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Preface to the Second Edition

Since 1996, when this book first appeared, a number of new experiments and
computations have significantly advanced the field. In particular, direct nu-
merical simulations at reasonable Reynolds numbers have started to provide a
new and important level of insight into the behavior of compressible turbulent
flows. These recent advances provided the primary motivation for preparing
a second edition. We have also taken the opportunity to rearrange some of
the older material, add some explanatory text, and correct mistakes and omis-
sions. We are particularly grateful to Drs. Sheng Xu and Jonathan Poggie for
helping to identify many of these corrections.



Preface to the First Edition

The aims of this book are to bring together the most recent results on the be-
havior of turbulent boundary layers at supersonic speed and to present some
conclusions regarding our present understanding of these flows. By doing so,
we hope to give the reader a general introduction to the field, whether they be
students or practicing research engineers and scientists, and to help provide a
basis for future work in this area. Most textbooks on turbulence or boundary
layers contain some background on turbulent boundary layers in supersonic
flow, but the information is usually rather cursory, or it is out of date. Only
one, by Kutateladze and Leont’ev (1964), addresses the specific issue of turbu-
lent boundary layers in compressible gases, but it focuses largely on solutions
of the integral equations of motion, and it is not much concerned with the tur-
bulence itself. Some aspects of turbulence are addressed by Cousteix (1989),
but only one chapter is devoted to this topic, and his review, although very
useful, is not exhaustive. The scope of the present book is considerably wider
in that we are concerned with physical descriptions of turbulent shear-layer
behavior, and the response of the mean flow and turbulence to a wide variety
of perturbations. For example, in addition to turbulent mixing layers, we will
consider boundary layers on flat plates, with and without pressure gradient,
on curved walls, and the interaction of boundary layers with shock waves, in
two and three dimensions.

Considerable progress has recently been made in developing our under-
standing of such flows. This progress has largely been driven by experimental
work, although numerical simulations of compressible flows have also made
significant contributions. Except for the most recent work, the data are read-
ily available from the compilations edited by Fernholz and Finley (1976, 1980,
1981), Fernholz et al. (1989) and Settles and Dodson (1991), and the quan-
tity of relatively new experimental information presented there is impressive.
The recent focus on hypersonic flight has also stimulated extensive computa-
tional work, and the reviews by Délery and Marvin (1986) and Lele (1994)
give a good impression of what is currently possible. Despite these efforts,
the full matrix of possibilities defined by Mach number, Reynolds number,
pressure gradient, heat transfer, surface condition, and flow geometry is still
very sparsely populated and a great deal of further work needs to be done.
One clear message from the failure of the most recent hypersonic flight ini-
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tiative is that to make substantial progress in improving the understanding
of high-speed turbulent flows we need a concerted, broadly based effort in
experimental and computational research.

Presently, we are beginning to form a reasonably coherent picture of high-
speed boundary layer behavior, particularly in terms of the structure of tur-
bulence, and its response to pressure gradients and its interaction with shock
waves. It seemed to us that this was an opportune time to try to bring to-
gether the efforts of different research groups, and to present the sum of our
present knowledge as a unified picture. We recognize that the details of the
picture may change as new insights become available, and we hope that this
volume may serve to stimulate such insights.

Our primary focus is on how the effects of compressibility influence tur-
bulent shear-layer behavior, with a particular emphasis on boundary layers.
We have restricted ourselves to boundary layers where the freestream is super-
sonic, and transonic and hypersonic flows are not considered in detail. With-
out being too precise, we are generally dealing with boundary layers where the
freestream Mach number is greater than 1.5, and less than 6. The low Mach
number limit is set to reduce the complexities introduced by having large re-
gions of mixed subsonic and supersonic flow, and the high Mach number limit
is set to avoid the presence of real gas and low density effects. Moreover, we
will restrict ourselves to fully turbulent flows and the problems of stability and
transition at high speed will not be discussed. These problems are numerous
and important, and they deserve a separate treatment.

Even within these bounds, there exists a rich field of experience, and in
Chapter 1 we have tried to give an overview of the complexities that occur
in compressible turbulent flows. The equations of motion are discussed in
Chapter 2, and the mean equations for turbulent flow are given in Chapter 3,
primarily to develop some useful scaling and order-of-magnitude arguments.
As further background, a number of concepts important to the understand-
ing of compressible turbulence are introduced in Chapter 4, with a particular
emphasis on the development of rapid distortion approximations. Morkovin’s
hypothesis and Reynolds Analogies are discussed in Chapter 5. Chapter 6
is concerned with the behavior of mixing layers, and Chapters 7 and 8, re-
spectively, deal with the mean flow and turbulence structure of zero pressure
gradient boundary layers. The behavior of more complex flows, with pressure
gradients and surface curvature, is considered in Chapter 9, where we also il-
lustrate how rapid distortion approximations can give some useful insight into
the behavior of these flows. When the flow is compressed rapidly, shock waves
appear, and shock boundary layer interactions in two- and three-dimensional
flows are the subject of Chapter 10, where we discuss the role of shock wave un-
steadiness and the consequences of separation. Throughout the book, we have
tried to emphasize some of the possibilities for future development, including
guidelines for future experiments, the prospects for computational work, tur-
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bulence modeling, and rapid distortion approaches. Chapters 2 and 3, and to
some extent Chapters 4, 5, and 7, treat some basic elements in the description
of compressible turbulent flows. Although much of this work is available else-
where, we felt it would be useful to address the elementary properties of these
flows in a systematic manner, especially for newcomers to the field. The other
chapters are more specialized, and are probably more suitable for readers who
have some previous expertise.

No book gets published without a great deal of help along the way. We
would like to thank the U.S. Air Force Office of Scientific Research, the Army
Research Office, ONR, ARPA, NASA Headquarters, NASA Langley Research
Center, NASA Lewis Research Center, CNRS, ONERA, Project Hermès, and
DRET for supporting our own research work in this area. The NASA/Stanford
Center for Turbulence Research supported a series of lectures by AJS that
planted the idea for this book. NATO-AGARD encouraged us to review the
data in several publications, and that work was invaluable in getting us started
here. Finally, there are a number of individuals who helped us along the
way. To Katepalli Sreenivasan, Dennis Bushnell and Lisa Goble we express
our sincere thanks. To Hans Fernholz, John Finley, Eric Spina and Randy
Smith we extend special thanks for allowing us to adapt their work liberally.
Jean Cousteix and John Finley were especially helpful with many detailed
comments. To our wives and families go the greatest debt, for freely granting
us the time it took to get this done. AJS would like to dedicate his efforts to
his parents, Ben Smits and Truus Schoof-Smits, who passed away before this
book could be completed.
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Chapter 1

Introduction

1.1 Preliminary Remarks

The history of research in turbulent compressible flows is somewhat checkered,
in that changes in national and international priorities have had a large im-
pact on the continuity of effort. The high level of activity that lasted from
the end of World War II to about 1965 was largely driven by the wish to fly
at supersonic speeds, and the need to solve the hypersonic re-entry problem.
Once these aims were met, the general level of urgency diminished consider-
ably, and further efforts became severely reduced in scope. Recently, we saw
another upsurge in activity, driven mainly by a new set of national priorities
such as the desire to fly at hypersonic speeds, and the projected need for a
low-cost supersonic transport aircraft. The failure of the hypersonic flight
program came largely because it is not yet possible to design any airplane, let
alone a hypersonic airplane, using computational fluid dynamics alone. Much
of the fundamental knowledge required to attain hypersonic flight was not
available, and the codes could not predict transition, turbulence, and super-
sonic combustion with sufficient accuracy. If hypersonic flight is to become a
reality, generic hypersonic research will need to receive considerable additional
attention. Similarly, to make supersonic flight commercially attractive, signif-
icant levels of new research will be required to improve fuel efficiency, reduce
pollution (in particular the ozone depletion), and minimize noise levels. A bet-
ter understanding of compressibility effects on turbulence will have a crucial
impact on the development of answers to these engineering challenges.

The flow over an actual vehicle in a real fluid is complex at any speed.
Boundary layers form which may be laminar or turbulent, and the point where
the laminar-to-turbulent transition takes place will vary within the flight enve-
lope. The surfaces of the vehicle are usually curved in at least one direction, the
surface area is continually changing in the streamwise direction, and pressure
gradients generally act in three directions simultaneously. Significant regions
of three-dimensional flow can therefore occur, and regions of separated flow

1



2 CHAPTER 1. INTRODUCTION

may develop, with the appearance of free shear layers. Downstream of the
vehicle, and inside the propulsion system, jets, wakes, and mixing layers can
usually be found, and their interaction with each other and with the boundary
layer on the vehicle surface can produce extremely complex flows.

When a vehicle is traveling at high speed, so that the freestream Mach
number is greater than one, additional effects come into play. The kinetic
energy of the motion now constitutes a significant fraction of the total energy
contained in the fluid. Within the shear layers, therefore, viscous dissipation
becomes important in the mean kinetic energy balance. Significant tempera-
ture gradients occur across shear layers even under adiabatic flow conditions
(that is, there is no heat transfer to the fluid). As a result, when a turbulent
shear layer develops in supersonic flow, mean density gradients exist in addi-
tion to mean velocity gradients and the turbulent field consists of pressure,
density and velocity fluctuations. Energy is continually transferred among
these modes, and the transport mechanisms are therefore more complex than
those encountered in constant property flows. In some parts of the flow, the
relative speed of adjacent turbulent motions may be transonic or supersonic,
and local compression waves and shock waves can affect the turbulence evolu-
tion. The density depends on the pressure and temperature, and vorticity can
be produced through baroclinic torques. The heat transfer across the layer
cannot be neglected in most practical applications, and the temperature field
interacts directly with the velocity field. When pressure gradients are present,
the compression and dilatation of fluid elements will be important in addition
to the usual effects of pressure gradient as we understand them from our ex-
perience of incompressible flows. Perhaps most important, shock waves can
occur that may cause separation, strongly unsteady flows, and local regions of
intense heat transfer. If the Mach number is high enough, turbulence energy
can be transported by sound radiation and dissipated by local shock formation.

Of course, the general behavior of turbulent shear layers is not well under-
stood, even in subsonic flow, and the evolution of a shear layer in supersonic
flows is considerably more complex. For example, we have at present a rea-
sonably complete description of the two-dimensional, incompressible, flat plate
turbulent boundary layer. At supersonic speeds, we are only starting to de-
velop a similar description of the boundary layer structure, and the picture
is not nearly as complete as in the case of incompressible flow. Nevertheless,
progress has been made, as we try to make clear. In mixing layers, we know
that compressibility can severely reduce the spreading rate, which implies a
reordering of the flow structure. The reasons are not entirely clear, but sev-
eral conjectures exist, as we discuss. Probably the most dramatic effects of
compressibility on turbulence are seen in the response of turbulent motions to
strong pressure gradients, or their interaction with shock waves. Here we have
no simple analogue with a “similar” incompressible flow. For instance, longi-
tudinal pressure gradients in a compressible flow will cause the compression
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or dilatation of vortex tubes, thereby enhancing or reducing pressure fluctua-
tions and the longitudinal component of the velocity fluctuations. When shock
waves are present in wall-bounded flows, separation will occur if the shock is
strong enough (a phenomenon that can be understood from subsonic expe-
rience), but strong pressure gradients may cause the wall friction and heat
transfer to increase (observations that are in direct contrast to subsonic expe-
rience). Even if the shock is not strong enough to cause separation there can
exist a strong coupling between the shock and the turbulence, and the distor-
tions of the shock sheet and its unsteady motion have been widely observed.
Understanding the shock motion and the resultant unsteady heat transfer and
pressure loading is of great importance in many aerodynamic flows.

In a sense, our progress in understanding can be measured by our ability
to predict the flow, but “prediction” is an ambiguous concept. Understanding
assumes that some rationale has been constructed to describe a physical pro-
cess. Prediction can be the result of some interpolation procedure, which may
be largely empirical without any deep physical understanding. For example,
it is possible in many flow configurations, even when they are very complex,
to predict the wall-pressure, heat-transfer, and skin-friction distributions with
a reasonable degree of accuracy, using simple mixing length or algebraic eddy
viscosity models. As long as the flow does not depart dramatically from previ-
ous experience we can have a reasonable level of confidence in the prediction,
because in many aspects these simple models represent data correlations. In
contrast, it is now possible to perform Direct Numerical Simulations (DNS)
for some low Reynolds number flows without any explicit modeling. Here we
obtain the entire three-dimensional, compressible, time-dependent flowfield.
Yet neither the empirically based prediction method, nor the full DNS results
allow us to claim that we understand the flowfield. In the first case, a closer
examination of the predicted flowfield usually reveals that mixing length or
eddy viscosity concepts are inadequate to represent accurately flowfield data
such as the mean velocity profile or the Reynolds stress distributions, reflecting
the fact that these models do not capture some of the essential flow physics.
In the second case, DNS provides us with such an enormous amount of infor-
mation that our immediate response is to look for relatively simple concepts or
models that represent the database in a more organized and comprehensible
fashion; exactly the process we follow in interpreting the far more limited data
sets generated by experiment.

It is this development of working models that represents one of the funda-
mental aims of turbulence research, to help reduce the complexity of the actual
flowfield dynamics to a simpler set of modeled flow phenomena, without sacri-
ficing any important physical mechanisms. For example, the widespread search
for “coherent” structures in turbulent flows is driven mainly by the belief that
it may be possible to represent the essential dynamics of a turbulent flowfield
by a small set of representative “events” whose generation-dissipation cycle
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can be described, and whose interaction is understood. As Sreenivasan (1989)
suggests, “even a highly successful model does not account for every detail, but
two of its hallmarks are wide applicability and well-understood limitations.”

As stated in the Preface to the First Edition, the specific aims of this book
are to bring together the most recent results of research on the behavior of
turbulent shear layers at supersonic speed, and to present some conclusions
regarding our present understanding of these flows (that is, to develop the
“models” referred to by Sreenivasan). The main emphasis is on the behavior
of turbulent boundary layers and mixing layers. Two- and three-dimensional
boundary layers are considered, as well as shock wave-boundary layer interac-
tions, separated flows, and flows with favorable and adverse pressure gradients
and with streamline curvature. We have restricted ourselves to supersonic
flows, and therefore we do not consider flows where it would be necessary to
take account of chemical reactions or nonequilibrium effects, and we assume
throughout that the test gas is a perfect gas with constant specific heats.

By way of introduction, we now consider some aspects of compressible tur-
bulent flows to illustrate the range of phenomena that may be encountered.
These phenomena are discussed in the context of four particular examples: the
behavior of a zero pressure gradient, flat plate boundary layer; the structure
of a mixing layer as a function of Mach number; the interaction of freestream
turbulence with a shock wave; and a shock wave-boundary layer interaction
generated by a compression corner. Finally, we give a brief discussion of mea-
surement techniques for turbulence in compressible flows for the purpose of
assessing the uncertainties and errors present in the data, and provide a short
description of nonintrusive techniques for quantitative flow visualization in
high-speed flows.

1.2 Flat Plate Turbulent Boundary Layers

Figure 1.1 shows two sets of air boundary layer profiles at about the same
Reynolds number, one set measured on an adiabatic wall, the other mea-
sured on an isothermal wall. The momentum thickness Reynolds number Reθ

(= ρeUeθ/µe) is approximately 9500, where Ue is the freestream velocity, and
the viscosity and density are evaluated at the freestream temperature. The
temperature of the air increases near the wall, even for adiabatic walls, because
the dissipation of kinetic energy by friction is an important source of heat in
supersonic shear layers. This leads to a low-density, high-viscosity region near
the wall. Somewhat surprisingly, the velocity, temperature, and mass flux pro-
files for the two flows given in Figure 1.1 look very much the same, even though
the boundary conditions, Mach numbers, and heat-transfer parameters differ
considerably. The velocity profiles in the outer region, in fact, follow a 1/7th
power-law distribution quite well, just as a subsonic velocity profile would at
this Reynolds number. With increasing Mach number, however, the elevated
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Figure 1.1. Turbulent boundary layer profiles in air (Tδ = Te). From Fernholz and
Finley (1980), where catalogue numbers are referenced. (Reprinted with permission
of the authors and AGARD/NATO.)

temperature near the wall means that the bulk of the mass flux is increasingly
found toward the outer edge of the layer. This effect is emphasized even more
in the boundary layer profiles shown in Figure 1.2, where the freestream Mach
number Me was 10 for a helium flow on an adiabatic wall. For this case, the
temperature ratio between the wall and the boundary layer edge was about
30.

If the total temperature T0 was constant across the layer, then from the
definition of the total temperature (T0 ≡ T + u2/2Cp), we see that there
is a very simple relationship between the temperature T and the velocity u.
Because there is never an exact balance between frictional heating and con-
duction (unless the Prandtl number equals one), the total temperature is not
quite constant even in an adiabatic flow, and the wall temperature depends on
the recovery factor r (see Chapter 5 for further details). Hence, for a perfect
gas:

Tw

Te

= 1 + r
γ − 1

2
M2

e ,

where the subscript w denotes conditions at the wall, and the subscript e
denotes conditions at the edge of the boundary layer, that is, in the local
freestream, so that the edge Mach number Me is given by ue/

√
γRTe. Since

r ≈ 0.9 for a zero pressure gradient turbulent boundary layer, the temperature
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Figure 1.2. Turbulent boundary layer profiles in helium (Tδ = Te). Figure from
Fernholz and Finley (1980), where catalogue numbers are referenced. Original
data from Watson et al. (1973). (Reprinted with permission of the authors and
AGARD/NATO.)

at the wall in an adiabatic flow is nearly equal to the freestream total tempera-
ture. For example, at a freestream Mach number of 3, the ratio Tw/T0 = 0.93.

The static temperature, however, can vary significantly through the layer,
and as a result the fluid properties are far from constant. To the boundary layer
approximation, the static pressure across the layer is constant, as in subsonic
flow, and therefore for both examples shown in Figure 1.1 the density varies
by about a factor of 5. The viscosity varies by somewhat less than that: if we
assume a power law to express the temperature dependence of viscosity, for
instance (µ/µe) = (T/Te)

0.76 (see Section 2.2), then the viscosity varies by a
factor of 3.4. Because the density increases and the viscosity decreases with
distance from the wall, the kinematic viscosity decreases by a factor of about
17 across the layer. It is therefore difficult to assign a single Reynolds number
to describe the state of the boundary layer. Of course, even in a subsonic
boundary layer the Reynolds number varies through the layer because the
length scale near the wall depends on the distance from the wall. But here
the variation is more complex in that the nondimensionalizing fluid properties
also change with wall distance. One consequence is that the relative thickness
of the viscous sublayer depends not only on the Reynolds number, but also
on the Mach number and heat-transfer rate because these will influence the
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distribution of the fluid properties. At very high Mach numbers, the whole
layer may become viscous-dominated.

A number of characteristic Reynolds numbers may be defined for com-
pressible turbulent boundary layers. For example, for the boundary layer
described in Figure 1.2, a Reynolds number based on freestream fluid prop-
erties (Reθ = ρeueθ/µe = 14, 608) suggests a fully turbulent flow, but a
Reynolds number based on fluid properties evaluated at the wall tempera-
ture (= ρwueθ/µw = 68) indicates that low Reynolds number effects will un-
doubtedly be important. Fernholz and Finley (1980) proposed another useful
Reynolds number to describe supersonic boundary layers, Reδ2, defined by
the ratio of the highest momentum flux (=ρeu

2
e) to the maximum shear stress

(=τw). Using the estimate for τw given by µwue/θ, we have Reδ2 = ρeueθ/µw.
For adiabatic and heated walls, Reθ is always greater than Reδ2. For the pro-
file shown in Figure 1.2 they differ by a factor of almost 10. We see that any
comparisons we try to make between subsonic and supersonic boundary layers
must take into account the variations in fluid properties, which may be strong
enough to lead to unexpected physical phenomena.

In fact, subsonic experience is not very helpful in understanding the effects
of fluid property variations because the temperature gradients experienced
in supersonic boundary layers can be so severe. An “equivalent” subsonic
boundary layer experiment with a similarly strong temperature distribution
would inevitably be influenced by buoyancy effects, whereas buoyancy effects in
supersonic flows are almost always negligible. Even if the plate were oriented
vertically, the buoyancy force present in the subsonic case would accelerate
the flow and the acceleration would occur in a manner quite different from an
imposed longitudinal pressure gradient because the buoyancy force will vary
with the distance from the wall. Similar limitations would not apply to a
numerical simulation, because the buoyancy force could simply be switched
off, and a simulation of a turbulent boundary layer on a strongly heated plate
(in zero gravity) could provide valuable data to help understand the effects of
variable fluid properties.

Despite the difficulties introduced by variable fluid properties, some simple
scaling arguments can be made to help connect supersonic and subsonic data.
Take, for example, the behavior of the wall friction. Probably the most widely
recognized influence of Mach number on turbulent boundary layer behavior is
the observation that at a constant Reynolds number the skin-friction coefficient
decreases as the Mach number increases (see Figure 1.3). What at first sight
appears to be a rather provocative result can be explained largely in terms
of the fluid property variations across the boundary layer. The skin-friction
coefficient Cf and the Reynolds number Rex are by definition based on the fluid
properties at the freestream temperature. It can be argued that the friction
at the wall is much more likely to scale with the conditions at the wall than
with conditions in the freestream. Qualitatively, this argument seems quite
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Figure 1.3. Cf versus Mach number, with and without heat transfer. The value
of Rex is approximately constant at 107 for all the data. Equation 1.2 based on
boundary layer thickness, with m = 0.25 and ω = 0.76, is given by the dotted line.
(Adapted from Hill (1956), with permission.)

reasonable: as the temperature near the wall increases, the density decreases
and the skin friction should also decrease, which it does. If we then assume
that the skin-friction coefficient in a supersonic flow still varies with Reynolds
number in the same way it does in a subsonic flow, except that the skin-friction
coefficient and the Reynolds number should be defined in terms of the fluid
properties evaluated at the wall temperature, the Mach-number-dependence
is no longer explicitly present. For example, for an incompressible isothermal
flow we have approximately a power-law dependence given by:

Cf,i = K

(
ρeueλi

µe

)−m

, (1.1)

where K is a constant, and λi is a length scale for the incompressible flow,
such as the distance from the origin of the boundary layer x, the boundary
layer thickness δ, or the momentum thickness θ. If we assume that the same
relation holds for a compressible boundary layer, provided that ρ and µ are
taken at the wall conditions, we expect that

τw
1
2
ρwu2

e

= K

(
λi

λc

)−m (
ρwueλc

µw

)−m

,
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so that

Cf ≡ τw
1
2
ρeu2

e

= K

(
ρw

ρe

)(
λi

λc

)−m (
ρwueλc

µw

)−m

.

That is,

Cf = Cf,i

(
λi

λc

)−m (
Te

Tw

)1−(ω+1)m

, (1.2)

where it was assumed that the viscosity follows a power law relation such as
µw/µe = (Tw/Te)

ω. Here λc is the corresponding length scale for compressible
flow. If we use x, the ratio λi/λc = 1, and for a one-seventh power law on the
velocity, m = 0.2 (see Section 7.6). This simple scheme seems to describe the
data trend quite well, although the prediction is somewhat low. If we use δ,
experiments show that at a constant Rex, δi/δc ≈ 1, but now m = 0.25 for a
one-seventh power law. This correlation was first suggested by Hinze (1975),
and the agreement with the data is better than before (see the dotted line in
Figure 1.3). If we choose the momentum thickness instead, m = 0.25, and
by using the momentum integral equation dθ/dx = Cf/2 we find that for an
isothermal wall at a fixed Rex:

θc

θi

=
(

Te

Tw

) 1−(ω+1)m
1+m

, (1.3)

which gives skin-friction values near the high end of the data range. Despite
the differences, these trends argue that the “correct” Reynolds number for su-
personic turbulent boundary layers is that based on fluid properties evaluated
at the wall temperature, rather than Reθ or Reδ2. This issue is considered
further in Chapter 7.

More elaborate schemes may be devised to improve the correlation of the
data. One popular approach is the concept of an intermediate temperature or
reference temperature, that is, fluid properties are not evaluated at the wall
temperature but at some temperature between the value at the wall and that
in the freestream (Rubesin and Johnson, 1949; Monaghan, 1955). Although
originally proposed as a convenient concept for data correlation, Dorrance
(1962) showed that for a laminar boundary layer the reference temperature
corresponds approximately to the velocity averaged temperature (see also van
Oudheusden (1997)). Underlying these efforts is the belief that compressibility
effects (such as the influence of the pressure field, and nonlinearities such as
local, instantaneous shock waves) may not have a strong effect on turbulent
boundary layers, at least at nonhypersonic speeds. The effects of Mach number
may be essentially passive: apart from changing the local fluid properties
the dynamic effects could well be small. This concept was first described
by Morkovin (1962), and it is widely known as Morkovin’s hypothesis (see
Section 5.2 for further details).

As can be seen in Figure 1.3, this particular approach seems to work well for
relating the supersonic skin-friction behavior to the subsonic behavior. What
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about the mean velocity distribution? Here, a great deal of effort has been
spent on establishing a relationship between the local velocity and tempera-
ture, either by empirical means or by manipulation of the energy equation,
with the aim of deriving a “compressibility transformation” such that the
supersonic velocity profile, when plotted in the appropriately transformed co-
ordinates, will collapse on the curve established for subsonic flows. This is an
important consideration, especially in the region near the wall where simple
power laws are no longer useful. An extensive discussion of this approach was
given by Coles (1962), and it is considered in some detail in Chapter 7. A
widely used transformation was developed by van Driest (1951) who was able
to integrate the mean energy equation under a set of reasonably restrictive as-
sumptions and use the resulting temperature-velocity relationship to define a
transformed velocity that takes account of the fluid property variations across
the layer. As pointed out by Bushnell et al. (1969) this transformation ap-
pears to collapse zero pressure gradient turbulent boundary layer data at Mach
numbers up to 12, and the constants in the logarithmic law appear unchanged
from their subsonic values (see Chapter 7).

In addition, by using an integral momentum balance it is possible to use
this compressibility transformation to predict the skin-friction variation with
Mach number. This represents a more complete description of the skin-friction
behavior than the one given by Equation 1.2, and the analyses presented by
van Driest for flows with and without heat transfer appear to correlate well
with existing data (see Figure 1.3).

What about the turbulence? Flow visualizations of supersonic turbulent
boundary layers using Rayleigh scattering show boundary layer cross-sections
that look remarkably similar to cross-sections obtained in subsonic boundary
layers using smoke flow visualization (see Figure 1.4). The simplest quantita-
tive comparison between the turbulence behavior in subsonic and supersonic
boundary layers is to compare the distributions of mean square of the stream-
wise velocity fluctuations u′2. When normalized by u2

τ (= τw/ρw), there is
a clear decrease in fluctuation level with increasing Mach number (see Fig-
ure 1.5). However, if the streamwise normal stress ρu′2 is normalized by the
wall shear stress τw, as suggested by Morkovin, the Mach number dependence
is no longer evident (see Figure 1.2). The remaining scatter near the wall
is probably due to probe resolution difficulties (see Section 1.7.1). Thus the
density transformation ρ/ρw seems to collapse the turbulence intensities. This
result is not immediately obvious, but in Chapters 4 and 8 we give some largely
empirical arguments why this should work. The major point to be made here
is that a scaling which incorporates the variations in fluid properties (in this
case the density) effectively removes the explicit Mach number dependence.

In contrast to the success of Morkovin’s scaling for the turbulence intensi-
ties, an inspection of other turbulence properties reveals characteristics that
cannot be collapsed by a simple density scaling. For example, it is generally
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Figure 1.4. Flow visualization of supersonic turbulent boundary layers using
Rayleigh scattering (the technique is described in Section 1.7.4). Flow is from left
to right. The freestream Mach number is 2.5, and Rθ is about 25,000. (Figure
from Smith and Smits (1995). Copyright 1995, Springer-Verlag. Reprinted with
permission.)

believed that the intermittency profile is fuller than the corresponding sub-
sonic profile (see, for example, Owen et al. (1975) and Robinson (1986)). In
addition, Smits et al. (1989) found that space-time correlations indicate that
the (nondimensional) spanwise scales in subsonic and supersonic boundary
layers were almost identical but that the (nondimensional) streamwise scales

Figure 1.5. Distribution of turbulent velocity fluctuations in boundary layers. Mea-
surements are from Kistler (1959) and Klebanoff (1955). (Figure from Schlichting
(1979). Copyright 1979, The McGraw-Hill Companies. Reproduced with permis-
sion.
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in Alving’s subsonic flow were about twice the size of those in a Mach 2.9
supersonic flow (see Figures 8.39, 8.37, and 8.38).

How can we explain these differences? Are they indications of “true” com-
pressibility effects, that is, dynamic effects due to significant levels of pressure
and density fluctuations, or can they also be explained on the basis of fluid
property variations? A crucial parameter is the Mach number associated with
the turbulent fluctuations, M ′: if M ′ approaches unity we expect direct com-
pressibility effects to become important. Local shock waves called shocklets
would appear, and the fluctuating pressure would become important, not just
in the usual pressure strain term in the Reynolds averaged equations but as a
significant part of the total turbulent kinetic energy budget. We should note
here the distinction between the fluctuation Mach number or turbulence Mach
number Mt, which is the Mach number found using the velocity fluctuation
and the mean speed of sound, and the fluctuating Mach number M ′, which
takes into account that the local speed of sound also fluctuates. The value
of Mt may give a more accurate representation of compressibility effects, at
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least in boundary layer flows, although M ′ turns out to be a useful parameter
also. These issues are discussed in more detail in Chapters 3 and 4, but it is
worth noting that M ′ > Mt for adiabatic flows, and they are functions of Mach
and Reynolds numbers. If we take M ′ = 0.3 as the point where compressibil-
ity effects become important for the turbulence behavior, we expect that for
adiabatic boundary layers at reasonable Reynolds numbers this point will be
reached with a freestream Mach number of about 4 or 5. As the freestream
Mach number increases, the temperature fluctuations become more significant
than the velocity fluctuations. The maximum value of M ′ shifts away from
the wall with increasing Mach number, and in hypersonic flows the maximum
value can be located near the edge of the layer.

Until recently, one of the major difficulties in studying these problems in
boundary layers is that we did not have a general understanding of Reynolds
number scaling, and it was therefore difficult to distinguish between Mach
and Reynolds number effects. Most of our understanding of boundary layer
structure is based on studies of the “canonical” boundary layer, that is, one
developing on a flat, adiabatic plate, in a zero pressure gradient, under in-
compressible flow conditions. Most of these studies were performed at low
Reynolds numbers, so that the inner layer occupied a significant fraction of
the total boundary layer, and laboratory measurements could be obtained with
sufficient resolution. It is doubtful that models for boundary layer structure
derived from such studies will apply unchanged to a wider range of flow con-
ditions. In particular, how can the effects of Mach and Reynolds numbers be
incorporated? We are still a long way from a general answer to this question
but some progress has been made, as discussed in Chapters 7 and 8.

1.3 Propagation of Pressure Fluctuations

Another remarkable feature of supersonic shear flows is how information, such
as a change in pressure, is transmitted. How does the flowfield “know” that an
“event” or some other kind of perturbation has occurred? This propagation
of information without mass transport is directly connected to the nature of
the pressure field.

Some examples can be used to describe the problem and to illustrate some
of the differences between high-speed and low-speed flows. Consider a source
emitting small-amplitude pressure waves in a uniform, low-speed stream. The
wave fronts are spherical (or circular in a plane) and the acoustic rays, which
are normal to the wave fronts, are pointing outwards from the source in all
directions. When the flow is supersonic, perturbations travel only along char-
acteristic directions, and the perturbations are called Mach waves. In a given
plane, under uniform flow conditions, the Mach waves are straight lines in-
clined to the flow direction at an angle given by the local Mach number
(= sin−1(1/M)). In a given plane, two waves are emitted (a left-running
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Figure 1.7. Ray paths (left) and wave fronts (right) in a shear layer with a hyper-
bolic tangent profile where the external Mach numbers are 3 and 1. The source is
located at y = 1, where the Mach number is 2. The results are presented in the
frame of reference of the observer located at y = 0, and for which U = 0. (From
Papamoschou (1991), with the author’s permission.)

wave and a right-running wave), so that the information about an event oc-
curring at a given point can only be felt within an angular sector in the plane,
originating at the point and lying in the downstream direction. In three di-
mensions, the sectors make up a Mach cone. Similarly, a given point in the
flow can receive information from only a limited portion of space defined by an
angular sector or Mach cone originating at the point and lying in the upstream
direction. Obviously, information cannot propagate in the upstream direction
in supersonic flows as it does at low speeds.

Less trivial is the question of the transmission of information (that is, the
propagation of pressure perturbations) at high speed in an inhomogeneous
medium. This problem has been examined by Papamoschou (1990, 1991,
1993) for the case of perturbations propagating through a free shear layer. For
the sake of simplicity and to characterize the effects of high speed only, he
considered the case of constant sound speed (that is, constant temperature)
in a shear layer that was not developing in the longitudinal direction. He also
neglected the scattering and the absorption of sound by the shear layer. Pa-
pamoschou obtained an approximation valid for wavelengths that were small
compared to the thickness of the shear layer which illustrates some of the
possible effects of compressibility. An example is given in Figure 1.7. An ob-
server located within the shear layer receives pressure information principally
from the upstream flow, but there is some possibility—although limited—for
backwards propagation of information. Transmission of information in the
transverse direction is less affected. For example, the Mach cone is distorted
by the presence of the mean velocity profile: this was expected, because pres-
sure waves travel at the speed of sound with respect to the medium, and the
medium is moving at velocities of the order of the speed of sound. Thus, in
nonuniform flow, the cone of influence can be strongly distorted.



1.4. MIXING LAYERS 15

Morkovin (1987) considered the cross-flow communication crucial for the
analysis of stability problems in high-speed shear layers (the work by, for ex-
ample, Mack (1984)). In the case of turbulent shear layers, the theory for
such interpretations does not yet exist. However, if the large-scale structures
found in shear flows are the results of the most amplified modes, it may be
suspected that their dynamics will be also affected by such phenomena: if the
direction of acoustic propagation is limited by compressibility, communication
between different parts of the flow may become less efficient and produce less
amplification of the perturbation. Finally, from the point of view of statistical
analysis of fully developed turbulence, the pressure field associated with tur-
bulent eddies probably has a very different nature in high-speed flow than it
does in low-speed flow, and this may affect global properties such as the turbu-
lent transport, even in boundary layers. So it is possible that compressibility
effects may play a role in the turbulence behavior even at nonhypersonic Mach
numbers.

1.4 Mixing Layers

The behavior of mixing layers has significant implications for the understand-
ing of compressible turbulent flows. In particular, it has been widely observed
that the growth rate of mixing layers decreases dramatically with increasing
Mach number. The curve shown in Figure 1.8 is based on data presented at
a conference held at NASA Langley Research Center in 1972, and it indicates
that the growth rate of a free shear layer at Mach 3 is reduced by a factor of
three when compared to its incompressible growth rate, whereas at Mach 8
it is reduced by a factor greater than five. Clearly, it is of great interest to
determine why the growth rate is so strongly reduced by increasing the Mach
number. For instance, to propel an aircraft at hypersonic speeds, it is likely
that the combustion will need to occur at supersonic speeds. This supersonic
combustion ramjet or “scramjet” must mix the fuel and oxidizer and initiate
combustion within the length of the engine. Because the gases will be moving
at supersonic speed within the engine, and the length of the engine is lim-
ited by reasons of weight, efficient mixing is essential. Although there is some
evidence that initial conditions can have a first-order effect on the develop-
ment of mixing layers (Bell and Mehta, 1990), the reduced growth rate of fully
developed compressible mixing layers needs to be understood.

In the discussion of boundary layers we saw that the most obvious effect of
compressibility was to impose a temperature gradient across the layer, so that
the density and viscosity varied with distance from the wall. Direct compress-
ibility effects seemed to be of second-order importance, at least at supersonic
Mach numbers, because the fluctuating Mach numbers were small. In mixing
layers, it appears that density variations and Mach number differences are both
important. For example, Brown and Roshko (1974) observed that changing
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Figure 1.8. The “Langley curve,” showing the growth rate of mixing layers as a
function of Mach number. From Kline et al. (1981), based on the data presented
by Birch and Eggers (1972). (Reprinted with permission of the Thermosciences
Division, Department of Mechanical Engineering, Stanford University.)

the density ratio across a subsonic mixing layer by a factor of seven reduced
its growth rate by about 30%. In contrast, a high-speed mixing layer where
the Mach number difference results in a similar density ratio has a growth rate
of only about one-quarter of its incompressible value (see Figure 6.2). Direct
compressibility effects seem to have a first-order influence on the behavior of
mixing layers, in contrast to the case of boundary layers. For a review of
the effects of density variations on turbulence and turbulent shear flow, see
Chassaing et al. (2002).

We expect differences between compressible and incompressible flows to
occur when eddies are in transonic or supersonic motion relative to each other.
The momentum and energy budgets will be affected not just by fluid property
variations but by the exchange of momentum and energy among the vorticity,
sound, and entropy modes (related mainly to rotational velocity, pressure,
and temperature fluctuations, respectively). Again we need some measure
of the Mach number of the turbulence. We are concerned with a mixing
layer between a high-speed side and a low-speed side, so the most relevant
Mach number is therefore not the external Mach numbers, or even the Mach
number difference, but the Mach number based on the motion of the large-
scale motions relative to the freestream flows on either side of the mixing
layer. This convective Mach number Mc is defined by Mc = ∆U/(a1 + a2)
for isentropic flows. Simply put, Mc expresses the convection velocity of the
large-scale motions relative to the average sound speed (see Bogdanoff (1983),
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Figure 1.9. Flowfield generated by a conical projectile made visible using shadow-
graphy. The corresponding Mach number and freestream Reynolds number based
on model length are 5.6 and 4.7 × 106. Note the shocklets and other acoustic
disturbances emanating from the structures in the wake. (Photograph provided by
T. Canning, NASA-Ames Research Center.)

Norman and Winkler (1985), Papamoschou (1986), and Papamoschou and
Roshko (1988)). As Mc approaches unity, we would expect to see shocklets
form in the regions where the relative motion between large-scale motions is
supersonic.

The analysis by Hussaini et al. (1985) shows that when a two-dimensional
vortex is suddenly placed in a supersonic flow, a bow shock forms. The vortic-
ity generated as a result of the curved shock reverses the sign of the vorticity
in one half of the vortex while increasing the strength of the other half. The
original vortex is effectively split into two smaller parts of opposite sign, and
Hussaini et al. postulated that this mechanism might provide an explanation
for the effects of shocklets, such as those observed in the near wake of objects
moving at supersonic speeds (see Figure 1.9).

The subsonic mixing layer is defined in terms of two well-defined struc-
tures: the large-scale transverse eddies or spanwise “rollers” and the longi-
tudinal “hairpin” vortices in the region between the large-scale roll-ups (see
Figure 1.10). Experiments show that the structure of the organized motions in
mixing layers changes with Mach number (Elliott and Samimy, 1990; Clemens
and Mungal, 1991, 1995). As the convective Mach number increases, the famil-
iar subsonic structure of the mixing layer disappears and the features become
much more random and three-dimensional (see Figure 1.11).

Similar results have been obtained by direct numerical simulations (see,
for example, Sandham and Reynolds (1991), Chen (1991), and Pantano and
Sarkar (2002)), which supports the suggestion that the structure of the high
Reynolds number turbulent flow in the mixing layer is closely linked to the
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Figure 1.10. Shadowgraphs showing subsonic mixing-layer structure. Top: plan
view; Bottom: side view. Flow is from left to right. (From Konrad (1977), as
reproduced in Bernal and Roshko (1986). Copyright 1986, Cambridge University
Press. Reprinted with permission of the authors and publisher.)

stability of the low Reynolds number, initially laminar flow. The similarities
may not be sufficient for reliable quantitative results, but they are useful for
understanding how the structures evolve and control mixing, as the convective
Mach number increases. Chen (1991), for instance, has shown the effect on the
scalar concentration distributions across the layer (see Figure 1.12). At low
convective Mach number the spanwise rollers bring the fluid from the high-
and low-speed sides into the center, and the concentration profiles show a well-
defined peak at the center. At higher convective Mach numbers, the presence
of three-dimensional Λ-shaped vortices lead to local upwash and downwash
regions that create pockets of partially mixed fluid near the tips of the vortices.
As a result, at a given position in the layer, the instantaneous concentration
profiles show two preferred mixture fractions, and a peak develops on the
centerline (see also Figure 6.14).

1.5 Shock-Turbulence Interaction

The third example of a turbulent compressible flow is the interaction between a
shock wave and freestream turbulence. The shadowgraph shown in Figure 1.13
illustrates what can happen. We see how the bow shock formed ahead of a
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Figure 1.11. Supersonic mixing-layer structure as a function of increasing convec-
tive Mach number: (i) Mc = 0.28, (ii) Mc = 0.42, (iii) Mc = 0.50, (iv) Mc = 0.62.
Two views are given at each Mach number. The visualization is by planar laser Mie
scattering from a seeded alcohol fog. (From Clemens and Mungal (1995). Copyright
1995, Cambridge University Press. Reprinted with permission.)

sphere moving at Mach 3 reflects off a perforated plate and passes through the
turbulent wake of the sphere. This is an example of the interaction between
relatively intense turbulence (typical of a near wake), and a rather weak shock
(the shock strength diminishes downstream because the area of the shock
sheet increases approximately conically). The interaction with the turbulent
wake produces undulations in the shock surface, and these “waves” appear to
propagate along the shock. The image of the shock is less clear within the wake,
probably because it is distorted in a three-dimensional sense. Shadowgraphs
are sensitive to the second derivative of the density gradient, integrated along
the light path. Along the upper edge of the wake, the distortion of the first
reflected shock appears to match the shape of the large-scale motion that has
just passed through it. The interaction between the shock and the turbulence
is clearly unsteady, and the shock position is a function of time. Figure 1.13
also illustrates the offset between the upper and lower portions of the shock
corresponding to the Mach number gradient across the wake, the slow growth
of the wake (as might be expected from the discussion in Section 1.4), the
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Figure 1.12. The conserved scalar probability distribution versus mixture fraction ξ,
on the centerline a free shear layer, at a Reynolds number based on initial vorticity
thickness and velocity difference of 1600. (From Chen (1991), with the author’s
permission.)

acoustic waves emanating from the perforations in the plate, and the acoustic
waves originating from the turbulence in the near wake (this phenomenon was
more clearly shown in Figure 1.9).

There have been several experiments performed to study the interaction
of a shock with turbulence without the complexities introduced by flows such
as that shown in Figure 1.13. Debiève and Lacharme (1985), for example,
placed an air injector upstream of the throat to generate homogeneous, nearly
isotropic turbulence in the freestream of a Mach 2.3 flow, with an rms intensity
of a little over 1%. A 6◦ compression corner located on the floor of the wind
tunnel was used to generate an oblique shock with a pressure ratio of 1.43,
and a density ratio of 1.29 (see Figure 1.14). Therefore the shock was stronger
but the turbulence was weaker than for the case shown in Figure 1.13.

In the region of the interaction, a threefold increase was seen in the level of
the temperature and velocity fluctuations, but further downstream the resid-
ual amplification of, say, the rms velocity fluctuations was only about 25%.
The large increase in the region of the interaction appeared to be due to the
distortion of the shock caused by the incoming turbulence. Along a line in
the direction of the incoming flow, the shock moved back and forth, with an
amplitude similar to the scales of the incoming turbulence. In this region, the
oscillating shock makes a significant contribution to the rms velocity pertur-
bation level measured by the hot-wire. Well downstream of the interaction,
beyond the range of shock motion, a residual amplification remained but at
a much lower level. A rapid distortion analysis developed by Debiève et al.
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Figure 1.13. Sphere flying over a perforated plate. (Shadowgraph provided by U.S.
Army Ballistic Research Laboratory.)

(1982) was used to estimate the turbulence levels throughout the interaction
(see Section 4.4.5). This linearized analysis provides a relationship between
the upstream and downstream Reynolds stress tensors in terms of the shock
strength and its direction. For the most part, it appeared that the evolution of
the turbulence could be adequately described by this analysis without recourse
to a dynamic “pumping” mechanism due to externally driven shock oscillation
(Anyiwo and Bushnell, 1982), where the unsteadiness itself may contribute to
the turbulence energy. So the shock causes a “permanent” amplification of the
turbulence levels, which seems independent of the shock unsteadiness, and we
will show that this may be a general feature of shock wave turbulence inter-
actions. We also show that analyses based on rapid distortion concepts can
often be used to gain some quantitative insight into these rapidly perturbed
flows.

1.6 Shock Wave-Boundary Layer Interaction

A common example of a shock wave-boundary layer interaction is given by
the flow over a wing in transonic flight. As the Mach number of the incoming
flow increases to values of about 0.8, a region of supersonic flow may appear
on the upper surface of the wing where the flow is accelerated in the region
of decreasing pressure. The zone of supersonic flow is usually terminated by
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Figure 1.14. Experimental arrangement for the experiment by Debiève and
Lacharme (1985). (Copyright 1985, Springer-Verlag. Reprinted with permission.)

a shock located just downstream of the point where the pressure starts to
rise, and the strength of the shock and the size of the supersonic flow region
depend on the incoming Mach number, the angle of attack, and the shape of
the airfoil. The shock can impose a severe pressure gradient on the underlying
boundary layer, and it may cause the boundary layer to separate. The shock
structure inside the boundary layer then becomes very complex as the flow
adjusts to the Mach number gradient across the layer and the presence of a
significant sonic region close to the surface (some beautiful images of transonic
interactions are given by Van Dyke (1982)). Because the flow downstream of
the shock is subsonic, disturbances originating at the trailing edge or in the
wake can propagate upstream, and the boundary conditions on the shock may
be unsteady. The shock may then move back and forth over the surface of the
airfoil with dramatic effects on the lift and drag characteristics, and produce
large fluctuating loads on the aircraft structure. This highly unsteady shock
wave-boundary layer interaction, and the consequent loss of control of the
airplane, led to a number of fatal accidents during the early attempts to break
the sound barrier.

This particular type of interaction is not usually found on wings in super-
sonic flight because the terminating shock moves to the trailing edge as the
Mach number increases and the entire flow over the wing (outside the bound-
ary layer) is supersonic. However, shocks and expansions will appear wherever
the flow is turned abruptly and an interaction with the boundary layer will re-
sult. For example, when a control surface is deployed so that the flow is turned
with concave streamline curvature, a compression corner interaction occurs.
The shock may also be generated by fins, struts, or guide vanes, and the inter-
action with the boundary layer is usually three-dimensional. In internal flows,
it is possible that the shock generated by one deflection surface causes an
incident-shock or reflected-shock interaction on another surface. Some of the
configurations used to study two- and three-dimensional shock wave-boundary
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layer interactions in the laboratory are illustrated in Figure 10.2.

Shadowgraph visualizations of some two-dimensional compression-corner
interactions at a Mach number of 2.9 are shown in Figure 1.15. At all Mach
numbers, there exists a subsonic portion of the boundary layer near the wall,
which can occupy a significant fraction of the total thickness at low Mach
numbers. The demarcation between the subsonic and supersonic parts of the
mean profile is called the sonic line. When the boundary layer encounters the
compression corner, one or more shocks form in the supersonic part of the
flow, and the resulting flowfield is the product of the interaction between this
shock system and the incoming boundary layer. Within the interaction, large
gradients in static pressure, skin friction, and mass flow rate occur, and the
sonic line moves away from the surface. If the turning angle is large enough
the pressure rise can cause the flow to separate. As we show in Section 9.4,
it is possible for the skin-friction and heat-transfer coefficients downstream of
the interaction to exceed the upstream value by a considerable amount. The
interaction is inherently unsteady, which appears to be true for all shock-
turbulence interactions, and the shock moves at a relatively low speed back
and forth in the streamwise direction. As a result, large-amplitude pressure
and heat-transfer fluctuations occur on the wall, which may lead to structural
and thermal fatigue problems (Settles et al., 1979; Dolling and Murphy, 1983).

The visualizations shown in Figure 1.15 suggest that the turbulent mixing
appears to be considerably enhanced across the shock and that the amplifica-
tion increases with shock strength. The incursions of freestream fluid appear
to become much deeper, suggesting that the length scales of the turbulent mo-
tions have correspondingly increased. At the smallest corner angle the shock
remains quite distinct almost to the surface, but as the corner angle increases
the shock appears to fan out and break into a system of compression waves
that start well ahead of the corner. Shadowgraphs, however, represent a spa-
tial average across the flow and do not give a good indication of the behavior
in any given streamwise plane. Muck et al. (1985) found that in addition to its
motion in the streamwise direction, the shock front is wrinkled in the spanwise
direction. The work by Smith et al. (1991) and Poggie et al. (1992) indicates
that the shock can also split in the spanwise direction, leading to a highly
three-dimensional distortion of the shock front (see Section 10.2). Dolling and
Murphy (1983) showed that the mean wall pressure begins to rise well ahead of
the average shock position because of this unsteady motion of the shock. This
upstream influence is seen in the wall-pressure distributions (Figure 1.16) and
it increases with corner angle, indicating that the unsteadiness of the shock
system becomes more important as the shock strength increases. This fig-
ure also indicates that only part of the total compression and turning occurs
across the wave system, and compression and streamline curvature continue
for several boundary layer thicknesses downstream of the corner.

As far as the turbulence behavior is concerned, we could anticipate from



24 CHAPTER 1. INTRODUCTION

Figure 1.15. Shadowgraphs of compression corner interactions at a Mach number
of 2.9 with turning angles of 8◦, 16◦, and 20◦. The curved boundaries on the left and
right of the pictures are the edges of the circular window, not parts of the model.
(From Settles et al. (1979). Copyright 1979, AIAA. Reprinted with permission.)
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Figure 1.16. Pressure distributions in compression corner interactions at M = 2.9:
, 8◦; �, 16◦; �, 20◦; ×, 24◦. The pressures are normalized by the value of the wall

pressure measured upstream of the interaction, and the distance x is measured from
the start of the compression corner. (From Settles et al. (1979). Copyright 1979,
AIAA. Reprinted with permission.)

the shadowgraphs shown in Figure 1.15 that the turbulence levels in the inter-
action would be strongly amplified. The hot-wire measurements for the Mach
2.9 compression corners indicate that the mass flux fluctuation intensity, for
example, can increase by factors of 4 to 15, and the amplification of the mass
weighted shear stress is even greater (Smits and Muck, 1987).

1.7 Measurement Techniques

The subject of measurement techniques for turbulence in compressible flows
deserves another text, and it cannot be summarized adequately here. However,
it is important to understand some of the limitations and restrictions on the
data before studying scaling laws and turbulence structure, and in the brief
discussion of experimental techniques that follows we concentrate on issues of
accuracy. References are given wherever possible so the interested reader can
pursue the subject in greater depth.

1.7.1 Hot Wire Anemometry

Hot-wire anemometry has been the most common measurement technique for
obtaining turbulence data in supersonic flows, and it is still widely used. There
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Figure 1.17. Hot-wire anemometer schematics: (a) constant current mode, (b)
constant temperature mode. (From Smits and Dussauge (1989). Reprinted with
permission of the authors and AGARD/NATO.)

are two main types of hot-wire anemometer: the constant current and the
constant temperature type (see Figure 1.17). A third system, the constant
voltage anemometer has recently been developed (see, for example, Kegerise
and Spina (2000a,b)), but its operation shares many features with the constant
current system, and it is not described here.

In the constant current system, the wire filament is heated using a constant
current source, and variations in heat transfer produce fluctuations in wire
resistance. There is no feedback loop, and the frequency response is extended
beyond the limits of the wire thermal inertia by using a compensating network.
In the constant temperature mode of operation, a feedback loop is used to keep
the wire temperature (and resistance) constant, and variations in heat transfer
produce fluctuations in the wire current. The main advantage of the constant
temperature system is that the feedback loop automatically compensates the
frequency response for the thermal lag of the wire filament.

The probes used in supersonic flow differ somewhat from those used in
subsonic flow for reasons of design and strength. It is important, for example,
to taper the prongs and use a wedge-shaped body to minimize aerodynamic
interference, and the prongs are usually kept short to reduce vibrations and
deflections under load. For crossed wires, shocks emanating from one wire and
its supports may interfere with the other wire, and care must be taken to avoid
this interference at all Mach numbers.

The length of the active filament � is usually between 0.5 and 2 mm, and the
diameter d ranges from 1 to 5 µm. If the wire is too long, the spatial resolution
deteriorates. If the �/d ratio is too small, the temperature distribution along
the wire is highly nonuniform, and heat conduction to the stubs and prongs can
be significant. If the �/d ratio is too large, wire breakages are more common.
Clearly, choosing the optimum length and diameter is a compromise that is
strongly influenced by the flow characteristics.

For a wire oriented at right angles to the direction of a supersonic flow,
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a detached bow shock forms, and the front face of the wire is exposed to
subsonic flow downstream of this nearly normal shock. Because the major
part of the heat transfer occurs by convection over the front surface area of the
filament, it is a good approximation for reasonable Reynolds numbers (Re >
10) to neglect the sensitivity of the heat transfer to Mach number outside
the transonic regime (that is, outside the range 0.8 < M < 1.2) (Kovasznay,
1953, 1954; Morkovin, 1956, 1962; Gaviglio, 1978). When the effects due to
Knudsen number, Mach number, and low Reynolds number can be neglected,
the wire-voltage fluctuation is due to variations in mass flux (ρu)′ and total
temperature T ′

0. It is also possible to measure pressure fluctuations if the
flowfield is isentropic (see Laufer, 1961). The relative sensitivity to (ρu)′ and
T ′

0 is a strong function of the overheat ratio, aw, which is the nondimensional
temperature of the wire relative to the wire recovery temperature. At low
overheats, the output is primarily sensitive to T ′

0, and if the overheat is low
enough the sensitivity to (ρu)′ can be neglected. Vice versa, at high overheats,
the output is primarily sensitive to fluctuations in mass flux, and if the overheat
ratio is high enough the contribution to the signal from T ′

0 may be small enough
to be neglected.

To measure the turbulent stresses, further assumptions are required. By
operating at different overheat ratios and time averaging, it is possible to ob-

tain (ρu)2, (ρu) T ′
0, and T ′

0
2. If pressure fluctuations are small, u′2, u′T ′, and

T ′2 may be found using the definition of total temperature and the equation
of state (Kovasznay, 1953). By using the same procedure within fixed fre-
quency bands, it is possible to obtain the spectral distribution of velocity and
temperature (see, for example, Bestion (1982)).

This approach is suitable only for the constant current system. For the
constant temperature system at low overheat ratios, small fluctuations in to-
tal temperature can cause large relative changes in overheat ratio and serious
nonlinearities can occur (Smits et al., 1983a). Moreover, the frequency re-
sponse for T ′

0 deteriorates rapidly as aw decreases. However, when T ′
0 is small,

both systems can be used at high overheat to measure the instantaneous mass
flux variations directly, and then the Strong Reynolds Analogy can be used to
find the instantaneous velocity fluctuation, as long as the pressure fluctuations
are negligible (see Section 5.2). In addition, a constant current anemometer
operated at a very low overheat can be used to measure T ′

0 directly.

Smits and Dussauge (1989) pointed out that the calibration of a normal
wire in supersonic flow at high Reynolds numbers is a relatively robust pro-
cedure. When the Reynolds number is small, or when the Mach number is in
the transonic regime, however, additional calibrations are required (Morkovin,
1956; Horstman and Rose, 1977; Rong et al., 1985; Barre et al., 1992; Dupont
and Debiève, 1992).

For inclined wires, if it is assumed that the wire heat transfer depends on
an “effective” mass flux which is geometrically related to the longitudinal mass
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flux, it follows that the ratio of the angular flow sensitivity to the streamwise
flow sensitivity ξ is only a function of wire angle. The analysis by Reshotko
and Beckwith (1958) for an infinitely long wire supports this hypothesis as
long as the Mach number in the direction normal to the wire is outside the
transonic range. The analysis also indicates that ξ increases by a factor of
about 2 as the Mach number increases from about 0.8 to 1.2, and the experi-
ments by Smits and Muck (1984) confirmed this result. In contrast, Gaviglio
et al. (1981), Bestion (1982), and Bonnet and Knani (1986) found that for
probes of a slightly different construction ξ depended strongly on the overheat
ratio. Also, Bonnet and Knani reported that for some short wires ξ was similar
to that observed in subsonic flows, whereas for other wires ξ was about twice
the subsonic value, as predicted by Reshotko and Beckwith. They suggested
that small differences in aerodynamic interference may have been responsible.
In any case, if the angular sensitivity is calibrated over the range of condi-
tions experienced in the experiment no particular assumptions about the heat
transfer law are required.

An important consideration is the dynamic range of the instrument. The
wire filament has a thermal inertia determined by its volume, specific heat ca-
pacity, and the rate of heat transfer. A wire without end conduction behaves
as a simple pole with a time constant Tw, and a typical value for 1/2πTw is
400 to 800 Hz. The frequency content of the turbulent fluctuations is very
much higher, and the response must be compensated electronically to resolve
the entire frequency content. For example, to measure u′2 in a boundary layer
to within 10% accuracy, Kistler (1959) suggested that the upper frequency re-
sponse of the system fs must exceed 5ue/δ, where ue is the freestream velocity
and δ is the boundary layer thickness. This criterion ignores the Reynolds
number and Mach number dependence of the frequency content, as well as the
variation with distance from the wall. In the wall region a better criterion is
perhaps given by fs > ue/y. Even if this frequency response is achieved, these
criteria apply to rms measurements, and the shape of the high frequency end
of the spectrum will still be distorted. Furthermore, the bandwidth required
for the measurement of the transverse velocity fluctuation v′ is even greater
because the v′-spectrum is broader than the u′-spectrum (Gaviglio et al., 1981).

In the constant temperature system, the compensation for thermal lag is
achieved automatically by the use of feedback. For maximum frequency re-
sponse, a symmetrical bridge must be used, and careful tuning is required.
Bridge inductance and capacitance, cable length, and feedback amplifier char-
acteristics all need to be adjusted carefully (see Perry (1982) and Watmuff
(1995)). Injecting a square-wave voltage perturbation into the bridge appears
to be a reliable technique for setting the frequency response, at least at reason-
able overheat ratios, that is, greater than about 0.2. (Bonnet and Alziary de
Roquefort, 1980).

In the constant current system, the compensation is achieved using a net-
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work that approximates a simple zero with time constant Tc, and Tc is adjusted
until it matches the wire time constant Tw. This adjustment requires great
precision because a small mismatch causes a step in the frequency response of
magnitude (1 − Tw/Tc) at a frequency near 1/Tw. The adjustment is usually
performed at each operating point by injecting a square-wave current pertur-
bation across the bridge. Several factors limit the accuracy of this process.
First, end-conduction effects can be important (see below). To minimize these
effects, the frequency of current injection should be much greater than 1/Ts.
Second, current perturbations are not equivalent to velocity or temperature
perturbations. Differences can occur if the bridge is not perfectly balanced, or
if stray bridge inductances are present (Smits, 1974; Perry, 1982). Third, the
current perturbation must be small enough to avoid nonlinearities, yet large
enough to make the signal clearly visible over the background turbulence.
Phase-averaging and autocorrelation methods have been used to overcome
this difficulty (Arzoumanian and Debiève, 1990): without these refinements,
repeatability tests show that the mismatch between Tw and Ts is typically less
than 5% (representing 10% error in the mean square voltage output).

End-conduction effects may be important for short wires (�/d < 200).
There is heat conduction to the supports, and the temperature distribution
along the wire is no longer uniform. Heat conduction along the wire and
through the prongs modifies the frequency response of the sensor. Steps in the
Bode diagram can occur similar to those arising from inaccurate compensation,
and they can cause errors in measuring variances, spectra, and correlations.
End-conduction effects can also introduce phase differences between sensors,
and the influence on space-time correlations can be significant. These effects
depend strongly on the geometry of the probe and the boundary conditions
on the wire, and probes of the soldered design will behave differently from
those of the welded design. End conduction effects also depend on the mode
of operation and the overheat ratio. They are particularly difficult to control,
and it is always difficult to estimate the resulting error in hot-wire measure-
ments. For the constant temperature system in an incompressible flow, Perry
et al. (1979) found that the resulting error in rms turbulence level can be as
high as 10%. In general, these effects are difficult to predict, but because
they do not appear to be systematic, repeating the same measurement using
different probes can help to establish the error band. It is not clear that these
results apply to a supersonic flow, but it seems reasonable to suppose that
similar effects can occur and that caution is required. For constant current
operation, the phenomenon has been studied in subsonic and supersonic flow
(Smits, 1974; Smits et al., 1978; Mougnangola, 1986), and the effects depend
critically on the boundary conditions applied at the point where the filament
joins the support.
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Spatial Resolution Effects

In estimating the uncertainties in hot-wire data, the effects of spatial aver-
aging on turbulence measurements are particularly important. The velocity
measured by a hot wire is a spatial average along the sensor length, and it
is a weighted average because the temperature distribution along the wire is
not uniform. If the velocity variation along the sensor is large, the averag-
ing is also likely to be influenced by the nonlinearity of the probe calibration.
Thus eddies that have scales smaller than the length of the wire will not be
accurately resolved. Not all components of the three-dimensional spectrum
are filtered equally: for example, the attenuation of the turbulence intensity
as measured by a single-wire probe is determined by the relative magnitude of
the wave number parallel to the probe. Because the spatial filtering of the wire
is applied to the three-dimensional spectrum, it will not necessarily remove all
the disturbances with a wavelength smaller than the wire length (Blackwelder
and Harotinidis, 1983; Ewing et al., 1995). However, measurements of energy
spectra and turbulence statistics can be affected dramatically by inadequate
spatial resolution and thereby alter the apparent scaling behavior of the data:
wire length effects can easily obscure Reynolds number effects (Perry et al.,
1986; Klewicki and Falco, 1990). Although this problem is a familiar one,
there is no special theory for supersonic flows. In supersonic flows that are ap-
proximately self-preserving, the turbulence characteristics are broadly similar
to those observed in subsonic flows, and it should be possible to estimate the
effects of spatial averaging by using the results obtained there.

As pointed out by Smith (1994), Uberoi and Kovasznay (1953) developed
the first technique for calculating the effect of spatial averaging on energy spec-
tra. Wyngaard (1968, 1969) extended this work and developed a framework
for correcting measured energy spectra to account for the attenuation at high
frequencies (or high wave numbers). Wyngaard showed that when using nor-
mal wire probes, measurements of the energy spectra begin to show significant
attenuation at wave numbers k1l > 1 for wires of length l/η = 1 (l is the wire
length, k1 is the longitudinal wave number and η is the Kolmogorov length-
scale). For longer wires, the effects are more severe and begin at lower wave
numbers. For crossed-wires, the issue is even more complicated, because the
spacing of the two wires and the cross talk between them are further sources
of error.

Ligrani and Bradshaw (1987) studied wire length effects on turbulence
measurements in the near-wall region (y+ ≈ 17) of turbulent boundary lay-
ers. They found that adequate resolution (±4%) of turbulence statistics
(mean squared values and higher order moments) requires probe dimensions
of l/d > 200, and l+ = luτ/ν < 20, where uτ is the friction velocity. They
also found that adequate resolution of the high wave number end of the energy
spectra appears to require l+ < 5. Browne et al. (1988) proposed much more
stringent criteria: they suggested that for accurate measurements (±4%) of
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turbulence statistics, crossed-wire probes should have dimensions l/η < 5 and
L/η < 3 (L is the distance between the two wires of a crossed-wire probe).
Similarly, Klewicki and Falco (1990) indicated that for accurate measurements
of velocity derivatives (both spatial and temporal), the wires should be spaced
only a few Kolmogorov lengths apart at most.

For high Reynolds number laboratory flows, η is very small, and these re-
strictions are extremely difficult to meet, particularly when it is necessary to
maintain l/d > 200 to minimize end-conduction effects. Fernholz and Fin-
ley (1996) point out that high Reynolds number experiments using hot wires
therefore need to be made in large wind tunnels where the Reynolds number is
a consequence of large physical scale and development length rather than high
velocity, so as to take advantage of the smallest wires available, with minimum
diameters of about 0.6 µm.

Some examples of the effects of spatial filtering are given in Chapter 8. In
particular, Figure 8.8 illustrates the effects of spatial filtering on turbulence
levels. The maximum value of u′2/u2

τ is clearly seen to decrease as the dimen-
sionless wire length l+ increases. This trend is shown even more clearly by
the results of Ligrani and Bradshaw (1987), given in Figure 8.9, where the
maximum value of u′2/u2

τ increases from 2 to 2.8 as l+ decrease from 60 to 3.

The effect of sensor-wire separation of one viscous length on the synthetic
response of an X-wire probe was investigated by Moin and Spalart (1987).
They found that even this small separation led to an overestimation of the√

v′2 component of more than 10% near the wall, because of the presence of
strong velocity gradients in the near-wall region. Park and Wallace (1993)
have computed the influence on an X-array, and found that for L+ = 9 at

y+ = 30 the
√

v′2 value was about 40% high, and u′v′ was about 3% low.
With L+ = 2.3 the corresponding values were 3% and 5%. These calculations

indicate that we can expect the error in
√

v′2 to be larger than the error in
u′v′, and that it will increase with L+, at least in the near-wall region.

Measurement Accuracy

The accuracy of hot-wire measurements in supersonic flow depends on the
limits set by the instrument itself, and on the care exercised by the opera-
tor. The effect of an uncalibrated operator on the measurement is unknown,
of course, but some recommendations can be made to reduce operator bias.
Probably the single best method to determine the confidence limits on the
measurements is to repeat the measurement. For example, to check on drift,
a measurement at a given point in the flow should be repeated at a different
time. If at all possible, calibrations should be performed before and after each
profile, and the wire performance should be checked against a known flow (for
example, a well-documented zero pressure gradient turbulent boundary layer).
Furthermore, the entire set of results should be repeated using a different wire,
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anemometer, and operator.

Given that operator bias can be removed, the remaining uncertainties can
be determined with reasonable precision. Random errors are introduced by the
uncertainties in the calibration and measurement procedures, the possibility
of drift in the calibration constants and the presence of end-conduction effects.
Systematic errors included neglecting the total temperature fluctuations and
the effects of the limited spatial and temporal resolution.

The uncertainties are considerably higher than those found in subsonic
flows, where the uncertainties on measurements of u′2 and u′v′ are typically
±5% and ±10%, respectively. For supersonic flows, Smits and Dussauge (1989)
estimated typical uncertainty levels for two particular flows. In the first exam-
ple, a normal wire was used in the constant temperature mode at high overheat

ratio to measure
√

u′2
/

U in a boundary layer at Mach 2.84. At y/δ = 0.4,

the uncertainty was estimated to lie between −7% and −25%. In the second
example, the same quantity was measured in a Mach 1.76 boundary layer us-
ing constant current anemometry operated at 14 overheat ratios. At the same
location, the error was estimated to lie between +3% and +17%. It appears

that the true value of
√

u′2
/

U lies between the values obtained by the two
systems.

1.7.2 Laser-Doppler Velocimetry

Johnson (1989) summarized the principal advantages of Laser-Doppler Ve-
locimetry (LDV) over hot-wire anemometry as (i) unambiguous signal inter-
pretation (it senses velocity only) and (ii) nonintrusiveness. LDV is also ca-
pable of making measurements of the streamwise and normal components of
velocity in regions close to a solid surface. The primary disadvantage of the
technique is that it measures the velocities of micron-sized particles rather
than the velocity of the flow itself. This usually means that the flow must be
seeded with particles, and if they are not sufficiently small they will not follow
the flow accurately. This problem is particularly severe in regions of strong
velocity gradients, as found near the wall and in shock wave-boundary layer
interactions. On the other hand, if the particles are too small, the signal on
the photodetector has a poor signal-to-noise ratio, which contributes to the
uncertainty in the measurement. Additional difficulties arise if the particles
are not uniformly distributed, and it is important to ensure that the method
of seeding does not disturb the flow (Eléna, 1989).

The most common laser-Doppler velocimeter in use for supersonic tur-
bulence measurements is the dual-beam or fringe optical arrangement with
forward-scatter light collection and burst-counter signal processing (see Fig-
ure 1.18). The dual-beam, burst-counter approach is well suited to high-speed
flows where particle densities are usually low (Johnson, 1989). What is also
not often appreciated is that the burst-counter approach effectively improves
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Figure 1.18. Schematic of dual-beam laser-Doppler anemometer. (From Johnson
(1989). Reprinted with permission of the author and AGARD/NATO.)

the spatial resolution of the method because the integration over the mea-
surement volume is set by the cross-sectional dimensions of the measurement
volume, not its length. Because the signal is obtained from one particle at a
time, the length of the volume is not a factor as long as the flow is statistically
two-dimensional in that direction. Typically, therefore, the spatial resolution
of the LDV technique is of the order of 200 µm in all directions, compared to
a hot-wire where it is difficult to obtain a wire-length less than 500 µm. On
the other hand, the burst-counter technique can only give statistical properties
since the signal is discrete, and the time between bursts of data relatively large
(typically of the order of 1 ms). Time histories cannot be obtained, and it is
impractical to use LDV to obtain space-time correlations in a high-speed flow.

To assess the accuracy of turbulence statistics obtained using laser-Doppler
velocimetry, the primary issues are the effects of particle lag, the uncertainties
due to low signal-to-noise ratios, the seeding problem, sampling bias, and
angular bias.

The response of a particle to a change in fluid velocity is usually expressed
in terms of a time constant. If it is assumed that the Reynolds number of the
particle is of order one or less, Stokes’s law can be used to find a time constant
τs for the response of a particle to a sudden change in fluid velocity. Then:

τs =
ρpd

2
p

18µg

,

where ρp and dp are the particle density and diameter, respectively, and µg

is the fluid viscosity (for a more detailed description of the particle response
see Tedeschi (1993)). Typical roll-off frequencies f3db and response distances
xc (= Uτs) for a Mach 3 flow are given in Table 1.1. The response was
calculated for a step-change in fluid velocity. This is a relevant estimate for
shock wave-boundary layer interactions, but may be overly pessimistic for flows
with relatively low turbulence levels and where the flow parameters change
slowly, as in zero pressure gradient turbulent boundary layers. The scattered



34 CHAPTER 1. INTRODUCTION

Table 1.1. Particle response based on Stokes’s drag law for Me = 3, T0 = 293◦K,
and particles with a specific gravity of 1. (From Johnson (1989). Reprinted with
permission of the author and AGARD/NATO.)

light intensity is a very strong function of particle diameter, and the intensities
fall off rapidly for particle diameters below 1µm. As the particles get smaller,
the signal-to-noise ratio decreases significantly and this places a practical limit
on the minimum particle diameter of about 1 µm.

The signal-to-noise ratio also depends on the residence time of the particle
in the measurement volume. As the speed of the flow increases, the residence
time is reduced, and the signal-to-noise ratio decreases. So the need for smaller
particles reduces the scattered light intensity, and the higher speeds require an
increased bandwidth, both of which result in a reduced signal-to-noise ratio.
Stray light is also a problem, one which is particularly troublesome when taking
measurements near a solid surface, that is, in the near-wall region.

Seeding a supersonic flow is often difficult, and the quality of the mea-
surements obtained by LDV depends greatly on the method of seeding the
flow. As Eléna (1989) pointed out, it is essential that the flow upstream of
the measuring point remain undisturbed by the introduction of the particles.
For example, Eléna et al. (1985) showed that when an injector is used, its
wake can perturb the flow significantly, even when the speed of the injection
was equal to the flow speed. Eléna et al. also studied injection at the wall
and found that the resulting wall jet can also disturb the boundary layer de-
veloping on the wall, even when the injection point is placed upstream of the
throat. The results showed that the differences between the jet velocity and
the local freestream velocity must be less than 5% to avoid significant errors
in the turbulence measurements.

Finally, a number of different bias errors can occur to reduce the quality
of the data. Filter bias is caused by incorrect adjustment of the bandpass
filters used to improve the signal-to-noise ratio. Gradient bias is due to the
fact the velocity varies throughout the measurement volume, particularly in
the wall-normal direction for a boundary layer. This error can be reduced by
minimizing the dimension of the measurement volume in the direction of the
maximum velocity gradient. Velocity bias occurs when there is a correlation
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between the number of particles passing through the volume and the velocity
of the particles. This is the expected case when the seeding is uniform and
the mean interval between samples is less than, or of the same order as, an
integral time scale. In supersonic flows, the seeding is never uniform, and the
data density is always very low, and velocity bias does not seem to be a serious
limitation (Deleuze and Eléna, 1995). Angular bias is related to the number of
fringes crossed by the particle in its flight through the measurement volume,
and it can produce significant errors when the number of fringes is small. The
problem is of particular concern for the accuracy of two-component systems
(Eléna, 1989). When the measurement volume contains just enough fringes
for validation by the counter, validation occurs only for the particles that have
a velocity direction close to the direction normal to the fringes. The velocities
that are sampled are only those which have directions that lie within a cone,
and the size of the cone is small when the number of fringes is only a little
larger than the number required for validation. For a two-component system,
the overlap angle that characterizes the useful cross-section for simultaneous
validation approaches zero. Angular bias can be reduced by using a Bragg cell
to increase the number of fringes by frequency shifting, but in supersonic flows
where the measured Doppler frequencies are already very high, this solution is
not always possible. Lacharme (1984) showed that a decrease in v′2 is expected
when the fluctuations are significant. This was also found to be the case for
u′2 when the correlation coefficient Ruv is close to one. Eléna et al. (1985)
suggested that the low values of −u′v′ observed in many LDV measurements
near the wall are also related to the effects of angular bias.

Overall accuracy can be difficult to establish for a given experiment and
LDV system. Typical of the high-quality LDV data in the literature are the
studies by Johnson and Rose (1975) and Deleuze and Eléna (1995) in zero
pressure gradient boundary layers at Mach numbers of 2.9 and 2.3, respectively.
From an inspection of their results, it seems possible to measure u′2 with an
accuracy of about ±15% of its peak value, and u′v′ within ±20% of its peak
value, which is comparable to what has been achieved using hot-wires.

1.7.3 Fluctuating Wall Pressure Measurements

A comprehensive review of fluctuating wall pressure measurements was given
by Dolling and Dussauge (1989), and it is not repeated here. We consider only
the accuracy and the type of data obtained, and the implications for turbulence
studies. It should be said immediately that wall pressure data in supersonic
flows typically suffer from severe spatial and temporal filtering. Considerable
work has been done to analyze the performance of pressure transducers in sub-
sonic flows, but no special analyses have been developed for supersonic flows.
However, because the statistical nature of the pressure signal in zero pressure
gradient boundary layers seems to be independent of Mach number (at least
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at supersonic speeds), it is reasonable to suppose that similar considerations
apply. On that basis, Corcos (1963) showed that fR, the roll-off frequency of
a transducer of diameter d, is approximately given by Uc/πd (Uc is the con-
vection velocity of the pressure disturbances). If fR is constrained to be larger
than 5ue/δ, as it was for a hot-wire, then

d <
1

5π

Uc

ue

. (1.4)

If we assume that Uc is typical of near-wall motions, then it is rather small, so
that, for example, Uc ≈ 0.6ue. Hence, d < 0.04δ, which gives an outer layer
scaling for the acceptable transducer size.

It can also be argued that the wall pressure fluctuations depend on some
volume surrounding the measurement point, but that they are mainly influ-
enced by the wall region. In other words, they should follow an inner layer
scaling. On the basis of subsonic flow experience, we expect that

d < 20νw/uτ and f > u2
τ

/
νw (1.5)

(Schewe, 1983). When δuτ/νw > 500, that is, for high Reynolds number
flows, the first condition can be met, but not the second, because the smallest
available transducers are generally several orders of magnitude too large.

In addition, the frequency response of a transducer designed with a cavity
is punctuated by a number of strong peaks corresponding to the natural res-
onances of the cavity. The harmonics of the dominant resonance are felt at
frequencies as low as one-tenth of the dominant frequency, which in most ap-
plications overlaps the pressure spectrum. Filtering will obviously remove the
resonances, but it can remove some of the signal energy at the same time. It is
difficult to measure frequencies above 50 to 100 kHz under any circumstance.
As a result of the limited spatial and temporal resolution, the magnitude of
the pressure fluctuation level is likely to be severely underestimated in most
high-speed experiments, and the spectrum is difficult to interpret when, for
example, the shear layer is thin and the energy spectrum covers a range where
resonant peaks appear in the data.

Dolling and Dussauge (1989) pointed out that spatial integration reduces
the standard deviation, but by reducing the contribution of the weakly cor-
related high frequencies, it increases the autocorrelation and two-point cor-
relations. Spurious noise sources, such as tunnel vibration, increase the rms
value, but should not affect the two-point correlation unless the source of the
noise is moving coherently, as might be the case with large-scale variations in
tunnel conditions. Electronic noise also increases the standard deviation, but
because its time scale is typically very small (high frequencies dominate) the
correlations are generally reduced as a result.

Despite these problems, wall pressure data can still be valuable for studying
high-speed turbulent flows. Correlation data are less susceptible to error than



1.7. MEASUREMENT TECHNIQUES 37

measurements of the absolute fluctuation levels themselves, although phase
errors between transducers can be a problem, just as they are when using
multiple hot-wires. In the study of unsteady shock motion, wall pressure
transducers have been indispensable, and they have given much useful data
on the range of shock motion and typical shock velocities. They have also
been widely used to provide a sampling criterion for measurements that were
ensemble averaged on the basis of shock position (see Chapter 10), and this
work has given new insights on the mechanisms driving the shock motion.

1.7.4 Flow Imaging

Schlieren and shadowgraph photography have always been important tools for
visualizing supersonic flow. The main disadvantage is the spatial integration,
so that it is difficult to obtain information about turbulence (for a more de-
tailed description of shadowgraph, schlieren, and other visualization methods,
see Merzkirch (1988) and Smits and Lim (2000)). Nevertheless, images of
boundary layers obtained on bodies-of-revolution (where the spatial integra-
tion is minimized) show marked and regular striations in the layer, leaning
downstream at a characteristic angle of 40◦ to 60◦ (see, for example, Fig-
ure 8.25). Also, James (1958) presented some astonishing shadowgraphs of the
flow over bodies-of-revolution over a wide range of Mach numbers, Reynolds
numbers, and heat transfer rates. These early images clearly show intermit-
tent transition to turbulence similar to the turbulent spots observed in subsonic
flow. In addition, Smith and Smits (1988) and (1995) adapted the schlieren
technique with an innovative knife edge design to study turbulence on flat
plates, and they were able to determine the convection velocity of the fea-
tures that had strong density gradients. Focusing schlieren (Weinstein, 1993)
avoids some of the effects of integration, and Garg and Settles (1998) have
successfully used a similar technique to measure convection velocities of the
large-scale motions in a boundary layer at Mach 3.

It is clear, however, that schlieren and shadowgraph methods are not well
suited to the study of turbulence. In that respect, planar-laser Mie scattering
is more useful. In one version, akin to the vapor-screen method (McGregor,
1961), water vapor in the air is used as a scattering medium. The water
vapor, which may be naturally occurring or enhanced by seeding, condenses
in regions of low temperature, and it can be made visible using a pulsed laser
sheet to give instantaneous cross-sections of the flow similar to those obtained
using smoke in air at subsonic speeds. Alternatively, alcohol or acetone is
introduced into the flow, typically through a small hole in the wall. The
shearing action of the air flow produces small droplets, of diameters in the
range of several µm, and these can then be made visible in the same way. An
example showing visualizations in mixing layers was given in Figure 1.11, and
Smith and Smits (1995) obtained boundary layer images in planes normal to
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the wall (see Figure 8.27). Thurow et al. (2000) have used a similar technique
in combination with a MHz-rate laser and camera system to obtain short
movies of the evolution of large-scale structures in a Mach 1.3 jet.

Planar Laser-Induced Fluorescence (PLIF) is another technique where a
tracer is used to make the flow visible. Different tracers can be used, depend-
ing on the flow. For example, in combusting flows, OH marks the temperature
well, and in high-temperature flows sodium can produce very strong signals
(Zimmermann and Miles, 1980). Acetone is another important seeding species
for PLIF, and has been extensively used in studies of mixing layer (see, for
example Rossmann et al., 2002). Nitric oxide is another example, and Ross-
mann et al. (2002) used it to measure the instantaneous mixture-fraction field
of a hypersonic two-dimensional mixing layer.

Raman Excitation plus Laser-Induced Electronic Fluorescence (RELIEF)
is a technique that avoids a tracer and provides velocity by using a tagging
laser to excite oxygen molecules into a long-lived state and an interrogation
laser to induce fluorescence, and it is similar to the hydrogen-bubble technique
for water flows (see Miles et al. (1987, 1989)).

The rapid development of laser-based diagnostics has also made it possi-
ble to obtain instantaneous, quantitative flowfield data, rather than pointwise
data as obtained using hot-wire anemometry or LDV. One technique that has
made considerable impact is planar Rayleigh scattering, first developed by
Smith et al. (1989). Cross-sectional images of the air density can be obtained
by direct Rayleigh scattering, and because the illumination is provided by a
pulsed laser, the images are frozen in time. An example is given in Figure 1.4.
The disadvantage of the method is that the presence of water in the air can
have a strong effect on the interpretation of the image, even when the water
concentration is extremely low (parts per million). Upstream of the nozzle,
where it is in the form of water vapor, its Rayleigh cross-section is smaller than
air. However, as the flow expands through the nozzle, the water molecules can
agglomerate into very small ice clusters, of the order of 30 nm in diameter (We-
gener and Stein, 1968). When the clusters are present in sufficient numbers,
they can dominate the Rayleigh signal. Under these conditions, the images
obtained in air give the density of the ice clusters, rather than the density
of the air. The cluster density is a function of temperature, and it appears
that there is a threshold temperature below which the cluster concentration is
approximately constant, and above which the clusters rapidly disappear (Nau,
1995). In the outer part of the layer shown in Figure 1.4, the particle density
is still a measure of the air density, but as the wall is approached and the
temperature increases the particles return to the vapor phase and the signal
level drops. There are two main consequences. Resolution is lost near the
wall (the level depends on the Mach number, the total temperature, and the
wall temperature), and strong shocks become visible as lines separating bright
zones (low temperature) from dark zones (high temperature), whereas if the
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Rayleigh signal were a true measure of the air density, the signal levels should
rise, not fall through the shock. These complications can be avoided by oper-
ating with pure gases such as nitrogen, or by operating at very low stagnation
temperatures (Smith et al., 1991).

It is still possible to obtain interesting results, even in the regime where ice
clusters are a problem (Poggie et al., 2004). As a flow visualization tool, it has
given very useful insights into the outer layer structure of turbulent jets and
boundary layers, and the structure of two- and three-dimensional shock wave-
boundary layer interactions. It might also be expected that spatial correlation
measurements obtained using Rayleigh scattering should be less sensitive to
the variable particle density, and the results obtained by Smith (1989) and
Poggie (1995) give results that compare very well with hot-wire data.

In Filtered Rayleigh Scattering (FRS), a molecular filter is used to band-
pass the Rayleigh signal, and by sweeping the laser over a range of frequencies
it is possible to obtain, in a given plane, the flow velocity, density and temper-
ature (Miles et al., 1992). For flow visualization it has the attractive feature
of allowing background suppression by using the molecular filter to eliminate
the signal from the stationary wall which has zero Doppler-shift (Forkey et al.,
1994).

In low density flows, the naturally ocurring water content in the air supply
may not provide a detectable Rayleigh signal, and the molecular signal may
also be too weak. Under these circustances, it is sometimes useful to seed the
flow with carbon dioxide. Baumgartner (1997) used this method to visualize
the structure of a Mach 8 turbulent boundary layer, and Wu (2000) found that
under these experimental conditions the upper limit on the average cluster
diameter was only about 20 nm. Also, Erbland (2000) estimated that the
sublimation time is of order of 10 µs, whereas the condensation time is probably
60 times longer, implying that the visualizations actually represent a history
of all of the fluid particles that were “tagged” by sublimation in the higher
temperature flow near the wall.

By using two cameras and a single laser, Cogne et al. (1993), Forkey et al.
(1993), and Poggie (1995) were able to document the evolution of turbulent
large-scale motions in boundary layers, and their interaction with shock waves
(see Figures 1.19, 10.7, and 10.13). Lempert et al. (1997) developed a MHz-
rate FRS system by combining a pulse-burst laser system with an ultra-fast
framing camera. The system captures short FRS movies (typically 30 consec-
utive frames), and it has been used to study shock motion and distortion in
shock wave-boundary layer interactions (Lempert et al., 1997), high-speed jets
(Thurow et al., 2000), transition to turbulence on an elliptic cone (Huntley
and Smits, 2000), hypersonic boundary layer structure (Auvity et al., 2001),
and shock wave-boundary layer interactions (Bookey et al. 2005a,b) (see also
Figures 10.7 and 10.8).

In the last ten years or so, Particle Imaging Velocimetry (PIV) has become
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Figure 1.19. Double-pulsed Rayleigh images from a Mach 3 turbulent boundary
layer (Reθ = 80, 000, Rδ2 = 35, 000). Top: time = t . Bottom: time = t + 20 µs.
The flow is from left to right. (Figure from Cogne et al. (1993). Reprinted with
permission of ASME.)

a standard tool for studying low-speed fluid flows (see, for example, Gharib’s
chapter in Smits and Lim (2000)). In PIV, small particles are used to seed the
flow, and flow velocities are derived from time-of-flight measurements of the
particles. The advantage of PIV over LDV is that PIV gives information in
two and even three dimensions, and permits the direct measurement of velocity
gradients and vorticity. The disadvantages of the two techniques are similar, in
that they are both limited by particle response times and seeding difficulties,
and these restrictions are particularly problematic in high-speed flows where
shcoks are present. Additional difficulties are related to laser illumination,
and the speed and sensitivity of the camera(s). Typically, small particles and
short exposure times must be used, which both conspire to reduce the signal
intensity. Nevertheless, improvements in hardware have led to a number of
interesting applications, including studies of supersonic jets (Lou, 2003) and
flow over a sphere at Mach 6 (Scarano and Haertig, 2003). The state of the art
is well illustrated by Figure 1.20, showing velocity vectors in a high-speed jet.
In this experiment, stereoscopic PIV was used to measure all three velocity
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Figure 1.20. Instantaneous velocity vectors in a Mach 1.44 jet, measured using
PIV. (Alkislar et al., 2003. Courtesy of the authors.)

components in a single plane (Alkislar et al., 2000, 2003).

1.8 Summary

We have tried to indicate some of the more interesting features of free shear
layers and boundary layers in high-speed flow. It is clear that free shear layers
are strongly affected by compressibility. Their structure appears to become
less organized and more three-dimensional with increasing Mach number, and
as a consequence the spreading rate is significantly reduced. For the boundary
layer on a flat plate with a zero pressure gradient, the effect of increasing
Mach number seems primarily to change the scaling behavior through changes
in fluid temperature, although some aspects of the turbulence structure are
changed in ways that are difficult to ascribe to fluid property variations alone.
In contrast, the propagation of pressure disturbances in supersonic flows is
clearly different from that in subsonic experience, and in some cases leads
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to a behavior that is counter intuitive. When shock waves are present, the
flow response can become extremely complex. Turbulence levels are strongly
amplified, the shock becomes unsteady, and the flow may separate.

We have also seen some of the difficulties encountered in experimental stud-
ies of supersonic turbulent flows. Most of the turbulence data available in the
literature were obtained using hot-wire anemometry, and the uncertainty levels
are considerably higher than the levels observed in similar experiments in sub-
sonic flow. In particular, it is difficult to obtain accurate measurements near
the wall because the spatial resolution is generally inadequate, and because
the Mach number becomes transonic in this region the Mach number depen-
dence of the sensitivity needs to be taken into account. This is an especially
difficult problem for crossed-wire measurements. The LDV data are subject to
comparable limitations, primarily because of the conflicting requirements on
particle size: the particles must be small enough to follow the flow faithfully,
and large enough to produce a high signal-to-noise ratio. We saw that these
requirements usually cannot be met simultaneously. Accurate wall pressure
measurements are also difficult to make, principally because of the poor spatial
and temporal resolution encountered in most supersonic applications.

Despite these measurement difficulties, it is possible to obtain useful and
important data. Hot-wires, when used with care, can give reasonably reli-
able indications of turbulence levels and correlations. LDV data can give
very good results, particularly for two-component velocity data, and wall pres-
sure transducers are able to give valuable information on shock motion and
pressure-correlations. Combined with a range of ingenious flow visualization
techniques, and innovative, nonintrusive, quantitative laser-based diagnostics,
in addition to the growing usefulness of PIV methods in high-speed flows, the
situation has never been better for the experimentalist.



Chapter 2

Equations of Motion

Here, we consider the equations of motion briefly, primarily for the sake of
completeness, and to establish a consistent notation. Full derivations can be
found in a number of places, notably in Batchelor (1967) and Currie (1974).

We consider only flows of compressible gases where the continuum hypoth-
esis is valid. That is, the smallest volume of interest (a fluid element) will
always contain a sufficient number of molecules for statistical averages to be
meaningful. The continuum hypothesis fails when the mean free path is com-
parable to the smallest significant dimension. This can happen under normal
temperatures and pressures when the body dimensions are very small, as for
the flow around a very thin wire, such as the sensitive element of a hot-wire
probe where typical diameters range from 1 to 5 µm, or at very high altitudes,
where the densities are very small and the mean free path can be very large.
The relevant nondimensional quantity is the Knudsen number, which is the
ratio of the mean free path λ to a typical flow dimension. When the Knudsen
number exceeds unity we expect rarified gas effects to become important. For
a hot-wire in a supersonic flow, the Knudsen number for the wire filament is
about 0.2 at normal temperatures and pressures, and for the region occupied
by the shock wave it approaches unity. It is difficult to justify the contin-
uum hypothesis within the shock because for shocks of moderate strength the
thickness is equal to a few mean free paths in the downstream gas. Never-
theless, the equations of motion for a continuum gas predict shock structures
that agree well with experiment. For the flow over the filament itself, however,
slip-flow effects associated with a breakdown in the continuum hypothesis have
been observed when the Knudsen number based on the filament diameter is of
order 0.1 (Davis and Davies, 1972). For laminar boundary layer flows over a
vehicle, the ratio of the mean free path to the boundary layer thickness δ can
be expressed in terms of the Mach and Reynolds numbers:

λ

δ
� M√

Re

(Kuethe and Schetzer, 1967), indicating that the continuum approximation
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will break down at high Mach numbers and low Reynolds numbers, conditions
that are typically experienced only in the upper reaches of the atmosphere.

