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Preface

Mathematics Mechanization onsists of theory, software and application of com-
puterized mathematical activities such as computing, reasoning and discovering.
Its unique feature can be succinctly described as AAA (Algebraization, Algorith-
mization, Application). The name “Mathematics Mechanization” has its origin
in the work of Hao Wang (1960s), one of the pioneers in using computers to do
research in mathematics, particularly in automated theorem proving. Since the
1970s, this research direction has been actively pursued and extensively devel-
oped by Prof. Wen-tsun Wu and his followers. It differs from the closely related
disciplines like Computer Mathematics, Symbolic Computation and Automated
Reasoning in that its goal is to make algorithmic studies and applications of
mathematics the major trend of mathematics development in the information
age.

The International Workshop on Mathematics Mechanization (IWMM) was
initiated by Prof. Wu in 1992, and has ever since been held by the Key Lab-
oratory of Mathematics Mechanization (KLMM) of the Chinese Academy of
Sciences. There have been seven workshops of the series up to now. At each
workshop, several experts are invited to deliver plenary lectures on cutting-edge
methods and algorithms of the selected theme. The workshop is also a forum for
people working on related subjects to meet, collaborate and exchange ideas.

There were two major themes for the IWMM workshop in 2004. The first
was “Constructive and Invariant Methods in Algebraic and Differential Equa-
tions,” or, in short, “Computer Algebra with Applications.” The second was
“Geometric Invariance and Applications in Engineering”(GIAE), or, in short,
“Geometric Algebra with Applications.” The two themes are closely related to
each other. On the one hand, essentially due to the efforts of D. Hestenes and
his followers, recent years have witnessed a dramatic resurgence of the venerable
subject Geometric Algebra (which dates back to the 1870s), with dramatic new
content and applications, ranging from mathematics and physics, to geomet-
ric reasoning, neural networks, robotics, computer vision and graphics. On the
other hand, the rise of computer algebra systems and algorithms has brought
previously infeasible computations, in particular those in geometric algebra and
geometric invariance, within our grasp. As a result, the two intertwined sub-
jects hold a particular fascination, not only for students and practitioners, but
also for mathematicians, physicists and computer scientists working on effective
geometric computing.

Since it is very difficult to put the two major themes into a single conference
without parallel sessions, the organizers decided to split this year’s IWMM work-
shop into two conferences, one for each theme. The first workshop was held in
a beautiful quiet riverside town near Shanghai, called ZhuJiaJiao, from May 19
to 21. The second workshop was held in a glorious conference hall of the Xi’an
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VI Preface

Hotel, Xi’an, from May 24 to 28. Altogether 169 scholars from China, USA, UK,
Germany, Italy, Japan, Spain, Canada, Mexico and Singapore were attracted to
the conferences and presented 65 talks. The following invited speakers presented
the plenary talks:

Wen-tsun Wu (China) Gerald Sommer (Germany)
Peter J. Olver (USA) Alyn Rockwood (USA)
Anthony Lasenby (UK) Joan Lasenby (UK)
Quan Long (Hong Kong, China) Jingzhong Zhang (China)
Neil White (USA) Timothy Havel (USA)
Jose Cano (Spain) Greg Reid (Canada)
Andrea Brini (Italy) Dongming Wang (China & France)
Xiaoshan Gao (China) William Chen (China)
Hongqing Zhang (China) Ke Wu (China)

The two conferences were very successful, and the participants agreed on the
desirability of publication of the postproceedings by a prestigious international
publishing house, these proceedings to include the selected papers of original
and unpublished content. This is the background to the current volume.

Each paper included in the volume was strictly refereed. The authors and
editors thank all the anonymous referees for their hard work. The copyediting of
the electronic manuscript was done by Ms. Ronghua Xu of KLMM. The editors
express their sincere appreciation for her dedication.

It should be emphasized that this is the first volume to feature the combina-
tion and interaction of the two closely related themes of Computer Algebra and
Geometric Algebra. It is the belief of the editors that the volume will prove to be
valuable for those interested in understanding the state of the art and for further
combining and developing these two powerful tools in geometric computing and
mathematics mechanization.

Beijing, Minneapolis, Kiel Hongbo Li
March 2005 Peter J. Olver

Gerald Sommer
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On Wintner’s Conjecture About Central
Configurations

Wen-tsun Wu

Mathematics Mechanization Key Laboratory,
Academy of Mathematics and Systems Science,

Chinese Academy of Sciences,
Beijing 100080, P. R. China

Abstract. According to Wintner, the study of central configurations in
celestial mechanics may be reduced to an extremality problem. Wintner’s
Conjecture amounts to saying that the corresponding extremal zeroes for
each fixed number n of different masses is finite. By the author’s Finite
Kernel Theorem it follows that the corresponding number of extremal
values is finite for each fixed n. Thus, Wintner’s Conjecture will be true
or false according to whether there will be only a finite number of ex-
tremal zeroes or not. This gives thus a new way of attacking Wintner’s
Conjecture.

Keywords: Celestial Mechanics, Central Configurations, Wintner’s Con-
jecture, Extremal Values, Extremal Zeroes, Finite Kernel Theorem.

The determination of central configurations in astromechanics is a fascinating
problem since the time of Euler and Lagrange. In fact, Euler had shown that for
three arbitrarily given distinct masses, there exist exactly three distinct collinear
central configurations, and Lagrange had shown that the equilateral triangle and
only the equilateral triangle is a non-collinear central configuration for three
arbitrary masses. In the last century Moulton had proved that for arbitrary n
distinct masses the number of collinear central configurations is n! or n!/2, cf.
[1]. In more recent time, A. Wintner had shown that, for four masses the regular
tetrahedron and only the regular tetrahedron is a non-flat central configuration.
Wintner had even announced a conjecture to the effect that for arbitrarily fixed
number n of masses, the number of possible central configurations is always
finite. This conjecture had resisted all attacks by quite a number of specialists,
including e.g. Smale and his followers by some topological method created ad
hoc, cf. [5, 6] and [2].

The actual determination of central configurations for a fixed n is not simple.
Thus, in the literature there are only sporadic results of not great significance.
In the nineties of the last century the present author had formulated a method
of the determination of central configurations in reducing it to the solving of a
system of polynomial equations under restrictions also in the form of polynomial
equations. It is applied to give an alternative proof of theorems of Euler and
Lagrange that the central configurations found by them are the only possible

H. Li, P. J. Olver and G. Sommer (Eds.): 2004, LNCS 3519, pp. 1–4, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 W.-t. Wu

ones for n = 3, cf. [9]. In recent years H. Shi and others had applied this method
to find various central configurations of special types for n ≥ 4, cf. their papers,
[3, 4, 11].

What is of great significance is this: Wintner in his classic on celestial me-
chanics, viz. [8], had shown that the central configurations are in correspondence
with the extremal zeroes of some extremalization problem of rational function
type and hence also of polynomial type. In applying the Finite Kernel Theorem,
(cf. [10], Chap. 5, §5) on such extremality problems, we know that the extremal
values of such problems are necessarily finite in number. If it can be shown that
for each extremal value there can only be associated a finite number of extremal
zeroes, then the total number of extremal zeroes of the problem will be finite,
which is just the Wintner Conjecture in question. In any way the above gives an
alternative method to attack the interesting and difficult conjecture of Wintner.

To begin with, let us first recall the definition of Central Configuration. Thus,
let t be the time which is supposed to be fixed, and mi, (i = 1, · · · , n) be n masses
in question. Let us take a barycentric coordinate system with the center of mass
of the system {m1, · · · ,mn} at the origin (see §322 of [8], similar for references
below). With respect to such a barycentric coordinate system let ξi = (xi, yi, zi)
be the barycentric position of mi, (i = 1, · · · , n). Set

ρjk = |ξj − ξk| = [(xj − xk)2 + (yj − yk)2 + (zj − zk)2]
1
2 . (1)

Then the potential energy of the system is given by

U =
Σ1≤j<k≤nmjmk

ρjk
. (2)

The Newtonian force acting on the mass mi is then given by

Uξi
= (Uxi

, Uyi
, Uzi

), (3)

in which Uxi
= ∂U

∂xi
, etc.

By Wintner’s definition, the system {mi, ξi|i = 1, · · · , n} is said to form
a Central Configuration if the force of gravitation acting on each mi, ξi is
proportional to both the mass mi and the barycentric position vector ξi, i.e.,

Uξi
= σmiξi, for i = 1, · · · , n, (4)

where σ is some scalar independent of i.
It is proved by Wintner that

σ = −U

J
, (5)

in which (§322 bis)

J =
1
μ

Σ1≤j<k≤nmjmkρ2
jk, μ = Σi=1,···,nmi. (6)
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Wintner proved further (§355) that (4), (5), (6), are equivalent to the follow-
ing equation:

JUξi
= −1

2
UJξi

, i.e. (JU2)ξi
= 0, for i = 1, · · · , n. (7)

He further proved (§355, 357) that the system is a central configuration if and
only if

(JU2)ρik
+ Σsχs(Rs)ρik

= 0, for 1 ≤ i < k ≤ n, (8)

in which the χs’s are the Lagrangian multipliers and

Rs(ρ12, · · · , ρn−1,n) = 0, for s = 1, · · · , p (9)

are the necessary geometrical relations among the distances ρik for n ≥ 4 in
planar case and n ≥ 5 in spatial case.

In other words, the system {mi, ξ} forms a central configuration if and only
if

JU2 = Extremum (10)

under the restrictions (9).
The Wintner’s conjecture is thus reduced to the extremum problem (10) under

the restricted conditions (9) which are equations in rational functions of various
variables involved. We hope that our Finite Kernel Theorem of the present author
concerning extremum problems of such type may be useful to arrive at a final
proof of Wintner Conjecture, as indicated in the beginning of the present
paper.
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Polynomial General Solutions for First Order
Autonomous ODEs�

Ruyong Feng and Xiao-Shan Gao

Key Laboratory of Mathematics Mechanization,
Institute of Systems Science,AMSS, Academia Sinica,

Beijing 100080, P. R. China

Abstract. For a first order autonomous ODE, we give a polynomial
time algorithm to decide whether it has a polynomial general solution
and to compute one if it exists. Experiments show that this algorithm is
quite effective in solving ODEs with high degrees and a large number of
terms.

1 Introduction

To find elementary function solutions for differential equations could be traced
back to the work of Liouville. As a consequence, such solutions of differential
equations are called Liouvillian solutions. In [16], Risch gave an algorithm for
finding Liouvillian solutions for the simplest differential equation y′ = f(x), that
is, to find elementary function solutions to the integration

∫
f(x)dx. Kovacic pre-

sented a method for solving second order linear homogeneous differential equa-
tions [13]. Singer established the general framework to find Liouvillian solutions
of general homogeneous linear differential equations [18]. Many interesting results
on finding Liouvillian solutions of linear ODEs are given in [1, 2, 3, 6, 11, 20, 19].
In [14], Li and Schwarz gave the first method to find rational solutions for a class
of partial differential equations.

All these results are limited to linear cases. There seems no general methods
to find Liouvillian solutions of nonlinear differential equations. With respect to
ODEs of the form y′ = R(x, y) where R(x, y) is a rational function, Poincaré
made important contributions [15]. More recently, Carnicer also made important
progresses in solving the Poincaré problem [5], which is equivalent to finding the
degree bound for the algebraic solutions of y′ = R(x, y). For ODEs of this form,
other work includes: Cano proposed an algorithm to find polynomial solutions
[4]; Singer studied the Liouvillian first integrals [18]. On the other hand, Hubert
gave a method to compute a basis of the general solutions of first order ODEs
and applied it to study the local behavior of the solutions[10]. Bronstein gave
an effective method to compute rational solutions of Ricatti equations [2]. In [9],
we propose an algorithm to find rational solutions for first order autonomous
ODEs. But this algorithm has exponential complexity.

� Partially supported by NKBRP of China and by a USA NSF grant CCR-0201253.

H. Li, P. J. Olver and G. Sommer (Eds.): 2004, LNCS 3519, pp. 5–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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6 R. Feng and X.-S. Gao

In this paper, we will give a polynomial time algorithm to find polynomial
solutions of first order autonomous ODEs. Instead of finding arbitrary polyno-
mial solutions, we will find the general solutions for ODEs of polynomial type.
For example, the general solution for (dy

dx )2 − 4y = 0 is: y = (x + c)2, where c
is an arbitrary constant. Three main results are given in this paper. First, we
give a sufficient and necessary condition for an ODE to have polynomial general
solutions. Second, we give a detailed analysis of the structure of the first order
autonomous ODEs which have polynomial general solutions. This leads to an al-
most explicit formula for the polynomial solutions of the first order autonomous
ODE. Third, by introducing a novel method of substituting a polynomial solution
into a first order ODE, we get a polynomial time algorithm to find polynomial
general solutions of first order autonomous ODEs. Our experiments show that
this algorithm is quite effective in solving ODEs with high degree and a large
number of terms.

The paper is organized as follows. In section 2, a criterion for an ODE to
have polynomial general solutions is given. In section 3, we give the degree
bound of polynomial solutions of first order autonomous ODEs. In section 4, we
analyze the structure of the first order autonomous ODEs which have polynomial
solutions. In section 5, we present a polynomial time algorithm to find polynomial
general solutions of first order autonomous ODEs. In section 6, we present the
conclusion.

2 Polynomial General Solution to ODEs

Let K = Q(x) be the differential field of rational functions in x with differential
operator d

dx and y an indeterminate over K. We denote by yi the i-th derivative
of y. We use K{y} to denote the ring of differential polynomials over the differ-
ential field K, which consists of the polynomials in the yi with coefficients in K.
All differential polynomials in this paper are in K{y}, if there is no other state-
ment. Let Σ be a system of differential polynomials in K{y}. A zero of Σ is an
element in a universal extension field of K [17], which vanishes every differential
polynomial in Σ. The totality of the zeros in K is denoted by Zero(Σ). In this
paper, we will use C to denote the constant field of the universal extension of K.

Let P ∈ K{y}/K. We denote ord(P ) the highest derivative of y in P , called
the order of P . Let o = ord(P ) > 0 be the order of P . We may write P as follows

P = ady
d
o + ad−1y

d−1
o + . . . + a0

where ai are polynomials in y1, . . . , yo−1 for i = 0, . . . , d and ad �= 0. ad is called
the initial of P and S = ∂P

∂yo
is called the separant of P . The k-th derivative of

P is denoted by P (k). Let S be the separant of P , o = ord(P ) and k > 0. Then
we have

P (k) = Syo+k − Rk (1)

where Rk is of lower order than o + k.
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Let P be a differential polynomial of order o. A differential polynomial Q is
said to be reduced with respect to P if ord(Q) < o or ord(Q) = o and deg(Q, yo) <
deg(P, yo). For two differential polynomials P and Q, let R = prem(P,Q) be the
differential pseudo-remainder of P with respect to Q. We have the following
differential remainder formula for R (see [12, 17])

JP =
∑

i

BiQ
(i) + R

where J is a product of certain powers of the initial and separant of Q and Bi

are differential polynomials. For a differential polynomial P with order o, we say
that P is irreducible if P is irreducible when P is treated as a polynomial in
K[y, y1, . . . , yo].

Let P ∈ K{y}/K be an irreducible differential polynomial and

ΣP = {A ∈ K{y}|prem(A,P ) = 0}. (2)

In [17], Ritt proved that

Lemma 1. ΣP is a prime differential ideal.

Let Σ be a non-trivial prime ideal in K{y}. A zero η of Σ is called a
generic zero of Σ if for any differential polynomial P , P (η) = 0 implies that
P ∈ Σ. It is well known that an ideal Σ is prime iff it has a generic zero
[17].

A universal constant extension of Q is obtained by first adding an infinite
number of arbitrary constants to Q and then taking the algebraic closure. We
further assume that the universal field in this paper contains a universal constant
extension of Q.

Definition 1. Let F ∈ K{y}/K be an irreducible differential polynomial. A
general solution of F = 0 is defined as a generic zero of ΣF . A polynomial
general solution of F = 0 is defined as a general solution of F = 0 of the form

ŷ =
n∑

i=0

aix
i, (an �= 0) (3)

where ai are in a universal constant extension of Q.

Example 1. In this example, we give three ODEs Ei = 0 which have polynomial
general solutions Si = 0 respectively.

E1 = y2
1 − 4y S1 = (x − c)2

E2 = xy1 − ny S2 = cxn

E3 = y1(y1 − 1)(y1 − 2) − (xy1 − y)2 S3 = cx +
√

c(c − 1)(c − 2)

where c is an arbitrary constant and n is a fixed positive integer.
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In the literature in general, a general solution of F (y) = 0 is defined as
a family of solutions with o independent parameters in a loose sense where
o = ord(F (y)). From Theorem 6 in [12] (Chapter 2, section 12), we can see that
the above definition of general solutions are essentially the same to the definition
in the literature. But, the definition given by Ritt is more precise.

Theorem 1. Let F (y) be an irreducible differential polynomial. Then F (y) = 0
has a polynomial general solution of degree n iff n is the least integer such that
prem(yn+1, F (y)) = 0.

Proof. (=⇒) Suppose that F (y) = 0 has a polynomial general solution ŷ with
degree n. Since yn+1(ŷ) = 0, yn+1 ∈ ΣF which means that prem(yn+1, F (y)) = 0
by Lemma 1.

(⇐=) Assume that there exists an n such that prem(yn+1, F (y)) = 0 and n
is the least. If n = −1, then F (y) = y. It is obvious. Now we suppose that n ≥ 0.
From Lemma 1, yn+1 ∈ ΣF . Hence, all the elements in the zero set of ΣF must
have the form: ȳ =

∑n
i=0 āix

i. In particularly, the generic zero ŷ has the form:
ŷ =

∑n
i=0 aix

i. If an = 0, then yn(ŷ) = 0 which implies that yn ∈ ΣF . Hence
prem(yn, F (y)) = 0, a contradiction.

3 A Criterion for First Order Autonomous ODEs

In what follows, if there is no other statement, F (y) will always be a non-zero
first order irreducible differential polynomial with coefficients in C which are not
arbitrary constants.

Lemma 2. Let ȳ =
∑n

i=0 āix
i be a solution of F (y) = 0, where āi ∈ C, n > 0

and ān �= 0. Then for an arbitrary constant c,

ŷ =
n∑

i=0

āi(x + c)i (4)

is a polynomial general solution for F (y) = 0.

Proof. It is easy to show that ŷ is still a zero of ΣF . For any G(y) ∈ K{y}
satisfying G(ŷ) = 0, let R(y) = prem(G(y), F (y)). Then R(ŷ) = 0. Suppose that
R(y) �= 0. Since F (y) is irreducible and deg(R(y), y1) < deg(F (y), y1), there
are two differential polynomials P (y), Q(y) ∈ K(ck,l){y} such that P (y)F (y) +
Q(y)R(y) ∈ K(ck,l)[y] and P (y)F (y) + Q(y)R(y) �= 0 where ck,l are the coef-
ficients of F as a polynomial in y, y1. Thus (PF + QR)(ŷ) = 0. Because c is
an arbitrary constant which is transcendental over K(ck,l) and n > 0, we have
P (y)F (y) + Q(y)R(y) = 0, a contradiction. Hence R(y) = 0 which means that
G(y) ∈ ΣF . So ŷ is a generic zero of ΣF .

The above theorem reduces the problem of finding a polynomial general so-
lution to the problem of finding a polynomial solution. In what below, we will
show how to find such a solution.
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Lemma 3. Suppose that deg(F (y), y1) = m > 0. If ȳ =
∑n

i=0 āix
i (āi ∈ C, ān �=

0) is a solution of F (y) = 0, then n ≤ m.

Proof. Assume that F (y) =
∑l

i=0 cαiβi
yαiyβi

1 , where cαiβi
�= 0 and (αi, βi) �=

(αj , βj) if i �= j. Substituting y in F (y) by ȳ =
∑n

i=0 āix
i, we get a polynomial

F (ȳ) in x. Assume that n > m > 0. Then n ≥ 2. We consider the highest degree
of x in F (ȳ) which is the largest number in {nαi + (n − 1)βi for i = 0, · · · , l}.
If ȳ is a solution of F (y) = 0, all the coefficients of F (ȳ) are zero. Hence the
number of the terms yαiyβi

1 such that nαi + (n − 1)βi is the largest is at least
two. Without loss of generality, we suppose that two of them are nα1 +(n−1)β1

and nα2 + (n− 1)β2. Then we have n(α1 −α2) = (n− 1)(β2 − β1). Assume that
β2 ≥ β1. Since (n, n − 1) = 1, we have n|(β2 − β1). But 0 ≤ β2 − β1 ≤ m < n,
which implies that β1 = β2. Hence α1 = α2. This contradicts (α1, β1) �= (α2, β2).
Hence n ≤ m.

The following theorem gives a criterion for F (y) = 0 to have polynomial
general solutions.

Theorem 2. Let F (y) be a first order autonomous and irreducible differential
polynomial and n = deg(F (y), y1). Then F (y) = 0 has a polynomial general
solution iff prem(yn+1, F (y)) = 0.

Proof. From Lemma 2, we need only to consider polynomial solutions of F (y) =
0 with coefficients in C. Now the result is a direct consequence of Lemma 3 and
Theorem 1.

Algorithm 1. The input is a first order autonomous ODE F (y) = 0. The output
is a polynomial general solution of F (y) = 0 if it exists.

1. Let n be the degree of F (y) in y1. If prem(yn+1, F (y)) �= 0 then F (y) = 0 has
no polynomial solutions and the algorithm exists; otherwise goto the next
step.

2. Let d be the smallest number such that prem(yd+1, F (y)) = 0. By Theorem
1, the polynomial solution of F (y) = 0 is of degree d.

3. Substitute z = adx
d + ad−1x

d−1 + · · · + a1x + a0 into F (y) = 0 and let PS
be the set of the coefficients of F (z) as polynomials in x.

4. Solve equations PS = 0 with Wu’s method [22]. Any solution with ad �= 0
of PS = 0 will provide a polynomial general solution of F (y) = 0. If PS = 0
has no solutions, then F (y) = 0 has no polynomial general solutions.

Now we give a simple example to show how the algorithm works.

Example 2. Consider the equation

F (y) = 31 − 54y + 27y2 − 3y2
1 − y3

1 .

1. n := 3. Since four is the smallest number k such that prem(yk, F (y)) = 0,
F (y) = 0 has a polynomial general solution with degree three.
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2. y := a0 + a1x + a2x
2 + a3x

3. Substituting y into F (y), we get PS =

{ 27a2
3 − 27a3

3, 54a2a3 − 54a2a
2
3,

54a1a3 + 27a2
2 − 27a2

3 − 9a1a
2
3 − 24a2

2a3 − 3a3(6a1a3 + 4a2
2),

−54a3 + 54a0a3 + 54a1a2 − 36a2a3 − 24a1a2a3 − 2a2(6a1a3 + 4a2
2),

−54a2 + 54a0a2 + 27a2
1 − 18a1a3 − 12a2

2 − a1(6a1a3 + 4a2
2) − 8a2

2a1 − 3a3a
2
1,

−54a1 + 54a0a1 − 12a1a2 − 6a2
1a2, 31 − 54a0 + 27a2

0 − 3a2
1 − a3

1 }.

3. Solve PS = 0. We have the solutions

{a3 = 1, a1 =
a2
2

3
+ 1, a0 = 1 +

a2

3
+

a3
2

27
, a2 = a2}.

Let a2 = 0. Then F (y) = 0 has a polynomial general solution

ŷ = (x + c)3 + (x + c) + 1

by Lemma 2.

It is known that the general methods of equation solving are exponential
algorithms. Therefore, the above algorithm might be ineffective. In the next
section, we will analyze the structure of the first order autonomous ODEs which
have polynomial solutions. After doing so, we can obtain a polynomial time
algorithm.

4 Structure of the First Order Autonomous ODEs with
Polynomial General Solutions

If ȳ =
∑n

i=0 āix
i is a polynomial solution of F (y) = 0, we regard x, y, y1 as

independent indeterminants and eliminate x in the polynomial set {
∑n

i=0 āix
i −

y,
∑n

i=1 iāix
i−1 − y1}. Then we will obtain a new differential polynomial R(y).

Theorem 3 below will give the relation between R(y) and F (y).

Lemma 4. Let f1(y) =
∑n

i=0 āix
i − y, f2(y) =

∑n
i=1 iāix

i−1 − y1 (n ≥
1, ān �= 0, āi ∈ C). If n ≥ 2, let R(y) be the Sylvester-resultant of f1(y) and f2(y)
with respect to x and if n = 1, let R(y) = f2(y). Then R(y) is an irreducible
polynomial in C[y, y1] and has the form

R(y) = (−1)nān−1
n yn

1 + (−1)n−1nnān
nyn−1 + G(y, y1) (5)

where tdeg(G) (the total degree of G) ≤ n − 1 and G does not contain the term
yn−1.

Proof. When n = 1, it is clear. Assume that n ≥ 2. We know that R(y) is the
following determinant which has 2n-1 columns and rows:
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∣∣∣∣∣∣∣∣∣∣

ān ān−1 ān−2 · · · ā1 ā0 − y
ān ān−1 · · · ā2 ā1 ā0 − y

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ān ān−1 ān−2 · · · ā1 ā0 − y

nān (n − 1)ān−1 (n − 2)ān−2 · · · ā1 − y1
nān (n − 1)ān−1 · · · ā2 ā1 − y1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
nān (n − 1)ān−1 (n − 2)ān−2 · · · ā2 ā1 − y1

∣∣∣∣∣∣∣∣∣∣
.

Regard āi in the above determinant as indeterminants. Let R =
∑

cαiβi
yαiyβi

1 ,
where (αi, βi) �= (αj , βj) if i �= j and cαiβi

are non-zero polynomials in ā0, · · · , ān.
We define a weight

w : C[x, y, y1, āi] → Z
which satisfies w(x) = 1, w(āi) = n − i, w(y) = n, w(y1) = n − 1, w(st) =
w(s) + w(t) and w(k) = 0 for k ∈ C. Then f1 and f2 are the isobaric poly-
nomials with the weight n and n − 1. From [7], we know that the resultant of
two homogeneous polynomials is still homogeneous. By the same way, we can
show that the resultant of two isobaric polynomials with the weight n and n− 1
is still an isobaric polynomial with weight n(n − 1). Hence R(y) is an isobaric
polynomial with the weight n(n − 1). We have w(yαiyβi

1 ) = nαi + (n − 1)βi =
αi +(n−1)(αi +βi) ≤ n(n−1), which implies if αi > 0 then we have αi +βi < n.
By the computation of the above determinant, the coefficients of yn

1 and yn−1

in R(y) are (−1)nān−1
n and (−1)n−1nnān

n. Then the form of R(y) is as (5).
In the following, we take āi as complex numbers. If R(y) is reducible, we

assume that R(y) = F1(y)F2(y), where 0 < tdeg(F1(y)), tdeg(F2(y)) < n. Since
R(y) = P (y)f1(y) + Q(y)f2(y), where P (y), Q(y) are two differential polynomi-
als, we have R(ȳ) ≡ 0 which implies that F1(ȳ) = 0 or F2(ȳ) = 0. But we know
that it is impossible by Lemma 3, because deg(F1(y), y1), deg(F2(y), y1) < n, a
contradiction.

Theorem 3. Use the same notations as in Lemma 4. If ȳ =
∑n

i=0 āix
i is a

polynomial solution of F (y) = 0, then R(y)|F (y). Since F (y) is irreducible,
F (y) = λR(y), where λ ∈ C and λ �= 0.

Proof. From Lemma 3 and Lemma 4, we know deg(F (y), y1) ≥ n = deg(R(y), y1).
Let T (y) = prem(F (y), R(y)). Then we have the remainder formula J(y)kF (y) =
Q(y)R(y) + T (y), where Q(y), T (y) ∈ C[y, y1] , J(y) is the initial of R(y) and
deg(T (y), y1) < deg(R(y), y1). Since F (ȳ) = 0 and R(ȳ) = 0, we have T (ȳ) = 0.
By Lemma 3, T (y) = 0. That is J(y)kF (y) = Q(y)R(y) which implies that
R(y)|F (y) because R(y) is irreducible. Since F (y) is irreducible, it is clear that
F (y) = λR(y) where λ ∈ C and λ �= 0.

From Lemma 4 and Theorem 3, if F (y) has a polynomial solution ȳ =∑n
i=0 āix

i, it must be of the following form

F (y) = ayn
1 + byn−1 + G(y, y1) (6)
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where a, b ∈ C are not zero, tdeg(G) ≤ n−1 and G does not contain the term
yn−1.

As a consequence of Theorem 3 and Lemma 4, we have
Corollary 1. Let F (y) be of the form (6) and have a polynomial solution of the
form (4). Then

ān = − b

nna
. (7)

Lemma 5. Let F (y) be of the form (6) and have a polynomial general solution
of the form (4). Then we may construct a new general solution of the following
form for F (y) = 0

ŷ = ān(x + c)n +
n−2∑
i=0

ãi(x + c)i. (8)

In other words, we may assume that ān−1 = 0 in the general solution of F (y) = 0.

Proof. It is clear that

ŷ = ān(x + c − ān−1

nān
)n +

n−2∑
i=0

ãi(x + c − ān−1

nān
)i.

Since c− ān−1
nān

is still an arbitrary constant, replacing c− ān−1
nān

by c in the above
equation, we get the form (8) and it is still a general solution of F (y) = 0.

The following theorem tells us that the value of āk only depends on the values
of āi for i ≥ k if F (y) = 0 has polynomial general solutions.

Lemma 6. Let F (y) be of the form (6) and z = (−b/nna)xn + an−1x
n−1 +

an−2x
n−2 + · · · + a0 where ai are indeterminants. Substituting y by z in F (y),

the coefficients of x(n−1)2+i−1 in F (z) are of the following form

(
−b

nna
)n−2(n − 1 − i)bai + hi(an−1, · · · , ai+1), for i = n − 2, · · · , 0 (9)

where hi(an−1, · · · , ai+1) are the polynomials in an−1, · · · , ai+1.

Proof. Let Ci be the coefficient of x(n−1)2+i−1 in F (z) for i = 0, · · · , n− 2 where

F (z) = azn
1 + bzn−1 + G(z, z1).

As in the proof of Lemma 4, we define a weight w. Then z = (−b/nna)xn +
an−1x

n−1 + · · · + a0 is an isobaric polynomial with the weight n. Hence zαj z
βj

1

is still an isobaric polynomial with the weight nαj + (n− 1)βj . Now we consider
Ci. By computation, we know that the highest weight of the terms in F (z) is
n(n− 1). Hence the highest weight in Ci is not greater than n− i. So ak can not
appear in Ci for k ≤ i − 1 and if ai appears in Ci, then it must be linear and its
coefficient must be constant. In the coefficients of x(n−1)2+i−1 in azn

1 + bzn−1,
the term in which ai appears are ( −b

nna )n−1innaai + ( −b
nna )n−2(n − 1)bai. In the

coefficients of x(n−1)2+i−1 in G(z, z1), since the weight of each term is less than
n − i (for tdeg(G) < n), ai can not appear. Therefore Ci has the form (9).
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5 A Polynomial-Time Algorithm

From the results in section 4, we have the following algorithm.

Algorithm 2. The input is F (y). The output is a polynomial general solution
of F (y) = 0 if it exists.

1. If F (y) can be written as the form (6), then goto step 2. Otherwise, by
Theorem 3, F (y) = 0 has no polynomial general solutions and the algorithm
terminates.

2. Let F (y) be of degree n in y1. Let ān = − b
nna , ān−1 = 0,

āi = − hi(ān−1,···,āi+1)
(−b/nna)n−2(n−1−i)b , i = n−2, · · · , 0, where hi are from Lemma 6. We

have āi ∈ C.
3. Let ȳ =

∑n
i=0 āix

i. If F (ȳ) ≡ 0 then ŷ =
∑n

i=0 āi(x + c)i is a polynomial
general solution of F (y) = 0. Otherwise, F (y) = 0 has no polynomial general
solutions.

The correctness of Step 3 is due to the following facts. By Corollary 1,
Lemmas 5 and 6, if F (y) = 0 has polynomial general solutions, then ŷ =∑n

i=0 āi(x + c)i must be such a solution. By Lemma 2, to check wether ŷ is
a polynomial general solution we need only to check whether ȳ is a solution of
F (y) = 0.

Now we give some examples.

Example 3. Consider the differential polynomial:

F (y) = y1
4 − 8 y1

3 + (6 + 24 y) y1
2 + 257 + 528 y2 − 256 y3 − 552 y.

1. F (y) can be written as the form:

F (y) = y1
4 − 256 y3 + G(y, y1)

where

G(y, y1) = −8 y1
3 + (6 + 24 y) y1

2 + 257 + 528 y2 − 552 y,

tdeg(G) ≤ 3.
2. If F (y) = 0 has a polynomial general solution, then its degree is four and

the coefficient of x4 must be a4 = 256
44 = 1.

3. Let z = x4 + a2x
2 + a1x + a0. Replacing y by z in F (y) and collecting the

coefficients of x8, x9, x10, we obtain the following equations:

768 a2 + 528 − 384 a2
2 − 768 a0 = 0,

−512 − 512 a1 = 0,
384 − 256 a2 = 0.

Solving the above equations, we have a0 = 17
16 , a1 = −1, a2 = 3

2 .
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4. Let ȳ = x4 + 3
2x2 − x + 17

16 . Substituting y by ȳ in F (y), F (y) becomes zero.
Hence a polynomial general solution of F (y) = 0 is

ȳ = (x + c)4 +
3
2
(x + c)2 − (x + c) +

17
16

.

In Step 2 of Algorithm 2, we need to compute F (z) where z = − b
nnaxn +

an−1x
n−1 + · · · + a0 and ai are indeterminants. A naive method of doing this

evaluation is very costly. In order to give a polynomial-time algorithm, we need
to give an efficient algorithm for Step 2. From Theorem 6, to compute the value
of āk, we need only to compute hk(ān−1, · · · , āk+1). In other words, we need only
to compute F (z̄) where z̄ =

∑n
k+1 āix

i and āi ∈ C. Moreover, we need only to
compute the coefficient of x(n−1)2+k−1 in F (z̄). To compute F (z̄), we need to
compute multiplication of two univariate polynomials which can be computed
by the classical Karatsuba method ([21]).

Algorithm 3. The inputs are F (y) as the form (6) and z̄ = ānxn + · · · + ā0

where āi ∈ C. The output is the coefficient of x(n−1)2+k−1 in F (z̄) for some k.

1. Compute z̄n and z̄n−1
1 where z̄1 is the derivative of z̄ wrt x. We compute z̄n

step by step. That is, we compute z̄2 first, then compute the multiplication of
z̄2 and z̄, and so on. Note that, after we computed z̄n, we have also obtained
z̄i for i < n. For z̄n−1

1 , we compute it in the same way.
2. Write F (y) as the form: F (y) =

∑n
i=0(d0,i +d1,iy+ · · ·+dn−i,iy

n−i)yi
1 where

di,j ∈ C.
3. For i from 0 to n, compute pi = d0,i + d1,iz̄ + · · · + dn−i,iz̄

n−i.

4. result:=0.
For j from 0 to n
For i from 0 to (n − 1)2 + k − 1
result:=result+coeff(pj , x, i)∗coeff(yj

1, x, (n − 1)2 + k − 1 − i)
where coeff(p, x, k) means the coefficient of xk in p.

5. return(result).

Example 4. Let F (y) be as in Example 3 and z̄ = x4. Now we compute the
coefficient of x10 in F (z̄).

1. z̄ := x4, z̄2 := x8, z̄3 := x12.
z̄1 := 4x3, z̄2

1 := 16x6, z̄3
1 := 64x9, z̄4

1 := 256x12.
2.

p0 := 257 + 528 z̄2 − 256 z̄3 − 552 z̄ = 257 − 552x4 + 528x8 − 256x12,

p1 := 0, p2 := 6 + 24z̄ = 6 + 24x4, p3 := −8, p4 := 1.

3. result:=coeff(p2, x, 4)*coeff(z̄2
1 , x, 6)=24*16=384. Because for other i, j,

coeff(pj , x, i)*coeff(z̄j
1, x, 10 − i)= 0.
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Since multiplication is the dominant factor for the running time of the algo-
rithm, we will use the number of multiplications of rational numbers to measure
the complexity of the algorithm. In Algorithm 3, the complexity of Step 1 is
O(n4). The complexity of Step 2 is O(n2). The complexity of Step 3 is O(n4).
The complexity of Step 4 is O(n3). Hence the complexity of Algorithm 3 is
O(n4).

Algorithm 4. The inputs are F (y) as the form (6) and z = anxn +an−1x
n−1 +

· · ·+ a0 where ai are interminates. The output is āi for i = n, · · · , 0 in Step 2 of
Algorithm 2.

1. Let ān = − b
nna , ān−1 = 0.

2. Let i = n − 2.
while i ≥ 0 do
(a) ȳ := ānxn + · · · + āi+1x

i+1.
(b) Ci :=the coefficient of x(n−1)2+i−1 in F (ȳ) by Algorithm 3.
(c) āi := − Ci

(−b/nna)n−2(n−1−i)b .
(d) i := i − 1.

Example 5. (Example 3 continued)

1. n := 4, a := 1, b := −256.
2. ā4 := 1, ā3 := 0.
3. ȳ := x4. Substitute ȳ into F (y).
4. Then by Algorithm 3, the coefficient of x10 in F (x4) equals to 384. That is,

C2 = 384.
5. ā2 := − 384

−256 = 3
2 which equals to a2 in Example 3. The other coefficients

can be computed similarly.

It is easy to know that the complexity of Algorithm 4 is O(n5). In Step 3 of
Algorithm 2, we verify whether ȳ is a polynomial solution of F (y) = 0. If ȳ is
not a polynomial solution of F (y) = 0, that is F (ȳ) �= 0, then F (ȳ) will be a
polynomial in x with degree not greater than n(n− 1). Hence, if F (ȳ) �= 0, then
F (ȳ) = 0 as an equation in x has n(n − 1) roots at most. So we can verify it by
numerical computation. If F (ȳ)(k) = 0 for k = −n(n−1)

2 ,−n(n−1)
2 +1, · · · , n(n−1)

2 ,
then F (ȳ) = 0. Otherwise, F (ȳ) �= 0.

Algorithm 5. The inputs are F (y) as the form (6) and ȳ =
∑n

i=0 āix
i as in

Algorithm 2. The output is “Yes” or “No” where “Yes” means ȳ is a solution of
F (y) = 0 and “No” means ȳ is not a solution of F (y) = 0.

1. Write F (y) as the form: F (y) =
∑n

j=0(d0,j + d1,jy + · · · + dn−j,jy
n−j)yj

1

where di,j ∈ C.
2. For k from −n(n − 1)/2 to n(n − 1)/2

(a) Substitute xi by ki in ȳ and ȳ1. Then we get the values of ȳ and ȳ1 at
k, which are denoted by ȳ(k) and ȳ1(k). Compute ȳ1(k)i and ȳ(k)i for
i = 1 · · ·n in the same way as Step 1 of Algorithm 3.
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(b) result:=0.
For j from 0 to n, compute pj(k) = d0,j + d1,j ȳ(k) + · · · + dn−j,j ȳ(k)j ,
result:=result+pj(k)ȳ1(k)j .

(c) If result�= 0 then return(No).
3. return(Yes).

It is easy to check that the complexity of Algorithm 5 is O(n3). So we have
the following theorem.

Theorem 4. We can decide whether F (y) = 0 has a polynomial general so-
lution and compute one if it exists with O(n5) multiplications of rational
numbers.

6 Conclusion

We have implemented the algorithms in Maple. The software is available at
http://www.mmrc .iss.ac.cn/˜ xgao/software.html. In Table 1, we present the
statistic results of running our algorithm for twenty differential equations, which
could be found in [8]. We only give the total degrees and numbers of terms in
these differential equations. In Table 1, Fi and Gi denote the differential equa-
tions. Here, the coefficients of Fi and Gj are integers. The coefficients of Fi are
less than 106 but that of Gj may be very large. The running time is in sec-
onds. The column of “solution” means whether they have a polynomial general
solution or not. The running time is collected on a computer with Pentium 4,
2.66GHzCPU and 256M memory.

From the experimental results, we could conclude that the algorithm can be
used to find polynomial solutions for very large ODEs efficiently. Recently, we
have extended the method proposed in this paper to find rational and algebraic
solutions of first order autonomous ODEs. It is interesting to see whether the
result can be extended to the case when the coefficients of first order ODEs are
not constant.

Table 1. Statistics on Algorithm2

tdegree term time(s) solution tdegree term time(s) solution

G6 6 17 0.077 Y F6 6 22 0.063 N
G7 7 22 0.125 Y F7 7 28 0.266 N
G8 8 30 0.312 Y F8 8 37 1.141 N
G9 9 38 1.468 Y F9 9 45 3.500 N
G10 10 47 8.108 Y F10 10 55 10.656 N
G11 11 57 16.062 Y F11 11 60 31.345 N
G12 12 68 34.250 Y F12 12 74 70.438 N
G13 13 80 78.203 Y F13 13 80 148.984 N
G14 14 93 178.469 Y F14 14 90 273.065 N
G15 15 106 306.250 Y F15 15 110 434.514 N
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Fac. de Ciencias, Universidad de Valladolid, Spain

jcano@agt.uva.es

Abstract. We prove that a first order ordinary differential equation
(ODE) with a dicritical singularity at the origin has a one-parameter
family of convergent fractional power series solutions. The notion of a
dicritical singularity is extended from the class of first order and first
degree ODE’s to the class of first order ODE’s. An analogous result for
series with real exponents is given.

