu, Zhao and Petrovic [6] proposed the min-hop routing algo-
rithm to overcome the limitation of CADR to handle local maxima and minima.
The algorithm uses a multiple step look-ahead approach with single path query
forwarding. Here, the initial network discovery phase determines the minimum
look-ahead horizon (in hops) so that the path planning phase can avoid network
irregularities. The algorithm improves the success rate of routing message with
additional search cost. Also, the increase in the neighborhood size causes more
communications between the cluster leaders and their neighbors.

Some recent studies on information-driven routing protocols also use the single-
path approach [8]. It is important to note that all the above information-driven
protocols based on the single-path approach, use a proactive phase to prepare the
gradient information repository. In our study we analyze the performance of the
query routing mechanisms without considering the cost of the proactive phase.

In [7], a multiple path exploration mechanism is proposed to discover a route
or an event. It is a reactive and distributed routing mechanism to effectively
exploit the natural information gradient repository. The protocol controls the
instantiation of multiple paths using a probabilistic function based on the sim-
ulated annealing concept. It uses flooding to forward the query when no infor-
mation gradient is available. The efficiency of the protocol depends on properly
selecting the parameters of the probabilistic function.

According to [7], the diffusion information in the environment consists of a flat
(i.e. zero) and a gradient information region. However, the single-path protocols
are unable to forward a query in the flat information region. In this work, we
only consider the performance of various routing approaches in the gradient
information region, while malfunctioning sensors are uniformly distributed.

In this work, our interest is primarily focused on the systematically analyzing
the performance e.g., the query success rate and the overhead, of the single-
path and the multiple-path approaches to design data centric routing protocols
in the presence of a natural information gradient. In the analysis, we use a

Analysis of Gradient-Based Routing Protocols 261

probabilistic framework to develop simple analytical models for the success rate
and the overhead for both approaches in ideal and lossy wireless link conditions.
We also simulate these protocols with more realistic scenarios.

3 Query Routing Approaches

According to the discussion of Section 2, two major approaches, (i) the single-
path approach and (ii) the multiple-path approach, are used for query routing
protocols to exploit the information gradients. To properly describe these rout-
ing approaches, we need to define two terms: (1) Active node, a node which is cur-
rently holding the query, and (2)Candidate node, a node which has never received
the query. Now, a brief description of both routing approaches is given below:

Single-Path Approach: The query follows a single path to reach the source
from the sink. At each step of the query forwarding, the active node uses a look-
ahead parameter r, r ≥ 1, to collect information from all candidate nodes within
r-hops. For r > 1, all nodes within r − 1 hops need to transmit the request of
the active node to gather information about the event. Note that for r = 0,
the single-path approach becomes a random-walk and is unable to utilize the
gradient information repository.

Single-path approach based protocols can be designed in several ways using
different selection policies for the next active node. In our study, we consider the
following two policies:

a) Basic single-path approach: In this policy, the protocol always selects the
node with the maximum information among all candidate nodes within r-
hops of the active node, when the node’s information is higher than that
of the active node. This selection policy is sensitive to local maxima and
arbitrarily high readings of the malfunctioning nodes that cause these lo-
cal maxima. The resilience of the protocols based on this approach can be
improved by using filters to avoid such arbitrarily high readings.

b) Improved single-path approach: In this policy, the active node forwards the
query to a node having the maximum information among all candidate nodes
within r-hops of the active node. So, the information content of all candidate
nodes can be less than that of the active node. Here, the query forwarding
ends either at the source node or at an active node having no candidate
nodes within r-hops.

Multiple-path Approach: This approach forwards the query through multi-
ple paths towards the source without any look-ahead phase. These paths may not
be disjoint paths. Usually the active nodes forward the query greedily when in-
formation level improves. In the presence of malfunctioning nodes having wrong
information, the protocols based on this approach can use probabilistic forward-
ing. For example, the protocol proposed in [7] uses a diffusion function for prob-
abilistic forwarding. It creates some extra paths but the protocol can adaptively
change the forwarding probability to control the instantiation of these extra

262 J. Faruque, K. Psounis, and A. Helmy

i = 0 1 . . . d

f0 f0 f0 f0f0

fd

fd−1 fd−1

fd−2 fd−2 fd−2

.

.

Fig. 1. A regular grid topology.
Here, fj indicates the magnitude of
information and f0 < f1 < · · · <
fd. The triangular pattern repre-
sented by white dots is present
eight times in the grid. Informa-
tion magnitude near the source is
fd and gradually reduces towards
the edge

Candidate nodes
of the j−th step

Overlapped
 nodes

Aj−1 jA

(a) Aj−1 and Aj are the ac-

tive nodes of steps (j−1) and
j.

j

h

n
h2 − 1

n
h3 − 2

b

2n

n

rn

3n

b

b

b

information gradient increasing

A

n

(b) Active node Aj
with r-hop neighbors.

Fig. 2. Single path approach with look-ahead r

paths. To capture this in the analysis, the forwarding probability is considered
different at each step of the query forwarding.

All query routing protocols considered in this paper use unique query IDs to
suppress duplicates and to avoid loops.

4 Analytical Model

In this section, we derive models to describe the characteristics of the approaches
used to design information-driven routing protocols for sensor networks.

4.1 Assumptions and Metrics

Let a sensor network consist of N nodes and the nodes be deployed as a regular
grid as shown in Fig.1. Assume that only one event occurs and the effect of the
event follows the diffusion law as previously described. Assume also that the
information gradient is available in the whole network, i.e., there is no flat infor-
mation region. Further, consider that the malfunctioning nodes have arbitrary
information and that these nodes are uniformly distributed in the network which
may cause failure during the route discovery. Let pf be the probability that a
node is malfunctioning. The stored information in the malfunctioning node can
be arbitrarily high or low and this is equally likely. Finally, assume each node is
able to communicate via broadcast with its eight neighbors on the grid.

Suppose that the querier, i.e. the sink, is located d hops away from the source
node. The query is forwarded step by step, where the term “step” is defined as
follows:

1) Single-path approach: The active node collects information from all candi-
date nodes within r-hops. Then it forwards the query to the next active node
which is r-hops away.

Analysis of Gradient-Based Routing Protocols 263

2) Multiple-path approach: The active nodes forward the query either greedily
or probabilistically via broadcasts. Then the query reaches the candidate
nodes which are 1-hop away.

Due to greedy forwarding based on the information gradient, after each step of
the query forwarding, the query reaches one step closer to the source with some
probability.

Here, we are interested to develop analytical models for the following two
metrics:

1) Query Success rate, i.e. success probability, is the probability that the query
initiated from the sink reaches the source.

2) Overhead in terms of energy dissipation, calculated as the number of trans-
missions required to forward the query to the source and to get the reply
back from the source using the reverse path.

4.2 Single-Path Approach

Let nb be the number of nodes that are one hop away from the active node.
Overlap of the sensor nodes radio coverage causes some nodes to receive the
same query multiple times. The query ID is used to suppress duplicate queries.
If we consider the radio coverage of a node to be circular and the radius to be the
same for all nodes, then using simple geometry, it can be shown that the overlap
is one-third. For all except the first step of the query forwarding, let nc = 2

3nb

denote the number of candidate nodes within one-hop of the active node. Now, it
is easy to show that the total number of neighbors and candidate nodes within r-
hops of the active node equal nB = r(r+1)

2 and nC = 2
3nB respectively. However,

for the first step of the query forwarding, nC = nB .
Within one-hop of the active node, let nh and nl be the number of candidate

nodes having high and low information respectively according to the diffusion
pattern of the event’s effect in the grid, where nc = nl + nh. Thus, except for
the first step of the query forwarding, it can be shown from Fig.2 that the total
number of high information candidate nodes within r-hops of the active node
equals nH = r(r+1)

2 nh − r(r−1)
2 . Finally, nL = nC − nH denotes the number of

low information candidate nodes within r-hops, since nC = nL + nH .

Basic Single-path Approach: At each step of the query forwarding, the pro-
tocol selects the node that has the highest information among all nodes (includ-
ing the active node) within r-hops and forwards the query to that node. When
all candidate nodes function properly, the query forwarding ends at the source.
However, the query forwarding also halts at a local maxima. A malfunctioning
node contains arbitrarily high information with probability pf

2 . Let f(i) be the
diffusion function value when the source is i-hops away and Rmax be the max-
imum reading of the sensor attached to the source node. The arbitrarily high
reading of a malfunctioning node can be between 0 and Rmax. But at the j-th
step, the query forwarding halts for any candidate node having value between
f
((⌈

d
r

⌉− j
)
r
)

and Rmax. Therefore, the probability of success equals

264 J. Faruque, K. Psounis, and A. Helmy

PsingleB
=

� d
r �∏

j=1

⎡⎣1 − pf

2
·

Rmax − f
((⌈

d
r

⌉
− j

)
r
)

Rmax

⎤⎦nC

. (1)

Here, the product term is the probability that at each step of the query forward-
ing, there is no malfunctioning candidate node having arbitrarily high informa-
tion when the source is i-hops away and a total of

⌈
d
r

⌉
such steps are required

to reach the source. In the expression, we assume that after each forward of the
query, the next active node is r-hops away. This may not be possible if all high
information candidate nodes that are r-hops away are malfunctioning. However,
a protocol can still select a node that is r-hops away as the next active node and
notify the maximum information collected from all of the nodes within r-hops.

At each step of the query forwarding, to gather information for the active
node, each node within (r − 1)-hops from the active node sends the request to
its nb neighbors and finally all nodes within r-hops send the reply to the active
node through their one-hop away neighbors. Thus, the number of transmissions
required to forward the query to the next active node is

(
1 + nb

∑r−1
i=1 i

)
+

nb

∑r−1
i=0 (r − i) + r, that equals 1 + r2nb + r. Now, the total number of trans-

missions require to forward the query from the sink to the source and get the
reply equals

TsingleB
=

⌈
d

r

⌉ (
1 + r2nb + r

)
+ d. (2)

Here, 1 + r2nb + r is the required number of transmissions at each step of the
query forwarding and total

⌈
d
r

⌉
such steps are required. Also, it requires d trans-

missions to reply to the sink through the reverse path. If we consider that nodes
in the overlapping regions respond only one time, then the total number of
transmissions equals

TsingleBO
=
(
1 + r2nb + r

)
+

(⌈
d

r

⌉
− 1

)[
1 +

2r2nb

3
+ r

]
+ d, (3)

since except for the first step of the query forward, each remaining step requires
1 + 2r2nb

3 + r transmissions for non-overlapping nodes.

Improved Single-Path Approach: In this policy, at each step of the query
forwarding, the protocol selects the node with the maximum information among
all candidate nodes within r-hops of the active node and forwards the query to
that node. For protocols based on this approach, the query success rate and the
overhead depend on the length of the path followed by the protocol. Though the
sink node is d-hops away from the source, in the presence of arbitrary information
in the malfunctioning nodes, the query may follow a path other than the shortest
path. Let lj denote the length of the path after the j-th forward of the query.
If all sensor nodes in the network were perfect, the query should follow the
shortest path and lj − lj−1 = r. However, due to malfunctioning nodes, some
low information candidate nodes may contain arbitrarily high information with
probability pf

2 . The probability of selecting such a node as the next active node
is
(pf

2

)
nL

nC
and the path length difference per step equals lj − lj−1 = r + Lerr,

Analysis of Gradient-Based Routing Protocols 265

where Lerr is the average path length increase per step. For simplicity of the
analysis, if we consider that each step of the query forwarding is independent,
then the length of the path after the j-th step can be expressed as

lj =

{ pf
2 .nL

nC
(lj−1 + r + Lerr) +

(
1 −

pf
2 .nL

nC

)
(lj−1 + r) , for j > 1

r, for j = 1.

Thus, ld denotes the length of the path followed by the protocol while the actual
distance of the source is d.

Here, the query forwarding halts either at the source node or at an active node
with no candidate nodes within r-hops. In the gradient information repository,
there are always some candidate nodes as the query forwarding proceeds from
low to high information nodes. However, due to malfunction, with probability
pf

2 , high information candidate node(s) may contain arbitrarily low information
which may be lower than that of some low information candidate nodes. When
all high information candidate nodes are malfunctioning and containing arbitrar-
ily low information, the query forwarding proceeds through a low information
candidate node. Such low information candidate nodes are unable to find any
candidate node as its all neighbors may already have received the query and the
query fails to reach the source. Therefore, the probability of query success equals

PsingleI
=
[
1 −

(pf

2

)nH
]⌈ ld

r

⌉
. (4)

Here, 1−(pf

2)nH is the probability that not all high information candidate nodes
are malfunctioning at each step and a total of

⌈
ld
r

⌉
such steps are required.

Similar to the Equation(2), here the total number of transmissions required
to forward the query from the sink to the source for path length ld and get the
reply equals

TsingleI
=

⌈
ld

r

⌉ (
1 + r2nb + r

)
+ ld. (5)

Here, ld transmissions are required to reply to the sink using the reverse path.
Further, considering that nodes in the overlapping regions respond only one

time, the total number of transmissions equals

TsingleIO
=
(
1 + r2nb + r

)
+

(⌈
ld

r

⌉
− 1

)[
1 +

2r2nb

3
+ r

]
+ ld, (6)

since except for the first step of the query forward, each remaining step requires
1 + 2r2nb

3 + r transmissions for the non-overlapping nodes.

4.3 Multiple-path Approach

In this routing approach, except for the first step of the query forwarding, mul-
tiple active nodes may forward the query to the candidate nodes without any
look-ahead phase. The active nodes with lower information forward the query
probabilistically. Let pj denote the probability of forwarding the query prob-
abilistically at the j-th step of the query forwarding. So, at the j-th step of

266 J. Faruque, K. Psounis, and A. Helmy

 i = 0

f0 f0 f0 f0f0

fd

fd−1 fd−1

fd−2 fd−2 fd−2

fd−1

fd−2 fd−2

.

.

(a) Sink at i = 0.

 i = 1

f0 f0 f0 f0f0

fd

fd−1 fd−1

fd−2 fd−2 fd−2

fd−1

fd−2 fd−2

.

.

(b) Sink at i = 1.

i = d−1

f0 f0 f0 f0f0

fd

fd−1 fd−1

fd−2 fd−2 fd−2

fd−1

fd−2 fd−2

.

.

(c) Sink at i =

d − 1.

i = d

f0 f0 f0 f0f0

fd

fd−1 fd−1

fd−2 fd−2 fd−2

fd−1

fd−2 fd−2

.

.

(d) Sink at i = d.

Fig. 3. Query forwarding pattern using the multiple path approach. Depending on the
position of the sink patterns are different. Here, the white dots indicate the participat-
ing nodes to forward the query towards the source and d is the distance between the
source and the sink

the query forwarding, a high information candidate node fails to forward the
query with probability qj =

(pf

2

)
(1− pj), where

(pf

2

)
is the probability that the

high information candidate node is malfunctioning and containing low informa-
tion. For simplicity of the analysis, we assume that the query forwarding steps
are independent. This simplified model still captures the characteristics of the
multiple-path approach, while the analysis is kept tractable.

Let Pmultiple and Tmultiple denote the query success rate and the overhead of
the multiple-path approach. Consider that i denotes the position of the querier,
i.e. the sink, in the last row of the grid as shown in Fig.1 and Fig.3. The query
forwarding patterns, i.e. the number of participating nodes, are different for
different values of i as shown in Fig.3. Also, it is easy to show that according
to the diffusion pattern in the grid, the average number of low information
candidate nodes is four at each step of the query forwarding. These nodes forward
the query probabilistically.

According to the query forwarding patterns as shown in Fig.3, for an even
value of i, 0 ≤ i ≤ d, the query success probability equals

Pmultiplee
(i) = (1 − q1) ·⎡⎢⎣ d− i

2∏
m= i

2

(
1 − q

i+1
m+1 (1 − pm+1)

4
)⎤⎥⎦·

i
2−1∏
m=1

(
1 − q

2m+1
m+1 (1 − pm+1)

4
) (

1 − q
2m+1
d−m+1 (1 − pd−m+1)

4
)

,

and for an odd value of i, 0 ≤ i ≤ d, it equals Pmultipleo
(i), where the only differ-

ence with the above expression is the limits of the products (i.e., � i
2 ≤ m ≤ d−� i

2
and 1 ≤ m ≤
 i

2� in the first and the second products respectively). Here, the
terms having the form qx

y , 1 ≤ y ≤ d, in the above equation expresses the probabil-
ity of not forwarding the query at the y-th step by all high information candidate
nodes, x, as they are malfunctioning and containing less information. Also, the
surrounding four low information candidate nodes fail to forward the query with
probability (1− py)4. Thus, at the y-th step, 1− qx

y (1− py)4 is the probability of
forwarding the query towards the source. Detailed derivation of these equations
and all the equations of the remaining document are presented in [15].

Analysis of Gradient-Based Routing Protocols 267

Similarly, to compute the energy dissipation, we also consider the different
forwarding patterns of the query as shown in Fig.3. The total number of trans-
missions required to forward the query to the source for an even value of i,
0 ≤ i ≤ d, equals

Tmultiplee
(i) =

[
i2

2
− 1 + (i + 1) (d − i + 1)

]
−

⎡⎢⎣
i
2∑

m=1

(2m − 1) qm

+

i
2−1∑
m=1

(2m + 1)qd−m+1 + (i + 1)

d−i+1∑
m=1

q i
2+m

⎤⎥⎦ + 4
d∑

m=1

pm+1, (7)

and for an odd value of i, 0 ≤ i ≤ d, it equals Tmultipleo
(i), where the differences

with Equation(7) are the first term (
[

(i+1)2

2 − 1 + (i + 1) (d− i)
]
) and the limits

of the second term (i.e., 1 ≤ m ≤ i+1
2 , 1 ≤ m ≤ i+1

2 − 1 and 1 ≤ m ≤ d − i
respectively). Here, the first term of the above equation computes the number
of transmissions due to high information candidate nodes, if all such nodes are
working properly. However, some of these nodes are malfunctioning and unable
to forward the query with probability qy, 1 ≤ y ≤ d, at the y-th step of the query
forwarding. This reduces the overhead. The second term of the above equation
computes this reduction. Finally, the third term computes the overhead due to
the probabilistic forwarding of the four low information candidate nodes.

Now, if each value of i, 0 ≤ i ≤ d, is equally likely, then the average probability
of success equals

Pmultiple =
1

d + 1

⎡⎢⎣� d
2 �∑

k=0

Pmultiplee
(2k) +

� d
2 �∑

k=1

Pmultipleo
(2k − 1)

⎤⎥⎦ . (8)

Similarly, the average number of transmissions required to forward the query
from the sink to the source and get the reply using the reverse path equals

Tmultiple =
1

d + 1

⎡⎢⎣� d
2 �∑

k=0

Tmultiplee
(2k) +

� d
2 �∑

k=1

Tmultipleo
(2k − 1)

⎤⎥⎦ + d. (9)

4.4 Wireless Link Loss

Recent experimental studies on wireless sensor networks [11][12] have shown that
in practice, the wireless links of the sensor networks can be extremely unreliable
and deviate from the idealized perfect-reception-range models at a large extent.
Due to the lossy links, the transmissions of a node may not reach to some of its
neighbor nodes. This affects the performance of the routing protocols. In this
section, we consider the wireless link loss in the derivation of analytical models of
the query success rate and the overhead for both routing approaches. Since the
basic single-path approach shows poor performance even for the ideal wireless
link condition (see Fig.4), only the improved single-path and the multiple-path
approaches are considered in this section.

268 J. Faruque, K. Psounis, and A. Helmy

Let, pc be the probability of a link loss, and assume that the lossy links are
uniformly distributed in the network. Assume also that no automatic repeat re-
quest (ARQ) is used to broadcast or to forward the query towards the source,
which is usually the case in sensor networks for energy conservation. However,
notice that the ARQ mechanism is used to send the reply (if the query is suc-
cessful) to the sink using the reverse path.

Improved Single-Path Approach: Due to the lossy links, at each step of
the query forwarding, the broadcast of the active node may not reach to all
candidate nodes within r-hops. Thus, at each step of the query forwarding,
nH(1 − pc) high information candidate nodes receive the broadcast. Similarly,
the active node receives responses from nH(1− pc)2 high information candidate
nodes. Also, the probability to forward the query to the next active node, which
is r-hops away, is (1 − pc)r. Thus, for the improved-single path approach, the
probability of success equals

PsingleI c
=

[(
1 −

(pf

2

)nH (1−pc)2
)

(1 − pc)
r

]⌈ ld
r

⌉
. (10)

Here,
(
1− (pf

2

)nH(1−pc)
2)

(1− pc)
r is the probability of success at each step of

the query forwarding and a total of
⌈

ld
r

⌉
such steps are required.

In this routing approach, the first step of the query forwarding requires 1 +
r(r−1)

2 nb(1− pc) + r(r+1)
2 nb(1− pc) + r(1− pc) transmissions, which equals 1 +

r(1 − pc)(rnb + 1). With probability pc, the nodes of the overlapped region
can be candidate nodes of the current active node as they failed to receive the
broadcast of the previous active node due to the lossy links. Further, consider
that the overlapped region nodes respond only one time. So, each remaining step
of the query forwarding requires 1+ 1

3

[
r(r−1)

2 nb(1− pc) + r(r+1)
2 nb(1− pc)

]
pc +

2
3

[
r(r−1)

2 nb(1− pc) + r(r+1)
2 nb(1− pc)

]
+ r

1−pc
transmissions, which equals 1 +

1
3r2(1− pc)

[
nb(pc + 2) + 3

r

]
. Thus the total number of transmissions equals

TsingleI Oc
=1 + r(1 − pc)(rnb + 1) +

(⌈
ld

r

⌉
−1

)
·
[
1 +

1

3
r
2
(1 − pc)

(
nb(pc + 2) +

3

r

)]
+

ld

1 − pc

.

(11)

Since except for the first step of the query forwarding, we need to consider the
overlapping region nodes for the remaining steps. Also, note that to reply to the
sink through the reverse path requires ld

1−pc
transmissions.

Multiple-path Approach: In this approach, multiple active nodes forward
the same query to the candidate nodes and reduce the possibility of the failure
due to the wireless link loss. Since, the probability of lossy links, pc is small,
so in the analytical models, we consider that 1 − pn

c ≈ 1, n ≥ 2, where n is
the number of copies of the same query received by a candidate node. Results
with this assumption are later compared to (and validated with) simulations in
Section 5.5. Now, according to the query forwarding patterns as shown in Fig.3,
for an even value of i, 0 ≤ i ≤ d, the success probability equals

Analysis of Gradient-Based Routing Protocols 269

Pmultipleec
(i) = (1 − q1)

⎡⎢⎣ d− i
2∏

m= i
2

(
1 − qi+1−pc

m+1 (1 − pm+1)4+3pc

)⎤⎥⎦ ·

i
2−1∏
m=1

(
1 − q2m+1−2pc

m+1 (1 − pm+1)4−4pc

)(
1 − q2m+1

d−m+1 (1 − pd−m+1)4−2pc

)
,

and for an odd value of i, 0 ≤ i ≤ d, it equals Pmultipleoc
(i), where the only

difference with the above expression is the limits of the products (i.e., � i
2 ≤

m ≤ d−� i
2 and 1 ≤ m ≤ � i

2 for the first and the second products respectively)
Here, the terms having the form 1−qx

y (1− py)z in the above equation expresses
the probability of forwarding the query at the y-th step of the query forwarding,
where x and z are the number of nodes that perform greedy and probabilistic
forwarding respectively.

Similarly, to compute the overhead, we consider the different forwarding pat-
terns of the query as shown in Fig.3. Due to the lossy links, the query may fail to
reach some nodes. So the overhead reduces due to the less number of participating
nodes. Thus, using the Equations (7), the total number of transmissions required
to forward the query to the source for an even value of i, 0 ≤ i ≤ d, equals

Tmultipleec
(i) = Tmultiplee

(i)

− pc

⎡⎢⎣2

i
2∑

m=2

(1 − qm) +

d−i+1∑
m=1

(
1 − q i

2+m

)
+ 4

i
2∑

m=2

pm + 3

d−i+1∑
m=1

p i
2+m + 2

i
2−1∑
m=1

pd−m+1

⎤⎥⎦ ,

and for an odd value of i, 0 ≤ i ≤ d, it equals Tmultipleoc
(i), where the differences

expression are the first term (Tmultipleo
(i)) and the limits of the second term (i.e.,

2 ≤ m ≤ i
2 , 1 ≤ m ≤ d− i+1, 2 ≤ m ≤ i

2 , 1 ≤ m ≤ d− i+1, and 1 ≤ m ≤ i
2 −1

respectively). Here, the second term of the above equation computes the overhead
reduction due to the lossy links.

Now, similar to the Equation (8) and (9), the average success probability and
the average number of transmissions can be computed. Here, the reply to the
sink through the reverse path requires d

1−pc
transmissions.

5 Simulations and Results

In this section, we validate our analytical models by conducting extensive simu-
lations. The objective of these simulations is to compare the simulation results
about the performance of the routing approaches with the analytical models.
Following performance metrics are considered in the simulations:

1) Success probability, is the ratio of the total number of queries that reached
the source over the total number of queries sent.

2) Overhead in terms of energy dissipation is the average number of transmis-
sions required to forward a query successfully to the source and to get the
reply using the reverse path.

270 J. Faruque, K. Psounis, and A. Helmy

3) Path quality in terms of path length increase factor is the ratio of the average
length of the path discovered by a routing approach over the length of the
shortest path from a set of sinks to the source. Here, the shortest path length
between the source and any sink node in the set is the same. This metric is
important for long-lived continuous queries.

5.1 Simulation Model

In our simulations, we use a 100m × 100m grid with 104 sensor nodes placed
at distance 1m from each other. Except for the border nodes, each sensor node
is able to communicate with eight neighbors. For all simulations, the exponent
of the phenomenon diffusion function, i.e., the parameter α, is set to 0.8. To be
consistent with the analytical models, the information gradient is available in
the whole network and the malfunctioning nodes are uniformly distributed with
some arbitrary values.

The querier, i.e., the sink, and the source are different and can be any node.
We use a flooding technique to find the set of sink nodes that are specific short-
est distance away from the source. In the simulations, we use only single-value
queries, that search for a specific value and have a single response.

The simulated protocol based on the single-path approach uses a look-ahead
parameter r = 1.For r = 1, it can be easily shown fromFig.1 thatnB = 8,Lerr ≈ 2
and nH ≈ 2.5. So, using the expressions of Section 4.2, we get nC = 2

3nB ≈ 5 and
nL ≈ 2.5. These parameter values are used in the analytic models of the single-
path approach to compare the analytical results with the simulation results.

The simulated protocol based on the multiple-path approach uses a prob-
abilistic diffusion function with exponent β as specified in [7] for probabilistic
forwarding. Thus pj = f(j) = 1

jβ , where j is the hop count in the information
gradient region and β < α.

5.2 Query Success Rate i.e., Probability of Success

The basic single-path approach is not resilient to local maxima. The query suc-
cess rate of the protocol based on this approach is shown in Fig. 4, where the
analytical result closely matches with the simulation result. With the increase of
malfunctioning nodes, local maxima increases and the query success rate drops
close to zero. However, using a filter to avoid the nodes having arbitrarily high
information, the query success rate of this approach can be improved. Detailed
derivation for the filter and corresponding simulation results are presented in
[15]. Also, The remaining results of the performance analysis of this approach
are detailed in [15].

For the improved single-path approach, the query success rate of the routing
protocols depends on the availability of high information candidate nodes. From
Fig.5, it is obvious that the analytically results are more or less in line with
the simulation results. The number of high information candidate nodes reduces
with the exploration of more nodes, especially for large d and causes some mi-
nor differences between the analytical and the simulation results. The improved
single-path approach is resilient to local maxima due to its selection policy for

Analysis of Gradient-Based Routing Protocols 271

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

P(
su

cc
es

s)

Distance of the source

Err=0% (A)
Err=5% (A)

Err=10% (A)
Err=15% (A)

Err=0% (S)
Err=5% (S)

Err=10% (S)
Err=15% (S)

Fig. 4. Query success rate of the basic
single-path approach. ‘A’ and ‘S’ indicate
the analytical and the simulation results
respectively

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 10 20 30 40 50 60 70

P(
su

cc
es

s)

Distance of the source

Err=0% (A)
Err=5% (A)

Err=15% (A)
Err=0% (S)
Err=5% (S)

Err=15% (S)

Fig. 5. Query success rate of the improved
single-path approach

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 10 20 30 40 50 60 70

P(
su

cc
es

s)

Distance of the source

Err=0% (A)
Err=5% (A)

Err=10% (A)
Err=15% (A)
Err=0% (S)
Err=5% (S)

Err=10% (S)
Err=15% (S)

Fig. 6. Probability of success for the mul-
tiple path approach. The exponent of the
probabilistic function β = 0.65.

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 10 20 30 40 50 60 70

P(
su

cc
es

s)

Distance of the source

Err=0% (multi)
Err=5% (multi)

Err=15% (multi)
Err=0% (single)
Err=5% (single)

Err=15% (single)

Fig. 7. Comparison of the query suc-
cess rate of the improved single-path and
the multiple-path routing approaches us-
ing analytical results. (Simulation results
yield very similar plots)

the next active node. So, the query success rate of this approach is significantly
higher than that of the basic single-path approach.

In the analytical model for the multiple-path approach, we consider that each
step of the query is independent, and that low information candidate nodes for-
ward the query probabilistically. However, due to correlation with previous steps
of the query forwarding, some extra nodes may also forward the query and create
few more extra paths, which actually improve the query success rate when less
number of nodes are malfunctioning. Also, with the increase of malfunctioning
nodes, active nodes use more probabilistic forwarding that results less number
of paths and the query success rate drops. For these reasons, we notice some
minor difference between the analytical and the simulation results in Fig.6.

The use of multiple paths and the probabilistic forwarding in the presence
of malfunctioning nodes improves the query success rate of the multiple-path
approach with compare to that of the single-path approach as shown in Fig.7.
For the single-path approach, it is important to notice that the query success rate
drops fast as the number of the malfunctioning nodes in the network increase.

272 J. Faruque, K. Psounis, and A. Helmy

5.3 Overhead i.e., Energy Dissipation

Fig.8 shows the overhead in terms of the average energy dissipation of the im-
proved single-path approach. In both models, the overlapped region nodes re-
spond only one time. The analytical and the simulation results are very similar.
The minor discrepancy is due to following reason. With the exploration of more
nodes, the number of high information candidate nodes reduces and the path
length increases due to choosing the malfunctioning nodes to forward the query.

Both analytical and simulation results for the overhead of the multiple-path
approach are given in Fig.9. The analytical results are quite close to the sim-
ulation results with a small discrepancy. In the analytical model, we assume
that the sink is located at the last row of the grid i.e., an edge node as shown
in Fig.1 and 3. However, in our simulation scenarios, the sink is not always at
an edge node and the initial high value of the probabilistic function causes the
exploration of some nodes in the low information gradient region. Also, as we
have already explained in Section 5.2, due to correlations between the query
forwarding steps, this routing approach creates some extra paths and increases
the overhead which is not considered in the analytical model. Thus, simulation
results show sightly more overhead than the analytical results.

In Fig.10, the overhead of both approaches is compared using the analytical
results. It is obvious that in our model, if the source is less than 22 hops away
from the sink then the multiple-path approach is more energy efficient; otherwise,
the single path approach is preferable when energy dissipation is only considered.
The overhead of the multiple-path approach increases more due to the extra
paths created by probabilistic forwarding.

Using analytical models, the percentage of energy savings of the multiple-
path approach over the single-path approach is shown in Fig.11. As the number
of malfunctioning nodes increase, the overhead of the single-path approach in-
creases. Since, the length of the path followed by this approach increases. On
the other hand, with the increase of malfunctioning nodes, the multiple-path
approach uses more probabilistic forwarding. This creates less number of paths,
and the overhead reduces.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70

Av
er

ag
e

en
er

gy
 d

iss
ip

at
io

n

Distance of the source

Err=0% (A)
Err=5% (A)

Err=10% (A)
Err=15% (A)

Err=0% (S)
Err=5% (S)

Err=10% (S)
Err=15% (S)

Fig. 8. Overhead for the single path ap-
proach. ‘A’ and ‘S’ indicate the analytical
and the simulation results respectively

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70

Av
er

ag
e

en
er

gy
 d

iss
ip

at
io

n

Distance of the source

Err=0% (A)
Err=5% (A)

Err=10% (A)
Err=15% (A)
Err=0% (S)
Err=5% (S)

Err=10% (S)
Err=15% (S)

Fig. 9. Overhead for the multiple path ap-
proach. The exponent of the probabilistic
function is β = 0.65

Analysis of Gradient-Based Routing Protocols 273

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70

Av
er

ag
e

en
er

gy
 d

iss
ip

at
io

n

Distance of the source

Err=0% (multi)
Err=5% (multi)

Err=10% (multi)
Err=15% (multi)
Err=0% (single)
Err=5% (single)

Err=10% (single)
Err=15% (single)

Fig. 10. Comparison of the overhead
of the improved single-path and the
multiple-path approaches using analytical
results

-40

-20

 0

 20

 40

 5 10 15 20 25

Pe
rc

en
ta

ge
 o

f t
he

 e
ne

rg
y

sa
vin

g

Distance of the source

Err=0% (A)
Err=5% (A)

Err=10% (A)
Err=15% (A)
Err=20% (A)

Fig. 11. Percentage of energy saving of the
multiple path approach over the improved
single-path approach for d ≤ 25 using an-
alytical models

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 10 20 30 40 50 60 70

Pa
th

 le
ng

th
 in

cr
ea

se
 fa

ct
or

Distance of the source

Err=0% (multi)
Err=5% (multi)

Err=10% (multi)
Err=15% (multi)
Err=20% (multi)
Err=0% (single)
Err=5% (single)

Err=10% (single)
Err=15% (single)
Err=20% (single)

Fig. 12. Path length increase factor
for the improved single-path and the
multiple-path approaches. The exponent
of the probabilistic function β = 0.60

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

P(
su

cc
es

s)

Distance of the source

pc=0% (A)
pc=1% (A)
pc=3% (A)
pc=5% (A)
pc=7% (A)
pc=0% (S)
pc=1% (S)
pc=3% (S)
pc=5% (S)
pc=7% (S)

Fig. 13. Query success rate of the im-
proved single-path approach with the
varying lossy link conditions. The proba-
bility of malfunctioning nodes is pf = 0.05

5.4 Path Quality

Fig.12 shows the path length increase factor of both routing approaches. The
multiple-path approach results the shorter paths which are very close to the
shortest path length. We notice that the path length for the single-path approach
increases with the increase of the malfunctioning nodes. As expected, in the
presence of malfunctioning nodes, the single path approach fails to follow the
shortest path towards the source. On the other hand, the instantiation of multiple
paths and probabilistic forwarding help the multiple path approach to alleviate
the problem for malfunctioning nodes.

5.5 Wireless Link Loss Effect

So far, all the results presented in Section 5 consider ideal wireless links. However,
the wireless links are lossy and likely affect the query success rate of the routing
protocols significantly. Fig.14 shows the query success rate of both approaches
in the presence of lossy links with probability pc = 0.05. Here, the analytical
(Fig.14(a)) and simulation (Fig.14(b)) results are identical. In both cases, the
query success rate of the multiple-path approach drops quite slowly and it is

274 J. Faruque, K. Psounis, and A. Helmy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

P(
su

cc
es

s)

Distance of the source

Err=0% (multi)
Err=5% (multi)

Err=10% (multi)
Err=15% (multi)
Err=0% (single)
Err=5% (single)

Err=10% (single)
Err=15% (single)

(a) Using analytic models.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

P(
su

cc
es

s)

Distance of the source

Err=0% (multi)
Err=5% (multi)

Err=10% (multi)
Err=15% (multi)
Err=0% (single)
Err=5% (single)

Err=10% (single)
Err=15% (single)

(b) Using simulation models.

Fig. 14. Comparison of the query success rate of the improved single-path and the
multiple-path approaches in the presence of link loss, pc = 0.05. The exponent of the
probabilistic function β = 0.65

more than 93% even at the presence of 15% malfunctioning nodes in the sensor
network. The ability to send the same query from multiple active nodes towards
a candidate node improves the resilience of this approach significantly.

For the improved single-path approach, the query success rate drops drasti-
cally with the increase of the distance between the source and the sink. Also,
Fig.13 shows that the query success rate drops further with the increase of loss
probability of the lossy links, i.e., pc. From Equation (10), it is obvious that
the term (1− pc)r, which corresponds to forwarding the query from the current
active node to the next active node in the presence of lossy links, is responsible
for the low success rate of this approach. Using ARQ, the query success rate can
be improved significantly [15].

6 Summary and Conclusions

In this paper, we have presented a detailed performance analysis of information-
driven routing approaches in ideal and lossy wireless link conditions using ana-
lytical models and simulations. We consider the effect of (various kinds of) noise,
malfunctioning nodes and node failures in our analysis.

From our study, it is found that the query success rate of the single-path
approach drops quite fast as the number of malfunctioning nodes in the network
increase while the multiple-path approach retains very high query success rate.
Also, it is found that the multiple-path approach is more energy efficient when
the source is less than 22 hops away from the sink; otherwise, the single-path
approach is more energy efficient. For example, in Fig. 11, for 5% malfunctioning
nodes and a source 15 hops away from the querier, the overhead of the multiple-
path approach is only 75% of that of the improved single-path approach. Further,
the multiple-path approach results in shorter paths which are close to the short-
est path. Finally, in the lossy link case, the query success rate of the single

Analysis of Gradient-Based Routing Protocols 275

path approach drops drastically with the increase of the link loss probability
and the distance between the source and the querier. On the other hand, the
multiple-path approach achieves over 93% success rate even at the presence of
15% malfunctioning nodes in the sensor network.

The analytical models of both routing approaches can be used to determine
the performance and the bottleneck of a protocol for a large sensor network
without simulations or when simulations are not possible due to resource con-
straints. Further, the performance of a new protocol, based on either of these
two approaches, can be determined using our models.

From the analytical models, it is obvious that more efficient information-driven
routing protocols can be designed based on these two approaches by tuning the
parameters of the models, which can be one possible future research direction.

References

1. C. Intanagonwiwat, R. Govindan and D. Estrin, “Directed Diffusion: A Scalable
and Robust Communication Paradigm for Sensor Networks”, MobiCom 2000.

2. C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, “Impact of Net-
work Density on Data Aggregation inWireless Sensor Networks”, ICDCS’02.

3. D. Braginsky and D. Estrin, “Rumor Routing Algorithm for Sensor Networks”,
WSNA 2002.

4. N. Sadagopan, B. Krishnamachari, and A. Helmy, “Active Query Forwarding in
Sensor Networks (ACQUIRE)”, SNPA 2003.

5. M. Chu, H. Haussecker, and F. Zhao, “Scalable Information-Driven Sensor Query-
ing and Routing for ad hoc Heterogeneous Sensor Networks”, Int’l J. High Perfor-
mance Computing Applications, 16(3):90-110, Fall 2002.

6. J. Liu, F. Zhao, and D. Petrovic, “Information-Directed Routing in Ad Hoc Sensor
Networks”, WSNA 2003.

7. J. Faruque, A. Helmy, “RUGGED: RoUting on finGerprint Gradients in sEnsor
Networks”, IEEE International Conference on Pervasive Services (ICPS), 2004.

8. Q. Li, M.D. Rosa and D. Rus, “Distributed Algorithms for Guiding Navigation
across a Sensor Network”, MobiCom 2003.

9. S. D. Servetto and G. Barrenechea, “Constrained Random Walks on Random
Graphs: Routing Algorithms for Large Scale Wireless Sensor Networks”, WSNA
2002.

10. Fan Ye, Gary Zhong, Songwu Lu and Lixia Zhang, “GRAdient Broadcast: A Ro-
bust Data Delivery Protocol for Large Scale Sensor Networks”, ACM WINET
(Wireless Networks).

11. A. Woo, T. Tong, and D. Culler. “Taming the Underlying Issues for Reliable
Multhop Routing in Sensor Networks”. ACM SenSys, November 2003.

12. J. Zhao and R. Govindan. “Understanding Packet Delivery Performance in Dense
Wireless Sensor Networks”. ACM Sensys, November 2003.

13. D.R. Askeland, The Science and Engineering of Materials, PWS Publishing Co.,
1994.

14. J.F. Shackelford, Intro to Materials Science For Engineers, 5th Ed., Prentice Hall,
2000.

15. J. Faruque, K. Psounis, A. Helmy, “Analysis of Gradient-based Routing Protocols
in Sensor Networks”, CS Technical report, USC 2005.

Analysis of Target Detection Performance
for Wireless Sensor Networks

Qing Cao, Ting Yan, John Stankovic, and Tarek Abdelzaher

Department of Computer Science, University of Virginia, Charlottesville VA 22904, USA
{qingcao, ty4k, stankovic, zaher}@cs.virginia.edu

Abstract. In surveillance and tracking applications, wireless sensor nodes col-
lectively monitor the existence of intruding targets. In this paper, we derive closed
form results for predicting surveillance performance attributes, represented by
detection probability and average detection delay of intruding targets, based on
tunable system parameters, represented by node density and sleep duty cycle. The
results apply to both stationary and mobile targets, and shed light on the funda-
mental connection between aspects of sensing quality and deployment choices.
We demonstrate that our results are robust to realistic sensing models, which are
proposed based on experimental measurements of passive infrared sensors. We
also validate the correctness of our results through extensive simulations.

1 Introduction

A broad range of current sensor network applications involve surveillance. One common
goal for such applications is reliable detection of targets with minimal energy consump-
tion. Although maintaining full sensing coverage guarantees immediate response to in-
truding targets, sometimes it is not favorable due to its high energy consumption. There-
fore, designers are willing to sacrifice surveillance quality in exchange for prolonged
system lifetime. The challenge is to obtain the analytical relationship that depicts the
exact tradeoff between surveillance quality and system parameters in large-scale sensor
networks. In this paper, we characterize surveillance quality by average detection de-
lay and detection probability of intruding targets. For system parameters, we are mainly
concerned with duty cycle and node density. This knowledge answers the question of
whether a system with a set of parameters is capable of achieving its surveillance goals.

In this paper, we establish the relationship between system parameters and surveil-
lance attributes. Our closed-form results apply to both stationary and moving targets,
and are verified through extensive simulations. Throughout this paper, we adopt the
model of unsynchronized duty-cycle scheduling for individual nodes. In this model,
nodes sleep and wake-up periodically. Nodes agree on the length of the duty cycle pe-
riod and the percentage of time they are awake within each duty cycle. However, the
wakeup times are not synchronized among nodes. We call this model, random duty-
cycle scheduling. There are two reasons for this choice. First, random scheduling is
probably the easiest to implement in sensor networks since it requires no coordination
among nodes. Coordination among nodes takes additional energy and may be severely
impaired by clock drifts. Second, many surveillance scenarios pose the requirement of

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 276–292, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Analysis of Target Detection Performance for Wireless Sensor Networks 277

stealthiness (i.e., that nodes minimize their electronic signatures). Coordinating node
schedules in an ad hoc network inevitably involves some message exchange which cre-
ates a detectable electronic signature. In contrast, random scheduling does not require
communication. Each node simply sets its own duty-cycle schedule according to the
agreed-upon wakeup ratio, and starts surveillance. No extra messages need to be ex-
changed before a potential target appears. Based on these two considerations, we focus
this paper only on random duty-cycle scheduling.

We make two major contributions in this paper. First, for the first time, we obtain
closed-form results to quantify the relationship between surveillance attributes and sys-
tem parameters. The advantage is that we can now answer a variety of important ques-
tions without the need for simulation. For example, to decrease the average detection de-
lay for a potential target by half, how much should we increase the node density? In this
paper, we demonstrate that this problem, along with many others, can be answered ana-
lytically based on our results. Second, we propose a realistic (irregular) model of sensing
based on empirical measurements. This model is then incorporated into our simulation
to prove the robustness of our analytical predictions. The results show that even under
the irregular sensing model, the analytical closed-form results are still quite accurate.

The rest of this paper is organized as follows. Section 2 presents the notations and
assumptions of the paper. Section 3 considers stationary target detection. Section 4
addresses mobile target detection. Section 5 presents the irregular sensing model based
on experiments. Section 6 discusses related work and Section 7 concludes the paper.

2 Notations and Assumptions

In this section, we present the notations and assumptions for our derivations. First of
all, we assume that nodes are independently and identically distributed conforming to a
uniform distribution. Density d is defined as the total number of nodes divided by area
in which the system is deployed, Asystem. In our analysis, we adopt a simple sensing
model in which a point is covered by a node if and only if the distance between them
is less than or equal to the sensing range R of the node. For simplicity, we first assume
that all nodes have the same sensing range in all directions. We shall address sensing
irregularity in Section 5. Each node is assumed to have a scheduling period T and a
duty cycle ratio β, 0 ≤ β ≤ 1, that defines the percentage of time the node is awake.
Each node chooses its wakeup point tstart independently and uniformly within [0, T),
wakes up for a period of time βT , and then goes back to sleep until T + tstart. Finally,
we assume that (for all practical purposes) the entire system area is covered when all
nodes are awake.

Each target in the area moves in a straight line at a constant speed v in our analysis.
We assume that all targets are point targets so that their physical sizes can be neglected.
Observe, however, that larger targets can still be analyzed by increasing the sensing
range used in the analysis by the diameter of the target to account for the larger sensory
signature.

3 Stationary Target Sensing Analysis

In this section, we analyze the expected value and probability distribution of detection
delay td for a stationary, persistent target (e.g., a localized fire).

278 Q. Cao et al.

First, according to our assumptions, since nodes are deployed with a uniform distri-
bution, the number of nodes within an area of πR2 conforms to a binomial distribution
B(Asystemd, πR2/Asystem). For a sensor network with a reasonable scale, Asystemd
is a large number, and (Asystemd)(πR2/Asystem) = πR2d is a constant, denoted as
λ. With these conditions, the binomial distribution can be approximated by a Poisson
distribution with parameter λ. Observe that λ = πR2d is the average number of nodes
within a sensing range. The probability that there are n nodes covering an arbitrary ge-
ometric point is λn

n! e
−λ, n = 0, 1, 2, The probability that no node covers the point

(i.e., n = 0) is e−λ. To make this probability smaller than 0.01, λ should be at least
− ln 0.01 ≈ 4.6. Observe that the detection delay for points that are not covered is in-
finite, which makes the expected detection delay for the whole area infinitely large. To
avoid this problem, we take into account only those points that are covered by at least
one node. Our calculations above indicate that as long as there are more than 4.6 nodes
on average within a sensing range, the probability that a point is not covered is less than
0.01, which is negligible.

In the rest of the paper, we extensively use two general results from theory of prob-
ability. First, if the probability of an event A occurring in a single experiment is p, and
if the number of experiments conforms to a Poisson Distribution with parameter λ, the
probability of event A occurring at least once in the series of experiments is:

P = 1− e−pλ (1)

In the analysis, we first calculate the probability of detection when the target is
covered by one node in a certain area. Since the number of nodes in a certain area
conforms to a Poisson distribution, we get the probability that at least one node covers
the target.

Another important result relating to our derivation is Proposition 11.6 in [16]: Let
X be a nonnegative random variable, then E(X) =

∫∞
0

P (X > x)dx.
Since the cumulative distribution function (CDF) of X cdf(x) = P (X ≤ x), we

have

E(X) =
∫ ∞

0

(1− cdf(x))dx (2)

We will use this fact to derive the average detection delay for both stationary and
mobile target detection, after we get the probability that the target is detected within a
certain period of time.

Now consider an arbitrary point in the area to be monitored. Suppose node O is the
only node covering this point. The duty cycle of node O is shown in Figure 1. Denote
the random variable corresponding to the detection delay at this point as td. Since the
node has a probability β of being awake, we have P (td = 0) = β.

The probability density function (PDF) of td f(τ), where 0 < τ ≤ T − βT , con-
forms to a uniform distribution, so f(τ) = 1

T .
as long as the target can arrive uniformly anywhere within the duty-cycle. Therefore,
when there is only one node covering the point, the cumulative probability distribution
for the detection delay is:

Ftd
(τ) = P (td ≤ τ) = β +

τ

T
, (3)

Analysis of Target Detection Performance for Wireless Sensor Networks 279

������

�	
�	����������

�����

�
��
��

�����
�	�

������� �

Fig. 1. Duty Cycle of a Particular Node O

System Area

Target

Target

System Area

Target

System Area System Area

Traversing

Area

Target

Type I

Type III

Type II

Type IV

Fig. 2. Target Detection Scenarios

where 0 ≤ τ ≤ T − βT . When there are n nodes covering the point, we consider the
detection of each node as an experiment. Let event A correspond to the fact that the
target is detected within an interval time no larger than td. Substituting for the single
event probability p in Equation (1) from Equation (3) we get the probability of event A:

P (A) = 1− e(−λτ
T −βλ) (4)

Since we focus only on those points that are covered, the CDF of detection delay for
such points is P (A)/1− e−λ, or:

Ftd
(τ) =

1− e(−λτ
T −βλ)

1− e−λ
, 0 ≤ τ ≤ T − βT (5)

where e−λ is the probability of voids.
Second, according to Equation (2), the expected value of the delay td is:

E(td) =
∫ ∞

0

P (td > t)dt =
∫ ∞

0

e−λ(t
T +β)

1− e−λ
dt =

T

λ
e−βλ/(1− e−λ) (6)

In particular, when the duty cycle β approaches 0 and 1− e−λ approaches 1, Equation
(6) turns into T/λ. Therefore, we conclude that when the duty cycle is sufficiently small
and the density is sufficiently large, the average detection delay is inversely proportional
to node density.