When Knudsen number effects are negligible, and the flow behavior can be
described in term of its macroscopic properties such as its pressure, density,
and velocity, the flow of a compressible fluid is described completely by the
continuity, momentum, and energy equations, together with an equation of
state and a suitable set of boundary conditions.

2.1 Continuity

For a compressible fluid the continuity equation is given by:

∂ρ

∂t
+ ∇·ρV = 0 (2.1)

or

∇ · V = −1

ρ

Dρ

Dt
. (2.2)

Here V = ui+vj+wk is the velocity and ρ is the density. The total derivative
D/Dt represents the rate of change of density following a particle of fluid in an
Eulerian system. A fluid particle has a fixed mass m, and therefore a variable
volume. In terms of the volume v (= m/ρ),

− 1

ρ

Dρ

Dt
= − v

m

D (v/m)

Dt
=

1

υ

Dυ

Dt
, (2.3)

and so the divergence of the velocity is equal to the fractional rate of change
of volume of a fluid element of given mass. This is called the rate of dilatation,
or simply the dilatation. In tensor notation we have:

∂ρ

∂t
+

∂ρuj

∂xj

= 0. (2.4)

2.2 Momentum

The momentum equation for a compressible fluid is given by:

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj

=
∂τij

∂xj

, (2.5)

where τij is the (symmetric) stress tensor representing the effects of surface
forces (buoyancy forces as well as other body forces have been neglected be-
cause they are rarely important in high-speed flows). The three diagonal
components of τij are the normal stresses and the six off-diagonal components
are the tangential or shearing stresses. Note that the surface stresses will only
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contribute to the fluid acceleration when their gradients are nonzero. When
∂τij/∂xi = 0, the effect of surface forces on a material element of fluid is to
tend to deform it without changing its momentum.

The stress tensor in a fluid at rest (or in rigid body motion) must be
isotropic (see, for example, Batchelor (1967)), and the contribution to the
force per unit area exerted on the surface of a control volume with a unit
normal vector n is 1

3
τijnj. That is, τij = −pδij, where p

(
= −1

3
τii

)
is called

the static-fluid pressure and it acts equally in all directions. The static-fluid
pressure is the same as the thermodynamic pressure, which is the pressure
measured in a system in equilibrium, and it is a state variable. A negative
sign is included because the outward-facing normal of any control volume is
defined as a positive vector and by convention a positive pressure is taken to
be compressive. The stress tensor in a fluid at rest must therefore be of the
form

τij = −pδij + dij, (2.6)

where dij depends on the motion of the fluid only and it is called the shear
stress tensor, or the deviatoric stress tensor.

The instantaneous relative velocities in the neighborhood of a point in the
fluid are given by the velocity gradient tensor ∂ui/∂xj. This tensor describes
the motion of all neighboring points. In other words, ∂ui/∂xj describes how
an infinitesimal fluid particle deforms in time, and it provides a complete
description of the relative state of motion at that point. The velocity gradient
tensor can be split into two parts, a rate-of-strain tensor Sij and a rate-of-
rotation tensor Rij:

∂ui

∂xj

= Sij + Rij, (2.7)

where

Sij = 1
2

(
∂ui

∂xj

+
∂uj

∂xi

)
and Rij = 1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
. (2.8)

We see that Sij describes the deformation of a fluid element, whereas Rij

describes the instantaneous rate-of-rotation of the fluid element if it were to
rotate as a rigid body without deformation. Note that the instantaneous
angular velocity is given by ωk where Rij = εijkωk. The vector �ω is related to
the vorticity Ω by �ω = 1

2
∇× V = 1

2
Ω.

The rate-of-strain tensor is the only part of the velocity gradient tensor gov-
erned by relative motions among fluid particles. The simplest stress-strain rate
relationship is a linear one, and fluids that follow this relationship are called
Newtonian. For isotropic Newtonian fluids, the shear stress tensor becomes

dij = λSkkδij + 2µSij (2.9)

(see, for example, Currie (1974)), where µ and λ are constants: µ is the
dynamic viscosity, and λ is usually written in terms of the bulk viscosity
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µ′′, where µ′′ = λ + 2
3
µ. The viscosity coefficients relate the shear stress

tensor to the rate-of-strain tensor. They are material properties of a fluid,
and may be directly related to the molecular interactions that occur inside the
fluid. They may therefore be considered as thermodynamic properties in the
macroscopic sense, varying with pressure and temperature. They are proper
scalars, independent of direction. Hence:

τij = −pδij + µ′′Skkδij + 2µ
(
Sij − 1

3
Skkδij

)
. (2.10)

This is the constitutive equation for stress in a Newtonian fluid. The linear
dependence holds over a surprising variety of conditions for compressible and
incompressible fluids, and it is assumed to describe all the flows considered
here.

In a fluid at rest only normal stresses are exerted, and the normal stress
is independent of the direction of the surface element across which it acts.
We see that in a fluid in motion both the normal and the tangential stresses
depend on viscosity.

The dynamic viscosity of a gas is the result of momentum exchange among
molecules with the same average molecular velocities but with different bulk
velocities. Because the interactions will occur within a distance comparable
to the mean free path, the dynamic viscosity must depend on the average
molecular speed, the number density and the mean free path. The magnitude
is very small but the associated stress µSij can take large values, especially near
a solid wall where the velocity gradients are large. Also, as the temperature
of the gas increases, the number of collisions will increase and therefore the
dynamic viscosity will increase with temperature. It is nearly independent of
pressure. The variation with temperature, between 150◦K to 500◦K, may be
approximated by the formula

µ

µ0

=
(

T

T0

)0.76

. (2.11)

For a wider range of temperatures, between 100◦K and 1900◦K, Sutherland’s
formula is more accurate:

µ

µ0

=
T0 + 110.3

T + 110.3

(
T

T0

)3/2

(2.12)

(Ames Research Staff, 1953).
With respect to the bulk viscosity, we can introduce the mechanical pressure

p which is the pressure measured in a moving fluid. That is,

p − p = µ′′∂uk

∂xk

= µ′′∇ · V.

Now p = −1
3
τii, which defines the mechanical pressure in a moving fluid (nat-

urally, for a fluid at rest, p = p). The mechanical pressure in a moving fluid
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differs from the thermodynamic pressure by a term proportional to the volu-
metric dilatation with a coefficient of proportionality called the bulk viscosity.
Note that for an incompressible fluid we need not consider the bulk viscosity—
it only becomes important for compressible fluid flow.

The pressure p is a measure of the translational energy of the molecules
only, whereas the thermodynamic pressure is a measure of the total energy,
which includes vibrational and rotational modes as well as the translational
modes. Different modes have different relaxation times, so that energy may be
transferred between modes, and the bulk viscosity is a measure of this transfer.
For a monatomic gas the only mode of molecular energy is translational and
the bulk viscosity is always zero. For polyatomic gases the bulk viscosity is
never zero, and in fact it may be orders of magnitude larger than the dynamic
viscosity (see, for example, Thompson (1972)). For instance, during the pas-
sage of a polyatomic gas through a shock wave, the vibrational modes of energy
of the molecules are excited at the expense of the translational modes, so that
the bulk viscosity of the gas will be nonzero. However, the stress associated
with the bulk viscosity is µ′′∇ · V, and in many cases of interest the stress is
small enough to be neglected (this is usually called Stokes’s hypothesis). Here,
we assume that µ′′∇ · V is negligible.

The final form of the momentum equation, known as the Navier-Stokes
equation, is given by:

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj

= − ∂p

∂xi

+
∂

∂xj

(
µ

(
∂ui

∂xj

+
∂uj

∂xi

− 2
3

∂uk

∂xk

δij

))
. (2.13)

We now have two equations, the continuity and momentum equations—Equations 2.5
and 2.13, respectively—with three unknowns: p, ui, and ρ (it is assumed that
µ is a known function of the state variables).

For a flow in thermodynamic equilibrium, an extra equation is provided by
the equation of state. For the flows considered here it is assumed that the
pressure, temperature and density are related to each other by the ideal gas
law; that is,

p = ρRT, (2.14)

where R is the gas constant (= 287.03 m2s2K for air). We are interested in sys-
tems where velocity, temperature, and pressure gradients are present, systems
that may not be in perfect equilibrium. When the rates of change are large,
the flow does not have time to achieve local equilibrium, and then the equa-
tions of state will contain time as a variable. Lagging internal processes such
as dissociation, ionization, evaporation, chemical reactions, and the transfer
of energy between molecular modes are called relaxation processes. We have
already indicated how the transfer of energy among molecular modes can give
rise to a nonzero bulk viscosity coefficient. Nevertheless, variables of state can
still be used if the rates of change are not too large. If we restrict our attention
to the flow of nonhypersonic continuum gases, and we do not consider the flow
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inside shock waves, the experimental evidence suggests that the assumption
of thermodynamic equilibrium appears to be reasonable.

To close this system of equations we need to consider the energy of the
system.

2.3 Energy

The energy equation for a compressible fluid may be written as:

ρ
∂

∂t

(
e + 1

2
V 2
)

+ ρuj
∂

∂xj

(
e + 1

2
V 2
)

=
∂τijui

∂xj

− ∂qi

∂xi

, (2.15)

where V 2 = u2 + v2 + w2. The left-hand side represents the rate of change of
the total energy per unit volume following a fluid particle, and the right-hand
side is the sum of the rate of work done on the fluid by the surface forces and
the rate of heat added to the fluid by conduction. The work done by the body
forces is neglected because buoyancy effects are rarely important in high-speed
flows, and temperature differences are assumed to be small enough to neglect
radiative heat transfer.

The total energy is the sum of the internal energy e and the kinetic energy of
the bulk motion 1

2
V 2. The internal energy is a measure of the energy contained

in the translational, rotational and vibrational motions of the gas molecules
(as well as electron energies), and it is a state variable. It is Galilean invariant
(that is, it is independent of translational motion of the observer) whereas the
kinetic energy of the bulk motion is not. (Note that any term involving the
absolute value of the velocity will depend on the observer, whereas terms that
depend on velocity differences will not.)

The rate of work done by the surface forces may be written as:

∂τijui

∂xj

= ui
∂τij

∂xj

+ τij
∂ui

∂xj

. (2.16)

The first part on the right-hand side arises from small differences in stresses
on opposite sides of a fluid element, and it contributes to the gain in kinetic
energy of the bulk motion of the fluid. The second part is associated with small
differences in velocity on opposite sides of the fluid element, and it represents
the rate of work done in deforming the element without a change in its bulk
velocity. The work done in deforming the element is the only work term that
contributes to an increase in the internal energy.

By convention, q is the conductive heat flux leaving the fluid element (the
rate of heat outflow per unit area). Heat conduction contributes to the change
in internal energy of the fluid, and makes no contribution to the kinetic energy
of the bulk motion. It is assumed that the heat flux is given by the Fourier
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heat conduction relationship:

qj = −k
∂T

∂xj

. (2.17)

This is a constitutive equation in that it relates a heat flux to a temperature
gradient. A single coefficient of proportionality, the heat conductivity k, is
used, which is a property of the fluid and depends on the temperature and
pressure.

For many applications it is more useful to express the energy equation in
terms of the enthalpy h, where h = e+ p/ρ, or the stagnation enthalpy, or the
total enthalpy h0, where

h0 = h + 1
2
V 2. (2.18)

For constant pressure flows, the enthalpy and total enthalpy have conservation
properties that make them attractive variables to use. By using the continuity
equation, we can write an equation for the total enthalpy:

ρ
∂h0

∂t
+ ρuj

∂h0

∂xj

=
∂p

∂t
− ∂qi

∂xi

+
∂dijui

∂xj

. (2.19)

We see that the total enthalpy can change only through the actions of heat
transfer, unsteady pressure variations, or diffusion of kinetic energy by vis-
cosity. Hence the total enthalpy is constant for the flow of a frictionless non-
conducting fluid with a steady pressure distribution. Even for a turbulent
boundary layer in the steady flow of air, it is a matter of observation that the
total enthalpy is nearly constant if there is no heat transfer.

For one-dimensional steady flow, Equations 2.18 and 2.19 are equivalent,
and 2.18 is usually called the one-dimensional energy equation. Under these
conditions, Equation 2.19 can be integrated between two positions along a
streamline, and the total enthalpy will have the same value at these two points
if the gradients of velocity and temperature vanish at these locations (see, for
example, Batchelor (1967)). This result is particularly useful when considering
shock waves or other discontinuities in the flow. The total enthalpy within the
shock can vary along a streamline but its value will be the same at all points
that lie outside the shock. In other words, the increase and decrease of h0

along the streamline due to viscous forces and heat conduction exactly cancel
over the particular range covered by the shock. Of course, the entropy always
increases.

An equation for the enthalpy may be obtained by using the momentum
equation to simplify Equation 2.19. Hence,

ρ
∂h

∂t
+ ρuj

∂h

∂xj

=
∂p

∂t
+ uj

∂p

∂xj

− ∂qi

∂xi

+ dij
∂ui

∂xj

. (2.20)

The last term on the right-hand side involves the viscous stresses and it is
usually called the dissipation function Φ (= dissipation rate per unit volume).
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The dissipation function represents that part of the viscous work going into de-
formation, rather than acceleration of the fluid particle. If we assume Stokes’s
hypothesis,

Φ = dij
∂uj

∂xi

= 1
2
µ

(
∂ui

∂xj

+
∂uj

∂xi

)2

, (2.21)

and we see that Φ is always positive.
To write the energy equation in terms of temperature, it is usually assumed

that the gas is a perfect gas with constant specific heats. That is, h = CpT
and h0 = CpT0, where T0 is called the stagnation or total temperature. Then,

ρCp
DT

Dt
=

Dp

Dt
− ∂qi

∂xi

+ Φ, (2.22)

which shows that the temperature of a fluid particle can change by variations
in pressure in the direction of the flow, by heat transfer, and by dissipation of
kinetic energy by viscosity and thermal conduction.

The energy equation can also be written in terms of entropy. Entropy is
another useful parameter primarily because it may also be taken as constant
in many flows. By writing the enthalpy in terms of the entropy,

Tds = dh − 1

ρ
dp,

we obtain

ρT
Ds

Dt
= − ∂qi

∂xi

+ Φ. (2.23)

That is,
Ds

Dt
=

Φ

ρT
+

1

ρT

∂

∂xj

(
k

∂T

∂xj

)
. (2.24)

The heat conduction term can be written as the sum of a flux term (that
is, a divergence of a temperature gradient), and a term that is quadratic in
temperature gradients (positive definite). That is,

Ds

Dt
− 1

ρ

∂

∂xj

(
k
∂ ln T

∂xj

)
=

Φ

ρT
+

k

ρT 2

(
∂T

∂xj

)2

. (2.25)

The left-hand side is the sum of a rate of change of entropy per unit mass,
plus the net outflow of entropy per unit mass. The right-hand side is zero for a
reversible process, and positive for an irreversible process, so that it represents
the rate of entropy production per unit mass. It depends on the square of
velocity and temperature gradients, and therefore, if the gradients are small,
the entropy is changed only by heat conduction.

When there is no heat conduction, the flow is called adiabatic. Sometimes,
in considering the flow in and out of a control volume, the flow is called adia-
batic if there is no heat conduction across the boundaries of the control volume.
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When there is no heat conduction and the entropy production (called dissipa-
tion) is also negligible, then the flow is isentropic. A flow is called homentropic
if this is true for all particles. For an isentropic flow of a simple system (such
as a perfect gas), any state variable can be expressed as a unique function of
any one other state variable. Isentropic flows are therefore barotropic, that is,
density is only a function of pressure. Furthermore, dh = dp/ρ, and p varies
as ργ (for a perfect gas with constant specific heats).

2.4 Summary

The equations of motion for a compressible, viscous, heat-conducting fluid are:

∂ρ

∂t
+

∂ρui

∂xi

= 0, (2.26)

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj

= − ∂p

∂xi

+
∂dij

∂xj

, (2.27)

ρ
∂h

∂t
+ ρuj

∂h

∂xj

=
Dp

Dt
− ∂

∂xi

(
k

∂T

∂xi

)
+ dij

∂ui

∂xj

, (2.28)

which are, respectively, the continuity, momentum, and energy equations. The
deviatoric stress tensor dij is given by

dij = µ

(
∂ui

∂xj

+
∂uj

∂xi

− 2
3

∂uk

∂xk

δij

)
. (2.29)

With the addition of an equation of state and the known variation of viscosity
and thermal conductivity with temperature and pressure, this is a complete set
of equations describing compressible fluid flow, provided that: the continuum
hypothesis holds, the fluid particles are in local thermodynamic equilibrium,
body forces can be neglected, the fluid is Newtonian, heat conduction follows
Fourier’s law, and radiative heat transfer can be neglected.

The general formulation of boundary conditions in compressible flow is a
specialized topic that is not addressed here, and we only consider the specific
conditions introduced by the presence of a wall. The no-slip condition means
that the fluid in contact with a solid surface has no relative velocity with
respect to the surface. That is, at the wall

V = Vw. (2.30)

When there is heat transfer from the surface, there is an analogue to the no-
slip condition in that the temperature of the fluid in contact with the solid
surface has the same temperature as the surface itself. That is,

T = Tsurface. (2.31)
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Alternatively, the heat flux must be specified:

k
∂T

∂n
= qw, (2.32)

where qw is the heat flux from the surface to the fluid and n is the direction
normal to the surface.

The no-slip condition breaks down at scales comparable to the mean free
path of the molecules, and therefore the assumption of continuum flow gen-
erally implies that the no-slip condition holds. Under certain conditions, the
no-slip condition may break down, even if the fluid still behaves as a contin-
uum. These conditions are usually only found at high Mach numbers, where
Uslip/U∞ ≈ MCf . A further discussion of the no-slip condition is given by
White (1991), and a fascinating historical note may be found in Goldstein
(1938), p. 676.

2.5 Compressible Couette Flow

To illustrate the use of the equations of motion, and to introduce some of the
concepts encountered in compressible viscous flows, we consider compressible,
laminar Couette flow in some detail. The flow configuration is shown in Fig-
ure 2.1. Air flows between two parallel plates, where the upper plate moves at
a constant velocity ue relative to the lower plate. By the no-slip condition, the
velocity of the air in contact with the upper plate is also ue relative to the air
in contact with the lower plate. The other boundary conditions are as shown.
The temperature of the upper and lower plates are Te and Tw, respectively,
and there is a heat flux qw from the lower plate into the flow and a shear stress
τw also acts on the lower plate. The flow is two-dimensional so that ∂/∂z = 0;
it is fully-developed so that ∂/∂x = 0, and it is steady so that ∂/∂t = 0. We
assume that the gas has constant specific heats.

The continuity equation gives:

∂ρv

∂y
= 0, (2.33)

where V = ui+ vj+ wk. Hence, v = 0 by symmetry, and the flow is parallel.
The momentum equation gives:

∂τ12

∂y
= 0; that is,

∂

∂y

(
µ

∂u

∂y

)
= 0. (2.34)

Therefore the shear stresses and pressure are constant throughout the flow-
field. If the flow were incompressible, the viscosity would be constant and
Equation 2.34 could be integrated to show that the velocity profile is linear.
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Figure 2.1. Notation for compressible Couette flow.

When the flow is compressible, variations in temperature will produce varia-
tions in viscosity, and we need to solve for the temperature distribution before
Equation 2.34 can be integrated.

The energy equation gives:

∂

∂y

(
µ u

∂u

∂y
+ k

∂T

∂y

)
= 0. (2.35)

That is, the diffusion of kinetic energy and heat are in equilibrium. If we write
the energy equation in terms of the enthalpy, we find:

Φ − ∂qi

∂xi

= 0. (2.36)

That is, the dissipation and the heat flux are in equilibrium. In fact, the two
relations give the same result because:

∂uiτij

∂xj

= Φ + ui
∂τij

∂xj

and the viscous stress is constant. It follows that in this fully developed flow the
temperature distribution depends only on how the kinetic energy is dissipated
and how the heat is diffused.

Integrating Equation 2.35 from the lower wall outwards gives:

µ u
∂u

∂y
+

µCp

P

∂T

∂y
= −qw.

Here we have introduced the Prandtl number P = µCp/k. By using the fact
that the stress is constant and by assuming that the Prandtl number is constant
(this is a good approximation for many gases) we find that:

∂

∂y

(
CpT + 1

2
Pu2

)
= −P

qw

τw

∂u

∂y
.
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By further integration:

Cp (T − Tw) +
1

2
Pu2 = −P

qw

τw

u, (2.37)

and using the boundary conditions at the upper wall, we obtain:

Tw = Te +
P

Cp

(
1
2
u2

e +
qw

τw

ue

)
. (2.38)

Consider the case where the lower wall is adiabatic (qw = 0). Here,

Tw = Tr = Te + 1
2

Pu2
e

Cp

= Te

(
1 + P

γ − 1

2
M2

e

)
,

where Me is the Mach number based on the velocity and temperature of the
upper wall, and Tr is called the recovery temperature or adiabatic wall temper-
ature. Because the velocity of the air in contact with the lower wall is zero,
Tw is equal to the total temperature at that point. The total temperature at
the upper wall is T0e = Te + 1

2
u2

e/Cp. We see that if the Prandtl number is not
equal to one, the temperature of the stationary wall is not equal to the total
temperature at the upper boundary: the kinetic energy is not exactly “recov-
ered” in the form of heat at the lower boundary. The ratio of the recovered
energy to the external energy is called the recovery factor r, where

r =
Tr − Te

T0e − Te

. (2.39)

In the case of laminar Couette flow, the recovery factor is simply equal to the
Prandtl number. Note that when the Prandtl number is less than one (for air
P = 0.72 at NTP), the temperature of the stationary wall is lower than the
total temperature evaluated at the moving boundary.

Equation 2.38 gives the solution for the heat transfer from the lower wall:

qw =
τwCp

Pue

(Tw − Tr) , (2.40)

which shows that the heat transfer is proportional to the temperature differ-
ence Tw − Tr, and not Tw − Te as in low-speed flows. Also, we see that the
heat transfer is proportional to the wall shear. That is, for the lower wall,

Ch =
1

2P
Cf , (2.41)

where

Cf =
τw

1
2
ρeu2

e

and Ch =
qw

ρeueCp (Tw − Tr)
.
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Cf is the skin-friction coefficient and Ch is the heat-transfer coefficient, or
Stanton number. Relationships such as Equation 2.41 which connect the heat-
transfer and skin-friction coefficients are called Reynolds analogueies, and the
ratio s = 2Ch/Cf is called the Reynolds Analogy Factor.

We can find the skin-friction coefficient by integrating the momentum equa-
tion (Equation 2.34). If we assume that the viscosity is proportional to the
temperature (the actual variation is given by Equations 2.11 and 2.12), we
obtain:

Cf =
1

Re

(
1 +

Tw

Te

+ 2
3
P (γ − 1) M2

)
. (2.42)

For compressible Couette flow, the skin-friction coefficient increases with heat-
ing and Mach number (this is not necessarily true for other wall-bounded flows
such as boundary layer flows).

In addition, we obtain from Equations 2.37 and 2.38:

T

Te

=
Tw

Te

+
Tr − Tw

Te

(
u

ue

)
− γ − 1

2
PM2

e

(
u

ue

)2

. (2.43)

This temperature-velocity relationship, derived for compressible Couette flow,
is often used in the analysis of laminar and turbulent wall-bounded flows by
replacing the Prandtl number in Equation 2.43 with the recovery factor ap-
propriate to those flows. In that form, it is often called the Crocco relation or
Crocco’s law (see Chapter 5 for further details).

One conclusion we can draw from this example is that in the absence of
pressure gradients the kinetic energy of a supersonic flow is of such magnitude
that when it is transformed into heat and redistributed in space by molecu-
lar diffusion significant temperature variations can occur. This can also be
understood from the definition of Mach number: M = u

/√
γRT . Here the

numerator (squared) is proportional to the kinetic energy and the denominator
(squared) is proportional to the internal energy. When the Mach number is of
order unity the two forms of energy are of the same order of magnitude, and
changes in the kinetic energy will result in changes in the temperature and its
distribution in space.

2.6 Vorticity

Equations 2.26 to 2.28 represent a complete set of equations describing com-
pressible fluid flow. However, the concept of vorticity can be very useful for
gaining further insight, especially in turbulent flows where rotational fluid is
often distributed in space in rather compact forms such as vortex tubes and
sheets.

For a compressible fluid, the vorticity transport equation is written in terms
of the specific vorticity Ω/ρ. By taking the curl of the momentum equation,
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we obtain:

∂ (Ωk/ρ)

∂t
+ uj

∂ (Ωk/ρ)

∂xj

=
Ωj

ρ

∂uk

∂xj

+
1

ρ3
∇ρ ×∇p

+
1

ρ
εijk

∂2

∂xi∂xj

(
µ

(
∂ui

∂xj

+
∂uj

∂xi

))
. (2.44)

The first term on the right-hand side of Equation 2.44 is sometimes called the
stretching and tilting term: part of this term describes the exchange of vortic-
ity between components because of the rotation of vortex lines due to presence
of velocity gradients; another part gives the rate of change of vorticity due to
stretching of vortex lines. The third term on the right-hand side represents
the rate of change of vorticity due to molecular diffusion. The second term
is the baroclinic term and it is of particular interest here because it can be
an important source term for vorticity in compressible flows. We see from the
baroclinic term that in a compressible flow the pressure still appears in the vor-
ticity transport equation. If the density is only a function of pressure, pressure
and density gradients are always parallel, and this term does not contribute
to the vorticity transport. Under these conditions, the pressure force acting
on a fluid element will pass through the center of gravity of the fluid element
and no moment results (see Figure 2.2). The flow is then called barotropic (for
example, isentropic flow of a perfect gas). If the pressure gradients are not
parallel to the density gradients, there is a contribution to the rate of change
of vorticity: the pressure force does not pass through the center of gravity, a
moment about the center of gravity exists, and the rotation vector will change
with time. The flow is called nonbarotropic.

When the flow is inviscid, barotropic, and two-dimensional, the right-hand
side is zero, and the specific vorticity remains constant following a fluid parti-
cle: for example, if the flow was initially irrotational, it remains irrotational.
So vorticity can change by stretching and tilting, barotropic torques, and vis-
cous diffusion.

A useful result for inviscid compressible flows may be obtained directly from
the momentum equation:

∂V

∂t
+ (V · ∇)V = −1

ρ
∇p. (2.45)

That is,
∂V

∂t
+ ∇1

2
V 2 − V × Ω = −1

ρ
∇p. (2.46)

When the pressure is eliminated in terms of the entropy and enthalpy, we
obtain Crocco’s equation for inviscid flows with no body forces:

V × Ω + T∇s = ∇
(
h +

1

2
V 2
)

+
∂V

∂t
. (2.47)
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Figure 2.2. Generation of vorticity through baroclinic torques.

If the flow is steady and adiabatic,

V × Ω + T∇s = ∇h0 (2.48)

and the total enthalpy will be constant along each streamline. Hence ∇h0 is a
vector that is perpendicular to the streamlines. Because V × Ω is also perpen-
dicular to the streamlines, the remaining vector T∇s is also. Equation 2.48
can then be written in scalar form:

V Ω + T
ds

dn
=

dh0

dn
. (2.49)

where V = |V|, Ω = |Ω|, and n is the coordinate perpendicular to the stream-
lines. Crocco’s equation shows that when the total enthalpy is constant every-
where, the vorticity in a homentropic flow must be zero. More interestingly, as
a flow passes through a curved shock, the total enthalpy remains constant but
the entropy will increase by an amount that depends on the local strength of
the shock. Therefore an initially irrotational flow will acquire vorticity propor-
tional to the entropy gradient generated by the curved shock. This is another
example of the production of vorticity by baroclinic torques: the term T∇s
in Equation 2.48 corresponds to the baroclinic term in the vorticity transport
equation.

There are a number of other useful properties of vorticity and circulation
in inviscid compressible flow. For example, the circulation Γ is defined as:

Γ =
∮

V · d�, (2.50)

where counterclockwise contour integration is taken to be positive. That is, the
circulation contained within a closed contour in a body of fluid is defined as the
integral around the contour of the velocity vector which is locally tangential
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to the contour itself. In the absence of shocks and other discontinuities, we
can use Stokes’s theorem, so that:

Γ =
∫∫

Ω · n dS. (2.51)

So the circulation can also be expressed as an area integral of the vorticity
component normal to the surface enclosed by the contour, as it is in incom-
pressible flow.

From the definition of vorticity, we have as a vector identity

∇ · Ω = ∇ · ∇ × V = 0. (2.52)

That is, there are no sources or sinks of vorticity inside the fluid, and vorticity
can only be generated at the boundaries of the fluid. Therefore vortex tubes
must close on themselves or terminate on the boundaries, which may be either
a solid surface, or in a compressible flow, a shock wave (because it can be a
source of vorticity). Furthermore, in the absence of sources or sinks of vorticity:∫∫∫

∇ · Ω dυ =
∫∫

n · Ω dS. (2.53)

A vortex tube is a tube defined by vortex lines (lines which are tangent to the
local vorticity vector). There is no flux of vorticity normal to the surface of
the vortex tube, and Equation 2.53 shows that the flux of vorticity along the
vortex tube is constant, that is, the circulation around a vortex tube in an
inviscid flow is constant. This result, known as Helmholtz’s theorem, will hold
for compressible and incompressible flows because it is based on the vector
identity given in Equation 2.52. Because the circulation remains constant
along the length of the vortex tube, the vorticity will increase if the area
decreases. What about the rate of change of the circulation as the vortex tube
moves? Consider the circulation about a fluid circuit, that is, a circuit defined
by fluid particles of fixed identity. We need to find DΓ/Dt, where the symbol
D/Dt is understood to be the rate of change following a fluid circuit. For an
inviscid fluid, the momentum equation can be used to show that:

DΓ

Dt
= −

∮ δp

ρ
, (2.54)

where δp is the pressure difference between adjacent fluid particles on the
closed contour (see Batchelor (1967)). If the fluid is also barotropic (so that
the pressure is only a function of density), the right-hand side of Equation 2.54
is zero, and the circulation around any closed material curve is invariant. This
is Kelvin’s theorem, and it will apply to compressible and incompressible flows
as long as the flow is barotropic. Using the definition of circulation, we can
also write

D

Dt

(∫∫
n · Ω dS

)
= 0.
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Thus the flux of vorticity across an open material surface is invariant.
For an inviscid barotropic flow we can therefore make the following observa-

tions: If at some instant the flow is without vorticity (such that the circulation
around any contour is zero), Kelvin’s theorem states that the circulation must
remain without vorticity at any future time. In particular, a fluid initially
at rest has no vorticity, and must remain without vorticity; vortex tubes are
in some sense permanent: a vortex tube specified at an initial instant by the
vortex lines that intersect a given closed curve in the fluid has a continuing
identity. We may say that in a barotropic inviscid fluid a vortex tube moves
with the fluid and its strength remains constant. Because the fluid making up
the vortex tube retains its identity as the vortex tube moves and deforms, we
must conserve mass. In an incompressible flow, therefore, stretching a vortex
tube will inevitably increase its vorticity because the cross-sectional area will
always decrease. In a compressible flow, we need to know how the density
varies before we can say what is happening to the vorticity: it was clear from
the vorticity transport equation that we need to consider the specific vorticity.

Finally, it is important to understand how the velocity field induced by
a vortex is affected by compressibility, that is, under what conditions does
the usual Biot-Savart law for incompressible flow break down. This requires
a consideration of turbulence Mach numbers and fluctuating divergence, and
therefore the discussion is deferred until Chapter 4.



Chapter 3

Equations for Turbulent Flow

3.1 Definition of Averages

The complexity of the equations of motion is obvious. Even for incompress-
ible flows, the fact that the velocity and pressure vary with time and cover
a wide range of spatial scales precludes the prospect of a general analytical
approach. When the flow is compressible, the temperature and density be-
come additional variables, and the flow states become even more complex.
The complete problem can only be studied by experiment, or by direct nu-
merical simulations. Direct numerical simulations for compressible turbulent
flows have made great strides in recent years, as has the work in large-eddy
simulation (Lesieur et al., 1992), but because of practical limits on computer
memory and processing speed these computations are currently only possible
at Reynolds numbers typical of transitional flows. At Reynolds numbers cor-
responding to high-speed flight, analytical or numerical approaches have gen-
erally sought to reduce the amount of information contained in the solutions
of the Navier-Stokes equations by considering only the statistical properties
of the flowfield. The equations of motion are then written in terms of the
magnitudes of mean quantities. This operation by itself does not present any
major difficulties, but the resulting expressions contain more unknowns than
there are equations. This is the well-known closure problem. To “close” the
set of equations some empirical input is required, and the process of providing
this input is called turbulence modeling.

The mean quantities appearing in the equations can be found by ensemble
averaging (for flows where long-term variations occur in the flow state) or by
time averaging (where such long-term variations are absent). The definition
of the ensemble average f̂ is

f̂ ≡ lim
N→∞

1

N

N∑
1

nfn,

where f is taken at a given position and time, and N is the rank of the
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ensemble (that is, the number of data points taken). In the case where the
flow is statistically steady, which is the case for most of the practical examples
considered here, it is possible to use the ergodic hypothesis to replace the
ensemble averages by time averages (Hinze, 1975). If T is the mean integration
time, where T is sufficiently long for the mean to be stationary, then the time
average f is defined by:

f ≡ lim
T→∞

1

T

∫ t+T

t
fdt.

A number of simple rules govern this averaging procedure. For two arbitrary
variables f and g we have:

(f + g) = f + g, f = f, f · g = f · g,

where the mean is represented by an overbar. In addition, we assume that
the variables are sufficiently regular so that the operations of differentiation,
integration, and averaging may be inverted in order. That is,

∂f

∂xi

=
∂f

∂xi

,
∫

fdυ =
∫

fdυ,

and w = w + w′′ with w′′ = 0,

where the double prime denotes a fluctuation from the (temporal) mean. This
procedure is usually called Reynolds averaging, and the fluctuations are cen-
tered; that is, their mean is zero.

For compressible flows, Reynolds averaging can be used, but it is possible
to simplify the resulting equations instead by using mass averaged variables in
a procedure often called Favre averaging (Mieghem, 1949; Favre, 1965, 1976).
Here we define:

w = w̃ + w′

with
ρ̄w̃ = ρw,

so that
ρw′ = 0.

The tilde denotes the mass weighted average, and the single prime denotes a
fluctuation from the mass averaged mean. In this case, w′ �= 0. Because the
fluctuations are no longer centered, certain statistical results become difficult
to interpret. For example, the variances and covariances of two variables
no longer obey Schwartz’s inequality and therefore a correlation coefficient
can take a value greater than one. However, this decomposition has a great
advantage in that most of the resulting equations have much simpler forms
than the corresponding Reynolds averaged equations.
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3.1.1 Turbulent Averages

Because Favre averaging leads to a simpler notation, the mass averaged forms
of the equations have been used almost exclusively for the computation of
compressible flows. It is worth remembering that it is simply a convenient
notation: no formal simplifications result. We show in Section 3.2 that in the
continuity equation there is a physically important reason for preferring Favre
averages. In the momentum and energy equations, however, terms such as the
viscous terms and the dissipation terms are actually more complicated and less
amenable to physical interpretation when expressed in mass averaged form.

Because we are concerned with the statistical analysis of turbulent flows,
it is important to know which one of the decompositions is more physically
correct in formulating models and closure hypotheses. For example, in using a
gradient diffusion hypothesis do we use Reynolds averages or Favre averages?
Which variables must be used in defining a mixing length? There are no
clearcut answers to such questions, but closure relations are often the result
of interpolation schemes: they are always approximations of some kind, and
very often the uncertainties associated with the models are similar or possibly
greater than the differences between the two decompositions. In the same
spirit, it is often difficult to know what kind of averaging is performed by a
measuring instrument. Is the velocity derived from Pitot tube measurements
closer to a mass averaged value, or a Reynolds averaged value? Again, there is
no obvious answer. Similarly, when a hot-wire is operated at high resistance
ratio it is primarily sensitive to the fluctuating mass flux (see Section 1.7.1),
but the assumptions required to obtain the instantaneous velocity or its mass
weighted equivalent can lead to greater uncertainty in the data analysis than
the differences that arise by using either of the two decompositions.

We can make some of these statements more precise by comparing the two
types of averages and the relationships between them. We only discuss some of
the simpler relationships, and more complete presentations are given by Favre
(1976) and Cebeci and Smith (1974). As before, the single prime denotes a
fluctuation weighted by the mass, and the double prime a fluctuation in the
Reynolds decomposition. Consider the identity:

w = w̃ + w′ = w̄ + w′′.

By multiplying by the density and taking the mean, we obtain:

ρ̄w̃ = ρ̄w̄ + ρw′′ = ρ̄w̄ + ρ′w′′. (3.1)

Hence the difference between the mean quantities w̃ and w̄ is given by:

w̃ − w̄ =
ρ′w′′

ρ̄
. (3.2)
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This difference is a mean quantity which in general depends on the strength
of the mean flow gradients. The difference between the fluctuations w′ and w′′

is also a mean quantity:

w′ − w′′ =
ρ′w′′

ρ̄
. (3.3)

The distinction between the two decompositions therefore depends on the cor-
relation of the variable w with the density, which in turn will depend on the
particular flow under consideration. By way of example we can evaluate this
difference for the velocity fluctuations in a boundary layer on an adiabatic flat
plate. In Section 5.2, we show that in these flows the fluctuations in density
and velocity are connected by the approximate relations:√

ρ′2

ρ̄
= (γ − 1) M2

√
u′2

u
(3.4)

and

Rρu =
−ρ′u′√
ρ′2

√
u′2

≈ 0.8, (3.5)

where Rρu is the correlation coefficient between the velocity and density fluc-
tuations (Equations 3.4 and 3.5 represent one form of the Strong Reynolds
Analogy). To simplify the notation we sometimes use the single prime in the
statistical quantities, as we did in Equation 3.4. In that case the overbar de-
notes a Reynolds averaged quantity, and the tilde a mass averaged quantity,
and there should be no confusion. Also, we generally adopt the convention
V = ui + vj + wk, where u is the velocity in the streamwise direction, v is
in the wall-normal direction and w is in the spanwise direction. Using Equa-
tion 3.2 we find:

ũ − u

u
= Rρu (γ − 1) M2

t ,

where Mt =
√

u′2
/

ā is the turbulence Mach number (see also Section 4.5). A
typical maximum value for Mt in an adiabatic boundary layer with a freestream
Mach number of 3 is about 0.2 (see Figure 7.1), which leads to a maximum
difference between ũ and u that is less than 1.5%. For a strongly cooled wall
flow at Mach 7.2 (Owen and Horstman, 1972), the maximum value of Mt is
about 0.4, which gives a maximum difference between ũ and ū of about 5%, if
Equation 3.4 still holds for this case. It seems that for constant pressure adia-
batic boundary layers the differences between the conventional means and the
mass weighted means are small for boundary layer flows with Mach numbers
less than about 5. In mixing layers or jets, where Mt can take large values
even at relatively low Mach numbers, the differences between Favre averaged
and Reynolds averaged variables may become important at much lower Mach
numbers.
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Finally, consider some of the terms in the equations that contain a mixture
of the two types of variables. For example, terms such as ρ′u′

i and p′u′
i that

appear in the turbulent kinetic energy equation are formed by combining ρ′

and p′, that are variables which have a zero mean, and u′
i, that does not. As it

turns out, these variables have the same value, regardless of the decomposition
used. For example, if we begin with Equation 3.3 for the velocity fluctuation,
multiply both sides by a centered fluctuation c′′, and take the mean, we obtain:

c′′u′
i − c′′u′′

i = c′′
ρ′u′′

i

ρ̄
= −c̄′′

ρ′u′′
i

ρ̄
= 0.

That is,
c′′u′

i = c′′u′′
i .

Because these variables have values that are independent of the preferred de-
composition, we can choose one decomposition to model the terms and then
use the result in the other decomposition.

In what follows, we generally choose whichever approach leads to the sim-
plest representation. As we have seen, the connections between the two rep-
resentations are easily made, and in practical terms the differences between
corresponding variables are usually small for boundary layers in nonhypersonic
Mach numbers.

3.2 Equations for the Mean Flow

The full equations in Reynolds averaged and mass averaged form are given by
Cebeci and Smith (1974). Here we consider the continuity and momentum
equations, the energy equation, and the turbulence kinetic energy. Note that
the mean density and pressure are always expressed in terms of a Reynolds
average, and that ρ′ and p′ are used to denote fluctuations with respect to ρ̄
and p̄.

3.2.1 Continuity

The Reynolds averaged form is:

∂ρ̄

∂t
+

∂

∂xj

(
ρ̄uj + ρ′u′′

j

)
= 0, (3.6)

and the mass averaged form is:

∂ρ̄

∂t
+

∂ρ̄ũj

∂xj

= 0. (3.7)
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Figure 3.1. Control volume for mass conservation.

The equations show that ũj is the mean velocity of mass transport, which
is not true for uj. To illustrate the difference, consider the steady flow through
the control volume shown in Figure 3.1. Here, ũj is tangential to surface Σ
and normal to the cross-sectional areas σ1 and σ2. Because the flow is steady,
∂ρ̄/∂t = 0, and Equation 3.6 can be integrated over the volume defined by
these surfaces. Using the divergence theorem we obtain the Reynolds averaged
form: ∫

ρ′u′′
j njdΣ −

∫ (
ρ̄uj + ρ′u′′

j

)
n1dσ1 +

∫ (
ρ̄uj + ρ′u′′

j

)
n2dσ2 = 0.

The integrals over surfaces σ1 and σ2 represent the mass flow entering and
leaving the control volume. Note that the surface Σ is not the surface of a
stream tube because the mass flow across it,

∫
ρ′u′′

j njdΣ, is nonzero. This
conceptual difficulty does not occur if the same calculation is performed using
a control volume where Σ is tangential to ũj, and normal to the cross-sections
σ1 and σ2. Then the mass averaged form is:∫

ρ̄ũj n1dσ1 −
∫

ρ̄ũj n2dσ2 = 0.

Because there is no mass flow across surface Σ it represents a stream tube,
and therefore ũj is the mean mass transport velocity.

3.2.2 Momentum

The Reynolds averaged form of the momentum equation is:

∂

∂t

(
ρ̄ui + ρ′u′′

i

)
+

∂

∂xj

(
ρ̄uiuj + uiρ′u′′

j

)
= − ∂p̄

∂xi

+
∂

∂xj

(
τ̄ij − ujρ′u′′

i − ρu′′
i u

′′
j − ρ′u′′

i u
′′
j

)
, (3.8)

and the mass averaged form is:

∂ρ̄ũi

∂t
+

∂ρ̄ũiũj

∂xj

= − ∂p̄

∂xi

+
∂

∂xj

(
τ̄ij − ρu′

iu
′
j

)
. (3.9)
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Similar remarks to those made regarding the continuity equation can be made
here. Because mass conservation is inherent in the use of ũj, the mass averaged
equation is simpler. Moreover, the term ujρ′u′′

i in the friction term of Equa-
tion 3.8 does not appear in the mass averaged form and as a result Equation 3.9
is very similar in form to the momentum equation for incompressible flows.
The Reynolds stress in mass averaged variables is simply σij = ũ′

iu
′
j = ρu′

iu
′
j

/
ρ̄.

The difference between this term and ρu′′
i u

′′
j is mainly due to the term ujρ′u′′

i ,
because the triple velocity correlation is expected to be an order of magnitude
smaller than the other stress terms in Equation 3.8. The term ujρ′u′′

i is of the
same order as the other terms, and cannot be neglected (Spina et al., 1994).
However, the corresponding production term in the turbulent kinetic energy
equation is at least two orders of magnitude smaller than the production due to
ρu′′

i u
′′
j , and it is not important for the energy flow in a compressible boundary

layer.
At hypersonic Mach numbers, it is possible that the triple correlation

−ρ′u′′
i v

′′
j may become comparable to the “incompressible” Reynolds shear

stress, ρu′′
i u

′′
j , because ρ′/ρ ∼ M2u′′/U . Owen (1990) evaluated the various

contributions to the “compressible” Reynolds shear stress at Mach 6 through
simultaneous use of two-component LDV and a normal hot-wire. His results
indicate that −ρ′u′′

i v
′′
j is negligible compared to ρu′′

i u
′′
j . Even though density

fluctuations increase with the square of the Mach number, it should be remem-
bered that the main contribution to the Reynolds shear stress occurs in the
region where the local Mach number is small compared to the freestream value,
so this “hypersonic effect” may only be important at very high freestream Mach
numbers.

3.2.3 Energy

The total enthalpy is given by:

h0 = h + 1
2
uiui. (3.10)

Using the definitions given earlier, we have:

h̃0 = h̃ + 1
2

ρuiui

ρ̄
.

That is,

h̃0 = h̃ + 1
2
ũiũi + 1

2

ρu′
iu

′
i

ρ̄
, (3.11)

where h̃0 = ρh0

/
ρ̄, and h̃ = ρh

/
ρ̄. Using these definitions in Equation 2.19,

we obtain:

∂ρ̄h̃0

∂t
+

∂ρ̄ũjh̃0

∂xj

=
∂p̄

∂t
+

∂

∂xj

(
−ρu′

jh
′
0 + uidij − qj

)
.
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It is often useful to expand the stagnation enthalpy in terms of the velocity
and temperature. Hence:

h′
0 = h′ + ũiu

′
i + 1

2

(
u′

iu
′
i −

ρu′
iu

′
i

ρ̄

)
(3.12)

and finally:

∂ρ̄h̃0

∂t
+

∂ρ̄ũjh̃0

∂xj

=
∂p̄

∂t
+

∂

∂xj

(
ũidij + u′

idij − ũiρ̄u′
iu

′
j − 1

2
ρu′

iu
′
iu

′
j

)
− ∂

∂xj

(
qj + ρu′

jh
′
)
. (3.13)

3.2.4 Turbulent Kinetic Energy

The Reynolds averaged form is:

∂

∂t

(
1
2
ρu′′

i u
′′
i

)
+

∂

∂xi

(
uj

1
2
ρu′′

i u
′′
i

)
= −ρ̄u′′

i u
′′
j

∂ui

∂xj

− ujρ′u′′
i

∂ui

∂xj

+ p′
∂u′′

j

∂xj

− ∂

∂xj

(
p′u′′

j + 1
2
ρu′′

i u
′′
i u

′′
j

)
− viscous diffusion – dissipation, (3.14)

and the mass averaged form is:

∂

∂t

(
1
2
ρu′

iu
′
i

)
+

∂

∂xi

(
uj

1
2
ρu′

iu
′
i

)
= −ρu′

iu
′
j

∂ũi

∂xj

− ρ′u′
i

ρ̄

∂p̄

∂xi

+ p′
∂u′

j

∂xj

− ∂

∂xj

(
p′u′

j + 1
2
ρu′

iu
′
iu

′
j

)
− viscous diffusion – dissipation. (3.15)

The turbulent kinetic energy equations appear very similar, if one ex-
cludes the extra convection terms introduced by the Reynolds decomposi-
tion. However, the Reynolds averaged form contains the relative acceleration
ujρ′u′′

i (∂ui/∂xj) which represents the work per unit time required to acceler-
ate a fluid particle of a given mass. This term does not appear in the mass
averaged form, but its place is taken by ρ′u′

i (∂p̄/∂xi). That is, in the absence
of friction it is the pressure gradient that produces the force to accelerate the
flow. The Favre averaged form is simpler in its interpretation, in that the pres-
sure gradient term disappears in constant pressure flows, whereas the relative
acceleration term in the Reynolds averaged equation does not.

The closure problem is also evident from the above equations: the equa-
tions for the mean flow contain second-order mean products of fluctuating
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quantities, and the equations for the second-order quantities contain third-
order products. Equations for the third-order products can also be derived
from the Navier-Stokes equations but these will contain fourth-order prod-
ucts, and so on. If the Reynolds stress equations are to be useful, then at
some point the equations need to be closed; that is, the highest-order prod-
ucts need to be expressed in terms of lower-order products (ρu′

iu
′
iu

′
j in terms

of ρu′
iu

′
i, for example) so that the number of equations equals the number of

unknowns. In this process of turbulence modeling, most attention has been
focused on the turbulence kinetic energy 1

2
ρq2
(
= ρu′

iu
′
i

)
, despite the fact that

the turbulent kinetic energy does not appear in any of the mean momentum
equations. There are two main reasons for this: there are more data avail-
able on the behavior of the terms appearing in the turbulent kinetic energy
equation, compared to the equations for the components of the Reynolds stress

tensor, and the redistribution term p′
(
∂u′

j

/
∂xj

)
vanishes in an incompressible

flow.

3.3 Thin Shear Layer Equations

Thin shear layers are flows where the characteristic scale in the cross-stream
direction is much smaller than the characteristic scale in the streamwise direc-
tion. As a consequence, derivatives of mean quantities taken in the direction
across the flow are always much larger than similar derivatives taken in the
freestream direction. Typical examples include mixing layers, jets, wakes and
boundary layers where the pressure gradients are not too large. For this class
of flows, we can derive a set of approximate equations that are useful for the
understanding of compressible turbulent shear layers.

From a mathematical viewpoint, it is always a risky procedure to simplify
equations before solving them: any simplification will mean that the general
solution cannot be obtained. However, the complexity of the original equations
is so extensive that it is not possible to find the general solution and then
simplify the result for a particular case. This is true even when we consider
only the mean equations together with a closure hypothesis, and therefore it
is very attractive to try to use some empirical observations to derive a simpler
set of equations. Unfortunately, even with very simple closure schemes the
thin shear layer equations themselves cannot be solved analytically. It is also
widely recognized now that the thin shear layer equations are not a good
starting point for a calculation method. In complex flows where, for example,
streamline curvature and pressure gradients are present, the approximations
used in deriving the thin shear layer equations can lead to errors that are of the
same order as the errors introduced by the turbulence model (for a discussion
relevant to subsonic flow, see Hunt and Joubert (1979)). Current calculation
methods for turbulent shear layers now often use the full equations for the
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mean flow, and the approximations are made in the turbulence model, not
in the equations themselves. Any prediction method based on the thin shear
layer equations will lack generality, and will require various levels of additional
modeling to produce a reasonable level of agreement with experiment (see, for
example, Bradshaw (1973, 1974)).

Despite these limitations, the thin shear layer equations still play an im-
portant role. The equations are derived using empirical input regarding the
characteristic scales, which are then used in an order-of-magnitude argument
to identify the dominant terms in the original equation. This process helps to
provide some physical insight into the behavior of compressible turbulent shear
layers by establishing a basis of comparison with the incompressible case, and
by identifying the characteristic scales that govern the shear layer behavior.

In what follows, we use order-of-magnitude arguments to derive the thin
shear layer equations for compressible turbulent flows. It is useful to derive the
equations for the special case of the boundary layer, although the equations
also describe the behavior of other thin shear layers such as mixing layers, jets,
and wakes. Only zero pressure gradient flows are examined.

3.3.1 Characteristic Scales

To begin the derivation of the thin shear layer equations, we need to define the
characteristic scales for the order-of-magnitude analysis. Here we use U and
V as the scales for the streamwise and normal velocities, q′ for the turbulent
fluctuations, ρ∗ for the density, and L and δ for the distances in the streamwise
direction and the wall-normal direction, respectively. The velocity and density
scales are not defined very precisely, but if chosen properly they should be of
the same order of magnitude as the primary variables. For example, in the
outer part of the layer, we can assume that U could be taken as the freestream
velocity. The length scales are equally ill-defined, but again they should be
chosen so that the nondimensionalized derivatives are of order unity. Usually,
L is taken to be the distance from the origin of the boundary layer (in terms
of order-of-magnitude arguments, the difference between the virtual origin of
the layer and the beginning of the turbulent flow is not important). For the
outer flow, δ is taken as the local boundary layer thickness and the velocity
gradients in the direction normal to the wall will, by definition of ∆U , be of
order ∆U/δ, where ∆U , which does not depend on viscosity, will be specified
for each particular case. At reasonable Reynolds numbers it is a matter of
observation that δ/L 
 1. Near the wall, where the velocity gradients are
large, a new set of scales may be needed. The effects of viscosity dominate, and
the appropriate length scale is probably the thickness of the viscous sublayer δv.
The velocity scale for the mean flow should still be the freestream velocity, or
some fraction of it, except perhaps very near the wall where the velocity scale
should be defined using the wall stress. Thus there exist two distinct regions
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that scale with different similarity variables. In the inner layer, the viscous
stress is important, whereas in the outer layer the turbulent frictional stress
dominates. Depending on the region of the flow under consideration, one or
the other form of friction can become important, and in scaling the turbulence
quantities we must look carefully at the contributions of the turbulence and
molecular stresses to the total stress. Here, we consider the outer region first.
The arguments developed here are similar to the used by Tennekes and Lumley
(1972) and Cousteix (1989).

3.3.2 Continuity

For incompressible flow, the continuity equation may be written with the order
of magnitude of each term underneath, as follows,

∂ρ̄ũ

∂x
+

∂ρ̄ṽ

∂y
= 0 (3.16)

∆U

L

V

δ
.

We see that the two terms are of the same order of magnitude, and therefore:

V

∆U
∼ δ

L

 1.

In compressible flow, two additional questions arise: the effect of the den-
sity gradient on the order-of-magnitude argument, and the proper estimate of
the velocity gradient ∂ũ/∂x. The continuity equation (Equation 3.16) can be
written in the form

∂ρ̄ṽ

∂y
= −ρ̄

∂ũ

∂x
− ũ

∂ρ̄

∂x
.

To relate the density and velocity gradients, we need information from the
energy equation. Here, we consider the case of adiabatic layers in a perfect
gas, where the total temperature gradient is small enough to be neglected for
the purpose of order-of-magnitude arguments. That is,

∂T̃0

∂x
=

∂T̃

∂x
+

ũ

Cp

∂ũ

∂x
= 0.

If the pressure is constant, it follows that

∂ρ̄

∂x
= (γ − 1) M2 ρ̄

ũ

∂ũ

∂x

and
∂ρ̄ṽ

∂y
≈ ρ̄

∂ũ

∂x

(
1 + (γ − 1) M2

)
.
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Integrating from the outer edge of the layer yields:

ρ̄eṽe − ρ̄v =

y∫
δ

ρ̄
∂ũ

∂x

(
1 + (γ − 1) M2

)
dy,

where ρ̄eṽe is the wall-normal mass flux at the edge of the layer. For the outer
part of the layer, the orders of magnitude of both sides of this expression are

ρ∗V ∼ ρ∗ (1 + (γ − 1) M2
)
δ

(
∂ũ

∂x

)
.

To find the order of magnitude of ∂ũ/∂x, it is assumed that in the outer
layer that the time scales of the mean and turbulent motions, (∂ũ/∂y)−1 and
δ/q′, respectively, are of the same order, as in subsonic flows (Cousteix, 1989).
That is,

∂ũ

∂y
∼ q′

δ
,

which leads to the conclusion

ũe − ũ ∼ q′,

so that

O

(
∂ũ

∂x

)
=

∆U

L
=

q′

L
.

We need to find the magnitude of q′. It is shown in Chapter 5 that Morkovin’s
hypothesis applies to nonhypersonic boundary layers. As a consequence, we
find that the characteristic scale for the velocity fluctuations is (ρw/ρ)1/2 uτ ,
where uτ is the friction velocity. For an adiabatic plate, the ratio ρw/ρ has a
magnitude given by 1 + 1

2
(γ − 1) M2.

Finally, we obtain an estimate for the order of magnitude of the wall-normal
velocity:

V ∼ uτ
δ

L

1 + (γ − 1) M2(
1 + 1

2
(γ − 1) M2

)1/2 .

So a correction to the incompressible estimate appears that depends on Mach
number. However, for Mach numbers less than 5, the incompressible estimate
V /∆U ∼ δ/L remains valid, and it is used in the rest of the analysis.

3.3.3 Momentum

For the streamwise momentum equation we have:

ρ̄ũ
∂ũ

∂x
+ ρ̄ṽ

∂ũ

∂y
= −∂p̄

∂x
+

∂

∂x

(
−ρ̄ũ′2 + τ11

)
+

∂

∂y

(
−ρ̄ũ′v′ + τ12

)
, (3.17)
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where ũ′
iu

′
j = ρu′

iu
′
j

/
ρ̄, as before. First, we can show that the two terms in

the convective acceleration are of the same order. That is,

ρ̄ũ
∂ũ

∂x
∼ ρ∗U

∆U

L
,

and

ρ̄ṽ
∂ũ

∂y
∼ ρ∗V

∆U

δ
∼ ρ∗ (∆U)2

L
,

for moderate Mach numbers. As in the outer part of low-speed boundary
layers, we find that the second term in the acceleration is smaller than the
first one. Increasing the Mach number will increase the relative importance of
the second term, and the analysis suggests that in hypersonic boundary layers
both terms are of comparable magnitude. In mixing layers and jets, ∆U ∼ U ,
so that no inertial term can be neglected. In the general case, therefore, both
terms on the left-hand side must be retained.

Second, we note that when the friction (that is, the force due to shear stress
gradients) is small, the acceleration terms on the left-hand side are counter-
balanced by the pressure gradient. In general, the pressure gradient term can
be of the same order of magnitude as the acceleration terms and it must be
retained.

As a first step in considering the other terms on the right-hand side of
Equation 3.17, we can show that the viscous terms τ11 and τ12 are small in the
outer region. With Stokes’s hypothesis, we obtain:

τ11 = µ

[
2
∂u

∂x
− 2

3

(
∂u

∂x
+

∂v

∂y

)]
(3.18)

τ12 = µ

[
∂u

∂y
+

∂v

∂x

]
. (3.19)

For boundary layers on an adiabatic flat plate, we can use the approximation

µ
∂ui

∂xj

≈ µ
∂ũi

∂xj

,

where we have neglected terms of the type

µ

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)
.

As justification, consider, for example, µ (∂u′/∂y). Here,

µ
∂u

∂y
= (µ + µ′)

∂

∂y
(ũ + u′)

= µ
∂ũ

∂y
+ µ′∂ũ

∂y
+ µ

∂u′

∂y
+ µ′∂u′

∂y
. (3.20)
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The second term in Equation 3.20 is zero because µ′ = 0. If the gradients of u′

and ũ have comparable length scales (which requires that the density and veloc-

ity fluctuations have similar length scales), then the ratio (∂ũ/∂y)
/(

∂u′
/

∂y
)

has the same order of magnitude as ũ
/

u′. More precisely:

(
µ

∂u′

∂y

)/(
µ

∂ũ

∂y

)
=

u′

ũ
.

By using the Strong Reynolds Analogy (see Equations 3.4, 3.5 and Section 5.2):

u′

ũ
=

−ρ′u′

ρ̄ũ
= −Rρu (γ − 1)

u′2

a2
= −Rρu (γ − 1) Mt

2.

The term containing u′ is therefore negligible if the square of the Mach number
of the fluctuating velocity is small; that is, M2

t 
 1.
To estimate the order of the last term in Equation 3.20, we use the fact that

the viscosity varies with temperature according to (µ/µ0) = (T/T0)
ω, which

implies that µ′/µ = ω
(
T ′
/

T
)

for small fluctuations. If pressure fluctuations

are small, then µ′/µ = −ω (ρ′/ρ̄), and by using the same approximations
adopted for evaluating the second term in Equation 3.20 we find:(

µ′∂u′

∂y

/
µ

∂ũ

∂y

)
≈ ωRρu (γ − 1) M2

(
u′2

u2

)
(
µ′∂u′

∂y

/
µ

∂ũ

∂y

)
≈ ωRρu (γ − 1) M2

t .

So this term will also be negligible if the velocity fluctuations are subsonic (ω =
0.76 according to Equation 2.11). In any case, because ∂ũ/∂y is O(∆U/δ),
and ∂ṽ/∂x is O(V/L), we can now write τ12 ∼ µ (∂ũ/∂y). From the continuity
equation, we know that ∂ũ/∂x and ∂ṽ/∂y are the same order of magnitude,
and therefore τ11 ∼ µ (∂ũ/∂x). If the length scales fulfill the conditions noted
earlier, then (∂τ12/∂y) � (∂τ11/∂x), and

∂τ12

∂y
∼ µ∗∆U

δ2
= ρ∗U∆U

L

L

δ

µ∗

ρ∗Uδ
,

where µ∗ is the characteristic scale for the viscosity.
We see that if the Reynolds number ρ∗Uδ/µ∗ is large enough then the

viscous terms are negligible. Such flows are sometimes called “fully turbulent”.
This means more than simply requiring that the flow must have developed to
the point where there are no intermittent periods of laminar flow, as it does
in the region where the flow is still transitional. That is, we require the outer
flow to be independent of Reynolds number. Specifically, a wake parameter
that depends on Reynolds number is not permitted (see Chapter 7).
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Now we return to Equation 3.17. As the next step in approximating
the right-hand side, consider the turbulent friction, that is, the turbulent
shear stress. Experimental results taken in turbulent shear flows have shown
that all turbulent stresses have a similar order of magnitude, and the mag-
nitude of ũ′2, ṽ′2, and w̃′2 may be represented by q′2. A typical value of
−ũ′v′

/
q̃′2 is about 0.15, and therefore we can assume that −ũ′v′ is O(q′2) for

an order-of-magnitude argument. Hence the term ∂
(
ρ̄ũ′v′

)/
∂y will be of or-

der ρ∗q′2/δ, and because ∂
(
ρ̄ũ′2
)/

∂x will be of order ρ∗q′2/L, the shear stress

gradient will be the dominant term, as in subsonic flows (note that we need
δ/L 
 1 to be sure of this approximation). Also, the viscous part is of order
µ∗ũ/δ2, and the turbulent friction is larger than the viscous term by a factor

(ρ∗Uδ/µ∗)
(
ũ2
/

ũ′2
)
, which is always very large in the outer flow.

Finally, in Equation 3.17, because the term involving −ρ̄ũ′2 and the first
term in the convective acceleration are of the same order, we have

q′2

U∆U
∼ δ

L

in the outer layer. If ∆U ∼ q′, as in boundary layers and wakes, then q′/U ∼
δ/L, and if ∆U ∼ U , as in mixing layers and jets, q′/∆U ∼ (δ/L)1/2 as at low
speed. It is shown in Chapter 6 that the experimental evidence corroborates
this second result.

Subject to the approximations made so far, the boundary layer form of the
mean momentum equation for the streamwise direction is given by:

ρ̄ũ
∂ṽ

∂x
+ ρ̄ṽ

∂ṽ

∂y
= −∂p̄

∂x
+

∂

∂y

(
−ρ̄ũv + µ

∂ũ

∂y

)
. (3.21)

This equation has the same form as for subsonic flows, but of course ρ̄ and µ
are not constant in supersonic flows.

Consider now the mean momentum equation for the direction normal to
the wall, that is, the y-component momentum equation. The pressure gradient
across the layer ∂p̄/∂y is of special interest because all pressure disturbances
in a compressible flow propagate only along characteristic directions. If we
restrict ourselves to the outer region where the viscous terms can be neglected:

ρ̄ũ
∂ṽ

∂x
+ ρ̄ṽ

∂ṽ

∂y
= −∂p̄

∂y
− ∂

∂x
ρ̄ũ′v′ − ∂

∂y
ρ̄ṽ′2 (3.22)

ρ∗UV

L

ρ∗V 2

δ

ρ∗q′2

L

ρ∗q′2

δ
.

The terms on the left-hand side are all of the same order, and they are smaller
than the corresponding terms in the x-component momentum equation by a
factor V /U (or δ/L). Also, the first stress gradient is an order of magnitude
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smaller than the second, and by considering the estimate for q′/∆U , the tur-
bulent friction term can be shown to be much larger than the convection term
in the y-momentum equation. The reduced equation reads:

∂

∂y

(
p̄ + ρ̄ṽ′2

)
= 0,

and because
ρ̄ṽ′2

p̄
= γM2 ṽ′2

ũ2
= γM2

v ,

the pressure is constant across the boundary layer if the Mach number of
the normal velocity fluctuations is small (the approximation breaks down at
high Mach numbers, as first pointed out by Finley (1977)). This result may
be compared to the result for subsonic flows where the pressure is constant if
the dynamic pressure associated with the normal velocity fluctuations is small.
When M2

t 
 1, M2
v 
 1, and then the pressure is only a function of streamwise

distance: the pressure gradient term in the x-component momentum equation
is set by the conditions in the external flow, and, as in subsonic flow, we speak
of the pressure gradient being “imposed” on the boundary layer.

Within the viscous sublayer, the viscous terms need to be taken into ac-
count. In high-speed flows, we do not have many detailed measurements in
this region, but all indications are that for moderate Mach numbers the be-
havior is similar to that occurring at low speeds: the convection terms are
small, the anisotropy of the stresses is modified but the dominant terms are
still ∂

(
ρ̄ũ′v′

)/
∂y and µ∂ũ/∂y. Above all the total stress is constant and equal

to the wall stress, and because it may be shown by similar arguments to those
given earlier that the viscous terms in the y-momentum equation are an order
of magnitude smaller than the wall stress, we arrive at the same conclusion.
That is, the pressure is constant across the boundary layer when M2

t 
 1.
The condition that M2

t 
 1 has now appeared twice. From the results

given in Chapter 1, we know that ρ̄ũ′2
/

τw appears to be a nearly universal

function of the nondimensional distance y/δ where this function f is apparently
independent of Mach number and only weakly dependent on Reynolds number
(see Chapter 8 for further discussion). For a constant pressure boundary layer,

the maximum value of ρ̄ũ′2
/

τw occurs near the wall, and it is about 8 for an
adiabatic wall, as in subsonic flows. That is,

ρ̄ũ′2 = τwf
(

y

δ

)
implying that:

M2
t =

ũ′2

a2
= 1

2
CfM

2
e f
(

y

δ

)
,

which gives a maximum value for M2
t of about 4CfM

2
e . For a boundary layer

in a Mach 3 flow with Cf = 0.001, we have M2
t = 0.036, which is very much
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less than one. At Mach 5 with the same value of Cf , we get M2
t = 0.10

and γM2
v = 0.047 (near the wall ũ′2

/
ṽ′2 is about 6). This is still small,

but at Mach 10, we have M2
t = 0.40 and γM2

v = 0.18, which indicates that
under these conditions the pressure increases across the layer by about 20%
if the anisotropy of the turbulence remains about the same as at lower Mach
numbers. This result is interesting in that it implies that by measuring the
mean pressure distribution across the layer, we can estimate the Mach number
of the fluctuating velocity field and the extent to which compressibility is
influencing the turbulence.

3.3.4 Total Enthalpy

Because we know that gradients of a given quantity in the direction of the
mean flow are always much less than gradients in the direction normal to the
wall, the total enthalpy equation for a steady, two-dimensional boundary layer
becomes:

∂

∂x

(
ρ̄ũh̃0

)
+

∂

∂y

(
ρ̄ṽh̃0

)
=

∂

∂y

(
−ρv′h′

0 + uµ
∂u

∂y
+ k

∂T

∂y

)

=
∂

∂y

(
1
2
µ

∂u2

∂y
− ũρu′v′ − 1

2
ρu′u′v′

)
+

∂

∂y

(
k
∂T

∂y
− ρh′v′

)
. (3.23)

Clearly, the terms on the right-hand side of the energy equation are con-
siderably more complicated than the corresponding terms in the momentum
equation. In the viscous term, we find terms that are quadratic in fluctuating
velocity, and the diffusion of kinetic energy contains terms that are cubic in
fluctuating velocity. It is possible to neglect certain terms in some regions of
the boundary layer, but only at some values of the Reynolds number, and in
general all terms must be retained. However, the following approximations
appear to be reasonable:

µ
∂u2

∂y
≈ µ

∂ũ2

∂y
and k

∂T

∂y
≈ k

∂T̃

∂y
.

We can estimate the errors introduced by these approximations for the case
of a boundary layer on an adiabatic wall, using the procedure given in the
previous section, if we assume that the fluctuations in the total temperature
and the pressure are small. This would show that the approximations are valid
if u′/ũ, MMt and M2

t are all small compared to one. Thus the condition that
Mt 
 1 is necessary to obtain the usual form of the energy equation for a
boundary layer (see below).
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3.4 Summary

In summary, the equations of motion for a turbulent boundary layer in a
steady, two-dimensional, adiabatic supersonic flow are given by:

∂ρ̄ũ

∂x
+

∂ρ̄ṽ

∂y
= 0, (3.24)

ρ̄ũ
∂ũ

∂x
+ ρ̄ṽ

∂ũ

∂y
= −dp̄

dx
+

∂

∂y

(
−ρ̄ũ′v′ + µ

∂ũ

∂y

)
, (3.25)

ρ̄ũ
∂h̃0

∂x
+ ρ̄ṽ

∂h̃0

∂y
=

∂

∂y

(
−ρ̄h̃′

0v
′ + µũ

∂ũ

∂y
+ k

∂T̃

∂y

)

=
∂

∂y

(
−ρ̄h̃′v′ − ρ̄ũũ′v′ + µũ

∂ũ

∂y
+ k

∂T̃

∂y

)
, (3.26)

where we have neglected the term ρu′u′v′ compared to ρ̄ũũ′v′.
As we have noted, the condition M2

t 
 1 is necessary to write the usual form
of the boundary layer equations for supersonic flow. For incompressible flows,
the boundary layer equations are often called the thin shear layer equations
in that they also apply to free shear layers, mixing layers, jets and wakes,
although it should be understood that the approximations involved become
less satisfactory for flows that are not bounded by a wall, mainly because the
velocity fluctuations are generally larger and the layers grow relatively faster.
Similar considerations will apply for compressible flows with the additional
constraint that Mt is typically larger in free shear layers than in boundary
layers.

It was shown that the continuity and momentum equations for thin shear
layers in supersonic flows are identical to those in subsonic flow, as long as the
fluctuating Mach number is small compared to one. This formal analogy does
not prove that the turbulent fluxes are of the same nature at low and high
speeds. In particular, the validity of using turbulence models developed for
subsonic flows in calculations of supersonic flows must be verified. Throughout
this chapter, the fluctuations in velocity were linked to the fluctuations in
mass flux, pressure. and temperature, and therefore it is important to study
the behavior of these parameters in compressible flows, as we show in later
chapters.



Chapter 4

Fundamental Concepts

Probably the most important question that we need to address when starting a
study of compressible turbulence is to determine what is qualitatively different
in compressible and incompressible turbulence. Here, we try to define the new
elements associated with compressibility, and the links between compressible
and incompressible turbulence. We examine if it is possible to characterize
these elements quantitatively using simple parameters, at least for some par-
ticular flows, and try to decide if the existing approaches are correct. Do they
provide the right answers in practice? Do they predict the measured trends?
Is it possible to observe the pertinent parameters in the existing experiments,
or, conversely, can simple theories predict the measured quantities?

In view of the difficulties in finding general solutions to the Navier-Stokes
equations, most research work is confined to finding properties of the solutions
under some particular conditions. Two approaches can be taken. First, we can
try to find the general properties of the equations, independent of the boundary
conditions. Kolmogorov’s theory, predicting the −5/3 law for the slope of
energy spectra for incompressible turbulence at large enough Reynolds number
is a good illustration. Unfortunately, this approach is successful only on rare
occasions. The second possibility is to investigate the influence of the boundary
conditions on the solutions. A classical example in low-speed flows is the
analysis of turbulent boundary layers, where the log law exists as a dimensional
requirement for matching the viscous region to the high Reynolds number
region. The second approach forms the basis for all subsequent chapters, but
here we try to summarize the attempts made to characterize compressible
turbulence by the first approach, together with some examples to help define
and quantify possible trends in the behavior of compressible turbulence. In
particular, we consider the linearized equations of motion, which introduce
the concept of modes, the interaction of these modes in a higher-order theory
(especially with respect to the compressibility of the velocity fluctuations and
the role of pressure fluctuations), the effects of rapid distortion of turbulence in
compressible flows and the implications for the Reynolds stresses, and, finally,

79
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the physical bases for using different Mach numbers of turbulence and the
connections among them.

4.1 Kovasznay’s Modes

Kovasznay (1953) suggested that, intuitively, we may expect that sound waves
will accompany vorticity fluctuations, and that fluid particles, having passed
through different shear regions, may suffer different changes in entropy. To un-
derstand how the vortical, compressible, and acoustic motions are connected
together, and how the dynamic and thermodynamic aspects are linked, Ko-
vasznay performed a small perturbation analysis for fluctuations developing
in a medium at rest (U0 = 0), with uniform temperature T0, density ρ0, and
pressure p0. The fluid was assumed to be a perfect gas, with constant specific
heats, viscosity, and heat conductivity. More precisely, the conditions on the
fluctuations are:

T ′

T0

,
ρ′

ρ0

,
p′

p0


 1.

The condition on the velocity fluctuations u′
i is not obvious because the refer-

ence velocity is zero. However, because the only velocity scale in the problem
is the reference sound speed a0, the condition

Mt =
u′

i

a0


 1

is imposed on the magnitude of the velocity fluctuations. This point is dis-
cussed in more detail in what follows. It is important to note that although
Kovasznay’s analysis does not provide a predictive tool, it is very useful for
classifying the mechanisms that operate in compressible turbulent flows.

The continuity equation can be written as:

∇ · V = −D ln ρ

Dt
= −1

γ

D ln p

Dt
+

1

Cp

Ds

Dt
, (4.1)

where the density has been written in terms of the pressure and entropy.
Linearizing Equation 4.1 gives:

∂u′
i

∂xi

=
1

Cp

∂s′

∂t
− 1

γp0

∂p′

∂t
, (4.2)

which shows that the divergence of velocity fluctuations (the fluctuating di-
vergence) can be changed by pressure and entropy fluctuations.

The linearization of the momentum equation presents no real difficulty: the
nonlinear transport terms are neglected, and only the contribution of the mean
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viscosity to the viscous stress is retained. Hence:

∂u′
i

∂t
= −a2

0

1

γp0

∂p′

∂xi

+ ν0

(
∂2u′

i

∂x2
k

+
1

3

∂2u′
i

∂xi∂xk

)
. (4.3)

The entropy equation has the usual form:

Ds

Dt
=

Φ

T
+

1

ρT

∂

∂xj

(
k

∂T

∂xj

)
, (4.4)

where Φ is the dissipation rate per unit mass and k the coefficient of heat
conduction (see Equation 2.24). The transport terms are linearized as in the
previous two equations, and only the partial derivative with respect to time is
retained. The dissipation is quadratic in velocity gradients, and therefore it is
neglected. As a result:

ρ0
∂s′

∂t
=

k0

Cp

∂2s′

∂x2
i

+
k0 (γ − 1)

γp0

∂2p′

∂x2
i

. (4.5)

By taking the curl and the divergence of Equation 4.3, two different forms of
the momentum equation can be obtained. Taking the curl leads to an equa-
tion for the vorticity where the pressure does not appear because interactions
between pressure and density fluctuations are not taken into account. The
result has the form of a diffusion equation:

∂ωi

∂t
= ν0∇2ωi. (4.6)

Taking the divergence of the momentum equation and eliminating the diver-
gence of the velocity using continuity gives an equation for the pressure:

∂2p′

∂t2
− a2

0

∂2p′

∂x2
i

=

(
4ν0

3
+

k0 (γ − 1)

ρ0Cp

)
∂2

∂x2
i

(
∂p′

∂t

)

−γp0

Cp

(
4ν0

3
− k0

ρ0Cp

)
∂2

∂x2
i

(
∂s′

∂t

)
. (4.7)

Equations 4.2, 4.6, 4.7, and 4.5 constitute a complete set of equations for the
mass, vorticity, pressure, and entropy.

In fact, determining the velocity field with the present method implies the
use of the Helmholtz decomposition in which the velocity field is separated
into a solenoidal part with zero divergence and nonzero curl, and an irrota-
tional part with zero vorticity and nonzero divergence. This decomposition is
nonunique. In a homogeneous case such as that considered by Kovasznay, a
solution can be obtained by specifying the proper boundary conditions at the
limits of the domain.

Consider now the form of the equations. The vorticity mode is governed
by the same diffusion equation as in incompressible flow, and it produces no
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pressure fluctuations. However, the pressure or acoustic mode, the entropy
mode, and the velocity divergence are coupled together. Kovasznay (1953)
considered the particular case when the Prandtl number P = µ0Cp/k0 =
3/4, which is close to that of air where P is about 0.72 over a wide range of
temperatures. The acoustic mode equation then reduces to an equation for a
pressure wave propagating at the speed of sound but damped by the action of
viscosity. In this case, the equations for the acoustic and entropy modes are
independent of each other. Up to first order, the entropy varies only by heat
conduction, and velocity divergence follows pressure and entropy variations.

The equation for the vorticity can be solved directly to give:

ωj(t) = ωj(0)e−ν0k2t, (4.8)

where k is the modulus of the wave number vector. Also, the linear system
governing pressure, divergence and entropy can be solved in Fourier space to
give the amplitude of sinusoidal fluctuations as a function of time. The in-
fluence of the diffusion terms (the viscous decay of the vorticity, entropy, and
sound fields) depends on the length and time scales over which the observation
is made. Order-of-magnitude arguments can be used to show that for some
important cases, such as when a hot-wire is used to measure turbulence in the
freestream of a supersonic wind tunnel, these terms are often small. Setting
the viscosity and the heat conduction to negligibly small values in the solu-
tion shows that the amplitudes of the modes are governed by the following
equations:

dω′
j(t)

dt
= 0, (4.9)

ds′

dt
= 0, (4.10)

∂2p′

∂t2
= a2

0

∂2p′

∂x2
i

, (4.11)

1

γp0

∂p′

∂t
= −∇.u′. (4.12)

This set of equations represents a consistent zeroth-order approximation for
weak fluctuation fields when the time of observation is short. The vorticity
and entropy are constant, and the pressure obeys a wave equation with a speed
of propagation equal to the speed of sound. Equation 4.9 represents a “frozen
pattern” of vorticity (or solenoidal velocity) and when it is applied to homo-
geneous turbulence in a wind tunnel it predicts an unchanged flow pattern
carried by the mean velocity, as suggested by Taylor’s hypothesis. Equa-
tion 4.10 indicates a similar frozen pattern behavior for temperature spots,
and Equation 4.11 is simply the wave equation for propagation of the pressure
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field. The only compressibility effect, that is, the creation of velocity diver-
gence, is related to the pressure fluctuations. Because the fluctuating pressure
and divergence are in quadrature, the result is the superposition of acoustic
waves on an incompressible vortical field, with no coupling.

Kovasznay assumed that the Mach number of the fluctuations was small,
which allowed the nonlinear term u′

j∂u′
i/∂xj in the momentum equation to

be neglected. Because this nonlinear term is known to be responsible for
the energy cascade from large to small scales in three-dimensional turbulence,
neglecting it implies some limitations. For example, the characteristic time
scale derived for viscous diffusion in Equation 4.8 is several orders of magnitude
larger than any turbulent time scale. The only possible conclusion is to assume
that the nonlinear term is small compared to the pressure gradient ∂p′/∂xi.
For a given domain size, defined as the volume or time interval over which the
small perturbation approximations can be applied, a necessary condition is

ρ0u
′2

p′

 1 or

γM2
t p0

p′

 1.

It was assumed that p′/p 
 1, so that the condition is Mt 
 1, which is
always satisfied by acoustic waves.

Because this is a linear theory the modes do not interact, at least within
this domain. An interaction may take place outside the domain, either at solid
boundaries or in regions where the fluctuations are not small. If the fluid at
some earlier time had passed through a grid, for example, the high-intensity
turbulence created by the grid would have produced strong sound waves and
the viscous dissipation would have produced entropy spots. The sound waves
will propagate away according to the wave equation, but the entropy spots
travel with the fluid, diffusing slowly by heat conduction. The small pertur-
bation analysis applies when the modes are sufficiently small for nonlinear
interactions between any two modes to be negligible, although nonlinearities
may have had an important role in the creation of the modes. Furthermore,
if these noninteracting modes pass through a region of strong gradient, such
as a shock wave, they may interact with the strong field and then conversion
from one mode to another may take place.

Nonlinear interactions between modes were considered in more detail by
Chu and Kovasznay (1958). As to the generation of the modes, they found
that mass addition produces the sound mode, in that the injected fluid dis-
places other fluid, and the movement of the displaced fluid generates pressure
waves that propagate into the surrounding medium. A body force generates
the vorticity and sound modes. The irrotational force component produces
only sound, and the solenoidal component produces only vorticity. Heat ad-
dition generates the entropy and sound modes, because it increases the tem-
perature of the gas and causes expansion of the heated fluid element. The
possible interactions between the modes are summarized in Table 4.1. Several
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Table 4.1. Second-order nonlinear interaction between modes of order α. Here,
S = s′/Cp, P = p′/γp0, and the subscripts p, Ω, and s denote the sound, vorticity,
and entropy modes, respectively. The parameter α is a nondimensional measure of
the intensity of the disturbance, and ε = ν0k/a0. (Adapted from Chu and Kovasznay
(1958).)

well-known mechanisms are described by these interactions: vortex stretch-
ing (the production of vorticity by the interaction of vorticity with itself),
the production of vorticity through baroclinic torques (interaction of acoustic
and entropy modes, which can sometimes promote early laminar-to-turbulent
transition in noisy wind tunnels), the wave-steepening mechanism (interaction
between entropy and acoustic modes producing acoustic modes, which can
lead to the formation of shock waves), and the scattering of incident sound
waves by vorticity fluctuations (the vorticity-sound interaction). As pointed
out by Gaviglio (1976), the baroclinic effect is the only generation process in
which two modes interact to produce a third one. The other interactions only
modify pre-existing modes. The role of pressure fluctuations is discussed in
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greater detail in the next section.

4.2 Velocity Divergence in Shear Flows

We saw that in very simple flows with small amplitude fluctuations, pres-
sure fluctuations and compressible turbulence are linked. In general, a non-
solenoidal velocity field can have many origins (see, for example, Batchelor
(1967)). It can be produced by gravity in a stratified medium, by heat release,
viscous dissipation, or pressure gradients, although for pressure gradients to
produce significant velocity divergence the turbulence Mach number should be
of order unity. Supersonic flows have significant kinetic energy, large enough
to produce significant changes in temperature when it is converted into heat.
Turbulence is a very dissipative process, and therefore contributions to the
fluctuating divergence can come from adiabatic processes, where pressure gra-
dients (and Mach number) are important, and dissipative processes, where en-
tropy production is important. The main concern of this section is to examine
if simple order-of-magnitude analyses can give some insight on the importance
of compressibility effects on turbulence in known flows. We assume that there
are significant compressibility effects when ∇ · u′ becomes large compared to
the turbulent velocity gradient ∂u′

i/∂xj. For the energy-containing motions,
this gradient is of order u′/Λ, where Λ is a length scale characteristic of these
motions. We begin by deriving simple criteria to assess the importance of
compressibility effects, as a function of the flow properties. For most common
cases, the criteria can be expressed in terms of pressure fluctuations (isentropic
processes), or entropy fluctuations (dissipation or heat conduction), as shown
later. For this purpose, we consider the full perturbation forms of the conti-
nuity and entropy equations. The approach given by Dussauge et al. (1989) is
followed here, in a somewhat expanded form.

If velocity divergence is produced by isentropic pressure variations, the
equation for pressure is a wave equation, which is hyperbolic. If the divergence
of velocity is produced by entropy variations, the pressure obeys a Poisson
equation, and an elliptic problem is obtained (see, for instance, Equation 4.7).
This can have many consequences on the overall nature of the flow. For exam-
ple, for the supersonic flow of a reacting mixture in a nozzle, the heat release
will increase the flow entropy, and if the nozzle is not properly designed it
can choke. As the flow becomes subsonic there is a transition from hyperbolic
to elliptic behavior. Also, if the pressure is governed by a Poisson equation,
then it seems likely that in modeling the pressure strain terms in the Reynolds
stress equation models similar to the ones used in subsonic flow can probably
be used.

By combining the continuity and entropy equations (Equations 4.1 and 4.4)
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we have:

∇ · V = −1

γ

d ln p

dt
+

ε

CpT
+

1

ρCpT

∂

∂xj

(
k

∂T

∂xj

)
, (4.13)

with Φ = ρε. The problem is to find reasonable estimates for the amplitude
of the pressure fluctuations and the corresponding (Lagrangian) time scale τ .

We can now derive the equation for divergence of the instantaneous velocity
fluctuations. The pressure term in Equation 4.13 becomes:

1

γ

⎛⎝d (ln p)′

dt
− u′

i

∂ (ln p)′

∂xi

+ u′∂(ln p)

∂xi

⎞⎠ .

Here, the Reynolds decomposition is used, and d/dt denotes the derivative
along the instantaneous motion. The last term can be neglected if we restrict
ourselves to zero pressure gradient flows. The dissipation and conduction terms
are more complicated because they are nonlinear. It is assumed that a sufficient
approximation is obtained by assuming small temperature fluctuations, and by
linearizing the dissipation and conduction terms with respect to temperature
fluctuations. For T ′/T 
 1, therefore, the fluctuating part of the dissipation
term ε/T becomes:

ε′

T̄
− ε̄

T̄

T ′

T̄
.

The bars denote mean quantities. The heat-conduction term can be written as
the sum of a flux term and a term that is quadratic in temperature gradients
(see Section 3.2.3). That is,

1

ρT

∂

∂xj

(
k

∂T

∂xj

)
=

1

ρ

∂

∂xj

(
k
∂ ln T

∂xj

)
+

k

ρT 2

(
∂T

∂xj

)2

.

The perturbation form for small temperature fluctuations may now be found,
and then we obtain an equation for the fluctuating divergence:

∇.u′ = −1

γ

⎛⎝d (ln p)′

dt
− u′

i

∂ (ln p)′

∂xi

⎞⎠− T ′

T

ε̄

CpT
− T ′

T

2ε̄θ

γT 2

+
ε′

CpT
+

ε′θ
γT 2

+
1

ρCp

∂

∂xi

(
k
∂(T ′/T )

∂xi

)
, (4.14)

where ε̄ is the mean rate of dissipation per unit volume, and the term ε̄θ =
k(∂T ′/∂xi)2/(ρCv) is sometimes called the second dissipation. It acts as a
dissipation for the variance of temperature (energy) fluctuations. Because
it represents irreversibility due to molecular effects, it is a local source term
for entropy. In Equation 4.14, an approximation for small quantities is ob-
tained. The terms that are cubic in velocity and temperature fluctuations
were neglected (terms such as ε′T ′

/
ε̄ T̄ ) because at high Reynolds numbers
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they involve wave numbers belonging to different domains. Quadratic terms
were retained. The reason is that we have linear terms such as (T ′/T )(ε̄/CpT )
where T ′/T < 1, and quadratic terms such as ε′/CpT ). It is known (see below)
that the fluctuating dissipation can be an order of magnitude larger than the
mean dissipation rate, so that the term involving ε′ has been retained.

We see from Equation 4.14 that divergence fluctuations come from pressure
fluctuations, local source terms, and heat fluxes. The sources are proportional
to the fluctuations of the dissipation rate, or to the temperature fluctuations
themselves. In the following, a primed quantity denotes an rms value, rather
than the fluctuation itself. The sum of the two pressure terms is assumed
to be of order (p′/p)/τ , where the time scale τ depends strongly on whether
the pressure wave propagates with respect to the medium. Even if simple
estimates can be found for the external flow, the behavior of the near field,
or the interaction between the pressure waves and the turbulent field, is not
at all clear. Some aspects of the problem are related to problems of wave
propagation in a random medium, where the speed of propagation can vary
dramatically in amplitude and direction. So two cases are considered: one for
which the time scale is acoustic, τa = Λ/a, and another for which the time
scale is turbulent, τt = Λ/u′, where Λ is a length scale, a the speed of sound
and u′ the rms velocity. The ratio of the two time scales turns out to be the
turbulence Mach number:

τa

τt

=
u′

a
= Mt.

As for the other terms, it is assumed for simplicity that the terms involving
the first and second (mean) dissipation rates are all of comparable order, so
that only the viscous dissipation needs to be considered. An example is given
for supersonic flows without heat sources, which indicates the limits of this
approximation. The fluctuating dissipation rates ε′ (and ε′θ) are related to
the phenomenon of internal intermittency, according to which the dissipation
is distributed randomly in space. This results in a random occurrence in time
of strongly dissipative events, at a given fixed point. In subsonic flows, ε′ is
often an order of magnitude larger than ε̄ (Sreenivasan et al., 1977), so that
in Equation 4.14 we expect that the term containing ε′ can be larger than
the term involving ε̄. An important difference is that the term in ε′ proba-
bly contains more smaller scales than the term in ε̄, which is proportional to
T ′/T . The internal intermittency is certainly modified by compressibility be-
cause if shock waves appear they introduce regions of strong dissipation with
a very particular shape. If the results of recent numerical simulations are a
good indication, the shock waves produced by compressible turbulence have
a large aspect ratio: they are thin (small-scale), corrugated sheets of long ex-
tent (large-scale), located randomly in space, and therefore they are important
for the evolution of large and small scales. However, no measurements of the
fluctuating dissipation rates are available for supersonic flows, and we need to
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assume that their orders of magnitude are not greatly changed by compress-
ibility. Then the contribution of dissipation to the divergence is estimated by
considering the fluctuating dissipation rate:

ε′

CpT
≈ 10 (γ − 1) M2

t

u′

Λ
= 10 (γ − 1)

M2
t

τt

, (4.15)

where it is assumed that, typically, ε′ ≈ 10ε̄. For large scales, the impor-
tant contribution to the divergence is probably the one involving the mean
dissipation rate:

T ′

T

ε̄

CpT
≈ T ′

T
(γ − 1)

M2
t

τt

. (4.16)

T ′/T is generally less than 1, and so the fluctuating dissipation term is proba-
bly more important than the mean dissipation term, implying that the major
contribution to the velocity divergence occurs at small scales.