The main tool used in this paper is the Newton polygon method
for ODE. We give a description of this method and some elementary
applications such as an algorithm for finding polynomial solutions.

1 Introduction

In this paper we give a sufficient condition for a first order ordinary differen-
tial equation (ODE) to have a one-parameter family of fractional power series
(resp. generalized formal power series) solutions. If the family of solutions have
rational exponents it turns out that each one is convergent, hence its sum is
the parametrization of an analytical branch curve. The sufficient condition is
a generalization of the notion of dicritical singularity of holomorphic foliations
in dimension 2. The foliation defined by a(x, y) dx + b(x, y) dy = 0 is dicritical
if there exists a dicritical blowup in the reduction of singularities process. It is
well known that it is dicritical if and only if there exists a one-parameter family
of analytical invariant curves passing through the origin. The above foliation
corresponds to the first order and first degree ODE a(x, y) + b(x, y) y′ = 0. We
generalize this result for first order and arbitrary degree ODE. The dicritical
property is described in terms of the Newton polygon process and in case of first
order and first degree agrees with that of foliations.

Briot and Bouquet [1] in 1856 used the Newton polygon method for studying
the singularities of first order and first degree ODE’s and Fine [2] gives a complete
description of the method for general ODE in 1889.

D.Y. Grigoriev and M. Singer [3] use it to give an enumeration of the set of
formal power series solution with real exponents of an ODE F (y) = 0. They give
restrictions (expressed as a sequence of quantifier-free formulas) over parameter
Ci and μi for

∑∞
i=1 Ci xμi to be a solution of F = 0. The one-parameter families

of solutions that we obtain in this paper are simpler than those obtained in [3]

H. Li, P. J. Olver and G. Sommer (Eds.): 2004, LNCS 3519, pp. 18–30, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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for the general case. (See Theorem 2 for a precise description.) In particular
the parameter does not appear in the exponents μi. When the Newton polygon
process to a first order ODE F (y) = 0 is applied, it is easy to see that the
“first” parameter that we need to introduce is a coefficient and not an exponent
(see Proposition 1). The problem arises in subsequent steps, because now we
are dealing with a differential equation which has parameters as coefficients.
For instance, xy′ − C y = 0 has y(x) = C1 xC as solution and parameter C
has “jumped” to the exponent. Here we proof that this phenomenon does not
happen.

In a forthcoming paper we will give a complete description of the set of
generalized power series solutions of a first order ODE.

In Section 2, we give a detailed description of the Newton polygon process in
order to state some basic definitions and notations. This section should be read
in connection with our main result, stated and proved in section 3, as a technical
guide for the proof. All results in section 2 are not original and can be found
in [3, 4, 5, 6, 7, 8]. As an elementary application of the Newton polygon method
we have included an algorithm which gives a bound for degree of polynomial
solutions of a first order ODE.

2 Description of the Classical Newton Polygon Method

Let K be a field, C ⊆ K. We will denote K((x))∗ the field of Puiseux series
over K. Hence, the elements of K((x))∗ are formal power series

∑
i≥i0

ci xi/q,
i ∈ ZZ, ci ∈ K and q ∈ ZZ+. A well-ordered series with real exponents with
coefficients in the field K is a series φ(x) =

∑
α∈A cα xα, where cα ∈ K, and

A is a well ordered subset of IR. If there exists a finitely generated semi-group
Γ of IR≥0 and γ ∈ IR, such that, A ⊆ γ + Γ , then we say that φ(x) is a grid-
based series. (This terminology comes from [7].) Let K((x))w and K((x))g be
the set of well-ordered series and that of grid-based series respectively. Both are
differential rings with the usual inner operations and the differential operator

d

d x
(c) = 0, ∀c ∈ K, and

d

d x

(∑
cα xα

)
=

∑
α cα xα−1 .

In fact, both rings are fields by virtue of Theorem 1.
Let F (y0, . . . , yn) be a polynomial on the variables y0, . . . , yn with coefficients

in K((x))g. The differential equation F (y, dy
dx , . . . , dny

dxn ) = 0 will be denoted by
F (y) = 0. We are going to describe the classical Newton polygon method for
searching solutions of the differential equation F (y) = 0 in the field K((x))w.
We write F in a unique way as

F =
∑

aα,ρ0,...,ρn
xα yρ0

0 · · · yρn
n , aα,ρ ∈ K,

where α ∈ A and ρ belongs to a finite subset of INn+1. We define the cloud of
points of F to be the set P(F ) = {Pα,ρ | aα,ρ �= 0}, where we denote

Pα,ρ = (α − ρ1 − 2ρ2 − · · · − nρn , ρ0 + ρ1 + · · · + ρn) ∈ IR × IN . (1)
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The Newton polygon N (F ) of F is the convex hull of the set⋃
P∈P(F )

(P + {(a, 0) | a ≥ 0}) .

We remark that N (F ) has a finite number of vertices and all of them has as
ordinate a non-negative integer.

Given a line L ⊆ IR2 with slope −1/μ, we say that μ is the inclination
of L. Let μ ∈ IR, we denote L(F ;μ) to be the line with inclination μ such
that N (F ) is contained in the right closed half-plane defined by L(F ;μ) and
L(F ;μ) ∩N (F ) �= ∅. We define the polynomial

Φ(F ;μ)(C) =
∑

Pα,ρ∈L(F ;μ)

aα,ρ Cρ0+···+ρn (μ)ρ1
1 · · · (μ)ρn

n , (2)

where (μ)k = μ(μ − 1) · · · (μ − k + 1) and Pα,ρ is as in (1).

2.1 Necessary Initial Conditions

Lemma 1. Let y(x) = c xμ+· · · higher order terms · · · ∈ K((x))w be a solution
of the differential equation F (y) = 0. Then we have that Φ(F ;μ)(c) = 0.

Proof. We have that F (c xμ + · · · ) =∑
α,ρ

aα,ρ xα (c xμ + · · · )ρ0(μc xμ−1 + · · · )ρ1 · · · ((μ)nc xμ−n + · · · )ρn =

∑
α,ρ

{
Aα,ρ cρ0+···+ρn (μ)ρ1

1 · · · (μ)ρn
n xα−ρ1−2ρ2−···−nρn+μ(ρ0+···+ρn) + · · ·

}
=

⎧⎨
⎩

∑
ν(α,ρ;μ)=ν(F ;μ)

aα,ρ cρ0+···+ρn (μ)ρ1
1 · · · (μ)ρn

n

⎫⎬
⎭xν(F ;μ) + · · · higher order terms,

where ν(α, ρ ;μ) = α − ρ1 − 2ρ2 − · · · − nρn + μ(ρ0 + · · · + ρn), and ν(F ;μ) =
min{ν(α, ρ;μ) | aα,ρ �= 0}. ��

The set NIC(F ) = {(c, μ) | c ∈ K̄, c �= 0, μ ∈ IR, Φ(F ;μ)(c) = 0}, where K̄ is the
algebraic closure of K, is called the set of necessary initial conditions for F . We
give a precise description of this set using the Newton polygon of F .

For each μ ∈ IR, L(F ;μ) ∩ N (F ) is either a side or a vertex. Assume that
L(F ;μ) ∩ N (F ) = S is a side. We call Φ(F ;μ)(C) the characteristic polynomial
of F associated to the side S. Let AS = {c ∈ K̄ | c �= 0, Φ(F ;μ)(c) = 0}. We say
that the side S is of type (0) if AS = ∅, of type (I) is AS is a finite set and of
type (II) if AS = K̄. We have that AS × {μ} = NIC(F ) ∩ (K̄ × {μ}).

Let p = (a, h) be a vertex of N (F ), and let μ1 < μ2 be the inclinations
of the adjacent sides at p. For any μ such that μ1 < μ < μ2, we have that
L(F ;μ) ∩N (F ) = {p}. Then Φ(F ;μ)(C) = Ch Ψ(F ;p)(μ), where

Ψ(F ;p)(μ) =
∑

Pα,ρ=p

aα,ρ (μ)ρ1
1 · · · (μ)ρn

n , (3)



The Newton Polygon Method for Differential Equations 21

Table 1. Necessary initial conditions for the equation F (y) = 0 of example 1

vertices

μ Ψ(F ;p)(μ) type

−∞ < μ < −1/2 μ3 (μ − 1)2 0

−1/2 < μ < 0 0 IV

0 < μ < 2 μ3(μ − 1) III

2 < μ < 4 μ − 4 0

4 < μ < ∞ −1 0

sides

μ Φ(F ;μ)(C) type

μ = −1/2 −9/32 C5 0

μ = 0 0 II

μ = 2 2 C(4C + 1) I

μ = 4 −1 0

Fig. 1. The Newtonpolygon of F at the origin (left) and at infinity (right)

where Pα,ρ is as in (1). The polynomial Ψ(F ;p)(μ) is called the indicial polynomial
associated to p. Let Ap = {μ ∈ (μ1, μ2) | Ψ(F ;p)(μ) = 0}. Then NIC(F ) ∩ K̄ ×
(μ1, μ2) = K̄ × Ap. There are again three possibilities. Either Ap = ∅, in this
case we say that the vertex p is of type (0); or Ap is a finite set, then p is of type
(III); or Ap = (μ1, μ2), and we call p of type (IV).

Let (c, μ) ∈ NIC(F ). Then μ is associated with either a side or a vertex of
N (F ). We say that (c, μ) is of type (I)–(IV) depending on the type of the vertex
or of the side associated with μ.

Example 1. Let F (y) = x3 y2
0 y1 y2

2 − y3
1 + y0 y1 y2 + x−1 y0 y2

1 + x y2
2 − y1 y2 −

y1 + 4x−1 y0 − x3 y0 y1 y2 − x3.

The necessary initial conditions for F (y) are described in Table 1 and its Newton
polygon is drawn on the left hand of Fig. 1.

Proposition 1. Let F (x, y, y′) ∈ K((x))w[y, y′] be a polynomial first order ordi-
nary differential equation. Let p be a vertex of N (F ). Then p is not of type (IV).

Proof. Let p = (α, h). Let Fp be the sum of all monomials of F whose corre-
sponding point is p. We have that Fp =

∑h
i=0 ai xα yi (xy′)h−i. Then the indicial

polynomial associated with the vertex p is Ψ(F ;p)(μ) =
∑h

i=0 ai μh−i. If this poly-
nomial has an infinite number of solutions, then ai = 0 for all 0 ≤ i ≤ h. Then
Fp is identically null, which is an absurd because p belongs to the cloud of points
of F . ��
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2.2 The Newton Polygon at Infinity and Polynomial Solutions

Let us assume that the coefficients of F (y) are rational functions. For any point
x0, in order to find formal solutions in the variable x−x0 we only need to perform
the change of variable x̄ = x − x0 in the differential equation and work as before.

At infinity, we have two possibilities. Either we perform the change of variable
z = 1/x in the differential equation and we work as above, or we just look for
series of the form y(x) =

∑∞
i=0 ci xμi , μi > μi+1, for all i. In this case we do not

need to do any change to the original equation, but the monomials involved in
the necessary initial condition are those which give the greatest order. Hence,
the Newton polygon of F (y) at infinity N∞(F ) is defined as the convex hull of⋃

P∈P(F )(P + {(a, 0) | a ≤ 0}), L∞(F ;μ) being the line with slope −1/μ which
supports N∞(F ), and Φ∞

(F ;μ)(C) as in (2) substituting L∞(F ;μ) for L(F ;μ).
Then Lemma 1 holds substituting “lower order terms” for “higher ...” and Φ∞

(F ;μ)

for Φ(F ;μ). Using this version of Lemma 1 and Prop. 1, we have the following

Algorithm
Input: A first order ODE F (y) = 0 with rational coefficients.
Output: A bound for the degree of the polynomial solutions of F (y) = 0.
Let p the top vertex of N∞(F ). Return N , where N is greater than any real root of
Ψ(F ;p)(μ), and such that N ≥ μ, where μ is the inclination of the non-horizontal
side of N∞(F ) adjacent to p.

We may apply the above algorithm for any ODE provided the top vertex of
N∞(F ) is not of type (IV). For instance, the equation in Example 1 satisfies this
hypothesis, so that 3/2 as a bound for the degree of its polynomial solutions.

2.3 The Newton Polygon Process

Given a differential polynomial F (y) ∈ K((x))g[y0, . . . , yn], the Newton polygon
process constructs a tree T . The root of T is τ0. For each node τ of the tree there
are three associated elements: a differential polynomial Fτ (y) with coefficients
in K̄((x))g, an element cτ ∈ K̄, and μτ ∈ IR ∪ {−∞,∞}. For the root τ0, we
have Fτ0(y) = F (y), cτ0 = 0 and μτ0 = −∞.

Let τ be a node of T which is not a leaf. We are going to describe all its
descendant nodes. First, if y = 0 is a solution of Fτ (y) = 0, then there is a
descendant σ of τ , which is a leaf and for which Fσ = Fτ , μσ = ∞ and cσ = 0.
The other descendant nodes of τ are in a bijective correspondence with the set
Dτ = {(c, μ) ∈ NIC(Fτ );μ > μτ}. For each (c, μ) ∈ Dτ , there is a descendant
node σ for which Fσ(y) = Fτ (cxμ + y), cσ = c and μσ = μ.

The above tree depends on F and on the field K. If necessary, we shall
write T (F ) or even T (F ;K) to clearly state which tree we are referring to. For
instance, let F = y′, we may consider K = C or L = C(C). The tree T (F ;L),
has for each rational function R(C) a node σ with cσ = R(C) and μσ = 0.

As usual, the level of a node σ is k if the path of T from τ0 to σ is τ0, τ1, . . . , τk =
σ. We say that the tree T is discrete if for each k ≥ 0, the number of nodes of
level k is finite.
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Example 2. Let F (y) be as in example 1. We will describe here some nodes of
the tree T = T (F ; C). The tree T has only one node of level zero: the root
node τ0. We have Fτ0(y) = F (y), cτ0 = 0 and μτ0 = −∞. From Table 1, we have
that NIC(Fτ0) is the set

Dτ0 = {(c, μ) ; −1/2 < μ < 0, c ∈ C} ∪ {(c, μ) ; c ∈ C, μ ∈ {0, 1}} ∪ {(−1/4, 2)}

Since y = 0 is not a solutions of F (y) = 0, then the descendant nodes of τ0

are in bijective correspondence with set Dτ0 . In particular, the tree T is not
discrete. Let us consider σ1 and σ2 the descendant nodes of τ0 corresponding to
the elements (2, 0) and (−1/3, 0) of Dτ0 respectively. Thus, Fσ1(y) = F (2 + y),
Fσ2(y) = F (−1/3+y) and μσ1 = μσ2 = 0. Using the Newton polygon of Fσ1 and
that of Fσ2 , we see that Dσ1 = Dσ2 = {(2

√
−1, 1), (−2

√
−1, 1)}, and y = 0 is

not a solution of neither Fσ1(y) = 0 nor Fσ2(y) = 0. Hence, each σi, for i = 1 or
i = 2, has exactly two descendant nodes σi,j , with j = 1 or j = 2. Now we have
that Dσ2,j

= ∅ and y = 0 is not a solution of Fσ2,j
(y) = 0. Thus, σ2,j is a leaf

of T because it has no descendant nodes. Lemma 1 implies that there are not
solutions of F (y) = 0 of type −1/3 +

√
−1 x + · · · , where dots stands for higher

order terms. We remark that μσ2,j
= 1 �= ∞. In following subsection we will

see that branches of T with a leaf σ satisfying μσ �= ∞ does not correspond to
solutions of F (y) = 0. On the other hand, we have that Dσ1,j

= {(3/14, 2)} and
y = 0 is not a solution Fσ1,j

(y) = 0, hence σ1,j has exactly one descendant node
σ2,j , where cσ2,j

= 3/14 and μσ2,j
= 2. Moreover, after the next subsection, we

will be able to prove that there are two branches (σk,j)k≥0 of T , where j = 1, 2
and we put σ0,j = τ0, each one corresponding to a solution of F (y) = 0 of the
form 2 + (−1)j

√
−1 x + 3/14x2 + · · · .

2.3.1 Relation Between Branches of T and Solutions of F (y) = 0
The tree T has three types of branches: (a) infinite ones; (b) finite branches
whose leaf σ has μσ = ∞; and (c) finite branches whose leaf σ has μσ < ∞. In
this paragraph we will see that there exists a one to one correspondence between
formal power series solution of F (y) = 0 and the set of branches of T of types
(a) or (b).

Let τ0, τ1, . . . , τk, τk+1 be a finite branch of T such that μτk+1 = ∞. Let
φ(x) =

∑k
i=1 cτi

xμτi . We have that Fτk
(y) = F (φ(x) + y). Since μτk+1 = ∞ we

have that y = 0 is a solution of Fτk
(y) = 0. Hence, φ(x) is a solution of F (y) = 0.

Reciprocally, let φ(x) =
∑k

i=1 ci xμi be a solution of F (y) = 0. By Lemma 1,
there exists a finite branch τ0, τ1, . . . , τk, τk+1 of T with cτi

= ci and μi = μτi

for 1 ≤ i ≤ k.
Let τ0, τ1, . . . , τk be a finite branch of T such that μτk+1 < ∞. Let φ(x) =∑k

i=1 cτi
xμτi . We have that Fτk

(y) = F (φ(x) + y). Since τk is a leaf, one has
NIC(Fτk

) ∩ K̄ × (μτk
,∞) = ∅, and y = 0 is not a solution. By Lemma 1, this

means that there is no solution y(x) of F (y) = 0 such that y(x) = φ(x) + ψ(x)
and with the terms of ψ(x) of order greater than μτk

. Hence, the above branch
does not correspond to any solution of F (y) = 0.
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In view of Lemma 1, it is obvious that if y(x) =
∑∞

i=1 ci xμi , where ci �= 0
for all i, is a solution of F (y) = 0, then there is an infinite branch (τi)i≥0 of T .
The reciprocal result is the following

Theorem 1. Let F (y) ∈ K((x))g[y0, . . . , yn]. Let B = (τi)i≥0 be an infinite
branch of the tree T . Let φ(x) =

∑
cτi

xμτi . Then φ(x) ∈ K̄((x))g and is a
solution of F (y) = 0. In particular, if all the exponents of φ(x) are rational,
then they have a greatest common denominator and φ(x) is a Puiseux series.

See [3, 4, 7, 8] for proofs of this theorem in different settings. They are based on
the stabilization of the Newton polygon process, which also gives a recurrent
formula for the coefficients of φ(x) which we will need later.

2.3.2 Stabilization of the Newton Polygon Process
In this paragraph we will see that given an infinite branch (τi)i≥0 of T , there
exists i1, such that, for i ≥ i1, the node τi has only one descendant, in other
words, the coefficient cτi+1 and the exponent μτi+1 are completely determined.
We will give a recurrent formula for the coefficients cτi+1 and prove Theorem 1.

Lemma 2. Let G(y) be a differential polynomial and H(y) = G(c xμ + y). Let
P = (t, h) be the point of highest ordinate in L(G;μ)∩N (G). Let A = {(t′, h′) ∈
IR2 | h′ ≥ h}. Then N (G) ∩ A = N (H) ∩ A. Moreover, N (H) is contained
in the right half-plane defined by L(G;μ). Finally, if Φ(G,μ)(c) = 0, then the
intersection point of L(G,μ) with the x-axis is not a vertex of N (H).

Proof. Let M(y) = a xα yρ0
0 · · · yρn

n be a differential monomial. Let Pα,ρ = (t, h)
its corresponding point. By simple computation, M(c xμ + y) = M(y) + V (y),
where V (y) is a sum of differential monomials whose corresponding points have
ordinate less than h and lie in the line passing through Pα,ρ with inclination μ.
This implies the first two statements. In order to prove the last one, we remark
that if T (y) is the sum of monomials of G(y) whose corresponding points lie
in L(G;μ), then T (c xμ) is the coefficient of the monomial whose corresponding
point is the intersection of L(G,μ) with the x-axis. Since T (c xμ) = Φ(G;μ)(c),
we are done. ��

Lemma 3. Let τ be a node of T with μτ �= ∞. Then either y = 0 is a solution
of Fτ (y) = 0 or N (Fτ ) has a side of inclination μ > μτ .

Proof. It is a consequence of Lemma 2 and the construction of T .

Definition 1 (The Pivot Point). For any non leaf node τ of T , we will denote
pτ to be the point of least ordinate in L(Fτ ;μτ ) ∩N (Fτ ).

Let (τi)i≥0 be an infinite branch of T . Let pτi
= (αi, βi). We have that βi ∈ IN.

By Lemma 2, βi ≥ βi+1 ≥ 1 for i ≥ 1. Hence, there exists i0 such that, if i ≥ i0,
then βi0 = βi. We have also that pτi

= pτi0
for i ≥ i0. We call point p = pτi0

the pivot point of the branch.
We have that p is a vertex of N (Fτi

) for i ≥ i0. Hence, the monomials of
Fτi+1(y) and those of Fτi

(y) corresponding to p are exactly the same for i ≥ i0.
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In particular, the indicial polynomial Ψ(Fτi
;p)(μ) is the same for i ≥ i0; denote

it by Ψ(μ). We say that the branch stabilizes at step i1 ≥ i0 if μτi
is not a root

of Ψ(μ) for i ≥ i1.

Example 3. Following with the notation of example 2, let (τi)i≥0 be a branch
of T such that τ1 = σ1,1. We have that pτ2 = (−2, 1). Since its ordinate is
already equal to 1, the pivot point p of the branch is pτ2 . The indicial polynomial
Ψ(Fτ2 ;p)(μ) = μ(1 + 3μ). For j ≥ 2 we have that μτj

≥ μτ2 = 2, and so μτj
is not

a root of Ψ(μ). Hence, the branch (τi)i≥0 stabilizes at step 2.

By a simple use of the chain rule, we can prove (see Sect. 4 in [4]) the following

Lemma 4. Let h be the ordinate of the pivot point p of the branch (τi)i≥0.
Assume that h ≥ 2 and that the differential variable y(k) actually appears in at
least one of the monomials of Fτi0

(y) corresponding to the pivot point p. Then
φ(x) =

∑
cτi

xτi is also a solution of ∂F
∂y(k) (y) = 0, and the pivot point of φ(x)

with respect to ∂F
∂y(k) (y) has ordinate h − 1.

Remark 1. Let (τi)i≥0 be a branch of the tree T (F ) associated with F = 0. By a
successive application of the above lemma, there exists G(y) = ∂|a|F

∂y
a0
0 ···∂yan

n
(y) �= 0

such that the tree T (G) associated with G(y) = 0 has a branch (τ ′
i)i≥0 with

cτ ′
i

= cτi
and μτ ′

i
= μτi

for i ≥ 0, and whose corresponding pivot point p has
ordinate equal to 1. Since p has ordinate equal to 1, we have that Ψ(Gτ′

i
;p)(μ) is

a nonzero polynomial, hence it has a finite number of real roots. This implies
that the branch (τ ′

i)i≥0 stabilizes at some step i1.

Definition 2. Let F (y) be a differential polynomial. We say that F = 0 has
quasi-linear solved form if p = (0, 1) is a vertex of N (F ), N (F ) ⊆ IR≥0 × IR,
and the indicial polynomial Ψ(F ;p)(μ) has no positive real roots.

Proposition 2. Let F (y) ∈ R((x))g[y0, . . . , yn], where R is a ring, C ⊆ R ⊆ K,
and K is a field. Assume that F = 0 has quasi-linear solved form. Let us write

F (y) =
∑
α,ρ

aα,ρ xα+ρ1+2ρ2+···+nρnyρ0
0 yρ1

1 · · · yρn
n ,

where the exponents α lie in a finitely generated semi-group Γ of IR≥0. Then there
exists a unique series solutions φ(x) ∈ K((x))g of F = 0 with positive order.
Moreover, let us write Γ = {γi}i≥0, where γi < γi+1, for all i. Then, for each
i ≥ 1, there exists a polynomial Qi({Aα,ρ}, T1, . . . , Ti−1), which only depends on
Γ , and with coefficients in R, such that, if we write φ(x) =

∑∞
i=1 dix

γ
i , we have

that

di = −
Qi({aα,ρ}, d1, . . . , di−1)

Ψ(F ;(0,1))(γi)
, i ≥ 1 . (4)
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Proof. Consider F (y) = M(y)+G(y), where M(y) is the sum of those monomials
of F (y) whose corresponding point is (0, 1). For any series φ(x) =

∑
i≥1 di xγi , we

have that M(φ(x)) =
∑

i≥1 diΨ(F ;(0,1))(γi)xγi and G(φ(x)) =
∑

i≥1 gi xγi , where
each gi is a polynomial expression on aα,ρ and d1, . . . , di−1. Since Ψ(F ;(0,1))(γi) �=
0, the relations diΨ(F ;(0,1))(γi) + gi = 0, i ≥ 1, determine uniquely φ(x). ��

Lemma 5. Let F (y) ∈ K((x))g[y0, . . . , yn] and (τi)i≥0 be an infinite branch of
T with pivot point p = (α, 1) and which stabilizes at step i1. Let ξ be a rational,
μτi

< ξ < μτi+1 . Consider H(y) = x−α Fτi1
(xξ y). Then H(y) ∈ K((x))g[y, y′]

and has quasi-linear solved form.

Proof. Let G(y) = Fτi1
(y). The affine map (a, t) �→ (a−α0 + ξ t, t) is a bijection

between the clouds of points of G(y) and H(y); hence it is a bijection between
their Newton polygons, sending a side of inclination μ to a side of inclination
μ − ξ. Moreover, we have that Ψ(H;(0,1))(μ) = Ψ(G;q)(μ + ξ). This proves that
H has quasi-linear solved form. The fact that the series coefficients of H(y) are
grid-based is a consequence of the following fact: let Γ be a finitely generated
semi-group and γ ∈ IR, then A = (γ + Γ ) ∩ IR≥0 is contained in a finitely
generated semi-group. To see this, let Γ be generated by s1, . . . , sk. Let Σ be
the set of (n1, . . . , nk) ∈ INk such that γ +

∑
nisi > 0 and for any (n′

1, . . . , n
′
k) �=

(n1, . . . , nk), with n′
i ≤ ni for 1 ≤ i ≤ k, one has that γ +

∑
n′

isi < 0. Then Σ is
finite, and A is generated by 1, s1, . . . , sk and γ+

∑
nisi, where (n1, . . . , nk) ∈ Σ.

Proof of theorem 1. By Remark 1, we may assume that the pivot point p of
(τi)i≥0 has ordinate 1. Now apply Lemma 5 and Proposition 2. ��

3 Formal Power Series Solutions of First Order ODE

Definition 3. Let F (y) ∈ C((x))g[y, y′] and T be the tree constructed in the
previous section. Let σ be a descendant node of τ which is not a leaf. We say
that the node σ is of type (I)–(IV) if (cσ, μσ) is a necessary condition of Fτ of
the corresponding type (I)–(IV).

Let τ be a node of T . We call τ irrationally dicritical if it is of type (II)
or (III). We say that τ is dicritical if the path τ0, . . . , τk+1 = τ from τ0 to τ
satisfies that each τi is of type (I) for 1 ≤ i ≤ k, τ is of type (II) or (III), and
μτ ∈ Q.

A branch of T is called dicritical (resp. irrationally dicritical) if it contains a
dicritical (resp. irrationally dicritical) node. We will say that F = 0 is dicritical
(resp. irrationally dicritical) at the origin if its tree has at least a dicritical (resp.
irrationally dicritical) branch (τi)i≥0 with μτ1 > 0.

We remark that the tree T is discrete if and only if F = 0 has no irrationally
dicritical branches.
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This section is devoted to proving the following

Theorem 2. Let F (y) ∈ C((x))g[y, y′] be irrationally dicritical. Then there ex-
ists a one-parameter family of grid-bases series solutions of F (y) = 0 as follows

yc(x) =

(
k−1∑
i=1

bi xμi

)
+ c xμk +

(
s∑

i=k+1

ci xμi

)
+

( ∞∑
i=s+1

di xμi

)
(5)

where

– each bi is a fixed constant,
– the parameter c ∈ C \ E, where E is a finite set,
– each ci satisfies a polynomial equation Qi(c, ck+1, . . . , ci) = 0, and
– each di = Ri(c,ck+1, . . . , cs, ds+1, . . . , di−1)/μi g(c, ck+1, . . . , cs), where Ri

and g are polynomials with coefficients in C.
– The exponents {μi}i≥1 do not depend on the parameter c (we allow zero

coefficients in (5)).

Moreover, if F (y) ∈ C((x))∗[y, y′] and F = 0 is dicritical, then there exists
a one-parameter family as (5) with exponents {μi}i≥1 ⊆ 1

q ZZ. If coefficients of
F (y) are convergent Puiseux series, then each yc(x) is also a convergent Puiseux
series, hence it corresponds to the parametrization of an analytic branch curve.

Lemma 6. Let F (x, y, y′) be a differential polynomial with coefficients in C((x))g.
Let C be an indeterminate over C, and let L be an extension field of C(C). Let
C1 . . . , Ct ∈ L. Consider the differential polynomial

G(x, y, y′) = F (x, φ + y, φx + y′) ∈ L((x))g[y, y′],

where φ(x) = C + C1 xμ1 + · · · + Ct xμt , 0 < μ1 < · · · < μt, and φx = d φ
d x . Let

p = (a, h) be any vertex of the bottom part of the Newton polygon of G(x, y, y′).
(The bottom part of N is constituted by the sides of N with positive slope.)

Then there is only one monomial of G(x, y, y′) whose corresponding point is
p and this monomial has the form g xa (x y′)h, where g is a non-zero element
of L. In particular, the characteristic polynomial associated to any side of the
bottom part of N (G) has nonzero roots.

Proof. Multiplying F by a convenient xα, we may assume that

F =
∑
r∈Γ

∑
s∈IN

ϕr,s(y)xr (xy′)s, ϕr,s(y) ∈ C[y] ,

where Γ is a finitely generated semi-group of IR≥0 containing 1, μ1, . . . , μt. We
have that

G =
∑

r∈Γ,s,l≥0,k≥0

(
s

k

)
1
l!

ϕ(l)
r,s(φ)xr (xφx)s−k yl (xy′)k . (6)
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Let d
d C be the derivative with respect to C in C(C). We choose an extension of

this derivation operator to L, and we extend it trivially to L((x))∗[y, y′]. Hence,

d

dC
Coeffxayl(xy′)k(G) = Coeffxa

(∑
r,s

(
s

k

)
1
l!

d

dC

{
ϕ(l)

r,s(φ)xr (xφx)s−k
})

= A+B,

where

A = Coeffxa

(
dφ

dC

∑
r,s

(
s

k

)
1
l!

ϕ(l+1)
r,s (φ)xr (xφx)s−k

)

=
∑

0≤t≤a

Coeffxa−t(
dφ

dC
)Coeffxt

(∑
r,s

(
s

k

)
1
l!

ϕ(l+1)
r,s (φ)xr (xφx)s−k

)

=
∑

0≤t≤a

Coeffxa−t(
dφ

dC
)(l + 1)Coeffxtyl+1(xy′)k(G),

B =
∑

0≤t≤a

Coeffxa−t

(
x

∂ φ

∂x∂C

)
Coeffxt

(∑
r,s

(
s

k

)
s − k

l!
ϕ(l)

r,s(φ)xr (xφx)s−k−1

)

= (k + 1)
∑

0≤t<a

Coeffxa−t

(
x

∂ φ

∂x∂C

)
Coeffxtyl(xy′)k+1(G) .

We remark that t ∈ Γ and all the above sums are finite. The above equalities
hold by (6) and because Coeffx0

(
x ∂ φ

∂x∂C

)
= 0.

Let p = (a, h) be a vertex of the bottom part of N (G). Let l′+k = h. Assume
that k < h, so that l′ ≥ 1. Let l = l′ − 1. Then

Coeffxtyl+1(xy′)k(G) = Coeffxtyl(xy′)k+1(G) = 0, for t < a .

From this, in the above computation, A = Coeffxayl′ (xy′)h(G) and B = 0. Hence

Coeffxayl′ (xy′)h(G) =
d

dC
Coeffxayl(xy′)k(G) = 0 .

The last equality holds because the point (a, h − 1) does not belong to N (N).
So, the only coefficient different from zero is that of xa y0 (xy′)h. Now let S
be a side of the bottom part of N (G) with inclination μ0 > 0. Let (a, h) and
(a + kμ0, h − k) be the vertices of S. We have that

Φ(G;μ0)(T ) = gh (μ0 T )h + · · · + gh−k (μ0 T )h−k .

Since gh and gh−k are different from zero, Φ(G;μ0)(T ) has non-zero roots. ��

Theorem 3. Let F (x, y, y′) ∈ C((x))g[y, y′]. Assume that F (y) = 0 has a nec-
essary initial condition (c, μ0) of type (II) or (III). Let C be an indeterminate
over C and L = C(C). Then F = 0 has a solution as follows

y(x) = C xμ0 +
∞∑

i=1

Ci xμi ∈ L̄((x))g .
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Moreover, there exist i1, a polynomial g(T, T1, . . . , Ti1) with coefficients in C
such that ḡ = g(C,C1, . . . , Ci1) �= 0 ∈ L̄, and

Ci ∈ C[C,C1, . . . , Ci1 ,
1
ḡ
], for all i ≥ 1 .

Proof. Consider G(y) = F (xμ0 y). Then (c, 0) is a necessary initial condition
for G = 0 of type (II) or (III). It suffices to prove the statement for G(y) and
μ0 = 0. We have that Φ(G;0)(C) ≡ 0. We consider G(y) ∈ L((x))g[y, y′], hence
(C, 0) is a necessary initial condition for G = 0. Let T = T (G;L) be the tree
of G constructed in the previous section. Let τ1 be the node of T such that
cτ1 = C and μτ1 = 0. Let us prove that there exists a branch (τi)i≥0 of T ,
passing through τ1, which corresponds to a solution of G(y) = 0. Let (τi)k

i=0

be a path of T . If y = 0 is a solution of Fτk
(y) = 0, we are done. If y = 0

is not a solution, by lemma 3 there exists a side S of N (Fτk
) with inclination

μk+1 > μk. In particular, S is a side of the bottom part of N (Fτk
). By Lemma 6,

the characteristic polynomial Φ(Fτk
;μk+1)(T ) has a non zero root Ck+1 in L̄.

Hence, the path (τi)k
i=0 can be continued to a branch (τi)i≥0 which corresponds

to a solution φ(x) = C +
∑

i≥1 Ci xμi ∈ L̄((x))g of G(y) = 0, where Ci = cτi
and

μi = μτi
, for all i ≥ 1.

It remains to prove the second part. If φ(x) is a finite sum of monomials we
are done. Let p = (α, h) be the pivot point of φ(x) with respect to G(y). If h ≥ 2
then, by Lemmas 4 and 6, φ(x) is a solution of ∂h−1G

∂y′h−1 . Hence, we may assume
that the pivot point is p = (α, 1) and it is reached at step i1. By Lemma 6,
we have that Ψ(G;p)(μ) = g μ, where g xα(xy′) is the only monomial of Gτi1

(y)
whose corresponding point is p. The element g is a polynomial expression on
C,C1, . . . , Ci1 with coefficients in C. Let ξ be a rational number such that μi1 <
ξ < μi1+1. Consider H(y) = x−α Gτ1(x

xi y). By Lemma 5 H(y) has quasi-linear
solved form. ¿From proposition 2, ψ(x) =

∑
i>i1

Ci xμi−ξ is the only solution
of H(y) = 0 with positive order and the coefficients Ci satisfy the recurrent
equations (4). Let R = C[C,C1, . . . , Ci1 ] ⊆ L̄, so that H(y) ∈ R((x))g[y, y′]. We
have Ψ(H;(0,1))(μ) = (μ − ξ) g. Using the recurrent equations (4), one sees that
Ci ∈ R[ 1g ] ⊆ L̄. ��

Corollary 1. Let η : C[C,C1, . . . , Ci1 ,
1
ḡ ] → C be a ring homomorphism. Let

c = η(C) and ci = η(Ci), for i ≥ 1. Then η(y(x)) = c xμ0 +
∑∞

i=1 ci xμi is a
solution of F (y) = 0.

Proof. Set C0 = C and c0 = c. Let Fk = F (
∑k

i=0 Ci Xμi) and Gk = F (
∑k

i=0 ci Xμi).
We have that ord(Gk) ≥ ord(Fk), for all k ≥ 1. ��

Remark 2. Since C1, . . . , Ci1 are algebraic over C(C), there exist polynomials
Qi ∈ C[T, T1, . . . , Ti], 1 ≤ i ≤ i1, and g ∈ C[T, . . . , T1, . . . , Ti1 ] such that if
C = {c = (c, c1, . . . , ci1) ∈ Ci1+1 | Qi(c) = 0, 1 ≤ i ≤ i1, g(c) �= 0} then
there exists a homomorphism η : C[C,C1, . . . , Ci1 ,

1
ḡ ] → C with η(Ci) = ci for

0 ≤ i ≤ i1 if and only if c ∈ C. Moreover, there exists a finite set E ⊆ C such that
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the projection π : C → C \E over the first coordinate is onto. Then we obtain a
one-parameter family of solutions of F (y) = 0 as described in Theorem 2.

Proof of Theorem 2. Let τ be an irrationally dicritical node of T (F ; C). Let
(τi)k+1

i=0 be the path from τ0 to τ . Then (cτk+1 , μτk+1) is a necessary initial condi-
tion of Fτk

(y) = 0 of type (II) or (III). Apply Theorem 3 and the above remark
to Fτk

(y) = 0. If F (y) ∈ C((x))∗[y, y′], consider a dicritical node τ and the path
(τi)k+1

i=0 , such that τi are of type (I) for 1 ≤ 1 ≤ τk. Hence Fτk+1 has rational
exponents. The solution constructed in Theorem 3 has also rational exponents
because the necessary initial conditions used there correspond to sides. Hence,
the family of solutions have rational exponents. Finally, by Lemma 6 the pivot
point of all them has a corresponding monomial of type ḡ xα (xy′), with ḡ �= 0.
This guarantee the convergence of the solutions by a direct application of The-
orem 2 of [4] or by the main theorem of [9]. ��
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Abstract. The RifSimp package in Maple transforms a set of differ-
ential equations to Reduced Involutive Form. This paper describes the
application of RifSimp to challenging real-world problems found in engi-
neering design and modelling. RifSimp was applied to sets of equations
arising in the dynamical studies of multibody systems. The equations
were generated by the Maple package Dynaflex, which takes as input a
graph-like description of a multibody mechanical system and generates
a set of differential equations with algebraic constraints. Application of
the standard RifSimp procedure to such Differential Algebraic Equa-
tions can require large amounts of computer memory and time, and can
fail to finish its computations on larger problems.

We discuss the origin of these difficulties and propose an Implicit Re-
duced Involutive Form to assist in alleviating such problems. This form
is related to RifSimp form by the symbolic inversion of a matrix. For
many applications such as numerically integrating the multibody dy-
namical equations, the extra cost of symbolically inverting the matrix to
obtain explicit RifSimp form can be impractical while Implicit Reduced
Involutive Form is sufficient.

An approach to alleviating expression swell involving a hybrid analytic
polynomial computation is discussed. This can avoid the excessive ex-
pression swell due to the usual method of transforming the entire input
analytic differential system to polynomial form, by only applying this
method in intermediate computations when it is required.

1 Introduction

A principal goal of multibody dynamics is the automatic generation of the equa-
tions of motion for a complex mechanical system, given a description of the
system as input [14]. After generation, the set of equations must be analyzed or
solved. Commercial programs exist that can generate and integrate such systems
of equations. Adams, Dads and Working Model are examples of such prod-
ucts, and they are in widespread use in the automotive, aerospace and robotics
industries [15]. These programs have many strengths, in particular they can
handle systems containing many bodies (up to 100), but they have drawbacks.
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For multibody systems, the general form of the dynamic equations is

M(t, q, q̇)q̈ + ΦT
q λ = F (t, q, q̇) , (1)

Φ(t, q) = 0 . (2)

Here, q is a vector of generalized co-ordinates, M(t, q, q̇) is the mass matrix, Φ
is a vector of the constraint equations and λ is a vector of Lagrange multipliers
[17, 18]:

Φ =

⎡
⎢⎣

Φ1

...
Φ

⎤
⎥⎦ , Φq =

⎡
⎢⎣

Φ1
q1

· · · Φ1
qn

...
...

...
Φ

q1
· · · Φ

qn

⎤
⎥⎦ , λ =

⎡
⎢⎣

λ1

...
λ

⎤
⎥⎦ .