4 Mobile Target Sensing Analysis

In this section, we analyze the detection delay for mobile targets. We consider a target
that moves at velocity v along a straight path, and consider four detection scenarios,
as shown in Figure 2. We categorize these scenarios based on whether or not the start
or end point of the target path is inside the system area. For target scenarios of type I

280 Q. Cao et al.

and type IV (where the end-point is outside the monitored area), we are interested in
the probability that the target is detected by at least one node before it leaves the area.
For target scenarios of type II or type III (where the end-point is inside the monitored
area), we are interested in the expected time and distance the target travels before it is
detected. The system area is assumed to be rectangular, in which nodes are randomly
deployed. The target is detected within a radius R (or diameter 2R) which constitutes
the width of the traversing areas shown in Figure 2. We focus on type I and type II
scenarios, and outline the results for the other two types.

We demonstrate a more detailed model for type II target detection in Figure 3 (type
I model is similar). Consider the traversing area S consisting of the rectangle and two
half-circles in the figure. For a potential target that travels from point A to point B
(where distance AB = L), only nodes located within this area can detect the target, for
example, node M , which has an intersection length of l with the target’s moving track.
Therefore, we call this area the detection area. Since all nodes are deployed conforming
to a uniform distribution, the number of nodes in the detection area also conforms to
Poisson Distribution approximately. According to Equation (1) mentioned above, in
order to find the probability of detection, we only need to find the detection probability
when there is only one node within this area.

Now consider node M . Since it has an intersection length with the target track, the
potential target takes time l/v to pass its sensing area. Therefore, the target appears to be
a temporary event with a lifetime of l/v to node M , which means it has a probability of
min(β+ l

vT , 1) to be detected by node M . Considering that node M could be anywhere
within the detection area, we now analyze the average detection probability for node M
to detect the target.

Notice that β + l
vT can be at most 1, and if it is, the target will definitely be detected

when it passes. This fact categorizes potential targets into two types, fast and slow. For
fast targets, the expression β + l

vT is always smaller than or equal to 1. Therefore, we
can obtain the expectation of detection delay directly by integrating over the detection
area. On the other hand, if v is small enough, β+ l

vT can become larger than 1, thus, we
have to partition the detection area first before the integral. Observe that the maximal
intersection length between the target path and a sensor’s range is 2R. Therefore, if
target velocity v ≥ 2R

(1−β)T , then β + l
vT is always smaller than or equal to 1. We use

2R
(1−β)T as the threshold between fast and slow targets.

4.1 Detection Analysis for Fast Targets

For a fast target we can express the probability that the target is detected given there is
only one node in the detection area, S, as follows:

P =
∫

S

(β +
l

vT
)ds/S = β +

∫
S

lds

vTS
(7)

Thus, we only need to calculate
∫

S
lds and S.

Because of symmetry, we only need to calculate the integral
∫

S
lds within the first

quadrant, as shown in Figure 4.
For a type I target, we need to do the integral over area A and B, while for a type II

target, we need to do the integral over A, B and C.

Analysis of Target Detection Performance for Wireless Sensor Networks 281

Fig. 3. Target Detection Example Fig. 4. Fast Target Detection

Fig. 5. Fast Target Detection Illustration

Fast Type I Target Analysis. For a type I target, the area under consideration consists
of area A and B. Therefore, we have:∫

SA+B

lds/SA+B =
φA + φB

LR/2
(8)

while

φA+B =
∫ R

0

dy

∫ L
2

0

2
√

R2 − y2dx =
πR2L

4
(9)

Thus, we get the overall probability as:

P = β +
πR2L

2RLvT
= β +

πR

2vT
(10)

Fast Type II Target Analysis. Similar to the type I target analysis, we have:∫
SA+B+C

lds/SA+B+C =
φA + φB + φC

LR/2 + πR2/4
(11)

Therefore,

φA =
∫ R

0

dy

∫ L
2 −
√

R2−y2

0

2
√

R2 − y2dx =
πR2L

4
− 4R3

3
(12)

φB =
∫ R

0

dy

∫ L
2

L
2 −
√

R2−y2
(
L

2
+
√

R2 − y2 − x)dx = R3 (13)

φC =
∫ R

0

dy

∫ L
2 +
√

R2−y2

L
2

(
L

2
+
√

R2 − y2 − x)dx =
R3

3
(14)

282 Q. Cao et al.

Thus, we get the overall probability as:

P = β +
πR2L

(2RL + πR2)vT
= β +

πRL

(2L + πR)vT
(15)

Note that for the case L < 2r, the derivation is a little different. However, the result
remains the same and for simplicity we omit the details of derivation.

We also have a more intuitive explanation for the calculation of
∫

S
lds. This expres-

sion is an integral of a line segment of length l on the target’s locus for each point p
in the traversing area S. Note that a point p′ belongs to the line segment if and only if
its distance from p is smaller or equal to R, the sensing range. Therefore, the integral∫

S
lds is equivalent to the integral

∫
L

sdl, where L is the locus of the target, and s is
the area in which each point has a shorter distance than R to dl. For type II targets, s is
simply πR2 and therefore

∫
S

lds is simply πR2L, which verifies Equation (15). It is a
little more complicated for type I targets since s can be smaller than πR2. For example,
for point N in Figure 5, s is a half-lens. The expression then becomes the integral of the
overlapping area of the circular disk with radius R and the traversing area over L. We
can think it as a circular disk virtually moving from−L/2−R to L/2+R and calculate
the accumulation of overlapping areas. To make the calculation simpler, equivalently,
we can also imagine a fixed circular disk and virtually move the traversing area and
calculate the accumulation overlapping areas. This also gives a result of πR2L, which
verifies Equation (10).

4.2 Detection Analysis for Slow Targets

Now consider v < 2R
(1−β)T . The main difference in this case is that it is possible that for

certain node positions (x, y), l(x, y) > (1−β)vT , therefore p(x, y) is 1 instead of β +
l(x, y)/vT . Suppose there are two partitions, U and V . In U , p(x, y) = β+ l(x, y)/vT ,
and in V , p(x, y) = 1. Therefore, we have:

P =

∫
SU

(β + l
vT)ds +

∫
SV

1

SA+B
ds =

∫
SU+V

(β + l
vT)ds +

∫
SV

(1− β − l
vT)ds

SU+V

= β +

∫
SU+V

lds

(SU+V)vT
+

SV (1− β)− ∫
SV

lds/vT

SU+V
(16)

Obviously, the term β +
∫

SU+V
lds

(SA+B)vT is exactly what we have obtained for fast object

analysis. So now we need to calculate SV (1 − β) and
∫

SV
l. We classify the analysis

into two cases according to type I and type II targets.

Slow Type I Target Analysis. In this type, the partition where p(x, y) = 1 is the
rectangle area A in Figure 6. We define another variable a such that β + 2a/vT = 1.
The height of the rectangle is

√
R2 − a2.

Observing that
SV (1−β)−∫

SV
lds/vT

SU+V
=

∫
SV

[(1−β)vT−l(x,y)]dxdy

SU+V vT . Therefore, we have:∫
V

[(1− β)vT − l(x, y)]dxdy =
∫

A

[2a− l(x, y)]dxdy (17)

Analysis of Target Detection Performance for Wireless Sensor Networks 283

Fig. 6. Type I target Detection Fig. 7. Regions A and B

in which∫∫
A

[2a− l(x, y)]dxdy =
∫ √

R2−a2

0

∫ L
2

0

(2a− 2
√

R2 − y2)dxdy

=
∫ √

R2−a2

0

[aL− L
√

R2 − y2]dy = aL
√

R2 − a2 −L(
a
√

R2 − a2

2
+

R2

2
sin−1

√
R2 − a2

R
)

= [aL
√

R2 − a2 − LR2sin−1

√
R2 − a2

R
]/2

Therefore we obtain:∫∫
A

[2a− l(x, y)]dxdy = Lk(R, a)/4 (18)

where
k(R, a) = 2a

√
R2 − a2 − 2R2cos−1(

a

R
) (19)

Finally, we get when L ≥ 2R, v < 2R
(1−β)T , for a type I target,

P = β +
πR2 + k(R, a)

2RvT
(20)

Slow Type II Target Analysis. In this type, the partition where p(x, y) = 1 is less
regular. We still define a such that β + 2a/vT = 1. Observe that Figure 7 plots the
region where p(x, y) = 1, which includes A and B, whose boundaries are formed by
line y =

√
r2 − a2 and two circles which centered at (L/2 − 2a, 0) and (L/2, 0),

respectively. For (x, y) ∈ A ∪B, p(x, y) = 1.
Similarly, we have:∫

V

[(1− β)vT − l(x, y)]dxdy =
∫

A+B

[2a− l(x, y)]dxdy (21)

in which

∫ ∫
A

[2a − l(x, y)]dxdy =

∫ √
R2−a2

0

∫ L
2 −

√
R2−y2

0
(2a − 2

√
R2 − y2)dxdy

=

∫ √
R2−a2

0
(
L

2
−
√

R2 − y2)(2a − 2
√

R2 − y2)dy

284 Q. Cao et al.

∫ ∫
B

[2a − l(x, y)]dxdy =

∫ √
R2−a2

0

∫ L
2 −2a+

√
R2−y2

L
2 −

√
R2−y2

[2a − (
√

R2 − y2 − L

2
− x)]dxdy

=

∫ √
R2−a2

0
[(2a −

√
R2 − y2 − L

2
)(2
√

R2 − y2 − 2a) + 2a
2 − aL − 2a

√
R2 − y2 + L

√
x2 − y2]dy

Therefore we can obtain:∫∫
A+B

[2a− l(x, y)]dxdy = (L− 2a)k(R, a)/4

where
k(R, a) = 2a

√
R2 − a2 − 2R2cos−1(

a

R
) (22)

Finally, we get when L ≥ 2R, v < 2R
(1−β)T , for a type II target,

P = β +
πR2L + (L− 2a)k(R, a)

(2RL + πR2)vT
(23)

Indeed, in Figure 7, we only plotted the case where 2a > R. For 2a < R, the
derivation is similar, and the results are the same.

When a = 0, k(R, a) = −πR2. When a = R, k(R, a) = 0. We also have

∂k(R, a)
∂a

= 4
√

R2 − a2 ≥ 0, (24)

so k(R, a) is a monotonically non-decreasing function of a. Interestingly, the area of B
is exactly −k(R, a)/2.

Denote m(R, β) as the function substituting a with (1− β)vT/2 in k(R, a), then

m(R, β) = (1− β)vT

√
R2 − (1− β)2v2T 2

4
− 2R2 cos−1[

(1− β)vT

2R
] (25)

m(R, β) is a monotonically non-increasing function of β. When β = 1− 2R
vT , m(R, β) =

0. When β = 1, m(R, β) = −πR2.
Additionally, for a slow type II target, if the travel distance L is less than (1−β)vT ,

the detection probability for a node located within the detection area cannot be larger
than 1. Therefore, we should treat this period of time in the same way as a fast target.
Therefore, we can revise the final probability as:

P = β +
πR2L + min((L− 2a)k(R, a), 0)

(2RL + πR2)vT
(26)

Average Detection Delay and Probability. So far, we have finished the derivation of
P (L, v) for both slow and fast objects. Next we find the detection probability for a type
I target, and average detection delay for a type II target.

First, consider fast targets. According to Equation 1, for a fast type I target, with a
deployment width of L, we obtain the detection probability as follows:

Pdetection(v) = 1− e−2RLdP = 1− e−2RLd(β+ πR
2vT) (27)

Analysis of Target Detection Performance for Wireless Sensor Networks 285

while for slow targets, the result is:

Pdetection(v) = 1− e−2RLdP = 1− e−2RLd(β+
πR2+k(R,a)

2RvT) (28)

For fast type II targets, the cumulative distribution function of the detection delay td
is:

Ftd
(t) = P (td ≤ t) = 1− e−d(2Rvt+πR2)(β+ πRvt

(2vt+πR)vT
) (29)

While for slow targets, the function is:

Ftd
(t) = P (td ≤ t) = 1− e

−d(2Rvt+πR2)(β+
πR2vt+min(0,(vt−2a)k(R,a))

(2Rvt+πR2)vT
)

(30)

For fast targets, the expected detection delay is

E(Td) =
∫ ∞

0

e−βπR2d−vt(2Rβ+ πR2
vT)ddt =

e−βπR2d

(2Rβv + πR2

T)d
(31)

Similarly, when v < 2R
(1−β)T , the expected detection delay is1:

E(Td)=
∫ 2a

0

e−βπR2d−vt(2Rβ+ πR2
vT)ddt +

∫ ∞

2a

e−βπR2d+
2ak(R,a)d

vT −vt(2Rβ+
πR2+k(R,a)

vT)ddt

=
e−βπR2d

(2Rβv + πR2

T)d
[1− m(R, β)e−(2RβvT+πR2)(1−β)d

2RβvT + πR2 + m(R, β)
] (32)

4.3 Summary

So far, we have explained in detail the derivation for type I and type II targets in this pa-
per. The authors have also finished the derivation of the detection delay and probability
for type III and IV targets, using a similar derivation approach. Due to space limitations,
we only outline our final results for type III and type IV targets, as follows:

Expected detection delay for fast type III targets:

E(Td) =
e−βπR2d/2

(2Rβv + πR2

T)d
(33)

Expected detection delay for slow type III targets:

E(Td) =
e−βπR2d/2

(2Rβv + πR2

T)d
[1− m(R, β)e−(2RβvT+πR2)(1−β)d/2

2RβvT + πR2 + m(R, β)
] (34)

Detection probability for fast type IV targets:

P = 1− e−(2RL+πR2/2)d(β+ πRL
(2L+πR/2)vT

) (35)

Detection probability for slow type IV targets:

P = 1− e
−(2RL+πR2/2)d(β+

πR2L+min((L−a)k(R,a),0)
(2RL+πR2/2)vT

)
(36)

1 Observe that if v = 0 (this is equivalent to a stationary target), we obtain the expected delay to
be ∞. This is because we do not exclude voids in the mobile target model, and the existence
of voids leads to infinitely large expected detection delay in stationary target detection.

286 Q. Cao et al.

4.4 Discussion

We now discuss the implications of our analytical results. First, we assume that almost
all of the area is covered, that is, 1 − e−λ ≈ 1, thus, λ ≥ 4.6 according to our earlier
discussion. Second, in order to save energy, we assume that β approaches 0, that is, the
waking period is sufficiently small compared with the total scheduling period. Based
on these two assumptions, we have several interesting observations.

First, for fast type I target detection, Equation (27) can be simplified to 1− e−
λ

vT L.
Therefore, in order to obtain 99% detection probability, we have L ≥ 4.6vT

λ . Assume
λ ≈ 4.6, L ≥ vT . The result is quite intuitive: in order to almost certainly catch an
intruding target, the deployment width can be no smaller than the product of the target
velocity and the scheduling period.

Second, for a fast type II target, Equation (29) can be simplified to 1 − e−
λt
T . This

means that for a target that starts from within the system area, the probability of being
caught increases exponentially. Also, to make this probability larger than 99%, t ≈ T ,
given that λ is 4.6. This result is also confirmed in our simulations.

Third, for a type II target, the detection delay can be simplified as T/λ if β ap-
proaches 0. This result is the same as the stationary detection delay, which means that
as β approaches 0, regardless of the movement pattern of the target, the detection delay
is approximately constant, determined only by the scheduling period and node density.

4.5 Simulation-Based Verification

We now demonstrate that the derivation results are consistent with simulation results
under perfect circular range assumptions. In the first set of simulations of stationary
targets, locations of nodes are generated conforming to a uniform random distribution
over a unit area with size 100m × 100m, without loss of generality. The period T is
chosen to be 1s. The waking points of the nodes are generated according to a uniform
distribution over [0s, 1s]. The sensing range for circular model is 10m. We choose a
point (50, 50) and generate 10, 000 sets of random target locations to run the simula-
tions. The parameter λ = πr2d is set to 5. We record the number of experiments where
the detection delay is smaller than or equal to 0s, 0.05s, 0.10s, ..., 0.90s, and 0.95s.
We then compare these frequencies with the cumulative distribution functions (CDF’s)
obtained in the analysis section. The simulation results are shown in Figure 8. From the
figure we can see that our analysis and simulation results match well.

In the second set of simulations, we choose various λ values (5, 7, 9 and 11) and
β values (0, 0.1, 0.2, ..., 1), and run simulations to gather the average detection delays.
Other settings are the same as the previous set. We compare the average detection de-
lays with the theoretical expected detection delays obtained in the analysis section and
plot Figure 9. The figure shows that the average delays are very close to the analytical
expected delays.

The settings for simulation verification with mobile target tracking are the same as
the stationary setting, except that now the target has a velocity. We only consider type
II target detection in this section. Other types can be similarly verified. The simulation
result is shown in Figure 10. Observe that velocity 2.5m/s means a slow target, according
to our threshold. In particular, its cumulative detection probability has a relatively long
tail, compared to the distribution of targets with higher velocity, implying that for slower

Analysis of Target Detection Performance for Wireless Sensor Networks 287

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time (s)

cd
f

Cumulative Distribution Function of Detection Delay (lambda=5)

Analytical - beta=0.1

Experimental - beta=0.1

Analytical - beta=0.2

Experimental - beta=0.2

Analytical - beta=0.3

Experimental - beta=0.3

Analytical - beta=0.4

Experimental - beta=0.4

Fig. 8. Stationary Detection Delay Distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

duty cycle (beta)

A
ve

ra
ge

 D
et

ec
tio

n
D

el
ay

 (
s)

Average Detection Delay for Static Target

Theoretical - lambda=5
Theoretical - lambda=7
Theoretical - lambda=9
Thoeretical - lambda=11
Experimental - lambda=5
Experimental - lambda=7
Experimental - lambda=9
Experimental - lambda=11

Fig. 9. Average Stationary Detection Delay

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Cumulative Distribution Function of Detection Delay (lambda=5)

Time (s)

c
d
f

Analytical-beta=0.2,v=2.5 m/s
Analytical-beta=0.2,v=25m/s
Analytical-beta=0.2,v=250 m/s
Experimental-beta=0.2,v=2.5m/s
Experimental-beta=0.2,v=25 m/s
Experimental-beta=0.2,v=250m/s

Fig. 10. Mobile Detection Delay Distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

duty cycle(beta)

A
v
e
ra

g
e
 D

e
te

c
ti
o
n
 D

e
la

y
(s

)
Average Detection Delay for Mobile Target

Theoretical Lambda=5 v=5m/s
Theoretical Lambda=10 v=5m/s
Theoretical Lambda=5 v=50m/s
Theoretical Lambda=10 v=50m/s
Experimental Lambda=5 v=5m/s
Experimental Lambda=10 v=5m/s
Experimental Lambda=5 v=50m/s
Experimental Lambda=10 v=50m/s

Fig. 11. Average Mobile Detection Delay

targets, there is a higher chance for the target to remain undetected after the scheduling
cycle T . Again, we observe that our analysis and the simulation results match well.

In the second set of simulations, we choose various λ values (5 and 10), velocity
(5m/s and 50m/s), and β values (0, 0.1, 0.2, ..., 1), and run simulations to gather the
average detection delays. Other settings are the same as in the previous set. We compare
the average detection delays with the theoretical expected detection delays obtained in
the analysis section and plot Figure 11. The figure shows that the average delays are
very close to the analytical expected delays.

The simulation results demonstrate the viability of using our results to predict the
system performance. For example, suppose that we have a deployment of λ = 5 and
T = 1s, in order to make sure that the expected detection delay to be no larger than
0.1s, we can calculate that β must be at least 0.14. The simulation results confirm this
calculation (Figure 9).

5 Practical Application

An example application of random duty-cycle sensor networks is a surveillance system
that tracks trespassers. A person is detected by motion sensors. Once such an event is

288 Q. Cao et al.

triggered, the detecting node sends a wakeup command to its neighbors to track the
intruder. These commands constitute messages with a preamble that is longer than the
duty-cycle period T . Thus, all neighbors eventually wake up and receive the message.
It alerts them to remain awake and track, possibly waking up their neighbors as well.
Subsequent detections from multiple sensor nodes eventually reconstruct the target’s
path. Other types of sensors, such as magnetic ones, can be applied to tell if the person
carries a weapon.

5.1 Application Analysis and Sensing Irregularity

We simulate the aforementioned application and check whether simulation results match
analytical predictions. However, our discussions so far have assumed a perfectly circular
sensing model. This assumption makes the analysis tractable, and leads to closed-form
results. Real sensing devices used in this application do not have such a perfect sensing
area. In experiments, we use passive infrared sensors (PIR sensors) as motion sensors,
and identify the causes of irregular sensing range. We then propose a realistic sensing
model for PIR sensors. We integrate this model into our simulations and show that the
predictions based on our analysis are quite robust under realistic sensing irregularities.

We have PIR sensors installed on the ExScal XSM motes from OSU and Cross-
Bow [6]. At present, four motion sensors are integrated on a single ExScal Mote to pro-
vide a 360 degree surveillance range (each individual motion sensor can only handle a
90 degree area). We carried a series of experiments on ExScal nodes. Specifications of
ExScal nodes can be found at [1].

5.2 Experimental Results

In principle, PIR sensors can detect anything that generates an infrared field distur-
bance, such as vehicles, persons, etc. We are interested in the ability of PIR sensors to
detect walking persons, as demanded by the application. The central metric is sensing
range of PIRs. In individual tests, we let a person walk by at different distances and
angles relative to the sensing node, and measure the maximal range of detection. All
experiments are repeated in an open parking lot. We program the node with a simple
frequency analysis procedure to report events. The procedure relies on an adaptively
adjusted threshold to compare the current readings. The main purpose of this adaptive
threshold is to avoid false alarms introduced by weather changes, since this change can
produce infrared noise that may trigger the sensor. More specifically, our procedure
monitors the average readings of the filtered signal within a moving window. If the
average reading observed is much smaller than the current threshold, it decreases the

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

0 30 60 90 120 150 180 210 240 270 300 330 360

S
en

si
n
g
 R

an
g
e(

in
ch

es
)

Direction(degrees)

Node A
Node B

Fig. 12. Range with Directions Fig. 13. Ranges of Two Nodes Fig. 14. Range Approximations

Analysis of Target Detection Performance for Wireless Sensor Networks 289

threshold by taking a weighted average. On the other hand, if the average energy is close
to or larger than the threshold for a certain period, the sensor decides that the weather
is noisy, and increases the threshold. Practically we are able to filter out almost all false
alarms using this technique. We note that this technique also filters out those slight dis-
turbances that may, in fact, be caused by the target. Thus, the results proposed below
present effective sensing range in slightly noisy environments, which are different from
precisely controlled environments.

We measured the sensing range from 24 equally divided directions. At each direc-
tion, a person moves with different distances from the sensor node. If the fluctuation
of the filtered sensor reading exceeds a predefined noise threshold due to the nearby
motion, the measured point is within the sensing range. If the motion does not cause a
fluctuation greater than the threshold, the measured point is out of the sensing range. In
the experiments we found out that the sensitivity of the sensors changes dramatically at
the edge of the sensing range. The motion can always be detected in the sensing range
and the motion 10 inches beyond the sensing range never triggers the sensors. There-
fore, the precision of the range measurement is always within 10 inches (the range
itself being hundreds of inches). The experimental results for two representative nodes
are shown in Figure 12. Obviously, with four sensors, the range is far from being circu-
lar. A more intuitive illustration is shown in Figure 13, where the sensing range in each
direction is plotted to scale.

Based on the experimental results of multiple tests, we have the following observa-
tions regarding the PIR sensing capability. First, the sensing range of one node is not
isotropic, that is, the node exhibits different ranges in different directions. Second, the
boundary of the sensing range is delineated quite sharply, with predictably no detection
when the range is exceeded by about 3-7%. Third, we can consider the variation of
ranges relatively continuous. We do observe sudden changes in the sensitivity of some
nodes, but this is very uncommon. Therefore, a model may consider connecting sensi-
tivity ranges in different directions using continuous curves. Fourth, the sensing range
distribution in different directions roughly conforms to a Normal Distribution. This con-
clusion is based on statistical analysis of our experimental data using a Kolmogorov-
Smirnov Test [24]. We concluded from our experimental data set that the sensing range
in one direction can be approximated with a Normal Distribution with an expectation
of 217 inches and a standard deviation of 32 inches.

5.3 Realistic Sensing Model for PIR sensors

In this section, we present a realistic sensing model for PIR nodes. This model is de-
signed to reflect the three key observations: non-isotropic range, continuity and normal-
ity. First, the model determines sensing ranges for a set of equally-spaced directions.
Each range can either be specified based on actual measurements or obtained from
a representative distribution, for example, the normal distribution N(217, 322). Next,
sensing ranges in all other possible directions are determined based on an interpola-
tion method. For simplicity, we use linear interpolation to specify the boundary of the
sensing area. As an example, the approximation of the two representative nodes based
on this model are shown in Figure 14. Clearly, our simplified model pretty accurately
reflects the fluctuations of sensing ranges in different directions.

290 Q. Cao et al.

5.4 Robustness of Theoretical Predictions to Realistic Sensing Model

We now incorporate the realistic sensing range model into simulations to test the ro-
bustness of the performance predictions to sensing irregularity. We scaled the normal
distribution N(217, 322) to N(10, 1.472) to fit the simulation setting. We use the same
formulas as the previous idealistic experiments. The CDF’s of detection delay under
different parameter settings are shown in Figure 15. To illustrate the difference, we also
plot the error relative to theoretical predictions in Figure 16.

We have two observations regarding these results. First, for our simulation settings,
sensing irregularity has a very small effect. One primary reason is that even though the
detection ranges do vary with different directions, the overall degree of coverage for the
area remains almost the same, approximated by λ. Therefore, the overall detection delay
distribution is almost not affected. Second, we observe that the maximal error relative
to theoretical predictions is no more than 1.2%. As an example to show its implications,
suppose that we have a set of system parameters that guarantees that 99% of intruding
targets are detected within a certain time. Then, the actual detection rate should be no
less than 97% with the existence of irregularity. Based on this observation, we conclude
that our model is quite robust to realistic sensing conditions.

At last, we acknowledge that so far, our modeling of the realistic sensing model
is only concerned with PIR sensors. Other types of sensors may well exhibit different
characteristics, therefore, may have varied effect on the detection performance. How-
ever, we envision that with a relatively large system with considerable density, the effect
of sensing irregularity will be considerably limited, leading to improvements in the ac-
curacy of the aforementioned results.

6 Related Work

Research on minimizing energy consumption [5, 7, 8, 15, 18, 25, 28] has been one cen-
tral topic in the sensor network community in recent years. Various effective techniques
have been proposed, evaluated and implemented. Protocols to schedule nodes while
maintaining full coverage have been proposed by [27, 14, 21, 10, 23]. The full sensing
coverage model is very suitable for areas where continuous vigilance is required, but

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time(s)

cd
f

Analytical−beta=0.2,v=2.5 m/s
Analytical−beta=0.2,v=25 m/s
Analytical−beta=0.2,v=250 m/s
Realistic Experimental−beta=0.2,v=2.5 m/s
Realistic Experimental−beta=0.2,v=25 m/s
Realistic Experimental−beta=0.2,v=250 m/s

 Cumulative Distribution Function of Detection Delay under Realistic Sensing Model (lambda = 5)

Fig. 15. Realistic Sensing Effect

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time(s)

E
rr

or
 r

el
at

iv
e

to
 P

re
di

ct
io

n
V

al
ue

Stationary beta=0.2 Realistic Range Model

Stationary beta=0.4 Realistic Range Model

Mobile beta=0.2 v=2.5m/s Realistic Range Model

Mobile beta=0.2 v=25m/s Realistic Range Model

Mobile beta=0.2 v=250m/s Realistic Range Model

Fig. 16. Robustness of Theoretical Predictions

Analysis of Target Detection Performance for Wireless Sensor Networks 291

consumes considerable energy. There exists a lower bound on the minimal energy con-
sumption if the requirement of full sensing coverage is to be fulfilled. To guarantee
a longer sensor network lifetime, in certain situations, the designer may wish to keep
partial sensing coverage in exchange of longer product lifetime.

Another related research direction is tracking and surveillance [2, 3, 4, 12, 13, 19,
20, 22, 26]. In these efforts, various tracking approaches are examined to optimize the
overall surveillance quality. In particular, recent research efforts [9, 17, 11] have turned
attention to the study of target tracking in the context of partial sensing coverage. In
[9], the authors proposed the metric of quality of surveillance, which is defined as the
average traveled distance of the target before it is detected. This is consistent with the
model in our paper, where the average detection delay rather than distance is used.
However, the authors didn’t address the precise determination of this metric. Instead,
they used an approximation model based on coverage process theory. Their attention is
mainly focused on evaluating various sleep models with respect to the average travel
length, which lead to considerably different results compared with ours. The work in
[17] considers an equivalent problem to the type II target detection in our paper. How-
ever, we are more interested in deriving closed-form expressions for all four scenarios,
whereas [17], while valuable, only considers fast targets and does not present closed-
form results for detection delay. Another interesting work is [11], which considered
the effect of different random and coordinated scheduling approaches, but provides no
closed-form results. Therefore, we believe our work is a necessary complement towards
thorough understanding of detection delay performance.

7 Conclusion and Future Work
This paper is the first to derive closed-form formulas for the distribution and expecta-
tion of detection delay for both stationary and mobile targets, and is also the first to
propose and evaluate a realistic sensing model for sensor networks, to the best of the
authors’ knowledge. Extensive simulations are conducted and the results show the va-
lidity of the analysis. The analytical results are highly important for designers of energy
efficient sensor networks for monitoring and tracking applications. Designers can ap-
ply these formulas to predict the detection performance without costly deployment and
testing. Based on these formulas, they can make decisions on key system or protocol
parameters, such as the network density and the duty cycle, according to the detection
requirements of the system. Therefore, this work is a major contribution towards a thor-
ough understanding of the relationship between system and protocol parameters and
achievable detection performance metrics.

In the future, we intend to apply our results in large scale experiments. We also
intend to expand our analysis to more irregular movement models, such as random way-
point movement. We hope the results can give us further insight on the fundamental
tradeoffs in sensor network detection performance.

Acknowledgements
This work is supported in part by NSF grant CCR-0098269, ITR EIA-0205327 and
CCR-0325197, the MURI award N00014-01-1-0576 from ONR, and the DARPA IXO
offices under the NEST project (grant number F336615-01-C-1905).

292 Q. Cao et al.

References

1. In http://www.cast.cse.ohio-state.edu/exscal/.
2. J. Aslam, et al. Tracking a moving object with a binary sensor network. In ACM Sensys,

2003.
3. M. Batalin, et al. Call and response: Experiments in sampling the environment. In ACM

Sensys, 2004.
4. K. Chakrabarty, et al. Grid coverage for surveillance and target location in distributed sensor

networks. In IEEE Transaction on Computers, 51(12), 2002.
5. B. J. Chen, et al. Span: An energy-efficient coordination algorithm for topology maintenance

in ad hoc wireless networks. In ACM Mobicom, 2002.
6. CrossBow. In http://www.xbow.com.
7. D. Ganesan, et al. Power-efficient sensor placement and transmission structure for data

gathering under distortion constraints. In Proceedings of IPSN, 2004.
8. L. Gu and J. Stankovic. Radio-triggered wake-up capability for sensor networks. In IEEE

RTAS, 2004.
9. C. Gui and P. Mohapatra. Power conservation and quality of surveillance in target tracking

sensor networks. In ACM Mobicom, 2004.
10. T. He, et al. An energy-efficient surveillance system using wireless sensor networks. In ACM

Mobisys, 2004.
11. C. Hsin and M. Y. Liu. Network coverage using low duty-cycled sensors: Random and

coordinated sleep algorithms. In Proceedings of IPSN, 2004.
12. J. J. Liu, et al. Distributed group management for track initiation and maintenance in target

localization applications. In Proceedings of IPSN, 2003.
13. S. Megerian, et al. Exposure in wireless sensor networks. In ACM Mobicom, 2001.
14. S. Meguerdichian, et al. Coverage problems in wireless ad-hoc sensor networks. In IEEE

Infocom, 2001.
15. S. Pattem, et al. Energy-quality tradeoff for target tracking in wireless sensor networks. In

Proceedings of IPSN, 2003.
16. S. Port. Theoretical Probability for Applications. John Wiley and Sons,Inc, 1994.
17. S. Ren, et al. Analyzing object tracking quality under probabilistic coverage in sensor net-

works. In ACM Mobile Computing and Communications Review, 2005.
18. V. Shnayder, et al. Simulating the power consumption of large-scale sensor network appli-

cations. In ACM Sensys, 2004.
19. G. Simon, et al. Sensor network-based countersniper system. In ACM Sensys, 2004.
20. R. Szewczyk, et al. An analysis of a large scale habitat monitoring application. In ACM

Sensys, 2004.
21. D. Tian, et al. A node scheduling scheme for energy conservation in large wireless sensor

networks. In Wireless Communications and Mobile Computing Journal, 2003.
22. G. Veltri, et al. Minimal and maximal exposure path algorithms for wireless embedded

sensor networks. In ACM Sensys, 2003.
23. X. R. Wang, et al. Integrated coverage and connectivity configuration in wireless sensor

networks. In ACM Sensys, 2003.
24. E. W. Weisstein. Kolmogorov-smirnov test. In MathWorld at

http://mathworld.wolfram.com/Kolmogorov-SmirnovTest.html.
25. J. Wu and M. Gao. On calculating power-aware connected dominating sets for efficient

routing in ad hoc wireless networks. In IEEE ICPP, 200l.
26. N. Xu, et al. A wireless sensor network for structural monitoring. In ACM Sensys, 2004.
27. T. Yan, et al. Differentiated surveillance for sensor networks. In ACM Sensys, 2003.
28. F. Ye, et al. Peas:a robust energy conserving protocol for long-lived sensor networks. In

IEEE International Conference on Distributed Computing Systems(ICDCS), 2003.

Collaborative Sensing Using Sensors of
Uncoordinated Mobility�

Kuang-Ching Wang1 and Parmesh Ramanathan2

1 Clemson University, Clemson SC 29634, USA
kwang@clemson.edu

2 University of Wisconsin, Madison WI 53705, USA
parmesh@ece.wisc.edu

Abstract. Wireless sensor networks are useful for monitoring physical
parameters and detecting objects or substances in an area. Most ongoing
research consider the use of stationary sensors or controlled mobile sen-
sors, which incur substantial equipment costs and coordination efforts.
Alternatively, this paper considers using uncoordinated mobile nodes, who
is not directed for any specific sensing activity. Each node independently
observes a cross section of the field along its own path. The limited obser-
vation can be extended via information exchange among nodes coming
across each other. For this model, the inherently noisy mobile measure-
ments, incomplete individual observations, different sensing objectives,
and collaboration policies must be addressed. The paper proposes a de-
sign framework for uncoordinated mobile sensing and one sensing ap-
proach based on profile estimation for target detection, field estimation,
and edge detection. With simulations, we study its strengths and trade-
offs with stationary and controlled mobile approaches.

1 Introduction

Wireless sensor networks are envisioned useful in a wide range of applications
for monitoring physical attributes or detecting objects or substances in an area
of interest. So far, there have been examples in military applications such as
target detection, classification, tracking [1], and in civilian applications such as
environmental monitoring [2], infrastructure protection [3], and ecological studies
[4]. Typically, sensor nodes make measurements of their local surroundings and
store them on-board for later retrieval or relay towards remote sinks over an ad
hoc network.

Most research in literature have focused on stationary sensor networks with
utmost interest on their sensing coverage and network connectivity. On the one

� The work reported here is supported in part by DARPA and Air Force Research Lab-
oratory, Air Force Material Command, USAF, under agreement number F30602-00-
2-0555, and by U.S. Army Research grant DAAD19-01-1-0504 under a subrecipient
agreement S01-24 from the Pennsylvania State University. The views and conclu-
sions contained herein are those of the authors and should not be interpreted as
necessarily representing the views of funding agencies.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 293–306, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

294 K.-C. Wang and P. Ramanathan

hand, it is always desirable to deploy sensors well covering the entire area with
measurements reachable from all locations. On the other hand, it has also been
shown that given a limited sensor communication range and a relatively large
area of interest, full connectivity is achievable only with a prohibitively large
number of stationary sensors [5]. Similar density constraints exist due to sensors’
limited sensing range [6]. With mobile sensors, such constraints are relaxed if
each mobile node can make measurements at multiple locations [7]. The apparent
tradeoff is the latency needed to complete the measurements sequentially. It is
also challenging to have a mobile node come to the right place at the right time
to detect an occurring event. In these studies, motion control algorithms are
proposed to direct mobile sensors towards specific locations such that a higher
detection probability is achieved. Even so, steering unmanned mobile platforms
or having dedicated personnel to carry out such sensing tasks remains expensive
and by no means trivial.

In this paper, we study a different model of mobile sensing utilizing mobile
sensors with uncoordinated mobility (UM). In this model, no efforts are made
to coordinate the motion of each node and each node makes measurements in-
dependently along its arbitrary path. Consider UM nodes as vehicles mounted
with sensors or individuals carrying sensors. In a military setting, vehicles and
personnel can be equipped with sensors even if they are not dedicated to per-
forming an explicit sensing task. The sensors operate in the background and
make measurements from time to time on the move or at places they visit. In a
civilian setting, individuals may have sensors embedded in daily gadgets such as
cell phones or wrist watches that are carried around. These people may not be
keeping track of the sensor readings and they are never directed to go to specific
places for sensing. Nevertheless, the collected measurements contain information
that can be used to estimate attributes of the area. Decisions made about the
measurements may be used to raise alerts of abnormal events, to provide auxil-
iary information for individuals, or to establish a profile of the monitored field.
As UM nodes measure areas they actually visit, the sensing model essentially
provides coverage of places where future visits are highly possible.

Sensing with UM nodes faces a number of challenges. First of all, by nature
a UM node makes measurements along its path and therefore observes only a
“cross section” of the field. Unless a node is only interested in traveling back
and forth along a single path, or its path winds through a significant portion
of the field, the scope of its estimation is of limited use for itself. Second, as a
node measures the field on the move, the measurements are inherently noisy; a
node does not usually allow sufficient time to acquire multiple samples at one
location to filter out the noise. Third, measurements may be stored of differ-
ent spatial-temporal ranges and resolutions according to individual preferences,
storage constraints, and task-specific requirements at each node, and a node can
always adapt its strategy as time goes on. For instance, a newly arriving node
may be interested in fine details about its immediate vicinity. As a node explores
a wider range over time and observes the field to have slow variations, it may
choose to lower its resolution to fit in estimations of a larger area.

Collaborative Sensing Using Sensors of Uncoordinated Mobility 295

Via information exchange, UM nodes coming across each other can aggregate
their estimations of a larger area. If multiple nodes have had measurements at
the same location, their estimations can also be robustly fused. Such information
exchange is opportunistic, as it occurs only among nodes coming across the same
vicinity. It is also voluntary, as each node decides the scope of information it is
willing to share subject to its own constraints on resources, security policies,
or privacy concerns. With information exchange, the sensing model is flexible
to incorporate more nodes and larger coverage without limitation. The model
can also be facilitated with data exchange infrastructure such as a number of
publicly recognized data fusion centers, which may be placed at locations where
large flows of people from different areas come across, e.g. airports, train sta-
tions, cargo fleet posts, military bases, etc. In a fully distributed manner, the
aggregated estimations account for all areas that have ever been visited by at
least one of a large group of UM nodes. In contrast to a centralized effort to de-
ploy a large number of stationary or controlled mobile sensors, this model based
on voluntary participation is much more cost efficient for long-term monitoring
of our surroundings. With homeland security in mind, the model is a practical
candidate for precautionary monitoring and detection over a geographic area too
large to be deployed with centralized infrastructure.

With UM sensing, different sensing objectives are achieved by making, shar-
ing, and processing measurements of different physical phenomena using different
procedures. To facilitate modular design and extensible incorporation of different
UM sensing tasks, we propose a structured framework with three components,
namely the sensing methods, information exchange, and decision making of a
UM node. Given a specific query, a UM node with the corresponding sensing
modality defines its sensing schedule and storage format, its exchange sched-
ule and format, exchange policy, and the processing algorithms to derive its
sensing decisions. In this paper, we examine one such example, which is based
on adaptive profile estimation and is suitable for a large class of applications.
We demonstrate its use in response to queries of point target detection, field
estimation, and edge detection. Simulation studies are conducted to assess its
performance and design tradeoffs versus solutions with stationary sensors and
controlled mobile sensors.

The rest of this paper is organized as follows. In Section 2, we describe the
UM sensing design framework. In Section 3, we present the adaptive profile
estimation method and the corresponding target detection, field estimation, and
boundary detection algorithms. Simulation studies are presented in Section 4.
The paper concludes in Section 5.

2 Design Framework

Given a specified query, the framework defines three components:

– Sensing methods.
According to its sensing modalities, a UM node produces certain types of
measurements, e.g., binary, multi-modal, or continuous in range. To fulfill

296 K.-C. Wang and P. Ramanathan

the query, a node specifies its sensing schedule (frequency of periodic mea-
surements or events of interrupt-driven measurements), storage formats (pre-
processing procedures and data resolution), and memory management poli-
cies. For example, a UM node may decide to make periodic measurements
once per hour indefinitely, compute the mean of the measurements, store
results in a data structure, and keep only the latest results in its memory.

– Information exchange.
A node decides its information exchange policy regarding when, how, and
what information it chooses to exchange with other nodes. An exchange
can be sender-initiated or receiver-initiated, and senders and receivers ne-
gotiate the type, scope, and resolution of information to be exchanged. A
sender-initiated exchange allows a node to pro-actively disseminate critical
information of common interests, while a receiver-initiated exchange allows
a node to request specific information it wishes to receive. A sender can deny
a request if it does not possess the matching data or the request is against
its information exchange policy.

– Decision making.
Based on its available information, a node makes an independent decision
in response to the query. In an extended UM sensing model with central
data fusion centers, the fusion centers make aggregate decisions based on
information collected from a much larger set of UM nodes. The component
defines all data handling procedures and inference algorithms needed to de-
rive a sensing decision in the form of a literal response, a triggered action,
or dissemination of critical information to other nodes.

We follow the prescribed methodology to design the adaptive profile estimation
approach for target detection, field estimation, and edge detection.

3 Adaptive Profile Estimation

3.1 Sensing Methods

Sensing of UM nodes are intrinsically localized in space and instantaneous in
time. While moving along its path, a node collects a series of measurements,
each of which is made at a different location different time. Over time, the set
of measurements characterizes a cross section of the field. A measurement is
associated with its measured time and location, and a measurement of node u
is stored as a three-tuple,

mu
i = [μu

i , τu
i , ρu

i] ∀ i = 1, ..., nu, (1)

where μu
i is the measured value, τu

i is the measured time, ρu
i is the coordinates

of the measured location, and nu is the number of measurements u currently
possesses. The set {mu

i } is a sequential observation of the physical field along
u’s path. If a slow varying field remains stationary over a time period [t0, t1],
{mu

i | t0 ≤ τu
i ≤ t1} is effectively a cross section snapshot of the field.

Collaborative Sensing Using Sensors of Uncoordinated Mobility 297

With time, the number of measurements will grow to approach the storage
capacity if all of them are stored. To extract and store only useful information
from the measurements in a structured form, we define a profile as a set of grids
associated with estimations at corresponding locations. The grids are defined
with respect to a chosen origin to map locations in a geographic coordinate
system onto cells of a chosen resolution. While one or more measurements at
nearby locations may be mapped to the same grid, a single estimation is asso-
ciated with each grid. A profile is then the collection of all grids with a valid
estimation. Each node potentially maintains a profile covering a different area
from others. A node acquires valid grid estimations based on either its own
measurements or exchanged estimations of other nodes. Estimation rules are set
based on an intuitive reasoning of the field energy model. If a measurement mi

with value μi can be modeled as,

μi = ei + ni (2)

where ei is the field energy to be estimated and ni is an i.i.d. additive white
Gaussian noise energy perceived at the node, multiple measurements made at
the same location by different sensors must consist of the same field energy but
potentially different noise; therefore, the minimum measurement contains the
least noise energy. Hence, the profile estimation rules are:

– The minimum of all measurements mapped to the same grid is the associated
estimation of the grid;

– An estimation received from another node is added to the profile if the grid
is previously unknown;

– An estimation received from another node overwrites the matching grid if it
is smaller than the current estimation.

– An estimation is valid only for a limited duration specified by a node.

The valid duration is specified according to the temporal variations of a field.
A longer duration is specified if fields exhibit slower variations. As each node
may have chosen a different origin, resolution, and valid duration for its profile,
conversion rules are defined for information exchange among nodes.

3.2 Information Exchange

Nodes exchange profiles to expand their knowledge of the field beyond their
immediate vicinity as well as to improve their estimation accuracy. While such
exchange can be sender- or receiver-initiated, we consider the latter where a node
requests others’ profile on demand. As the extent of profile exchange constitutes
a trade-off between communication costs and actual needs, a node decides the
need of exchange based on the coverage and confidence of its current profile. A
profile’s coverage is defined as the summed area of valid grids over the query-
specified area of interest. The higher the coverage, the less necessary another
profile exchange will be. A profile’s confidence is defined as the reciprocal of its
expected rate of adjustment, which is the average difference per updated grid
in recent profile exchanges. The higher the confidence, the more possible the

298 K.-C. Wang and P. Ramanathan

current profile accurately reflects the field of interest, and the less necessary
another profile exchange will be. The information exchange rules are:

– When coverage is below threshold Θv, a node requests a profile from an
available neighbor.

– When confidence is below threshold Θf , a node requests a profile from an
available neighbor.

In both cases, a request indicates the requested area and resolution of interest.
The requested node responds with a matching partial profile. If the requested
node has a finer resolution than the requester, the profile is down-sampled be-
fore it is delivered. Down-sampling multiple grids into one larger grid is done by
retaining the minimum of the multiple estimations for the larger grid. If the re-
quested resolution is finer than the requested node’s profile, or the requested area
is entirely beyond the requested node’s profile, no profile but an error indication
is returned. If two nodes have had profiles based on different origins, the received
profile is first aligned according to the node’s preference, e.g., towards the near-
est grid, and then aggregated into the current profile. In practice, a common
origin selection guideline can be defined for consistent profile maintenance.

3.3 Decision Making

Based on a node’s profile, the decision making components respond to the respec-
tive queries of point target detection, field estimation, and field edge detection.

Point Target Detection. The query of target detection is as follows. Given
a specified target type and the expected target energy, each node independently
determines if a target exists in an area of interest.

The query decision is made with a Bayesian energy detector algorithm. Given
a measured value μ of a phenomenon H, the classical Bayesian detection theory
formulates a binary hypothesis testing problem [8]. Detection of H is determined
based on the likelihood ratio Δ(μ) of the probability that H is present (positive
hypothesis, H1) to the probability that it is not present (negative hypothesis,
H0). Given a specified threshold ε, the likelihood ratio is

Δ(μ) =
P (μ|H1)
P (μ|H0)

⎧⎨⎩
> ε, then H is present.
< ε, then H is not present.
= ε, then H is present with probability p.

(3)

Note that the classical theory is formulated based on one single measurement
(single-point) assuming the target and the sensor being in the same vicinity at
the same time. The detector fails when a target is far from a sensor and the
minute energy measured always results in claims of no detection. This assump-
tion is not particularly useful for a UM node, as it often possesses measurements
spanning a range much larger than a single vicinity. A proper inference for such
measurements must incorporate the location of the measurements. Accordingly,
we propose a multi-point location-based Bayesian detector. Given a set of mea-
surements, the multi-point location-based likelihood ratio is defined as the prod-
uct of the single-point likelihood ratios of all individual measurements. Given a

Collaborative Sensing Using Sensors of Uncoordinated Mobility 299

target at location g and a measurement mi, the H1 probability is dependent on
the value μi, measured location ρi, and target location g. The H0 probability
does not depend on locations, since there is no target at all. The location-based
single-point likelihood ratio is

Δ(μi, ρi, g) =
P (μi, ρi|H1, g)

P (μi|H0)
. (4)

Given a set of measurements, M = {mi}, the multi-point likelihood ratio is

Δ(M, g) =
∏
M

P (μi, ρi|H1, g)
P (μi|H0)

⎧⎨⎩
> ε, then H is present.
< ε, then H is not present.
= ε, then H is present with probability p.

(5)

For a UM node, M is the set of all valid estimations in its profile.
To determine the likelihood ratio without prior knowledge of g, a set of possi-

ble target locations is searched. Given the area of interest as specified in a query,
the area is divided into G evenly spaced grids (g1, . . . , gG), among which the
grid, gmax, with the highest multi-point likelihood ratio is identified. A target is
claimed to exist close to gmax if its likelihood ratio exceeds ε. The multi-point
location-based Bayesian detector is then

D (M) = 1

(
max
j∈G

∏
i∈M

P (μi, ρi|H1, gj)
P (μi|H0)

≥ ε

)
(6)

where 1(·) is the binary indicator function. Note that when the ratio equals ε, a
detection is declared. It is also interesting to note that ε controls the detection
sensitivity; the smaller is the ε, the more sensitive is the detector.