The last term, which is related to the fluctuating heat flux, is not con-
sidered here. For constant mean temperature at large Reynolds and Peclet
numbers it involves no large scales. It is probably not the leading mechanism
in flows without heat sources (such as adiabatic or nonreacting flows) or in
flows without chemical reactions, because it follows the temperature fluctua-
tions produced by dissipation or pressure fluctuations and just smooths out
the smaller scales.

We can now examine some particular situations, beginning with the case of
weak compressibility, as found in boundary layers at moderate Mach numbers.
Figure 4.1 shows temperature and pressure fluctuation measurements in a zero
pressure gradient boundary layer at Mach 1.8. It was possible to measure
pressure at only two places: at the wall using a pressure transducer, and in
the outer flow using a hot-wire anemometer (where it was assumed that in
the freestream the fluctuations were isentropic: see Laufer (1961)). The wall
pressure fluctuations measurements are affected by spurious signals such as
mechanical vibrations or electronic noise, and they probably underestimate
the rms level because of spatial integration. For the measurements shown
in Figure 4.1, this error was estimated at ±20%. Despite these difficulties,
the levels at the wall and in the outer flow are comparable, and we expect a
smooth variation between these two levels within the layer so that it is clear
that adiabatic flows develop temperature fluctuations which are much larger
than pressure fluctuations. The entropy fluctuation is s′/Cp = T ′/T . If the
time scales of pressure and entropy are of the same order, Equations 4.14 and
4.15 show that the magnitude of the velocity divergence is given by 10(γ −
1)M2

t /τt . The divergence can be compared to the order of magnitude of the
instantaneous velocity gradients for the energy-containing motions u′/Λ by

∇.u′

u′/Λ
≈ 10(γ − 1)M2

t , (4.17)
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Figure 4.1. Temperature and pressure fluctuation measurements in a zero pressure
gradient boundary layer at Mach 1.8. (From Dussauge (1986), with permission.)

which suggests that in the weak compressibility regime, where the dissipation
rate is solenoidal, the relative importance of velocity divergence varies accord-
ing to M2

t . In a boundary layer at Mach 1.8 with a Reynolds number Reθ of
5000, Mτ is about 0.07, so that Mt is about 0.1, and the fluctuating divergence
is certainly negligible. In a mixing layer with a convective Mach number of
0.6, where compressibility effects are just becoming important, the peak value
of Mt is about 0.25, and the ratio in Equation 4.17 is also about 0.25. So ∇.u′

begins to become significant because of the high dissipation rate. The dissipa-
tion rate in the averaged equations, ε̄, may be split into two parts, ε̄s and ε̄d.
The solenoidal dissipation rate ε̄s is the dissipation in the solenoidal part of
the fluctuating motion. In the homogeneous case ε̄s = νω′

iω
′
i, where ω′

i is the
fluctuating vorticity and ω′

iω
′
i is the enstrophy. Similarly, the dilatational dis-

sipation rate ε̄d is the dissipation in the nonsolenoidal part of the fluctuating

motion. In the homogeneous case, ε̄d = 4
3
ν (∇.u′)2 = 4

3
ν(∂u′

i/∂xi)
2, so that in

general, the ratio ε̄d/ε̄s is something like (∇.u′/(u′/Λ))2, which suggests that
ε̄d is not large in this case. Hence, this simple analysis of dilatation produced
by solenoidal dissipation indicates the following dependences for the variance
of velocity divergence and for the dilatation dissipation:

(∇u̇′)2 ∝ M4
t and

εd

εs

∝ M4
t .

More recent studies (Ristorcelli, 1997; Fauchet, 1998; Fauchet and Bertoglio,
1999) have found the same dependence for weak compressibility cases, us-
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ing different methods. They both refer to the concept of pseudo-sound used
by Ribner (1962). In the regime of pseudo-sound, the acoustic fluctuations
(with characteristic velocity scale a) and the turbulent fluctuations (with
characteristic velocity scale u′) involve distinct ranges of time scales, such
as τa/τt = Mt 
 1. Ristorcelli uses the notion of compact sources of sound.
The acoustic sources (the turbulent eddies) radiate acoustic waves in the far
field, but the near field has a subsonic behavior: for small Mach numbers,
information is felt simultaneously in the whole source. Moreover, the “pseudo-
pressure” developed in the sources obeys a Poisson equation, as in subsonic
flows. The work of Fauchet and Bertoglio (1999) uses simulations of isotropic
turbulence with a two-point closure adapted from Kraichnan’s DIA model.
Their computations reproduce the pseudo sound regime and the M4

t depen-
dence. These studies use formulations more elaborate than our simple order-
of-magnitude analysis. However, even if the details of the closure are very
different in each case, the primary hypotheses are very similar, and the con-
vergence of the results suggests that the scaling in M4

t is a rather robust result,
which can be used with some confidence.

In flows with temperature inhomogeneities, the magnitude of the second
dissipation should be estimated. This implies that we can specify the link
between kinetic and thermal energy. We will examine the case of flows without
heat sources. Because the flow is adiabatic, it is assumed that the temperature
fluctuations are given by the Strong Reynolds Analogy (Equation 5.15), and
that ε′ and ε′θ are linked in the same way as usually assumed in models for
low-speed flows. That is,

ε′θ
ε′

≈ ε̄θ

ε̄
=

rεT
′2

1
2
q′2

,

where q′2/2 is the turbulent kinetic energy and rε = 1.25 is a constant de-
termined from experiments. For weak compressibility, if the anisotropy of
turbulent stresses is not altered,

∇.u′

u′/Λ
≈ 10(γ − 1)M2

t

(
1 +

rε(γ − 1)

γ
M2

)

≈ 10(γ − 1)M2
t

(
1 +

M2

2γ

)
. (4.18)

We can now examine the typical values taken by this ratio in simple flows.
If we consider adiabatic supersonic boundary layers for M < 5 and mixing
layers for Mc ≤ 1 (see Chapters 6 and 8), maximum values of Mt are at most
0.2. Equation 4.17 indicates that the divergence of fluctuations produced by
solenoidal heating is two orders of magnitude lower than the individual com-
ponent of the fluctuating gradient, and therefore is negligible. A comparison
of Equations 4.17 and 4.18 shows that ε′θ can become the leading term even
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under adiabatic conditions (for air), and it can produce significant divergence
levels with an elliptic overall behavior if Mt is large enough.

The large-scale estimate of velocity divergence, which is the companion to
Equation 4.16, is given by:

∇.u′

u′/Λ
≈ (γ − 1)2M3

t M

(
1 +

rε(γ − 1)

γ
M2

)

≈ (γ − 1)2M3
t M

(
1 +

M2

2γ

)
,

which suggests analogous conclusions: because the ratio is proportional to M3
t ,

it remains small for Mt < 1 (implying that M remains moderate at the same
time).

A second important case is the production of fluctuations by weak shock
waves. The entropy increase through the wave is proportional to the cube
of the pressure variation (Liepmann and Roshko, 1957; Landau and Lifshitz,
1987):

s′

Cp

∝
(

p′

p

)3

.

Because in this case the acoustic and turbulence time scales are the same, the
ratio of the pressure and entropy terms in Equation 4.13 is (p′/p)2, which shows
that the leading term is the pressure term and in the acoustic approximation
it is proportional to Mt. In this case, velocity divergence is produced by quasi-
isentropic pressure waves.

Finally, more complicated situations can be considered, with strong pressure
fluctuations and high rates of dissipation, by assuming that a typical entropy
variation term is given by the fluctuating dissipation rate and that the time
scale for pressure is either τa or τt. The following estimate is obtained,
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1
2
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,

where n = 2 if τp = τt, and n = 1 if τp = τa, and where T ′ now denotes the
rms temperature fluctuation level.

In this case, in the absence of heat sources or chemical reactions, pressure
can be an important source of velocity divergence. This is consistent with the
results of the previous section, where in simplified cases pressure and diver-
gence fluctuations were found to be strongly linked. Also, the link between
T ′ and p′ is crucial, because they both appear in these estimates. There is no
general rule to find the magnitude of these terms because they depend on the
flow conditions. For the particular case studied by Blaisdell et al. (1993), who
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simulated homogeneous turbulence subjected to a shear with constant mean
density, pressure, and temperature, it turned out that the fluctuations were
produced by nearly isentropic processes, so that p′/p ≈ (γ/(γ − 1))(T ′/T ).
They found p′/p ≈ 0.3 for Mt ≈ 3. In that extreme case, the ratio of the rates
of variation of pressure and entropy is of order 1, so that none of the terms
may be neglected. This result is probably not very general, because most of
the pressure fluctuations found in these simulations are due to shock waves
produced by the interaction of vortices. It is not clear that the time scale
for pressure can then be related directly to τt or τa. Moreover, this case is
somewhat far from the more usual case of compressible shear flows where tem-
perature gradients can produce strong temperature fluctuations. For example,
with the same values for pressure fluctuations and turbulence Mach number,
if the temperature and velocity fluctuations are still linked according to the
SRA, then the entropy variations are much larger than the pressure variations.
The continuity equation indicates that here the velocity divergence is due to
dissipation. Neglecting the pressure terms in the continuity equation leads
to a Poisson equation for the pressure fluctuations. The links among T ′, p′,
and u′ are again important, and in the strongly compressible regimes found in
practice they are not clearly identified.

These estimates confirm that turbulence in zero pressure gradient bound-
ary layers at moderate Mach numbers (M < 5) may be assumed to be weakly
compressible, as long as phenomena such as sound radiation are not of pri-
mary interest. Because the divergence of the fluctuating velocity is small, the
behavior of the pressure strain terms is found to be similar to that found in
the low-speed, variable density case. The fluctuating divergence appears to
depend on the turbulence Mach number Mt. In flows where Mt is large, such
as in mixing layers, significant levels of fluctuating divergence may be found.
If the source of velocity divergence is dissipative heating it seems difficult to
produce high levels of the dilatational dissipation, suggesting that significant
values of ε̄d will be produced by shocklets rather than by viscous heating. If it
is possible to produce significant levels of velocity divergence in mixing layers
at moderate convective Mach numbers (Mc ≥ 0.5, say), the equation for the
pressure fluctuations and the form of the pressure strain should be changed,
and it may be expected that the anisotropy of the Reynolds stresses changes
accordingly. This is consistent with an elliptic behavior of the energetic eddies.
In addition, it seems difficult to develop significant fluctuations of velocity di-
vergence by the usual levels of dissipation, that is, without shock waves and
without heating (or cooling) the flow strongly. If no heat flux is considered,
it is clear that the existence of shocklets must be assumed to characterize
compressible turbulence.
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4.3 Velocity Induced by a Vortex Field

In Chapter 2 we saw that the vorticity transport-equation and the theorems of
Kelvin and Helmholtz are easily extended to compressible flows. What is not
straightforward is the interpretation of vorticity concentrations in terms of the
induced velocity field. In an incompressible flow, we can use the Biot-Savart
relation to determine the velocity field induced by concentrated elements of
vorticity. When the density is variable (due to the effects of compressibility
or stratification), the Biot-Savart relation can strictly no longer be used. The
communication among vortex elements is no longer global—it will be confined
to directions lying along characteristics (see, for instance, Section 1.3). When
the Mach number gradients are severe, the communication paths may have
a very complicated geometry. However, in many parts of an otherwise com-
pressible fluid, the mean and instantaneous Mach number gradients may be
relatively small. A good example is the outer part of a turbulent boundary
layer. Within certain limits, Biot-Savart law may still be used, depending on
the importance of the fluctuating divergence.

Formally, we can use the Helmholtz decomposition, in which the velocity
field is written as the sum of a rotational part (Vω) and an irrotational part
(Vφ) such that Vφ = ∇φ, where φ is a potential function (see, for example,
Panton (1984)). Hence,

V = Vω + Vφ.

That is,

∇× V = Ω = ∇× Vω

∇× Vφ = 0,

so the vorticity is contained in the rotational part. The appropriate boundary
conditions provide the uniqueness of the decomposition. If we require that Vω

is solenoidal, then ∇ · Vω = 0, and therefore

∇ · V = ∇ · Vφ = ∇2φ,

so the dilatation is contained in the irrotational part. For incompressible flow,
∇2φ = 0, and φ is a harmonic function. For the rotational part, we note
that any vector field that is solenoidal can be represented in terms of a vector
potential β, so that

Vω = ∇× β.

The vector identity ∇2β = −∇× (∇× β) + ∇ (∇ · β) shows that if ∇ · β = 0,
then

∇2β = −Ω,
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which can be solved to give the Biot-Savart law for the velocity induced by a
vorticity distribution Ω:

Vω = − 1

4π

∫ r × Ω

|r|3 dυ, (4.19)

where r is the position vector measured from the point of interest within the
volume υ. This result is general, insofar as the condition ∇ · β = 0 holds.

To find the velocity V from a given potential and rotational field, we need
V ω and V φ. For incompressible flow, ∇ · Vφ = 0, but for compressible flow the
dilatation needs to be known. In the particular case of a boundary layer, where
the turbulence is relatively weak, compressibility effects are weak and the
results of the previous section can be used to determine the magnitude of the
fluctuating divergence (Equations 4.17 to 4.19). For low levels of the mean and
turbulent Mach number, Biot-Savart can still be used to understand vorticity
interactions, and many of the intuitive concepts used in describing structures
in boundary layers in subsonic flow carry over unchanged when the flow is
supersonic, as long as we are careful in the neighborhood of vorticity sources
within the fluid, places where barotropic torques are important (including
curved shocks or shocklets).

4.4 Rapid Distortion Concepts

In this section, a particular class of flows is examined where distortions are
imposed on the turbulence over a small period of time. The distortions con-
sidered here are such that fluid elements are stretched or compressed in some
or all directions. A typical example of a “distorting constant area box” used
in studies of rapidly distorted subsonic flows is sketched in Figure 4.2. In the
experiment by Tucker and Reynolds (1968), for example, the turbulence in
the initial section was isotropic and homogeneous. As the flow passed through
the box, the spanwise scales were elongated and the vertical ones were com-
pressed. Similar distortions occur frequently in practice, as when turbulence
passes through a convergent or a divergent channel, or when a turbulent flow
is deformed by the presence of an obstacle or pressure gradient. The char-
acteristic time scale of the energy-containing motions may be estimated by:

Tt =
Λ

u′ or Tt =
k

ε
.

In the first estimate, the scale Λ is some average size of the energetic perturba-
tions, for example, an integral scale, and u′ is a characteristic value of the rms
velocity. The second estimate, due to Townsend (1976), is commonly used in
k–ε models, where k is the mean turbulent kinetic energy (= 1

2
q′2) and ε is its

mean dissipation rate per unit mass. As Bradshaw (1973) points out, if the
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Figure 4.2. An example of a distorting constant area box used in studying rapid
distortion effects in subsonic flows.

production were suddenly shut off the turbulent energy initially decays with
this time constant. If Td is the time during which the distortion is applied to
turbulence, then if Td/Tt 
 1 the distortion can be formally classified as a
rapid distortion.

Most of the work in rapid distortion has been confined to incompressible
flows. Yet, compressible flows are potentially very attractive for the application
of rapid distortion methods. Changes in the mean field can occur over very
short distances, much shorter than is possible in subsonic flows, and the limits
of a rapid distortion can often be more easily satisfied. For example, when
a boundary layer passes through a Prandtl-Meyer fan or a short region of
compression, including the case where the layer interacts with a shock wave,
the perturbation can occur over a distance comparable to the boundary layer
thickness. Typically, outside the viscous sublayer, the pressure gradients are
much stronger than the other stress gradients, and rapid distortion methods
become very appealing.

This situation is particularly attractive because analytical solutions can
be found for some simple cases where the nonlinear terms in the equation
of motion become negligible. The turbulence time scale Tt is related to the
nonlinear terms in the momentum equation: after a time Tt, an eddy of size Λ
loses its “identity.” That is, the nonlinearities are responsible for transferring
its energy to smaller scales. For times much smaller than Tt, these nonlinear
effects can be neglected, and if the flow is subsonic it obeys a linear set of
equations, as long as the mean flowfield is constant and does not depend on the
turbulence. These cases represent the field of application of Rapid Distortion
Theory (RDT).

The basic theory was developed by Ribner and Tucker (1952) and Batch-
elor and Proudman (1954) for homogeneous, initially isotropic turbulence in
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an irrotational mean flow. The theory was later extended to shear flows (see,
for example, Moffatt (1968) and Townsend(1970)) and subsequent develop-
ments led to a wide variety of applications. The papers by Hunt (1977);
Townsend (1980); Cambon (1982), and the reviews by Savill (1987) and Hunt
and Caruthers (1990) provide a comprehensive picture of the current status of
RDT for incompressible flows. What seems particularly encouraging is that
despite the strict limits on the applicability of RDT, the theory often gives
qualitatively useful results outside these bounds, as well as providing guidelines
for distorted structure modeling (Savill, 1987).

To solve the linear rapid distortion problem for specific cases, some con-
ditions often need to be satisfied, in addition to the usual rapid distortion
criteria. For example, if Fourier transforms of the velocity field are used, the
turbulence often needs to be homogeneous. Other solutions may require that
the distortion is irrotational, or that the evolution is isentropic along stream-
lines. In most practical flow realizations these assumptions are not obeyed,
and RDT cannot be applied. It is often more attractive to consider instead
the Reynolds stress evolution, rather than the associated spectra, especially
in supersonic flows where the scope of experimental data is more limited than
in subsonic cases. The simplifications of second-order closure needed for rapid
distortion approximations to the Reynolds stress equations are not straightfor-
ward, as pointed out by Hunt (1977), mainly because terms involving pressure
fluctuations must be modeled, giving at best an approximation to the solu-
tion. This latter approach, where the scaling arguments and limiting processes
employed in RDT are used to approximate the Reynolds stress equations, is
what we term the Rapid Distortion Approximation (RDA) and its application
to supersonic flows is discussed in Section 4.4.3.

4.4.1 Linearizing the Equations for the Fluctuations

The main consideration in linearizing the equation of momentum comes from
the form of the fluctuating acceleration a′

i. That is,

a′
i =

∂u′
i

∂t
+ ūj

∂u′
i

∂xj

+ u′
j

∂ūi

∂xj

+ u′
j

∂u′
i

∂xj

.

(1) (2) (3) (4)

Terms 1 and 2 represent the particle derivative of u′
i (= Du′

i/Dt), and it is
assumed that they are of the same order as the other terms in the acceleration.
A necessary condition for the linearization of the acceleration terms is that the
second term is much larger than the fourth term. If q′ and U are representative
scales for u′

i and Ui, respectively, this simply requires that the fluctuations are
small:

q′

U

 1. (4.20)
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By comparing the third and fourth terms, another condition related to time
scales is obtained. If S is the scale for the mean velocity gradient, we require:

q′

ΛS

 1. (4.21)

We should also make sure that Du′
i/Dt is large compared to the nonlinear

term. If the scale of variation of the fluctuation is the fluctuation itself q′, and
if the time scale is the transport time L/U , where L is the size of the distorted
zone and U a typical mean velocity, we obtain the condition:

q′

U

L

Λ

 1. (4.22)

This condition may be more stringent than condition 4.21, depending on the
flow. Because we have neglected the nonlinear inertial terms, we need to
consider only the low wave number part of the spectrum. In this case, the
viscous terms in the momentum equation may be neglected, which requires
large Reynolds numbers.

The equation for the velocity fluctuation now has the form,

Du′
i

Dt
+ u′

j

∂Ui

∂xj

= −1

ρ

∂p′

∂xi

, (4.23)

which indicates that the time constant of the linear system is 1/(∂Ui/∂xj),
and that the nature of the pressure terms depends on the velocity and density
fields.

We must also consider the fluctuating continuity equation:

∂ρ

∂t
+ Ui

∂ρ′

∂xi

+ ρ̄
∂u′

i

∂xi

+ u′
i

∂ρ̄

∂xi

+ ρ′∂Ui

∂xi

+ ρ′∂u′
i

∂xi

+ u′
i

∂ρ′

∂xi

= 0.

(1) (2) (3) (4) (5) (6) (7)

If condition 4.20 is fulfilled, it is clear that the seventh term in this equation is
small compared to the second term, and if the density fluctuations are small

ρ′

ρ̄

 1, (4.24)

the sixth term is much less than the third.
The form of the continuity equation is therefore not a problem by itself be-

cause the hypothesis of small fluctuations is sufficient to yield a linear equation.
The density can be replaced by a function of pressure and entropy. However,
as noted in the previous section, there is a contribution of the energy dissipa-
tion to the low wave numbers through temperature fluctuations. A linearized
form of the energy equation, for example, Equation 4.5, combined with the
linearized equation of state, closes the system. This constitutes a complete set
of equations for the RDT problem, and a flow case can formally be called a
rapid distortion when conditions 4.20 to 4.22 and 4.24 are fulfilled.
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4.4.2 Application to Supersonic Flows

As noted earlier, RDT problems for subsonic flows have been studied by many
authors. In particular, it is possible to find mean fields that produce ho-
mogeneous turbulence fields. Fourier transforms can then be used, and the
evolution of the three-dimensional spectra of turbulence can be derived. After
integration over all wave numbers, the turbulent stresses can be calculated,
analytically if the mean distortion is irrotational.

In trying to formulate a similar approach for compressible flows, a diffi-
culty is encountered with the energy equation. The solution now depends on
the source terms in the energy equation, or, if the entropy fluctuation level
is constant, from source terms in the distortion. The groundwork for the ap-
plication of RDT to compressible flows was laid by Ribner and Tucker (1952)
who studied the evolution of a solenoidal turbulent field subjected to an irro-
tational compressible mean field. Another important contribution was made
by Goldstein (1978) who separated the velocity fluctuations into vortical and
potential parts. He applied this decomposition to the case of isentropic fluc-
tuations with an irrotational mean distortion. This yields a wave equation
for pressure, with a source term depending on the vortical part of velocity.
Debiève (1986) (reported also in Dussauge et al., 1989) gave a classification of
the different possible source terms in this equation.

The applications of RDT to homogeneous flows by Durbin and Zeman
(1992) and Jacquin et al. (1993) are of particular interest. Homogeneity
makes possible some analytical results, and Fourier transforms can be used.
For these particular distortions, the mean velocity gradients, the pressure and
the density were spatially uniform but time dependent. Jacquin et al. used
the Helmholtz decomposition of the velocity fluctuations into a solenoidal and
a dilatational part, while Durbin and Zeman used Goldstein’s decomposition
into a vortical and a potential part. For the particular case of irrotational dis-
tortion they concluded that the nature of the pressure field depends critically
on the gradient Mach number Mg = λS∗/a. Here Λ is an integral space scale,
S∗ is a characteristic value of the velocity gradient (= |∂Ui/∂xj|), and a is the
speed of sound. This Mach number is therefore based on the velocity differ-
ence occurring over a distance equal to the integral scale in the distortion. For
subsonic velocity differences, the velocity divergence depends only on pressure
fluctuations generated by a purely acoustic mode, and it does not depend on
the solenoidal part. However, if this velocity difference becomes supersonic,
there is a direct coupling with the dilatational mode, without damping by
pressure. Mg can also be interpreted as the ratio of the acoustic time scale
of the pressure fluctuations Λ/a to the time scale of the distortion 1/S∗. If
Mg is large, the pressure does not have time to develop fully during the dis-
tortion. This suggests that in very rapid interactions, such as in shock waves,
the effect of pressure can be neglected. For moderate Mg, the contributions of
the vortical and potential modes to the pressure variance and to the pressure
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divergence term in the turbulent kinetic energy equation are both small. This
analysis has recently been extended to the case of a pure shear by Simone and
Cambon (1995) and Simone et al. (1997).

4.4.3 Rapid Distortion Approximations

It is usually difficult to apply RDT to shear flows, because in general the dis-
tortions of such flows are vortical and inhomogeneous, the entropy fluctuations
are not constant, and the initial three-dimensional spectra are not known. The
theory has not been developed for such cases. Nevertheless, the analysis of the
Reynolds stress equations and the physical hypothesis used in RDT can still
provide useful information on practical shear flows. This approach is what we
call Rapid Distortion Approximation (RDA).

Consider the Reynolds stress equations. In the equation for the velocity
fluctuations (Equation 4.23), it was possible to identify linear and nonlin-
ear interactions with appropriate time scales. This is not so obvious in the
Reynolds stress equations, because they are derived by multiplying the equa-
tion for the velocity fluctuations by the fluctuations themselves, integrating
over all wave numbers and averaging. Consequently, some properties related
to the length scales of the fluctuations have been lost. However, we can still
apply some of the same physical arguments used in RDT. For example,

(i) The characteristic time scale of turbulent energetic eddies is Tt = Λ/q′.
As noted earlier, after a time Tt the eddies have lost their identity through
nonlinear mechanisms and most of their energy has been transferred to
smaller scales. A consequence is that for times much less than Tt, the
dissipation rate can be considered constant. In the present formulation,
Λ is related to the energetic eddies, so that the rate of dissipation can
be defined by ε = q′3/Λ or ε = q′2/Tt.

(ii) The distortion time is of the order of Td = 1/(∂Ui/∂xj) = 1/S∗. This
is the linear response time of the turbulent stresses, which means that
after a time Td a significant evolution of k or the shear stress due to the
distortion can be observed. For the cases where the distortion is applied
over a time Ld/U that is larger than Td (Ld is the length of the distorted
zone and U an average value of the mean velocity), we must use Ld/U
instead of Td.

It is assumed here that in a rapid distortion the evolution of turbulent
fluxes is controlled by the action of the mean distortion, and not by diffusive
processes, turbulent or viscous. Only the case of high Reynolds number flow
is considered. When the diffusion terms are neglected, the equation for the
Reynolds stress σij = ũ′

iu
′
j = ρu′

iu
′
j

/
ρ̄ can be written in the symbolic form:

Dσij

Dt
= (production) + (pressure strain terms) – (dissipation).
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The pressure strain terms cannot be neglected and need to be modeled. The
production terms come in two parts: one from the interaction of the turbu-
lence with mean velocity gradients, and one from the interaction of the turbu-
lence with mean pressure gradients. The second part, in the Favre averaged
equations, results from the interaction of turbulent mass fluxes with the mean
pressure gradients, whereas for the Reynolds averaged equations it comes from
the interaction of the turbulent mass flux with the mean acceleration. This
part is sometimes called the enthalpic production term, but it is not discussed
here because that would not contribute much to the physical understanding of
the phenomena (for further details, see Dussauge and Gaviglio (1987)). Both
parts of the production can be calculated directly from the mean field. For
adiabatic, nonhypersonic Mach numbers, the two parts of the total production
are comparable in magnitude and of order q′2S, and the dissipation terms are
of order q′3/Λ. If the evolution of σij is to be independent of the dissipation,
we first require that the dissipation be much less than the production and
pressure strain terms. That is,

q′3

Λ

 q′2S or

q′

ΛS

 1.

The result is identical to condition 4.21.
Second, we also require Dσij/Dt � ε because Dσij/Dt ∼ q′2U/L. This

gives the same condition as condition 4.22:

q′

U

L

Λ

 1.

The terms involving pressure fluctuations, that is, the pressure strain terms,
need to be evaluated. A linearized equation for the pressure fluctuations can
be derived by taking the divergence of the linearized momentum equation (ne-
glecting diffusion), provided ρ′/ρ 
 1 and u′/U 
 1. This is in agreement
with the requirements for RDT (in particular, conditions 4.20 and 4.24). The
pressure strain terms can be written as the sum of gradients of pressure velocity
correlations (the pressure diffusion term), and the product of pressure fluctu-
ations and instantaneous velocity gradients (the redistribution term). When
the initial turbulence is isotropic, exact expressions for the pressure strain
terms can be found, but in the general case these terms need to be modeled.
The pressure diffusion is simply neglected in RDA, although this may lead to
inaccuracies. Hunt (1977) indicated that some rapid distortions may develop
pressure fluctuations strong enough to produce significant pressure transport
terms, but he suggested that an inhomogeneous version of the RDT could com-
pute this effect. The redistribution term can also be split into two parts: the
return-to-isotropy part and the rapid part. The return-to-isotropy part is of
the order of the dissipation, and it is therefore neglected. Dussauge and Gav-
iglio (1987) developed a model for the rapid part of the pressure strain terms
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for solenoidal velocity fluctuations ∇ · u′ = 0 and a compressible mean field.
For such flows, the pressure fluctuation obeys a Poisson equation, and the
mean dilatation does not contribute to p′. This result has two consequences.

First, if the mean distortion is isotropic, that is, a pure dilatation or com-
pression with spherical symmetry, the pressure does not damp the effects of
production. The only source term in the equation for σij is then the production
due to turbulence interacting with the mean velocity gradients. The Reynolds
stress equation can be integrated, and as a result the tensor Tij = ρ−2/3σij is
constant along a streamline, and the Reynolds stress σij varies with density
according to:

σij ∝ ρ2/3.

This dependence was also proposed from dimensional considerations by Batch-
elor (1955).

Second, the compressible models for the rapid part of the pressure strain
terms can be derived very simply from the subsonic formulations: the rule
is that the velocity gradient ∂Ui/∂xj should be replaced by its deviatoric
∂Ui/∂xj − 1

3
δij (∂Uk/∂xk). In particular, the rapid part can itself be split

into two parts, one related to mean velocity gradients, (πij)u, and the other to
mean pressure gradients, (πij)p. Because we assume ∇.u′ = 0, the mean pres-
sure contribution can be modelled according to the incompressible formulation
by Lumley (1975, 1978). For the contribution due to mean velocity gradients,
several different models are available (see, for example, Launder et al. (1975)
and Shih and Lumley (1990)).

Finally, we obtain a Reynolds stress equation that can be solved once the
mean field is known. As long as the pressure gradients are much larger than
the turbulent stress gradients, the turbulence does not influence the mean field
and the mean velocity and pressure gradients can be found using the Euler
equation with appropriate boundary conditions. For a supersonic flow, the
method of characteristics can be used.

We see that in trying to solve the problem in terms of the Reynolds stresses,
the basic concepts developed in RDT were used in RDA. However, in RDA the
diffusion processes and the pressure transport are neglected, and the pressure
strain terms need to be modeled. The current models were developed for
incompressible turbulence and they use the incompressibility condition ∇.u′ =
0 extensively. The discussion in the previous section also showed that the
behavior of the pressure may depend strongly on the value of the gradient
Mach number. Although these approximations may lead to inaccuracies, the
resulting simplifications are attractive because they generally lead to tractable
formulations.
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4.4.4 Application to Shock-Free Flows

Computations using RDA were performed in expansions and compressions by
Dussauge and Gaviglio (1987), Jayaram et al. (1989), Donovan (1989) and
Smith et al. (1992). In these experiments, turbulent boundary layers were
subjected to expansions and compressions produced by wall deflections, and
they are described more fully in Chapter 9. Incoming Mach numbers ranged
from 1.8 to 3.0. The pressure gradients were strong, so that the evolution of
the supersonic part of the boundary layer could be computed using the Euler
equations by the method of characteristics applied to the vortical flow of a
perfect gas, together with the boundary conditions given by the experiment.
The mean fields determined in this way were used as the input for the com-
putation of the Reynolds stresses. This computation can be performed along
streamlines because the diffusion terms were neglected. In all these flows, the
gradient Mach number is small, and in any case less always than one. Favre
averages were used, so that enthalpic production terms and their counterparts
in the pressure strain models were retained.

The results for a 12◦ expansion at Mach 1.76 are shown in Figure 4.3. The
general agreement between experiment and computation was excellent. The
main effect on the velocity fluctuations appeared to be due to pure dilatation,
but the rest of the mean distortion (due to mean normal strain and mean
vorticity) also had a significant influence. The effect of dissipation was always
negligible. Near the wall (y/δ < 0.4), the RDA conditions were not fully
met, and the predictions underestimate the turbulence damping. For the 20◦

expansion at Mach 2.89 studied by Smith et al. (1992), the computation
also agreed well with the data, at least for 0.2 < y/δ < 0.8. In this region
the dilatation alone accounted for 90% of the reduction in the streamwise
component of the stress.

For the compressions, the task was more difficult. In each case, the compres-
sion was produced by a concave wall so that near the wall, where the turnover
times are small, the relative length of the distortion increases. For this rea-
son the compression was rapid in the outer flow (where the distortion length
is short and the characteristic time scales are large) and slow near the wall.
Nevertheless, in the outer layer of an 8◦ compression at Mach 2.87, Jayaram
et al. (1989) found satisfactory agreement between the predictions of RDA
and the measurements. Near the wall, the estimate of the nonlinear effects
(associated with the neglected return-to-isotropy and dissipation terms) were
compatible with the observed discrepancies between measurements and RDA.
By including a crude estimate of the dissipation and the return-to-isotropy
contributions, the predictions near the wall were improved considerably, as
shown by Jayaram et al. (1989) and Donovan (1989). With these corrections,
Donovan (1989) found very good agreement between the RDA predictions and
the experimental data for the flow over a concavely curved wall with a turning
angle of 16◦ at Mach 2.87, and for the flow over a flat wall with an externally
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Figure 4.3. Velocity fluctuations in a 12◦ expansion corner at Mach 1.76. ◦,
upstream profile; �, along the last Mach wave in the expansion; - - - -, dilatation
effect; shaded zone, dissipation effect. Arrows indicate streamline correspondence.
(From Dussauge and Gaviglio (1987). Copyright 1987, Cambridge University Press.
Reprinted with permission.)

imposed adverse pressure gradient of similar strength.
As we can see, RDA appears to be a useful tool for computing many con-

tinuous distortions of turbulent flows, provided the Reynolds number is high
enough to satisfy the criteria of rapid distortion. It is also a useful tool to
help understand more complex distortions. Smith and Smits (1996a), for ex-
ample, used RDA to determine the relative importance of several competing
distorting influences in the flow over a forward-facing step (see Chapter 9).

4.4.5 Shock Relations for the Turbulent Stresses

Another application of RDA is the case of a turbulent field passing through a
shock wave. The main argument for using rapid distortion analysis is that the
time of interaction between the shock and a turbulent eddy is very small so
that the nonlinear energy cascade has no time to transfer energy. This leads to
a linear problem if the strength of the shock does not depend on the incident
turbulence. In particular, the shock is assumed to be steady. It was noted
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earlier that the nature of the pressure field may depend on the gradient Mach
number Mg = ΛS∗/a. For large values of Mg, pressure fluctuations do not have
enough time to propagate, so that there is no damping of the distortion by
pressure. If this result still holds in vortical flows with entropy fluctuations, it
suggests that the effect of pressure could be neglected for turbulent fluctuations
passing through a shock, because the characteristic velocity gradient S∗ takes
very large values in a thin shock. The Reynolds stresses then experience the
whole effect of the production terms. This hypothesis was used by Debiève
(1983), who developed relationships for turbulence quantities across a shock
(in effect, jump conditions for turbulence). The main difficulty in the analysis,
the integration through the discontinuity, was resolved by defining a transport
invariant relative to the Reynolds stresses, given by niσijnj, where n is a unit
vector normal to the shock. This quantity is invariant for flows described by
Dσij/Dt = production. Turbulence source terms that modify the transport
invariant were taken into account if they were either continuous through the
shock, or if they varied like a Heaviside function.

The analysis leads to a particularly simple expression for the amplification
of turbulence by a shock wave. The result depends on the orientation and
strength of the shock wave, and it is given by

T2 = K∗T1K (4.25)

with K = I−[Ũ ](n∗/U2n), where T1 and T2 are the upstream and downstream
Reynolds stress tensors, Ũn is the velocity normal to the shock, [Ũ ] is the jump
in velocity across the shock, and the asterisk denotes a transpose. Figure 4.4
gives a polar representation of the Reynolds stress upstream and downstream
of the shock. The vector OM has a magnitude equal to the variance of the
velocity fluctuation and a direction given by the unit vector m. Note that
OM = (u′ · m)2 m, and u′v′ = OP −OQ. The initial state corresponds to an
isotropic tensor and it is represented by a circle. The diagram shows that the
amplification through the shock is a maximum in the direction normal to the
shock.

In this formulation the enthalpic production terms (which can probably
be represented at least approximately as Dirac source terms) are neglected.
Comparisons made with experiments in a 6◦ compression at Mach 1.8 showed
good agreement, which suggests that the approximations based on gradient
Mach number could also be extended to the rapid distortion of shear flows.
However, Smits and Muck (1987) found that in stronger compression corner
interactions at Mach 2.9, the agreement was not satisfactory, and for these
flows the analysis explains only part of the observed turbulence amplification
(see Chapter 10).
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Figure 4.4. Evolution of the Reynolds stress tensor in a 6◦ compression ramp flow.
(From Debiève (1983), with the author’s permission.)

4.5 Mach Numbers for Turbulence

We have seen that a variety of Mach numbers has been used to quantify com-
pressible turbulence. Turbulence models in their present form almost exclu-
sively use the turbulence Mach number M2

t = u′2/a2, or = 1
2
q′2/a2, which

suggests that strong turbulence fluctuations, of the magnitude of the speed of
sound, will produce compressibility effects strong enough to change the global
turbulence properties. If the velocity fluctuations are of the same order as the
speed of sound, we can expect that shocks will be formed in the fluctuating
motion. In some situations, however, this Mach number is not very useful.
For example, acoustical phenomena are entirely dominated by compressibility,
yet Mt is very small for this case. If the rms velocity is obtained from the
isentropic relationship p′ = ρau′, which can be rewritten as p′/p = γMt, we
see that for typical acoustic pressure fluctuation levels it is difficult to obtain
an acoustic wave with velocity fluctuations larger than the speed of sound.
Another example can be found in direct numerical simulations. In simulat-
ing the decay of homogeneous turbulence, Blaisdell et al. (1993) found that
the decay cannot be scaled by the turbulent Mach number alone, and that it
depended strongly on initial conditions and on the relative importance of the
solenoidal and nonsolenoidal parts of the velocity field.

Several other Mach numbers are also commonly used. In Chapter 3, it was
shown that for thin shear layers in supersonic flow, the same approximations
made in subsonic flows can be used, as long as Mv 
 1, where Mv is the
turbulence Mach number based on vertical velocity fluctuations. Some authors
have introduced the fluctuating Mach number M ′, which takes into account
the fluctuations in the speed of sound. In the analysis of boundary layers,
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and in Preston tube calibrations, a friction Mach number Mτ = uτ/aw is often
used. Finally, a parameter widely used in mixing layer studies is the convective
Mach number briefly described in Chapter 1. Its main success is to collapse
the data on the spreading rate of mixing layers formed between two different
gases at high speed.

It is always puzzling, and certainly a little confusing, to introduce so many
different parameters (even though they are all Mach numbers) to characterize
situations that appear to be of the same type. Some questions need to be
asked. Under what conditions are these Mach numbers defined? What is their
physical meaning, and how they are related to each other? Is it possible to
represent the properties of turbulence with some generality, as a function of
any of these quantities?

We can start with the equations of motion. Dimensionless parameters gen-
erally define classes of problems, and they cannot be separated from the equa-
tions to which they are related. The momentum equation indicates that each
time the magnitude of a turbulent stress is compared to the mean pressure, a
Mach number is formed, for example, Mv = v′/a, as indicated earlier. This
is similar to comparing the turbulent kinetic energy to the mean potential or
internal energy, which yields M2

q = 1
2
q′2/a2. This is fundamentally the case

found in the SRA relationship (see Chapter 3), where rms temperature fluctu-
ations are proportional to M and Mt. In boundary layer studies, the friction
Mach number Mτ = uτ/aw can also be understood in the same way.

These interpretations are simple, but not very informative. Models for
compressible turbulence are more ambitious because they try to scale the ra-
tio of the divergence-free part of the velocity field to the compressible part
by a single parameter. A similar attempt was made in Section 4.4, when the
order of magnitude of the ratio (∇.u′)/(u′/Λ) was estimated in terms of Mt.
Although the estimates were approximate, this approach is inadequate even
in the simplest case because this ratio was a function of both Mt and T ′/T .
Therefore, the parameter Mt can be a useful parameter to classify phenom-
ena in shear flows only when the flows have a high degree of similarity. For
example, Blaisdell et al. (1993) showed in their simulations that the structure
of homogeneous sheared turbulence was independent of the initial conditions
and could be characterized by either Mt or M ′.

Compressibility effects found in acoustic waves are certainly different. In
shear flows, intense vortices produce pressure waves such as shock waves or
sound waves, which in turn are a powerful mechanism to generate velocity
divergence, and therefore “compressible” turbulence. The important point in
this case is not so much the Mach number of the (small) velocity fluctuations
produced by the waves, but the Mach number of the strong fluctuations gen-
erated at the origin of the wave. Because the velocity divergence depends on
Mt and T ′/T , a representation using M ′ is therefore probably more appropri-
ate. Because we believe that only relative motions are important, the pressure
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fluctuations produced by vortices will be of a different nature if the velocity
difference across the layer is subsonic or supersonic, so that the pressure term
of Equation 4.14, and consequently ∇.u′ may depend in general on M ′ rather
than Mt, whereas the entropy term is some function of Mt and T ′/T .

These considerations are based on global statistics, rather than a physical
view of the flow. More precise descriptions can be obtained by considering
some particular cases, and it may be possible that this approach can be ap-
plied to other flows as well. For example, the fluctuating Mach number M ′

represents the magnitude of the local Mach number variation, and it may be
the best indication of the effects of compressibility on the distortion of com-
munication paths, and the possible appearance of shocklets. Similarly, the
convective Mach number is based on the mean characteristics of the flow, and
in simple cases it can be interpreted as the Mach number of the relative mo-
tion of the large eddies. This is consistent with the view that the scales of
the energy-containing eddies are of the same order as the scales of the mean
motion. If Mc is larger than one, compressibility affects these large eddies.
The multiple scale aspects of turbulence complicate this approach consider-
ably, and it is not clear that smaller scales, which are less energetic and which
have smaller velocity scales, are also directly affected by compressibility. In
the general situation, the problem is difficult. In self-similar flows, however,
Mc could play the role of a Mach number for turbulence, because all prop-
erties will depend only on similarity parameters and only one Mach number
is required to describe all compressibility effects. It then becomes possible to
derive relationships among Mc, Mt, and M ′. For example, in mixing layers it
may be assumed that

u′/∆U = F (Mc),

where u′ is the peak value of the rms velocity fluctuations at a given streamwise
location, and F is the normalized spreading rate (see Chapter 5). Introducing
the definition valid for mixing layers with the same gas on both sides Mc =
∆U/(a1 + a2), and remarking that u′/(a1 + a2) ≈ u′/2a, we find that Mt ≈
McF (Mc). Because F (Mc) varies from 1 to about 0.7 when Mc varies from 0
to 2, this relation shows that Mt and Mc are of the same order, and are nearly
proportional to each other over a wide range of convective Mach numbers.

The picture would not be complete without referring again to the gradient
Mach number Mg = SΛ/a. Here, SΛ is the velocity difference across a distance
Λ. If this relative velocity is supersonic, Mg > 1, and compressibility effects
are expected to become important, in particular with respect to the pressure
field. In the simple case of mixing layers, the scale Λ is of the order of δω:
Λ = C (Mc) δω, where C can depend on Mc . In the middle of the layer,
∂U/∂y ≈ ∆U/δω, and therefore

Mg ≈ ∆U

δω

Cδω

a
≈ C Mc .
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Because C is of order 1, Mg, Mc, and Mt in these shear flows are all of the same
order of magnitude, and they are nearly proportional to each other, although
they can represent different physical aspects of the flow.

4.6 DNS and LES

Direct Numerical Simulations (DNS) based on the compressible Navier-Stokes
equations require that a large number of scales need to be resolved. In many
high Reynolds number variable-density flows produced in laboratory experi-
ments, in industrial applications (aerodynamics) and in nature (atmospheric
flows), the ratio of the large scales to the small scales is very often greater
than 106, and a very high accuracy is therefore required. There is also one
more variable, the density, and one more equation, the energy equation. More-
over, we have hyperbolic behavior and the equations allow shock solutions that
the numerical algorithms must reproduce accurately. The methods also need
to make compromises between conflicting requirements: they should have a
low numerical viscosity and be able to capture discontinuities such as shock
waves without oscillations. These problems remain challenging, and only the
most refined numerical methods have these capabilities. At present, three-
dimensional computations can have a resolution of 20483 (Kaneda and Ishi-
hara, 2004), which means that the ratio of the smallest scales to the largest
ones is two thousand. For isotropic flows, this may be enough to establish the
high Reynolds number limit (Pearson et al., 2004), but for shear flows, espe-
cially wall-bounded flows at large Reynolds number, experiments still remain
essential, and several new generations of computers (perhaps two or three) will
need to be developed before this situation will change significantly.

There is also the question of which computational techniques can be used.
Among the more accurate are spectral methods, usually in Fourier space, which
naturally lend themselves to homogeneous or periodic flow conditions. This
limits the simulation of compressible flow severely: as pointed out by Lele
(1994), there exist only a few possible instances where compressible flows are
homogeneous. For steady flow, there is only the case of temporally decaying,
homogeneous, compressible turbulence, and the case of pure mean shear with
uniform density. It is also possible to compute homogeneous compressions or
expansions by balancing the dilatation by a time-varying density. There is
obviously a great need to study numerically the behavior of inhomogeneous
compressible turbulence, so that, at present, most of the simulations (DNS
and LES) are very often performed with finite difference schemes of high ac-
curacy. For reasons of computer power and capacity, it is also often preferred
to simulate temporal problems, the longitudinal direction being considered as
homogeneous. This indicates the difficulty found in computing fully inhomoge-
neous, spatially evolving flows. However, this is mostly a question of technical
performance, which will probably find a cure in the next generation of com-
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puters, and which, it is hoped, does not alter significantly the understanding
of the physics of such flows. Current indications are that this holds true, even
for relatively low Reynolds number flows (see, for example, Martin (2004)).

These computations are very appealing, despite their limitations, because
they can produce results that are very difficult or even impossible to obtain
experimentally. First, they can give field properties, because they produce
an entire three-dimensional, time-dependent data set, and quantities such as
vorticity or velocity divergence can be determined, and the existence of shock
waves can be observed or derived. Such data are difficult to obtain experimen-
tally under three-dimensional unsteady conditions such as found in turbulent
flows. Second, they provide data on thermodynamic properties such as pres-
sure, density, and temperature. Direct measurements of these quantities in
supersonic turbulent flows are very difficult in many respects, and informa-
tion from simulations, even if it is imperfect or incomplete, can prove to be
very useful. Third, some particularly interesting experiments are very difficult
to perform at high speed because of experimental difficulties. For example,
it is very difficult to produce a homogeneous, decaying turbulence field in a
flow of good quality, or to generate grid turbulence subjected to homogeneous
shear, or to control the motion of the foot of a shock wave in an experiment.
Similarly, because of the small physical size of the flows produced in typical
research wind tunnels, and because the Reynolds number is usually high, it
is generally more difficult in high-speed flows to take measurements in the
near-wall region, or to measure the slope of the spectrum at high frequencies.
For such problems, the simulations can play an essential role. The status of
the simulations for homogeneous flows and simple shear flows is reviewed in
the next section, and the case of inhomogeneous shear flows such as mixing
layers, boundary layers, and channel flows is examined in Section 4.6.4. The
particular example of the numerical simulation of the interaction of a shock
wave with an incoming turbulence field is discussed in Section 4.7. We should
also mention the recent simulations of channel flows by Coleman et al. (1995)
and Huang et al. (1995). Their results, in particular regarding the pressure
and density fluctuations, and the turbulent time scales, are in good agreement
with what is known about supersonic wall layers, as described in the following
chapters.

4.6.1 Homogeneous Decaying Turbulence

For the case of homogeneous turbulence in a uniform stream with constant
mean density, the first simulations were two-dimensional (Passot and Pou-
quet, 1987). Shock waves were observed, and at the intersection of shock
waves vortices were seen forming. In the three-dimensional case, it was more
difficult to observe these shock waves, partly because of the problems of spatial
resolution. In fact, the formation of shocks depends critically on the amount
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of compressible turbulence put in as part of the initial conditions. A useful
parameter is χ, the ratio of the kinetic energy of the part of the fluctuations
with nonzero divergence to the total kinetic energy. When χ is O(1), nonlinear
effects are observed in the acoustic mode and shock waves are produced by
wave steepening. However, even with an initial χ of zero, Lee et al. (1991) re-
port the occurrence of shocklets for high enough values of the turbulence Mach
number Mt. One of the difficulties in interpreting these simulations is that the
observed decay depends on the amount of dilatation dissipation εd present at
any time, where εd itself depends on the initial values of χ, Mt, and the den-
sity fluctuations. It also seems that differences occur if the acoustic mode is
prescribed independently of the vortical mode (see Sarkar et al. (1991) and
Blaisdell et al. (1993)). When the initial conditions of these two modes are
specified separately, their superposition is obtained: from Kovasznay’s mode
theory it is expected that their interaction is weak. Such behavior was con-
firmed by the work of Kida and Orszag (1990). Moreover, the resolved large
scales had a limited statistical ensemble, and the oscillations in the solution
obscured the observed trends (Lele, 1994).

Nevertheless, the simulations can give some guidance on the trends that
can be expected, and they have been used to calibrate compressible turbulence
closure models. In their present state, they are probably not reliable enough
because of the ambiguities listed in the previous paragraph, and there is some
question as to whether the simulations compute turbulence and the pressure
field generated by the eddies, or whether they compute eddies and acoustic
waves with weak coupling. In addition, because of insufficient dynamics, the
resolved scales are often entirely dominated by viscous effects (Lele, 1994).
Even if the functional form of the closure model is correct, therefore, the values
of the modeling constants probably have to be treated somewhat skeptically.

4.6.2 Turbulence Subjected to Constant Shear

The situation is brighter for homogeneous turbulence subjected to uniform
shear. The simulations are limited to flows with constant mean density, and
they can only describe the shear flows found in real life incompletely because
they give information on the effect of shear alone. This flow is fundamentally
different from an inhomogeneous shear flow, because the latter is bounded and
can lose energy by acoustic radiation. In the homogeneous case, the initial
conditions are rather quickly forgotten, and after some time the ratio of the
solenoidal and dilatational parts of dissipation is nearly constant (Blaisdell
et al., 1993). As expected, the amplification of fluctuations is less than at
low speeds. Long and thin structures with strong negative velocity divergence
have been identified, and they have been interpreted as shocklets developing
between zones where the vorticity has concentrated. This supports the notion
that shock waves can exist within the turbulent motions present in shear flows.
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The simulations also suggest that in practical flows a part of density is related
to pressure through nearly isentropic processes, and another part is connected
to the turbulent transport of heat, which, at moderate Mach numbers, is nearly
isobaric but produces large temperature fluctuations.

Sarkar (1995) has performed simulations for various values of the turbulent
Mach number Mt and gradient Mach number Mg. The gradient Mach num-
ber was based on the velocity difference occurring over a distance equal to an
integral scale (Section 4.4.2), and it was shown that the structure of the pres-
sure field in rapid distortion problems depends critically on this parameter, for
both irrotational mean distortions and for shear flows. In these simulations,
Sarkar attempted to make Mt and Mg vary independently. The data show
that the observed low amplification rate of fluctuations is primarily due to a
low level of turbulent friction and to a lesser extent to dilatation dissipation
and pressure divergence terms. The amplification rate depends strongly on
Mg and it is practically insensitive to variations in Mt. The results suggest
that the first signs of compressibility effects are to be found in changes in the
anisotropy of the Reynolds stresses. This aspect has been widely ignored in
simple compressible turbulence models, and if confirmed, it implies that we are
probably just starting to discover the properties of turbulence in high-speed
shear flows where compressibility effects are significant.

4.6.3 Spectra for Compressible Turbulence

The form of the spectrum in compressible turbulence is still unknown. A
number of theoretical proposals have been made and they were summarized
by Passot and Pouquet (1987) and Lian and Aubry (1993). If acoustic waves
are superimposed on incompressible turbulence, or if shock waves are present
in one-dimensional or two-dimensional turbulence, the shape of the spectrum
may be altered. In fact, there is some evidence to suggest that this is possible.
In most numerical simulations the number of scales is too small to develop
an inertial subrange. Typically, the spectra contain only two decades of wave
numbers. However, the first simulations of two-dimensional compressible tur-
bulence showed that there was a dramatic increase in the spectra at high wave
numbers when shock waves were produced, suggesting that the slope of the
spectrum for small scales could be significantly altered by compressibility. The
more recent simulations by Porter et al. (1994, 1995) of forced and decaying
turbulence contradict these results. For decaying turbulence, the initial rms
Mach number was unity, and they reported the existence of a small spectral
range with a −5/3 slope. Their simulations for turbulence subjected to a shear
showed a larger range. When the solenoidal part and the compressible part of
the velocity are considered separately, a −5/3 range was found for each part.
This implies that the part of the motion which is directly controlled by the
shocklets can also follow a −5/3 law. In a hypersonic boundary layer, Lader-
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man and Demetriades (1974) found experimentally a slope close to −5/3 in
the spectrum at high wave numbers, but these measurements are very difficult:
the −5/3 slope is found in a frequency range where the frequency compensa-
tion of the hot-wire probe is difficult, so that the accuracy of the measurement
may be in question.

More recently, Fauchet (1998) and Fauchet and Bertoglio (1998) have ex-
plored the shape of the spectra provided by the DIA model adapted for com-
pressible isotropic turbulence. They also found a very robust persistence of the
−5/3 power law for the solenoidal spectrum, whatever the value of Mt. Their
results suggest, for low Mt, a −3/2 power law for the compressible part of the
motion, and a −3 power law at large Mt. These results are obtained in the
high wave number ranges of isotropic turbulence. Existing measurements are
restricted to low energetic wave numbers in shear flow turbulence. In this case
a distortion of the spectra is observed, the energetic scales being about half
the size of their subsonic counterparts. These results are discussed in greater
detail in Chapter 8. In summary, although the shape of the spectra appear to
be modified, the asymptotic power laws are still observed.

4.6.4 Shear Flows

The computation of simple shear flows has been very successfully developed
during the last few years, and an overview of these results in canonical flows
such as mixing layers, boundary layers, and channel flows is given in this sec-
tion. Simulations have been performed with (LES) or without a turbulence
model (DNS). Obviously, the LES aim at simulating flows at larger Reynolds
numbers. Many models have been used in LES, from the simple MILES (Boris
et al., 1992), in which the filtering produced by the truncature at the level of
the mesh acts as a sink for the fluctuations of larger scale, to more elaborate
subgrid closures such as the dynamic mixed scale model (Sagaut, 2002). The
adequacy of these models for high-speed flows is not discussed here, because at
the present stage, no specific two-point closure is routinely used in the simula-
tions. However, the discussion presented in Section 4.2 suggests that in flows
where Mt is small, the fluctuating field is almost solenoidal. It may there-
fore be expected that in such flows, typically in channel flows and boundary
layers with M < 4 or 5, no compressible events are expected. That is, it is
probable that no significant singularities such as shocklets occur in the flow,
and DNS may be easier. If no compressibility modeling is needed, low-speed
formulations can probably be used with success.

Mixing layer simulations are more difficult, in that compressibility effects
are important, even for relatively low values of Mc. In Section 6.10, we compare
the predicted anisotropy of the Reynolds stresses to the experimental values.
The behavior of, for example, −u′v′/u′2 reveals more or less similar trends (see
figure 6.16), but the most striking observations are the discrepancies shown at
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low Mach numbers, indicating some serious shortcomings in the computations.

Despite these difficulties, some important results have been uncovered from
the computations. There is uniform agreement among the computations quoted
here (Vreman et al., 1996; Freund et al., 2000; Pantano and Sarkar, 2002). that
the dilatational dissipation and the pressure divergence terms are weak, and
that the decrease in the spatial growth rate reflects a change in the structure
of the fluctuating pressure. So the computations have already proved their
worth by uncovering important physical mechanisms, even if their accuracy
remains insufficient to calibrate models.

The predictions seem to be much better for boundary layer and channel
flows. Many authors have performed DNS and LES simulations for compress-
ible channel flows, including Coleman et al. (1995), Huang et al. (1995), and
Lechner et al. (2001) among others. Their results, in particular regarding the
pressure and density fluctuations, and the turbulent time scales, are in good
agreement with what is known about supersonic wall layers, as described in
Chapter 8. As for flat plate boundary layers, many computations are now avail-
able that demonstrate good results, including Guarini et al. (2000), Maeder
et al. (2001), Stolz and Adams (2003), Pirozzoli et al. (2004), Sagaut et al.
(2004), and Martin (2004), among others. The agreement with measurements
in boundary layers at moderate Reynolds numbers is often excellent. An ex-
ample of LES results obtained by Sagaut et al. (2004) is given in Figures 4.5
and 4.6. The result of the computation is in close agreement with the mea-
surements. Particular hypotheses, such as the assumption of small pressure
fluctuations, are well verified.

Recent DNS results obtained by Martin (2003) and (2004) are particularly
interesting. The computations covered a Mach number range from 3 to 8,
for a constant Reynolds number of δ+ = 400 (corresponding to a value of
Reθ = 2390 at the lowest Mach number, and Reθ = 13, 060 at the highest). A
complementary run at M = 2.23 and Reθ = 2390 allowed comparisons with
the experiments of Debiève (1983), at the same Mach and Reynolds number.
This body of work is discussed more extensively in Chapter 8, but the initial
evaluations show remarkable agreement with the known behavior of high-speed
boundary layers, and further analysis of the DNS database will undoubtedly
lead to a greatly expanded insight into the underlying physics. What is of
equal interest are the DNS results on shock wave-boundary layer interactions
obtained by Adams (2000) and Wu and Martin (2004). A preliminary result
is shown in Figure 10.9, highlighting the wrinkled character of the shock as it
interacts with the incoming turbulent boundary layer. Further consideration
of this work is deferred to Chapter 10.

To conclude this short review, it seems that for homogeneous flows and sim-
ple wall flows (and possibly even for shock wave-boundary layer interactions),
DNS and LES may be accurate enough to predict global properties in a very
reliable way. If valid, this conclusion will open up a new era in high-speed
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Figure 4.5. Longitudinal velocity variance in a supersonic boundary layer, M = 2.3,
Reθ = 4500. , hot-wire measurements, Debiève (1983); �, LDV measurements,
Eléna and Lacharme (1988); ——, LES. (From Sagaut et al. (2004), with permis-
sion.)

boundary layer research, where many old questions can be addressed in an
entirely new way. For example, numerical results can explore the immediate
vicinity of the wall, a zone that is out of reach of most experimental methods.
Moreover, time-dependent phenomena can be examined in great detail, such
as the three-dimensional deformation of a single large-scale boundary layer
motion as it encounters a shock wave. Finally, the computations have already
been used for calibrating turbulence models, and they can help significantly
in their development. It is not clear, however, that all the pertinent param-
eters have been systematically examined, and the available results are very
often dominated by viscous effects. Whatever the present imperfections, it is
expected that future progress in this area will help to improve our understand-
ing of at least some compressibility effects, and it is likely to have a crucial
impact on the development of compressible turbulence models.

4.7 Modeling Issues

In developing turbulence models for high-speed shear flows, Morkovin’s (1962)
hypothesis has often been a starting point. In essence, Morkovin suggested
that for moderate Mach numbers compressibility effects did not influence the
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Figure 4.6. Density, pressure, and temperature fluctuations in a supersonic bound-
ary layer, M = 2.3, Reθ = 4500, obtained using LES. ——- , rms density; - - - - , rms
pressure; —- · · , rms temperature. (From Sagaut et al. (2004), with permission.)

dynamic behavior of turbulence directly, and the principal effect of high speeds
was felt through the change in fluid properties. The next chapter is concerned
with the range of validity of this hypothesis, among other topics, and we show
that it will be possible to describe some flows, such as nonhypersonic boundary
layers with zero pressure gradient, using relatively straightforward extensions
of simple low-speed models. In other flows, such as in mixing layers (see, for
example, Barre et al. (1994)), or in boundary layers with Me > 5 or with
nonzero pressure gradients, there is a need for models taking compressibility
effects into account. Here, we discuss some of the difficulties encountered
when trying to model compressible turbulence using second-order closures. As
we show, this is not a simple task. In contrast to the situation in low-speed
flows, no satisfactory model has been found that is general enough to give
accurate results over a reasonably extended range of applications. The models
for compressible flow are rapidly evolving in as much as this field is relatively
new, and we run the risk of making comments that will become obsolete at
the same rate. Nevertheless, it is probably a risk worth taking, in order to
check that the current proposals are sensible.

It was seen in Chapter 3 that the equation for turbulent kinetic energy
does not have the same form in low- and high-speed flows. For compressible
flows, there is a pressure velocity divergence term, which represents the power
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produced (or lost) by pressure in volume changes. The problem is to determine
whether we can keep the modeling of the other terms unchanged (that is, use
the models derived for incompressible flows) and add one or more extra terms,
appropriately modeled, or whether compressibility modifies several or all of the
terms, or even if the pressure divergence term is actually the most important
one. Another question of interest is to determine if in models of the k–ε variety,
the dissipation equation needs to be modified, and how this should be done.

A useful starting point is the case of subsonic flows with density gradients.
These flows are very different from supersonic and hypersonic flows, but they
can be considered as a benchmark for defining the action of compressibility as
distinct from the departures due to high Mach numbers. At low speed, the
degenerate form of a compressible turbulence model should match the variable
density form. Somewhat surprisingly, work has been performed in this area
only recently. A model accounting for the modification of the turbulent kinetic-
energy diffusion was proposed by Shih et al. (1987), and Huang et al. (1994)
showed that standard k–ε models have enormous difficulties in computing
the equilibrium layer of a subsonic boundary layer with variable density (k–ω
models are more successful in this respect).

One of the difficulties comes from the following reason. In the equilibrium,
constant stress zone, we have:

ρwu2
τ = −ρu′v′ = constant and − u′v′ ∝ k.

Therefore ρ̄k is constant, but k is not. In the equation for k, if the diffusion
term is kept proportional to ∂k/∂y, there exists obviously a diffusion term in
the constant stress zone. This term is a function of the density gradient, which
alters the balance between production and dissipation. As the constants of
these models are linked together, there is a possibility to compensate partially
this imbalance by adjusting one of the constants, for example the turbulent
Prandtl number for the diffusion of the dissipation rate. Guézengar et al.
(1999) and (2000) have used this possibility to compute boundary layers and
mixing layers. Catris (2000) and Aupoix (2002, 2004) have explored another
way by remarking that the diffusion term in the equation for k should be
based on the gradient of ρ̄k to recover equilibrium conditions. Although this
modeling brings a clear improvement, modifications to the equation for ε are
necessary to recover the influence of density gradient on the spreading rate of
the mixing layer. They do not reproduce the effect of compressibility on free
shear flows.

These adjustments are necessary to cure some pathological aspects of the
k-equation in models for incompressible flows. They should not hide more
precise compressibility problems, related to the existence of nonzero velocity
divergence, that result in two consequences for the k-equation: the existence
of a dilatation dissipation and of a pressure divergence term. These terms
represent the explicit effects of compressibility, because new terms appear in
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the equation. This behavior does not exclude the possibility of implicit effects:
compressibility may modify the solenoidal dissipation and the structure of the
fluctuating pressure field, even in the pseudo-sound approximation.

The first attempts to model compressible turbulence (Zeman, 1990; Sarkar
et al., 1991) concentrated on these explicit aspects. In order to proceed, the
source of the divergence terms needs to be identified. Dussauge et al. (1989);
Zeman (1990), and Blaisdell et al. (1993) used order-of-magnitude estimates,
analysis, and numerical simulations, and their conclusions supported the idea
that the strongest sources of velocity divergence are shocklets, not the heating
due to viscous dissipation in solenoidal fluctuations (see also Section 4.2). More
recent work, however, driven by DNS (Vreman et al., 1996; Freund et al., 2000;
Pantano and Sarkar, 2002; Section 4.6), has shown that in many supersonic
shear flows, dilatation dissipation and pressure divergence are negligible, and
the explicit effects cannot explain the anomalous spatial growth rate of mixing
layers. The arguments for a fourth-order scaling in Mt presented in Section 4.2
seem well confirmed, and high-compressibility regimes should be considered to
obtain a significant level of ∂u′

k/∂xk. Moreover, the analysis proposed by
Ristorcelli (1997) suggests that pressure divergence scales as M2

t (P/εs − 1).
This scaling implies that pressure divergence is important if Mt is not small and
if the flow is strongly out of equilibrium (P/εs �= 1). This explains probably
why subsonic models can often provide reasonable predictions of supersonic
boundary layers: in such flows Mt remains small and production balances
dissipation over most of the layer, so that dilatation dissipation and pressure-
divergence are small. The scaling suggests also that pressure divergence can
be important when production and dissipation are very different, that is, in
distorted or perturbed flows. This remains a domain that has not been fully
explored.

The implicit effects are more puzzling. The work by Aupoix (2004) shows
that, before taking compressibility into account, it is necessary to tune the
models to reproduce density effects. Equally, it shows that some improve-
ments are still needed to predict accurately the spreading rate of the subsonic,
variable density mixing layer. Vreman et al. (1996) have clearly shown that
the effect of compressibility in free shear flows is to change the structure of
pressure fluctuations and as a consequence, to reduce −u′v′. This means that
taking pressure divergence and dilatation dissipation into account does not
solve the central issue, and implies that the modeling of −u′v′ needs to be
revised. In two-equation models such as k–ε or k–ω, an eddy viscosity is used,
and the formulation of νt should probably be modified. One possibility is to
make νt a function of some local Mach number. Because the evolution of
−u′v′ is, to a large extent, related to the rapid part of pressure, the choice
of a gradient Mach number appears as a likely candidate. If more detailed
models such as Reynolds stress models, are considered, it is clear that the
focus should be put on the modeling of the pressure strain terms. Their rapid
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part is again related to the gradient Mach numbers, and the nonlinear part
(the return-to-isotropy in incompressible turbulence) depends on the turbulent
Mach number. Note that rapid distortion studies for compressible turbulence
have already proposed models for the dilatational part of the motion (Durbin
and Zeman, 1992; Jacquin et al., 1993; Simone et al., 1997). These models,
however, need to be extensively tested.

The previous considerations have dealt mainly with simple shear flows. The
problems that were raised are found equally in flows strongly out of equilib-
rium, as in shock/boundary layer interactions. Such interactions may consti-
tute new sources of vorticity, and of velocity divergence and of sound. They
may alter significantly the balance between these various elements, and en-
hance compressibility effects. The same points as discussed with respect to
simple shear flows will need to be addressed again, and the specific problems
related to the presence of a shock (production of vorticity, temperature, and
pressure fluctuations through the shock, flow separation, and shock unsteadi-
ness) will require extensive further studies. The review paper by Knight et al.
2003 gives a good overview of the ability of the current turbulence models to
predict such interactions. We must note that LES may also predict some of
these interactions very well, as shown at moderate Mach numbers by Garnier
et al. (2002), and that a great deal of new information is coming out of DNS
(Adams, 2000; Li and Coleman, 2003; Wu and Martin, 2004).



Chapter 5

Morkovin’s hypothesis

One of the more widely used hypotheses for the analysis and computation
of boundary layers is Morkovin’s hypothesis. This hypothesis was developed
in 1962 by Morkovin from an analysis of supersonic boundary layer data, as
they were available at that time. He concluded that for moderate Mach num-
bers “the essential dynamics of these shear flows will follow the incompressible
pattern.” This assertion is general and rather vague, but the consequences
derived from this hypothesis include a scaling for velocity fluctuations and/or
for turbulent kinetic energy, and some particular forms of the Reynolds Anal-
ogy for boundary layers on adiabatic flat plates. The hypothesis was used
and reformulated by Bradshaw (1974) to indicate that high-speed boundary
layers can be computed using the same model as at low speeds by assuming
that the density fluctuations are weak. This point of view is certainly rea-
sonable for supersonic flows without mass and heat sources. However, the
characterization of compressible turbulence depends on the level of fluctuat-
ing divergence ∇.u′ that is proportional to the material derivative of density
D (ρ′/ρ)/Dt rather than to the density fluctuation ρ′/ρ itself. The application
of Morkovin’s hypothesis is essentially limited to boundary layers. However, it
has been widely used in the literature as a basic concept, with the suggestion
that it may be extended to other flows, and therefore it is discussed here rather
than in Chapters 7 and 8. First, we propose a derivation of the hypothesis
in terms of characteristic time scales of turbulent and mean motions, and sec-
ond we consider different forms of the Reynolds Analogy, and the resulting
temperature-velocity relationships.

5.1 Space, Time, and Velocity Scales

In low-speed, equilibrium boundary layers it is usually assumed that the time
scales of the mean and turbulent fields are of the same order. It is proposed to
generalize these notions to the compressible case. We show that Morkovin’s
hypothesis assumes that the relationship between time scales is independent
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of the Mach number. After some simplification, the scaling suggested by
Morkovin is derived.

Consider the characteristic time scales of the turbulent and mean motions.
The turbulent time scale tt can be expressed as a function of mean time scale
tm, flow parameters such as the Reynolds and Mach numbers R and M , the
position y, and the length scale L. That is,

tt = g (tm, R, M, y, L, ...) .

We know that the energetic structures and the mean motion have characteristic
scales of the same order. This suggests that the previous relationship can be
rewritten as

tt = tmg (R, M, y, L, ...) , (5.1)

where the function g is O(1). If we assume Morkovin’s hypothesis, then for
weak compressibility effects, for example, in boundary layers at moderate Mach
numbers, the relation between the scales is the same as at low speeds. Equa-
tion 5.1 reduces to:

tt = tmg (R, y, L, ...) . (5.2)

The turbulent time scale is defined as usual by k/ε. This time is a char-
acteristic turbulence decay time, and in the case of compressible turbulence,
this also includes the possible dissipation by shocklets, which can change the
rate of dissipation and shorten the turbulence decay time. The mean time
scale is chosen as (∂U/∂y)−1, the turnover time of the mean motion, as in
low-speed flows. This choice can be justified as follows. The main role of
the mean inhomogeneity is to amplify turbulence through linear mechanisms
described, for example, by rapid distortion theories. In general, a small fluc-
tuation subjected to mean shear obeys an equation of the form (written in a
rather symbolic way):

Du′

Dt
+ u′∂u

∂y
= f.

In this equation, f represents the pressure, nonlinear, and viscous terms. It
appears from the linear left-hand side that the amplification of u′ by linear
mechanisms occurs with a time constant of the order of (∂u/∂y)−1 (for incom-
pressible turbulence, the role of the pressure terms in f is to reduce u′∂u/∂y,
but the order of magnitude remains unchanged). The mean time scale can
therefore be interpreted as a response time of fluctuations to mean inhomo-
geneity, and it must therefore be of order (∂u/∂y)−1.

To evaluate the dissipation ε, for example, in the region of constant stress,
we follow Morkovin (1962) and assume that the shear stress is constant, and
that

−ρu′v′ ≈ −ρ̄u′v′ = ρwu2
τ .

It is also assumed that, in this region, production and dissipation are equal,
and that similarity of the profile is achieved by using either a viscous length
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scale, or an external length scale. We denote the scale as L, whatever the
choice. Equation 5.2 can then be rewritten as:

ρ̄k

ρwu2
τ

= g
(

y

L
, R, ...

)
. (5.3)

We recognize in Equation 5.3 the scaling proposed by Morkovin for the simi-
larity of the Reynolds stresses: similarity is achieved if the local velocity scale
in the constant stress region is now uτ (ρw/ρ)1/2 instead of uτ .

We can now define a length scale as follows. The turbulent time scale is
defined as Λ/u′, where u′ is a characteristic scale for velocity fluctuations, for
example,

√
k. Equating this time to k/ε, and setting ε equal to production

gives the relation:

Λ

u′ =
ρ̄k

ρwu2
τ∂U/∂y

,

or, according to Equation 5.3,

Λ = g
(

y

L
, R, ...

)
u′

∂U/∂y
. (5.4)

From Equation 5.4, it follows that the length scale is the same in subsonic and
supersonic flows when the ratio u′/(∂u/∂y) is unchanged. This implies that
the scaling for density effects should be the same for u′ and ∂u/∂y. We know
from experiment and from Equation 5.3 that in supersonic layers u′ varies as
ρ−1/2 (see also Figure 1.2 and the discussion in Section 5.1). We also know
that ∂u/∂y varies as ρ−1/2, because, as we show in Chapter 7, the transformed
velocity follows a log law with the same von Kármán’s constant as in sub-
sonic flows. Therefore, according to Morkovin’s hypothesis, the characteristic
length scales governing turbulent transport should not change in the super-
sonic regime (for further details of this argument, see Dussauge and Smits
(1995)).

In an expected and consistent way, the normal stress u′2 is scaled by ρwu2
τ/ρ̄.

The measured behavior of the other normal stresses is not so clear and it is
discussed further in Chapter 8. However, measurements of logarithmic mean
velocity profiles and of normal stresses are presently the best experimental
check on the validity of Morkovin’s hypothesis, which apparently can be used
with confidence in boundary layers at Mach numbers up to 5. In this range,
at least as far as the turbulent transport of momentum is concerned, it can be
assumed that the effects of compressibility reduce to the effects of variable fluid
properties. When departures from this hypothesis are expected, Equations 5.3
and 5.4 can give some insight into the physical mechanisms involved: first, the
relationship between time scales depends on Mach number, because at high
Mach numbers the turbulence decay time can be affected by compressibility,
and second, the dissipation may no longer balance production if the pressure
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divergence terms are large enough. It may be expected that at least close to
the wall, the parameter governing these departures is some local Mach number,
for example, the friction Mach number.

5.2 Temperature-Velocity Relationships

In Morkovin’s original paper (Morkovin, 1962), he also suggested some possible
properties of the enthalpy and total enthalpy fluxes. He derived particular re-
lationships between velocity and temperature fluctuations for boundary layers
on adiabatic plates, which are known collectively as the Strong Reynolds Anal-
ogy (SRA). This is probably the reason why Reynolds analogueies are often
considered as part of Morkovin’s hypothesis, although the physical mecha-
nisms are not exactly the same as those discussed in the previous section. Of
course, if the relations between the heat and momentum fluxes are known,
relations between the mean temperature and velocity may be derived from
Equations 3.25 and 3.26.

Equation 3.26 determines the temperature field, and considerable efforts
have been made to find a solution, or at least an approximate solution. These
approximations usually relate the temperature field to the velocity field, and by
using the equation of state, allow the density to be eliminated as an unknown in
the continuity and momentum equations. Such temperature-velocity relations
can only be found by using considerable empirical insight, and therefore we
need to review the experimental evidence first.

The temperature in the boundary layer can of course vary significantly,
even in the absence of heat transfer at the wall. Because detailed experimental
investigations of heated or cooled boundary layers are rare, it is fortunate that
a considerable amount of useful information can be obtained from studies of
boundary layers on adiabatic walls. Extensive surveys of the available data
are given by Fernholz and Finley (1976, 1980, 1981), and further information
may be found there.

A useful quantity, at least from a practical point of view, is the turbulent
Prandtl number Pt, defined by:

Pt =
ũ′v′

(
∂T̃
∂y

)
ṽ′T ′

(
∂ũ
∂y

) ,
and it may be interpreted as the ratio of the turbulent transport of heat to
the turbulent transport of momentum.

In what follows, the turbulent Prandtl number is extensively used. It is
shown or assumed that, as in boundary layers at low speeds, Pt remains close
to unity. This can be considered as another illustration of Morkovin’s hy-
pothesis: the links between momentum and heat fluxes are proposed to be
independent of the Mach number. At low speeds, temperature fluctuations
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Figure 5.1. Turbulent Prandtl number distribution in a boundary layer. (Figure
from Cousteix (1989), after Meier and Rotta (1971). Reprinted with permission of
Cépaduès-Éditions.)

are nearly isobaric. At high speed, if there is an increase of the acoustic com-
ponent of the fluctuating motion, it is clear that the relations among pressure,
temperature, and density fluctuations can be affected, and that the turbulent
Prandtl number may change. It is consistent with Morkovin’s hypothesis to
assume that Pt is not significantly altered by compressibility.

5.3 Experimental Results

The variation of the turbulent Prandtl number Pt across a boundary layer
at moderate Mach numbers is shown in Figure 5.1. Here, Pt is close to one
right across the layer, and for the most part it is constant and equal to 0.8.
Therefore the transport coefficients for the turbulent transport of heat and
momentum are nearly equal.

The molecular Prandtl number P is defined as µCp/k (= α/ν), and it
may be interpreted as the ratio of the thermal diffusivity to the momentum
diffusivity in laminar flow. As indicated in the discussions of Couette flow and
laminar boundary layers given in Section 2.5, a molecular Prandtl number of
one implies that the total enthalpy is constant in an adiabatic shear layer. Now,
the molecular Prandtl number for air is about 0.72, and it is nearly constant
across the layer because it is almost independent of temperature, and the
recovery temperature of an adiabatic wall is not equal to the total temperature
measured in the freestream. The data show that the recovery factor r for a
turbulent boundary layer on an adiabatic flat plate is approximately equal to
P 1/3 (Cebeci and Smith, 1974; Cousteix, 1989). For air this gives r = 0.896,
and the consensus value is close to 0.89 (see Figure 5.2).

If the total enthalpy equation is integrated across the boundary layer, the
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Figure 5.2. Recovery factor distribution in a boundary layer. (Figure from Mack
(1954), with the author’s permission.)

integral ∫ δ

0

ρu

ρeue

(
1 − h0

h0e

)
dy

is independent of the streamwise location for adiabatic flows (h0e is the total
enthalpy at the outer edge of the layer). When the mass flux and the total
enthalpy are functions of y/δ only, the integral must be zero. Because the
mass flux is always positive and h0/h0e < 1 near the wall, this result implies
that there must be a region where h0/h0e > 1, that is, there must be an
overshoot in the total temperature distribution that increases with positive
heat flux, as found on a heated wall. In an adiabatic flow, this overshoot is
difficult to measure experimentally because it is usually rather small: for the
example shown in Figure 5.3 it is less than 1%. The overall variations in total
temperature in this example are less than 6%, and even in a strong adverse
pressure gradient they are typically less than 10%. A crude, but very useful
approximation, is to assume that the total temperature in a boundary layer
on an adiabatic wall is constant and equal to its freestream value.

As far as the fluctuations in temperature are concerned, almost all of the
measurements have been made using constant current hot-wire anemometry.

The data include measurements of T ′
0
2 and T ′2, as well as the correlations

u′T ′
0 and u′T ′. Measurements of v′T ′ and v′T ′

0 are very rare. In supersonic
flow, these vertical velocity correlations are sometimes found from a balance
of the mean enthalpy equations. The general levels seem to agree reasonably
well with subsonic data, and the correlation coefficients for u′v′ and v′T ′ are
approximately the same.
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Figure 5.3. Total temperature distributions in an adiabatic boundary layer on a flat
plate. Incoming Mach number is 2.3, Reynolds number Rθ = 5500. (From Laurent
(1996), with the author’s permission.)

The measurements show remarkable agreement in conforming to the fol-
lowing relations:

√
T ′2

T̃
= (γ − 1) M2

√
u′2

ũ
(5.5)

RuT =
−u′T ′

√
u′2

√
T ′2

= constant (5.6)

(see Figures 5.4 and 5.5). Equations 5.5 and 5.6 represent another form of
the Strong Reynolds Analogy, and they are identical to Equations 3.4 and 3.5
when the pressure fluctuations are negligible, which is a good approximation in
many supersonic shear layers (see, for example, Figure 4.1). The data indicate
that −RTu > 0.75. In fact, a comparison of the instantaneous velocity and
temperature fluctuations indicates the high degree of (anti-)correlation implied
by this result (see Figure 5.6). The data shown in these figures were taken in
turbulent boundary layers on isothermal walls, but measurements in free shear
layers and mixing layers have confirmed the generality of these relationships.

Equations 5.5 and 5.6 are very close to what would be obtained from a
small perturbation form of the one-dimensional energy equation under the
assumption that the total temperature fluctuations are negligible. However,
as the data given in Figure 5.7 show, this is not a good assumption: al-
though the total temperature fluctuations are smaller than the temperature
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Figure 5.4. Test of the Strong Reynolds Analogy in a supersonic boundary layer
(Me = 2.32, Reθ = 5650). (From Gaviglio (1987). Copyright 1987, Elsevier Science
Ltd., Oxford, England. Reprinted with permission. Original data from Debiève
(1983).)

Figure 5.5. Distribution of RuT in boundary layers. Curve 1: Me = 2.32, Reθ =
5650, from Debiève (1983). Curves 2 and 3: Me = 1.73, Reθ = 5, 700, from Dussauge
(1981). Curve 4: Me << 1, Reθ = 5, 000, from Fulachier (1972). (Figure from Eléna
and Gaviglio (1993). Reprinted with permission of Éditions Dunod.)

fluctuations themselves, they cannot be considered negligible. In fact, we
can use the one-dimensional energy equation to show that we expect T ′

0 =√
2 (1 + RuT )T ′ (= 0.6T ′). This apparent contradiction is discussed in the

next section.
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Figure 5.6. Instantaneous temperature and velocity signals in a Mach 2.9 boundary
layer at y/δ = 0.6, showing the high level of (negative) correlation. (From Smith and
Smits (1993a). Copyright 1993, Elsevier Science Inc. Reprinted with permission.)

5.4 Analytical Results for Pm = 1

We have seen that the molecular Prandtl number and the turbulent Prandtl
number are not very different from unity, although we recognize that they are
both somewhat less than one. As a first approximation, it is useful to consider
flows where all Prandtl numbers are unity because it is possible in this case to
obtain some simple analytical results using the boundary layer equations. We
begin by defining an eddy viscosity µt and an eddy diffusivity kt, where

µt =
−ρ̄ũ′v′

∂ũ/∂y
(5.7)

and

kt =
−Cpρ̄ṽ′T ′

∂T̃
/

∂y
, (5.8)

so that we have a turbulent Prandtl number Pt:

Pt =
µtCp

kt

=
−ρ̄ũ′v′

(
∂T̃
/

∂y
)

−ρ̄T̃ ′v′ (∂ũ/∂y)
, (5.9)
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Figure 5.7. Total temperature fluctuation distributions in a boundary layer at
Mach 2.3. The adiabatic case is given by Tw/Tr = 1.0. The other distributions were
measured 48 initial boundary layer thicknesses downstream of a step change in wall
temperature. (From Debiève et al. (1997), with the author’s permission.)

and a mixed Prandtl number Pm:

Pm =
(µ + µt) Cp

k + kt

. (5.10)

The mixed Prandtl number allows a smooth transition from regions where
molecular diffusion dominates to regions where turbulent mixing dominates. If
we know Pm and the distributions of ũ (y) and T̃ (y), the turbulent momentum
and heat fluxes may be found (in this approach, the fluctuations in velocity
and temperature only appear through their correlations, not through their
intensities). For a zero pressure gradient flow, Equations 3.25 and 3.26 become:

ρ̄ũ
∂ũ

∂x
+ ρ̄ṽ

∂ũ

∂y
=

∂

∂y

{
(µ + µt)

∂ũ

∂y

}
(5.11)

ρ̄ũ
∂h̃0

∂x
+ ρ̄ṽ

∂h̃0

∂y
=

∂

∂y

{
(µ + µt)

[
∂h̃0

∂y
+ Cp

(
P−1

m − 1
) ∂T̃

∂y

]}
. (5.12)

In the particular case where Pm = 1, the problem is the same as that
studied by Busemann and Crocco for laminar boundary layers (Busemann,
1931; Crocco, 1932). Equations 5.11 and 5.12 become formally identical, and



5.4. ANALYTICAL RESULTS FOR PM = 1 129

if there exists a solution ũ for Equation 5.11 then Equation 5.12 has a solution
of the form:

h̃0 = aũ + b and h′
0 = au′.

By applying the boundary conditions:

y = 0 u = 0 h0 = h0w (T = Tw)
y = δ u = ue h0 = h0e (T = Te)

this solution becomes:

h̃0 =
(
h̃0e − h0w

) ũ

ue

+ h0w.

That is,
h̃0 − h0w

h̃0e − h0w

=
ũ

ue

. (5.13)

Finally:

T̃ = T̃w +
(
T̃0e − T̃w

) ũ

ue

−
(
T̃0e − T̃e

) ( ũ

ue

)2

. (5.14)

This solution is known as the Crocco relation, or Crocco’s law.

For an adiabatic wall
(
∂T̃
/

∂y
)

y=0
= 0, and using the definition of the total

enthalpy we have:
∂h̃0

∂y
= Cp

∂T̃

∂y
+ ũ

∂ũ

∂y
.

At the wall, we see that ∂h̃0

/
∂y = 0, and from Equation 5.13 we obtain

h̃0e = h0w and h̃0 = h̃0w. As in the Couette flow example given in Section 2.5,
the total enthalpy is constant when the Prandtl number (in this case the mixed
Prandtl number) equals one.

Consider Equations 5.11 and 5.12 again. Under the condition that the to-

tal enthalpy flux h̃0
′v′ is zero, or at least that h0

′v′ 
 h′v′, the two equations
become similar. Morkovin (1962) first suggested that this may be a reasonable
approximation. If we neglect the differences between Reynolds averaging and
Favre averaging, this assumption is equivalent to saying that the correlation
between h′

0 and v′ is negligible throughout the layer. This criterion is satis-
fied when the total temperature fluctuations are negligible everywhere: this
condition is sufficient but it is not necessary. Other solutions are possible,
as demonstrated by the solutions obtained for Equation 5.12 for the case of
Pm = 1.

It is always difficult to say anything rigorous regarding the instantaneous
fluctuations using an argument based on mean quantities. The only firm con-
clusions that can be made are those regarding the quantities which were used
to formulate the mixed Prandtl number, that is, the turbulent fluxes. In any
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case, if we assume h0
′ = 0, then the one-dimensional energy equation gives

T ′ = −u′ũ/Cp, and:

√
T ′2

T̃
= (γ − 1) M2

√
u′2

ũ
= (γ − 1) MMt (5.15)

RuT =
u′T ′

√
u′2

√
T ′2

= −1. (5.16)

Also:

ṽ′T ′ = − ũ

Cp

ũ′v′ (5.17)

ṽ′T ′

T̃
= − (γ − 1) M2 ũ′v′

ũ
(5.18)

ṽ′T ′
0 = ṽ′T ′ +

ũ

Cp

ũ′v′ = 0. (5.19)

These relations are collectively known as the Strong Reynolds Analogy (SRA)
(see Young (1951), Morkovin (1962), and Gaviglio (1987)). The experimen-
tal results shown in Figures 5.4 and 5.5, obtained under conditions where the
Prandtl numbers are not one and the total temperature fluctuations are not
zero, closely follow the SRA. Interestingly, recent DNS results by Wu and
Martin (2004), shown in Figure 5.8, demonstrate excellent agreement with ex-
periment. These observations are discussed in more detail in the next section.

5.5 Analytical Results for Pm �= 1

When the mixed Prandtl number is not one, the energy equation cannot be
analytically integrated precisely. However, van Driest (1951, 1956) and Walz
(1966) considered approximate solutions for the case where the mixed Prandtl
number is close to one, and this is the case for air where P = 0.72 and for
most turbulent shear flows where 0.6 < Pt < 1. These analyses are reviewed in
detail by Fernholz and Finley (1980), and only the principal results are given
here.

In particular, van Driest proposed a form of the enthalpy equation where
the enthalpy is assumed to be a function of the velocity h̃ = h(ũ), and most of
the streamwise derivatives are neglected on the basis of an order-of-magnitude
argument. Hence:

τ

(
∂

∂u

(
1

Pm

∂h̃

∂ũ

)
+ 1

)
+
(

1 − Pm

Pm

)
∂h̃

∂ũ

∂τ

∂ũ
= 0. (5.20)
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Figure 5.8. Results on the SRA from DNS of a boundary layer at Mach 2.9 with
Reθ = 2400. (Figure from Wu and Martin (2004), with permission.)

When Pm is constant throughout the layer we obtain:

∂

∂u

∂T̃

∂ũ
+ (1 − Pm)

∂T̃

∂ũ

1

τ

∂τ

∂ũ
= −Pm

Cp

(5.21)

and
ũ′v′

ṽ′T ′
∂T̃

∂ũ
= Pt = Pm. (5.22)

In Equation 5.21, τ is the total stress (viscous plus turbulent). Equation 5.22
is identical to that found by applying the definition of the turbulent Prandtl
number outside the viscous sublayer. The advantage of writing the enthalpy
equation in this way is that Equation 5.21 can now be integrated to give:

∂T̃

∂ũ
= −Pm

Cp

(
qw

τw

+
∫ u

0

(
τ

τw

)1−Pm

du

)(
τ

τw

)Pm−1

,

so that

ṽ′T ′ =

[
qw

τw

+
∫ u

0

(
τ

τw

)1−Pm

du

] (
τ

τw

)Pm−1
(−ũ′v′

Cp

)
, (5.23)

where qw and τw are the wall heat flux and the wall shear stress, respectively.
This relation represents an extension of the SRA to flows where the Prandtl
number is not unity. To derive this result it was necessary to assume that
Pm was constant throughout the layer: this can be true near the wall only
if the molecular Prandtl number is equal to the turbulent Prandtl number.
This difficulty could be resolved by splitting the integration into two parts,
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one over the region of the viscous sublayer, and one over the outer layer, and
then matching the two solutions at the boundary between the two regions.
The most complete approach would be to allow Pm to vary arbitrarily, but
this would only complicate the form of the result without adding to our basic
understanding.