Because the programs are purely numerical, it is difficult to check or compre-
hend the basic equations they have generated, and it is difficult to obtain ana-
lytic insight into the equations’ properties. Also, when used for simulation, the
programs are inefficient because the equations are effectively re-assembled at
each time step, and the numerical assembly may include many multiplications
in which one of the terms is 0 or 1. As a consequence, these programs are not
well suited to real-time simulations and virtual reality, and, because of their large
size, they cannot be downloaded onto the microprocessors that are typically used
in real-time controllers [15, 3].

In contrast to numerically based programs, packages such as Dynaflex use
symbolic programming to generate the equations of motion in a completely an-
alytical form [16]. This approach offers several advantages [11]. The structure of
the equations is easily obtained and manipulated, allowing one to gain a phys-
ical insight into the system; the equations can be easily exchanged with other
researchers or engineers, something crucial to communication between different
design groups; and real-time simulations are facilitated.

However, symbolic packages also have drawbacks. The equations generated by
Dynaflex are usually too complicated to be solved symbolically. Even numeri-
cal solution is often difficult, inefficient or even impossible, because the equations
are Differential Algebraic Equations (DAE), which typically are of second order
but of high differential index. Also, the number of bodies that these programs
can handle is not as large as for the numerically based programs.

Therefore, it is natural to develop methods for symbolically pre-processing
the output of programs such as Dynaflex so that the output has desirable
features such as being in simplified canonical form and including all constraints.
Since any consistent initial value must satisfy all constraints, the inclusion of
all constraints is a necessary condition for stating an existence and uniqueness
theorem for such systems. The statement of such a theorem is another desirable
feature for the output of such methods. Such features enable the consistent ini-
tialization of numerical solution procedures and can facilitate the identification
of analytical solutions. In this paper we discuss how the RifSimp package can
be used for the symbolic simplification of ODE and PDE systems and return
canonical differential forms. It has the following features [9, 21]:
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– Computation with polynomial nonlinearities.
– Advanced case splitting capabilities for the discovery of particular solution

branches with desired properties.
– A visualization tool for the examination of the binary tree that results from

multiple cases.
– Automatic generation of an existence and uniqueness theorem for the system.
– Algorithms for working with formal power series solutions of the system.

Applying RifSimp to the equations output by Dynaflex has the benefit
of symbolically and automatically generating all special cases, through the Rif-
Simp case-split options [9, 21]. In a full case analysis, some cases can be very
complicated while others can be simple enough to be solved analytically. The
canonical form generated by RifSimp is of low (0 or 1) differential index [1, 10]
which is suitable for the application of numerical solvers. An important option
with RifSimp is the possibility of excluding special cases that are known to be
not of interest. Thus if we know that a special case, say m = 0, is of no physical
interest, then we can append the inequation m �= 0 to the input system [9, 21].

Application of the RifSimp package to multibody systems revealed that it
has difficulty handling large systems generated by Dynaflex. The symptoms
are excessive time and memory requirements. It is a well-known effect in com-
puter algebra that these are linked, in that a computation that overflows physical
memory will cause the operating system to swap memory to disk. The swapping,
however, essentially brings the system to a halt. There are a number of con-
tributing factors to the growth in time and memory, as will be described below.
Therefore, if one wants to handle industrial-scale problems, one must modify
the RifSimp approach. The modification we introduce here is the possibility of
relaxing the requirements on the canonical form.

We remark that these are common difficulties encountered during the ap-
plication of computer algebra methods to obtain canonical forms (e.g. such as
Gröbner Bases for systems of multi-variate polynomials). An underlying idea in
this paper is that many application may not require the full potency of canonical
simplification (canonicity can be very expensive); and it is important to explore
weaker non-canonical forms when they may achieve the objective in the given
application.

2 Two Examples of Mechanical Systems

Two examples will be used to illustrate the application of computer algebra
methods to multi-body systems.

The three dimensional top example considered in the paper, is an example of
a small open-loop system. Other examples of open loop systems include robot
arms or similar devices with a free end and a fixed end. The slider-crank mech-
anism considered in the paper, is an example of a small closed-loop system.
Another typical example of a closed loop is a piston turning a crank through
connecting rods, so that there are constraints on both the crank and the pis-
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ton. Simple textbook problems in dynamics use ad hoc choices of co-ordinate
systems to produce simple systems of equations without constraints modelling
the problems. But this method is usually not possible with complicated sys-
tems, which are automatically generated by packages such as Dynaflex and
constraint equations can not be eliminated. In addition, the constraints intro-
duce additional variables (essentially Lagrange multipliers) into the equations,
representing the forces they exert.

2.1 Open Loop: Three-Dimensional Top

In this classic problem, the top is an axisymmetric body that can precess about
a vertical (Z) axis, nutate about a rotated X axis, and spin about a body-fixed
symmetry axis, see figure 1. The top is assumed to rotate without slipping on
the ground; this is modelled by placing a spherical (ball-and-socket) joint at
O. Dynaflex automatically generates co-ordinates using standard 3-1-3 Euler
angles (ζ, η, ξ), which correspond to precession, nutation, and spin, respectively.

The top has a moment of inertia J about the symmetry axis, and A about
an axis at O perpendicular to the symmetry axis. Two angles η (the angle of
the axis of symmetry to the z axis), and ζ specify the orientation of the axis of
symmetry of the top, while ξ specifies how a point on the top is moving relative
to its axis of symmetry. There is a coordinate singularity when η is equal to
0 or π, which RifSimp will automatically detect as part of its case analysis.
Coordinate singularities are ubiquitous in automatically generated mechanical
systems, and their automatic detection is an important problem.

The dynamic equations (1,2) generated by Dynaflex are, after changing
from Dynaflex-generated symbols to more conventional ones, as follows. For
details, we refer to the Dynaflex Users Guide [16].

M =

⎡
⎣ (A sin2 η + J cos2 η) 0 J cos η

0 A 0
J cos η 0 J

⎤
⎦ , q =

⎡
⎣ ζ

η
ξ

⎤
⎦ (3)

X

Y

Z

mg

O

C

g

Fig. 1. The three-dimensional top. The centre of mass is at C and OC= l. Gravity acts
in the −Z direction

and
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F =

⎡
⎢⎢⎣

sin(η)
[
2(J − A) cos(η)ζ̇ + Jξ̇

]
η̇

sin(η)
[
(A − J) cos(η)ζ̇2 − Jξ̇ζ̇ + mgl

]
J sin(η)η̇ ζ̇

⎤
⎥⎥⎦ (4)

The fact that the top is an open-loop system is reflected in the fact that
Dynaflex has generated 3 equations for 3 unknowns.

2.2 Two-Dimensional Slider Crank

The slider crank is a simple example of a closed-loop system with qT = (θ1, θ2)T

where θ1 = θ1(t) and θ2 = θ2(t) are the angles shown in figure 2. The system is
given by (1)–(2) where:

M =
[

l21(
m1
4 + m2 + m3) + J1 −l1l2 cos(θ1 + θ2)(m2

2 + m3)
−l1l2 cos(θ1 + θ2)(m2

2 + m3) l22(
m2
4 + m3) + J2

]
(5)

F =

[
−l1g(m1

2 + m2 + m3) cos θ1 − l1l2θ̇2
2
sin(θ1 + θ2)(m2

2 + m3)
l2g(m2

2 + m3) cos θ2 − l1l2θ̇1
2
sin(θ1 + θ2)(m2

2 + m3)

]
(6)

and there is a single constraint equation between the angles:

Φ = l1 sin θ1 − l2 sin θ2 = 0 (7)

Therefore, ΦT
q λ in (1) is given by ΦT

q λ =
(

l1 cos θ1

−l2 cos θ2

)
λ. Note that in this

example, λ is a scalar representing the normal reaction force of the constraint on
the slider. In other words, in addition to generating the constraint equation (7),
Dynaflex automatically generated the constraint force λ(t). For both of these
examples, the challenge now is to analyze the equations with computer algebraic
methods such as RifSimp.

X

Y

1 2

m
m1

2

m
3

A

B

C

D

Fig. 2. The two-dimensional slider crank. The arm of length l1 and mass m1 rotates
and causes the mass m3 attached to the end of the arm of length l2 to move left and
right. Each arm has mass mi and moment of inertia Ji, for i = 1, 2
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3 Simplification Using RifSimp with Case Split

Given that symbolic algorithms such as Dynaflex exist for automatically pro-
ducing the equations modelling multi-body systems, it is natural to exploit the
further simplification and transformation of such systems using symbolic meth-
ods. In this section we discuss the simplification of such systems using the Maple
algorithm casesplit which is part of RifSimp.

The theory underlying the Reduced Involutive Form given in [12] applies to
systems of analytic nonlinear PDE in dependent variables u1, u2, . . . un, which
can be functions of several independent variables. While the general method
applies to analytic systems, like most methods in computer algebra, the im-
plemented algorithms apply to systems which are polynomial functions of their
unknowns. This is to avoid well-known undecidability issues for classes of func-
tions wider than polynomial or rational functions (e.g. there is no finite algorithm
that can decide whether an analytic function is zero or non-zero at a point).

For the present application the only independent variable is time. In gen-
eral the systems produced by Dynaflex are polynomial functions of sines and
cosines of the angles θ1(t), θ2(t), ..., θn(t) between different components (arms
and rotors etc).

One common method to convert such systems to rational form is the trans-
formation

cos θj = xj(t), sin θj = yj(t), x2
j + y2

j = 1 (8)
and another is the well-known Weierstrass transformation [5]:

cos θj = (1 − uj(t)2)/(1 + uj(t)2), sin θj = 2uj(t)/(1 + uj(t)2) (9)

where whereuj = tan(theta/2). If one solves for uj , then the usual problems
regarding choice of appropriate branch for the inverse arise. The transformation
(9) has the advantage that the number of variables remains the same, and no
new constraints are introduced. The transformation (8) has the disadvantage
that additional constraints are introduced.

We will later discuss an alternative hybrid analytic-polynomial strategy. In
that approach, the equations are manipulated in their original analytic form and
conversions to polynomials by transformations such as those above are only used
at intermediate computations and only for parts of the system which require
the full algorithmic power of rational polynomial algebra. After resolving an
analytic obstacle in this manner the inverse transformation yields the analytic
form and the computation continues until the next algorithmic analytic obstacle
is encountered.

RifSimp takes as its input a system of differential equations and a ranking of
dependent variables and derivatives. Using its default ranking, RifSimp orders
the dependent variables lexicographically and the derivatives primarily by total
derivative order [9, 21]. For example for systems of ODE this default ranking is:

u1 ≺ u2 ≺ ... ≺ un ≺ u′
1 ≺ u′

2 ≺ ... ≺ u′
n ≺ u′′

1 ≺ ... (10)

Each equation is then classified as being either leading linear or nonlinear, mean-
ing linear or nonlinear in its highest derivative with respect to the ranking ≺.
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RifSimp solves the leading linear equations for their highest derivatives until it
can no longer find any such equations.

While solving explicitly for the highest derivatives, RifSimp splits cases based
on the pivots (the coefficients of the leading derivatives) with which it divides.
This yields a binary tree of cases.

Each leading-nonlinear equation (a so-called constraint) is differentiated and
then reduced with respect to the current set of leading linear equations and then
with respect to the leading nonlinear equations. A nonzero result means that this
equation is a new constraint which should be appended to the system [9, 21].

For the current application if the solutions are 1 dimensional curves then
each case output by the RifSimp algorithm has form:

v = f(t, w) , (11)
g(t, w) = 0 , (12)
h(t, w) �= 0 . (13)

Here v is the list of (highest-order) derivatives; w is a list of all derivatives,
including dependent variables, lower in the ranking than v; g is a list of constraint
equations; h is a list of inequations. From this form, it is possible to prove an
existence and uniqueness theorem.

In particular, in our application, where there is a single independent variable
t, the initial condition is w(t0) = w0 where the initial condition must satisfy the
constraint g(t0, w0) = 0 and any inequations h(t0, w0) �= 0 and this leads to a
local analytic solution to the original system with this initial condition. Then the
Existence and Uniqueness Theorem [12] states that there exists a local analytic
solution satisfying the above initial conditions and inequations.

Application to Spinning Top

In order to apply RifSimp to equations (1,2) with M and F given by (3) – (4),
we first convert the trigonometric functions to polynomials using the Weierstrass
transformation, which is cos η = (1−u(t)2)/(1+u(t)2), sin η = 2u(t)/(1+u(t)2).
This yields a rational polynomial differential system. The resulting case tree
produced by casesplit is surprisingly large, containing 24 cases, see figure 3.

It is important to understand the reasons for the many cases discovered by
RifSimp, because for more complicated systems, the case analysis can become
overwhelming. We first note that rigid-body mechanics is inherently complicated,
and flexible body mechanics more so. The motion is mostly rotational, meaning
that linear and angular momentum must be considered (introducing mass and
moment-of-inertia parameters), and that the equations contain trigonometric
functions. Beyond this, however, we note that one of the advantages of symbolic
analysis for the engineer is the use of symbolic parameters for the masses, mo-
ments of inertia, lengths, etc. This is useful for their design studies, but it is well
known in symbolic computing that the introduction of large numbers of symbols
causes expression swell, slowdowns in the computation, and the occurrence of
many special cases. Finally, for RifSimp, there is the problem that the program
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Fig. 3. Complete Case Tree for the 3D Top

assumes computation in the complex domain, whereas the engineering applica-
tion only requires real variables. Thus the special cases identified in the complex
plane are not relevant.

RifSimp has an input option that allows inequations to be appended to
the system. These allow us to record physical facts such as m �= 0, g �= 0,
etc. By recording as much information as possible in the list of inequations,
the case tree can be significantly reduced. We find, for example, that the 24
cases in figure 3 can be reduced to 9. Amongst these special cases, RifSimp can
identify dynamically degenerate cases. Examples are the cases of the top being
oriented exactly vertically or exactly horizontally. In each case, one part of the
precessional motion is not present. However, this strategy only delays the arrival
of overwhelming expression swell, and we have therefore looked for an alternative
to the standard RifSimp process.

4 Implicit Reduced Involutive Form Method

Two origins of expression swell for RifSimp are the following. If there are many
equations containing many symbols, then inverting the matrix M to obtain ex-
plicit expressions for the q̈ results in division by many pivots that might be zero.
After this, the reduction of equations modulo the existing equations is also diffi-
cult, because of the size of the equation set and the number of unknowns. From
these observations we are led to seek a form weaker than a canonical solved form
which is computationally feasible, while retaining as much of the power of Rif-
Simp as possible. To this end, we introduce an implicit reduced involutive form.
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Definition 4.1 [Implicit Reduced Involutive Form]: Let ≺ be a ranking.
A system L = 0, N = 0 is said to be in implicit reduced involutive form if there
exist derivatives r1, ..., rk such that L is leading linear in r1, ..., rk with respect
to ≺ (i.e. L = A[r1, · · · , rk]T − b = 0) and

[r1, · · · , rk]T = A−1b , N = 0 , det(A) �= 0 (14)

is in reduced involutive form.
This form is of interest, since computing A−1 on examples can be very ex-

pensive. Sometimes implicit rif-form can be obtained very cheaply, just by ap-
propriate differentiation of the constraints.
Example 4.1 [Spinning Top]: In this case the system has form Mq̈ = F
and this is in implicit reduced involutive form provided det(M) �= 0. In general
implicit reduced involutive form can be regarded as a cheap way of obtaining
some but not all of the cases resulting from a system (e.g. the cases in this
example with det(M) = 0 are not covered).
Example 4.2 [General Multi-Body Systems]: To convert a system of gen-
eral form (1,2) with non-trivial constraints to implicit reduced involutive form
one would have to at least differentiate the constraints twice. Carrying this out
we obtain

Mq̈ + ΦT
q λ = F (t, q, q̇) (15)

D2
t Φ = Φq q̈ + Hq̇ + 2Φtq q̇ + Φtt = 0 (16)

DtΦ = Φq q̇ + Φt = 0 (17)
Φ(t, q) = 0 (18)

where Φtq = ∂Φq

∂t , Φtt = ∂2Φ
∂t2 and

H =

⎡
⎢⎣
∑

i Φ1
q1qi

q̇i · · ·
∑

i Φ1
qnqi

q̇i

...
...

...∑
i Φ

q1qi
q̇i · · ·

∑
i Φ

qnqi
q̇i

⎤
⎥⎦

We now show:

Theorem 4.1 Consider the ranking ≺ defined by q ≺ q̇ ≺ λ ≺ q̈ ≺ λ̇ ≺ ...
q · · ·

where the dependent variables q, λ are ordered lexicographically q1 ≺ q2 ≺ ... and
λ1 ≺ λ2 ≺ .... The systems (15, 16, 17, 18) are in implicit rif-form with A, b,
[r1, ..., rk]T in Definition 4.1 given by:

A =
[

M ΦT
q

Φq 0

]
, b =

[
F (t, q, q̇)

−Hq̇ − 2Φtq q̇ − Φtt

]
, [r1, ..., rk]T =

(
q̈
λ

)
(19)

and N = {Φ = 0, Φq q̇ + Φt = 0}, det(A) �= 0.

Proof: Set N = {Φ = 0, DtΦ} = {Φ = 0, Φq q̇ + Φt = 0} in Theorem 4.1.
Differentiating again yields D2

t Φ given by (16).
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Rewriting the system (15,16) in matrix form yields A, b, [r1, ..., rk]T in (19).
It remains to verify that Dtψ when reduced first with respect to L and then

with respect to N yields zero for each ψ ∈ N . First DtΦ = Φq q̇ +Φt is unaltered
by reduction with respect to L and then reduces to zero with respect to N (since
it is already in N). Next Dt(Φq q̇ + Φt) is given in (16) and reduces to zero on
simplification with respect to L (since it is a member of L). Note that we are
working with analytic systems. Here as described in Rust [12] reduction to zero
means detection as member of the analytic ring of functions (with coefficients
again analytic functions) generated by the members of N . In general this is not
algorithmic, but for multi-body systems by using one of the transformations
to polynomial form, it can be converted into a polynomial ideal membership
question which can be answered algorithmically, then transformed back to the
analytic form. Here however the detection is trivial and does not require such
techniques.

Again, we can note that implicit reduced involutive form easily obtained non-
degenerate cases corresponding to det(A) �= 0. To determine whether a case is
empty or not requires the analysis of whether there are any common solutions
satisfying N = 0 and det(A) �= 0. This is a purely algebraic problem, which can
be resolved in the worse case by applying one of the transformations to rational
polynomial form. In that form one of the standard methods of commutative al-
gebra (e.g. triangular sets) can be applied. Alternatively one can use some of the
techniques of the new area of numerical algebraic geometry such as the methods
of Sommese, Verschelde and Wampler [19]. That method determines so-called
generic points on components of the variety determined by N = 0. Substitution
of these points into A and application of some technique from numerical linear
algebra (e.g. the singular value decomposition) can determine if det(A) �= 0.

A full analysis would have to consider the more difficult cases with det(A) =
0. Indeed higher index problems (index > 2) yield det(A) = 0 and further dif-
ferentiations of the constraints need to be carried out to obtain implicit reduced
involutive form.
Example 4.3 [Slider-Crank]: The example of the two-dimensional slider crank
described above exactly fits into the class being discussed. Notice that even this
simple case generates 5 independent parameters: each arm has a mass and a
moment of inertia and the slider has a mass. The computation of this example
is much harder to achieve in reduced involutive form.

5 Conclusion and Future Work

The mechanical systems generated by programs such as Dynaflex mean that
they are ideal for testing new algorithms for dealing with DAE. The underly-
ing idea is that such directly physical systems should lead to insights and new
techniques for such DAE.

The implicit forms obtained can be useful in the numerical solution of such
systems. For example, the matrix A above yields a system of DAE which can
be solved using an implicit numerical method (i.e. along a solution curve, the
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constant matrix A evaluated at a certain time step is a constant matrix, which
is inverted using stable numerical methods). Thus a very expensive symbolic
(exact) inversion of a matrix has to be compared to the solution using LU de-
composition at each step along the path. In many applications we stress that
the repeated solution of these systems along the path, are much cheaper than
symbolically inverting the matrix once and then evaluating the solution along the
path. Finding a balance between paying the cost of symbolic simplification, on
the one hand, and, on the other, finding ways of working with implicit represen-
tations is a subject of our ongoing research. This is important for example in
being able to carry out real time simulations.

In some respects the method that we eventually are approaching is quite
similar to that appearing in the literature (e.g. see Visconti [20]). The purpose
of the article is to try to draw rigorous differential elimination approaches closer
together with such methods. In addition we suggest the use of analytic systems
to assist in efficiency (avoiding a full polynomialization of the problem, since
this can increase the complexity of the problem). In our calculations full poly-
nomialization led to many extra equations compared to the analytic approach.
The total degree (which is a measure of the complexity of the system) was of-
ten dramatically increased by the transformations, and this was reflected in our
experience with calculations.

Indeed it is quite surprising that some of the techniques in DAE have not pro-
duced analogous strategies in general differential elimination packages for ODE
and PDE such as diffalg or the RifSimp package. Our article is an effort to
try to bridge this gap. Indeed an interesting aspect of the article and the work
was the interaction between the authors from mechanical engineering (McPhee
and Schmitke) and those from computer algebra (Jeffrey, Reid and Zhou). It
forced the computer algebraists to examine some of the underlying techniques
and assumptions routinely made in computer algebra. For example the conver-
sion of analytic systems to rational polynomial form, is almost automatic and
unquestioned as desirable in computer algebra approaches. The restriction to
polynomial or rational polynomial functions also arose historically in the largely
algebraic earlier era of symbolic computation. But as indicated in this article
such a conversion can lead to unnecessarily large expressions.

We briefly discuss and compare reduced involutive form [12, 21] with the
coordinate independent involutive form of geometric PDE [8, 13]. (Geometric)
involutive form, provided certain regularity conditions are satisfied, does not de-
pend on the explicit form of the PDE, but instead on their locus in Jet Space.
Reduced involutive form, although closely related to involutive form, is not al-
ways involutive but can simply be prolonged without eliminations to involutive
form [7]. Implicit reduced involutive form is closer to involutive form than the
coordinate dependent regular differential chains of differential algebra [6] and co-
ordinate dependent reduced involutive form. Both these coordinate dependent
forms depend on having systems triangularized or solved with respect to their
leading derivatives in the given ranking. Roughly, the solved-form requirement
is dropped in the introduction of implicit reduced involutive form.
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Our planned work includes other strategies for controlling the generation
of large expressions, since there will always be a desire on the part of design
engineers to increase the number of bodies that can be modelled. One strategy
for large expression management (LEM) has been described in [4]. The key idea
is that large expressions are not arbitrary collections of terms, but contain a
structure. An analogy can be drawn with the situation in the study of matrices
arising in engineering applications: they almost always have a ‘structure’ to them.
For example, they are banded, or otherwise sparse. By recognizing structure, we
can solve larger problems. Returning to symbolic manipulation, we can note that
simplification routines in computer algebra can cause a loss of structure, usually
with the result that larger expressions are generated. A very simple example is
the apparent simplification of (1+x)9−1, where a computer system will expand
the bracket in order to cancel the 1 from the expansion with the 1 outside
the bracket. Using the tools developed in [4] and now incorporated into Maple,
we can preserve the structure inherent in engineering equations, such as those
described here.
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Abstract. Camera pose estimation is the problem of determining the
position and orientation of an internally calibrated camera from known
3D reference points and their images. We introduce a new polynomial
equation system for 4-point pose estimation and apply our symbolic-
numeric method to solve it stably and efficiently. In particular, our algo-
rithm can also recognize the points near critical configurations and deal
with these near critical cases carefully. Numerical experiments are given
to show the performance of the hybrid algorithm.

1 Introduction

Given a set of correspondences between 3D reference points and their images,
4-point pose estimation consists of determining the position and orientation of
the camera with respect to four known reference points. It is a classical and
common problem in computer vision and photogrammetry and has been studied
in the past [1, 2, 6, 8, 11, 20, 23].

The well-known polynomial system (1) corresponding to the 4-point pose
estimation generically has a unique positive solution. It can be found successfully
by linear algorithms proposed in [20, 2, 23]. But there are certain degenerate cases
for which no unique solution is possible. These critical configurations are known
precisely and include the following notable degenerate case: a 3D line and a circle
in an orthogonal plane touching the line. In [2] an algorithm is presented that
solves the problem including the critical configurations, but the relative error
and failure rate (backward error) are significantly higher than one would like.
In [23], the authors present a new linear algorithm which works well even in the
degenerate cases. However, the matrices are much larger 70× 90 compared with
24 × 24 matrices used in [2].
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In this paper, we introduce a new variable and transform the polynomial
system for 4-point pose estimation to a new system with only five equations and
three variables. Our symbolic-numeric method can also be applied to the new
system and find solutions in general or critical cases. The matrices we used in
the general or critical cases are of size 20 × 20; while in near critical cases, we
are using a matrix of size 35 × 50 in order to recover the sensitive unique root.

The rest of the paper is organized as follows. In Section 2, we introduce the
basic geometry of the 4-point pose estimation problem. A new system of equations
is introduced. In Section 3, we briefly review the symbolic-numeric method for
polynomial system solving. Then, we illustrate how to apply this method to
solve the polynomial system corresponding to the critical or near critical cases.
In Section 4, the simulated experimental results are given. Some conclusions are
given in Section 5.

2 Geometry of Camera Pose from Four Points

In the following, we briefly introduce the geometry of camera pose from four points.
Let C be the calibrated camera center, and P1, P2, P3, P4 be the reference points
(seeFig. 1). Let c12 = 2 cos 	 (P1CP2), c13 = 2 cos 	 (P1CP3), c14 = 2 cos 	 (P1CP4),
c23 = 2 cos 	 (P2CP3), c24 = 2 cos 	 (P2CP4), c34 = 2 cos 	 (P3CP4).

From triangles CP1P2, CP1P3, CP2P3, CP1P4, CP2P4 and CP3P4, we obtain
the 4−point pose estimation equation system:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X2
1 + X2

2 − c12X1X2 − |P1P2|2 = 0,
X2

1 + X2
3 − c13X1X3 − |P1P3|2 = 0,

X2
2 + X2

3 − c23X2X3 − |P2P3|2 = 0,
X2

2 + X2
4 − c24X2X4 − |P2P4|2 = 0,

X2
3 + X2

4 − c34X3X4 − |P3P4|2 = 0,
X2

1 + X2
4 − c14X1X4 − |P1P4|2 = 0.

(1)

X2

X1

X3

X4

P2 P3

P1

C

P4

Fig. 1. The 4-point pose estimation problem



46 G. Reid et al.

We are only interested in finding the positive solutions for X1, X2, X3, X4.
Since X4 = |P4C| is positive, we may make the following variable changes. Let

X1 = x1X4, X2 = x2X4, X3 = x3X4,

|P1P4| =
√

wX4, |P1P2| =
√

awX4, |P1P3| =
√

bwX4,

|P2P3| =
√

cwX4, |P2P4| =
√

dwX4, |P3P4| =
√

ewX4.

Equation system (1) become the following equivalent equation system:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x2
1 + x2

2 − c12x1x2 − aw = 0,
x2

1 + x2
3 − c13x1x3 − bw = 0,

x2
2 + x2

3 − c23x2x3 − cw = 0,
x2

2 + 1 − c24x2 − dw = 0,
x2

3 + 1 − c34x3 − ew = 0,
x2

1 + 1 − c14x1 − w = 0.

(2)

From x2
1 + 1− c14x1 −w = 0 and |c14| < 2 because c14 = 2 cos 	 (P1CP4), we

have

w = (|P1P4|/X4)2 = x2
1 + 1 − c14x1 = (x1 − c14/2)2 + 1 − c2

14/4 > 0.

X4 can be uniquely determined by X4 = |P1P4|/
√

w and the equivalent corre-
spondence is:

(x1, x2, x3,
√

w)
|P1P4|=√

wX4

← −−−−−− → (x1, x2, x3, X4)
X1=x1X4,X2=x2X4,X3=x3X4
← −−−−−−−−−− → (X1, X2, X3, X4)

(3)

Substituting w into above equation system, we have the following equivalent
equation system:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 − a)x2
1 + x2

2 − c12x1x2 − a(1 − c14x1) = 0,
(1 − b)x2

1 + x2
3 − c13x1x3 − b(1 − c14x1) = 0,

(1 − c)x2
2 + x2

3 − c23x2x3 − c(1 − c14x1) = 0,
(1 − d)x2

2 + 1 − c24x2 − d(1 − c14x1) = 0,
(1 − e)x2

3 + 1 − c34x3 − e(1 − c14x1) = 0.

(4)

The equation system (4) is simpler than the original system (1), and from
the positive solution xi we can get the coordinates Xi according to the equiva-
lent correspondence. The recovered camera-point distances Xi are used to esti-
mate the coordinates of the 3D reference points in a camera-centered 3D frame:
P̄i = XiK

−1Ui (see [20]). The final step is the absolute orientation determina-
tion [21]. The determination of the translation and the scale follow immediately
from the estimation of the rotation.

The system (4) is still an overdetermined polynomial system of five equations
in 3 variables. The parameters cij(1 ≤ i, j ≤ 4) and a, b, c, d, e are data of limited
accuracy. It is still very difficult to use Gröbner basis algorithms [4] or Ritt-
Wu’s characteristic algorithms [29, 31] to solve such approximate overdetermined
polynomial systems. In the following, we briefly introduce our new developed
complete linear method [23] for solving such system stably.
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3 Linear Methods for Pose Determination from 4 Points

Consider a general polynomial system S in x1, . . . , xn of degree q and its corre-
sponding vector of monomials of degree less than or equal to q. The system can
be written as

M0 · [xq
1, x

q−1
1 x2, . . . , x

2
n, x1, . . . , xn, 1]T = [0, 0, . . . , 0, 0, . . . , 0, 0]T (5)

in terms of its coefficient matrix M0. Here and hereafter, [...]T means the trans-
position. Further, [ξ1, ξ2, . . . , ξn] is one of the solutions of the polynomial system,
if and only if

[ξq
1 , ξq−1

1 ξ2, . . . , ξ
2
n, ξ1, . . . , ξn, 1]T (6)

is a null vector of the coefficient matrix M0.
Since the number of monomials is usually bigger than the number of poly-

nomials, the dimension of the null space can be big. The aim of completion
methods, such as ours and those based on Gröbner bases and others [15, 12, 5,
14, 17, 18, 16, 25, 28], is to include additional polynomials belonging to the ideal
generated by S, to reduce the dimension to its minima.

The bijection

φ : xi ↔
∂

∂xi
, 1 ≤ i ≤ n, (7)

maps the system S to an equivalent system of linear homogeneous PDEs denoted
by R. Jet space approaches are concerned with the study of the jet variety

V (R) =
{(

u
q
, u
q−1

, . . . , u
1
, u

)
∈ Jq : R

(
u
q
, u
q−1

, . . . , u
1
, u

)
= 0

}
, (8)

where u
j

denotes the formal jet coordinates corresponding to derivatives of order

exactly j.
A single prolongation of a system R of order q consists of augmenting the

system with all possible derivatives of its equations, so that the resulting aug-
mented systems, denoted by DR, has order q + 1. Under the bijection φ, the
equivalent operation for polynomial systems is to multiply by monomials, so
that the resulting augmented system has degree q + 1.

A single geometric projection is defined as

E(R) :=
{(

u
q−1

, . . . , u
1
, u

)
∈ Jq−1 : ∃ u

q
, R

(
u
q
, u
q−1

, . . . , u
1
, u

)
= 0

}
. (9)

The projection operator E maps a point in Jq to one in Jq−1 by simply removing
the jet variables of order q (i.e. eliminating u

q
). For polynomial systems of degree

q, by the bijection φ, the projection is equivalent to eliminating the monomials
of the highest degree q. To numerically implement an approximate involutive
form method, we proposed in [30, 23] a numeric projection operator Ê based on
singular value decomposition.
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By the famous Cartan-Kuranishi Theorem [10, 19, 27], after application of a
finite number of prolongations and projections, the algorithm above terminates
with an involutive or an inconsistent system.

Suppose that R is involutive at prolonged order k and projected order l,
and by the bijection φ has corresponding system of polynomials S with a finite
number of solutions. Then the dimension of Êl(DkR) allows us to determine
the number of approximate solutions of S up to multiplicity. In particular these
solutions approximately generate the null space of Êl(DkR). We can compute
eigenvalues and eigenvectors to find these solutions.

The following example corresponds to the third singular case as pointed in
[2, 23]. In the example the coordinate of the camera point is (1, 1, 1), and the
coordinates of the four control points are (−1, 1, 0), (−1,−1, 0), (1,−1, 0) and
(1, 1, 0) respectively. The corresponding 4-point pose estimation equation system
is: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p1 := x2
2 − 2.0x1

2 − 0.666667x2 + 1.78885x1 − 1.0,
p2 := x3

2 − x1
2 − 0.894427x3 + 0.894427x1,

p3 := x2
2 − 1.49071x1 x2 + 0.894427x1 − 1.0,

p4 := −x1
2 + x3

2 − 0.4x1 x3 + 1.78885x1 − 2.0,
p5 := x2

2 + x3
2 − 1.49071x2 x3 − x1

2 + 0.894427x1 − 1.0.

(10)

We show how our symbolic-numeric method can be used to solve (10). Under
the bijection φ : xi ↔ ∂

∂xi
where i = 1, 2, 3, the system is equivalent to the PDE

system R:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ(p1)u := ∂2u
∂x22 − 2.0 ∂2u

∂x12 − 0.666667 ∂u
∂x2

+ 1.78885 ∂u
∂x1

− 1.0u,

φ(p2)u := ∂2u
∂x32 − ∂2u

∂x12 − 0.894427 ∂u
∂x3

+ 0.894427 ∂u
∂x1

,

φ(p3)u := ∂2u
∂x22 − 1.49071 ∂2u

∂x1 ∂x2
+ 0.894427 ∂u

∂x1
− 1.0u,

φ(p4)u := − ∂2u
∂x12 + ∂2u

∂x32 − 0.4 ∂2u
∂x1 ∂x3

+ 1.78885 ∂u
∂x1

− 2.0u,

φ(p5)u := ∂2u
∂x22 + ∂2u

∂x32 − 1.49071 ∂2u
∂x2 ∂x3

− ∂2u
∂x12 + 0.894427 ∂u

∂x1
− 1.0u.

(11)

Applying the symbolic-numeric completion method to R with tolerance 10−9,
we obtain the table of dimensions below:

k = 0 k = 1 k = 2 k = 3 k = 4
l = 0 5 2 2 2 2
l = 1 4 2 2 2 2
l = 2 1 2 2 2 2
l = 3 1 2 2 2
l = 4 1 2 2
l = 5 1 2
l = 6 1

Table 1 Dim (ÊlDkR) for (11).
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We seek the smallest k such that there exists an l = 0, ..., k with ÊlDkR
approximately involutive. Passing the approximate projected elimination test
amounts to test looking in the table for the first column with an equal entry in
the next column on the downwards sloping diagonal (with both entries being on
or above the main diagonal k = l). This first occurs for k = 1 and l = 0, 1, 2.

Applying the approximate version of the projected involutive symbol test to
the example, shows that it is passed for k = 1, l = 0, and l = 1, so we choose
the largest l (l = 1), yielding ÊDR as the sought after approximately involutive
system.

The involutive system has dim(ÊDR) = 2 and so by the bijection the poly-
nomial system (10) has 2 solutions up to multiplicity. In the following, we apply
an eigenvalue method to solve (10).

1. Compute an approximate basis of the null space of DR, denoted by a 20× 2
matrix B. Since dim(DR) = dim(ÊDR) = dim(Ê2DR) = 2, the 4 × 2
submatrix B1 and 10×2 submatrix B2 of B by deleting entries corresponding
to the second and third degree monomials are bases of null spaces of Ê2DR
and ÊDR respectively.

2. Consider the set of all monomials of degree less than or equal to 1:

N = [x1, x2, x3, 1].

For numerical stability, we compute the singular value decomposition of B1

U, S, V := SingularValues(B1).

The first two columns of U form the 2×4 matrix Us, and guarantee a stable
linear polynomial set Np = UT

s · N T for computing multiplication matrices.
3. The multiplication matrix of xi with respect to Np can be formed as

Mxi
= UT

s · Bxi
· V T · Si

where Bx1 , Bx2 , Bx3 are the [1, 2, 3, 7], [2, 4, 5, 8] and [3, 5, 6, 9] rows of B2

respectively, and Si is a diagonal matrix with elements which are inversions
of the first two elements of S: 1.95588, 111.524.

4. The coordinates xi of the double root can be found as the average of the
eigenvalues of Mxi

for i = 1, 2, 3:

x1 = 2.23607, x2 = 3.0, x3 = 2.23607. (12)

Substituting the solution (12) into (10), we find |pi(ξ1, ξ2, ξ3)| < 0.42 · 10−7

for i = 1, 2, . . . , 5. If one substitutes the positive solution (12) to the Jacobian
matrix ⎡

⎢⎢⎢⎢⎣
∂p1
∂x1

∂p1
∂x2

∂p1
∂x3

∂p2
∂x1

∂p2
∂x2

∂p2
∂x3

...
...

...
∂p5
∂x1

∂p5
∂x2

∂p5
∂x3

⎤
⎥⎥⎥⎥⎦ (13)

then the singular values of the transpose of the Jacobian matrix are
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11.8865, 5.42001, 0.109804 · 10−8.

The Jacobian matrix is near singular. This tells us that the solution is quite
unstable for any small perturbations. Suppose we perturb (10) by errors of or-
der 10−6, the number of solutions read from the dimension table will generally
become 1.

In general, we obtain the following table:

k = 0 k = 1 k = 2 k = 3 k = 4
l = 0 5 2 1 1 1
l = 1 4 2 1 1 1
l = 2 1 2 1 1 1
l = 3 1 1 1 1
l = 4 1 1 1
l = 5 1 1
l = 6 1

Applying the projected elimination and involutive symbol tests shows that
Ê2D2R is approximately involutive. The computed positive root has backward
error of order 10−6 ∼ 10−9 in general.

In order to compare the difference between general cases, critical cases and
near critical cases, in the below, we also show the dimension table corresponding
to the general cases.

k = 0 k = 1 k = 2 k = 3 k = 4
l = 0 5 1 1 1 1
l = 1 4 1 1 1 1
l = 2 1 1 1 1 1
l = 3 1 1 1 1
l = 4 1 1 1
l = 5 1 1
l = 6 1

From the three different dimension tables, it is easy to deduce the following
conclusions. Firstly, in the general case, the unique solution can be recovered
from the null vector of the 20× 20 matrix generated by pi, xi pj for i, j = 1, 2, 3.
Secondly, if the four points are on the critical configuration, we have to deal
it with eigenvalue method after forming the multiplication matrix with respect
to x1, x2, x3 separately. Finally, if the points are near the critical configuration,
then the solution should be found stably from the null vector of the 35 × 50

Table 2 Dim (ÊlDkR) for near critical case.

Table 3 Dim (ÊlDkR) for general case.
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matrix generated by pi, xipj , xixjpk for i, j, k = 1, 2, 3. The main reason is due
to that the dimension of the null space of the 20 × 20 matrix is two from table
2 in near degenerate cases.

4 Experimental Results

Based on the linear symbolic-numeric method, we may have the following algo-
rithm for the 4-point pose estimation problem:

– Compute the cij from the image points and the camera calibration matrix
K.

– Compute the inter-point distances |PiPj | from the reference points.
– Compute the solution x1, x2, x3 of the polynomial system (4) using the

symbolic-numeric method [23].
– Recover the camera-point distances X1, X2, X3, X4 from the equivalence cor-

respondence (3).
– Estimate the coordinates of the 3D reference points in a camera-centered 3D

frame: P̄i = XiK
−1Ui.

– Compute the camera rotation and translation using the absolute orientation
[9, 20, 21].

The following experiments are done with Maple 8 in the default setting of
digits (Digits=10).

The first experiment is to show the accuracy and stability of the algorithm for
the general 4-point pose estimation. The optical center is located at the origin and
the matrix of camera’s intrinsic parameters is assumed to be the identity matrix.
At each trial, four noncoplanar control points are generated at random within a
cube centered at (0, 0, 50) and of dimension 60× 60× 60. The orientation Euler
angles of the camera are positioned randomly. The control points are projected
onto an image plane using the camera pose and internal parameters. We carry
out one hundred trials and generate 100 sets of control points randomly for each
trial. For a set of solutions, we substitute them into (1) and check the backward
error. The backward error of the experimental results is generally less than 10−8.

We check the stability of the algorithm. The relative error of the estimated
translation ti w.r.t. the true t is measured by 2|ti − t|/(|ti| + |t|). The relative
error of the estimated rotation Ri w.r.t. the true R is measured by the sum of
the absolute values of the three Euler angles of the relative rotation RiR

T (Fig.
2). We also check the failure rate defined as the percentage of total trials where
either the rotation error or the translation error is over 0.5 (Fig. 3).