The H1, H0 probabilities are estimated based on the target energy model and
the random noise process. Given a single point energy source with a distance-
squared decay, the signal energy e at a distance d from the source is modeled
as e = emax/d2, with emax being the unit-distance target energy. The energy of
an i.i.d. additive white Gaussian noise is an i.i.d. chi-squared random variable
of degree one, whose distribution P (n) is known and permits efficient lookup.
Hence, for each measurement mi

P (μi, ρi|H1, g) = P (ni = μi − ei) (7)

where ei = emax/(|g − ρi|)2. Similarly, ei = 0 when there is no target and

P (μi|H0) = P (ni = μi). (8)

Note that an accurate estimation of the probabilities requires a fair, if not
precise, assumption of the peak target energy emax which thereby determines ei.
If ei is much larger than the actual energy, P (μi, ρi|H1, g) is much larger than
it should be and may cause the detector to claim false detections. On the other
hand, if ei is much less than the actual energy, P (μi, ρi|H1, g) is less distinct

300 K.-C. Wang and P. Ramanathan

from P (μi|H0) and may cause the detector to miss detecting a target. Moreover,
for targets with larger dimensions, their energy model may not be adequately
captured by a single point energy source. Nevertheless, as long as the assumed
emax is not far-off, the detector remains robust as observed in our simulations.

Target detection is assessed using two metrics. Given that there is a target in
the monitored region, the fraction of instances a node claims a positive detection
is defined as the probability of detection. Given that there is no target in the
monitored region, the fraction of instances a node incorrectly claims a positive
detection is defined as the false alarm rate. A good detection performance must
have a high probability of detection and a low false alarm rate. For example,
if a node detects a target 90% of the time when there is a target, but it also
falsely reports detections 50% of the time when there is actually no target, the
approach is not likely to be useful.

Field Estimation. The query of field estimation is as follows. Given a specified
type of field, each node independently determines the energy profile in an area
of interest.

The proposed sensing method readily produces a profile in response to the
query. The profile maintained by each node accounts for the field in areas it tra-
versed and areas traversed by nodes it has exchanged profiles with. Due to the
uncoordinated nature of the nodes’ motion, the resulting profile coverage is not
necessarily comprehensive and the confidence of the estimations may not be sat-
isfactory. If a node has traversed a limited area and had limited profile exchange
opportunities, its coverage is to be limited. If a node has rapidly come across
a region and made a limited number of measurements along its way, its mea-
surements can be noisy and its confidence will be low. A natural enhancement
of coverage and confidence is by way of increasing chances for nodes to aggre-
gate their profiles. An aggressive enhancement is possible if publicly recognized
data fusion centers are available to opportunistically collect and disseminate the
profiles of a large set of nodes.

Prior to posing a field estimation query to a UM node, it is important to
note the fact that UM nodes are only to traverse areas of their own interest.
Such a query should not expect nodes to provide estimations of areas hardly
visited by individuals. The profile resolution also depends on nodes’ mobility
properties. If nodes make measurements at fixed intervals, a slow moving node
can estimate the field in a finer resolution than a fast moving node. If a fixed
resolution is requested, a node’s sampling rate must be proportionally adjusted
according to its speed. Finally, while the proposed approach intrinsically inhibits
noise, random noise remains in the estimations. Beyond the scope of this paper,
additional noise filtering are readily applicable to the estimated profile [9].

Field Edge Detection. The query of edge detection is as follows. Given a spec-
ified type of field with an inhomogeneous distribution, each node independently
determines the existence and geometry of boundaries between its inhomogeneous
segments.

Given the profile of each node, different edge detection techniques can be
readily applied. Three classes of solutions have been considered in literature.

Collaborative Sensing Using Sensors of Uncoordinated Mobility 301

In the one class, thresholds separating segments of high and low intensities are
identified to classify the measured locations as being inside or outside a high en-
ergy segment [10]. The classification is then presented to human as a binary map
and the edges are implicitly perceived. In the second class, intensity gradients
are computed at selected locations in the field. Locations exhibiting large gra-
dients are identified as edge points, which are then properly linked to reveal the
entire estimated boundary. A profile is analogous to a digital image, for which
numerous derivative operators have been widely adopted to effectively compute
its grid gradients [9]. Similarly, grids of large gradients are identified and linked
to produce complete boundaries. Note that the two classes of solutions both rely
on the choice of a good threshold to classify either the intensities or the gradi-
ents. The third class of solutions utilize contouring to identify continuous line
segments connecting locations of the same constant intensities.

In this paper, we demonstrate the use of contouring with simple pre-processing
operations to reveal edges in a profile. Specifically, the profile is first linearly
scaled to increase the dynamic range of intensities to within [0, 256]. A two-
dimensional median filter is then applied to suppress its noisy components. In
addition to noise effects, the profile can also be sparse with lots of coverage holes.
While segments of entirely undiscovered areas can be excluded from processing,
segments with sparse valid estimations always exist and must be properly han-
dled. As we initialize all undiscovered grids with a zero value, the median filter
effectively interpolates a profile among the sparse estimations.

4 Simulation Studies

The proposed profile based target detection, field estimation, and edge detection
algorithms are evaluated with simulations in MATLAB. Presented in three parts,
the simulation results contrast their performance measures in a UM network with
respect to those of a stationary network and a set of controlled mobile nodes.

4.1 Network Model and Parameters

We consider a network of 50 UM sensor nodes in a 500 units by 500 units field.
Each node can communicate with any other nodes within a radio range of 100
units. Nodes are initially placed at 10 random base locations following a uniform
distribution and then start moving according to a multi-homed random way
point mobility model. At each simulated time instance, a currently stationary
node probabilistically determines to remain at the same location or start moving
towards a randomly chosen destination at unit speed (1 unit distance per unit
time). Once the destination is reached, a node probabilistically determines to
either return to its base or move towards a new randomly chosen destination.
The mobility model is adopted with the intention to emulate practical situations
where people stay idle at a number of gathering places, such as offices or shops,
and occasionally proceed to random places for their individual errands.

Be it mobile or stationary, a node periodically makes measurements at its
present location and constructs its profile accordingly. A node also periodically

302 K.-C. Wang and P. Ramanathan

discovers any neighbors within its communication range. The information ex-
change rules dictate neighboring nodes to exchange and update their profiles
at periodic intervals whenever their coverage or confidence is below a specified
threshold. In the simulations, we consider both thresholds to be high and nodes
always exchange their profiles at specified exchange intervals. In response to each
query, each node makes an independent decision based on its profile at the end
of every decision interval. Table 1 summarizes all relevant parameters.

Table 1. Network configuration and algorithm parameters

Parameter Value Parameter Value

Nodes 50 Warmup time 100

Time 2000 Sampling interval 1

Area 500 by 500 Exchange interval 100

Radio range 100 Decision interval 100

Speculated emax 6 Node speed 1

Coverage threshold Θv 80% Node memory 100 measurements

Confidence threshold Θf 1 Field radius r 30

Bayesian detector ε {0, ..., 15} Field energy δe 1, 0.1

The same algorithms are also applied to (i) a network of 50 stationary sen-
sors, and (ii) 50 controlled mobile sensors. In the stationary scenario, 50 sensors
are placed at uniformly random locations within the area of interest. The con-
trolled mobile sensors are dispatched simultaneously along fixed paths to traverse
disjoint rectangular sections of the area.

4.2 Target Detection

A target detection query specifies an area of interest and a speculated target
energy level. The query states: “In the square area [0 ≤ x ≤ 500, 0 ≤ y ≤
500], detect any target with an approximate peak energy emax.” Recall that
the detector is defined based on the assumption of a point energy source of
emax. Nevertheless, we are interested in its performance in general use where a
target does not necessarily produce a point source energy profile. For example,
substances spilled over an extended area result in a planar rather than point
energy source. In our simulations, we consider a circular field of radius r = 30
located at the center of the area of interest. Within the field, each grid is modeled
as a point source of energy δe contributing to a cumulative energy field. An
additive white Gaussian noise of mean zero and variance one is considered. In
practice, the detector may speculate emax based on general knowledge about a
specific target type of interest. In our simulations, we speculate emax = 6 while
the peak energy seen in the cumulative field is about 5.

Figure 1 shows the receiver operating characteristics (ROC) curves, i.e., the
average detection probabilities vs. false alarm probabilities, obtained with UM
nodes, stationary nodes, and controlled mobile nodes using different detector

Collaborative Sensing Using Sensors of Uncoordinated Mobility 303

Fig. 1. Target detection ROC curves

thresholds, ε. On the one hand, slight gaps between the curves can be observed
when false alarm probabilities are low (higher detector ε), where controlled mo-
bile nodes out-performs UM nodes, and static nodes degrade the most. This is
perceivable as the controlled mobile nodes traverse paths covering the entire area,
UM nodes randomly traverse parts of the area, and static nodes are confined to
observe only its local vicinity. On the other hand, the performance differences
among the three are marginal. In this particular setting, the noise level has been
significant relative to the field of interest. As we observe simulation runs with
higher and higher source energy, the gaps become even smaller, suggesting the
feasibility of using UM nodes as an alternative approach for target detection at
low costs and little degradation in performance.

4.3 Field Estimation

A field estimation query specifies an area of interest and each node independently
infers the energy profile of the area. With time, a node’s coverage and confidence
of a node are expected to have a steady growth. Figure 2(a) shows the average
per-node coverage with time. As expected, controlled mobile nodes steadily ex-
plore the entire area, UM nodes expand their coverage at a smaller rate, and
stationary nodes cover a fixed vicinity around themselves. To observe confidence
with time, Figure 2(b) shows the per node per grid update adjustment rate, i.e.,
the reciprocal of confidence. In this case, stationary nodes show the least change
and thereby the most confident estimations. Both UM and controlled mobile
nodes perceive less changes as time goes by, while controlled nodes show more
change as they steadily explore new areas not estimated before.

4.4 Edge Detection

An edge detection query specifies an area of interest and each node independently
detects the presence and location of edges. With time, each node’s profile expands

304 K.-C. Wang and P. Ramanathan

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (units)

C
ov

er
ag

e

Stationary
Controlled mobile
UM

(a) Coverage versus time.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (units)

M
ea

n
C

ha
ng

e
of

 E
st

im
at

ed
 E

ne
rg

y
(u

ni
ts

)

Stationary
Controlled mobile
UM

(b) Adjustment rate versus time.

Fig. 2. Average UM profile coverage and adjustment rate versus time

and edge detection is conducted periodically. At any instance, the present profile
of a node is scaled (into the range of [0, 256]), filtered (with a 3 by 3 median
filter), and its contours are identified. Figure 3 shows contour plots obtained by
a UM node at time 500 with and without the scaling and filtering pre-processing
operations. It is clearly observed that the original profile is sparse and creates
lots of “islets” in its contour. The narrow dynamic range ([0, 9]) also limits the
perceivable resolution of the plot. Scaled and filtered, the processed profile better
distinguishes its contours and greatly suppressed most of the noise components.

In the case where a primary edge must be extracted, the profile is also readily
applicable to intensity or gradient based edge detecting algorithms. The use of

0 100 200 300 400 500
0

100

200

300

400

500

X (units)

Y
 (

un
it

s)

2

3

4

5

6

7

8

9

10

11

12

(a) Contour of original profile.

0 100 200 300 400 500
0

100

200

300

400

500

X (units)

Y
 (

un
it

s)

20

30

40

50

60

70

80

90

100

(b) Contour of pre-processed profile.

Fig. 3. Contour plots of a UM node

Collaborative Sensing Using Sensors of Uncoordinated Mobility 305

X (units)

Y
 (

un
it

s)

0 100 200 300 400 500

500

400

300

200

100

0

(a) Edges in original profile.

X (units)

Y
 (

un
it

s)

0 100 200 300 400 500

500

400

300

200

100

0

(b) Edges in pre-processed profile.

Fig. 4. Edges detected with a Sobel operator

a gradient based edge detector using a first order Sobel derivative operator is
illustrated in Figure 4. Similarly, the pre-processing operations greatly enhance
the edge detector’s performance in excluding most false edges due to noise. It is
worth noticing that, in these simulations, the simulated field has been sufficiently
weak in strength relative to the additive noise. The algorithms have remained
robust and correctly extracted the edges in the field.

Envisioning a comprehensive sensing infrastructure for the future, the story
does not end here. Aside from UM nodes, there can always be stationary nodes
deployed at strategic locations and scheduled mobile surveillance nodes. The
simulations characterize the behavior of fully uncoordinated nodes that do not
coordinate under any circumstances. This is useful for long-term monitoring
before a target is known to exist or before any preliminary knowledge of a field
is available. Once a target is detected or a field profile is estimated, nodes may
benefit in coordinated movements for safety purposes or public policies, while
controlled nodes may be dispatched for systematic exploitation of the area.

5 Conclusion

Sensing with UM nodes requires no planning overheads and is useful for precau-
tionary surveillance in surroundings of people’s daily activities. We presented
a modular framework for designing collaborative UM sensing and proposed the
adaptive profile estimation approach for target detection, boundary estimation,
and edge detection queries. Due to the uncoordinated nature, the proposed so-
lutions do not intend to out-perform other types of networks. Instead, the paper
intends to demonstrate a low-cost sensing alternative useful for precautionary
sensing. With simulations, we assessed the performance of the proposed solu-
tions with UM networks as well as stationary networks and fully controlled
mobile nodes to illustrate their relative strengths and performance tradeoffs.

306 K.-C. Wang and P. Ramanathan

References

1. Brooks, R., Ramanathan, P., Sayeed, A.: Distributed target classification and
tracking in sensor networks. In: Proceedings of IEEE. Volume 91. (2003) 1163–
1171

2. Biagioni, E., Bridges, K.: The application of remote sensor technology to assist the
recovery of rare and endangered species. International Journal of High Performance
Computing Applications Special Issue on Distributed Sensor Networks 16 (2002)

3. Kottapalli, V.A., Kiremidjian, A.S., Lynch, J.P., Carryer, E., Kenny, T.W., Law,
K.H., Lei, Y.: Two-tiered wireless sensor network architecture for structural health
monitoring. In: Proceedings of SPIE’s 10th Annual International Symposium on
Smart Structures and Materials. (2003)

4. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless
sensor network for habitat monitoring. In: Proceedings of ACM International
Conference of Wireless Sensor Networks and Applications. (2002)

5. Santi, P., Blough, D.M.: The critical transmitting range for connectivity in sparse
wireless ad hoc networks. IEEE Transactions on Mobile Computing 2 (2003) 25–39

6. Clouqueur, T., Phipatanasuphorn, V., Ramanathan, P., Saluja, K.: Sensor deploy-
ment strategy for target detection. In: Proceeding of The First ACM International
Workshop on Wireless Sensor Networks and Applications. (2003)

7. Ogren, P., Fiorelli, E., Leonard, N.E.: Cooperative control of mobile sensor net-
works:adaptive gradient climbing in a distributed environment. IEEE Transactions
on Automatic Control 49 (2004) 1292–1302

8. Scharf, L.: Statistical Signal Processing: Detection, Estimation, and Time Series
Analysis. Addison-Wesley Publishing Company (1991)

9. Gonzalez, R., Woods, R.: Digital Image Processing. Prentice Hall (2002)
10. Chintalapudi, K., Govindan, R.: Localized edge detection in sensor fields. Ad-hoc

Networks Journal (2003)

Multi-query Optimization for Sensor Networks�

Niki Trigoni1, Yong Yao2, Alan Demers2, Johannes Gehrke2,
and Rajmohan Rajaraman3

1 Department of Computer Science and Inf. Systems, Birkbeck College,
University of London

2 Department of Computer Science, Cornell University
3 College of Computer and Information Science, Northeastern University

Abstract. The widespread dissemination of small-scale sensor nodes has sparked
interest in a powerful new database abstraction for sensor networks: Clients “pro-
gram” the sensors through queries in a high-level declarative language permitting
the system to perform the low-level optimizations necessary for energy-efficient
query processing. In this paper we consider multi-query optimization for aggre-
gate queries on sensor networks. We develop a set of distributed algorithms for
processing multiple queries that incur minimum communication while observing
the computational limitations of the sensor nodes. Our algorithms support incre-
mental changes to the set of active queries and allow for local repairs to routes
in response to node failures. A thorough experimental analysis shows that our
approach results in significant energy savings, compared to previous work.

1 Introduction

Wireless sensor networks consisting of small nodes with sensing, computation and
communication capabilities will soon be ubiquitous. Such networks have resource con-
straints on communication, computation, and energy consumption. First, the bandwidth
of wireless links connecting sensor nodes is usually limited, on the order of a few hun-
dred Kbps, and the wireless network that connects the sensors provides only limited
quality of service, with variable latency and dropped packets. Second, sensor nodes
have limited computing power and memory sizes that restrict the types of data pro-
cessing algorithms that can be deployed. Third, wireless sensors have limited supply of
energy, and thus energy conservation is a major system design consideration. Recently,
a database approach to programming sensor networks has gained interest [1, 2, 3, 4, 5, 6,
7], where the sensors are programmed through declarative queries in a variant of SQL.
Since energy is a highly valuable resource and communication consumes most of the
available power of a sensor network, recent research has focused on devising query
processing strategies that reduce the amount of data propagated in the network.

Our Model and Assumptions. We are assuming a network of small-scale sensor nodes,
similar to the Berkeley Motes connected through a multi-hop wireless network. The
latest generation of Mica Motes, the MICAz mote, has a 2.4GHz 802.15.4 radio with

� This work was partially supported by NSF grants CCR-9983901 and IIS-0330201.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 307–321, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

308 N. Trigoni et al.

a data rate of 250 kbps, running TinyOS. We assume that nodes are stationary and
battery-powered, and thus severely energy constrained. Users inject queries into a spe-
cial type of node, referred to as a gateway. The sensor network is programmed through
declarative queries posed in a variant of SQL or an event-based language [1, 2, 3, 4, 5].
We concentrate on aggregation queries, and the sensor network performs in-network
aggregation while routing data from source sensors through intermediate nodes to the
gateway.

Existing work has focussed on the execution of a single long-running aggregation
query. In our new usage model, we allow multiple users to pose both long-running
and snapshot queries (i.e. queries executed once). As new queries occur, they are not
sent immediately to the network for evaluation, but are gathered at the gateway node
into batches and are dispatched for evaluation once every epoch. The query optimizer
groups together queries with the same aggregate operator and optimizes each group
separately. Hence, in our presentation of our optimization techniques, we assume that
queries use the same aggregate operator. Each epoch consists of a query preparation
(QP) and a result propagation (RP) phase. In the QP phase, all queries gathered during
the previous epoch are sent to the network together for evaluation. In the RP phase,
query answers are forwarded back to the gateway.

Our model is general enough to include queries with different result frequencies
and different lifespans. Although the algorithms proposed in this paper apply to this
general usage model, for ease of presentation we will restrict our discussion to a simpler
scenario: all queries asked in a QP phase have the same result frequency, and their
computation spans a single (and entire) RP phase. The duration of an RP phase is a
tunable application-specific parameter. Typically, an RP phase includes multiple rounds
of query results. To summarize, an epoch has a QP and an RP phase, and an RP phase
has many rounds in which query results are returned to the gateway.

The Intelligent National Park. To give an example of a scenario with multiple queries,
consider a sensor network deployed in a national park. Visitors of the park are provided
with mobile devices that allow them to access a variety of information about the sur-
rounding habitat by issuing queries to the network through a special purpose gateway.
For instance, visitors may wish to know counts of certain animal species in different
regions of the park. The region boundaries will vary depending on the location of the
visitors. The queries also change with time, as visitors move to different sections of the
park, and certain queries are more popular than others. In addition, the sensor readings
change probabilistically as animals move around the park, and there might be different
update rates during the day than at night.

Our Contributions. This paper addresses the problem of processing multiple aggre-
gate queries in large sensor networks, and makes the following contributions:

• Multi-Query Optimization In Sensor Networks: Concepts and Complexity. We
formally introduce the concept of result sharing for efficient processing of multiple
aggregate queries. We also address the problem of irregular sensor updates by de-
veloping result encoding techniques that send only a minimum amount of data that is
sufficient to evaluate the updated queries. Our result sharing and encoding techniques
achieve optimal communication cost for sum and related queries (such as count and

Multi-query Optimization for Sensor Networks 309

avg). While some of our techniques also extend to max and min queries, we show
that the problem of minimizing communication cost is NP-hard for these queries [8].

• Distributed Deployment of Multi-Query Optimization. We refine our multi-query
optimization algorithms to account for computational and memory limitations of sen-
sor nodes, and present fully distributed implementations of our algorithms. Besides
a communication-optimal algorithm, we propose a near-optimal algorithm that sig-
nificantly decreases the computational effort. We show how to tune our algorithms
to take into account the node computational capabilities, and the relative energy ex-
pended for communication and for computation. In [8], we show how to adapt our
algorithms to link failures that change the structure of the dissemination tree.

• Implementation Results Validating our Techniques. We present results from an
empirical study of our multi-query optimization techniques with several synthetic
data sets and realistic multi-query workloads. Our results clearly demonstrate the
benefits of effective result sharing and result encoding. We also present a prototype
implementation on real sensor nodes and demonstrate the time and memory require-
ments of running our code with different query workloads.

Relationship to Traditional Approaches for Multi-Query Optimization (MQO).
The problem considered in this paper is significantly different from the traditional MQO
problems. The difficulty in devising efficient MQO algorithms for sensor networks is
not only in finding common subexpressions, but in dealing with the challenges of distri-
bution and resource constraints at the nodes. This paper is, to the best of our knowledge,
the first piece of work to i) formulate this important problem, and ii) give efficient algo-
rithms with provable performance guarantees that are shown to work well in practice.

2 Optimization Problems and Complexity

We now formally present the multi-query optimization, and study its complexity, fo-
cusing on algorithms that aim to minimize the communication cost of query evaluation
ignoring any computation limitations or issues of distributed implementation. In Sect. 3
we will develop fully distributed algorithms that take into consideration the computa-
tion and memory constraints in sensor networks.

We consider a set of aggregate queries Q = {q1, . . . , qm} over a set of k distinct
sensor data sources. A set of sensor readings is a vector x = 〈x1, . . . , xk〉 ∈ k. Each
query qi requests an aggregate value of some subset of the data sources at some desired
frequency. This allows each query qi to be expressed as a k-bit vector: element j of the
vector is 1 if xj contributes to the value of qi, and 0 otherwise. The value of query qi

on sensor readings x is expressed as the dot product qi · x.
In our multi-query optimization problem, we are given a dissemination tree connect-

ing the k sensor nodes and the gateway, over which the aggregations are executed. Note
that our solutions apply to any given tree. The goal is to devise an execution plan for
evaluating queries, that minimizes total communication cost. The communication cost
includes the cost of query propagation in the QP phase and the cost of result propagation
in each round of the RP phase. While we discuss the implementation of the QP phase in
detail in Sect. 3.2, we ignore the query propagation cost in the following analysis, since

310 N. Trigoni et al.

it is negligible compared to the total result propagation costs, whenever the RP phase
of an epoch consists of a sufficiently large number of rounds. We consider two classes
of aggregation: (i) min queries and (ii) sum queries. Clearly our results for min queries
also apply to max, and our results for sum queries can be extended to count, average,
moments and linear combinations in the usual way. For min queries, we establish the
NP-hardness of the multi-query optimization problem using a straightforrwad reduction
from the Set Basis problem [8].

Complexity of sum Queries. For sum queries the underlying mathematical structure
is a field. We can exploit this fact, using techniques from linear algebra to optimize the
number of data values that must be communicated. Let N be an arbitrary node in the
tree. Let P (N) denote the parent of N and let TN denote the subtree rooted at N . We
denote as x(N) the vector of sensor values in the subtree TN and Qx(N) the set of query
vectors projected only onto sensors in TN .

We present a simple method to minimize the amount of data that N sends to P (N)
in each round. Let B(Qx(N)) = {b1, . . . , bn} be a basis of the subspace of k spanned
by Qx(N). Then any query q ∈ Qx(N) can be expressed as a linear combination of
the basis vectors q =

∑
j αj · bj , where αj ∈ , j = 1, . . . , n. By linearity of inner

product we get, for sensors x(N) (in the subtree TN)

q · x(N) = (
∑

j αj · bj) · x(N) =
∑

j αj · (bj · x(N))

That is, to evaluate the answers of queries in Qx(N) it suffices to know the answers
for any basis of the query space spanned by Qx(N). Any maximal linearly independent
subset of Qx(N) is a (not necessarily orthogonal or normal) basis of the space and every
such basis has the same cardinality. So we can use any maximal linearly independent
subset of Qx(N) as our basis, and N can forward the answers of the queries in this basis
to P (N). The parent P (N), using the same set of basis vectors, can easily interpret
the reduced results that it receives from N . We assume that N and P (N) use the same
algorithm in order to identify the basis vectors of Qx(N), and the factors αj . We refer
to this procedure as linear reduction.

Theorem 1. The size of the query result message sent by the above algorithm in each
round is optimal.

3 Multi-query Optimization

The linear reduction technique outlined in Sect. 2 provides an elegant solution for min-
imizing the cost of processing multiple sum queries. However, a number of system con-
siderations have to be taken into account to apply to a real sensor network. In this sec-
tion, we develop fully distributed multi-query optimization algorithms for sum queries.
Due to space constraints, we do not consider the impact of failures on our algorithms.
We refer the reader to the full paper for a discussion on failures and detailed experiments
that measure the tradeoff between communication and computation cost in the presence
of failures [8]. We start our discussion by introducing the notion of equivalence class,
which is central to the algorithms proposed in the remainder of the section.

Multi-query Optimization for Sensor Networks 311

Fig. 1. Equivalence classes formed by
three queries

Fig. 2. The bounding box of a subtree is the
minimum rectangle that covers all sensors in
the subtree. Grey nodes represent sensors that
belong to a bounding box of a subtree without
belonging to the subtree

3.1 Queries and Equivalence Classes

Rectangular Queries. We have represented each query as a k-bit vector, where k is
the number of sensors. Expressing queries in this form requires that the user have com-
plete knowledge of the sensor topology. It is more natural, and generally more com-
pact, to represent queries spatially. We focus our attention on queries that aggregate
sensor values within a rectangular region, and represent such a query as a pair of points
((x0, y0), (x1, y1)) at opposite corners of the rectangle. Since queries do no longer enu-
merate nodes specifically, we can even evaluate queries in an acquisitional manner [9],
e.g. by selecting a sample of sensor values generated within a query rectangle.

Equivalence Classes (ECs). To deal efficiently with rectangular queries and distribu-
tion, we introduce the notion of Equivalence Class (EC). An equivalence class is the
union of all regions covered by the same set of queries. For example, Fig. 1 shows that
queries {q1, q2, q3} form four ECs {EC1, EC2, EC3, EC4}, each one of which corre-
sponds to a different set of queries. For instance, EC4 is covered only by queries q2

and q3, and can be represented by the column bit-vector [0, 1, 1]T ; EC1 is represented
by [1, 0, 0]T , EC2 by [0, 1, 0]T and EC3 by [0, 0, 1]T . Notice that an equivalence class
is not necessarily a connected region (see EC2). An equivalence class may contain no
sensors. Equivalence classes are identified based solely on spatial query information;
they are independent of the node locations in the network or of the dissemination tree
that connects nodes. We can, however, speak of the value of an equivalence class – this
is the aggregate of the data values of sensors located in the EC region. The value of an
EC can be obtained by a subset of sensors located in the EC region, if an acquisitional
processing style is adopted.

Query Vectors and Query Values. We can now express queries in terms of ECs as
follows. We number equivalence classes (instead of sensors) from 1 to �, where � is
the number of equivalence classes. Let x denote the column vector in 	 representing
the values of the equivalence classes; thus, xi denotes the sum of (all or a sample of)
sensor values in ECi. Each query q is a linear combination of the set of equivalence
classes and can be captured by a row vector in {0, 1}	. For example, query q3 in Fig. 1
can be represented as the vector [0, 0, 1, 1], since it only covers EC3 and EC4. The
value of a query q given the EC values x is simply the product q · x. Given the above

312 N. Trigoni et al.

representation of the queries and EC values, it is natural to represent a set of m queries
as an m× � (bit) matrix Q, in which the (i, j) element is 1 if the ith query in Q covers
the jth equivalence class. The value of the query set Q given the EC values x is again
given by the product Q · x, which is a column vector in m. We often refer to the rows
of a query-EC matrix as query vectors, and to the columns as EC vectors.

Bounding Boxes (BBs). Expressing queries in terms of ECs brings out the dependen-
cies among queries. In order to exploit these dependencies fully, each node needs to
view queries in the context of its subtree, rather than the entire network. Therefore, in
our algorithms, a node expresses queries in terms of ECs intersecting with its subtree;
an EC intersects with a subtree if any of the sensor nodes in the subtree lies within the
EC region. A node N can accurately determine which ECs intersect with subtree TN ,
if it either knows the locations of all nodes in TN or receives from its children a list of
all ECs intersecting with their subtrees. Both approaches are prohibitive in terms of the
communication involved. An approximation of the set of equivalence classes intersect-
ing TN can be obtained if we consider the minimum rectangle that contains all sensors
in the subtree. This rectangle is hereafter called the bounding box of TN and is denoted
as BBN . Figure 2 depicts the bounding boxes of the subtrees rooted at nodes n1 and
n2. Note that a bounding box may contain nodes that do not belong in the subtree (grey
nodes in Fig. 2).

Queries and ECs Projected to the Bounding Box of a Subtree. Let XN denote the
set of equivalence classes that intersect with the bounding box of the subtree TN . It is
easy to see that XN is a superset of the equivalence classes that actually intersect with
the subtree TN . For given query set Q, we let QN denote the projection of Q on to XN ;
that is, we obtain QN by setting all entries of Q that appear in columns not in XN to
be zero. Duplicate and zero rows are removed. We extend the notation to let xN denote
the vector of projected EC values onto the subtree TN (not onto BBN since a node N
can only receive values generated by its descendants). The ith entry corresponds to the
sum of sensor values lying in the intersection of ECi and the subtree TN . The entries of
ECs that do not intersect with TN are set to 0. If we denote the values of queries Q that
are contributed from sensors in the subtree TN as V (Q,N), then the vector of values
of QN contributed from subtree TN is V (QN , N) = QN · xN .

3.2 The Query Preparation (QP) Phase

The query preparation phase consists of three steps: a bounding-box calculation step, a
query propagation step, and an EC evaluation step. Some of our algorithms for the RP
phase do not require the evaluation of ECs, in which case the last step is omitted.

Bounding-box calculation: A dissemination tree is first created using a simple flood-
ing algorithm. Given the dissemination tree, each node N computes the bounding box
BBN of its subtree TN from the bounding boxes of the subtrees of its children (if
any) as follows. If x, (resp., x′) and y (resp, y′) are the smallest (resp., largest) x- and
y-coordinates of the child bounding boxes, then (x, y) and (x′, y′) form two opposite
corner points of the bounding box of N .
Query propagation: The next step is to send query information down the dissemina-
tion tree. We distinguish query propagation schemes based on whether bounding boxes

Multi-query Optimization for Sensor Networks 313

are used to reduce the query propagation cost: (i) AllQueries: flood all queries to the
entire network; (ii) BBQueries: each node propagates down only queries that have a
non-empty intersection with its bounding box. This is performed using semantic rout-
ing information, discussed in detail in [9]. Once a node receives query information, it
computes for each round in the epoch the set of queries that are active in the round.
EC computation: Given a set of m query rectangles, we can compute all the ECs formed
by the m queries using a two-dimensional sweep algorithm in O(m3) time using O(m3)
space. Due to space constraints, we defer the algorithm description and its analysis to
the full paper. Using this algorithm, each node locally computes the ECs intersecting
with its bounding box.

3.3 The Result Propagation (RP) Phase

Each RP phase consists of a number of rounds, in which aggregation results are for-
warded through the tree paths from the leaves to the gateway. Consider a result message
sent by a node N to its parent P (N). The forwarded data should be sufficient to eval-
uate V (QN , N), i.e. the contribution of sensors in TN to the values of the projected
queries QN . A result message consists of a pair 〈RESULTCODE, RESULTDATA〉;
RESULTDATA includes updated values, and RESULTCODE encodes what has been up-
dated, showing how to interpret the values in RESULTDATA.

We now propose a series of result propagation algorithms, all of which use the above
message format. These algorithms can be classified according to four dimensions. The
first two dimensions are the methods employed for computing the RESULTCODE and
RESULTDATA components. The third dimension is whether the linear reduction tech-
nique of Sect. 2 is applied. The last dimension is whether these choices are identical for
all nodes, yielding a pure algorithm, or these choices may differ across nodes, yielding
a hybrid algorithm.

Pure Algorithms Without Reduction. We consider two methods for determining the
RESULTCODE component of a result message. In Query-encoding, a node sends to its
parent information about which queries have been updated since the last round. For-
mally, let UpdRows(QN) be the matrix derived from QN after removing all queries
(row vectors) that are not affected by the current sensor updates in TN . Both N
and P (N) agree on unique labels for the queries in QN from the integer interval
[1, |QN |]. Then, RESULTCODE consists of a set of lg |QN |-bit labels listing the queries
in UpdRows(QN). We note that Query-encoding does not require computation of
equivalence classes. In EC-encoding, a node sends to its parent information about
which equivalence classes have been updated since the last round. Let UpdCols(QN)
be the matrix derived from QN after removing all ECs (column vectors) that do not
include any updated sensors in TN (and after removing duplicate and zero rows). Since
both N and P (N) can compute XN (i.e. the set of equivalence classes that intersect
with BBN) they can agree on a unique label in the range [1, |XN |] for each equivalence
class in XN . In EC-encoding, RESULTCODE includes the identifiers of ECs (columns)
of UpdCols(QN).

We also consider two methods for populating the RESULTDATA component of a re-
sult message that a node sends to its parent. In the Query-data approach, RESULTDATA

314 N. Trigoni et al.

is the set of values of updated queries. In the EC-data approach, RESULTDATA is the
set of values of updated EC values.

One can combine the two dimensions above to obtain four different algorithms for
the RP phase: QueryQuery, QueryEC, ECQuery and ECEC, respectively, where the first
part of the name refers to the encoding, and the second part to the data. EC-encoding
results in messages with smaller RESULTDATA components than Query-encoding, inde-
pendent of whether the Query-data or EC-data policy is used. This is because both (row
and column) dimensions of UpdCols(QN) are smaller than those of UpdRows(QN).
Therefore, if the computational capabilities of the sensor nodes allow EC-computations,
then we only consider ECQuery and ECEC. On the other hand, if the computational lim-
itations of the sensor nodes do not allow them to compute the ECs, then QueryQuery
is the only algorithm of interest. Consequently, we focus our attention on three of these
four algorithms, namely, QueryQuery, ECQuery, and ECEC.

• ECQuery: In the RESULTCODE component, each node N sends to P (N) the iden-
tifiers of the updated ECs in the subtree rooted at N . In the RESULTDATA com-
ponent, node N includes delta values only of the distinct row vectors of matrix
UpdCols(QN). That is, query vectors are projected only onto the updated ECs
(columns), and one value is sent for each distinct projected query vector.

• QueryQuery: In the RESULTCODE component of the message that N sends to
P (N), it includes the identifiers of updated queries. In RESULTDATA, node N in-
cludes delta values of the distinct row vectors of matrix UpdRows(QN). Since the
number of distinct query (row) vectors in UpdRows(QN) is larger or equal to their
number in UpdCols(QN), the size of RESULTDATA in QueryQuery is larger or equal
to its counterpart in ECQuery.

• ECEC: The RESULTCODE here is identical to that of ECQuery. Unlike ECQuery,
ECEC sends up EC values in the RESULTDATA component of the message. For each
updated EC in the subtree, it sends up the aggregate value of all sensors in the inter-
section of the EC and the subtree TN .

An Optimal Pure Algorithm Using Linear Reduction. Both ECQuery and ECEC
decrease the communication cost of result propagation by explicitly encoding irregular
updates. Additional communication savings can be achieved by carefully applying the
linear reduction technique (introduced in Sect. 2) in a distributed manner to reduce
the size of propagated irregular updates. We now present the algorithm ECReduced
which uses EC-encoding, and is provably optimal with respect to the amount of result
data that is communicated. The RP phase of ECReduced at each node consists of two
steps: i) a basis evaluation step and ii) a result evaluation step. Detailed pseudocode for
both steps is presented in [8]. The basis evaluation step is executed whenever the set
of active queries changes or the set of updated ECs changes. Thus, if every query has
the same frequency and all sensors are updated regularly (D-scenario), then the basis
evaluation step is executed only once at the beginning of the RP phase. This step is the
most computationally demanding part of our algorithm since it involves matrix linear
reduction; the complexity of reducing a matrix with m rows and n columns is O(mn2).

Basis evaluation step: Consider a node N with ch children nodes. Node N initially
performs ch row-based linear reductions on matrices UpdCols(QNk

), k = 1, . . . , ch,

Multi-query Optimization for Sensor Networks 315

in order to interpret the results received from its children N1, . . . , Nch. It derives a
coefficient matrix ANk

for each child k, such that the product of ANk
and the basis vec-

tors B(UpdCols(QNk
)) yields the original projected queries UpdCols(QNk

). Node N
then reduces its own query-EC matrix UpdCols(QN) into a set of linearly independent
query vectors. Overall, N performs ch + 1 matrix reductions.
Result evaluation step: This step is executed once per round of the RP phase, and it
includes simple operations wrt time and memory space. Relying on the output of the
basis evaluation step, node N combines the incoming (delta) values received from its
children and forwards a minimum number of values to its parent P (N). Details of this
step are given in [8]. In summary, for each child Nk, node N evaluates the values of
queries (row vectors of) UpdCols(QNk

), based on the values of the basis vectors (re-
ceived from child k) and matrix ANk

(from previous step). Combining the values of
UpdCols(QNk

) (and the node’s own sensor value), node N proceeds to evaluate the
results of queries UpdCols(QN) for the entire subtree TN . It is sufficient to evaluate
only the values of queries that belong to the basis B(UpdCols(QN)). Only those val-
ues are finally forwarded to the parent node P (N). Notice that if all nodes use the same
algorithm to linearly reduce a query matrix, there is no need to communicate the se-
lected basis vectors; a node only forwards up the values of these vectors to its parent.
The following result is derived from Theorem 1.

Theorem 2. The size of the RESULTDATA component in the ECReduced algorithm is
optimal; it is a lower bound on the size of the optimal result message.

Hybrid Algorithms with no Reduction: The algorithms introduced so far are exe-
cuted in an identical manner at all nodes. We now consider two hybrid algorithms that
perform differently across nodes, depending on the load of results contributed by the
underlying subtrees. The first algorithm, referred to as HybridBasic, attempts to approx-
imate the optimal cost achieved by the ECReduced algorithm, while avoiding the high
computational requirements for linear reduction.

• HybridBasic: Consider the bounding box of a node and the set of queries and ECs
intersecting with the bounding box. For a given sensor update rate, when the num-
ber of (projected) queries is small, the number of (projected) ECs is greater than the
number of queries. In this case, the ECQuery algorithm is expected to outperform
the ECEC algorithm. However, for a large number of queries the equivalence classes
might be fewer than the queries. In this case, the ECEC algorithm is expected to out-
perform the ECQuery algorithm. The point where the two algorithms cross depends
on the sensor update frequency. The HybridBasic algorithm combines the ECEC and
ECQuery approaches. A node selects the approach that locally yields the least cost,
and sends an additional bit to denote its choice. The only constraint is that if a child
uses the ECQuery approach, it only provides information about the values of up-
dated queries; hence, its parent can only implement the ECQuery approach. On the
contrary, a parent of a node that implements ECEC can implement either of the two
approaches.

Surprisingly, HybridBasic performs extremely well in terms of communication; as
will be shown in Sect. 4, it closely approximates the cost of the ECReduced algorithm,
without requiring a linear reduction task. In fact, HybridBasic can be viewed as an

316 N. Trigoni et al.

approximate application of linear reduction in the following sense: the rank of a matrix
is always smaller or equal to the smallest dimension of the matrix; given a query-EC
matrix, HybridBasic effectively chooses to propagate values of row vectors (queries),
or of column vectors (ECs) depending on which ones are fewer. In practice, this policy
works well, since the cardinality of the smallest matrix dimension often coincides with
the matrix rank.

HybridBasic assumes that each node is able to evaluate equivalence classes within
the bounding box of its subtree. The following algorithm, named HybridWithThreshold,
lifts this requirement for nodes close to the gateway, whose bounding boxes overlap
with many queries.

• HybridWithThreshold: If the input query workload is light, EC evaluation for the
entire network is easy to perform locally at each node. Otherwise, nodes close to the
leaves may opt for local EC computation, i.e. computation of ECs within the context
of the bounding box of the node’s subtree. As we approach the gateway, the bounding
box of a node’s subtree increases, and so do the number of query rectangles that inter-
sect with the bounding box. The computational cost of evaluating ECs may become
prohibitively expensive for nodes close to the gateway. The HybridWithThreshold
algorithm behaves like the HybridBasic algorithm at nodes that are able to perform
EC computation. When the effort for EC computation exceeds a certain threshold at a
node (its computational capability), the node switches to Query-encoding and sends
up one result per updated query.

4 Experimental Evaluation

In this section we measure the communication cost of the proposed algorithms using
a home-grown simulator. We also present our feasibility test of the linear reduction
technique, which we performed on the Mica2 mote. In the full version of our paper [8]
we evaluate how the proposed algorithms trade communication for computation; we
also show the benefits of our techniques by drawing data from a real sensor network
infrastructure deployed in the Intel Berkeley Research Lab.

4.1 Synthetic Experimental Setup

We deploy 400 sensors in a square region of 400 m2 and randomly select their x and
y coordinates to be any real numbers in [0, 20]. We ensure that with a communication
range of 2m the random deployment of nodes results in a (100%) connected network
(otherwise the random deployment is repeated). A flooding algorithm is used to gener-
ate a minimum spanning tree that connects all nodes to the gateway. Each node selects
as its parent a randomly chosen neighbor that lies on a shortest path to the root. The
queries considered in our framework are sum queries that cover all sensors in a rect-
angular area. In our experiments we test a number of different query workloads, each
defined as a set of tuples of the form (numberOfQueries, minQueryWidth, maxQuery-
Width, minQueryHeight, maxQueryHeight). We assume that all the queries in a work-
load have the same frequency. We set the minimum values of the query dimensions
(minQueryWidth, minQueryHeight) to 1m and the maximum values to 20m. Given

Multi-query Optimization for Sensor Networks 317

 0

 200000

 400000

 600000

 800000

 1e+06

 0 20 40 60 80 100

c
o
m
m
u
n
i
c
a
t
i
o
n

c
o
s
t

(
b
i
t
s
)

no of queries

dataSize=16B, updateProb=1

QueryQuery
ECQuery

ECEC
ECReduced

NoOptimization
HybridBasic

Fig. 3. Comm. cost of algorithms (D-scenario)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c
o
m
m
u
n
i
c
a
t
i
o
n

c
o
s
t

(
b
i
t
s
)

sensor update probability

dataSize=16B, queries=50

QueryQuery
ECQuery

ECEC
ECReduced

NoOptimization
HybridBasic

Fig. 4. Comm. cost of algorithms (I-scenario)

query input patterns, a random workload generator generates specific instances in each
epoch that satisfy the patterns. The sensor update workload defines the probability that
a sensor is updated at the end of a round. Given a sensor update input pattern, a random
workload generator selects a specific set of sensors to be updated in a round.

For simplicity, we assume long-running queries that are propagated once at the be-
ginning of an epoch (in the QP phase) and are evaluated at every round of the RP phase
until the end of the epoch. Since the query propagation cost occurs once per epoch, it
is negligible compared to the result propagation cost and is not accounted for. In our
evaluation, we measure the result (communication) cost per round, averaged over 200
rounds (10 epochs of 20 rounds each).

4.2 Communication Cost

To make the measurements of communication cost realistic, we consider a packet size
of 34 bytes (similar to the size of TOS Msg used for Mica motes) that consists of a
5-byte header and a 29-byte payload. If the number of bits in a message is x, then the
communication cost is �x/29×34; that is, we account for a fixed header cost (5 bytes)
and only consider fixed size packets. The size of each query result is set to 16 bytes.

Deterministic Sensor Updates. In Fig. 3, we compare the performance of different
algorithms as we increase the number of queries sent together for evaluation at the
beginning of an epoch. In this initial experiment, we assume that all sensors are up-
dated in each round with probability 1 (D-scenario). We first compare our techniques
with the existing approach, namely an extension of the TAG algorithm [3] to process
multiple queries. Since this algorithm, which we refer to as NoOptimization, performs
in-network aggregation independently for each query, the average (per round) result
propagation cost increases linearly in the number of queries. The performance advan-
tage of our proposed techniques is apparent even for light query workloads.

Figure 3 validates our analysis of Sect. 3.3 that EC-encoding outperforms Query-
encoding, if we restrict our attention to communication cost. Between ECQuery and
ECEC, Fig. 3 shows that ECQuery outperforms ECEC for query workloads with less
than 80 queries, but as we increase the number of queries, the number of ECs became
smaller than the number of queries and ECEC wins.

318 N. Trigoni et al.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 100 1000 10000 100000

c
o
m
m
u
n
i
c
a
t
i
o
n

c
o
s
t

(
b
i
t
s
)

computational threshold

dataSize=16B, queries=50, updateProb=1

HybridBasic
HybridWithThreshold

QueryQuery

Fig. 5. HybridWithThreshold (D-scenario)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 100 1000 10000 100000

c
o
m
m
u
n
i
c
a
t
i
o
n

c
o
s
t

(
b
i
t
s
)

computational threshold

dataSize=16B, queries=50, updateProb=0.1

HybridBasic
HybridWithThreshold

QueryQuery

Fig. 6. HybridWithThreshold (I-scenario)

We now consider the cost and benefit of the reduction technique in the D-scenario.
Figure 3 shows that the proposed ECReduced algorithm performs better than all the
other algorithms, thus validating Theorem 2. An interesting observation is that the
HybridBasic algorithm performs almost as well as the ECReduced algorithm, without
requiring any computational cost for linear reduction (Fig. 3). This shows that a very
simple distributed algorithm, which can easily be implemented on constrained sensor
nodes, gives a very good approximation of the optimal solution.

In addition to our simulations, we implemented the linear reduction technique on the
Berkeley Mica2 motes (4MHz ATMEL processor128kB flash, 4kB RAM, 4kB ROM)
using the NesC programming language. We measured the time in seconds required for
reducing an m × m matrix of floats as a function of m. The observed time grows as
Θ(m3), which is consistent with the complexity of the reduction algorithm. The code
for matrix reduction was compiled with ”make mica” to 12604 bytes in ROM and 428
bytes in RAM. For matrices of dimension from 5 to 15, the linear reduction algorithm
takes 0.07 to 1 seconds, but the algorithm time increases rapidly for larger matrices.

Probabilistic Sensor Updates. In Fig. 4, we compare algorithms as we vary the prob-
ability that a sensor generates an updated reading in a given round. We set the number
of queries to 50. Recall that in the D-scenario (Fig. 3), which corresponds to the I-
scenario with probability 1, ECQuery is preferred to ECEC for workloads of less than
80 queries. As we decrease the sensor update probability to less than 0.6, however, Fig. 4
shows that it becomes beneficial for nodes to send up EC values instead of query val-
ues in RESULTDATA. For an update rate of 10%, ECEC is 30% cheaper than ECQuery.
The ECReduced algorithm, which applies the linear reduction technique in a distributed
manner, outperforms all other algorithms (Fig. 4). Moreover, the HybridBasic algorithm
has a very good performance, approaching closely the cost of ECReduced.

In Figs. 5 and 6, we consider the limited computational power of sensor nodes.
From the two algorithms that do not require EC computation (NoOptimization and
QueryQuery), we only consider QueryQuery because it has smaller communication
cost. Among the algorithms that do not perform reduction but require EC computa-
tion, we only consider HybridBasic because it has similar computational cost with the
others yet smaller communication cost. We omit ECReduced because it requires ma-
trix reduction without yielding noteworthy cost savings compared to HybridBasic. In

Multi-query Optimization for Sensor Networks 319

Figs. 5 and 6, we set the sensor update probability to 1 and 0.1 respectively. In both
figures, QueryQuery has a higher cost than HybridBasic. The former algorithm does
not require knowledge of ECs, whereas the latter assumes knowledge of ECs inde-
pendent of the nodes’ computational capabilities. We study the performance of the
HybridWithThreshold algorithm, where the significance of the threshold value is as
follows: if the effort of computing ECs at a node N (measured as m3, where m is the
number of distinct projected queries onto the local bounding box BBN) exceeds the
threshold value at N , then EC computation cannot be performed, and the node switches
to using the QueryQuery algorithm. Figure 5 shows that as we increase the threshold
value (plotted on a logarithmic scale), more nodes are able to compute ECs, and the
cost of HybridWithThreshold approaches the cost of HybridBasic.

5 Related work

Query Processing in Sensor Networks. Several research groups have focused on in-
network query processing as a means of reducing energy consumption. The TinyDB
Project at Berkeley investigates query processing techniques for sensor networks in-
cluding an implementation of the system on the Berkeley motes and aggregation queries
[1, 2, 3, 4, 5]. An acquisitional approach to query processing is proposed in [9], in which
the frequency and timing of data sampling is discussed. The sensor network project at
USC/ISI group [10, 11] proposes an energy-efficient aggregation tree using data-centric
reinforcement strategies (directed diffusion). A two-tier approach (TTDD) for data dis-
semination to multiple mobile sinks is discussed in [12]. An approximation algorithm
for finding an aggregation tree that simultaneously applies to a large class of aggre-
gation functions is proposed in [13]. Duplicate insensitive skethches for approximate
aggregate queries are discussed in [14, 15]. Our study differs from previous work in
that we consider multi-query optimization for sensor networks.

Communication Protocols for Sensor Networks. The data dissemination algorithms
that we study in this paper are all aimed at minimizing energy consumption, a pri-
mary objective in communication protocols designed for sensor (and ad hoc) networks.
A number of MAC and routing protocols have been proposed to reduce energy con-
sumption in sensor networks [16, 17, 18, 19, 20, 21, 22, 23] While these studies consider
MAC and routing protocols for arbitrary communication patterns, our study focuses on
multi-query optimization to minimize the amount of data.