For an adiabatic wall, qw = 0, and we need to find a way to evaluate the
integral:

I =
(

τ

τw

)Pm−1 ∫ ũ

0

(
τ

τw

)1−Pm

du. (5.24)

By assuming a distribution of shear stress similar to that given by Sandborn
(1974), and a fixed value of Pm (= 0.9), we obtain the result shown in Fig-
ure 5.9, where A = I/u (this result should be independent of Mach number
for nonhypersonic values). For y/δ < 0.5, 1.0 < A < 1.05, so the value of
the integral is almost equal to the velocity itself. This is hardly surprising in
that the variation of stress only enters the integral with an exponent equal to
1 − Pm, which obviously weakens the influence of the stress variation.
Finally:

ṽ′T ′ = A (y)
ũ

Cp

(
−ũ′v′

)
.

That is,
ṽ′T ′

T̃
= A (y) (γ − 1) M2−ũ′v′

ũ
. (5.25)

So the earlier analysis, where it was assumed that Pm = 1 and that the total
temperature fluctuations were negligible, led to a result which is in excellent
agreement with this more realistic analysis, especially for y/δ < 0.5. For the
outer part of the layer, the approximations are less satisfactory because A
continues to increase to a value of about 1.3, but in this region the magnitude
of the fluxes diminishes and the errors introduced by the SRA also become
significant. In this more general form, the temperature velocity relation is
not very attractive from a modeling viewpoint because it involves the stress
distribution and not just the velocity itself.

Equation 5.25 can also be used to deduce a relationship between the tem-
perature and velocity fluctuation intensities. We can write

√
T ′2

T̃
=

−Ruv

RTv

A (y) (γ − 1) M2

√
u′2

ũ
, (5.26)

where the correlation coefficient RTv is defined by RvT = v′T ′
/(√

v′2
√

T ′2
)
.

Measurements of T ′ and u′ indicate that the factor (−Ruv/RTv) A (y) takes
about the same values as A(y), and this is shown as the solid line in Figure 5.4.
Hence we can infer that 0.9 < −Ruv/RTv < 1.1 for almost the entire boundary
layer thickness. The rather limited measurements of this ratio support this
conclusion (Bestion et al., 1983; Horstman and Owen, 1972).



5.5. ANALYTICAL RESULTS FOR PM �= 1 133

Figure 5.9. Stress integral distribution in a boundary layer. A = I/u, and I is
given by Equation 5.24.

Gaviglio (1987) used a similar analysis to that given above, in that he
used the derivative ∂T̃ /∂ũ to establish a relationship between the velocity and
temperature fluctuations, but in terms of the intensities rather than the fluxes.
In order to do so, he used the length scales �u and �T defined by:

�u =

√
u′2

∂ũ/∂y
and �T =

√
T ′2

∂T̃
/

∂y

so that: √
u′2

√
T ′2

∂T̃

∂ũ
=

�u

�T

.

These scales are related to the mixing lengths for the momentum and heat
fluxes (� and �θ, respectively) according to:

�u

�T

=
�

�θ

RvT

Ruv

.

Because �/�θ = Pt, we know that this ratio is approximately equal to 0.9.
Experimental measurements of �u/�T indicate that this ratio takes about the
same value in the outer part of the layer, which again suggests that the ratio
Ruv/RTv is very nearly one. It seems reasonable, therefore, to adopt the form:

√
T ′2

T̃
= A (y) (γ − 1) M2

√
u′2

ũ
= A (y) (γ − 1) MMt. (5.27)

These considerations can be used to derive modified versions of the earlier
relationships where it was assumed that Pm was constant across the layer.
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By means of some additional approximations for the values of the integrals
appearing in the solution of Equation 5.21, Walz (1966) obtained:

T̃

Te

=
T̃w

Te

+
T̃r − T̃w

Te

(
ũ

ue

)
− r

γ − 1

2
M2

e

(
ũ

ue

)2

, (5.28)

where r is the recovery factor and Tr is the adiabatic wall temperature or recov-
ery temperature. This relationship is called Walz’s equation or the modified
Crocco relation. It does not describe the overshoot in the total temperature
profile observed in the region outside the boundary layer, but it describes
the temperature-velocity relationship inside the layer very well, and it is used
extensively.

It follows that:
dT

du
=

Tr − Tw

ue

− r
u

Cp

so that:

ṽ′T ′

T̃
=

−ũ′v′

ũ

(γ − 1) M2
e

Pt

⎛⎝r − Cp

(
T̃r − T̃w

)
u2

e

ũ

ue

⎞⎠ . (5.29)

For an adiabatic wall:

ṽ′T ′

T̃
=

−ũ′v′

ũ

r

Pt

(γ − 1) M2. (5.30)

Because r ≈ 0.89 and Pt ≈ 0.9, the coefficient in Equation 5.30 is nearly one,
and we recover the result obtained by Cebeci and Smith (1974) for Crocco’s
integral. This coefficient is also close to the value of A (y) for y/δ < 0.5.

In contrast, for y
/

δ > 0.5, where the temperature-velocity relationship given
by Equation 5.28 is not sufficiently accurate to give reasonable values of the
derivatives, there is no such agreement with the value of A (y) .

In conclusion, it seems that the actual relationships between the turbulent
heat and momentum fluxes are very close to those derived for the case where
the total temperature fluctuations are negligible. Experimentally, however,
we find that the total temperature fluctuations are not negligible, even in
adiabatic flow. This is not a contradiction, but simply indicates that the
equations of motion have solutions that do not depend strongly on the value
of the mixed Prandtl number, as long as it is close to one, which is the case
for adiabatic flows.

5.6 Reynolds Analogy for Mixing Layers

To close this chapter, we consider the Reynolds Analogy in mixing layers.
Because molecular effects are negligible in this case, we have Pt = Pm. For the
simple case of of Pt = 1, we still have

h̃0 = aũ + b and h′
0 = au′
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(see Section 5.4), but the boundary conditions have changed:

ũ = u1 h̃0 = h01

ũ = u2 h̃0 = h02.

The derivation of the temperature-velocity relationship is straightforward:

T =
u1T02 − u2T01

∆U
+

∆T0

∆U
u − u2

2Cp

, (5.31)

where ∆T0 is the total temperature difference across the layer. Because Pt is
unity, the ratio of the fluxes can be deduced from the derivative of temperature
with respect to velocity. When ∆T0 = 0, the momentum flux and heat flux
follow the SRA relationships given by Equations 5.15 and 5.16.

The case when Pt �= 1 is more subtle because of the boundary conditions
that apply to free shear flows. The results of Section 5.5 can be rewritten as

v′T ′ =
−u′v′

Cp

⎡⎢⎣Cp

Pt

(
∂T̃

∂ũ

)
ũ=ũ0

+

ũ∫
ũ0

(
τ

τ0

)1−Pm

du

⎤⎥⎦( τ

τ0

)Pm−1

, (5.32)

where the reference velocity ũ0 is the velocity at a point where the correspond-
ing friction τ0 is not zero. In practice, ũ0 is taken to be the velocity at the
point where the friction is maximum. The main difference from Equation 5.23
is that ∂T̃

/
∂ũ is nonzero, even when the total temperature is the same in the

two external flows.
Another point is that the turbulent Prandtl number is often smaller in free

shear flows than in boundary layers, and therefore we can expect stronger de-
partures from SRA relationships. However, because v′T ′ =

(
u′v′/Pm

)
∂T̃ /∂ũ,

Equation 5.32 can be rewritten as

∂T̃

∂ũ
=

⎡⎢⎣(∂T̃

∂ũ

)
ũ=ũ0

− Pm

Cp

ũ∫
ũ0

(
τ

τ0

)1−Pm

du

⎤⎥⎦( τ

τ0

)Pm−1

This expression can be integrated once again to derive a relation between T̃
and ũ. As in boundary layer flows (see, for example, Fernholz and Finley
(1980) or Walz (1959)), we obtain:

T̃ = T̃0 +

(
∂T̃

∂ũ

)
ũ=ũ0

ũ∫
ũ0

(
τ

τ0

)Pm−1

du − Pm

Cp

ũ∫
ũ0

⎡⎢⎣ ũ∫
ũ0

(
τ

τ0

)1−Pm

du

⎤⎥⎦( τ

τ0

)Pm−1

du

To calculate the integrals, the relation τ = τ(u) should be known. There

remain two unknown coefficients, T̃0 and
(
∂T̃
/

∂ũ
)

ũ=ũ0

, which are determined

by the boundary conditions T̃ = T̃1 for ũ = ũ1, and T̃ = T̃2 for ũ = ũ2.
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Figure 5.10. The Reynolds analogy for mixing layers. Ratio of heat and momentum
fluxes computed from similarity considerations. Solid line: Pt = 0.8; dashed line:
Pt = 0.6.

Because the gradient
(
∂T̃
/

∂ũ
)

ũ=ũ0

is known, its value may be inserted into

Equation 5.32, thereby resolving the difficulty introduced by the nonzero heat
transfer at the origin of integration.

It is now possible to discuss the validity of the SRA relationship in mixing
layers. It is assumed that the turbulent (or mixed) Prandtl number is con-
stant, and that an appropriate choice for a simple turbulence model in free
shear flows is an eddy viscosity assumption. The distribution of ũ is required.
For illustration, we assume that the nondimensional velocity (ũ − Uav) /∆U ,
where Uav = (u1 + u2) /2, is represented by a cubic. The corresponding dis-
tribution for the stress is τ/τ0 = (1 + y/δ) (1 − y/δ) inside the layer, a very
simple representation that is believed to have only weak consequences on the
functional dependence of ũ on T̃ . Under these assumptions, the following
relation is obtained,

T̃ = T̃0 +

(
∂T̃

∂ũ

)
ũ=ũ0

U∗ − Pm

Cp

U∗∗ (5.33)

with

U∗ =
3

4
∆U

y/δ∫
0

(
τ

τ0

)Pm

d
(

y

δ

)
and

U∗∗ =
9

16
(∆U)2

y/δ∫
0

⎡⎢⎣ y/δ∫
0

(
τ

τ0

)2−Pm

d
(

y

δ

)⎤⎥⎦( τ

τ0

)Pm

d
(

y

δ

)
.

We consider the specific mixing layer studied by Barre et al. (1994), Menaa
et al. (1996), and Debiève et al. (2000), under approximately the same flow
conditions (M1 = 1.89, M2 = 0.29, and T01 ≈ T02 ≈ 300◦K), with a tur-
bulent Prandtl number of about 0.8. This work provides probably the only
experimental results on Reynolds Analogy in mixing layers.
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Figure 5.11. Experimental distribution of turbulent Prandtl number in a self-
similar mixing layer (Mc = 0.62, M1 = 1.85, M2 = 0.36, and T01 ≈ T02 ≈ 300◦K).
�, x = 200 mm; , x = 220 mm; �, x = 240 mm.

The total temperature distribution derived from Equation 5.33 for this mix-
ing layer is almost constant, with a maximum defect in total temperature of
6%. The measurements show that the total temperature deviates from the ex-
ternal values by 4%. Figure 5.10 shows the ratio v′T ′Cp/

(
u′v′ũ

)
in a section

(denoted SRA in the figure), for two values of the turbulent Prandtl number.
It appears that this ratio remains close to unity across most of the flow, and in-
creases near the edges of the layer because the stress goes to zero. For Pt = 0.6,
the same overall behavior is found with generally higher values, although in
the center of the layer the ratio is about 1.1.

Friction and heat fluxes were determined from momentum and total en-
thalpy budgets. The results for the self-similar part of the mixing layer are
given in Figures 5.11 and 5.12.

In this flow, the turbulent Prandtl number is about 0.8 in the center of the
layer and is almost constant across the flow except near the boundaries. The
ratio of heat and momentum fluxes, shown in Figure 5.12, is close to unity:
departures from this value on the centerline are only a few percent, and the pro-
file, which has the shape expected from the previous calculations, is essentially
constant in the center of the layer. This agrees well with the measurements of
u′2 and T ′2 by Barre et al. (1994), which led to similar conclusions, in spite of
greater scatter in the results.

To conclude, it is clear that in mixing layers, despite possibly having smaller
values of the Prandtl number, the Reynolds Analogy remains a very robust
approximation, which can be used with some confidence for estimating the
mean total enthalpy and the ratio of momentum and heat fluxes.
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Figure 5.12. The Reynolds analogy for mixing layers. Experimental values for
the ratio of heat and momentum fluxes. SRA = v′T ′Cp/

(
u′v′ũ

)
. (Symbols as in

Figure 5.11.)



Chapter 6

Mixing Layers

6.1 Introduction

The mixing layer is an example of a inhomogeneous flow that is particularly
simple because it is formed by two parallel flows with different velocities, and
there is no wall present. It can be considered as an archetype for the devel-
opment of compressible turbulence in free shear flows at high speeds, such as
the shear layer that develops when a boundary layer separates. The interface
between the two streams contains an inflection point in the velocity profile,
and it is therefore inviscidly unstable. Eddies are formed typical of a Kelvin-
Helmholtz-type instability. In subsonic flows the eddies grow rather quickly,
and as a result the properties of the two streams mix very efficiently. The
Reynolds number of the flow also increases rapidly because, as we show, all
the length scales grow linearly with distance (at least for locations far from
the origin of the layer). If the velocity difference between the two sides of the
layer remains constant, as it is in a zero pressure gradient flow, a rather strong
velocity gradient is maintained which leads to high-intensity turbulence levels.
Mixing layers are therefore very suitable for studying the properties of com-
pressible turbulence far from the influence of walls, at large Reynolds numbers.

Compressibility effects are important in mixing layers even at moderate
Mach numbers, so that the phenomena observed in mixing layers at relatively
low Mach numbers can bring some insight into what can be found in boundary
layers at much higher Mach numbers. But our experiences do not carry over
directly. The absence of a wall means that the scaling for mixing layers is
much simpler than for boundary layers: there is only one length scale instead
of two. In boundary layers, the wall imposes low Reynolds number features
near the wall that must match the high Reynolds number features developing
in the outer part of the layer, and turbulence models in their present state
are probably not general enough to compute both mixing layers and boundary
layers without some fine tuning. Nevertheless, the study of free shear flows
can help us to understand the behavior of other inhomogeneous compressible
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turbulent flows.

For free shear layers at low speeds, the development of periodic perturba-
tions, the stability and transition process, the effects of variable density, and
the effects of initial and boundary conditions have all been studied extensively.
The results can be found in a number of recent review articles (see, for ex-
ample Ho and Huerre (1984) and Dimotakis (1994)). Here, we simply note
some properties of subsonic mixing layers, and show how they are connected
with the phenomena observed in high-speed mixing layers. First, we consider
asymptotic, self-similar mixing layers. In practice, it is very difficult to observe
such flows experimentally in the absence of some undesirable perturbations:
mixing layers are very sensitive to initial and boundary conditions, and their
development can be modified by the presence of acoustic perturbations and
state of the initial boundary layers. Acoustic phenomena, for example, may
produce phase changes between the energetic eddies by modifying the roll-up
process and alter the gross properties of the flow significantly. Bell and Mehta
(1990) have demonstrated the almost exquisite sensitivity of the near-field be-
havior to changes in the inflow conditions, and as a result there can be an
order-of-magnitude difference in the initial growth rate among different exper-
iments. Boundary conditions are also difficult to control, particularly when
pressure waves reflect off wind tunnel walls and interfere with the mixing layer
development. These difficulties make comparisons with computations prob-
lematic, partly because the computations are sensitive to similar limitations.
For example, an initial disturbance must be specified to trigger the roll-up
of the mixing layer, and nonreflective boundary conditions must be used. In
addition, direct numerical simulations are currently restricted to Reynolds
numbers that are usually much lower than the experiments. Reynolds number
effects are expected to be small, at least for fully turbulent flows, but they
may not be negligible if the Reynolds number is very low.

As a result of these experimental difficulties, measurements of the spreading
rate in low-speed, variable density mixing layers show a scatter of about 25%
(Dimotakis, 1991), and therefore we can only draw conclusions on the behavior
of these flows if the effects are found to be large enough. To understand the flow
behavior more precisely, experimental studies should specify inflow, outflow,
and boundary conditions. This is rarely done in experimental work, perhaps
because this is a particularly difficult task, and therefore care should be taken
when interpreting the results. The scatter in the data also limits the accuracy
that we can expect from engineering calculation methods. Turbulence models
are often little more than interpolation methods based on experimental data.
If the scatter on macroscopic quantities is about 25%, it cannot be expected
that the accuracy of predictions will be better than 25%.

Here we consider the global characteristics of mixing layers as a function
of Mach and Reynolds number. The Favre averaged equations of motion for
this case were derived in Chapter 3 by applying the usual thin shear layer
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approximations to the continuity, Navier-Stokes, and energy equations (see
Equations 3.24 through 3.26). As an introduction to the scaling behavior of
compressible turbulent boundary layers, we first examine the incompressible,
uniform-density case.

6.2 Incompressible Mixing Layer Scaling

In a boundary layer, the viscous stress gradients cannot be neglected because
the viscous stress terms are necessary to enforce the no-slip boundary condi-
tion, and therefore there is always a region near the wall where viscous stresses
are important. In a mixing layer there is no wall, and as the Reynolds number
Reδ increases, the magnitude of the viscous stresses relative to the other terms
in the momentum equation decreases. Here Reδ is based on some measure of
the thickness of the layer δ, and a velocity scale such as the velocity difference
across the layer ∆U = U1 −U2 (by convention, U1 is the velocity on the high-
speed side, and U2 is the velocity on the low-speed side), or U1−Uc, where Uc is
the convection velocity of the large eddies. As we show, the Reynolds number
increases rapidly with streamwise distance. In the high Reynolds number limit
(that is, far from the origin of the layer), the viscous stresses are negligible
and the incompressible mixing layer equations reduce to:

∂u

∂x
+

∂v

∂y
= 0 (6.1)

u
∂u

∂x
+ v

∂u

∂y
=

∂
(
−u′v′

)
∂y

. (6.2)

In a self-preserving flow, all parameters scale with local length and velocity
scales. For the mixing layer the length scale is δ, although we have not dis-
cussed its exact definition. Because the mean velocity and the turbulence
must scale in the same way to achieve self-preservation, there can only be one
velocity scale (∆U). In zero pressure gradient, single-stream mixing layers,
where ∆U is constant and the velocity on the low-speed side U2 is zero,

u = ∆Uf (ξ) , (6.3)

v = −
y∫

0

∂u

∂x
dy = ∆U

ξ∫
0

(
dδ

dx

)
ξf ′dξ , (6.4)

so that

v = ∆Ug (ξ) , (6.5)

and

− u′v′ = (∆U)2h (ξ) , (6.6)
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where ξ = y/δ and δ = δ (x) (for further details see Tennekes and Lumley
(1972) and Lesieur (1987)). Hence,

− dδ

dx
f ′

ξ∫
0

fdξ = h′. (6.7)

Self-preservation can only be obtained if dδ/dx = constant; that is, the thick-
ness of the layer increases linearly with x, as anticipated earlier (we show in
Section 6.7 that this also holds for compressible mixing layers). In addition,
if the spreading rate and the mean velocity profile are known, the shear stress
can be found by integrating the mean momentum equation.

From Equation 6.6, we see that the nondimensional shear stress distribution
in a self-preserving flow has a similarity solution h (ξ), and therefore uτ/∆U

takes a constant value, where uτ = max
(√

−u′v′
)
. Because all velocity scales

must be proportional to each other in a self-preserving flow, this result is self-
evident. Similarly, all length scales must be proportional to each other in a
self-preserving flow. As an example, if we assume a mixing length hypothesis
(Equation 7.28), then

d�

dx

(
�2

2�2
m

) ξ∫
0

fdξ = f ′′, (6.8)

which shows that the mixing length must be proportional to the width of the
layer.

The final equation depends on the model used for the turbulent stress. For
these simple calculations, a mixing length or an eddy viscosity is commonly
used. The eddy viscosity assumption leads to a Falkner-Skan equation that
can be solved numerically with standard methods, and the computed pro-
files generally match the experimental ones well. In particular, they exhibit
the same asymmetric shape observed in the experiments. Some experimental
results for two-stream mixing layers are shown in Figure 6.1.

Historically, such numerical approaches could not be taken, so that approx-
imate solutions were developed. Although they lead to analytical solutions,
or to procedures that can be carried out by hand, they necessitate an over-
simplification of the equations. The resulting velocity profiles are symmet-
ric, contradicting the experimental observations, primarily because the iner-
tia terms in the approximate solution are poorly represented. Nevertheless,
these symmetric solutions are still often used as reference profiles, especially
in stability problems where it is convenient to have the profiles in an analyt-
ical form. One of the most commonly used approximations was proposed by
Görtler, who found that it is given approximately by an error function (see
Schlichting (1979)). That is,

u

∆U
=

Uav

∆U

(
1 +

∆U

Uav

erf ξ
)

, (6.9)



6.2. INCOMPRESSIBLE MIXING LAYER SCALING 143

Figure 6.1. Characteristics of subsonic mixing layers. U0 is the velocity differ-
ence across the layer (= ∆U), U∗ = (u − U1)/∆U , and ξ = (y − y0)/δ10. TST
and TSU stand for two-stream layer, tripped and single-stream layer, not tripped,
respectively. (From Mehta and Westphal (1984). Copyright 1984, AIAA. Reprinted
with permission.)

where Uav = (U1 − U2)/2 is the average velocity and ∆U = U1 − U2.

To return to the question of a length scale, there exist many possible defini-
tions of the layer thickness. Two of the most common are δ10, the 10% thick-
ness, defined as the distance between the points where the velocity is equal
to U1 − 0.1∆U and U2 + 0.1∆U , and δω, the vorticity thickness, defined to be
the distance given by the ratio of the velocity difference across the layer di-
vided by the maximum slope of the velocity profile (δω = max (∆U/(∂u/∂y))).
For an error-function velocity profile, Goebel and Dutton (1990) showed that
δω = 1.02δ10. A less common definition of the thickness is the Stanford
thickness, defined by the distance between the points where the velocity is
U2 +

√
0.9∆U and U1 −

√
0.1∆U .
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6.3 Compressible Mixing Layers

In spite of our reservations about the quality of the data, the experiments indi-
cate that low-speed and high-speed mixing layers share some common features.
For example, they all grow linearly with distance (as long as we are far enough
downstream for the effects of the initial conditions to have become negligible),
and large-scale structures are formed with rather high turbulence intensities.
However, as indicated in Chapter 1, very significant differences have also been
observed. Brown and Roshko (1974) compared their observations of subsonic
mixing layers with different density ratios to the properties of supersonic mix-
ing layers with the same density ratios. They found that, in contrast to many
of our observations on boundary layers, the behavior of supersonic mixing lay-
ers could not be described by simple considerations based on density variations
alone, especially with regard to the spreading rate. One obvious question is
to what extent the properties of supersonic mixing layers can be described by
the effects of variable fluid properties, and at what point changes in the nature
of the turbulent perturbations due to compressibility become important. For
subsonic mixing layers with zero velocity on the low-speed side (a single-sided
mixing layer or half-jet), Figure 6.2 shows that changing the density ratio
s = ρ2/ρ1 by a factor of 7 changes the growth rate by about 30%. These re-
sults may be compared with the behavior of single-sided mixing layers where
the high-speed side is supersonic. The abscissa in Figure 6.2 can be read as a
density ratio or the equivalent Mach number for a compressible half-jet. It is
clear that as soon as the Mach number of a half-jet becomes supersonic, the
spreading rate is reduced, and the reduction is much more severe than that
based on the density ratio alone. Because the spreading rate and turbulence
level are proportional to each other (see below), this macroscopic result on the
spreading rate can be considered as the first indication of an important change
in the structure of turbulence due to compressibility.

Such results could also have been expected from other studies. In consid-
ering the linear stability of a vortex sheet, or of mixing layers of finite size, it
is well known that an increasing Mach number has a stabilizing effect (Miles,
1958). The amplification of the fluctuations is reduced, which is consistent
with reduced mixing and a smaller spreading rate. It is far from obvious,
however, that a linear stability analysis can help to explain the global features
of turbulent shear flows, but in free shear flows it seems that the large-scale
structures have some qualitative properties which can be described by linear
theory, even after nonlinear phenomena such as vortex pairing have occurred.
For example, Lele (1994) successfully correlated the maximum linear amplifi-
cation rate of mixing layers with their spreading rate. This suggests that the
growth of large eddies in mixing layers depends significantly on linear mech-
anisms, even in the turbulent case where nonlinear phenomena are obviously
well developed. The similarities may not be sufficient for reliable quantitative
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Figure 6.2. Comparison of the spreading rate based on vorticity thickness of mixing
layers in subsonic flow with variable density, with mixing layers in supersonic flow.
Subsonic flow results: ◦, Brown and Roshko (1974). Supersonic flow results: +,
Maydew and Reed (1963); �, Ikawa (1973); ×, Sirieix and Solignac (1968). (From
Brown and Roshko (1974). Copyright 1974, Cambridge University Press. Reprinted
with permission.)

results, but they are useful for understanding how the structures evolve and
control mixing as the convective Mach number increases.

Most of these linear theories predict that under some conditions pressure
can be radiated away from the layer into the outer flow by Mach waves. It is
possible to use a simple example to show how this can happen. Consider a
simple vortex sheet formed by the interface between two parallel flows. More
precisely, consider the evolution of a sinusoidal perturbation of the interface,
and the induced pressure disturbances. For small perturbations, the problem
is linear. If the flow is subsonic relative to the interface, the pressure per-
turbations tend to increase the amplitude of the wavy interface and the flow
is unstable (the classic Kelvin-Helmholtz instability). However, if the flow is
supersonic, the pressure perturbations act in opposite directions on the lead-
ing and trailing edges of the wave so that they cancel out and the flow is
marginally stable (Miles, 1958; Papmoschou and Roshko, 1988). It can be
shown that the natural parameter appearing in this problem is a Mach num-
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Figure 6.3. Flow over a wavy interface. The motion of the interface is is supersonic
with respect to flow 1, and Mach waves are radiated into flow 1.

ber based on the phase velocity of the perturbation. This can be exemplified
as follows. We consider the perturbations produced in the external flow by
two-dimensional corrugations of the vortex sheet considered as an interface,
as sketched in Figure 6.3. The external flows are potential, uniform, and the
inviscid approximation will be made: such an assumption is valid for pertur-
bations of large scale (large Reynolds number) for which the effect of viscosity
is small. Perturbations can therefore be considered as isentropic, thus the
relationship between pressure and density fluctuations is:

p′ = a2ρ′

and the equations are the Euler equations. In our example, the perturbations
are supposed to be small, so that it is relevant to use linearized equations.
Moreover, instead of computing velocity, we consider the displacement field
defined by

d

dt
�ξ = �u′,

where �u′ is the velocity fluctuation. We will write the equations in flow 1 and
in flow 2, indicated by the superscripts 1 or 2.

We look for the temporal evolution of a displacement periodic along the
x-direction, with amplitude variations according to y. Therefore �ξ is of the
form:

�ξ = ξj(y)ei(kx−ωt)

with j = 1, 2, k real, and ω complex.
After a straightforward but tedious calculation, equations for the ampli-

tudes ξj can be found in flows 1 and 2. For example, the equation for ξ2

is:

ξ′′2 + k2

⎡⎣(U [1] − ω/k

a[1]

)2

− 1

⎤⎦ ξ2 = 0,

where the primes denote differentiation with respect to y. A similar equation
is found in flow 2, in which the superscript [2] replaces [1]. An interesting
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point can be found in the expression in brackets. Firstly, we can recognize
that ω/k = c is the classical phase velocity: its real part is the speed at
which the considered perturbation propagates along the interface. The ratio
M [1]

c =
(
U [1] − c

)
/a[1] is of course a Mach number. It is based on the velocity

difference between the external flow and the phase speed. When this Mach
number is smaller than 1, the relative motion between the interface and the
external flow is subsonic, and the equation indicates that ξ2 experiences an
exponential decay with respect to y. If the Mach number is larger than unity,
ξ2 has now a periodic distribution in y. Analysis of the solution shows that
this corresponds to Mach waves radiated by the interface, without damping
in the present formulation, so that perturbations are felt over much larger
distances than in the subsonic case. This suggests that in the supersonic case,
much more energy is required to transmit the information on the presence of
the wavy perturbation.

Therefore, the Mach number, which appears naturally in this problem, is
the indicator of compressibility effects in the response of the external flow to
the perturbation induced by a wavy vortex sheet, in the limit of the linearized
problem. It can be imagined, that in some cases, compressibility effects are felt
only by one flow, and not by the second one, so that M [1]

c and M [2]
c may differ

significantly. However, without further indication, it is natural to preserve the
symmetry of the problem, and to assume that compressibility effects are the
same on both sides of the vortex sheet. In this symmetrical case, the Mach
numbers defined for each of the external flows are equal:

M [1]
c = M [2]

c or
U [1] − c

a[1]
=

c − U [2]

a[2]
.

This gives the expression of the symmetrical phase speed:

c =
a[1]U [2] + a[2]U [1]

a[1] + a[2]
.

Inserting this value into the previous relations gives:

M [1]
c = M [2]

c = Mc =
U1 − U2

a1 + a2

.

Other properties of such a velocity are given in the next section.
Radiation of Mach waves was also found in direct numerical simulations of

two-dimensional mixing layers. It appears that shocklets are produced by the
eddies when the convection velocity of the eddies becomes supersonic with re-
spect to the external flow (Lele, 1989). It has been more difficult to find these
shocklets in three-dimensional simulations. In experiments, they are also diffi-
cult to find, although they can be seen in the visualizations of pulsed supersonic
jets by Oertel (1983), in a shear layer between two supersonic counterflows by
Papamoschou (1995), in a reattaching shear layer by Poggie (1995), and in
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high Mach number shear layers by Rossmann et al. (2002) (see Figure 10.13).
Because the net effect of compressibility on supersonic mixing layers can only
be explained partly by variable fluid properties, this interpretation helps to
show that the effects of compressibility are related to changes in the structure
of the flow. It may represent the onset of compressibility effects, because it
could well be true that the turbulence contained within the eddies has prop-
erties similar to incompressible turbulence, but the eddies themselves produce
small shock waves in the outer flows.

Can such Mach or shock waves alter the properties of turbulent shear flows?
Their influence can be direct or indirect. The possible sources of direct influ-
ence can be listed briefly. Shock waves and shocklets constitute a new source
of energy dissipation in fluctuating motions in which ∇ · u′ �= 0. In air, weak
shock waves with small entropy steps, close to Mach waves, can still dissipate
energy: inside the wave, there is an overshoot of entropy due to dissipation
which is imperfectly balanced by heat conduction (see, for example, Landau
and Lifshitz (1987)). As discussed in Section 4.7, another element is the pres-
sure divergence correlation term in the equation for k. This term takes a
nonzero value as the flow passes through a shock wave, and it can constitute
an additional source or sink term for compressible turbulence. Finally, the
pressure divergence term in the equation for k is the trace of the pressure
strain terms in the equation for the Reynolds stresses. For incompressible
turbulence, where the fluctuating field is solenoidal (∇ · u′ = 0), these terms
redistribute the energy among the components of the velocity fluctuations. If
the fluctuating field is compressible, we may expect that the anisotropy of the
turbulent stresses will be modified. Most of the primary work on compress-
ible turbulence modeling considered these direct effects (see Zeman (1990)
or Sarkar et al. (1989) among others). Although these effects certainly exist
at very high Mach numbers, they appear to be negligible in the supersonic
regime, even in mixing layers. The indirect effect is more subtle and is related
to modifications of the structure of pressure inside the shear flow itself. For
mixing layers, such modifications of fluctuating pressure can happen in the
same range of Mach numbers as for the Mach wave radiation. These different
points are discussed in more detail in Section 6.10, but first a classification of
the effects of compressibility on the turbulence is necessary, together with a
description of the available experimental evidence.

6.4 Classification of Compressibility Effects

6.4.1 Convective Mach Number

As indicated in Chapter 1, only relative motions are important. Therefore the
Mach number used to characterize compressibility effects must be based on the
difference between the convective speed of the large eddies and the velocities
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Figure 6.4. Sketch of the flow in a subsonic, two-dimensional, periodic mixing layer
with variable density. The solid lines are instantaneous streamlines; the vorticity is
concentrated in the shaded area. Note the strain field in the center of the picture.
(From Corcos and Sherman (1976). Copyright 1976, Cambridge University Press.
Reprinted with permission.)

of the external flows, although it was shown in Chapter 4 that the turbulence
and convective Mach numbers are of the same order. If we are to choose Mc

in preference to Mt, we need to be sure that it is possible to define a convec-
tion velocity, and that the flow is not strongly dispersive. All the scales are
then convected at approximately the same speed, and consequently there is
no change in the shape of the eddies. This is in direct contradiction to experi-
mental observations that indicate the important role played by vortex pairing
(Winant and Browand, 1974). However, measurements in low-speed flows
suggest that this can still provide a reasonable description of the large-scale
structures between pairing events (Brown and Roshko, 1974). We therefore
consider the case of piecewise nondispersive events, that is, the behavior that
occurs between two pairings. Because the convection velocity is constant, a
frame of reference moving with the eddies is used. For two-dimensional flows
it is assumed that a stagnation point occurs between two vortices (see Fig-
ure 6.4). If the location of the stagnation point is fixed with respect to the
eddies, then the pressure there must be continuous. Furthermore, if the condi-
tions along the streamlines arriving at the stagnation point from the external
flows are isentropic, a relation for the convection velocity can be found that
gives a single unique value. Because the total pressure is defined with respect
to a moving frame of reference, the natural parameters appearing in the equa-
tion are convective Mach numbers based on the velocity differences U1 − Uc

and Uc−U2, and the sound speeds a1 and a2, not the convection velocity itself
(for details, see Bogdanoff (1983), Papamoschou (1986), and Papamoschou
and Roshko 1988)). That is,

(
1 +

γ1 − 1

2
M2

c1

)γ1/(γ1−1)

=
(
1 +

γ2 − 1

2
M2

c2

)γ2/(γ2−1)

(6.10)

with Mc1 = (U1 − Uc)/a1 and Mc2 = (Uc − U2)/a2. The low Mach number
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limit of Equation 6.10 is

Mc1 =

(
γ1

γ2

)1/2

Mc2,

which gives for γ1 = γ2 the low-speed, variable-density value of the convection
velocity:

Uc

U1

=
1 + (U2/U1)

√
s

1 +
√

s
, (6.11)

where the density ratio s = ρ2/ρ1.
In the absence of shock waves, the evolution along the streamlines can

be considered isentropic if the time of flight from the external flows to the
stagnation point is small compared to the turnover time of the energetic eddies.
The only source of entropy is then the viscous dissipation, which is small if the
time of flight is short. The time of flight is of the order of δ/∆U and the time
scale of turbulence is k/ε or Λ/

√
k, where Λ is a characteristic length scale

such as an integral scale. For the isentropic assumption to hold, therefore, we
require: √

k

∆U

δ

Λ

 1,

where Λ/δ is O(1). In mixing layers,
√

k/∆U is less than 0.2 in the sub-
sonic regime and probably less than 0.1 in the supersonic regime, so that the
proposed approximation seems reasonable (in the absence of shock waves).

In the general case, where γ1 �= γ2 and s �= 1, the two convective Mach
numbers are different, and an asymmetric behavior may be expected with
compressibility effects occurring more on one side than on the other. If the
two external flows have the same γ, simpler relationships may be found. In
particular, if the evolution is also isentropic, Mc1 = Mc2 = Mc, and:

Mc =
∆U

a1 + a2

, (6.12)

and

Uc =
a2U1 + a1U2

a1 + a2

. (6.13)

Similar expressions were derived in Section 6.3 for the problem of the wavy
interface, with symmetric compressibility effects. The result is an indicator of
a change of the structure of the pressure field, at least in the outer flow. It can
be also understood as the footprint of isentropic external flows, and therefore
as a hint of the presence of shock waves radiated by the eddies.

Although these arguments were made with respect to two-dimensional flows,
the conclusions are valid for three-dimensional flows because it is only neces-
sary to have a stagnation point. Uc is then the speed of the stagnation point,
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rather than the large eddies themselves, although this makes it more difficult
to interpret Mc as a Mach number of the large-scale structures.

The apparent simplicity of the result makes it tempting to use Mc as a
similarity parameter, where two flows would exhibit the same compressibility
effects provided they have the same convective Mach number. This proposi-
tion is described and discussed in the following sections, but we can anticipate
at least one difficulty. The convective Mach number appeared from consid-
erations regarding the conservation of the momentum flux, and there are no
obvious links to problems where other physical mechanisms play a role. For
example, acoustic feedback mechanisms can occur if the low-speed side is sub-
sonic. “Screech” tones are formed when pressure waves traveling upstream in
the subsonic stream reach the trailing edge of the splitter plate and synchro-
nize the eddy formation to produce coherent eddies at a fixed frequency. It
seems likely that mixing layers with one subsonic and one supersonic stream
will have properties different from mixing layers with two supersonic streams,
even if the value of Mc is the same, and more than one similarity parameter
may be required.

6.4.2 Similarity Considerations

For zero pressure gradient turbulent boundary layers in supersonic flow, it
appears that the friction coefficient depends on Reynolds number in the same
way as it does at low speeds, and it was shown in Chapter 1 that a reasonable
value of the wall friction was found if the density and viscosity were evaluated
at the wall temperature. Indeed, many of the characteristics of boundary layers
in supersonic flow are similar to the properties of a boundary layer in subsonic
flow with variable fluid properties. In a similar way, is it possible to deduce
the maximum shear stress in a mixing layer from low-speed formulations by
choosing the appropriate velocity and density scales (although we have already
seen that changes in density are not the only important factor in describing
mixing layer behavior)?

To answer this question, we need to examine scaling arguments and the
possibility of finding similarity solutions in supersonic mixing layers. For sub-
sonic flows, the scales are unambiguous (see Section 6.2), and they imply that
the maximum shear stress scales with the velocity difference (∆U)2, and that

the ratio −uv
/

(∆U)2 is constant for sufficiently large Reynolds numbers. In
supersonic flows, variable density and other compressibility effects introduce
some ambiguities in choosing scaling quantities. For example, Zeman (1992)
examined the case of compressible mixing layers with the same mean density
and temperature on the high-speed and low-speed sides. Even then the flow
depends on Mach number because the “dilatation” dissipation due to eddy
shocklets increases with Mach number, thereby changing the distributions of
temperature and density within the layer. The shape of the velocity profiles,
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however, is not sensitive to Mach number over a wide range, and this follows
the same trends as flows with density gradients, as shown in Section 6.7.

The main difficulty is to find a scale for the density. Consider the mean
momentum equation for a zero pressure gradient, high Reynolds number, com-
pressible mixing layer:

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ̄

∂

∂y
(−ρ̄uv) (6.14)

We need to define scales for the mean velocity, density, and turbulent shear
stress, as well as length scales for the longitudinal and transverse directions.
These quantities are denoted U∗, ρ∗, τ ∗, L, and δ, where δ is a measure of
the shear layer thickness, and U∗ is such that the order of magnitude of the
velocity gradient ∂u/∂y is given by U∗/δ. We assume that the spatial scales for
velocity and density (and for the mass flux ρU) are the same, which happens
to be a good approximation for many common flows. A useful value for τ ∗

is τm, the maximum value of the shear stress in a given cross-section of the
flow. According to the order-of-magnitude analysis of Chapter 3, the mean
acceleration and friction terms are of the same order. Hence:

ρ∗U∗2

τm

δ

L
∼ 1.

As in low-speed flows, this result suggests that if δ/L is constant, the friction
coefficient τm/ρ∗U∗2 is also constant, and that it is of the order of the spreading
rate.

We now see if τm scales with ρ1 and U1, and ρ2 and U2, according to the
same scaling law. That is, we need to see if

τm

ρ1 (U1 − Um)2 =
τm

ρ2 (Um − U2)
2 , (6.15)

where Um is a velocity scale to be defined. Solving Equation 6.15 for Um we
find:

Um =
U1

√
ρ1 + U2

√
ρ2√

ρ1 +
√

ρ2

.

In the case where the two external flows have the same γ, Um is the isentropic
convection velocity; that is, Um = Uc (see above). For compressible flows, we
define the friction velocity as

uτ =
√

τm/ρm.

We now try to find ρm to achieve full similarity with respect to Mach number
so that there is a value of ρm which will give the friction coefficient defined in
Equation 6.15 the same value as in low-speed flows, independent of the Mach
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number. For zero Mach number and constant density, the friction coefficient
is

A =
(

2uτ

∆U

)2

M=0, ρ=cst
,

where A is a constant. Equation 6.15 becomes:

u2
τ

(U1 − Um)2 = A
ρ1

ρm

, (6.16)

which suggests that full similarity is achieved when for a given value of ρ1/ρm

the same level of shear stress per unit mass is obtained. This is unlikely, be-
cause experiments show that when the same value of ρ1/ρm is produced either
by changing the density ratio s = ρ2/ρ1, or by changing the convective Mach
number, different values of the spreading rate and turbulence level are found.
More precisely, the experimental data required to substantiate Equation 6.16
are not available, even in subsonic flows. In the next section, we discuss the
empirical correlations that have been developed to give the level of turbulence
as a function of the convective Mach number. These empirical interpolation
formulae can give unacceptable values of ρm when used in Equation 6.16, that
is, values larger than the larger value of density in the outer flow, or smaller
than the smaller density. So the limited information available at the present
time suggests that it is not possible to express the effect of Mach number
on the turbulence level by a simple scaling on ρ, even though all the data
necessary to explore the question of full similarity are not available. In the
general case, therefore, the ratio τm/ρ1 (U1 − Uc)

2 is a function of the density
ratio s, the velocity ratio q (= U2/U1), and the convective Mach number Mc.
This point is discussed in greater detail in the context of self-similar solutions
(Section 6.7).

6.5 Mean Flow Scaling

The shape of the velocity profile is discussed in detail in Section 6.7, but ex-
periments show that in fully developed layers the shape is virtually unaffected
by compressibility, especially when the velocity and the density gradients are
in the same direction. Papamoschou and Roshko (1988) found that their
spreading rate data scaled with the velocity ratio, density ratio, and the Mach
number. They assumed that the effect of Mach number can be separated from
the other effects, implying that the effects of q and s are the same at low and
high speeds and that they may be studied separately. Following Brown and
Roshko, they proposed that the spreading rate in subsonic flows, δ′0, has the
form:

δ′0 ∼
∆U

Uc

.
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Figure 6.5. Notation for a mixing layer.

This formulation can be interpreted in terms of convection and diffusion
times. Suppose that the mixing layer is formed of an array of large eddies of
size δ, and in the average, convected a speed Uc. While they are convected,
the eddies grow because of turbulent diffusion and entrainment. Their size
varies from zero at the origin of the layer to δ at distance x (see Figure 6.5).
During a convective time scale tc = x/Uc, the layer thickness grows to δ, that
is, the convection time equals the turbulent diffusion time tt. In general, tt is
evaluated from turbulent quantities, such as the rms velocity or an integral
scale for the size of the energetic eddies. However, large turbulent eddies have
characteristic time scales of the order of the scale of the mean motion, so that
the turbulent scale can be estimated by:

tt ∝ 1

∂u/∂y
.

This definition of the time scale is also convenient, because we consider self-
preserving flows, which can be described by only one scale, so that the scales of
the turbulent and of the mean motion remain proportional. The mean velocity
gradient ∂u/∂y is of the order of ∆U/δ, and a simple relation is obtained:

x

Uc

∝ δ

∆U
or

δ

x
= δ′0 ∝

∆U

Uc

,

which is Brown and Roshko’s proposal. The proportionality to ∆U implies
that turbulent momentum transport is proportional to the velocity difference
across the layer, which is consistent with Prandtl’s eddy viscosity formulation
for subsonic free shear flows, where νt ∼ δ∆U . If we assume instead that
the turbulent diffusion rate is constant in a frame of reference convected with
the eddies, we find that the spreading rate is inversely proportional to the
convection velocity.

If Uc is the isentropic approximation for the convection velocity, Equa-
tion 6.11 can be used. Then, for subsonic variable density mixing layers:

δ′0 = δ′ref

(1 − q) (1 +
√

s)

2 (1 + q
√

s)
,
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Figure 6.6. Convective Mach number dependence of the normalized spreading rate
of supersonic mixing layers.

where δ′ref = (dδ/dx)ref is the spreading rate of a subsonic constant density
shear layer with U2 = 0.

In order to extend this scaling to compressible mixing layers, Papamoschou
and Roshko proposed a correlation of the form:

δ′ = δ′0Φ (Mc) = δ′ref

(1 − q) (1 +
√

s)

2 (1 + q
√

s)
Φ (Mc) , (6.17)

where Φ (Mc) is a function that must be determined by experiment. This
correlation collapsed their data well, supporting the use of the convective Mach
number to represent global compressibility effects.

In Figure 6.6 we see how the spreading rates measured by a number of
authors vary with the convective Mach number. Only layers formed by co-
flowing streams (that is, U1 and U2 have the same sign) were considered in this
compilation. The plot was derived from Equation 6.17, in which the measured
value of the growth rate was employed, together with the experimental values
of q and s. The original data were used, and the reassessment proposed in
AGARD Fluid Dynamics Panel (1998) was employed. For some data the
analysis and the compilation of Aupoix (2004) have been also considered. The
same reference value δ′ref = 0.16 was used throughout, δ being the vorticity
thickness. In the figure, Mc is the isentropic estimate of the convective Mach
number defined by Equation 6.12. Mixing layers between flows with different
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values of γ (γ1 �= γ2) were not treated differently. Three reference curves
are also plotted: the Langley curve (see also Figure 1.8), the semi-empirical
relation

Φ (Mc) = 0.8e−M2
c + 0.2 (6.18)

proposed by Dimotakis (1991), and the amplification rate of the Kelvin-Helm-
holtz mode obtained by Day et al. (1998) from linear stability theory. This
last comparison is discussed further in Section 6.10.

An immediate observation is that the spreading rate decreases with Mach
number: compressibility effectively inhibits turbulent mixing and particularly
reduces the spreading rate of mixing layers.

A point to be more deeply analyzed is the large scatter in the results. There
is still some controversy about the value of δ′ref . The value of 0.16 used here is
consistent with the value of 0.115 proposed for the Stanford thickness. It is ob-
vious from Figure 6.6 that even for low-speed layers the value of the spreading
rate is not well known. For example, two reference measurements (Wygnan-
ski and Fiedler (1970) and Bell and Mehta (1990)) show a discrepancy of at
least 35%. Such large scatter was originally underlined by Dimotakis (1991)
who found discrepancies of about ±30% in the experimental determination
of spreading rates at subsonic speed. The same scatter of about 50% is ob-
served for all values of Mc. The reason is probably the sensitivity of mixing
layers to boundary and incoming conditions: external turbulence, acoustic
excitations by wind tunnel resonances, spurious pressure gradients, or effects
of confinement. At higher Mach numbers, the situation is still more compli-
cated, because we must evaluate the convective Mach number as a similarity
parameter.

The isentropic approximation has been used to evaluate Mc. However,
Equation 6.10 clearly indicates that two convective Mach numbers exist when
the two gases are of different molecular natures. This would imply that another
Mach number should be used. Moreover, in some experiments, an asymmetric
behavior has been found, with eddies traveling at a speed close to the velocity
of one of the external flows. Such aspects are found in particular conditions,
and are discussed in Section 6.9.

More generally, the data must be treated with some caution. First, all com-
pressibility effects are now characterized by one Mach number, corresponding
to the case of a frozen pattern where the average shape of the eddies re-
mains unchanged. Second, a given value of Mc can be found in experiments
with either one subsonic and one supersonic stream, or with both streams
supersonic. As pointed out earlier, in the subsonic-supersonic combination,
information can be carried in the upstream direction by pressure waves. The
resulting interactions between acoustic and vorticity modes can change the
overall organization of the flow dramatically. Clearly, this cannot happen in
supersonic-supersonic combinations, and such physical differences cannot be
represented by a single Mach number. Third, the use of a convective Mach
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number requires that we can determine it accurately. In fact, it is difficult
to measure Mc directly, and instead it is often estimated using the isentropic
approximation (Equation 6.12), which is probably not valid over the whole
range of Mach numbers (see below).

Considering such a large scatter in the data, some authors, such as Lu and
Lele (1994) or Slessoret al. (2000), have suggested a different assessment. They
consider that the effects of q and s are reasonably well represented by ∆U/Uc,
but that the reference value depends on the flow arrangement. This leads to a
new expression for the experimental spreading rate for supersonic shear layers
δ′exp:

δ′exp = Cδ (Mc)
(1 − q) (1 +

√
s)

2 (1 + q
√

s)
Φ (Mc) . (6.19)

This result implies that Cδ = δ′refΦ (Mc).
On the other hand, it is supposed that, even if δ′ref is different from one

set of experiments to another, the evolution of δ′ref versus Mc is independent
of each particular experimental arrangement. This is a tempting suggestion.
It makes the implicit assumption that for a given set of experiments made in
the same wind tunnel, the perturbations are brought to the flow mainly by
the machinery and by the set-up, and therefore remain constant. Of course
this is only partly true because realizing several values of the convective Mach
number implies changing parts of the experimental configuration, so that the
layers may be subjected to the different external perturbations, depending on
the operating point of the facility. In any case, this suggestion has led to two
reassessments of the data, one by Slessoret al. (2000) and a second one by
Aupoix (2001, 2004). An example is given in Figure 6.5, which gives Cδ as a
function of Mc for most of the available experiments. The formula proposed by
Dimotakis (1991) is also presented with an adjustment at zero Mach number
to a spreading rate value of 0.135, as measured by Bell and Mehta (1990).
Large scatter for low convective Mach numbers is still found but the data
points approximately follow the trend suggested by the formula.

In this analysis, only the isentropic estimate Mc has been considered. In the
reassessment proposed by Slessoret al. (2000), another formulation is proposed,
in which the convective Mach numbers Mc1 and Mc2 can be different. For that
purpose they define a Mach number Πc such that:

Πc = max
i

√
γi − 1

ai

∆U.

Compilation of existing data, after revaluating δ′ref for collapsing the results
for Mach numbers close to 0.5 leads to the empirical correlation:

δ′ = δ′0
(
1 + 4Π2

c

)−β

with β = 0.5. In this case, most of the scatter has been again transferred to
δ′0, for which only a global determination is available with a limited accuracy.
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This is an alternate possibility, but it does not remove the question of the
reference value for zero Mach numbers.

Before concluding this point, a comment should be made on the accuracy of
the experimental growth rate. For that, Figure 6.8 is considered, which is the
companion of Figure 6.6. Two families of results are identified: the first family
encompasses the results obtained from mean velocity profiles, and the second
family contains results obtained using flow visualizations and Pitot pressure
profiles. Note that the spreading rates for these two methods were tuned
on each other. Very clearly most of the data of the first family are grouped
around the Langley curve, whereas the second family is in better agreement
with Dimotakis’ correlation. These two correlations seem to define the limits
of likely values of the mixing layer spreading rate. Note, however, that in the
first family only air-air combinations were used, whereas all the data using
different gases belong to the second family.

These data suggest that our present understanding of the relative effects
of compressibility and of density differences probably needs to be revised. As
emphasized earlier, the convective Mach number is certainly not the only sim-
ilarity parameter in the problem. Nevertheless, it is clear that the spreading
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Figure 6.8. Dependence of the spreading rate on experimental method. , from
velocity profiles; +, from visualizations or Pitot pressure profiles. Lines as in Fig-
ure 6.6.

rate decreases with Mach number: compressibility inhibits turbulent mixing
and in particular it reduces the spatial growth rate of mixing layers. The con-
vective Mach number remains a very reasonable candidate for evaluating such
effects in a first approximation, even if it does not represent all the phenomena
that can be found in such flows.

The present discussion used formulations valid for temporal mixing layers,
for example, for finding the influence of velocity and density ratios on spreading
rate. In the case of spatial growth, corrections may be necessary. Dimotakis
(1991) proposed the following formulation,

δ′ = δ′ref

(1 − q) (1 +
√

s)

2 (1 + q
√

s)

[
1 − (1 −√

s) (1 +
√

s)

1 + 2.9 (1 + q) (1 − q)

]
. (6.20)

This correction has not been used in the present assessment of data; although
not completely negligible, it does not modify the trends and the conclusions
that were drawn.

Another aspect should be discussed. Co-flowing streams produced all the
flows under examination. Strykowski et al. (1996) have investigated the be-
havior of mixing layers produced by counterflowing flows, in particular a su-
personic axisymmetric jet with a counterflowing surrounding stream. As for
inhomogeneous compressible flows, the Navier-Stokes equations are not in-
variant by Galilean transformation and different phenomena may be expected
when the two streams have opposite directions. Strykowski et al. (1996) found
an increase in the growth rate, which they interpreted as the appearance of an
absolute instability, leading to a change in the structure of the large eddies.
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However they found that for their experiment in which s = 0.55, the relation

δ′ = δ′ref

(1 − q) (1 +
√

s)

2 (1 + q
√

s)

is still well verified for moderate counterflows with −0.1 < q < 0.

6.6 Turbulent Shear Stress Scaling

We now see if the results on the scaling of the mean flow can be used to infer the
influence of compressibility on the turbulent shear stress and kinetic energy.
The anisotropy of the Reynolds stress is also of interest, as well as the effect
on the motion of the large eddies and the implications for the relationship
between large eddies and turbulent transport.

The behavior of the shear stress −u′v′ is important, because it has a direct
influence on the evolution of the mean velocity profiles and the spreading rate.
From an experimental point of view, it is also something that can be measured
reasonably accurately, because its value can be checked against the value de-
duced by integrating the mean momentum equation. To find a dependence
between the maximum stress and the parameters characterizing the flow, we
use the analysis proposed by Barre et al. (1994). As in Section 6.5, we compare
a time of convection and a time of turbulent diffusion, because an eddy grows
under the action of turbulence while it is convected. A typical scale for the
large scales is δ, and their motion is characterized by the convection velocity
Uc. In a frame of reference moving with the large-scale eddies, their growth is
assumed to be due to turbulent diffusion only, with an effective viscosity νt.
From νt and δ, we define a diffusion time scale t, which represents the growth
rate of the eddies in the convected system of coordinates, by

t ∼ δ2

νt

. (6.21)

The turbulent viscosity νt is assumed to be constant across the shear layer.
Because νt = −u′v′

/
(∂u/∂y), it is proportional to u2

τδ/∆U , where u2
τ is based

on the maximum shear stress. Hence:

t ∼ δ∆U

u2
τ

.

After a time t, the eddies have traveled a distance x = Uct. Eliminating t
gives a linear relationship between the longitudinal distance and the size of
the eddies. That is, the spreading rate is constant and it is given by:

dδ

dx
=

1

K (s, q, Mc)

u2
τ

Uc ∆U
. (6.22)
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Here, Uc need not be the isentropic convection velocity. However, in most
practical applications, it will need to be so because the actual convection
velocity is difficult to measure. The function K (s, q, Mc) reflects the fact
that, in general, for a given level of turbulence, the diffusion time can change
if the density stratification, the velocity ratio, or the Mach number changes
(we have assumed that the convective Mach number is the relevant similarity
parameter). Barre et al. (1994) neglected the influence of q, but it is shown in
the self-preservation analysis that this parameter should be taken into account.
If the relationship proposed by Papamoschou and Roshko (1988),

dδ

dx
= 1

2

(
dδ
dx

)
ref

Φ (Mc)
∆U
Uc

, (6.23)

is accepted, Equation 6.21 becomes

u2
τ

(∆U)2 = 1
2
K (s, q, Mc)

(
dδ

dx

)
ref

Φ (Mc) . (6.24)

Equation 6.22 is consistent with self-preservation because it gives a linear
growth of the layer and a maximum shear stress proportional to the spreading
rate. More interestingly, Equation 6.24 indicates that if the dependence of
K on Mc is weak, the maximum dimensionless shear stress varies with Mc

according to Φ (Mc). An analysis of the dependence of K on s, q, and Mc is
given in Section 6.8 for the case of a self-preserving flow. It is shown that K
is a function of s and q, but not of the convective Mach number. Moreover,
the range of s and q for the experiments considered in Figure 6.9 is such that
K does not vary much.

The experimental data and the analysis appear to be in fair agreement. The
scatter in the data includes the measurement uncertainty, as well as differences
among the experimental conditions. As we noted earlier, the experimental
uncertainty in the spreading rate of subsonic mixing layers is about 25%, and it
is likely that the level of uncertainty for supersonic mixing layers is in the same
range. Difficulties in matching boundary conditions from one experiment to
another will contribute to the scatter in measurements of the maximum shear
stress, which is also about 25%. As shown in the next section, the effect of the
changing density ratio may increase the scatter, because Figure 6.9 contains
data from experiments with different values of s, although the data with very
different density ratios do not appear to depart significantly from the other
data points. Blockage effects may also be important. This effect is discussed
in more detail in the next section, but if the mixing layer thickness is not
small compared to the height of the test section, then for transonic values of
Mc large eddies may produce local regions of supersonic flow where shocklets
dissipate energy, causing local blockages and affecting the turbulence level and
the spreading rate. Some of the experiments shown in Figure 6.9 are certainly
influenced by such effects. Despite all these difficulties, most of the stress
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Figure 6.9. Maximum value of the turbulent shear stress in supersonic mixing
layers. Symbols as in Figure 6.6, except is now Olsen and Dutton (2003), and
the symbol - is Urban and Mungal (2001). The Langley curve and Dimotakis’
relationship are multiplied by a constant factor of 10−2.

data, as was found for the spreading rates, lie between the Langley curve and
Dimotakis’ formula. It can still be concluded that for moderate compressibility
effects the stress level decreases in a similar way to the decrease in the spreading
rate, and we expect that at a value of Mc = 1.5 the maximum turbulent shear
stress level will be only about 40% of the corresponding low-speed value (this
is discussed further in the next section).

Because the shear stress depends on Mc, the eddy viscosity will also depend
on Mc. For free shear flows, the eddy viscosity due to Prandtl has the form:

νt = CΦ (Mc) ∆U δ (x) , (6.25)

where the constant C has the same value as at low speeds (at the same density
and velocity ratio), as long as the shape of the velocity profiles does not depend
on Mc.

6.7 Self-Preservation Conditions

As in Tennekes and Lumley (1972), we restrict our analysis of self-preservation
in flows with temperature or density inhomogeneities to cases where the flow
properties at a given point can be described by only one length scale. Strictly
speaking, this is possible only if the Prandtl number or the Schmidt number
is unity. We restrict our analysis to this case, because self-preserving solutions
still give guidelines for the behavior of the mean field if the Prandtl number is
not too different from unity.

We need to write the equation in a proper dimensionless form. Because the
problem is inviscid, we need a velocity scale and a density scale. The condition
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on shear stress scaling suggests we choose (U1 − Uc) as the velocity scale and
ρ1 for the density scale. The choice of velocity scale is basically similar to the
use of ∆U for low-speed layers because the two are linked by the relationship:

(U1 − Uc) = ∆U

√
s

1 +
√

s
,

and choosing Uc does not introduce a new variable. We begin by writing the
momentum equation for the dimensionless variables f , g, h, and r defined by:

u = Uc + (U1 − Uc) f (ξ) ,

ρu = ρ1Uc + ρ1 (U1 − Uc) g (ξ) ,

τ = ρ1 (U1 − Uc)
2 h (ξ) ,

ρ = r (ξ) ρ1,

where ξ = y/δ, as before. The definition of g is such that f = g when r
is constant. Because the Prandtl number is one, the total enthalpy is either
constant or a function of velocity only, which implies that there is similarity on
r if the velocity profiles are self-similar. For this reason, the energy equation
is not considered here.

If self-preservation is achieved, it is expected that all dimensionless quanti-
ties depend only on the local variable ξ and not explicitly on x, and that the
value of h at its maximum (where τ = τm) is also independent of x; therefore
τm/ρ1 (U1 − Uc)

2 is also expected to be constant, as in the incompressible case.
The momentum equation becomes:

(
Uc

U1 − Uc

+ g
)

f
δ

U1 − Uc

∂ (U1 − Uc)

∂x
− ∂δ

∂x

(
Uc

U1 − Uc

+ g
)

f ′ξ

− δ

ρ1 (U1 − Uc)

∂ρ1 (U1 − Uc)

∂x
f ′

ξ∫
0

gdξ +
∂δ

∂x
f ′

ξ∫
0

g′ξdξ

= h′ − p0

ρ1 (U1 − Uc)
2

∂p/p0

∂x
. (6.26)

Sufficient conditions for self-preservation are

dδ

dx
= cst,

τm

ρ1 (U1 − Uc)
2 = cst,

δ

(U1 − Uc)

d (U1 − Uc)

dx
= cst,
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δ

ρ1 (U1 − Uc)

dρ1 (U1 − Uc)

dx
= cst,

U1 − Uc

Uc

= cst.

That is, the spreading rate of the layer is constant, as it is for subsonic flows.
Also, the maximum value of the dimensionless shear stress is constant, al-
though the value of the constant will vary with Mach number, as we saw previ-
ously. With our choice of Uc, the ratio (U1 − Uc) /Uc =

√
s (1 − q) / (1 + q

√
s)

is a function of s and q only.
When the conditions in the external flows do not vary with x, Equation 6.26

reduces to:

− f ′ ∂δ

∂x

ξ∫
0

r
(

Uc

U1 − Uc

+ f
)

dξ = h′. (6.27)

So the spreading rate is proportional to the maximum stress, which was also
the case in subsonic flows. Finally, if an eddy viscosity model is used, such
that τ = µt∂U/∂y, Equation 6.27 becomes

− Retf
′ ∂δ

∂x

ξ∫
0

r
(

Uc

U1 − Uc

+ f
)

dξ = rf ′′ + r′f ′, (6.28)

where Ret is the Reynolds number (U1 − Uc) δ/νt. We can expect compress-
ibility effects through the Mach number dependence of the spreading rate, the
turbulence Reynolds number Ret and the density variations. Before we can
continue, we need a model for νt. The treatment given here is based on the
work by Menaa et al. (1996).

By using Equations 6.23 and 6.24, and the relation u2
τ = νt∆U/δ, where δ

is the vorticity thickness, it can be shown that

Uc

U1 − Uc

Ret
dδ

dx
=

1

K (s, q, Mc)

which depends (possibly) on Mc only through K. Hence:

− 1

K
f ′

ξ∫
0

r
(
1 +

U1 − Uc

Uc

f
)

dξ = (rf ′)′ .

Substituting for Uc, we obtain:

− 1

K
f ′

ξ∫
0

r

(
1 +

√
s (1 − q)

1 + q
√

s
f

)
dξ = (rf ′)′ . (6.29)
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So the effect of compressibility can come in only through K, and the rest of the
equation is identical to the equation for mixing layers with variable density.

It is clear that K can be absorbed in the definition of the thickness of the
layer. Changing ξ for η = ξ

√
K would keep the right-hand side of Equa-

tion 6.29 unchanged, and would give the same equation in canonical form
(K = 1):

− f ′
η∫

0

r

(
1 +

√
s (1 − q)

1 + q
√

s
f

)
dη = (rf ′)′ , (6.30)

where the prime denotes differentiation with respect to η. We see now that
the dimensionless velocity profiles depend only on s and q, and not on Mc.
Consequently, we have K = K (s, q). In this simple self-preservation analysis,
all the effects of compressibility are lumped in the spreading rate, and not in
the shape of the velocity profiles. More precisely, the velocity profiles depend
only on (U1 − Uc)/Uc and on s = ρ2/ρ1.

Menaa et al. (1996) solved the previous equation numerically for the vor-
ticity thickness (the value of K depends on the definition of δ), and the values
of K (s, q), for a given distribution of density. To solve Equation 6.30 condi-
tions on the velocity for ξ → ±∞ were imposed, as well as the condition that
(rf ′)′ = 0 for ξ = 0. Redundant conditions can then be used to find the value
of K (s, q). By definition of the vorticity thickness, the maximum slope of the
normalized velocity profile is 1 if the scaling used in Figure 6.10 is adopted.
Therefore, the computations were started with an approximate value of K and
the exact value of K was deduced by imposing a value of 1 on the maximum
slope of the velocity profile. The results shown in Figure 6.11 indicate that
K can vary by more than 50% in extreme cases, and that it has a value of
about 0.16 for constant density flows. The velocity profiles for q = 0 and a
constant total temperature are given in Figure 6.10. The range of values of s
corresponds to a range of convective Mach numbers up to 1. Here, K varies
only by 10%, and therefore the shape of the velocity profile is virtually inde-
pendent of the Mach number. Similar results were obtained by Samimy and
Elliott (1990).

In concluding this section, we should note that because K is not truly
constant, the representation of the shear stress in Figure 6.9 cannot collapse
the data on a single curve. By using K (s, q) from the previous analysis, the
ratio u2

τ/K (∆U)
2
can be examined. This is given in Figure 6.12. In light of the

somewhat reduced scatter seen in the data, it appears that u2
τ/K (∆U)

2
may

be a function of Mc only. So the turbulence measurements tend to confirm,
indirectly, the validity of the present analysis for Mc ≤ 1.
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Figure 6.10. Variation of K as a function of s and q. (From Menaa et al. (1996),
with the authors’ permission.

6.8 Turbulent Normal Stresses

As pointed out in Chapters 3 and 4, changes in the structure of the pressure
field may result in modifications of the Reynolds stress anisotropy. This is why
it is important, especially for turbulence modeling, to see if the anisotropy of
the normal stresses changes when the convective Mach number varies. To
see if these changes are significant, we need to consider measurements of the
Reynolds stresses and the results of numerical simulations.

Unfortunately, measurements of the complete Reynolds stresses are gener-
ally inaccurate. The streamwise component u′2 is most easily measured, and
a number of data sets are shown in Figure 6.13. There is more scatter than
in the measurements of the shear stress, which is surprising because measure-
ments of u′2 are generally easier to make, and thought to be more accurate.
The scatter is greatest for measurements taken in small wind tunnels, and
therefore it may be due to blockage effects. The normalized spreading rate
is also shown for comparison. There is a reasonable collapse of most of the
data points around this curve, and it seems that u′2 varies with Mc accord-
ing to Φ (Mc). Therefore, in the range of transonic convective Mach numbers
for which data are available, it is likely that the effects of compressibility on
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Figure 6.11. Velocity profile in supersonic half jets, for 0 < Mc ≤ 1, q = 0 and a
constant total temperature, plotted in similarity coordinates. (From Menaa et al.
(1996), with the authors’ permission.)

u′2 remain moderate. Further discussion on the effects of compressibility on
Reynolds stress anisotropy is deferred until Section 6.10.

6.9 Space-Time Characteristics

One of the effects of compressibility is to change the shape of the eddies in a
mixing layer. This was observed in numerical simulations of two- and three-
dimensional mixing layers (Chen, 1991; Lesieur et al., 1992; Lele, 1994). At
high convective Mach numbers, shocklets are formed, the eddies become more
elongated, and there is a progressive inhibition of pairing. The turbulent
structures also become more three-dimensional, which was first inferred from
linearized stability theory and numerical simulations (Betchov and Criminale,
1975; Sandham and Reynolds, 1989).

For Mc ≤ 0.6, the more amplified modes are two-dimensional, but at higher
Mach numbers, the more amplified modes are oblique waves and the eddies
become more like horseshoes. Chen (1991), for instance, performed a direct
numerical simulation of a temporally evolving mixing layer at two convective
Mach numbers, 0.4 and 0.8, and showed that compressibility enhanced the
three-dimensionality of the flow. What is particularly interesting is the effect
on the scalar concentration distributions. At the lower convective Mach num-
ber the spanwise rollers bring the fluid from the high- and low-speed sides into
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Figure 6.12. Variation of u2
τ

/
K (∆U)2 as a function of s and q. , Bonnet et al.

(1993); •, Elliott and Samimy (1990); ×, Bradshaw (1966); ◦, Liepmann and
Laufer (1947); �, Wygnanski and Fiedler (1970); �, Samimy and Elliott (1990);
+, Ikawa and Kubota (1975); ∗, Dutton et al. (1990); �, Petrie et al. (1986); �,
Wagner (1973); , Chinzei et al. (1986). ——–, Langley curve using K = 0.17 in
Equation 6.24; (Adapted from Menaa et al. (1996), with the authors’ permission.)

Figure 6.13. Distribution of the maximum value of u′2
/

(∆U)2 as a function of
convective Mach number. The bars indicate the measurements as reassessed by
Barre et al. (1994). Symbols as in Figure 6.6, except is now Olsen and Dutton
(2003), and the symbol - is Urban and Mungal (2001). The Langley curve and
Dimotakis’ relationship are multiplied by a constant factor of 3 × 10−3.
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the center, and the concentration profiles show a well-defined peak at this loca-
tion. At the higher convective Mach number, the presence of three-dimensional
Λ-shaped vortices lead to local upwash and downwash regions that create pock-
ets of partially mixed fluid near the tips of the vortices (Figure 6.14). As a
result, the instantaneous concentration profiles show two preferred mixture
fractions at a given position in the layer (Figure 1.12). The direct simulations
by Fouillet (1991) and Lesieur (1994) confirm that the vortex lines become
more three-dimensional, and show that the pressure contours tend to form
longitudinal tubes. They also found that pairing is inhibited, which may be
one of the causes for the smaller spreading rate and reduced turbulence lev-
els. Flow visualization in turbulent mixing layers does not reveal the obvious
horseshoe shapes seen by Chen, but it indicates that at large convective Mach
numbers small scales appear on the interface between the eddies and the sur-
rounding flow, suggesting a change in the dynamics of large-scale structures,
and also that the large scales experience an increasing loss of coherence, as
shown in Figure 1.11 (see also Clemens and Mungal (1992a, 1995), Messer-
smith et al. (1991), and Samimy et al. (1992)). This seems consistent with
some recent spectral measurements by Dussauge and Dupont (1995), where
it was found that in supersonic mixing layers the energetic range contained
much smaller scales than at low speeds for a given thickness of the layer.

Another important feature is the speed at which the eddies are convected.
In our analysis, we used very crude assumptions to represent this property, in
that a single convection velocity was used, equal to the speed of the stagnation
points, and it was necessary to make an assumption about the variations of
entropy in the flow to derive analytical expressions. That is, we assumed a
“frozen” row of eddies that move without changing their shape. This crude
representation helped classify the global properties of the layers such as the
eddy diffusivity, and it was useful in examining self-preserving solutions. How
far can the large-scale structures of the shear layer, which control most of
turbulent transport, be represented by this parameter? Two approaches can
be followed. The first is related to the eddy diffusivity scheme given in Equa-
tion 6.25. This relationship shows that if the spreading rate and the maximum
shear stress are known, a convection velocity can be determined. In this sim-
ple model, the convection velocity represents a transformation between time
and space, and it applies to the structures that make the dominant contribu-
tion to the diffusion of momentum. The convection velocity appears as the
ratio of the temporal growth rate in a convected frame Ku2

τ/∆U to the spatial
growth rate dδ/dx. The most questionable point is the value of K which has
not been completely established by experiments. However, this method was
believed to give at least qualitative information on the convection velocity of
the momentum-diffusing eddies.

The result is given in Figure 6.15, where Mc1 and Mc2 were deduced from
Uc. The limited accuracy of the method is obvious, because uτ and dδ/dx are
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Figure 6.14. Conceptual drawing illustrating the generation of “upwash” and
“downwash” regions by the Λ vortices (Mc = 0.8). (From Chen (1991), with
permission of the author.

probably not known to an accuracy better than 10%. The two solid lines in
Figure 6.15 were drawn to correspond to a 10% uncertainty on uτ . The data
points between these two lines represent the cases for which the convection
velocity is in agreement with the isentropic estimate, to within the accuracy
of the method. Clearly there are some flows in which there are significant
deviations from the isentropic approximation, but again these cases were the
ones that may have experienced significant blockage effects.

Measurements of the phase and group velocities give information on the
speed at which the large-scale structures are convected. Such measurements
were performed using hot-wire anemometers by Ikawa and Kubota (1975) and
by Dupont et al. (1995) for Mc ≤ 1 in flows with moderate confinement, over
a range of frequencies. For high frequencies, the flow was not dispersive and
all the perturbations traveled with the same speed, which was close to the
local mean velocity. For low frequencies, that is, for length scales of the order
of 5δ, the convection speed of the perturbations was very different from the
isentropic convection velocity. In these flows, the increase of entropy is not
large, and the shocklets, if present, are not strong. Such asymmetric convec-
tive Mach numbers can probably be explained using the results obtained by
Si-Ameur (1994) through direct simulations of three-dimensional mixing-layers
for transonic convective Mach numbers. He found that for δ/h > 0.1 (where
h is the channel height), transonic effects create shocklets on one side of the
layer, producing an asymmetric behavior where Mc1 �= Mc2. Such effects are
clearly not related to the properties of mixing layers, because they are just a
consequence of the relative size of the channel. However, this is an important
observation for supersonic mixing applications, in which the shear layers, prior
to combustion, fill the entire chamber. These characteristics represent the ef-
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Figure 6.15. Experimental verification of the isentropic approximation for the
convection velocity. 	, Barre et al. (1994). Other symbols as in Figure 6.12, except

is now Lau (1981). The two outside lines represent ±10% uncertainty limits.

fect of boundary conditions and they are not related to local properties, and
therefore they cannot be computed by one-point, turbulence-closure assump-
tions. At a minimum, large eddy simulations are required to reproduce such
effects. Finally, we should note that current models for compressible turbu-
lence emphasize the importance of energy dissipation in shock waves and the
losses of energy through acoustic radiation. These assumptions are based on
the results of direct numerical simulations, and although it seems likely that
these phenomena occur in practice, they have not been checked by direct mea-
surements of the turbulent kinetic energy budgets. One of the few attempts
was made by Chambres et al. (1997) for a convective Mach number close to
one; his results do not support the idea of a drastic modification of the sum
of dissipation and pressure divergence terms.

6.10 Compressibility and Mixing

The previous sections have highlighted the experimental evidence for the de-
crease in the spreading rate, turbulence level, and Reynolds stresses with in-
creasing Mach number (that is, convective Mach number). This section pro-
poses an interpretation for these observations. The analysis reproduced here
is essentially due to Vreman et al. (1996), who used it to interpret direct nu-
merical simulations of temporal mixing layers with the same density in both
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external flows. Similar arguments were used by Freund et al. (2000) for annular
temporal mixing layers with moderate differences in density, and by Pantano
and Sarkar (2002) in a plane mixing layer with either the same or different
densities on the two sides of the layer (see also Chassaing et al. (2002)). The
analysis is applied to temporal mixing layers, but the arguments are simple
enough to be transposed to the case of a steady spatial mixing layer, as is
shown.

Vreman et al. (1996) consider the integral (momentum) thickness:

θ =
1

ρ∞ (∆U)2

∫ δ1

δ2
ρ̄
(
U1 − Ũ

) (
Ũ − U2

)
dy (6.31)

in which δ1 and δ2 are the edges of the layer, and ∆U = U2 − U1. It is clear
that if there exists some relation between U and ρ, this momentum thickness
must be proportional to δ = δ1 − δ2. For example, with a linear velocity
profile in the layer and a constant density, θ = δ/6. In the case of a flow with
constant total enthalpy density will affect the results, but its influence can be
estimated as follows. First, because U and ρ have the same sense of variation,
the weighting introduced by ρ/ρ1 will give favor zones of larger velocity, and
an increase in θ can be expected. This can be estimated in the following way:
for one half of a temporal mixing layer:

U

U1

=
y

δ
and T0 = constant.

It follows that

θ

δ
=

1

(γ − 1) M2
1

⎡⎣2 + ln

⎛⎝ 1

1 − (γ−1)
2

M2
1

⎞⎠−
√

2

γ − 1

1

M1

ln

⎛⎝1 +
√

γ−1
2

M1

1 −
√

γ−1
2

M1

⎞⎠⎤⎦ ,

(6.32)

where M1 is the Mach number based on U1 and T0. The values of this expres-
sion do not vary much: for M1 = 0, this expression is 0.167 (= 1/6), and for
M1 = 1 (a convective Mach number of about 1.1), it is 0.178. The influence
of density is therefore rather weak. Moreover, as θ is larger for high Mach
numbers, a decrease of θ with convective Mach number will correspond to a
still larger decrease of a thickness based on velocity profiles. Therefore, in
cases where the density is the same on both sides of the temporal layer, the
variations of the momentum thickness constitute a reasonable indicator of the
spreading rate.

Taking the time derivative of Equation 6.31, while taking into account the
integrated momentum equation and mean kinetic energy equation, leads to
much simplification: the integration in a section removes the diffusion term
and the longitudinal derivatives vanish because the fields are statistically ho-
mogeneous in the x-direction. The only remaining terms are the volume terms,
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that is, the production and the viscous dissipation in the mean motion, which
is, as usual, negligible in high Reynolds number flows. The final result shows
that the time derivative of the integral thickness (essentially proportional to
the spreading rate) is proportional to the integral of production. That is,

dθ

dt
=

2

ρ∞ (∆U)2

∫ (
−ρu′v′∂Ũ

∂y

)
dy. (6.33)

This result indicates that the decrease in the spreading rate is directly linked
to the decrease in turbulent production. This is not totally surprising. In
Section 6.6 a relation between maximum friction and spreading rate was pro-
posed:

dδ

dx
=

1

K

u2
τ

∆UUc

,

where u2
τ = max (−u′v′), the maximum shear stress per unit mass. Accepting

the approximation Uc(∂/∂x) = d/dt (see Dimotakis (1991) for a discussion of
relations between temporal and spatial shear layers), Equation 6.33 becomes:

dδ

dt
=

1

K

u2
τ

∆U
.

Assuming self-similar shapes of profiles and averaging (6.24) over a section,
we obtain:

dθ

dt
=

C ρ̄

ρ1

u2
τ

∆U
,

which is of the same form as the relation derived in Section 6.6. Therefore Vre-
man et al. (1996)’s analysis is consistent with the results based on dimensional
analysis of a diffusion problem in a convection frame of reference.

Vreman et al. propose further analysis in terms of turbulent kinetic energy
and Reynolds stresses. It has been remarked by most of contributors (Vreman
et al. (1996), Freund et al. (2000), and Pantano and Sarkar (2002), among
others) that the dilatational dissipation and pressure divergence terms in the
equation for turbulent kinetic energy k are small compared to solenoidal dissi-
pation and production. The key for the explanation of compressibility effects
should therefore be sought in other contributions, such as the turbulent diffu-
sion and/or pressure strain terms. Vreman et al. consider the Reynolds stress
equations integrated over a section to remove the diffusion terms. Therefore,
their conclusions will be relevant to global levels of turbulence, without respect
to modifications of the shape of the profiles, which could happen through a
diffusive process.

Equation 6.33 indicates that the reduction of the spreading rate is related to
the production of the diagonal stress R11 = (1/δ)

∫
ρu′2dy, that is, the average

of the longitudinal stress over a section. Final elements of understanding are
found by examining the anisotropy tensor bij = Rij/Rkk−δij/3 and considering
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the b11 component. By using the DNS result that the anisotropy of dissipation
is not significant, it is found to a good approximation that

dθ

dt
= − 3

2ρ1 (∆U)2 Π11 (6.34)

in which Π11 is the pressure strain term. This simple result is most probably
valid because simulations show that the pressure strain is almost proportional
to production, as in most incompressible shear layers. This finding is consis-
tent with many simulation results (Vreman et al., 1996; Freund et al., 2000;
Pantano and Sarkar, 2002): normalized rms pressure decreases with convective
Mach number. In any case, although Equation 6.34 is very simple, it suggests
an important result. The decrease of the spreading rate of the mixing layer is
the footprint of a modification in the structure of pressure fluctuations, and
this has dramatic consequences at a macroscopic level: elementary measure-
ments of the growth rate give a global measure of the alteration of pressure
strain terms in the Reynolds stress equations.

Is this result general, and can it be applied to the spatial mixing layers we
observe in nature and in wind tunnel experiments? In this case a space deriva-
tive of some scale directly linked to the layer thickness should be considered,
instead of a time derivative. As the relation between space and time involves
a velocity, we need either to transform the time derivative into a space deriva-
tive through some convection velocity, or directly to define another integral
thickness. The second solution is more straightforward. It may be checked
that the thickness θs defined by:

θs =
1

ρ∞ (∆U)3

∫
ρ̄Ũ
(
U1 − Ũ

) (
Ũ − U2

)
dy

shares, for the spatial, statistically steady problem, most of its properties with
θ in the temporal homogeneous problem. In particular, it may be verified that,
applying the same considerations as in the temporal problem, the companion
relation of Equation 6.33 is obtained:

dθs

dx
=

1

ρ∞ (∆U)3

∫ (
−ρu′v′∂Ũ

∂y

)
dy, (6.35)

so that the same conclusions can be drawn as for the temporal mixing layer.
The modification of the structure of pressure is consistent with the results of

Durbin and Zeman (1992), Jacquin et al. (1993), and Sarkar (1995) for linear
and nonlinear analyses. Now, we should examine possible consequences of this
result: if the pressure strain terms are modified, their redistribution role may
be altered or hampered, and consequently the anisotropy of turbulence may
be changed. This conclusion is difficult to verify experimentally because we
do not have measurements of the pressure strain terms. Similarly, because of
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Figure 6.16. Influence of of convective Mach number on stress ratio. Symbols as in
Figure 6.6, except is now Olsen and Dutton (2003), the symbol – is now Bellaud
(1999), and the symbol - is Urban and Mungal (2001). ——– , Sarkar (1995); — — ,
Freund et al. (2000); - - - - - , Pantano and Sarkar (2002); —- - - , Vreman et al.
(1996).

the restrictions governing numerical techniques for highly compressible flows,
the simulation results may not be conclusive. Considering the scarcity of
Reynolds stress measurements and their limited accuracy (see Section 6.8), it
also seems difficult to test the anisotropy tensor u′

iu
′
j/u

′
ku

′
k − δij/3 directly. It

is more sensible to consider the ratio u′v′/u′2 and to compare the prediction
of simulations with experiments, bearing in mind that such a ratio (as the
anisotropy tensor) depends on dissipation and diffusion as well as the pressure
terms. The result is given in Figure 6.16.

The experimental results given in Figure 6.16 include one set of measure-
ments in an annular mixing layer (Bellaud, 1999), the numerical simulations
an homogeneous shear layer (Sarkar, 1995), and an annular mixing layer (Fre-
und et al., 2000). Note that the data from Vreman et al. (1996) are based only
on averages over sections. The overall picture leaves much room for interpre-
tation: the results are somewhat scattered, and no clear trends are apparent.
The discrepancies among numerical simulations are probably as large as those
that exist among the experiments. Note that it is difficult to define a numerical
consensus even for a value at low Mach number. The measurements by Urban
and Mungal (2001) are in good agreement with Pantano and Sarkar (2002)’s
simulations, and experimental data by Bellaud et al. (1997) and Bellaud (1999)
support Freund et al. (2000)’s numerical results in the same geometry. Note
that experiments conducted in noisy wind tunnels may lead to small values of
the ratio u′v′/u′2 because potential fluctuations are developed in the external
flows. Such fluctuations are known for producing velocity variances but weak
fluxes, and thus decrease this ratio. The conclusion is that the overall trend
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seems to be a slight decrease of u′v′/u′2, but nothing spectacular appears from
this compilation. Note also that the change in anisotropy due to compress-
ibility appears to be moderate or weak for convective Mach numbers less than
1.

Are there other possible interpretations for the decreases in the growth rate
and the turbulence levels? It was conjectured some years ago that the large
eddies could induce shock waves in the outer flow, and constitute new sources
of energy dissipation. In addition, this shock (or Mach) wave radiation pro-
vides an efficient source of aerodynamic noise. The formation of shock waves
by the large eddies requires large velocity differences between the turbulent
structures and the outer flow: this can occur at sufficiently large convective
Mach numbers. Moreover, such waves are obvious in two-dimensional numeri-
cal simulations, but not so in the three-dimensional case. Experimentally, they
have been observed in very severe circumstances, such as in counterflows by
Papamoschou (1995), and in mixing layers at high convective Mach number
(Mc ≈ 1.7) by Rossmann et al. (2002). Large eddy detection was performed
by Dupont et al. (1999) at a convective Mach number of 0.62 to determine di-
rectly their convection velocity. They found that the convection velocity was
close to the isentropic estimate, and therefore, in this case, the existence of
shocks of significant strength was not likely. In the supersonic regime, at least
at moderate convective Mach numbers, it appears that energy dissipation by
shocks radiating into the outer flow is not an attractive scenario to explain the
inhibition of mixing.

Another aspect of this question can be examined by considering the gen-
eration of noise by mixing layers. The production of noise by Mach waves or
shocks requires energy, which is taken from the turbulent flow. Debiève et al.
(2000) estimated the energy flux radiated by the acoustic waves in a mixing
layer at Mc = 0.62 by measuring the level of pressure fluctuations in the outer
flow. They showed that this flux was less than 3% of the integral of production
in a section. It was concluded that at these moderate convective Mach num-
bers, acoustic losses could not explain the decrease in the turbulence levels,
and consequently the reduced spreading rate of supersonic mixing layers.

Finally, a comment can be made on the rather good agreement between the
decrease of the growth rate and the decrease of the amplification rate in linear
stability theory. An example, taken from Rossmann et al. (2002), was given
in Figure 6.6. Many authors (Ragab and Wu, 1989; Sandham and Reynolds,
1990; Zhuang et al., 1990; Vreman et al., 1996) have noticed that the growth
rate follows rather closely the amplification rate of the most unstable mode in
linear analysis. Figure 6.6 shows that this is the case, at least up to Mc ≈ 1.
For larger Mach numbers the central mode is not the most important one
and supersonic modes become more important. Of course, this does not mean
that the growth of a mixing layer is a linear process. Probably the mechanisms
leading to the linear spreading rate of the layer, although nonlinear, depend on
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the primary development of the Kelvin-Helmholtz instability. Vreman et al.
(1996) proposed another interpretation: they remarked that in their simulation
and in their linear analyses, the pressure field structurally follows the same
trend as in linear analysis at least up to Mc ≈ 0.6, (which is at the onset of
three-dimensional instabilities), and that consequently this can be related to
the growth rate of the shear layer.

It can be concluded that the modification of the structure of pressure in-
side the turbulent shear layer is the key to explaining the observed behaviors,
and that this can be parameterized in a first analysis by a convective Mach
number. Two comments follow. First, we presented in Sections 6.3 and 6.4
the convective Mach number as an indicator of the organization of the pres-
sure field in the external flows. We now propose that Mc can also characterize
the pressure field in the shear layer itself. Second, the models used for the
computation of compressible turbulent flows are often a pure extrapolation of
incompressible models. The present discussion, however, shows clearly that
the level of turbulence is affected by high speeds, and that there is a direct
action on turbulent fluxes which cannot be reduced to incompressible, vari-
able density problems. Moreover, the analysis shows that model adaptation
should not be made by changing the dissipation rate or the pressure divergence
terms, as hypothesized in other attempts at modeling. In terms of practical
applications, it is fortunate that the anisotropy of turbulence seems hardly
affected by compressibility. Possible adaptations include the modification of
the pressure strain terms in Reynolds stress closures, or a direct sensitizing of
the eddy viscosity in two-equation models. In this case, because the convec-
tive Mach number is not a local parameter, a gradient Mach number could be
used. Finally, a set of accurate measurements of turbulence in well controlled
conditions is still needed to provide unambiguous tests of these hypotheses.

6.11 Final Remarks

It appears that some further information on low-speed mixing layers is required
to help clarify the global effects of compressibility. However, all the results pre-
sented in this chapter indicate that the properties of the large-scale eddies are
consistent with the global features governing the turbulent transport, and that
the convective Mach number concept, although it has a number of limitations,
remains a robust concept for classifying the effects of compressibility.

As a final note, we see that the scalar concentration distributions calculated
by Chen (Figure 1.12) indicate that considerable mixing still takes place within
compressible mixing layers, despite the fact that the growth rate decreases
with increasing Mach number. The increased three-dimensionality obviously
acts to mix the flows effectively. There have been a number of attempts to
increase the mixing layer growth, primarily by efforts to increase the degree of
three-dimensionality in the flow. For example, Shau and Dolling (1989) used
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vortex generators placed in the upstream boundary layer on the high-speed
side to impose a spanwise distortion of the shear layer. Presumably, the vortex
generators would be most effective if spaced so as to amplify the “naturally
occurring” longitudinal vortices observed by Konrad (1977) in subsonic flows,
but of course there is some question whether the same structure is present
at high convective Mach number. Instead of vortex generators, Clemens and
Mungal (1992b) used a swept shock, generated by a sidewall interaction, to
produce kinks in the layer, and mixing was enhanced not so much by an
increase in the shear layer growth rate as by an increase in the area of the
interface between turbulent and nonturbulent fluid. Similarly, Poggie et al.
(1992) used blowing in the direction of the velocity gradient, where the blowing
strength varied in the spanwise direction, to kink the shear layer and increase
its entrainment area. Similar blowing with constant strength across the shear
layer produced only a deflection of the shear layer without enhancing mixing
noticeably. This is in accord with the work of Shau and Dolling (1989) who
showed that two-dimensional interactions with shocks produced shear layer
deflections without enhancing mixing.

More recently, similar ideas were used by Naughton et al. (1997) to enhance
mixing by using swirl in axisymmetric jets. Collin (2001) used small cross-jets
to control mixing in compressible jets, with the conclusion of the importance
of the increase of the area of turbulent/nonturbulent fluid interface.



Chapter 7

Boundary Layer Mean-Flow
Behavior

7.1 Introduction

For incompressible flows, the most important parameter in the description
of turbulent boundary layer behavior is the Reynolds number. Engineering
applications cover an extremely wide range, and Reynolds numbers based on
streamwise distance can vary from 105 to 109. Most laboratory experiments
(and all DNS calculations) are performed at the lower end of this range, and to
be able to predict the behavior at very high Reynolds numbers it is important
to understand how turbulent boundary layers scale.