The second experiment is to show the accuracy and the stability of the algo-
rithm in determining the solutions for the critical configurations. As mentioned
in the introduction, the pose problem has some computationally troublesome
singular cases. Fig. 4 and Fig. 5 show the relative error and the failure rate for
one such critical configuration using our symbolic-numeric linear method.
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Fig. 2. Relative errors vs. noise level
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Fig. 3. Failure rate vs. noise level
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Fig. 4. Relative translation errors vs. noise level for the critical configurations

The data is 4 coplanar points in a square [−1, 1]×[−1, 1] and the camera starts
at position=0, at a singular point directly above their center (0.5 < h < 1.5),
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Fig. 5. Failure rate for the critical configurations

where h is the height of the camera. The camera then moves sideways parallel to
one edge of the square. At position=

√
2 units it crosses the side of the vertical

circular cylinder through the 4 data points, where another singularity occurs.
From Fig. 4 and Fig. 5, the relative error and especially the failure rate of the
algorithm are significantly lower compared with the algorithm in [2]. The relative
error and the failure rate of our algorithm are also acceptable. It is natural that
the error and failure rate near the position 0 and

√
2 are a little higher than at

other positions.
It is clear that the experimental results are very similar to those we have

presented in [23]. However, the computation is simpler due to smaller size of the
polynomial system.

5 Conclusion

In this paper, we present a stable algorithm to find the numeric solution for
4-point pose estimation. Although stated here in terms of derivatives, via the
bijection, all the steps of the symbolic-numeric method, can be carried out by
equivalent manipulations on the corresponding monomials, and the vector spaces
they generate. The algorithm gives a unique solution whenever the control points
are not sitting on one of the known critical configurations. When the control
points are sitting on or near some known critical configurations, the algorithm
also obtains reliable solutions. Compared with other algorithms, the main ad-
vantage of our linear algorithm is that it can recognize the critical and near
critical cases and deal with different cases in different ways. The matrices in our
approach are only bigger than those used in other approaches when the points
are near critical configurations. The experiments show that the new simple poly-
nomial system for 4-point pose estimation can be robustly and reliably solved
by our symbolic-numeric method in non-singular, singular and nearly singular
configurations.
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Abstract. The perspective-n-point (PnP ) problem is to find the posi-
tion and orientation of a camera with respect to a scene object from n
correspondence points and is a widely used technique for pose determi-
nation in the computer vision community. Finding out geometric condi-
tions of multiple solutions is the ultimate and most desirable goal of the
multi-solution analysis, a key research issue of the problem in the litera-
ture. In this paper, we study the multi-solution phenomenon of the P4P
problem and give some necessary conditions under which there are five
positive solutions for the P4P problem. Moreover, we give a geometric
configuration for the five solutions.

1 Introduction

Given a set of correspondences between 3D reference points and their images,
camera pose determination is to determine the position and orientation of the cal-
ibrated camera with respect to the known reference points. The problem is called
PnP problem in mathematics. It is a classical problem in computer vision, pho-
togrammetry and mathematics. This problem has many interesting applications
in robotics and cartography within many important fields, such as computer
vision, automation, image analysis, automated cartography, photogrammetry,
robotics and model based machine vision system, etc. It was first formally intro-
duced by Fischler and Bolles in 1981 [6], and later extensively studied by others
[1, 4, 8, 9, 14, 18]. The problem was summarized as follows:

“ Given the relative spatial locations of n control points, and given the
angle to every pair of control points from an additional point called the
Center of Perspective (CP ), find the lengths of the line segments joining
CP to each of the control points.”

The perspective three points is the smallest subset of control points that yields
a finite number of solutions. In the literature, the P3P problem has been exten-
sively studied. Su et al. [21] showed the necessary and sufficient condition for the
P3P problem. Fischler and Bolles [6] showed that the P3P problem has at most
four positive solutions and this upper bound is also attainable via a concrete
example. Haralick et al. [10] reviewed six different direct approaches to solve the
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P3P problem and carefully examined their numerical stabilities under different
order of substitution and elimination. In the paper [8], Gao et al. gave a com-
plete solution classification of the P3P problem and the necessary and sufficient
algebraic conditions under which the P3P problem could have one, two, three,
and four solutions.

Three point methods intrinsically give multiple solutions. In order to obtain
a unique solution, we need to add more information and conditions. One of the
natural way is to add one control point to consider a P4P problem. For the P4P
problem, Rivers [20] gave a set of six quadratic equations with four variables.
Fischler and Bolles attacked the problem by finding solutions associated with
subsets of three points and selecting the solutions that they have in common.
Horaud et al. [12] converted the P4P into a special 3-line problem and obtained
a fourth degree polynomial equation showing that this equation system has at
most four solutions. In [18], Quan and Lan presented a linear algebraic algorithm
which finds the unique solution in the generic case. Reid G. L. et al. [19] gave
a complete linear algorithm to solve the P4P problem including the critical
configurations and the experiments showed that the algorithm is stable. In [9],
Gao & Tang gave the triangular decomposition and closed form solution for this
problem. When the control points are coplanar, the P4P problem has a unique
solution [1]. If the control points are not coplanar, the P4P problem could have
five solutions [14]. It had been proved that the P5P problem could have two
solutions [15]. For n ≥ 6, the PnP problem has one solution and can be solved
with the DLT method [2].

In this paper, we study the multi-solution phenomenon for the P4P problem
and give some necessary algebraic conditions under which the problem has five
positive solutions. In particular, we give a concrete example indicating the P4P
problem may have five positive solutions.

The rest of the paper is organized as follows. In section 2, we introduce the
P4P problem and give a simplified form of the P4P equation system. In section
3, we present the main result. In section 4, we give the conclusion.

2 The P4P Equation System

Given a calibrated camera centered at P and correspondence between four 3D
reference points Pi and their images Ui, each pair of correspondence i and j gives
a constraint on the unknown camera-point distances Xi = |Pi − P |(cf. Fig. 1):

Pij(Xi, Xj) ≡ X2
i + X2

j + cijXiXj − d2
ij = 0

cij ≡ −2 cos θij

where dij = |Pi − Pj | is the known inter-point distance between the i−th and
j−th reference points and θij is the 3D viewing angle subtended at the camera
center by the i−th and j−th points. In the following, we will mainly discuss
the case: n = 4. Let P be the center of perspective, and A, B, C, D be the
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P

P j

P i

U i
U j

Fig. 1. The basic geometry of camera pose determination for each pair of correspon-
dences

control points. Let p = 2 cos 	 (BPC), q = 2 cos 	 (APC), r = 2 cos 	 (APB), s =
2 cos 	 (CPD), t = 2	 (APD), u = 2 cos 	 (BPD), l1 = |AB|2, l2 = |AC|2, l3 =
|BC|2, l4 = |AD|2, l5 = |CD|2, l6 = |BD|2. From triangles PAB, PAC, PBC,
PAD, PBD and PCD, we obtain the P4P equation system:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p1 = X2 + Y 2 − XY r − l1 = 0
p2 = X2 + L2 − XLq − l2 = 0
p3 = Y 2 + L2 − Y Lp − l3 = 0
p4 = X2 + Z2 − XZs − l4 = 0
p5 = Z2 + L2 − ZLt − l5 = 0
p6 = Y 2 + Z2 − Y Zu − l6 = 0

(1)

We need to find the positive solutions for X,Y,Z, L. Since L = |PC| is positive,
we may make the following variable changes. Let l1 = awL2, l2 = bwL2, l3 =
wL2, l4 = cwL2, l5 = dwL2, l6 = ewL2, X = xL, Y = yL, Z = zL. Equation
system (1) becomes the following equivalent equation system:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q1 = x2 + y2 − xyr − aw = 0
q2 = x2 + 1 − xq − w = 0
q3 = y2 + 1 − yp − bw = 0
q4 = x2 + z2 − xzs − cw = 0
q5 = z2 + 1 − zt − dw = 0
q6 = y2 + z2 − yzu − ew = 0

(2)

From q2 = x2 + 1− xq −w = 0 and |q| < 2 (see (4)), we have w = x2 + 1− xq =
(x− q/2)2 +1− q2/4 > 0. L can be uniquely determined by L = |AC|/

√
w. And

the equivalent correspondence is:

(x1, x2, x3,
√

w)
|P1P4|=

√
wX4

← −−−−−− → (x1, x2, x3, X4)

X1=x1X4,X2=x2X4,X3=x3X4
← −−−−−−−−−− → (X1, X2, X3, X4)
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Fig. 2. The P4P problem

Substituting w into (2), we have the following equivalent equation system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h1 = x2 + y2 − xyr − a(x2 + 1 − xq) = 0
h2 = y2 + 1 − yp − b(x2 + 1 − xq) = 0
h3 = x2 + z2 − xzs − c(x2 + 1 − xq) = 0
h4 = z2 + 1 − zt − d(x2 + 1 − xq) = 0
h5 = y2 + z2 − yzu − e(x2 + 1 − xq) = 0

(3)

The above equation system is simper than the original P4P equation system.
This is a parametric equation system with three variables x, y, z and eleven
parameters U = {a, b, c, d, e, p, q, r, s, t, u}. It is clear that we need to add the
following “reality conditions”, which are assumed through out the paper.⎧⎨
⎩

x > 0, y > 0, z > 0, a > 0, b > 0, c > 0, d > 0, e > 0
−2 < p < 2,−2 < q < 2,−2 < r < 2,−2 < s < 2,−2 < t < 2,−2 < u < 2
Triangles ABC,ACD,ABD,BCD do not degenerate to lines.

(4)

solutions. Consider a P3P problem with a perspective center P and control
points A,B,C. Assume that A,B,C are not on the same line. It is known that
the P3P problem P -ABC has an infinite number of solutions if and only if P is
on the circumscribed circle of the triangle ABC [8]. Since we assumed that the
triangles ABC,ACD,ABD,BCD in Figure 2 would not degenerate to lines, the
P4P problem has an infinite number of solutions if and only if point P is on the
circumscribed circles of these four triangles, which could happen if and only if
points A,B,C,D and P are on the same circle.

3 Number of Solutions for P4P Problem

In [14], the author gave a theorem which showed that the upper bound of the
positive solutions of the noncoplanar P4P problem is five and also obtained
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some sufficient conditions for multiple positive solutions of the noncoplanar P4P
problem. In the following Theorem 2, we obtained some algebraic expressions
as the necessary conditions for five positive solutions of the noncoplanar P4P
problem.

Lemma 1. If the four control points of the P4P problem are not on the same
plane then it could only have a finite number of solutions.

Proof. Let the four control points be A,B,C and D. The P3P problem with
center of perspective P and control points A,B,C has an infinite number of
solutions if and only if P is on the circumscribed circle of triangle ABC. Thus
the P4P problem has an infinite number of solutions if and only if point P
is on the circumscribed circles of triangles ABC, ABD, ACD, BCD, which
could happen if and only if points A,B,C,D and P are on the same circle. This
contradicts to the fact that A,B,C,D are not co-planar.

Lemma 2. Let P and Q be solutions of the P4P problem with non-planar con-
trol points A,B,C and D. If P and Q are symmetric with respect to plane ABC,
then D must be on line PQ.

Proof. Since the angles between line PQ and the line PA, PB and PC are given,
PD is the intersection line of three cones with PA, PB and PC as the central
axes respectively. PD is the unique intersection line of three cones QA, QB , QC

with QA, QB, QC as central axes and passing through point D respectively.
Suppose that D is not on line PQ. Let line PD meet plane ABC at point D̄.
Since A,B,C,D are not planar, D̄ �= D. Since D is not on the line PQ, QD and
QD̄ are different lines. Because P and Q are symmetric with plane ABC, we have
	 AQD̄ = 	 APD̄ = 	 APD = 	 AQD. Similarly, 	 BQD̄ = 	 BQD, 	 CQD̄ =
	 CQD. In other words, QD̄ is also the intersection of the three cones QA, QB ,
QC . This contradicts to the uniqueness of the intersection line. Therefore, D
must be on line PQ.

Theorem 1. The P4P problem with control points A,B,C and D could have
up to five solutions. If the P4P problem has five solutions, then there exists one
pair of solutions which are symmetric with respect to one of the plane ABC,
ABD, ACD or BCD and among the other three solutions there exist no two
which are symmetric with this plane.

Proof. By Lemma 1, the P4P problem could have a finite number of solutions.
There are at most four solutions for the P3P problem with control points A, B
and C on one side of plane ABC. If we consider both sides of plane ABC, the
P3P problem could have eight solutions, of which four solutions are above the
plane ABC and four solutions are under the plane ABC, are both solutions of
the P4P problem, then point D is on line PQ. It is clear that all other solutions
cannot be on line PQ. It is impossible for another pair of solutions symmetric
with plane ABC of the P3P problem to exist since point D is already on line
PQ. Then there is at most one pair of solutions symmetric with plane ABC. As
a consequence, the P4P problem has at most five solutions. In Table 1, we give
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Fig. 3. The figure for multiple positive solutions

a concrete P4P problem which has five solutions. Therefore, the P4P problem
could have up to five solutions.

Theorem 2. Use the notations introduced above and the Fig. 3. Let |DO| = h.
The equations ⎧⎨

⎩
(l24 − h2)s2(4 − s2) = (l26 − h2)s2(4 − t2)
(l24 − h2)t2(4 − u2) = (l25 − h2)u2(4 − t2)
(l25 − h2)u2(4 − s2) = (l26 − h2)s2(4 − u2)

(5)

indicate the necessary conditions for multiple positive solutions of the noncopla-
nar P4P problem.

Proof. From the proof of above Theorem 1, we know that there exist five solutions
if and only if point D is on the line PQ. Suppose that the point D is on the PQ.
From the triangles PAO and DAO, we have the following expression: |PO|2 =
(|AD|2−|DO|2) s2

4−s2 . For the triangles PBO, DBO and the triangles PCO and
DCO, there are similar results. Using the notations introduced above, we get the
expressions of equations system (5).

The following Table shows that the P4P problem may have five solutions.
Therefore, the P4P problem could have up to five solutions. The coordinates
for A,B,C,D are (1/2, 0, 0), (−1/4,−

√
3/4, 0), (−1/4,

√
3/4, 0), (0, 0,−

√
3/12)

Table 1. Parametric values for which the P4P problem could have 5 solutions

Parameter —AB— —AC— —BC— —AD— —CD— —BD—

value 1 1 1
√

13
6

√
13
6

√
13
6

Parameter cos � BPC cos � APC cos � APB cos � CPD cos � APD cos � BPD

value 5
8

5
8

5
8

√
3

2

√
3

2

√
3

2
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respectively. The coordinates for P1, P2, P3, P4, P5 are (0, 0, 7
√

3/12), (0, 0,−7
√

3
/12), (5/8, 0,

√
3/8),(−5/16,−5

√
3/16,

√
3/8), (−5/16, 5

√
3/16,

√
3/8) respectively

and are showed by following figures.

B

A

C

D

P1

P2

Fig. 4. The geometric configuration one for the five solutions

B

A

C

D

P4

P3

P5

Fig. 5. The geometric configuration two for the five solutions

Remarks:

1. In this paper, we give a pure geometric proof that the P4P problem could
have five solutions. The proof is simple. Theorem 1 also gives clear charac-
terization for the geometrical configurations of the solutions which can bring
some new insights into a better understanding of the multi-solution problem.
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2. The algebraic equations system (5) in the Theorem 2 gives some necessary
conditions under which the problem has five solutions. Furthermore, we can
obtain more algebraic conditions similar to the algebraic equations system (5).

4 Conclusion

The Perspective-n-Point (PnP ) problem originated from camera calibration.
Also known as pose estimation, it is to determine the position and orientation
of the camera with respect to a scene object from n corresponding points and
extensively studied in computer vision and mathematics. For the P4P prob-
lem, there are many algorithms to solve the P4P equation system including the
critical configurations. From the geometrical view, we study the multi-solution
phenomenon and give a geometrical proof that the P4P problem has at most five
solutions. From the process of proof, we obtain some necessary algebraic condi-
tions under which the noncoplanar P4P problem has five solutions. Moreover,
we give a concrete example to show our results.
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Abstract. In this paper, we obtain a sufficient condition for a polyno-
mial with real positive coefficients to be stable, which generalizes Xie-Nie
stability criterion.

Keywords: Hurwitzean polynomial; stability criterion.

1 Introduction

One of the fundamental problems in the stability theory is to determine whether
a polynomial is Hurwitzean or not. The well-known Routh-Hurwitz criterion,
which gives a sufficient and necessary condition for being Hurwitzean polynomial,
is algorithmically not a practical method in most cases. Hence it is necessary to
find more efficient, simpler conditions for being Hurwitzean polynomial. There
have been many papers devoted to the study of this problem.

In [1], X. Xie presented a sufficient condition for being Hurwitzean polyno-
mial. Then Y. Nie [2] improved the result as follows: Let H be the set of all
Hurwitzean polynomials, then any polynomial with real positive coefficients,

f(x) = anxn + an−1x
n−1 + ... + a1x + a0, (1)

is in H if
bi ≤ δ0, for i = 1, . . . , n − 2, (2)

where δ0 ≈ 0.4655712319 is the unique real root of polynomial δ3 + 2δ2 + δ − 1,
called Xie-Nie constant, and

bi =
ai−1ai+2

aiai+1
. (3)

Among other approaches, V.V. Maslennikhov [6] proposed a beautiful con-
jecture: f(x) ∈ H if

b1 + b2 + · · · + bn−2 < 1, (4)

which was proved to be true by A. F. Kleptsyn1. Recently, A. Borobia, S.
Dormido [3] and X. Yang [4, 5] obtained some necessary conditions for Hur-
witzean polynomials.

� Supported by the NNSF of China (No. 60273095), NKBRSF-2004CB318003 and
NSF of Zhejiang (No. Y604089)

1 Informed by an anonymous referee.

H. Li, P. J. Olver and G. Sommer (Eds.): 2004, LNCS 3519, pp. 65–71, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

IWMM-GIAE



66 X. Hou and X. Wang

In this paper, we obtain the following Main Theorem:

Theorem 1. Let f(x) and bi be defined as in (1) and (3). Then f(x) ∈ H if{
bi−1 + bi ≤ σ, i = 2, 3, · · · , n − 2,

bl ≤ β, l = 1, 2, · · · , n − 2,
(5)

where σ, β satisfy {
(σ2 + 4β)2 − 16β = 0,
β ≤ σ ≤ 2β.

(6)

The equal signs in (5) should be omitted when n = 5.

Our result is a significant generalization of the Xie-Nie stability criterion (2).
This can be seen also from the following figure, in which the bold curve shows
the range of parameters β and σ. The special case σ = 2β and β = δ0 where δ0

is the Xie-Nie constant, is just Xie-Nie’s stability criterion.

(sigma^2+4*beta)^2–16*beta = 0

sigma = beta

sigma = 2*beta

0

0.2

0.4

0.6

0.8

1

sigma

0.2 0.4 0.6 0.8 1

beta

Fig. 1. Our criterion (bold curve) vs. Xie-Nie’s criterion (upper-left end of the curve)

2 Lemmas

Definition 1. Let L(x) and M(x) be polynomials of degree l and m respec-
tively, where l − 1 ≤ m ≤ l. Let ul, ul−1, · · · , u1 be the roots of L(x), and
vm, vm−1, · · · , v1 the roots of M(x). Then (L(x),M(x)) is called a positive



A Generalization of Xie-Nie Stability Criterion 67

pair if (1) ui+1 < vi < ui for i = 1, 2, · · ·, (2) ul < ul−1 < · · · < u1 < 0,
(3) vm < vm−1 < · · · < v1 < 0.

Similarly, (L(x),M(x)) is called a negative pair if (1) ui+1 > vi > ui for
i = 1, 2, · · ·, (2) ul > ul−1 > · · · > u1 > 0, (3) vm > vm−1 > · · · > v1 > 0.

In (1), (3), a3, a4, ..., an can be expressed in terms of a0, a1, a2, bi as follows:

a2s−1 = B1B3...B2s−3 a1(
a2

a0
)s−1, a2s = B2B4...B2s−2 a0(

a2

a0
)s, (7)

where
Bi = b1b2 · · · bi, for i = 1, ..., n − 2. (8)

Let

H(η) =
p∑

k=0

(−1)k(
k∏

i=0

B2i−2)ηp−k, G(η) =
q∑

k=0

(−1)k(
k∏

i=0

B2i−1)ηq−k, (9)

where p = [n/2], q = [(n − 1)/2] and B−2 = B−1 = B0 = 1.

Lemma 1. Let the notations be as above. Polynomial f(x) in (1) is stable if
and only if (H(η), G(η)) is a negative pair.

Proof. Let

F (x) = xnf(
1
x

) = h(x2) + xg(x2) =
n∑

i=0

aix
n−i,

where

h(x2) =
F (x) + F (−x)

2
, g(x2) =

F (x) − F (−x)
2x

.

Obviously, f(x) is stable if and only if F (x) is stable. According to the
Hermite-Biehler criterion, F (x) is stable if and only if (h(u), g(u)) is a posi-
tive pair. Now we need to prove that (h(u), g(u)) is a positive pair if and only if
(H(η), G(η)) is a negative pair.

Without loss of generality, we assume that F (x) is a polynomial of even
degree. Computing the coefficients of h, g, we get⎧⎪⎪⎨
⎪⎪⎩

h(u) = a0u
p + a2u

p−1 + B2a0(
a2

a0
)2up−2 + · · · + B2B4 · · ·B2k−2a0(

a2

a0
)kup−k+

+ · · · ,
g(u) = a1u

q + B1a1(
a2

a0
)uq−1 + · · · + B1B3 · · ·B2k−1a1(

a2

a0
)kuq−k + · · · .

(10)
Let η = −a0

a2
u. It is easy to verify that

H(η) = (−1)ph(−a2

a0
η)/a0(

a2

a0
)p, G(η) = (−1)qg(−a2

a0
η)/a1(

a2

a0
)q. (11)

Thus (H(η), G(η)) is a negative pair if and only if (h(x), g(x)) is a positive
pair. �
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Let γ0 = 1, γ2p−1 = B2p−2, and for k = 1, 2, · · · , p − 1,

γ2k−1 =
B2k−2(1 +

√
1 − 4b2k−1b2k)
2

, γ2k =
B2k−2(1 −

√
1 − 4b2k−1b2k)
2

.

(12)

Lemma 2. Let the notations be as above, and let h1, h2, · · · , hp be the p simple
real positive roots of H(η). If for p ≥ 3,

0 < bi−1 + bi < 1 for i = 2, · · · , n − 2, (13)

then 1 = γ0 > γ1 > ... > γ2p−1 > 0, and for k = 1, · · · , p, hk ∈ (γ2k−1, γ2k−2).

Proof. (i) First we prove that for p ≥ 3 and k = 1, 2, · · · , p − 1,

B2k < γ2k < γ2k−1 < B2k−2. (14)

That γ2k < γ2k−1 < B2k−2 is obvious. Since
√

1 − x < 1− x/2 for x ∈ (0, 1), we
have

B2k =
B2k−2(1 − (1 − 2b2k−1b2k))

2
<

B2k−2(1 −
√

1 − 4b2k−1b2k)
2

= γ2k.

This proves (14). From (12) and (14), we can see that γi ∈ (0, 1] for i = 0, ..., 2p−
1, and γ0, γ1, ..., γ2p−1 form a strictly descending sequence.

(ii) Next we prove that for p ≥ 3,⎧⎨
⎩

H(γ0) > 0,
(−1)pH(γ2p−1) > 0,
(−1)kH(ηk) > 0, for all ηk ∈ [γ2k, γ2k−1].

(15)

The first two inequalities are trivial. Now consider ηk ∈ [γ2k, γ2k−1]. We have

(ηk − γ2k)(γ2k−1 − ηk) ≥ 0. (16)

Substituting (12) into (16), we obtain

− η2
k + B2k−2ηk − B2k−2B2k ≥ 0. (17)

Hence

(−1)kH(ηk) = · · · + B2B4 · · ·B2k−8η
p−k+2
k (−ηk + B2k−6)

+B2B4 · · ·B2k−4η
p−k−1
k (−η2

k + B2k−2ηk − B2k−2B2k)

+B2B4 · · ·B2k+2η
p−k−3
k (ηk − B2k+4) + · · · > 0,

and then hk ∈ (γ2k−1, γ2k−2).

�
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Let γ′
0 = B1, γ′

2q−1 = B2q−1, and for k = 1, 2, · · · , q − 1,

γ′
2k−1 =

B2k−1(1 +
√

1 − 4b2kb2k+1)
2

, γ′
2k =

B2k−1(1 −
√

1 − 4b2kb2k+1)
2

.

(18)
Similar to the proof of Lemma 2, we get that for q ≥ 2,⎧⎪⎪⎨

⎪⎪⎩
B2k+1 < γ′

2k < γ′
2k−1 < B2k−1 for k = 1, · · · , q − 1,

G(γ′
0) > 0,

(−1)qG(γ′
2q−1) > 0,

(−1)kG(η′
k) ≥ 0, for all η′

k ∈ [γ′
2k, γ′

2k−1].

(19)

Lemma 3. Let the notations be as above, and let g1, g2, · · · , gq be the q simple
real positive roots of G(η). If q ≥ 2 and

0 < bi−1 + bi < 1 for i = 2, ..., n − 2, (20)

then 1 > γ′
0 > γ′

1 > ... > γ′
2p−1 > 0, and for k = 1, · · · , q, gk ∈ [γ′

2k−1, γ
′
2k−2].

Lemma 4. Let the notations be as above. If n > 5,

0 < bi−1 + bi < 1, i = 2, ..., n − 2,

and

1 −
√

1 − 4bi−1bi ≤ bi−1(1 +
√

1 − 4bibi+1), i = 2, 3, · · · , n − 3, (21)

then f(x) is stable.

Proof. Let h1, h2, · · · , hp be the p simple real positive roots of H(η), and let
g1, g2, · · · , gq be the q simple real positive roots of G(η). By Lemma 2 and Lemma
3, we know that hj ∈ (γ2j−1, γ2j−2), j = 1, · · · , p, and gk ∈ [γ′

2k−1, γ
′
2k−2], k =

1, · · · , q.
The condition (21) implies that

γ2 ≤ γ′
1, γ

′
2 ≤ γ3, γ4 ≤ γ′

3, γ
′
4 ≤ γ5, · · · ,

γ2k ≤ γ′
2k−1, γ

′
2k ≤ γ2k+1, · · · ,

{
γ2p−2 ≤ γ′

2p−3, if q = p.
γ′
2q−2 ≤ γ2q−1, if q = p − 1.

Thus

g1 > h2 > g2 > h3 > · · · > gk−1 > hk > gk > · · · >

{
hp if q = p.
gq if q = p − 1.

(22)

If we can prove that⎧⎨
⎩

H(γ′
0) < 0,

(−1)qG(γ2p−1) < 0 if q = p,
(−1)pH(γ′

2q−1) < 0 if q = p − 1,
(23)

then, by (22) and (23), we will have
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h1 > g1 > h2 > g2 > h3 > · · · > gk−1 > hk > gk > · · · >

{
gq if q = p,
hp if q = p − 1,

(24)
which means that (G(η),H(η)) is a negative pair. Then by Lemma 1, we see
immediately that f(x) is stable.

Below we prove (23). By substituting b1 for γ′
0 in H(γ′

0), we have

H(γ′
0) = bp−2

1 (b2
1 − b1 + B2) − B2B4b

p−4
1 (b1 − B6) − · · ·

= bp−1
1 (b1 + b2 − 1) − B2B4b

p−4
1 (b1 − B6) − · · · < 0.

When p = q ≥ 3, by substituting B2p−2 for γ2p−1 in G(γ2p−1), we have

(−1)qG(γ2p−1) = B1B3 · · ·B2q−5(B2q−3B2q−1 − B2q−3B2q−2 + B2q−2
2)

−B1B3 · · ·B2q−9B2q−2
3(B2q−7 − B2q−2) − · · ·

= B1B3 · · ·B2q−5B2q−3B2q−2(b2q−1 + b2q−2 − 1)
−B1B3 · · ·B2q−9B2q−2

3(B2q−7 − B2q−2) − · · · < 0.

When q = p − 1 ≥ 2, by substituting B2q−1 for γ′
2q−1 in H(γ′

2q−1), we have

(−1)pH(γ′
2q−1) = B2B4 · · ·B2p−6(B2p−4B2p−2 − B2p−4B2p−3 + B2p−3

2)

−B2B4 · · ·B2p−10B2p−3
3(B2p−8 − B2p−3) − · · ·

= B2B4 · · ·B2p−6B2p−4B2p−3(b2p−2 + b2p−3 − 1)
−B2B4 · · ·B2p−10B2p−3

3(B2p−8 − B2p−3) − · · · < 0.

�
3 Proof of the Main Theorem

It is easy to verify that (5) and (6) imply

0 < bi−1 + bi < 1, i = 2, ..., n − 2. (25)

Case 1. n = 4.
By (25), we have b1 < 1 and b1 + b2 < 1, which happen to be Routh-Hurwitz

conditions on the stability of polynomial f(x) for n = 4.
Case 2. n > 5, i.e., p ≥ 3 and q ≥ 2.
If we can prove

1 −
√

1 − 4bi−1bi ≤ bi−1(1 +
√

1 − 4bibi+1), i = 2, 3, · · · , n − 3, (26)

then by Lemma 4, we know that f(x) will be stable.
Set σi = bi−1 + bi. Set β = maxi(bi) and σ = maxi(σi). (26) is equivalent to

bi
1 −

√
1 − 4bi−1bi

4bi−1bi
≤ 1 +

√
1 − 4bibi+1

4
, i = 2, 3, · · · , n − 3. (27)

Note that
1 −

√
1 − x

x
is strictly increasing, and

1 +
√

1 − x

4
is strictly decreasing

for x ∈ (0, 1). Since 0 < 4bi−1bi ≤ (bi−1 + bi)2 = σ2
i < 1, we have
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bi
1 −

√
1 − 4bi−1bi

4bi−1bi
≤ bi

1 −
√

1 − σ2
i

σ2
i

≤ β
1 −

√
1 − σ2

σ2
, (28)

and

1 +
√

1 − σ2

4
≤

1 +
√

1 − σ2
i+1

4
≤ 1 +

√
1 − 4bibi+1

4
. (29)

If

β
1 −

√
1 − σ2

σ2
≤ 1 +

√
1 − σ2

4
, (30)

then, by (28) and (29), (27) and hence (26) will hold. (30) is equivalent to

(σ2 + 4β)2 − 16β ≤ 0, (31)

which is in our condition (6) already.
Case 3. n = 5.
The roots of H(η) and G(η) are respectively γ1, γ2 and γ′

1, γ
′
2, which are

alternate if
1 −

√
1 − 4b1b2 < b1(1 +

√
1 − 4b2b3). (32)

Therefore, the equal signs in (5) should be omitted in this case.
This finishes the proof.
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Abstract. Formal power series are used to derive four entry formulas
for the Dixon matrix. These entry formulas have uniform and simple
summation bounds for the entire Dixon matrix. When corner cutting is
applied to the monomial support, each of the four loose entry formulas
simplifies greatly for some rows and columns associated with a particular
corner, but still maintains the uniform and simple summation bounds.
Uniform summation bounds make the entry formulas loose because re-
dundant brackets that eventually vanish are produced. On the other
hand, uniform summation bounds reveal valuable information about the
properties of the Dixon matrix for a corner-cut monomial support.

1 Introduction

Resultants are powerful in solving polynomial systems by elimination [9, 18].
The Dixon bracket method is a well-known technique for constructing resultants
[10]. Recent research in Dixon resultants includes [17, 14, 7]. An entry formula
allows the Dixon matrix to be computed efficiently [5, 3] and is indispensable
in deriving properties of the Dixon matrix [12, 13, 14]. While the concise entry
formula given in [1] is good for computing the Dixon matrix, it is not as well
suited for theoretical exploration because, to be concise, each entry has distinct
and complicated summation bounds, and this obscures rather than reveals useful
information. It would greatly simplify derivation if the summation bounds can
be the same for the entire matrix, or at least for those rows or columns that are
of interest.

This paper answers the above need by presenting four loose entry formulas.
These entry formulas have uniform and simple summation bounds for the en-
tire matrix for a canonical, or uncut, bidegree monomial support. For corner-cut
monomial supports, each of these entry formulas becomes even simpler for some
rows and columns but the summation bounds remain uniform and simple. The
tradeoff is that these formulas are loose rather than concise because they pro-
duce redundant brackets, that is, brackets that either self-vanish or are mutually
cancelled. It is gratifying that these loose entry formulas can be obtained quite
easily, all we have to do is to expand a formal power series a little bit differently.

This paper consists of five sections. Section 2 quickly reviews the construction
of the Dixon matrix and defines the notation used in the paper. Section 3 presents

H. Li, P. J. Olver and G. Sommer (Eds.): 2004, LNCS 3519, pp. 72–82, 2005.
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the four loose entry formulas for the Dixon matrix in two theorems. Section 4
customizes the entry formulas for some rows and columns when the monomial
support undergoes corner cutting. Section 5 ends the paper with a discussion on
the concise entry formulas in [1] and the formulas in this paper.

2 Preliminaries

To be self-contained we first describe the Dixon quotient, the Dixon polynomial,
and the Dixon matrix. Some notations used in this paper are also defined.

Let a..b denote the set of consecutive integers from a to b inclusive. The uncut
bidegree monomial support Am,n can be written as a Cartesian product

Am,n = 0..m × 0..n = {0, · · · ,m} × {0, · · · , n} = {(0, 0), · · · , (m,n)} . (1)

Let f , g, h be bivariate polynomials on the monomial support A ⊆ Am,n:

f(s, t) =
∑

(i,j)∈A
fi,js

itj , g(s, t) =
∑

(i,j)∈A
gi,js

itj , h(s, t) =
∑

(i,j)∈A
hi,js

itj . (2)

Their Dixon quotient is

Δ(f(s, t), g(α, t), h(α, β)) =

∣∣∣∣∣∣
f(s, t) g(s, t) h(s, t)
f(α, t) g(α, t) h(α, t)
f(α, β) g(α, β) h(α, β)

∣∣∣∣∣∣
(s − α)(t − β)

. (3)

The quotient actually divides the numerator and becomes the Dixon polynomial

Δ(f(s, t), g(α, t), h(α, β)) =
∑

σ,τ,a,b

Δσ,τ,a,bs
σtταaβb. (4)

By writing the Dixon polynomial in the matrix form

Δ =
[
· · · sσtτ · · ·

]
D
[
· · · αaβb · · ·

]T
, (5)

we obtain the Dixon matrix for f , g, h:

D = (Δσ,τ,a,b) . (6)

The monomials sσtτ and αaβb that appear in the Dixon polynomial are called
respectively the row and column indices of D. Furthermore, the monomial sup-
port of Δ considered as a polynomial in s, t or α, β, is called the row support R
or column support C of D respectively.

The classical Dixon resultant is the determinant |D| when A = Am,n. The
row and column supports of the classical Dixon matrix are

Rm,n = 0..m − 1 × 0..2n − 1, Cm,n = 0..2m − 1 × 0..n − 1 . (7)
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The coefficient Δσ,τ,a,b in the Dixon polynomial is a sum of brackets, which
are 3 × 3 determinants whose entries are coefficients of f , g, h. To be concise
brackets are denoted by 6-tuples:

(i, j, k, l, p, q) =
fi,j gi,j hi,j

fk,l gk,l hk,l

fp,q gp,q hp,q

. (8)

To save space in the examples below we omit the punctuations in the brackets,
e.g., we use the shorthand notation

(1, 2, 4, 3, 0, 5) = 124305. (9)

Example 1. Consider the monomial support A1,1 = 0..1 × 0..1 = {(0, 0), (0, 1),
(1, 0), (1, 1)}:

� �

� �

Its Dixon polynomial is

Δ = RDC =
[
1 t

] [001001 001011
001101 011011

] [
1
α

]
. (10)

Finally, the Minkowski sum of two ordered pairs is

(a, b) ⊕ (c, d) = (a + c, b + d) . (11)

3 Four Loose Entry Formulas for Uncut Monomial
Supports

The reciprocal of the denominator of the Dixon quotient (3) can be regarded as
a formal power series. Four ways of expanding this formal power series lead to
four equivalent loose entry formulas that are different in appearance.

Theorem 1. The Dixon matrix entry indexed by (sσtτ , αaβb) is

Δσ,τ,a,b =
∞∑

u=0

∞∑
v=0

m∑
k=0

n∑
l=0

B (12)

where the summand is any of the following:

B = (σ + u + 1, τ + v + 1 − l, k, l, a − u − k, b − v), or (13)
B = −(σ − u, τ + v + 1 − l, k, l, a + u + 1 − k, b − v), or (14)
B = (σ − u, τ − v − l, k, l, a + u + 1 − k, b + v + 1), or (15)
B = −(σ + u + 1, τ − v − l, k, l, a − u − k, b + v + 1). (16)
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Proof. The entry formulas can be derived in parallel easily: simply expand
1

(s−α)(t−β) in the Dixon quotient in four ways in terms of
s

α
or

α

s
and

t

β
or

β

t
:

1
(s − α)(t − β)

= −
∞∑

u=0

αu

su+1

∞∑
v=0

tv

βv+1
=

∞∑
u=0

su

αu+1

∞∑
v=0

tv

βv+1

=
∞∑

u=0

αu

su+1

∞∑
v=0

βv

tv+1
= −

∞∑
u=0

su

αu+1

∞∑
v=0

βv

tv+1
.

(17)

By ∣∣∣∣∣∣
f(s, t) g(s, t) h(s, t)
f(α, t) g(α, t) h(α, t)
f(α, β) g(α, β) h(α, β)

∣∣∣∣∣∣ =
∑

i,j,k,l,p,q

(i, j, k, l, p, q)sitj+lαk+pβq, (18)

the Dixon polynomial can be written in any of the four expansions:

Δ =
∑

i,j,k,l,p,q

∑
u,v

(i, j, k, l, p, q)si−u−1tj+l−v−1αk+p+uβq+v

= −
∑

i,j,k,l,p,q

∑
u,v

(i, j, k, l, p, q)si+utj+l−v−1αk+p−u−1βq+v

=
∑

i,j,k,l,p,q

∑
u,v

(i, j, k, l, p, q)si+utj+l+vαk+p−u−1βq−v−1

= −
∑

i,j,k,l,p,q

∑
u,v

(i, j, k, l, p, q)si−u−1tj+l+vαk+p+uβq−v−1 .

By comparing the coefficients of

Δ =
∑

σ,τ,a,b

Δσ,τ,a,bs
σtταaβb (19)

with each of the four expansions, we obtain respectively the four equations given
by (13), (14), (15), (16). ��

The above entry formulas will generate three types of redundant brackets:

1. self-vanishing brackets such as (i, j, i, j, p, q),
2. mutually cancelled brackets such as (i, j, k, l, p, q) + (i, j, p, q, k, l),
3. out of range brackets (i, j, k, l, p, q), with (i, j), (k, l), or (p, q) �∈ Am,n. A

bracket involving out of range indices is zero since (i, j) �∈ Am,n means
fi,j = gi,j = hi,j = 0.

For practical computation, we have to shrink the ranges of u and v in the
above entry formulas:
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Theorem 2. The Dixon matrix entry indexed by (sσtτ , αaβb) is

Δσ,τ,a,b =
m−1∑
u=0

n−1∑
v=0

m∑
k=0

n∑
l=0

B (20)

where either B = (i, j, k, l, p, q) which can be (13) or (15), or B = −(i, j, k, l, p, q)
which can be (14) or (16).

Proof. When i = σ + u + 1, to have (i, j) ∈ Am,n we need

σ + u + 1 ≤ m ⇒ u ≤ m − 1 . (21)

When i = σ − u, to have (i, j) ∈ Am,n, we need

σ − u ≥ 0 ⇒ u ≤ σ ≤ m − 1 . (22)

Consequently, the upper bound of u is reduced from ∞ to m − 1.
Similarly, when q = b + v + 1, to have (p, q) ∈ Am,n we need

b + v + 1 ≤ n ⇒ v ≤ n − 1 . (23)

When q = b − v, to have (p, q) ∈ Am,n we need

b − v ≥ 0 ⇒ v ≤ b ≤ n − 1 . (24)

Consequently, the upper bound of v is reduced from ∞ to n − 1.
��

Example 2. We use Theorem 2 to compute the Dixon matrix D of Example 1
in four ways.

Using (13), (14), (15), (16), we have respectively

D1 =
[∑1

k=0

∑1
l=0(1, 1 − l, k, l,−k, 0)

∑1
k=0

∑1
l=0(1, 1 − l, k, l, 1 − k, 0)∑1

k=0

∑1
l=0(1, 2 − l, k, l,−k, 0)

∑1
k=0

∑1
l=0(1, 2 − l, k, l, 1 − k, 0)

]

=
[

100100 110010
110100 110110

]
, (25)

D2 =
[∑1

k=0

∑1
l=0 −(0, 1 − l, k, l, 1 − k, 0)

∑1
k=0

∑1
l=0 −(0, 1 − l, k, l, 2 − k, 0)∑1

k=0

∑1
l=0 −(0, 2 − l, k, l, 1 − k, 0)

∑1
k=0

∑1
l=0 −(0, 2 − l, k, l, 2 − k, 0)

]

=
[
−011000 −001110
−011100 −011110

]
, (26)

D3 =
[∑1

k=0

∑1
l=0(0,−l, k, l, 1 − k, 1)

∑1
k=0

∑1
l=0(0,−l, k, l, 2 − k, 1)∑1

k=0

∑1
l=0(0, 1 − l, k, l, 1 − k, 1)

∑1
k=0

∑1
l=0(0, 1 − l, k, l, 2 − k, 1)

]

=
[

001001 001011
001101 011011

]
, (27)
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D4 =
[∑1

k=0

∑1
l=0 −(1,−l, k, l,−k, 1)

∑1
k=0

∑1
l=0 −(1,−l, k, l, 1 − k, 1)∑1

k=0

∑1
l=0 −(1, 1 − l, k, l,−k, 1)

∑1
k=0

∑1
l=0 −(1, 1 − l, k, l, 1 − k, 1)

]

=
[
−100001 −100011
−110001 −100111

]
. (28)

From the properties of determinants, it is obvious that D = D1 = D2 =
D3 = D4.