6 Conclusions and Future Work

Our work addresses several issues in the area of Sensor Databases. We have introduced
two major extensions to the standard model of executing a single long-running query: A
workload of multiple aggregate queries and a workload of sensor data updates. We have
given efficient algorithms for multi-query optimization, and tested their performance in
several scenarios. To the best of our knowledge this is the first work to formally examine
the problem of multi-query optimization in sensor networks.

The main conclusions drawn in this paper are the following: First, the notion of
equivalence class (EC) is important for distributed query evaluation: encoding sensor

320 N. Trigoni et al.

updates in terms of ECs enables better compression of the result messages. Second,
the result data size is minimized for a certain class of aggregate queries (sum, count
and avg) by applying the linear reduction technique in a distributed manner. Third, in
applications where the computationally expensive task of linear reduction is infeasible
for the nodes, a very good approximation of the optimal can be obtained by having each
node select an appropriate local data encoding strategy. This encoding strategy can itself
be defined in terms of a threshold that specifies the computational limitation.

There are a number of directions for further research. First, we would like to extend
our ideas to a wider class of aggregation functions. Second, our paper has focused on
accurate query evaluation. It would be worthwhile to study approximate query process-
ing and obtain error-energy tradeoffs. We would also like to adapt our techniques to
multi-path aggregation methods that provide more fault-tolerance.

References

1. Hellerstein, J., Hong, W., Madden, S., Stanek, K.: Beyond average: Towards sophisticated
sensing with queries. In IPSN. (2003)

2. Madden, S., Franklin, M.: Fjording the stream: An architecture for queries over streaming
sensor data. In ICDE. (2002)

3. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: Tag: A tiny aggregation service for
ad-hoc sensor networks. In OSDI. (2002)

4. Madden, S., Hellerstein, J.: Distributing queries over low-power wireless sensor networks.
In SIGMOD. (2002)

5. Madden, S., Szewczyk, R., Franklin, M., Culler, D.: Supporting aggregate queries over ad-
hoc sensor networks. In WMCSA. (2002)

6. Yao, Y., Gehrke, J.: The Cougar approach to in-network query processing in sensor networks.
Sigmod Record 31 (2002)

7. Yao, Y., Gehrke, J.: Query processing in sensor networks. In CIDR. (2003)
8. Trigoni, N., Yao, Y., Demers, A., Gehrke, J., Rajaraman, R.: Multi-query optimization for

sensor networks. In TR2005-1989, Cornell Univ. (2005)
9. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: The design of an acquisitional query

processor for sensor networks. In SIGMOD. (2003)
10. Heidemann, J., Silva, F., Intanagonwiwat, C., Govindan, R., Estrin, D., Ganesan, D.: Build-

ing efficient wireless sensor networks with low-level naming. In SOSP. (2001) 146–159
11. Heidemann, J., Silva, F., Yu, Y., Estrin, D., Haldar, P.: Diffusion filters as a flexible architec-

ture for event notification in wireless sensor networks. In ISI-TR-556, USC/ISI. (2002)
12. Ye, F., Luo, H., Cheng, J., Lu, S., Zhang, L.: A two-tier data dissemination model for large-

scale wireless sensor networks. In MOBICOM. (2002)
13. Goel, A., Estrin, D.: Simultaneous optimization for concave costs: Single sink aggregation

or single source buy-at-bulk. In SODA. (2003)
14. Considine, J., Li, F., Kollios, G., Byers, J.: Approximate aggregation techniques for sensor

databases. In ICDE. (2004)
15. Nath, S., Gibbons, P.: Synopsis diffusion for robust aggregation in sensor networks. In

SENSYS. (2004)
16. Heinzelman, W., Wendi, R., Kulik, J., Balakrishnan, H.: Adaptive protocols for information

dissemination in wireless sensor networks. In MOBICOM. (1999)

Multi-query Optimization for Sensor Networks 321

17. Johnson, D., Maltz, D.: Dynamic source routing in ad hoc wireless networks. In: Mobile
Computing. Volume 353 of The Kluwer International Series in Engineering and Computer
Science. (1996)

18. Perkins, C.: Ad hoc on demand distance vector (aodv) routing. (Internet Draft 1999,
http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-04.txt)

19. Perkins, C., Bhagwat, P.: Highly dynamic destination-sequenced distance-vector routing
(DSDV) for mobile computers. In SIGCOMM. (1994) 234–244

20. Xu, Y., Bien, S., Mori, Y., Heidemann, J., Estrin, D.: Topology control protocols to conserve
energy inwireless ad hoc networks. In TR6, UCLA/CENS (2003)

21. Xu, Y., Heidemann, J., Estrin, D.: Geography-informed energy conservation for ad hoc
routing. In MOBICOM. (2001) 70–84

22. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wireless sensor
networks. In INFOCOM. (2002) 1567–1576

23. Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated, adaptive sleep-
ing for wireless sensor networks. In ISI-TR-567, USC/ISI. (2003)

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 322 – 339, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Distributed Energy-Efficient Hierarchical Clustering for
Wireless Sensor Networks

Ping Ding, JoAnne Holliday, and Aslihan Celik

Santa Clara University
{pding, jholliday, acelik}@scu.edu

Abstract. Since nodes in a sensor network have limited energy, prolonging the
network lifetime and improving scalability become important. In this paper, we
propose a distributed weight-based energy-efficient hierarchical clustering
protocol (DWEHC). Each node first locates its neighbors (in its enclosure
region), then calculates its weight which is based on its residual energy and
distance to its neighbors. The largest weight node in a neighborhood may
become a clusterhead. Neighboring nodes will then join the clusterhead
hierarchy. The clustering process terminates in O(1) iterations, and does not
depend on network topology or size. Simulations show that DWEHC clusters
have good performance characteristics.

1 Introduction

Sensor nodes are relatively inexpensive and low-power. They have less mobility and
are more densely deployed than mobile ad-hoc networks. Since sensor nodes are
always left unattended in sometimes hostile environments, it is difficult or impossible
to re-charge them. Therefore, energy use is a key issue in designing sensor networks.

Energy consumption in a sensor network can be due to either useful or wasteful
work. Useful energy consumption results from transmitting/receiving data, querying
requests, and forwarding data. Wasteful energy consumption is due to collisions and
resulting retransmissions, idle listening to the channel, and overhead of each packet
header (even when the data packet is short). Energy consumption reduces network
lifetime, which is defined as the time elapsed until the first node (or a certain
percentage of nodes [1]) use up their energy.

To reduce energy consumption, clustering techniques have been suggested [3-20].
These techniques organize the nodes into clusters where some nodes work as
clusterheads and collect the data from other nodes in the clusters. Then, the heads can
consolidate the data and send it to the data center as a single packet, thus reducing the
overhead from data packet headers. Clustering has advantages for: 1) reducing useful
energy consumption by improving bandwidth utilization (i.e., reducing collisions
caused by contention for the channel); 2) reducing wasteful energy consumption by
reducing overhead.

In a clustered network, the communication is divided into intra and inter cluster
communication. The intra-cluster communication is from the nodes inside a cluster to
the head. The inter-cluster communication is from the heads to the data center (sink
node). The energy efficiency of a clustered sensor network depends on the selection
of the heads. Heinzelman et al. [3] propose a low-energy adaptive clustering hierarchy
(LEACH), which generates clusters based on the size of the sensor network.

Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor Networks

323

However, this approach needs a priori knowledge of the network topology. Younis
and Fahmy [4] propose a Hybrid Energy-Efficient Distributed clustering (HEED),
which creates distributed clusters without the size and density of the sensor network
being known. However, the cluster topology fails to achieve minimum energy
consumption in intra-cluster communication. Also, as we show in Section
Simulation, the clusters generated by HEED are not well balanced.

In this paper, our goal is to achieve better cluster size balance and obtain clusters
such that each has the minimum energy topology. We propose a distributed weight-
based energy-efficient hierarchical clustering protocol (DWEHC). DWEHC makes no
assumptions on the size and the density of the network. Every node implements
DWEHC individually. DWEHC ends after seven iterations that are implemented in a
distributed manner. Once DWEHC is over, the resulting clusters have a hierarchical
structure. Each node in the network is either a clusterhead, or a child (first level,
second level, etc). The number of levels depends on the cluster range and the
minimum energy path to the head. Within a cluster, TDMA (Time Division Multiple
Access) is used. Each node responds to their nearest parent’s polling with their data,
then that parent is polled by the next parent until the data gets to the clusterhead. For
inter-cluster communciation, the heads contend for the channel using IEEE 802.11 to
send data to the data center.

The paper is organized as follows: We review the literature in Section 2, and
propose DWEHC in Section 3. In Section 4, we provide an analysis of correctness
and energy-effiency, complexity and scalability of DWEHC. In Section 5, we present
our performance studies. Section 6 concludes the paper.

2 Related Work

Many clustering algorithms have been proposed [3-20]. Most of these algorithms are
heuristic in nature and their aim is to generate the minimum number of clusters. In the
Linked Cluster Algorithm [6], a node becomes the clusterhead if it has the highest id
among all nodes within two hops. In updated LCA [7], those nodes with the smallest id
become cluster head. All the other nodes which are 1-hop to the heads become children
of the heads. In [8], those nodes with highest degree among their 1-hop neighbors
become cluster heads. In [10], the authors propose two load balancing heuristics for
mobile ad hoc networks, where one is similar to LCA and the other is degree-based
algorithm. The Weighted Clustering Algorithm (WCA) [11] elects clusterheads based
on the number of surrounding nodes, transmission power, battery-life and mobility rate
of the node. WCA also restricts the number of nodes in a cluster so that the performance
of the MAC protocol is not degraded. The Distributed Clustering Algorithm (DCA) uses
weights to elect clusterheads [12]. These weights are based on the application and the
highest weight node among its one hop neighbors is elected as the clusterhead. All of
the above algorithms generate 1-hop clusters, require synchronized clocks and have a
complexity of O(n), where n is the number of sensor nodes. This makes them suitable
only for networks with a small number of nodes.

The Max-Min d-cluster algorithm [5] generates d-hop clusters with a complexity of
O(d), which achieves better performance than the LCA without clock
synchronization. In [13], the authors aim at maximizing the lifetime of a sensor
network by determining optimal cluster size and assignment of clusterheads. They

P. Ding, J. Holliday, and A. Celik

324

assume that both the number and the location of the clusterheads are known, which is
generally not possible in all scenarios. McDonald et al. [14] propose a distributed
clustering algorithm for mobile ad hoc networks that ensures that the probability of
mutual reachability between any two nodes in a cluster is bounded over time. In [15],
the authors generate a 2-level hierarchical telecommunication network in which the
nodes at each level are distributed according to two independent homogeneous
Poisson point processes and a node is connected to the closest node lying on the
another level. Baccelli et al. extend previous study to hierarchical telecommunication
networks with more than two levels in [16]. They use point processes and stochastic
geometry to determine the average cost of connecting nodes for assigning them to
multiple levels in the networks.

Heinzelman et al.[3] propose a low-energy adaptive clustering hierarchy (LEACH)
for microsensor networks. LEACH uses probability to elect clusterheads. The
remaining nodes join the clusterhead that requires minimum communication energy,
thus forming a 1-hop cluster. LEACH also calculates the optimal number of
clusterheads that minimizes the energy used in the 1-level network. Bandyopadhyay
et al.[17] propose a hierarchical clustering algorithm to minimize the energy used in
the network. They generate a hierarchical structure, which is up to 5-levels in intra-
cluster communication. They assume all nodes transmit at the same power levels and
hence have the same radio ranges. Based on the size of the network, they calculate the
optimal number of clusterheads in a network and the optimal number of hops from the
nodes to the clusterheads.

All the previous protocols require either knowledge of the network density or
homogeneity of node dispersion in the field. Younis and Fahmy.[4] propose Hybrid
Energy Efficient Distributed clustering (HEED). HEED does not make any
assumptions about the network, such as, density and size. Every node runs HEED
individually. At the end of the process, each node either becomes a clusterhead or a
child of a clusterhead. Residual energy of a node is the first parameter in the election
of a clusterhead, and the proximity to its neighbors or node degree is the second.
HEED generates a 1-level hierarchical clustering structure for intra-cluster
communication. In DWEHC, we do not make any assumptions about the network
similar to HEED. DWEHC creates a multi-level structure for intra-cluster
communication, which uses the minimum energy topologies.

3 A Distributed, Weighted, Energy-Efficient Hierarchical
Clustering Algorithm

3.1 Network Model

We assume that a sensor network can be composed of thousands of nodes. Also:

1) Nodes are dispersed in a 2-dimensional space and cannot be recharged after
deployment.

2) Nodes are quasi-stationary.
3) Nodes transmit at the same fixed power levels, which is dependent on the

transmission distance.
4) Nodes base decisions on local information.

Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor Networks

325

5) Nodes are location-aware, which can be defined using GPS, signal strength or
direction.

6) The energy consumption among nodes is not uniform.

We do not make any assumptions about:
1) the size and density of the network;
2) the distribution of the nodes;
3) the distribution of energy consumption among nodes;
4) the probability of a node becoming a clusterhead;
5) the synchronization of the network.

We believe this model and these assumptions are appropriate for many real
networks. In a sensor network, sensor nodes collect their local information and send
them to the data center. Frequently, the information is location-dependent, so the
nodes know their own position via GPS or by other means. On the other hand, density
is not uniform or known.

3.2 Clustering Structure

After running DWEHC, a clustered network has the features:

1) A node is either a clusterhead or a child in the cluster. The level of the node
depends on the cluster range and the minimum energy path to the head.

2) Heads are well distributed over the sensor field.
3) Each cluster has a minimum energy topology.
4) A parent node has a limited number of children.

3.3 Related Concepts

We will introduce some concepts used in DWEHC. As shown by Li and Wan [2],
given a set of wireless nodes, and a directed weighted transmission graph, there exists
the minimum power topology. This topology is the smallest subgraph of the
transmission graph and contains the shortest paths between all pairs of nodes. Li and
Wan [2] propose a distributed protocol to contruct an enclosure graph which is an
approximation of the minimum power topology for the entire network. In DWEHC,
we generate a minimum power topology for each cluster, which is an enclosure graph,
using their protocol. As shown in [2], enclosure graph is a planar graph and the
average number of edges incident to a node is at most 6.

1. Relay. In this paper, we assume that all mobile devices have similar antenna
heights as [2], so we will only concentrate on path loss that is distance-dependent.

With this assumption, the power required by distance r is r
α

, which is called the
transmitter power of a node s. For example, in Figure 1, the node s tries to send a

packet to d. Node s can send the packet directly with transmission power sd
α

c+ ,
where α is equal to 2 or 4 and c is a constant. Or, s sends the packet through r with

transmission power sr
α

c rd
α

c+ + + which is called relay. If

sd
α

c+ > sr
α

c rd
α

c+ + + , then relaying through node r consumes less
transmission energy than directly transmitting from s to d.

P. Ding, J. Holliday, and A. Celik

326

 Fig. 1. Relaying through node r Fig. 2. Levels in DWEHC

2. Relay Region [2]. Given sender node s and relay node r, the nodes in the relay
region can be reached with the least energy by relaying through r. And, the region
Rα c, s r,() , is called the relay region of s with respect to r.

Rα c, s r,() x such that sx
α

sr
α

r x
α

c+ +>{ }= (1)

3. Enclosure Region [2]. Enclosure region of s with respect to a node r, Eα c, s r,() , is the
complement of Rα c, s r,() . The enclosure region Eα c, s() of a node s is defined in Equation
2, where T(s) is the set of nodes lying inside the transmission range of node s.

Eα c, s() Eα c, s r,()
r T s()∈

∩=
 (2)

4. Neighbors [2]. Equation 3 defines the set of neighbors Nα c, s() of a node s. These are
the nodes which do not need relaying when s transmits to them,

Nα c, s() u such that u T∈ s() u Eα c, s()∈,{ }= (3)

5. Cluster range (cluster radius), R. This parameter specifies the radius of a cluster,
i.e., the farthest a node inside a cluster can be from the clusterhead. The cluster radius
is a system parameter and is fixed for the entire network.
6. Weight used in clusterhead election. The weight will be the only locally calculated
parameter used in clusterhead election, and is represented by my_weight in DWEHC.
We define it in Equation 4, where R is the cluster range and d is the distance from
node s to neighboring node u, Er esi dual s() is the residual energy in node s, and
Ei ni t i al s() is the initial energy in node s, which is the same for all nodes.

Wwei ght s() R d–()
6R

u Nα c, s()∈

Eresi dual s()
Ei ni t ial s()

-------------------------------×=
 (4)

Our primary goal is to improve energy efficiency and prolong the lifetime of the
network. Since a clusterhead needs to forward all data from the nodes inside its cluster
to the data center, the clusterhead will consume much more energy than its child nodes.
Therefore, the residual energy is a key measurement in electing clusterheads. On the
other hand, the more nodes inside a cluster, the more energy the clusterhead will
consume. We build the clusters by considering the neighboring nodes, of which there
are at most 6 [2]. Each parent node has a limited number of child nodes. Additionally,
intra-cluster communication will consume less energy if the cluster is a minimum
energy topology. Therefore, the distances from a node to all its neighbors inside its
enclosure region becomes another key measurement in electing clusterheads.

Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor Networks

327

Notations:
: the neighbors of node s;
: the nodes inside cluster range of node s;

Algorithm:
1.
2.while (){

2.a. Let and be the nearest node to s
2.b.

}

N s()
T s()

N s() φ= Q T s()=;
Q φ≠
v Q∈

N s() N s() v{ }∪=

sv
α

vx
α

c+ + sx
α<

 Fig. 3. Finding Neighbors Fig. 4. HV1V2 is a minimum energy path

7. Levels in a cluster. Each cluster is multi-level. There is no optimal number of
levels. This is because we make no assumptions about the size and topology of the
network. The number of levels in a cluster depends on the cluster range and the
minimum energy path to the clusterhead, which is represented by my_level in
DWEHC. Figure 2 shows a multi-level cluster generated by DWEHC, where H is the
clusterhead, first level children are v0, v1, and v2, second level children are v3, v4, v5, v6
and v7, and the third level children are v8 and v9. A parent node and its child nodes are
neighbors. For example, H’s neighbors are v0, v1, and v2.
8.my_range and my_dis.In a cluster, each child node should be inside the cluster
range of its clusterhead. my_range is the distance (in Figure 2) from v3 to H and

calculated
xH xv3

–()
2

yH yv3
–()

2
+

, where (xH, yH) and (
Xv3 ,

yv3) are the (x, y)
coordinates for H and v3 respectively. my_dis denotes the minimum energy path to
the clusterhead. In Figure 2, my_dis of v3 is calculated by

xH xv0
–()

2
yH yv0

–()
2

xv0
xv3

–()
2

yv0
yv3

–()
2

+ + +
.

3.4 The DWEHC Algorithm

Before the communications may start, the clusters need to be generated. It takes
Tgenerating to generate the clusters. Then, two types of communication may occur in a
clustered network: intra-cluster and inter-cluster. The time commited for these is Tcluster.
Tcluster should be much longer than Tgenerating to guarantee good performance. To prevent a
clusterhead from dying due to energy loss, the DWEHC algorithm, runs periodically,
every Tcluster+Tgenerating. During Tgenerating, each node runs DWEHC to generate the
clusters. During initialization, a node broadcasts its (x, y) coordinates and then uses the
algorithm in Figure 3 to find its neighbors[2].The complexity of a node u finding its
neighbors is O(min(dGt(u)dGe(u), dGt(u)logdGt(u))), where dGt(u) is the degree of node u
in its cluster range and dGe(u) is the degree of node u in its enclosure region [2]. The
DWEHC algorithm is Figure 4.After running the algorithm, each node will have N s() ,
the set of neighbors inside its enclosure region, and these neighbors will be its first level
children if it becomes a clusterhead. All the other nodes inside its cluster range will be
reached through at least one relay using one of these neighbors. All nodes set their
my_level to -1 in the beginning, which indicates that they have not joined any cluster
yet. Next, we explain how a node either becomes a clusterhead or a child in a cluster.

P. Ding, J. Holliday, and A. Celik

328

Notations:
my_id, my_x, my_y: the id, x and y coordinates of a node;
my_level, my_weight: the level and the weight of a node; my_range: the distance to the head;
my_dis: the minimum energy distance to the head;
my_temp_head: 1 (if a node is a temporary head); 0 (o.w.)
my_head_num: the temporary head id in the neighborhood;
my_per: percentage of neighbors choosing the node as their temporary head;
temp_head_id: the id of a temporary head;
head_x, head_y: the x and y coordinate of a head
my_dir_parent: the id of my directly parent node;
MAX: the maximum number of neighbors (6) ;
Algorithm:
1. Initialization
 1.1. broadcast x and y coordinates;
 1.2. collect broadcasts inside cluster range;
 1.3. find neighbors inside own enclosure region using Fig 3;
 1.4. calculate my_weight and broadcast it;
2. Cluster Generation
 FOR (i=0; i<MAX; i++) {
 2.1. IF my_level = -1 {
 2.1.a. IF my_weight is largest among my neighbors then {
 my_temp_head = 1;
 my_head_num = my_id; }ELSE {
 my_temp_head = 0;}
 my_head_num = temp_head_id; } //use neighbor’s with the largest weight
 2.1.b. broadcast my_head_num;

 2.1.c. IF ((AND my_temp_head = 1) OR

 (no neighbors) OR (all neighbor’s my_level > -1)) {
 my_level = my_dis =0; head_x = my_x; head_y = my_y; //become a real cluster head
 broadcast my_level, my_dis,head_x, head_y;} //end 2.1.c
 } //end 2.1
2.2. IF(my_level <>0) {
 2.2.a. receives broadcast message from a neighbor;

 2.2.b. my_range= ;

 my_dis_new=neighbor’s my_dis+
 2.2.c. IF ((my_dis_new<my_dis AND my_level>0) OR (my_range<=Cluster Range AND
my_level=-1)) {
 my_level = neighbor’s my_level + 1; my_dis = my_dis_new; my_dir_parent = neighbor’s id;
 head_x = neighbor’s head_x; head_y = neighbor’s head_y;
 broadcast my_level, my_dis,head_x, head_y;}}//end 2.2
 } //end 2
 3. Finalization
 Repeat cluster generation one more time.

my_per MAX i–
MAX

--------------------≥

head_x my_x–()2
head_y my_y–()2

+

distance to the neighbor()2

Fig. 5. DWEHC

Clusterhead: A node that has the largest weight of all its neighbors will become a
temporary clusterhead (temp_head=1). A node can become a real clusterhead only if a
given percentage of its neighbors elect it as their temporary clusterhead. In the first
iteration (i=0), this percentage is 100%. In subsequent iterations (i++), it is decreased
to 6 i–() 6⁄ . When a node becomes a real clusterhead, it sets my_level=0. Those nodes
with my_level = -1 could still become clusterheads during the following iterations.

Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor Networks

329

Those who become real clusterheads broadcast the information including their
my_level, x (head_x) , and y (head_y) coordinates.

Non Clusterhead: A node will become a child node in the following three cases. The
first case occurs when a node’s my_level is equal to -1. The node receives a broadcast
message from its neigbors, which includes my_level of the neighbor and the x and y
coordinates of a clusterhead (head_x and head_y). If the distance from the clusterhead
to the node is less than or equal to the cluster range, then the node choosesthe
clusterhead as its clusterhead and sets its my_level to my_level from the broadcast
message plus one, and its my_dis to my_dis from the broadcast message plus its
distance to the neighbor. The second case is when a node’s my_level is not equal to -
1. This indicates that it has already chosen its clusterhead. If the neighbor who sends
the broadcast has a different clusterhead, and the distance from the node to the
neighbor’s clusterhead is inside the cluster range, and the new calculated my_dis is
less than the previous my_dis from the node to its current clusterhead; then the node
will choose the neighbor’s clusterhead as its clusterhead and its my_level will be
changed to current neighbor’s level plus one. The third case occurs when a node’s
my_level is not equal to -1. The node receives a broadcast from its neighbor. If the
neighbor has the same clusterhead as the node, and the my_dis from the node to this
neighbor is less than the previous my_dis, then the node will choose the neighbor as
its parent and reset its my_level and my_dis as in the second case.

Iteration: The cluster generating process runs at most seven times (including
finalization) since each node has at most six neighbors[2]. After running DWEHC, a
node either becomes a clusterhead or becomes a child in a cluster, and its level in the
cluster is represented by my_level.

4 Analysis of DWEHC

4.1 Intra-cluster Communication

Intra-cluster communication is contentionless using TDMA. Each parent node polls
its direct children and forwards the data to its parent node until the data reaches the
clusterhead. The parent node may combine several data packets from its children
together with its own data into one packet.

Correctness and Energy Efficiency: DWEHC is completely distributed on the
whole network. Each node is either a clusterhead or a child node in a cluster. Each
cluster contains the minimum-power topology, which is locally optimal. Lemmas 1-4
prove these statements.

Lemma 1: After running DWEHC, a node is either a clusterhead or a child in a
cluster.

Proof. Assume a node A is neither a clusterhead nor a child after running DWEHC.
Node A can only have two conditions before running DWEHC: 1) A does not have
neighbors; 2) A has neighbors.

In the first case, since A does not have any neighbor, it will become a clusterhead
in step 2.1.c of cluster generation, which contradicts the assumption. In the second
case, since A is neither a clusterhead nor a child, this indicates that none of the A’s

P. Ding, J. Holliday, and A. Celik

330

neighbors have become clusterheads. If one of them were a clusterhead, A would have
to be a first level child. If A and some of its neighbors do not join any clusters, then,
one of them will become a clusterhead, which will satisfy one of the conditions to
become a clusterhead in 2.1.c of DWEHC. A will then become a child node.
Therefore, all A’s neighbors should join other clusters before finalization of DWEHC.
A is the only one which does not join any clusters at most after DWEHC’s six
iterations of cluster generation. In the finalization of DWEHC, A will become a
clusterhead, which contradicts the assumption.

Lemma 2: A node is covered by only one clusterhead.

Proof. A node A will set its my_level to only one value based on the distance to the
clusterhead (inside the clusterhead’s cluster range) and its my_dis variable. Therefore,
A will only belong to one clusterhead.

Lemma 3: DWEHC distributes the clusterheads well, i.e., when two nodes are within
each other’s cluster range, the probability of both of them becoming clusterheads is
very small.

Proof. Omitted because of space limitations.

Lemma 4: DWEHC generates each cluster with the minimum energy topology.

Proof. Let Figure 5 show a cluster generated by DWEHC. Let H be the clusterhead. V1
is the child of H, V2 is the child of V1, and Vm is the child of Vm-1. Path HV1 should be on
the minimum energy path from H to V1 since V1 is a neighbor of H (using the definition
of neighbor from Section 3.3 Related Concepts). Similarly, the path V1V2 should be
on the minimum energy path from V1 to V2 (V2 is a neighbor of V1).

Let us assume that HV1V2 is not a minimum energy path, which indicates that there

should exist another path HV1
′
V2 , where V1

′
is a neighbor of H, V2 is a neighbor of

V1
′
and HV1

′ α
V1

′
V2

α
+ HV1<

α
V1V2

α
+ . If such a node

V1
′

existed, then V2 would

have chosen
V1

′

to be its parent in step 2.2.c of DWEHC cluster generation. Therefore,
V1

′
 does not exist. This contradicts the assumption, thus, HV1V2 is a minimum energy

path. The same argument can be made to prove that HV1V2...Vm-1Vm is the minimum
energy path. Therefore, DWEHC provides the minimum energy topology inside each
cluster.

Complexity: DWEHC generates clusters in at most seven iterations. Each node
sends only O(1) broadcast messages. Lemmas 5-7 prove these statements.

Lemma 5. The complexity of broadcast message exchange is O(1) for each node.

Proof. In Tgenerating, during initialization, each node broadcasts two messages: 1) a
broadcast message of its coordinates; 2) a broadcast message including its weight.
During cluster generation, each node will announce information in two broadcast
messages: 1) my_head_num; and 2) my_level, my_dis, head_x, and head_y variables
after joining a cluster. A node which becomes a clusterhead only needs to send two
messages. As for the non clusterhead nodes, the minimum number of broadcast
messages exchanged is two and the maximum is twelve (changing its my_level in
each iteration). During finalization, a node with my_level=-1 broadcasts the same
variables as in cluster generation. Therefore, the minimum number of exchanged

Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor Networks

331

broadcast messages is four, and the maximum is fourteen. Therefore, the complexity
of broadcast message exchange is O(1) for each node.

Lemma 6. The complexity of a node becoming a clusterhead is O(1).

Proof. We will show that the complexity of a node becoming a clusterhead is O(1).
Note that, only a temporary clusterhead will become a clusterhead. Suppose A is a
temporary clusterhead and nodes from V1 to V5 are its neighbors as shown in Figure 6.
We will discuss two cases: A has neighbors which choose it as their temporary
clusterhead (we call this set neighbor1) and neighbors that do not choose it (we call
this set neighbor2). If at least one node is in neighbor1 and remains there, then A
becomes a clusterhead by the sixth iteration. Since some neighbors in neighbor2 may
join other clusters, the percentage of remaining nodes choosing A increases and A will
become a clusterhead even sooner.

Fig. 6. Node A and its neighbors Fig. 7. The longest distance between
two clusterheads

In the second case, A only has neighbors in neighbor2. In this case, all the nodes in
neighbor2 may choose other nodes as their temporary clusterhead. For example, V1
may choose B to be its temporary clusterhead. B could be a temporary head or not. If
B is already a temporary head, then B could become a head for the same reason as A
becoming head in the previous case. If B is not a temporary head and B does not join
any clusters, there are two possibilities. 1) B will become a temporary head with
neighbor V1. If B becomes a head, then V1 joins it or not. 2) B never becomes a
temporary head with V1 or not. Then there must exist another temporary head which
will become a head and B joins that cluster. The same is valid for the other nodes.
Therefore, if A does not join any clusters, then A itself will become a head by the time
DWEHC is finalized.

Scalability: Each parent node has a limited number of child nodes. This is
important in terms of scalability. DWEHC achieves good load balance per node,
prolonging the life time of a clusterhead.

4.2 Inter-cluster Communication

Inter-cluster communication is contention based. The clusterheads poll their first
level children, include their own data and transmit to the data center. The clusterheads
consolidate several data packets into one data packet thus reducing overhead. Next,
we prove that DWEHC provides end-to-end connectivity in the network.

To find out the conditions under which the clusters generated by DWEHC are
asymptotically almost surely (a.a.s) connected, let us consider a sufficiently large

P. Ding, J. Holliday, and A. Celik

332

network R 0 L,[]2
= , which is divided into square cells, with side Rc 2⁄ , where Rc is

the cluster range. This is because all the nodes within the same cluster should be
reachable from each other and the highest two nodes should be at the end of the
diagonal. We will show DWEHC ensures connectivity a.a.s when the clusterheads
transmitting range, Rt, is greater than or equal to 4Rc.

Lemma 7: Assume that n nodes, each with transmitting range Rc , are distributed

uniformly, independently, and randomly in R 0 L,[]2
= where R is a 2 dimensional

plane, and assume that the area is divided into square cells of size Rc 2⁄() Rc 2⁄()× .

If Rc
2
N kL

2
Lln()= , for some k>0, then each cell contains at least one node a.a.s.

Proof. Our proof is similar to [1], so, we omit it.

Lemma 8: When Lemma 7 holds, two clusterheads, H1 and H2, can communicate if
Rt 4Rc≥

, where Rt is the minimum transmitting range.

Proof. Our proof is similar to that in [18]. In Figure 7, we show a boundary case,
where H1 and H2 are heads. DWEHC generates clusters with the largest radius, Rc (Rc
is the cluster range). With lemma 3 holding, there is no overlap between the clusters
generated by DWEHC. With lemma 7 holding, there is at least one node in each

square cell size Rc 2⁄ . To cover cell 3, H1 can be any position of cell 5. The farthest
position for covering cell 3 is the H1 position shown in Figure 7. To cover cell 10, H2
can be in any position in cell 14, and the H2 position shown is the farthest position.
Thus, the distance between H1 and H2 is the farthest distance between any two
clusterheads. The distance between clusterheads H1 and H2 is 4Rc, which is the
minimum transmission range for H1 to reach H2.

Lemma 9: DWEHC generates multi-hop clusters a.a.s.

Proof. Omitted because of space limitations.

5 Simulation

In this section, we will evaluate the performance of DWEHC via simulation. We ran
simulations with 300 and 1000 sensor nodes, which are randomly dispersed into a field
with dimensions 1000 by 1000 meters and 2000 by 2000 meters. Simulations with 300
nodes are run for cluster ranges of 75, 100, 150, 200, 250, 300 meters. Those for 1000
nodes are run for cluster ranges of 100, 150, 200, 250, 300, 350, 400 meters. In each
simulation, we randomly initialize the nodes’ residual energy and generate the
topology. Each result represents the average of 20 simulation runs with the same
parameters.

Wireless transmission laws dictate that power attenuation be proportional to the
square of the covered distance (assuming fixed transmission power). If the distances
are small (up to hundreds of meters), then the power attenuation can be assumed to be
linear [19]. Other factors may also affect the received power, such as combined noise
or physical obstacles. For simplicity, we ignore all these factors in our simulations[4],
therefore, we consider the distance between two nodes as the only requirement to
decide the transmission power.

Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor Networks

333

In the simulations, we will compare DWEHC with HEED-AMRP[4]. HEED-
AMRP (average minimum reachability power) considers the average minimum power
levels required by the nodes within the cluster range of a node as the second
parameter besides using residual energy as the first parameter to elect clusterheads.
Both DWEHC and HEED-AMRP consider minimum power levels in the protocol
design with no assumption about the size and density of the network. The simulation
results will be discussed in two parts. In the first part, we compare DWEHC with
HEED-AMRP with respect to cluster characteristics. In the second part, we will
compare their energy usage and network lifetime.

5.1 Cluster Characteristics

In this section, we will compare DWEHC with HEED-AMRP in number of iterations
to terminate, and the features of chusterheads, such as the number of clusterheads, the
number of single node clusterheads, the maximum number of nodes in a cluster, and
the distribution of nodes in clusters. The clustering code is written in C and all nodes
run DWEHC synchronously. (Synchronization improves performance but is not
necessary for correctness.)

a) Iterations to Terminate

In HEED-AMRP, we initialize both CHprob and Cprob to be 0.05 (same as the
simulations in [4]), where CHprob is used to decide the probability to be a clusterhead,
and Cprob is used to initialize the residual energy. In each iteration, CHprob is
multiplied by two. A node terminates when CHprob reaches 1. So, HEED-AMRP takes
six iterations to terminate. In DWEHC, we use weight as the parameter to elect
clusterheads (see details about weight calculation in section 3.3). Theoretically,
DWEHC will take at most seven iterations (see proof in lemma 4). In fact, all
simulations took at most three iterations to terminate. So, we can see DWEHC will
use less time, Tgenerating in generating clusters .

b) Clusterhead Characteristics

1) With 300 nodes. In this section, all the simulations are done on a sensor network
with 300 nodes. Table 1 shows the number of clusters for various cluster ranges. We
see that HEED-AMRP generates significantly more clusters than DWEHC when the
cluster range varies from 75 to 150. Since more clusters means more interference
between the clusterheads and more overhead, HEED-AMRP will consume more
energy than DWEHC. From 200 to 300, HEED-AMRP produces slightly more
clusterheads. The performance also depends on the number of nodes inside a cluster,
which we will show in Table 4 and 5.

Table 2 shows the number of single node clusters. Single node clusters are not
desirable. When the cluster range varies from 75 to 100m, HEED-AMRP generates
more than twice as many single node clusters as DWEHC. Starting at 150, DWEHC
does not generate single node clusters, but HEED-AMRP has 4 and 1 when the cluster
range is 150 and 200, respectively. Single node clusters disrupt the load balance. So,
we expect the clusters generated by DWEHC to have better load balance than the
clusters generated by HEED-AMRP.

Table 3 shows the maximum number of nodes in a cluster. The maximum number
of nodes in a cluster in DWEHC is less than that of HEED-AMRP. This is because

P. Ding, J. Holliday, and A. Celik

334

 Table 1. # of clusterheads (300) Table 2. # of single node cluster (300)

Cluster range 75 100 150 200 250 300

DWEHC 57 30 19 16 12 8
HEED-AMRP 81 54 29 18 13 11

Cluster range 75 100 150 200 250 300

DWEHC 7 3 0 0 0 0
HEED-AMRP 14 8 4 1 0 0

 Table 3. # of nodes in clusters(300) Table 4. # of clusters with size 75 (300)

Cluster range 75 100 150 200 250 300

DWEHC 8 12 23 28 39 53
HEED-AMRP 11 15 24 40 43 78

Number of nodes <=5 <=10 >10

DWEHC 42 15 0

HEED-AMRP 65 15 1

each parent node has a limited number of child nodes and a node could join a cluster
only when at least one of its neighbors are inside the cluster. Therefore, DWEHC can
achieve load balance. HEED-AMRP may cause many nodes to join a cluster which
causes the clusterhead to deplete its energy quickly. For example, using DWEHC, the
maximum number of nodes is 53 when the cluster range is 300. However, HEED-
AMRP generates a 78-node cluster at this cluster range. Table 4 shows the number of
clusters (distribution of nodes) with different cluster size (the cluster range is 75m).
DWEHC has 42 clusters which have 5 or less, and 15 clusters which have 10 or fewer
nodes. However, HEED-AMRP generates more clusters (65) which have 5 or less
nodes. Note that, if child nodes send data to the clusterhead frequently, the intra-
cluster communication will consist of many short data packets. Thus, HEED-AMRP
will cause more overhead.

 Table 5. # of clusters with size 300(300) Table 6. # of clusters (1000)

of nodes 10 15 20 25 30 35 40 45 50 55 =78

DWEHC 2 2 0 1 1 0 0 1 0 1 0

HEED-AMRP 3 2 0 1 1 0 1 0 2 0 1

Cluster range 100 150 200 250 300 350 400

DWEHC 125 71 60 58 50 45 22
HEED-AMRP 203 111 66 43 32 27 19

Table 5 shows the number of clusters with different cluster size (the cluster range
is 300m). For example, when the number of nodes is less than or equal to 10 in a
cluster, DWEHC has two such clusters and HEED-AMRP has 3 such clusters. HEED-
AMRP also generates a cluster with 78 nodes but DWEHC generates one cluster with
the maximum number of nodes to 53 (see Table 3). From the previous tables, we can
see DWEHC realizes better load balance.

2) With 1000 nodes

In this section, all the simulations are done on a sensor network with 1000 nodes.
Table 6 shows the number of clusterheads when cluster range is between 100 and
400m. DWEHC generates fewer clusters than HEED-AMRP when the cluster range
varies from 100 to 200. This is because DWEHC realizes better clusterhead
distribution than HEED-AMRP does and has fewer single node clusters. Starting at
cluster range 250, HEED-AMRP generates fewer clusters than DWEHC. The reason
is each parent node in DWEHC has a limited number of nodes (see lemma 7) in a

Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor Networks

335

 Table 7. # of single node clusters(1000) Table 8. # MAXof node in clusters (1000)

Cluster range 100 150 200 250 300 350 400

DWEHC 10 2 0 0 0 0 0
HEED-AMRP 22 10 2 0 1 0 0

Cluster range 100 150 200 250 300 350 400

DWEHC 12 20 30 42 42 49 71
 HEED-AMRP 15 30 48 85 97 97 100

 Table 9.# of clusters with size 100(1000) Table 10.# 0f clusters with size 400(1000)

Number of nodes <=5 <=10 <=15

DWEHC 74 46 5
 HEED-AMRP 121 72 10

Number of nodes <=40 <=60 <=80 <=100

DWEHC 9 9 4 0
 HEED-AMRP 8 5 4 2

cluster which is determined by the cluster range and the my_dis (see details in section
3.3) variable of a node. In HEED-AMRP, all nodes inside a clusterhead’s range can
join the cluster without the limited number of nodes. Therefore, DWEHC has better
load balance than HEED_AMRP. Table 7 shows the number of single node clusters
when the cluster range varies from 100 to 400. HEED-AMRP generates many more
single node clusters than DWEHC.Table 8 shows the maximum number of nodes in
clusters. Similar to the 300-node network, HEED-AMRP always generates more
nodes in a cluster, which will make the clusterhead fail sooner. Table 9 shows the
number of clusters with different cluster sizes (the cluster range is 100). For example,
DWEHC generates 74 clusters with the number of nodes less than or equal to 5,
however, HEED-AMRP generates 121 such clusters, where 22 of those clusters are
single node clusters (as shown in Table 7). Therefore, DWEHC achieves better load
balance than HEED-AMRP. Table 10 shows the number of clusters with different
cluster size (cluster range 400). Here, DWEHC achieves better load balance than
HEED-AMRP. Since HEED-AMRP has two clusters which have 100 nodes, the
clusterheads will consume more energy in transmissions than other clusters which
have fewer nodes.

5.2 Simulation of Clustering Applications

The simulation results are implemented by using ns[20]. Table 11 shows the
parameters used in simulations. We have implemented two sets of simulations, one
with 300 nodes in one square kilometer, and the other with 1000 nodes in a four
square kilometer area. The sink node (i.e., the data center) is placed in the middle.

The following parameters are the same as those in [4]. In the simple radio model
that we use, energy expenditure is due to: 1) digital electronics, Eelec, (actuation,
sensing, signal emission/reception), and 2) communication, Eamp. In our model, Eamp

varies according to the distance d between a sender and a receiver where Eamp=
ε fs

assuming a free space model when d<d0 , while Eamp=
εmp , assuming a multipath

model when d d0≥ , where d0 is a constant distance (i.e., Threshold) that depends on
the environment. To transmit nb bits for a distance d, the radio expends
nb Eel ec Eamp d

n×+() J, where n=2 for d d0< , and n=4 for d d0≥ . To receive nb bits at the

P. Ding, J. Holliday, and A. Celik

336

receiver, the radio expends nb Eelec× J. This energy model assumes a continuous
function for energy consumption.

In DWEHC, a data packet size is 100 bytes. A parent non clusterhead node polls its
children. The children respond to the polling with a data packet of 100 bytes. The
parent node responds to the polling from its parent node with a data packet and the
size can be up to 800 bytes. The clusterheads send data packets to the data center with
the data packet size up to 800 bytes also. Clusterheads in both HEED-AMRP and
DWEHC send 800 byte-long data packets. In our simulations, a node always responds
to a polling. The clusters are regenerated every 300 TDMA frames (Tcluster=300) in the
300-node network. In the 1000-node network, the clusters are regenerated every 1000
TDMA frames (Tcluster=1000). In a real application, Tcluster should be high enough to
avoid re-clustering too often.

Next, we show the energy consumption in intra-cluster, inter-cluster
communications in a Tcluster, and the number of rounds until the first node dies. A
node is considered dead when 99% of its energy is used up.

 Table 11. Simulation Parameters

Parameter Simulation1 Simulation2

Number of Nodes 300 1000

 Network grid (0,0), (1000,1000) (0,0), (2000,2000)
 Sink (data center) (500, 500) (1000, 1000)
 Threshold distance 75m 75m
 Cluster range 75,100, ..., 300 100,150, ..., 400
 Eelec 50 nJ/bit 50 nJ/bit

ε fs 10pJ/bit/m

2
 10pJ/bit/m

2

εmp 0.0013 pJ/bit/m

4
 0.0013 pJ/bit/m

4

 Efusion 5nJ/bit/signal 5nJ/bit/signal
 Data packet size 100 bytes 100 bytes
 Broadcast packet 25 bytes 25 bytes
 Packet header size 25 bytes 25 bytes
 Round (Tcluster) 300 TDMA frames 1000 TDMA frames

 Initial energy 10 J/battery 10 J/battery

a) Intra-cluster Communication. Figure 8 shows the average energy spent per node
for intra-cluster communication in the network with 300 nodes in time Tcluster. HEED-
AMRP consumes more energy than DWEHC, and especially as the cluster range is
increased. Even at small cluster range, DWEHC saves energy. Since in HEED-AMRP
the nodes communicate directly with the clusterhead, when cluster range is increased,
so will the distance from the senders to the clusterheads. This will cause the senders
to consume more energy. In DWEHC, senders relay messages through their parent,
achieving optimal energy consumption within a cluster. For example, DWEHC
consumes 82.2% and 65.7% of the energy consumed by HEED-AMRP when the
cluster range is 75 and 100 respectively.

Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor Networks

337

Fig. 8. Average energy used for intracluster(300) Fig. 9. Average energy used for intra-cluster
(1000)

Figure 9 shows the average energy spent per node in intra-cluster communication
with 1000 nodes in time Tcluster. The results are similar to the 300-node network.
HEED-AMRP consumes significantly more energy than DWEHC as the cluster range
is increased. For example, DWEHC consumes 68.4% and 39.1% of the energy
consumed by HEED-AMRP when the cluster range is 100 and 150 respectively.

b) Inter-cluster Communication. Figure 10 shows the energy consumed in inter-
cluster communication in time Tcluster (simulation1) when the total number of nodes is
300. The x_axis is the cluster range and y_axis is the energy consumed for inter-
cluster communication in time Tcluster. HEED-AMRP consumes more energy than
DWEHC does. This is because DWEHC achieves better distribution than HEED-
AMRP. As shown in Table 1 and Table 2, HEED-AMRP generates more clusterheads
especially single node clusterheads than DWEHC. More clusterheads will cause more
contention between clusterheads during transmissions from clusterheads to data
center, and more overhead because fewer data packets can be consolidated by the
clusterheads. When the cluster range is 75, both because they both have the maximum
number of clusterheads. With the increase of cluster range, the number of
clusterheads decreases. The interferences caused by the contentions between
clusterheads will decrease. But, the energy consumption is also related to the
distances from the clusterheads to the data center. So, in DWEHC, energy consumed
with cluster range of 200 is larger than the energy consumed with DWEHC and
HEED-AMRP reach the highest in their energy consumption. This is cluster range of
150. The same condition occurs at HEED-AMRP. Figure 11 shows the energy

 Fig. 10. Energy used for intercluster (300) Fig. 11. Energy used for inter-cluster (1000)

P. Ding, J. Holliday, and A. Celik

338

consumed in inter-cluster communication in time Tcluster (simulation2) when the total
number of nodes is 1000. The results are similar to the previous one. DWEHC
consumes less energy in inter-cluster communication. Both of them consume the
maximum energy when cluster range is 100 since both of them generate the largest
number of clusterheads at cluster range 100.

c) The number of rounds until the first node dies. Figure 12 shows the number of
rounds of Tcluster until the first node dies when the total number of nodes is 300 in
simulation1. The x_axis is the cluster range and y_axis is number of rounds until the
first node dies. DWEHC lasts much longer than HEED-AMRP, except it is close to
HEED-AMRP when the cluster range is 75 and 300 where it is still 20.51% and
28.25% longer respectively. Although both DWEHC and

Fig. 12. # of rounds until the first node dies (300) Fig. 13. # of rounds until the first node
dies(1000)

HEED-AMRP consume the most energy at cluster range of 75 (see Figure 10), both
last the longest at this cluster range. This is because they contain many single node
clusters, which do not have much data to send. Figure 13 shows the number of rounds
of Tcluster until the first node dies when the total number of nodes is 1000 in
simulation2. The results are similar to the 300 nodes network. DWEHC lasts much
longer than HEED-AMRP does. They are closest when the cluster range is 100, where
DWEHC lasts 23.4% longer than HEED-AMRP.

6 Conclusions

In this paper, we proposed a distributed, weight-based Energy-Efficient Hierarchical
Clustering algorithm (DWEHC). DWEHC operates with only realistic assumptions.
The algorithm constructs multilevel clusters and the nodes in each cluster reach the
clusterhead by relaying through other nodes. DWEHC is well-distributed, and runs in
O(1) time which is a major advantage in a power-constrained sensor network. Our
simulations demonstrated that DWEHC generates well balanced clusters. Both intra-
cluster and inter-cluster energy consumption is greatly improved over clusters
generated by the HEED-AMRP algorithm.

Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor Networks

339

References

[1] D. M. Blough and P. Santi, “Investigating Upper Bounds on Network Lifetime Extension
for Cell-Based Energy Conservation Techniques in Stationary Ad Hoc Networks”, in
Proceedings of the ACM/IEEE International COnference on Mobile Computing and
Networking (MOBICOM), 2002.

[2] X.-Y. Li, and P.-J. Wan, “Constructing Minimum Energy Mobile Wireless Netwroks”, in
Proceedings of the ACM/IEEE International Conference on Mobile Computing and
Networking (MOBICOM), Rome, Italy, July 2001.

[3] W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan, “Energy-Efficient Communi-
cation Protocol for Wireless Microsensor Networkings”, in Proceedings of IEEE HICSS,
Jan 2000.

[4] S. Younis, S. Fahmy, “Distributed Clustering in Ad-hoc Sensor Networks: A Hybrid,
Energy-Efficient Approach”, in Proceedings of IEEE INFOCOM, March, Hong Kong,
China, 2004

[5] A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynh, “Max-Min D-cluster
Formation in Wireless Ad Hoc Networks”, in Proceedings of IEEE INFOCOM, March
2000.

[6] D. J. Baker and A. Ephremides, “The Architectural Organization of a Mobile Radio
Netwrok via a Distributed Algorithm”, IEEE Transactions on Communications, Vol. 29,
No. 11, pp. 1694-1701, Nov. 1981.

[7] A. Ephremides, J. E. Wieselthier and D. J. Baker, “A Design concept for Reliable Mobile
Radio Networks with Frequency Hopping Signaling”, Proceedings of IEEE, vol. 75, No.
1, pp. 56-73, 1987.