For compressible flows, the Mach number becomes an additional scaling pa-
rameter. Because of the no-slip condition, a significant Mach number gradient
exists across the boundary layer at supersonic speeds, and a subsonic region
persists near the wall, although the sonic line is located very close to the wall
at high Mach number. A strong temperature gradient develops across the layer
due to the high levels of viscous dissipation near the wall, exaggerating the
variation in the Reynolds number that exists even in subsonic flows. Because
the static temperature variation can be very large even in an adiabatic flow,
a low-density, high-viscosity region exists near the wall. In turn, this leads to
a skewed mass flux profile, a thicker boundary layer, and a region in which
viscous effects are somewhat more important than at an equivalent Reynolds
number in subsonic flow.

In Chapter 1 we introduced some of the distinguishing characteristics of
turbulent boundary layers in supersonic flow. In particular, we discussed the
role of temperature variations, and showed some examples of boundary layer
profiles on adiabatic, isothermal, and cooled walls (Figures 1.1 and 1.2). It was
clear that any comparisons between subsonic and supersonic boundary layers
must take into account gradients in Mach number, as well as variations in
fluid properties, which may be strong enough to lead to unexpected physical
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phenomena. Intuitively, we expect to see significant dynamical differences
between subsonic and supersonic boundary layers, but it appears that many
of these differences can be explained by simply accounting for the fluid property
variations that accompany the temperature variation, as would be the case in
a heated incompressible boundary layer.

The dominating factor in the compressible turbulent-boundary layer
problem is apparently then the effect of high temperature on the
velocity profile near the wall and therefore on the shear stress. This
latter observation was first advanced by von Kármán in 1935 but
has been somewhat neglected in favor of interpolation formulae or
of elaborate generalizations of the mixing length hypothesis. (Part I
of Coles (1953)).

This suggests a rather passive role for the density differences in these flows,
most clearly expressed by Morkovin’s hypothesis (see Chapter 5), where the
dynamics of a compressible boundary layer are expected to follow the incom-
pressible pattern closely, as long as the Mach number associated with the
fluctuations remains small. We can interpret that conclusion to mean that the
fluctuating Mach number M ′ remains small, where M ′ is the fluctuation of the
instantaneous Mach number from its mean value, taking into account the fact
that both the velocity and the sound speed vary with time. That is, for small
fluctuations,

M ‘ = M − M = M

(
u′

U
− T ′

2T

)
.

If the rms value of the fluctuating Mach number approaches unity at any point,
we expect direct compressibility effects such as local shocklets and pressure
fluctuations to become important. If we take M ′

rms = 0.3 as a threshold, we
find that for zero pressure gradient adiabatic boundary layers at moderately
high Reynolds numbers the freestream Mach number where compressibility
effects become important for the turbulence behavior is about 4 or 5 (see
Figure 7.1).

In this chapter we consider more fully the characteristics of the mean veloc-
ity and temperature distributions in zero pressure gradient, flat-plate boundary
layers in steady supersonic flow, under conditions where Morkovin’s hypothesis
is expected to hold. The Favre averaged equations of motion for this case were
derived in Chapter 3 by applying the usual thin shear layer approximations to
the continuity, momentum, and energy equations (see Equations 3.24 through
3.26). We are primarily concerned with scaling laws because the equations
of motion, even for thin shear layers, cannot be solved without further ap-
proximations. Scaling laws are useful because they allow interpolation (and
sometimes extrapolation) of our existing knowledge to cases where we have
no previous experience. For example, studies of low Reynolds number, incom-
pressible turbulent boundary layers have given a good deal of insight into the
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Figure 7.1. Fluctuating Mach number distributions (rms value, estimated using
SRA and Morkovin’s hypothesis). Flow 1: Me = 2.32, Reθ = 4, 700, adiabatic wall
(Eléna and Lacharme, 1988); Flow 2: Me = 2.87, Reθ = 80, 000, adiabatic wall
(Spina and Smits, 1987); Flow 3: Me = 7.2, Reθ = 7, 100, Tw/Tr = 0.2 (Owen and
Horstman, 1972); Flow 4: Me = 9.4, Reθ = 40, 000, Tw/Tr = 0.4 (Laderman and
Demetriades, 1974). (Figure from Spina et al. (1994). Reproduced, with permission,
from Annual Reviews, Inc.)

behavior of wall-bounded turbulent flows. The mean flow, the turbulence dis-
tributions and their statistical properties have been extensively documented.
Furthermore, the nature of the small- and large-scale motions has been studied
in detail, and although there is still widespread disagreement on the details
of the turbulence dynamics, some consensus on the kinematic behavior seems
to be building (see, for example, Robinson (1991a,b)). If we understood the
basic scaling laws that apply to boundary layers, we could extend this knowl-
edge to describe flows at much higher Reynolds number, and at supersonic
and hypersonic Mach numbers. Scaling laws give a unifying framework to our
knowledge, and their derivation and validation is one of the important tasks
of turbulence research.

Scaling laws require a set of characteristic scales. In deriving the thin shear
layer equations, it was assumed that the shear layer grows slowly, so that all
derivatives in the streamwise direction (with the exception of the pressure gra-
dient) are at least an order of magnitude smaller than the derivatives in the
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direction normal to the wall, and that the turbulence Mach number Mt (and
M ′) is small. By assuming a set of characteristic length and velocity scales,
an order-of-magnitude analysis is then used to simplify the full equations. In
order to consider scaling laws, however, we need to examine the characteristic
scales in more detail. For boundary layers, there are at least two distinct sets
of scales, one for the inner flow near the wall where viscous stresses are im-
portant, and one for the outer flow where the turbulent stresses dominate and
viscous stresses can be neglected. We need to consider both incompressible
and compressible flow scaling, to try to distinguish between Reynolds num-
ber and Mach number dependencies. In general, we assume that Reynolds
number variations carry over unchanged from incompressible to compressible
flows. This assumption is not entirely justified, because changes in Mach and
Reynolds numbers are closely coupled (for example, temperature gradients
affect both parameters directly), and care must be taken in interpreting the
data. By considering subsonic and supersonic boundary layers together, we
also provide a bridge between the incompressible and compressible flow com-
munities. The discussion given here extends the work reported by Fernholz
and Finley (1980) and Dussauge et al. (1996). We generally ignore the differ-
ences between mass averaged and Reynolds averaged quantities. In all of the
remaining chapters, primes denote fluctuating quantities, and the overbars on
the mean velocities have been dropped for simplicity.

7.2 Viscous Sublayer

In the viscous sublayer of a compressible boundary layer, the proper velocity

scale is uτ

√
ρw/ρ and the length scale is νw/uτ , but an order of magnitude

analysis leads to the same conclusion as in low-speed flows and as given in
Section 3.3 (Equations 3.21 and 3.22). The usual derivation of the velocity
distribution in the inner region of a flat plate boundary layer is based on the
assumptions:

(1) That the convective terms in the equation of motion are small compared
with the viscous term;

(2) That the total stress τ = µ (∂ū/∂y)− ρ̄u′v′ is constant in the inner region
and equals τw;

(3) Morkovin’s hypothesis holds, in that the structure of the turbulence does
not change significantly due to compressibility effects.

We need a temperature-velocity relationship, and we assume the quadratic
profile originally due to Walz (1966) (Equation 5.28):

T

Te

=
Tw

Te

+
Tr − Tw

Te

(
u

ue

)
− r

(γ − 1)

2
M2

e

(
u

ue

)2

, (7.1)
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which holds for zero pressure gradient flow. The recovery factor r is given by:

Tr − Tw

Te

= 1 + r
(γ − 1)

2
M2

e − Tw

Te

= −qwuePw

CpτwTe

,

where Pw = (Cpµ/k)w. Equation 7.1 may also be written as:

T

Tw

= 1 − P
Tτ

Tw

u+ − rM2
τ

(γ − 1)

2
u+2

, (7.2)

where u+ = u/uτ , Mτ = uτ/
√

γRTw is the friction Mach number, Tτ =

qw/ρwCpuτ is the friction temperature, uτ =
√

τw/ρw is the friction velocity,
and P is the molecular Prandtl number.

The no-slip condition requires that u, v, u′, and v′ must approach zero
as the wall is approached. If it is assumed that in this viscous sublayer the
molecular shear stress µ (∂u/∂y) is large compared with the Reynolds shear
stress −ρ̄u′v′, then:

∂

∂y

(
µ

∂u

∂y

)
= −dp

dx
, (7.3)

because the convective terms become very small as the wall is approached.
That is, at the wall, the pressure gradient is balanced by the viscous stress.
For a zero pressure gradient flow, the stress is constant in the near-wall region
and equal to the skin friction τw. Hence,

µ
∂u

∂y
= τw. (7.4)

This result for the inner layer is the same for compressible and incompressible
flows, to the extent that we can ignore the differences between mass averaged
and Reynolds averaged quantities.

When the flow is incompressible, Equation 7.4 can be integrated directly
so that

u =
τw

µ
y, (7.5)

which is usually written in the form:

u

uτ

=
yuτ

ν
. (7.6)

Here, ν/uτ represents the inner layer or viscous length scale. Equation 7.6 is
also written as u+ = y+, where the superscript (+) denotes normalization with
inner variables (uτ for velocity and ν/uτ for length). So, for a zero pressure
gradient incompressible flow, the velocity near the wall varies linearly with
distance from the wall. This result continues to hold in flows with pressure
gradients as long as the flow is not accelerating or decelerating very rapidly
see also Tennekes and Lumley (1972)). The region where the velocity profile
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follows Equation 7.6 is called, naturally enough, the linear region of the viscous
sublayer.

In high-speed compressible flows, the increased dissipation rate in the vis-
cous sublayer raises the local temperature so that at a fixed Reynolds number
the sublayer thickness increases with increasing Mach number. The same ef-
fect is responsible for the observed increase in the thickness of the laminar
boundary layer at high Mach numbers (see, for example, van Driest (1951)).
Because the temperature affects the viscosity, Equation 7.4 now reads:

∂u

∂y
=

u2
τ

νw

(
Tw

T

)ω

(7.7)

in which the variation of the viscosity with temperature was assumed to be
given by:

µ

µw

=
(

T

Tw

)ω

. (7.8)

Using the quadratic form of the temperature distribution given by Equation 7.1
(we assume dp/dx = 0), Equation 7.7 yields:

U s

uτ

=
yuτ

νw

, (7.9)

where the transformed mean velocity in the sublayer U s is defined by

U s =

U∫
0

(
T

Tw

)ω

du. (7.10)

We see that the transformed velocity U s has a linear distribution similar to
that seen for the velocity in the viscous sublayer of an incompressible turbulent
boundary layer, and to which it reduces for T = Tw. Also, with ω = 1:

U s = u

[
1 + 1

2
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]
, (7.11)

in which
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(
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and

b2 = r
γ − 1

2
M2

e

Te

Tw

. (7.13)

For air, ω �= 1, but it is close to one (=0.76) and the trends given by Equa-
tions 7.11 to 7.13 are believed to constitute a good approximation.



7.3. LOGARITHMIC REGION 185

7.3 Logarithmic Region

Farther from the wall, outside the viscous sublayer, the gradients of turbulent
stresses become important but the convective terms remain small, so that,
approximately:

∂

∂y

(
µ

∂u

∂y
− ρu′v′

)
=

∂τ

∂y
=

dp

dx
. (7.14)

For a zero pressure gradient flow, we see that the total stress τ is constant in
the near-wall region, and equal to the wall stress τw. For flows with an adverse
pressure gradient (dp/dx > 0), the total stress will increase with distance from
the wall, and for a favorable pressure gradient (dp/dx < 0) it will decrease
with distance from the wall. However, if the pressure gradient is not too large
and the wall stress not too small, then the total stress is still approximately
constant for small distances from the wall.

7.3.1 Incompressible Flow

For incompressible flow, Prandtl (1933) argued that the viscosity and wall
shear stress are the important parameters governing the inner, near-wall flow
(including the linear part of the sublayer). That is, the velocity must have the
following functional dependence:

u = f(y, τw, ρ, µ), (7.15)

which simplifies to Equation 7.5 very close to the wall (note that Equation 7.5
is independent of density, whereas Equation 7.15 is not). Because of this
asymptotic behavior, in particular that the convective terms are small in the
near-wall region, there is little controversy over the mean-flow scaling in the
inner region. Moreover, there is a great deal of experimental support for these
conclusions.

In the outer layer, viscosity is less important, but the presence of the wall
is still felt through the magnitude of the wall shear stress. Thus, von Kármán
(1930) suggested that for subsonic flow the velocity defect ue − u should have
the following functional dependence,

ue − u = g(y, δ, τw, ρ). (7.16)

As pointed out by Cousteix (1996), this argument may be flawed. In particular,
the inner boundary condition on Equation 7.16 may depend on viscosity. For
example, on a rough wall, this boundary condition depends on viscous scales.
However, the same functional dependence may be assumed for the velocity
gradient,

∂u

∂y
= g′ (y, δ, τw, ρ) ,
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which suggests
ue − u = g′′ (y, δ, τw, ρ) + C,

where C may depend on viscosity.
Using a different approach, Zagarola and Smits (1998a) argued that the

outer layer velocity scale u0 need not be the same as the inner velocity scale
uτ , although they should become proportional to each other at high Reynolds
numbers. This argument permits the appearance of a power law, rather than
a log-law in the mean velocity profile near the wall. Their pipe flow data,
taken over a very wide Reynolds number range, support these notions, in
that the region near the wall showed a power-law scaling (with a constant
and exponent independent of the Reynolds number), and a logarithmic region
appeared only at very high Reynolds numbers for distances sufficiently far
from the wall. Although the differences between the power-law and the log-law
representations were not large, they imply that viscous effects on the mean flow
persist at distances from the wall greater than previously acknowledged. For
pipe flows, u0 was taken to be uCL−〈u〉, and uCL is the centerline velocity and
〈u〉 is the bulk velocity. For boundary layers, they suggested that u0 = (δ∗/δ)ue

(Zagarola and Smits, 1998b), which has been shown to collapse the outer flow
extremely well, over a wide range of pressure gradients (Castillo and George,
2000). Nevertheless, the distinctions between scaling on uτ or on u0 are rather
fine, and require very accurate measurements over large Reynolds number
ranges to become apparent. For the purposes of scaling boundary layers,
especially in compressible flows where the data typically display large scatter,
these distinctions are ignored, and we assume traditional scaling arguments
continue to hold without change.

Accordingly, dimensional analysis of Equations 7.15 and 7.16 leads to

u

uτ

= f
(

yuτ

ν

)
, (7.17)

or
u+ = f

(
y+
)
, (7.18)

and
ue − u

uτ

= g
(

y

δ

)
, (7.19)

or
u+

e − u+ = g (η) , (7.20)

where η = y/δ. Equation 7.17 is known as the law-of-the-wall , and is valid in
the inner layer. Equation 7.19 is known as the defect law (similar to Coles’s
concept of a law-of-the-wake), and is valid in the outer layer. Rotta (1950,
1962) suggested that the defect law should be written as

ue − u

uτ

= g
(

y

δ
,
uτ

ue

)
, (7.21)
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where uτ/ue indicates a weak or vanishing Reynolds number dependence. The
function g in Equation 7.20 has been found to depend strongly on the pressure
gradient, whereas the function f in Equation 7.18 is effectively invariant for
boundary layers with adverse and slightly favorable pressure gradients (see
Patel (1965)), although the extent of the region over which this scaling holds
may shrink considerably.

Millikan (1938) proposed that at large enough Reynolds numbers (where
the uτ/ue dependence is assumed to vanish), there may exist a region of overlap
where both the inner and outer similarity laws are simultaneously valid. In
this overlap region, where ν/uτ 
 y 
 δ, the velocity gradients given by
Equations 7.17 and 7.19 match, so that:

y
∂u+

∂y
= y+ ∂f

∂y+
and y

∂u+

∂y
= −η

∂g

∂η
.

Hence,

y+ ∂f

∂y+
= −η

∂g

∂η
=

1

κ
.

This relationship should be valid for y+ → ∞ and η → 0, with a finite, nonzero,
constant value of κ. We can now obtain two forms for the (incompressible)
law-of-the-wall and defect law in the overlap region:

u

uτ

=
1

κ
ln
(

yuτ

ν

)
+ C, (7.22)

and
ue − u

uτ

= −1

κ
ln
(

y

δ

)
+ C ′, (7.23)

where C, C ′, and κ (called von Kármán’s constant) may or may not be
Reynolds number dependent. Thus, the velocity profile in the overlap region
is logarithmic, and the overlap region is often referred to as the logarithmic
region.

For the inner layer representation of the log law (Equation 7.22, it is of-
ten assumed that the constants are independent of Reynolds number. The
von Kármán constant κ is usually taken to be around 0.40, but many different
values have been reported in the literature (see Table 7.1). Recently there
has been a trend for the boundary layer values to diverge from the pipe flow
values, but because a decreasing value of κ is usually associated with a de-
cereasing value of C, the quality of the fit to the data in the overlap region
does not vary dramatically, at least at moderate Reynolds numbers, so that
in practice small differences in the constants do not have a major impact on
the interpretation of the data. This is illustrated in Figure 7.2, where it is
shown that for all published values of κ and C the differences in u/uτ are less
than about ±0.5 over the range 100 ≤ y+ ≤ 10, 000. Here, for purposes of
comparison, we adopt the values of 0.40 and 5.1 for κ and C, respectively.
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Authors κ C Flow

Coles (1956) 0.40 5.10 Boundary layer

Coles (1962) 0.41 5.0 Boundary layer

Huffman and Bradshaw (1972) 0.41 5.0 Boundary layer

de Brederode and Bradshaw (1974) 0.41 5.2 Boundary layer

Österlund et al. (2000) 0.38 4.10 Boundary layer

Patel (1965) 0.418 5.45 Pipe

Zagarola and Smits (1998a) 0.436 6.15 Pipe

McKeon et al. (2004) 0.421 5.60 Pipe

Table 7.1. Published values of the constants in Equation 7.22. Note that the
values given by Zagarola and Smits (1998a) are superseded by the values derived by
McKeon et al. (2004).

Before proceeding, we note that the constants of integration, C and C ′,
depend on the inner limit of the integration. For example,

C =
u1

uτ

− 1

κ
ln

y1uτ

ν
, (7.24)

where the suffix 1 indicates the boundary condition at the inner limit of validity
of the logarithmic region. Duncan et al. (1970) point out that this inner limit
is Reynolds number dependent, and therefore C and C ′ must also be Reynolds
number dependent. Smith (1994) noted that the traditional inner and outer
scaling laws cannot both be Reynolds number independent. For example,
Equations 7.22 and 7.23 give:

C ′ = −C +

√
2

Cf

− 1

κ
ln

(
δuτ

ν

)
. (7.25)

Because Cf and δ+ are both Reynolds number dependent, it is likely that C
or C ′, or C and C ′ are functions of the Reynolds number. If C and C ′ are
assumed to be constant, Cf and δ+ must have a very specific relationship,

namely that
√

2/Cf − (1/κ) ln(δ+) = constant. The data do not support this

relationship: if C is a constant, C ′ is not, and vice versa. Consequently, if the
law-of-the-wall given by Equation 7.22 is universal, then the defect law given by
Equation 7.23 is not. Smith (1994) suggested that this may explain the slight
Reynolds number dependence seen in the data when the logarithmic region
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Figure 7.2. Log laws wih different constants, as given in Table 7.1.

is shown using outer scaling. Alternatively, it could indicate the discrepancy
between the inner and outer velocity scales at lower Reynolds numbers, as
suggested by Zagarola and Smits (1998a).

The velocity profile similarity in the overlap region is commonly indicated
using either Equations 7.22 or 7.23. However, the velocity in the overlap region
is in fact independent of the inner and the outer length scales, and the most
useful way to express the velocity behavior is in terms of its gradient. That is,

∂u

∂y
=

√
τw/ρ

κy
=

uτ

κy
. (7.26)

Actually, the scaling of the entire mean-velocity profile is best expressed in
terms of the mean-velocity gradient ∂u/∂y. That is, ∂u/∂y in the near-wall
region scales with a length scale ν/uτ and in the outer region the length scale
is δ. In the overlap region, the length scale becomes the distance from the wall
y. The velocity scales for the inner and outer regions of the incompressible
boundary layer are assumed to be the same, and given by uτ .

Note that the physical boundary layer thickness δ is experimentally ill-
defined (this is especially true in supersonic flows; see Fernholz and Finley
(1980)), and for scaling purposes it probably ought to be replaced by a well-
defined integral thickness, such as the Clauser or Rotta thickness:

∆ =
∫ ∞

0

ue − u

uτ

dy = δ∗
√

2

Cf

, (7.27)

where δ∗ is the incompressible displacement thickness.
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Figure 7.3. Development of the mean velocity in inner layer scaling at low to
medium Reynolds numbers. The line is Equation 7.22 with κ = 0.40 and C = 5.1.
(Figure from Fernholz and Finley (1996). Reprinted with permission from Elsevier
Science Ltd., Oxford, England.)

Fernholz and Finley (1996) recently presented velocity profile data for zero
pressure gradient incompressible boundary layers over a wide range of Reyn-
olds numbers. The results are shown in inner layer scaling in Figures 7.3 to 7.5.
Over the whole Reynolds number range, the agreement with Equation 7.22 is
excellent. Small departures are evident but appear to relate more to differences
between investigators than to variations with Reynolds number.

The data are displayed using outer layer scaling in Figures 7.6 to 7.8, us-
ing the Rotta thickness as the outer layer length-scale. The data collapse is
impressive throughout. Over nearly two decades (for Reθ ≥ 2500), Reynolds
number effects are not detectable within the scatter of the data. For the lower
Reynolds numbers, the outer velocity scale u0 suggested by Zagarola and Smits
(1998a) does a better job, as shown by Zagarola and Smits (1998b). Further
support for the “universal” outer region similarity at higher Reynolds numbers
is provided by, for instance, Rotta (1950) and Coles (1962), and by the agree-
ment with transformed supersonic boundary layer profiles found in Fernholz
and Finley (1980), where similar low Reynolds number deviations were also
observed.

We have already considered mixing length concepts briefly (see, for exam-
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Figure 7.4. Development of the mean velocity in inner layer scaling for medium
Reynolds numbers. Data from Bruns et al. (1992) and Nockemann et al. (1994). The
line is Equation 7.22 with κ = 0.40 and C = 5.1. (Figure from Fernholz and Finley
(1996). Reprinted with permission from Elsevier Science Ltd., Oxford, England.)

ple, Section 5.5 and Chapter 6), but before going on to discuss the scaling of
compressible boundary layers it is useful to expand these ideas further. Laun-
der and Spalding (1972) noted that Prandtl’s mixing length hypothesis has
two distinct parts. First, the turbulent friction is assumed to be proportional
to the velocity gradient, with a coefficient of proportionality given by µt, the
turbulent viscosity or eddy viscosity. By analoguey with the kinetic theory of
gases, and the concept of molecular viscosity, µt is assumed to be proportional
to the product of the density, a turbulence velocity scale, and a mixing length
�m. Second, the turbulence velocity scale is assumed to be proportional to the
mixing length times the velocity gradient. Hence,

− ρu′v′ = ρµt
∂u

∂y
= ρ �2

m

∂u

∂y

∣∣∣∣∣∂u

∂y

∣∣∣∣∣ . (7.28)

If either µt or �m is known, the x-momentum equation is closed, and it may be
solved. A straightforward application of µt to three-dimensional flows gives:

− ρ̄ ũ′
iu

′
j + 2

3
ρ̄ k̃ δij = µt

(
∂ũi

∂xj

+
∂ũj

∂xi

− 2
3

∂ũk

∂xk

δij

)
. (7.29)
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Figure 7.5. Mean velocity profiles in inner layer scaling at high Reynolds numbers.
Data from Winter and Gaudet (1973) (Me = 0.20). The line is Equation 7.22 with
κ = 0.40 and C = 5.1. (Figure from Fernholz and Finley (1996). Reprinted with
permission from Elsevier Science Ltd., Oxford, England.)

The shortcomings of these concepts have been well documented (see, for exam-
ple, Launder and Spalding (1972) and Cebeci and Bradshaw (1977)). Briefly,
Equation 7.29 implies that for parallel, two-dimensional shear flows the mag-
nitude of the turbulence is isotropic; that the shear stress is zero where the
mean flow velocity has a maximum or minimum (this contradicts the exper-
imental evidence for wall jets and asymmetric channel flows and wakes; see,
for example, Hanjalić and Launder (1972)), and that the turbulence depends
only on the local mean velocity gradients (which excludes the possibility of
any history or convective effects).

The strength of the mixing-length argument is that it is functionally correct,
in that �m must be proportional to y in the logarithmic region and proportional
to δ in the outer layer (Cebeci and Bradshaw, 1977). From its definition, we see
that in the logarithmic region, �m = κy, and by experiment we find that in the
outer flow �m is approximately equal to 0.085δ (Cousteix, 1989). These aspects
of mixing length and eddy viscosity concepts make them a useful starting point
for many scaling arguments (as in the next section, for example).

7.3.2 Compressible Flow

When the mean velocity in a supersonic boundary layer is plotted as u/ue ver-
sus y/δ, the profile appears qualitatively similar to that of an incompressible
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Figure 7.6. Development of the mean velocity in outer layer scaling at low to
medium Reynolds numbers. The line is Equation 7.43. (Figure from Fernholz
and Finley (1996). Reprinted with permission from Elsevier Science Ltd., Oxford,
England.)

flow. However, when the velocity is replotted in classic inner or outer layer
coordinates, as described above, the velocity does not follow the incompress-
ible scaling laws. We show that a modified scaling accounting for the fluid
property variations collapses much of the compressible mean velocity data on
the “universal” incompressible distribution.

Inner Layer

If it is assumed that Prandtl’s mixing length theory is also valid for the inner
region of the compressible turbulent boundary layer (where viscous stresses
are negligible), Equation 7.28 gives:

∂u

∂y
=

√
τw/ρ

κy
, (7.30)

where it is assumed that the mixing length is given by κy, as in subsonic
flows, and the Reynolds shear stress scales according to Morkovin; that is,
−u′v′ = τw/ρ. Although this result is identical to the result for incompressible
flows given by Equation 7.26, in compressible flows the density varies with
distance from the wall. Cebeci and Bradshaw (1984) argued that a full simi-
larity analysis indicates that T/Tτ , Mτ , and γ should be included in the scaling
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Figure 7.7. Mean velocity profiles in outer layer scaling for medium Reynolds
numbers. Data from Bruns et al. (1992) and Nockemann et al. (1994). The line is
Equation 7.43. (Figure from Fernholz and Finley (1996). Reprinted with permission
from Elsevier Science Ltd., Oxford, England.)

for the velocity and temperature gradients. As they point out, however, the
first two parameters represent sources of density fluctuations, and as long as
the effect of density fluctuations on the length and velocity scales are small,
these can be neglected. Likewise, the assumption that turbulence processes
are little affected by density fluctuations implies that γ, which is a measure of
the difference between adiabatic and isothermal processes, would also have a
negligible effect.

Because the pressure is constant in the wall-normal direction, we have, for
a perfect gas:

∂u

∂y
=

uτ

κy

√(
T

Tw

)
. (7.31)

By using Equation 7.1 to substitute for the temperature ratio in Equation 7.31,
we obtain

U∗∗

uτ

=
1

κ
ln

yuτ

νw

+ F, (7.32)

where

U∗∗ =

u∫
u1

√
Tw

T
du, (7.33)
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Figure 7.8. Development of the mean velocity in outer layer scaling at high
Reynolds numbers. Data from Winter and Gaudet (1973) (Me = 0.20). The line is
Equation 7.43. (Figure from Fernholz and Finley (1996). Reprinted with permission
from Elsevier Science Ltd., Oxford, England.)

and

U∗∗ =
ue

b
sin−1

⎛⎝2b2(u/ue) − a√
(a2 + 4b2)

⎞⎠+
ue

b
sin−1

⎛⎝ a√
(a2 + 4b2)

⎞⎠ . (7.34)

Fernholz (1969) pointed out that Equation 7.32 may be written instead as

U∗

uτ

=
1

κ
ln

yuτ

νw

+ C∗, (7.35)

where

U∗ =
ue

b
sin−1

⎡⎣2b2(u/ue) − a√
(a2 + 4b2)

⎤⎦ (7.36)

and

C∗ =
1

κ
ln

y1uτ

νw

+
ue

buτ

sin−1

⎡⎣2b2(u1/ue) − a√
(a2 + 4b2)

⎤⎦ .

Here U∗ is defined in the same way as U∗∗ (Equation 7.33). The parameters a
and b are given by Equations 7.12 and 7.13, and the suffix 1 denotes a boundary
condition at the lower end of the validity range of the log law. A comparison
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Figure 7.9. Log-linear plots of the velocity profile for a compressible turbulent
boundary layer. Natural and transformed velocities (U∗). (From Fernholz and
Finley (1980), where catalogue numbers are referenced. Reprinted with permission
of the authors and AGARD/NATO.)

between measurements in transformed and untransformed coordinates is given
in Figure 7.9.

For an adiabatic wall, Tw becomes the recovery temperature Tr, and a = 0.
In this case, experiments show that u1/ue lies in the range 0.3 ≤ u1/ue ≤ 0.6.
Within this range, the term in sin−1 can be replaced by its argument for Mach
numbers up to eight with a relative error of −4% or less. Then C∗ reduces to

C∗
ad ≈ u1

uτ

− 1

κ
ln

y1uτ

νw

≈ C, (7.37)

that is, the same value as for the incompressible case (see Equation 7.24).
This result was also confirmed by the measurements discussed by Fernholz
and Finley (1980) and by general computational experience (Bushnell et al.,
1976). Bradshaw (1977), on an empirical basis, proposed that the additive
constant be a function of the friction Mach number Mτ . The scatter in the data
is too large to make any firm conclusions regarding this suggestion, because
the expected variations in the constant are rather small (when Mτ = 0.1, we
might expect C∗ = 6, instead of 5). In any case, the departure of the additive
constant from its low-speed value is probably small.

This mixing length approach can also be used to derive a temperature-
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velocity relationship. If we consider the equation for the total enthalpy, and
neglect the convective terms in the near-wall region (as we did in the momen-
tum equation), then we obtain for the region of constant stress:

∂q

∂y
= τw

∂u

∂y
. (7.38)

By assuming a mixing length for the turbulent heat flux, we obtain:

∂T

∂y
= − q

ρCpκHy
√

τw//ρ
, (7.39)

where κH is von Kármán’s constant for the thermal boundary layer. Equa-
tions 7.30, 7.38, and 7.39 give:

T

Tw

= c1 − κ

κh

Tτ

Tw

u+ − κ

κh

M2
τ

(γ − 1)

2
u+2

(7.40)

where, on the basis of laminar flow analysis, we expect the constant c1 to be
fairly close to unity, although it may depend on Tw/Tτ , Mτ , and P (details
of the analysis are given by Cebeci and Bradshaw (1984) and Rotta (1960).)
The similarity with Equation 7.2 is clear. In fact, Fernholz and Finley (1980)
concluded that velocity profiles in compressible turbulent boundary layers are
well represented by Equation 7.35 within the limits set by the assumptions,
and the simpler temperature-velocity relationship given by Equations 7.1 or
7.2 seems adequate for the purposes of velocity transformation. We see that
the value of the ratio κ/κH must lie close to the value of the recovery factor,
and/or the Prandtl number.

The first approach to this type of transformation was suggested by van
Driest (1951) who derived a relationship similar to Equation 7.34 using �m =
κy. He assumed Prandtl number unity and a recovery factor equal to one, and
determined the constant C so that for the limit Me → 0 and (Tw/Te) → 1 the
generally accepted relationship for the incompressible case should result. Van
Driest’s equation for the logarithmic law is then equivalent to Equation 7.34,
with r = 1 in the definitions of a and b.

The differences likely to appear if this alternative transformation is used
can be seen in Figure 7.10. Here three sets of profile data are plotted using
Equation 7.36 with r = 0.896, and also Equation 7.36 with r = 1.0 (which then
reduces to van Driest’s transformation). The differences, although systematic,
are small when compared to experimental error, particularly in finding the
value of Cf . Given the uncertainties in the transformation approach and the
experimental difficulties, there is little that can be said at the present time for
any given set of log-law constants and their possible variation with Reynolds
number or Mach number. It is equally difficult to say anything meaningful
regarding the existence of power-law similarity, as proposed by George et al.
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Figure 7.10. Comparison of velocity profiles transformed by using recovery factors
of 1 and 0.896 (Mabey et al., 1974; Horstman and Owen, 1972). (From Fernholz and
Finley (1980), where catalogue numbers are referenced. Reprinted with permission
of the authors and AGARD/NATO.)

(1992), rather than log-law similarity, or the existence of a power-law region
near the wall, as discussed in Section 7.3.1.

The empirical validity of Morkovin’s hypothesis offers some support for
the concept behind the van Driest transform (and similarly that by Fern-
holz and Finley) by suggesting that multilayer scaling holds in compressible
boundary layers. Despite the assumptions inherent to the mixing length hy-
pothesis, the underlying dimensional argument is sound as long as the length
scale distributions in supersonic boundary layers follow the same behavior as
in subsonic flows. In fact, experimental data taken over a wide Mach num-
ber range, with various wall-heating conditions and modest pressure gradients,
show good agreement with incompressible data correlations when transformed
according to van Driest (see, for example, Kemp and Owen (1972), Laderman
and Demetriades (1974), Owen et al. (1975), and Watson (1977)). The system-
atic discussion given by Fernholz and Finley (1980) is particularly persuasive.
Other than strong pressure gradients, the primary constraint is imposed by
the fact that similarity requires large values of the Reynolds number, implying
universality and independence from upstream history. Fernholz and Finley
observe that the low Reynolds number region that begins to dominate the
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inner layer at high Mach number may eventually cause the failure of the ve-
locity scaling laws that the transformed data are expected to follow. Hopkins
et al. (1972) attribute the poor performance of van Driest at Me = 7.7 to the
low Reynolds number of the flow, Reθ ≈ 5000. This result can be compared
to a successful application of van Driest at Me = 9.4 and Reθ ≈ 37, 000 by
Laderman and Demetriades. It also seems reasonable that the transformation
suggested by Fernholz and Finley offers a slightly more accurate variation of
van Driest, because the temperature distribution is based on a Prandtl num-
ber assumption (0.7 ≤ Pm ≤ 1.0) that is more realistic than van Driest’s
assumption of Pt = P = 1.

Three additional observations should be made on the velocity distribution
in the constant stress region. First, the logarithmic velocity variation for
supersonic flows was not obtained, as in subsonic flows, by constructing an
overlap argument between the inner and outer layer scaling. It was derived in-
stead by assuming that the velocity scale is given by the local kinematic stress

(=
√

τw/ρ) and that the length scale is the same as in subsonic flows (= κy).
The validity of these scaling arguments is substantiated by experiment, and it
constitutes empirical support for Morkovin’s hypothesis. Second, there is no
law-of-the-wall, in that there is no single scaling law that describes the velocity
distribution in the entire constant stress region because the viscous sublayer
and the logarithmic zone use a different velocity transformation: the scaling
in the viscous sublayer needs to account for the temperature-dependence of
the viscosity, whereas in the fully turbulent zone the scaling needs to account
for the temperature dependence of the density. Three, it should be pointed
out (as we did for incompressible flows) that the similarity scaling of the com-
pressible boundary layer mean velocity profile is most usefully expressed in
terms of the scaling for the mean velocity gradient ∂u/∂y. That is, ∂u/∂y
in the near-wall region scales with a length scale νw/uτ and a velocity scale

uτ (Tw/T )ω/2. In the outer region the length scale is δ, and the velocity scale

is uτ (T/Tw)1/2. In the overlap region, the length scale becomes y, but the

velocity scale is still uτ (T/Tw)1/2. We see that the mean velocity profile in a
compressible boundary layer scales with the same length scales used in scal-
ing incompressible flows, but the velocity scale is modified by the variation in
mean temperature.

Outer Layer

For compressible boundary layers, the similarity of the velocity profile in the
outer region can be verified by plotting the velocity defect (U∗

e − U∗)/uτ versus
y/δ′ where the characteristic length δ′ is yet to be determined. Because the
mean velocity approaches the velocity Ue asymptotically the boundary layer
thickness is an ill-defined quantity, and Fernholz and Finley (1980) recommend
instead the integral length ∆ proposed by Rotta (1950) for incompressible



200 CHAPTER 7. BOUNDARY LAYER MEAN-FLOW BEHAVIOR

boundary layers (Equation 7.27). The only difficulty in using the reference
length ∆ is that the velocity profile and the skin friction must be known
independently, which is not always possible. In terms of ∆, it is expected that
for zero pressure gradient boundary layers the dimensionless velocity defect is
given by

U∗
e − U∗

uτ

= f
(

y

∆∗

)
, (7.41)

where

∆∗

δ
=

1∫
0

U∗
e − U∗

uτ

d
(

y

δ

)
. (7.42)

Equation 7.41 is the proposed defect law, or law-of-the-wake, for boundary
layers in a compressible flow. There is no justification for this simple rela-
tionship other than verification by experiment. However, an evaluation of a
large number of experiments in zero pressure gradient boundary layers, mainly
along adiabatic walls, appears to support this particular scaling scheme. The
data suggest the following semi-empirical relation (Fernholz, 1971):

U∗
e − U∗

uτ

= −M ln
y

∆∗ − N (7.43)

with M = 4.70 and N = 6.74 (for the Reynolds number range 1.5 × 103 ≤
Reθ ≤ 4 × 104). More elaborate relationships of the type:

U∗
e − U∗

uτ

= −1

κ
ln

y

δ
+

Π

κ
g′
(

y

δ

)
(7.44)

were suggested by Coles (1953), Stalmach (1958), Maise and McDonald (1968),
and Mathews et al. (1970). Because different methods were used to specify the
boundary layer thickness δ, and different transformations were used, there is
still considerable uncertainty over the accuracy of this particular relationship
(see also Section 7.4). Figure 7.11 illustrates this comparison.

Overlap Region

We noted earlier that the logarithmic velocity variation for supersonic flows
was not obtained by using an overlap argument between the inner and outer
layer scaling. However, the apparent success of the velocity transformation in
the outer layer makes it possible to construct the following a posteriori overlap
argument. For the inner region (excluding the viscous sublayer), we write:

U∗
i =

u+∫
u+
1

√
Tw

T
du+ = f

(
y+
)

(7.45)
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Figure 7.11. Mean velocity profiles in outer layer scaling for zero pressure gradient
compressible turbulent boundary layers. (From Fernholz and Finley (1980). The
key to the data is given in Fernholz (1969). Reprinted with permission of the authors
and AGARD/NATO.)

and for the outer region:

U∗
o =

u+
e∫

u+

√
Tw

T
du+ = g (η) . (7.46)

Hence, in the region of overlap:

y+ ∂f

∂y+
= −η

∂g

∂η
=

1

κ
,

as before. It follows that:

U∗
i =

u+∫
u+
1

√
Tw

T
du+ =

1

κ
ln y+ + C∗ (7.47)

and

U∗
o =

u+
e∫

u+

√
Tw

T
du+ = −1

κ
ln η + C ′∗, (7.48)

and the logarithmic forms are recovered.
Finally, we note that the temperature profile can also be expressed in a

logarithmic form by using a turbulent total temperature Ti, similar to that
suggested by Michel et al. (1969). That is,

Ti

Tw

= 1 − P
Tτ

Tw

u+,



202 CHAPTER 7. BOUNDARY LAYER MEAN-FLOW BEHAVIOR

where Tτ is the friction temperature, and

Ti = T +
Pm

2Cp

u2.

Hence
∂T+

i

∂y+
=

∂u+

∂y+
=

1

κy+

√
T

Tw

,

and

T ∗
i =

Ti∫
T1

√
T

Tw

dTi =
1

κ
ln y+ + CT , (7.49)

where T+
i = −Ti/PTτ , and CT depends on the inner limit for the integration.

Perturbed Flows

So far, we have only considered flows that scale on local variables, generally
called self-preserving flows. When a subsonic boundary layer is perturbed by
changes in pressure gradient, wall curvature, and wall roughness, logarithmic
regions are often still observed, at least over some distance from the wall (see,
for example, Smits and Wood (1985)). The time scale for the relaxation of the
velocity field downstream of a sudden perturbation, and for the adjustment
to slow but continually changing conditions, is given to first order by the
ratio of the turbulent kinetic energy to the rate of its production (Townsend,
1976). That is, the time scale varies as (∂u/∂y)−1. The flow near the wall,
therefore, adjusts relatively quickly, and a limited region of self-preserving
flow may occur so that a significant region of the velocity profile still follows
a logarithmic variation. Carvin et al. (1988) proposed that transformation
concepts derived for self-preserving boundary layers can still be applied in
the region where the velocity is logarithmic (where, by inference, the stress is
constant; see Section 9.3). In that case, the constants in the log law are not
known, but if the perturbation is not too strong it seems reasonable to assume
that they are unchanged from their usual values.

7.4 Law-of-the-Wake

Coles (1956) proposed a scaling law for velocity profiles in subsonic turbulent
boundary layers to include the outer layer as well as the overlap region. He
found that the portion of the velocity profile that deviated from the logarithmic
formula in all cases shared a similar form, resembling the velocity profile in a
wake. Coles thus expressed the departure as a wake function and added it to
Equation 7.22 to obtain

u

uτ

=
1

κ
ln
(

yuτ

ν

)
+ C +

Π

κ
w
(

y

δ

)
. (7.50)
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Figure 7.12. Example of a mean velocity profile at Reθ = 5100 from Purtell et al.
(1981) scaled on inner variables, and compared to theoretical and empirical scaling-
laws: ◦ data; linear sublayer; buffer region according to
Spalding (1961); logarithmic region (Equation 7.22); Coles’
law-of-the-wake (Equation 7.50). (Figure from Smith (1994), with the author’s
permission.)

The parameter Π is set by the maximum deviation of the velocity profile from
the log law of Equation 7.22 and it indicates the strength of the wake. The
function w(y/δ) is Coles’s wake function [= 2 sin2(π

2
y
δ
)]. Changes in the pres-

sure gradient, and to a lesser extent in the Reynolds number, make themselves
felt by changes in the value of the parameter Π, which can be found exper-
imentally. The combined law-of-the-wall and law-of-the-wake describes the
velocity profile from the inner edge of the log region all the way to the edge
of the boundary layer. Figure 7.12 shows a typical velocity profile scaled with
inner variables. The figure also shows the expected linear profile deep in the
viscous sublayer, a line corresponding to the logarithmic overlap region, and
Coles’s wake function. The curve that is used to interpolate the velocity profile
between the sublayer and the log region was derived by Spalding (1961), and
this region is called the buffer layer.

From an extensive survey of the experimental data, Coles (1962) found that
for Reθ < 6000, Π is a strong function of the Reynolds number, increasing from
a value of zero at a Reynolds number of about 500 to an asymptotic value of
about 0.55 at high Reynolds numbers (see Figure 7.13). He assumed that κ and
C were constant, so that κ = 0.41 and C = 5.0, independent of the Reynolds
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Figure 7.13. Strength of the wake component in zero pressure gradient equilibrium
subsonic turbulent flow. Here, ∆ (u/uτ ) = 2Π/κ. (From Fernholz and Finley (1980)
after Coles (1962). Reprinted with permission of the authors and AGARD/NATO.)

number. In 1968, Coles reanalyzed the data and found the asymptotic value
of Π to be about 0.6, as opposed to 0.55 in the earlier study, although the
difference may be due to the particular fitting process used to determine uτ

(Erm et al., 1985).

Some more recent data are shown in Figure 7.14, including some very high
Reynolds number cases. The low Reynolds number cases are probably affected
by relatively high levels of freestream turbulence, and the trend to zero value
at Reθ = 500 is not so clear (see also Smits et al. (1983b)). At high Reynolds
numbers, the data suggest that the value of the wake strength may lie below
that suggested by Coles on the basis of the Wieghardt and Tillmann (1944)
data. Smith (1994) and Fernholz and Finley (1996) pointed out that slight
variations in κ and C can have a significant effect on the inferred strength of
the wake component because it is always found as the difference between two
relatively large quantities. Spalart (1988), in evaluating his own low Reynolds
number computational data, found “intolerably large discrepancies between
wake strength values consequent upon small variations in the log law con-
stants,” and concluded that “very accurate measurements or simulations over
a wide Reθ range, as well as a strong consensus on the value of κ (at least
two significant digits) will be needed before definitive results can be obtained
for ∆ (u/uτ ).” At very high Reynolds numbers, where u/uτ near the edge
of the layer takes large values, this problem becomes even more serious, so a
high Reynolds number asymptotic value of Π (if one exists) is very difficult
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Figure 7.14. More recent data on the Reynolds number dependence of the wake
strength in subsonic boundary layers. (Figure from Fernholz and Finley (1996),
where the key to the data is given. Reprinted with permission from Elsevier Science
Ltd., Oxford, England.)

to establish. Some recent work in pipe and boundary layer flows appears to
be making progress towards this goal (Österlund et al., 2000; McKeon et al.,
2004).

Libby and Visich (1959), Mathews et al. (1970), and Sun and Childs (1973)
extended the Coles (1956) wall-wake velocity profile (Equation 7.50) to com-
pressible turbulent boundary layers in adiabatic flows with pressure gradient
and on isothermal walls with zero pressure gradient. A straightforward exten-
sion yields:

U∗

uτ

=
1

κ
ln

yuτ

νw

+ C∗ +
Π

κ
w
(

y

δ

)
. (7.51)

This amalgamated velocity profile agrees well with the data, although Cebeci
and Bradshaw (1984) pointed out that it may simply be a consequence of the
strong constraint on the wake profile, which has to have zero slope and zero
intercept at y = 0, whereas the profile as a whole needs to have zero slope at
y = δ. Actually, Coles’s wake function does not satisfy the latter constraint,
although a number of modifications exist that do (see, for example, Sun and
Childs (1976)). Also, the wake parameter Π and the boundary layer thickness
δ can be adjusted to optimize the fit of Equation 7.51, and the success of this
relationship does not necessarily prove the validity of the velocity transforma-
tion of the outer layer. In that respect, the success of Equation 7.43 is more
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Figure 7.15. Strength of the wake component in compressible turbulent bound-
ary layers. Experiments on adiabatic surfaces, with a defined origin (for exam-
ple, the leading edge of a flat plate). (From Fernholz and Finley (1980), where
catalogue numbers are referenced. Reprinted with permission of the authors and
AGARD/NATO.)

persuasive, because the length scale is well defined and if Fernholz’s values are
accepted there are no adjustable constants.

As can be seen from Figure 7.13, the strength of the wake component
of a subsonic zero pressure gradient turbulent velocity profile is a function
of the Reynolds number. In the subsonic case the choice of the Reynolds
number does not pose a problem, but in supersonic boundary layers there
exist many more possibilities, including Reθ = ρeueθ/µw and Reδ2 = ρeueθ/µe

(see also Section 1.2).1 This ambiguity is well illustrated by a comparison
of Figure 7.15a, which shows the development of the strength of the wake
component with the Reynolds number Reθ and Figure 7.15b, which shows the
same data as a function of Reδ2. In Figure 7.15a we see a decrease of the wake
component at low Reynolds numbers similar to that observed in the subsonic
case. We might expect that the strength of the wake component should be
a function of outer edge quantities and should therefore be a function of Reθ

rather than Reδ2. When plotted versus Reθ, however, the decay of the wake
component at low Reynolds numbers does not agree with the subsonic data
trend.

Overall, the scatter of the data shown in Figure 7.15 is such that no ex-

1Reθ and Reδ2 are, of course, identical in incompressible flows.
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plicit influence of the Mach number on the strength of the wake component
can be identified. Coles (1962) found that for subsonic boundary layers three-
dimensionality in the mean flow, a high freestream turbulence level and inap-
propriate tripping devices could cause severe anomolies in the strength of the
wake component:

Except possibly at very low Reynolds numbers, the effect of increased
free-stream turbulence is to decrease the strength of the wake com-
ponent. The amount of the decrease may also depend on Reynolds
number and on the scale of the turbulence. As for boundary layers
with tripping devices it was found that the strength of the wake com-
ponent sometimes dropped below the normal or equilibrium value
following a strong disturbance.

We would expect that similar considerations would apply to compressible
boundary layers, and the experimental evidence considered by Fernholz and
Finley (1980) supports this conclusion. Three-dimensional effects are com-
monly encountered in supersonic facilities due to inadequate contraction ra-
tios upstream of the nozzle, and the development of streamwise vorticity in the
boundary layers on the nozzle wall due to Taylor-Görtler instabilities associ-
ated with concave curvature. A common problem in facilities with rectangular
working sections is the presence of lateral pressure gradients that develop be-
cause the boundary layers on the nozzle walls and the side walls experience
different pressure gradient histories. This leads to a thickening of the bound-
ary layer on the centerline of the side wall. In facilities with circular working
sections, all disturbances associated with imperfections in the nozzle tend to
focus on the centerline of the tunnel, which can lead to undesirable three-
dimensional effects on models and flat plates placed in this region. Many older
supersonic wind tunnels have high levels of freestream turbulence, and many
facilities exist where the turbulence levels have not been measured (Beckwith
et al., 1983; Task Group on Aeronautical research and Development, 1994).
Tripping the boundary layer to promote transition and artificially thicken the
boundary layer introduces strong upstream disturbances, and this must be
done with great care because a boundary layer generally recovers very slowly
from the effects of such disturbances. This is especially true at higher Mach
numbers where transition can be difficult to promote and relatively large trip-
ping devices are sometimes used. The long turbulence time scales observed at
higher Mach numbers aggravate this problem (see Chapter 8).

Additional upstream history effects may also be important. In fact, there
was considerable evidence presented in the 1960s and 1970s to show that the
temperature-velocity relationships for flat plate flows and tunnel nozzle wall
flows were different (see, for example, Spina et al. (1994)), which indicates the
severity of the problem. Unfortunately, the strength of the wake at higher
Reynolds numbers (Figure 7.16) are usually found by using experiments per-
formed on the walls of the wind tunnel because it is difficult to achieve high
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Reynolds numbers on a flat plate with a defined leading edge. The long-lasting
influence of the pressure gradient and heat-transfer history experienced by the
developing boundary layer may be reflected in the large scatter in the data.
However, if a scatter of about ±20% of the wake strength is accepted then
an average value of the wake strength of 2.75 (=∆ (u/uτ ) = 2Π/κ) can be
assumed to exist for supersonic boundary layers at Reδ2 > 6000, which agrees
with the wake strength for subsonic flow found by Coles (1962) in the range
6000 < Reδ2 < 15, 000.

Fernholz and Finley (1980) also note that for boundary layers with heat
transfer, very few measurements are available, and no satisfactory conclusions
can be drawn because of the scatter in the data.

7.5 Skin-Friction Relationships

For incompressible flows, a local friction law is obtained from Equation 7.50
by using the boundary condition u = ue at y = δ, giving√

2

Cf

=
1

κ
ln

⎛⎝Reδ

√
Cf

2

⎞⎠+ C +
2Π

κ
, (7.52)

where Reδ = δue/ν. Equation 7.52 provides an implicit expression for deter-
mining Cf , if Reδ, Π, and C are all known. To change this into a skin-friction
relationship based on Rex, we use the momentum integral equation for two-
dimensional, zero pressure gradient boundary layers:

dθ

dx
=

Cf

2
. (7.53)

This expression may be integrated from the point at which the turbulent
boundary layer momentum thickness extrapolates to zero (that is, the vir-
tual origin of the boundary layer). The wall-wake formulation can be used to
derive a relationship between δ and θ (see, for example Young (1989)), and
if we assume that the virtual origin is located at x = 0, then, after some
approximations, we obtain:

1√
Cf

= a1 + a2 log CfRex, (7.54)

where a1 and a2 are constants that are then chosen to obtain the best agree-
ment with experiment (von Kármán used a1 = 1.7 and a2 = 4.15).

The skin-friction coefficients for subsonic flow are shown as a function of
Reθ in Figure 7.17. Agreement with the semi-empirical relations developed
by Coles (1962) and Fernholz (1971) is within 5% for the range 600 ≤ Reθ ≤
220, 000, although with a general tendency for the data to lie systematically
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Figure 7.16. Strength of the wake component in compressible turbulent boundary
layers. Experiments on adiabatic surfaces, where the origin is not defined (for exam-
ple, the continuation of a wind tunnel nozzle). (From Fernholz and Finley (1980),
where catalogue numbers are referenced. Reprinted with permission of the authors
and AGARD/NATO.)

below these correlations at the lower end of the range (see also Smits et al.
(1983b)).

In supersonic flows, skin-friction measurements are more difficult to make
and interpret. Floating-element gauges are susceptible to inaccuracies stem-
ming from leakage, local variations in heat transfer, flushness, and forces and
moments due to streamwise pressure gradients. In addition, Preston-tube data
can be analyzed using a variety of calibration schemes, leading to considerable
uncertainty in the results. Most schemes for reducing Preston-tube data rely
on boundary layer edge conditions (for example, Hopkins and Keener (1966),
and this can introduce additional errors, particularly in perturbed flows where
the edge properties are often unrelated to the flow behavior near the wall.
As Finley (1994) and Finley and Gaudet (1995) point out, calibration equa-
tions which involve an empirical intermediate temperature, and/or freestream
properties are functionally incorrect, because the Preston-tube pressure should
depend on wall variables only, as long as they are used in flows with small or
negligible normal pressure gradients. However, in many compressible flows
there are significant normal pressure gradients and the calibration equations
should be expressed in terms of wall variables. The only calibration that does
so is that by Bradshaw and Unsworth (1974). Here, for adiabatic flows and



210 CHAPTER 7. BOUNDARY LAYER MEAN-FLOW BEHAVIOR

Figure 7.17. Skin-friction coefficient variation with Reynolds number.
Coles (1962); Fernholz (1971). (Figure from Fernholz and Finley (1996),
where original references are given. Reprinted with permission from Elsevier Science
Ltd., Oxford, England.)

for uτd/νw > 100:

∆p

τw

= 96 + 60 log10

(
uτd

50νw

)
+ 23.7 log2

10

(
uτd

50νw

)

− 104M2
τ

⎡⎣(uτd

νw

)0.26

− 2.0

⎤⎦ , (7.55)

which reduces to a very good fit to the calibration data of Patel (1965) for
incompressible flows as Mτ → 0. Allen (1977) suggested that the constants
used by Bradshaw and Unsworth were incorrect and proposed that the last
term should read:

−104M2
τ

⎡⎣(uτd

νw

)0.3

− 2.38

⎤⎦ .

However, Finley (1994) concluded that these corrections were based on unreli-
able balance data, and on the basis of a detailed analysis of the available mea-
surements recommended that the original constants as given in Equation 7.55
are more accurate.

The Clauser method (Clauser, 1954) can also be used as long as a logarith-
mic region can be found, but the results obviously depend on the validity of the
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particular compressibility transformation used. In perturbed flows, the com-
pressibility transformation of Carvin et al. (1988) should be more reliable than
that of van Driest because it does not have the additional requirement of a self-
preserving boundary layer. In practice, for a wide variety of flows including
flows with strong pressure gradients and shock wave-boundary layer interac-
tions, the differences between the Clauser chart results obtained using the two
transformations seem to be within about ±15% of the Preston-tube results
(Smith et al., 1992). The laser interferometer skin-friction meter (LISF) does
not require assumptions about the character of the wall region to deduce the
wall shear stress, and can thus provide direct measurement of the skin friction
in a perturbed flow. For example, Kim et al. (1991) compared LISF results
to Preston-tube measurements in a three-dimensional, shock wave-boundary
layer interaction and found encouraging agreement. See also Wideman et al.
(1994) and Naughton and Sheplak (2002).

As a result of the increased viscous dissipation in compressible boundary
layers the skin-friction coefficient decreases with increasing Mach number at a
fixed Reynolds number (see Figure 1.3). The low density of the fluid near the
wall indirectly results in a decrease in the slope of the nondimensionalized ve-
locity profile relative to that for an equivalent Reynolds number incompressible
boundary layer. Because density has a stronger dependence on temperature
than viscosity, the skin-friction coefficient decreases with the Mach number
(although the dimensional wall shear increases due to the increase in veloc-
ity). As discussed in Chapter 1, the general trends for hot and cold walls can
be predicted from these considerations, with heated walls leading to lower Cf

(Hinze, 1975; Fernholz and Finley, 1980).
In fact, a variety of experimental correlations, transformations, and finite

difference solutions exists for Cf in turbulent compressible boundary layers.
Most formulations are based on a compressible form of von Kármán’s equation
(Equation 7.54). For example, van Driest (1951) used Equation 7.51 and
the momentum integral equation for two-dimensional flows (Equation 7.53) to
obtain:

0.242

b
√

Cf (Tw/Te)

⎡⎣sin−1

⎛⎝ 2b2 − a√
(a2 + 4b2)

⎞⎠+ sin−1

⎛⎝ a√
(a2 + 4b2)

⎞⎠⎤⎦
= 0.41 + log (RexCf ) −

(
1
2

+ ω
)

log
(

Tw

Te

)
(7.56)

with r = 1 in the definitions of a and b (ω is the exponent in the tempera-
ture dependence of the viscosity; see Equation 7.8). This result is based on
Prandtl’s mixing length model where � = κy, and it is known as van Driest I .
In a 1956 paper, van Driest used von Kármán’s (1930) mixing length model

� = κ

∣∣∣∣∣ ∂u/∂y

∂2u/∂y2

∣∣∣∣∣
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together with Equation 7.1 where the recovery factor was allowed to vary to
deduce a new skin-friction formulation, known as van Driest II :

0.242

b
√

Cf (Tw/Te)

⎡⎣sin−1

⎛⎝ 2b2 − a√
(a2 + 4b2)

⎞⎠+ sin−1

⎛⎝ a√
(a2 + 4b2)

⎞⎠⎤⎦

= 0.41 + log (RexCf ) − ω log
(

Tw

Te

)
. (7.57)

For adiabatic flows, this may be written as:

0.242√
Cf (Tw/Te)

U∗
e

ue

= 0.41 + log (RexCf ) − ω log
(

Tw

Te

)
.

Bradshaw (1977) critically reviewed the most widely used skin-friction for-
mulas and found that Equation 7.57 is in better agreement with experiment
than Equation 7.56, and van Driest II should therefore be used in preference
to van Driest I. By using the more general velocity-temperature relationship
given by Equation 7.40, Bradshaw derived a transformation that leads to an
alternative skin-friction formulation which he called van Driest III . This for-
mulation predicts a drop in Cf on very cold walls that results from changes
due to heat transfer in the additive constant C∗ in the log law, in agreement
with the very limited amount of data. The van Driest II and van Driest III
formulations exhibited the better agreement with zero pressure gradient data,
with less than 10% error for 0.2 ≤ Tw/Taw ≤ 1.

7.6 Power Laws

Power-law relations for the boundary layer integral parameters have been used
for many years as engineering approximations. They are based on the obser-
vation that the velocity profile in a zero pressure gradient boundary layer can
be approximated by a relationship such as

u

ue

=
(

y

δ

)1/n

, (7.58)

where the value of n depends weakly on the Reynolds number, varying from
a value of 7 for 5 × 105 < Rex < 107 to a value of 9 for 106 < Rex < 108. As
a result, we obtain

δ∗

δ
=

1

1 + n
and

θ

δ
=

n

(1 + n) (2 + n)
. (7.59)

Therefore the shape factor H (= δ∗/θ) depends on n, and for n = 7, H = 9/7.
Experiments show that the shape factor is not constant, especially at low
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Figure 7.18. Variation of shape factor H with the Reynolds number. (Figure from
Fernholz and Finley (1996), where original references are given. Reprinted with
permission from Elsevier Science Ltd., Oxford, England.)

Reynolds numbers, indicating to some extent the Reynolds number dependence
of n (see Figure 7.18). The agreement with Coles’s correlation is generally
good, with the Roach and Brierley data, with high freestream turbulence,
lying systematically low.

Power-law approximations work reasonably well as a description for the
outer-layer velocity distribution, but at the wall ∂u/∂y → ∞, and they cannot
be used to find the skin friction. It is usually assumed instead that the Blasius
relationship (derived as a curve fit to pipe flow data) can be used, so that

ue

uτ

= Cb

(
uτδ

ν

)1/n

, (7.60)

where Cb is a constant. By using the momentum integral equation (Equa-
tion 7.53), we obtain, for n = 7,

Cf,i =
0.0592
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,

(
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)
i
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, (7.61)

and for n = 9,

Cf,i =
0.0375

Re
1/6
x

,

(
δ

x
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i
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Re
1/6
x

, and

(
θ

x

)
i

=
0.023

Re
1/6
x

, (7.62)
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where the constants have been adjusted to fit the experimental data (Young,
1989).

Despite their questionable provenance, these relationships are useful for
simple engineering estimates for incompressible flows. They can also be used
to estimate the momentum and displacement thickness distributions in com-
pressible boundary layers because the velocity profile also follows a power law,
at least approximately. By definition:

δ∗

δ
=

1∫
0

(
1 − ρu

ρeue

)
d
(

y

δ

)
and

θ

δ
=

1∫
0

ρu

ρeue

(
1 − u

ue

)
d
(

y

δ

)
.

If we assume Walz’s form for the temperature-velocity relationship, we find
that for an adiabatic wall with n = 7, where Me ≥ 0.2:

δ∗

δ
= 1 − 7

2β
F (Me) , (7.63)

where

F (Me) = α3 ln
α

α − 1
− α2 − α

2
− 1

3
,
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β = r(γ − 1) M2

e

/
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For an adiabatic wall with n = 6,

θ

δ
+

δ∗

δ
= 1 − 3

β
F (Me) , (7.64)

and for n = 8,
θ

δ
+

δ∗

δ
= α − 4α

β
F (Me) . (7.65)

Power laws therefore suggest that the displacement and momentum thicknesses
vary with streamwise distance in the same way as they do in subsonic flows,
although their magnitudes depend on the freestream Mach number. The ex-
perimental data tend to support these conclusions (see, for example, Settles
(1975)). The data also show that the boundary layer thickness δ does not de-
pend significantly on the Mach number, and it varies with Rex approximately
as per Equations 7.61 and 7.62. In Chapter 1, Equation 7.61 was used to
investigate the influence of compressibility on the skin-friction coefficient. A
relationship that lies within ±10% of van Driest II (Equation 7.57) is given by

Cf =
0.024

Reθ

(
Te

Tw

)0.56

. (7.66)

Some other simple relationships for estimating the skin friction, based on the
intermediate temperature concept, were given by Cousteix (1989).



7.7. SUMMARY 215

7.7 Summary

Recent experimental work has allowed a new assessment of Reynolds number
influences on subsonic turbulent boundary layer mean velocity distributions.
The results demonstrate the success of the classic inner and outer scaling
arguments over a very large range of Reynolds numbers (approximately 350 ≤
Reθ ≤ 210, 000), and the overlap region is well established over the same
range (see Fernholz and Finley (1996)). It may be expected, more by intuition
than by hard evidence, that similar Reynolds number variations will hold for
supersonic flows. There still exist certain issues, such as the particular values
of the constants in the log law, and the evidence for power-law similarity
arguments, that cannot be answered on the basis of the existing boundary
layer data, primarily because of the difficulty of measuring accurately the
friction at the wall. The wake parameter for subsonic and supersonic flows
appears to become constant for Reθ > 5000, and although there have been
some previous indications that it may decrease at very high Reynolds numbers,
there is probably enough uncertainty in the data (and the values of the log-
law constants) to invalidate any strong conclusions regarding the asymptotic
behavior.

For supersonic flows at a moderate Mach number, the direct effects of com-
pressibility on the mean profile are rather small: the most notable differences
between subsonic and supersonic boundary layers may be attributed to varia-
tions in fluid properties across the layer, without explicit reference to “true”
compressibility effects such as shocklets, acoustic radiation, and the enhanced
redistribution of energy by pressure fluctuations.



Chapter 8

Boundary Layer Turbulence
Behavior

8.1 Introduction

In the previous chapter, we found that the classic arguments on inner and
outer layer similarity hold well over a very large range of Reynolds numbers,
and that the direct effects of compressibility on the mean flow appear to be
rather small: the most notable differences between zero pressure gradient sub-
sonic and supersonic boundary layers may be attributed to the variation in
fluid properties across the layer. As we show, similar considerations apply
to many aspects of the turbulence behavior. However, recent measurements
have also indicated some interesting differences between turbulence in sub-
sonic and supersonic boundary layers that do not seem to scale according to
fluid property variations. Differences in turbulence length and velocity scales,
and the structure of the large-scale, shear-stress-containing motions have been
observed, which may indicate that the turbulence dynamics are affected at a
lower fluctuating Mach number than previously believed.

“True” compressibility effects, beyond the effects determined by fluid prop-
erty variations, are usually described in terms of a Mach number representative
of the fluctuations. Several candidates were introduced in Chapter 4. It is also
possible that some of these apparent changes in the turbulence structure are
due to Reynolds number effects, rather than Mach number effects. As pointed
out earlier, the characteristic Reynolds numbers encountered in high-speed
flow cover a very large range, extending beyond the values typically found in
the laboratory. Furthermore, the temperature gradients that are found in the
boundary layer in supersonic flow lead to variations in Reynolds number across
the layer in addition to the usual variation in the streamwise direction. To
understand the effects of Reynolds number on turbulence in supersonic flow,
we first need to consider the scaling of turbulence in subsonic flows.

217
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8.2 Scaling Laws

The inner and outer-layer scaling scheme for the mean flow, as expressed by
Equations 7.17 and 7.19, appears to be very successful in practice. A similar
inner and outer scaling is therefore expected to apply to the time averaged tur-
bulence statistics, and for the inner and outer regions of a subsonic boundary
layer we expect, respectively:

u′2

u2
τ

= f
(

yuτ

ν

)
, (8.1)

and
u′2

u2
τ

= g
(

y

δ

)
. (8.2)

That is, we expect that the mean velocity and turbulence intensities scale with
the same set of velocity and length scales: more precisely, that the velocity
gradient and the turbulence intensities scale in this way. Matching the tur-
bulence intensity in the overlap region leads to the conclusion that u′2

/
u2

τ is
constant in the log-law region. As we shall see, this is not observed in experi-
ments. One explanation of this is that the “true” or active turbulent motion is
overlaid by an irrotational inactive motion imposed by the pressure field of the
large eddies in the outer part of the layer (Townsend 1956; Bradshaw, 1967,
1994). These eddies have length scales of order δ, and they are large compared
to the scale of motions in the inner layer. However, as the wall is approached
the v′ component of the inactive motion must become small due to the wall
constraint (the “splat” effect) so that its influence on the shear stress is minor,
and the mean velocity log law is preserved.

Townsend (1976) proposed that

. . . the main eddies of the flow have diameters proportional to the
distance of their centers from the wall, because the motion is directly
influenced by its presence. In other words, the velocity fields of the
main eddies, regarded as persistent, organized flow patterns, extend
to the wall and, in a sense they are attached to the wall.

This is commonly known as Townsend’s attached eddy hypothesis . He also
proposed that the interaction between a large eddy and a smaller, viscous-
dominated eddy occurs over several intermediate steps. Due to this highly
indirect interaction, he proposed that the large-scale motion is essentially
inviscid, and thus independent of the Reynolds number. This is known as
Townsend’s Reynolds number similarity hypothesis. Townsend did not regard
the main eddies as having any particular shape, but to make his model quanti-
tative, he assumed that the shear stress at a distance y from the wall was due
principally to the eddies that have their center at that height. All the main
eddies were assumed to be geometrically similar, and subject to the inviscid
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boundary conditions at the wall where the normal component of velocity was
assumed to be zero, but the other two components were allowed to have slip.
If the probability density function of the eddy scales follows an inverse power
law, then a constant stress region is obtained. Townsend’s model therefore
applies to the near-wall, fully turbulent part of the layer, and he found that

u′2

u2
τ

= B1 − A1 ln
(

y

δ

)
, (8.3)

w′2

u2
τ

= B3 − A3 ln
(

y

δ

)
, (8.4)

v′2

u2
τ

= A2. (8.5)

Note that, by matching the gradients of the turbulence intensity in the inner
and outer regions, rather than the intensity levels themselves, Equations 8.1
and 8.2 will also yield a logarithmic term in y/δ, without any recourse to the
pdf of eddy scales. These relations indicate that the turbulence intensities are
independent of the Reynolds number which is again at odds with the data,
although Equations 8.3 to 8.5 may represent an infinite Reynolds number limit.
The question remains as to what extent the turbulence profiles are similar in
the sense that they collapse onto a Reynolds number independent curve, and
what is the correct basis for the similarity argument.

8.2.1 Spectral Scaling for Incompressible Flow

It is useful to begin by considering the scaling of the turbulence spectra. For
subsonic boundary layer flows, spectral scaling laws were first suggested by
Townsend and later developed extensively by Perry and his co-workers. Based
upon Townsend’s attached eddy hypothesis and the flow visualization results of
Head and Bandyopadhyay (1981) (see Section 8.4.2), Perry and Chong (1982)
developed a physical model for near-wall turbulence. They assumed that a
turbulent boundary layer outside the viscous region may be modeled as a forest
of hairpin or Λ-shaped vortices, which originate at the wall and grow outward.
Figure 8.1 shows three Λ-shaped vortices of different scales, and indicates their
influence on the velocity field sensed by a probe at a position y. The probe
will sense contributions to u′ and w′ from all eddies of scale y and larger.
However, only eddies of scale y will contribute to v′. Therefore, u′ and w′

should follow similar scaling laws, whereas v′ may follow a somewhat different
scaling law. Using these ideas in conjunction with dimensional analysis, scaling
laws can be derived for the energy spectra in the turbulent wall region, defined
as ν/uτ 
 y 
 δ (Perry et al., 1985, 1986). In general, it is the region
where direct wall effects such as the damping of the velocity components are
unimportant, and where the direct influence of the large-scale flow geometry
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Figure 8.1. Sketch of the streamline patterns and spatial influence of attached
eddies at three different scales. (Reproduced from Perry et al. (1986)). Copyright
1986, Cambridge University Press. Reprinted with permission.)

and outer boundary conditions can also be neglected. This region corresponds
approximately to the overlap region in the mean velocity profile, that is, the
region where the velocity has a logarithmic variation.

First consider the u-component of the turbulence fluctuations in an incom-
pressible flow. Eddies of scale δ will contribute only to the large-scale, low wave
number (low frequency) region of the energy spectrum Φ11. For the large-scale
eddies, viscosity is less important, and the spectrum in the low wave number
region should depend only on uτ , k1, y, and δ, where k1 is the streamwise
component of the three-dimensional wave number vector k. From dimensional
analysis, the spectrum of u at low wave numbers should have the form

Φ11(k1δ)

u2
τ

= g1(k1δ) =
Φ11(k1)

δu2
τ

. (8.6)

Throughout this section, the argument of Φii denotes the unit quantity over
which the energy spectral density is measured, following Perry et al. (1986).
Equation 8.6 represents an outer flow scaling because it describes the contri-
bution of the large-scale eddies.

Eddies of scale y will contribute to the intermediate wave number range of
the spectrum, whereas eddies of scale δ will not. In this range the spectrum
should have the following inner flow scaling form,

Φ11(k1y)

u2
τ

= g2(k1y) =
Φ11(k1)

yu2
τ

. (8.7)

The smallest scale motions, which contribute to the high wave number
range of the spectrum, depend on viscosity. Kolmogorov (1961) assumed that
these small-scale motions are locally isotropic, and that their energy content
depends only on the local rate of turbulence energy dissipation ε, and the
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kinematic viscosity ν. Dimensional analysis leads to

Φ11(k1η)

υ2
= g3(k1η) =

Φ11(k1)

ηυ2
, (8.8)

where η and υ are the Kolmogorov length and velocity scales respectively,
defined by

η =

(
ν3

ε

)1/4

and υ = (νε)1/4 . (8.9)

In the high wave number region, therefore, the spectrum follows a Kolmogorov
scaling.

Just as the mean flow exhibited an inner and outer scaling with a region of
overlap, it is expected that Equations 8.6 and 8.7 will have a region of overlap
(Overlap Region I ), and that Equations 8.7 and 8.8 will have another region
of overlap (Overlap Region II ). These scalings are illustrated in Figure 8.2. It
follows that in Region I the spectrum must have the form:

Φ11(k1δ)

u2
τ
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k1δ
= g1(k1δ), (8.10)

or
Φ11(k1y)

u2
τ

=
A1

k1y
= g2(k1y), (8.11)

where A1 is a universal constant. That is, in the turbulent wall layer, the
spectrum in Overlap Region I follows a k−1 scaling.

In Region II, it follows that

Φ11(k1η)

υ2
=

Ko

(k1η)5/3
= g3(k1η), (8.12)

or
Φ11(k1y)

u2
τ

=
Ko

κ2/3(k1y)5/3
= g2(k1y). (8.13)

Equation 8.12 was first derived by Kolmogorov (1961) using entirely differ-

ent arguments. The region displaying a k
−5/3
1 scaling is called the inertial

subrange, and Ko is called the Kolmogorov constant (≈0.5). To derive these

k
−5/3
1 scalings, Perry et al. (1986) imposed the requirement that the spectrum

be independent of viscosity in the inertial subrange, and assumed that in the
turbulent wall region dissipation equals production, ε = −u′v′ (∂u/∂y) , that
the velocity profile is logarithmic, and that −u′v′ = u2

τ . Some spectra for the

turbulent wall region are shown in Figure 8.3. The k
−5/3
1 and k−1

1 regions are

evident. At high Reynolds numbers, a very long k
−5/3
1 range has been observed

in the spectrum (Grant et al., 1962), but recent experiments in pipe flow have
called into question presence of a k−1

1 similarity range at very high Reynolds
numbers (Morrison et al., 2004).
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Figure 8.2. Behavior of the energy spectra of the longitudinal and spanwise velocity
fluctuations, Φ11(k1) according to Perry et al. (see text). Φ33(k1) is expected to
behave similarly. (a) Chart showing the different scaling regions, (b) inner scaling
behavior, and (c) outer scaling behavior. Note that in Perry et al.’s notation, z is
distance from the wall, and ∆E is a boundary layer thickness, similar to δ. (Figure
from Perry et al. (1986). Copyright 1986, Cambridge University Press. Reprinted
with permission.)

According to these arguments, Φ33, the spectra of w′ will follow similar
scaling laws, as illustrated in Figure 8.2a. The boundaries of the overlap
regions are denoted by P , N , M , and F , where P , N , and M are universal
constants, and F is a constant characteristic of the large scales, and likely to
be Reynolds number dependent. Figures 8.2b and 8.2c illustrate the deduced
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Figure 8.3. Spectra in the inner layer of subsonic boundary layers, plotted using
inner layer scales (left), and Kolmogorov scales (right). (Adapted from Fernholz
et al. (1995), with permission from Elsevier Science Ltd., Oxford, England.)

form of Φ11 and Φ33 using inner and outer scaling.

For the wall-normal component, Figure 8.1 suggests that there will be no
contributions from δ-scale eddies, and thus there will be no outer flow scaling
for Φ22. There will only be inner flow and Kolmogorov scaling, with one region
of overlap. Φ22 is described by Equations 8.7, 8.8, and 8.12, so that a region
of k

−5/3
1 scaling is expected but not one in k−1

1 . Figure 8.4a summarizes the
scaling laws for Φ22, and Figures 8.4b and 8.4c illustrate the expected form of
the v′ spectrum using inner and outer scaling. Energy spectra measured by
Perry and Abell (1975, 1977), Perry et al. (1985, 1986) Li (1989); Perry and
Li (1990), Erm (1988); Erm et al. (1985), Smith (1994), and Zhao (2005) have
all shown good agreement with these spectral scaling laws for the wall-normal
component.

By integrating these spectral forms, Li (1989) and Perry and Li (1990)
derived the following expressions for the normal stresses in a subsonic boundary
layer:

u′2

u2
τ

= B1 − A1 ln
(

y

δ

)
− V (y+), (8.14)

w′2

u2
τ

= B3 − A3 ln
(

y

δ

)
− V (y+), (8.15)
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v′2

u2
τ

= A2 − V (y+), (8.16)

where B1 and B2 are large-scale characteristic constants, particular to the flow
geometry, and A1, A2, and A3 are expected to be universal constants (all the
constants are positive). The function V (y+) is a Reynolds number dependent,
viscous correction term that increases with y+, and it accounts for the dissi-
pation region of the spectrum at finite Reynolds numbers. Equations 8.14 to
8.16 are valid only in the turbulent wall region.

Li (1989); Li and Perry (1989) and Perry et al. (1991) derived an expression
for the total stress τ using an assumed form for the mean velocity profile (in this
case Coles’ combined law-of-the-wall/law-of-the-wake given by Equation 7.50).
Figure 8.5 shows several Reynolds shear stress profiles calculated in this way,
and the variation with Reynolds number is not monotonic because of low
Reynolds number effects on the Coles wake factor.

Uddin (1994) and Marušić et al. (1997) extended these scaling laws to
include the entire region outside the viscous sublayer. As with the mean flow,
the deviation from the logarithmic profile near the wall is attributed to viscous
effects, and the deviation in the outer part of the layer is due to wake effects.
They suggested a “wall-wake” distribution where, for example,

u′2

u2
τ

= B1 − A1 ln
(

y

δ

)
− Vg1(y

+) − Wg1

(
y

δ

)
. (8.17)

They called Vg1 the viscous deviation, and Wg1 the wake deviation. Uddin
gave empirical forms for Vg1 and Wg1 that agreed well with data over the
range 6570 ≤ Reθ ≤35,100 (Vg1 was a more accurate version of the earlier
function V ). An extension of Equation 8.17 that applies across the entire
boundary layer including the viscous near-wall layer was proposed by Marušić
and Kunkel (2003), and comparisons with the laboratory data of DeGraaff
and Eaton (2000) and the atmospheric data of Metzger et al. (2001) showed
excellent agreement (Figure 8.6), although the formulation does not reproduce
the outer peak in the streamwise intensity observed at high Reynolds numbers
(as seen in Figure 8.11). A similar high level of agreement with high Reynolds
number pipe flow data was shown by Marušić et al. (2004), despite the absence
of a region of k−1

1 similarity in the streamwise velocity spectra (Morrison et al.,
2004).

8.2.2 Spectral Scaling for Compressible Flow

These spectral arguments for the scaling of the turbulence can be extended
to compressible flows, as follows (for further details see Dussauge and Smits
(1995)). In the analysis of the mean velocity distributions in supersonic bound-
ary layers it was assumed that the mixing length distribution was the same
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Figure 8.4. Behavior of the energy spectra of the wall-normal velocity fluctuations
Φ22(k1), according to Perry et al. (see text). (a) Chart showing the different scaling
regions, (b) inner scaling behavior, and (c) outer scaling behavior. Note that in
Perry et al.’s notation, z is distance from the wall, and ∆E is a boundary layer
thickness, similar to δ. (Figure from Perry et al. (1986). Copyright 1986, Cambridge
University Press. Reprinted with permission.)

as in subsonic flows. This comprises essentially a variable fluid property as-
sumption; that is, the mechanisms governing turbulent transport are the same
as at low speed, and the variations of density are taken in account by scaling
the local stress (see Section 5.1). This hypothesis is quite successful, because,
as we have seen, experimental evidence supports that the log law is observed
in the transformed velocity profile with the same constants as found at low
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Figure 8.5. Theoretical Reynolds shear stress profiles, −u′v′/u2
τ , derived by Li

and Perry (1989), from which this figure is taken, with the authors’ permission. In
their notation, z is the distance from the wall, and δH (=∆E) is a boundary layer
thickness similar to δ.

speeds. Therefore it may be expected that the typical size of the energetic ed-
dies producing turbulent transport obeys the same laws as in subsonic flows.
Note that this scale is built on the shear stress and that it is a scale related to
turbulent diffusion.

Hence, the length scales for the low and intermediate wave number regions
in the space ν/uτ 
 y 
 δ are as in subsonic flow, that is, the boundary layer
thickness δ (or equivalently, ∆), and the distance from the wall y, respectively.

The velocity scale for both regions is (τw/ρ̄)1/2. By applying the overlap ar-
gument, we find that the k−1

1 power law is again obtained in Overlap Region
I.

For compressible flow, however, the scaling of the viscous contribution to the
spectrum will change because the Kolmogorov scales vary due to temperature
gradients. We can define new length and velocity scales by considering the
viscosity, the rate of dissipation per unit volume ϕ (not per unit mass ε), and
the density. Dimensional analysis gives:

η′ = ρ−1/2

(
µ3

ϕ

)1/4

and υ′ = ρ−1/2 (µϕ)1/4 . (8.18)

Equations 8.11 and 8.12 now have the form:

Φ11 (k1y)

ρwu2
τ/ρ

= g2 (k1y) =
Φ11 (k1)

yρwu2
τ/ρ

(8.19)
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Figure 8.6. Comparison of Marušić and Kunkel (2003) formulation with data. Solid
symbols are from DeGraaff and Eaton (2000), and symbols ∗ and × are from Met-
zger et al. (2001). Broken symbols are atmospheric surface data, which should be
compared with the broken lines. (From Marušić and Kunkel (2003), with permis-
sion.)

Φ11 (k1η
′)

υ′2 = g3 (k1η
′) =

Φ11 (k1)

η′υ′2 . (8.20)

So the Kolmogorov scales are unchanged as long as ν̄ ≈ µ̄/ρ̄ and ε̄ ≈ ϕ̄/ρ̄. The
analysis for the overlap region is the same as for low-speed boundary layers: the
Kolmogorov scales are determined in the equilibrium zone where production
and dissipation are assumed to balance, where the turbulent shear stress is
constant, and where the transformed velocity is logarithmic. It is again found
that the spectrum of u′2 should have a range in k

−5/3
1 . Because the analysis

can be performed using either the incompressible or compressible variables, the
changes in the scales due to variations in the mean density are absorbed in the
modified dissipation rate because of the density scaling of the velocity gradient.
The differences between the incompressible and the compressible definitions of
the Kolmogorov scales depend mainly on the link between velocity and density
in the part of the layer where dissipation is maximum, and therefore it should
scale with the friction Mach number Mτ = uτ/aw.

It may then be inferred that for weak compressibility effects, the spectra
for u′ and w′ have two wave number ranges with power-law variations in k−1

1

and in k
−5/3
1 , as at low speeds. This analysis does not indicate where these

wave number ranges are placed in the spectrum, that is, if high speeds pro-
duce larger or smaller energetic eddies, or induce a change in the orientation of
these eddies. Naively, it also seems that the existence of a k−1

1 range should be
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Figure 8.7. Spectra in a Mach 2.9 boundary layer at Reθ = 78, 000. The data for
y+ ≤ 2930 are in the logarithmic region. (Adapted from Spina (1988), with the
author’s permission.)

a rather robust feature, because the existence of two domains where the wave
numbers scale respectively with δ and y are the only necessary conditions.
The k

−5/3
1 law is expected to have less generality, because the existence of a

constant shear stress zone with a logarithmic velocity distribution is postu-
lated, and a balance between production and dissipation is also required. The
data are somewhat ambiguous, as shown in Figure 8.7 for a Mach 2.9, high
Reynolds number boundary layer: the k

−5/3
1 range is clearly evident, but the

k−1
1 region seems to be rather small. These observations agree well with the

high Reynolds number data of Morrison et al. (2004) in incompressible, fully
developed turbulent pipe flow.

As a last remark, it may be seen that the incompressible and the compress-
ible definitions of the Kolmogorov scales are equivalent for moderate Mach
numbers, but in the buffer zone they may differ significantly from each other
if the friction Mach number Mτ is close to 1. In this case, however, it may
be expected that the hypotheses required for the derivation of the power laws
will no longer be valid. In practice, friction Mach numbers are usually small
(≤ 0.1), except at hypersonic Mach numbers and very high Reynolds numbers,
or on extremely cold walls.

We see that the turbulence spectra give insight into the scaling of the turbu-
lence stresses. There are some obvious shortcomings in the spectral arguments:
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Figure 8.8. The influence of the characteristic dimensionless hot-wire length scale
l+ on the maximum value of

√
u′2
/

uτ in subsonic boundary layers. Reθ > 700 and
l/δ > 180. (Figure from Fernholz and Finley (1996), where original references are
given. Reprinted with permission from Elsevier Science Ltd., Oxford, England.)

in particular, the data are not uniformly supportive of the proposed scaling.
Nevertheless, the physical arguments are reasonable, and they provide a start-
ing point for understanding the likely effects of Reynolds and Mach number
under conditions where Morkovin’s hypothesis is satisfied.

8.3 Turbulence Data

In considering the stress behavior, it is useful to take the approach followed in
the previous chapter where we used subsonic flows to try to identify Reynolds
number trends, and then went on to examine supersonic flows in order to un-
derstand Mach number effects. The discussion given here draws heavily on the
earlier reviews by Fernholz and Finley (1996) and Dussauge et al. (1996), al-
though the presentation has been considerably extended. By way of a general
comment, we need to be aware of the errors and uncertainties associated with
the measurement techniques, particularly the systematic errors. For example,
Figures 8.8 and 8.9 show how the finite length of the sensor affects the level of
the maximum turbulence intensity measured in the near-wall region of subsonic
boundary layers. As the wire length decreases, the level increases. Neverthe-
less, the data can be extrapolated reasonably unambiguously to zero sensor
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Figure 8.9. The influence of l+ and Reynolds number on the maximum value of√
u′2
/

uτ . (Figure from Fernholz and Finley (1996), where original references are
given. Reprinted with permission from Elsevier Science Ltd., Oxford, England.)

length, and there is a definite trend where the level increases with Reynolds
number, ranging from about 2.8 at Reθ = 1000 to about 3.2 at Reθ = 10,000.
At still larger Reynolds numbers, this ratio can reach a value about 4 (see
Figures 8.6 and 8.10). Note that in Figures 8.9 to 8.17, Reδ2 = Reθ, because
all data shown are for subsonic flow. Marušić and Kunkel (2003) derived the
variation of the maximum turbulence intensity with Reτ = δuτ/ν on the basis
of their similarity formulation (Section 8.2.1) and found good agreement with
the data. In later work, Marušić (2004) showed that the similarity formulation
indicates that the maximum mean square value should follow the functional
form:

u′2

u2
τ

= a + b ln Reτ , (8.21)

and the agreement with experiment, including very high Reynolds number
atmospheric data, is excellent (Figure 8.10).

8.3.1 Incompressible Flow

Figure 8.11 shows the distributions of u′2 normalized with wall variables. At
all Reynolds numbers, similarity can be observed in the range 3 ≤ y+ ≤
50, including the cases with high freestream turbulence levels, although the
maximum value of u′2/u2

τ tends to increase slightly with Reynolds number, as
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Figure 8.10. The maximum value of
√

u′2
/

uτ in the near-wall region. The solid
line is Equation 8.21 with a = 0.9132 and b = 0.9737. (From Marusic (2004), with
permission.)

we noted above. The position where this maximum occurs, however, seems
to be fixed at y+ ≈ 15 (Sreenivasan, 1988). For values of y+ > 100 large
departures are observed in inner scaling, with a tendency for the intensity to
form a second maximum in a region corresponding to the mean-profile log law
region, which becomes more pronounced as Reθ increases. Such second peaks
are often observed in high Reynolds number compressible boundary layers
(Figures 3.1.1 and 3.1.2 in Fernholz and Finley (1981)), although generally
not so pronounced.

The u′2 data plotted using the Rotta thickness as the outer length scale are
shown in Figures 8.12 and 8.13. With this scaling the data collapse well for
y/∆ > 0.4 (y/δ > 0.1) for Reθ > 5000 in the same way as the mean velocity
profile (Figures 7.6 to 7.8). The second maximum shown in Figure 8.11 can
be seen to represent a further extension of outer similarity toward the wall as
Reθ increases. Figure 8.12 shows the convergence of the u′2 profiles toward
this universal behavior at lower Reynolds numbers.

At high enough Reynolds number, therefore, the u′2 profiles display simi-
larity in the viscous sublayer and buffer layer when expressed in inner scal-
ing, except for a continuing increase of the maximum turbulence intensity at
y+ ≈ 15, which Morrison et al. (2004) ascribes to the influence of the inactive,
outer layer motions on the near-wall turbulence. Morrison et al. suggest that
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Figure 8.11. Distribution of the longitudinal Reynolds stress in inner layer scaling at
medium to high Reynolds numbers. Data from Bruns et al. (1992) and Nockemann
et al. (1994). , Equation 8.14 for Reδ2 = 5023; , Reδ2 =
57,720. (Figure adapted from Fernholz and Finley (1996) with permission from
Elsevier Science Ltd., Oxford, England.)

the interaction between inner and outer layer motions are responsible for such
departures from strict Reynolds number similarity. In outer scaling, similar-
ity is observed for y/δ > 0.4, approximately. The formulation by Marušić
and Kunkel (2003) shows very good agreement with the data at all Reynolds
numbers in inner and outer regions, but the appearance of a second maximum
in the streamwise component, seen in boundary layer and pipe data, is not
reproduced.

The profiles of v′2/u2
τ and w′2/u2

τ plotted against y+ (not shown here) dis-
play little or no sign of similarity. At least part of this behavior may be due to
measurement errors. In particular, measurements of v′ and w′ using an X-wire
probe are subject to errors due to spatial averaging caused by the separation
L of the two wires. The dimensionless distance L+ is likely to have as great an
influence as l+, and as a result v′ and w′ measurements are usually less precise
than u′ measurements (see Section 1.7.1).