4 Corner-Specific Simplification of the Loose Entry
Formulas for Corner-Cut Monomial Supports

Each of the four loose entry formulas can be simplified greatly for a particular
corner when the monomial support undergoes corner cutting. To make clear the
applicable corner (i, j), i = 0,m and j = 0, n, of Am,n at first glance, we use the
following notation

If
P0,n Pm,n

P0,0 Pm,0
then

Q0,n Qm,n

Q0,0 Qm,0

to denote that if Pi,j then Qi,j for i = 0,m and j = 0, n.
The following theorems describe the corner-specific simplification effects for

the entries of some rows and columns when corner cutting is applied.

Theorem 3. Let (x, y) ∈ Am,n, and let cutting C be applied to Am,n such that
(x, y) ∈ A ⊆ Am,n \ C, with C given by

0..x × y..n \ {(x, y)} x..m × y..n \ {(x, y)}
0..x × 0..y \ {(x, y)} x..m × 0..y \ {(x, y)} . (29)

Then the entries of the row indexed by (x′, y′) and given by

(x, y) ⊕ (0, n − 1) (x, y) ⊕ (−1, n − 1)
(x, y) ⊕ (0, 0) (x, y) ⊕ (−1, 0)

(30)

are the following Δx′,y′,a,b given by

−
m∑

k=0

(x, y, k, n, a + 1 − k, b)
m∑

k=0

(x, y, k, n, a − k, b)

m∑
k=0

(x, y, k, 0, a + 1 − k, b + 1) −
m∑

k=0

(x, y, k, 0, a − k, b + 1)
. (31)

Proof. Apply the entry formula in Theorem 2 and choose the bracket B in the
formula to be

Equation (14) Equation (13)

Equation (15) Equation (16)
. (32)
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After substituting (σ, τ) = (x′, y′) into B, the first ordered pair of B becomes

(x − u, y + n + v − l) (x + u, y + n + v − l)

(x − u, y − v − l) (x + u, y − v − l)
. (33)

To have this ordered pair not in C, we need

−u ≥ 0, n + v − l ≤ 0 u ≤ 0, n + v − l ≤ 0

−u ≥ 0,−v − l ≥ 0 u ≤ 0,−v − l ≥ 0
. (34)

Thus,

u = v = 0, l = n u = v = 0, l = n

u = v = l = 0 u = v = l = 0
. (35)

Substituting the values of u, v, l into the entry formula we obtain the row entry
formulas (31). ��

Theorem 4. Let (x, y) ∈ Am,n. If the same corner cutting C as (29) is applied,
then the entries of the column indexed by (x′′, y′′) and given by

(x, y) ⊕ (0,−1) (x, y) ⊕ (m − 1,−1)
(x, y) ⊕ (0, 0) (x, y) ⊕ (m − 1, 0)

(36)

are the following Δσ,τ,x′′,y′′ given by

−
n∑

l=0

(σ + 1, τ − l, 0, l, x, y)
n∑

l=0

(σ, τ − l,m, l, x, y)

n∑
l=0

(σ + 1, τ + 1 − l, 0, l, x, y) −
n∑

l=0

(σ, τ + 1 − l,m, l, x, y)
(37)

Proof. Apply the entry formula in Theorem 2 and choose the bracket B in the
formula to be

Equation (16) Equation (15)

Equation (13) Equation (14)
. (38)

After substituting (a, b) = (x′′, y′′) into B, the last ordered pair of B becomes

(x − u − k, y + v) (x + u + m − k, y + v)

(x − u − k, y − v) (x + u + m − k, y − v)
. (39)
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To have this ordered pair not in C, we need

−u − k ≥ 0, v ≤ 0 u + m − k ≤ 0, v ≤ 0

−u − k ≥ 0,−v ≥ 0 u + m − k ≤ 0,−v ≥ 0
. (40)

Thus,

u = v = k = 0 u = v = 0, k = m

u = v = k = 0 u = v = 0, k = m

. (41)

Substituting the values of u, v, k into the entry formula, we obtain the column
entry formulas (37). ��

The following example illustrates the row and column loose entry formulas
(31), (37) for a corner-cut monomial support.

Example 3. Consider the following monomial support A ⊆ A3,3 and its row and
column supports:

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � �

� � �

� � � �

A R C

It is easy to check that the sets {(1, 0), (2, 1), (3, 2)} and {(0, 1), (2, 3)} satisfy
the cutting conditions (29) for the bottom right and top left corners respectively.
Thus, the 3 × 2 sub-matrix formed with the rows indexed by

{(1, 0), (2, 1), (3, 2)} ⊕ (−1, 0) = {(0, 0), (1, 1), (2, 2)} (42)

and the columns indexed by

{(0, 1), (2, 3)} ⊕ (0,−1) = {(0, 0), (2, 2)}

can be computed in two ways.
Using the row entry formula (31) for the bottom right corner, we have:

S1 =

⎡
⎣−

∑3
k=0(1, 0, k, 0,−k, 1) −

∑3
k=0(1, 0, k, 0, 2 − k, 3)

−
∑3

k=0(2, 1, k, 0,−k, 1) −
∑3

k=0(2, 1, k, 0, 2 − k, 3)
−
∑3

k=0(3, 2, k, 0,−k, 1) −
∑3

k=0(3, 2, k, 0, 2 − k, 3)

⎤
⎦ . (43)
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Using the column entry formula (37) for the top left corner, we have:

S2 =

⎡
⎣−

∑3
l=0(1, 0 − l, 0, l, 0, 1) −

∑3
l=0(1, 0 − l, 0, l, 2, 3)

−
∑3

l=0(2, 1 − l, 0, l, 0, 1) −
∑3

l=0(2, 1 − l, 0, l, 2, 3)
−
∑3

l=0(3, 2 − l, 0, l, 0, 1) −
∑3

l=0(3, 2 − l, 0, l, 2, 3)

⎤
⎦ . (44)

A simple calculation shows that

S1 =

⎡
⎣−100001 −100023
−210001 −210023
−320001 −320023

⎤
⎦ = S2. (45)

5 Discussion

The loose entry formulas presented in the paper have very simple summation
bounds:

Δσ,τ,a,b =
m−1∑
u=0

n−1∑
v=0

m∑
k=0

n∑
l=0

B,

where the bracket B can be any one of (13), (14), (15), (16); this is in sharp
contrast with the complicated summation bounds in the concise entry formula
given in [1]:

Δσ,τ,a,b =
min(a,m−1−σ)∑

u=0

min(b,2n−1−τ)∑
v=0

min(m,a−u)∑
k=max(0,a−u−σ)

min(n,τ+1+v)∑
l=max(b+1,τ+1+v−b)

B

+
min(a,m−1−σ)∑

u=0

min(b,2n−1−τ)∑
v=0

min(σ,a−u)∑
k=max(0,a−u−m)

min(n,τ+v−b)∑
l=max(b+1,τ+1+v−n)

B,

where B is given by formula (13). Even more significant is that when the cutting
of the types in Theorems 3, 4 are applied, the entry formulas for certain rows
and columns can be further simplified, such that only one summation bound,
instead of four, remains.

This single-uniform summation bound form is very helpful for discovering
properties of the Dixon matrix. For example, with Theorem 3, we immediately
see that the row associated with the monomial point (x, y) defined by (30) con-
tains the monomial point (x, y) in every bracket of the sum. This observation,
together with a single-uniform summation bound, leads to important conclusions
concerning the linear dependence of the bracket factors produced by some rows
and columns. It is beyond the scope of this paper to provide more detail and we
refer the reader to [19] instead.

The loose entry formulas are very convenient for deriving theoretical results,
but when computing the Dixon entry it is better to use the concise entry formula
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as the latter produces no redundant brackets. The total number of brackets in
the Dixon matrix for bidegree polynomial [1] is

m(m + 1)2(m + 2)n(n + 1)2(n + 2)
36

,

but with the loose entry formulas the total number of brackets produced is

4m3(m + 1)n3(n + 1) .

Thus it is almost one hundred times faster to compute the Dixon matrix using
the concise entry formula than using a loose entry formula.
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Abstract. Blending implicit algebraic surfaces has long been a hard
work due to the complex calculations and the lack of effective algorithms.
In this paper, we present a recursive method to derive the existence con-
ditions and expressions of the blending surface for an arbitrary number
of quadratic surfaces based on the blending surface for few quadratic
surfaces. The existence conditions can be described in terms of geomet-
ric parameters of the given quadratic surfaces, which makes them easy
to check. This greatly simplifies the calculations. Finally, some examples
are presented.

1 Introduction

By blending surfaces we mean constructing a smooth transitional surface among
given surfaces. Blending surfaces is a fundamental task in CAGD (Computer
Aided Geometric Design), see [1],[2],[3] and [4]. It has attracted much attention
due to not only its theoretical significance, but also its wide applications in
engineering. There have been some methods to solve problems of this type, but
most of them deal with parametric surfaces. In recent years, taking account of
the advantages of implicit algebraic surfaces (defined by an implicit equation
f(x, y, z) = 0), such as the closure property under some geometric operations
(intersection, union, offset etc.), people began to pay much attention to the study
on them. In practice, most problems we meet concern blending implicit quadratic
surfaces, for instance, the problems arisen in pipe connection, limb design, and
other engineering fields.

The theory on blending implicit algebraic surfaces developed slowly in the
past decades even though it has been widely applied in CAGD. Blending sur-
faces is a hard mathematical task yet. In fact it is a typical algebraic geometry
problem. Because constructive theory in classical algebraic geometry did not
well developed, we met many difficulties in applications when approximation
methods were used.

H. Li, P. J. Olver and G. Sommer (Eds.): 2004, LNCS 3519, pp. 83–96, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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With the fast development of the theory on constructive algebraic geometry
recently, certain methods have been presented. In 1989, J.Warren[5] converted
the problem into seeking the lowest degree member of some ideal. Then he
was able to obtain the blending surface by computing a Groebner basis. But
a well known fact is that the upper bound of the degrees of the polynomials
in a Groebner basis for an ideal generated by polynomials f1, · · · , fs can take
the form O(d2n

), in which d = max{deg(fi)|1 ≤ i ≤ s} and the number of the
variables n. Due to the huge calculating amount, the method mentioned above
is therefore difficult to realize. In 1993, Wu Wen-Tsun[6] converted this problem
into calculating an irreducible ascending set of the related polynomials. For the
case that the axes of three quadratic surfaces intersect vertically in one point
and that the clipping planes vertical to the relative axis, Wu Wen-Tsun obtained
the blending conditions as the Wu-formula for three pipes. Wu’s method involves
complicated calculation and is difficult to apply in general blending of algebraic
surfaces. Therefore further improvement of the theory and algorithm is required.

In practice, we hope not only to find all clipping planes which can ensure the
existence of the blending surface but also to analyze the geometric position of
these clipping planes. Then an appropriate one may be chosen according to the
requirement in engineering. There have been some complete results about blend-
ing two implicit algebraic surfaces in [8],[9] and [10]. The existence conditions
of the blending surface for three implicit algebraic surfaces was also obtained in
[11], but these conditions are too complicated to analyze.

In this paper, we will derive the existence conditions and the expressions of
the blending surface for n quadratic surfaces based on the relative results for
two or three quadratic surfaces. These conditions can be formulated in terms of
the geometric parameters of the given quadratic surfaces, so it is easy to check
whether the conditions are satisfied. Therefore, the amount of calculation is
greatly reduced and the method can be readily applied to work out the blending
surface in realtime.

2 Foundation

In the following, let g1, · · · , gn, h1, · · · , hn ∈ R[x, y, z] denote polynomials, and
V (gi), V (hi) denote the algebraic surfaces determined by gi and hi. In [5], Warren
proved that

Theorem 1. [5] If the algebraic surfaces V (f) and V (gi) meet with Gk conti-
nuity(geometric continuity, see [3]) along the curves V (gi, hi) respectively, then

f ∈ 〈g1, h
k+1
1 〉 ∩ · · · ∩ 〈gn, hk+1

n 〉, (1)

where 〈gi, h
k+1
i 〉 denotes the ideal generated by gi and hk+1

i . Consequently,

f = uigi + aih
k+1
i , i = 1, 2, · · · , n. (2)

Condition (2) is also sufficient if the ui does not identically vanish on V (gi, hi).
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We only discuss the case of blending quadratic surfaces V (g1),· · ·,V (gn), with
pair-wisely different planes V (h1),· · ·,V (hn), and always assume that V (gi, hi)
are irreducible planar quadratic curves for all i, 1 ≤ i ≤ n. Then we have

Proposition 1. [7] If gi, hi are quadratic and linear polynomials respectively
and V (gi, hi) are irreducible planar quadratic curves, then the ui and ai in (2)
satisfy

deg(ui) ≤ deg(f) − 2, deg(ai) ≤ deg(f) − (k + 1). (3)

By Theorem 1 and Proposition 1, we get

Proposition 2. [7] Suppose that gi, hi are quadratic and linear polynomials re-
spectively and that V (gi, hi) are irreducible planar quadratic curves. A quadratic
G0 blending surface V (g) (g ∈ R[x, y, z]) for V (gi) along V (gi, hi) exists if and
only if there exist real numbers λi and polynomials ai such that

g = λ1g1 + a1h1 = λ2g2 + a2h2 = . . . = λngn + anhn,
λi �= 0, deg(ai) ≤ 1, i = 1, 2, · · · , n.

(4)

The quadratic G0 blending surface V (g) is called a ruled surface ( for V (gi),
i = 1, · · · , n).

Theorem 2. [7] If the ruled surface V (g) exists, then

〈g1, h1〉 ∩ · · · ∩ 〈gn, hn〉 = 〈g, h1 · · ·hn〉. (5)

And for arbitrary f ∈ 〈g, h1h2 · · ·hn〉,{
f = u g + ah1h2 · · ·hn,
deg(u) ≤ deg(f) − 2, deg(a) ≤ deg(f) − n.

(6)

Corollary 1. In the case of n = 2, if V (g) is a ruled surface, then V (g′) is also
a ruled surface if and only if there is a real number α, such that g′ = g +αh1h2.
In the case of n ≥ 3, the ruled surface is unique if it exists.

Proof. It is a direct conclusion of Theorem 2.

Notice that if the ruled surface exists, then

n⋂
i=1

〈gi, h
2
i 〉 ⊂

n⋂
i=1

〈gi, hi〉 = 〈g, h1h2 · · ·hn〉.

For the sake of convenience, we naturally hope to choose G1 blending surface, f ,
from those polynomials that are in the form of (6). That is to find u, a ∈ R[x, y, z]
such that

u g + ah1h2 · · ·hn ∈
n⋂

i=1

〈gi, h
2
i 〉, (7)
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which implies that f = u g + ah1h2 · · ·hn blends V (gi) more smoothly than g
does.

In [9] and [10], one author of this paper studied the existence of G1 blending
surfaces in the form of (7) with u = ω1h2 + ω2h1 + β in the case of n = 2. It is
proved that in almost all cases one cannot get a G1 blending surface if β �= 0.
Therefore hereafter we will take u in the form of

u =
n∑

i=1

ωi

∏
j 	=i

hj , ωi �= 0. (8)

The polynomial u defined in (8) is called smoothing factor. In the following,
we will always refer to G1 blending surfaces V (f) for V (gi) with f = u g +
ah1h2 · · ·hn, in which the smoothing factors u take the form of (8).

Theorem 3. Suppose that there exits a ruled surface V (g)

g = λ1g1 + a1h1 = · · · = λngn + anhn. (9)

Let f = u g+vh1h2 · · ·hn be a polynomial of degree n+1 with u in the form of (8)
and v a linear polynomial. Then surfaces V (f) and V (gi) meet with G1 continuity
along the curves V (gi, hi) if and only if there exist real numbers εi, ωi �= 0
(i = 1, 2, · · · , n) such that

ε1h1 − ω1a1 = ε2h2 − ω2a2 = · · · = εnhn − ωnan, (10)

and ⎧⎪⎨
⎪⎩

u =
n∑

i=1

ωi

∏
j 	=i

hj ,

v = εihi − ωiai, ωi �= 0.

(11)

Proof. The sufficiency has been proved in [7], we therefore only prove the neces-
sity.

Suppose that there is a G1 blending surface V (f) with

f = u g + v

n∏
k=1

hk = g

n∑
j=1

ωj

∏
k 	=j

hk + v

n∏
k=1

hk.

Substituting g = λigi + aihi into f , we get

f = u (λigi + aihi) + v

n∏
k=1

hk

= λiugi + aiuhi + v

n∏
k=1

hk

= λiugi + aihi

n∑
j=1

ωj

∏
k 	=j

hk + v
n∏

k=1

hk
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= λiugi +

⎛
⎝ai

n∑
j=1

ωj

∏
k 	=j

hk + v
∏
k 	=i

hk

⎞
⎠hi

= λiugi +

⎛
⎝ai

n∑
j=1,j 	=i

ωj

∏
k 	=j

hk + aiωi

∏
k 	=i

hk + v
∏
k 	=i

hk

⎞
⎠hi

= λiugi + aih
2
i

n∑
j=1,j 	=i

ωj

∏
k 	=i,j

hk + hi(aiωi + v)
∏
k 	=i

hk.

The fact that f ∈ 〈gi, h
2
i 〉 implies hi(aiωi + v)

∏
k 	=i hk ∈ 〈gi, h

2
i 〉. Obviously,

〈gi, h
2
i 〉 is a primary ideal since V (gi, hi) is irreducible. Then from hi /∈ 〈gi, h

2
i 〉

we infer that for some positive integer m

((aiωi + v)
∏
k 	=i

hk)m ∈ 〈gi, h
2
i 〉 ⊂ 〈gi, hi〉.

Notice that 〈gi, hi〉 is prime ideal, we can therefore deduce that (aiωi + v) ∈
〈gi, hi〉 for hk /∈ 〈gi, hi〉, k �= i. Because aiωi + v is a linear polynomial, there
must exist real numbers εi such that

aiωi + v = εihi,

that is
v = εihi − aiωi i = 1, · · · , n.

The necessity of Theorem 3 is significant: it implies that if there exists a G1

blending surface of degree n + 1 for n quadratic surfaces, then for any subset of
m(1 < m < n) quadratic surfaces there exists a relative G1 blending surface of
degree m + 1 . By Proposition 2, the same conclusion holds true for the ruled
surface. Therefore, if the existence conditions of the G1 blending surface and the
ruled surface are obtained for a smaller number of quadratic surfaces, then the
existence conditions of the G1 blending surface for more surfaces can be derived.

Theorem 4. Suppose that
1. There exists a ruled surface V (g) for V (gi) with

g = λigi + aihi, λi �= 0,
deg(ai) ≤ 1, i = 1, · · · , n.

2. There exists an order (maybe a rearrangement is required) such that the G1

blending surface V (f i) of degree 4 exists for arbitrary three adjacent quadratic
surfaces V (gi−1), V (gi) and V (gi+1) (i = 2, · · · , n − 1), where⎧⎪⎪⎨

⎪⎪⎩
f i = uig + vihi−1hihi+1,
ui = ωi

i−1hihi+1 + ωi
ihi−1hi+1 + ωi

i+1hi−1hi,
vi = εi

i−1hi−1 − ωi
i−1ai−1 = εi

ihi − ωi
iai = εi

i+1hi+1 − ωi
i+1ai+1,

ωi
i−1ω

i
iω

i
i+1 �= 0.

(12)
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If there exist nonzero real numbers ω1, ω2, · · · , ωn such that

ωi
i−1

ωi−1
=

ωi
i

ωi
=

ωi
i+1

ωi+1
= αi, (13)

then the G1 blending surface V (f) of degree n + 1 for V (gi)(i = 1, . . . , n) exists
and the following holds⎧⎪⎪⎪⎨

⎪⎪⎪⎩
f = ug + vh1h2 · · ·hn,
u =

∑n
i=1 ωi

∏n
k=1,k 	=i hi,

v = εihi − ωiai, i = 1, 2, · · · , n,

εi = εi
i

αi
, i = 2, · · · , n − 1, ε1 = ε2

1
α2

, εn = εn−1
n

αn−1
.

(14)

Proof. From (12) and (13), we get

ε̄j
ihi − ωiai = ε̄j

jhj − ωjaj = ε̄j
khk − ωkak,

ε̄k
j hj − ωjaj = ε̄k

khk − ωkak = ε̄k
l hl − ωlal,

ε̄j
m = εj

m/αj , m = i, j, k,
ε̄k

m = εk
m/αk, m = j, k, l,

(15)

with adjacent 1 < i < j < k < l < n. Subtracting the second equation from the
first one in (15), we get

(ε̄j
j − ε̄k

j )hj = (ε̄j
k − ε̄k

k)hk.

Since V (hj) and V (hk) are different, we have ε̄j
j = ε̄k

j , ε̄j
k = ε̄k

k.
With ε̄2

1 = ε1, ε̄
i
i = εi, ε̄

n−1
n = εn, we get from (15)

ε1h1 − ω1a1 = ε2h2 − ω2a2 = · · · = εnhn − ωnan.

The conclusion then follows from Theorem 3.

Theorem 5. Suppose that V (gi) and V (hi) intersect transversally along irre-
ducible curves V (gi, hi)(i = 1, 2, 3), and the different planes V (h1), V (h2) and
V (h3) neither contain the same line nor are all parallel to the same plane. If

1. There exists a ruled surface V (g) for V (gi)(i = 1, 2, 3) with

g = λ1g1 + a1h1 = λ2g2 + a2h2 = λ3g3 + a3h3. (16)

2. For arbitrary 1 ≤ i �= j ≤ 3, there exists a cubic G1 blending surface
V (f (ij)) for V (gi) and V (gj), where⎧⎨

⎩
f (ij) = u(ij)g + v(ij)hihj ,
u(ij) = μ(ij)hi + hj ,

v(ij) = ε
(ij)
i hi − ai = ε

(ij)
j hj − μ(ij)aj ,

(17)

and
μ(12)μ(23)μ(31) = 1, (18)

then there is a G1 blending surface V (f) of degree 4 for the V (gi)(i = 1, 2, 3),
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⎧⎪⎪⎨
⎪⎪⎩

f = u g + vh1h2h3,
u = h2h3 + μ(12)h1h3 + 1/μ(31)h1h2,
v = ε1h1 − a1 = ε2h2 − μ(12)a2 = ε3h3 − 1/μ(31)a3,

ε1 = ε
(12)
1 , ε2 = μ(12)ε

(23)
2 , ε3 = ε

(31)
3 /μ(31).

(19)

Proof. According to the assumption about the V (hi), there exists an hi /∈
〈hj , hk〉, 1 ≤ i �= j �= k ≤ 3, without loss of generality, suppose h1 /∈ 〈h2, h3〉.
We obtain from (17)

ε
(12)
1 h1 − a1 = ε

(12)
2 h2 − μ(12)a2,

ε
(23)
2 h2 − a2 = ε

(23)
3 h3 − μ(23)a3,

ε
(31)
3 h3 − a3 = ε

(31)
1 h1 − μ(31)a1.

With ω1 = 1, ω2 = μ(12), ω3 = μ(12)μ(23) = 1/μ(31), we get

ε1h1 − ω1a1 = ε′2h2 − ω2a2,
ε2h2 − ω2a2 = ε′3h3 − ω3a3,
ε3h3 − ω3a3 = ε′1h1 − ω1a1,

(20)

where
ε1 = ε

(12)
1 , ε2 = μ(12)ε

(23)
2 , ε3 = ε

(31)
3 /μ(31),

ε′1 = ε
(12)
2 , ε′2 = μ(12)ε

(23)
3 , ε′3 = ε

(31)
1 /μ(31).

Adding up the equations in (20), we get

(ε1 − ε′1)h1 + (ε2 − ε′2)h2 + (ε3 − ε′3)h3 = 0.

Noticing h1 /∈ 〈h2, h3〉, we have ε1 − ε′1 = 0, and further ε2 = ε′2, ε3 = ε′3
because V (h2), V (h3) are different. Therefore equation (20) can be rewritten as

ε1h1 − ω1a1 = ε2h2 − ω2a2 = ε3h3 − ω3a3.

By Theorem 3, the statement is verified.

By Theorems 4 and 5, we can derive the existence conditions of the blend-
ing surface for n quadratic surfaces from those for three or even two quadratic
surfaces. In the next section we will present the existence condition of the G1

blending surface and its expression for three given quadratic surfaces.
For given quadratic surfaces, the manipulation for calculating the ruled sur-

face gets much easier. In some cases, we can deduce the existence of the ruled
surface for n quadratic surfaces from the existence of the ruled surface for three
quadratic surfaces.

Theorem 6. Suppose that any three of the different planes V (hi)(i = 1, 2, · · · , n)
neither contain the same line nor are all parallel to the same plane. If every
three of the quadratic surfaces V (gi)(i = 1, 2, · · · , n) have a ruled surface, then
the ruled surface for all V (gi) exists.
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Proof. In the case of n = 4, assume that the quadratic surfaces V (gi), V (gj)
and V (gk) have a ruled surface V (gijk), and that V (gj), V (gk) and V (gl) have
a ruled surface V (gjkl), (1 ≤ i, j, k, l ≤ 4). Notice that both V (gijk) and V (gjkl)
are the ruled surfaces for V (gj) and V (gk). By Corollary 1 there exists a real
number αjk such that gijk − gjkl = αjkhjhk. Hence

α23h2h3 + α34h3h4 + α14h1h4 + α12h1h2 = 0.

If some of αjk are nonzero, we get from the above equation

(α23h2 + α34h4)h3 + (α14h4 + α12h2)h1 = 0,

or
(α14h1 + α34h3)h4 + (α12h1 + α23h3)h2 = 0.

Since V (hi) and V (hj) are different and irreducible, we can deduce that h1, h3 ∈
〈h2, h4〉 or h2, h4 ∈ 〈h1, h3〉, which contradicts the assumption about V (hi). So

α23 = α34 = α14 = α12 = 0.

Hence, g123 = g234, i.e. there is a ruled surface for all the 4 quadratic surfaces.
If n > 4, according to the proof above every four of the quadratic surfaces

have a ruled surface. Then there is a ruled surface V (gijkl) for V (gi), V (gj), V (gk)
and V (gl), and there is a ruled surface V (gjklm) for V (gj), V (gk), V (gl) and
V (gm). Notice that both V (gijkl) and V (gjklm) are the ruled surfaces for V (gi),
V (gj) and V (gk). We get from Corollary 1 that V (gijkl) = V (gjklm).

3 Existence Conditions of Smooth Blending Surface

For a set of given quadratic surfaces V (gi), our aim is to find appropriate clip-
ping planes V (hi) and a relatively low degree surface V (f) to meet the quadratic
surfaces V (gi) along V (gi, hi) smoothly. Based on the discussion above, we only
need to find the existence conditions of the blending surface for two or three
quadratic surfaces. There are already complete results for the existence condi-
tions of the blending surface for two quadratic surfaces in [9] and [10]. So we
now only discuss the instance for three quadratic surfaces.

We assume from now on that three different clipping planes V (h1), V (h2)
and V (h3) neither contain the same line nor are all parallel to the same plane.
Under this assumption, there are only two cases that need to discuss:

Case 1. The three clipping planes intersect in one common point;
Case 2. V (h1) and V (h2) intersect but the three planes do not have any

common point.

In Case 2, there must exist real numbers s1, s2, s0 such that h3 = s1h1 +
s2h2 + s0, where s0 �= 0 and s2

1 + s2
2 �= 0. We may choose s0 = 1 because

V (f) = V (αf) for arbitrary α �= 0.
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In Case 1, let p1 = h1, p2 = h2, p3 = h3. We may choose V (p1), V (p2) and
V (p3) as coordinate planes. In Case 2, let p1 = h1, p2 = h2 and we select another
plane V (p3) such that the three planes (V (p1), V (p2) and V (p3)) constitute a
coordinate system. In this coordinate system, a given gi can be expressed as

gi = gi,200p
2
1 + gi,020p

2
2 + gi,002p

2
3 + gi,110p1p2 + gi,101p1p3 + gi,011p2p3

+gi,100p1 + gi,010p2 + gi,001p3 + gi,000, i = 1, 2, 3,
(21)

where (l,m, k) in gi,lmk is the degree tuple of the term pl
1p

m
2 pk

3 .
We always suppose that V (g1, h1), V (g2, h2) and V (g3, h3) are irreducible

quadratic curves. Then the existence condition of the ruled surface is

g = λ1g1 + a1h1 = λ2g2 + a2h2 = λ3g3 + a3h3. (22)

In the sequel we will denote

g12,lmk = λ1g1,lmk − λ2g2,lmk,
g23,lmk = λ2g2,lmk − λ3g3,lmk,
g31,lmk = λ3g3,lmk − λ1g1,lmk.

(23)

Substituting (21) into (22) and comparing the coefficients, we get

Proposition 3. The ruled surface V (g) exists if and only if there are nonzero
real numbers λ1, λ2 and λ3 such that the gαβ,lmk defined in equation (23) satisfy
respectively

For Case 1: ⎧⎨
⎩

g12,002 = 0, g12,001 = 0, g12,000 = 0,
g23,200 = 0, g23,100 = 0, g23,000 = 0,
g31,020 = 0, g31,010 = 0, g31,000 = 0,

(24)

where

a1 = −g12,200p1 + g31,110p2 − g12,101p3 − g12,100,
a2 = −g23,110p1 − g23,020p2 + g12,011p3 − g23,010,
a3 = g23,101p1 − g31,011p2 − g31,002p3 − g31,001,
g = λ2g2,200p

2
1 + λ1g1,020p

2
2 + λ1g1,002p

2
3 + λ3g3,110p1p2 + λ1g1,011p2p3

+λ2g2,101p1p3 + λ2g2,100p1 + λ1g1,010p2 + λ1g1,001p3 + λ1g1,000.

For Case 2: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g12,00i = 0, i = 0, 1, 2,
g31,011 − s2g31,001 = 0, g23,002 = 0,
g23,101 − s1g23,001 = 0, g31,002 = 0,
g23,200 − s1g23,100 + s2

1g23,000 = 0,
g31,020 − s2g31,010 + s2

2g31,000 = 0,

(25)

where
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a1 = (g31,110 + s2g23,100 − s1g31,010 + 2s1s2g31,000)p2

−g12,200p1 − g12,101p3 − g12,100,
a2 = g12,020p2 + g12,011p3 + g12,010

−(g23,110 − s2g23,100 + s1g31,010 + 2s1s2g31,000)p1,
a3 = (g23,100 + s1g31,000)p1 − g31,001p3 − (g31,010 − s2g31,000)p2 − g31,000,
g = λ2g2,200p

2
1 + λ1g1,020p

2
2 + λ1g1,002p

2
3 + λ2g2,101p1p3 + λ1g1,011p2p3

+λ2g2,100p1 + (λ3g3,110 + 2s1s2g31,000 + s2g23,100 − s1g31,010)p2p1

+λ1g1,010p2 + λ1g1,001p3 + λ1g1,000.

By Theorem 5, we get

Proposition 4. If there exist nonzero real numbers λ1, λ2 and λ3 such that
equations in (22) hold, then the smooth blending surface V (f) for V (gi)(i =
1, 2, 3) exists if and only if there are nonzero real numbers μ23, μ31, μ12 satisfying
μ23μ31μ12 = 1 and respectively

For Case 1: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g12,100

g12,010
=

g12,101

g12,011
= −μ12,

g23,010

g23,001
=

g23,110

g23,101
= −μ23,

g31,001

g31,100
=

g31,011

g31,110
= −μ31.

For Case 2:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g12,100

g12,010
=

g12,101

g12,011
= −μ12,

g12,011

g31,001
=

g23,110 − g23,010s1 − g23,100s2 + 2 g31,000s2s1

g23,100 + 2 g31,000s1
= −μ23,

g31,001

g12,101
=

g31,010 − 2 g31,000s2

−g31,110 + g31,010s1 + g31,100s2 − 2 g31,000s2s1
= −μ31.

Subsequently, the definition polynomial of the blending surface can be expressed
as

f = (ω1h2h3 + ω2h1h3 + ω3h1h2)g + vh1h2h3,

where V (g) is the ruled surface and ω1 is an arbitrary nonzero real number,
ω2 = μ12ω1, ω3 = ω1/μ31, and respectively

In Case 1:

v = ω2g23,110p1 + ω3g31,011p2 + ω1g12,101p3 + ω1g12,100.

In Case 2:

v = ω2(g23,110 + g31,010s1 − g23,100s2 − 2g31,000s2s1)p1 + ω1g12,100

−ω1(g31,110 − g31,010s1 + g23,100s2 + 2g31,000s2s1)p2 + ω1g12,101p3.
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4 Examples

The main task of this paper is to convert the problem of blending several
quadratic surfaces to that of blending two or three quadratic surfaces. The prob-
lem of blending two quadratic surfaces has been completely solved in [9], so we
only need to verify equations (13) and (18) in Theorems 4 and 5.

For given quadratic surfaces, practical problems always demand us to find
appropriate clipping planes such that a minimal degree G1 blending surface
exists. It is very convenient for applications to be able to analyze the geometric
position of clipping planes. The existence conditions of the blending surface for
two quadratic surfaces are relatively simple and easy to analyze. With the help
of those results and methods for blending two quadratic surfaces, it is possible to
analyze the existence conditions of the blending surface for n quadratic surfaces.

This recursive method simplifies the problem. In [9], one of us showed that a
G1 blending surface almost never exists in case that the axes of two quadratic
surfaces are not coplanar. So we only consider the instances that the axes of
quadratic surfaces intersect in one common point.

For example, we obtained interesting results about blending three cylinders:
Case I. The axes of the three cylinders are coplanar and intersect in a common

point O. Let L denotes the line which is perpendicular to the plane containing
the axes and passes through the point O. The G1 blending surface will exist only
if the clipping planes are all parallel to the line L or all intersect L at the same
point. If the radiuses of the cylinders r1, r2 and r3 do not satisfy r1 = r2 = r3,
the G1 blending surface of the three cylinders exists only if the clipping planes
are all perpendicular to the axes.

Case II. The axes of the three cylinders intersect in a common point O and
are not coplanar. If the radiuses of the cylinders do not satisfy r1 = r2 = r3,
then the G1 blending surface for three cylinders exists if and only if the clipping
planes are perpendicular to the axes and the following equation holds:

r2
1 + d2

1 = r2
2 + d2

2 = r2
3 + d2

3,

where di denote the distances from the intersection point O to the clipping planes
V (hi) (see Fig.1) .

In [12], one author of this paper did a detailed discussion concerning the
existence conditions of the blending surface for quadratic surfaces of all kinds.
Here we only propose the conditions in the case that the clipping planes are all
perpendicular to the axes.

For the case that the axes of quadratic surfaces vertically intersect in one
point and that the clipping planes are vertical to the axes, Wu Wen-Tsun ob-
tained the blending conditions i.e. the Wu-formula for three pipes [6]. Here we
get rid of the restriction that the axes are perpendicular, and derive the ex-
istence conditions of the blending surface for several quadratic surfaces. The
Wu-formula is thereby enriched. So the following conditions can be regarded as
the generalized Wu-formulas.

In the following formulas, di denote the distances from the intersection point
of the axes to the clipping planes.
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Fig. 1. The parameters in the formulas

Cylinders: Let ri denote the radiuses of cylinders. For arbitrary three cylinders,
the existence condition of a G1 blending surface is, according to Theorem 5,

r2
i + d2

i = r2
j + d2

j = r2
k + d2

k.

We can therefore get the existence condition of a G1 blending surface for n
cylinders from Theorem 4:

r2
1 + d2

1 = r2
2 + d2

2 = · · · = r2
n + d2

n.

Circular paraboloids: Let pi denote the focuses of circular paraboloids, αi

denote the distances between the vertexes of the circular paraboloids and the in-
tersection point of the axes (see Fig. 1). The existence condition of a G1 blending
surface for arbitrary three circular paraboloids is, according to Theorem 5,

2 pi(αi − di) − d2
i = 2 pj(αj − dj) − d2

j = 2 pk(αk − dk) − d2
k.

We can therefore get the existence condition of a G1 blending surface for n
circular paraboloids from Theorem 4:

2 p1(α1 − d1) − d2
1 = 2 p2(α2 − d2) − d2

2 = · · · = 2 pn(αn − dn) − d2
n.

Circular cones: Let ci denote the slopes of the circular cones’ generatrices,
αi denote the distances between the vertexes of the circular cones and the in-
tersection point of the axes (see Fig. 1). For arbitrary three circular cones, the
existence condition of a G1 blending surface is, according to Theorem 5,

c2
i (αi − di)2 + d2

i = c2
j (αj − dj)2 + d2

j = c2
k(αk − dk)2 + d2

k.
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Fig. 2. Blending three cylinders

Fig. 3. Blending three quadratic surfaces

We can therefore get the existence condition of a G1 blending surface for n
circular cones from Theorem 4:

c2
1(α1 − d1)2 + d2

1 = c2
2(α2 − d2)2 + d2

2 = · · · = c2
n(αn − dn)2 + d2

n.

Circular hyperboloids of two sheets: Let αi denote the distances between
the centers of the hyperboloids and the intersection point of the axes, and ai, bi

denote the real and imaginary radiuses of the hyperboloids respectively. For n
circular hyperboloids of two sheets, the existence condition of a G1 blending
surface of degree n + 1 is

a2
1 − d2

1 −
a2
1(d1−α1)

2

b21
= a2

2 − d2
2 −

a2
2(d2−α2)

2

b22

= · · · = a2
n − d2

n − a2
n(dn−αn)2

b2n
.

Cylinder, Circular paraboloid and Circular cone: Using the above defini-
tions of the parameters we get the existence condition of a G1 blending surface:

r2
1 + d2

1 = d2
2 + 2p2(d2 − α2) = d2

3 + c2
3(d3 − α3)2.

5 Conclusion

In this paper, we first propose the theoretical basis to find all clipping planes
which ensure the existence of the blending surface, then present an approach to
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construct the blending surface for n quadratic surfaces based on the results for
two or three quadratic surfaces. In terms of geometric parameters of the given
quadratic surfaces, we describe the existence conditions of the blending surface
and reveal their geometric meanings. Such existence conditions therefore can
be easily checked and the method can be readily applied to compute smooth
blending surfaces in realtime.
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Abstract. This paper presents a method of modeling and solving a very
complicated real logistic problem in the management of transportation
and sales. The problem to be addressed is a large-scale multicommod-
ity, multi-source and multi-sink network flow optimization, of 12 types of
coal from 29 mines, through over 200 railway stations along 5 railroad ar-
teries, in Chongqing Coal Industry Company of China. A minimum-cost
flow model is established for the network system, and several maximal-
flow algorithms are implemented to produce an optimal scheme.

Keywords: Transportation Network Management; Network Operations;
Multicommodity Flow; Maximal-Flow Algorithm; Minimum-Cost Opti-
mization.

1 Introduction

In coal transportation management, the basic logistic problem is to efficiently
transport one or several types of commodities, in different ways of transportation,
from multiple origins to one or several destinations. This is one of the most
complicated large-scale network flow problems in operations research, in that
the constraints in optimization involve the transportation capacity of a complex
system of railways and highways, the capacity of cargo storing and unloading at
the nodes of transportation, the time-dependent demands of the customs, and
the time-varying modes of transportation.

In this paper, we report part of our work in recent years on developing a
decision-making system for multicommodity suppliers in their logistic trans-
portation. It is part of a research project towards developing a decision support
system for Chongqing Municipal Administration in emergency response manage-
ment. In particular, we concern the problem of minimum-cost multicommodity
flow optimization (MCMF).

Multicommodity flow can be used to model various management problems
arising from transportation, distribution, multiperiod assignment, equipment re-
placement, disaster relief, communication, etc. Its algorithmic study dates back

H. Li, P. J. Olver and G. Sommer (Eds.): 2004, LNCS 3519, pp. 97–104, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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to the 1970’s. Several classes of integral multicommodity networks are described
in [1], [4], [6], [8], [10], [11], [12], [17], [18], [26], [29], [30]. Approaches like the
simplex method [17], bottleneck method [12], and dynamic programming [8] are
proposed. Minimum-cost multicommodity flow was used in [10] to solve the equal-
flow problem, in which the flows through some given sets of arcs are required to
take equal values.

In this paper, we formulate the minimum-cost multicommodity flow problem
as a model of maximal-flow programming in an enlarged network. We implement
different algorithms to solve the maximal-flow problem in this special network.
For real data provided by the Chongqing Coal Industry Company (CCIC), our
system turns out to be very effective. It is being in use by CCIC in their man-
agement of coal transportation and sales. A related project has won a Science
and Technology Award from the Chongqing Municipal Administration.