[8] A. K. Parekh, “Selecting Routers in Ad-Hoc Wireless Networks”, in Proceedings of ITS,
1994.

[9] C. R. Lin and M. Gerla, “Adaptive Clustering for Mobile Wireless Networks”, Journal on
Selected Areas in Communication, Vol. 15, pp. 1265-1275, Sep. 1997.

[10] A. D. Amis, and R. Prakash, “Load-Balancing Clusters in Wireless Ad Hoc Networks”, in
Proceedings of ASSET 2000, Richardson, Texas, Mar. 2000.

[11] M. Chatterjee, S. K. Das, and D. Turgut, “WCA: A Weighted Clustering Algorithm for
Mobile Ad Hoc Networks”, Cluster Computering, pp. 193-204, 2002

[12] S. Basagni, “Distrbuted Clustering for Ad Hoc Networks”, in Proceedings of International
Symposium on Parallel Architectures, Algorithms and Networks, pp. 310-315, June. 1999.

[13] C. F. Chiasserini, I. Chlamtac, P. Monti and A. Nucci, “Energy Efficient design of
Wireless Ad Hoc Networks”, in Proceedings of European Wireless, Feb. 2002.

[14] A. B. McDonald, and T. Znati, “A Mobility Based Framework for Adaptive Clustering in
Wireless Ad-Hoc Networks”, IEEE Journal on selected Areas in Communications, vol.
17, no. 8, pp. 1466-1487, Aug. 1999.

[15] S. G. Foss and S. A. Zuyev, “On a Voronoi Aggregative Process Related to a Bivariate
Poisson Process”, Advances in Applied Probability, vol. 28, no. 4, pp. 965-981, 1996.

[16] F. Baccelli and S. Zuyev, “Poisson Voronoi Spanning Trees with Applications to the
optimization of Communication Networks”, Operations Research, vol. 34, no. 1, pp. 619-
631, 1999.

[17] S. Bandyopadhyay and E. Coyle, “An Energy-Efficient Hierarchical Clustering Algorithm
for Wireless Sensor Networks”, in Proceedings of IEEE INFOCOM, April. 2003.

[18] F. Ye, G. Zhong, S. Lu, and L. Zhang, “PEAS: A Robust Energy Conserving Protocol for
Long-lived Sensor Netwroks”, in International Conference on Distributed Computering
Systems (ICDCS), 2003.

[19] W. C. Y. Lee, Mobile Cellular Telecommunications. McGraw Hill, 1995.
[20] The CMU Monarch Project. The CMU Monarch Project’s Wireless and Mobility

Extensions to NS.

A Distributed Greedy Algorithm for Connected
Sensor Cover in Dense Sensor Networks

Amitabha Ghosh and Sajal K. Das

Center for Research in Wireless Mobility and Networking (CReWMaN),
Department of Computer Science and Engineering,

The University of Texas at Arlington, Arlington, TX 76019
{aghosh, das}@cse.uta.edu

Abstract. Achieving optimal battery usage and prolonged network life-
time are two of the most fundamental issues in wireless sensor networks.
By exploiting node and data redundancy in dense networks, and by
scheduling nodes efficiently, minimum battery drainage is possible. In
this paper, we focus on the problem of Minimum Connected Sensor Cover
(MCSC), an NP-hard problem, and describe a distributed greedy algo-
rithm to generate sub-optimal connected sensor covers for homogeneous
dense static sensor networks. Our greedy algorithm is based on the no-
tions of maximal independent sets on random geometric graphs, and on
the structure of Voronoi diagram. We provide complexity analysis and
bounds on the cardinalities of maximal independent sets (MIS) for our
problem scenario, and derive an analytical expression for the size of the
sub-optimal minimum connected sensor cover. We verify the bounds on
the MIS using simulation.

1 Introduction

Wireless sensor networks are distributed, self-organizing, pervasive systems that
perform the tasks of sensing and collaborative data processing to provide useful
information about some physical phenomenon, which is typically stochastic in
nature. Sensor nodes are severely energy constrained due to limited battery
power, and are not likely to be replenished during their lifetime. Therefore,
it is very important to make use of their energy as optimally as possible and
enhance the overall network lifetime. In dense sensor networks, the data sensed
by geographically neighboring nodes exhibit a high degree of spatio-temporal
correlation, and thus, many such data maybe redundant. Being able to exploit
this redundancy is one of the ways to optimize energy usage and extend network
lifetime.

Some of the existing works on conserving battery power have focussed on
node scheduling algorithms based on the concept of sponsored sectors. Tian
and Georganas [1] proposed a node self-scheduling scheme based on sponsorship
criteria, by which each node decides whether to turn itself off or on using only
local information. Gao, et. al [2] analyzed the problem of estimating redundant

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 340–353, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Distributed Greedy Algorithm for Connected Sensor Cover 341

sensing area and described observations concerning minimum and maximum
number of neighbors required for complete redundancy of a particular node.

In literature some methods have been proposed ([3], [4]) to determine the
optimal number of nodes and their locations to provide complete coverage of a
given sensing region, while maintaining connectivity. Zhang and Hou [5] proved
that if the communication radius of a node is at least twice the sensing radius,
then complete coverage of a convex region guarantees a connected network. Al-
though, on one hand, the problem of determining the optimal number of nodes
for complete coverage is important; deploying redundant nodes in the region on
the other hand, contributes to network robustness and can overcome degrada-
tion in signal propagation or loss of nodes. However, when there are redundant
nodes, keeping them active all the time will lead to faster drainage of energy;
and thus, will reduce network lifetime. Now, since the data sensed by geographi-
cally neighboring nodes are spatio-temporarily correlated, it is often sufficient to
turn on only an optimal number of nodes, which can provide the required data
reliability, while putting others to sleep. However, the optimal number of nodes
selected should be able to guarantee the same quality of data, which would have
been provided if all the nodes were kept active. Since two of the factors which de-
termine data quality are coverage and connectivity [6], the problem boils down
to finding an optimal number of nodes that will provide the same quality of
coverage and network connectivity.

This leads to the problem of finding the minimum connected sensor cover
(MCSC), which is proved to be NP-hard for random deployment of nodes, as
the less general problem of covering points using line segments is already known
to be NP-hard [7]. Gupta, et. al [8] described an algorithm to construct a con-
nected sensor cover for a network topology with fixed sensing radius, within an
O(logN) factor of the optimal, where N is the number of nodes in the network.
Zhou, et. al [9] approached the MCSC problem, where each node can vary its
sensing and transmission radii and provided a Voronoi diagram based localized
algorithm and a greedy algorithm to construct sub-optimal network topologies
within a factor of O(logN) of the optimal size. Funke, et. al [10] proposed im-
proved approximation algorithms for connected sensor covers and gave worst
case approximation factors of 6π and 12 for grid placement and fine grid al-
gorithms, respectively. They also described a greedy algorithm that provides
complete coverage with an approximation factor of Ω(logN) from the optimal
connected sensor cover.

In this paper, we propose a distributed greedy algorithm that constructs a
sub-optimal MCSC using only local neighborhood information. Our basic idea
is to greedily select a large set of nodes in the first phase, such that none of
their sensing circles overlap with each other. Then we make those nodes select
an optimal number of neighbor nodes using local information, such that the
whole query region gets covered. We use the notions of maximal independent
sets (MIS) on random geometric graphs and the structure of Voronoi diagram
to find out sub-optimal MCSC. We also do complexity analysis of our algorithm
and provide bounds on the cardinality of MIS for our problem scenario. These

342 A. Ghosh and S.K. Das

bounds are directly related to the size of the sup-optimal MCSC, as will be seen
later.

The rest of the paper is organized as follows. In section 2, we formally in-
troduce the problem of MCSC and discuss the notions of Independent Set (IS)
and Voronoi diagram. In section 3, we describe a distributed greedy algorithm
to find a sub-optimal MCSC and illustrate it on a grid and random deployment
of nodes. In section 4, we show some preliminary simulation results and analyze
the algorithm in terms of time complexity and provide bounds on the size of
MIS. We conclude the paper in section 5.

2 Preliminaries

In this section, we give a formal description of the problem and introduce some
of the basic concepts related to independent sets in graphs and the structure
of Voronoi diagrams that we will use in our algorithm to find a sub-optimal
connected cover set.

2.1 Problem Formulation

We consider homogeneous static (dense) sensor networks, where all the nodes
have the same sensing radius, Rs and the same communication radius, Rc. We
assume that the communication radius is α times the sensing radius, i.e., Rc ≥
αRs, where α ≥ 2, and that the sensing range is a circular region of radius Rs

with the node at the center. Throughout this paper, we also assume that a node is
aware of its own location and its one-hop neighbors’ locations. Such localization
can be achieved by triangulation methods using received signal strengths or
proximity measurements [11].

Let us define the induced communication graph on the network as the undi-
rected graph GC = (V, ERc), where the nodes act as vertices and an edge exists
between any two nodes if the Euclidean distance1 between them is less than the
communication radius.

Definition 1. Connected Sensor Cover: Let a set S = {s1, s2, ..., sN} of N
nodes, be deployed in a sensing field of area A and let the sensing region covered
by node si be denoted by Ai. Given a query Q over a region AQ in the sensing
field, where AQ ⊆ A, a set Γ = {si1 , si2 , ..., sim} of m nodes is called a connected
sensor cover if the following two conditions hold.

1. AQ ⊆ Ai1 ∪ Ai2 ∪ ... ∪ Aim

2. The induced communication graph GC is connected, i.e., any pair of nodes in
the connected sensor cover can communicate with each other, either directly
or indirectly over a multi-hop communication path.
The Minimum Connected Sensor Cover problem is to find the Γ with mini-

mum number of nodes, such that the above two conditions hold. As mentioned

1 We will denote d(.) as the Euclidean distance function

A Distributed Greedy Algorithm for Connected Sensor Cover 343

earlier, MCSC is an NP-hard problem. In this paper, we propose a distributed
greedy algorithm to find a sub-optimal MCSC, and derive an analytical expres-
sion for the cardinality of this sub-optimal set.

Under our particular problem scenario, where a communication link exists
between a pair of nodes only if they are less than a certain distance (Rc) away,
the structure of Random Geometric Graphs (RGG) provides the closest resem-
blance for modelling such networks. It is a more realistic model compared to
the classical random graph models of Erdos and Renyi. We define the induced
sensing graph over the set of nodes as a random geometric graph, GS = (V, ERs),
where the nodes act as vertices and an edge exists between two nodes si and sj

if the Euclidean distance between them is less than twice the sensing radius, i.e.,
e(si, sj) ∈ ERs

if d(si, sj) < 2Rs. The rationaile for defining the induced sensing
graph in this way is to make sure that an edge exists between any pair of nodes,
only when their sensing circles intersect with each other. We will see in latter
sections how we select a large number of nodes, whose sensing circles do not
overlap with each other, and hence, cover a maximum area in the sensing field.
Next, we define the notion of independent set over the induced sensing graph.

Definition 2. Maximal and Maximum Independent Sets: An independent set
(IS) of a graph G is a subset of vertices, such that no two vertices in the subset
has an edge in G. A maximal independent set (MIS) is an independent set that
is not a proper subset of any other independent set, i.e., it is a largest set with
respect to set containment. A maximum independent set is an independent set
that has the largest possible number of vertices.

Note that, a maximum independent set is always maximal, but the converse
is not always true. In Fig. 1.(a), the set of vertices colored black forms a maximal
independent set. In this particular case, this is also a maximum IS. However, the
set of white vertices also forms a maximal independent set, but it it not the
maximum. It is well known that finding the maximum IS for a general graph is
NP-hard [12]. It is also NP-hard to approximate the size of the maximum IS. In
the case of sensor networks, we are interested in finding an MIS on the induced
sensing graph, which is basically a maximal set of nodes none of whose sensing
circles overlap with each other (see Fig. 1.(b)).

2.2 Voronoi Diagrams

In 2-dimension, the Voronoi diagram [13] for a set of discrete points divides the
plane into a set of convex polygons according to the nearest neighbor rule: all
points inside a polygon are closest to only one point. In other words, if S is
the set of points in the 2-D plane, then the convex polygon V (pi) for any point
pi ∈ S, is defined as the set of all points in the plane that are closest pi than
any other point pj , for i �= j. Mathematically,

V (pi) =
{
x ∈ �2 | d(x, pi) ≤ d(x, pj)

}
, pj ∈ S, i �= j. (1)

V (pi) is called the Voronoi polygon for pi, and the edges that constitute the
polygon are called its Voronoi edges. The Voronoi diagram VD(S) for the set of

344 A. Ghosh and S.K. Das

��

��� ���

Fig. 1. (a) Set of black vertices forms a maximum IS; set of white vertices forms a MIS
but not a maximum. (b) Induced sensing graph of 10 nodes. The set of 5 darkened
nodes forms a MIS

�����

������

Fig. 2. Voronoi diagram for a set of randomply deployed points in 2-D. Vk(pj) denotes
a Voronoi vertex

points S is the union of such polygons for all the points in S (see Fig. 2). A pair
of points pi and pj are called Voronoi neighbors if their polygons share a common
edge. The number of edges of V (pi) is equal to the number of neighbors of pi,
and each Voronoi edge is basically the perpendicular bisector between the two
points which share the common edge. We will use these properties of Voronoi
diagram in developing the proposed greedy algorithm for connected sensor cover.

3 Sub-optimal MCSC Algorithm

In this section, we describe the distributed greedy algorithm that generates a
sub-optimal MCSC for homogeneous dense static sensor networks. Our algorithm
runs in two phases, and always inherently maintains connectivity by selecting
the best node at each step, only when it is connected to one or more already
selected set of nodes.

A Distributed Greedy Algorithm for Connected Sensor Cover 345

Table 1. Notations and their meanings

Nsi(Rx) Set of nodes lying within radius Rx with si at the center

Nsi(Rx − Ry) Set of nodes lying in the annular region between the two circular

regions of radii Rx and Ry with si at the center and Rx > Ry

Γ Set that will contain the sub-optimal MCSC

V (si) Voronoi polygon of si

Vk(si) A Voronoi vertex of V (si)

Aholes(si) Total area of the holes lying within V (si)

AΓ Area covered by the nodes in the sub-optimal set Γ

The basic idea behind the first phase is to select a maximum number of nodes,
such that none of their sensing circles overlap with each other, and they form a
connected network. This essentially boils down to finding a connected MIS on
the induced sensing graph. In case of certain special graphs, it is possible to find
out the maximum IS in polynomial time; however, in case of RGG, upon which
we base our network model, finding the maximum IS is NP-hard. It is well known
and has been experimentally evaluated in [14], that for random graphs G(N, p)
2, the standard randomized and greedy algorithms can generate an IS of size
log1/(1−p)N , with high probability for fixed p. However, in our case of induced
sensing graph, where the sensing region is bounded and the degree of a node is
directly proportional to its number of neighbors, we need to consider inter-node
distances and maintain network connectivity while choosing the next node to be
included in the connected MIS. Thus, the sensing radius, rather than the node
density, plays a bigger role in determining the cardinality of the connected MIS,
as derived analytically and verified by simulation later, for our RGG model.
Here, we present a greedy algorithm that generates a large MIS on the induced
sensing graph, and derive lower and upper bounds on the cardinality of the MIS
in section 4.

In the second phase, the nodes that form the connected MIS in the first
phase construct a localized Voronoi diagram. Each of the nodes then finds
out coverage holes (regions in the sensing field that are not covered by any
sensor) [15] within its Voronoi polygon and chooses the best nodes that can
optimally cover those holes. Therefore, if each node follows the principle of
optimally covering all the holes within its own polygon, then at the end of
phase 2 the whole sensing field will get covered, and the selected set of nodes
will form a sub-optimal MCSC. In the next subsections, we describe in detail
the two phases of the algorithm and illustrate how they run on a grid and
random deployment of nodes. We introduce some notations in Table 1 that
are used in our discussion.

2 N is the number of vertices and p is the probability that an edge exists between a
pair of nodes.

346 A. Ghosh and S.K. Das

3.1 Phase 1

The connected MIS finding algorithm starts with the node that has compara-
tively fewer neighbors, i.e., one of the perimeter nodes, because intuitively they
will have fewer neighbors than the ones which are towards the center of the field.
The successive steps in this phase differ from that of the standard greedy algo-
rithms for random graphs, in the sense that we follow a distributed approach
that makes it practically difficult at every step to choose the minimum degree
node from the remaining eligible set of nodes. Also, we want the network to
be connected at every step, and because of which our eligible set of nodes is
constrained within one-hop neighbors of the last selected node. At every step,
the last selected node chooses a new eligible node which is closest to itself, and
includes it in Γ . A node sj is called eligible to another node si, if it satisfies the
following three criteria:

1. sj has not yet been included in the connected MIS, Γ
2. sj is a one-hop neighbor of si, i.e., sj ∈ Nsi

(Rs)
3. sj ’s sensing circle does not overlap with any of the already selected node’s

sensing circles.

Every node also informs the chosen closest eligible node about the area cov-
ered so far. However, if there exists no eligible node for si, then it passes over the
responsibility to its farthest one-hop neighbor and requests it to choose the next
node within that node’s one-hop neighborhood, such that none of the sensing cir-
cles overlap with each other. This process continues until none of the nodes has
any more eligible nodes left to choose from, at which point phase 1 terminates
with Γ containing a connected MIS that covers a total sensing area of |Γ |πR2

s

(because none of the sensing circles overlap with each other). Formalizing the
afore-mentioned rules we state the best eligibility criteria as follows.

Definition 3. Best Eligibility Criteria: If the the last selected node in Γ is si,
then the best eligibility criteria for it to choose the next node sj are the following:

1. sj ∈ Nsi
(Rc − 2Rs) \

(
Nsi

(Rc − 2Rs)
⋂ (⋃i−1

k=0 Nsk
(2Rs)

))
2. d(si, sj) = min {d(si, sk),∀ sk ∈ Nsi

(Rc − 2Rs)}
The first condition makes sure that sj ’s sensing circle does not overlap with

the sensing circle of any other already selected node, while the second condition
chooses the nearest eligible node of si. Note that, there can be more than one
node satisfying the best eligibility criteria, in which case, one of them is chosen at
random to break the tie. The stepwise description of phase 1 is given in Algorithm
1. Next, we illustrate the algorithm running on a grid and on randomly deployed
set of nodes.

Grid Network: Let the nodes are deployed on the intersection points of a
grid as shown in Fig. 3.(a). Without loss of generality, we assume that Rc =
2Rs. Phase 1 begins by choosing the first node s0 having minimum node degree
(though not unique in this particular case) that lies on the intersection of the

A Distributed Greedy Algorithm for Connected Sensor Cover 347

first row and first column. In the next step, s0 finds that there are two nodes
s1 and s3, which tie on the best eligibility criteria. Let s0 choose s1 at random
to break the tie. Next, s1 chooses s2 because that is the only node that satisfies
the best eligibility criteria, and in a similar way, s2 chooses s3. At this point,
phase 1 ends because no more nodes can be chosen without their sensing circles
getting overlapped. Note that, these four nodes construct a MIS on the grid,
which in this case is also the maximum IS. For special graphs like this, it is
always possible to find the maximum IS in polynomial time.

Random Deployment: We illustrate few steps of phase 1 of the algorithm
in case of random deployment as shown in Fig. 3.(b). Let s0 be the first node
chosen. In the second step, since s1 is the nearest one-hop neighbor of s0, which
falls in the annular region and belongs to the set Ns0(Rc−2Rs), it is included in
Γ . In the fourth step, while it is s2’s responsibility to choose the next best eligible
node, it chooses s3 that satisfies the best eligibility criteria. That is, s3 is the
closest one-hop neighbor of s2 that falls outside the hashed region in the diagram.
This hashed region is where the set of nodes Ns2(Rc −2Rs)

⋂ (⋃2
k=0 Nsk

(2Rs)
)

fall.

Algorithm 1. Phase 1: Distributed greedy algorithm to find a connected MIS
1: Initialization:
2: Γ ← φ;
3: Choose the first node s0 and include it in Γ ; sb ← s0;
4: Steps at each sb:
5: Nsb(Rc − 2Rs) ← φ;
6: for all sk ∈ Nsb(Rc) do
7: if 2Rs ≤ d(sb, sk) ≤ Rc then
8: Nsb(Rc − 2Rs) ← Nsb(Rc − 2Rs)

⋃
sk;

9: end if
10: end for
11: if Nsb(Rc − 2Rs) �= φ then

12: Find that sk ∈ Nsb(Rc − 2Rs) \
(
Nsb(Rc − 2Rs)

⋂ (⋃
sj∈Γ,sj �=sb

Nsj (2Rs)
))

,

such that d(sb, sk) is minimum;
13: Γ ← Γ ∪ sk;
14: else if Nsb(Rc − 2Rs) == φ then
15: sk ← sq, such that d(sb, sq) = max {d(sb, si), ∀si ∈ Nsb(Rc)};
16: end if
17: sk becomes the next sb to execute the same steps 5 − 16.

3.2 Phase 2

In this phase, the nodes that were chosen in phase 1 construct a Voronoi diagram
using neighborhood information. By properties of Voronoi diagram, the number
of edges of the Voronoi polygon for node si is equal to the number of its one-hop
neighbors. Now, since the nodes selected in phase 1 do not have their sensing
circles overlapped with each other, there will definitely exist holes in each of the

348 A. Ghosh and S.K. Das

�� �	

�
 ��

������

�
�

�
	

�
�

�

�
�

�
�

��
�

Fig. 3. (a) The induced sensing graph and the total coverage (shaded area) achieved
by the four nodes (s0, s1, s2, s3), selected in phase 1. (b) Best Eligibility Criteria for a
set of nodes deployed randomly

Voronoi polygons. In the first step of phase 2, one of these nodes si ∈ Γ is selected
at random, which then finds out holes existing within its polygon by the method
described in [15]. It basically splits the convex Voronoi polygon into a set of dis-
joint and mutually exhaustive triangles, and using simple techniques of line and
curve intersections finds out the area of coverage holes lying within its polygon.
Next, the best one-hop neighbor is chosen, such that it covers maximum amount
of hole within its polygon. The criteria for choosing the best node is as follows.
Node si determines a set of optimal points Psi

=
{
pk

si
, k = 1, ..., |Nsi

(Rc)|
}
,

in the neighborhood of each of its Voronoi vertex Vk(si). Each optimal point
satisfies the following rules [15]:

1. Rule1: pk
si

should lie on the angle bisector of the Voronoi vertex,
2. Rule2: d(si, p

k
si

) = min {2Rs, d(si, V (si))}.
These criteria ensure that if a node is placed at pk

si
, then the amount of

coverage hole lying in the vicinity of Vk(si) will get eliminated maximally. From
these optimal locations, node si also finds out approximate estimates Cov(pk

si
) of

the amount of coverage holes that will get eliminated if nodes were placed at these
optimal locations. This is illustrated in Fig. 4. Nodes A,B,C, D form Voronoi
diagram, and let A be the first node to eliminate holes within its polygon. P, Q, R
are the intersection points of the Voronoi edges with the lines that connect the
nodes. From the properties of Voronoi diagram, Area(ΔAV P) = Area(ΔBV P)
and Area(ΔAV R) = Area(ΔBV R), and node A knows that if it chooses the
best node (sb) close to vertex V , then that node will also eliminate almost an
equal amount of holes in the polygons of B and C combined, as it will do within
its own polygon. The point which corresponds to maximum such elimination of
holes is chosen as the best location for the next best node.

Once the new best node sb is selected, node si rechecks whether there still
exist holes within its polygon. If so, it recalculates the area of the holes lying

A Distributed Greedy Algorithm for Connected Sensor Cover 349

	

�
�

�

�

�

�

�

� �

Fig. 4. Optimal position to choose a best node using Voronoi diagram. The hashed
areas are equal: a = b, c = d

in the vicinity of the Voronoi vertices, except the one where sb lies and repeats
the same steps to choose another best node. This process continues until all
the holes get eliminated from si’s polygon, at which point, one of the neighbor
nodes of si that was part of the connected MIS in phase 1 gets the chance
to fill the holes within its polygon and so on. Thus, at the end of this phase,
when each node chosen from the first phase have guaranteed the existence of no
more holes within their polygons, the monitoring region gets completely covered
with a connected set of nodes that form the sub-optimal MCSC. Phase 2 of the
algorithm is described in Algorithm 2.

4 Analysis and Simulation

In this section, we present our analysis and preliminary simulation results of
the distributed greedy algorithm to calculate a sub-optimal MCSC. We derive
lower and upper bounds on the cardinality of the MIS generated in phase 1,
using which we calculate an approximate size of the sub-optimal MCSC. We
also provide a brief discussion on time complexity analysis for both the phases
of the algorithm.

4.1 Analysis

Let the total number of nodes deployed in the square sensing field of area A,
following a uniform random distribution be N , and let the cardinality of the
connected MIS generated in phase 1 be ζ. At any step during the first phase,
when a node gets included in Γ , all nodes that lie within a distance of 2Rs from
that node become ineligible to be included in Γ at a latter step. For instance, if
the first node chosen falls atleast 2Rs distance away from any edge of the field,
then the number of nodes that become ineligible is 4ρπR2

s − 1, where ρ = N/A
denotes uniform node density (here 1 is subtracted for the node which gets

350 A. Ghosh and S.K. Das

Algorithm 2. Phase 2 of the sub-optimal MCSC algorithm
1: Notations:
2: SMIS : Set of connected MIS that were selected in Phase 1;
3: Initialization:
4: SMIS ← Γ , AΓ ← π|SMIS |R2

s;
5: Nodes ∈ SMIS construct a localized Voronoi diagram;
6: Randomly choose one of the nodes si ∈ SMIS as the starting node;
7: Steps at each si ∈ SMIS:
8: if AΓ < AQ then
9: Calculate Aholes(si);

10: while Aholes(si) �= 0 do
11: Find optimal points {pk

si
} that satisfy Rules 1, 2 near all unmarked Vk(si);

12: Calculate Cov(pk
si

) for each optimal point;
13: Choose the point for which Cov(pk

si
) is maximum, call it pb

si
;

14: si chooses the node (sb) closest to pb
si

and includes it in Γ ;
15: Update Aholes(si), AΓ and mark the vertex near pb

si
;

16: si informs its neighbors of the amount of holes it eliminated, so that they can
update their calculations;

17: end while
18: end if

included). Note that, this is the maximum number of ineligible nodes at any
step, because there could be some nodes which are ineligible to more than one
node, and hence, should be counted only once. Similarly, the minimum number
of ineligible nodes at any step is zero. Therefore, let the number of ineligible
nodes at any step be β(4ρπR2

s − 1), where 0 ≤ β ≤ 1.
Now, since the ζ nodes do not have their sensing circles overlapped with each

other, the total number of nodes that lie within those ζ sensing circles is ζρπR2
s.

The remaining (N − ζρπR2
s) nodes must have become ineligible at some step

while finding the connected MIS. Therefore, we have:

ζβ(4ρπR2
s − 1) = (N − ζρπR2

s) (2)

or

ζ =
N

ρπR2
s(1 + 4β − β/ρπR2

s)
(3)

Neglecting the term β/ρπR2
s because it is very small, we get

ζ =
N

ρπR2
s(1 + 4β)

. (4)

Now, substituting β = 0 and β = 1 we get the upper and lower bounds, respec-
tively, for the cardinality of the connected MIS, which gives us

N

5ρπR2
s

≤ ζ ≤ N

ρπR2
s

. (5)

A Distributed Greedy Algorithm for Connected Sensor Cover 351

���

��� ���

Fig. 5. Simulation: Dark circles represent sensing ranges of nodes belonging to con-
nected MIS : (a) N = 150, R = 15m, AQ = 10, 000m2. (b) Variation of connected MIS
cardinality with sensing radius Rs

Using Eq. (4) and assuming that each of the ζ nodes on the average selects η
nodes in phase 2 to optimally cover the holes within its Voronoi polygon, we can
estimate the cardinality of the sub-optimal MCSC Γ as,

|Γ | = ζ(1 + η) =
N(1 + η)

ρπR2
s(1 + 4β)

. (6)

The time complexity of the first phase of the algorithm is output sensitive,
i.e., it depends on the cardinality of the connected MIS generated. Now, since the
“for loop” in Algorithm 1, in the worst case, runs over all the one-hop neighbors
of a node while choosing the best eligible node, the time complexity of the first
phase is O(ζN). For deriving the complexity of the second phase, note that the
localized Voronoi diagram is constructed by the nodes in the connected MIS.
This can be performed in O(ζlogζ) time. Next, each node checks for coverage
holes in the vicinity of each of its Voronoi vertices, the time complexity of which
is bounded by its number of one-hop neighbors. Hence, time complexity of the
second phase is O(ζlogζ).

4.2 Simulation

We considered a sensing field of size 100 x 100 m2 (the query region AQ is also
assumed to be of the same size) and performed simulation using Matlab and
GNU R, a software package for statistical computing and graphics. We deployed
the nodes uniformly randomly and varied their number as well as their sensing
radii, and assumed that the communication radius is thrice the sensing radius. In
Fig. 5.(a), we show a sample simulation run for AQ = 10, 000m2, N = 150, R =
15m. The 11 darker nodes form the MIS in the first phase, which then construct
Voronoi diagram to select another 18 nodes (the ones with ligher shade in the

352 A. Ghosh and S.K. Das

figure) to optimally cover the holes. In Fig. 5.(b), we show the variation of the
connected MIS size with respect to sensing radius. Note that, the cardinality of
the connected MIS satisfies the bounds given by Eq. (5).

5 Conclusions

In this paper, we described a distributed greedy algorithm for generating a sub-
optimal minimum connected sensor cover (MCSC) for homogeneous dense sensor
networks. Possibility to extend network lifetime by exploiting node redundancy
and guaranteeing 100% coverage of the query region has been the motivation to
this problem. We used the concepts of independent sets and Voronoi diagrams
to construct a sub-optimal MCSC. We also provided upper and lower bounds
on the cardinality of the MIS for random geometric graph model used to model
the sensor network. The exact determination of the heuristic parameter, η, that
we use to find the size of the sub-optimal MCSC is part of our future work. We
also plan to do extensive simulations and derive tighter bounds on the size of the
MIS. Instead of constructing the connected cover set greedily in a single phase,
like in [8], where the sensing ranges of nodes could overlap right from the first
step, we follow a different strategy of finding a large set (the connected MIS)
of nodes in the first phase where none of the sensing circles overlap with each
other. This gives us the maximum coverage that can be achieved by the set of
nodes in phase 1, which is ζπR2

s (where, ζ is given by Eq. (4). In phase 2, since
these set of non overlapping nodes optimally cover the holes within their Voronoi
polygons, the sensing field can be covered with a number of nodes, that is close
to optimal. The exact derivation of this sub-optimal bound is part of our future
work.

Acknowledgment

This work is supported by NSF ITR grant under Award No. IIS-0326505.

References

1. Di Tian and Nicolas D. Georganas, “A coverage-preserving node scheduling scheme
for large wireless sensor networks”, in Proceedings of the 1st ACM International
Workshop on Wireless Sensor Networks and Applications - WSNA’02, pp. 32–41,
Atlanta, Georgia, USA, Sep 2002.

2. Yong Gao, Kui Wu, and Fulu Li, “Analysis on the redundancy of wireless sensor
networks”, in Proceedings of the 2nd ACM International Conference on Wireless
Sensor Networks and Applications - WSNA’03, pp. 108–114, San Diego, California,
USA, Sep 2003. ACM Press.

3. Chi-Fu Huang and Yu-Chee Tseng, “The coverage problem in a wireless sensor
network”, in Proceedings of the 2nd ACM International Conference on Wireless
Sensor Networks and Applications - WSNA’03, pp. 115–121, San Diego, CA, Sep
2003.

A Distributed Greedy Algorithm for Connected Sensor Cover 353

4. Xiaorui Wang, Guoliang Xing, Yuanfang Zhang, Chenyang Lu, Robert Pless, and
Christopher Gill, “Integrated coverage and connectivity configuration in wireless
sensor networks”, in Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems - Sensys’03, pp. 28–39, Los Angeles, CA, Nov 2003.

5. Honghai Zhang and Jennifer C Hou, “Maintaining sensing coverage and connec-
tivity in large sensor networks”, in Proceedings of the International Workshop on
Theoretical and Algorithmic Aspects of Sensor, Ad hoc Wireless and Peer-to-Peer
Networks - AlgoSensors’04, Florida, USA, Feb 2004.

6. Amitabha Ghosh and Sajal K. Das, Coverage and Connectivity Issues in Wireless
Sensor Networks: Wireless, Mobile and Sensor Networks, John Wiley & Sons,
2005.

7. V. S. Anil Kumar, Sunil Arya, and H. Ramesh, “Hardness of set cover with
intersection 1”, in Proceedings of the 27th International Colloquium on Automata,
Languages and Programming - ICALP’00, pp. 624–635, Geneva, Switzerland, July
2000. Springer-Verlag.

8. Himanshu Gupta, Samir R. Das, and Quinyi Gu, “Connected sensor cover: self-
organization of sensor networks for efficient query execution”, in Proceedings of the
4th ACM International Symposium on Mobile Ad Hoc Networking & Computing -
MobiHoc’03, pp. 189–200, Annapolis, Maryland, USA, Jun 2003. ACM Press.

9. Zongheng Zhou, Samir Das, and Himanshu Gupta, “Variable radii connected sensor
cover in sensor networks”, in Proceedings of the 1st IEEE International Conference
on Sensor and Ad Hoc Communications and Networks - SECON’04, pp. 387–396,
Santa Clara, California USA, Oct 2004.

10. Stefac Funke, Alex Kesselman, Zvi Lotker, and Michael Segal, “Improved approxi-
mation algorithms for connected sensor cover”, in Proceedings of 3rd International
Conference on Ad Hoc Networks & Wireless ADHOC-NOW’04, pp. 56–69, Van-
couver, British Columbia, Canada, July 2004.

11. Neal Patwari and III Alfred O. Hero, “Using proximity and quantized rss for sensor
localization in wireless networks”, in Proceedings of the 2nd ACM International
Conference on Wireless Sensor Networks and Applications - WSNA’03, pp. 20–29,
San Diego, CA, Sep 2003.

12. Michael R. Garey and Davis S. Johnson, Computers and Intractability, a Guide to
the Theory of NP-Completeness, W. H. Freeman and Company, 1991.

13. Franz Aurenhammer, “Voronoi diagrams a survey of a fundamental geometric data
structure”, ACM Computing Surveys, vol. 23, pp. 345–405, 1991.

14. Mark K. Goldberg, D. Hollinger, and M. Magdon-Ismail, “Experimental evalua-
tion of the greedy and random algorithms for finding independent sets in random
graphs.”, in Proceedings of the 4th International Workshop on Efficient and Ex-
perimental Algorithms, WEA’05, Santorini Island, Greece, May 2005 (to appear).

15. Amitabha Ghosh, “Estimating coverage holes and enhancing coverage in mixed
sensor networks”, in Proceedings of the 29th Annual IEEE Conference on Local
Computer Networks, LCN’04, pp. 68–76, Tampa, Florida, Nov 2004.

Infrastructure-Establishment from Scratch
in Wireless Sensor Networks

Stefan Funke and Nikola Milosavljevic�

Computer Science Department,
Stanford University, Stanford, CA 94305, U.S.A

{sfunke, nikolam}@stanford.edu

Abstract. We present a distributed, localized and integrated approach for estab-
lishing both low-level (i.e. exploration of 1-hop neighbors, interference avoid-
ance) and high-level (a subgraph of the unit-disk graph) infrastructure in wireless
sensor networks. More concretely, our proposed scheme constructs a subgraph of
the unit-disk graph which is connected, planar and has power stretch factor of 1
(the well-known Gabriel graph intersected with the unit disk-graph) and – most
importantly – deals explicitly with the problem of interference between nearby
stations. Due to our interleaved approach of constructing low- and high-level in-
frastructure simultaneously, this results in considerable improvements in running
time when applied in dense wireless networks.

To substantiate the advantages of our approach, we introduce a novel distribu-
tion model inspired by actual sensing applications and analyze our new approach
in that framework.

1 Introduction

Different from wired networks, wireless networks typically consist of a set of nodes
that initially have no information about how to communicate with each other. Hence
before running any application-specific algorithms and procedures on such a network, a
basic communication infrastructure must be established. Low-level communication in-
frastructure essentially comprises learning about which other stations are within direct
communication range and providing for interference-free communication between such
neighboring stations. The high-level communication infrastructure is typically built by
selecting a subset of the links identified during the low-level infrastructure establish-
ment such that only those links will be used for communication within the network.

Assuming disk radii correspond to transmission ranges of individual stations, the in-
formation about which stations can receive messages from which other stations is cap-
tured in the so-called disk graph DG, or unit-disk graph UDG in case of uniform trans-
mission ranges (the former a directed, the latter a bidirectional or undirected graph).
Common high-level structures on top of the UDG/DG are for example the Gabriel graph

� Both authors were supported by the Max Planck Center for Visual Computing and Communi-
cation (MPC-VCC) funded by the Federal Ministry of Education and Research of the Federal
Republic of Germany (FKZ 01IMC01).

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 354–367, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Infrastructure-Establishment from Scratch in Wireless Sensor Networks 355

GG(UDG), the relative neighborhood graph RNG(UDG), the Yao graph Y (UDG), or
the (localized) Delaunay graph LD(UDG). Regarding interference-free communication
there are basically two approaches. First, there is the possibility to resolve interference
on the MAC-layer on a per-communication basis. Secondly, there is the concept of a
so-called D2-coloring of the nodes of the disk graph. Here one color corresponds to
one time slot/frequency and makes sure that no nodes at hop-distance less than or equal
to 2 in the UDG transmit at the same time; hence no interference – not even at hidden
terminals – can occur.

Typically low-and high-level infrastructure are constructed sequentially, in a sense
that first the low-level infrastructure is built, and then the algorithms constructing the
high-level infrastructure build upon the existing low-level infrastructure. As we will
exhibit in Section 2, this inherently induces some inefficiencies, especially in scenarios
where inter-station distance is small compared to their transmission range.

Related Work

There is a plethora of proposed algorithms for identifying a high-level infrastructure
from a given unit-disk graph, such as [2], [9], [10], [14]. Common to all of these ap-
proaches is that they rely on a pre-existing low-level infrastructure, in particular they
assume knowledge of all 1−hop neighbors in the UDG and interference-free commu-
nication between adjacent stations in the UDG. [5] is an exception as it explicitly deals
with the problem of interference and solves it by constructing a D2-coloring of all
nodes in the UDG. Still, their algorithm assumes knowledge of all 1-hop neighbors in
the UDG.

Most related to our work are the very recent papers by Kuhn et al. [6],[8], where
the authors develop very interesting protocols for structuring a set of newly deployed
wireless nodes without any assumption about a preexisting infrastructure. In [1] and
[7] high-level infrastructures are examined with respect to their interference-inducing
properties. Both papers introduce formal definitions of interference and propose new
algorithms for which the resulting infrastructures exhibit low interference.

Our Results

In this paper we present an integrated approach for establishing both low- and high-
level infrastructure for a set of deployed wireless stations. Our distributed protocol
assumes no knowledge about 1-hop neighbors or interference-free communication be-
tween neighboring stations. It constructs the Gabriel graph GG(UDG)1 consisting of
all Gabriel edges of UDG, respective transmission ranges for each node of the network
such that all nodes connected by an edge in GG(UDG) can communicate with each
other, as well as a valid coloring of the nodes such that interference-free communication
between nodes in GG(UDG) is ensured. Choosing GG(UDG) as high-level structure
guarantees that multi-hop communication between any two stations can be performed
using the minimal amount of energy.

1 In fact we chose the Gabriel graph as an example; other high-level structures should be con-
structible in a similar fashion.

356 S. Funke and N. Milosavljevic

Our scheme requires network nodes to have variable transmission power upper
bounded by 1, to be able to detect if one or more neighboring stations, including it-
self, are sending a signal (the message is actually received only if exactly one station is
transmitting), and to have access to a global clock and positioning device like GPS.

Furthermore, upon deployment each node is provided with a value ε, which can be
set as some lower bound for the minimum inter-node distance (e.g. as derived from the
physical size of the nodes), and a parameter Δ̃, which denotes the maximum number
of stations nearby a node, where ’nearby’ is defined for each node relative to the trans-
mission radius assigned after the construction of the high-level infrastructure, and not
relative to the maximum transmission radius.

The running time of our distributed protocol is O(Δ̃3/2 log 1
ε log2 n) and all the above

properties are fulfilled with high probability of 1− 1
nφ for any desired value φ.

To substantiate the usefulness of our protocol we introduce a novel distribution
model for node deployment which is inspired by actual sensing applications. We show
that in this model the value Δ̃ is a constant, hence making our algorithm extremely fast
in such scenarios. We emphasize though, that by choosing Δ̃ = n, our algorithm works
for any node distribution.

In Section 2 we recap basic procedures of low- and high-level infrastructure estab-
lishment and give an intuitive derivation of the parameter Δ̃. Section 3 describes our
algorithm in detail and analyzes its performance. In Section 4 we present our new dis-
tribution model and prove that in this model the parameter Δ̃ is a constant. Finally we
conclude with some remarks and open problems.

2 Disk Intersection Graphs, Interference, and Power Efficiency

In this section we will introduce the basic concepts necessary for understanding our pro-
tocol, presented in the next section. Throughout we assume the standard communication
model based on the disk graphs (DG), where the transmission ranges are represented by
disks (of possibly different radii), centered at node locations. A disk graph correspond-
ing to equal communication radii for all nodes is called a unit-disk graph (UDG). We
remark, as this will be important later, that DGs are in general directed graphs, while
UDGs are bidirectional (equivalently, undirected).

2.1 Interference

We assume that all station use the same frequency, so due to interference, not all com-
munication suggested by the unit-disk graph is guaranteed to succeed. Suppose two
stations transmit at the same time. If they are within each other’s communication range,
they both experience direct interference. Also, any station in the intersection of their
communication ranges experiences indirect interference. The latter is also called hid-
den terminal problem.

The problem of interference can be dealt with on per-communication basis in the
MAC-layer, typically using a handshake mechanism. Clearly, if n nodes are distributed
densely enough so that the communication graph is complete, it might take Ω(n) time
for a handshake to succeed. Thus in the following we focus on a different approach.

Infrastructure-Establishment from Scratch in Wireless Sensor Networks 357

Resolution by D2-coloring. A natural way to avoid collisions or interference in case
of uniform transmission ranges is to make sure that stations within 2-hop distance in
UDG never transmit at the same time. Abstractly this corresponds to a coloring of the
vertices of UDG such that two vertices with graph distance less or equal to 2 always
have different colors.

Computing a D2-coloring with the minimum number of colors is NP-hard, but sev-
eral approximation algorithms are known, both centralized and distributed. See [11],
[12], [13]. The distributed algorithm in [5] computes with high probability (w.h.p.) a
valid D2-coloring of a given UDG, in time O(δ2 log2 n), where δ2 is an upper bound on
the size of any 2-hop neighborhood 2. A variant of this algorithm will be used in our
approach as a subroutine.

The concept of D2-coloring also extends to directed disk graphs DG derived from
stations with non-uniform transmission radii. A necessary and sufficient condition for
interference-free communication between nodes in DG is the following: for any node
u, and incoming edges (v1,u),(v2,u), . . . , each pair of nodes vi and v j, i �= j must be as-
signed different colors/time slots (also different from u). Otherwise they might transmit
at the same time to u, resulting in a collision. Hence, if we denote by δ the maximum
indegree of a node in DG, δ + 1 is a lower bound on the number of colors/time slots
required for interference-free communication. Still, to our knowledge there is no result
stating that O(δ) colors are enough to color this directed graph such that the above
condition is satisfied.

2.2 Power Efficiency — The Gabriel Graph [4]

Wireless sensor networks typically employ indirect, multi-hop communication, so hav-
ing a good routing algorithm is crucial. Among other properties, power efficiency is
often required: total energy needed to transmit a message along a route produced by the
algorithm has to be close to the minimum over all possible routes for given source and
destination. If we assume that required energy grows at least quadratically with distance
to be spanned, and that total energy of a path is the sum of the energies of the individ-
ual links traversed, then a simple argument shows that power-optimal paths within UDG
only contain Gabriel edges, i.e. edges whose diametral balls are empty of other stations.
Hence restricting to the Gabriel edges in UDG (we will call this graph GG(UDG)) en-
sures that power-optimal routing is still possible. Schemes for computing the Gabriel
graph and variations of it have been proposed in the literature, but all of them assume
knowledge of the 1-hop neighborhood as well as a solution to the interference problem.

2.3 A Typical Scenario in Sensor Networks

Suppose that many wireless sensors are dispersed over an area for the purpose of moni-
toring physical quantities such as temperature, humidity, exposure to light etc. The sen-
sors have to self-organize into a network, in order to efficiently answer queries injected
from the outside world. One way to achieve such an organization is as follows:

2 In fact, they state the algorithm in terms of the maximum degree (maximum number δ1 of
1-hop neighbors). But in the proof they derive δ2, which is O(δ1) for unit-disk graphs.

358 S. Funke and N. Milosavljevic

1. establish a low-level infrastructure, i.e.
– Let every node discover its 1-hop neighborhood in the communication graph

w.r.t. its maximal transmission radius.
– Compute a D2-coloring of this communication graph to provide for conflict-

free communication.
2. establish the high-level infrastructure and adjust the low-level infrastructure

– Construct a suitable routing substructure, e.g. the Gabriel graph GG(UDG),
using the existing low-level infrastructure.

– Adjust low-level infrastructure to the new adjacency relationships by decreas-
ing the transmission radii where possible, and and reducing the number of col-
ors in the D2-coloring.

See Figure 1 for a graphical illustration of the process. Observe that in the initial
low-level infrastructure as many as n colors are necessary, since the nodes are densely
placed. Next, the Gabriel edges are identified, and each node adjusts its transmission
range to just be able to reach its furthest neighbor in GG(UDG). The last phase is
D2-coloring of the resulting disk graph DG, corresponding to the reduced radii.

Fig. 1. The communication graph for
a dense node distribution (top) and
the adjusted transmission radii after
computing a high-level infrastructure
(bottom)

We expect the number of required colors/time
slots to drop considerably due to the decreased
transmission radii. In particular, for dense node
distributions, after construction of the high-level
infrastructure, nodes communicate only with sta-
tions at a very short distance. The amount of in-
terference that the coloring has to cope with is
drastically reduced. Still, to construct the high-
level infrastructure, most known algorithms re-
quire collision-free communication between sta-
tions within distance 1, and hence a coloring w.r.t.
the maximum transmission ranges has to be com-
puted before, even though it will not be needed in
the final version of the communication graph.

The goal of this paper is to avoid this poten-
tially wasteful procedure and use time slots only
up to an amount as roughly required by the final
assignment of transmission powers anyway.

2.4 The Local Vicinity Size Δk

Before we can present our remedy for the problem
sketched above, we need to have a closer look at

some properties of the resulting communication graph DG after adjustment of the trans-
mission powers. In particular, we are interested in a parameter that estimates how many
colors are necessary in a D2-coloring of the final structure.

As mentioned above, if δ is the maximum indegree of a node in a DG, then δ +
1 is a lower bound on the number of colors/time slots required for interference-free
communication. For the analysis of our algorithm we need to get a handle on a simple

Infrastructure-Establishment from Scratch in Wireless Sensor Networks 359

and geometric parameter that relates the node distribution and this quantity δ. Hence let
us introduce a parameter Δk, which provides us with an upper bound on δ (and later it
will also be an upper bound on the number colors needed for a valid coloring).

Definition 1. For a node v, let Δk(v) be the number of nodes contained in a disk of
radius k · |vu|, where (v,u) is the longest edge in GG(UDG) adjacent to v. The quantity
Δk = maxv Δk(v) is called the local vicinity size.

For not too contrived node distributions we expect Δk = O(δ), but again, showing a
tight bound seems hard. See Figure 2 for an example of the local vicinity size. It is now
easy to see that for large enough k, Δk yields an upper bound on δ.

Lemma 1. For k ≥ 2 we have δ+1≤ Δk.

Proof. Consider the node v which maximizes the indegree in DG. Let (u,v) be the
longest incoming edge of v. Clearly u has a Gabriel edge adjacent with length at least
|uv|. Considering the ball B of radius 2|uv| centered at u, B must contain all w with
(w,v) ∈ DG. Hence Δ2 ≥ δ+1.

s

Fig. 2. Local vicinity sizes Δ1(s) =
5,Δ2(s) = 12,Δ3(s) = 20 (only Gabriel
edges of S and its 1-hop neighbors are
drawn)

Our algorithm in the next section will use
the local node density Δ̃ = Δk for some con-
stant k ≥ 2 as an estimate for the number of
time slots necessary to achieve interference-
free communication. The intuition behind this
parameter is that the number of colors re-
quired should be somewhat proportional to
the maximum number of nearby stations of
some node. Here ’nearby’ has to be seen rel-
ative to the longest Gabriel edge adjacent to
that node. In non-contrived node distributions
we expect Δ̃ to be quite small or even con-
stant, but certainly smaller than the maximum
degree of the original unit-disk graph cor-
responding to the assignment of maximum
transmission ranges.

3 An Integrated Approach to Infrastructure Establishment

As we have seen, in case of very dense sensor distributions, sequential infrastructure
establishment introduces an inherent overhead. In the following we will remedy this
problem by providing an integrated approach for constructing both low- and high-level
infrastructure.

The basic idea of our approach is very straightforward: locally, at every node, we
start exploring its neighborhood gradually by increasing its transmission range. For
each transmission radius, one then constructs a local D2-coloring using a variation of
the algorithm in [5]. As we will then see, one can guarantee that w.h.p. this approach
actually finds exactly the edges of GG(UDG).