Figures 8.14 and 8.15 show these data plotted against y/∆. An orderly
similarity behavior is found, although the peak values depend on Reynolds
number again, this time quite markedly. The maximum value of v′2/u2

τ in-
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Figure 8.12. Distribution of the longitudinal Reynolds stress in outer layer scaling
at low to medium Reynolds numbers. , Equation 8.14 for Reδ2 = 5023.
(Figure adapted from Fernholz and Finley (1996) with permission from Elsevier
Science Ltd., Oxford, England.)

creases from about 1 to 1.6 as Reθ increases from about 600 to 60,000, and the
maximum value of w′2/u2

τ increases from about 2 to 3 over a similar Reynolds
number range. The y+ location of the peak for v′2 moves away from the wall
as Reθ increases, in agreement with the findings of Sreenivasan (1988). The
location of the peak in w′2 cannot be determined with sufficient precision to
make any meaningful conclusions.

For v′2 in the overlap region, comparisons with the predictions according to
Equation 8.16 show a similar behavior to that found for u′2: good agreement
is found with the data at the lower Reynolds numbers, but the increase with
Reynolds number is underestimated somewhat. In a parallel study, Smith
(1994) found a similar trend, and concluded that the additive constants in
Equations 8.14 to 8.16 must be weakly Reynolds number dependent.

In contrast to the observations in boundary layers, recent data taken in a
pipe flow indicate the presence of a region of constant v′ in the overlap region
where w′2/u2

τ ≈ 1.3, with a peak developing in the near-wall region (y+ <
100 at higher Reynolds numbers (Zhao, 2005). Zhao interpreted this latter
observation to demonstrate the increasing effect of the outer layer motions on
the inner layer turbulence as the Reynolds number increases.

As far as the Reynolds shear stress is concerned, Sreenivasan (1988) and
Sreenivasan and Sahay (1997) suggest “that the location of the peak Reynolds
stress in a zero pressure gradient boundary layer is something like a critical
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Figure 8.13. Distribution of the longitudinal Reynolds stress in outer layer scaling
at medium to high Reynolds numbers. Data from Bruns et al. (1992) and Nocke-
mann et al. (1994). Equation 8.14 for Reδ2 = 5023; Reδ2 =
57,720. (Figure adapted from Fernholz and Finley (1996) with permission from
Elsevier Science Ltd., Oxford, England.)

layer for the flow and that it shares some of the properties of the transi-
tional critical layer.” One of these properties is that the velocity of the mean
flow in the transitional critical layer appears to be a constant fraction of the
freestream velocity. For several wall-bounded shear flows Sreenivasan found
Ucrit = 0.65Ue, so that the position of this “critical” layer is in the logarithmic
region of the boundary layer.

Similar ideas have been recently proposed by Wei et al. (2005) who derived
a new scaling scheme for wall-bounded flows using the streamwise momentum
equation and developing arguments based on stress gradients. For the mean
flow, they identify two layers that lie between the traditional linear sublayer
and the outer wake region: a stress gradient balance layer extending from
the viscous-dominated flow near the wall well into the region where the log
law is normally assumed to begin, and a viscous-advection balance or “meso-
layer” occurring in the region where the maximum Reynolds shear stress is
found, corresponding to Sreenivasan’s critical layer. The extent of both layers
increases with Reynolds number according to ∆y+ ∼ √

δ+, but of the two
layers the stress gradient balance layer is of most interest because its velocity
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Figure 8.14. Distribution of the wall-normal Reynolds stress in outer layer scaling
at medium to high Reynolds numbers. Equation 8.16 for Reδ2 = 5023;

Reδ2 = 57,720. (Figure adapted from Fernholz and Finley (1996), where
original references are given, with permission from Elsevier Science Ltd., Oxford,
England.)

increment is nearly constant and equal to about Ue/2, and it can occupy
a substantial fraction of the layer (from y+ ≈ 3 to y+ ≈ 1.6

√
δ+. These

observations may help to explain the power-law variation seen in the near-
wall region by Zagarola and Smits (1998a), which blends into a logarithmic
variation only for y+ > 600, because it would appear that this power-law
region and the stress gradient balance layer occupy similar space.

The scaled shear stress −u′v′/u2
τ in inner-layer scaling shows a plateau in

the vicinity of its peak value of about 0.92 and 0.95 (for details see Fernholz
and Finley, 1996). The spatial resolution of X-wire probes near the wall is
generally poor, and the near-wall observations are not precise enough to con-
firm Spalart’s (1988) suggestion that the total shear stress approaches the wall
with a finite nondimensional slope of order −0.6, with the slope falling to zero
only in the buffer layer.

Figure 8.16 shows the shear stress data in outer layer scaling. The data
collapse for y/∆ > 0.09. The peak value of the shear stress shows almost no
dependence on Reynolds number, but in this scaling the location of the peak
moves towards the wall as the Reynolds number increases. When expressed
in terms of inner scaling, the peak moves away from the wall with increas-
ing Reynolds number, although the movement of the peak is less pronounced
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Figure 8.15. Distribution of the spanwise Reynolds stress in outer layer scaling at
medium to high Reynolds numbers. Data from Bruns et al. (1992) and Nockemann
et al. (1994). Equation 8.15 for Reδ2 = 5023; Reδ2 = 57,720.
(Figure adapted from Fernholz and Finley (1996), with permission from Elsevier
Science Ltd., Oxford, England.)

Figure 8.16. Distribution of the Reynolds shear stress in outer layer scaling at
medium to high Reynolds numbers. Data from Bruns et al. (1992) and Nockemann
et al. (1994). (Figure from Fernholz and Finley (1996). Reprinted with permission
from Elsevier Science Ltd., Oxford, England.)
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than for v′2. This is in qualitative agreement with the results collected by
Sreenivasan (1988), who noted that the part of the dynamics contributing to
the Reynolds shear stress does not reside either at constant y+ or at constant
y/∆, again hinting at the influence of outer scales on the inner layer behavior.

Direct numerical simulations give shear stress values near the wall which
are generally in good agreement with the experimental values obtained at the
same Reynolds number. For example, at Reθ = 670, Spalart (1988) finds
a maximum value of u′v′/u2

τ of about 0.95 (compared with the experimental
value of 0.87 found by Erm and Joubert (1991)), and Yeung et al. (1993)
find a maximum value of about 0.89. The position of the maximum value
also agrees well with experiment (for further details see Fernholz and Finley
(1996)). In other respects, as in the turbulent stress and skewness and flatness
distributions, the DNS results agree similarly well with the experimental data
(Erm et al., 1994).

Some particular ratios of stresses are also of interest. The “structure pa-
rameter” a1 is the ratio of the Reynolds shear stress to the turbulent kinetic
energy, and Klebanoff (1955) found it to be approximately constant in a range
0.1 ≤ y/δ ≤ 0.8, at a Reynolds number Reθ = 7660. Erm (1988) found similar
results in the range 697 ≤ Reθ ≤ 2788, with a1 taking values between 0.14 and
0.16. Higher Reynolds number data are shown in Figure 8.17 in outer scaling.
The location of the peak value is approximately constant, and the magnitude
of the peak value lies between 0.14 and 0.17, increasing slightly with Reθ.

The correlation coefficient Ruv increases from about 0.3 near the wall to
about 0.45 in the outer part of the layer (see, for example, Klebanoff’s (1955)
results in Figure 8.21), and there is a weak tendency for these values to decrease

with Reynolds number. The anisotropy ratio
√

v′2/
√

u′2 increases across the
boundary layer from a value of about 0.4 to about 0.8, and shows the same
strong Reynolds number dependence as v′2 itself (see also Smith (1994)). The

ratio
√

w′2/
√

u′2 is nearly constant at a value of between 0.6 and 0.7 at all
y-locations and Reynolds numbers.

As for the higher-order moments, the skewness and flatness of u′ (given by
u′3/u′

rms
3 and u′4/u′

ms
2, respectively) appear to be independent of Reynolds

number when scaled using the appropriate scaling parameters for each region,
as found by Smith (1994) and Fernholz and Finley (1996). The behavior of the
triple correlations and production terms is discussed by Murlis et al. (1982),
Erm (1988), Fernholz and Finley (1996), and Morrison et al. (1992).

8.3.2 Compressible Flow

In Chapter 1 we saw that when the longitudinal velocity fluctuations are nor-
malized by the shear velocity u′2/u2

τ , there is a decrease in fluctuation level
with increasing Mach number (see Figure 1.5). However, when the streamwise
normal stress ρ̄u′2 is normalized by the wall shear stress, the results are in fair
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Figure 8.17. Distribution of the structure parameter a1 = −u′v′
/

q2 in outer layer
scaling at medium to high Reynolds numbers. Data from Bruns et al. (1992) and
Nockemann et al. (1994). (Figure from Fernholz and Finley (1996). Reprinted with
permission from Elsevier Science Ltd., Oxford, England.)

agreement with the incompressible data of Klebanoff (1955), except near the
wall where the supersonic measurements are subject to considerable uncer-
tainty (see Figure 1.2). This indicates the success of the scaling suggested by
Morkovin (1962) to account for the mean density variation, and provides some
support for the discussion given in Section 8.2. It should be mentioned that
Fernholz and Finley (1981), in considering an earlier set of data, concluded
that the streamwise Reynolds stress did not show a similar behavior in the
outer region, no matter which velocity scale was used in the nondimension-
alization. It appears that the later data shown in Figure 1.2 display a more
regular behavior. Morkovin’s scaling appears to be appropriate to at least
Mach 5. Measurements by Owen et al. (1975) at Me = 6.7 and Laderman
and Demetriades (1974) at Me = 9.4 exhibit damped turbulent fluctuations,
particularly near the wall. Because both of the hypersonic data sets are for
cold-wall conditions, this may simply indicate the stabilizing effect of cooling.

Measurements of v′2 and w′2 are less common than those of u′2, the data
exhibit more scatter, and the conclusions are therefore less certain. Cross-
wire measurements of both streamwise and wall-normal components of velocity
have suggested that some aspects of boundary layer structure depend on Mach
number (Smits et al., 1989). In contrast to the streamwise turbulence intensity,
v′2 and w′2 appear to increase slightly with increasing Mach number (Fernholz
and Finley, 1981). In this case, Morkovin’s scaling does not collapse the data,
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Figure 8.18. Turbulence distributions in a Mach 2.9 boundary layer, measured
using hot-wire probes (Reθ = 65,000). (Adapted from Konrad (1993), with the
author’s permission.)

and ρv′2/τw and ρw′2/τw show no obvious trend toward similarity. Using hot-
wire anemometry, Konrad (1993) found that w′2 and v′2 in a Mach 2.9, high
Reynolds number boundary layer were approximately equal throughout the
layer (see Figure 8.18). In contrast, the measurements by Eléna and Lacharme
(1988) in a Mach 2.3, low Reynolds number boundary layer using laser-Doppler
velocimetry indicate that the behavior of v′2/uτ

2 is almost identical to that
found in subsonic flows (see Figure 8.19). The behavior of the anisotropy
ratio is therefore not clear: Eléna and Lacharme data indicate that the ratio
v′2/u′2 is almost the same as those found by Klebanoff (1955) in a subsonic
boundary layer, whereas the measurements by Fernando and Smits (1990) and
Konrad (1993) indicate that this ratio increases with Mach number. As we
saw earlier, however, the anisotropy depends strongly on Reynolds number,
primarily because of the behavior of v′2, and the differences between the two
sets of compressible flow data may well be due to the large Reynolds number
difference between the experiments. Although the evidence is not conclusive,
there may be no significant Mach number influence.

Recent DNS results on a zero pressure gradient boundary layer by Martin
(2003, 2004) cover a Mach number range from 3 to 8, where the value of δ+ was
held approximately constant at 400 (corresponding to Reθ = 2390 at the lowest
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Figure 8.19. Turbulence distributions in a Mach 2.3 boundary layer (Reθ = 4000 to
4700). Symbols: Experimental results obtained using LDV (Eléna and Lacharme,
1988). Solid lines: DNS; broken lines: subsonic data from Klebanoff (1955). (Figure
adapted from Martin (2004), with permission of the author.)

Mach number, and Reθ = 13, 060 at the highest Mach). The wall condition
was chosen to be isothermal with a value close to the adiabatic value, and the
effect of varying the wall temperature was examined at Mach 5. As reported by
Smits and Martin (2004), the DNS results support many of the experimental
observations. For example, the mean velocity profiles transformed according
to van Driest collapse with the usual scaling using inner and outer variables,
and the Reynolds stresses collapse using Morkovin’s scaling at about the same
level of accuracy as seen in experiment. One of the cases considered by Martin
was at M = 2.23 and Reθ = 4452, corresponding to the experiments by
Debiève (1983), Eléna et al. (1985), and Eléna and Lacharme (1988), where
Reθ = 4000 to 4700. The comparisons between DNS and experiment are
particularly impressive (Figure 8.19).

Sandborn (1974) reviewed direct measurements and indirect evaluations of
the Reynolds shear stress −ρu′v′ in zero pressure gradient flows (a later, more
comprehensive study was provided by Fernholz and Finley (1981)). Sandborn
constructed a “best fit” of normalized shear stress profiles (τ/τw) from inte-
grated mean-flow data taken over a wide Mach number range (2.5 < M∞ < 7.2:
extended to Mach 10 for adiabatic and cold walls by Watson (1978)). The
data indicate a near-universal shear stress profile that agrees well with the
incompressible measurements of Klebanoff (1955) (see Figure 8.20). Direct
measurements of the shear stress have exhibited only modest agreement with
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Figure 8.20. Distribution of shear stress in boundary layers at supersonic speed.
Left: Figure from Sandborn (1974). Right: Figure from Martin (2004), where
the solid line is DNS, and the broken line is subsonic data from Klebanoff (1955).
(Figures reprinted with permission of the authors.)

Sandborn’s best fit. The agreement is limited to the outer layer, with great
scatter in the inner layer and most profiles not tending toward τ/τw = 1 near
the wall. The data in the inner layer do not scale with yuτ/νw, almost cer-
tainly because of the difficulties with the measurements. In contrast, the DNS
results of Martin (2004) shown in Figure 8.20 are in excellent agreement with
Sandborn’s curve, and the Mach 2.32 LDV data of Eléna et al. (1985).

The shear correlation coefficients obtained by Fernando and Smits (1990)
at Mach 2.9, indicated that Ruv decreases significantly with distance from the
wall, from a value of about 0.45 near the wall to about 0.2 near the boundary
layer edge (see Figure 8.21). This is in contrast to most subsonic flows where
the correlation coefficient is nearly constant at a value of about 0.45 in the
region between 0.1δ and 0.8δ. As can be seen in the figure, the data by Eléna
and Lacharme (1988) at Mach 2.3 follow the subsonic distribution closely, and
it is difficult to say how compressibility affects the level of Ruv without further
experiments. However, as noted earlier, there is about a factor of 15 difference
in Reynolds number between the results of Fernando and Smits and Eléna
and Lacharme, and the differences seen in the distribution of Ruv may well
reflect that fact, primarily through the Reynolds number dependence of v′2

(see Figure 8.14).

In Section 5.2 the Strong Reynolds Analogy was discussed, and some mea-
surements in support of this analoguey were presented in Figures 5.4 and 5.5.
It appears that the SRA is closely followed in supersonic boundary layers on
adiabatic walls, and that the correlation coefficient RuT is approximately equal
to −0.8 throughout the layer. The DNS results of Wu and Martin (2004) at
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Figure 8.21. Distribution of Ruv in subsonic and supersonic boundary layer. Left:
Data from Eléna and Lacharme (1988) (the dotted line is the subsonic data of
Klebanoff (1955)). (Reprinted with permission of Gauthier-Villars.) Right: Data
from Fernando and Smits (1990) (the filled-in symbols are subject to errors due to
transonic effects). (Copyright 1990, Cambridge University Press. Reprinted with
permission.)

Mach 3 agree very well with these observations (Figure 8.22), as do the com-
putations by Martin (2004) for Mach numbers from 3 to 8. The magnitude of
RuT is considerably higher than that found in slightly heated subsonic flows, as
seen in Figure 5.5, and the reason is not entirely clear. However, the high level
of the correlation makes the SRA a very useful tool in describing the behavior
of supersonic turbulent boundary layers, especially in formulating turbulence
models. The SRA can also be extended to nonadiabatic flows, as discussed in
Chapter 9.

The stagnation temperature fluctuation must be known to evaluate the tur-
bulent heat-flux correlation, −cpρv′T ′. Kistler (1959) observed that T ′

0rms
/T0

increased with Mach number, with maxima of 0.02 at M∞ = 1.72 and 0.048
at M∞ = 4.67. If Kistler’s data are nondimensionalized using Tw (Fernholz
and Finley, 1981) or Tr − Te (Sandborn, 1974), the Mach number dependence
appears to be eliminated, but similarity of the stagnation temperature dis-
tributions is not achieved. The same conclusions are reached from measure-
ments by Morkovin and Phinney (1958) and Horstman and Owen (1972).
The maximum level of stagnation-temperature fluctuations is about 6% (for
M < 7). Further analysis of these data shows that T ′

0rms
scales according to

either T0e − Tw or T0e − Tr. The fluctuations in total temperature appear to
be produced by the difference in stagnation temperature between the wall and
the freestream, and not, for example, by the unsteadiness in pressure through
the term ∂p/∂t in the total enthalpy equation. In these experiments, the maxi-
mum of T0rms/(T0e − Tr) is about 0.5, regardless of the Mach number, a rather
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Figure 8.22. DNS results for the SRA in a Mach 3 boundary layer (Reθ = 2400).
(Figure adapted from Wu and Martin (2004), with the authors’ permission.)

satisfactory result because it shows that the total temperature fluctuations
are of the order of (but less than) the total temperature difference across the
boundary layer. Finally, T ′

0rms/To is less than u′
rms/U and T ′

rms/T , but not
low enough to satisfy the strict Strong Reynolds Analogy. In fact, as indicated
in Section 5.3, the one-dimensional form of the energy equation, together with
the empirical results on the SRA, indicate that the ratio T ′

0rms
/T ′

rms is approxi-

mately equal to
√

2 (1 + RuT ); that is, T ′
0rms

is about 60% of T ′
rms, independent

of the Mach number (Smits and Dussauge, 1989).

8.4 Organized Motions

Here we describe the organized, spatially correlated motions found in turbu-
lent boundary layers. The interest in such flow structure is driven, at least
in part, by the hope that a better understanding of the dynamics of turbu-
lent motions will lead to a better predictive capability. Although we have
not yet achieved that objective completely, our studies of organized motions
have led to a deep (albeit largely qualitative) understanding of the turbulence
production cycle in wall-bounded flows, and a much better understanding of
Reynolds number scaling. The presentation given here is based largely on the
earlier work by Smith (1994), Spina et al. (1994), Dussauge et al. (1996) and
Smits and Delo (2001), and further details are given there. There are sev-
eral excellent reviews of turbulent flow structure in the literature, including
Willmarth (1975); Cantwell (1981), Robinson (1991a), and especially the vol-
ume by Panton (1997). More personal interpretations are offered by Hussain
(1983), Coles (1987), and Sreenivasan (1989).
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The term “structure” has at least two different interpretations. First, it is
used to describe the behavior of the mean flow and Reynolds stresses. The
scaling of the mean flow and Reynolds stresses, the composition of Reynolds
stresses, anisotropy ratios, and the behavior of the shear correlation coefficient,
Townsend’s structure parameter a1, and the intermittency profiles, can all be
viewed as describing the structure of a turbulent boundary layer. Second, the
term is used to describe coherent organized motions occurring in the flow.
Robinson (1991a) defines a coherent motion, or structure, as

a three-dimensional region of the flow over which at least one fun-
damental flow variable (velocity component, density, temperature,
etc.) exhibits significant correlation with itself or with another flow
variable over a range of space and/or time that is significantly larger
than the smallest local scales of the flow.

This definition is quite general, although as Kline and Robinson (1989) point
out, the classification of coherent structures in turbulent boundary layers can
be arranged in many ways, and they use the term “quasi-coherent” to empha-
size that the structures or motions exhibit significant variation from one ex-
periment to another. More specific versions have been proposed (for instance,
Hussain (1983)), but in essence they are just restricted forms of Robinson’s
definition.

8.4.1 Inner Layer Structure

Klebanoff (1955) found that about 75% of the total turbulence production in
the boundary layer occurs in the region where y/δ < 0.2. Most subsequent
investigations of turbulent boundary layer structure have therefore focused on
the near-wall region, primarily the viscous sublayer and buffer layer. Because
of practical considerations, such as the need for adequate resolution of small
scales, these studies have been limited to subsonic flows, predominantly at low
Reynolds numbers; that is, Reθ < 5000. In supersonic flows, the scaling of the
turbulence in the inner layer undoubtedly becomes more complicated because
strong gradients of temperature occur in the near-wall region that can cause
major changes in density and viscosity. Almost no near-wall data exist for
supersonic boundary layers, and so we must proceed under the assumption
that similar mechanisms occur in compressible flows, as long as Morkovin’s
hypothesis is satisfied. Recent DNS computations help verify this assumption,
as discussed below.

Runstadler et al. (1963), Kline et al. (1967), and Bakewell and Lumley
(1967) discovered that the viscous sublayer is occupied by alternating streaks
of high- and low-speed fluid (relative to the mean), as illustrated in Figure 8.23.
The spanwise spacing of the streaks λs was found to scale on inner variables and
to have a nondimensional mean value of λ+

s ≈ 100. The streaks were presumed
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Figure 8.23. Turbulent boundary layer on a flat plate. The water was seeded
with aluminum particles and viewed simultaneously from above and the side. Note
the large population of meandering near-wall streaks in the top view, and the
downstream-leaning, large-scale structure in the side view (Cantwell et al., 1978).
(Copyright 1978, Cambridge University Press. Reprinted with permission.)

to be the result of elongated, counter-rotating streamwise vortices very near
the wall. Kline et al. observed that the low-speed streaks would gradually lift
up from the wall, oscillate, and then break up violently, ejecting fluid away
from the wall and into the outer layer. They coined the term bursting to
describe this sequence of events, and concluded that all the events comprising
the bursting process were consistent with a stretched and lifted vortex. Kim
et al. (1971) determined that in the wall region 0 < y+ < 100, nearly all of the
turbulence production occurs during bursting, thus establishing the dynamical
significance of the near-wall region and the bursting process.

Similar observations were made by Corino and Brodkey (1969). They found
a recurring sequence of events where a large-scale disturbance would frequently
impinge upon a near-wall region of low-speed fluid. This would be followed by
one or more ejections of low-speed fluid up into the large-scale disturbance,
resulting in violent chaotic interaction. Once the ejection(s) had subsided, a
large region of high-speed fluid would cleanse the area of the debris of the
interaction. Corino and Brodkey called this latter event a sweep. As the
Reynolds number increased, the frequency and intensity of the ejection events
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increased, and at high Reynolds numbers it was difficult to distinguish between
individual events.

Cantwell (1981) examined the coherent structures in the inner layer in
terms of localized regions of vorticity, and suggested that a fluctuating array
of streamwise counterrotating vortices densely covers all parts of the smooth
wall. Slightly above the streamwise vortices but still quite close to the wall is a
layer that is regularly battered by bursts that involve very intense small-scale
motions of energetic fluid, which he termed “energetic near-wall eddies.”

The average spanwise spacing of the streaks (λ+
s ≈ 100) is one of the few uni-

versally accepted aspects of boundary layer structure, although there are large
departures from the mean (Smith and Metzler, 1983). In contrast, estimates
of the streamwise extent of the streaks vary widely. This is most likely due to
the different methods used to make the estimates. The low-speed streaks are
seen to extend up to L+

x = 
Lxuτ/ν ≈ 2000 in some cases, when the spanwise
meandering of the streaks is taken into account. Marušić (2004) has observed
even longer streaks in moderate Reynolds number boundary layers, and recent
DNS computations of channel flow support this observation (Iwamoto, 2004).
Velocity correlation methods derived from stationary probes tend to under-
estimate the streamwise length of a meandering streamwise vortex, because
only limited portions of such a vortex intersect the probe. The persistence
distance of the near-wall vortices is difficult to evaluate for the same reasons.
Probably the most complete description of their formation is given by Schoppa
and Hussain (1997). As Cantwell points out, even if the low-speed streaks are
generated directly by pairs of counterrotating vortices, it does not necessarily
follow that the two must have the same streamwise dimension (Smith et al.,
1991; Smith and Walker, 1997).

In compressible flow, the only evidence for the behavior of the near-wall
structure comes from DNS. Martin (2004), in a study of flat plate boundary
layers from Mach 3 to 8, observed a 40% decrease in the streamwise extent
of the near-wall streaks with Mach number (as a fraction of δ), and a 20%
decrease in spanwise spacing (in terms of νw/uτ ). These decreases may be due
to the spatial variation in the viscous length, because the rapid variations in
temperature near the wall cause significant changes in the local density and
viscosity. The fact that an increasing wall temperature had a similar effect on
the streaks supports this suggestion.

The convection velocities of the various types of near-wall structures are
fairly well established, at least in subsonic flows, and the values represent data
from a wide range of studies, primarily correlation based. For example, the
average convection velocity of the near-wall streamwise vortices is probably
close to the local mean velocity, because the low- and high-speed streaks move
at about 50% and 150% of the local mean velocity, respectively (Cantwell,
1981).

In contrast, the scaling of the mean bursting period, Tb (or mean bursting
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frequency, fb ∼ 1/Tb) is still controversial. Initially, Kline et al. suggested that,
because the bursting process is a wall-layer phenomenon, Tb should scale with
inner variables. Subsequent research has provided many conflicting results.
Rao et al. (1971), working in a turbulent boundary layer in the range 600 <
Reθ < 9000, concluded that outer scaling is appropriate, and that TbUe/δ ≈
5 (or TbUe/δ

∗ ≈ 30), independent of Reynolds number. Alfredsson et al.
(1988), working in a fully developed channel flow in the range 13,800 < Rec <
123,000 (Rec based on channel height and centerline velocity), found that Tb

was independent of Reynolds number when nondimensionalized by a mixed
time scale equal to the geometric mean of the inner and outer time scales.
Thus, three different scalings for Tb (and thus fb) have been proposed, and the
issue has not yet been resolved.

The scaling of Tb is important in its implications for the dynamics of the
turbulent boundary layer. If Tb scales on inner variables, it suggests that the
inner layer controls the dynamics of the boundary layer, and the outer layer
structure may be merely the debris of the bursting process. Alternatively, if
Tb follows outer scaling, it implies that the bursting process is controlled or
modulated by (and may be responding passively to) the outer layer structure.
If Tb scales on mixed variables, it implies an important mutual interaction
between the inner and outer structure.

There are many reasons for the discrepancy among the various results.
Measurement errors are important, in that spatial-averaging effects will lead to
an underestimate of fb (Blackwelder and Haritonidis, 1983). More important,
in order to measure the bursting period, it is necessary to devise a criterion
for detecting the bursting process. Visual methods, as used by Kline et al.,
Corino and Brodkey, and Kim et al., are limited to very low Reynolds numbers.
Therefore, Lu and Willmarth (1973) introduced the u′-level method, in which
low values of u′, relative to the mean, were used to detect ejections, and
high levels of u′ were used to detect sweeps. Wallace et al. (1972) and Lu
and Willmarth (1973) proposed splitting the u′–v′ velocity plane into four
quadrants, as shown in Figure 8.24. Instantaneous values of −u′v′ can then
be associated with a certain quadrant and a corresponding event (see also
Antonia (1971)).

Blackwelder and Kaplan (1976) developed an alternative method, the Vari-
able Interval Time Averaging (VITA) technique, whereby the variance of the
velocity u′ is computed over a short time interval. When the short time vari-
ance exceeds a preset threshold level, an event is said to have occurred. The
goal of these detection schemes is to identify segments of the velocity signal
that correspond to events of interest (for example, ejections and sweeps), and
to analyze these segments separately from the remaining signal by conditional
sampling and averaging.

All detection methods are, to some extent, subjective because they require
the user to choose threshold levels and/or averaging times. Willmarth and
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Figure 8.24. The four quadrants of the u′–v′ plane, and the common terms for the
events corresponding to each quadrant. (Figure from Robinson (1991b), with the
author’s permission.)

Sharma (1984) found that the bursting period determined using the VITA
technique is highly sensitive to the threshold level and the averaging time.
When the threshold level was changed by 5%, the measured bursting frequency
changed by 40%, and a 20% change in the averaging time resulted in a 15%
change in measured bursting frequency. More disturbing is the fact that it
is not certain what relationship exists between the detected events and the
actual events occurring during the bursting process. Bogard and Tiederman
(1986, 1987) evaluated several detection methods and found that different
methods could yield values of Tb which differed by an order of magnitude. They
also found that different techniques detected different phases of the bursting
process. Corino and Brodkey (1969) had already observed that more than one
ejection may occur during a single burst, leading to further variations among
the reported results. Reynolds number effects may also be important (Shah
and Antonia, 1989), and it is possible that the structure of fully developed
pipe and channel flows differs from that of turbulent boundary layers because
the outer layers have different intermittent characteristics.

8.4.2 Outer Layer Structure

The outer layer is more easily accessible to measurement, and therefore rea-
sonably comprehensive data sets exist for the large-scale structure of subsonic
and supersonic flows. The current state of knowledge concerning compressible
boundary layer structure is derived largely from studies by Robinson (1986);
Spina and Smits (1987); Smits et al. (1989); Fernando and Smits (1990), Spina
et al. (1991a,b), Donovan et al. (1994), and Bookey et al. (2005b) of flat-plate
layers with freestream Mach numbers of approximately 3, and the work by
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Figure 8.25. Shadowgraph visualizations of the flow over a cone cylinder of 12.5◦

semi-vertex angle at Mach 1.84. A detail of the flow in the vicinity of the base is
shown on the right. (Photograph by A.C. Charters, taken from Van Dyke (1982),
with permission.)

Baumgartner et al. (1997) and Bookey et al. (2005a) at Mach 8. These studies
were preceded by a pioneering investigation by Owen and Horstman (1972),
who made extensive two-point cross-correlation measurements with hot-wires
in a Mach 7.2 boundary layer. Most of the results available in the literature
were obtained using hot-wire anemometry (with its attendant limitations),
with some degree of corroboration at high speed by quantitative flow visual-
ization studies (Smith and Smits, 1988; Cogne et al., 1993; Baumgartner et
al., 1997; Bookey et al., 2005a,b).

A characteristic component of the outer layer is the large-scale turbulent
bulge, also referred to as a Large-Scale Motion (LSM). LSMs (Townsend’s
“main eddies”) evolve and decay slowly as they convect downstream, and on
average they are inclined to the wall in the downstream direction. Their most
identifiable feature is a downstream-sloping shear layer interface between up-
stream high-speed fluid and downstream low-speed fluid (unfortunately, these
structures have been labeled both “fronts” and “backs” in the literature).
These interfaces are three-dimensional shear layers that form the upstream
side of the largest of the boundary layer eddies, and remain coherent long
enough to convect several boundary layer thicknesses downstream. Early shad-
owgraph images of boundary layers on supersonic bodies of revolution (where
the spatial integration is minimized) clearly showed such structures, appearing
as marked and regular striations in the layer, leaning downstream at a char-
acteristic angle of 40◦ to 60◦ (Figure 8.25). Figure 8.26 shows several LSMs
in a subsonic boundary layer, and comparable images for supersonic flow are
given in Figure 1.4 and Figure 8.27.

The LSMs are an important feature in that they are responsible for the
large-scale transport of turbulence in the outer layer, the growth of the layer by
entrainment of initially irrotational flow, and appear to play a role in triggering
instabilities in the near-wall region. Up to 40% of the outer layer Reynolds
shear stress can be found in the neighborhood of their sloping interfaces (Spina
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Figure 8.26. Flow visualization of a boundary layer in subsonic flow at Reθ ≈ 4000,
obtained by seeding the flow with a fog of oil droplets, and illuminating the flow
with a planar laser sheet (Falco, 1977). Flow is from left to right. (Copyright 1977,
AIP. Reprinted with permission.)

Figure 8.27. Flow visualization of a boundary layer in a Mach 2.82 flow at Reθ =
81,190, obtained by seeding the flow with acetone droplets, and illuminating the flow
with a planar laser sheet (the two pictures shown were taken at different times). The
flow is from left to right. (Figure from Smith and Smits (1995). Copyright 1995,
Springer-Verlag. Reprinted with permission.)

et al., 1991a). Between neighboring bulges, the flow is irrotational, resulting in
the intermittent nature of the outer layer. The LSMs vary greatly in size and
inclination angle, and their length scales, time scales, convection velocity, and
structure angle, as well their characteristic velocity, vorticity, and pressure
fields, remain the subject of active research. Furthermore, their Reynolds
number and Mach number dependence is not very well understood, although
the superficial similarities between the subsonic and supersonic flows is striking
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Figure 8.28. Visualizations of flat plate boundary layers. Flow is from left to right.
Left: Air at Mach 8, Reθ ≈ 3600 (δ+ ≈ 200), visualized using FRS. Right: Water
at Mach 0, Reθ = 700 (δ+ = 300), visualized using dye (Delo and Smits, 1997).
(Figure from Baumgartner et al. (1997), with the author’s permission.)

(compare, for example, Figures 8.26 and 8.27). Even more suggestive is the
comparison shown in Figure 8.28, where two low Reynolds number boundary
layers, one in a low-speed water channel and the other at Mach 8, are shown
side by side.

In contrast to this visual evidence, the hot-wire measurements by Owen
et al. (1975) had strongly suggested that the extent of the intermittent zone
decreased with Mach number. Part of the difficulty in determining the in-
termittency (the wallward extent of the entrainment process) is finding an
unambiguous criterion for discriminating between turbulent and nonturbulent
fluid. Many techniques have been employed, but most methods generate a
box-car function by setting a threshold on the turbulence level, or on its first
derivative (Antonia, 1971). The most basic output is the intermittency itself,
γ, that is, the fraction of the time the flow is turbulent. Another possible
method for finding the intermittency is based on the pdf of the turbulence,
where γ is measured by the departure of the turbulence from its Gaussian
flatness value of 3; that is, γ ≡ 3/F , where F is the flatness. The flatness
distributions for a number of different freestream Mach numbers are shown in
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Figure 8.29. Comparison of flatness distributions: , Owen et al. (1975) (Reθ =
8500, M = 7), based on mass flux; �, Robinson (1986) (Reθ = 15,000, M = 3.0,
based on mass flux; �, Klebanoff (1955) (Reθ = 7100, M ≈ 0), based on velocity.
(Figure from Robinson (1986), with the author’s permission.)

Figure 8.29. The data display an apparent Mach number dependence, where
the onset of intermittency (corresponding to the rise in flatness factor) oc-
curs nearer the boundary layer edge as the Mach number increases. Because
the zone of influence of a flow disturbance decreases with Mach number, the
intermittent zone could become thinner as the Mach number increases. As
already noted, this interpretation is not supported by high-speed flow visual-
izations, and recent measurements by Baumgartner et al. (1997) and Bookey
et al. (2005b), as well as the DNS results of Martin (2004), support the notion
that the intermittency does not depend on Mach number to any significant
extent (see Figures 8.30 and 8.31).

So far, we have described the LSMs as a unified, large-scale, organized mo-
tion. However, considerable evidence now exists to indicate that they possess
a rich internal structure, comprising “typical eddies,” and horseshoe or hairpin
eddies, and that the LSMs may well be formed by well-organized “packets” of
hairpin eddies that are originally attached to the wall, and subsequently be-
come detached as vorticity cancellation and viscous effects take place. These
eddy structures are discussed in detail in Section 8.7.

8.5 Correlations and Ensemble Averages

A common method for investigating the large-scale structure is multiple-point
measurements of one or more flow variables, typically velocity, wall pressure,
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Figure 8.30. Comparison of intermittency distributions based on flatness of the
streamwise velocity: +, Eléna and Lacharme (1988) (Reθ = 5650, M = 2.32, LDV);
——–, Martin (2004) (Reθ = 4452, M = 2.32, DNS); – – –, Klebanoff (1955) (Reθ =
7100, M ≈ 0, HWA). (Figure from Martin (2004), with the author’s permission.)

Figure 8.31. Intermittency distributions. Left: ×, Baumgartner et al. (1997)
(Reθ = 3600, M = 8, FRS); ——–, Klebanoff (1955) (Reθ = 7100, M ≈ 0, HWA).
Right: Bookey et al. (2005b) (Reθ = 2400, M = 2.9), FRS. (Figures adapted from
Baumgartner et al. (1997) and Bookey et al. (2005b), with the authors’ permission.)

and wall shear stress. The data are then analyzed in the context of space-time
correlations. Space-time correlations generally have a single well-defined peak,
which occurs at τ = τmax, the optimum time delay, which is usually nonzero.

Favre et al. (1957, 1958) pioneered the use of velocity space-time correla-
tions. Their results, for Reθ values of about 1400 and 2700, showed that the
fluctuating velocities in the outer layer are correlated over distances compara-
ble to the boundary layer thickness in the spanwise and wall-normal directions,
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and over several boundary layer thicknesses in the streamwise direction. The
space-time correlations for optimum time delay also showed that, in the outer
layer, structures are convected downstream for a distance of O(10δ) before de-
caying. Nearer the wall, the structures decay more rapidly. Sternberg (1967)
noted that Favre et al.’s results also indicate that the large eddies are inclined
to the wall in the downstream direction.

In a later paper, Favre et al. (1967) used space-time correlations to measure
convection velocities of the large-scale motions in a turbulent boundary layer
with Reθ ≈ 8700. To complement their broadband results, they bandpass
filtered the data to measure the convection velocities of structures within a
narrow range of scales. They found that the smallest scales convect at about
the local mean velocity throughout the boundary layer. For y/δ > 0.2, large-
scale structures convect at speeds less than the local mean velocity, and the
convection velocity decreases with scale. For y/δ < 0.2, the opposite behavior
is observed. At y/δ ≈ 0.2, all scales convect at the local mean velocity. This
behavior could be explained as follows. A large structure will extend across
a significant fraction of the boundary layer, and will convect at a speed that
is a weighted average of the local mean velocity acting over the vertical span
of the structure. This convection velocity will be greater than the local mean
near the wall, and less than the local mean in the outer layer. The greater
the vertical extent of the structure, the greater will be this effect. Based
upon space-time correlations of wall pressure fluctuations, Corcos (1963) and
Tu and Willmarth (1966) reached similar conclusions regarding the difference
in convection velocity between large- and small-scale structures. Spina et al.
(1991b) obtained similar results for the convection velocity distribution in a
compressible flow (see Figure 8.32).

Using conditional averaging techniques based on the intermittency, Kovasz-
nay et al. (1970) and Blackwelder and Kovasznay (1972) discovered a stagna-
tion point on the back (upstream) side of the turbulent bulges in a subsonic
boundary layer. Because the bulges convect at a speed less than the freestream
velocity, the high-speed freestream fluid in the regions between the bulges will
impinge on the backs of the bulges, resulting in a stagnation point in the con-
vected frame of reference, as shown in Figure 8.33. Similar to the results of
Favre et al. (1957, 1958) Kovasznay et al. found that isocontours of the space-
time correlations of the streamwise velocity were elongated in the streamwise
direction and spanned the entire boundary layer thickness, and that the large
eddies lean downstream (see Figure 8.34). The contours were generated by
correlating the velocity measured by a probe at a fixed point in the middle of
the boundary layer with the velocity measured by a probe that was traversed
in both the y- and z-directions while maintaining a constant longitudinal probe
separation of 3.8δ. The results indicate that the large eddies are inclined with
an average angle of approximately 16◦. At the location of the fixed point,
the streamwise extent of the correlations is about 0.4δ (based on a minimum
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Figure 8.32. Broadband convection velocity in a turbulent boundary layer at Reθ =
81,000 and M = 2.9, based on measurements with three different streamwise probe
separations. ξx/δ = 0.11 ; 0.16 ◦; 0.18 �. (Figure from Spina et al. (1991a).
Copyright 1991, Cambridge University Press. Reprinted with permission.)

Figure 8.33. Schematic of the flowfield within and surrounding a large-scale motion
in a turbulent boundary layer, according to Blackwelder and Kovasznay (1972).
(Figure from Spina et al. (1991a). Copyright 1991, Cambridge University Press.
Reprinted with permission.)

correlation value of 0.5).

Murlis et al. (1982) used hot-wire anemometry and temperature-tagging
methods to study the effect of Reynolds number on boundary layer structure
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Figure 8.34. Isocorrelation contours of space-time correlations of the streamwise
velocity component measured by Kovasznay et al. (1970). (a) x–z plane, (b) x–
y plane, and (c) y–z plane. The position of one probe was fixed at y/δ = 0.5.
(Copyright 1987, Cambridge University Press. Reprinted with permission.)

for 791 < Reθ < 4750. They found that the intermittency profile is essentially
independent of Reynolds number. However, the average length of zones of
turbulent motion was found to decrease with increasing Reynolds number up
to Reθ ≈ 5000. Their data suggested that, beyond this Reynolds number, the
turbulent zone length remained constant. Similarly, Antonia et al. (1990a,b),
using what they called a “window average gradient” detection scheme, found
that the average period between detected events in the outer layer is indepen-
dent of Reynolds number when scaled on outer variables, and it has a value of
≈ 2.5δ/Ue. This value is similar to that obtained by Corrsin and Kistler (1955)
and Ueda and Hinze (1975), as noted by Falco (1977). Conditionally averaged
isovorticity contours were observed to extend further from the wall and have
a larger inclination angle (they were more upright) at lower Reynolds num-
bers, and the contribution of the organized motion to the turbulence stresses
decreased as the Reynolds number increased.
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Figure 8.35. Broadband structure angle in a subsonic boundary layer, as a function
of probe separation distance. (Figure from Alving et al. (1990). Copyright 1990,
Cambridge University Press. Reprinted with permission.)

8.5.1 Structure Angle

Alving and Smits (1990) and Alving et al. (1990) measured the broadband
structure angle of the LSMs by using two probes separated by a distance
ξy in the wall-normal direction. The structure angle was defined by θ =
tan−1 (ξy/Ucτmax), where Uc is the convection velocity (assumed to be equal
to the local mean velocity) and τmax is the time delay to the maximum in the
space-time correlation. The results given in Figure 8.35 indicate that θ is a
strong function of probe separation when ξy is small. It appears, however,
that θ reaches a limit as ξy increases, where it becomes independent of probe
separation. The angles in the middle of the layer are about 30◦, considerably
higher than the values found by Brown and Thomas (1977) and Kovasznay
et al. (1970). Perry et al. (1992) measured structure angles by fixing the wall-
normal separation of two probes and varying the streamwise separation until
the value of the cross-correlation of the signals from the two probes attained
a peak. This method has the advantage of not depending on the validity of
Taylor’s hypothesis. The results agreed well with the data of Alving et al.
(1990), for which the probes were separated in only the wall-normal direction
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Figure 8.36. Broadband structure angle found using two hot-wire probes with
different wall-normal separations. ξy/δ = 0.09 ; 0.21 ◦,
0.30 �; 0.40 +. (Figure from Spina et al. (1991a). Copyright
1991, Cambridge University Press. Reprinted with permission.)

and Taylor’s hypothesis was used.

Hot-wire and flow visualizations show that the sloping delta-scale struc-
tures convect downstream at approximately 90% of the freestream velocity
(slightly greater than for similar structures in low Reynolds number, incom-
pressible turbulent boundary layers), and at Mach 2.9 persist for at least four
boundary layer thicknesses downstream (and probably much farther) (Spina
et al., 1991b). The average angle at which the sharp interfaces lean down-
stream ranges from 45◦ to 60◦ (with a standard deviation of approximately
20◦) across most of the boundary layer, with a decrease near the wall and an
increase near the boundary layer edge. The measured value of the structure
angle is strongly dependent on measurement technique, although one method
in current favor employs two hot-wires, separated by a fixed distance in y of 0.1
to 0.3δ, with both traversed across the layer. Structure angles measured using
this technique in subsonic, low Reynolds number turbulent boundary layers
are somewhat lower than those for Mach 3, high Reynolds number layers (see
Figures 8.35 and 8.36). As indicated earlier, it seems likely that increasing
Reynolds number decreases the structure angle, and increasing Mach number
increases the structure angle.

Space-time correlation measurements by Smith (1994) at Reynolds num-
bers in the range 4600 ≤ Reθ ≤ 13,200 showed that the broadband convection
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velocity and the decay of the large scales with increasing time delay were only
weakly dependent on Reynolds number when scaled on outer layer variables
(Ue and δ). However, isocorrelation contours indicated that the streamwise
length scales increased with Reynolds number, in agreement with the results
by Liu et al. (1991) in a fully developed channel flow. Furthermore, space-time
correlations in the wall-normal direction revealed that the broadband struc-
ture angle decreased by about 10◦ over the same range in Reθ. Isocorrelation
contour maps (Figures 8.37 and 8.38) showed an increase of between 30 and
60% in the streamwise length scale over the same Reynolds number range,
and this behavior may be related to the decrease in the structure angle. The
spanwise length scale showed comparatively little variation.

These subsonic results provide an interesting contrast to the results ob-
tained by Spina et al. (1991a) in a Mach 3 boundary layer with Reθ = 80,000
(see Figure 8.39). In the supersonic flow, the streamwise length scales were
two to three times smaller than in the subsonic flow, and the structure angles
were about 10◦ larger.1 The spanwise scales were almost independent of the
Mach number. Now, the smaller streamwise scale is in accordance with the
more upright orientation of the structure, but the trend with Reynolds number
for subsonic flows does not seem to hold for supersonic flows. It seems that the
streamwise length scale and the structure angle depend on the Mach number
and the Reynolds number. This seems to be the most significant structural
difference between the two flows yet found, and as indicated earlier Reynolds
number and Mach number appear to be important. Increasing Reynolds num-
ber will increase the streamwise scales, whereas increasing Mach number will
decrease them. Otherwise, the structural model for the large-scale motions in
a supersonic flow is very similar to that derived from studies of subsonic flows,
as can be seen by comparing Figures 8.33 and 8.40.

Because the influence of compressibility on the large-scale turbulent bound-
ary layer motions seems to be subtle, explanations for the observed differences
between low- and high-speed boundary layer structure are mostly speculative.
Density gradient effects are known to play a significant role in turbulent shear
layers, but these effects are most likely to influence the near-wall region of the
wall layer, out of reach of standard measurement techniques. Parallels have
also been drawn between the 45-degree slope of the interfacial structures in
supersonic boundary layers and that of the hairpin-vortex structure observed
in incompressible boundary layers. Insufficient evidence exists to support ei-
ther side of this comparison, however. More conclusive results concerning
compressibility effects on large-scale structure require higher Mach number
investigations.

For boundary layers with freestream Mach numbers above 5, the near-wall
region is more likely to show significant departures from known incompress-

1Baumgartner (1997) found similar results based on FRS measurements in a Mach 8
boundary layer with Reθ = 3600.
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Figure 8.37. Isocorrelation contour maps in the x–y plane, as measured by Smith
(1994), in a subsonic turbulent boundary layer at Reθ = 4981 (left) and 13,052
(right) using different wall-normal probe separations: (a) ξy/δ ≈ 0.1; (b) ξy/δ ≈ 0.2;
(c) ξy/δ ≈ 0.3. (Figure from Smith (1994), with the author’s permission.)

ible structure. The viscous sublayer for hypersonic boundary layers is likely
to be much more quiescent than for incompressible flows (although pressure
fluctuations will be imposed from above), and it may not display the familiar
streaky structure. Because the mass flux near the wall is very low for high
Mach numbers, the buffer region may not be the dominant region for turbu-
lence production, as in subsonic boundary layers (note that hypersonic laminar
boundary layers undergo transition by disturbances spreading inward from the
outer layer). Further investigation will depend on the development and ap-
plication of nonintrusive measurement techniques to the near-wall regions of
hypersonic boundary layers.
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Figure 8.38. Isocorrelation contour maps in the x–z plane, as measured by Smith
(1994), in a subsonic turbulent boundary layer at (a) y/δ = 0.09, (b) 0.42, (c)
0.80. Left: Reθ ≈ 4600; right: Reθ ≈ 13,200. (Figure from Smith (1994), with the
author’s permission.)

Finally, we note that the rate of decay of the large-scale motions, as mea-
sured by the rate at which the peak in the space-time correlation decays with
distance, appears to decrease significantly with the Mach number. For exam-
ple, the distance over which the peak decreased to half its original level differs
by an order of magnitude in the experiments by Favre (1957, 1958) at Mach
0.04 and Owen and Horstman (1972) at Mach 7 when scaled by δ. A better
scaling for the rate of decay may be the time scale of the energy-containing
eddies, Λ/u′. Λ and u′ both decrease with Mach number so that their ratio
remains approximately constant. This result may in turn suggest that the
decrease in the streamwise length scales with Mach number simply reflects the
fact that the time scale of the large eddies remains constant as the absolute
fluctuation level decreases. The more complex scaling arguments presented
by Smith and Smits (1991b) to explain the experimental observations may
therefore not be necessary.

8.6 Integral Scales

Experimentally, the integral scales are usually deduced from one-point hot-
wire measurements by using Taylor’s hypothesis. Even when measurements
of two-point correlations are available in high-speed flows (see, for example,



262 CHAPTER 8. BOUNDARY LAYER TURBULENCE BEHAVIOR

Figure 8.39. Isocorrelation contour maps measured by Spina (1988), in a turbulent
boundary layer at Reθ = 81,000 and M = 2.9. The figure on the left shows the
results in the x–y plane using different wall-normal probe separations: (a) ξy/δ =
0.09; (b) ξy/δ = 0.30; (c) ξy/δ = 0.51. The figure on the right shows the results
in the x–z plane at three positions in the boundary layer: (a) y/δ = 0.20; (b)
y/δ = 0.51; (c) y/δ = 0.82. (Figure adapted from Spina (1988), with the author’s
permission.)
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Figure 8.40. Ensemble averaged view of the large-scale motions in a Mach 2.9
boundary layer. (Figure from Spina et al. (1991a). Copyright 1991, Cambridge
University Press. Reprinted with permission.)

Spina and Smits (1987) and Robinson (1986)), it is often difficult to deter-
mine integral scales from the data. The type of data that is available also
depends on the measurement technique. For instance, when Constant Current
Anemometers (CCA) are used, time histories are generally not measured, but
spectral data for u′ and T ′ can be obtained directly by processing the signal
with the fluctuation diagram technique to separate the contributions of u′ and
T ′ (see Fulachier (1972), Bestion (1982), Debiève et al. (1982, 1983), Bestion
et al. (1983), and Audiffren (1993)). Bestion and Audiffren showed that for an
adiabatic flat plate boundary layer at a Mach number of 2.3 the shapes of the
spectra of (ρu)′ and u′ are practically the same, but they differ considerably
from the spectrum of T ′

0. Therefore, when anemometers are operated with a
single overheat, a sufficiently high value of the resistance should be chosen to
minimize the contribution of T ′

0 and to obtain a signal proportional to (ρu)′.
When Constant Temperature hot-wire Anemometers (CTA) are used at a high
overheat ratio, the measured signal is almost exactly proportional to (ρu)′,
which in turn gives spectral information on u′. Such data can be inaccurate
at low wave numbers. The spectral measurements of velocity and tempera-
ture performed with a CCA in adiabatic boundary layers by Morkovin (1962),
Bestion (1982), and Audiffren (1993) show that the ratio (u′/U)/(T ′/T ) at
low frequencies is not a constant, and that the magnitude of the spectral cor-
relation coefficient RuT (f) increases to unity at zero frequency. This may be
the cause for the differences in the shapes of the spectra for u′ and (ρu)′ at low
frequencies, depending on the Mach number. For higher frequencies, the ratio
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(u′/U)/(T ′/T ) and the correlation coefficient are approximately constant, and
the spectra are nearly proportional to each other.

The classical integral scale can be determined from one-point measurements
by integrating the autocorrelation coefficient of u′. It is necessary to define
the domain of integration, because the autocorrelation can become negative.
When using hot-wire anemometry in supersonic flows, this question can be
complicated by possible “strain-gauge” effects. These effects can cause peaks
in the spectrum, which may be acceptable for measurements of the overall
stress or the turbulence energy because the integral contribution is usually
small, but they can cause spurious oscillations in the autocorrelations and
make the estimates of the integral scale inaccurate.

Alternatively, the integral scale can be determined by finding the value of
the energy spectrum at zero frequency. However, because the signal is usually
filtered with a highpass filter, it has zero mean and its spectrum has a zero
value at zero frequency. The integral scale must then be found by extrapolating
the spectrum to zero frequency. In practice, the value at a frequency slightly
larger than the limit of the highpass filter is taken as the best estimate. It is
generally difficult to measure these low frequencies because the spectra of u′

and of (ρu)′ may be different at very low frequencies, the measurements can
be affected by noise in the power supply, and by the peculiarities of the wind
tunnel, such as acoustic resonances.

For these reasons, an additional scale has also been used. Because we expect
that the spectra have a region of k−1

1 dependence in the logarithmic zone,
E (k1) varies as k−1

1 , and k1E (k1) is constant or presents a maximum. Here we
have chosen the wave number for which this maximum occurs as the (inverse of
the) characteristic space scale. This probably has a clearer physical meaning
than the integral scale, since for the incompressible part of the fluctuating
motion it characterizes the eddies extracting energy from the mean field. As
indicated earlier, experimentalists commonly measure frequency spectra, so
that a characteristic frequency is measured, and then a length scale is deduced
using Taylor’s hypothesis. There is usually a considerable amount of scatter
because the location of the maximum is not always well defined. For the
data considered here, a maximum was generally found in the external layer,
but in the logarithmic zone of the subsonic boundary layer the spectra were
frequently “double-humped” and the maximum was difficult to determine.
Such shapes were also mentioned by Perry et al. (1986) who interpreted them
to mean that Taylor’s hypothesis failed for low frequencies. Uddin (1994)
noted that the bump at low wave number became more prominent at higher
Reynolds numbers (see also Smith (1994)). These double-humped profiles
lead to some difficulty in determining the length scale, and it is sometimes
necessary to discard points in the log-law region of the subsonic boundary
layer profiles. However, the higher frequency bump typically corresponds to
scales comparable to the scales of the outer layer, and the other maximum
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Authors M Rθ – Rδ2 Measurement Remarks
method

Klebanoff (1954) 0.044 7000 CCA

Fulachier (1972) 0.035 4750 CCA

Fernholz et al. 0.06 and 20000 and 60000 CTA
(1994) 0.17

Spina and Smits 2.89 80000 – 40000 CTA Scales estimated from
(1994) spectra of (ρu)′

Bestion (1982) 2.3 4200 – 2900 CCA Spectra of u′ (fluctuation
Debiève (1983) diagram technique)

Bestion et al. 1.8 and 5000 – 3500 CCA Spectra of u′ (fluctuation
(1983) diagram technique)

Audiffren (1993) 2.2 6300 – 3800 CCA Spectra of u′ (fluctuation
Audiffren and diagram technique)
Debiève (1995)

McGinley et al. 11 12400 – 1115 CTA Spectra of (ρu)′
(1994) 6500 – 633

Table 8.1. Sources for spectral data. (Adapted from Dussauge and Smits (1995).)

occurs at frequencies an order of magnitude lower, corresponding to length
scales five to ten times larger than the outer layer scales.

The values of the integral scale Λ obtained from the data sets listed in
Table 8.1 are given in Figure 8.41. Outer layer scaling was used, because
most of the data were obtained in that region. Plotting the data in inner
layer variables does not alter the conclusions. The data points from Smits
and Dussauge (1989) were deduced from autocorrelations in a way that may
underestimate the integral scale, due to a lack of experimental points for large
time delays. The boundary layer thickness was found from the profiles of
total pressure (as recommended by Fernholz and Finley (1980)). Choosing a
boundary layer thickness based on 0.99Ue would make some difference in the
magnitude of Λ/δ at Mach 3: in this experiment, the integral scale would be
a little closer to its subsonic value. It would also significantly increase Λ/δ
for the hypersonic experiment by McGinley et al. (1994), but in this case, the
mean profiles indicate that the traditional choice based on 0.99Ue would be
rather unphysical. In any case, a first result appears very clearly: the subsonic
data indicate that in the external layer, Λ is about 0.5δ in subsonic flows, but
it is only about half that value in supersonic layers. The hypersonic data of
McGinley et al. (1994) indicate a very low value, about 0.2δ, for Rδ2 = 1115,
but larger values at the lower Reynolds number. In this case, the spectra
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Figure 8.41. Integral scales in turbulent boundary layers. Subsonic data: +,
Klebanoff (1955); �, Fulachier (1972); ◦ Rδ2 = 20,900, Fernholz et al. (1995);

Rδ2 = 57,720, Fernholz et al. (1995). Supersonic data: +, Debiève (1983); �,
Bestion et al. (1983); ◦, Spina and Smits (1987); �, Audiffren (1993); � Rδ2 =
633, McGinley et al. (1994); � Rδ2 = 1115, McGinley et al. (1994). (Figure from
Dussauge and Smits (1995), with the authors’ permission.)

at low frequency reveal peaks and bumps that preclude an accurate estimate
of the integral scale. In fact, the lower limit of the error bar overlaps the
other high-speed data. The large variation could be due to the remnants of
transition. In the data by Spina and Smits, the point at y/δ = 0.1 has an
integral scale nearly equal to the subsonic value. This is due to the significant
slope in the spectrum, observed at low frequency, where the spectra of u′ and
(ρu)′ are perhaps not proportional, as discussed above. In spite of this trend,
the integral scales at Mach 2.9 in the middle of the layer are significantly below
the subsonic results. The results are independent of Reynolds number, within
the experimental accuracy. Note that Demetriades and Martindale (1983) in
a boundary layer on a flat plate at Mach 3 report measuring an integral scale
of 0.28δ, also considerably smaller than that found in subsonic flows.

The production scales L are given in Figure 8.42. The Reynolds numbers in
the subsonic and supersonic cases cover comparable ranges, except perhaps for
the hypersonic data. It is clear that the production range is shifted to higher
frequencies in supersonic flows. It should be emphasized that the limited
spatial resolution of the wires probably precludes any accurate determination
of the −5/3 law in the supersonic data, and tends to shift the maximum
of fE (f) to lower frequencies. If such systematic errors are significant, the
values measured in high-speed flows are probably overestimated, reinforcing
the notion that the scales are reduced with increasing Mach number.
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Figure 8.42. Production scales in turbulent boundary layers. Symbols as in Fig-
ure 8.41. (Figure from Dussauge and Smits (1995), with the authors’ permission.)

It appears that the production scale L follows the same trends as Λ, and
that L ≈ 2Λ. That is, L is about 2δ for low-speed boundary layers, and about δ
in high-speed boundary layers. The measurements of Morkovin and Phinney,
reported by Morkovin (1962), suggested the same trend for the production
scales. Again, plotting these data in inner-layer variables does not change the
differences between the subsonic and supersonic data. The only discrepancy is
found in the Mach 11 boundary layer, but several reasons can be found for this
departure. First, the boundary layer is probably not fully turbulent, at least at
the lower Reynolds number. Second, it is not clear that the velocity and mass-
flux spectra are proportional to each other at this Mach number. Third, the
conclusions drawn from the power law analysis are probably not valid if strong
compressibility effects are present. Fourth, the change in the shape of the
spectra may indicate a modification of the turbulence structure. In hypersonic
boundary layers, most of the mass flux occurs near the external edge of the
layer and the mass flux profiles have an inflexion point. This suggests that the
external layer can behave more like a mixing layer than a classical boundary
layer. Such free shear flows are known to contain turbulent structures of
large spatial extent, with the production scales being several boundary layer
thicknesses in size. This would be consistent with the surprisingly high level
of energy observed at low frequencies in the present Mach 11 experiments.

So it seems that the apparent size of the energetic eddies in the longitu-
dinal direction, deduced from measurements of u′ or (ρu)′ in zero pressure
gradient boundary layers, decreases with increasing Mach number whatever
the experimental method. This trend can also be illustrated by using another
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Figure 8.43. Evolution of the integral scale as a function of the friction Mach
number. Symbols as in Figure 8.41. (Figure from Dussauge and Smits (1995), with
the authors’ permission.)

representation. If we assume that the friction Mach number can be used to
characterize compressibility in turbulent boundary layers, then we can write
M2

τ = CfM
2
e /2. That is, Mτ depends on Mach and Reynolds number. The

average value of L/δ in the outer layer is shown as a function of Mτ in Fig-
ure 8.43. The results obtained at Me = 2.3 and 2.89 have nearly the same
values of Mτ and L/δ, and they agree on the average value of L/δ. The hyper-
sonic results by McGinley et al. have a value of Mτ only a little larger than
0.1, but they indicate a further decrease in the production scale.

This change in typical frequencies or time scales can be attributed either to
variations in the convection velocity or variations in the spatial scales. Mea-
surements of convection velocity by Spina and Smits (1987) in a high Reynolds
number boundary layer at Mach 2.9 showed that this quantity is not very sen-
sitive to compressibility (see Figure 8.32). This result was confirmed by Cogne
et al. (1993), who measured convection velocities directly using double-pulsed
Rayleigh scattering flow visualization (see Figure 1.19). This implies that
smaller space scales are found in supersonic flows. In contrast, the transverse
scales related to turbulent diffusion remain unchanged, and the longitudinal
scales determined from u′ decrease. Now Spina and Smits (1987) showed that
the direction of the maximum space-time correlation in their boundary layer
at Mach 2.9 is steeper than at low speeds (see Figures 8.35 and 8.36), so that
the streamwise correlation lengths are expected to decrease. As noted earlier,
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this purely geometric explanation is not sufficient to explain all the evolution
observed in Figure 8.43.

It is expected that the observed modifications in the flow structure and
scales are due to compressibility. A possible interpretation can be found in
the changes in the potential field induced in the external flow by the boundary
layer, and in the generation of acoustic noise by supersonic boundary layers.
Can they create smaller scales, and modify the orientation of the lines of max-
imum correlations? The variation of the angle was interpreted in the previous
paragraph as a change in the direction of vortical structures. In fact, the two-
point measurements by Spina and Smits did not use conditional statistics, and
therefore did not discriminate between the vortical and potential contributions
in the intermittent zone. In supersonic flows, the induced pressure field can
depend on local conditions (the pressure perturbation induced by a large-scale
structure, for instance), but also by the noise radiated by Mach waves. These
waves can have low levels of (ρu)′, but they are generally more conservative
than ordinary turbulence, and could modify the space-time correlations for
large separation distances. The formation of these Mach waves necessitates
the velocity difference between the sources and the external flow to be super-
sonic. In a boundary layer, this condition is always fulfilled, but at moderate
supersonic Mach numbers the part of the layer able to radiate Mach waves
is very thin and generally confined to the viscous sublayer or the logarithmic
zone. In this case, the behavior will be Reynolds and Mach number dependent.
The orientation of the Mach waves will depend on this Mach number differ-
ence. For example, transonic perturbations would be very steep, and would
help to make the maximum space-time correlation locus more vertical.

Another element, as noted by Laufer (1961), is an increase in the radiated
field near Mach 3, which could be interpreted as follows. The convection ve-
locity of the large eddies in the logarithmic layer is typically 0.8Ue, regardless
of the Mach number, and so the velocity difference with respect to the external
flow is 0.2Ue. Now, it may be expected that these eddies will start forming
eddy shocklets when this relative Mach number is larger than, say, 0.6. This
corresponds to an external Mach number of 3, and this criterion would be
independent of the Reynolds number because the convection velocity of the
large structures appears to be independent of Reynolds number. The mea-
surements taken at a Mach number of 2.9 would then be near the onset of
a new regime, and represent the first manifestation, in boundary layers, of
compressible turbulence phenomena as observed in mixing layers. Such an
interpretation, although speculative in many respects, is tempting because it
can explain changes in the structure of u′, as long as the radiated noise does
not significantly affect the shear stress.

To conclude this section, the spectral data show that there are modifica-
tions to the motions which contribute to the energy scales but not to the
turbulent transport. This implies that the primary action of compressibility
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is to alter inactive motions. As these motions are related to the irrotational
part of the fluctuations and to the pressure fluctuations induced by the layer,
this explanation may be correct, but a full assessment would require a more
complete knowledge of the two-point correlations and conditional statistics of
turbulence in these flows.

8.7 Eddy Models of Turbulence

Eddies and coherent structures, particularly their interactions, are an integral
part of our understanding of turbulence. Statistical descriptions, however, in-
cluding correlations and ensemble averages, provide little information on eddy
formation, growth, interaction, and dissipation. In this section, we describe
some of the prevailing notions that form eddy models of turbulence.

The first physical model of the large-scale structure of turbulent boundary
layers was proposed by Theodorsen (1955), who suggested that the basic struc-
ture of all turbulent shear flows is the inclined horseshoe vortex, as shown in
Figure 8.44. Using the vorticity transport equation, Theodorsen attempted to
prove that the only vortical structures which can sustain a nondecaying turbu-
lent field must have a horseshoe shape. As seen in Figure 8.44, the model can
certainly account for the generation of Reynolds stress. Between the legs of
the vortex, the induced velocity ejects low-speed fluid up, away from the wall,
into a region of higher mean velocity, hence u′ < 0 and v′ > 0 (a Quadrant II
event). On the outboard sides of the legs, high-speed fluid is swept towards
the wall, hence u′ > 0 and v′ < 0 (a Quadrant IV event).

The flow visualizations by Head and Bandyopadhyay (1981) provide strong
support for the concept that at least some of the LSMs are loop-shaped vor-
tical structures, with an aspect ratio that is Reynolds number dependent.
Figure 8.45 shows that at Reθ = 600 the structures have the proposed horse-
shoe shape, and as Reθ increases, the structures become elongated and appear
more as hairpins. At all Reynolds numbers, the spacing between the legs of the
structures is similar to the spacing between the near-wall streaks (≈ 100ν/uτ ).
Note that Smith et al. (1991) and Smith and Walker (1997) present convinc-
ing arguments that the low-speed streaks are in fact artifacts of the passage
of symmetric and asymmetric hairpin vortices. Head and Bandyopadhyay
proposed that the loops extend to the wall, in support of Townsend’s (1956)
attached eddy hypothesis, although the Reynolds number dependence of their
aspect ratio contradicts his Reynolds number similarity hypothesis.

Head and Bandyopadhyay (1981) further suggested that at low Reynolds
numbers the LSMs were merely single horseshoe elements, but at higher Reynolds
numbers the LSMs were actually agglomerations of many elongated hairpin
vortices. They observed the generation of multiple hairpin loops in packets,
where the heads of the loops lie along a line that is inclined to the wall at an
angle of about 20◦, as shown in Figure 8.46.



8.7. EDDY MODELS OF TURBULENCE 271

Figure 8.44. The horseshoe vortex proposed by Theodorsen (1955) as the basic
structure in wall-bounded turbulent flows. (Figure from Spina (1988), with the
author’s permission.)

MacAulay and Gartshore (1991) also noted different structure angles us-
ing cross-correlations and conditional sampling. They determined that the
major contributions to the broadband cross-correlations in a turbulent bound-
ary layer at Reθ = 8390 came from δ-scale segments of the velocity signals,
which encompass many aspects of the flow structure, rather than from indi-
vidual hairpin eddies, which are an order of magnitude smaller than δ in the
streamwise and spanwise directions at this Reynolds number. Using condi-
tional sampling, they were able to measure the inclination angle of the sharp
interface at the backs of the large-scale motions. This interface angle is com-
pared to their measurements of the broadband structure angle in Figure 8.47,
and the differences are significant.

Work by Zhou et al. (1997, 1999), Liu et al. (2001), and Adrian et al. (2000)
has provided insight on the generation of coherent hairpin vortex packets con-
taining a multiplicity of spatially organized hairpinlike vortices in channel
and boundary layer flows, confirming and extending Head and Bapadhyay’s
observations using numerical simulations and PIV experiments. An elegant
conceptual model of nested packets of hairpins (or fragments thereof) growing
from the wall was developed. This model is illustrated in Figure 8.48. The
resulting hierarchy of motions, with changes of scale as a result of vortex pair-
ing, is in the same spirit as the mechanism of wall turbulence proposed by
Perry and Chong (1982). Strong confirmation of the statistical significance of
coherent hairpin packets has been provided by Marušić (2001) and Christensen
and Adrian (2001). Of particular interest is the observation by Adrian et al.
(2000) that at low Reynolds number, such packets contain two to three vor-
tices, and that the number of vortices and the range of scales present increases
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Figure 8.45. Flow visualizations by Head and Bandyopadhyay (1981), showing the
Reynolds number dependence of vortex loop structures in a turbulent boundary
layer. The visualizations were obtained by filling the boundary layer with smoke,
and illuminating the flow with a laser sheet inclined 45◦ downstream. (a) Reθ = 600;
(b) Reθ = 1700; (c) Reθ = 9400. (Figure from Head and Bandyopadhyay (1981).
Copyright 1981, Cambridge University Press. Reprinted with permission.)
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Figure 8.46. Example of 20◦ interface at Rθ = 17,500. Flow is from right to
left. (Figure from Head and Bandyopadhyay (1981). Copyright 1981, Cambridge
University Press. Reprinted with permission.)

Figure 8.47. Structure angles measured by MacAulay and Gartshore (1991) in a
turbulent boundary layer at Reθ = 8390: , broadband general structure angle;
�, structure angle of the trailing (upstream) interface of the large-scale motions as
detected using the VITA technique. (Figure from MacAulay and Gartshore (1991),
with the authors’ permission.)

with increasing Reynolds numbers.

At low Reynolds numbers, Head and Bandyopadhyay found that the LSMs
exhibited a “brisk” overturning motion, and at higher Reynolds numbers they
overturned slowly. This suggests that entrainment decreases with increasing
Reynolds number, which is in agreement with the observation that the bound-
ary layer grows more slowly with increasing Reynolds number. MacAulay and
Gartshore (1991) proposed that at low Reynolds numbers, the horseshoe vor-
tices are of the same magnitude as the boundary layer thickness in the span-
wise and wall-normal directions. At high Reynolds numbers, the spanwise
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Figure 8.48. Conceptual model of hairpin packets and their evolution. (Figure
from Adrian et al. (2000). Copyright 2000, Cambridge University Press. Reprinted
with permission.)

scale of the hairpin eddies is much smaller than the boundary layer thickness.
Due to their own self-induction, the hairpin vortices will propagate backwards
(in a frame of reference moving at the mean velocity) through the low-speed
fluid within the turbulent bulges. When they reach the back of a bulge, they
encounter a sudden increase in streamwise velocity that balances their self-
induced velocity. MacAulay and Gartshore suggest that stronger structures
(with higher self-induced velocities) will penetrate the rear interface farther
than weaker structures. This results in the appearance of small-scale struc-
tures on the backs of the large-scale motions, similar to Falco’s typical eddies
(see next section). They suggested, in fact, that Falco’s eddies may simply be
the heads of the hairpin vortices. When the hairpin vortices cease their back-
ward propagation, their self-induction will continue to carry them up, away
from the wall, resulting in a slow overturning motion.

8.7.1 Inner-Outer Interactions

Sreenivasan and Sahay (1997) describe the Reynolds number dependence of
the peak of the Reynolds shear stress in its location (y+

p ) and maximum value.
Combined with the Reynolds number dependence of the peak in the streamwise
turbulence intensity (Fernholz and Finley, 1996), these observations indicate
that the near-wall region is not entirely independent of the outer layer dynam-
ics. Morrison et al. (2004) and Zhao (2005) have revisited the long-standing
notion of active and inactive motions, and they provide compelling evidence to
show that the local scaling behavior in fully developed pipe flow is determined
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both by inner and outer layer motions. The uncertainty regarding the scaling
of the bursting frequency also illustrates the problem.

To this end, Delo and Smits (1997) and Delo et al. (2004) obtained time re-
solved three-dimensional visualizations of the scalar field in a boundary layer at
Reθ = 701. They noted that groups of the large-scale motions were frequently
assembled into agglomerations measuring up to 5δ in length, and suggests
that the agglomerations are formed through the merging of adjacent, previ-
ously existing individual vortical structures as they convect downstream. Some
evidence was found that the large agglomerations actively “build” themselves
as they convect downstream, through the addition of near-wall fluid. Most
of the ejection events identified in a spatial distribution occurred simultane-
ously, soon after the passage of the extended, large-scale structures. The fluid
ejected by these events generally penetrated through the trailing edges of the
structures, growing like Head and Bandyopadhyay’s hairpin packets, effec-
tively increasing their streamwise extent. It was tentatively proposed that the
addition of energetic near-wall fluid in this manner serves to perpetuate the
active nature of the large-scale structures. The structures appear to be “long”
enough so that after perturbing the inner layer low-speed streaks and trigger-
ing an ejection, the trailing edges of the structures are still in the neighborhood
to profit from the addition of the ejected near-wall fluid.

Another example, concerning the relationship between the large-scale mo-
tion and the wall shear stress at much higher Reynolds numbers, was given
by Brown and Thomas (1977). They found that the large-scale motions were
inclined at an angle of 18◦ to the wall and extended about 2δ in the stream-
wise direction, similar to Head and Banyopadhyay’s observations on hairpin
packets. As the structures passed over the wall, they created a characteristic
wall shear stress signature. Brown and Thomas suggested that this wall shear
stress pattern was related to the bursting process, and concluded that the
large-scale, outer layer structure influenced the near-wall structure and dy-
namics. They found that the results were independent of Reynolds numbers
when scaled on outer variables, for Rθ = 4940 and 10,160.

In addition, the flow visualizations by Falco (1977) showed that there may
be at least two types of organized motions in the outer layer: LSMs and
“typical eddies” (see also Klewicki (1997)). He found that the typical eddies
are small-scale motions, which scale on wall variables and are responsible for
a significant fraction of the total Reynolds shear stress in the outer layer. The
average streamwise extent of the LSMs was about 1.6δ at Rθ ≈ 1000. The
streamwise length scale of the typical eddies had a constant value of about
200ν/uτ for 1000 < Rθ < 10,000. The vertical length scale varied nearly
linearly from 100ν/uτ to 150ν/uτ over the same range of Reynolds numbers.
Falco found that the typical eddies generally appear on the backs of the LSMs,
and propagate towards the wall, thus acting as sweeps very near the wall
(see Figure 8.49). Cantwell (1981) called these intense small-scale motions
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Figure 8.49. Schematic representation of typical eddies grouped on the back of a
large-scale motion. (Figure from Falco (1991). Copyright 1991, The Royal Society.
Reprinted with permission.)

“energetic outer-flow eddies”.
Falco claimed that the typical eddies may be an intermediate link between

the inner and outer layers. As discussed by Smith and Smits (1991b), how-
ever, if the typical eddies scale on wall variables then at very high Reynolds
number, where δ+ is very large, the typical eddies will become vanishingly
small compared to the boundary layer thickness, and they are unlikely to be
dynamically significant (that is, they will not carry significant levels of shear
stress). Furthermore, flow visualizations at very high Reynolds numbers show
features that appear to be very similar to the typical eddies observed by Falco
at lower Reynolds numbers, but which are at least an order of magnitude larger
(in terms of inner variables), even when the variations in fluid properties, as
expressed by the difference between Rθ and Rδ2 , are taken into account.

8.7.2 Summary of Boundary Layer Eddy Structure

Here, we describe a unified picture of boundary layer eddy structure that
attempts to represent the important kinematic and dynamic behavior in wall-
bounded turbulent flows. It is based in large part on the model suggested by
Smith and Walker (1997).

The dynamic process of turbulence production and the formation of struc-
ture is described as a cycle that begins with the growth of a low-speed streak.
The growth continues until the passage of a disturbance of sufficient size and
strength impresses a local adverse pressure gradient on the streak causing a
local deceleration. This deceleration creates a three-dimensional inflectional
profile at the interface between the streak and the higher speed flow in the wall
region. The region above the streak is unstable to small local disturbances,
and oscillations begin on the top of the streak. The three-dimensional sheet
of vorticity above the streak will develop waves due to the oscillations, roll
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Figure 8.50. Top: Illustration of the breakdown and formation of hairpin loops
during a streak-bursting process. Low-speed streak regions are indicated by shading.
Bottom: Schematic of breakup of a synthetic low-speed streak generating hairpin
vortices. Secondary streamwise vortical structures are generated owing to the inrush
of fluid. (From Acarlar and Smith (1987a), with permission.)

up, and concentrate the vorticity in locations on the sheet. This process takes
place at a y+ of between 15 and 20, and there can be between two and five
concentrations per streak.

As the roll-up continues, the vortices begin to look like horseshoe vortices
(see Figure 8.50). Biot-Savart interactions between various portions of the
vortex amplify the distortion. Self-induced movement away from the wall
occurs and the vortex is stretched by the steep mean velocity gradient. Legs
of the horseshoe, which are a pair of counterrotating vortices oriented in the
streamwise direction, develop as the loop is stretched. As the vortex becomes
elongated, it begins to look more like a hairpin vortex and the vorticity is
increased. The legs tend to pump low momentum fluid away from the wall
and thereby perpetuate the low-speed streak. The head or arch creates a
streamwise pressure gradient that will cause the liftup and ejection of low-
momentum fluid from the low-speed streak as it moves downstream. As the
process proceeds, the hairpin continues to be stretched and the head moves
farther away from the wall due to self-induction.

As the loops are dragged over the viscous layer near the wall, they help
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Figure 8.51. Schematic illustrating how advecting symmetric and asymmetric hair-
pinlike vortices generate low-speed streaks. (Figure from Smith et al. (1991). Copy-
right 1991, The Royal Society. Reprinted with permission.)

to regenerate new vortices through an interaction with the viscous wall layer
(Figure 8.51). The passage of successive loops can tend to focus the streak
so that it can continue to grow, or buffet it to weaken it. In either case, the
impingement of subsequent vortices creates the appearance of waviness and
swaying, a commonly observed behavior.

The timing on the formation of the loops out of the sublayer material ap-
pears to be such that as they rise they form the backs of the LSMs, creating a
very active shear layer out of the conjunction of the heads of the vortex loops
(see also MacAulay and Gartshore (1991), Bernard and Wallace (1997), and
Adrian et al. (1998)). The hairpins often align themselves so that their heads
lie along a line forming a 15◦ to 30◦ angle with the wall, whereas the individual
hairpins make an angle of about 45◦.

The stretching of the vortex loops by the surrounding flow (viewed either
as a background mean velocity gradient, or the summation of the velocity
induced by all surrounding vortex loops) requires work to be done. Also, the
narrowing of the vortex tube making up the loop will increase the velocity
gradients inside the tube, increasing its dissipation rate as the square of the
gradients. This dissipation will be greatest near the wall where the velocity
gradients are strongest, and diminish in the outer flow where the gradients are
relatively weak. According to Smith and Walker (1997):

... the process of growth to larger scales in a fully-turbulent bound-
ary layer can be explained by the proximity of multiple hairpin-like
vortices in different phases of development, which creates a condition
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conducive to coalescence, or three-dimensional vortex amalgamation.
This amalgamation process ... suggest(s) that local collections of
hairpin vortices can intertwine and interact to yield essentially a
hairpin-like structure of somewhat larger scale... This clearly sug-
gests that the outer region of a turbulent boundary layer can evolve
from hairpin vortex structures and that the large, arch-type vortices
(Robinson, 1991a) and rollers (Falco, 1977) observed in the outer-
region structures directly interface with the freestream flow. The
overturning of the structures plays an instrumental part in induc-
ing the flow of higher-speed fluid toward the wall (i.e., intermittent
engulfment), which eventually finds its way to the wall along a com-
plex gauntlet of vortex-induced motions, terminating in a “sweep”
motion at the wall... However despite the overall size and strength
of the outer structures, the stretching mechanism for energy trans-
fer to these larger-scale vortical structures is strongly diminished
because of the weak mean velocity gradient in the outer region. Fol-
lowing an initially strong energy input to the initial vortex scales
near the wall, these outer structures will basically “evolve” to larger
and larger scales, but with no significant additional energy input,
eventually succumbing to slow, viscous dissipation. The outer part
of the boundary layer of the boundary layer may thus be regarded
as a “graveyard” for vorticity, where the cumulative remnants of de-
formed wall-region vortices pass through a complicated process of
dissipation, diffusion and mutual cancellation, similar to the model
of Perry and Chong (1982) (Figure 8.52).

We note, however, that the heads of the hairpin loops, being a localized
concentration of shear stress, continue to be an active feature of the LSMs. In
addition, the viscous diffusion of the legs may free the heads to form vortex
loops or rings, with at least two consequences. First, the outer layer motions
are no longer attached to the wall, and will look more like that shown in
Figure 8.48. Second, at least some of the vortex loops may have an induced
velocity that directs them to the wall, as typical eddies (Klewicki, 1997). As the
Reynolds number increases, there need to be other levels of organization where
very large scale motions emerge because the active motions seen on the backs
of the LSM’s have a typical dimension of 200 wall units, and these size motions
cannot continue to be important in the shear stress budget since the stress in
the outer layer scales with outer layer variables. Smits et al. (1989) proposed
that as the Reynolds number increases the number of discrete scales of motion
also increase. At the lowest Reynolds numbers (1000 < Rθ and δ+ < 500), a
single scale dominates. This scale must be the same as that of the typical eddy,
because they are of the same order as the boundary layer thickness. At higher
Reynolds numbers (1000 < Rθ < 5000 and 500 < δ+ < 2500), two scales
appear: the large-scale outer layer bulges and Falco’s typical eddies. The
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Figure 8.52. Conceptual model of turbulence regeneration, amalgamation, and
evolution of outer-region structures. (Figure from Smith et al. (1991). Copyright
1991, The Royal Society. Reprinted with permission.)

typical eddies still make significant contributions to the Reynolds stresses.
With a further increase in Reynolds number, the large-scale motions must
carry more shear stress owing to the diminishing importance of the typical
eddies (see also Murlis et al., 1982). It is possible that a third scale appears,
corresponding to the smaller bulges seen at the edges of the large-scale bulges.
Falco’s typical eddies are now much smaller than the energy-containing range
(which scales with δ), so that they are no longer dynamically important (with
Reθ = 35,000, 200νw/uτ corresponds to a frequency of about 100Ue/δ). It may
be expected that the third scale would scale on outer layer variables, although
some form of mixed scaling may also be appropriate. The appearance of new
scales with increasing Reynolds numbers at approximately equal intervals in
log δ+ should be reflected in the behavior of the turbulence, especially the
higher-order moments. At present there are insufficient data to support these
proposals.

Finally, we address the question of symmetric and asymmetric vortex loops.
The horseshoe vortex of Theodorsen (1955), the hairpin loops of Head and
Bandyopadhyay (1981), and the Λ-shaped vortices of Perry and Chong (1982),
are symmetric structures. It has been widely reported in experimental studies
and DNS that the vortex structures observed in boundary layers are only rarely
symmetric and asymmetric structures dominate (see, for example, Kline and
Robinson (1989) and Kline and Portela (1997)). In the three-dimensional
visualizations by Delo et al. (2004), symmetrical structures are rarely seen,
although it is readily apparent that legs and arches are always part of the
same vortex looplike structure. However, as argued persuasively by Smith
and Walker (1997), any kinematic description of the near-wall cycle in terms
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of symmetric structures can equally be cast in terms of asymmetric events
(see also Figure 8.51). The important point is the sequence of events and
their underlying mechanisms, and because the presence of asymmetry does
not seem to affect the underlying physics, symmetrical models can be used for
simplicity.

8.8 Final Remarks

From our consideration of subsonic flows it appears that, in contrast to the
mean flow behavior, the turbulent stresses do not necessarily follow the in-
ner/outer scaling arguments. For example, as found previously by Sreenivasan
(1989) and Gad-el-Hak and Bandyopadhyay (1994), the Reynolds number can
have a significant effect on the level of the maximum stress, and the loca-
tion of that maximum in the boundary layer. In other respects, the scaling
arguments put forward by Perry and his co-workers (see, for example, Perry
and Li (1990)) indicate how the stresses may scale in the overlap region, and
the experimental evidence tends to support their arguments, although their
proposed constants may need to be adjusted somewhat.

The evolution of the organized motions in the boundary layer also depends
on Reynolds number. In particular, the streamwise scaling of the outer layer
structure is rather sensitive, where the scale increases with Reynolds number.
This was confirmed by direct measurements of the space-time correlations
and spectra. In contrast, the spanwise scaling appears to be insensitive to
Reynolds number, so that on average the structures become more elongated
in the streamwise direction with increasing Reynolds number. The average
inclination of the outer layer structures also decreases, which may be related
to the increase in the streamwise aspect ratio. It also appears that the spanwise
scaling of the sublayer streaks is fixed at a mean value of about 100ν/uτ over
a very wide Reynolds number range, although the trend with Mach number is
unknown.

For supersonic flows with moderate Mach number, it seems that the direct
effects of compressibility on wall turbulence are rather small, as was found for
the mean velocity distribution. Again, the most notable differences between
subsonic and supersonic boundary layers may be attributed to the variation in
fluid properties across the layer. Under the assumption that the length scales
are not affected by compressibility, the turbulent stresses in the outer region
scale on the wall stress, as first suggested by Morkovin (1962), as far as we can
tell from the available data. This result is not surprising in some ways because
the fluctuating Mach number (M ′ = M −M) for moderately supersonic flows
is considerably less than one, as illustrated in Figure 7.1.

However, a more detailed inspection of the turbulence properties reveals
certain characteristics that cannot be collapsed by a simple density scaling.

For example, the shear correlation coefficient Ruv decreases with distance
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from the wall in some supersonic flows instead of remaining approximately
constant as in subsonic flows. There are other results, however, which indicate
that Ruv follows the incompressible trend, and there is the possibility that the
differences may be caused by a Reynolds number rather than a Mach number
dependence. Unfortunately the database is very sparse, and considerable fur-
ther effort is needed before these issues can be laid to rest. With respect to
the streamwise and spanwise length scales of the large-scale motions, and their
average inclination to the wall, the effect of Mach number is clear. Even if we
account for the change in time scale of the energy-containing eddies Λ/u′, we
see that the lateral correlations are almost unaffected by changes in Mach and
Reynolds number. The streamwise length scales are reduced significantly by
increasing Mach number, and the angle of inclination is increased, although
in coming to these conclusions we have implicitly assumed that Mach and
Reynolds number effects are independent. It is necessary to make this as-
sumption because the data do not overlap to any significant extent, and we
are forced to compare experiments in supersonic flow with the results obtained
in subsonic flow, usually at a different Reynolds number. In fact, the actual
Reynolds number to be used in such a comparison is controversial because
there is usually a major difference between the values of Reθ and Rδ2. Finally,
there is an order-of-magnitude decrease in the rate of decay of the large-scale
motions as the Mach number increases from low subsonic to high supersonic
values (Smits et al., 1989).

How can we explain these differences? Part of the answer may lie in un-
derstanding the role of Reynolds number more clearly, but understanding the
effects of fluid property variations may be more important. In that respect, we
need more direct numerical simulations and more detailed turbulence measure-
ments at higher Mach numbers. We are seeing subtle differences at supersonic
speeds that may signal the onset of direct compressibility effects such as the
increased importance of pressure fluctuations and pressure-velocity correla-
tions. These effects will become more obvious at hypersonic Mach numbers,
and such studies will undoubtedly contribute to our understanding of the su-
personic behavior.

Although few specifics are known, the turbulence physics become more
complex as the Mach number increases beyond about five. For example, the
Strong Reynolds Analogy and Morkovin’s hypothesis are staples of boundary
layer analysis at moderate Mach number. However, an upper Mach number
limit must exist on the applicability of these simplifying assumptions, if only
because there is a limit on the magnitude of temperature fluctuations. For
instance, the SRA indicates that the standard deviation of the temperature
fluctuations becomes comparable to the mean temperature at Mach numbers
as low as 5. Indeed, the change in magnitude of the fluctuating Mach number
distribution as the flow enters the hypersonic range (see Figure 7.1) points to
the possibility of a dramatic alteration of turbulence dynamics due to com-
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pressibility effects around Mach 5 (in comparison, the turbulence Mach number
Mt is less than 0.3 even for the Mach 7.2 and 9.4 flows). Unlike the distri-
bution of Mt, the fluctuating Mach number develops a peak near the middle
of the boundary layer where both the velocity and temperature fluctuations
are important. This behavior, when considered together with the large gradi-
ents in density and viscosity near the wall, also leads to the conclusion that
there may be substantial differences in turbulence dynamics at higher Mach
numbers.

At the same time, the near-wall gradients in density and viscosity are
strongly dependent on heat transfer, and therefore the thickness of the sub-
layer will depend on Mach number, Reynolds number, and wall temperature.
This raises the issue of how the viscous instability of the sublayer changes when
fluid properties vary with distance from the wall (Morkovin, 1992). Because
the local Reynolds number increases away from an adiabatic wall faster in su-
personic flow than in incompressible flow, we would expect the flow to become
less stable as we move away from the wall at a rate that is faster than in an
incompressible flow at the same friction velocity. The effect on the near-wall
stability and the bursting process in supersonic flows is not clear, but DNS
may well provide the answer in the near future.



Chapter 9

Perturbed Boundary Layers

9.1 Introduction

So far we have considered turbulent flows with relatively simple boundary
conditions, such as boundary layers on a smooth flat plate, or mixing layers
formed at the interface between two parallel, co-flowing streams. Although
these studies help to improve our fundamental understanding of compressible
turbulence, such canonical flows are rarely encountered in practice. In the
aerodynamic design of high-speed vehicles, for example, it is necessary to un-
derstand the behavior of turbulence in more complex geometries, and it is not
surprising that considerable work has been performed to study the effects of
perturbations or distortions on the behavior of turbulent boundary layers in
supersonic flows, including the effects of pressure gradients, extra strain rates
such as streamline curvature, divergence, and dilatation, and the interaction
with shock waves. Reviews of this work were given by Fernholz and Finley
(1980, 1981), Smits and Wood (1985), Fernholz et al. (1989), and Spina et al.
(1994). Almost all of the relevant work is experimental in nature, because
engineering computations cannot provide much insight by themselves, and ex-
amples of DNS for perturbed boundary layers in high-speed flow are thus far
confined to shock wave-boundary layer interactions, which sre discussed in
Chapter 10.