The paper is organized as follows. In Section 2 we model the MCMF prob-
lem as a weighted maximal-flow programming problem. In Section 3 we discuss
different maximal-flow algorithms performing on real data from the department
of coal transportation and sales of CCIC.

2 Modeling Minimum-Cost Multicommodity Flows

Let there be R types of commodities, labeled by r = 1, . . . , R. Let the trans-
portation be within a network represented by an undirected graph G = (V,E),
where V is the nodes and E is the arcs. Let the number of nodes and arcs be
n,m respectively. Assume that m > n, and the graph be connected and without
parallel arcs. When the network is in use for transportation, the graph becomes
directed.

For each arc (i, j) directed from node i to node j, let the flow capacity be
d(i, j), and let the cost per unit flow be c(i, j). Assume that commodity r is
located at sr different nodes Sr indexed by ir1, . . . , i

r
sr

, with amount of supply
λir

k
at node irk. The transportation of commodity r is towards tr different nodes

T r indexed by jr
1 , . . . , j

r
tr

, with amount of demand μjr
k

at node jr
k. Let the nodes

outside sets Sr, T r be Mr. At any node in Mr, the input of any commodity r
equals the output.

Similar to [1] and [29], we introduce the so-called “supersource” Sr and “su-
persink” T r to change the multiple origins Sr and multiple terminations T r into
single origin Sr and single termination T r for each commodity r. The new node
Sr is connected only to the nodes in Sr, and the new node T r is connected only
to the nodes in T r. For each node irk ∈ Sr, we have

d(Sr, irk) = λir
k
, d(irk, S

r) = c(irk, S
r) = c(Sr, irk) = 0. (1)

For each node jr
k ∈ T r, we have

d(jr
k, T

r) = μjr
k
, d(T r, jr

k) = c(T r, jr
k) = c(jr

k, T
r) = 0. (2)

The enlarged network with the 2R supersources and supersinks is denoted by
GE = (V E,EE).
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The following figure displays an enlarged network of two commodities to be
transported from both origins 1, 2 to terminations 3, 5 and 4, 5 respectively.

 

S1 

S2

T1 

T2 

1 

2 

3 

4 

5 

Fig. 1. Enlarged network of two commodities

Let xr(i, j) be the flow of commodity r from node i to node j, where the
nodes belong to the enlarged network. At any node i ∈ V , the input and output
are balanced: ∑

j: (j,i)∈EE

xr(j, i) =
∑

j: (i,j)∈EE

xr(i, j). (3)

At nodes Sr and T r,

xr(Sr, i) = λr
i ; xr(j, T r) = μr

j ;

xr(i, Sr) = xr(T r, j) = 0 for any i ∈ Sr, j ∈ T r.
(4)

The total cost Cr of commodity r is

Cr =
∑

(i,j)∈EE

c(i, j)xr(i, j). (5)

The MCMF problem is to determine the flows xr(i, j) for each commodity
at each arc, so that the sum of total costs C1 +C2 + · · ·CR is minimized under
the equality constraints (3), (4) and the following inequality constraints:

R∑
r=1

xr(i, j) ≤ d(i, j); xr(i, j) ≥ 0. (6)

This is essentially a weighted maximal-flow problem.

3 Algorithm and Practice

In CCIC’s coal transportation system, there are 29 mines producing 12 types of
coal, to supply a population of more than 100 million in the area of Chongqing
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Fig. 2. A portion of CCIC’s coal transportation network



Fig. 3. Part of an optimal scheme for CCIC
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Commodity 
of coal 

Number of 
nodes 
passed 
through 

Source Sink 
Distance 

/KM 
Flow 
/ Ton 

T·KM 

Mixture Coal 4 Wansheng Shimenkan 86 10600 911600 

Mixture Coal 23 Wansheng Zigong 407 6000 2442000 

Mixture Coal 35 Wansheng Meishan 671 15000 100653000 

Mixture Coal 33 Wansheng Qinglongchang 647 2000 1294000 

Mixture Coal 32 Wansheng Guanxian 686 7900 5419400 

Mixture Coal 31 Wansheng Pengxian 656 1000 656000 

Mixture Coal 30 Wansheng Qinbaijiang 626 1000 626000 

Mixture Coal 28 Wansheng Chengdudong 583 21000 12243000 

Mixture Coal 26 Wansheng Ziyan 465 24000 11160000 

Mixture Coal 23 Wansheng Yinshanzhen 383 10000 3830000 

Mixture Coal 22 Wansheng Neijiang 369 187300 69113700 

Mixture Coal 4 Wansheng Xiaba 70 17000 1190000 

Mixture Coal 3 Wansheng Sanjiang 32 35700 1142400 

Mixture Coal 19 Moxinpo Neijiang 271 218700 59267700 

Mixture Coal 5 Sanhuiba Chongqing 79 152000 12008000 

Mixture Coal 6 Sanhuiba Chongqing 105 575000 60375000 

Mixture Coal 20 Sanhuiba Neijiang 342 14000 4788000 

Mixture Coal 10 Sanhuiba Bailin 192 9500 1824000 

Mixture Coal 9 Sanhuiba Zhuyangxi 174 600 104400 

Mixture Coal 6 Sanhuiba Jiangjin 115 41500 4772500 

Mixture Coal 5 Sanhuiba Tongguanyi 93 4400 409200 

….  ….  … …. . ….  ….  … 

Top-grade coal 22 Rongchang Emei 439 12000 5268000 

…. . ….  ….  ….     

Block coal       

…       

Block coal of  
top-grade 10 Yongchuan Chongqing 165 198100 32686500 

….  … … … … … … 

Powder coal 14 Longchang Guanxian 356 3300 1174800 

….  … … … … … … 

Anthracite 
coal 

37 Suimengkan Emei 757 9300 7040100 

… … … … … … … 
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City and Sichuan Province, through over 200 railway stations along 5 railroad
arteries. A portion of the transportation network is shown in Figure 2.

For this large-scale programming problem, some simplifications are necessary.
We assume that all the cost functions are linear, and all the supplies, demands
and capacities in the network take integer values. Then the maximal-flow pro-
gramming is simplified to mixed integer linear programming. Below we discuss
the algorithm aspect of the problem.

Maximal-flow programming is one of the oldest and well-studied problems
in operations research. In its 50 years history, Ford and Fulkerson’s “augment-
ing path” algorithm [19] was one of the first algorithms to solve the problem.
Subsequently, Edmonds and Karp [16] proposed two labeling algorithms. Dinic
[15] introduced the concept “layered networks” into the problem solving, and
Karzanov [27] made further improvement by introducing the concept “preflow”.
Until 1985, Dinic’s and Karzanov’s algorithms were widely considered to be the
fastest algorithms for solving the maximum-flow problem.

In 1988, Goldberg and Tarjan [22] proposed a new algorithm called “push-
relabel method”. Derigs and Meier [14] found that Goldberg and Tarjan’s al-
gorithm is substantially faster than Dinic’s and Karzanov’s algorithms. On the
other hand, by Bertsekas’ comparison [9], among the auction algorithm, the
highest-label preflow-push algorithm and Derigs and Meier’s algorithm, the first
one outperformed the other two by a constant factor for most classes of problems.
Recently, Ahuja et al. [2] tested some of the major algorithmic ideas to assess
their utility on the empirical front, including the shortest augmenting path al-
gorithm, Dinic’s algorithm, Karzanov’s algorithm, Goldberg-Tarjan’s algorithm,
etc. They found that the time to perform relabeling operations is at least as
much as that for augmentations and/or pushes.

Being unable to determine beforehand what algorithms are best suited for our
special network, we have to implement different maximal-flow algorithms in our
system. For real data provided by CCIC, different algorithms cost much the same
amount of computing time, suggesting that our network may be an equilibrium
case for the algorithms participating the performance contest.

The computing results are given by labels within the MCMF model. As an
illustration, some labels in an optimal scheme are shown in Figure 3. This scheme
reduces the transportation load by 8,663,400 Ton-Kilometer per year, and saves
at least 2,290,000 RMB’s transportation expenses per year.

4 Conclusion

We have introduced a system of modeling and computing the multicommodity
minimum cost network flow problem, and its application in the operational deci-
sion of the coal transportation and sales of Chongqing Coal Industry Company.
The system is currently in use by the Company and has brought considerable
economic benefits.
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Abstract. This paper surveys the new, algorithmic theory of moving
frames developed by the author and M. Fels. Applications in geometry,
computer vision, classical invariant theory, the calculus of variations, and
numerical analysis are indicated.

1 Introduction

According to Akivis, [1], the idea of moving frames can be traced back to the
method of moving trihedrons introduced by the Estonian mathematician Martin
Bartels (1769–1836), a teacher of both Gauß and Lobachevsky. The modern
method of moving frames or repères mobiles1 was primarily developed by Élie
Cartan, [22, 23], who forged earlier contributions by Cotton, Darboux, Frenet and
Serret into a powerful tool for analyzing the geometric properties of submanifolds
and their invariants under the action of transformation groups.

In the 1970’s, several researchers, cf. [29, 42, 44, 53], began the attempt to
place Cartan’s intuitive constructions on a firm theoretical foundation. I’ve been
fascinated by the power of the method since my student days, but, for many
years, could not see how to release it from its rather narrow geometrical confines,
e.g. Euclidean or equiaffine actions on submanifolds of Euclidean space. The
crucial conceptual leap is to decouple the moving frame theory from reliance
on any form of frame bundle or connection, and define a moving frame as an
equivariant map from the manifold or jet bundle back to the transformation
group. In other words,

Moving frames �= Frames !

A careful study of Cartan’s analysis of the case of projective curves, [22], re-
veals that Cartan was well aware of this viewpoint; however, this important and
instructive example did not receive the attention it deserved. Once freed from
the confining fetters of frames, Mark Fels and I, [39, 40], were able to formulate

1 In French, the term “repère mobile” refers to a temporary mark made during building
or interior design, and so a more accurate English translation might be “movable
landmarks”.
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a new, powerful, constructive approach to the equivariant moving frame theory
that can be systematically applied to general transformation groups. All clas-
sical moving frames can be reinterpreted in this manner, but the equivariant
approach applies in far broader generality.

Cartan’s construction of the moving frame through the normalization process
is interpreted with the choice of a cross-section to the group orbits. Building on
these two simple ideas, one may algorithmically construct equivariant moving
frames and, as a result, complete systems of invariants for completely general
group actions. The existence of a moving frame requires freeness of the under-
lying group action. Classically, non-free actions are made free by prolonging to
jet space, leading to differential invariants and the solution to equivalence and
symmetry problems via the differential invariant signature. More recently, the
moving frame method was also applied to Cartesian product actions, leading to
classification of joint invariants and joint differential invariants, [86]. Recently, a
seamless amalgamation of jet and Cartesian product actions dubbed multi-space
was proposed in [88] to serve as the basis for the geometric analysis of numerical
approximations, and, via the application of the moving frame method, to the
systematic construction of invariant numerical algorithms.

New and significant applications of these results have been developed in a
wide variety of directions. In [84, 6, 58, 59], the theory was applied to produce
new algorithms for solving the basic symmetry and equivalence problems of
polynomials that form the foundation of classical invariant theory. The moving
frame method provides a direct route to the classification of joint invariants and
joint differential invariants, [40, 86, 10], establishing a geometric counterpart of
what Weyl, [108], in the algebraic framework, calls the first main theorem for the
transformation group. In computer vision, joint differential invariants have been
proposed as noise-resistant alternatives to the standard differential invariant sig-
natures, [14, 21, 33, 79, 105, 106]. The approximation of higher order differential
invariants by joint differential invariants and, generally, ordinary joint invari-
ants leads to fully invariant finite difference numerical schemes, [9, 18, 19, 88, 57].
In [19, 5, 9], the characterization of submanifolds via their differential invari-
ant signatures was applied to the problem of object recognition and symmetry
detection, [12, 13, 15, 92]. A complete solution to the calculus of variations prob-
lem of directly constructing differential invariant Euler-Lagrange equations from
their differential invariant Lagrangians was given based on the moving frame
construction of the invariant variational bicomplex, [62].

As these methods become more widely disseminated, many additional ap-
plications are being pursued by a number of research groups, and include the
computation of symmetry groups and classification of partial differential equa-
tions [69, 80]; projective and conformal geometry of curves and surfaces, with
applications in Poisson geometry and integrable systems, [71, 72]; recognition
of polygons and point configurations, with applications in image processing,
[11, 54]; classification of projective curves in visual recognition, [48]; classifica-
tion of the invariants and covariants of Killing tensors arising in general relativity
and geometry, with applications to separation of variables and Hamiltonian sys-
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tems, [32, 75]; and the development of noncommutative Gröbner basis methods,
[50, 70]. Finally, in recent work with Pohjanpelto, [89, 90, 91], the theory has re-
cently been extended to the vastly more complicated case of infinite-dimensional
Lie pseudo-groups.

2 Moving Frames

We begin by outlining the basic moving frame construction in [40]. Let G be
an r-dimensional Lie group acting smoothly on an m-dimensional manifold M .
Let GS = { g ∈ G | g · S = S } denote the isotropy subgroup of a subset S ⊂ M ,
and G∗S =

⋂
z∈S Gz its global isotropy subgroup, which consists of those group

elements which fix all points in S. We always assume, without any significant
loss of generality, that G acts effectively on subsets, and so G∗U = {e} for any
open U ⊂M , i.e., there are no group elements other than the identity which act
completely trivially on an open subset of M .

Definition 1. A moving frame is a smooth, G-equivariant map ρ : M → G.

The group G acts on itself by left or right multiplication. If ρ(z) is any right-
equivariant moving frame then ρ̃(z) = ρ(z)−1 is left-equivariant and conversely.
All classical moving frames are left equivariant, but, in many cases, the right ver-
sions are easier to compute. In many geometrical situations, one can identify our
left moving frames with the usual frame-based versions, but these identifications
break down for more general transformation groups.

Theorem 2. A moving frame exists in a neighborhood of a point z ∈ M if
and only if G acts freely and regularly near z.

Recall that G acts freely if the isotropy subgroup of each point is trivial,
Gz = {e} for all z ∈M . This implies that the orbits all have the same dimension
asG itself. Regularity requires that, in addition, each point x ∈M has a system of
arbitrarily small neighborhoods whose intersection with each orbit is connected,
cf. [82].

The practical construction of a moving frame is based on Cartan’s method
of normalization, [56, 22], which requires the choice of a (local) cross-section to
the group orbits.

Theorem 3. Let G act freely and regularly on M , and let K ⊂M be a cross-
section. Given z ∈ M , let g = ρ(z) be the unique group element that maps z to
the cross-section: g · z = ρ(z) · z ∈ K. Then ρ : M → G is a right moving frame
for the group action.

Given local coordinates z = (z1, . . . , zm) on M , let w(g, z) = g · z be the ex-
plicit formulae for the group transformations. The right2 moving frame g = ρ(z)

2 The left version can be obtained directly by replacing g by g−1 throughout the
construction.
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associated with a coordinate cross-sectionK = {z1 = c1, . . . , zr = cr} is obtained
by solving the normalization equations

w1(g, z) = c1, . . . wr(g, z) = cr, (2.1)

for the group parameters g = (g1, . . . , gr) in terms of the coordinates z =
(z1, . . . , zm). Substituting the moving frame formulae into the remaining trans-
formation rules leads to a complete system of invariants for the group action.

Theorem 4. If g = ρ(z) is the moving frame solution to the normalization
equations (2.1), then the functions

I1(z) = wr+1(ρ(z), z), . . . Im−r(z) = wm(ρ(z), z), (2.2)

form a complete system of functionally independent invariants.

Definition 5. The invariantization of a scalar function F : M → R with
respect to a right moving frame ρ is the the invariant function I = ι(F ) defined
by I(z) = F (ρ(z) · z).

Invariantization amounts to restricting F to the cross-section, I |K = F |K, and
then requiring that I be constant along the orbits. In particular, if I(z) is an
invariant, then ι(I) = I, so invariantization defines a projection, depending on
the moving frame, from functions to invariants. Thus, a moving frame provides
a canonical method of associating an invariant with an arbitrary function.

Of course, most interesting group actions are not free, and therefore do not
admit moving frames in the sense of Definition 1. There are two basic methods
for converting a non-free (but effective) action into a free action. The first is to
look at the product action of G on several copies of M , leading to joint invari-
ants. The second is to prolong the group action to jet space, which is the natural
setting for the traditional moving frame theory, and leads to differential invari-
ants. Combining the two methods of prolongation and product will lead to joint
differential invariants. In applications of symmetry constructions to numerical
approximations of derivatives and differential invariants, one requires a unifi-
cation of these different actions into a common framework, called multispace,
[57, 88].

3 Prolongation and Differential Invariants

Traditional moving frames are obtained by prolonging the group action to the n-
th order (extended) jet bundle Jn = Jn(M,p) consisting of equivalence classes of
p-dimensional submanifolds S ⊂M modulo n-th order contact at a single point;
see [82–Chapter 3] for details. Since G preserves the contact equivalence relation,
it induces an action on the jet space Jn, known as its n-th order prolongation
and denoted by G(n).
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An n-th order moving frame ρ(n) : Jn → G is an equivariant map defined on
an open subset of the jet space. In practical examples, for n sufficiently large, the
prolonged action G(n) becomes regular and free on a dense open subset Vn ⊂ Jn,
the set of regular jets. It has been rigorously proved that, for n	 0 sufficiently
large, if G acts effectively on subsets, then G(n) acts locally freely on an open
subset Vn ⊂ Jn, [85].

Theorem 6. An n-th order moving frame exists in a neighborhood of a point
z(n) ∈ Jn if and only if z(n) ∈ Vn is a regular jet.

Our normalization construction will produce a moving frame and a complete
system of differential invariants in the neighborhood of any regular jet. Local co-
ordinates z = (x, u) on M — considering the first p components x = (x1, . . . , xp)
as independent variables, and the latter q = m− p components u = (u1, . . . , uq)
as dependent variables — induce local coordinates z(n) = (x, u(n)) on Jn with
components uα

J representing the partial derivatives of the dependent variables
with respect to the independent variables, [82, 83]. We compute the prolonged
transformation formulae

w(n)(g, z(n)) = g(n) · z(n), or (y, v(n)) = g(n) · (x, u(n)),

by implicit differentiation of the v’s with respect to the y’s. For simplicity, we
restrict to a coordinate cross-section by choosing r = dimG components of w(n)

to normalize to constants:

w1(g, z
(n)) = c1, . . . wr(g, z

(n)) = cr. (3.3)

Solving the normalization equations (3.3) for the group transformations leads to
the explicit formulae g = ρ(n)(z(n)) for the right moving frame. As in Theorem
4, substituting the moving frame formulae into the unnormalized components of
w(n) leads to the fundamental n-th order differential invariants

I(n)(z(n)) = w(n)(ρ(n)(z(n)), z(n)) = ρ(n)(z(n)) · z(n). (3.4)

Once the moving frame is established, the invariantization process will map gen-
eral differential functions F (x, u(n)) to differential invariants I = ι(F ) = F ◦ I(n).
As before, invariantization defines a projection, depending on the moving frame,
from the space of differential functions to the space of differential invariants. The
fundamental differential invariants I(n) are obtained by invariantization of the
coordinate functions

Hi(x, u(n)) = ι(xi) = yi(ρ(n)(x, u(n)), x, u),
Iα
K(x, u(k)) = ι(uα

J ) = vα
K(ρ(n)(x, u(n)), x, u(k)).

(3.5)

In particular, those corresponding to the normalization components (3.3) of w(n)

will be constant, and are known as the phantom differential invariants.

Theorem 7. Let ρ(n) : Jn → G be a moving frame of order ≤ n. Every n-th
order differential invariant can be locally written as a function J = Φ(I(n)) of the
fundamental n-th order differential invariants (3.5). The function Φ is unique
provided it does not depend on the phantom invariants.
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Example 8. Let us begin with a very simple, classical example: curves in
the Euclidean plane. The orientation-preserving Euclidean group SE(2) acts on
M = R

2, mapping a point z = (x, u) to

y = x cos θ − u sin θ + a, v = x sin θ + u cos θ + b. (3.6)

For a general parametrized3 curve z(t) = (x(t), u(t)), the prolonged group trans-
formations

vy =
dv

dy
=
ẋ sin θ + u̇ cos θ
ẋ cos θ − u̇ sin θ

, vyy =
d2v

dy2
=

ẋü− ẍu̇

(ẋ cos θ − u̇ sin θ)3
, (3.7)

and so on, are found by successively applying the implicit differentiation operator

d

dy
=

1
ẋ cos θ − u̇ sin θ

d

dt
(3.8)

to v. The classical Euclidean moving frame for planar curves, [46], follows from
the cross-section normalizations

y = 0, v = 0, vy = 0. (3.9)

Solving for the group parameters g = (θ, a, b) leads to the right-equivariant
moving frame

θ = − tan−1 u̇

ẋ
, a = − xẋ+ uu̇√

ẋ2 + u̇2
=

z · ż
‖ ż ‖ , b =

xu̇− uẋ√
ẋ2 + u̇2

=
z ∧ ż
‖ ż ‖ .

(3.10)
The inverse group transformation g−1 = (θ̃, ã, b̃) is the classical left moving
frame, [22, 46]: one identifies the translation component (ã, b̃) = (x, u) = z as
the point on the curve, while the columns of the rotation matrix R̃(θ̃) = (t,n)
are the unit tangent and unit normal vectors. Substituting the moving frame
normalizations (3.10) into the prolonged transformation formulae (3.7), results
in the fundamental differential invariants

vyy −→ κ =
ẋü− ẍu̇

(ẋ2 + u̇2)3/2
=

ż ∧ z̈
‖ ż ‖3

,

vyyy −→ dκ

ds
, vyyyy −→ d2κ

ds2
+ 3κ3,

(3.11)

where d/ds = ‖ ż ‖−1 d/dt is the arc length derivative — which is itself found
by substituting the moving frame formulae (3.10) into the implicit differentia-
tion operator (3.8). A complete system of differential invariants for the planar

3 While the local coordinates (x, u, ux, uxx, . . .) on the jet space assume that the curve
is given as the graph of a function u = f(x), the moving frame computations also
apply, as indicated in this example, to general parametrized curves. Two parame-
trized curves are equivalent if and only if one can be mapped to the other under a
suitable reparametrization.
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Euclidean group is provided by the curvature and its successive derivatives with
respect to arc length: κ, κs, κss, . . . .

The one caveat is that the first prolongation of SE(2) is only locally free on
J1 since a 180◦ rotation has trivial first prolongation. The even derivatives of κ
with respect to s change sign under a 180◦ rotation, and so only their absolute
values are fully invariant. The ambiguity can be removed by including the second
order constraint vyy > 0 in the derivation of the moving frame. Extending the
analysis to the full Euclidean group E(2) adds in a second sign ambiguity which
can only be resolved at third order. See [86] for complete details.

Example 9. Let n �= 0, 1. In classical invariant theory, the planar actions

y =
αx+ β

γx+ δ
, u = (γx+ δ)−nu, (3.12)

of G = GL(2) play a key role in the equivalence and symmetry properties of
binary forms, when u = q(x) is a polynomial of degree ≤ n, [49, 84, 6]. We
identify the graph of the function u = q(x) as a plane curve. The prolonged
action on such graphs is found by implicit differentiation:

vy =
σux − nγu

Δσn−1
, vyy =

σ2uxx − 2(n− 1)γσux + n(n− 1)γ2u

Δ2σn−2
,

vyyy =
σ3uxxx − 3(n− 2)γσ2uxx + 3(n− 1)(n− 2)γ2σux − n(n− 1)(n− 2)γ3u

Δ3σn−3
,

and so on, where σ = γp+ δ, Δ = αδ − βγ �= 0. On the regular subdomain

V2 = {uH �= 0} ⊂ J2, where H = uuxx −
n− 1
n

u2
x

is the classical Hessian covariant of u, we can choose the cross-section defined
by the normalizations

y = 0, v = 1, vy = 0, vyy = 1.

Solving for the group parameters gives the right moving frame formulae4

α = u(1−n)/n
√
H, β = −xu(1−n)/n

√
H,

γ = 1
n u

(1−n)/nux, δ = u1/n − 1
n xu

(1−n)/nux.
(3.13)

Substituting the normalizations (3.13) into the higher order transformation rules
gives us the differential invariants, the first two of which are

vyyy −→ J =
T

H3/2
, vyyyy −→ K =

V

H2
, (3.14)

4 See [6] for a detailed discussion of how to resolve the square root ambiguities.



112 P.J. Olver

where

T = u2uxxx − 3
n− 2
n

uuxuxx + 2
(n− 1)(n− 2)

n2
u3

x,

V = u3uxxxx − 4
n− 3
n

u2uxuxx + 6
(n− 2)(n− 3)

n2
uux

2uxx −

− 3
(n− 1)(n− 2)(n− 3)

n3
u4

x,

and can be identified with classical covariants, which may be constructed using
the basic transvectant process of classical invariant theory, cf. [49, 84]. Using
J2 = T 2/H3 as the fundamental differential invariant will remove the ambiguity
caused by the square root. As in the Euclidean case, higher order differential
invariants are found by successive application of the normalized implicit differ-
entiation operator Ds = uH−1/2Dx to the fundamental invariant J .

4 Equivalence and Signatures

The moving frame method was developed by Cartan expressly for the solution
to problems of equivalence and symmetry of submanifolds under group actions.
Two submanifolds S, S ⊂M are said to be equivalent if S = g ·S for some g ∈ G.
A symmetry of a submanifold is a group transformation that maps S to itself,
and so is an element g ∈ GS . As emphasized by Cartan, [22], the solution to the
equivalence and symmetry problems for submanifolds is based on the functional
interrelationships among the fundamental differential invariants restricted to the
submanifold.

Suppose we have constructed an n-th order moving frame ρ(n) : Jn → G
defined on an open subset of jet space. A submanifold S is called regular if its
n-jet jnS lies in the domain of definition of the moving frame. For any k ≥ n,
we use J (k) = I(k) |S = I(k) ◦ jkS to denote the k-th order restricted differential
invariants. The k-th order signature S(k) = S(k)(S) is the set parametrized by
the restricted differential invariants; S is called fully regular if J (k) has constant
rank 0 ≤ tk ≤ p = dimS for all k ≥ n. In this case, S(k) forms a submanifold of
dimension tk — perhaps with self-intersections. In the fully regular case,

tn < tn+1 < tn+2 < · · · < ts = ts+1 = · · · = t ≤ p,

where t is the differential invariant rank and s the differential invariant order of
S.

Theorem 10. Two fully regular p-dimensional submanifolds S, S ⊂ M are
(locally) equivalent, S = g · S, if and only if they have the same differential
invariant order s and their signature manifolds of order s + 1 are identical :
S(s+1)(S) = S(s+1)(S).

Since symmetries are the same as self-equivalences, the signature also determines
the symmetry group of the submanifold.
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Theorem 11. If S ⊂ M is a fully regular p-dimensional submanifold of dif-
ferential invariant rank t, then its symmetry group GS is an (r− t)–dimensional
subgroup of G that acts locally freely on S.

A submanifold with maximal differential invariant rank t = p, and hence only
a discrete symmetry group, is called nonsingular. The number of symmetries is
determined by the index of the submanifold, defined as the number of points in
S map to a single generic point of its signature:

indS = min
{

# (J (s+1))−1{ζ}
∣∣∣ ζ ∈ S(s+1)

}
.

Theorem 12. If S is a nonsingular submanifold, then its symmetry group is
a discrete subgroup of cardinality #GS = indS.

At the other extreme, a rank 0 or maximally symmetric submanifold has all
constant differential invariants, and so its signature degenerates to a single point.

Theorem 13. A regular p-dimensional submanifold S has differential in-
variant rank 0 if and only if its symmetry group is a p-dimensional subgroup
H = GS ⊂ G and an H–orbit : S = H · z0.

Remark : “Totally singular” submanifolds may have even larger, non-free sym-
metry groups, but these are not covered by the preceding results. See [85] for
details and precise characterization of such submanifolds.

Example 14. The Euclidean signature for a curve in the Euclidean plane is the
planar curve S(C) = {(κ, κs)} parametrized by the curvature invariant κ and
its first derivative with respect to arc length. Two planar curves are equivalent
under oriented rigid motions if and only if they have the same signature curves.
The maximally symmetric curves have constant Euclidean curvature, and so
their signature curve degenerates to a single point. These are the circles and
straight lines, and, in accordance with Theorem 13, each is the orbit of its one-
parameter symmetry subgroup of SE(2). The number of Euclidean symmetries
of a curve is equal to its index — the number of times the Euclidean signature
is retraced as we go around the curve.

An example of a Euclidean signature curve is displayed in figure 1. The first
figure shows the curve, and the second its Euclidean signature; the axes are κ and
κs in the signature plot. Note in particular the approximate three-fold symmetry
of the curve is reflected in the fact that its signature has winding number three. If
the symmetries were exact, the signature would be exactly retraced three times
on top of itself. The final figure gives a discrete approximation to the signature
which is based on the invariant numerical algorithms to be discussed below.

In figure 2 we display some signature curves computed from an actual medi-
cal image — a 70×70, 8-bit gray-scale image of a cross section of a canine heart,
obtained from an MRI scan. We then display an enlargement of the left ventricle.
The boundary of the ventricle has been automatically segmented through use of
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the conformally Riemannian moving contour or snake flow that was proposed in
[55] and successfully applied to a wide variety of 2D and 3D medical imagery,
including MRI, ultrasound and CT data, [109]. Underneath these images, we dis-
play the ventricle boundary curve along with two successive smoothed versions
obtained application of the standard Euclidean-invariant curve shortening pro-
cedure. Below each curve is the associated spline-interpolated discrete signature
curves for the smoothed boundary, as computed using the invariant numerical
approximations to κ and κs discussed below. As the evolving curves approach
circularity the signature curves exhibit less variation in curvature and appear
to be winding more and more tightly around a single point, which is the sig-
nature of a circle of area equal to the area inside the evolving curve. Despite
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Fig. 2. Signature of a Canine Heart Image

the rather extensive smoothing involved, except for an overall shrinking as the
contour approaches circularity, the basic qualitative features of the different sig-
nature curves, and particularly their winding behavior, appear to be remarkably
robust.

Thus, the signature curve method has the potential to be of practical use in
the general problem of object recognition and symmetry classification. It offer
several advantages over more traditional approaches. First, it is purely local,
and therefore immediately applicable to occluded objects. Second, it provides a
mechanism for recognizing symmetries and approximate symmetries of the ob-
ject. The design of a suitably robust “signature metric” for practical comparison
of signatures is the subject of ongoing research. See the contribution by Shakiban
and Lloyd, [97], in these proceedings for recent developments in this direction.
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Example 15. Let us next consider the equivalence and symmetry problems for
binary forms. According to the general moving frame construction in Example 9,
the signature curve S = S(q) of a function (polynomial) u = q(x) is parametrized
by the covariants J2 and K, as given in (3.14). The following solution to the
equivalence problem for complex-valued binary forms, [6, 81, 84], is an immediate
consequence of the general equivalence Theorem 10.

Theorem 16. Two nondegenerate complex-valued forms q(x) and q(x) are
equivalent if and only if their signature curves are identical : S(q) = S(q).

All equivalence maps x = ϕ(x) solve the two rational equations

J(x)2 = J(x)2, K(x) = K(x). (4.15)

In particular, the theory guarantees ϕ is necessarily a linear fractional transfor-
mation!

Theorem 17. A nondegenerate binary form q(x) is maximally symmetric if
and only if it satisfies the following equivalent conditions:

a) q is complex-equivalent to a monomial xk, with k �= 0, n.
b) The covariant T 2 is a constant multiple of H3 �≡ 0.
c) The signature is just a single point.
d) q admits a one-parameter symmetry group.
e) The graph of q coincides with the orbit of a one-parameter subgroup of
GL(2).

A binary form q(x) is nonsingular if and only if it is not complex-equivalent to
a monomial if and only if it has a finite symmetry group.

The symmetries of a nonsingular form can be explicitly determined by solving
the rational equations (4.15) with J = J , K = K. See [6] for a Maple imple-
mentation of this method for computing discrete symmetries and classification
of univariate polynomials. In particular, we obtain the following useful bounds
on the number of symmetries.

Theorem 18. If q(x) is a binary form of degree n which is not complex-
equivalent to a monomial, then its projective symmetry group has cardinality

k ≤
{

6n− 12 if V = cH2 for some constant c, or
4n− 8 in all other cases.

In her thesis, Kogan, [58], extends these results to forms in several variables.
In particular, a complete signature for ternary forms, [59], leads to a practi-
cal algorithm for computing discrete symmetries of, among other cases, elliptic
curves.
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5 Joint Invariants and Joint Differential Invariants

One practical difficulty with the differential invariant signature is its dependence
upon high order derivatives, which makes it very sensitive to data noise. For this
reason, a new signature paradigm, based on joint invariants, was proposed in
[86]. We consider now the joint action

g · (z0, . . . , zn) = (g · z0, . . . , g · zn), g ∈ G, z0, . . . , zn ∈M. (5.16)

of the group G on the (n+1)-fold Cartesian product M×(n+1) = M×· · ·×M . An
invariant I(z0, . . . , zn) of (5.16) is an (n+1)-point joint invariant of the original
transformation group. In most cases of interest, although not in general, if G
acts effectively on M , then, for n 	 0 sufficiently large, the product action is
free and regular on an open subset of M×(n+1). Consequently, the moving frame
method outlined in section 1 can be applied to such joint actions, and thereby
establish complete classifications of joint invariants and, via prolongation to
Cartesian products of jet spaces, joint differential invariants. We will discuss
two particular examples — planar curves in Euclidean geometry and projective
geometry, referring to [86] for details.

Example 19. Euclidean joint differential invariants. Consider the proper Eu-
clidean group SE(2) acting on oriented curves in the plane M = R2. We begin
with the Cartesian product action on M×2 � R4. Taking the simplest cross-
section x0 = u0 = x1 = 0, u1 > 0 leads to the normalization equations

y0 = x0 cos θ − u0 sin θ + a = 0, v0 = x0 sin θ + u0 cos θ + b = 0,
y1 = x1 cos θ − u1 sin θ + a = 0.

(5.17)
Solving, we obtain a right moving frame

θ = tan−1

(
x1 − x0

u1 − u0

)
, a = −x0 cos θ + u0 sin θ, b = −x0 sin θ − u0 cos θ,

(5.18)
along with the fundamental interpoint distance invariant

v1 = x1 sin θ + u1 cos θ + b −→ I = ‖ z1 − z0 ‖. (5.19)

Substituting (5.18) into the prolongation formulae (3.7) leads to the the normal-
ized first and second order joint differential invariants

dvk

dy
−→ Jk = − (z1 − z0) · żk

(z1 − z0) ∧ żk

,

d2vk

dy2
−→ Kk = − ‖ z1 − z0 ‖3 (żk ∧ z̈k)[

(z1 − z0) ∧ ż0
]3 ,

(5.20)

for k = 0, 1. Note that

J0 = − cotφ0, J1 = +cotφ1, (5.21)
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Fig. 3. First and Second Order Joint Euclidean Differential Invariants

where φk = <) (z1−z0, żk) denotes the angle between the chord connecting z0, z1
and the tangent vector at zk, as illustrated in figure 3. The modified second
order joint differential invariant

K̂0 = −‖ z1 − z0 ‖−3K0 =
ż0 ∧ z̈0[

(z1 − z0) ∧ ż0
]3 (5.22)

equals the ratio of the area of triangle whose sides are the first and second
derivative vectors ż0, z̈0 at the point z0 over the cube of the area of triangle
whose sides are the chord from z0 to z1 and the tangent vector at z0; see figure 3.

On the other hand, we can construct the joint differential invariants by in-
variant differentiation of the basic distance invariant (5.19). The normalized
invariant differential operators are

Dyk
−→ Dk = − ‖ z1 − z0 ‖

(z1 − z0) ∧ żk

Dtk
. (5.23)

Proposition 20. Every two-point Euclidean joint differential invariant is a
function of the interpoint distance I = ‖ z1 − z0 ‖ and its invariant derivatives
with respect to (5.23).

A generic product curve C = C0×C1 ⊂M×2 has joint differential invariant rank
2 = dimC, and its joint signature S(2)(C) will be a two-dimensional submanifold
parametrized by the joint differential invariants I, J0, J1,K0,K1 of order ≤ 2.
There will exist a (local) syzygy Φ(I, J0, J1) = 0 among the three first order
joint differential invariants.

Theorem 21. A curve C or, more generally, a pair of curves C0, C1 ⊂ R2, is
uniquely determined up to a Euclidean transformation by its reduced joint signa-
ture, which is parametrized by the first order joint differential invariants I, J0, J1.
The curve(s) have a one-dimensional symmetry group if and only if their sig-
nature is a one-dimensional curve if and only if they are orbits of a common
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one-parameter subgroup (i.e., concentric circles or parallel straight lines); oth-
erwise the signature is a two-dimensional surface, and the curve(s) have only
discrete symmetries.

For n > 2 points, we can use the two-point moving frame (5.18) to construct the
additional joint invariants

yk −→ Hk = ‖ zk − z0 ‖ cosψk, vk −→ Ik = ‖ zk − z0 ‖ sinψk,

where ψk = <) (zk − z0, z1− z0). Therefore, a complete system of joint invariants
for SE(2) consists of the angles ψk, k ≥ 2, and distances ‖ zk − z0 ‖, k ≥ 1.
The other interpoint distances can all be recovered from these angles; vice versa,
given the distances, and the sign of one angle, one can recover all other angles. In
this manner, we establish a “First Main Theorem” for joint Euclidean differential
invariants.

Theorem 22. If n ≥ 2, then every n-point joint E(2) differential invariant is
a function of the interpoint distances ‖ zi − zj ‖ and their invariant derivatives
with respect to (5.23). For the proper Euclidean group SE(2), one must also
include the sign of one of the angles, say ψ2 = <) (z2 − z0, z1 − z0).

Generic three-pointed Euclidean curves still require first order signature in-
variants. To create a Euclidean signature based entirely on joint invariants, we
take four points z0, z1, z2, z3 on our curve C ⊂ R2. As illustrated in figure 4,
there are six different interpoint distance invariants

a = ‖ z1 − z0 ‖, b = ‖ z2 − z0 ‖, c = ‖ z3 − z0 ‖,
d = ‖ z2 − z1 ‖, e = ‖ z3 − z1 ‖, f = ‖ z3 − z2 ‖,

(5.24)

which parametrize the joint signature Ŝ = Ŝ(C) that uniquely characterizes the
curve C up to Euclidean motion. This signature has the advantage of requiring
no differentiation, and so is not sensitive to noisy image data. There are two
local syzygies

Φ1(a, b, c, d, e, f) = 0, Φ2(a, b, c, d, e, f) = 0, (5.25)

z 0

z 1 z 2

z 3
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b
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Fig. 4. Four-Point Euclidean Curve Invariants
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among the the six interpoint distances. One of these is the universal Cayley–
Menger syzygy which is valid for all possible configurations of the four points,
and is a consequence of their coplanarity, cf. [8, 77]. The second syzygy in (5.25)
is curve-dependent and serves to effectively characterize the joint invariant sig-
nature. Euclidean symmetries of the curve, both continuous and discrete, are
characterized by this joint signature. For example, the number of discrete sym-
metries equals the signature index — the number of points in the original curve
that map to a single, generic point in S.

A wide variety of additional cases, including curves and surfaces in two and
three-dimensional space under the Euclidean, equi-affine, affine and projective
groups, are investigated in detail in [86].

6 Multi-space for Curves

In modern numerical analysis, the development of numerical schemes that in-
corporate additional structure enjoyed by the problem being approximated have
become quite popular in recent years. The first instances of such schemes are
the symplectic integrators arising in Hamiltonian mechanics, and the related en-
ergy conserving methods, [27, 65, 104]. The design of symmetry-based numerical
approximation schemes for differential equations has been studied by various
authors, including Shokin, [98], Dorodnitsyn, [34, 35], Axford and Jaegers, [52],
and Budd and Collins, [16]. These methods are closely related to the active
area of geometric integration of differential equations, [17, 47, 73]. In practical
applications of invariant theory to computer vision, group-invariant numerical
schemes to approximate differential invariants have been applied to the problem
of symmetry-based object recognition, [9, 19, 18].

In this section, we outline the basic construction of multi-space that forms the
foundation for the study of the geometric properties of discrete approximations
to derivatives and numerical solutions to differential equations; see [88] for more
details. We will only discuss the case of curves, which correspond to functions of
a single independent variable, and hence satisfy ordinary differential equations.
The more difficult case of higher dimensional submanifolds, corresponding to
functions of several variables that satisfy partial differential equations, relies on
a new approach to multi-dimensional interpolation theory, [87].