360 S. Funke and N. Milosavljevic

• r ← ε
• while (r < 1)

1. ExploreDirectNeighborhood(s,r, Δ̃)
2. LocalD2Color(s,r, Δ̃)
3. AnnounceNApproveEdges(s)
4. r ← r ·2

• FinalD2Color(s, |ls|, Δ̃)

Fig. 3. Infrastructure-establishment protocol

Provided with two parameters, ε
and Δ̃, every node s locally executes
the protocol in Figure 3. Here ε is
a parameter essentially capturing the
minimum distance between any two
nodes, that can be for example de-
rived just from the physical dimen-
sions of the wireless nodes. So each
node executes for log 1

ε rounds the
exploration and announcement pro-
tocol to learn about its neighborhood

and construct the high-level substructure GG(UDG). At the end, a valid D2-coloring
of the final communication graph is computed. Let us now describe the subroutines in
more detail.

3.1 Exploration of the r-Neighborhood – ExploreDirectNeighborhood(s,r, Δ̃)

This routine makes sure that a node s w.h.p. announces its presence to all nearby nodes
that need to know about it. More precisely, we will show that for r ≤ ε · 2�log2(ls/ε),
where ls denotes the length of the longest edge adjacent to s in GG(UDG), w.h.p. all
nodes ’nearby’ s in the unit-disk graph of disks of radius r get to know about their 1-hop
neighborhood. Note: We do not guarantee this property for larger values of r, since it
turns out that this information is not necessary for constructing all edges of GG(UDG).

This exploration/announcement procedure consists of κ · logn rounds, each of which
lasts for 2Δ̃ time steps. In each round a node chooses a random number 1≤ t ≤ 2Δ̃ and
transmits its ID together with its position at time step t in this round within radius r. Let
us first convince ourselves that all neighbors of s get to know about s’s presence w.h.p.

Lemma 2. After 2κΔ̃ logn time steps, with high probability of 1− 1
nκ−1 , all neighboring

nodes (w.r.t. transmission radius r) of a node s with r ≤ ε · 2�log2(ls/ε) know about s’s
presence if Δ̃ = Δk for k ≥ 4.

Proof. For a given node, the probability that its announcement was overheard by its
neighbors is at most 1/2, since there are at most Δ̃ other nodes which could interfere
with its announcement (since we have r ≤ 2ls and Δk for k ≥ 4 counts the number of
all 2-hop neighbors of s w.r.t. transmission radius r). The probability that in none of the
κ · logn rounds its announcement was successful is bounded by (1

2)κ·logn = 1
nκ . Hence

the probability that all nodes with r ≤ ε ·2�log2(ls/ε) have successfully announced their
presence to their neighbors is at least 1− 1

nκ−1 .

In the same setting, we can also show that all h-hop neighbors of s get to know about
their 1-hop neighbors w.h.p. This will be needed later in the proofs.

Lemma 3. After 2κΔ̃ logn time steps, with high probability of 1− 1
nκ−2 , all nodes within

h-hop distance from some station s get to know about their neighborhood (w.r.t. trans-
mission radius r) if r ≤ ε ·2�log2(ls/ε) and Δ̃ = Δk for k ≥ 2(h+1).

Infrastructure-Establishment from Scratch in Wireless Sensor Networks 361

Proof. Consider some node t within h-hop distance of s. For t to get to know about
the set N1 of its 1-hop neighbors, each of the nodes in N1 should in some round have
announced its presence without interfering with another node in N1. Hence if we have
Δ̃≥ |N1|, the probability for one announcement to get through is ≥ 1/2 in each round.
Using the same argumentation as in Lemma 2, it follows that the probability of each
node getting at least one announcement through in κ logn rounds is at least 1− 1

|n|κ−1 .

Furthermore, all nodes within the h-hop neighborhood then get to know about their
neighbors with probability≥ 1− 1

|n|κ−2 . We now need to relate that to |ls|, i.e. the longest

adjacent edge of s in GG(UDG). This can be easily achieved by requiring that Δ̃ bounds
the number of nodes contained within distance (h + 1) · r. Hence the Lemma holds for
Δ̃ = Δk for k ≥ 2(h+1).

Correctness of our whole algorithm will later be established by focusing on one par-
ticular node s and show that when r = ε ·2�log2(ls/ε), all edges adjacent to s in GG(UDG)
are found w.h.p. and that wrong edges are never created. Towards this goal, Lemma 3
states that for the appropriate choice of Δ̃, ExploreDirectNeighborhood(s,r, Δ̃) with
high probability ensures that all h-hop neighbors of s get to know about their immedi-
ate neighbors in the unit-disk graph induced by transmission radius r.

3.2 Local D2-Coloring – LocalD2Color(s,r, Δ̃)

This subroutine ensures that for a node s and transmission radius r with r≤ ε·2�log2(ls/ε)
all 1- and 2-hop neighbors and s have distinct colors with high probability. Again, we do
not guarantee anything for larger values of r, since this is not necessary for constructing
all edges of GG(UDG). Our procedure is a slight variation of the one proposed in [5].
Next, we sketch the latter and briefly discuss the changes needed for our algorithm.

The Algorithm by Parthasarathy/Gandhi for D2-Coloring. Parathasarathy/Gandhi
in [5] have presented an algorithm for D2-coloring of a unit-disk graph. Their algorithm
assumes that each node knows its 1-hop neighbors and a bound on the number of 2-hop
neighbors.

Each node maintains a list of c potential colors it can choose from. The algorithm
proceeds in rounds, in each of which typically some so-far-uncolored nodes choose a
color from their list, and if this color has not been chosen by any 1- or 2-hop neighbors,
these color assignments become permanent, and all 1- and 2-hop neighbors remove the
respective colors from their color lists. The algorithm terminates after t rounds after
which with high probability all nodes have been assigned colors which are a valid D2-
coloring provided a suitable choice of the parameters c and t.

One round consists of the following 4 phases: TRIAL, TRIAL-REPORT, SUCCESS,
and SUCCESS-REPORT.

The TRIAL phase consists of c time slots. An uncolored node u decides with prob-
ability 1/2 to wake up, choose a random color from its list, and transmit a TRIAL
message {ID(u),color(u)} at the time slot corresponding to the chosen color.

The TRIAL-REPORT phase consists of b blocks of c time slots each. At the be-
ginning of this phase each node composes a TRIAL-REPORT containing all TRIAL

362 S. Funke and N. Milosavljevic

messages that node received in the previous phase. Then in every block it chooses a
random time slot among the c slots available in a block, and sends its TRIAL-REPORT.

The SUCCESS phase consists of c time slots. At the beginning of this phase, every
awake node u determines if the color it had chosen in the first phase is safe, i.e. if
TRIAL-REPORTs have been received from all neighbors, each contains u, and none
contains the same color chosen by another node. If all these conditions are met, u sends
a SUCCESS message {ID(u),color(u)} in the time slot corresponding to color(u). u
will not participate in future TRIAL and SUCCESS phases.

The SUCCESS-REPORT phase is similar to the TRIAL-REPORT phase. Nodes
prepare SUCCESS-REPORTs and send them in random time slots over r rounds. But
additionally, at the end of this phase, all uncolored nodes remove the colors used in
SUCCESS-REPORTs that they have received.

Parthasarathy and Gandhi prove that for c = O(max# D2-neighbors)3, t = O(logn),
and b = O(logn), their algorithm computes a valid D2-coloring of the unit-disk graph
with high probability≥ 1− 1

nχ for arbitrary χ > 0 (the constant factors for c, t,b depend
on the desired success probability). Clearly, the overall running time is O(c log2 n). They
establish correctness of their algorithm by proving the following key facts (we refer to
[5] for a detailed exposition of the proofs):

1. the probability that after completion of the procedure a node is still uncolored can
be bounded by 1

nψ for arbitrary ψ≥ 1
2. the probability that any two nodes u,v at 1- or 2-hop distance end up with the same

color can be bounded by 1
nψ for arbitrary ψ≥ 1

Can we apply their algorithm directly in our setting, where for a fixed transmission
range r we want to compute a valid D2-coloring of the induced disk graph? — Unfor-
tunately not! In fact, in this graph we do not have a bound on the number of 1- or 2-hop
neighbors that is valid for all nodes. For a choice of Δ̃ = Δk with k ≥ 4 we can only
bound the number of D2-neighbors of nodes s with r ≤ ε ·2�log2(ls/ε).

What we actually want is that each node s with r≤ ε ·2�log2(ls/ε) w.h.p. gets colored
differently from its arbitrary 1- or 2-hop neighbor t. The details of the proofs in [5]
reveal that the probability of t not being colored at all depends on the number of 2-hop
neighbors of t, and not of s (essentially, if t has too many 2-hop neighbors, chances are
that each trial of t is doomed as there is some 2-hop neighbor of t which has chosen
the same color). Similarly, if both s and t have been colored, they only might have
the same color if a SUCCESS-REPORT of their common neighbor was lost due to
interference. This probability can be kept low if the number of D2-neighbors of this
common neighbor is bounded.

But D2-neighborhoods of all these nodes can be easily bounded by requiring Δ̃ = Δk

with k ≥ 8, that is by bounding the number of points in a larger disk around s which
also contains all 2-hop neighbors of 2-hop neighbors of s for the current choice r.

So we can prove the two key facts under this new condition. We emphasize again,
though, that our Lemmas hold only for nodes s with r≤ ε ·2�log2(ls/ε) and not for larger
values of r.

3 In fact they show c = O(max1-hop-neighbors), but in case of unit-disk graphs, this is the same
quantity up to a constant factor.

Infrastructure-Establishment from Scratch in Wireless Sensor Networks 363

Lemma 4. Let s be a node with r≤ ε ·2�log2(ls/ε). Then with high probability of 1− 1
nψ ,

s and all its 1- and 2-hop neighbors are colored after completion of LocalD2Color(s,r, Δ̃)
for Δ̃ = Δk and k ≥ 8.

Proof. All 2-hop neighbors of 2-hop neighbors of s in the unit-disk graph w.r.t. trans-
mission radius r are contained in a ball of radius 4r around s. Since r ≤ 2|ls| we obtain
a bound on the number of 2-hop neighbors of all 2-hop neighbors of s and can apply
the proofs from [5].

By similar arguments, one can show that the coloring is valid w.h.p.

Lemma 5. Let s be a node with r ≤ ε · 2�log2(ls/ε), and let u be its fixed 1- or 2-hop
neighbor, and assume both have been assigned a color during the procedure. Then with
high probability of 1− 1

nψ , s and u have been assigned distinct colors for Δ̃ = δk and
k ≥ 8.

Using these Lemmas and Lemma 3 with h = 3 it is easy to conclude the following.

Lemma 6. LocalD2Color(s,r, Δ̃) computes in time O(Δ̃ log2 n) a coloring of the nodes
such that for each node s with r ≤ ε ·2�log2(ls/ε), s and its D2-neighbors in UDG(r) are
assigned different colors with probability 1− 1

nψ for arbitrary ψ≥ 1 if Δ̃ = Δk, k ≥ 8.

3.3 AnnounceNApproveEdges(s)

In this procedure each node first locally computes a list of adjacent Gabriel edges based
upon its knowledge of the 1-hop neighbors, and then announces them one by one. An-
nouncements take O(Δ̃1/2) rounds of 2Δ̃ time steps each. In each round, a node s an-
nounces in time slot 2 · color(s) a Gabriel edge e = (s, t) from its list that has not been
announced by the other end-node t of e. If no neighbor of s transmits at the same time
slot and no VETOs or collisions are encountered in time slot 2 · color(s) + 1, s and t
regard the edge e as an edge of the final graph GG(UDG). Furthermore, s listens to all
announcements of other nodes and sends a VETO message in the following time slot
if it either experiences collision (two or more neighboring nodes announce at the same
time slot) or its own position contradicts the creation of the announced edge (i.e. s lies
in the diametral circle of the announced edge).

Let us first show that non-Gabriel edges always get vetoed.

Lemma 7. AnnounceNApproveEdges(s) never creates an edge that is not a Gabriel
edge (for arbitrary transmission radius r).

Proof. Assume otherwise, i.e. a node v created an edge e whose diametral circle con-
tains a 1-hop neighbor u of v. Then e must have been announced at some point, and
no VETO message, in particular none from u, was received and no collision was ex-
perienced at v. But u should have sent a VETO regardless of whether it received the
announcement or experienced a collision. Thus we have a contradiction.

Next we show that w.h.p. all Gabriel edges of a fixed node s are constructed in
the round where r = ε · 2�log2(ls/ε). With Lemma 7, this implies that the computed
GG(UDG) is correct.

364 S. Funke and N. Milosavljevic

Lemma 8. Let s be a node with ε · 2
log2(ls/ε)� ≤ r ≤ ε · 2�log2(ls/ε). Then with high
probability all Gabriel edges adjacent to s are constructed if Δ̃ = Δk, k ≥ 8.

Proof. By Lemma 3, only correct edges are announced by s or its 1-hop neighbors. By
Lemma 6, no collisions appear during the execution of AnnounceNApproveEdges(s).
It remains to prove that O(Δ̃1/2) rounds suffice to have all Gabriel edges of s announced
(Note that there could be Θ(Δ̃) many, and without the help of the other endnodes of
these edges it would take Θ(Δ̃) rounds or Θ(Δ̃2) time slots for s to announce them all!).

Let us call a node active if not all of its adjacent Gabriel edges have been announced.
Let ai be the number of active neighbors of s in the beginning of round i. Then at ev-
ery round, at least ai/2 edges in the 2-hop neighborhood of s get announced, since
each such announcement can deactivate at most two neighbors of s. The 2-hop neigh-
borhood initially contains O(Δ̃) unannounced edges, so there are O(Δ̃1/2) rounds with
ai = Ω(Δ̃1/2). Once it becomes ai = O(Δ̃1/2), it is clear that all the remaining Gabriel
edges adjacent to s will be announced by s itself in additional O(Δ̃1/2) rounds.

3.4 FinalD2Color(s, |ls|, Δ̃)

At this point, each node s w.h.p. knows about the topology of the directed disk graph
DG, that is about the nodes that lie within its own transmission range, as well as the
nodes in whose transmission range it lies. These correspond to the outgoing and in-
coming edges of s in DG, respectively. Indeed, s can learn about its outgoing edges at
the time when its longest Gabriel edge is created, and about its incoming edges after
running another ’announcement phase’ in the spirit of ExploreDirectNeighborhood,
with the only difference that each node actually transmits within the range determined
by its longest adjacent Gabriel edge. Then with high probability all nodes get to know
about their incoming edges (since again, interference is limited by the parameter Δ̃).

It remains to make the final assignment of time slots that will be used during the
lifetime of the network. As explained previously, the purpose of this step is to save
on the number of colors required by taking into account the nodes’ effective radii of
communication.

However, the algorithm of [5] cannot be directly applied to construct the final col-
oring. It may happen that nodes u and v propose the same color in TRIAL phase, and
their messages collide only at node w, but w is unable to communicate that fact to u and
v because its communication radius is too small. More precisely, the problem is that the
DG induced by GG(UDG) is directed, because the communication radii are different in
general. The D2-coloring scheme requires that the DG be undirected, so that the nodes
can communicate in “propose–respond” fashion.

Fortunately, there is a simple modification that gets around this problem without af-
fecting the asymptotic performance. The TRIAL and SUCCESS phases do not change,
while in the TRIAL-REPORT and SUCCESS-REPORT phase each node transmits
within the radius equal to the length of its longest incoming edge. By keeping the
TRIAL and SUCCESS unchanged, we make sure that the collisions generated dur-
ing rounds of coloring are exactly those that would occur in the final communication
scheme. On the other hand, modification to the REPORT phases makes sure that the
coloring is correct, but may hurt the running time; increasing the radii for reporting

Infrastructure-Establishment from Scratch in Wireless Sensor Networks 365

purpose may create a large number of new D2-neighbors, and therefore many collisions
among the REPORT messages. However, we show that the new neighborhood size has
already been accounted for in the preceding analysis. The actions for fixing a color after
reception the TRIAL-REPORT as well as for removal of colors from the list after re-
ception of a SUCCESS-REPORT of course then restrict to reports received from nodes
within the transmission range of a node.

Lemma 9. Let G be the DG induced by GG(UDG), and let H be the undirected version
of G obtained by setting the radius of each node to the length of its longest incoming
edge in G. Then any node in H has a D2-neighborhood of size at most Δk, for any k≥ 5.

Proof. Consider a fixed node u and its D2-neighborhood Nu in H. Clearly, the edges
in G that connect nodes in Nu are also present in H. Let (v,w) be the longest incoming
edge of the nodes in Nu (w is in Nu). Then the whole Nu at most 5|vw| away from v.
Also, (v,w) emanates from v in G, therefore |vw| ≤ lv. Thus, B(v,5lv) contains all nodes
in Nu, which implies Nu ≤ Δ5(v)≤ Δ5 ≤ Δk, for any k ≤ 5. This completes the proof.

In other words, the increased transmission radii (to the length of the longest incom-
ing edge) create only limited potential interferences, so w.h.p. the TRIAL-REPORT and
TRIAL-SUCCESS phases succeed.

Lemma 10. In time O(Δ̃ log2 n), FinalD2Color(s, |ls|, Δ̃) w.h.p. computes a valid D2-
coloring of the final communication graph DG.

3.5 Summary and Further Remarks

We summarize the statements of Lemmas 3, 6, 7,and 8, 10 and give our main theorem.

Theorem 1. Our algorithm runs in time O(Δ̃3/2 log 1
ε log2 n) and w.h.p. computes the

GG(UDG), as well as a coloring of its nodes which ensures interference-free commu-
nication between nodes adjacent in GG(UDG).

Here Δ̃ = Δ8 denotes the maximum number of points within the distance of 8 · |ls|
from s, where |ls| is the length of the longest Gabriel edge adjacent to s. Thus, we
can relate the running time of the algorithm to the number of ’nearby’ stations relative
to its final assigned transmission range, instead of the number of stations within its
maximum transmission range. ε can be set to the minimum inter-node distance (as e.g.
derived from the physical size of the nodes) or even larger, as long as the number of
nodes contained in any disk of radius 8ε is bounded by Δ̃.

We want to remark that k can be decreased from 8 to a value arbitrarily close to 4,
by instead of doubling the radius r, multiplying it by factor smaller than 2.

4 Lipschitz-Type Node Distributions

Consider an application of monitoring physical quantities (such as temperature, humid-
ity, exposure to light etc.) over an area A of a nature preserve. Suppose that the area

366 S. Funke and N. Milosavljevic

contains a set H of interesting ’hotspots’ (e.g. breeding areas of a bird species) which
should be monitored more accurately. Scientists want to deploy more wireless sensors
close to the hotspots, and fewer sensors further away.

Formally, they might assume that there is an ’interest function’ f : A → R which
is small in regions of high interest and vice versa. An example is f (x) = d(x,H), the
distance to the closest hotspot. Then, if the deployment of the set of sensors S satisfies
the condition ∀x ∈ A : ∃s∈ S : d(x,s)≤ ε · f (x) for some small ε ∈ (0,1), enough data is
gathered. On the other hand, sensor nodes are expensive, so only the necessary number
should be used; in terms of the interest function f , the required condition is ∀x ∈ A :
|{s ∈ S : d(x,s)≤ ε · f (x)}| ≤ β for some constant β.

If the distribution of the deployed sensors adheres to the above conditions, our algo-
rithm performs very well, since the value Δ̃, which has to be provided to every node
upon deployment, is a reasonably small constant. Roughly speaking, our algorithm
performs well if the node density has bounded variation as a function of the spatial
coordinates. Below we give a more formal statement of this fact.

We want to remark that this property of gradually changing node-densities naturally
also arises in other settings. For example, consider the application of tracking a set of
point-sized slowly moving objects. If we are interested in minimizing the effort needed
to adapt the sensor distribution to possible movement of objects, it is reasonable to have
a gradually increasing sensor density as the distance to an object (in its current position)
becomes smaller. Let us formalize the situation described above.

Definition 2. Let S be a set of wireless nodes placed within some area of interest A. We
call S a Lipschitz-type node distribution,if there exists an α-Lipschitz function ϕ : A→R

with α > 0 and constants ε > 0, β≥ 1 such that for all x ∈ A, 1≤ |S∩B(x,εϕ(x))| ≤ β.

In our example above we had ϕ(x) = f (x) with α = 1 (as f was defined to be
the distance to a set of points, it is 1-Lipschitz). Observe though that this definition
of Lipschitz-type node distributions also allows for ’oversampling’ of the domain of
interest, as long as the oversampling happens in a smooth manner.

Lemma 11. Let S be a Lipschitz-type node distribution,with parameters α,β,ε, and
ε < 1

2α(k+1) , then we have Δk = O(1).

Proof. Consider a fixed node u, and let (u,v) be its longest adjacent edge in GG(UDG),
|uv| = lu. Let x ∈ A be the midpoint of (u,v). Clearly, lu/2 ≤ εϕ(x). Let us define R =
(k + 1)lu, and hence Δk ≤ |B(x,R)∩ S|. So in the following we will concentrate on
bounding the number of nodes within B(x,R).

Using the inequalities above we get R ≤ (k + 1) ·2 · εϕ(x). As ϕ is α-Lipschitz, we
have for any y ∈ B(x,R) that ϕ(y)≥ ϕ(x)−αR≥ ϕ(x)(1−2(k+1)αε), that is, any ball
of radius at most r = εϕ(x)(1−2(k + 1)αε) centered within B(x,R) contains less than
β nodes. It remains to bound the number of balls of radius r to cover B(x,R). But that
number is O((k+1

1−2(k+1)εα)2), which for constant values of k,ε with ε < 1
2α(k+1) remains

a constant. That is, at Δk ≤ |B(x,R)∩S|= O(β) = O(1).

It follows that for the above example with α = 1, the condition of Definition 2 is
satisfied with ε < 1/18 in order to guarantee Δ̃ ≤ Δ8 = O(1), so the algorithm runs in
O(log 1

ε log2 n). We emphasize, however, that this theoretical analysis is very pessimistic
and we expect the algorithm to perform very well for many practical node distributions.

Infrastructure-Establishment from Scratch in Wireless Sensor Networks 367

5 Conclusions

In this paper we have presented a distributed protocol for constructing both the low-
and the high-level infrastructure for a set of newly deployed wireless stations. Our in-
tegrated approach remedies some of the inherent problems incurred by a sequential
construction of first low- and then high-level infrastructure, which is particularly ap-
parent for dense and varying node distributions. We believe that other high-level in-
frastructures can be similarly constructed in this manner. It might be interesting to see
whether our approach can also be adapted to work under the less restrictive model of
node capabilities as used in [6] and [8].

References

1. M. Burkhart, P. von Rickenbach, R. Wattenhofer, and A. Zollinger, ”Does topology control
reduce interference?” 5th ACM Interational Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), 2004.

2. X. Cheng, X. Huang, D. Li and D.-Z. Du, “Polynomial-time approximation scheme for min-
imum connected dominating set in ad hoc wireless networks,” Networks, to appear.

3. B. Clark, C. Colbourn and D. Johnson, “Unit Disk Graphs,” Discrete Mathematics, Vol. 86,
pp. 165-177, 1990.

4. K.R. Gabriel and R.R. Sokal, ”A new statistical approach to geographic variation analysis”,
Systematic Zoology, vol 18, pp. 259–278, 1969

5. R. Gandhi and S. Parthasarathy, ”Fast Distributed Well Connected Dominating Sets for Ad
Hoc Networks,” CS-TR-4559, UM Computer Science Department.

6. F. Kuhn, T. Moscibroda, and R. Wattenhofer. ”Initializing Newly Deployed Ad Hoc and
Sensor Networks” 10th Ann. Int. Conf. on Mobile Computing and Networking (MOBICOM),
Philadelphia, USA, Sept. 2004.

7. F. Meyer auf der Heide, C. Schindelhauer, K. Volbert, and M. Grünewald, ”Congestion,
Dilation, and Energy in Radio Networks” Theory of Computing Systems 37 (3), 2004

8. T. Moscibroda and R. Wattenhofer ”Efficient Computation of Maximal Independent Sets in
Unstructured Multi-Hop Radio Networks” 1st IEEE Int. Conf. on Mobile Ad-hoc and Sensor
Systems (MASS), Fort Lauderdale, USA, Oct. 2004.

9. X.-Y.Li, W.-Z.Song, Y.Wang. ”Localized Topology Control for Heterogenous Wireless Ad
Hoc Networks”, 1st IEEE Int. Conf. on Mobile Ad hoc and Sensor Systems (MASS), 2004.

10. X.-Y. Li, P.-J. Wan, W. Yu, O. Frieder. ”Sparse power efficient topology for wireless net-
works”, IEEE Hawaiian Int. Conf. on System Sciences (HICSS), 2002.

11. S.Ramanathan. ”A unified framework and algorithm for channel assignment in wireless net-
works”, Wireless Networks, 5(2):81-94, 1999

12. A.Sen and M.L.Huson. ”A new model for scheduling packet radio networks”, Wireless Net-
works, 3(1):71-82, 1997

13. A. Sen and E. Melesinska. ”On approximation algorithms for radio network scheduling”,
Proc. 35th Allerton Conf. on Communication, Control, Computing,pp.573–582, 1997.

14. P. J. Wan, K. Alzoubi and O. Frieder, “Distributed Construction of Connected Dominating
Set in Wireless ad hoc networks,” Proc. of INFOCOM 2002.

A Local Facility Location Algorithm
for Sensor Networks

Denis Krivitski1, Assaf Schuster1, and Ran Wolff2

1 Computer Science Dept., Technion – Israel Institute of Technology
{denisk, assaf}@cs.technion.ac.il

2 Computer Science Dept., University of Maryland, Baltimore County
ranw@cs.umbc.edu

Abstract. In this paper we address a well-known facility location problem (FLP)
in a sensor network environment. The problem deals with finding the optimal way
to provide service to a (possibly) very large number of clients. We show that a
variation of the problem can be solved using a local algorithm. Local algorithms
are extremely useful in a sensor network scenario. This is because they allow the
communication range of the sensor to be restricted to the minimum, they can op-
erate in routerless networks, and they allow complex problems to be solved on
the basis of very little information, gathered from nearby sensors. The local facil-
ity location algorithm we describe is entirely asynchronous, seamlessly supports
failures and changes in the data during calculation, poses modest memory and
computational requirements, and can provide an anytime solution which is guar-
anteed to converge to the exact same one that would be computed by a centralized
algorithm given the entire data.

1 Introduction

Determining the location of facilities which provide system related services is a major
issue for any large distributed system. The resource limited scenario of a sensor net-
work makes the problem far more acute. A well-placed resource (cache server, relay, or
high-powered sensor, etc.) can tremendously increase the lifespan and the productivity
of dozens or even hundreds of battery operated sensors. In many cases, however, the
optimal location of such resources depends on dynamic characteristics of the sensors
(e.g., their remaining battery power), the environment (e.g., level of radio frequency
white noise), or the phenomena they monitor (e.g., frequency of changes). Thus, opti-
mal placement cannot be computed a priori, independently of the system’s state.

One example of a facility location problem may occur in sensor networks that, in ad-
dition to regular sensors, use a few dozen relays. Regular sensors are low-power motion
sensing devices, which are distributed from the air, covering the area randomly. Instead,
relays are equipped with large batteries and long range transceivers and are placed at
strategic points by ground transportation. The purpose of the relays is to collect data
from the sensors and transmit it to a command station whenever it is requested. How-
ever, the question remains how to best utilize the relays which in themselves have but
limited resources. It would make sense to shut down a relay if there was only mild ac-
tivity in its nearby surroundings and report that activity via other relays. Note, however,

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 368–375, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

A Local Facility Location Algorithm for Sensor Networks 369

that the amount of activity, the available resources of the relays and the motion sensors,
as well as the environmental conditions in which they all operate may influence the
decision, and these factors may vary over time. The optimal solution, thus, has to be
regularly adjusted.

The facility location problem (FLP) has been extensively studied in the last decade.
Like many other optimization problems, optimal facility location is NP-Hard [13].
Thus, the problem is usually solved using either a hill-climbing heuristic [14, 8, 4] or
linear programming [11, 19, 12]. These approaches achieve constant factor approxima-
tion of the globally optimal solution [1]. FLP also has several versions, primarily di-
vided according to whether facilities have finite or infinite capacity (i.e., capacitated
vs. uncapacitated FLP).

To the best of our knowledge FLP has never been studied specifically in a dis-
tributed setting. Nevertheless, it is easy to see how distributed formulation of related
hill-climbing algorithms such as k-means and k-median clustering [5, 7, 6] can be adap-
ted to solve distributed FLP. We note, however, that all previous work on distributed
clustering assumes tight cooperation and synchronization between the processors con-
taining the data, and a central processor that collects the sufficient statistics needed in
each step of the hill-climbing heuristic. Such central control is not practical in wireless
networks, because of the energy required and because it is prone to errors even in the
case of single failures. Even more importantly, central control is unscalable in the pres-
ence of dynamically changing data: any such change must be reported to the center, for
fear it might alter the result.

Thus, it is clear that other features are required to qualify an algorithm for sen-
sor networks. The most important of these are the following: the ability to perform in
a routerless network (i.e., to be driven by data rather than by address), the ability to
calculate the result in-network rather than collect all of the data to a central processor
(which would quickly exhaust bandwidth [9]), and the ability to locally prune redundant
or duplicate computations. These three features typify local algorithms.

A local algorithm is one in which the complexity of computing the result does not
directly depend on the number of participants. Instead, each processor usually com-
putes the result using information gathered from just a few nearby neighbors. Because
communication is restricted to neighbors, a local algorithm does not require message
routing, performs all computation in-network, and in many cases is able to locally over-
come failures and minor changes in the input (provided that these do not change its
output). Local algorithms have been mainly studied in the context of graph related prob-
lems [2, 15, 16, 17, 18]. Most recently, [20] demonstrated that local algorithms can be
devised for complex data analysis tasks, specifically, data mining of association rules in
distributed transactional databases. The algorithm presented in [20] features local prun-
ing of false propositions (candidates), in-network mining, asynchronous execution, and
resilience to changes in the data and to partial failure during execution.

In this work we develop a local algorithm that solves a specific version of FLP, one
in which uncapacitated resources can be placed in any k out of m possible locations.
Initiating our algorithm from a fixed resource location, say, in the first k locations, we
show that the computation required to reach agreement on a single hill-climbing step—
moving one resource to a free location—can be reduced to a group of majority votes. We

370 D. Krivitski, A. Schuster, and R. Wolff

then use a variation of the local majority voting algorithm presented in [20] to develop
an algorithm which locally computes the exact same solution a hill-climbing algorithm
would compute, had it been given the entire data.

In a series of experiments employing networks of up to 10,000 simulated sensors,
we prove that our algorithm has good locality, incurs reasonable communication costs,
and quickly converges to the correct answer whenever the input stabilizes. We further
show that when faced with constant data updates, the vast majority of sensors continue
to compute the optimal solution. Most importantly, the algorithm is extremely robust to
sporadic changes in the data. So long as these do not change the global result, they are
pruned locally by the network.

The rest of this paper is organized as follows. We first describe our notations and
formally define the problem. Then, in Section 3, we give our version of the majority
voting algorithm originally described in [20]. Section 4 describes the local k-facility
location algorithm. Finally, in Section 5, we present some of the experimental results.

2 Notations, Assumptions, and Problem Definition

We assume a large number N of processors, which can communicate with one another
by sending messages. We further assume that communication among neighboring pro-
cessors is reliable and ordered. This assumption can be enforced using standard num-
bering, ordering and retransmission mechanisms. For brevity, we assume an undirected
communication tree. As shown in [3], such a tree can be efficiently constructed and
maintained using variations of Bellman-Ford algorithms [10]. Finally, we assume that
failure is fail-stop and that the neighbors of a processor that is disconnected or recon-
nected for any reason are reported.

Given a database DB containing input points {p1, p2, . . . , pn}, a set M of m possi-
ble locations, and a cost function d : DB ×M → R+, the task of a k-facility location
algorithm is to find a set of facilities C ⊂ M of size k, such that the cumulative distance
of points from their nearest facility

∑
pi∈DB

min
c∈C

d (pi, c) is minimized.

To relate these definitions to the example given in the introduction, consider a
database that includes a list of events that occurred in the last hour. Each event would
have a heuristic estimate of its importance. Furthermore, each sensor would evaluate
its hop distance from every relay and multiply this by the heuristic importance of each
event to produce its cost. Given this input, a facility location algorithm would compute
the best combination of relays such that the most important events need not travel far
before they reach the nearest relay. The less important events, we assume, would be
suppressed either in the sensor that produced them, or in-network by other sensors.

An anytime k-facility location algorithm is one which, at any given time during its
operation, outputs a placement for the location such that the cost of this ad hoc output
improves with time until the optimal solution is found. A distributed k-facility loca-
tion algorithm would compute the same result even when the DB is partitioned into
N mutually exclusive databases

{
DB1, . . . , DBN

}
, each of which is deposited with a

separate processor, and these are then allowed to communicate by passing messages to
each other. A local k-facility location algorithm is a distributed algorithm whose per-

A Local Facility Location Algorithm for Sensor Networks 371

formance does not depend on N but rather corresponds to the difficulty of the problem
instance at hand.

The hill-climbing heuristic for k-facility location begins from an agreed upon place-
ment of the facilities (henceforth, configuration). Then, it finds a single facility and a
single empty location, such that by moving the facility to that free location the cost of
the solution is reduced to the greatest possible degree. If such a step exists, the algorithm
changes the configuration accordingly and iterates. If any configuration which can be
produced by moving just one facility has a higher cost than the current configuration,
the algorithm terminates and outputs the current configuration as the solution.

This paper presents a local anytime algorithm that computes the hill-climbing heuris-
tic for k-facility location.

3 Local Majority Voting

Our k-facility location algorithm reduces the problem to a large number of majority
votes. In this section, we briefly describe a variation of the local majority voting al-
gorithm from [20], which we use as the main building block for the algorithm. The
algorithm assumes that messages sent between neighbors are reliable and ordered, and
that processor failure is reported to the processor’s neighbors. These assumptions can
easily be enforced using standard numbering, retransmission, ordering, and heart-beat
mechanisms. The algorithm makes no assumptions on the timeliness of message trans-
fer and failure detection.

Given a set of processors V , where each u ∈ V contains a zero-one poll with cu

votes, su of which are one, and given the required majority 0 < λ < 1, the objective of
the algorithm is to decide whether

∑
u

su/
∑

u

cu ≥ λ. We call Δ the number of excess

votes.
The following local algorithm decides whether Δ ≥ 0. Each processor u ∈ V

computes the number of excess votes in its own poll, δu = su − λcu. It then stores the
number of excess votes it reported to each neighbor v in δuv and the number of excess
votes which have been reported to it by v in δvu. Processor u computes the total number
of excess votes it knows of, as the sum of its own excess votes and those reported to
it by the set Gu of its neighbors Δu = δu +

∑
v∈Gu

δvu. It also computes the number

of excess votes it agreed on with every neighbor v ∈ Gu, Δuv = δuv + δvu. When u
chooses to inform v about a change in the number of excess votes it knows of, u sets
δuv to Δu − δvu – thus setting Δuv to Δu, and then sends δuv to v. When u receives a
message from v containing some δ, it sets δvu to δ – thus updating both Δuv and Δu.
Processor u outputs that the majority is of ones if Δu ≥ 0, and of zeros otherwise.

The crux of the local majority voting algorithm is in determining when u must send
a message to a neighbor v. More precisely, the problem is to determine when sending
a message can be avoided, despite the fact that the local knowledge has changed. In
the algorithm presented here, there are two cases in which a processor u would send
a message to a neighbor v: when u is initialized and when the condition (Δuv ≥ 0
∧Δuv > Δu) ∨ (Δuv < 0 ∧Δuv < Δu) evaluates true. Note that u must evaluate this

372 D. Krivitski, A. Schuster, and R. Wolff

condition upon receiving a message from a neighbor v (since this event updates Δu and
the respective Δuv), when its input bit switches values, and when an edge connected to
it fails (because Δu is then computed over a smaller set of edges and may change as a
result). This means the algorithm is event driven and requires no synchronization.

We modify the local majority voting algorithm slightly in order to apply it to k-
facility location. We add the ability to suspend and reactivate the vote using corre-
sponding events. A processor whose voting has been suspended will continue to receive
messages and modify the corresponding local variable, but will not send any messages.
When the vote is activated, the processor will always check whether it is required to
send a message as a result of the information ir received while in a suspended state.

4 Majority Based k-Facility Location

The local k-facility location algorithm which we now present is based upon three funda-
mental ideas: The first is to have every processor optimistically perform hill-climbing
steps without waiting for a decision as to which is the globally optimal step. Having
taken these steps, the processor continues to validate the agreement of the steps it took
with the globally correct one. If there is no agreement, then these speculative steps are
undone and better ones are chosen. The second idea is to choose the optimal step not by
computing the cost of each step directly, but rather by voting on which pair of possible
steps is more costly (i.e., more popular). The third idea is a pruning technique by which
many of these votes can be avoided altogether; avoiding unnecessary votes is essen-
tial because, as we further explain below, computing votes among each pair of optional
steps might be arbitrarily more complicated than finding the best next step.

4.1 Optimistic Computation of an Ad-Hoc Solution

Most parallel data mining algorithms use synchronization to validate that their outcome
represents the global data

⋃
u

DBu. We find this approach impractical for large-scale

distributed systems — especially if one assumes that the data may change with time,
and thus the global data can never be determined. Instead, when performing parallel
hill-climbing, we let each processor proceed uphill whenever it computes the best step
according to the data it currently possesses. Then, we use local majority voting (as we
describe next) to make sure that processors which have taken erroneous steps will even-
tually be corrected. In the event that a processor is corrected, computations associated
with configurations that were wrongly chosen are put on hold. These configurations are
put aside in a designated cache in case additional data that accumulates will prove them
correct after all.

We term the sequence of steps selected by processor u at a given point in time its
path through the space of possible configurations and denote it Ru = 〈Cu

1 , Cu
2 , . . . , Cu

l 〉.
Cu

1 is always chosen to be the first k locations in M . Cu
l is the ad hoc solution Cu. u

refrains from developing another configuration following a given Cu
l when no possible

step can improve on the cost of the current configuration, or when two or more steps
still compete on providing the best improvement.

A Local Facility Location Algorithm for Sensor Networks 373

Since the computation of all of the configurations along every processor’s path is
concurrent, messages sent by the algorithm contain a context – the configuration to
which they relate. Since the computation is also optimistic, it may well happen that two
processors u and v temporarily have different paths Ru and Rv. Whenever u receives
a message in the context of some configuration C �∈ Ru, this message is considered
to be out of context. Rather than being accepted by u, it is stored in u’s out-of-context
message queue. Whenever a new configuration C enters Ru, u scans the out-of-context
queue and accepts messages relating to C in the order by which they were received.

4.2 Locally Computing the Best Possible Step

For each configuration Cu
a ∈ Ru, processor u computes the best possible step as fol-

lows. First, it generates the set of possible configurations Next [Cu
a], such that each

member of Next [Cu
a] is a configuration that replaces one of the members of Cu

a with a
non-member location from M\Cu

a . Next, for each C ∈ {Cu
a }∪Next [Cu

a] and each p ∈
DBu, the cost incurred by p in C is computed such that cost (p, C) = min

x∈C
{d (p, x)}.

Finally, for every Ci, Cj ∈ Next [Cu
a], where i < j, processor u initiates a major-

ity vote, Majorityu
Cu

a
〈i, j〉, which compares their relative costs and eventually com-

putes Δu
Cu

a
〈i, j〉 ≥ 0 if the global cost of Ci is higher than that of Cj (as we explain

below). Correctness of the majority vote process guarantees that the best configura-
tion Cibest

∈ {Cu
a } ∪ Next [Cu

a] will eventually have negative Δu
Cu

a
〈ibest, j〉 for all

j > ibest, and positive Δu
Cu

a
〈j, ibest〉 for all j < ibest. Hence, the algorithm will opti-

mistically choose Ci as the next configuration whenever Ci has the maximal number of
majority votes indicating it is the better one (even if some votes indicate otherwise).

To determine, by means of majority vote, which of two configurations has the lower
cost, we set for every processor u, δu 〈i, j〉 =

∑
p∈DBu

cost (p, Ci)− cost (p, Cj). This

can be done for any δu 〈i, j〉 ∈ [−x, x] by choosing, for example, c = 2x, λ = 1/2
and s = x − λ. Note that, as shown in [20], su and cu can be set to arbitrary numbers
and not just to zero or one. Further note that for every Ci, Cj

∑
p∈DB cost (p, Ci) −∑

p∈DB cost (p, Cj) =
∑

u

∑
p∈DBu [cost (p, Ci)− cost (p, Cj)]. Hence, if the vote

comparing the cost of Ci to that of Cj determines that Δu 〈i, j〉 ≥ 0, this proves the
cost of Ci is larger than that of Cj .

Note that since every majority vote is performed using the local algorithm described
in Section 3, the entire computation is also local. Eventual correctness of the result
and the ability to handle changes in DBu or Gu also follow immediately from the
corresponding features of the majority voting algorithm.

4.3 Pruning the Set of Comparisons

The subsections above show how it is possible to reduce k-facility location to a set
of majority votes. However, these reductions overshoot the objective of the algorithm.
This is because while a k-facility location really only requires that the best possible
configuration be calculated given a certain configuration, the reduction above actually
computes a full order on the possible configurations. This is problematic because, for

374 D. Krivitski, A. Schuster, and R. Wolff

some inputs, computing a full order may be arbitrarily more difficult (and hence, less
local and more costly) than computing only the best option.

To overcome this problem, the algorithm is augmented with a pruning technique that
limits the progress of comparisons such that only a small number of them actually take
place. Given a configuration C, processor u sets as its best possible configurations the
ones with the maximal number of majority votes—indicating that these configurations
are less costly. It sets as contending those possible configurations which are indicated
to be less costly than one of the best configurations. Processor u keeps track of its
best and its contending configurations and the best and contending configurations of
its neighbors in Gu. For this purpose u reports, with every message it sends, which
configurations it currently considers best or contending. u retains in an active state those
majority votes that compare a configuration to either its own or its neighbors’ best and
contending configurations. u suspends the rest of the majority votes, meaning that it
will not send messages relating to them even if it accepts messages or data changes.
It can also be shown that this pruning technique does not affect the correctness of the
algorithm.

5 Experiments

To evaluate the algorithm’s performance we ran it on simulated networks of up to ten
thousand processors using up to one thousand input points in each processor. The main
conclusions are as follows:

– The algorithm is local. The number of messages per processor remains constant as
the network size increases (see figure 2). Moreover, the number of interlocutors of
each processor don’t grow with network size.

0 500 1000 1500 2000 2500 3000 3500 4000
3.205

3.21

3.215

3.22
x 10

5

A
ve

ra
ge

 c
os

t

0 500 1000 1500 2000 2500 3000 3500 4000
90

91

92

93

94

95

96

97

98

99

100

101

time

F
ra

ct
io

n
of

 p
ro

ce
ss

or
s

th
at

 r
ea

ch
ed

 e
xa

ct
 s

ol
ut

io
n

(%
)

Noise

Fig. 1. Behavior in dynamic environment. The
upper graph shows that more than 98% of
nodes output the exact solution. The lower
graph shows average solution cost. As the
noise begins, the average cost deviates from
the minimum but returns to it as the noise stops

2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

m=10, k=2, n/N=1000

N

nu
m

be
r

of
 m

es
sa

ge
s

grid
BRITE
de Bruijn

Fig. 2. Messages per processor. The graph
shows the number of messages each pro-
cessor sends for 3 topology types and 5 dif-
ferent sizes. The number of messages stays
constant as the network size increases

A Local Facility Location Algorithm for Sensor Networks 375

– The algorithm easily adapts to incremental data changes. In the dynamic data ex-
periment, we swapped the databases of two random processors during a typical
edge delay (we call those swaps noise). Throughout the experiment, not more than
2% of the processors deviated from the exact solution (see figure 1).

– The majority of processors converge rapidly. More than 90% of the processors
converged to the exact solution after 4 edge delays. In addition, convergence time
doesn’t depend on network size.

References

1. Vijay Arya, Naveen Garg, Rohit Khandekar, Kamesh Munagala, and Vinayaka Pandit. Local
search heuristic for k-median and facility location problems. In STOC, pages 21–29, 2001.

2. B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Compact distributed data structures for
adaptive network routing. Proc. 21st ACM STOC, May 1989.

3. Y. Birk, L. Liss, A. Schuster, and R. Wolff. A local algorithm for ad hoc majority voting via
charge fusion. In DISC, 2004.

4. Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for the facility loca-
tion and k-median problems. In FOCS, pages 378–388, 1999.

5. Inderjit S. Dhillon and Dharmendra S. Modha. A data-clustering algorithm on distributed
memory multiprocessors. In Large-Scale Parallel Data Mining, pages 245–260, 1999.

6. George Forman and Bin Zhang. Distributed data clustering can be efficient and exact.
SIGKDD Explor. Newsl., 2(2):34–38, 2000.

7. D. Foti, D. Lipari, C. Pizzuti, and D. Talia. Scalable Parallel Clustering for Data Mining on
Multicomputers. In IPDPS’00, Cancun, Mexico, May 2000.

8. Guha and Khuller. Greedy strikes back: Improved facility location algorithms. In SODA:
ACM-SIAM), 1998.

9. P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Transactions on Infor-
mation Theory, 46(2):388 – 404, 2000.

10. J.M. Jaffe and F.H. Moss. A responsive routing algorithm for computer networks. IEEE
Transactions on Communications, pages 1758–1762, July 1982.

11. K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility location problems.
12. Kamal Jain and Vijay V. Vazirani. Primal-dual approximation algorithms for metric facility

location and k-median problems. In FOCS, pages 2–13, 1999.
13. Jon Kleinberg, Christos Papadimitriou, and Prabhakar Raghavan. A microeconomic view of

data mining. Data Mining and Knowledge Discovery, 1998.
14. Madhukar R. Korupolu, C. Greg Plaxton, and Rajmohan Rajaraman. Analysis of a local

search heuristic for facility location problems. In Proc. ACM-SIAM, pages 1–10, 1998.
15. S. Kutten and B. Patt-Shamir. Time-adaptive self-stabilization. Proc. PODC, pages 149–158,

August 1997.
16. S. Kutten and D. Peleg. Fault-local distributed mending. Proc. PODC, August 1995.
17. N. Linial. Locality in distributed graph algorithms. SIAM J. Comp., 21:193–201, 1992.
18. M. Naor and L. Stockmeyer. What can be computed locally? STOC, pages 184–193, 1993.
19. M. Sviridenko. An improved approximation algorithm for the metric uncapacitated facility

location problem, 2002.
20. R. Wolff and A. Schuster. Association rule mining in peer-to-peer systems. In Proc. ICDM,

Melbourne, Florida, 2003.

jWebDust: A Java-Based Generic Application
Environment for Wireless Sensor Networks�

Ioannis Chatzigiannakis1, Georgios Mylonas2, and Sotiris Nikoletseas1

1 Research Academic Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece
{ichatz, nikole}@cti.gr

2 Dept of Computer Engineering and Informatics, University of Patras, 26500, Patras, Greece
mylonasg@ceid.upatras.gr

Abstract. Wireless sensor networks can be very useful in applications that re-
quire the detection of crucial events, in physical environments subjected to criti-
cal conditions, and the propagation of data reporting their realization to a control
center. In this paper we propose jWebDust, a generic and modular application
environment for developing and managing applications that are based on wireless
sensor networks. Our software architecture provides a range of services that allow
to create customized applications with minimum implementation effort that are
easy to administrate. We move beyond the ”networking-centric” view of sensor
network research and focus on how the end user (administrator, control center
supervisor, etc.) will visualize and interact with the system.

We here present its open architecture, the most important design decisions,
and discuss its distinct features and functionalities. jWebDust allows heteroge-
neous components to interoperate (real world sensor networks will rarely be ho-
mogeneous) and allows the integrated management and control of multiple such
networks by also defining web-based mechanisms to visualize the network state,
the results of queries, and a means to inject queries in the network. The architec-
ture also illustrates how existing protocols for various services can interoperate
in a bigger framework - such as the tree construction, query routing, etc.

1 Introduction

Wireless sensor networks are very large collections of small in size, low-power, low-
cost sensor devices that collect and disseminate quite detailed information about the
physical environment. Large numbers of sensor devices can be deployed in areas of
interest (such as inaccessible terrains or disaster places) and use self-organization and
collaborative methods to form a sensor network. The flexibility, fault tolerance, high
sensing fidelity, low-cost and rapid deployment characteristics of sensor networks help
to create many new and exciting application areas for remote sensing.

� This work has been partially supported by the IST / FET Programme of the European Union
under contract numbers IST-2004-001907 (DELIS) and the Programme PYTHAGORAS un-
der the European Social Fund (ESF) and Operational Program for Educational and Vocational
Training II (EPEAEK II).

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 376–386, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

jWebDust: A Java-Based Generic Application Environment 377

This wide range of applications is based on the use of various sensor types (i.e. ther-
mal, visual, seismic, acoustic, radar, magnetic, etc.) in order to monitor a wide variety of
conditions (e.g. temperature, object presence and movement, humidity, pressure, noise
levels etc.) and report them to a (fixed or mobile) control center. Thus, sensor networks
can be used for important applications, including (a) military (like forces and equipment
monitoring, battlefield surveillance, targeting, nuclear, biological and chemical attack
detection), (b) environmental applications (such as fire detection, flood detection, pre-
cision agriculture), (c) health applications (like telemonitoring of human physiological
data) and (d) home applications (e.g. smart environments). For an excellent survey of
wireless sensor networks see [1].