The experiments on perturbed boundary layers have documented the gen-
eral features of the mean flow behavior in detail, but there are only a few stud-
ies where extensive turbulence measurements have been made, most of them
quite recently. As we indicated in Chapter 1, reliable and accurate turbulence
measurements are difficult to make in any supersonic flow, and the difficulties
are usually more extreme in the presence of flow distortions. For example,
hot-wire measurements can suffer from many errors in flows with strong pres-
sure gradients. In adverse pressure gradients, transonic effects may become
important in large regions of the flow and the flow may separate, whereas
in favorable pressure gradients the signal-to-noise ratio degrades because the
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turbulence intensities are greatly reduced. In a shock wave-boundary layer in-
teraction, the unsteady shock motion can impose severe loadings on the probe
body, greatly increasing the possibility of breaking the hot-wire. In all cases,
particular care must be exercised to produce repeatable and reliable measure-
ments, and (as usual) the measurement errors must be taken into account
when interpreting the results.

The experiments have covered a broad range of model geometries and flow
conditions. To help understand the implications of the results it is useful to
classify the existing work according to the type of perturbation(s) that were
applied to the flow. One of the major contributions made by Bradshaw (1973)
in this area was to provide a classification scheme for the effects of different
kinds of extra strain rates e, that is, strain rates additional to the princi-
pal shear ∂u/∂y. By identifying the particular extra strain rates associated
with streamline curvature (∂v/∂x), convergence and divergence (∂w/∂z), and
compression and dilatation (∇ · V), he formulated a general framework for
the understanding of such complex flows. Bradshaw included pressure gradi-
ents in this classification scheme, in the sense that dp/dx is simply related to
due/dx for incompressible thin shear layers. See also Smits and Wood (1985)
and Spina et al. (1994).

One of the complications encountered in classifying compressible flows is
that it becomes difficult to uncouple the effects due to pressure gradient,
streamline curvature and bulk dilatation. This coupling occurs in all flows,
but in a subsonic flow with streamline curvature, for example, dilatational
effects are negligible by definition, and mean radial pressure gradients sim-
ply balance the centripetal acceleration, without straining fluid elements. In
flows with streamwise pressure gradients there will always be a measure of
streamline curvature as well, but for two-dimensional subsonic flows the ratio
of ∂v/∂x to ∂u/∂x will be of order v/u, and therefore it is always small. In a
supersonic flow, a coupling also exists between streamline curvature (that is,
radial pressure gradient) and longitudinal pressure gradient, and the degree
of coupling depends on the geometry. In simple wave flows, as in the flow
over a compression surface, the streamline curvature and pressure gradient are
directly coupled through the angle of turn and the Mach number. In reflected
wave flows, where the pressure gradients are imposed on the boundary layer by
external generated waves, the streamline curvature is (approximately) coupled
to the streamwise pressure gradient. This is similar to the case in subsonic
flows, but for a given pressure rise the degree of curvature will depend on
the decrease in streamtube area, which increases with Mach number. In com-
pressible flows, effects due to streamline curvature, pressure gradients, and
mean dilatational are always strongly coupled, regardless of how the pressure
gradient is applied.

As seen in Chapters 7 and 8, many of the differences observed between
boundary layers on adiabatic walls in subsonic and supersonic flow can be ex-
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plained in terms of the fluid property variations that occur as a result of the
cross-stream temperature gradients that exist at supersonic Mach numbers.
We show that this approach continues to hold when the wall temperature sud-
denly increases. However, perturbations such as the sudden imposition of a
pressure gradient, or longitudinal streamline curvature, or the interaction with
a shock wave, produce a boundary layer response that does not have an equiv-
alent subsonic counterpart, and which cannot be explained in terms of fluid
property variations. Vorticity can be produced through baroclinic torques.
Longitudinal pressure gradients will lead to the compression or dilatation of
vortex tubes, enhancing or reducing turbulent velocity and pressure fluctu-
ations. Separation can occur when shock waves are present, if the shock is
strong enough (a phenomenon that can be understood from subsonic expe-
rience), but even in the absence of separation there exists a strong coupling
between the shock and the turbulence, which leads to unsteady shock motion
and distortions of the shock sheet. Understanding the shock motion and the
resultant unsteady heat transfer and pressure loading is of great importance in
many aerodynamic flows. Because the shock motion seems closely connected
with the incoming turbulence field and the separation unsteadiness, there is
a clear need to understand the nature of the organized motions in the incom-
ing boundary layer, particularly the large scales. Unfortunately, studies of
the instantaneous or ensemble averaged turbulent motions in supersonic flows
are uncommon, and very few studies have been made in perturbed supersonic
flows to try to describe the distortion of the large-scale structure.

The perturbation may originate in a number of different ways. It may be
the result of a step change in the flow conditions where, for instance, the wall
curvature changes suddenly. Alternatively, the distortion may be produced
by an impulsive change, where the impulse consists of two step changes of
opposite character, separated by a short streamwise distance. An example
of this case would be the flow that develops on a flat plate, passes over a
short region of concave curvature, and then relaxes farther downstream over a
second flat surface. At some point away from the wall, the compression waves
generated by the concave surface curvature will form a shock. For large radii
of curvature, the shock will form outside the boundary layer, but for small
radii it forms inside the layer. For compression corners, where the radius
of curvature is essentially zero, a shock forms immediately outside the sonic
layer, and multiple shocks form when the flow separates. The perturbations
may also occur successively, as in the case where the surface curvature or the
pressure gradient changes sign in the streamwise direction. For example, as
the flow passes over a forward-facing step the surface curvature changes sign
from concave to convex, and the pressure first rises and then falls.

Here we try to use the extra strain rate classification as a basis for dis-
cussing the response of a supersonic turbulent boundary layer to a sudden
change in wall temperature, pressure gradient, streamline curvature, or bulk
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dilatation, despite the anticipated difficulties. Flows where an additional de-
gree of complexity is introduced by the application of successive perturbations
are also considered. At some points in this treatment, it is useful to compare
the response to these kinds of perturbations to the strong perturbations pro-
duced when a turbulent boundary layer interacts with a shock wave, although
a fuller discussion is given in Chapter 10.

9.2 Perturbation Strength

The strength of a perturbation can be difficult to define because it will depend
on how rapidly the perturbation is applied, and also because the perturba-
tion may affect different parts of the flow in different ways. The simplest
case may be where the wall boundary condition is changing. For instance,
when the wall roughness changes suddenly, the ratio of the upstream and
downstream equivalent roughness heights is a reasonably obvious parameter
to characterize the strength of the perturbation (Smits and Wood, 1985). For
a flow where the wall temperature changes suddenly, the ratio of the wall
temperatures upstream and downstream serves a similar function (Debiève
et al., 1997). The strength of a perturbation in pressure gradient is more dif-
ficult to define. In subsonic flows it may be defined in terms of the change in
β ≡ δ∗/τwdp/dx, Clauser’s (1954) pressure gradient parameter. In a supersonic
flow where streamwise pressure gradients can be accompanied by significant
pressure gradients normal to the wall, additional parameters will be necessary
to define the perturbation fully. For instance, it is possible to obtain the same
boundary layer wall pressure distribution in two different ways: one by using
a curved wall so that the curvature generates the pressure gradient, the other
on a flat plate by using a contoured ceiling to generate a reflected wave system
(see Figure 9.1). Clearly, the gradients normal to the wall in these two flows
will be different. To make this more quantitative, at least for disturbances that
are approximately isentropic such as simple wave flows, the ratio of the nor-
mal and streamwise pressure gradients is given approximately by 1/(tan αM),
where αM is the local Mach angle. This ratio is equal to 1.7 at Mach 2, and
5.9 at Mach 6, so that the effects of the cross-stream pressure gradient increase
quickly at higher Mach numbers. For reflected wave flows, the analysis is more
complicated, but the normal gradients take their maximum values in simple
flow regions (in the nonsimple region, where the incident wave system crosses
the reflected system, the normal pressure gradients are generally small), so
that the simple wave estimate can be taken as an upper bound. This issue is
discussed more fully by Finley (1977) and Fernholz and Finley (1980).

As indicated earlier, differences between simple and reflected wave systems
also appear in the resulting streamline curvature. For a simple wave system,
the curvature can be convex or concave, and for a given overall streamline
deflection the pressure rise is fixed by the incoming Mach number. A linearized
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Figure 9.1. Boundary layer flow distortions. Left: Adverse pressure gradients.
Right: Favorable pressure gradients. (From Smith and Smits (1994), with the au-
thors’ permission.)

analysis gives:

∆θ =
∆p

p

√
M2 − 1

γM2
.

In terms of the radius of curvature Rc and the initial boundary layer thickness
δ0,

δ0

Rc

=
δ0

p

∂p

∂x

√
M2 − 1

γM2
.

Consequently it is not usually possible to discriminate between the individual
contributions due to curvature, compression, and pressure gradient to the dis-
tortion of the boundary layer without performing the same experiment over a
range of Mach numbers, which can in turn introduce additional effects. How-
ever, for a reflected wave system with a rising pressure, the curvature is initially
convex and then concave, and the overall streamline deflection and pressure
rise are independent. For example, in a reflected wave flow such as that shown
in Figure 9.1 the overall streamline deflection is zero even though the overall
pressure rise is not.

To help resolve these issues of discriminating among perturbations, and
to determine the strength of the response in a complex supersonic flow, all
perturbations need to be quantified separately, and their interactions need to
be determined. For flows where extra strain rates are important, one useful
measure is the ratio of each extra strain rate, e, to the principal strain rate,
∂u/∂y (Bradshaw, 1973, 1974). A distortion is generally classified as weak if
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e/(∂u/∂y) ≈ 0.01, and strong if e/(∂u/∂y) ≈ 0.1. The final response of some
structure parameter to the prolonged application of a constant, small extra
strain rate e can be expressed in a linearized and dimensionless form by an
amplification factor 1 + αoeL/(∂u/∂y), where α0 is an empirical constant of
order 10 for several types of extra strain rate, and (∂u/∂y) can be taken as
a measure of the typical rms eddy strain rate (following Bradshaw, a better

local estimate may be given by
√
−u′v′

/
Lε, where Lε is the dissipation length

scale). This amplification factor depends only on the local rate of strain rather
than the rate-of-strain history. If the extra strain rate is applied over a time
comparable to the eddy lifetime, then it might be better to replace α0e with
an “effective” value I, given by the integral of the extra strain rate over the
time which it is applied (=

∫
e dt). For example, a measure of the strength of

the impulsive perturbation due to a short region of bulk compression (Ip) is
given by (1/γ) log(p2/p1) (Hayakawa et al., 1983), where p2/p1 is the pressure
ratio across the compression, and for an impulse in curvature the strength (Iθ)
is given by the angle through which the flow has been turned (Smits et al.,
1979b). It is implied that for an impulsive perturbation the overall distortion
is the more important parameter, and not the rate at which it is applied.

In the assessment of perturbation strength, it is implicitly assumed that the
perturbations are sufficiently small for a linear analysis to be meaningful. That
is, the response of the boundary layer can be described in terms of a simple
first-order lag equation. When more than one strain rate acts, as in the case of
a deflected supersonic flow where streamline curvature and bulk compression
act in addition to longitudinal and normal pressure gradients, the linear ad-
dition of different perturbation strengths to arrive at some overall measure is
unlikely to hold in any quantitative sense. Nevertheless, the linear analysis can
still serve as a crude guide for making comparisons among different flow cases,
as we hope to show here. For stronger perturbations, we know that Rapid
Distortion Approximations (RDA) can give quantitatively useful results. For
concavely curved flows this was shown by Jayaram et al. (1989) and Donovan
(1989), but the analysis will be valid only for times short compared to the
(local) eddy response time. Broadly speaking, the eddy response time scale
varies approximately as the turbulent kinetic energy divided by the rate of
its production (Townsend, 1976). If we assume that the structure parame-
ter a1 remains approximately constant, the relaxation time is proportional to
(∂u/∂y)−1, the mean eddy strain rate.

9.3 A Step Change in Wall Temperature

The response of turbulent boundary layers to step changes in boundary con-
ditions has been widely studied in subsonic flows (for a review see Smits
and Wood (1985)). The step change may be caused by a sudden change



9.3. A STEP CHANGE IN WALL TEMPERATURE 291

in wall roughness, surface curvature, pressure gradient, suction/blowing, or
heat transfer. The response to the change depends on how the step change is
applied, but if the step is caused by a change in the wall boundary condition,
such as a sudden change in wall temperature, the boundary layer adjusts to
the new boundary condition first at the wall, and then progressively farther
from the wall as turbulent diffusion begins to affect the rest of the flow. From a
fundamental viewpoint, the initial response of the boundary layer and its sub-
sequent relaxation to the new boundary conditions provides useful information
on the time and length scales of turbulent diffusion.

The relaxation process downstream of the step change is often described in
terms of the growth of an internal boundary layer, which is the region near the
wall where the flow scales with variables based upon the new wall condition
(for example, the friction velocity and temperature based on the new level of
heat transfer), whereas the rest of the boundary layer continues to scale on
the variables based upon the wall conditions that apply in the flow upstream
of the step change. Typically, the internal layer grows at a rate similar to that
of an undisturbed turbulent boundary layer, that is, at a rate approximately
proportional to x0.8. The relaxation rate, therefore, decreases with downstream
distance, and in some instances the asymptotic state may not be reached for
distances of the order of 100 initial boundary layer thicknesses (δ◦), if at all
(see, for example, the slow relaxation downstream of a prolonged region of
convex curvature studied by Alving et al. (1990)).

The response of boundary layers in supersonic flow to step changes in
boundary conditions has not been studied so extensively, but a number of
interesting experiments have been performed. For example, Kubota and Berg
(1977) studied the effects of sudden changes in wall roughness (smooth to
rough and rough to smooth) in a Mach 6 turbulent boundary layer. For a step
change from smooth to rough, the boundary layer attained a self-preserving
state in the mean flow at a distance of about 20δ◦, and in the fluctuation
profiles at about 30δ◦. The relaxation following a step change from rough to
smooth was somewhat slower with the mean flow relaxing over 28δ◦ and the
turbulent field over 40 to 50δ◦. In essence, their results were not significantly
different from similar work in subsonic flow (Antonia and Luxton, 1971, 1972).

Another interesting case is the boundary layer response to sudden changes
in heat transfer. Despite the practical significance of such flows, the extensive
reviews by Fernholz and Finley (1980, 1981) list only a few experiments where
heat transfer was important, and these cases were confined to uniformly cooled
walls (Voisinet and Lee, 1972; Laderman and Demetriades, 1974). However,
Debiève et al. (1997) studied a Mach 2.3 fully developed turbulent boundary
layer experiencing different step increases in wall temperature, and we now
consider this experiment in some detail. The ratio of wall temperature to
recovery temperature, Tw/Tr, varied from 1.0, to 1.5, to 2.0. To capture the
relaxation process, the response was studied over a distance of approximately



292 CHAPTER 9. PERTURBED BOUNDARY LAYERS

50δ◦, and many detailed mean flow and turbulence measurements were made.
We expect the step change in heat transfer to be somewhat different from

a step change in wall roughness. First, two internal layers will form: one
for the temperature field, and the other for the velocity field (because we
expect the friction velocity to be affected by the heating). The two internal
layers are not coincident because the Prandtl number is not unity. Second,
the step change is applied in the temperature field, and we expect to see, at
least initially, some differences appearing in the usual relationships between
temperature and velocity, that is, Crocco’s relation for the mean field, and the
Strong Reynolds Analogy for the fluctuations.

In Chapter 5, we showed that in a self-preserving flow a relationship between
velocity and temperature may be derived under the conditions that the mixed
Prandtl number, Pm [≡ (τ∂h/∂y)/(q∂U/∂y)], is constant and 0.7 < Pm < 1.0
(van Driest, 1955; Walz, 1959). The result is known as the modified Crocco
relationship, or sometimes simply as Crocco’s law (Equations 3.47 and 5.32).
If we consider only the flow in the region where molecular transport processes
can be neglected (y � yv) and where the stress is constant, dimensional anal-
ysis or mixing length arguments give, for zero pressure gradient (Rotta, 1960;
Bradshaw, 1977).

U∗
i =

∫ U+

U+
v

√
Tw

T
dU+ =

1

κ
log y+ + C1 (9.1)

(see Equations 5.48 and 5.50). If the temperature variation is known, either
by measurement or by assuming the validity of Crocco’s law, the integral in
Equation 9.1 may be evaluated. Furthermore, because the appropriate velocity
scale for the inner and outer regions of the boundary layer is (τw/ρ)1/2, we
expect from previous considerations that the mean (and fluctuating) velocities
scale with this parameter if the flow is self-preserving. For an adiabatic, zero
pressure gradient boundary layer, the variation in density is due to the Mach
number gradient. For a heated wall, the density variation is also affected by
the level of heating.

As noted in Section 9.2, the time scale τu for the adjustment of the velocity
field to a given perturbation is given by turbulent kinetic energy divided by the
rate of its production, that is, τu = q2/(−u′v′∂u/∂y), which is approximately
proportional to (∂u/∂y)−1. The flow near the wall, therefore, adjusts relatively
quickly, and a limited region of self-preserving flow may occur (it is assumed
here that, because Pt is close to one, an approximately self-preserving state
can occur). A similar argument can be made for the relaxation rate of the
temperature field,1 bearing in mind that the Prandtl number is not unity
so that the physical extents of the velocity and temperature layers are not
identical. Within this self-preserving part of the boundary layer (the internal

1By analoguey with the velocity field, τT = T ′2/(−v′T ′∂T/∂y).
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layer) the velocity and temperature fields may display a logarithmic variation,
and the total stress is then expected to be approximately constant over the
same region.

When the mixed Prandtl number is constant, it is possible to obtain for
y < ys, where ys lies in the constant stress region, a temperature-velocity
relationship for perturbed flows of the form:

T

Ts

=
Tw

Ts

+
Tr − Ts

Ts

(
u

us

)
− Pm

(γ − 1)

2
M2

s

(
u

us

)2

(9.2)

where Ms = us/
√

γRTs, and:

Tr − Tw

Ts

= 1 + Pm
(γ − 1)

2
M2

s − Tw

Ts

= − qwusP

CpτwTs

(9.3)

(for details, see Carvin et al. (1988)). Equation 9.2 can be applied to perturbed
flows that display a constant stress region. Furthermore, in the region where
molecular transport processes can be neglected (y � yv) and where the stress
is constant, Equation 9.1 still applies as long as the scaling is based on the local
wall values. Equations 9.1 and 9.2 then completely define the mean velocity
and temperature fields for yv 
 y < ys.

If we assume that the presence of a logarithmic velocity profile indicates the
presence of a constant stress region (this does not necessarily follow, but for
the present purpose it may be a reasonable approximation), then Equation 9.2
may be used to determine the heat transfer at the wall by fitting it to the data
in the region yv 
 y < ys. This method for finding the friction temperature
Tτ (≡ qw/ρwCpuτ ) is similar to the Clauser method for finding the friction
velocity from the measured velocity profile. The skin-friction and heat-transfer
coefficients can then be found from the experimental profiles by an iterative
solution of Equations 9.1 and 9.2. In principle, it should also be possible to find
Pm using this procedure but the estimates of Tτ and Ch are rather insensitive
to the value of Pm, and it difficult to find Pm accurately from the data.

To express the temperature profile in a similar logarithmic form, we note
that Equation 9.2 may be rewritten using a turbulent total temperature Ti as
indicated in Chapter 7. This leads to

T ∗
i =

∫ T+
i

T+
1

√
Tw

T
dT+

i =
1

κ
log y+ + CT , (9.4)

where T+
i = −Ti/(TτPm), and CT depends on the inner limits of the loga-

rithmic region (see also Equation 5.64). It will also depend on the Prandtl
number and the ratio of the wall temperature to the recovery temperature
Tw/Tr (Carvin et al., 1988).

Some results from the experiments by Debiève et al. (1997) are shown in
Figures 9.2 to 9.4. From Figure 9.2 we see that the internal thermal layer
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Figure 9.2. Total temperature profiles for step change in wall temperature. Left:
x = 8 cm; Right: x = 46 cm (x is the distance measured from the beginning of the
heated wall; the boundary layer thickness at x = 8 cm is 10 mm). ∗, Tw/Tr = 1.0;
�, Tw/Tr = 1.5; ◦, Tw/Tr = 2.0. (From Debiève et al. (1997), with the authors’
permission.)

grows relatively rapidly: at x = 8 cm it fills about half the boundary layer,
and by x = 46 cm the temperature and the velocity layers are almost coin-
cident. A comparison with Crocco’s relation (Equation 5.28) indicated that
the boundary layer at x = 8 cm is strongly perturbed by the heating, and by
x = 46 cm has not yet reached equilibrium. In contrast, the velocity profiles
demonstrate that the temperature field has only a mild effect on the velocity
distribution far from the wall.

To find the variations of wall friction and heat transfer along the plate,
the experimental data were fitted to the logarithmic relationships 9.1 and 9.4.
Figures 9.3 and 9.4 show the transformed velocity and static temperature
data in logarithmic form. In these transformed coordinates, there appears
to be little effect of heating. In other words, the variation in density due to
the combined effect of compressibility and heating simply alters the velocity
scale for the velocity profile without introducing any explicit effects due to the
heating. The relaxation of the temperature profile and the large extent of the
logarithmic region are clearly evident in Figure 9.4. For this flow, the constant
CT is approximately equal to 3.0, which is a little lower than the value of 3.6
found by Michel et al. (1969).

The coefficients of skin friction Cf (= 2τw/ρeu
2
e) and heat transfer Ch

(= qw/ρeueCp(Tr − Tw)) are shown in Figure 9.5. Although the accuracy
of these data is difficult to judge in the absence of an independent measure of
τw and qw, the effect of heating appears to reduce the skin-friction and heat-
transfer coefficients significantly, regardless of the streamwise location. If we
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Figure 9.3. Semi-logarithmic representation of transformed velocity profiles at x =
32 cm for step change in wall temperature, with uτ adjusted to give the best fit to
Equation 9.1. Symbols as in Figure 9.2. (Figure from Debiève et al. (1997), with
the authors’ permission.)

Figure 9.4. Semi-logarithmic representation of temperature profiles x = 32 cm for
step change in wall temperature, with Tτ adjusted to give the best fit to Equation 9.4.
Symbols as in Figure 9.2. (From Debiève et al. (1997), with the authors’ permission.)
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Figure 9.5. Distribution of skin-friction coefficients (left), and heat-transfer coeffi-
cients (right) for step change in wall temperature. Symbols as in Figure 9.2. (From
Debiève et al. (1997), with the authors’ permission.)

assume that the skin-friction coefficient follows the same relation as that found
for adiabatic flows, provided that the density and viscosity are evaluated at
the wall conditions, we find that most of the differences in Cf observed due
to heating are due simply to the change in fluid properties. The argument is
similar to that advanced in Chapter 1 to explain the decrease in Cf with Mach
number for adiabatic flows. A corresponding argument can also be made for
the heat transfer coefficient. However, we can see that the Reynolds Analogy
factor s (=2Ch/Cf ) appears to be strongly out of equilibrium, approaching a
value of about 1.5 near the end of the test section, still well above its equilib-
rium value of about 1.24.

As for the longitudinal turbulence intensity, Debiève et al. (1997) found
that Morkovin’s representation appears to take into account the effects of wall
heating. That is, the data can be collapsed using a scaling based solely on fluid
property variations (within the experimental error). Not unexpectedly, the
intensity of the total temperature fluctuations increases with heating. For the
turbulent heat transfer, we are more interested in the behavior of the transverse
heat flux (ρv)′T ′. This is a difficult quantity to measure directly, but some
indication can be given by examining the behavior of the longitudinal heat
flux (ρu)′T ′. Debiève et al. (1997) found that the correlation coefficient −RuT

is not significantly affected by the heating, and it remains almost unchanged
from its adiabatic value in a supersonic flow of 0.8 to 0.9 (a typical value in
a heated subsonic flow is 0.4 to 0.5). This high degree of correlation between
the velocity and temperature (even though the flow is heated) suggests that
the instantaneous scales of u′ and T ′ are connected by a relationship such
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as T ′ = f(u′). In an adiabatic flow, we have the Strong Reynolds Analogy,
but in heated flows where the total temperature fluctuations are significant an
alternative analysis is required.

When the distributions T (y) and u(y) are known, a linearization for small

fluctuations can be obtained with the aid of a mixing length argument
√

u′2 =

lu ∂u/∂y and

√
T ′2 = lT ∂T/∂y, or by a direct linearization of the mean re-

lationship T = g(u). In the case of lu(y/δ) = lT (y/δ), that is to say when

the Prandtl number defined in terms of u′2 and T ′2 is equal to unity, the two
methods lead to the same result; the SRA (Gaviglio, 1987). For a direct lin-
earization of the mean relationship T = g(u), similar mixing length arguments
are necessary.

To evaluate the influence of wall heating on the SRA, Debiève et al. (1997)
linearized Walz’s temperature-velocity relationship (Equation 5.28) which ex-
plicitly includes the heating parameter, Tw/Tr:
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− 1
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1 + rM2
e (γ − 1)/2

M2
e (γ − 1)

)(
1

u/ue

)]−1

(9.5)

(a similar approach was followed by Cebeci and Smith (1974), who assumed
r = 1). Here, the second term on the right-hand side introduces the influence
of heating. This term also depends on y/δ through the velocity profile u/ue

which depends only slightly on the heating. In adiabatic flows, the factor in
the square brackets reduces to the recovery factor r = 0.89. In the case where
Tw/Tr = 2, we can expect that, for a point located in the middle of the layer,
the right-hand side of Equation 9.5 will be reduced by a factor of about two
with respect to the adiabatic value. The data given by Debiève et al. (1997)
show this decrease from the adiabatic value, but their data are probably not
accurate enough to verify the exact form of Equation 9.5.

To summarize, we see the growth of an internal layer in the temperature
profile, but the transformed velocity field is relatively unaffected by the wall
heating. Near the wall, that is, in the internal layer, logarithmic variations
in the mean velocity and temperature profiles were found when the scaling
arguments took into account the new values of density and friction velocity.
Similarly, the change in fluid properties at the heated wall can explain the
observed decrease in the skin-friction and wall heat-transfer coefficients. As
for the turbulence, Morkovin’s scaling collapses the streamwise Reynolds stress
profiles, and the correlation between velocity and temperature fluctuations ap-
pear unaffected by the heating at the wall. However, the relationship between
the temperature and velocity fluctuations in the SRA is strongly affected by
the heating.
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9.4 Adverse Pressure Gradients

The response to an adverse pressure gradient depends very much on the ex-
ternal Mach number. Consider a reflected wave flow producing an adverse
pressure gradient with little streamline curvature, such as the experiment con-
ducted by Fernando and Smits (1990). As the flow enters a region where the
pressure is increasing, the sonic line moves away from the wall because in a
decelerating subsonic flow the distance between two adjacent streamlines will
increase. In the outer part of the boundary layer where the flow remains super-
sonic, the distance between adjacent streamlines will decrease as the pressure
rises. The overall effect on the boundary layer is not immediately obvious:
depending on the external Mach number and the strength of the pressure
gradient, the overall boundary layer thickness, for example, may increase or
decrease. With respect to the wall stress, at low Mach numbers it decreases in
adverse pressure gradients but at higher Mach numbers it can increase. There
are two opposing trends at work. As the sonic line moves away from the wall,
the velocity gradient at the wall decreases, tending to reduce the wall stress.
However, the viscosity increases as the temperature of the fluid rises toward
the wall, tending to enhance the wall stress. At lower Mach numbers, the
movement of the sonic line is the more important effect, and adverse pres-
sure gradients reduce the wall stress. At higher Mach numbers, the increased
viscosity is the dominant effect, and therefore the wall stress increases in an
adverse pressure gradient. Because the rising pressure will also increase the
velocity gradients in the supersonic part of the flow, the boundary layer thins,
and turbulent momentum transport to the wall region will increase, in line
with the increase in the wall stress. An example of a rising wall stress with
increasing pressure is given in Figure 9.6. We can still expect to see the flow
separate at more severe pressure gradients because normal pressure gradients
will become important, and the simple analysis given here will break down.
The prediction of such flows is understandably difficult, given the complex in-
teractions between the opposing flow response in the subsonic and supersonic
zones.

Adverse pressure gradients are often accompanied by significant streamline
curvature. The extra strain rate due to streamline curvature (∂v/∂x) has a
profound effect on the turbulence in incompressible flows. When the sense
of curvature is concave, the effect on the turbulence in the boundary layer
is destabilizing, leading to an increase in wall friction, heat transfer, and the
Reynolds stresses. In addition, Taylor-Görtler-like vortices have often been
observed to form on concavely curved walls. Convex curvature is stabilizing,
and the wall friction, heat transfer, and Reynolds stresses all decrease, and
the Taylor-Görtler instability is absent. Von Kármán (1934) considered the
equilibrium of a fluid element moving along a curved streamline, and demon-
strated that a boundary layer over a curved wall was unstable if the curvature
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Figure 9.6. Cf versus streamwise distance for adverse pressure gradient flow, with
an upstream Mach number of 2.9, decreasing to 2.5 over a distance of about 11 initial
boundary layer thicknesses (275 mm). Cf is nondimensionalized using conditions
upstream of the pressure rise, so that the figure illustrates the rise in shear stress at
the wall. Data from Fernando and Smits (1990) (see Table 9.1). (Figure adapted
from Smith et al. (1992). Reprinted with the authors’ permission.)

was concave, and stable if it was convex. When the flow is compressible, the
stability argument must take into account the effects of density gradients, and
the analysis by Bradshaw (1973) suggests that for an adiabatic wall the den-
sity gradient will enhance the effect of curvature. In a strongly cooled flow,
however, the density gradient changes sign near the wall, and it is possible, at
least in principle, for a boundary layer to be unstable in the outer layer and
stable in the inner layer, and vice versa.

These arguments provide qualitative descriptions of the flow stability, but
experiments show that the effects on the properties of the flow are at least
an order of magnitude greater than the analysis would indicate. As may be
expected, the effects of streamline curvature in compressible flow are more dif-
ficult to determine because, as discussed earlier, curvature in a supersonic flow
is always accompanied by pressure gradients and dilatation, and the signifi-
cance of each individual perturbation can only be found by comparing different
experiments where the balance between these effects is changing.

A group of such experiments for impulsive perturbations was performed by
Jayaram et al. (1987); Smits and Muck (1987), and Donovan et al. (1994).
Two different angles of turning were investigated, 8◦ (Group One) and 16◦

(Group Two), and the nondimensional radius of curvature Rc/δ◦ varied from
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Group One

Smits and Muck Jayaram et al. Fernando and Smits Kussoy et al.

Compression Model I Model II
corner Curved wall Curved wall Flat wall Flat wall

Me 2.9 2.9 2.9 2.9 2.3

Rc 0 10δ◦ 50δ◦ ∞ ∞

Li 0 1.4δ◦ 7δ◦ 7δ◦ 1.5δ◦

Iθ 0.14 0.14 0.14 < 0.05 —

Ip 0.41 0.46 0.46 0.46 0.40

ρu′2 +350% +240% +320% +200% +370%

−ρu′v′ +390% +390% +200% +220% +160%

θ +8◦ +8◦ +8◦ 0 0

Table 9.1. Impulses in adverse pressure gradient cases, Group One. The Flat Wall
cases are reflected wave flows. (Adapted from Smith and Smits (1994), with the
authors’ permission.)

0 (Flat wall), to 10–12 (Models I and IV), to 50 (Model II). The incoming Mach
number was fixed at a value of about 2.9. The flow configurations are shown
schematically in Figure 9.1, and the estimated strengths of the corresponding
impulses of extra strain rates are given in Tables 9.1 and 9.2. Here, δ0 is
the boundary layer thickness of the flow just upstream of the start of the
disturbance, and the length of the impulse is Li.

9.4.1 Flow over Concavely Curved Walls

The experiment by Donovan et al. (1994) illustrates many aspects of flows over
concavely curved walls in supersonic flow. The flow conditions are summarized
in Table 9.2, under Model IV, Curved wall. The total turning angle was 20◦.
As the flow passed through the region of surface curvature, the wall pressure
rose by a factor of 2.9, the Mach number decreased from 2.86 to 2.10, the
density increased by a factor of 2.1, and the velocity decreased by a factor
of 0.88. At the same time, the absolute wall shear stress increased by about
125%, and the skin-friction coefficient by about 77%. This increase is counter
to that observed in subsonic flows, where an adverse pressure gradient causes
the wall shear stress to decrease. Another example of this phenomenon is the
Fernando and Smits experiment shown in Figure 9.6. In these flows the sonic
layers are very thin, and as the pressure rises the boundary layer thickness
decreases. Because the turbulent mixing is strong, the net effect of a thinner
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Group Two

Smits and Muck Donovan et al. Smith and Smits (1981)

Compression Model IV
corner Curved wall Flat wall

Me 2.9 2.9 2.9

Rc 0 12δ◦ ∞

Li 0 3.5δ◦ 3.5δ◦

Iθ 0.28 0.28 < 0.09

Ip 0.76 0.78 0.78

ρu′2 +1700% +900% +600%

−ρu′v′ +650% +700% —

θ +16◦ +16◦ 0

Table 9.2. Impulses in adverse pressure gradient cases, Group Two. The Flat Wall
cases are reflected wave flows. (Adapted from Smith and Smits (1994), with the
authors’ permission.)

layer is to increase the wall stress (see also Figure 9.6). However, the skin
friction continues to increase well after the region of wall curvature has ended,
and continues to increase even after the pressure gradient has ended.

Figure 9.7 shows the mean velocity profiles in inner layer scaling. The
undisturbed boundary layer profile exhibits an extensive logarithmic region
(the discrepancies near the wall are almost certainly due to uncertainties in
probe position). By the end of the curved region, the profile begins to dip
below the logarithmic law near the point where y+ = 2000. The dip grows in
size and extends farther into the logarithmic region with increasing streamwise
distance. A dip in the logarithmic region is a common feature of flows with
concave curvature, and it may indicate that the length scales of the turbulence
increase faster with distance from the wall than in the unperturbed boundary
layer (Bradshaw, 1973; Smits et al., 1979b; Jayaram, et al., 1987; Smits, et al.,
1989). The dip does not become significant until after the curved region ends,
suggesting that the inner region of the boundary layer is either exhibiting a
delayed response to the curvature, or it is responding relatively quickly to the
removal of curvature.

In these measurements, a constant temperature hot-wire anemometer was
operated at high overheat ratio to measure the local mass flux fluctuations,

(ρu)′2
/

ρ̄2ū2. The streamwise stress was obtained by using the SRA, according
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Figure 9.7. van Driest-transformed mean velocity profiles for the Model IV Curved
wall impulse experiment (see Table 9.2). The vertical line near 10,000 indicates
the boundary layer edge. The x/δ0 values are indicated to the right of the profiles,
where δ0 is the boundary layer thickness for the incoming boundary layer, and
x is measured from the start of the curved wall (the curvature finishes at x =
3.5δ0). (From Donovan et al. (1994). Copyright 1994, Cambridge University Press.
Reprinted with permission.)

to:
(ρu)′

ρ̄ū
=

ρ′

ρ̄
+

u′

ū
.

That is,

ρ̄u′2 =
(ρu)′2

ρ̄ (1 + (γ − 1) M2)2 . (9.6)

The overall increase in the local mass flux fluctuations through the pertur-
bation is only about 60%, but the level of the Reynolds streamwise stress in-
creases considerably more through the perturbation: for instance, at y/δ = 0.4
the level increases by a maximum factor of 6.8. From Equation 9.6, it is clear
that the difference in the amplification levels is primarily due to the strong
role played by the mean density in the definition of the stress term. The first
signs of amplification occur at points close to the wall, where the time scales
are small. By the last streamwise station, at x = 9.1δ0, the relaxation process
had begun at points below 0.6δ, but the fluctuations were still growing in the
outer 20% of the layer.
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Figure 9.8. Streamwise variation of the Reynolds shear stress profiles for the Model
IV Curved wall impulse experiment (see Table 9.2). The values plotted at y =
0 correspond to τw. (From Donovan et al. (1994). Copyright 1994, Cambridge
University Press. Reprinted with permission.)

As the boundary layer exits from the curved region, the profile of the an-
gular momentum ρ (∂u/∂y) develops an inflection point away from the wall.
A generalized inflection point is defined by two conditions:(

∂

∂y

(
ρ
∂u

∂y

))
yi

= 0 and
(

u

ue

)
yi

> 1 − 1

Me

.

In a laminar boundary layer, a generalized inflection point can make the layer
unstable to small disturbances (Morkovin, 1992). In the present case, the in-
flection point is first seen at x = 4.54δ0, where it is located at y ≈ 0.2δ. Down-
stream, it becomes more exaggerated, and its position moves slowly away from
the wall so that at x = 8.16δ0 it is at y ≈ 0.3δ. The Mach numbers at these
locations satisfy the second condition, and it seems possible that instabilities
associated with the inflectional angular momentum profile contribute to the
turbulence amplification downstream of the curved wall region.

The Reynolds shear stress distributions are shown in Figure 9.8. The ampli-
fication of the shear stress is largest at y = 0.4δ, where the level has increased
by a factor of 5.3, although the shear stress relaxes considerably faster than
the streamwise stress. The normal component of the stress ρ̄v′2 also increased
significantly, by a maximum factor of 6.0 in the middle of the layer. Some-
what surprisingly, the anisotropy ratio urms/vrms showed little change through
the distortion, but the correlation coefficient Ruv increased by more than 60%,
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Figure 9.9. Schlieren photograph of a Mach 2.9 boundary layer passing over a
short region of concave surface curvature (Model IV in Table 9.2). The flow is from
right to left. The first pointer marks the end of curvature and the second marks
the x = 5.4δ0 location. The dark band at the edge of the boundary layer is the
compression fan/shock structure. Note the change in the inclination angle of the
large-scale structures. (From Donovan et al. (1994). Copyright 1994, Cambridge
University Press. Reprinted with permission.)

suggesting that the structure of the organized motions was altered significantly.

Two-point hot-wire measurements were also made to study the behavior
of the large-scale motions directly. The convection velocity had decreased by
about 5% relative to the local mean velocity at x = 5.4δ0, and the mean
structure angle had increased by about 5◦. Farther downstream, the structure
angle continued to increase, so that at x = 9.1δ0 it had increased to about 10◦

over the undisturbed value.

Schlieren visualization of the boundary layer indicates that the density
fronts rapidly change their inclination in the region of curvature (see Fig-
ure 9.9). In the beginning stages of the compression, the inclination is consid-
erably less than the upstream value (which is about 50◦ in the middle of the
layer; see Figure 8.36b), but the angles quickly increase so that at x = 8.9δ0

they increase to about 15◦ over the undisturbed value, in reasonable agree-
ment with the hot-wire data. This initial decrease in structure angle is also
seen in the FRS images of structures passing through a 16◦ compression corner
interaction (Figure 10.7).

Donovan et al. suggested that this behavior may be explained by consider-
ing the effect of the compression on the vorticity contained by the large-scale
motions. If we assume that the distortion is approximately isentropic, at least
as far as the initial response is concerned, and baroclinic torques will not
generate significant levels of vorticity, then a simple calculation based on the
magnitude of the compression in the plane of curvature (assuming the pertur-
bation to be rapid) suggests that the initial structure angle should decrease
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by about 20◦, as seen in the visualizations. Alternatively, if we assume the
incoming large-scale motions have a vertical scale given by δ, and the overall
streamwise extent is given by ηδ, then η = 1.1 because the structure angle is
about 50◦ for most of the upstream layer (see Figure 8.36). Furthermore, if we
assume that downstream of the curvature the vertical scale is still given by the
local boundary layer thickness and the streamwise extent is reduced by the lo-
cal decrease in mean velocity, we would expect the structure angle to initially
decrease by about 15◦, as Donovan et al. found. If the structure is assumed to
be a large-scale horseshoe vortex, and its circulation remains approximately
constant, the initial rotation toward the wall will bring the horseshoe closer
to its image vortex. According to Biot-Savart (assuming the gradients of the
sound speed are not large in the outer 80% of the boundary layer), the effect
of the image vortex is to tend to increase the angle of inclination, restoring it
to its original value. These arguments do not explain why the structure angle
tends to over-recover in the region downstream of the surface curvature.

In incompressible flows, some investigators (for example, Head and Bandy-
opadhyay, 1981) have discussed the possibility that the angles of inclination
of hairpin vortices and bulge interfaces are related to the principal axis of
the rate-of-strain tensor. In any zero pressure gradient boundary layer the
inclination of the principal axis is very close to 45◦. Donovan (1989) used a
rotational method of characteristics to calculate the variation of the rate-of-
strain tensor on Model IV. This procedure is valid for rapidly distorted flows
where the turbulence has a negligible effect on the mean flow, a condition
satisfied reasonably well by the flow for x = 5.4δ0. The smallest inclination
of the principal axis was calculated to be about 40◦ before relaxing back to
its upstream value, which to some extent reflects the behavior observed in the
schlieren visualization. However, the causal relation between the principal axis
of the mean strain rate and the inclination of the organized motions remains
unclear.

Further information on the spatial extent of the outer layer structures was
found using two vertically separated wires. By shifting the peak in the space-
time correlations along a line corresponding to the mean structure angle, the
qualitative picture shown in Figure 9.10 was obtained. This view may be com-
pared to the similar view shown in Figure 8.39 (ξy/δ = 0.09) for the undis-
turbed boundary layer. Both plots illustrate the spatial nature of the organized
motions in side view when the horizontal axis is taken as the streamwise direc-
tion (using Taylor’s hypothesis). The increase in structure angle at x = 5.4δ0

is evident, as well as the stretched length of the large scales, and the increase
in the streamwise correlation length scale. This last observation is somewhat
unexpected, but it may indicate that the compression enhances the correlated
motions more than the uncorrelated parts.

Finally, by conditionally sampling the fluctuating streamwise and normal
velocity signals simultaneously, an approximate view of the average large-scale
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Figure 9.10. Model IV Curved wall impulse experiment (see Table 9.2): correlation
contours from hot-wires separated by 0.1δ in a direction normal to the wall at
a position x = 5.4δ0 downstream of the start of curvature. This view may be
compared with the corresponding view of the undisturbed boundary layer shown in
Figure 8.39a. (From Donovan et al. (1994). Copyright 1994, Cambridge University
Press. Reprinted with permission.)

motion can be derived. The VITA technique developed by Blackwelder and
Kaplan (1976) was used to identify positive mass flux fronts, and the ensemble
averaged flowfields around these fronts are shown in Figure 9.11 (the corre-
sponding view for the upstream boundary layer was shown in Figure 8.40).
The clockwise rotation within the large scales is clearly seen, as is the counter-
clockwise rotation in the region behind the mass flux front (that is, the back of
the large-scale structure), and the presence of a stagnation point on the mass
flux front itself. Downstream, the rotating motion of the fluid downstream
of the back of the structure is not as well defined, and the upward velocity
just in front of the back is much larger than in the upstream boundary layer.
Throughout the flow, the steeper angle of most of the velocity vectors reflects
the amplification of the normal velocity component by the perturbation.

Having described the results of one particular study in some detail, we can
now summarize the overall behavior of the curved-wall flows listed in Tables 9.1
and 9.2. In all cases, the Reynolds stresses were found to be amplified down-
stream of the curvature. The level of amplification depended on the pressure
gradient, and the largest amplification was observed in the compression corner
flows where the strongest pressure gradients are found. That is, the more rapid
the perturbation, the greater the amplification of the turbulence. Changes in
the turbulence structure seem to depend therefore on the strength and the rate
of application of the perturbation. For the weakest distortion (Rc/δ◦ = 50) no
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Figure 9.11. Model IV Curved wall impulse experiment (see Table 9.2): average
flowfield in the region of instantaneous positive mass flux gradient as seen in a
reference frame moving at the convection velocity of the large-scale motions at x =
5.4δ0 downstream of the start of curvature. This view may be compared with the
corresponding view of the undisturbed boundary layer shown in Figure 8.40. (From
Donovan et al. (1994). Copyright 1994, Cambridge University Press. Reprinted
with permission.)

changes in the structure were observed indicating that the boundary layer was
near equilibrium throughout the distortion. For the more rapid distortions at
8◦ of turning (Rc/δ◦ = 0 and 10), weak changes in the turbulence structure
parameters were observed.

In compression ramp interactions, Debiève (1983); Ardonceau (1984); Kuntz
et al. (1987); Smits and Muck (1987), and Selig et al. (1989) found that the
amplification of the turbulence increased with the ramp angle, that is, the
shock strength. Ardonceau observed that the Reynolds shear stress responded
more quickly to the distortions than the streamwise and normal components.
For the flow downstream of the interaction, he suggested that the turbulent
motions begin to lose their coherence before beginning to dissipate energy. In
the experiments by Smits and Muck, the turning of the flow was the same as
the turning in the curved wall studies of Models I, II, and IV. A greater ampli-
fication of the streamwise Reynolds stress was found when a shock wave was
present, but the same trend was not observed in the shear stress, and in the
case of an 8◦ ramp, the boundary layer response was the same with or without
the shock wave. As the strength of the perturbation increased from 8◦ to 16◦,
the shock wave began to have an influence. For instance, Smits and Muck
(1987) found a change in the anisotropy ratio downstream of a 16◦ shock wave
interaction, but as we saw above, there is little change in the anisotropy ratio
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in the flow over a 16◦ curved wall. Initially, it was believed that there was a
coupling between the unsteady shock motion and the turbulence which served
to amplify the turbulence intensity without directly affecting the shear stress.
However, the measurements made by Selig et al. using conditional sampling
demonstrated that the shock motion had little effect on the amplification of the
turbulence intensity. In contrast, there appears to be a strong link between the
large-scale motions in the incoming boundary layer and the unsteady motion
of the shock wave, at least for attached flows (Gramann and Dolling, 1992;
Cogne et al., 1993). Compression ramp interactions are dicussed in more detail
in Section 10.2.

9.4.2 Reflected Wave Flows

To study the effects of adverse pressure gradients in the boundary layer with a
minimum amount of distortion due to curvature, the pressure gradient can be
imposed through a system of reflected waves (see Figure 9.1). The response
of the turbulence to this type of perturbation was studied by Kussoy et al.
(1978) at Mach 2.3, and by Fernando and Smits (1990) and Smith and Smits
(1994) at Mach 2.9. In the first two studies, the pressure rise was approxi-
mately equal (in other words, the impulse due to pressure changes was nearly
the same), but the pressure gradient occurred over a shorter distance in the
first (1.5δ◦) than in the second (7δ◦). The strength of the perturbation in the
third study was stronger and more rapid (see Tables 9.1 and 9.2), but in all
three flows the Reynolds stresses were strongly amplified. Fernando and Smits
found that the turbulence stress ratios varied less than the stresses themselves,
indicating that the structure of the turbulence remained largely unchanged in
their flow. This conclusion was confirmed by measurements of the space-time
correlations which were essentially unchanged from the correlations in the
undisturbed boundary layer. These observations were not unexpected because
the distortion was comparatively weak and relatively slow. However, a fre-
quency shift was observed in the energy spectra of the turbulence, suggesting
an increase in the turbulence length scale. This change was more obvious in
the velocity profiles that exhibited the dip below the logarithmic law char-
acteristic of subsonic flows experiencing concave streamline curvature, and it
may indicate the effect of the small but perhaps significant amount of stream-
line curvature found in the reflected wave flows of Fernando and Smits (and
Smith and Smits). Of course, if we assume that the concept of an impulsive
perturbation holds in this case, Iθ = 0 because the incoming and outgoing flow
directions are the same. However, the region over which the pressure rises is
rather long (of the order of the large-eddy turnover distance ≈ 10δ0) and the
appearance of curvature-related effects may signal the limit of the impulse
approximation. In that case, the approximation will also break down for the
flow over Model II where Rc = 50δ0.
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The pressure gradients in the flat plate studies by Fernando and Smits and
Smith and Smits were designed to match the pressure gradients on curved walls
with 8◦ and 16◦ of turning, respectively, where the nondimensional radius of
curvature was Rc/δ◦ = 50, and 10 to 12 (Jayaram, et al., 1987; Donovan et
al., 1994). For 8◦ of turning, the presence of curvature was found to enhance
the increase in the streamwise Reynolds stress, and although it did not change
the total amplification in the shear stress, the rate at which the shear stress
changed was faster for the flow with curvature. For 16◦ of turning, a similar
behavior in the streamwise stress was observed. Structural changes in the
turbulence appear to be directly linked to the presence of substantial amounts
of streamline curvature and the rate at which the perturbation is applied. For
example, changes in the turbulence structure were noted by Jayaram et al. on
an 8◦ curved wall, but Fernando and Smits found no structural changes in a
flow with the same adverse pressure gradient on a flat wall. The more rapid
the distortion, the greater the change observed in the turbulence structure,
suggesting that these changes may be described using the total strain rate and
the slower distortions should be described using local strain rates.

9.4.3 Taylor-Görtler Vortices

In subsonic turbulent boundary layers, concave curvature in the streamwise
direction introduces longitudinal vortices according to a mechanism similar to
that responsible for producing Taylor-Görtler vortices in laminar flows (Tani,
1962). These longitudinal roll-cells tend to be spaced in the spanwise direction
with a reasonably regular spacing of one to two boundary layer thicknesses, and
once established they are very stable in location and strength. Although their
tangential velocity is at least an order of magnitude smaller than the freestream
velocity, they can have strong effects on the turbulence. For example, Smits
et al. (1979b) found that downstream of an impulse in concave curvature the
shear stress differed by up to a factor of two in the spanwise direction, where
the low level was found in the region where the secondary flow was towards the
wall (that is, a “crest” in the spanwise Cf distribution), and the high level was
found where it was away from the wall (a “trough” in the Cf distribution). The
corresponding Cf values differed by about 20% from the crest to the trough.

In some flows with concave curvature, Taylor-Görtler vortices have not been
observed. In the study by Smits et al. (1979a), where the flow developed on
a cylindrical forebody before diverging on a cone, the boundary layer experi-
enced the combined effects of concave curvature and divergence, and steady
vortices were not detected. It is possible that the roll-cells did not form at all
because of a nonlinear interaction between concave curvature (which amplifies
longitudinal vorticity) and divergence (which amplifies spanwise vorticity). It
is also possible that unsteady vortices were formed, without a preferred span-
wise position, or that the vortices originated intermittently at different spatial
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Figure 9.12. Reattachment flow patterns downstream of a backward-facing step
on an axisymmetric body. Left: Roshko and Thomke (1966) at M = 3.20. Right:
Shamroth and MacDonald (1970). (Copyright 1966, 1970, AIAA. Reprinted with
permission.)

locations. The measurements were not designed to detect such unsteady mo-
tions, and so we can only speculate.

In separated supersonic flows, surface oil flow visualizations in the region
of reattachment suggest that steady Taylor-Görtler vortices also occur in com-
pressible flows (Roshko and Thomke, 1966; Shamroth and MacDonald, 1970).
Visualizations of the separation and reattachment lines in compression corner
flows similarly suggest the existence of longitudinal vortices, with a spanwise
spacing similar to that seen in incompressible flows (see Figure 10.14). Selig
et al. (1989) suggested that longitudinal vortices could be the cause for a
bimodal pdf in the mass flux fluctuations downstream of a 24◦ compression
corner, because they are an effective mechanism for sweeping low-momentum
fluid up from the near-wall regions. However, no evidence of steady Taylor-
Görtler-like vortices was found in any of the attached flows listed in Tables 9.1
to 9.3. It is again possible that nonlinear effects may have prevented their
appearance. For example, it was suggested by Green (see Bradshaw (1973)
and Smits et al. (1979a)) that bulk compression acts in many respects sim-
ilarly to lateral divergence. If it is true that Taylor-Görtler vortices do not
form in subsonic boundary layer flows when concave curvature and divergence
act together, then by extension it may not be surprising that when concave
curvature and dilatation occur together, Taylor-Görtler vortices may also be
absent.

A criterion for the onset of steady Taylor-Görtler vortices in compress-
ible flows with concave curvature may be developed as follows. According to
Schlichting (1979), Taylor-Görtler vortices first appear in a laminar, incom-
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pressible boundary layer on a concavely curved wall when the characteristic
parameter, the Görtler number GT ,

GT =
Ueθ

ν

√
θ

R
,

exceeds a certain value. Stability calculations give the neutral curve as a
function of Görtler number and nondimensional wavelength.

Tani (1962) suggested that this criterion could be applied to turbulent flows
by using the same characteristic length scale θ and simply replacing the molec-
ular viscosity by the eddy viscosity. If we assume that the eddy viscosity in
the outer layer is given by

νt = 0.018Ueδ
∗ (9.7)

(Clauser, 1956), then

GT =
θ

0.018δ∗

√
θ

R
, (9.8)

which indicates that the appearance of longitudinal vortices in a turbulent
flow is a weak function of Reynolds number because the shape factor varies
somewhat with Reynolds number (see Figure 7.18). Bradshaw (1973) pointed
out that the direct use of the neutral curve for the Blasius profile is not realistic,
but Tani’s measurements agreed reasonably well with this simple proposal.
Note that the Görtler number for turbulent flow can also be written as

GT =
(θ/δ)1.5

0.018 (δ∗/δ)

√
δ

R
. (9.9)

We can extend the analysis to compressible flow by assuming that the length
scale remains unchanged and that the eddy viscosity is still given by Equa-
tion 9.7. In other words, the Görtler number for a compressible turbulent
flow is given by Equation 9.9, where we recognize that the momentum and
displacement thicknesses are a strong function of Mach number (see Equa-
tions 7.63 to 7.65). Some typical values may then be found for the lower limit
on δ/R where we expect to find longitudinal vortices, corresponding to the
neutral curve calculated by Smith (1955) and a fixed wavelength of 2δ. For
the present purpose, we ignore the weak dependence of the Görtler number on
Reynolds number. As the freestream Mach number increases from 0, to 1, to
3, to 5, we find (δ/R)s increases from 0.003, to 0.005, to 0.03, to 0.11. That is,
the analysis predicts a strong increase in stability with increasing Mach num-
ber. Most of the Mach 3 curved wall cases listed in Tables 9.1 and 9.2 exceed
this rather crude criterion, but not by very much, and it seems likely that the
absence of Taylor-Görtler vortices in these attached flows is at least partly
due to the stabilizing influence of Mach number. For the separated flows, the
distortion of the mean velocity profile will influence the stability calculation,
and the appearance of an inflection point will obviously make the layer more
unstable in every sense.
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Group Three

Dussauge and Gaviglio Smith and Smits (1991) Johnson

Expansion corner Expansion corner Expansion corner Curved wall

Me 1.76 2.9 2.5 2.5

Rc 0 0 0 15δ◦

Li 0 − 1δ◦ 0 − 6δ◦ 0 − 3δ◦ 3δ◦

Iθ –0.21 –0.35 –0.26 –0.26

Ip –0.50 –1.02 –0.78 –0.78

ρu′2 –78% –85% –72% –72%

−ρu′v′ — — — —

θ −12◦ −20◦ −15◦ −15◦

Table 9.3. Impulses in favorable pressure gradient cases, Group Three. (Adapted
from Smith and Smits (1994), with the authors’ permission.)

9.5 Favorable Pressure Gradients

When the sense of the curvature is convex, the effect on the boundary layer
turbulence is stabilizing, and the wall friction, heat transfer, and the Reynolds
stresses are expected to decrease. If the flow is supersonic, then the convex
curvature will generally be accompanied by a favorable pressure gradient that
will enhance the stabilizing effect. With the exception of Morkovin (1955) and
Johnson (1993), all of the studies in supersonic flows of convex curvature effects
have been made in expansion corner flows (Rc = 0) where the curvature and
pressure gradient are stabilizing (see Figure 9.1). Turbulence measurements in
expansion corners by Dussauge and Gaviglio (1987) at Mach 1.76, and Smith
and Smits (1991a) at Mach 2.9, show a substantial reduction in the streamwise
Reynolds stress downstream of the corner (see Group Three, Table 9.3).

Some results of the experiments by Dussauge and Gaviglio (1987) and Smith
and Smits (1991a) were discussed in Chapter 4 in the context of RDA. The
strong stabilizing influence of expansion can be seen in Figure 4.3. The good
agreement between the measured and calculated stress profiles suggests that
the evolution of the mean flowfield was essentially independent of the tur-
bulence field, and that the turbulence field evolved in direct response to the
changes in the mean velocity gradients. Smith and Smits also found that 90%
of the reduction in the streamwise stress was due to the effect of bulk dilata-
tion, that is, the change in mean density. Curvature appeared to play a very
small role even though the flow was turned through a relatively large angle of
20◦.
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If the favorable pressure gradient is strong enough, it seems possible that
the boundary layer will relaminarize, as in subsonic flow, although it might be
more accurate to say that pressure forces can become large enough to dominate
the nearly frozen Reynolds stresses, and over a large part of the boundary
layer the Reynolds stresses then have little influence on the mean flow (see
Narasimha and Sreenivasan (1979)). That is, the turbulent fluctuations may
not be absent, but they no longer contribute appreciably to the momentum or
energy transport. Johnson (1993) made turbulence measurements downstream
of a convex wall to study the possibilities for relaminarization in supersonic
flow. In his experiments, the nondimensional radius of curvature of the wall
Rc/δ◦ was varied from 0 to 15 and the overall turning angle remained at
15◦ (see Table 9.3). The incoming flow was recovering from the distortion
presented by a 10◦ concavely curved wall placed some distance upstream, but
the incoming flow was the same for each case so that the effect of varying Rc

could still be determined to some degree. Johnson found a strong suppression
of the longitudinal velocity fluctuations with the suppression being remarkably
similar in all four cases, suggesting that in his flow the dominating influence
was the overall pressure rise (or, equivalently, the total turning angle) rather
than the strength of the pressure gradient. Here again, the distortions were
rapid, with the slowest distortion occurring over 4δ◦.

Unfortunately, the limitations of wind tunnel testing usually prevent the
study of the full relaxation behavior in expansion corner flows, simply because
it is difficult to follow the flow far downstream in a wind tunnel of fixed ge-
ometry. For example, the measurement region downstream of the expansion
corner in the study by Dussauge and Gaviglio was 11δ◦ long, and in the exper-
iment by Smith and Smits it was only just over 5δ◦ in length. Because these
flows have large and rapid decreases in pressure, it is clear that only the initial
response of the boundary layer to the pressure distortion could be observed
before the end of the measurement section was reached.

9.6 Successive Distortions

Studies of boundary layers experiencing successive distortions can give new
insight into the relaxation of a distorted boundary layer. In the investigations
by Zheltovodov et al. (1990) and Smith and Smits (1993b), the boundary layer
experienced successive impulses in curvature of opposite sign such that the di-
rection of the flow upstream and downstream of the curved wall regions was
the same (see Figure 9.13, and Group Four, Table 9.4). In the study by Zhel-
tovodov et al. the flow passed over a 25◦ forward-facing step, and a remarkable
relaxation behavior was found in the streamwise turbulence intensity. After
the second impulse, that is, on the flat plate downstream of the step, the tur-
bulence intensity levels initially returned to the upstream levels, but farther
downstream the stress levels in the middle of the boundary layer continued to
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Figure 9.13. Successive distortion flow geometries. (From Smith and Smits (1994),
with authors’ permission.)

decrease. Unfortunately, the limited spatial resolution of the probes in this
experiment makes it difficult to gauge the response quantitatively.

In the study by Smith (1993) and Smith and Smits (1993b), two different
flows over forward-facing ramps were studied, each with 20◦ of turning. In
the first case (Model A), the turning was produced by sharp corners as in the
Zheltovodov flow, but in the second case (Model B) the turning was produced
by curved walls. As the flow passed over these steps, the boundary layer was

Group Four

Zheltovodov et al. Smith and Smits (1993b)

Compression Expansion Compression Expansion Curved Curved
corner corner corner A corner A compression B expansion B

Me 2.9 2.9 2.9 2.9 2.9 2.9

Rc 0 0 0 0 15δ◦ 15δ◦

Li 0 − 10δ◦ — 0 − 6.5δ◦ — 0 − 12δ◦ —

Iθ +0.44 –0.44 +0.35 –0.35 +0.35 –0.35

Ip +1.1 –1.1 +0.92 –0.92 +0.92 –0.92

θ +25◦ −25◦ +20◦ −20◦ +20◦ −20◦

Table 9.4. Impulses in successive distortion cases, Group Four. Here, δ0 is the
boundary layer thickness of the flow just upstream of the start of the disturbance.
(Adapted from Smith and Smits (1994), with the authors’ permission.)
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subjected first to an adverse pressure gradient combined with concave stream-
line curvature and bulk compression, followed by a favorable pressure gradient
combined with convex streamline curvature and bulk dilatation. On Model
A, the initial turning at the compression corner resulted in a shock wave-
boundary layer interaction, and the subsequent expansion occurred through
a centered expansion fan. On Model B, the concave and convex streamline-
curvatures were distributed over longer streamwise distances than on Model
A, and therefore the pressure gradients were less severe. In particular, the
shock associated with the concave curvature did not form until well outside
the boundary layer, and within the boundary layer the compression occurred
through a compression fan rather than a shock wave-boundary layer interac-
tion. On Models A and B, however, there was no net change in flow direction
across the successive distortions and therefore the upstream and downstream
freestream conditions were effectively the same except for a small shock loss
on Model A.

The overall response corresponded closely to that seen by Zheltovodov. The
streamwise Reynolds stress profiles first show a strong amplification down-
stream of the compression surface (a factor of 10 for Model A), followed by
a large decrease just downstream of the expansion (see Figure 9.14: the large
initial amplification downstream of the compression corner is not shown in
this figure, only the relaxation behavior on the flat plate downstream of the
expansion). In the profiles farther downstream, this region of reduced stress
grows in size and the shape of the stress profile suggests the presence of an in-
ternal layer. There is no detectable relaxation towards a self-preserving state,
in agreement with the results obtained by Johnson (1993) in a similar flow
configuration at Mach 2.45.

Over most of the boundary layer immediately downstream of the distor-
tions, the shear stress appeared to change sign. A subsequent recovery of the
shear stress was observed in the lower 60% of the boundary layer, but in the
remaining part of the layer the shear stress remained at very low values.

Despite the differences between Models A and B—different distortion lengths,
and the presence of a shock wave in the first case compared to an isentropic
compression in the second case—the general response of the boundary layer
was very similar. In both cases, the distortions occurred rapidly, suggesting
that the perturbation rate was not important and that the distortion can be
described qualitatively using the appropriate impulse levels (see Table 9.4).
However, it is not suggested that the overall response of the boundary layer
can be described as a linear sum of the two successive impulses: this would
indicate that the overall perturbation is zero (assuming that αo is the same for
all perturbations). Remarkably, the stress levels at the exit from the second
perturbation were almost unchanged from their upstream values, but farther
downstream the undershoot in the turbulence levels suggests a second-order
response of an underdamped system. The turbulence is strongly out of equi-
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Figure 9.14. Longitudinal Reynolds stress profiles for the flow over a compression
corner followed by an expansion corner (Model A in Table 9.4). The distance x is
measured from the start of the compression ramp, and the ramp is 149 mm long
(about 4δ0). Only the profiles upstream of the compression corner and downstream
of the expansion corner are shown. (From Smith and Smits (1993b). Reprinted with
permission of Kluwer Academic Publishers.)

librium, and the production, dissipation, and anisotropy are out of balance.

An RDA Reynolds stress calculation similar to the ones discussed in Chap-
ter 4 was used to help understand the response of the turbulence over Model
A. In the expansion, estimates of the production terms in the Reynolds stress
equations revealed that negative production can occur and this may be largely
responsible for the change of sign in the shear stress, and the complex nature of
the relaxation process. Not unexpectedly, this indicates that the conventional
eddy viscosity approaches to turbulence modeling have severe limitations for
these strongly perturbed flows. A number of factors combined to inhibit the
turbulence production mechanisms in the relaxing boundary layer. These fac-
tors included a fuller velocity profile, a decay of the streamwise stress, and a
collapse of the shear stress in the expansion fan. As a result, a long recovery
period may be expected. Qualitatively, it appeared that the streamline curva-
ture in the second impulse combined with the amplified streamwise Reynolds
stress on the ramp to exaggerate the stabilizing effect of the expansion corner.
In the flows over a simple expansion corner (Group Three), the dominant effect
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is that of bulk dilatation, whereas in the flows where a compression precedes
the expansion (Group Four), curvature plays a more important role within the
expansion.

The shape of the streamwise Reynolds stress profiles suggested three zones
of response: a recovery zone near the wall where the turbulence recovers
quickly from the perturbations; a zone of strong response in the middle of
the boundary layer where the turbulence levels eventually undershoot the
equilibrium distributions sharply in response to the combined effects of the
perturbations (second-order response); and a zone of advection near the edge
of the boundary layer where the turbulence appears to be unchanged by the
integrated effects of the perturbations (linear response). This latter obser-
vation supports the conclusion of Selig and Smits (1991) that at this Mach
number shock wave oscillation does not contribute appreciably to turbulence
amplification in shock wave-boundary layer interactions.

9.7 Summary

For the cases with both adverse pressure gradients and concave streamline
curvature, the changes in the turbulence structure (as inferred from the trends
in the Reynolds shear stress) appear to be strongly tied to the magnitude of
the impulses due to curvature. If the radius of curvature of the turning is
small enough, a shock wave forms in the boundary layer, and the streamwise
stress increases with increasing shock strength. If the pressure gradients are
not strong enough to separate the layer, the shock wave seems to exert no
additional effect on the shear stress over and above the changes that could be
attributed to streamline curvature (or the equivalent compression).

In the flows with rapid, favorable pressure gradients and convex curvature,
it appears that the initial response of the boundary layer turbulence is domi-
nated by the effects of the bulk dilatation, and the effects of convex curvature
are always small. That is, the turbulence initially changes in response to the
pressure gradient as would be expected using the conservation of circulation
(we can largely ignore the effects of compressibility on relative motions be-
cause the Mach number gradients in the outer layer are usually small). The
effect of bulk dilatation on the turbulence (expressed as an impulse) is not a
strong function of the pressure gradient, indicating that it is the overall pres-
sure change which is important. In contrast, the relaxation behavior appeared
to be largely controlled by the streamline curvature history. However, these
observations were made in a boundary layer downstream of two successive dis-
tortions where the effect of curvature appeared to be greatly augmented by the
amplification of the stresses downstream of the first distortion. The relaxation
behavior is similar to the second-order response seen by Smits et al. (1979b)
in an incompressible turbulent boundary layer downstream of an impulse of
curvature. In addition, the behavior of the shear stress was similar to that ob-
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served by So and Mellor (1973) in a boundary layer developing over a surface
with prolonged surface curvature in incompressible flow. What has not been
explained is the observation that in the outermost part of the boundary layer
there was no change in the streamwise stress from its undisturbed profile even
though it is in this region where the principal strain rate ∂U/∂y is small and
the effects of the extra strain rates should be felt most strongly.

Overall, it appears that the boundary layer response to curvature in a su-
personic flow is similar to the response in subsonic flow, even to the appearance
of a dip below the log law in the mean velocity profile as a response to any
significant amount of concave streamline curvature. More specifically, in the
case of a single impulse of curvature, we expect to observe the same counter-
intuitive trends in the Reynolds stress behavior as observed by Smits et al. in
subsonic flow, where a stabilizing distortion (an impulse in convex curvature)
caused an increase in turbulence activity far downstream and a destabilizing
distortion (an impulse in concave curvature) caused a decrease.

Compressibility effects on the turbulence appear to be small, at least at
supersonic Mach numbers. In flows with concave or convex streamline curva-
ture, Reynolds stress calculations using subsonic turbulence models by Degani
and Smits (1990) were found to give reasonable predictions of Reynolds stress
behavior, at least for distortions where the boundary layer did not depart too
far from equilibrium. For these flows, the limitations of the calculation are
probably due to the turbulence modeling, rather than any specific influence
of compressibility, and the observations tend to support the turbulence struc-
ture similarity suggested by Morkovin’s hypothesis. For strong distortions,
our predictive capability is confined to the initial response where linear theo-
ries such as RDA become useful. This situation should improve considerably
with the application of DNS to this class of problems, bearing in mind that
the relaxation behavior is typically slow and DNS studies will require large
computational domains. No results are currently available.



Chapter 10

Shock Wave-Boundary Layer
Interactions

10.1 Introduction

Shock-turbulence interactions are a common occurrence in supersonic flow be-
cause compression and flow deflection are almost always accompanied by the
formation of a shock. The characteristics of the interaction depend on the
Mach number, the nature of the incoming flow, the shock angle, the source of
the shock, and the flow geometry. The shock may interact with freestream tur-
bulence (Figure 1.14), with a free shear layer (Figure 1.13), or with a boundary
layer (Figure 10.1). The earliest experiments studied transonic interactions,
to make possible flight at supersonic speeds (Liepmann, 1946; Ackeret et al.,
1946; Liepmann et al., 1951). Once the sound barrier was broken, attention
shifted to supersonic and hypersonic interactions, and to date a large num-
ber of experiments have been performed. Green (1970); Stanewski (1973);
Sirieix (1975); Adamson and Messiter (1980); Délery (1985), and Viswanath
(1988) give detailed surveys of interactions which are two-dimensional in the
mean, and Green (1970); Korkegi (1971); Peake and Tobak (1980); Settles
and Dolling (1990); Dolling (1990); Settles and Dolling (1992), and Dolling
(1993) provide a similarly comprehensive treatment for three-dimensional in-
teractions. The most recent overview is given by Dolling (2001). Rather than
attempting to summarize these reviews, we instead focus on some of the salient
features of shock-wave turbulence interactions, with an emphasis on the un-
derlying mechanisms controlling the scaling of the interaction, the possibility
of flowfield separation, modifications to the incoming turbulence, and the un-
steadiness of the shock. We also consider the contributions of DNS to our
understanding of these flows.

Shock wave interactions are usually classified according to how the shock
is generated. For shock wave-boundary layer interactions, the shock may im-
pinge on the layer from an external source (an incident shock interaction), or

319
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Figure 10.1. Typical interactions between shock waves and boundary layers: (a)
incident oblique shock; (b) compression corner interaction. (From Adamson and
Messiter (1980). Reproduced, with permission, from Annual Reviews, Inc.)

the shock may be generated by the same surface that generated the bound-
ary layer (a compression surface or compression corner interaction). In most
practical flows the interaction is three-dimensional, in that the shock sheet is
swept at some angle to the boundary layer (which in itself may be two- or
three-dimensional). Some of the more common configurations used to study
shock wave-boundary layer interactions in the laboratory are illustrated in
Figure 10.2. In three-dimensional interactions, the shock may be generated
by a sharp fin placed at an angle of attack to the incoming flow, by a blunt
fin where the leading edge has a finite radius of curvature, or by a cone or
other protrusion rising from the surface. The fins may also be swept in the
streamwise direction, so that the shock sheet in the freestream is angled in
two directions with respect to the upstream flow. The geometries of these in-
teractions have many degrees of freedom, and they can become quite complex.
Further complexities are introduced when shocks interact with each other, as
in crossing-shock interactions (see Figure 10.30). In addition, the Mach num-
ber plays a crucial role in governing the inviscid flowfield. For example, as the
Mach number increases for a given shock generator configuration, the inviscid
shock may change from being detached to being attached, producing large
changes in the near field. Even if the inviscid shock is attached, the reduced
Mach number within the boundary layer may cause detachment at some point,
and this can change the entire flow pattern. Variations in Reynolds number
will also play a role, but for fully-turbulent flows its influence appears to be
relatively minor because most interactions are pressure dominated.

We start by considering shock-turbulence interactions far from walls, and
shock wave-boundary layer interactions where the incoming boundary layers
are two-dimensional in the mean. We first consider interactions with a bound-
ary layer, even though they are more complicated, because the boundary con-
ditions are better defined. Shock-turbulence interactions away from walls are
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Figure 10.2. Examples of two- and three-dimensional shock wave-boundary layer
interaction geometries studied in the laboratory. (From Tran (1987). Copyright
1987, AIAA. Reprinted with permission.)

considered in Section 10.3 in the context of RDA and other linear methods.
Three-dimensional interactions are discussed in Section 10.6, and flows pro-
duced by multiple shock interactions are considered briefly in Section 10.7.

10.2 Compression Corner Interactions

Two-dimensional compression ramp flows have been extensively studied (see,
for example, Settles et al. (1979), Debiève (1983), Ardonceau (1984), Smits
and Muck (1987), Dolling and Murphy (1983), Selig et al. (1989), and Evans
and Smits (1996)). The experiments at Mach 2.9 by Settles et al. and Smits
and Muck are particularly revealing because they cover a wide range of turn-
ing angles, and detailed mean flow and turbulence data are available. As an
illustration, we consider the 24◦ case (see Figure 10.3). In this flow, the incom-
ing boundary layer is turbulent. The 24◦ corner produces a shock wave with
an initial turning of about 10◦. The rest of the deflection is produced more
gradually downstream through a series of unsteady compression waves. The
pressure rise is strong enough to separate the layer, and there is a considerable
increase in the turbulence level across the interaction. The velocity fluctua-
tions are amplified by passing through the shock, and vorticity is generated
by interaction between entropy spots and the shock, in agreement with the
second-order modes theory discussed in Chapter 4.
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Figure 10.3. Sketch of the Mach 2.9, 24◦ compression ramp flow. (From Dussauge
et al. (1989). Reprinted with permission of the authors and AGARD/NATO.)

The whole flow is unsteady: the shock moves over a significant distance, its
motion is three-dimensional, and it occurs at low frequencies. It seems that the
shock unsteadiness by itself makes a negligible contribution to the turbulence
amplification (Selig and Smits, 1991). However, the separated zone is the
source of large-scale fluctuations that are convected downstream, and these
large-scale structures are probably related to low-frequency mechanisms. If
the flow over the separated zone has features in common with mixing layers,
we can expect this part of the flow to be very sensitive to compressibility
effects, as free shear flows are. These aspects of the flow properties can be
at the heart of couplings in the interaction, because they impose unsteady
outlet conditions on the shock and can make it move. Because the incoming
turbulence imposes an unsteady inlet condition, coupling with the incoming
flow can also occur.

In terms of the extra strain rate terminology adopted in the previous chap-
ter, the boundary layer experiences the combined effects of an adverse pressure
gradient, concave streamline curvature, bulk compression, shock unsteadiness,
and, if the pressure rise is strong enough, flow separation. The wall stress typ-
ically decreases sharply near the start of the interaction, but quickly recovers
as the boundary layer thins in response to the overall compression, overshoot-
ing the upstream level before eventually recovering to its undisturbed level
appropriate to the new Reynolds number on the ramp. At the same time, the
turbulence levels increase dramatically through the interaction and appear to
relax only slowly. The shear stress is generally affected less than the normal
stresses, and as a result structure parameters, such as a1 ≡ −u′v′/q2, are
strongly distorted. Because the flow responds to the combined effects of many
distortions, it is difficult to conclude from the available data what the specific
contributions are of, say, concave streamline curvature and bulk compression.
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It was apparent from Chapter 9 that when the flow is compressed rapidly on
a curved wall with a short radius of curvature, the boundary layer turbulence
is amplified to a significantly larger degree than when the compression occurs
more slowly, regardless of the curvature of the surface.

In the following discussion, we try to infer the phenomena controlling the
evolution of turbulence in shock wave-boundary layer interactions by reviewing
these different elements.

10.2.1 Skin Friction

For the compression corner interaction shown in Figure 10.3, the mean pres-
sure distributions begin to develop a plateau region for turning angles greater
than 16◦ (see Figure 1.16), which indicates the onset of mean flow separation:
the condition at 16◦ is called incipient separation (Settles et al., 1979). The
terms weak and strong are sometimes used to describe attached and separated
interactions, respectively, but these terms can mean different things in different
contexts, and they are avoided here. The instantaneous flow will show signs of
reversal at smaller turning angles, but at 16◦ the mean skin friction becomes
zero at some point (see Figure 10.4). Both the 20◦ and 24◦ corners exhibit re-
gions of separated flow, and the mean velocity profiles (Figure 10.5) display a
region of reversed flow that agrees in location and extent with the skin-friction
measurements shown in Figure 10.4. We noted earlier (Section 9.4) that ad-
verse pressure gradients in a compressible boundary layer flow can cause the
skin friction to increase because of the thinning of the layer. Here we see that
if the pressure gradients are strong enough, the skin friction can decrease sud-
denly, and the flow can separate. Downstream, however, the overall increase
in pressure can still cause the skin friction to rise above its usual value at the
same Reynolds number, again because of the thinning of the layer.

10.2.2 Separation

An important aspect of shock wave-boundary layer interactions is the pre-
diction of the onset of separation. However, we need to distinguish between
mean flow separation, and instantaneous flow separation, especially for these
inherently unsteady flows. There is evidence to indicate that the motion of
the instantaneous separation point is closely tied to the instantaneous position
of the shock (Gramann and Dolling, 1990; Beresh et al., 2002), so that the
probability that the flow is separated at any position is similar to the probabil-
ity that the shock is located upstream of that location. Mean flow separation
can then be defined as the point where the flow is separated for 50% of the
time Simpson (1981). This location is often found using surface flow visual-
ization such as the kerosene-graphite technique (Settles and Teng, 1984), but
it should be noted that the line of accumulation seen in the visualization is
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Figure 10.4. Distributions of Cf in compression corner interactions at Mach 2.9.
The wall stress is nondimensionalized using “effective” edge conditions based on
tunnel stagnation and local static pressures. (Figure adapted from Smits and Muck
(1987), showing data by Settles et al. (1979) with permission from Cambridge Uni-
versity Press.)

located typically downstream of the line of separation, because the mixture
accumulates by the action of the wall shear stress which is higher upstream
of the instantaneous separation point than it is downstream, so that the flow
visualization results are biased towards a position downstream of the mean
separation location (Gramann and Dolling, 1990).

Chapman et al. (1957) used order-of-magnitude arguments to describe the
similarity of the mean pressure distribution for separated flows. From an ex-
tensive series of experiments in laminar and turbulent flow, they argued that
if the separated zone is large enough, the interaction in the vicinity of separa-
tion is local, independent of the underlying cause of separation. That is, the
pressure rise to the point of separation, for example, should be similar for com-
pression ramps and forward-facing steps, and it should scale with the Mach
number and the incoming boundary layer characteristics. This free-interaction
concept seems to hold well for laminar flows, but for turbulent flows the col-
lapse of the data is not impressive, indicating a more significant dependence
of the pressure distribution on the downstream boundary conditions. A mean
flow concept such as free interaction theory does not take into account the
unsteady motion of the shock. However, because the pressure distribution is
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Figure 10.5. Development of the mean velocity profiles through a 24◦ compression
corner interaction at Mach 2.9, with Reθ = 72,100. Distances and velocities nor-
malized by upstream values. (Figure adapted from Settles et al. (1976). Copyright
1976, AIAA. Reprinted with permission.)

a result of the averaging due to the unsteady shock motion, the breakdown of
this criterion can be taken as further evidence to indicate that the unsteadi-
ness depends to some extent on the downstream flow conditions, at least for
separated flows.

10.2.3 Upstream Influence

Figure 1.16 demonstrates that the wall pressure does not rise sharply in the
region of separation. Instead, it rises gradually, levels off somewhat in the
fully separated zone (the “pressure plateau”), and then starts to rise again
in the region of reattachment, eventually reaching its maximum value some
distance downstream of the mean reattachment line. The region of upstream
influence is defined as the distance from the corner to the point where a straight
line drawn to fit the slope of the initial pressure rise intersects the pressure
level corresponding to the incoming boundary layer. Now, even in a perfectly
steady (laminar) interaction, we expect there to be an upstream influence. The
pressure rise generated by the flow deflection can propagate upstream through
the subsonic part of the flow near the wall, causing the streamtubes below the
sonic line to thicken, and producing a flow deflection upstream of the corner.
However, the upstream propagation distance depends on the thickness of the
subsonic layer (Schneider, 1974), and the sonic line rapidly approaches the wall
as the Mach number increases. For the case shown in Figure 1.16, the sonic
line for the incoming boundary layer is located at a distance less than 0.01δ
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Figure 10.6. (a) Wall pressure time histories, and (b) rms wall pressure levels, in a
24◦ compression ramp at Mach 3. The lines of mean separation and reattachment
are marked by S and R, respectively. The pressures were nondimensionalized using
the upstream mean wall pressure, pw0; σp is the rms wall pressure level. (From
Dolling and Murphy (1983). Copyright 1983, AIAA. Reprinted with permission.)

from the wall, and the steady upstream propagation distance is expected to
be very short. Indeed, measurements of the instantaneous wall pressure show
that the shock appears as a very rapid rise in the pressure signature: there
is no sign of an instantaneous upstream propagation of pressure. However,
the unsteady motion of the shock occurs over a much greater distance than
the steady upstream propagation distance, and it is this unsteady motion that
is primarily responsible for the upstream influence seen in the wall pressure
distributions. The mechanism is illustrated in Figure 10.6. Note that the
extent of the upstream influence is a strong function of Reynolds number (see
Settles et al. (1976) and Bookey et al. (2005b)).

Within the region of shock motion, the wall pressure signal is intermittent,
as seen in the figure. The values of pressure upstream and downstream of the
shock are consistent with the pressure rise through the mean shock at its foot.
The local mean wall pressure at a given location is simply the result of the
pressure rise across the shock foot, weighted by the time the shock is upstream
of that location.

10.2.4 Shock Motion

The strong shock oscillation that is seen in separated flows creates perturba-
tions with new time and length scales. Such perturbations typically have a
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large characteristic time, and contribute to the slow recovery of the boundary
layer downstream of separation. If a shock is considered as an interface match-
ing upstream and downstream flow condition, what are the possible sources
of these low frequency motions? Here, we present some experimental observa-
tions, and discuss the properties of the motions.

The shadowgraphs of the instantaneous flowfields given in Figure 1.15 show
qualitatively that the turbulent mixing appears to be considerably enhanced
across the shock and the trend is more pronounced as the shock strength
increases. The distortion of the shock front is also clearly shown. Visual-
izations using Rayleigh scattering in a 24◦ compression ramp flow at M = 3
confirmed that large-scale eddies are energetic enough to distort the shock
(Smith et al., 1989). High-speed movies using filtered Rayleigh scattering re-
veal how the large-scale motions in the boundary layer interact with the shock,
and how they are subsequently distorted by the compression (Figure 10.7).
Furthermore, wall pressure signals obtained simultaneously using a spanwise
row of transducers reveal that the shock has spanwise ripples, because some
perturbations were not measured by all the transducers (Muck et al., 1988).
The shock not only translates back and forth, but also experiences large-scale
spanwise perturbations. These spanwise “wrinkles” are clearly visible in the
flow visualizations shown in Figure 10.8. Similar three-dimensional distortions
of the shock sheet were observed by Wu and Martin (2004) using DNS (see
Figure 10.9).

A detailed description of the shock motion near the wall was obtained from
wall pressure fluctuation measurements in compression ramp flows by Dolling
and Murphy (1983); Muck et al. (1988); Bonnet (1988), and Selig et al. (1989)
(for a review, see Dolling and Dussauge (1989)). Around the mean position
of the shock, low-frequency wall pressure fluctuations of large amplitude are
present. The spatial extent of these oscillations is a function of the strength
of the shock, as shown in Figure 10.10. Muck et al. (1985) and Debiève and
Lacharme (1985) used these observations to propose a reasonable approxi-
mation for the maximum rms value of the pressure fluctuation level across an
oscillating shock from simple intermittency considerations: the maximum level
is obtained when the intermittency coefficient is 0.5, and the maximum rms
pressure p′ is given by the simple relation p′/∆p = 0.5, where ∆p is the mean
pressure rise through the shock. This relation works well when the upstream
and downstream levels of pressure fluctuations are not too high, and when the
shock motion is not correlated with these fluctuations: in practice, it does not
work well in strongly separated cases.

At Mach 2.9, incipient separation occurs at a ramp angle α of 16◦. For
lower values of α, the part of the flow affected by shock oscillation is limited
and varies slowly with α, so in this regime it appears that the shock moves
mainly under the action of incoming turbulence. However, there is a significant
increase in the range of shock motion when α > 16◦, suggesting that the
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Figure 10.7. Successive frames from a movie using filtered Rayleigh scattering to
visualize a 12◦ Mach 2.5 compression corner interaction. The time delay is 4 µs be-
tween images. The flow is from right to left. Note the undisturbed boundary layer on
the upper wall of the tunnel. Plan view images are shown in Figure 10.8. (Adapted
from Wu et al. (2000). Copyright 2000, AIAA. Reprinted with permission.)

wall pressure fluctuations are influenced by the unsteadiness of the separation
bubble. The shock motion in these separated flows has an amplitude of the
order of the boundary layer thickness, but its mean frequency is an order of
magnitude below the characteristic frequency of the boundary layer ue/δ. This
indicates that the average value of the shock speed ẋ is given by ẋ/ue ≈ 0.1.

Time-resolved flow visualization data and conditional sampling of wall pres-
sure measurements indicate that the separation bubble undergoes a coher-
ent, large-scale expansion and contraction (Kussoy et al., 1988; Gramann and
Dolling, 1990; Thomas et al., 1994). Smaller scale distortion of the shock sys-
tem by δ-scale boundary layer turbulence structures has also been identified
using wall pressure measurements (Muck et al., 1985; Marshall, 1990) and
planar laser visualization methods (Wu et al., 2000). Conditional averages of
pressure fluctuations in the incoming boundary layer, based on shock motions
downstream, have shown that δ-scale organized structures are responsible for
small-scale motions of the separation shock foot, but no direct link has been
found between the boundary layer structures and large-scale shock motions
(Erengil and Dolling, 1991).

The dynamics of the shock motion is still a field of investigation, even in
two-dimensional configurations. Important contributions to the stability of
two-dimensional shock waves have been obtained, often applied to transonic
flows and buffeting (see, for example, Chen et al. (1979), Bogar et al. (1983),
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Figure 10.8. Successive frames from a movie using filtered Rayleigh scattering to
visualize a 12◦ Mach 2.5 compression corner interaction (plan view, taken at a height
close to the incoming boundary layer thickness). The time delay is 4 µs between
images. The flow is from right to left. Note the side-wall boundary layer in the
upper part of each frame. Side-view images shown in Figure 10.7. (Adapted from
Wu et al. (2000). Copyright 2000, AIAA. Reprinted with permission.)

Culick and Rogers (1983), Robinet and Casalis (1999), and Robinet (1999,
2001) ). The overall results are briefly summarized here. In general, if some
singular behaviors such as shock “carbuncles” are not considered, shocks are
stable, and weak shocks are more stable than strong shocks. It is often difficult
to determine the transfer function of a shock wave. The response of a shock
to a perturbation depends of course on the upstream conditions, but also,
and perhaps more importantly, on some integral of the downstream flow. A
shock acts generally as a lowpass filter, but depending on the nature of the
flow downstream of the interaction, it may or may not be frequency selective
(Chen et al., 1979; Bogar et al., 1983; Culick and Rogers, 1983; Robinet and
Casalis, 1999). Another important property, one that can be derived from the
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Figure 10.9. DNS of a 24◦ compression corner interaction, with an incoming bound-
ary layer at M = 2.9, Reθ = 2400. Shock structure made visible by the isosurface
|∇p| = 3× 108 N/m3. (From Wu and Martin (2004), with the authors’ permission.)

Figure 10.10. Range and amplitude of the shock oscillation for the Mach 2.9
compression corner interactions examined by Dolling and Murphy (1983). (From
Selig et al. (1989). Copyright 1989, AIAA. Reprinted with permission.)

linear analysis of oblique shock waves, is that oblique shocks are stable, but
the perturbations propagate along the shock sheet with the direction of the
tangential velocity of the upstream flow (Robinet, 2001). This behavior is what
is usually observed in shock wave-boundary layer interactions: the boundary
layer perturbs the foot of the shock and the perturbations propagate along
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the shock into the external flow, although the amplitude of the perturbation
decreases with increasing distance from the shock stem. As a consequence, in
the external flow far from the layer, and for weak shock intensities, the shock
can often be considered as steady. This behavior is observed in experiments
(Haddad (2005) for shock reflection experiments), and in LES simulations
(Knight et al. (2003) for compression ramp flows or Garnier et al. (2002) for a
shock reflection configuration). A precise description of the transfer function
still remains to be determined.

The linear analysis quoted above shows that shocks can often be considered
as lowpass filters. Therefore, it is not very surprising to find that their motion
occurs predominantly at lower frequencies than the rest of the flow. A more
detailed analysis was suggested by Plotkin (1975), who developed what is
probably the only simple global model along these lines (for further details,
see Poggie and Smits (2001)). The shock velocity ẋ was taken to be the
superposition of a random forcing function u and a restoring velocity that is
proportional to the displacement x of the shock from its equilibrium position:

ẋ = u(t) − x/τR. (10.1)

Here t is time, and τR is a time constant specifying how rapidly the shock
recovers from a perturbation. The variables x and u are defined to have zero
mean. The random function u represents convection of the shock by velocity
fluctuations in the boundary layer, and the restoring term x/τR represents the
shock velocity induced by changes in the local conditions with displacement
from the equilibrium shock location.