Numerical finite difference approximations to the derivatives of a function
u = f(x) rely on its values u0 = f(x0), . . . , un = f(xn) at several distinct
points zi = (xi, ui) = (xi, f(xi)) on the curve. Thus, discrete approximations
to jet coordinates on Jn are functions F (z0, . . . , zn) defined on the (n + 1)-fold
Cartesian product space M×(n+1) = M×· · ·×M . In order to seamlessly connect
the jet coordinates with their discrete approximations, then, we need to relate
the jet space for curves, Jn = Jn(M, 1), to the Cartesian product space M×(n+1).
Now, as the points z0, . . . , zn coalesce, the approximation F (z0, . . . , zn) will not
be well-defined unless we specify the “direction” of convergence. Thus, strictly
speaking, F is not defined on all of M×(n+1), but, rather, on the “off-diagonal”
part, by which we mean the subset
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M�(n+1) =
{

(z0, . . . , zn)
∣∣ zi �= zj for all i �= j

}
⊂M×(n+1)

consisting of all distinct (n + 1)-tuples of points. As two or more points come
together, the limiting value of F (z0, . . . , zn) will be governed by the derivatives
(or jet) of the appropriate order governing the direction of convergence. This
observation serves to motivate our construction of the n-th order multi-space
M (n), which shall contain both the jet space Jn and the off-diagonal Cartesian
product space M�(n+1) in a consistent manner.

Definition 23. An (n + 1)-pointed curve C = (z0, . . . , zn;C) consists of
a smooth curve C and n + 1 not necessarily distinct points z0, . . . , zn ∈ C
thereon. Given C, we let #i = #{ j | zj = zi } Two (n + 1)-pointed curves
C = (z0, . . . , zn;C), C̃ = (z̃0, . . . , z̃n; C̃), have n-th order multi-contact if and
only if

zi = z̃i, and j#i−1C|zi
= j#i−1C̃|zi

, for each i = 0, . . . , n.

Definition 24. The n-th order multi-space, denoted M (n) is the set of equiv-
alence classes of (n + 1)-pointed curves in M under the equivalence relation of
n-th order multi-contact. The equivalence class of an (n + 1)-pointed curves C
is called its n-th order multi-jet, and denoted jnC ∈M (n).

In particular, if the points on C = (z0, . . . , zn;C) are all distinct, then jnC = jnC̃
if and only if zi = z̃i for all i, which means that C and C̃ have all n + 1
points in common. Therefore, we can identify the subset of multi-jets of multi-
pointed curves having distinct points with the off-diagonal Cartesian product
spaceM�(n+1) ⊂ Jn. On the other hand, if all n+1 points coincide, z0 = · · · = zn,
then jnC = jnC̃ if and only if C and C̃ have n-th order contact at their common
point z0 = z̃0. Therefore, the multi-space equivalence relation reduces to the
ordinary jet space equivalence relation on the set of coincident multi-pointed
curves, and in this way Jn ⊂ M (n). These two extremes do not exhaust the
possibilities, since one can have some but not all points coincide. Intermediate
cases correspond to “off-diagonal” Cartesian products of jet spaces

Jk1 � · · · � Jki ≡
{

(z(k1)
0 , . . . , z

(ki)
i ) ∈ Jk1 × · · · × Jki

∣∣∣ π(z(kν)
ν ) are distinct

}
,

(6.26)
where

∑
kν = n and π : Jk →M is the usual jet space projection. These multi-

jet spaces appear in the work of Dhooghe, [33], on the theory of “semi-differential
invariants” in computer vision.

Theorem 25. If M is a smooth m-dimensional manifold, then its n-th order
multi-space M (n) is a smooth manifold of dimension (n + 1)m, which contains
the off-diagonal part M�(n+1) of the Cartesian product space as an open, dense
submanifold, and the n-th order jet space Jn as a smooth submanifold.

The proof of Theorem 25 requires the introduction of coordinate charts on
M (n). Just as the local coordinates on Jn are provided by the coefficients of



122 P.J. Olver

Taylor polynomials, the local coordinates on M (n) are provided by the coeffi-
cients of interpolating polynomials, which are the classical divided differences of
numerical interpolation theory, [78, 93].

Definition 26. Given an (n+1)-pointed graph C = (z0, . . . , zn;C), its divided
differences are defined by [ zj ]C = f(xj), and

[ z0z1 . . . zk−1zk ]C = lim
z→zk

[ z0z1z2 . . . zk−2z ]C − [ z0z1z2 . . . zk−2zk−1 ]C
x− xk−1

.

(6.27)
When taking the limit, the point z = (x, f(x)) must lie on the curve C, and take
limiting values x→ xk and f(x) → f(xk).

In the non-confluent case zk �= zk−1 we can replace z by zk directly in the
difference quotient (6.27) and so ignore the limit. On the other hand, when all
k + 1 points coincide, the k-th order confluent divided difference converges to

[ z0 . . . z0 ]C =
f (k)(x0)

k!
. (6.28)

Remark : Classically, one employs the simpler notation [u0u1 . . . uk ] for the di-
vided difference [ z0z1 . . . zk ]C . However, the classical notation is ambiguous since
it assumes that the mesh x0, . . . , xn is fixed throughout. Because we are regarding
the independent and dependent variables on the same footing — and, indeed,
are allowing changes of variables that scramble the two — it is important to
adopt an unambiguous divided difference notation here.

Theorem 27. Two (n+1)-pointed graphs C, C̃ have n-th order multi-contact
if and only if they have the same divided differences:

[ z0z1 . . . zk ]C = [ z0z1 . . . zk ]C̃ , k = 0, . . . , n.

The required local coordinates on multi-space M (n) consist of the independent
variables along with all the divided differences

x0, . . . , xn,
u(0) = u0 = [ z0 ]C , u(1) = [ z0z1 ]C ,

u(2) = 2 [ z0z1z2 ]C . . . u(n) = n! [ z0z1 . . . zn ]C ,
(6.29)

prescribed by (n + 1)-pointed graphs C = (z0, . . . , zn;C). The n! factor is in-
cluded so that u(n) agrees with the usual derivative coordinate when restricted
to Jn, cf. (6.28).

7 Invariant Numerical Methods

To implement a numerical solution to a system of differential equations

Δ1(x, u
(n)) = · · · = Δk(x, u(n)) = 0. (7.30)
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by finite difference methods, one relies on suitable discrete approximations to
each of its defining differential functions Δν , and this requires extending the dif-
ferential functions from the jet space to the associated multi-space, in accordance
with the following definition.

Definition 28. An (n+ 1)-point numerical approximation of order k to a dif-
ferential function Δ : Jn → R is an function F : M (n) → R that, when restricted
to the jet space, agrees with Δ to order k.

The simplest illustration of Definition 28 is provided by the divided difference
coordinates (6.29). Each divided difference u(n) forms an (n+1)-point numerical
approximation to the n-th order derivative coordinate on Jn. According to the
usual Taylor expansion, the order of the approximation is k = 1. More generally,
any differential function Δ(x, u, u(1), . . . , u(n)) can immediately be assigned an
(n+ 1)-point numerical approximation F = Δ(x0, u

(0), u(1), . . . , u(n)) by replac-
ing each derivative by its divided difference coordinate approximation. However,
these are by no means the only numerical approximations possible.

Now let us consider an r-dimensional Lie group G which acts smoothly on
M . Since G evidently maps multi-pointed curves to multi-pointed curves while
preserving the multi-contact equivalence relation, it induces an action on the
multi-space M (n) that will be called the n-th multi-prolongation of G and de-
noted by G(n). On the jet subset Jn ⊂M (n) the multi-prolonged action reduced
to the usual jet space prolongation. On the other hand, on the off-diagonal part
M�(n+1) ⊂ M (n) the action coincides with the (n + 1)-fold Cartesian product
action of G on M×(n+1).

We define a multi-invariant to be a function K : M (n) → R on multi-space
which is invariant under the multi-prolonged action of G(n). The restriction of a
multi-invariant K to jet space will be a differential invariant, I = K | Jn, while
restriction to M�(n+1) will define a joint invariant J = K |M�(n+1). Smoothness
of K will imply that the joint invariant J is an invariant n-th order numerical
approximation to the differential invariant I. Moreover, every invariant finite
difference numerical approximation arises in this manner. Thus, the theory of
multi-invariants is the theory of invariant numerical approximations!

Furthermore, the restriction of a multi-invariant to an intermediate multi-
jet subspace, as in (6.26), will define a joint differential invariant, [86] — also
known as a semi-differential invariant in the computer vision literature, [33, 79].
The approximation of differential invariants by joint differential invariants is,
therefore, based on the extension of the differential invariant from the jet space
to a suitable multi-jet subspace (6.26). The invariant numerical approximations
to joint differential invariants are, in turn, obtained by extending them from
the multi-jet subspace to the entire multi-space. Thus, multi-invariants also in-
clude invariant semi-differential approximations to differential invariants as well
as joint invariant numerical approximations to differential invariants and semi-
differential invariants — all in one seamless geometric framework.

Effectiveness of the group action onM implies, typically, freeness and regular-
ity of the multi-prolonged action on an open subset of M (n). Thus, we can apply
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the basic moving frame construction. The resulting multi-frame ρ(n) : M (n) → G
will lead us immediately to the required multi-invariants and hence a general,
systematic construction for invariant numerical approximations to differential
invariants. Any multi-frame will evidently restrict to a classical moving frame
ρ(n) : Jn → G on the jet space along with a suitably compatible product frame
ρ�(n+1) : M�(n+1) → G.

In local coordinates, we use wk = (yk, vk) = g·zk to denote the transformation
formulae for the individual points on a multi-pointed curve. The multi-prolonged
action on the divided difference coordinates gives

y0, . . . , yn,
v(0) = v0 = [w0 ], v(1) = [w0w1 ],

v(2) = [w0w1w2 ], . . . v(n) = n! [w0, . . . , wn ],
(7.31)

where the formulae are most easily computed via the difference quotients

[w0w1 . . . wk−1wk ] =
[w0w1w2 . . . wk−2wk ]− [w0w1w2 . . . wk−2wk−1 ]

yk − yk−1

,

[wj ] = vj ,

(7.32)

and then taking appropriate limits to cover the case of coalescing points. Inspired
by the constructions in [40], we will refer to (7.31) as the lifted divided difference
invariants.

To construct a multi-frame, we need to normalize by choosing a cross-section
to the group orbits in M (n), which amounts to setting r = dimG of the lifted
divided difference invariants (7.31) equal to suitably chosen constants. An im-
portant observation is that in order to obtain the limiting differential invariants,
we must require our local cross-section to pass through the jet space, and define,
by intersection, a cross-section for the prolonged action on Jn. This compati-
bility constraint implies that we are only allowed to normalize the first lifted
independent variable y0 = c0.

With the aid of the multi-frame, the most direct construction of the requi-
site multi-invariants and associated invariant numerical differentiation formulae
is through the invariantization of the original finite difference quotients (6.27).
Substituting the multi-frame formulae for the group parameters into the lifted co-
ordinates (7.31) provides a complete system of multi-invariants on M (n); this fol-
lows immediately from Theorem 4. We denote the fundamental multi-invariants
by

yi −→ Hi = ι(xi), v(n) −→ K(n) = ι(u(n)), (7.33)

where ι denotes the invariantization map associated with the multi-frame. The
fundamental differential invariants for the prolonged action of G on Jn can all be
obtained by restriction, so that I(n) = K(n) | Jn. On the jet space, the points are
coincident, and so the multi-invariants Hi will all restrict to the same differential
invariant c0 = H = Hi | Jn — the normalization value of y0. On the other hand,
the fundamental joint invariants on M�(n+1) are obtained by restricting the
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multi-invariants Hi = ι(xi) and Ki = ι(ui). The multi-invariants can computed
by using a multi-invariant divided difference recursion

[ Ij ] = Kj = ι(uj)

[ I0 . . . Ik ] = ι( [ z0z1 . . . zk ] ) =
[ I0 . . . Ik−2Ik ]− [ I0 . . . Ik−2Ik−1 ]

Hk −Hk−1

,
(7.34)

and then relying on continuity to extend the formulae to coincident points. The
multi-invariants

K(n) = n! [ I0 . . . In ] = ι(u(n) ) (7.35)

define the fundamental first order invariant numerical approximations to the dif-
ferential invariants I(n). Higher order invariant approximations can be obtained
by invariantization of the higher order divided difference approximations. The
moving frame construction has a significant advantage over the infinitesimal ap-
proach used by Dorodnitsyn, [34, 35], in that it does not require the solution of
partial differential equations in order to construct the multi-invariants.

Given a regular G-invariant differential equation

Δ(x, u(n)) = 0, (7.36)

we can invariantize the left hand side to rewrite the differential equation in terms
of the fundamental differential invariants:

ι(Δ(x, u(n))) = Δ(H, I(0), . . . , I(n)) = 0.

The invariant finite difference approximation to the differential equation is then
obtained by replacing the differential invariants I(k) by their multi-invariant
counterparts K(k):

Δ(c0,K
(0), . . . ,K(n)) = 0. (7.37)

Example 29. Consider the elementary action

(x, u) −→ (λ−1x+ a, λu+ b)

of the three-parameter similarity group G = R2 nR on M = R2. To obtain the
multi-prolonged action, we compute the divided differences (7.31) of the basic
lifted invariants

yk = λ−1xk + a, vk = λuk + b.

We find

v(1) = [w0w1 ] =
v1 − v0
y1 − y0

= λ2 u1 − u0

x1 − x0

= λ2 [ z0z1 ] = λ2 u(1).

More generally,
v(n) = λn+1 u(n), n ≥ 1. (7.38)
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Note that we may compute the multi-space transformation formulae assuming
initially that the points are distinct, and then extending to coincident cases by
continuity. (In fact, this gives an alternative method for computing the standard
jet space prolongations of group actions!) In particular, when all the points
coincide, each u(n) reduces to the n-th order derivative coordinate, and (7.38)
reduces to the prolonged action of G on Jn. We choose the normalization cross-
section defined by

y0 = 0, v0 = 0, v(1) = 1,

which, upon solving for the group parameters, leads to the basic moving frame

a = −
√
u(1) x0, b = − u0√

u(1)
, λ =

1√
u(1)

, (7.39)

where, for simplicity, we restrict to the subset where u(1) = [ z0z1 ] > 0. The fun-
damental joint similarity invariants are obtained by substituting these formulae
into

yk −→ Hk = (xk − x0)
√
u(1) = (xk − x0)

√
u1 − u0

x1 − x0

,

vk −→ Kk =
uk − u0√

u(1)
= (uk − u0)

√
x1 − x0

u1 − u0

,

both of which reduce to the trivial zero differential invariant on Jn. Higher order
multi-invariants are obtained by substituting (7.39) into the lifted invariants
(7.38), leading to

K(n) =
u(n)

(u(1))(n+1)/2
=

n! [ z0z1 . . . zn ]
[ z0z1z2 ](n+1)/2

.

In the limit, these reduce to the differential invariants I(n) = (u(1))−(n+1)/2 u(n),
and so K(n) give the desired similarity-invariant, first order numerical approxi-
mations. To construct an invariant numerical scheme for any similarity-invariant
ordinary differential equation

Δ(x, u, u(1), u(2), . . . u(n)) = 0,

we merely invariantize the defining differential function, leading to the general
similarity–invariant numerical approximation

Δ(0, 0, 1,K(2), . . . ,K(n)) = 0.

Example 30. For the action (3.6) of the proper Euclidean group of SE(2) on
M = R2, the multi-prolonged action is free on M (n) for n ≥ 1. We can thereby
determine a first order multi-frame and use it to completely classify Euclidean
multi-invariants. The first order transformation formulae are

y0 = x0 cos θ − u0 sin θ + a, v0 = x0 sin θ + u0 cos θ + b,

y1 = x1 cos θ − u1 sin θ + a, v(1) =
sin θ + u(1) cos θ
cos θ − u(1) sin θ

,
(7.40)
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where u(1) = [ z0z1 ]. Normalization based on the cross-section y0 = v0 = v(1) = 0
results in the right moving frame

a = −x0 cos θ + u0 sin θ = − x0 + u(1) u0√
1 + (u(1))2

,

b = −x0 sin θ − u0 cos θ =
x0 u

(1) − u0√
1 + (u(1))2

,

tan θ = −u(1) . (7.41)

Substituting the moving frame formulae (7.41) into the lifted divided differ-
ences results in a complete system of (oriented) Euclidean multi-invariants.
These are easily computed by beginning with the fundamental joint invariants
Ik = (Hk,Kk) = ι(xk, uk), where

yk −→ Hk =
(xk − x0) + u(1) (uk − u0)√

1 + (u(1))2
= (xk − x0)

1 + [ z0z1 ] [ z0zk ]√
1 + [ z0z1 ]2

,

vk −→ Kk =
(uk − u0)− u(1) (xk − x0)√

1 + (u(1))2
= (xk − x0)

[ z0zk ]− [ z0z1 ]√
1 + [ z0z1 ]2

.

The multi-invariants are obtained by forming divided difference quotients

[ I0Ik ] =
Kk −K0

Hk −H0

=
Kk

Hk

=
(xk − x1)[ z0z1zk ]
1 + [ z0zk ] [ z0z1 ]

,

where, in particular, I(1) = [ I0I1 ] = 0. The second order multi-invariant

I(2) = 2 [ I0I1I2 ] = 2
[ I0I2 ]− [ I0I1 ]

H2 −H1

=
2 [ z0z1z2 ]

√
1 + [ z0z1 ]2(

1 + [ z0z1 ] [ z1z2 ]
)(

1 + [ z0z1 ] [ z0z2 ]
)

=
u(2)

√
1 + (u(1))2[

1 + (u(1))2 + 1
2u

(1)u(2)(x2 − x0)
] [

1 + (u(1))2 + 1
2u

(1)u(2)(x2 − x1)
]

provides a Euclidean–invariant numerical approximation to the Euclidean cur-
vature:

lim
z1,z2→z0

I(2) = κ =
u(2)

(1 + (u(1))2)3/2
.

Similarly, the third order multi-invariant

I(3) = 6 [ I0I1I2I3 ] = 6
[ I0I1I3 ]− [ I0I1I2 ]

H3 −H2

will form a Euclidean–invariant approximation for the normalized differential
invariant κs = ι(uxxx), the derivative of curvature with respect to arc length,
[19, 40].

To compare these with the invariant numerical approximations proposed in
[18, 19], we reformulate the divided difference formulae in terms of the geomet-
rical configurations of the four distinct points z0, z1, z2, z3 on our curve. We find
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Hk =
(z1 − z0) · (zk − z0)

‖ z1 − z0 ‖
= rk cosφk,

Kk =
(z1 − z0) ∧ (zk − z0)

‖ z1 − z0 ‖
= rk sinφk,

[ I0Ik ] = tanφk,

where
rk = ‖ zk − z0 ‖, φk = <) (zk − z0, z1 − z0),

denotes the distance and the angle between the indicated vectors. Therefore,

I(2) = 2
tanφ2

r2 cosφ2 − r1
,

I(3) = 6
(r2 cosφ2 − r1) tanφ3 − (r3 cosφ3 − r1) tanφ2

(r2 cosφ2 − r1)(r3 cosφ3 − r1)(r3 cosφ3 − r2 cosφ2)
.

(7.42)

Interestingly, I(2) is not the same Euclidean approximation to the curvature that
was used in [19, 18]. The latter was based on the Heron formula for the radius
of a circle through three points:

I� =
4Δ
abc

=
2 sinφ2

‖ z1 − z2 ‖
. (7.43)

Here Δ denotes the area of the triangle connecting z0, z1, z2 and

a = r1 = ‖ z1 − z0 ‖, b = r2 = ‖ z2 − z0 ‖, c = ‖ z2 − z1 ‖,

are its side lengths. The ratio tends to a limit I�/I(2) → 1 as the points coalesce.
The geometrical approximation (7.43) has the advantage that it is symmetric un-
der permutations of the points; one can achieve the same thing by symmetrizing
the divided difference version I(2). Furthermore, I(3) is an invariant approxima-
tion for the differential invariant κs, that, like the approximations constructed
by Boutin, [9], converges properly for arbitrary spacings of the points on the
curve.

Recently, Pilwon Kim and I have been developing the invariantization tech-
niques to a variety of numerical integrators, e.g., Euler and Runge–Kutta, for
ordinary differential equations with symmetry, with sometimes striking results,
[57]. In preparation for extending these methods to functions of several vari-
ables and partial differential equations, I have recently formulated a new ap-
proach to the theory of multivariate interpolation based on noncommutative
quasi-determinants, [87].

8 Invariant Variational Problems

In the fundamental theories of modern physics, [7, 43], one begins by postulating
an underlying symmetry group (e.g., conformal invariance, Poincaré invariance,
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supersymmetry, etc.), and then seeks a suitably invariant Lagrangian or varia-
tional principle. The governing field equations are the Euler–Lagrange equations,
which retain the invariance properties of the underlying pseudo-group. As first
recognized by Lie, [67], under appropriate regularity assumptions, all invariant
differential equations and variational problems can be written in terms of the
differential invariants. Surprisingly, though, complete classifications of differen-
tial invariants remain, for the most part, unknown, even for some of the most
basic cases in physics, e.g., the full Poincaré group. A principal aim of the mov-
ing frame approach is to provide the necessary mathematical tools for resolving
such fundamental issues.

In this direction, Irina Kogan and I, [61, 62], extended the invariantization
process to formulate an invariant version of the variational bicomplex. In particu-
lar, our results solve the previously outstanding problem of directly constructing
the differential invariant form of the Euler-Lagrange equations from that of the
underlying variational problem. Previously, only a handful of special examples
were known, [2, 45].

Example 31. To illustrate, the simplest example is that of plane curves in
Euclidean geometry. Any Euclidean-invariant variational problem

I[u ] =
∫
L̃(κ, κs, κss, . . .) ds

can be written in terms of the Euclidean curvature differential invariant κ and
its successive derivatives Dnκ = Dn

s κ with respect to arc length ds. The associ-
ated Euler-Lagrange equation is Euclidean-invariant, and so is equivalent to an
ordinary differential equation of the form

F (κ, κs, κss, . . .) = 0.

The basic problem is to go directly from the invariant form of the variational
problem to the invariant form of its Euler-Lagrange equation. The correct for-
mula for the Euler-Lagrange equation is

(D2 + κ2) E(L̃) + κH(L̃) = 0,

where

E(L̃) =
∑

n

(−D)n ∂L̃

∂κn

, H(L̃) =
∑
i>j

κi−j(−D)j ∂L̃

∂κi

− L̃,

are, respectively, the invariant Euler-Lagrange expression (or Eulerian), and the
invariant Hamiltonian of the invariant Lagrangian L̃.

Kogan and I proved that, in general, the invariant Euler–Lagrange formula as-
sumes an analogous form

A∗E(L̃)− B∗H(L̃) = 0,
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where E(L̃) is the invariantized Eulerian, H(L̃) an invariantized Hamiltonian
tensor, [95], based on the invariant Lagrangian of the problem, while A∗,B∗
are certain invariant differential operators, which we name the Eulerian and
Hamiltonian operators. The precise forms of these operators follows from the
recurrence formulae for the moving frame on the invariant variational bicomplex,
which, as they rely solely on linear differential algebraic formulae, can be readily
implemented in computer algebra systems. Complete details on the construction
and applications can be found in our papers [61, 62].

9 Lie Pseudo–Groups

With the moving frame constructions for finite-dimensional Lie group actions
taking more or less final form, my attention has shifted to developing a com-
parably powerful theory that can be applied to infinite-dimensional Lie pseudo-
groups. The subject is classical: Lie, [66], and Medolaghi, [76], classified all planar
pseudo-groups, and gave applications to Darboux integrable partial differential
equations, [4, 100]. Cartan’s famous classification of transitive simple pseudo-
groups, [24], remains a milestone in the subject. Remarkably, despite numerous
investigations, there is still no entirely satisfactory abstract object that will prop-
erly represent a Lie pseudo-group, cf. [64, 99, 101, 94].

Pseudo-groups appear in a broad range of physical and geometrical contexts,
including gauge theories in physics, [7]; canonical and area-preserving transfor-
mations in Hamiltonian mechanics, [82]; conformal symmetry groups on two-
dimensional surfaces, [37]; foliation-preserving groups of transformations, with
the associated characteristic classes defined by certain invariant forms, [41]; sym-
metry groups of both linear and nonlinear partial differential equations appearing
in fluid and plasma mechanics, such as the Euler, Navier-Stokes and boundary
layer equations, [20, 82], in meteorology, such as semi-geostrophic models, [96],
and in integrable (soliton) equations in more than one space dimension such as
the Kadomtsev–Petviashvili (KP) equation, [31]. Applications of pseudo-groups
to the design of geometric numerical integrators are being emphasized in recent
work of McLachlan and Quispel, [73, 74].

Juha Pohjanpelto and I, [89, 90, 91], recently announced a breakthrough in
the development of a practical moving frame theory for general Lie pseudo-group
actions. (A more abstract version was concurrently developed by my former stu-
dent Vladimir Itskov, [51].) Just as in the finite-dimensional theory, the new
methods lead to general computational algorithms for (i) determining complete
systems of differential invariants, invariant differential operators, and invariant
differential forms, (ii) complete classifications of syzygies and recurrence for-
mulae relating the differentiated invariants and invariant forms, (iii) a general
algorithm for computing the Euler–Lagrange equations associated with an in-
variant variational problem. Further extensions — pseudo-group algorithms for
joint invariants and joint differential invariants, invariant numerical approxima-
tions, and so on — are also evident.
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Our approach rests on an amalgamation of two powerful, general modern the-
ories: groupoids, [68, 107], which generalize the concept of transformation groups,
and the variational bicomplex, [2, 83, 103], which underlies the modern geomet-
ric approach to differential equations and the calculus of variations. Groupoids
(first formalized by Ehresmann, [36], for precisely these purposes) are required
because there is no underlying global geometric object to represent the (local)
pseudo-group. The simplest case, and one that must be fully understood from
the start, is the pseudo-group of all local diffeomorphisms. Their jets (Taylor
series) naturally form a groupoid, because one can only compose two Taylor se-
ries if the target (or sum) of the first matches the source (or base point) of the
second. Thus, the first item of business is to adapt the Lie group moving frame
constructions to the groupoid category.

On an infinite jet bundle, the variational bicomplex, [2, 103], follows from
the natural splitting of the space of differential one-forms into contact forms
and horizontal forms, [83]. Our constructions involve two infinite jet bundles
and their associated variational bicomplexes: the first is the groupoid of infinite
jets of local diffeomorphisms; the second is the space of jets of submanifolds (or
graphs of functions or sections). This seriously complicates the analysis (and the
notation), but not beyond the range of being forged into a practical, algorithmic
method.

The next challenge is the construction of the Maurer–Cartan forms and the
associated structure equations for the pseudo-group. For finite-dimensional Lie
groups, the pull-back action of the moving frame on the Maurer–Cartan forms
is used to construct the basic recurrence formulae that relate the differentiated
invariants and differential forms, [40, 62]. The recurrence formulae are the foun-
dation for all the advanced computational algorithms, including classification of
differential invariants and their syzygies, the general invariantization procedure,
and the applications in the calculus of variations.

In the case of the diffeomorphism pseudo-group, the Maurer–Cartan forms
are the invariant contact forms on the diffeomorphism jet groupoid, and can
be explicitly constructed, completely avoiding the more complicated inductive
procedure advocated by Cartan, [25]. Let z = (z1, . . . , zm), Z = (Z1, . . . , Zm) be,
respectively, the source and target coordinates on M . The induced coordinates
on the diffeomorphism jet bundle D∞ ⊂ J∞(M,M) are denoted by Za

J , a =
1, . . . ,m, #J ≥ 0, representing all derivatives of the target coordinates. The
space of invariant contact forms on D∞ has basis elements μa

J , a = 1, . . . ,m,
#J ≥ 0, whose explicit formulas can be found in [89]. Utilizing the variational
bicomplex machinery, we readily establish the explicit formulae for the structure
equations for the diffeomorphism pseudo-group by equating coefficients in the
formal power series formula

dμ[[H ]] = ∇Hμ[[H ]] ∧
(
μ[[H ]]− dZ

)
. (9.44)

Here, μ[[H ]] is the vector-valued formal power series depending on the parame-
ters H = (H1, . . . , Hm), with entries
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μa[[H ]] =
∑

#J≥0

μa
J H

J ,

∇Hμ[[H ]] is its formal Jacobian matrix, while dZ = (dZ1, . . . , dZm)T .
Given a Lie pseudo-group G acting on M , let

L(z, . . . , ζa
J , . . .) = 0 (9.45)

denote the involutive system of determining equations for its infinitesimal gen-
erators v =

∑m
a=1 ζa∂za , where ζa

J = ∂Jζa/∂zJ stand for the corresponding
derivatives (or jets) of the vector field coefficients. For example, if G is a sym-
metry group of a system of partial differential equations, then (9.46) are (the
involutive completion) of the classical Lie determining equations for its infinitesi-
mal symmetries, [82]. The remarkable fact, proved in [89], is that Maurer–Cartan
forms for the pseudo-group, which are obtained by restricting the diffeomorphism
Maurer–Cartan forms μa

J to the pseudo-group jet subbundle G(∞) ⊂ D(∞), sat-
isfy the exact same linear relations5:

L(Z, . . . , μa
J , . . .) = 0. (9.46)

Therefore, a basis for the solution space to the infinitesimal determining equa-
tions (9.46) prescribes the complete system of independent Maurer–Cartan forms
for the pseudo-group. Furthermore, the all-important pseudo-group structure
equations are obtained by restricting the diffeomorphism structure equations
(9.44) to the linear subspace spanned by the pseudo-group Maurer–Cartan forms,
i.e., to the space of solutions to (9.46). The result is a direct computational pro-
cedure for passing directly from the infinitesimal determining equations to the
structure equations for the pseudo-group relying on just linear differential alge-
bra.

With the Maurer–Cartan forms and structure equations in hand, we are now
in a position to implement to moving frame method. The primary focus is on the
action of the pseudo-group on submanifolds of a specified dimension. There is an
induced prolonged action of the (finite dimensional) n-th order pseudo-group jet
groupoid on the n-th order submanifold jet bundle. A straightforward adapta-
tion of the general normalization procedure will produce the n-th order moving
frame map. The consequent invariantization process is used to produce the com-
plete system of n-th order differential invariants, invariant differential forms, and,
when combined with the Maurer–Cartan structure equations, the required recur-
rence formulae. In [28], these algorithms were applied to the symmetry groups
of the Korteweg–deVries and KP equations arising in soliton theory, and general
packages for effecting these computations are being developed. More substantial
examples, arising as symmetry pseudo-groups of nonlinear partial differential
equations such as the KP equation and the equations in fluid mechanics and
meteorology, are in the process of being investigated.

5 With the source coordinates z replaced by target coordinates Z
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10 Implementation

A noteworthy feature of both the finite-dimensional and infinite-dimensional
moving frame methods is that most of the computations rely on purely linear
algebra techniques. In particular, the structure of the pseudo-group, the funda-
mental differential invariants, and the recurrence formulae, syzygies and com-
mutation relations all follow from the infinitesimal determining equations. Only
the explicit formulas for the differential invariants requires the nonlinear pseudo-
group transformations, coupled with elimination of the normalization equations.
The efficiency of the moving frame approach is underscored by the fact that
we can replace the complicated Spencer-based analysis of Tresse’s prototypical
example in [63] by a few lines of easy hand computation, [90]. More substantial
examples, such as the symmetry groups of nonlinear partial differential equa-
tions, that were previously unattainable are now well within our computational
grasp. However, large-scale applications, such as those in Mansfield, [69], will
require the development of a suitable noncommutative Gröbner basis theory for
such algebras, complicated by the noncommutativity of the invariant differential
operators and the syzygies among the differentiated invariants.

Owing to the overall complexity of larger scale computations, any serious
application of the methods discussed here will, ultimately, rely on computer al-
gebra, and so the development of appropriate software packages is a significant
priority. The moving frame algorithms point to significant weaknesses in cur-
rent computer algebra technology, particularly when manipulating the rational
algebraic functions which inevitably appear within the normalization formulae.
Following some preliminary work by the author in Mathematica, Irina Ko-
gan, [60], has implemented the finite-dimensional moving frame algorithms on
Ian Anderson’s general purpose Maple package Vessiot, [3]. As part of his
Ph.D. thesis, Jeongoo Cheh is implementing the full pseudo-group algorithms
for symmetry groups of partial differential equations in Mathematica.
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1. Akivis, M.A., and Rosenfeld, B.A., Élie Cartan (1869-1951), Translations Math.
monographs, vol. 123, American Math. Soc., Providence, R.I., 1993.

2. Anderson, I.M., The Variational Bicomplex, Utah State Technical Report, 1989,
http://math.usu.edu/∼fg mp.

3. Anderson, I.M., The Vessiot Handbook, Technical Report, Utah Sate University,
2000.

4. Anderson, I.M., and Kamran, N., The variational bicomplex for second order
scalar partial differential equations in the plane, Duke Math. J. 87 (1997), 265–
319.

5. Bazin, P.–L., and Boutin, M., Structure from motion: theoretical foundations of
a novel approach using custom built invariants, SIAM J. Appl. Math. 64 (2004),
1156–1174.

6. Berchenko, I.A., and Olver, P.J., Symmetries of polynomials, J. Symb. Comp. 29
(2000), 485–514.



134 P.J. Olver

7. Bleecker, D., Gauge Theory and Variational Principles, Addison–Wesley Publ.
Co., Reading, Mass., 1981.

8. Blumenthal, L.M., Theory and Applications of Distance Geometry, Oxford Univ.
Press, Oxford, 1953.

9. Boutin, M., Numerically invariant signature curves, Int. J. Computer Vision 40
(2000), 235–248.

10. Boutin, M., On orbit dimensions under a simultaneous Lie group action on n
copies of a manifold, J. Lie Theory 12 (2002), 191–203.

11. Boutin, M., Polygon recognition and symmetry detection, Found. Comput. Math.
3 (2003), 227–271.

12. Bruckstein, A.M., Holt, R.J., Netravali, A.N., and Richardson, T.J., Invariant
signatures for planar shape recognition under partial occlusion, CVGIP: Image
Understanding 58 (1993), 49–65.

13. Bruckstein, A.M., and Netravali, A.N., On differential invariants of planar curves
and recognizing partially occluded planar shapes, Ann. Math. Artificial Intel. 13
(1995), 227–250.

14. Bruckstein, A.M., Rivlin, E., and Weiss, I., Scale space semi-local invariants,
Image Vision Comp. 15 (1997), 335–344.

15. Bruckstein, A.M., and Shaked, D., Skew-symmetry detection via invariant signa-
tures, Pattern Recognition 31 (1998), 181–192.

16. Budd, C.J., and Collins, C.B., Symmetry based numerical methods for partial
differential equations, in: Numerical analysis 1997, D.F. Griffiths, D.J. Higham
and G.A. Watson, eds., Pitman Res. Notes Math., vol. 380, Longman, Harlow,
1998, pp. 16–36.

17. Budd, C.J., and Iserles, A., Geometric integration: numerical solution of differen-
tial equations on manifolds, Phil. Trans. Roy. Soc. London A 357 (1999), 945–956.

18. Calabi, E., Olver, P.J., and Tannenbaum, A., Affine geometry, curve flows, and
invariant numerical approximations, Adv. in Math. 124 (1996), 154–196.

19. Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., and Haker, S., Differential
and numerically invariant signature curves applied to object recognition, Int. J.
Computer Vision 26 (1998), 107–135.

20. Cantwell, B.J., Introduction to Symmetry Analysis, Cambridge University Press,
Cambridge, 2003.

21. Carlsson, S., Mohr, R., Moons, T., Morin, L., Rothwell, C., Van Diest, M., Van
Gool, L., Veillon, F., and Zisserman, A., Semi-local projective invariants for the
recognition of smooth plane curves, Int. J. Comput. Vision 19 (1996), 211–236.
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Différentielle Traitées par la Méthode du Repère Mobile, Cahiers Scientifiques,
Vol. 18, Gauthier–Villars, Paris, 1937.
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102. Tresse, A., Sur les invariants différentiels des groupes continus de transformations,
Acta Math. 18 (1894), 1–88.

103. Tsujishita, T., On variational bicomplexes associated to differential equations,
Osaka J. Math. 19 (1982), 311–363.

104. van Beckum, F.P.H., and van Groesen, E., Discretizations conserving energy and
other constants of the motion, in: Proc. ICIAM 87, Paris, 1987, pp. 17–35 .

105. Van Gool, L., Brill, M.H., Barrett, E.B., Moons, T., and Pauwels, E., Semi-
differential invariants for nonplanar curves, in: Geometric Invariance in Computer
Vision, J.L. Mundy and A. Zisserman, eds., The MIT Press, Cambridge, Mass.,
1992, pp. 293–309.

106. Van Gool, L., Moons, T., Pauwels, E., and Oosterlinck, A., Semi-differential in-
variants, in: Geometric Invariance in Computer Vision, J.L. Mundy and A. Zis-
serman, eds., The MIT Press, Cambridge, Mass., 1992, pp. 157–192.

107. Weinstein, A., Groupoids: unifying internal and external symmetry. A tour
through some examples, Contemp. Math. 282 (2001), 1–19.

108. Weyl, H., Classical Groups, Princeton Univ. Press, Princeton, N.J., 1946.
109. Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P.J., and Tannenbaum, A., A

geometric snake model for segmentation of medical imagery, IEEE Trans. Medical
Imaging 16 (1997), 199–209.



Invariant Geometric Motions of Space Curves

Changzheng Qu

Center for Nonlinear Studies,
Department of Mathematics,

Northwest University, Xi’an 710069,
P. R. China

Abstract. Motions of space curves in similarity and centro-affine ge-
ometries are studied. It is shown that the geometric motions of inexten-
sible space curves in similarity and centro-affine geometries are closely
related to integrable equations. Several gauge equivalent integrable equa-
tions are derived through the relationship between the curvature and
graph of the curves. Motion of space curves corresponding to travelling
wave solutions to the KdV flow in centro-affine geometry is discussed in
detail.
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1 Introduction

The problem of motion for curves and surface is important in a wide range of
applications. Many interesting nonlinear evolution equations have been shown
to be related to motions of curves in certain geometries. For instances, Mullins’s
nonlinear diffusion model of groove development [1] describes the curve shorten-
ing problem, and it has been studied in detail from different points of view (see
[1-5] and references therein). More interestingly, a number of 1+1-dimensional
integrable equations arise naturally from motions of inextensible curves in cer-
tain geometries. For examples, in the earlier works of Hasimoto [6], he showed
that the Schrödinger equation arises from motion of inextensible curves in R

3,
the Schrödinger hierarchy was also obtained by Langer and Perline [7], they
provided a geometrical explanation to the recursion operator of the Schrödinger
equation. Using the Hasimoto transformation, Lamb [8] obtained the mKdV and
sine-Gordon equations from the motion of curves in R

3. The Heisenberg spin
chain model which is gauge equivalent to the Schrödinger equation was derived
by Lakshmanan [9]. Doliwa and Santini [10] discovered that the NLS hierarchy
and complex mKdV equation arise from motions on S3(R) where the radius R
plays the role of the spectral parameter. Schief and Rogers [11] derived an ex-
tended Harry-Dym equation and sine-Gordon equation from binormal motions
of curves with constant curvature or torsion. Recently, Nakayama [12] showed
that the defocusing nonlinear Schrödinger equation, the Regge-Lund equation,
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a coupled of system of KdV equations and their hyperbolic type arise from mo-
tions of curves in hyperboloids in the Minkowski space. In [13] he realized the
full AKNS scheme in a hyperboloid in M3,1.

As compared to the motions of curves in space, there are very few works
considering motions of curves in the plane. In an intriguing paper of Goldstein
and Petrich [14], they showed that the mKdV hierarchy comes naturally from
the motion of non-stretching plane curves in Euclidean space R

2. After that,
Nakayama, Segur and Wadati [15] obtained the sine-Gordon equation by consid-
ering a nonlocal motion of curves in R

2, they also pointed out that the Frenet-
Serret equations for curves in R

2 and R
3 are equivalent to the AKNS spectral

problem without spectral parameter [15, 16]. More recently, we found that many
1+1-dimensional integrable equations including KdV, Sawada-Kotera, Burgers,
Harry-Dym, Kaup-Kupershmidt and Camassa-Holm equations naturally arise
from motions of plane curves in centro-affine, similarity, affine and fully affine
geometries [17-19]. Motion of plane curves in the Minkowski space M2,1 was also
investigated by Gürses [20].

In this paper, we are mainly concerned with the motions of space curves in
similarity and centro-affine geometries as well as the relationship with integrable
systems. The outline of this paper is as follows: In Section 2, we study motion
of curves in similarity geometry P 3. Motion of space curves in centro-affine is
investigated in Sections 3. In Section 4, we study motions of curves corresponding
to travelling wave solutions of the KdV flow in centro-affine geometry. Section 5
contains the concluding remarks on this work.