Another possible categorization of the applications for wireless sensor networks is
based on the notification strategy of the authorities, i.e. the way that the authorities are
updated on the monitoring state. For example, in a museum, it is important to report
only when emergency situations arise, such as an incendiary fire. On the other hand, in
habitat monitoring for instance, continuous monitoring of the physical environment is
required so that information is gathered over a long period of time. Therefore, depend-
ing on the actual application, the following services are required [3]: (i) Periodic Sens-
ing (the sensor devices constantly monitor the physical environment and periodically
report their sensors’ measurements to a control center), (ii) Event driven (to reduce en-
ergy consumption, sensor devices monitor the environment and send reports only when
certain events are realized) and (iii) Query based (sensor devices respond to queries
made by a supervising control center).

In the light of the above categories of applications and services, we present jWeb-
Dust, a software environment that allows the implementation of customized applica-
tions for wireless sensor network that can (i) provide a wide range of services, (ii)
minimize the overall implementation effort and (iii) considerably reduce the needs for
network administration. jWebDust is modular and extendable as the application imple-
mentor can use a selected set of features, modify some of them and provide new ones
that best suit his needs; in this sense, jWebDust is able to deal with several kinds of
applications (size, functionality, etc.).

jWebDust differentiates the system into two main groups: the networked sensor de-
vices (from now on referred as motes) that operate using TinyOS and the rest of the net-
work (e.g. control centers, database server, etc.) that is capable of executing Java code.
Both system groups use an open architecture implementing the emerging component-
based architecture. The standardized component interface and the exchange of data over
broadly used protocols provide increased portability. This implies that the system can
be used over different machine architectures as well as OS and server technologies.

We define and implement the Mote Discovery Service that reduces significantly the
overall network administration needed in applications for wireless sensor networks.
More specifically, this novel service keeps track of the motes that participate in the
wireless sensor network and their technical characteristics (e.g. type of sensors attached
to each device, available power, etc.). During the setup phase of the network, the motes
report to the control center of the network and get registered in jWebDust’s database
without any further human interaction. In this sense, the time required by the adminis-
trator to register the devices that make up the network and their hardware characteristics

378 I. Chatzigiannakis, G. Mylonas, and S. Nikoletseas

Fig. 1. Multiple wireless sensor networks form a single, unified, virtual sensor network

is greatly reduced, especially in the case where the network is comprised of heteroge-
neous devices [5, 8]. Furthermore, in some cases, it is possible to redeploy additional
motes in order to extend the lifetime of the network and/or increase the area of surveil-
lance while the network is in operation [1, 5]. In such cases, the discovery service im-
proves the scalability of the applications that are based on jWebDust, since the need
for network administration is unaffected as the size of the sensor networks increases.

A distinct feature of jWebDust is its ability to manage multiple wireless sensor
networks, each with a different control center, under a common installation (e.g. see
Fig. 1). This is done by introducing the notion of a virtual sensor network that somehow,
hides the actual network topology and allows the user to control the motes as if they
were deployed under a single, unified, sensor network. This abstraction significantly
reduces the overhead of administering multiple networks. Furthermore, the idea of a
unified, virtual sensor network allows the integration of totally heterogeneous sensor
networks, i.e. not only regarding different kind of sensors attached to the motes of the
network, but also different kind of CPU architectures and communication units.

In jWebDust, the information collected by the control center of each operating sen-
sor network is stored in a single, central, relational database. Based on this database
server, jWebDust provides a web-based, user-friendly interface that targets both to
scientific as well as other less technically-trained personnel. This user interface is cus-
tomizable and allows the designer to present the information in different ways and offers
extendable statistics based on the needs of the application.

The component-based architecture that is used in designing jWebDust provides
high adaptability. The software under development provides an open interface through
which added functionality can be implemented and integrated at later stages, probably
carried out by the final application implementor.

Although wireless sensor networks have attracted a lot of attention from researchers
at all levels of the system hierarchy (from the physical layer up to the application layer),
generic application environments that provide all the necessary tools and operations to
allow the implementation of a wide range of applications are few [1]. To the best of our
knowledge, there are only two such environments: TinyDB [11] and Mote-VIEW [9].

jWebDust: A Java-Based Generic Application Environment 379

TinyDB is an application that allows multiple concurrent queries, event-based
queries and time synchronization through an extensible framework that supports adding
new sensor types and event types. The central idea of TinyDB is to provide an SQL-like
interface to the programmer that makes the wireless sensor network look like a DBMS.
A tree based routing scheme is used for multi-hop communication inside the network.
In addition, TASK [10] (Tiny Application Sensor Kit) is built on top of TinyDB in order
to further simplify application deployment and development. The kit includes a server
that acts as a proxy for the sensor network on the internet, a relational database where
readings from the sensor network are stored, and a frontend that help to choose, record
and visualize motes’ metadata. In contrast to the database schema used in TASK, our
approach is more detailed and can be easily extended to the final application’s function-
ality needs (e.g. adding new sensor types, mote types, etc.).

Mote-VIEW [9] is an application that provides tools to the user to visualize re-
sults from a sensor network, combined with a data logger that runs on the sensor net-
work gateway. The data logger constantly listens to readings arriving from the network
through a control center attached to the gateway and stores them in a relational database.
The motes in the sensor network poll their sensors for readings at a sampling rate spec-
ified by the user and send them to the gateway using a multi-hop protocol. The user can
check readings from the motes’ sensors on the fly, see a visualization of the network’s
topology, produce graphs from selected motes’ readings, and check their status.

2 The Architecture of jWebDust

jWebDust is designed on a component-based architecture with several and diverse de-
sign goals as a guide that emphasizes on autonomy, reliability, and availability. At a
high-level, the components of jWebDust are organized, using the N-tier application
model, as follows: (i) the Sensor Tier that consists of one or more wireless sensor net-
works deployed to areas of interest, (ii) the Control Tier that corresponds to the control
centers where the wireless sensor networks report the realization of events, (iii) the
Data Tier responsible for storing the information extracted from the wireless sensor
network(s), (iv) the Middle Tier that is responsible for processing the data to generate
statistics and other meaningful information and (v) the Presentation Tier that interfaces
the information with the final user in an easy way based on the capabilities of the user’s
machine. The five tiers that make up jWebDust are shown in Fig. 2.

The Sensor Tier. Naturally, the sensor tier is the foundation of any application based
on wireless sensor networks. The motes are usually scattered in the area of interest and
form one or more sensor networks. Each of these scattered motes has the capability to
collect data and route data back to the control center and the end users. Data are routed
to the control center by a multi-hop architecture (described in greater details in Sec. 3)
and then the control center communicates with the other tiers of the system possibly via
internet.

The jWebDust firmware, executed by the motes, is based on the TinyOS operat-
ing system and implements a mote discovery protocol for reporting their sensing and
processing characteristics to the control center and a query dissemination protocol for

380 I. Chatzigiannakis, G. Mylonas, and S. Nikoletseas

Fig. 2. N-tier Architecture

distributing queries in the sensor network and disseminating the data matching these
queries back to the control center; these protocols are defined more formally in Sec. 3.

The Control Tier. The Control Tier consists of the control centers of each sensor net-
work. Control centers are responsible for the gathering of all the readings coming from
the sensor networks and the forwarding of the queries from the data tier to the motes;
in other words, they act as gateways between the sensor tier and the data tier. On the
hardware level, a typical control center consists of one mote connected to a desktop PC
or laptop along with a network connection to the database server. The mote attached to
the control tier is necessary to communicate with the sensor network. Alternatively, an
embedded platform can be used (e.g. Stargate [9]).

One important feature of the control tier is the ability to operate even when there
is no connection to the data tier for sustained periods of time. The importance of this
feature is outlined by the fact that control centers themselves may have a wireless con-
nection to the data tier and uninterrupted communication is not guaranteed. During such
a disconnected period, any new queries made will not be forwarded to the sensor net-
work (since the control center cannot be informed about these queries), while sensor
readings received will not be sent to the data tier but will be stored locally. As soon as
the control center establishes a connection with the data tier, all locally stored readings
are forwarded to the data tier and the new queries are forwarded to the network.

Another jWebDust’s feature is the support of multiple sensor networks in a way that
they are seen as a single virtual sensor network. For each sensor network a unique ID
is given to its respective control center. This sensor network ID helps to distinguish one
mote from another, when they have they same mote ID but belong to different sensor
networks, thus making it possible to manage different networks in a unified way.

The Data Tier. The components at the data tier are based on the relational database
system and the functionality and methods provided are related to the services required

jWebDust: A Java-Based Generic Application Environment 381

by the middle tier and the control tier. Our database schema consists of ten tables that
can be organized in three categories:

(i) Mote related tables. The information related to the hardware characteristics of the
motes that comprise the wireless sensor networks are organized in this category
with the use of five tables. The database scheme supports heterogeneous sensor
networks, i.e. networks that consist of different kinds of motes (e.g. Telos, MicaZ
motes etc.), which in turn may have different kinds of sensors attached to them
(e.g. light, pressure, humidity, temperature etc.).

(ii) Query related tables. This group of tables holds information regarding the queries
that are made on the network that may possibly address multiple sensors and/or
multiple sensor types (for more information see Sec. 3).

(iii) Sensor readings table. All the information received from the sensor networks that
match a specific query is stored in this table. Each record represents a reading com-
ing from a specific mote in the network concerning a single sensor.

The Middle Tier. The Middle tier is comprised by all the components that make up
the jWebDust logic and are responsible for delivering structures and data to the pre-
sentation tier. The components of the middle tier can be considered as applications
that run on a server without a face (also referred to as servlets). These components
have autotelic functionality that is executed independently in order to process certain
data structures and produce specified output. In this extent, components contribute to
a simpler distribution of workload and allow easy development of the presentation tier
services. In jWebDust the components of the presentation tier and the middle tier can
operate simultaneously and independently.

Components are formulated based on the data structures available and the operations
required by each entity. For example, the management of queries is handled by a sin-
gle component and the methods implemented perform actions such as createQuery,
deleteQuery, updateQuery, etc. All these methods accept parameters given by
the presentation tier. The logic of the creation of a new query (i.e. check if a similar
query already exists or if the mote provides the sensors specified in the query) is stan-
dardized through a single component. The query component just described, along with
other similar components that are part of the jWebDust system are also referred to as
the executants. The executants provide a specified interface to the other components;
thus if modifications to jWebDust logic are carried out, the implementation of this in-
terface can be modified. As long as the interface remains unaffected, components that
use the executants will not notice any change and will not require any further change.

The Presentation Tier. The presentation tier is basically the user interface; it is the
layer most available to the end users, responsible for the collection of input and presen-
tation of the information collected from the sensor network. The components that make
up the presentation tier are based on different technologies. The terms thin client and
rich client are used to describe the capabilities of the presentation tier given the available
resources. We characterize as rich clients the components of the presentation tier that
are rich of functionality. The support of thinner clients will ensure the interoperability
of the system through the various available machine architectures. The end users are

382 I. Chatzigiannakis, G. Mylonas, and S. Nikoletseas

Fig. 3. GUI windows displaying sensor readings reported by the sensor network that match sam-
ple queries made by the user to specific motes, regarding different type of sensor devices

allowed to choose among the available client solution in order to maximize the avail-
able resources. The open architecture of jWebDust system allows new components to
be introduced at later stages that will cope with these issues.

3 Sensor Network Services and Protocols

Mote Discovery Service. One of jWebDust’s features is that every mote is able to
register itself and its distinct features to the system, thus giving a clear view of the
network and removing the need to initiate a mote discovery process periodically. The
mote discovery service provides the user with a detailed view of the properties of each
mote inside the (possibly heterogeneous) sensor network. Other existing applications do
not provide such detailed information and thus do not cope well with the case of having
motes with different sensors attached to them. As an example, consider the case where
we want to have motes collecting temperature readings on the one side of the sensor
network and on the other side motes with a different kind of sensor board collecting
humidity readings. The use of different kinds of sensor boards could also be justified in
terms of cost or because we want to take advantage of older equipment.

The operation of the discovery service relies on the correct programming of the
motes; when installing the application firmware on the mote, the actual hardware char-
acteristics are passed as parameters to the service. Each sensor type available to each
mote and its mote type are represented by an integer, in correspondence to the integer
IDs used in the data tier concerning the mote and sensor types (see Sec. 2). Based on
this information, the discovery and registration of every mote in the network is achieved
using a simple protocol.

Essentially, when a mote is powered on, and after its startup and initialization phase
completes, the mote sends out to the control center a short message containing the
mote’s ID, type and a list of available sensors. By sending this message, the mote regis-
ters itself in jWebDust’s data tier along with an amount of useful information when the
control center receives the message. Note that after sending the message, the mote waits

jWebDust: A Java-Based Generic Application Environment 383

for an acknowledgement message from the control center. This is done to make sure
that the registration message will reach the control center within a certain time period.
If such an acknowledgment message is not received within the given time period (that
can be adjusted depending on the expected network size and communication medium
parameters), the mote sends another registration message. This process is repeated until
an acknowledgement is properly received.

Time Synchronization Service. Time synchronization of the motes is a significant part
of any sensor network as applications need some kind of collaboration between the
motes in the network, which in turn means some kind of acceptable time synchroniza-
tion. jWebDust uses a time synchronization scheme that follows an approach similar to
TPSN [7]. Our method provides accurate time synchronization as it performs pairwise
time synchronization between motes using the structure established by the communi-
cation protocol (see below). Every mote maintains a local clock that is synchronized
with respect to a reference mote (e.g. the control center). In order to avoid collisions
in the medium access level, at the beginning of the synchronization process, each mote
decides to initiate time synchronization, individually, after a random period of time
following the reception of a time-sync message.

Sensor Network Communication Protocol. Communication in wireless sensor net-
works presents many distinctive characteristics, which render the conventional and most
ad-hoc routing approaches inadequate for use in these networks. Many routing schemes
have been proposed specifically for sensor networks [4, 6], however only a few of them
have been implemented in TinyOS. Routing protocols for TinyOS can be divided into
two categories, based on the number of possible routing destinations.

The communication protocol used in jWebDust is based on the multi-hop tree-
based routing protocol included in the TinyOS distribution, called MultiHopRouter,
with an extension that aims towards reducing the energy dissipation of the motes. More
specifically, we implement an extension that uses a mechanism for varying the transmis-
sion range [2] on top of MultiHopRouter. The implementation of such a mechanism
is based on the ability of TinyOS to adjust the transmission range of the motes, e.g. in
the MICA platform via the Potentiometer component.

The main idea is to periodically check whether a satisfactory number of nearby
motes is active. This done by periodically broadcasting “hello” messages from the con-
trol center and flooding the network. If motes maintain network connectivity, this mes-
sage will reach all the motes of the network, at a certain time point. By maintaining a
flag in each mote, which should be up if any neighbors have sent “hello” messages over
some period of time and down if no such message has been received, motes can decide
on whether to modify their transmission range in order to overcome network connec-
tivity issues or not. The concept of a varying transmission range protocol (VTRP) and
a study of ways of modifying the transmission range are described in [2].

Sensor Query and Data Dissemination Protocol. The queries supported in jWebDust
are categorized using two criteria; (i) the motes they are targeted to and (ii) the way in-
formation regarding the queries are reported to the control center. The first category
includes mote-specific and attribute-based queries, while the second category includes
periodic sensing, event driven and query based queries. These two categories are over-

384 I. Chatzigiannakis, G. Mylonas, and S. Nikoletseas

lapping and the actual sensor queries are combinations of these categories. jWebDust
gives the users the capability to send to the sensor network all these types of queries.

In the case of a Mote-based query, we are interested in targeting specific motes
by using their IDs; the protocol will send one packet per each mote included in the
query. On the other hand, attribute-based queries are not targeted to specific sensors
but instead to the whole sensor network; the protocol will flood the network with the
query and only those motes that match the specific attribute will respond to the query.

Periodic-update queries pose another time constraint along with the start and stop
time constraints, regarding the time of reporting to the sink. They specify an interval
time period between successive query reports. Event-driven queries instead of posing
specific time constraints, use the notion of events in order to define the time to report
back to the sink.

Examples of possible queries to a sensor network include “give me the temper-
ature and humidity readings from motes where light reading is over 200 starting from
10:15 till 13:30” and “give me the light readings from mote 4 when temperature reaches
30◦C”. Thus, we have four types of possible queries, (i) attribute-based periodic up-
date, (ii) attribute-based event-driven, (iii) mote-specific periodic update, and (iv) mote-
specific event-driven queries.

The standard packet size in TinyOS is 34 bytes, leaving 29 bytes when using stan-
dard single hop communication and less when using multihop protocols. The space left
suffices to send all types of queries. Timestamps occupy 5 bytes, while mote IDs occupy
2 bytes and sensor type IDs 1 byte. Events and attribute constraints can be expressed in
the same way, occupying 4 bytes, 1 byte for the type of sensor ID, 1 byte for the relation
used (equal, greater than, etc.) and 2 bytes for the value used in the constraint.

Because of the fact that a query can poll many sensors in the same mote and one
packet might not be sufficient for sending the readings from all the requested sensors,
more than one packets can be sent by motes answering a query back to the sink. The
sequential messages will contain the readings that didn’t fit in the previous ones.

Finally, the protocol supports the possibility of “cancelling” a query that is currently
active. The user is able to dispatch a special cancel-query message that contains one or
more IDs referring to the queries that are to be cancelled. Note that if the query that
needs to be cancelled is mote-based, the message is sent directly to the mote involved;
if it is an attribute-based the message needs to flood the whole network.

4 Concluding Remarks

We have presented the architecture and the design of the main components of jWeb-
Dust, and discussed several distinct features along with their implementation and func-
tionality. The main strengths of jWebDust are:

1. Provides an environment to package and manage the plethora of lower level proto-
cols with minimum implementation and administration effort.

2. Allows to implement new functionality that can be easily integrated with the rest of
the architecture at all levels of the hierarchy (i.e. sensor level, control centers level,
database level, user-interface level) to best suit the application needs.

jWebDust: A Java-Based Generic Application Environment 385

3. Supports multiple/separate sensor networks (i.e. physically separated) with multi-
ple/separate control centers and allows to handle them as a single virtual sensor
network, even if more than one sensor share the same ID.

4. Handles sensor networks comprised of devices with heterogeneous characteristics.
Real world sensor networks will rarely be homogeneous, motes-only deployments.

5. Supports Disconnected/Mobile Control Centers by taking special care of long dis-
connections of the control centers, and the sensor networks attached to these cen-
ters, from the upper parts of the architecture (i.e. database, web, etc.), so that infor-
mation is not lost.

6. Many users can simultaneously query, monitor, and visualize the execution of the
wireless sensor network through a Web-based user interface.

7. Offers an Extended Query Language that supports (i) multiple queries per sensor
device, (ii) concurrent queries through out the network, (iii) monitoring of the active
network queries, (iv) mechanisms to cancel a query.

We plan to continue the development of jWebDust by improving its features and intro-
ducing new ones. We plan to extend the Sensor Query and Data Dissemination Protocol
by employing data aggregation techniques that can considerably reduce the commu-
nication overhead and improve the lifetime of the network. Also, we wish to consider
investigate alternate architectures that can allow multiple control centers per sensor net-
work; e.g. a JVM-equipped handheld that is carried by the administrator. To this end,
we are considering the use of a many-to-many routing scheme within the sensor tier.

References

1. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless sensor networks: a
survey, Journal of Computer Networks 38 (2002), 393–422.

2. T. Antoniou, A. Boukerche, I. Chatzigiannakis, G. Mylonas, and S. Nikoletseas, A new en-
ergy efficient and fault-tolerant protocol for data propagation in smart dust networks using
varying transmission range, 37th Annual Simulation Symposium (ANSS 2004), 2004, IEEE
Press, pp. 43–52.

3. A. Boukerche, R.W.N. Pazzi, and R.B. Araujo, A supporting protocol to periodic, event-
driven and query-based application scenarios for critical conditions surveillance, 1st Inter-
national Workshop on Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS
2004), Springer-Verlag, 2004, Lecture Notes in Computer Science, LNCS 3121, pp. 137–
146.

4. I. Chatzigiannakis, T. Dimitriou, S. Nikoletseas, and P. Spirakis, A probabilistic forwarding
protocol for efficient data propagation in sensor networks, 5th European Wireless Confer-
ence on Mobile and Wireless Systems beyond 3G (EW 2004), 2004, pp. 344–350.

5. I. Chatzigiannakis, A. Kinalis, and S. Nikoletseas, Power conservation schemes for energy
efficient data propagation in heterogeneous wireless sensor networks, 38th Annual Simula-
tion Symposium (ANSS 2005), 2005, IEEE Press.

6. I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis, Efficient and robust protocols for local
detection and propagation in smart dust networks, Journal of Mobile Networks and Ap-
plications 10 (2005), no. 1, 133–149, Special Issue on Algorithmic Solutions for Wireless,
Mobile, Ad Hoc and Sensor Networks.

386 I. Chatzigiannakis, G. Mylonas, and S. Nikoletseas

7. S. Ganeriwal, R. Kumar, and M. Srivastava, Timingsync protocol for sensor networks, 1st
ACM International Conference On Embedded Networked Sensor Systems (SenSys 2003)
(Los Angeles, CA, USA), 2003, pp. 138–146.

8. Exploratory research: Heterogeneous sensor networks, Intel Technology Journal: Research
& Development at Intel (2004),
http://www.intel.com/research/exploratory/heterogeneous.htm.

9. Mote-VIEW monitoring software, Crossbow Technology Inc.,
http://www.xbow.com/Products/productsdetails.aspx?sid=88.

10. Tiny application sensor kit (TASK), Intel Research, Berkeley,
http://berkeley.intel-research.net/task/.

11. TinyDB: A declarative database for sensor networks,
http://telegraph.cs.berkeley.edu/tinydb/.

Networked Active Sensing of Structures

University of Southern California, Los Angeles, CA 90089, USA

Structural Health Monitoring (SHM) focuses on developing technologies and
systems for detecting and locating damages in structures such as buildings,
bridges, and aerospace structures. SHM techniques typically analyze changes
in the structural response induced in a structure (from before and after possi-
ble damage) due to ambient (such as heavy winds or passing vehicles) or forced
(shakers and impact hammers) excitation sources to detect and locate damages.

Untethered wireless sensor network-based structural sensing can significantly
drive down cabling installation and maintenance costs while allowing flexible,
dense, deployments. Use of wirelessly controlled actuators at various locations
in the structure, capable of delivering deterministic excitations can lead to au-
tomated SHM sensor-actuator networks that allow for very low-duty cycle op-
erations. We envision autonomous sensor-actuator networks that test structures
by periodically exciting them at pre-determined locations and analyzing the
structural responses. Such sensor-actuator networks promise to bring about a
fundamental paradigm shift in SHM.

Fig. 1. Structural response collected by a
Wisden node on a real structure

Fig. 2. A sample code in matlab for locat-
ing damage in a structure using NetSHM
API

In our project, we have developed two software systems1, Wisden and Net-
SHM, for facilitating sensor network based SHM. Wisden enables continuous
data acquisition over a self-configuring multi-hop wireless sensor network. Net-

1 For our publications and software, please see http://net-shm.usc.edu/.

Krishna Chintalapudi1, John Caffrey, Ramesh Govindan, Erik Johnson,
Bhaskar Krishnamachari, Sami Masri, and Gaurav Sukhatme

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 387–388, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Fig. 3. A 4-story model building for
forced excitation based testing using
NetSHM.

Fig. 4. A 4-story model building for
forced excitation based testing using
NetSHM.

SHM provides a software platform for SHM engineers that allows them to pro-
gram and implement and deploy various SHM algorithms in a high level language
such as C/Matlab without having to understand the intricacies of the underlying
sensor network.

NetSHM and Wisden distinguish themselves from other existing sensor net-
work applications in terms of their need for high data-rates (in the range of a
few Mbps), reliable data transfer (SHM algorithms are intolerant to losses), and
tight time-synchronization among nodes (typically within a few 100 μsec). These
requirements lead to very unique architectural and design choices and require-
ments. Figure 1 shows the structural responses collected by a Wisden node on
a real structure. Figure 2 depicts a sample Matlab code in NetSHM that was
used to locate damages in a 4-story building model (Figure 3).

We have also developed a realistic testbed for experimentation. Our testbed
(Figure 4) is a full-scale realistic imitation of a 28’ × 48’ hospital ceiling. The
ceiling is complete with real electric lights, fire sprinklers, drop ceiling instal-
lations and water pipes carrying water. It is designed to support 10,000 lb of
weight. The entire ceiling can be subjected to uni-axial motion with a peak-to-
peak stroke of 10 inches, using a 55,000 lb MTS hydraulic actuator having a ±5
inch stroke. The hydraulic pump delivers up to 40 GPM at 3000 PSI. The total
weight of the moving portion of the test structure is approximately 12,000 lb.

We are currently constructing several robotic actuators that can be remotely
commanded to move to various locations in the above seismic structure and
impart local excitation. We are also investigating the use of other modalities,
such as imaging, to help increase the fidelity of these algorithms.

388 K. Chintalapudi et al.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 389 – 390, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Wireless Technologies for Condition-Based Maintenance
(CBM) in Petroleum Plants

Kannan Srinivasan1, Moïse Ndoh1, Hong Nie2, Congying (Helen) Xia2,
Kadambari Kaluri2, and Diane Ingraham2

1 National Research Council of Canada, Institute for Information Technology
Wireless Systems, Sydney, Nova Scotia, Canada

{Kannan.Srinivasan, Moise.Ndoh}@nrc-cnrc.gc.ca
http://iit-iti.nrc-cnrc.gc.ca

2 Cape Breton University, Sydney, Nova Scotia, Canada
{Hong_Nie, Helen_Xia, Diane_Ingraham}@capebretonu.ca

http://www.capebretonu.ca

Abstract. Wireless devices and systems have been deployed in many commu-
nication sectors but have not yet been adequately adapted to harsh industrial
environments. Cost effective, reliable and scalable wireless technologies have
yet to be introduced in industrial plants, including petroleum plants. At this
Stime, there are very few, if any, cost-effective Commercial-Off-The-Shelf
(COTS) radios available that can be used to provide reliable data links under the
very harsh conditions encountered in petroleum environments. This paper pre-
sents a strategic approach to research wireless system technologies and their
application to the oil and gas industry, specifically for asset integrity and auto-
mated diagnostic CBM applications.

1 Introduction and Strategy

The failure of critical operational equipment in the petroleum industry is a major
expense because downtimes mean a loss of revenue to the companies. Recent study
[5] has shown that inaccurate predictions of lifetime of equipment costs about $1
trillion per year in replacing good equipment. To mediate this, companies may choose
to employ Condition-Based Maintenance (CBM) strategies that maximize operational
uptimes and minimize equipment repair and replacement. CBM requires timely, reli-
able, up to date, and cost effective data collection for reliable equipment failure pre-
diction [8].

Currently the petroleum industry pays high labor charges for skilled technicians to
run routes with data collectors on a regular basis as part of (CBM) procedures [5].
This labor intensive solution is not always timely and cost effective. An alternative
solution involves hard wired data collectors. The costs of installing such dedicated
solution is very expensive due to the cost of conventional (copper, fiber optic) wires.
Some estimates are as high as $2000 per linear foot! Plants operating in rigorous
environments with extremes of high and low temperatures, rain, snow, ice, and harsh

390 K. Srinivasan et al.

or corrosive chemicals mean even hardened cables must be replaced every 6 months
and cost estimates in the order of $6 - $8 million are certainly possible depending on
the project.

A reliable, robust and rugged wireless mesh networking architecture, apart from
solving the cable issue, could provide near real time monitoring capability. This, inte-
grated with existing CBM trend analysis software, can help predict equipment failure
in a timely fashion. However, the electromagnetic environment in a petroleum plant is
a challenge for implementing any wireless communication technology. We propose to
design a power-efficient, robust wireless mesh network that involves careful modeling
[7] of the wireless channel followed by suitable transceiver architecture implementa-
tion [6] [2], signal processing [1] [3] and cross layer protocol stack [4] designs.

References

1. Chiasserini. C. F, and Rao. R. R, "On the Concept of Distributed Digital Signal Processing in
Wireless Sensor Networks.", IEEE MILCOM 2002, Anaheim, CA, USA, October 2002.

2. Guest Editors: Czylwik. A, Gershman. A, and Kaiser. T, “Special Issue on Advances in
Smart Antennas,” EURASIP Journal on Applied Signal Processing, vol. 2004, no. 9, Aug.
2004.

3. Lewis. F, Wireless Sensor Networks. Smart Environments: Technologies, Protocols, and
Applications, John Wiley, New York (2004).

4. Madan. R, Cui. S, Lall. S, Goldsmith. A, Cross-Layer Design for Lifetime Maximization in
Interference-Limited Wireless Sensor Networks, IEEE INFOCOM, March 2005.

5. McLean. C, Wolfe. D, Intelligent Wireless Condition-Based Maintenance, Sensors Maga-
zine, Vol. 19 no. 6, pp. 1-12, June 2002.

6. Guest Editors: Poor. H. V , Barbarossa. S, Papadias. C, and Wang. X, Special Issue on
MIMO Communications and Signal Processing, EURASIP Journal on Applied Signal Proc-
essing, vol. 2004, no. 5, May 2004.

7. Sarkar. T. K, Ji. Z, Kim. K, Medouri. A and Palma. M. S,“A Survey of Various Propagation
Models for Mobile Communication ,” IEEE Antennas Propagation Magazine, vol.45, no.3,
pp. 51-82, June 2003.

8. Taylor. J. H, Sayda. A, “Intelligent Information, Monitoring, and Control Technology for
Industrial Process Applications,” FAIM 2005, Spain, July 2005.

SensorNet Operational Prototypes:
Building Wide-Area Interoperable Sensor

Networks – Extended Abstract�

Mallikarjun Shankar, Bryan L. Gorman, and Cyrus M. Smith

Oak Ridge National Laboratory, Oak Ridge, TN, USA
http://www.sensornet.gov

1 Overview

As sensor network deployments continue to expand, government agencies will
benefit from the transmission and processing of sensor data aimed at enhancing
public safety and utility services. Oak Ridge National Laboratory’s SensorNet
project is building a vendor-neutral interoperability framework based on emerg-
ing standards for plug-n-play access, control, and integration of online sensors,
sensor-derived data repositories, and sensor-related processing capabilities [3].
Focussing on wide-area deployments and on a broad class of sensors and appli-
cations, the system prototypes communicate and analyze data from transducers
(sensors1 and actuators) using mechanisms that allow disparate entities to alert
each other and share critical information. Deploying operational prototypes al-
lows us to instantiate and field building block components early while collecting
a broad range of user feedback in our incremental development.

2 Primary Components

Sensors and applications must modularly plug into the system so that it is easy
to interconnect them without having to custom build an end-to-end channel over
the wide-area. For the transducer interfaces, we adopt the methodology advo-
cated by the IEEE 1451 working groups [1] currently developing standards for
“Smart Transducers”. A smart transducer includes sufficient descriptive infor-
mation so that a control software component can automatically determine its
operating parameters, decode the (electronic) data sheet, and issue commands
to read and actuate the transducer.

For the applications interfaces, we build on the techniques enabling interoper-
ability in the web-services arena and base our (application layer) communications
protocols on these services. We take advantage of the framework of web-services
primarily for lower frequency model interactions and user-directed control. We

� Supported by SensorNet R©, Oak Ridge National Laboratory, managed by UT-
Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-
00OR22725.

1 Sensor and Transducer are terms used interchangeably in the community because of
the legacy connotations of the former.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 391–392, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

392 M. Shankar, B.L. Gorman, and C.M. Smith

incorporate service directories and data dictionaries to make application services
use consistent terminology so that they can interoperate. A majority of trans-
ducer data is geospatially referenced, and consequently we adopt specifications
and standards developed by the Open Geospatial Consortium (OGC) [2] in defin-
ing our services. We use the notion of a data feature - a descriptive container for
almost all data and sensor entities in SensorNet that aims to normalize diverse
sets of information into a baseline canonical form.

3 Deployment Experiences: Some Lessons Learnt

In contrast to finer granularity deployments, ours allowed for greater disk stor-
age, required remote connectedness (which we implemented through commer-
cial wireless modems and satellite dishes), greater computing capability with a
powered source, and a requirement to support a wide variety of sensors and ap-
plications. We found that while the emphasis on research for elemental sensors
may involve their networking, power management, and information aggregation,
the research challenges for intelligent/sophisticated sensors lie in integrating the
sensor’s specific behavior (e.g., placement considerations) with applications that
task and share data from (hard and soft) sensors. Two broad observations follow:

– Widespread Adoption and Data Services We need a core set of standards or de
facto procedures at several levels of any nationwide deployment hierarchy. While
commercially available IP-based networks remain an effective resource to establish
communication links, the sensor data-exchange protocols require enhanced capa-
bilities that support flexible application integration. Unlike custom deployments, a
large sensor network is likely to become part of a national infrastructure in much
the same way as the Internet. This suggests that standards and task force bodies
(that operate in spirit like the IETF) and community efforts such as RFC’s can
speed up the spread of ubiquitous sensor networks.

– Management Plane Management plane tasks are likely to be the most difficult (i.e.,
we usually know more about how to build the infrastructure than how to manage
it). Although not necessarily foundational in terms of research, this will drive most
of the commercial thrusts. We believe an important focus for research is language
and system constructs needed for intelligent sensors. For example, a programming
language or system abstraction for software plug-n-play in the context of sensor
plug-n-play will ease rapid sensor networks deployment.

The functionality of the sensors in the sensor network and the applications that
use them will ultimately dictate the rate at which sensor networks will proliferate
in the real world – nonetheless, a standards-based approach, that generalizes
across sensor categories and application protocols while fostering interoperability
will best anticipate the needs of the future.

References

1. Kang Lee: Synopsis of IEEE 1451 Family, Sensors Expo, June 2004.
2. The Open Geospatial Consortium, http://www.opengeospatial.org
3. Bryan L. Gorman, Mallikarjun Shankar, and Cyrus M. Smith: Advancing Sensor

Web Interoperability, Sensors Magazine, Vol. 22, No. 4, April 2005.

Project ExScal (Short Abstract)

Anish Arora, Rajiv Ramnath, Prasun Sinha, Emre Ertin, Sandip Bapat,
Vinayak Naik, Vinod Kulathumani, Hongwei Zhang, Mukundan Sridharan,

Santosh Kumar, Hui Cao, Nick Seddon, Chris Anderson1, Ted Herman,
Zhang, Nishank Trivedi2, Mohamed Gouda, Young-ri Choi3,

Nesterenko, Romil Shah4, Sandeep Kulkarni, Mahesh Aramugam,
Wang5, David Culler, Prabal Dutta, Cory Sharp, Gilman Tolle6,

Grimmer, Bill Ferriera7, and Ken Parker8

1 The Ohio State University, Columbus, USA
2 University of Iowa, Iowa City, USA

3 The University of Texas at Austin, USA
4 Kent State University, Akron, USA

5 Michigan State University, East Lansing, USA
6 University of California at Berkeley, USA

7 Crossbow, San Jose, USA
8 Mitre Corporation, Washington DC, USA

Project ExScal (for Extreme Scale) fielded a 1000+ node wireless sensor network
and a 200+ node ad hoc network of 802.11 devices in a 1.3km by 300m remote
area in Florida during December 2004. In several respects, these networks are
likely the largest deployed networks of either type to date. We overview here
the key requirements of the project, describe briefly how they were met and
experimentally tested, and provide a pointer to our experimental results.
The Application. The ExScal concept of operation is to deploy a dense wireless
sensor network “tripwire” that detects, tracks, and classifies multiple, different
types of intruders in a long perimeter region. Application of this concept is
envisioned for protection of pipelines that are vulnerable to sabotage, borders
between nations that are prone to illegal crossing, and areas abutting critical
plants/thoroughfares that are vulnerable to terrorist threat.

The primary requirements for this application are:

1. Low cost of covering a long perimeter over the mission lifetime. This trans-
lates to selection of: sensing and communication modalities that have desir-
able range and enable low power operation, appropriate packaging, as well
as node layouts that avoid nodal redundancy. Mission lifetime is 1-6 months.

2. Accurate, timely, reliable, and robust operation. This translates to low false
alarm and loss omission rates in detection, tracking, and classification. Since
the physical terrain is not assumed to be constrained, the network must deal
with breaches anywhere along the long perimeter. Response must be quick,
within a few seconds of intruder events over the mission lifetime. Quality of
operation is required even if some nodes in a region are misplaced or their
components fail, during deployment or operation.

3. Low human effort. This applies to all phases, including the placement of
the nodes as well as in the operation, monitoring, maintenance, and recon-
figuration of the network.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 393–394, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Mike
Limin

Mikhail
Chen

394 A. Arora et al.

Architectural Principles. To meet these complex requirements, our design of
ExScal relies on the following principles.
1. To contain cost, we design nodes that have competitive sensing and commu-

nication ranges and emplace them in a planned topology, specifically a regular,
hierarchical structure, to efficiently cover the region. XSM (for Extreme Scale
Mote) nodes have 30m+ reliable communications, passive infrared sensing
with 15m/25m ranges for humans/vehicles, respectively, microphone sensing
with 50m+ range for all-terrain vehicles, and magnetometer sensing with 8m
ranges for vehicles. XSS (for Extreme Scale Stargate) nodes have 500m+ re-
liable 802.11b communications and GPS sensing with <10m accuracy. Tier
1 of the hierarchy consists of a triangular grid of the XSMs, Tier 2 consists
of rectangular grid of the XSSs, and Tier 3 consists of one master operator
node. Application services exploit knowledge of this topology for efficiently
utilizing system resources.

2. To meet the desired quality, we decompose ExScal into multiple subappli-
cations: a Trusted Base program, a Deployment Application, a Localization
Application, and a Perimeter Security Application; these execute in different
phases of operation. Decomposition simplifies the design, allows us to con-
figure and manage each subapplication separately (at run time if need be),
and reduces operational resource requirements. Importantly, it frees us from
using common services for all subapplications, instead we can use different
services optimized for subapplication needs.

3. For cost-effective human manageability, ExScal operates by command and
control: Tier 3 initiates, monitors, and regulates the operations of all XSSs;
in turn, each XSS likewise monitors and manages with a section of (normally
20- 50) XSMs. The operator maintains/reconfigures ExScal effectively based
on the feedback obtained from the network. Autonomous functions, specifi-
cally, configurable recoverability for nodes and their component, tolerance to
several classes of faults (often by self-stabilization), and adaptation to cer-
tain classes of variable, non-uniform environments all support containment
of human effort.

ExScal Experiments. 10000 XSMs and 300 XSSs were manufactured (these
nodes are now commercially available). The footprint of the code we designed
is ∼200KB for an XSM and ∼2MB for an XSS. We designed ExScal scenarios
for node configuration at the factory, for field marking, for node deployment at
site, for network configuration in the field, for ExScal operation, and for network
teardown. Over a two week period, we collected data on field marking accuracy,
deployment yield, localization accuracy, sensing performance and variability, en-
vironment data (especially wind data collected via microphones), communica-
tions and network management performance at each tier, and intruder traces.
This data and other literature on the project is being made available at the
ExScal website, http://www.cse.ohio-state.edu/∼exscal .

Acknowledgement. Project ExScal was conceived in and funded by the DARPA
NEST research program.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 395 – 396, 2005.
© Springer-Verlag Berlin Heidelberg 2005

NetRad: Distributed, Collaborative and Adaptive
Sensing of the Atmosphere Calibration

and Initial Benchmarks

Michael Zink
1
, David Westbrook

1
, Eric Lyons

1
, Kurt Hondl

2
, Jim Kurose

1
,

Francesc Junyent3, Luko Krnan3, and V. Chandrasekar4

1 Dept. Computer Science, University Massachusetts, Amherst MA 01003
{zink, kurose, westy}@cs.umass.edu

2 National Severe Storms Laboratory, National Oceanic and Atmospheric Administration
Norman OK 73019

Kurt.Hondl@noaa.gov
3 Dept. Electrical and Computer Engineering, University Massachusetts

Amherst MA 01003
{junyent, lkrnan}@ecs.umass.edu

4 Dept. Electrical & Computer Engineering Colorado State University,
Fort Collins, CO 80523-1373

chandra@engr.colostate.edu

1 Introduction

We are currently building a NetRad prototype system to be deployed in southwestern
Oklahoma, consisting of four mechanically scanned X-band radars atop small towers,
and a central control site (later to be decentralized as the number of radars increases)
known as the System Operations and Control Center (SOCC). The SOCC consists of
a cluster of commodity processors and storage on which the Meteorological
Command and Control (MC&C) components execute. NetRad radars are spaced
approximately 30 km apart from each other and together scan an area of 80km x
80km and up to 3 km in height. In this paper, we overview the radar calibration
process, as well as the initial benchmark execution times of the software modules we
will demonstrate at DCOSS.

2 Radar Calibration

Before a radar (or any sensor) is deployed in the field, it must be calibrated to assess
the measurement accuracy. The NetRad radar must perform very accurate
measurements since one of the system’s capabilities is to pinpoint tornadoes with
spatial error no greater than 300m. Our NetRad radars are being calibrated with the
aid of the well-calibrated CHILL weather radar from Colorado State University.
Radar calibration involves three major steps (that we will illustrate in more detail in
the DCOSS demonstration): (i) mechanical calibration, (ii) standalone calibration, (iii)
calibration through comparison with the CHILL radar. The major task in the
mechanical calibration step is to assure the antenna is pointed accurately in azimuth
and elevation. In the standalone calibration step the radar scans non-meteorological

396 M. Zink et al.

objects such as a launched sphere. In the final step, both radars (NetRad and CHILL)
scan a meteorological event simultaneously and results are compared with each other.
This step is performed to gain better insight in the accurate scanning of
meteorological events. Should different results be obtained in the third step, steps (i)
and (ii) are repeated. A result of this initial calibration routine will be a protocol for an
automated calibration of the radar which can be performed in regular intervals during
regular operation.

3 Initial Benchmarks for NetRad Control Loop

The Systems Operation Control Center (SOCC) is a centralized compute cluster on
which the MC&C algorithms execute. There are five main components (as shown in
Figure 1) (i) data ingest and storage, (ii) meteorological feature detection and multi-
radar merging, (iii) feature repository, (iv) utility and task generation, and (v)
optimization. The NetRad system is a "real-time" system in the sense that radars must
be re-tasked by the MC&C every 30 seconds – the system “heartbeat” interval.
Radars are retasked based on detected meteorological features and the projected
future evolution of these features. In order to estimate execution times of the various
software components, we performed a series of benchmarking experiments, using
existing NEXRAD radar data as input to the NetRad MC&C components for the
benchmarking. As a result of this experiment we obtained the following average
processing times for each of the MC&C components:

MC&C Component Average Processing Time (seconds)
Data ingest and storage 1
Feature detection and multi-radar merging 0.3
Feature repository 0.3
Utility and task generation 0.03
Optimization 0.03

This results in an overall average processing time of 1.66 seconds, which is well
below 30 seconds showing us that the components are well suited for the NetRad system.
Processing times depend on the number of meteorological feature present in the data, but
for all data sets, runtimes were with 25% of the average value over all data sets.

Fig. 1. MC&C components

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 397 – 398, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Service-Oriented Computing in Sensor Networks

Jie Liu and Feng Zhao

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
{liuj, zhao}@microsoft.com

Consider the following scenario in an urban business district. A traffic engineer needs
to gather vehicle statistics at major intersections for possible improvement to road
layout. Police officers want to check out suspicious vehicles as soon as they enter the
area. Environmental protection workers monitor smog level and must warn people
when the public health is at risk. For economic reasons, these users may all tap into a
common pool of sensing sources — a network of networks that connect to different
sensors such as vehicle sensors, cameras, and smog detectors scattered across the city.
The large-scale networked sensor system is likely to be deployed by multiple venders
over time, so that the cost of construction and maintenance may be shared by the
different user groups. Such a system may consist of both mobile and stationary nodes
with a wide of range of processing and communication capabilities. It must be inte-
grated seamlessly into the Internet and must provide intuitive interfaces for remote
user interactions. There will be multiple, concurrent users exercising different func-
tionalities of the system for different purposes. The system will have to be self-
monitoring and resource-aware, and has a certain level of autonomy to decide on the
best use of available resources to fulfill multiple users’ uncoordinated requests.

We have developed a service-oriented architecture, SOARNETS1, that provides a
web-service like interface to these systems, and the underlying service composition
and scheduling techniques that allow multiple applications to co-exist. Sensor net-
works export utilities such as data collection in a region, data processing and aggrega-
tion, and communication. In SOARNETS, each service is a process that consumes
input and produces output. For example, the sensors in the above scenario may pro-
vide a set of services, for example, human detection, vehicle detection, speed calcula-
tion, certain chemical element detections, picture taking, etc. The users can send their
own queries independently. These queries are processed by composing a subset of
these services on demand. This is done by wiring output of some services with input
of other services as appropriate. When all queries are running, parts of the query
processing services that are common across the applications can be shared.

We adopt the notion of services in sensor networks primarily for their interopera-
bility, scalability, and retaskability. Services are open and self-descriptive. This al-
lows systems from different venders to work together. Services are not necessarily
tied to particular nodes. For example, a car detection service can be implemented
using acoustic, magnetic, loop inductor, break beam, or image sensor. In a real sys-
tem, there is typically a great deal of redundant information available to the users.
Hiding this information detail behind the service interfaces makes interactions with

1 SOARNETS stands for Service-Oriented Architecture for Networks of Sensors.

398 J. Liu and F. Zhao

physical phenomena scalable to the number of sensor nodes. In a service-oriented
architecture, services are reusable and often generic. Applications are composed after
the services are deployed, thus the whole system is retaskable. The scarce resources
can be shared among multiple concurrent tasks.

We have developed a prototype of SOARNETS architecture that consists of the
following components: service planning, service embedding, and service scheduling.
As part of the runtime system, a networked embedded system self-monitors its operat-
ing conditions, such as network connectivity, resource availability, as well as precon-
ditions for registered services. This information is made available to the schedule time
query planner. When a user issues a query, it is first decomposed by the planner into a
set of services forming a service composition graph or workflow. The logical graph is
then embedded onto the physical sensor nodes, resulting in an assignment of logical
operations to distributed processors. For an optimal embedding of the graph, the as-
signment must take into account node locations, sensing modalities, network topol-
ogy, service availability, and resource constraints. Since the system configuration may
change during the course of executing a long-running query, the result may only serve
as an initial embedding subject to run-time adaptation. The task assignment is then
injected into the network in the form of a tasking description language – the micro-
server tasking markup language, or MSTML. This description is accepted by a service
scheduler running on each node. In order to control memory consumption, not all
services are preloaded. They are created only upon request. The service scheduler is
also responsible for checking all other services running on the same node to determine
whether part of a new task can be achieved using parts of other tasks. After this opti-
mization step, the task is admitted to execute. Because some tasks are instantiated on-
demand, service schedulers may negotiate with the planner to iteratively achieve a
feasible and optimal service allocation. After the services are instantiated, the service
execution engine executes and monitors the tasks across multiple nodes. When re-
sources change in the network, some services may be migrated to other nodes. If the
execution engine cannot determine alternate task composition locally, the schedule
time planner may be invoked again. When tasks terminate, the execution engine is
also responsible to clean up parts of the task that is not shared by other tasks.

We have built a proof-of-concept testbed to study the SOARNETS architecture. An
initial prototype includes two microserver nodes, six sensor motes and a web camera
deployed in our underground parking garage. Five Crossbow MicaZ motes are place
in a row, each attached to a break beam sensor. The break beam sensor emits an infra-
red beam which bounces back from a reflector on the opposite side of the lane. When
a car drives by this section of the lane, it blocks the infrared beam one by one. By
correlating the sequence of break beam signals, one can detect vehicles and estimate
their lengths and speeds. A magnetometer is placed further down the road. When
receiving a trigger, it can collect and transmit magnetometer readings to a micros-
erver. Both the five break beam motes and the magnetometer motes communicate
wirelessly with a microserver. A camera, connected to another microserver, is also
placed near the magnetometer. When receiving a trigger, it can take a picture and send
it to the microserver. The system has been used to answer user queries such as gath-
ering vehicle arrival statistics or taking pictures of speeding cars or large trucks.

d

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 399 – 400, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Wireless Sensors: Oyster Habitat Monitoring
in the Bras d'Or Lakes

Diane Ingraham1, Rod Beresford1, Kadambari Kaluri1,
Moise Ndoh2, and Kannan Srinivasan2

1 Cape Breton University, Box 5300 1250 Grand Lake Road,
Sydney, NS, Canada B1P 6L2

dingraham@mac.com, rod_beresford@capebretonu.ca,
kadambari_kaluri@capebretonu.ca

http://www.capebretonu.ca
2 National Research Council of Canada, IIT - Wireless Systems,

Box 5300, 1250 Grand Lake Road, Sydney, NS, Canada B1P 6L2
{moise.ndoh, kannan.srinivasan}@nrc-cnrc.gc.ca

http://iit-iti.nrc-cnrc.gc.ca

Abstract. In 2002 a devastating oyster parasite (MSX) was found in the Bras
d’Or Lakes of Cape Breton. Environmental parameters affecting the transmis-
sion and life cycle of MSX are not well understood. However field observations
so far indicate temperature and salinity are critical. Wireless sensor technology
can provide robust, reliable and near real time field data collection of such pa-
rameters. This paper addresses an implementation of wireless sensors for the
timely and cost-effective monitoring and dissemination of bio-physical parame-
ters of interest in the Bras d’Or Lakes.