For a given history of velocity perturbations, Equation 10.1 can be solved to
give the time history of shock position. Assuming that x(0) = 0, the solution
can be set in the form

x = e−t/τR

∫ t

0
u(ξ)eξ/τR dξ. (10.2)

Plotkin used Equation 10.2 to relate the statistical properties of the shock
motion to those of the velocity fluctuations in the turbulent boundary layer,
noting an analoguey to linearly damped Brownian motion. Assuming that
the shock response is much slower than the turbulent fluctuations (τR � τu,
where

∫∞
0 Ru(t)dt is the integral time scale of the autocorrelation of the forc-

ing function u), and that the pressure distribution induced by the oscillating
shock can be approximated by the mean pressure distribution translated to
the instantaneous shock position, Plotkin derived the following simplified form
for the autocorrelations of the shock position and wall pressure fluctuations:

Rx(t) = Rp(t) = e−t/τR . (10.3)

At this level of approximation, the autocorrelations are independent of the de-
tailed statistical properties of the boundary layer turbulence, and the integral



332 CHAPTER 10. SHOCK BOUNDARY LAYER INTERACTIONS

Figure 10.11. Blunt fin pressure fluctuation spectra at Mach 5: – - –, experiment
(Gonsalez and Dolling, 1993); ——-, Equation 10.4. Left: Semi-log plot. Right:
Log-log plot. (From Poggie and Smits (2005). Copyright 2005, AIP. Reprinted with
permission.)

time scales of the shock position and wall pressure are the same as the time
constant of the restoring velocity, τp = τx = τR. The corresponding one-sided
power spectra follow from the Fourier transform of the autocorrelations:

Gx(f)

x2τR

=
Gp(f)

p′2τR

=
4

1 + (2πfτR)2
, (10.4)

where f is the frequency, and the approximation requires that f 
 1/(2πτu).
Plotkin’s model requires two experimentally determined quantities as in-

put: the integral time scale of the autocorrelation τp and the mean square

pressure fluctuation σ2
p = p′2. Given these quantities, it predicts the form of

the autocorrelation, Equation 10.3, and power spectrum, Equation 10.4, of the
pressure fluctuations.

Poggie and Smits (2001) compared Plotkin’s model to their measurements
in a reattaching shear layer, and Poggie and Smits (2005) compared the model
to experimental data obtained in blunt fin flows at Mach 3 and Mach 5 by
Evans et al. (1990); Gonsalez and Dolling (1993); Erengil and Dolling (1993),
and Brusniak and Dolling (1994). The model was found to give an excellent
fit to the autospectrum and autocorrelation of pressure fluctuations and shock
position fluctuations in the region of separation shock unsteadiness (see, for
example, Figure 10.11). For the Mach 3 flow, a relatively good fit was also
obtained for the region corresponding to the motion of the rear leg of the λ-
shock system, but over a more limited range of frequencies and time scales.
The results suggest that shock motion in the blunt fin flow can be described
with good accuracy with this model.

This rather good agreement may be obtained from other reasons than the
hypothesis used in Plotkin’s model. We know that in many cases, and if
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the turbulence level is small enough (see, for example, Figure 10.6), the wall
pressure time history resembles a random boxcar signal. Such a signal, with
normal distributions for the length of the high and low states, has an autocor-
relation given by R(t) = e−t/τ , where τ is the integral scale. This relationship
is identical to Equation 10.3, and therefore it has a spectrum G(f) of the form
given by Equation 10.4, and fG(f) should have a maximum for f = t/2π.

We have claimed that the linear analysis finds that shock waves act as low-
pass filters. Equation 10.4 also represents the amplitude response as a simple
lowpass filter. Although this response is consistent with the data, it does not
provide proof for the assumptions used by Plotkin, such as Brownian forcing
and a linear restoring force. It also does not imply that the autocorrelation
of the shock location is identical to the autocorrelation of the pressure. An
important parameter for the formulation is the integral scale of pressure fluc-
tuations (which depends either on the upstream or downstream conditions),
which cannot be derived from Plotkin’s analysis. Hence, the model is more ad
hoc than fully predictive. It is therefore useful to derive a pertinent Strouhal
number to characterize these motions, if that is possible. The cases considered
here refer to interactions where the downstream flow is mainly supersonic, so
that acoustic coupling as found in buffeting or screech are not expected to be
significant. The first attempts to find a characteristic frequency tried to corre-
late this frequency with a characteristic time scale of the incoming boundary
layer turbulence. This was found not to work in the general case (see, for
example, Beresh et al. (2002)). Simple flow experiments show that the geom-
etry of the interaction is a key parameter. For example, Dolling and Smith
(1989) have shown that in the case of an interaction produced by a blunt fin
the frequency scales with the size of bluntness rather than with the thickness
of the incoming boundary layer. Erengil and Dolling (1991) suggested that
the extent of the interaction (or the length of the separated zone) could be a
pertinent length scale L, and found that in the case of a 28◦ compression ramp
flow at Mach 5 the Strouhal number St = fL/u∞ ≈ 0.03, where u∞ is the ex-
ternal velocity of the upstream flow. Dupont et al. (2005) and Haddad (2005)
applied the same scaling to shock reflection cases at Mach 2.3, and found that
the Strouhal number was also close to 0.03. In a three-dimensional interaction
produced by a circular cylinder normal to a wall, the measurements by Dolling
and Smith (1989) lead again to about the same value for the Strouhal number.
It seems that such a value has some generality, at least for relatively simple
interactions in the supersonic regime.

Is it possible to rely on such a result? It seems surprising to find similar
Strouhal number values under significantly different conditions. We should
note first that such values are not very accurate: the characteristic frequency
of the shock motion is typically evaluated using the maximum value of a bump
in the wall pressure spectrum, which can only be done with an accuracy of no
more than 20 or 30%. Moreover, determining the separation length is always
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difficult. A second comment may bring more insight to this question. It may
be assumed that the shock motion depends strongly on the fluctuations in the
separated zone (that is, of the vortical structures characteristic of separation).
It is shown in Section 10.6 that a possible scenario for many cases is that large
eddies, associated with the reversed flow, are produced in the separated zone
in a fashion resembling mixing layers. For such convective phenomena, the
separation length seems to be the pertinent scale introduced by the existence
of separation, as suggested by Kiya and Sasaki (1983) in subsonic conditions.
For this reason, it may be expected that the fluctuations produced by the
separated zone, and felt by the shock system, should scale with the length of
the interaction. Similarly, in the absence of a leading shock, the convection
velocity of the structures is nearly proportional to the external velocity, at
least for small values of backflow velocity. If the external velocity above the
recirculating bubble is not too different from the upstream one, U∞ may ap-
pear as a reasonable scale for the convection velocity of the large structure,
and therefore may scale with the shock frequency. Finally, even if some in-
sight into the physics of the shock motion in boundary layer interactions has
been obtained, it appears that the question of their frequency and amplitude
of motion is still an open question. Further discussion on the influence of
downstream conditions is given in Sections 10.2.6 and 10.4.

10.2.5 Turbulence Amplification

Rose (1973) and Kussoy and Horstman (1975) were the first to measure the
strong amplification of turbulence levels in shock wave-boundary layer inter-
actions, a result that is in agreement with the observations from freestream
turbulence-shock interactions. Both investigations were performed in incident
shock interactions. Compression corner studies confirmed that interactions
produce a large increase in turbulence activity: for a 20◦ deflection at Mach
2.9, Smits and Muck (1987) found that the maximum level of u′2 increased by
a factor of about 12. The unsteady shock motion smears the region over which
the amplification occurs, and it sometimes produces a local peak in the inten-
sity profiles. The results given in Figure 10.12 show this behavior clearly. It
appears that the region directly affected by the shock has a thickness of about
0.1δ for the 8◦ case, and 0.2δ for the 16◦ case. The extent of the unsteady
shock motion at the wall measures approximately 0.15δ and 0.3δ for these two
cases, respectively, as indicated in Figure 10.10. Clearly, the shock motion ex-
tends throughout the layer, and the amplitude of the motion is approximately
constant with distance from the wall.

The level of turbulence intensity in the separated zone takes a maximum
away from the wall, near the edge of the separation bubble. Selig et al. found
that this level matches the high levels of turbulence found in mixing lay-
ers. Therefore, it seems possible that the separated zone can produce large-
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Figure 10.12. Distributions of (ρu)′ in 16◦ compression corner interaction, in the
region near the corner. (From Smits and Muck (1987). Copyright 1987, Cambridge
University Press. Reprinted with permission.)

scale perturbations that are convected downstream. Such structures have been
found from computations in laminar flows at low and high speeds (Daghsstani,
1993; Ripley and Pauley, 1993), and have some features in common with the
perturbations seen in mixing layers. In particular, they involve low frequen-
cies, or at least frequencies much lower than the characteristic frequency of
a boundary layer of the same thickness. Other experimental evidence favors
this picture also. For example, measurements of turbulence downstream of
the reattachment revealed a strongly perturbed outer layer intermittency, and
schlieren images triggered by a hot-wire detecting the occurrence of sharp
fronts in the mass flux signal have very clearly shown the presence of radia-
tion by Mach waves (Smith, 1989). Again, these visualizations are perhaps
among the few that suggest the emission of shocklets in a distorted boundary
layer at supersonic speeds. In recent unpublished work at Princeton, shocklets
have been seen emanating from the large-scale motions in a Mach 8 bound-
ary layer, but the evidence for their presence in wall-bounded flows at lower
Mach numbers is scarce. Because the space-time characteristics of equilibrium
boundary layers indicate that the large-scale structures in this flow produce
only weak Mach waves at supersonic speeds, we have to suppose that there
are eddies with large velocity fluctuations which are convected at a speed that
is supersonic with respect to the external flow. This is consistent with the
conjecture that large-scale perturbations are produced in the mixing zone over
the separated bubble (see also Selig and Smits (1991)). The low-frequency
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unsteadiness that they produce is the downstream condition imposed on the
shock and thereby makes it move. This could explain why the shock motion
occurs at frequencies typically an order of magnitude below the characteristic
frequency of the boundary layer. Selig and Smits have also supposed that
Taylor-Görtler vortices produced by the concave streamline contribute to the
perturbation. Ünalmis and Dolling (1996) in a Mach 5 blunt-fin interaction
found a significant level of correlation between the shock foot position and
the ensemble averaged total pressure well upstream of the interaction. The
frequency of these events was lower than the typical frequency content of the
large-scale motions, and suggest some long-term variations in the incoming
boundary layer. They proposed that these variations are consistent with the
presence of unsteady Taylor-Görtler vortices, possibly produced by the concave
curvature in the nozzle, because the measurements were made in the nozzle
wall boundary layer. The last conclusion is that the return to equilibrium of
the boundary layer downstream of reattachment probably depends on the way
that the perturbations shed by the separated bubble into the wall layer lose
their identity, through the process by which they lose energy through acoustic
losses and interact with the new structures generated near the wall.

To study the reattachment region more closely, Settles et al. (1982), Haya-
kawa et al. (1984), Poggie et al. (1992); Shen et al. (1993), and Poggie (1995)
conducted experiments in a backward-facing step flow where the separation
point was fixed, and a relatively large recirculation zone was formed. The
freestream Mach number was 2.9. The reattachment occurred on a 20◦ ramp,
and the ramp was adjusted so that the upstream boundary layer separated
without deflection. The pressure fluctuations on the ramp reached very high
levels, and a peak value equal to about 11% of the local mean wall pressure
was found just downstream of the mean reattachment line. Multiple shocks
were observed in this region, interacting in complex patterns. Shocks typically
formed at the upstream edges of the large-scale structures in the reattaching
shear layer and redeveloping boundary layer. Double-pulsed Rayleigh scatter-
ing images showed the formation and progressive strengthening of these shocks
as the structures convected through the reattachment zone (Figure 10.13). The
spectra of the wall pressure did not display the low-frequency peak commonly
observed in compression corner interactions, supporting the notion that it is
the expansion and contraction of the separation bubble that is responsible
for low-frequency shock motion in those flows. In the case of the reattaching
shear layer, it is the incoming turbulence that is the primary cause for the
shock motion and the intense levels of fluctuating pressure that occur near the
mean reattachment line.

Finally, measurements of the heat transfer in a 16◦ compression corner
interaction at Mach 2.84 demonstrate that the Reynolds Analogy factor s, the
ratio of the Stanton number to the skin-friction coefficient, strongly deviates
from a constant value in the region downstream of the interaction. Evans and
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Figure 10.13. Rayleigh scattering flow visualization of a reattaching shear layer.
The incoming flow is a free shear layer formed by a backward-facing step, with a
freestream Mach number of 2.9. The visualization is just downstream of attachment
which takes place on a 20◦ ramp. The flow is along the ramp, from left to right, and
the average position of reattachment is indicated by the letter R. The right image was
taken 20 µs after the left image. The shocklets are visible as bright fronts, shrouding
the darker large-scale features in the boundary layer. (From Poggie (1995) with the
author’s permission.)

Smits (1996) found that s initially increased by a factor of about three, relaxed
quickly to a value equal to twice its upstream value at a distance 3δ0 from of
the corner, and then showed no obvious signs of further relaxation further
downstream.

10.2.6 Three-Dimensionality

So far we have focused on interactions that are two-dimensional in the mean.
Of course, the turbulence is always three-dimensional, leading to three-dimens-
ional distortions of the shock sheet. Furthermore, three-dimensional features
often appear in nominally two-dimensional separated flows. This often takes
the shape of spanwise irregularities, which are most likely associated with
Taylor-Görtler-like vortices formed in regions of concave streamline curvature.
As noted in Section 9.4.3, such features are often seen in the reattachment re-
gion of laminar and turbulent flow over backward-facing steps (Ginoux, 1971;
Roshko and Thomke, 1966; Shamroth and MacDonald, 1970). Roshko’s exper-
iment was performed on a body of revolution, and showed that these stream-
wise structures occur independent of the side wall boundary condition (see
Figure 9.12). In planar flows, there is a complex interaction between the
streamwise structures and the effects of the side walls, which depends on the
ratios δ/W , and δ/H, where δ is the incoming boundary layer thickness, W
is the width of the step, and H is the height of the step). This complex
interaction was recently studied in detail by Poggie (1995) for the case of a
reattaching flow downstream of a backward-facing step. Similar streamwise
structures are believed to be responsible for the spanwise variations seen in
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Figure 10.14. Surface streak patterns for compression corner flows at Mach 2.9
(the line S indicates the mean separation line, line R the mean reattachment line,
and line C the position of the corner). The flow is from top to bottom, and the
incoming boundary layer thickness is shown for comparison. (From Settles et al.
(1979). Copyright 1979, AIAA. Reprinted with permission.)

the mean separation line (as indicated by surface flow visualization) of two-
dimensional compression corner flows (see Figure 10.14).

10.3 Rapid Distortion and Linear Methods

The first hypothesis that can be tested is to determine if the amplification
of turbulent fluctuations in a shock wave-boundary layer interaction may be
described by RDT. It should be noted immediately that the incoming flow is a
boundary layer, that is, a flow with a viscous sublayer in which the Reynolds
number is low. Clearly RDT cannot be applied in this zone. A second con-
sideration is the existence of a region near the wall (at about y+ ≈ 15, say),
where the turbulence intensity can be very large, so that the small velocity
fluctuation hypothesis fails. Hence, only the evolution of the outer part of the
layer can be analyzed using rapid distortion concepts.

The time of distortion through the leading shock is very small, so that
the ratio (q′/U) (L/Λ) is much smaller than one. The mean distortion is not
properly speaking irrotational, but the physical arguments developed in Sec-
tion 4.4 for irrotational distortions can probably be retained as a guide to the
phenomena that can occur. If the gradient Mach number is large, that is, if
Mg = (∂U/∂x) (Λ/a) � 1, there is not enough time for pressure perturbations
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to be fully developed: pressure is no longer a limiting factor for the changes
of anisotropy, as at low speeds. When the flow is separated, a more-or-less
continuous compression fan follows the leading shock. In this case, the inter-
action length is increased, and the distortion becomes slower. A typical value
for (q′/U) (L/Λ) = Td/Tt at a position y/δ = 0.4 in the 24◦ compression corner
flow studied by Selig et al. (1989) is about 0.4, where Td is taken over the whole
of the interaction. This corresponds to the limit of application of the RDT,
but the distortion of turbulence through the leading shock is of course much
faster than that. The use of such an estimate is questionable because the rate
of dissipation can be modified by the distortion. In the case of a compression,
the effect of mean compression is to transfer part of the energy to small scales,
because a large scale becomes smaller in the direction normal to the shock.
This linear transfer brings the energetic range closer to the dissipative one.
Consequently, the time scale of the energetic range may decrease through the
interaction and the continuous distortion downstream of the shock is probably
slower than expected from estimates where the time scale of turbulence is de-
termined from upstream conditions. Note also that if ∂U/∂x = U/L = 1/Td,
then MgTd = MtTt. In the present case, this leads to the value Mg ≈ 0.1,
which is small, so that in this interaction the rapid distortion, if relevant, is
expected to have a behavior similar to the subsonic one.

A second contribution to the increase in turbulence through linear mech-
anisms is the generation of vorticity by interaction of fluctuating entropy
through the mean shock. From a technical point of view, cases where the
variations of density occur in space are generally not compatible with the
homogeneity conditions required by the Fourier representation of the fluctu-
ations. Analytical tools appropriate to inhomogeneous situations have to be
used. However, Goldstein (1978, 1979) proposed a solution for the case of irro-
tational distortion and frozen entropy fluctuations, for which an analysis can
be developed. Even if detailed analysis is not available for the action of this
term in the general case, it is possible to examine the Reynolds stress equa-
tions. The corresponding source terms in these equations are the production
terms involving the mean pressure gradient, and sometimes called “enthalpic
production” terms,

(
ρ′u′

i

/
ρ̄
)

(∂p̄/∂xj) +
(
ρ′u′

j

/
ρ̄
)

(∂p̄/∂xi). The difficulty is

that we do not know the turbulent mass flux ρ′u′
i in the vicinity of the mean

location of the shock. However, for distortions without discontinuities in adi-
abatic flows at nonhypersonic Mach numbers, these production terms are of
the same order, or smaller, than the other production terms, so that in con-
sidering only the amplification due to mean velocity, inhomogeneity is a useful
and significant indication for the overall evolution of the turbulent quantities.

An estimate of the increase of turbulence through the shock can be made
from the shock formulae given in Section 4.4.5. For the 20◦ compression corner
flow at Mach 3, u′2 along a streamline starting at y/δ0 = 0.4, this predicts an
increase by a factor of about 3.6, which is half the observed amplification.
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Rapid distortion alone cannot explain the total evolution. RDT assumes that
the distortion is imposed on the turbulence, and that the distortion itself is
independent of the turbulence. In the case of a shock, this implies that its
strength and geometry are independent of the incoming turbulence, and that
it is steady. It turns out that the shock motion is an important feature.

Two sorts of shock unsteadiness may be defined: the shock motion due
to the incoming turbulence which can distort the shock locally, and motions
imposed independently of the local turbulent condition, for example, by some
unsteady boundary condition at the foot of the shock. These possible actions
have been illustrated by a number of studies, for example, the work by Hussaini
et al. (1985) who note that an oscillating shock wave exhibits some curvature,
and therefore it is a source of vorticity. They considered a two-dimensional
vortex suddenly inserted into a supersonic flow. A bow shock formed upstream
of the vortex and the baroclinic production of vorticity was sufficient to reverse
the sign of the vorticity in the upper half of the vortex. As a result, the
vortex appeared to split into two parts with an attendant reduction in the
characteristic length scale. Baroclinic torques generated by shocklets may be
an important source of vorticity (with a sign opposite to that of the main
shear), particularly in free shear layers.

The coupling between a shock wave and an incident turbulent field has been
studied mainly by Ribner (1953); McKenzie and Westphal (1968), and Anyiwo
and Bushnell (1982). In this work, a linear coupling between turbulent field
and shock motion is used: assuming small fluctuations, the Rankine-Hugoniot
relations are linearized and the shock motion is deduced. Some simulations
of the same flow have been performed by Zang et al. (1984) for computa-
tions based on the two-dimensional Euler equation, and for isotropic quasi-
incompressible turbulence interacting with a weak shock wave using direct
simulations of the Navier-Stokes equations by Lee et al. (1993). In the lin-
earized theories, homogeneous flows in infinite space were considered on both
sides of the shock, and the shock was assumed to be rippled in phase with
the incident turbulence. This work gives the amplification in the linear cou-
pling approximation or Linear Interaction Approximation (LIA). As noticed
by Jacquin et al. (1993) and Lee et al. (1992), the LIA gives an amplification
significantly smaller than the RDT based on an irrotational one-dimensional
deformation with the same mean velocity difference through the distortion.
The LIA was compared to the two-dimensional Euler computations by Zang
et al. (1984), which showed a very good agreement between both methods
in most situations for a large range of Mach numbers (M < 8), because the
only discrepancies were found for waves with an orientation close to the crit-
ical angles found by the linear theory. Lee et al. (1993) demonstrated that,
for isotropic incident turbulence and constant mean temperature, LIA pre-
dicts that the velocity of the shock is of the order of the rms velocity of
incoming turbulence, and that the radius of curvature is of the order of the
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Taylor microscale. Their direct simulations were limited to transonic Mach
numbers (M < 1.2), and the results probably represent only weak effects of
compressibility. The evolution of the longitudinal velocity fluctuation intensity
u2 displayed a rapid increase followed by a rapid decrease downstream of the
shock, whereas linear theory predicts a monotonic decay. The difference arises
because of the redistribution of the turbulence kinetic energy in the relaxation
downstream of the shock. The overall amplification rates, after the initial
oscillations in the relaxation region, were in reasonable agreement with the
prediction of the LIA. They also found that the shape of the shock is sensitive
to the level of incoming turbulence, so that for large Mt the strength of the
compression through the shock is smaller than through a laminar shock. In
addition, the vorticity downstream of the shock occurs at smaller scales than in
the upstream flow, and that in agreement with the LIA, the Taylor microscale
is smaller than that in the upstream flow. An important effect of the shock,
taking into account the coupling with the incident turbulence, seems to be to
produce scales of smaller length.

This picture is the one for a shock far from solid walls, and for which the
shock corrugations are in phase with the incoming fluctuations. The situation
is very different if the shock is forced to start at a given point. Duck et al.
(1993) considered the case of the shock attached to the sharp leading edge of
the shock generator. They required the shock to remain attached to the leading
edge, and a perfect fluid condition (zero normal velocity) was imposed along
the plate. For a sinusoidal incident wave, the shock location was not sinusoidal,
and for a single mode upstream of the shock, broadband fluctuations developed
downstream.

Another source of turbulence is the “externally driven” shock: it corre-
sponds to the case when the shock motion is not correlated with the incident
turbulence. This case was explored analytically for two-dimensional pertur-
bations by Anyiwo and Bushnell (1982). For zero incoming turbulence they
found that the turbulent fluctuations u′ produced by such a mechanism are of
the order of 0.8u′

s for large Mach numbers, where u′
s is the rms shock velocity,

and as high as 1.6u′
s in the transonic range. These motions can contribute to

the increase of turbulence in shock wave-boundary layer interactions because
the shocks move without any noticeable correlation when the layer is sepa-
rated. In some cases, as in the experimental examples that follow, the ratio
u′

s/U1 can be about 10%, and these fluctuations occur at low frequencies: this
can be a significant mechanism to produce turbulence in the transonic zone,
if the shock moves back and forth with a velocity constant throughout the
layer. In the 24◦ interaction that was considered to illustrate the problem, the
externally driven shock motions probably contribute to the increase of turbu-
lence close to the wall, but not significantly to the large amplifications in the
external part of the flow, where very large turbulence intensities are observed.

The experimental results on shock wave turbulence or shock wave-turbulent
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boundary layer interactions do not always match the previous analytical de-
scription, perhaps because of the measurement difficulties. Experimental work
on quasi-homogeneous turbulence subjected to a shock wave has been per-
formed by Debiève and Lacharme (1985); Honkan and Andreopoulos (1992);
Jacquin et al. (1991); Barre et al. (1995); Agui et al. (2005), and recently
reviewed by Andreopoulos et al. (2000). In the experiment by Debiève and
Lacharme, the shock was produced by a shock generator at the wall of the wind
tunnel at Mach 2.3. The experiment was first discussed in Chapter 1, where
some of the principal aspects of the interaction of a shock with freestream
turbulence were introduced. The turbulence caused the shock to oscillate,
waves were propagated along the shock, and the scales of the shock distortion
were similar to the scales of the incoming turbulence, whereas the turbulence
levels were significantly amplified. These features seem to be characteristic
of all shock wave interactions. In the second study, turbulence interacting
with a shock in a shock tube was considered at M = 1.62; in Jacquin et al.’s
experiment turbulence was subjected to a nearly-normal shock in a nozzle
at M = 1.4, and in Barre et al.’s experiment, grid turbulence experienced a
compression through a shock at Mach number 3. In all experiments, the in-
coming turbulence was quasi-homogeneous and was decaying. The turbulence
level was very small, because the turbulent Mach number was typically 0.01
or 0.03. Concerning the amplification through the shock, contradictory results
were found. Debiève and Lacharme found a slight increase of the level of tur-
bulence, consistent with the shock formula of Section 4.4.5, but the increase
was so small it was at the limit of measurement uncertainty. Similarly, Jacquin
et al. found practically no change of turbulence level through the shock; in-
stead they observed that the rate of decrease of turbulence downstream of the
shock was significantly increased, suggesting that turbulence was out of equi-
librium or that new mechanisms (involving probably pressure) were involved.
It is possible that the decay rate was high enough to mask the expected rise
in turbulence intensity level.

In contrast, Honkan and Andreopoulos (1992) and Agui et al. (2005) ob-
served a much larger increase through the shock, although the amplification
factor was not the same for different length scales and different turbulence
intensities. In the more recent study, rectangular grids of various mesh sizes
were used to generate turbulence with Reynolds numbers based on the Taylor
microscale ranging from 260 to 1300. Estimates of dilatation, compressible
dissipation, and dilatational stretching were obtained. The rms values of the
lateral vorticity components indicate a 25% amplification on average, with only
a very weak dependence on shock strength, Ms (see Figure 10.15), but the lon-
gitudinal vorticity fluctuations were less affected. Integral length scales and
Taylor’s microscales were reduced after the interaction in all cases, whereas
the integral length scales in the lateral direction increased at low Mach num-
bers and decreased at higher Mach numbers. Their results suggest that in
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Figure 10.15. Amplification of vorticity fluctuations in shock-turbulence interac-
tions. Experiments by Agui et al. (2005). Computations: LIA by Lee et al. (1993);
RDT by Jacquin et al. (1993); DNS by Lee et al. (1993). (From Agui et al. (2005),
with authors’ permission.)

the weakest of the present interactions, turbulent eddies are compressed in the
longitudinal direction drastically and their extent in the normal direction re-
mains relatively the same. As the shock strength increases the lateral integral
length scales increases whereas the longitudinal decreases. At the strongest
interaction studied, turbulent eddies are compressed in both directions. They
noted, however, that even in the highest Mach number case the issue is more
complicated because amplification of the lateral scales has been observed in
flows with fine grids. Thus the outcome of the interaction appears to depend
strongly on the initial conditions.

In the work by Barre et al., the increase in level is in satisfactory agreement
with the predictions of the LIA. In particular, the small scales were amplified
more than the large ones. All the other experiments found the opposite trend.
Although the conditions for these experiments were not identical, the initial
levels of turbulence were quite similar, and all the turbulence Mach numbers
were small. However, none of the experiments reported the proportion of com-
pressible turbulence in the incoming fluctuations. Depending on the manner
used to generate the incoming turbulence, it may be possible to have shock-
lets present in the fluctuations, as shown by the schlieren visualizations of
Alem (1995) in the experimental configuration used by Barre et al. A regular
diamond-shaped pattern was observed coming from the multinozzle array used
to generate the supersonic flow and the grid turbulence. Moreover, because
the turbulence levels were small, the fluctuations induced by the acoustic ra-
diation from the wall layers may constitute a nonnegligible fraction of the rms
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velocity. This is a major limitation in interpreting these results, because the
linear theories quoted in the previous section show that the transfer function
is not the same for vorticity waves and acoustic waves, and that the shock
wave may be subjected to a pressure perturbation that is periodic in space.

The other differences among the flows probably come from the conditions on
the shock itself. In Debiève and Lacharme, the shock was rather weak, because
the change in ρU through the shock was comparable (or smaller) than the rms
value of (ρu)′. The shock was produced by a deflection of the wall, so that its
motion may have been partly driven by the turbulent boundary layer on the
wall. Whatever the source of the motion, the experiment proved that the shock
was oscillating, and that the amplitude of its motion was of the order of the
integral scale of the freestream turbulence. As mentioned earlier, the increase
of turbulence through the shock was rather small, so that it is difficult to draw
conclusions on the validity of RDT or of the LIA in this case. The incoming
turbulence increased the amplitude of the shock oscillation, so that the shock
motion was assumed to be due mainly to the local action of turbulence, and not
to the unsteady motion of the shock foot. However, the experiment provided
no information on the phase relationship between the shock motion and the
incoming fluctuations. In the other experiments, the shocks were stronger, so
that the incoming fluctuations are probably not strong enough to make the
shock move appreciably. In the experiments by Honkan and Andreopoulos and
Jacquin et al., it is very likely that the interactions between the shock and the
walls produce shock motions that are not controlled and not described by the
experiments. From this point of view, the experiment by Barre et al. seems to
be free from such effects, and it is consistent with the qualitative agreement
between their results and the LIA predictions.

As concluding remarks on this description of two-dimensional interactions,
it must be emphasized that many unknown features remain. Analytical work
has been useful for identifying some of the important physical mechanisms
responsible for enhancing turbulence. In general, these interactions cannot be
predicted by simple RDT, mainly because of the shock motions that often seem
to be important, although the experiments are by no means conclusive. Among
the points that need to be studied by experiments, we can note the curvature
of the shock produced by incoming turbulence. Because the variations in the
shape of the shock depend on the incoming Mach number, the fluctuating
Mach number is probably a relevant parameter for these effects, together with
the spatial scale of the incoming turbulence. Other experimental verifications
that are needed are the measure of the level of turbulence produced by the
shock motion (shock “flapping” and shock curvature), and the rate of energy
lost by Mach wave radiation downstream of reattachment. These are effects
of compressibility that still need to be investigated and which are beyond the
present capability of the models for compressible turbulence.
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Figure 10.16. Sketch of the interaction produced by the reflection of an oblique
shock wave on a wall. The Mach number is 2.3, the Reynolds number of the incoming
boundary layer is Rθ = 5000. (From Dussauge et al. (2005), with the authors’
permission.)

10.4 Incident Shock Interactions

Incident shock interactions in supersonic flows, as illustrated in Figure 10.1,
were studied by Law (1975), Délery (1992), Audiffren (1993), and Deleuze
and Eléna (1995). Three-dimensionality is observed in many two-dimensional
interactions, as illustrated for compression corner flows in Figure 10.14, where
multiple streamwise vortices seem to form as a result of a Taylor-Görtler in-
stability. In experiments with a plane incident shock by Bourgoing and Rei-
jasse (2001), Doerffer and Szwaba (2004), and Bookey et al. (2005b), however,
surface visualizations have suggested that two vortices are embedded in the
separated zone. Their position is symmetric with respect to the axis; the sep-
aration line and the leading shock waves show spanwise curvature, suggesting
strong three-dimensionality. Such features have not been reproduced in recent
DNS of incident shock interactions, mainly because of the limited spanwise
domain and the use of reflecting boundary conditions (see Li and Coleman
(2003) and Wu and Martin (2004)).

Similar evidence of large scale three-dimensionality was obtained by Haddad
(2005) and Dussauge et al. (2005) in the case of an incident oblique shock wave
at a Mach number of 2.3. The flow arrangement is given in Figure 10.16. When
the shock generator was set at 9.5◦ of incidence, a large separated zone was
observed. On the centerline of the tunnel, the wall pressure spectra showed
bumps at frequencies about an order of magnitude higher than the frequencies
typical of the shock motion. These frequencies decrease with downstream
distance, as they would do in a mixing layer, until the middle of the separation
zone is reached where they begin to increase. Then, in the region close to
reattachment, they become constant (Dupont et al., 2005).

To study the spanwise structure of the interaction, PIV measurements were
performed in planes parallel to the wall. The mean velocity vectors in this
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plane showed two points of streamline convergence, symmetric with respect
to the centerline of the wind tunnel, with features similar to the visualiza-
tions shown by Bourgoing and Reijasse (2001), Doerffer and Szwaba (2004),
and and Bookey et al. (2005b). By investigating several parallel planes, the
three-dimensional mean flowfield was constructed, as shown for one half in
Figure 10.17. Here, x, y, z are the longitudinal, vertical, and spanwise di-
rections, respectively; x is normalized by the length of interaction L; and the
longitudinal axis of the wind tunnel is located at z = 0. In the separated
zone, tornado-shaped vortices are evident. Their height is about one half of
the initial boundary layer thickness, indicating strong three-dimensionality in
the recirculating zone. The mean time scale inside the vortices (the inverse of
the mean velocity gradient in the part of the vortex showing solid body rota-
tion) is of the same order of magnitude as the inverse of the shock frequency,
suggesting that in this sort of interaction the unsteadiness may be controlled
by the three-dimensional structure of the recirculation zone. This suggestion
is preliminary, because there may exist other motions with comparable time
scales. It is often supposed, for example, that the time scale of large turbulent
eddies is of the same order as the time scale of the mean motion. However,
this turbulent time scale should be understood as a Lagrangian time scale,
and an estimate based on the mean flow may not be appropriate. Also, as hy-
pothesized by Jacquin (2005), there may exist a mutual induction between the
two vortices that could produce low-frequency motions. Clearly, the question
of how important such eddies are in explaining the interaction unsteadiness
remains a question for further study.

10.5 Isentropic Three-Dimensional Flows

Here, we consider three-dimensional boundary layers in supersonic flow in
the absence of a shock wave, that is, “isentropic” three-dimensional interac-
tions. Such flows have been studied by Hall (1965); Demetriades and Mc-
Cullough (1985); Konrad (1993), and Konrad et al. (1994), where the three-
dimensionality was generated by a curved fin, or a curved wall (see, for exam-
ple, Figure 10.18). In the experiment by Konrad, the curvature was chosen so
that the compression waves focused to a point well away from the surface of the
fin, so that no shock wave was present in the region of interest. The strength
of the spanwise and streamwise gradients increased progressively through the
interaction, so that the degree of three-dimensionality (that is, the level of
yaw) increased in the same way. A line of convergence appeared in the surface
flow visualization, and it conveniently divided the flowfield into two regions.
The upstream region could be further subdivided into a small crossflow region
and an upstream convergence region. The small crossflow region was defined as
the region where the velocity profiles followed the Johnston triangular model
for the spanwise velocity component (Johnston, 1960). The Johnston model
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Figure 10.17. Tornado vortex in the separation in the oblique shock reflection
sketched in Figure 10.16. One half of the interaction is shown. The upstream Mach
number is 2.3; the angle of the shock generator is 9.5◦. (From Dussauge et al. (2005),
with the authors’ permission.)

works well for mildly three-dimensional subsonic flows, and the yaw angles
did not exceed 10◦ in this region, so this conclusion is in agreement with sub-
sonic experience. In the upstream convergence region, the crossflow angles
increased to about 20◦, and the flow near the wall experienced near-wall re-
tardation similar to that seen in other adverse pressure gradient flows. Pitch
angles were very small everywhere, and the local boundary layer thickness re-
mained almost constant throughout the interaction. The streamline curvature
is virtually confined to horizontal planes (“in-plane curvature”).

The turbulence response is most easily seen in the trends for the velocity
fluctuations, as given in Figure 10.19. Here, u′ is the component measured
along the mean streamline, and v′ is in the wall-normal direction and w′ is
in the mutually orthogonal direction. The absolute level of the streamwise
intensity u′2 is almost unchanged in the outer part of the layer, but v′2 and w′2

display a strong attenuation initially, especially in the region 0 < y/δ < 0.5,
before relaxing slowly toward the upstream undisturbed levels. A decrease in
the u′ component is not seen until the downstream convergence region, where
a sharp drop occurs in the region near the wall, again related to the influx
of high-momentum, low-turbulence fluid from the outer parts of the upstream
boundary layer. The strongest effects of three-dimensionality were seen in the
downstream convergence region. The velocity in the outer part of the layer is
decreased due to the pressure gradients along the mean streamline, whereas
the near-wall velocity profile is much fuller because high-momentum fluid from
the upstream boundary layer is drawn closer to the wall as the low-momentum
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Figure 10.18. The isentropic 20◦ compression formed by a curved fin at Mach 2.9.
(From Konrad (1993), with the author’s permission.)

fluid originally near the wall is removed by the action of the spanwise pressure
gradients.

The results could also be used to evaluate the importance of in-plane cur-
vature as a stabilizing extra strain rate. By tracing out mean streamlines,
a streamline was identified where the pressure gradient history matched the
experiment by Fernando and Smits (1990) (see Section 9.4.2 and Table 9.1).
The Fernando and Smits experiment was an experiment to study the effects of
pressure gradient on a boundary layer that was two-dimensional in the mean.
By comparing their results with the evolution of the turbulence intensities
along the matched streamlines in Konrad’s experiment, where the curvature
was confined almost completely to planes parallel to the wall, the strong sta-
bilizing effects of in-plane curvature could be identified. In the middle of the
layer, u′2 and v′2 were lower in the three-dimensional flow by a factor of more
than two when compared to the two-dimensional flow, but the shear stress
−ρ̄u′v′ only showed significant in-plane curvature effects in the lower half of
the layer. This indicates some level of agreement with the subsonic study of
the flow over an infinitely swept wing by Bradshaw and Pontikos (1985), who
suggested that the Reynolds shear stress was reduced because the eddies were
tilted out of their preferred direction.

10.6 Three-Dimensional Interactions

In three-dimensional shock wave interactions, similar effects to those seen in
isentropic compressions will occur, except that the effects of compression and
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Figure 10.19. Turbulence distributions in an isentropic 20◦ compression formed by
a curved fin at Mach 2.9. (From Konrad (1993), with the author’s permission.)

pressure gradients are expected to be dominant because the pressure rise occurs
over a very much shorter distance.

Most three-dimensional interactions can be classified according to four ba-
sic types: sharp-fin, swept-corner, swept-step, and blunt-fin. These in turn
can be broken into two classes: the first two types are in the class of being
“nondimensional” interactions in that there is no characteristic dimension as-
sociated with the shock generator, and the second two types are in the class
of “dimensional” interactions in that the shock generator has a characteristic
dimension, such as the diameter of the fin or the height of the step. In all
cases, apart from a small inception region (located either near the upstream
extent of the compression corner, or near the leading edge of the fin), the flow
develops a helical flow with its axis closely aligned with the shock.

Two relatively simple examples of nondimensional interactions are shown
schematically in Figure 10.20. In the first view, the interaction is generated by
a swept compression corner, and in the second view it is generated by a sharp
fin placed at an angle of attack to the incoming flow. Both examples display
lines of accumulation of dye upstream and downstream of the inviscid shock
location: the line of convergence is sometimes called the line of separation, and
the line of divergence is sometimes called the reattachment line. These figures
illustrate relatively weak interactions: as the strength of the shock increases,
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Figure 10.20. Schematic representations of the surface flow patterns produced
by (a) swept compression, and (b) sharp-fin interactions. (From Settles and Teng
(1984). Copyright 1984, AIAA. Reprinted with permission.)

multiple secondary flows can be observed.
Settles and Teng (1984) suggested that the nondimensional interactions

represent examples of cylindrical similarity and the dimensional interactions
display conical similarity. For example, in the compression corner flow the
cross-section of the secondary flow becomes constant (cylindrical similarity),
whereas for the sharp-fin flow it scales with distance from the virtual origin
of the flowfield (conical similarity). The flows become two-dimensional when
viewed in the appropriate coordinate system, similar to what happens in the
inviscid flow over an infinitely swept wing, or a cone. We consider briefly two
examples of nondimensional flows (the swept compression corner and sharp-fin
interactions) and one example of a dimensional flow (the blunt-fin interaction).

10.6.1 Flow Field Topology

The instantaneous streamline pattern can often give a qualitative understand-
ing of the flow behavior, and this becomes particularly important in the in-
vestigation of three-dimensional flows. There is, generally, some difficulty in
visualizing and interpreting three-dimensional flowfields, and the topology of
separated flows has received considerable attention (see, for example, Maskell
(1955), Legendre (1956), Oswatitsch (1958), Lighthill (1963), Perry and Fairlie
(1974), Tobak and Peake (1982), and Perry and Chong (1987)). A descrip-
tion of flow patterns using critical point concepts provides a framework and
methodology for overcoming this difficulty. Just as importantly, critical point
theory (also known as phase-plane or phase-space theory) provides a termi-
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nology for describing complicated three-dimensional flow patterns unambigu-
ously. Phase-plane analysis, combined with topological rules and the laws of
vortex motions allows us to deduce physically plausible flow patterns from
flow visualization results, or from limited flowfield measurements. In addi-
tion, phase-plane analysis uses the terminology of nonlinear dynamics, and it
provides an unambiguous language for describing fluid flow behavior. For ex-
ample, in two-dimensional flows, separation is a relatively clear concept, and a
separation line is where the skin friction is instantaneously zero and the stream
surface leaves the body. In sideview, the surface streamlines are joined at a
saddle point. In three-dimensional flows, separation is often a more imprecise
concept, and a separation bubble may have only two points where the skin
friction is zero, or the bubble may appear only in a given coordinate system
or direction of viewing. Terms such as separation and reattachment lose their
traditional meanings, and phase-plane analysis gives us a better terminology,
one that is closely connected with the equations of motion.

Phase-plane analysis is the analysis of nonlinear dynamical systems, and
obviously fluid flow systems belong to this general class. In this analysis, crit-
ical points are identified in the governing equations. Critical points are points
in the flow where the streamline slope is indeterminate and the velocity is
zero relative to an appropriate observer. Hornung and Perry (1984) and Perry
and Chong (1987) classify critical points into two major types: no-slip critical
points, such as separation points on a no-slip boundary, and free-slip critical
points which occur within the fluid away from no-slip boundaries. If the gov-
erning equations are regular, as for an incompressible, constant density flow or
a compressible flow in the absence of shock waves, no discontinuities exist, and
the equations may be linearized in the neighborhood of the critical points. Ex-
panding the solution about the critical point allows us to identify the nature of
the critical point, whether it be centers, saddles, nodes, or logarithmic spirals.
Given the classification of critical points, the topologically correct pattern of,
for example, surface streamlines, or more accurately, the lines of surface shear
stress, can be determined to give a qualitative solution of the flowfield. In
joining up the critical points, phase trajectories of limiting streamlines may
be identified, and other features such as limit cycles may be revealed. Clearly,
phase-plane analysis can be very useful for helping to understand complicated
fluid dynamical systems.

Very briefly, we see that at any point in the flow where the solution is
regular the velocity field can be expanded in terms of the space coordinates
in a Taylor series with coefficients that are a function of time if the flow is
unsteady. Close to a critical point, the velocity ui is a linear function of xi. If
the eigenvalues and eigenvectors of the coefficient matrix are real, three planes
containing solution trajectories (instantaneous streamlines) exist, defined by
the eigenvectors, but if they are complex, only one solution plane exists. In
these planes simple phase-plane methods can be used to classify the critical
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Figure 10.21. Classification of critical points on the p–q chart. For critical points
on the boundaries I, II, and II, and at the origin IV , see Figure 10.22. (From
Perry and Chong (1987). Reproduced, with permission, from Annual Reviews, Inc.)

point patterns. That is, by defining a new coordinate system in each plane
[y1, y2], we can write:

ẏ = Fy,

where F is the matrix of coefficients in the linearized equation. The types

of critical points can be classified on a p–q chart, where p = −trace F , and

q = det F (see Figure 10.21).
As pointed out by Perry and Chong (1987), if all the eigenvalues are real,

either nodes or saddles are obtained. These patterns will in general be in non-
canonical form; that is, the eigenvectors are nonorthogonal. If the eigenvalues
are complex and the [y1, y2]-plane contains trajectories, a focus is obtained. If
the pattern occurs on the boundaries of the p–q chart (that is, when p2 = 4q,
p = 0 or q = 0), we have degenerate critical points (see Figure 10.22). So,
complicated flow patterns can be broken down into simpler components ac-
cording to the nature of the critical points. For example, Figure 10.23 shows
irrotational free-slip critical points. Here, the critical point is a local maxi-
mum or minimum in pressure. This is not true when vorticity is present. If the
eigenvalues are complex, then a vortexlike pattern is formed, one that is often
seen in three-dimensional separation from a surface, as in Figure 10.17. These
are sometimes called “complex eigenvalue” critical points. It is also possible to
have bifurcation lines (see Figure 10.24). These are lines in the flow toward
which other trajectories are asymptotic (Hornung and Perry, 1984; Perry and
Hornung, 1984). On a surface with three-dimensional separation, bifurcation
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Figure 10.22. Degenerate critical points, or borderline cases. Case numbers refer to
Figure 10.21. (From Perry and Chong (1987). Reproduced, with permission, from
Annual Reviews, Inc.)

Figure 10.23. Critical points resulting from linear irrotational flow analysis. (a)
Shaded zone shows allowable region for such points on the p–q chart for the [x1, x2]-
plane; (b) Case 1; (c) Case 2; (d) Case 3. (From Perry and Chong (1987). Repro-
duced, with permission, from Annual Reviews, Inc.)

lines are often called separation or reattachment lines, but they can also occur
within the fluid away from the boundaries.

In a compressible flow, especially in shock wave-boundary layer interactions,
we must allow the possibility of discontinuities in velocity gradient. This does
not affect the interpretation of surface flow patterns because the shock cannot
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Figure 10.24. A bifurcation line. (From Perry and Chong (1987). Reproduced,
with permission, from Annual Reviews, Inc.)

extend to the surface in a viscous fluid. However, the interpretation of the
flow away from the wall becomes more difficult. The limiting streamlines that
originate from the no-slip critical points may not persist very far from the wall,
and there is no unambiguous way to join the free-slip critical points without
additional information. Nevertheless, it seems that in many cases the shocks
form on the outer surface of the interaction region, and critical point analysis
can still be useful to describe the flow away from the wall, even within the
interaction.

10.6.2 Swept Compression Corner Interactions

In the experiments on two-dimensional compression corners, side wall fences
are typically used to simulate the infinite-span condition. As shown in Fig-
ure 10.14, the surface flow pattern usually displays a cellular character in
the separated zone, which may indicate the presence of longitudinal roll-cells
that are known to develop in concavely curved shear layers. The presence of
three-dimensional features in nominally two-dimensional flows underlines the
now widely accepted notion that there are no “truly” two-dimensional flows,
especially when the flow is separated.

Consider the Mach 2.9, 24◦ compression corner interaction, with zero sweep
angle. We saw that at this deflection angle, the flow was separated with a sepa-
ration bubble length of about one boundary layer thickness. As the sweepback
is increased from zero, fluid begins to flow along the corner line, and because of
the finite length of the model the infinite-span condition immediately breaks
down. The model becomes semi-infinite, and the inviscid shock shape is now
conical in the sense that it is described only by an angle, and not by a dimen-
sion. Within the viscous flow, an inception region appears near the apex of
the model, and this region is particularly noticeable when the upstream fence
is removed (Settles et al., 1980).

With increasing sweep, the size of the inception region grows. This growth
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is caused by the spreading influence of the pressure disturbances initiated
at the apex. At this point, the boundary layer first encounters the swept
shock wave, and the pressure rise across the shock sets up a lateral pressure
gradient that abruptly turns the flow in the subsonic separated region near
the wall. The turning angle of the freestream flow, however, is approximately
equal to the yaw angle, and it is always smaller than the flow near the wall.
These differences in flow direction generate secondary motions. Away from
the wall, the flow is supersonic and pressure disturbances can only propagate
in the downstream direction along characteristics. Hence, the growth of the
inception region is a function of Mach number.

At small angles of sweep, there remains a substantial region of subsonic flow.
As the sweep angle is increased, the secondary flow becomes stronger under the
action of the increased lateral pressure gradient, and the region of subsonic flow
must therefore decrease in size and ultimately shrink to negligible proportions.
However, for sweep angles up to 10◦, the wall pressure distribution does not
significantly change, suggesting that the region of subsonic flow is not changed
significantly.

As indicated in Section 10.6.1, it is not clear what connection exists between
the surface features and the flow a small distance away from the wall. From
continuity, we expect that above the lines of convergence and divergence fluid
is transported either away from or towards the surface. The magnitude of
the pitch angle, however, is unknown. The simplest possible interpretation of
the flowfield structure suggests the presence of a significant vortical motion
aligned in the direction of the corner. This interpretation is supported by the
flow visualization of Settles and Teng (1984), and the calculations by Horstman
(1984). Outside the inception zone, the experiments by Settles indicate that
many of the flow features follow conical similarity, including the wall pressure
distribution and the total pressure distribution in the flowfield. For low angles
of sweep the far field is nearly cylindrical, despite the apparent conical nature
of the inviscid shock wave. An asymptotic state is expected but it is likely
to scale with the local boundary layer thickness, rather than the thickness
measured near the apex. A truly cylindrical interaction will only occur when
the size of the boundary layer thickness is small compared to the scale of the
interaction.

Significant unsteadiness in two-dimensional flows has been associated with
the presence of large subsonic regions, as found in separated flows. Thus, the
interaction at large angles of attack and small angles of sweep should also
display significant unsteadiness. As the angle of sweep increases from zero,
and the subsonic region shrinks in size, we may expect that the unsteadiness
will be reduced. The unsteadiness of swept compression ramp flows was first
demonstrated by Tran (1987) at Mach 3. A more detailed study was made
by Erengil and Dolling (1992) in a 28◦ swept compression corner at Mach
5 over a range of sweepback angles. For angles greater than 25◦, the rms
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wall pressure distributions were found to be conically symmetric, as were the
mean distributions. In general, the amplitude of the wall pressure fluctuations
decreased, as expected, and the frequencies increased with increasing sweep
but the shock position was unsteady at all sweep angles. The separation shock
characteristics, as determined from multiple-point wall pressure signals, were
found to be essentially the same in all cases considered. The mean velocity of
the separation shock was nearly constant, and therefore the higher frequencies
seen with increasing sweep simply reflect the fact that the length over which
the separation shock moves decreases as the sweep increases.

10.6.3 Sharp-Fin Interactions

As an example of a three-dimensional interaction, consider the case of a swept
shock interaction generated by a sharp fin placed at an angle of attack to the
incoming flow. Here the oblique shock sweeps across the incoming boundary
layer, and strong secondary flows can be produced by the spanwise pressure
gradients. Typically, one or more large-scale vortical motions are induced
that sweep the low-momentum fluid from the near-wall region of the incoming
boundary layer in the direction along the shock (see Figure 10.25). The high
momentum fluid in the outer part of the boundary layer passes over the vor-
tex with a turning angle more typical of the inviscid deflection associated with
the shock, and it is then swept close to the wall. The skin-friction and heat-
transfer levels seem largely unaffected by the strong secondary motions, but
the values rise sharply in the region closer to the fin where the high momentum
fluid “scours” the wall. The turbulence response is not well understood. Very
few experimental results are available, but measurements by Tan (reported by
Konrad (1993)) suggest that the turbulence levels are strongly amplified, and
Tran et al. (1985) found that the shock is unsteady, leading to strong wall
pressure fluctuations. In these respects, three-dimensional interactions appear
to be similar to their two-dimensional counterparts, but the detailed response
of the turbulence is clearly quite different. In particular, the turbulence am-
plification and the unsteady pressure loading are weaker.

In the interaction generated by a sharp fin, the shock sweeps across the
incoming flow at an oblique angle to the upstream flow direction. In contrast to
the swept compression corner interaction, the shock in the freestream is normal
to the wall over which the incoming boundary layer is developing. However,
the response of the flow is very similar in the two interactions. A streamtube
encountering the shock is turned, compressed, and decelerated. When the
pressure gradient is strong compared to the entering momentum flux, the flow
is turned in a direction away from the direction of the pressure gradient. The
degree of turning increases as the Mach number decreases. Therefore, for a
boundary layer entering a pressure gradient, the gradient in Mach number will
cause the flow near the wall to turn through a greater angle than the flow away
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Figure 10.25. Structure of three-dimensional shock wave-boundary layer interaction
generated by a sharp fin at an angle of attack. (From Knight et al. (1987). Copyright
1987, AIAA. Reprinted with permission.)

from the wall (as long as the pressure gradient dominates). The differential
turning leads to a helical secondary flow, as illustrated in Figure 10.25.

The shock bifurcates in response to the formation of this secondary flow, in
a manner very similar to that seen in two-dimensional separated compression
corner flows. There is an initial turning and compression by a well-defined
shock which is slanted forward (the “separation” shock), and a stronger trailing
shock, where broadly speaking the two shock structures encompass the large-
scale vortical flow. When the flow is viewed along the axis of the helix it
appears similar to the cross-section of a two-dimensional separated flow (see
Figure 10.26). In that view, a bubble-type separated flow is observed, and
the flow characteristics typically scale in conical coordinates. The detailed
flowfield model is shown in Figure 10.27. The experiments show that the
wall pressure distribution and the total pressure distribution can be collapsed
in conical coordinates. One feature that deserves particular attention is the
“impinging jet”, found in close proximity to the fin itself. As the model by
Garg and Settles (1993) makes clear, the jet is formed by high-momentum fluid
from the outer regions of the incoming layer (including the freestream) curved
towards the surface as the low-momentum fluid near the wall is removed in
the spanwise direction by the main vortical flow. This phenomenon is quite
similar to that seen in the isentropic interaction discussed earlier (Konrad,
1993; Konrad et al., 1994). Not surprisingly, the maximum skin-friction and
heat-transfer rates occur near the jet impingement location.

The unsteadiness of the sharp-fin interaction was first studied by Tan et al.
(1985); Tran et al. (1985), and Tran (1987). Although these studies were con-
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Figure 10.26. Filtered Rayleigh scattering image of a sharp-fin interaction at
Mach 8, with Reθ = 2400. The view is in a plane aligned with the incoming flow
direction. Incoming flow is from left to right. Within the interaction, the flow is out
of the page at approximately 16◦. (From Bookey et al. (2005a), with the authors’
permission.)

fined to a single Mach and Reynolds number, they discovered many of the same
features seen in two-dimensional interactions, particularly the intermittency of
the pressure signal in the upstream influence region. The Rayleigh scattering
visualizations by Smith et al. (1991) showed the movement of the separation
shock clearly, and also revealed the motion of the triple point where the sepa-
ration shock meets the main shock. Later work by Gibson and Dolling (1991);
Schmisseur and Dolling (1992), and Garg and Settles (1993) demonstrated
that the mean and rms pressure distributions scale in conical coordinates.
The wall pressure signals near separation were clearly intermittent and quali-
tatively similar to those in two-dimensional flows. As expected, the amplitude
of the rms pressure fluctuations increased with the fin angle, and in agreement
with the data from the swept compression corners, the shock frequencies in-
creased with the sweep angle of the separation line, at least up to an angle of
about 25 to 30◦.

One of the few investigations to make turbulence measurements in three-
dimensional interactions was performed by Tran and Tan (unpublished) in a
10◦ sharp-fin interaction at Mach 2.9. Their results are shown in Figure 10.28.
The inviscid shock position in the freestream is evident through the local
maximum in the distributions at x = 0.165 m and 0.177 m. The turbulence
levels in the outer flow increase substantially, and there is little sign of the
start of a relaxation process. Near the wall, the levels are strongly attenuated,
and at first sight it appears as though an internal layer has formed. This
is misleading in that it neglects the three-dimensionality of the flow: in fact,
the lower turbulence levels indicate that high-momentum, low-turbulence fluid
has been brought into the region near the wall. The maximum amplification
of the rms mass flux intensity for this 10◦ fin is about 30%, which may be
compared to the case of the unswept 8◦ compression corner at the same Mach
number where an increase of about 35% was observed. The small decrease
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Figure 10.27. Flowfield structure, together with the mean and rms wall pressure
distributions (pw and σp, respectively) for a 20◦ sharp-fin interaction at Mach 4.
The angle β is the conical coordinate, measured from the upstream flow direction.
UI marks the location of the upstream influence, S1 and S2 mark the primary and
secondary separation lines, and A1 marks the mean reattachment line. The view
is in a plane normal to the inviscid shock sheet. (From Garg and Settles (1993).
Copyright 1993, AIAA. Reprinted with permission.)

observed in the amplification level may be due to the three-dimensionality,
but the uncertainties in the data are too large to be sure.
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Figure 10.28. The evolution of the rms mass flux intensities for a 10◦ sharp-fin
interaction at Mach 2.9. Data from Tran and Tan (unpublished). (Figure from
Konrad (1993), with the author’s permission.)

10.6.4 Blunt-Fin Interactions

When a boundary layer in supersonic flow encounters a blunt fin or another
kind of cylindrical obstruction, the boundary layer typically separates at a
distance of two or three fin diameters upstream of the leading edge. A vortical
structure forms in the nature of a horseshoe vortex system, and the vortices are
stretched as they wrap around the fin. Rayleigh scattering visualizations by
Smith et al. (1991) on the centerline of the interaction produced very similar
images to those seen in the sharp-fin visualizations: the movements of the
separation shock and the triple point were clearly shown. The vortices generate
strong pressure gradients, and combined with the usual unsteadiness of the
flowfield, they produce intense pressure fluctuations (up to 184 dB near the
root of the fin; Dolling (1990)). Away from the centerline the levels falloff, but
not too rapidly, and the maximum level generally lies in the direction of the
inviscid bow shock (see Figure 10.29).

The blunt fin produces a dimensional interaction, in that the diameter D
of the rounded leading edge of the fin sets a length scale for the interaction.
Generally, the scale of the interaction flowfield depends largely on D and only
weakly on the incoming boundary layer thickness δ0 (Dolling and Bogdonoff,
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Figure 10.29. Blunt-fin interaction. (Figure from Dolling and Bogdonoff (1982).
Copyright 1982, AIAA. Reprinted with permission.)

1982). For small values of D/δ0, the separated flowfield is contained inside
the boundary layer, but as this ratio increases the shock structure forms out-
side the layer, and as the diameter increases further, the interaction becomes
independent of the boundary layer thickness. For example, the pressure fluc-
tuation intensity near the point of separation on the centerline asymptotes to a
constant value for D/δ0 > 6. The unsteadiness of the blunt fin interaction was
discussed in Section 10.2.4. Further information can be found in the works by
Gonsalez and Dolling (1993), Brusniak and Dolling (1994), Wang et al. (1998),
Mukund et al. (2003), and Poggie and Smits (2005).

10.7 Crossing-Shock Interactions

Lastly, we briefly consider crossing-shock interactions, first studied by Mee
et al. (1986). These interactions are formed when two sharp-fin shock genera-
tors are used so that the shocks cross (see Figure 10.30). The resulting inter-
action is a laboratory model for the interactions generated inside high-speed
inlets, and it produces some interesting flow phenomena. In the symmetric
case, where the two shocks are of equal strength, the flowfield is broadly as
follows. The two vortical flows meet along the centerline, and they turn in the
“streamwise” direction, that is, the direction corresponding to the upstream
flow. Their induced velocity fields cause them to rise up, as well as trans-
port fluid away from the wall in the region between them. The interaction
size grows quickly with streamwise distance, and intense mixing appears to
take place within the vortical regions. Farther downstream, depending on the
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Figure 10.30. Crossing-shock interaction. (Figure from Garrison and Settles (1992).
Copyright 1992, AIAA. Reprinted with permission.)

width of the passage, it is possible for each shock to reflect off its opposing fin,
creating an additional interaction with the boundary layer on that fin. Flow
visualizations using planar Mie scattering (Garrison and Settles, 1992) and fil-
tered Rayleigh scattering (Forkey et al., 1993) reveal a complicated interaction
structure that rapidly develops with streamwise distance. Computations have
been very useful in revealing this structure, because the results presented by
Narayanswami et al. (1993) and Garrison et al. (1993) indicate a high level
of agreement between the computation and the experiment. Of course, the
computations do not capture the flowfield unsteadiness, and preliminary mea-
surements of the wall pressure fluctuations by Bogdonoff and Poddar (1991)
show that crossing-shock interactions exhibit the same unsteadiness found in
every other type of shock wave-boundary layer interaction.

10.8 Concluding Remarks

We have seen that all nondimensional interactions (swept and unswept com-
pression corners, and sharp fins) behave similarly: there is the unsteady shock
motion, the appearance of separated flow regions that are aligned with the
inviscid shock direction, the presence of strong wall pressure fluctuations, and
strongly amplified turbulence levels. As the three-dimensionality increases, the
pressure fluctuation levels and the amplification of the turbulence decreases.
A simple scaling on normal Mach number seems to be called for, but the
database is not extensive enough to test this hypothesis fully. A common fea-
ture of three-dimensional interactions is the appearance of an impinging jet,
where the skin friction, heat transfer, and pressure loading reach a maximum.
The strength of the jet seems directly related to the strength of the pressure
rise in the spanwise direction because this dictates the mass flux induced along
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the axis of the vortical flow and the resulting transport of the low-momentum
fluid near the wall.

By way of a final comment, we can make some remarks on the mechanism of
the flowfield unsteadiness. As discussed earlier, the large-scale motions in the
incoming boundary layer provide an unsteady upstream boundary condition
on the separation shock. Conversely, the unsteady separated flow provides an
unsteady downstream boundary condition. The wall pressure signal has low-
and high-frequency content. As suggested by Brusniak and Dolling (1994), the
incoming turbulence appears to be responsible for shock distortion and some
small flapping motion, but it is not on a large scale. Its effect is most clearly
seen in the wall pressure signals and the instantaneous flow visualizations of
unseparated compression corner flows. When the flow is separated, the sepa-
ration bubble unsteadiness can lead to larger excursions in the shock position,
and the extent of the upstream influence seen in the mean pressure distribution
grows considerably. There is still some question regarding the mechanism that
drives the unsteadiness of the bubble. The free shear layer forming the edge
of the bubble is undoubtedly very sensitive to external disturbances. These
disturbances could come from, for instance, outer layer turbulence which may
provide a trigger for a flowfield instability similar to that seen in the super-
sonic flow over a spiked body. It may also be possible that the low-frequency
oscillations of the separation bubble are tunnel-specific, in that they are re-
lated to meandering Taylor-Görtler-like vortices formed in the upstream flow,
convecting into the interaction, as suggested by Ünalmis and Dolling (1996).

The discussions in this chapter have noted that a shock depends on up-
stream and downstream conditions. We can tentatively propose two kinds
of interactions and shock motion. The first kind is composed of flows with
free downstream conditions, so that there would be only weak feedback from
the downstream flow, and shock motion is determined mainly by the inflow.
An example can be found in the shock-turbulence interaction experiment per-
formed by Debiève and Lacharme (1985), in which homogeneous turbulence
is subjected to an oblique shock. The second kind of flow is characterized by
strong downstream constraints, such as compression ramp flows, flows around
blunt obstacles, normal shock interactions, and oblique shock reflections. In
such cases, separation bubbles are present that impose their own time and
length scales as downstream conditions. For both kinds, we may speculate
that transonic or subsonic downstream conditions would allow strong acous-
tic feedback, whereas supersonic outflow would reduce this effect to a narrow
zone, enhancing the influence of fluctuations with a convective character, pro-
duced, for example, in the separated zone. The properties of the second kind
of flow will depend, of course, on particular geometrical conditions, and should
be analyzed for each particular case. Therefore, the onset and the properties
of fluctuations in separated bubbles and their consequence on shock motions
remains an open and challenging question.
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Debiève, J.F., Gouin, H. and Gaviglio, J. 1982. Evolution of the Reynolds stress
tensor in a shock-turbulence interaction. Indian Journal of Technology, 20,
90–97.

Debisschopp, J.R., Chambres, O. and Bonnet, J.P. 1994. Compressibility and struc-
ture of turbulence in supersonic shear flows. Experimental Thermal and Fluid
Science, 9, 147–155.

de Brederode, V. and Bradshaw, P. 1974. A note on the empirical constants ap-
pearing in the logarithmic law for turbulent wall flows. I.C. Aero Report 74-03.
Imperial College, London.

Degani, D. and Smits, A.J. 1990. Effect of short regions of surface curvature on
compressible turbulent boundary layers. AIAA Journal, 28, 113–119.

DeGraaff, D.B. and Eaton, J.K. 2000. Reynolds number scaling of the flat plate
boundary layer. Journal of Fluid Mechanics, 422, 319–346.

Délery, J.M. 1985. Shock wave/turbulent boundary-layer interaction and its control.
Progress in Aerospace Sciences, 22, 209–280.

Délery, J.M. 1992. Étude expérimentale de la réflexion d’une onde de choc sur
une paroi chauffée en présence d’une couche limite turbulente. La Recherche
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No. 6595.

Dupont, P., Muscat, P. and Dussauge, J.P. 1995. Space and space-time statistics
in a supersonic mixing layer. In: Symposium on Transitional and Turbulent
Compressible Flows, ASME Fluids Engineering Conference, Hilton Head Island,
SC.

Dupont, P., Muscat, P. and Dussauge, J.P. 1999. Localisation of large scale struc-
tures in a supersonic mixing layer: A new method and first analysis. Turbulence
and Combustion, 62, 335–358.

Durbin, P.A. and Zeman, O. 1992. Rapid distortion theory for homogeneous com-
pressed turbulence with application to modelling. Journal of Fluid Mechanics,
242, 349–370.
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Eléna, M. and Lacharme, J.P. 1988. Experimental study of a supersonic turbu-
lent boundary layer using a laser Doppler anemometer. Journal Mécanique
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Institut Royal Météo. de Belgique, No. 34.

Miles, J.W. 1958. On the disturbed motion of a plane vortex sheet. Journal of Fluid
Mechanics, 4, 538–551.

Miles, R.B. and Nosenchuck, D.M. 1989. Three-dimensional quantitative flow diag-
nostics. Pages 33–107 of: Gad-el-Hak, M. (ed), Lecture Notes in Engineering,
Advances in Fluid Mechanics Measurements, vol. 45. Springer-Verlag.

Miles, R.B., Cohen, C., Connors, J., Howard, P., Huang, S., Markowitz, E. and
Russell, G. 1987. Velocity measurements by vibrational tagging and fluorescent
probing of oxygen. Optics Letters, 12, 861–863.

Miles, R.B., Connors, J., Markowitz, E., Howard, P. and Roth, G. 1989. Instanta-
neous supersonic velocity profiles in an underexpanded sonic air jet by oxygen
flow tagging. Physics of Fluids A, 1, 389–393.

Miles, R.B., Forkey, J.N. and Lempert, W.R. 1992. Filtered Rayleigh scattering
measurements in supersonic/hypersonic facilities. AIAA Paper 92-3894.

Miles, R.B., Lempert, W.R., Forkey, J.N., Finkelstein, N.D. and Erbland, P. 1994.
Quantifying high speed flows by light scattering from air molecules. AIAA Paper
94-2230.

Millikan, C.B.A. 1938. A critical discussion of turbulent flows in channels and cir-
cular tubes. Pages 386–392 of: Proceedings of the Fifth International Congress
of Applied Mechanics.

Moffatt, H.K. 1968. The interaction of turbulence with a strong wind shear. Pages
139–150 of: Yaglom, A.M. and Tatarskii, V. (eds), International Colloquiem on
Atmospheric Turbulence and Radio Wave Propagation, Moscow 1965. Nauka
Press, Moscow.

Moin, P. and Spalart, P.R. 1987. Contributions of numerical simulation data base
to the physics, modeling, and measurement of turbulence. NASA TM 100022.

Monaghan, R.S. 1955. The behaviour of boundary layers at supersonic speeds. IAS
Preprint No. 557.

Morkovin, M.V. 1955. Effects of high acceleration on a turbulent supersonic shear
layer. In: Proceedings of the 1955 Heat Transfer and Fluid Mechanics Institute.
Stanford University Press.

Morkovin, M.V. 1956. Fluctuations and hot-wire anemometry in compressible flows.
AGARDograph 24.

Morkovin, M.V. 1962. Effects of compressibility on turbulent flows. Pages 367–380
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Acoustic rays, 13–15, 75, 93, 107, 145
Adiabatic flow, 2
Adiabatic wall temperature, see Recov-

ery temperature
Adverse pressure gradients, 102–103,

183, 185, 298–311
Anisotropy, 111

boundary layer, 237, 239
mixing layer, 148, 160, 166

Attached eddy hypothesis, 218, 219
Averaging, 61

ensemble averages, 252–263
ensemble averaging, 61, 110, 287,

305
ergodic hypothesis, 61
mass averaging, 62, 63
quadrant method, 247, 270
Reynolds averaging, 62, 63
time averaging, 61
VITA technique, 247, 305

Barotropic flow, 50, 56, 58, 59, 94
Biot-Savart law, 59, 93–94, 305
Blunt-fin interaction, 360
Boundary conditions, 4, 22, 51, 54, 79,

93, 101, 102, 129, 135, 140,
161, 170, 183, 285, 291, 324

Boundary layer
active and inactive motions, 218,

231, 233
anisotropy ratio, 237, 239
buffer layer, 203, 231, 235, 244
convection velocity, 37, 254, 258,

268, 269
correlations, 128, 132, 252–263
defect law

compressible, 199, 200
incompressible, 185

equations, see Thin shear layer
flatness, 237, 251
inner layer, 13, 71, 181, 218

compressible, 183, 198, 299
incompressible, 183, 185
scaling, 264

inner-outer interactions, 274–276
integral scales, 150, 263–270
intermittency, 10, 217, 249, 254,

281, 335
introduction, 4
law-of-the-wake, 202

compressible, 200
incompressible, 185, 202

law-of-the-wall, 202
compressible, 199
incompressible, 185, 202

log law, 185, 187, 192, 200
compressible, 192, 200
for temperature, 201
incompressible, 187

mean flow, 179–215
data, compressible, 197
data, incompressible, 189

meso-layer, 234
organized motions, 243–263

bulges, 248, 254, 273
bursting, 245
bursting period, 246, 247
ejections, 245
energetic near-wall eddies, 246
energetic outer-flow eddies, 275
inner layer, 244–248
interactions, 274–276
LSM, 248, 256, 270, 275
outer layer, 248–263
rate of decay, 262
streaks, 244, 246, 270, 281
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structure angle, 256, 257
sweeps, 245
typical eddies, 274

outer layer, 71
compressible, 200, 299, 317
incompressible, 185, 202

Reynolds stresses, 230–233, 237
scaling, 179, 180
self-preserving, 202
shear correlation coefficient, 237,

241
shear stress distribution, 224
skewness, 237
skin friction, 208–212
spectra, 219–229

compressible, 224–229
incompressible, 219–224
inertial subrange, 221
overlap regions, 221

Strong Reynolds Analogy, 241
structure parameter, 237
temperature fluctuations, see Tem-

perature fluctuations
turbulence, 217–283
turbulence data, 229–243

compressible, 237–243
incompressible, 230–237
Reynolds stresses, 10, 230–233

viscous sublayer, 182
compressible, 184
incompressible, 183

wake function, 202
wake parameter, 74

Boundary layer, perturbed, 285–318
adverse pressure gradients, 102–

103, 183, 185, 298–311
classification, 288
concave curvature, 298–311
convection velocity, 304
convex curvature, 312–313
eddy response time, 290, 292
extra strain rates, 286
favorable pressure gradients, 102–

103, 183, 185, 312–313
impulsive perturbation, 287
internal layer, 291–293, 297, 315

outer layer, 102
perturbation strength, 288–290
reflected wave flows, 298–309
step perturbation, 287, 290
structure angle, 304
successive perturbations, 287, 313–

317
Buffer layer, 203, 231, 235, 244
Bulges, see Organized motions
Bursting, see Organized motions
Bursting period, see Organized

motions

Circulation, 57–59, 305, 317
Clauser method, 293
Clauser pressure gradient parameter,

288
Clauser thickness, 189, 199
Closure problem, 63, 68
Communication paths, 13–15, 75, 93,

107, 145
Compressibility effects

classification, 148
turbulent kinetic energy equation,

148
Compressibility transformation, see

Transformation concepts
Compression corner interaction, 23,

102, 307, 319, 321–338
free interaction, 324
rapid distortion, 102
separation, 323
skin friction, 323
skin friction distribution, 323
swept, 348, 354
Taylor-Görtler vortices, 336, 337
three-dimensionality, 327, 337
unsteadiness, 23, 321, 325–334, 336,

355
upstream influence, 325

Compression surface flow, see Boun-
dary layer, perturbed

Concave curvature, 298–311
Conditional sampling, 252–263

quadrant method, 247, 270
VITA technique, 247, 305
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Continuity equation, 44
linearized, 80

Convection velocity, 17, 36, 37, 141,
147, 148, 150, 152, 169, 170,
254, 258, 268, 269, 304

Convective Mach number, 16, 92, 105,
107, 148–151

Convex curvature, 312–313
Correlations, 128, 132, 167, 252–263
Couette flow, compressible, 52
Critical point analysis, 350

bifurcation lines, 352
critical point classification, 352
degenerate points, 352
limit cycles, 351
phase trajectories, 351
saddle point, 351

Crocco equation, for vorticity, 56
Crocco relation, see Temperature-

velocity relations
Crocco relation, modified, see Temp-

erature-velocity relations
Crocco’s law, see Temperature-velocity

relations, Crocco relation
Curvature effects, see Boundary layer,

perturbed

Defect law
compressible, 199, 200
incompressible, 185

Deviatoric stress tensor, 45, 46, 51
Dilatation, 44
Direct numerical simulations, 3, 108–

114
flat plate, 239
homogeneous turbulence, 109

spectra, 111
with shear, 110

results, 130
Displacement thickness, 214
Dissipation, 120

dilatational, 89, 110, 111, 116
fluctuating, 87
function, 49
second, 86–91
solenoidal, 89, 116

Divergence of fluctuations, 80, 85, 106,
119, 148

DNS, see Direct numerical simulations

Eddy diffusivity, 127
Eddy response time, 290, 292
Eddy viscosity, 127, 190, 311

mixing layer, 142, 153, 160, 162,
164

Ejections, see Organized motions
Energy equation, 48

one-dimensional, 49
Ensemble averages, 252–263
Ensemble averaging, 61, 110, 287, 305
Enstrophy, 89
Enthalpic production, 100, 102, 104,

339
Enthalpy equation, 49
Entropy equation, 50

linearized, 81
Equations of motion, 43–59

boundary conditions, 51, 79, 101,
102, 129, 135, 183

bulk viscosity, 45
continuity, 44

linearized, 80
Crocco equation, 56
deviatoric stress tensor, 45, 46, 51
dynamic viscosity, 45
energy, 48
energy, one-dimensional, 49
enthalpy, 49
entropy, 50

linearized, 81
heat conduction, 48
linearized, 96

Kovasznay’s modes, 81
mean, 65

continuity, 65
energy, 67
momentum, 66
total enthalpy, 67

mechanical pressure, 46
momentum, 44

linearized, 80
Navier-Stokes equation, 47
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pressure
linearized, 81

rate-of-rotation tensor, 45
rate-of-strain tensor, 45
Reynolds stress, 99
Reynolds stress tensor, 67, 69, 101
shear stress tensor, 45–47
Stokes’s hypothesis, 47
stress tensor, 44–47
temperature, 50
total enthalpy, 49
turbulent flow, 61–78
turbulent kinetic energy, 68, 115,

148
velocity gradient tensor, 45
vorticity

linearized, 81
vorticity transport, 55

Ergodic hypothesis, 61
Expansion surface flow, see Boundary

layer, perturbed
Expansion corner interaction, 102,

312–317
rapid distortion, 102

Extra strain rates, 286, 289
in-plane curvature, 347, 348

Extra strain-rates
coupling, 286
types, 286

Favorable pressure gradients, 102–103,
183, 185, 312–313

Favre averaging, see Mass averaging
Flatness, 237, 251
Flow imaging, see Measurement

techniques
Fluctuating divergence, see Divergen-

ce of fluctuations
Fluctuating Mach number, 12, 105,

180, 281, 282
Fourier law of heat conduction, 48
Free interaction, 324
Friction Mach number, 105, 196, 227,

267
Friction temperature, 183
Friction velocity, 183

mixing layer, 152
FRS, see Rayleigh scattering

Gradient Mach number, 98, 104, 107
Growth rate, mixing layer, 2, 15, 106,

116, 140, 144, 152, 153, 160,
164, 165, 169

Görtler number, 311

Heat transfer coefficient, 54
Helmholtz decomposition, 81, 93, 98
Helmholtz’s theorem, 58, 93
Homentropic flow, 50
Homogeneous turbulence, 109

DNS, 108–114
spectra, 111
with shear, 110

Horseshoe vortex, see Organized mo-
tions

Hot-wire anemometry, 25–32
accuracy, 31, 42, 285
angular sensitivity, 27
end conduction, 29
for pressure fluctuations, 27, 88
frequency response, 28, 111
multiple probes, 37, 249, 258, 304
sensitivities, 26, 63, 82, 263, 301
spatial resolution, 10, 30–31, 229,

232
SRA, use of, 301
strain-gauging, 263
wire length, 26

Ideal gas law, 47
In-plane curvature, 347, 348
Incident shock interaction, 319, 345
Incipient separation, 323
Inner layer, 13, 71, 181, 218

compressible, 183, 198, 299
incompressible, 183, 185
scaling, 264

Integral scales, 94, 98, 111, 150, 263–
270, 344

Intermediate temperature, 9, 214
for Preston tubes, 209

Intermittency, 10, 217, 249, 254, 281,
327, 335
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internal, 87
Internal layer, 291–293, 297, 315
Isentropic flow, 50
Isentropic three-dimensional flows, 346

Kelvin’s theorem, 58, 59, 93
Kelvin-Helmholtz instability, 139, 145
Kerosene-graphite technique, 323
Knudsen number, 27, 43
Kolmogorov scales

compressible, 226
incompressible, 221

Kovasznay’s modes, 80–85
linear, 80
nonlinear, 83

Large eddy simulations, 108–114
Laser-Doppler velocimetry, 32–35

accuracy, 35, 42, 239
bias errors, 34
dual-beam method, 32
particle response, 33
seeding, 34
signal-to-noise, 34
spatial resolution, 33
two-component, 67, 239

Law-of-the-wake, 202
compressible, 200
incompressible, 185, 202

Law-of-the-wall, 202
compressible, 199
incompressible, 185, 202

LDV, see Particle imaging
velocimetry

LES, see Large eddy simulations
LIA, 340, 343, 344
Linear interaction approximation,

340, 343, 344
Linear layer, see Boundary layer,

viscous sublayer
Linearized equations, 80, 81, 96
LISF, 211
Log law, 185, 187, 192, 200

compressible, 192, 200
constants, 187
for temperature, 201
incompressible, 187

Logarithmic region, see Log law
LSM, see Organized motions

Mach number
convective, 16, 92, 105, 107, 148–

151
fluctuating, 12, 105, 180, 281, 282
friction, 105, 196, 227, 267
gradient, 98, 103, 107
turbulence, 12, 64, 74–78, 83, 87,

92, 105, 148, 181, 282, 343
Mach waves, 13
Mass averaging, 62, 63
Measurement techniques, 25–41

flow imaging, 37
PLIF, 38
Rayleigh scattering, 38
RELIEF, 38
schlieren, 37
shadowgraphy, 37

fluctuating wall pressure
frequency response, 36
spatial resolution, 35

fluctuating wall-pressure, 35
hot-wire anemometry, 25–32

accuracy, 31, 42, 285
angular sensitivity, 27
end conduction, 29
for pressure fluctuations, 27, 88
frequency response, 28, 111
multiple probes, 37, 248, 258,

304
sensitivities, 26, 63, 82, 263, 301
spatial resolution, 10, 30–31, 229,

232
SRA, use of, 301
strain-gauging, 263
wire length, 26

kerosene-graphite, 323
laser-Doppler velocimetry, 32–35

accuracy, 35, 42, 239
bias errors, 34
dual-beam method, 32
particle response, 33
seeding, 34
signal-to-noise, 34
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spatial resolution, 33
two-component, 67, 239

Particle imaging velocimetry, 39
Preston tube, 105, 209
quadrant method, 247, 270
VITA, 305
VITA technique, 247

Mixed Prandtl number, 127–134, 292
Mixing layer, 15–18, 139–178

anisotropy, 148, 160, 166
boundary conditions, 135, 140, 171
communication paths, 13
convection velocity, 17, 141, 147,

148, 150, 152, 169, 170
correlations, 167
density ratio, 144, 150
eddy viscosity, 142, 153, 160, 162,

164
enhanced growth, 177
equations, incompressible, 141
equations, mean flow, 140
error-function profile, 142
friction velocity, 152
growth rate, 2, 15, 106, 116, 140,

144, 152, 153, 160, 164, 165,
169

mean velocity profile
compressible, 151, 153, 160, 163,

165
incompressible, 142

mixing length, 142
scalar transport, 167
scaling, 151

compressible, 144
incompressible, 141
kinetic energy, 160
mean-flow, 153
normal-stresses, 166
shear stress, 160

self-preservation conditions, 162
similarity, 151–153
spreading rate, see growth rate
stability, 14, 139, 144
Strong Reynolds Analogy, 134
structure, 17, 167
thickness, definitions, 143

vortex pairing, 149
Mixing layers

boundary conditions, 161
Mixing length, 132, 133, 142, 190, 297

compressible, 193
for heat flux, 133, 197, 297
incompressible, 190

Modeling, 3, 85, 96, 110, 114, 116, 148,
166, 316, 318

Momentum equation, 44
Momentum integral equation, 213
Momentum thickness, 214
Momentum-integral equation, 9, 10, 208,

211
Morkovin’s hypothesis, 9, 114, 119–

138, 180, 182, 198, 199, 244,
282

Navier-Stokes equation, 47
No-slip condition, 51

Organized motions, 243–263
bulges, 248, 254, 273
bursting, 245
bursting period, 246, 247
ejections, 245
energetic near-wall eddies, 246
energetic outer-flow eddies, 275
horseshoe vortex, 270, 271, 305
inner layer, 244–248
LSM, 248, 256, 270, 275
outer layer, 248–263
packets, 270, 278
rate of decay, 262
streaks, 244, 246, 270, 281
structure angle, 256, 257
sweeps, 245
typical eddies, 274

Outer layer, 71, 102
compressible, 200, 299, 317
incompressible, 185, 202
organized motions, 248–263

Overlap region, see Log law

Packets, see Organized motions
Particle imaging velocimetry, 39
Perturbations, 202, 285–318
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classification, 288
impulsive, 287
step, 287, 290
strength, 288–290
successive, 287, 313–317

Phase-plane analysis, 350
bifurcation lines, 352
critical point classification, 352
critical points, 350, 351
degenerate points, 352
limit cycles, 351
phase trajectories, 351
saddle point, 351

PIV, 39
PLIF, 38
Power laws, 4, 8, 212
Prandtl number

mixed, 127–134, 292
molecular, 53
turbulent, 122, 127

Pressure fluctuations, 3, 27, 74, 79, 85,
87, 88, 91, 92, 98, 125, 180,
215, 282, 287, 327

at the wall, 36, 88, 254, 327, 328,
356

equation for, 100
in freestream, 262, 269
linearized equation for, 81
measurement of, 27, 35, 88
propagation of, 13–15, 75, 93, 107,

145
Pressure strain term, 85, 92, 100, 148
Pressure-diffusion term, 100
Pressure-divergence term, 98, 111,

116, 121, 148
Preston tube, 105, 209
Production term, 99, 120

Quadrant method, 247, 270

Rapid distortion
across shock waves, 103, 338–344
applications, 98, 102
approximations, 96, 99, 290
concepts, 94
criteria, 96
linearized equations, 96

theory, 95
Rarified gas flow, 43
Rate-of-rotation tensor, 45
Rate-of-strain tensor, 45, 305
Rayleigh scattering, 38

Filtered (FRS), 39, 362
MHz-rate, 39

RDA, see Rapid distortion, approxi-
mations, 96, 99, 290

RDT, see Rapid distortion, theory, 95
Recovery factor, 5, 54, 123, 133, 183
Recovery temperature, 54, 123, 133
Redistribution term, 100
Reflected shock interaction, see

Incident shock interaction
Reflected wave flows, 298–309
Relaminarization, 312
RELIEF, 38
Reynolds Analogy, 55, 119–138, 294

factor, 55, 294, 337
strong, see Strong Reynolds

Analogy
Reynolds averaging, 62, 63
Reynolds number, 7
Reynolds number similarity

hypothesis, 218
Reynolds stress equation, 99
Reynolds stress tensor, 21, 67, 69, 101,

104
Rotta thickness, 189, 199

Scaling laws, turbulence, 218–229
Schlieren, 37, 335
Screech tones, 151
Second dissipation, 86–91
Self-preserving flow

boundary layer, 202
mixing layer, 141, 161, 162

Separation, 351
Shadowgraphy, 37
Shape factor, 212, 311
Sharp-fin interaction, 348, 356

turbulence behavior, 358
unsteadiness, 357

Shear stress tensor, 45–47
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Shock wave interaction, 18–25, 319–
363

blunt fin, 360
compression corner, 22, 307, 319,

321–338
conical similarity, 350
cylindrical similarity, 350
flowfield topology, 350–354
inception region, 350
incident shock, 22, 319, 345
intermittency, 327
line of convergence, 349
line of divergence, 349
rapid distortion, 103–104, 338–344
separation, 323
sharp fin, 348, 356
shock rippling, 23, 340
shock splitting, 23
similarity, 348
skin friction, 323
skin-friction distribution, 323
strong, 323
swept corner, 348, 354
Taylor-Görtler vortices, 336, 337
three-dimensional, 320, 348–363

blunt fin, 360
conical similarity, 350
cylindrical similarity, 350
inception region, 350
sharp fin, 348, 356
similarity, 348
swept corner, 348, 354
turbulence behavior, 358
unsteadiness, 357

three-dimensionality, 327, 337
transonic, 21
turbulence amplification, 23, 321,

334–338, 341
turbulence behavior, 358
two-dimensional, 319–344

compression corner, 319, 321–338
free interaction, 324
incident shock, 319, 345
separation, 323
skin friction, 323
skin-friction distribution, 323

Taylor-Görtler vortices, 336, 337
three-dimensionality, 327
unsteadiness, 321, 325–334, 336,

355
upstream influence, 325

unsteadiness, 23, 321, 325–335, 340,
342, 355, 357

upstream influence, 23, 325
weak, 323
with turbulence, 18

Shock-turbulence interaction, 18
experiments, 342
rapid distortion, 338–344
turbulence amplification, 339, 340,

342
unsteadiness, 342, 344

Shocklets, 12, 17, 92, 107, 110, 117,
120, 147, 161, 170, 215, 269,
335, 343

Skewness, 237
Skin friction

coefficient, 54
compressible Couette flow, 55
power laws, 4, 8, 213, 214
relations, 208–212

compressible, 7, 211
incompressible, 208

Sonic line, 23, 179, 298
Spatial resolution, see Measurement

techniques
Spectra

compressible, 224–229
incompressible, 219–224
inertial subrange, 221
Kolmogorov scales

compressible, 226
incompressible, 221

overlap regions, 221
scaling, 219–229

SRA, see Strong Reynolds Analogy
Stagnation enthalpy, see Total

enthalpy
Stagnation temperature, see Total

temperature
Stanton number, 54
Stokes’s hypothesis, 47, 73
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Streaks, see Organized motions
Stress tensor, 44–47
Strong Reynolds Analogy, 27, 64, 74,

90, 122, 124, 130, 131, 134,
241, 282, 297, 301

use in hot-wire anemometry, 301
Structure angle, 256–258, 260, 304, 305
Structure parameter, 237, 243, 289, 322
Surface flow visualization, kerosene-

graphite technique, 323
Sutherland’s law, 46
Sweeps, see Organized motions

Taylor’s hypothesis, 82, 263
Taylor-Görtler vortices, 207, 298, 309,

336, 337, 354, 363
Temperature equation, 50
Temperature fluctuations, 86–88, 90–

92, 97, 122, 125, 132, 282, 297
total, 32, 125, 129, 130, 132, 134,

242, 296
Temperature-velocity relations, 122–

134, 182, 196
Crocco relation, 55, 129, 292
Crocco relation, modified, 134, 292
mixing layer, 134
perturbed flow, 293
Walz’s equation, 134, 292

Thin shear layer, 69
equations, 69, 180

continuity, 71
mixing layer, 140
momentum, 72
total enthalpy, 77

scales, 70
Three-dimensional flows

isentropic, 346
in-plane curvature, 347, 348

shock wave interactions, 348–363
Time averaging, 61
Total enthalpy, 49, 67

equation, 49
mean flow, 67
thin shear layer, 77

Total stress, 182, 185
Total temperature, 5, 50

definition, 50
overshoot, 123
turbulent, 201, 293

Transformation concepts, 10, 194
Carvin, 202, 210
Fernholz, 195
van Driest, 197, 200, 205, 210

Turbulence
anisotropy, 111
compressibility effects, 85
dissipation, 120

dilatational, 89, 110, 111, 116
fluctuating, 87
function, 49
second, 86–91
solenoidal, 89, 116

Mach number, 343
Mach numbers for, 105–108
modeling, 3, 85, 96, 110, 114, 116,

148, 166, 316, 318
production term, 99
scales, 119
scaling laws, 218–229
spectra, 219–229

Turbulence Mach number, 12, 64, 74–
78, 83, 87, 92, 105, 148, 181,
282

Turbulent flow, equations, see
Equations of motion

Turbulent kinetic energy equation, see
Equations of motion

Turbulent Prandtl number, 122, 127
Turbulent total temperature, 201, 293
Turbulent viscosity, see Eddy viscos-

ity
Typical eddies, see Organized motions

Upstream influence, see Shock wave in-
teraction

Velocity divergence, see Divergence of
fluctuations

Velocity-gradient tensor, 45
Velocity-temperature relations, see

Temperature-velocity relations
Viscosity

bulk, 45, 47
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dynamic, 45
temperature dependence, 6, 46

Viscous sublayer, 182
compressible, 184
incompressible, 183

VITA technique, 247, 305
von Kármán’s constant, 187

for heat, 197
for momentum, 187

Vortex, induced velocity, 59, 93–94, 305
Vorticity, 45, 55

linearized equation for, 81
Vorticity generation, by baroclinic

torques, 339, 340
Vorticity transport equation, 55

Wake function, 202
Wake parameter, 74
Wall pressure fluctuations, 36, 88, 254,

327, 328, 356
measurement, 35, 88

Walz’s equation, 134, 292



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