1 Introduction

In 1957, the oyster population in Delaware Bay was devastated by a protozoan called
MSX (multinucleated spherical X, now known as Haplosporidium nelsoni) [3]. Ap-
proximately 80% of the oyster population dies after initial exposure to this parasite,
and after two years, mortality is closer to 95% [2]. By the mid-1990s, it had spread
from Florida to Maine [4]. In 2002, it was discovered in the Bras d'Or Lakes. Prior to
this, there were no known cases of MSX in Canada. Oysters from the Bras d'Or Lakes
have historically been moved throughout Atlantic Canada with the activities of com-
mercial aquaculture. The lifecycle of this parasite is not understood. Laboratory trans-
mission experiments of MSX have been unsuccessful, and eradication of this parasite
has not been possible [3]. Field evidence indicates that temperature and salinity are
factors in the development and transmission of the parasite [3]. Temperature is one
possible method for management of this parasite since oysters in aquacultural endeav-
ours can be positioned in the water column where the temperature inhibits MSX.

The Bras d'Or Lakes, lying between severely glacially weathered cliffs rising to
elevations of about 200m, form a brackish inland sea, open at both ends to the Atlan-
tic Ocean. Bathymetric measurements indicate depths to 180m. The shallow (less than

400 D. Ingraham et al.

10m) shoreline environment preferred by oysters is generally accessible and ideal for
testing innovative biological and oceanographic monitoring solutions.

This monitoring is an imperative first step to understanding the life cycle of the
MSX parasite and so a suitable, cost-effective, robust and reliable data collection
technology is needed. Wireless sensor technology is one such technology which pro-
vides near real-time data collection capability using a mesh topology [1]. Wireless
sensor technology also can make use of existing infrastructure such as the cellular
network and the high-speed wireless (802.11/WiFi) that may be available nearby to
share the monitored data over the Internet to the local communities including the First
Nations [5] who are actively engaged in scientific investigations of the ecosystem of
the Bras d’Or Lakes. Wireless sensor technology can be very robust and reliable
through the use of mesh networking that will allow sensor nodes to effectively avoid
failed nodes.

Although some commercial-off-the-shelf (COTS) wireless sensor nodes based on
Zigbee standard [6] and proprietary technologies are available, it is not clear if any of
them would be suitable for habitat monitoring of the Lakes. Hence our investigation
will start with experimenting with these COTS radios in the Lakes followed by mod-
eling of the wireless channel presented by the Lakes which will aid in proposing suit-
able wireless sensor technology. The investigation will also include proposing suit-
able protocol and hardware architectures that will satisfy the requirements of habitat
monitoring in the Bras d’Or Lakes.

References

1. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E, Wireless sensor networks: a survey,
Computer Networks, 38(4):393-422, March 2002.

2. Andrews JD and Wood JL (1967) Chesapeake Science, Vol. 8, Pg. 1-13.
3. Burreson EM, Stokes NA, and Friedman CS (2000) Journal of Aquatic Animal Health, Vol.

12 (1), Pg. 1-8.
4. Burreson EM (2003) Oyster Research and Restoration, US Coastal Waters: Strategies for

the Future, The State of Oyster Disease, Abstract #7.
5. Unama’ki Institute of Natural Resources (2004) Bras d’Or Lake Fisheries Resources and

Pollution Source – a working atlas based on the Pitu’paq database , Pg. 1-67.
6. Zigbee Alliance, http://www.zigbee.org.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 401 – 402, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Heavy Industry Applications of Sensornets

Philip Buonadonna, Jasmeet Chhabra, Lakshman Krishnamurthy,
 and Nandakishore Kushalnagar

Intel Research
{phil.buonadonna, jasmeet.chhabra,lakshman.krishnamurthy,

nandakishore.kushalnagar}@intel.com

1 Introduction and Motivation

Sensors are a cornerstone of heavy industrial operations. Manufacturing plants and
general engineering facilities, such as power plants or shipboard engine rooms, re-
quire a high degree of sensing to ensure product quality and/or efficient and safe op-
eration. Wireless sensor networks are a natural fit to meeting the demands of scale,
data access and cost. However, the nature and environment of industrial applications
presents unique requirements for sensornets. To better understand these challenges,
we conducted deployments in two settings: a semiconductor fabrication plant and an
oil tanker. The context for the deployments was a condition based maintenance appli-
cation which monitors machinery vibration to detect/preempt failures.

In this discussion, we focus on the oil tanker environment of the Loch Rannoch – a
British Petroleum (BP) shuttle tanker operating in the North Sea (Fig 1). This envi-
ronment was considered challenging for multiple reasons. The all steel construction of
the engine room and the isolation of water-tight spaces lead to challenges for RF con-
nectivity. Also, there was a great deal of vibration and temperature variation in the
spaces for different operating conditions of the vessel. Finally, the ship’s crew would
have limited, if any, ability to diagnose and correct sensornet problems.
We conducted pre-deployment surveys of the site and folded the learnings from this
survey into the architecture of the system. We then deployed a 26-node, 150 sensor
point network using the Crossbow mica2 processor-radio platform with a custom

Fig. 1. Hierarchical network architecture

Fig. 2. The Loch Rannoch oil tanker (courtesy
British Petroleum)

402 P. Buonadonna et al.

data-capture board. and 3 XScale® based Stargate gateways. The network collected
vibration data and routed it to Rockwell’s Emonitor® analysis applications [1].

2 Planning

To better understand the challenges and requirements of the shipboard environment,
we conducted an onboard site survey. The procedure involved deploying sensor nodes
(without sensors) and gateways at the site and executing simple end-to-end data trans-
fer applications. The results of the survey showed excellent, single-hop connectivity
could be achieved throughout the engineering spaces, even across non-watertight
bulkheads. 802.11b connectivity could be achieved when watertight hatchways were
opened and we exploited this fact to implement disconnected operation across these
boundaries. We attributed the connectivity results to the steel construction which
likely tended to reflect rather than absorb or pass RF energy.

3 Architecture and Results

Fig. 2 shows the generic architecture we applied to the shipboard deployment. The
design is hierarchical with 802.11 gateways providing a backbone for independent
sensor node meshes. At the top of the architecture is the interface to the enterprise
data applications – in this case the Emonitor® application. We incorporated caches at
the gateways to permit operation across watertight boundaries. The gateways would
upload data during opportunistic connectivity periods when access hatchways were
opened.

The deployed sensornet operated for 4 months without major failures and with no
required operator intervention. Some transient failures were observed that would
cause certain nodes to not report data when expected. Approximately half the failures
could be attributed to a localized hardware problem on one of the gateways or a ship
wide power failure that shutdown the gateways. The cause of the other failures was
unknown, but attributed to temporary RF interference. In each case of failure, the sen-
sornet subsequently recovered and was able to resume normal operation.

Acknowledgements

The authors wish to acknowledge British Petroleum especially Harry Cassar, Peter
Charrett, the CTO Office and the Masters and Crew of the M/V Loch Rannoch.
Thanks also goes to Rockwell Automation, UK for their assistance.

References

1. Rockwell Automation: Emonitor Enshare. http://www.rockwell.com

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 403 – 405, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Coordinated Static and Mobile Sensing for
Environmental Monitoring

Richard Pon1,2, Maxim A. Batalin1,3, Victor Chen1,2, Aman Kansal1,2,
Duo Liu1,2, Mohammad Rahimi1,3,

Lisa Shirachi1,2, Arun Somasundra1,2, Yan Yu1,4,
Mark Hansen1,5, William J. Kaiser1,2,

Mani Srivastava1,2, Gaurav Sukhatme1,3, and Deborah Estrin1,4

1 Center for Embedded Networked Sensing, University of California,
Los Angeles, CA 90095

2 Electrical Engineering Department, University of California, Los Angeles, CA 90095
3 Computer Science Department, University of Southern California, Los Angeles, CA

4 Computer Science Department, University of California, Los Angeles, CA 90095
5 Statistics Department, University of California, Los Angeles, CA 90095

Abstract. Distributed embedded sensor networks are now being successfully
deployed in environmental monitoring of natural phenomena as well as for
applications in commerce and physical security. While substantial progress in
sensor network performance has appeared, new challenges have also emerged
as these systems have been deployed in the natural environment. First, in order
to achieve minimum sensing fidelity performance, the rapid spatiotemporal
variation of environmental phenomena requires impractical deployment
densities. The presence of obstacles in the environment introduces sensing
uncertainty and degrades the performance of sensor fusion systems in particular
for the many new applications of image sensing. The physical obstacles
encountered by sensing may be circumvented by a new mobile sensing method
or Networked Infomechanical Systems (NIMS). NIMS integrates distributed,
embedded sensing and computing systems with infrastructure-supported
mobility. NIMS now includes coordinated mobility methods that exploits
adaptive articulation of sensor perspective and location as well as management
of sensor population to provide the greatest certainty in sensor fusion results.
The architecture, applications, and implementation of NIMS will be discussed
here. In addition, results of environmentally-adaptive sampling, and direct
measurement of sensing uncertainty will be described.

1 Introduction

The first generation of networked embedded sensing systems have been successfully
applied to distributed monitoring of environments. These first applications have
stimulated rapid growth of applications based on an unprecedented capability for
characterizing important environmental phenomena.[1] The primary challenges for
operation of networked embedded sensing systems first appeared in the development

404 R. Pon et al.

of scalable, low energy networking and cooperative detection. While progress has
been made towards addressing these challenges, the deployment of first generation
sensor networks has revealed a new class of problems associated with optimizing
sensing fidelity and sustainability in complex environments. Specifically, the
unpredictable evolution of events and the presence of physical obstacles to sensing
introduces uncertainty in sensing and the results of sensor data fusion. Most
importantly, the inevitable presence of unpredictable physical sensing obstacles is
fundamental to environments of interest and creates a pervasive limitation that
threatens to degrade the performance of distributed sensor systems.

2 Coordinated Static and Mobile Sensing

Perhaps the most important challenge for sensor networks is the development of
capabilities for sensor network self-awareness where the sensor network itself is
capable of determining its own sensing fidelity. Of course, with only a fixed sensor
distribution and an accompanying unpredictable set of obstacles, this self-awareness
may be unachievable since obstacles may not be identifiable within an environment
by fixed sensors alone. Now, since it is the presence of physical obstacles that create
uncertainty, then physical reconfiguration of sensors is required to circumvent
obstacles. This introduces further challenge, of course, since such mobility must be
autonomous and generally sustainable in the environment. However, a new
generation of networked embedded systems incorporating controlled and precise
mobility is now being explored. These Networked Infomechanical Systems (NIMS)
directly address the fundamental objective of self-awareness by enabling motion of
sensor node networks to circumvent obstacles, probe sensing fidelity, and optimize
sensor and sample distribution.[2]

NIMS introduces a new networked embedded system capability that provides the
ability to explore large volumes, adds new networking flexibility and functionality,
and new logistics for support of distributed sensors, as well as the capability for self-
awareness. This requires, in turn, the development of new methods for scalable and
optimized coordination of mobility among nodes for many possible objectives. NIMS
also introduces infrastructure-supported mobility to enable low energy transport and
retain inherent low operating energy, rapid deployment characteristics, and
environmental compatibility of distributed sensors.

3 Coordinated Static and Mobile Sensing Systems and
Applications

The first investigations of natural environment phenomena with NIMS have revealed
characteristics of fundamental field variables that were not visible with previous
sensing methods based only on static sensing. An example is the spatiotemporal
distribution of solar illumination, important in the understanding of fundamental
ecosystem phenomena. The complexity and rapid evolution of light fields
immediately demonstrated that fixed sensors or even simple actuated sensor scanning
methods would be inadequate for high fidelity mapping. A series of new methods

Coordinated Static and Mobile Sensing for Environmental Monitoring 405

have been developed that merge static sensing (providing constant vigilance for
temporal change in environmental phenomena) with mobile sensing, providing the
ability to intensively sample phenomena. These include adaptive sampling and task
allocation methods that provide a means to efficiently manage the distribution of
sampling points in a variable field to achieve a specified fidelity threshold.[3] Others
include methods that exploit controlled mobility to benefit network performance.

NIMS systems include multiple embedded platform types. Horizontally actuated
nodes operate with motion along a horizontally suspended cable. This embedded
device, hosting adaptive sampling and other applications also controls the motion of
an independently operating and vertically actuated sensor node. This latter device
carries microclimate monitoring devices. These nodes maintain network access to the
static nodes also distributed in the environment with static nodes suspended by the
cable itself or distributed at the surface. Imager systems carried by the horizontally
actuated node include angular perspective actuation. New embedded software systems
include embedded statistical computing tools for in-network processing in support of
adaptive sampling. The runtime environment and software interfaces connecting
application level software systems and sensor and actuator systems follows the
Emstar architecture.[4]

NIMS system applications and this tool is being adopted by a community of
researchers. First, at the James San Jacinto Mountain reserve,[5] NIMS systems are in
use for microclimate and solar radiation mapping. Also, at this same location, a
second NIMS system has been adopted for investigation of interaction between
surface and subsurface (forest soil) environmental phenomena including
measurements of gas transport. NIMS systems have also been deployed for
measurement of water quality and contamination in the Los Angeles area watershed.
NIMS systems are also under development for deployment in the Merced River of
California for characterization of the influence of agricultural processes on river water
quality. Finally, a sensing architecture has been designed for deployment in tropical
rain forests for characterization of fundamental biological science phenomena as well
as for investigation of the impact of fragmentation on forest ecosystems.

References

[1] D. Estrin, G.J. Pottie, M. Srivastava, “Instrumenting the world with wireless
sensor networks,” ICASSP 2001, 2001.

[2] W. Kaiser, G. Pottie, M. Srivastava, G. Sukhatme, J. Villasenor, D. Estrin,
“Networked Infomechanical systems (NIMS) for Ambient Intelligence,” Center
for Embedded Networked Sensing Technical Report, No. 31, December 2003.

[3] M. Batalin, M. Rahimi, Y. Yu, D. Liu, A. Kansal, G. S. Sukhatme, W. J. Kaiser,
M. Hansen, G. J. Pottie, M. B. Srivastava, and D. Estrin “Call and Response:
Experiments in Sampling the Environment,” Proceedings of SenSys 2004, pp.
25-38, 2004.

[4] L. Girod and J. Elson and A. Cerpa and T. Stathopoulos and N. Ramanathan and
D. Estrin, “EmStar: a Software Environment for Developing and Deploying
Wireless Sensor Networks,” USENIX, 2004.

[5] http://www.jamesreserve.edu

Ayushman: A Wireless Sensor Network Based
Health Monitoring Infrastructure and Testbed�

K. Venkatasubramanian, G. Deng, T. Mukherjee, J. Quintero,
V. Annamalai, and S.K.S. Gupta

Arizona State University, Tempe AZ 85281, USA
sandeep.gupta@asu.edu

With a rapidly aging population, automated health monitoring systems provide
an effective means of reducing the resulting healthcare professional shortage.
To this end, we at the IMPACT lab at Arizona State University are develop-
ing Ayushman, a sensor network based health monitoring infrastructure and
testbed1. Ayushman provides a medical monitoring system that is dependable,
energy-efficient, secure, and collects real-time health data in diverse scenarios,
from home based monitoring to disaster relief. Further, Ayushman is designed
to be a testbed which allows researchers to test their communication protocols
and systems in a realistic environment. Fig.1 presents Ayushman’s architecture,

Sensor Management Services

Aggregation
ContextService

Discovery

Data Dissemenation/ Gathering Services

Query Processor

Management Interpretter

Data Data

Pe
rf

or
m

an
ce

 A
na

ly
si

s
Se

rv
ic

es

Sy
st

em
 C

us
to

m
iz

at
io

n
Se

rv
ic

es

Se
cu

ri
ty

 S
er

vi
ce

s

A
ut

he
nt

ic
at

io
n

Se
rv

ic
es

Location
Management

Security
Subsystem

Performance
Management
Subsystem

Application Layer

B/W Management

APPLICATION
MANAGERMANAGER

PERFORMACE
ANALYZER

DATA DISPLAY
MANAGER

QUERY
GENERATOR

SYSTEM DATA SECURITY
MANAGER

System Management Subsystem

Hardware Medical Sensors

Fig. 1. Ayushman: Architecture

which is organized as a collection of services. Apart from the application layer
and sensor management service (which provides an abstraction of the medical
sensors), Ayushman has three main components: the system management sub-
system, which provides health monitoring services, the performance management

� This work is supported by NSF grant ANI-0086020.
1 Ayushman Project - http://shamir.eas.asu.edu/∼mcn/Ayushman.html

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 406–407, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Ayushman: A Wireless Sensor Network 407

subsystem, which monitors and controls the entire system for testing purposes
and the security sublayer, which provides security and authentication services to
all components. So far, we have implemented the query processor and data stor-
age/gathering services, and we are currently working on resource management
and reliability issues.

Studying Upper Bounds on Sensor Network
Lifetime by Genetic Clustering

Min Qin and Roger Zimmermann

Computer Science Dept., University of Southern California, Los Angeles, CA 90089
{mqin, rzimmerm}@usc.edu

1 Introduction

In this paper we introduce the maximum lifetime sensor clustering (MLSC)
protocol for calculating the upper bound on the lifetime of a sensor network.
The new protocol can maximize the K-of-N network lifetime. Also, a novel
genetic clustering algorithm is introduced to form optimal clusters. Simulation
results show that our model can extend the sensor network lifetime to five times
over that of existing approaches.

2 MLSC Protocol

In MLSC, sensors are organized into clusters and a linear programming model is
introduced for calculating a cluster head rotation schedule. To reduce time and
space complexity of the algorithm, we use a genetic algorithm to divide and con-
quer the original problem. Through a series of crossover and mutation functions,
the offsprings of the initial solutions progress towards the optimal solution. Figure
1 shows the result of our algorithm compared to several other algorithms [1, 2].

20 40 60 80 100
0

100

200

300

400

500

N
e
tw
o
rk
 li
fe
tim

e

Num ber of sensors

 M LSC
 direct transm ission
 LEACH
 PEGASIS

0

20

40

60

80

100

0 500 1000 1500 2000
Tim e (round)

N
u
m
b
e
r
o
f
se
n
so
rs
 a
liv
e

 direct trans
 LEACH
 100-of-100 M LSC
 PEGASIS
 70-of-100 M LSC

(a) network lifetime (b) # of sensors alive over time

Fig. 1. Simulation results of the MLSC protocol

References

1. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-Efficient Communi-
cation Protocols for Wireless Microsensor Networks. Proc. of the Hawaiian Int’l
Conf. on Systems Science, January 2000.

2. Lindsey, S., Raghavendra, C. S.: PEGASIS: Power Efficient GAthering in Sensor
Information Systems. 2002 IEEE Aerospace Conference, March 2002, pp. 1-6.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, p. 408, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Sensor Network Coverage Restoration

Nitin Kumar, Dimitrios Gunopulos, and Vana Kalogeraki

Department of Computer Science and Engineering,
University of California, Riverside, California, 92521

{nkumar, dg, vana}@cs.ucr.edu

Abstract. Wireless sensor networks are emerging as a new computa-
tional platform consisting of small, low-power and inexpensive nodes that
integrate a modest amount of sensing, computation and wireless commu-
nication capabilities. These have found popular applications in a broad
set of areas including environmental monitoring, habitat monitoring and
disaster recovery. Typically sensor nodes are deployed over a geograph-
ical area for the purpose of detecting, tracking and monitoring events of
interest. Reports produced upon the observation of specific events are
then processed locally at the sensor nodes and transmitted over multiple
hops to a centralized sink in order to reach an operations center or to be
analyzed further. Since sensor nodes are deployed in a large land region,
the objective is to achieve complete coverage of the region, that is, every
location in the region lies in the observation field of at least one sensor
node. However the initial placement of sensors may not achieve this goal
for various reasons: the number of original sensors may have been too
low, the original placement may have been random (for example, sensors
deployed from the air) leaving parts of the region uncovered, or, some of
the sensors have malfunctioned, leaving coverage holes.

In this paper we study the coverage restoration problem in sensor net-
works. The fundamental question is “Given a two-dimensional area, a piece
of land for example, and an initial set of sensors, how can we determine the
number of sensor nodes required to completely cover the region”. Essentially,
the coverage restoration problem reflects how well an area is monitored by
sensors. In abstract terms, our approach determines uncovered area in the
sensor network field and proposes the deployment of nodes to completely
cover the area. Our mechanism consists of two steps: (a) estimating the
regions uncovered by sensors and (b) identifying the minimum number
and location of sensors required to cover this region. The key idea of our
technique is to make an efficient and yet very accurate representation of the
uncovered area that uses techniques from discrepancy theory. By repre-
senting the uncovered area as a set of points, we can use efficient and simple
algorithms for finding small sets of sensors to cover the uncovered areas.
Wepartition the sensor network into cells, and run these algorithms locally.
We formulate this problem as a disk covering problem where the goal is to
cover a set of points on the plane by a set of disks. This problem is known
to be NP-complete. However, there exist various approximate solutions
that run in polynomial time and have a bounded error ratio. We use one of
such proposed algorithm for our experimental purpose. The technique we
propose is distributed, andminimizes the communication costs.Wepresent
a comprehensive set of experiments that demonstrate that our technique is
highly effective in achieving a good coverage of a given sensor network area.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, p. 409, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Biologically-Inspired Data-Centric
Communication Protocol for Sensor Networks

Naoki Wakamiya, Yoshitaka Ohtaki, Masayuki Murata, and Makoto Imase

Graduate School of Information Science and Technology, Osaka University
Suita, Osaka 565-0871, Japan

{wakamiya, y-ohtaki, murata, imase}@ist.osaka-u.ac.jp

1 Introduction

In sensor networks, each application has unique characteristics different from
others, including the area of region of deployment, a type of object to monitor
or obtain information of, the number of sensor nodes, the number of sources
and sinks, and the frequency of needs for sensor data. In addition, those char-
acteristics dynamically change in accordance with changes in conditions of sur-
roundings, a topology of a sensor network, and user’s requirements. Therefore,
a communication protocol for sensor networks must be adaptive to diverse and
dynamically changing characteristics of applications and networks.

In this paper, we propose a new communication protocol for robust and
scalable sensor networks. Our protocol, ARCP (Ant-based Rendezvous Commu-
nication Protocol) is based on the foraging behavior of ants. Ants generated at
sensor nodes which obtain or need sensor data wander around a sensor network
while leaving pheromones. When an ant finds a trail of the other at a node, the
node becomes a rendezvous point where ants meet and sensor data are passed
from one to another. Since each ant moves on its own decisions in accordance
with pheromones and no one ant has the dominant influence, ARCP is a fully
distributed, robust, and scalable protocol.

2 Ant-Based Rendezvous Communication Protocol

In our ARCP, ants are emitted from both of sources and sinks. Data provision
ants are generated at sources at the rate Rs. Data gathering ants are generated
at sinks at the rate Sg. To receive sensor data at the desired rate, Sg is updated
with the current data reception rate Rc and the desired reception rate Rt as
S+

g = Sg + β(Rt − Rc). Each of ant is categorized into forward and backward
ant depending on its direction of migration. Forward ants wander around a
sensor network. Forward data provision ants leave data provision pheromones
which indicate the direction of sources. Forward data gathering ants leave data
gathering pheromones which indicate the direction of sinks.

When an ant finds a trail, i.e., pheromones, of the other type of ant, a ren-
dezvous point (RP) is established at the node. An ant which established or
finds an RP becomes a backward ant. By following pheromones, it goes back to

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 410–411, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Biologically-Inspired Data-Centric Communication Protocol 411

its originating node while leaving rendezvous pheromones at nodes it traverses.
Other forward ants from sinks or sources can easily reach the rendezvous point
by following rendezvous pheromones. The probability that a forward ant chooses
the next-hop node n is given as Pr(n) = Tr(i, n)/

∑
j∈Ni

Tr(i, j), where Ni is a
set of neighbors of node i and Tr(i, n) corresponds to the rendezvous pheromone
value to node n. To find other trails or RPs, forward ants ignore rendezvous
pheromones at the probability p and choose the next-hop node at random. Data
provision ants put sensor data at a rendezvous point and data gathering ants
take sensor data of interest from a rendezvous point. All pheromones are de-
fined by data-oriented attributes. Thus, for example, rendezvous pheromones
attract both forward ants as far as they carry or look for sensor data of the same
attributes. Pheromones are accumulated by ants and evaporate as time passes.

Since there is no centralized control and ants behave independently of others,
there occasionally appear many rendezvous points. In addition, since rendezvous
points are accidentally generated, they are not located at preferable positions.
We consider that an RP which is located at the center, from a viewpoint of hop
count, TTL of ants, and emission rate of ants, of sources and sinks is appropriate.
In our proposal, each ant pulls an RP in accordance with the distance from its
origin to the RP. When a forward ant arrives an RP, it moves the RP to the
node from which it came with probability γh/TTL, where h corresponds to
the number of hops that the ant experienced to the RP and γ is a constant
(0 < γ < 1). TTL is a initial TTL value of the ant set by its origin. When two
or more RPs are moved to a node, they are merged together.

3 Simulation and Evaluation

Figures 1 and 2 show simulation results to compare the adaptability of our
protocol to the number of sinks and sources in a sensor network of 60 nodes
with that of Directed Diffusion protocols. Although not shown in figures, in all
cases, all sinks received sensor data at the expected rate. The reason that ARCP
introduced much load as the number of sinks increased is that backward data
gathering ants did not return to their originating sinks by being attracted by
data gathering pheromones of other sinks. This is left as a future work.

 0

 500

 1000

 1500

 2000

1 5 10

ne
tw

or
k

lo
ad

number of sources

proposal
two-phase pull
one-phase pull

push

Fig. 1. Network load (one sink)

 0

 500

 1000

 1500

 2000

1 5 10

ne
tw

or
k

lo
ad

number of sinks

proposal
two-phase pull
one-phase pull

push

Fig. 2. Network load (one source)

RAGOBOT: A New Platform for Wireless
Mobile Sensor Networks

Jonathan Friedman, David Lee, Ilias Tsigkogiannis, Sophia Wong,
Dennis Chao, David Levin, William Kaiser, and Mani Srivastava

University of California, Los Angeles, Los Angeles CA 90024, USA

Abstract. We present Ragobot, a fully-featured validated platform for
use in mobile sensor networks. Ragobot is a robot of small dimensions
with features that surpass those provided by many other robots in this
category. Ragobot hardware and software are implemented with mod-
ularity as one of the main considerations; therefore, these are easy to
upgrade and customize according to the needs of each specific applica-
tion. Moreover, we present Ragoworld, a controlled physical space for the
development and evaluation of mobile sensor network algorithms.

1 RAGOBOT Project

To explore mobility in wireless sensor networks, we created Ragobot, a small-
sized robot platform that provides a large number of features, some not sup-
ported even by larger-size robots. At only 13.3 cm long by 6cm wide, Ragobot
is positioned at the intersection of size and capability. Ragobot is able to op-
erate on terrain that is impassable by other platforms ([1], [2], [4], [3]) while
being smaller than a Cotsbot and an Amigobot, and only consuming about as
much power (4W at full power, 40mW at idle, and even less during sleep) as
a Robomote. Significant emphasis was placed on the analog design of Ragobot
allowing for simultaneous movement and sensor operation without noticeable
degradation of sensor performance as occurs in other platforms ([2], [3]). For
more information visit http://www.ragobot.com.

References

1. ActiveMedia, Inc., www.amigobot.com
2. Sarah Bergbreiter, Kristofer S. J. Pister, “CotsBots: An Off-the-Shelf Platform for

Distributed Robotics” IROS 2003, Las Vegas, NV, October 27-31, 2003.
3. Karthik Dantu, Mohammad H. Rahimi, Hardik Shah, Sandeep Babel, Amit Dhari-

wal, and Gaurav Sukhatme, “Robomote: Enabling mobility in sensor networks”
International Conference on Information Processing in Sensor Networks, 2005.

4. Luis Navarro-Serment, Robert Grabowski, Chris Paredis, Pradeep K. Khosla, “Mod-
ularity in Small Distributed Robots”, Proceedings of the SPIE conference on Sensor
Fusion and Decentralized Control in Robotic Systems II, September, 1999.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, p. 412, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Energy Conservation Stratedgy for
Sensor Networks

Hyo Jong Lee

Chonbuk National University,
Jeonju, Jeonbuk Prov., Korea

Abstract. A simple but efficient power conserving algorithm for the
sensor networks is presented in this paper. The goal is to predict sleep
time for the sensor networks based on statistics of data transfer. The
proposed sensors in this paper can increase the sensor’s life time from
247% to 600% within the range of 1% tolerable data error.

1 Power Conservation for Quality Controlled Sensor
Networks

The only possible way to save power consumption from sensors is to predict
how long the current data will stay within a specified error tolerance. If the
probability that the sensed value stays is high, the sensor should go to sleeping
mode; otherwise, it should stay in active mode. The principle of data sample is
described in the following section before we explain the algorithm.

The picewise constant approximation was developed during the Quality-
Aware Sensor Architecture project at UC Irvine. The method explores the char-
acteristics of inertial data to archive. It was designed to work as batch-mode for
archival data. Thus, it cannot be used for real-time data compression. Poor Man’s
Compression(PMC) was used to reduce the size of a time series data. It requires
O(1) of computational space and time. It was proved that the maximum error
of time series is bound to 2ε. The compression algorithm can be implemented
using either the midrange or mean of the sensor readings. The difference of two
algorithms is not significant, although the PMCmidrange is slightly better than
the PMC mean one.

In the real time PMC mean value is adjusted with ε according to data change
direction. When a new value is out of the error range and its value is greater
than the mean value, a new mean value will be adjusted by adding ε to move
upwardly. If a new value is smaller than the mean value, a new mean value will
be adjusted by subtracting ε to lower the current mean value.

The new modified piecewise constant approximation shows significant power
conservation compared to the regular PMC. The life span of sensors can be
increased from 247% to 600% with 1% of error tolerance. The rate of power
conservation becomes higher with greater error tolerance.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, p. 413, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 414 – 414, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Kyung-Bae Chang1, Il-Joo Shim1, Seung-Woo Shin1, and Gwi-Tae Park1

1 ISRL, Korea University, 1, 5ga Anam-dong Sungbuk-Gu,
136-713 Seoul, South Korea

{lslove, ijshim, ezshini, gtpark}@korea.ac.kr
http://control.korea.ac.kr

Abstract. This paper aims at the reliable gathering of meteorological data of all
the regions, by the use of wireless networks, in order to prevent meteorological
disasters. For simple installation in areas like mountains, embedded system
technology, which shows high performances and small sizes, to process the me-
teorological data.

1 Introduction and Conclusion

Because the countries 70% is consisted with mountain areas, base-station construc-
tions for the gathering of meteorological data of specific regional (mountains, valleys,
islands) with a wired transmission system is difficult and expensive. Also, this inter-
feres with the construction of infra for the prevention of disasters resulting from re-
cent meteorological changes. In order to solve these problems, this paper proposes a
method, which uses a highly efficient embedded system to consist AWS. And also,
by the world’s first use of CDMA 1x EVDO services, we propose a method of gather-
ing meteorological data by SMS service using domestic wireless networks, which
leads the wireless internet market.

Microprocessor
PXA255

WinCE Operating System

M
ul

ti
In

te
rfa

ce

DSP S
ys

te
m

 C
on

tr
ol

Web Data Base

T
C
P
/IP

R
S
-2

32
O

th
er

s

S
M

P
S

LCD Driver & Expansion Port

Fig. 1. Automatic Weather Observation system

By using the existing wireless networks, system construction on far regions, like
mountains or islands, can be a lot easier and economically profitable. Research in-
volving the integration of the wireless network of meteorological data using Wibro,
which is a high speed and high capacity portable internet network that will be con-
structed hereafter, is being planned.

Meteorological Phenomena Measurement System Based
on Embedded System and Wireless Network

An Architecture Model for Supporting Power
Saving Services for Mobile Ad-Hoc

Wireless Networks�

Nam-Soo Kim1, Beongku An2 and Do-Hyeon Kim3

1 School of Computer and Communication Engineering,
Cheongju University, Cheongju, Chungbook, 360-764, South Korea

nskim@cju.ac.kr
2 Department of Electrical, Electronic & Computer Engineering,
Hongik University Jochiwon, Chungnam, 339-701, South Korea

beongku@wow.hongik.ac.kr
3 Department of Computer & Telecommunication Engineering,

Cheju National University, Cheju, 690-756, South Korea
kimdh@cheju.ac.kr

Abstract. In this paper, we propose an architecture model for supporting
power saving services in mobile ad-hoc wireless networks. The main feature
oftheproposedpowersavingarchitecture isthecombinationofthefollowing
two ideas such as the direction guided transmission for the information
transmission using a directional antenna and the receive antenna diversity
with maximal ratio combining (MRC) technique. The numerical results
show the transmission power can be reduced to 22.47*(N-1) dB, where N
mobilenodeswithin thedirectionguided transmissionareahavedirectional
transmit antennas with the half-power beamwidth (HPBW) of radian and
two branch receiving diversity in mobile ad-hoc wireless networks.

1 Introduction

Mobile ad-hoc wireless networks are self-organized among mobile nodes which
function as both host and router with wireless interface. These mobile nodes that
have the problems of power supply using battery have the functions of data trans-
mission as intermediate nodes because the radio distance is limited. That is the
battery capacity of mobile node limits the network survival and routing. In this
paper, we propose an architecture model for supporting power saving services
using the combination of the direction guided transmission protocol (DGTP)
and receiver diversity technology in mobile ad-hoc wireless networks[1][2].

2 The Proposed Architecture Model

For supporting the power saving services in mobile ad-hoc wireless networks[2],
we propose the combination architecture model of the direction guided trans-

� This work was supported by the Korea Research Foundation for research program
of regional universities.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 415–416, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

416 N.-S. Kim, B. An, and D.-H. Kim

mission based on the known geographical information of the target location and
the receive antenna diversity[1] with MRC. The proposed architecture model is
shown in fig. 1(a). The proposed architecture model consists of two power saving
structures as follows. The first structure is the power saving scheme using receive
antenna diversity while the second structure is the power saving scheme using
direction guided transmission protocol(DGTP).

3 Numerical Results and Conclusion

For the numerical analysis, we assume the horizontal transmit angle from a
mobile node is 2π/3 [rad]. The gain from a pair of mobile nodes is 4.77 dB, and
the total transmit gain in mobile ad-hoc wireless networks with N mobile nodes
within the direction guided area becomes 4.77 *(N-1) dB. Fig. 1(b)shows the
SNR gain as function of number of receive antennas. In conclusion, the proposed
combination architecture model of the direction guided transmission protocol
with the receive antenna diversity can drastically reduce the transmit power in
mobile ad-hoc wireless net-works[2] and can also prolong the network liability.

Fig. 1. The proposed architecture model and numerical results

References

1. W. Stutzman, G. Thiele, Antenna theory and design, John Wiley & Sons, 1998. 2.
2. Beongku An, Symeon Papavassiliou, ”An Entropy-Based Model for Supporting and

Evaluating Stability in Mobile Ad-hoc wireless Wireless Networks,” IEEE Commu-
nications Letters, vol. 6, no. 3, August 2002.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, pp. 417 – 419, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Distributed Recovery Units for Demodulation
in Wireless Sensor Networks

Mostafa Borhani and Vafa Sedghi

Sharif University of Technology, Tehran Polytechnic University of Technology
borhani@ee.sharif.edu
vafa_sedghi@yahoo.com

Abstract. In this paper, the distributed recovery units for FM and PPM
demodulation in wireless sensor networks is proposed and is showed that, the
method introduces very little amount of distortion to recovered signal. With
simulations, we have examined several different parameters. Besides, two
different filtering schemes are simulated. Effect of iteration coefficient () on
stability and convergence rate is investigated for different sampling and
filtering methods. Next, we have studied the noise effect in demodulation with
this method. Simulations results are included to verify convergence.

1 Introduction

Demodulation techniques is one the most important topics in the wireless networks.
By using the distributed techniques we can remove vast computational complexity of
demodulation blocks.

In this work, we concentrate on distributed recovery units for FM and PPM
demodulation in wireless sensor networks and employ techniques to demodulate
signals. We have simulated this technique and examined the performances of this
method for various parameters.

2 Recovery Unit

In [1-2] a method called Iterative method is proposed to reduce the distortion. A block
diagram of this method is shown in figure 1. In this figure, the G operator is all that is
FM demodulator or PPM demodulator. The number of blocks in this figure is equal to
the number of blocks. In reference [2] it’s shown that when number of iterations
approach infinity, the distortion of signal reaches zero.

In FM/PPM demodulation, G=PS, that S means sampling and P low pass filter
therefore ith iteration output signal equals:

)()1()()(10 txGtxtx ii −−+= λλ (1)

Filtering may be done using FFT or FIR methods. Besides, the constant can
affect rate of improvement of signal and it can make the system unstable, if not
selected properly. All of these effects are discussed in the following sections.

418 M. Borhani and V. Sedghi

Fig. 1. Block diagram of iterative method

3 Simulation Results

Fig. 2. MSE as a function of number of blocks for different sampling rate for PPM(left) /FM
(right)demodulator

3.1 The Lambda effect

0.5

1

1.5

5
10

15
20

25
-50

-40

-30

-20

-10

lambda

PPM Demodulator

iteration

M
S

E

 0.5

1

1.5

5
10

15
20

25
-45

-40

-35

-30

-25

-20

-15

lambda

FM Demodulator

iteration

M
S

E

Fig. 3. The lambda effect for iterative method in PPM(left)/FM(right) demodulator

3.2. The Noise effect

102 −=σ

202 −=σ

302 −=σ

402 −=σ

102 −=σ

202 −=σ

302 −=σ

402 −=σ

Fig. 4. The noise effect on iterative method for PPM(left)/FM(right) demodulator

 Distributed Recovery Units for Demodulation in Wireless Sensor Networks 419

4 Conclusions

In this paper, we examined iterative method for demodulation of FM and PPM
signals. Our simulations proved that, the method is strongly capable to reconstruct the
message signal. One can see that, the amount of distortion decreases as the number of
blocks increases in FM and PPM demodulators. Two schemes for filtering are
considered and the effect of choosing lambda is studied in both FM and PPM
demodulators.

We see that iterative method is very sensitive to input noise and its performance
degrades a great amount when the noise is presented at the input.

Acknowledgement. With Great thanks from Dr. F.A. Marvasti.

References

[1] F. Marvasti, A Unified Approach to Zero-Crossing and Nonuniform Sampling of Single
and Multidimensional Signals and Systems, Nonuniform Publication, 1987.

[2] F. Marvasti, "The reconstruction of a signal from the FM zero-crossing", Trans. of IECE
of Japan, vol. E68, no. 10, Oct. 1985.

V. Prasanna et al. (Eds.): DCOSS 2005, LNCS 3560, p. 420, 2005.
© Springer-Verlag Berlin Heidelberg 2005

System Integration Using Embedded Web Server and
Wireless Communication

Kyung-Bae Chang1, Il-Joo Shim1, Tae-Kook Kim1, and Gwi-Tae Park1

1 ISRL, Korea University, 1,
5ga Anam-dong Sungbuk-Gu 136-713 Seoul,

South Korea
{lslove, ijshim, prince, gtpark}@korea.ac.kr

http://control.korea.ac.kr

Abstract. As the buildings become intelligent with the development of infor-
mation communication, many facilities have appeared. Usually, each facility
performed independent functions, but with the development of the internet, the
facilities integrate with each other and perform various new abilities. At pre-
sent, in order to offer linked service by integrating, PC servers are being used.
However, the use of a PC server is expensive, consumes a lot of electricity and
needs a lot of room. Therefore, this paper proposes the Embedded Web Server,
which can substitute the existing PC server and control devices through the
Web. Also, we propose integration through wireless communication, which can
solve problems like complicating wiring and space restriction.

1 Introduction and Conclusion

With the development of information communication techniques and internet ser-
vices, buildings are becoming more intelligent. For example, the control and monitor-
ing of the building’s air-conditioning/heating devices, illumination and security de-
vices can be done remotely.

At present, a PC server is used to integrate facilities and control through the inter-
net. These PC servers are expensive, consume a lot of power and needs a lot of space.
To solve these problems, we propose the small sized Embedded Web Server.

The embedded web server provides various interfaces like Ethernet, RS232, USB,
IrDa, PCMCI and CF for the PC’s functions and system integration. Because it per-
forms one specific function, to integrate the many facility’s systems, a low costing,
small sized, low power embedded web server can be designed.

This paper proved that by the use of the proposed Embedded Web server and wire-
less communication, the building’s system can be integrated, controlled and monitored.

Author Index

Abdelzaher, Tarek 155, 276
An, Beongku 415
Anderson, Chris 393
Angluin, Dana 63
Annamalai, Valliappan 406
Aramugam, Mahesh 393
Arora, Anish 393
Aspnes, James 63

Bapat, Sandip 393
Baraniuk, Richard G. 173
Batalin, Maxim A. 403
Beresford, Rod 399
Borhani, Mostafa 417
Buonadonna, Philip 401

Caffrey, John 387
Cao, Hui 393
Cao, Qing 276
Celik, Aslihan 322
Chakrabarty, Krishnendu 191
Chan, Haowen 109
Chan, Melody 63
Chandrasekar, V. 395
Chang, Kyung-Bae 414, 420
Ch o, Dennis 412
Chatzigiannakis, Ioannis 376
Chen, Shimin 89
Chen, Victor 403

Chhabra, Jasmeet 401
Chintalapudi, Krishna 387
Choi, Young-ri 393
Cui, Jianfeng 218
Cui, Peiling 218
Culler, David 393

Das, Sajal K. 340
Demers, Alan 307
Deng, Guofeng 406
Ding, Ping 322
Dutta, Prabal 393

Faruque, Jabed 258
Ferriera, Bill 393
Fischer, Michael J. 63
Friedman, Jonathan 412
Funke, Stefan 354

Gao, Jie 4
Gehrke, Johannes 307
Ghosh, Amitabha 340
Gibbons, Phillip B. 2, 89
Gnawali, Omprakash 126
Gorman, Bryan L. 391
Gouda, Mohamed 393
Govindan, Ramesh 126, 387
Grimmer, Mike 393
Guibas, Leonidas J. 4
Gummadi, Ramakrishna 126
Gunopulos, Dimitrios 409
Gupta, Sandeep K.S. 206, 406

Hansen, Mark 403
He, Tian 155
Helmy, Ahmed 258
Herman, Ted 393
Holliday, JoAnne 322
Hondl, Kurt 395

Imase, Makoto 410
Ingraham, Diane 389, 399

Jea, David 244
Jiang, Hong 63

Johnson, David B. 173
Johnson, Erik 387
Johnson, Helen 389
Junyent, Francesc 395

412Kaiser, William 403
Kalogeraki, Vana 409
Kaluri, Kadambari 389, 399

a

,

Wang,Chen 49

Ertin, Emre 393
Estrin, Deborah 403

Kansal, Aman 403

422 Author Index

Kim, Tae-Kook 420
Kran, Luko 395
Krishnamachari, Bhaskar 387
Krishnamurthy, Lakshman 401
Krivitski, Denis 368
Kulathumani, Vinod 393
Kulkarni, Sandeep 393
Kumar, Nitin 409
Kumar, Rajnish 173
Kumar, Santosh 393
Kurose, Jim 395
Kushalnagar, Nandakishore 401

Lee, David 412
Lee, Hyo Jong 413
Lee, Ronald W. 391
Leone, Pierre 35
Levin, David 412
Li, Junhong 218
Li, Qun 228

Liu, Duo 403
Liu, Jie 397
Luk, Mark 109
Luo, Huiyu 75
Luo, Liqian 155
Lyons, Eric 395

Ma, Ming 20
Masri, Sami 387
Milosavljevic, Nikola 354
Mukherjee, Tridib 406
Murata, Masayuki 410
Mylonas, Giorgos 376

Naik, Vinayak 393
Nath, Suman 89

Nesterenko, Mikhail 393
Nguyen, An 4
Nie, Hong 389
Nikoletseas, Sotiris 35, 376

Ohtaki, Yoshitaka 410

PalChaudhuri, Santashil 173
Pan, Quan 218

Peralta, René 63
Perrig, Adrian 109
Pon, Richard 403
Pottie, Gregory 75
Psounis, Konstantinos 258

Qin, Min 408
Quintero, John 406

Rahimi, Mohammad 403
Rajaraman, Rajmohan 307
Ramanathan, Parmesh 293
Ramnath, Rajiv 393
Ren, Shansi 228
Roedig, Utz 141
Rolim, José 35

Schmitt, Jens B. 141
Schuster, Assaf 368
Schwiebert, Loren 206
Seddon, Nick 393
Sedghi, Vafa 417
Shah, Romil 393
Shankar, Mallikarjun 391
Sharp, Cory 393
Shim, Il-Joo 420414

Shin, Seung-Woo 414
Shirachi, Lisa 403
Sinha, Prasun 393
Smith, Cyrus M. 391
Somasundara, Arun 244 403

Sridharan, Mukundan 393
Srinivasan, Kannan 389, 399
Srivastava, Mani 244, 403, 412

Stankovic, John A. 155, 276
Sukhatme, Gaurav 387, 403

Tang, Qinghui 206
Tolle, Gilman 393
Trigoni, Niki 307
Trivedi, Nishank 393
Tsigkogiannis, Ilias 412
Tummala, Naveen 206

Ndoh, Möıse 389, 399

,

,

Kim, Do-Hyeon 415
Kim, Nam-Soo 415

Xiao,Li 49

Jin,Rong 49

Papadimitriou, Christos H. 1
Park, Gwi-Tae 414, 420
Parker, Ken 393

Author Index 423

Wang, Kuang-Ching 293

Wang, Limin 393

Westbrook, David 395

Wolff, Ran 368

Wong, Sophia 412

Yan, Ting 276
Yang, Yuanyuan 20

Yao, Yong 307
Yu, Yan 403

Zhang, Chen 393
Zhang, Hongwei 393
Zhang, Xiaodong 228
Zhao, Feng 3, 397
Zimmermann, Roger 408
Zink, Michael 395
Zou, Yi 191Xia, Congying (Helen) 389

Wakamiya, Naoki 410

Wang, Guizeng 218

Wang, Haining 228

Venkatasubramanian, Krishna 406

	Frontmatter
	Invited Talks
	Algorithmic Problems in Ad Hoc Networks
	Five Challenges in Wide-Area Sensor Systems
	Challenges in Programming Sensor Networks

	Regular Papers
	Distributed Proximity Maintenance in Ad Hoc Mobile Networks
	Adaptive Triangular Deployment Algorithm for Unattended Mobile Sensor Networks
	An Adaptive Blind Algorithm for Energy Balanced Data Propagation in Wireless Sensors Networks
	Sensor Localization in an Obstructed Environment
	Stably Computable Properties of Network Graphs
	Routing Explicit Side Information for Data Compression in Wireless Sensor Networks
	Database-Centric Programming for Wide-Area Sensor Systems
	Using Clustering Information for Sensor Network Localization
	Macro-programming Wireless Sensor Networks Using {\itshape Kairos}
	Sensor Network Calculus -- A Framework for Worst Case Analysis
	Design and Comparison of Lightweight Group Management Strategies in EnviroSuite
	Design of Adaptive Overlays for Multi-scale Communication in Sensor Networks
	Fault-Tolerant Self-organization in Sensor Networks
	TARA: Thermal-Aware Routing Algorithm for Implanted Sensor Networks
	Multiresolutional Filtering of a Class of Dynamic Multiscale System Subject to Colored State Equation Noise
	Design and Analysis of Wave Sensing Scheduling Protocols for Object-Tracking Applications
	Multiple Controlled Mobile Elements (Data Mules) for Data Collection in Sensor Networks
	Analysis of Gradient-Based Routing Protocols in Sensor Networks
	Analysis of Target Detection Performance for Wireless Sensor Networks
	Collaborative Sensing Using Sensors of Uncoordinated Mobility
	Multi-query Optimization for Sensor Networks
	Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor Networks
	A Distributed Greedy Algorithm for Connected Sensor Cover in Dense Sensor Networks
	Infrastructure-Establishment from Scratch in Wireless Sensor Networks

	Short Papers
	A Local Facility Location Algorithm for Sensor Networks
	{\sf jWebDust} : A Java-Based Generic Application Environment for Wireless Sensor Networks

	Invited Posters
	Networked Active Sensing of Structures
	Wireless Technologies for Condition-Based Maintenance (CBM) in Petroleum Plants
	SensorNet Operational Prototypes: Building Wide-Area Interoperable Sensor Networks -- Extended Abstract
	Project ExScal
	NetRad: Distributed, Collaborative and Adaptive Sensing of the Atmosphere Calibration and Initial Benchmarks
	Service-Oriented Computing in Sensor Networks
	Wireless Sensors: Oyster Habitat Monitoring in the Bras d'Or Lakes
	Heavy Industry Applications of Sensornets
	Coordinated Static and Mobile Sensing for Environmental Monitoring

	Contributed Posters
	Ayushman: A Wireless Sensor Network Based Health Monitoring Infrastructure and Testbed
	Studying Upper Bounds on Sensor Network Lifetime by Genetic Clustering
	Sensor Network Coverage Restoration
	A Biologically-Inspired Data-Centric Communication Protocol for Sensor Networks
	RAGOBOT: A New Platform for Wireless Mobile Sensor Networks
	Energy Conservation Stratedgy for Sensor Networks
	Meteorological Phenomena Measurement System Based on Embedded System and Wireless Network
	An Architecture Model for Supporting Power Saving Services for Mobile Ad-Hoc Wireless Networks
	Distributed Recovery Units for Demodulation in Wireless Sensor Networks
	System Integration Using Embedded Web Server and Wireless Communication

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