2 Motion of Space Curves in Similarity Geometry

The problem on motion of curves in similarity geometry has been studied in
Olver, Sapiro and Tannenbaum [21, 22]. The isometry group for similarity ge-
ometry is a composition of Euclidean motions and dilatations [23]. For the three
dimensional similarity geometry P 3, the corresponding Lie algebras of the isom-
etry groups are generated by {∂x, ∂y, ∂u, x∂u − u∂x, x∂y − y∂x, y∂u − u∂y, x∂x +
y∂y + u∂u}. Similar to the Euclidean and affine geometries, we can define cur-
vatures and arc-length in the similarity geometry, they are given by differential
invariants and invariant one-form of the isometry group. More precisely, let κ,
τ be the curvature and torsion of a curve in Euclidean space R

3, then they are
differential invariants of 3-dimensional Euclidean motion. One can readily verify
that κ̃ = κs/κ

2 and τ̃ = τ/κ are differential invariants under the similarity mo-
tion, we define them to be curvatures of curves in P 3, where s is the arc-length
of curves in Euclidean space. In addition, dθ = κds is an invariant one-form,
where θ is the angle between the tangent and a fixed direction, we define it to be
the arc-length of a curve in P 3. After that we can define its frame vectors ti in
terms of Euclidean’s: t1 = κt, t2 = κn, t3 = κb. Using them we can represent
the geometric motion of curves in P 3 in the form

γt = At1 +Bt2 + Ct3, (1)
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where A, B and C are respectively the tangent, normal and binormal velocities
which depend on the curvatures κ̃, τ̃ and their derivatives with respect to the
arc-length θ. Using the Frenet-Serret formulae in Euclidean geometry⎛

⎝ t
n
b

⎞
⎠

s

=

⎛
⎝ 0 κ 0
−κ 0 τ
0 −τ 0

⎞
⎠

⎛
⎝ t

n
b

⎞
⎠ , (2)

one obtains the Frenet-Serret formulae in the similarity geometry P 3:⎛
⎝ t1

t2

t3

⎞
⎠

θ

=

⎛
⎝−κ̃ 1 0
−1 −κ̃ τ̃
0 −τ̃ −κ̃

⎞
⎠

⎛
⎝ t1

t2

t3

⎞
⎠ , (3)

where κ̃ and τ̃ are respectively the curvature and torsion of curves in P 3, ti,
i = 1, 2, 3 are the frame vector in P 3, and are related to the Euclidean tangent
t, normal n and binormal b by

t1 =
t
κ
, t2 =

n
κ
, t3 =

b
κ
. (4)

It is possible to relate (1) with the Euclidean motion in R
3 [6, 15]

γt = W t + Un + V b, (5)

with W = A/κ, U = B/κ and V = C/κ. Using the formulae in Euclidean space
[15]

tt = (Us − τV + κW )n + (Vs + τU)b,

and

κt = (n, tst) = (n, tts)−
st

s
κ,

we obtain
κt +

st

s
κ = (n, tts),

which gives time variation of the perimeter L =
∮
dθ =

∮
κds for a closed curve

dL

dt
=

∮
(κt +

st

s
κ)ds

=
∮ [

1
κ

(Us − τV + κW )s −
τ

κ
(Vs + τU)

]
dθ

=
∮

[(Us − τV + κW )θ − τ̃(Vs + τU)]dθ

=
∮

[(Bθ − κ̃B − τ̃C +A)θ − τ̃(Cθ − κ̃C + τ̃B)]dθ.
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So the inextensibility condition means∮
τ̃(Cθ − κ̃C + τ̃B)dθ = 0,

(Bθ − κ̃B − τ̃C +A)θ = τ̃(Cθ − κ̃C + τ̃B). (6)

The first equation in (6) means that the perimeter of a closed curve is invariant
under the motion (1), and the second one means that the arc-length θ commutes
with time t. In terms of (1), we obtain the time evolution for the frame

⎛
⎝ t1

t2

t3

⎞
⎠

t

=

⎛
⎝ F1 G1 H1

−G1 F1 H2

−H1 −H2 F1

⎞
⎠

⎛
⎝ t1

t2

t3

⎞
⎠ , (7)

where

F1 = Aθ − κ̃A−B,

G1 = Bθ − κ̃B − τ̃C +A,

H1 = Cθ − κ̃C + τ̃B,

H2 = H1θ + τ̃G1.

The compatibility condition between (3) and (7) implies κ̃ and τ̃ satisfying
(
τ̃
κ̃

)
t

=
(

Ω1τ̃ Ω1(∂θ − κ̃)
Ω2(∂2

θ − ∂θκ̃− τ̃2) + ∂θ −Ω2(∂θ τ̃ + τ̃ ∂θ − κ̃τ̃)

)(
B
C

)
, (8)

where Ω1 = ∂2
θ + τ̃2 + τ̃θ∂

−1
θ τ̃ + 1 and Ω2 = ∂θ − κ̃− κ̃θ∂

−1
θ are respectively the

recursion operators of the mKdV and Burgers equation. In particular, setting

C = −τ̃ , B = −κ̃, A = κ̃θ − κ̃2 − 3
2
τ̃2,

so that (6) holds. Then (7) becomes

τ̃t + τ̃θθθ +
3
2
τ̃2τ̃θ + τ̃θ = 0,

κ̃t + κ̃θθθ − 3(κ̃κ̃θ)θ + 3κ̃2κ̃θ +
3
2
(τ̃2κ̃)θ − 3(τ̃ τθ)θ + κ̃θ = 0. (9)

It is easy to see that this system is integrable. Indeed, letting κ̃ = −μθ/μ, μ
satisfies

μt + μθθθ +
3
2
(τ̃2μ)θ + μθ = 0.

Therefore the motion of curves in P 3 yields the Burgers-mKdV hierarchy. Noting
that for curves satisfying κ̃ = −τ̃θ/τ̃ , the system (9) is reduced to the mKdV
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equation (the first one of (9)). In terms of the local graph (x, u(x, t), v(x, t)), the
Burgers-mKdV flow (9) can be written as

ut = − (1 + u2
x + v2

x)[(1 + u2
x + v2

x)uxxx − 3uxx(uxuxx + vxvxx)]
[u2

xx + v2
xx + (uxvxx − uxxvx)2]

3
2

,

vt = − (1 + u2
x + v2

x)[(1 + u2
x + v2

x)vxxx − 3vxx(uxuxx + vxvxx)]
[u2

xx + v2
xx + (uxvxx − uxxvx)2]

3
2

.

Remarks: With the local graph of curves, we found that the mKdV flow in
the Euclidean space R

2 [14], the KdV flow in centro-affine geometry [17, 18], the
Sawada-Kotera flow in affine geometry [18] and and the mKdV flow in Euclidean
space R

3 [15, 24] are gauge equivalent respectively to the WKI equation [25]

ut =
[

uxx

(1 + u2
x)

3
2

]
x

,

the affine KdV equation

ut =
[

uxx

(xux − u)3

]
x

,

the affine Sawada-Kotera equation [26]

ut = (u−
5
3

xx uxxxx −
5
3
u
− 8

3
xx u

2
xxx)x

and the two-component WKI equation [27]

ut = −
[

uxx

[(1 + u2
x + v2

x)
3
2

]
x

,

vt = −
[

vxx

(1 + u2
x + v2

x)
3
2

]
x

.

3 Motion of Curves in Centro-Affine Geometry

Centro-affine geometry is obtained by deleting translations from the affine geom-
etry; see books about affine geometry [28, 29] for details. The isometries of centro-
affine geometry are the linear transformations x′ = Ax, A ∈ SL(3,R). For a gen-
eral curve γ satisfying [γ, γp, γpp] �= 0 along the curve, one may reparametrize
the curve by a special parameter σ satisfying

[γ, γσ, γσσ] = 1, (10)

everywhere. In terms of an arbitrary parameter p, the centro-affine arc-length is
given by

dσ = [γ, γp, γpp]
1
3 dp.
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The centro-affine Serret-Frenet equation is⎛
⎝ γ

γσ

γσσ

⎞
⎠

σ

=

⎛
⎝ 0 1 0

0 0 1
α β 0

⎞
⎠

⎛
⎝ γ

γσ

γσσ

⎞
⎠ . (11)

Now the motion of curves in centro-affine geometry is governed by

γt = Fγ +Gγσ +Hγσσ, (12)

where the velocities F , G and H depend on the centro-affine curvatures α and
β and their derivatives with respect to the arc-length σ. The inextensibility
condition (d/dt)[γ, γp, γpp] = 0 yields

F +Gσ +
2
3
βH +

1
3
Hσσ = 0. (13)

Under the motion (12), the compatibility condition γσσt = γtσσ implies α and β
satisfying

αt = [Fσσ + α(G+ 2Hσ) + ασH]σ + 2αGσ − βFσ + αHσσ,

βt = [3Fσ +Gσσ + β(G+ 2Hσ) + (α+ βσ)H]σ + 2αHσ (14)
+βHσσ + βGσ + ασH.

Some integrable equations are obtained as follows:

Case 1. α = (1/2)βσ, H = 0, F = −Gσ. Then (14) is reduced to

βt = −2(D2
σ − β − 1

2
βσ∂

−1
σ )Gσ = −2Ω1Gσ.

Example 1. Choosing Gσ = −(1/2)Ωn−1
1 βσ, we get the KdV hierarchy

βt = Ωn
1 βσ.

Example 2. Taking Gσ = [β−3/2βσ∂
−1
σ (βq) − 2β1/2q], q = Ωn−1

2 (ψ3ψσσσ),
β = ψ−2. We obtain the Harry Dym hierarchy

ψt = Ωn
2 βσ,

where Ω2 = ψ2D2
σ −ψψσDσ +ψψσσ +ψ3ψσσσ∂

−1
σ ψ−2 is the recursion operator

of the Harry Dym equation

ψt + ψ3ψσσσ = 0.

Example 3. Taking Gσ = −(1/2)(uσσ − (1/4)βu), where u = (D2
σ − (1/4)β −

(1/4)βσ∂
−1
σ )Ωn−1

3 βσ, we get the Sawada-Kotera hierarchy

βt = Ωn
3 βσ,

where
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Ω3 = (D3
σ −

1
2
βDσ −

1
2
Dσβ)[D3

σ −
1
4
D2

σβ∂
−1
σ − 1

4
∂−1

σ βD2
σ +

1
32

(β2∂−1
σ +∂−1

σ β2)]

is the recursion operator of the Sawada-Kotera equation [30-32].

Case 2. F = −(2/3)β, G = 0, H = 1. We get the Boussinesq equation

αt = 2ασ − βσσ,

βt = −2
3
βσσσ + ασσ +

2
3
ββσ.

Case 3. α = (1/2)βσ + λ, F = (1/2)βσσσ − 2ββσ + 6λβ, G = β2 − (1/2)βσσ,
H = 9λ. We derive the Kaup-Kupershmidt equation

βt = β5 − 5ββ3 −
25
2
β1β2 + 5β2β1.

Case 4. α = λ, F = 6λβ, G = βσσ + β2, H = −3βσ − 9λ. We obtain the
Sawada-Kotera equation again.

Case 5. α = −[(uσσ − (1/2)u2
σ)σ + λ], β = u2

σ − 2uσσ, F = −λ−1e−2uuσσ,
G = −λ−1e−2uuσ, H = −λ−1e−2u. We get the Tzitzéica equation [33, 34]

uσt + eu + e−2u = 0.

Case 6. α = λ, β = 6uσ, F = 0, G = −(2/λ)uσt, H = (2/λ)ut. We have the
Hirota-Satsuma equation [36]

uσσt + 6uσut = 0.

4 The KdV Flow in Centro-Affine Geometry

In this section, we consider motion of space curves corresponding to the travelling
waves of the KdV equation in the centro-affine geometry. In general, given any
two functions α and β, we solve the equation

yσσσ − βyσ − αy = 0,

to obtain three independent solutions y1, y2 and y3. Then for any A ∈ SL(3),
the curve γ(σ) = AY , Y t = (y1, y2, y3), takes σ and α, β to be its respective
arc-length and curvatures. Just as the Euclidean curvature determines the curve
up to a rigid motion, the centro-affine curvatures determine the curve up to an
centro-affine motion.

Now, suppose the curve moves according to the KdV equation

βt = βσσσ −
3
2
ββσ, (15)

and α = 1
2 βσ. Then from Case 1 in Section 3, we know that the curve satisfies
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γσσσ − βγσ −
1
2
βσγ = 0. (16)

It determines a family of curves γ(σ, t) = A(t)Y (σ, t), where [Y (0, t), Yσ(0, t), Yσσ(0, t)]
may be taken to be the identity matrix. By substituting γ(σ, t) into the KdV
flow

γt =
1
2
(βσγ − βγσ), (17)

we obtain

A′Y +AYt =
1
2
(βσγ − βγσ). (18)

It follows from (16) that Yt satisfies

Ytσσσ − βYtσ −
1
2
βσYt = βtYσ +

1
2
βtσY,

Yt(0, t) = Yσt(0, t) = Yσσt = 0.

We know that the general solution of a third-order linear inhomogeneous ODE
can be expressed in terms of the three independent solutions y1, y2 and y3 of its
homogeneous equation by

y =
3∑

i=1

ciyi + y3

∫ σ

0

JW (y1, y2)dσ − y2

∫ σ

0

JW (y1, y3)dσ + y1

∫ σ

0

JW (y2, y3)dσ,

where W (yi, yj) is the Wronskian determinant, and J is the inhomogeneous term
of the ODE. Using this formula, we may express Yt in terms of β, Y and their
derivatives with respect to σ. Putting this expression into (18), we obtain, after
performing integration by parts and a lengthy computation,

A′ +AC(t) = 0, (19)

where

C(t) =

⎛
⎜⎜⎜⎝

1
2βσ(0, t) 1

2βσσ(0, t) 1
2 (βσσσ − 1

2ββσ)(0, t)

− 1
2β(0, t) 0 1

2 (βσσ − β2)(0, t)

0 − 1
2β(0, t) − 1

2βσ(0, t)

⎞
⎟⎟⎟⎠ .

Thus the KdV flow is given by

γ(s, t) = A(t)Y (σ, t),

where A satisfies (19).
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Suppose now that β(σ, t) = β̂(σ + ct) is a travelling wave of (15). The corre-
sponding flow is given by

γ(σ, t) = A(t)γ̂(σ + ct), (20)

where A satisfies (19) with C(t) replaced by the matrix

Ĉ(t) =

⎛
⎜⎜⎜⎝

1
2 β̂

′(ct) 1
2 β̂

′′(ct) 1
2 (β̂′′′ − 1

2 β̂β̂
′)(ct)

− 1
2 β̂(ct) 0 1

2 (β̂′′ − β̂2)(ct)

0 − 1
2 β̂(ct) − 1

2 β̂
′(ct)

⎞
⎟⎟⎟⎠ ,

where γ̂ is the curve determined by β̂ (taking A = id). So the curve evolves
under an centro-affine motion for every t. For convenience, letting β̂ = −4β̃, it
follows from (15) that β̃ satisfies

β̃zz + 3β̃2 − cβ̃ = D, z = σ + ct,

and

1
2
β̃2

z + β̃3 − 1
2
cβ̃2 −Dβ̃ − E = 0,

where D and E are arbitrary constants. Only when the equation ρ3 − 1
2cρ

2 −
Dρ − E = 0 has three real roots, the solution is bounded. Let’s consider the
generic case when there are three distinct roots c1, c2 and c3, c1 < c2 < c3. The
solution (u = β here) is given by

u = u0 +Acn2 az, (21)

where

u0 =
1
6
c2, A =

1
6
(c3 − c2), c =

1
3
(c1 + c2 + c3), a2 =

1
12

(c3 − c1), k2 =
c3 − c2
c3 − c1

,

and k is the modulus of the Jacobi elliptic function sn z. So the curve γ̂ satisfies

γ̂zzz + 4uγ̂z + 2uz γ̂ = 0, (22)

To solve (22), we use the following fact: If φ1 and φ2 are two independent solu-
tions of the Hill’s equation satisfying φ1(0) = 1, φ′

1(0) = 0, φ2(0) = 0, φ′
2(0) = 1,

φzz + uφ = 0, (23)

then φ2
1, φ

2
2 and φ1φ2 are three independent solutions of (22). In terms of φ1 and

φ2, one may express the curve by

γ = A(t)Y, Y t = (φ2
1(z),

1
2
φ1(z)φ2(z), φ2

2(z)),

where A(t) satisfies (19) with C(t) replaced by
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Ĉ(t) =

⎛
⎜⎜⎜⎝

1
2 β̂

′(ct) (1
2 β̂

2 − β̂′′)(ct) 1
4 (β̂′′′ − 3

2 β̂β̂
′)(ct)

− 1
4 β̂(ct) 0 1

8 (β̂′′ − 1
2 β̂

2)(ct)

0 2β̂(ct) − 1
2 β̂

′(ct)

⎞
⎟⎟⎟⎠ ,

Hence the problem is reduced to solve Hill’s equation (23). Letting φ̂(z) be any
component of φ(z/a), we have

φ̂zz + (λ− 2k2sn2z)φ̂ = 0, λ =
2c3

c3 − c1
. (24)

Equation (24) is precisely Lamé’s equation with m = 1, [35]. We can describe
all its periodic solutions as follows. Given any m,n ≥ 1, (m,n) = 1, we solve

Δ(λ)
2

= cos(
2nπ
m

),

for λ. For each root λ we can solve (24) to obtain a closed curve γ̂ with m leaves.
More precisely, there are exactly two stable intervals of the form I0 = (λ0, λ

′
1)

and I1 = (λ′2,∞) so that when | cos( 2nπ
m )| < 1, there is exactly one root in I0

and all other roots lie in I1. When | cos( 2nπ
m )| = 1, all roots lie inside I1. Several

examples of closed γ̂ for λ ∈ I0 and k2 = 1/2 can be found in Figure 1. Closed
γ̂′s for λ ∈ I1 and k2 = 1/2 can be found in Figure 2.

A limit case of the above travelling wave is c1 = c2 < c3, where one obtains
the one-soliton of the KdV equation

β̃ =
c

2
sech2

√
c

2
z, z = σ + ct.

Solving the Hill’s equation with u replaced by the one-soliton, we obtain two
independent solutions

φ1 = 2− θ tanh
θ

2
, φ2 = tanh

θ

2
, θ =

√
c(s+ ct).

0 0.250.50.75 1

-1
0

1

0

2

4

6

8

Fig. 1. A space curve for k = 1/
√

2, I0=(0.5,1), λ=0.788 with m=3 in centro-affine
geometry
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0

0.5

1

1.5

2

Fig. 2. A space curve for k = 1/
√

2, I1 = (1.5,∞), λ=1.873 with m=3 in centro-affine
geometry

So the space curve γ̂ is given by

γ̂(σ, t) = t(t)(2− θ tanh
θ

2
)2 + n(t) tanh

θ

2
(2− θ tanh

θ

2
) + b(t) tanh2 θ

2
.

Substituting it into the KdV flow (17), we find

t′ = 0, n′ − 2c
3
2 t = 0, b′ − c

3
2 n = 0,

which yields

t(t) = t0,

n(t) = 2c
3
2 tt0 + n0,

b(t) = c3t2t0 + c
3
2 tn0 + b0,

-2

0

2 0

2

4

6

8

0
0.25
0.5

0.75

-2

0

2

Fig. 3. A space curve with one loop corresponding to the one-soliton of the KdV
equation in centro-affine geometry

where t0, n0 and b0 are constant vectors. Taking t0 = (1, 0, 0), n0 = (0, 0, 1)
and b0 = (0, 0, 1), we get the curve given by
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γ(σ, t) =

⎛
⎜⎜⎜⎝

1 2c
3
2 t c3t2

0 1 c
3
2 t

0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

(2− θ tanh θ
2 )2

tanh θ
2 (2− θ tanh θ

2 )

tanh2 θ
2

⎞
⎟⎟⎟⎠ .

So γ moves under centro-affine actions. The curve corresponding to the one-
soliton has one loop (see Figure 3), which is analogous to the mKdV flow in the
Euclidean geometry that one-soliton gives one-loop curve [16, 37].

5 Concluding Remarks

We have shown that several well-known integrable equations including KdV,
Sawada-Kotera, Harry Dym hierarchies and Boussinesq, Kaup-Kupershmidt,
Tzitz-éica, Hirota-Satsuma equations and Burgers-mKdV system arise naturally
from motions of space curves in centro-affine and similarity geometries. It is
worthy of mentioning that the mKdV equation in Euclidean spaces E2 and E3,
the KdV equation in centro-affine geometry and the Sawada-Kotera equation in
affine geometry SA(3) are obtained by choosing the normal velocity to be the
derivative of the group curvature with respect to the group arc-length. More in-
terestingly, we found that the N -solitons of the mKdV and Sawada-Kotera equa-
tions give N loop curves respectively in Euclidean and affine geometries, but in
centro-affine geometry, N -solitons of the KdV equation gives N − 1 loop curves.
These analogies suggest that the KdV equation and Sawada-Kotera equation are
respectively the centro-affine version and affine version of the mKdV equation.

It is of great interest to study the motion of discrete curves in centro-affine,
affine and similarity geometries. We are currently investigating this issue and
our findings will appear in future papers.
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Abstract. In this paper we describe the Euclidean signature curves for
two dimensional closed curves in the plane and will give a discrete nu-
merical method for finding such invariant curves. Further we describe an
analog of Latent Semantic Analysis (LSA) and present data and noise
reduction techniques as well as an optimal combination of normalizing
transformations to categorize signature curves. We will then introduce
a system for determining the correct category for a new object from a
pre-existing database of information on objects and give an example for
sorting out leaves of two types of trees regardless of their orientation
using their signature curves.

Keywords: computer vision, pattern recognition, object recognition,
signature curves, Latent Semantic Analysis (LSA), weight functions, cat-
egorization.

1 Introduction

The Euclidean signature curves are unique closed curves assigned to the bound-
ary of objects in the plane. These unique curves are most useful in the study
of computer vision applications because they remain invariant under Euclidean
transformations such as rotation. Signature curves can be used in medical imag-
ing devices such as CAT or MRI scans. There are also many military and civil
defense systems that can employ the use of signature curves for object recog-
nition purposes. Classification of two dimensional objects is an old problem in
computer vision and most common used techniques are based upon Fourier Anal-
ysis, however, using signature curves has an advantage over the most commonly
used methods as it allows for the transformed (e.g. rotated ) objects to be con-
sidered for classification without any concern about their angle of rotation.

Although we will only discuss the two dimensional classification techniques
in this paper, the method described could easily be extended to the objects
that are invariant under affine transformations and space curve transformations.
In fact, the classification of space curves is discussed in an upcoming paper,
Latent Semantic Analysis in the Identification of Supercoiled DNA Molecules
Generalized by Euclidean Signature Curves. However, the projective invariant
signature curves are still under investigation.
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2 Calculation of Signature Curves

Signature curves can be calculated and graphed for curves that are described
by functions algebraically but this process can be difficult as the calculations
get very tedious. However they can simply be created numerically by methods
described by Calabi et. al., [2]. These numerical methods can also be applied
to find the signature curves of objects within an image taken with a camera or
other imaging device. One can find the boundary of such an object using a seg-
mentation algorithm such as the method of active contours or snakes described
in [4], and thereby create the corresponding signature curve.

Algebraically, the Euclidean signature curve is associated to a planar curve
C in R

2 that is parameterized by arclength s = s(t) =
∫ t

0

√
x2

t + y2
t , i.e. if the

original curve is given by C = {x(s), y(s)}. Then its signature curve is given by
the curve S = {κ, κs}, where κ = κ(s) = xsyss − ysxss is the curvature as a
function of arclength and κs is its derivative with respect to arclength.

The Euclidean signature curve is then displayed by simply plotting (κ, κs).
It is important to note however, that this formula for curvature only applies to
Euclidean signature curves. In order to plot affine signature curves, the affine
curvature and arclength must be used; see [2].

Figure 1 shows the graph of a curve C in its parametric form x(t) = cos t+
1
5 cos2 t, y(t) = sin t+ 1

10 sin2t followed by the graph of its algebraic Euclidean
signature curve S. Note that if the original curve is rotated or translated in any
direction, the signature curve S remains unchanged.
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Fig. 1. The Original curve C and its Signature curve S

Although the formulated approach to finding curvature is effective for explic-
itly parameterized curves, it is not used in computer vision applications as it is
not so easy to fit a function to a segmented image. Thus, it becomes important
that curvature be approximated by some numerical method that preserves the
underlying symmetry group. The process for approximating discrete curvature
begins by introducing three successive mesh points on the original curve (image).
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Three mesh points is optimal because the Euclidean curvature, as defined above,
is a second order differential function. Let A, B, and C denote the three points,
and let a = d(A,B), b = d(B,C), c = d(A,C) be the distances between them.
The circle passing though the points A, B and C in figure 2 is an approximation
of the osculating circle at point B. As a result, κ̃ = κ̃(A,B,C), which is the
reciprocal of the radius of this circle, acts as an approximation to the curvature
at point B. We can apply Heron’s formula to find the radius of the circle passing
through these three points, and thus find a good approximation of the curvature.

κ(A,B,C) ≈ κ̃(A,B,C) =
4Δ
abc

= ±4
√
s(s− a)(s− b)(s− c)

abc

where s = 1
2 (a+ b+ c).

The first derivative of curvature can also be approximated using a centered
difference formula.

κ̃s(Pi−2, Pi−1, Pi, Pi+1, Pi+2) = (κ̃(Pi, Pi+1, Pi+2)−κ̃(Pi−2, Pi−1, Pi))/d(Pi+1, Pi−1).

A

B

C

a
b

c

Fig. 2. Original Curve with points A, B, and C and the circle going through these
points

Fig. 3. The discrete version of the signature curve obtained numerically for the curve
C of Figure 1
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This formula is only accurate when the points are fairly regularly spaced around
the curve; a more general formula was found by Mireille Boutin, [1]. Thus, the
entire numerically discrete approximation to the Euclidean signature curve can
be plotted by:

(κ̃(Pi−1, Pi, Pi+1), κ̃s(Pi−2, Pi−1, Pi, Pi+1, Pi+2))

Figure 4 gives the smooth and discrete versions of the signature curve obtained
numerically for the curve given in polar form r = 3 + 1

10 cos 3θ + 1
40 cos 7θ.

Fig. 4. The original curve and its smooth and discrete signature curves

One difficulty when considering signature curves is how a computer will inter-
pret these curves and decide if they are representing similar or the same objects.
This is where Latent Semantic Analysis comes in.

3 Latent Semantic Analysis

Latent Semantic Analysis, (LSA), is a statistical method that produces an algo-
rithm to calculate the similarity between two or more broad objects that contain
units that appear with certain frequencies. LSA was introduced in 1990, [3] and
remains one of the most commonly used in the statistical examination of texts or
documents. For more information on LSA, refer to For more information on LSA,
refer to [6], [7]. In the analysis of texts, each category could hold the works of a
particular author, or the writings of a particular era. The classes might each have
a large number of documents. The frequencies of the terms common within each
document are entered into a huge matrix, called term-document matrix (TDM)
which then undergoes a series of transformations. The final result in LSA is a
correlation matrix with the ijth element representing the similarity between the
documents i and j (the correlation values are between 0 and 1). Further, if a new
document is added to the system, the computer could determine which category
this new document belongs to, if any.

The algorithm is as follows:
Step 1: Constructing the TDM. To create the TDM, we let the columns of the

matrix represent the documents under investigation and the rows of the matrix
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represent certain common terms (words). For every term the value of entry (i, j)
is the frequency of the term i that appears in the document j.

Step 2: Normalizing the columns of the TDM. We will assign a value between
0 and 1 to each entry of the matrix while taking the length of each document
into account.

Step 3: Applying weight functions. We replace each entry of the matrix
with the product of a local weight function (LWF) and a global weight func-
tion(GWF). LWF considers the frequency of a word within a particular docu-
ment and GWF examines a term’s frequency across all the documents. For a list
of these weight functions see [6].

Step 4: Applying singular value decomposition, SVD. We remove noise or
infrequent terms that do not effect our calculations in classifying the document
by using SVD to factor the m×n matrix M , (obtained in step 3) into three new
matrices, M = PΣQ. The center matrix Σ contains the singular values, while
the matrices on the left and right are orthogonal. Matrix Σ, enables us to reduce
the noise and to obtain a more suitable matrix. For a discussion of SVD see [8].

Step 5: Building a correlation matrix. The final step in the LSA is to use the
transformed matrix obtained in step 4, M̃ to calculate the correlation between
the ith and jth documents by calculating the cosine of the angle between column
vectors Ci and Cj in the matrix M̃ :

Example 1.
Suppose that the documents of interest are four short texts, which are listed
here:

a) Text #1: “Buy bargain goods here.”
b) Text #2: “Buy imported deals.”
c) Text #3: “Find best goods, best deals here.”
d) Text #4: “Imported goods are bargain. Are best goods bargain?”

The term-document matrix corresponding to this example is given by figure 5.
The documents contain nine unique words, and the number in each cell discloses
the frequency of a word within a particular document.

After normalizing and applying the local and global transformations and
using the singular value decomposition to de-noise the matrix TDM, we arrive

Text #1 Text #2 Text #3 Text #4
buy 1 1 0 0
bargain 1 0 0 2
goods 1 0 1 2
here 1 0 1 0
imp orted 0 1 0 1
deals 0 1 1 0
find 0 0 1 0
best 0 0 2 1
are 0 0 0 2

Fig. 5. TDM for the texts
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Text #1 Text #2 Text #3 Text #4
buy 0.25 0.33 0 0
bargain 0.38 0 0 0.38
goods 0.33 0 0.23 0.33
here 0.25 0 0.17 0
imp orted 0 0.33 0 0.13
deals 0 0.33 0.17 0
find 0 0 0.17 0
best 0 0 0.50 0.20
are 0 0 0 0.50

Fig. 6. Transformed TDM

at the transformed matrix in figure 6. This matrix is then used to describe how
similar the documents are by finding the cosine of the angle between two column
vectors Ci and Cj appearing in the matrix, using the familiar formula

cos(θ) =
Ci ·Cj

‖Ci ‖ ‖Cj ‖
. (1)

For example if we calculate the correlation between the first and the second
text, we get 0.2346, which indicates a rather weak correlation between the two
texts.

4 Procedure for the Signature Curves

The version of Latent Semantic Analysis that involves signature curves is similar
to the traditional version of LSA featuring texts. Many of the same local and
global weight functions (LWF,GWF), and normalization routines utilized in the
common method of LSA can be carried over to signature curve analysis. The
first step in the LSA-signature curve algorithm is the construction of the Square-
Object Matrix, SOM which is a variant of TDM. SOM contains the various
objects along the columns and a range of infinitesimal square addresses forming
a grid that covers all the signature curves of the objects, along the rows as in
figure 7. This grid that these signature curves we are investigating lie within, is
segmented into several thousand squares. Since most signature curves lie within
a n unit by n unit square centered at the origin, the square division only needs
to take place in this grid. The length of each infinitesimal square could be any
value and depends on n, and the number of points used in creating the signature
curves. In example 1, n = 4 and the lengths of squares ranged from 0.1 to 0.25
unit.

The ijth element of SOM denotes the number of points that lie in the ith

square for the jth object. This square segmentation process gives a digital rep-
resentation of the general shape of the curve and reveals where the points are
concentrated in the coordinate system.

A series of transformations, including LWF and GWF is then applied on this
matrix. For a list of the normalization and possible weight functions, refer to [6]
and [7]. These transformations highlight the important data in the SOM. The
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Fig. 7. Creating the SOM

goal of these transformations is to emphasize the differences between the signa-
ture curves belonging to opposing categories and to bring out the similarities
among the curves in the same group. Information that is unnecessary, such as
the squares that consistently have a large amount of points (or no points) for all
the signature curves and the squares that have similar frequency values across all
categories of items are ignored . We will then apply a trigonometric weight func-
tion on the new, simplified matrix. These weight functions give greater values to
the point counts in the squares that are far from the origin as the points far from
the origin make the various signature curves unique and the modified version of
LSA should emphasizes these outer points. The proposed trigonometric weight
functions used are shown below:

TWF = 0 −→ T (i, j) = 1
TWF = 1 −→ T (i, j) = (aij

2 + bij
2)1/2

TWF = 2 −→ T (i, j) = (aij
2 + bij

2)

TWF = 3 −→ T (i, j) = (aij
2 + bij

2)1/4

Here TWF = 0 is the trivial weight function. The remaining functions are
applied to the points (aij , bij)-the center of the ijth square in the grid that covers
the signature curve. For TWF = 1, T (i, j) is the distance from the origin to the
center of the square. TWF = 2 is similar to TWF = 1 with the exception that
the distance is squared. TWF = 2 allows new frequency values to grow more
rapidly, while TWF = 1 yields linear growth. The last trigonometric weight
function provides growth that slowly diminishes for squares farther from the
origin. Ultimately to obtained the final transformed matrix, we apply SVD on
the obtained matrix to de-noise the matrix.

5 Noise Reduction Techniques

Squares that have similar point frequencies across all signature curves create
noise and don’t highlight differences between signature curves and must be elim-
inated. Therefore, the rows that have few non-zero frequencies are eliminated.
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For example if a SOM has 100 columns, and the third row has only two non-zero
values, then the third row is deleted all together to minimize noise. Another
phase in this square-filtering endeavor involves erasing squares with low stan-
dard deviations. A lower standard deviation means that all the elements in a
row are quite similar and could be ignored. The squares with high standard
deviations contain data on the differences between different categories and the
similarities within the same classes and thus must be highlighted. Besides using
the standard deviation as a measure in determining whether or not a row should
remain in the SOM, one could utilize the entropy measurement. Recall that en-
tropy is a description of how spread out data is. A low entropy signifies that the
vector’s information varies drastically in magnitude, while a high entropy value
is attached to a vector with rather uniform data. The equation for the entropy
of vector v is:

E(v) =

√√√√−
n∑

k=1

v2
k

‖v ‖2
log2

v2
k

‖v ‖2
.

A routine that filters squares based on entropy should remove the rows with high
entropies. These three data reducing methods described above can dramatically
decrease the size of database files in computer memory while increasing the ac-
curacy of LSA in categorizing objects. For example, in the maple leaf-buckthorn
leaf trial (see Example 2, discussed below), after applying these methods, the size
of the SOM reduced from 4,046 kilobytes to just 12 kilobytes(a 99.7% decrease).

6 Modelling the Optimal Transformations

Selecting a model for the combination of the normalization and transformations
used to accelerate the algorithm is also essential. One way to achieve this goal
is to use the plots of singular values of several transformation combinations.
The singular value plot with the lowest condition number, i.e., the ratio of the
largest singular value to the smallest singular value, is tied to the optimal trans-
formation, and provides the best transformation that does not create noise in
the SOM. Figure 8 displays the singular value plot of an optimal model for the
Maple Leaf-Buckthorn Leaf Trial , discussed below.

In the final stage in the LSA-signature curve routine we construct a corre-
lation matrix using formula (1), viewing each column in the SOM as a vector.
The similarity between ith object and the jth object is the cosine of the angle
between the objects’ corresponding column vectors Ci and Cj .

In general a quantity of 1 in the correlation matrix implies that two bodies are
identical, while a value around zero reveals that the items are quite dissimilar.
The correlation matrix will be an n by n square, where n is the number of objects
under investigation. The ijth entry gives the correlation between the ith and the
jth signature curves. The matrix is always symmetric with a line of ones running
along the main diagonal. If a correlation matrix is represented in color, then red
traditionally symbolizes high correlations and blue signifies weak relationships.
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Fig. 8. SDV plot of an optimal Model

In the following example, we will illustrate how the algorithm described above
was used to examine LSA’s ability to classify signature curves of objects with
two different shapes.

Example 2. Maple Leaf-Buckthorn Leaf Trial: In this example we used the
leaves from two different trees, sugar maple and buckthorn trees and established
the correlation matrix among the shape of the leaves. The example featured 100
total images-50 photos for each type of leaf. In the photos, all the leaves were
viewed in the same top-view orientation but some of the leaves were rotated
differently relative to the viewer, but as expected from the result of section 3, the
signature curves were immune to these rotations. An edge detection routine [4]
was used to identify the edge points in each picture that belonged to the outline
of the leaves of interest. We generated the signature curves for the sets of initial
outline points. Each signature curve contained between 10,000 and 20,000 points
depending on how large the original photo was. The variables for the signature
curves had values ranging from about -50 to 50. Figure 9 shows picture of an
example of a maple leaf and figure 10 shows an example of a buckthorn leaf used
in our tests, along with their signature curves. We applied the LSA algorithm to
all the signature curves by using square partitions of various sizes and in various
quantities. We worked with various weighting function combinations until we
discovered the best combination to produce a favorable result for the correlation
matrix.

A sample correlation matrix based on the information on the 50 maple leaves
and 50 buckthorn leaves and using an optimal order of operations discussed in
the section is given by figure 11.

Giving a computer the ability to accurately label new objects by appearance
is the central goal of this computer vision problem. A computer as it examines a
new object in its environment, it builds the corresponding signature curve of that
object and determines whether this object is new or old to its knowledge. The
correlations between the new object’s signature curve and the older signature
curves is then calculated. If the new object matches a class that already exists
in the database, then the computer labels it and adds the information to the
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Fig. 9. The Maple Leaf and its Signature Curve

Fig. 10. The Buckthorn Leaf and its Signature Curve

Fig. 11. Correlation Matrix for Maple versus Buckthorn

cluster of pre-existing data on the category. However, if the observed object is
foreign, then the machine creates a new cluster in the database for the new
object, adds the information to the database, and gives this new object a name.
The method for labelling a new photographic image is remarkably similar to the
conventional method of categorizing a new document in LSA. The categorization
process follows the method discussed in [5]. Essentially, the correlations between
the new object’s signature curve and all the pre-existing signature curves are
calculated. The average correlation between the object in question and all the
objects in a group is then found for all the classes. The group with the highest
average correlation is the category that the new object belongs to.
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This procedure was tested with several signature curves of maple and buck-
thorn leaves and also other similar leaves and the method of LSA was able to iden-
tify each leaf by its signature curve with a high degree of accuracy (over 90 %).

7 Conclusion

The system using Latent Semantic Analysis to classify signature curves is en-
couraging. In the experiments performed so far the algorithm has proved to be
able to distinguish one category of objects from a second group. The correlation
matrices for the experiments with two categories have been nearly perfect. The
computer’s accuracy in naming new objects has also been extraordinarily high.
Overall, LSA has proved that it can classify signature curves belonging to two
distinct, clearly defined groups. LSA has even been used to sort a random pile of
signature curves into classes. The proposed data or noise reduction methods are
promising, and the techniques using SVD for deciding which of the transforma-
tions is the best for an application of LSA has greatly improve LSA’s speed and
precision. To summarize, Latent Semantic Analysis can aid a computer to be
trained to identify the patterns of Euclidean signature curves and has potential
to be further developed.
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Abstract. By using an iterative algebraic method, we derive from a
spectral problem a hierarchy of nonlinear evolution equations associated
with dispersive long wave equation. It is shown that the hierarchy is
integrable in Liouville sense and possesses bi-Hamiltonian structure. Un-
der a Bargmann constraint the spectral is nonlinearized to a completely
integrable finite dimensional Hamiltonian system. By introducing the
Abel-Jacobi coordinates, an algebro-geometric solution for the disper-
sive long wave equation is derived by resorting to the Riemann theta
function.

1 Introduction

The development of new integrable system representing well-known physical phe-
nomena has shown to be meaningful and valuable. For instance, the illustration
of the bi-Hamiltonian structure of a system of partial differential equations is
proven to be a direct and elegant method in establishing the complete inte-
grability of the system [1-5]. If a set of partial differential equations can be
formulated as a Hamiltonian system in two distinct but compatible ways, Ma-
gri had proven in [1] that this give rise to an infinite sequence of conserved
Hamiltonians which are in involution with respect to one of those two sym-
plectic structures. Recently, two constructive approaches that can handle both
finite-dimensional and infinite-dimensional integrable Hamiltonian systems were
successfuly developed. The first approach is based on the trace identity [6, 7],
which is effective in constructing the infinite-dimensional Liouville integrable
Hamiltonian systems. Starting from a properly defined isospectral problem,
many integrable hierarchies and their Hamiltonian structures (e.g. AKNS, TC,
TA, BPT, Yang) had been obtained by applying this method [6-10]. The sec-
ond one used non-linearization technique [11, 12], which has also been proven
to be powerful for obtaining new finite-dimensional integrable Hamiltonian sys-
tems from various soliton hierarchies. Under the Bargmann or Neumann con-
straints on the potentials and the eigenvalues, which play a central role in
the process of nonlinearization, the related eigenvalue problem can be nonlin-
earized as a finite-dimensional completely integrable system. This covers the
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eigenvalue problems associated the well-known soliton hierarchies such as the
KdV, AKNS, Jaulent-Miodek, Kaup-Newell, and etc.[10-17]. An advantage of
this method is that its solution to the soliton equation associated with an eigen-
value problem can be reduced to solving a compatible system of nonlinear or-
dinary differential equations [9-15]. This approach has now been further devel-
oped to a general method for handling higher order constraints associated with
infinitely many hierarchies of finite-dimensional integrable Hamiltonian systems
[18-20].

The Algebro-geometric method is an analogue of inverse scattering transfor-
mation. It was first developed by Novikov, Dubrovin, Matveev et al [21-24]. The
method can derive an important class of exact solutions, which is called algebro-
geometric solution, to the soliton equation such as KdV equation, Sin-Gordon
equation, and Schrodinger equation. In the degenerated case the method gives
the soliton solution and elliptic function solution [24-28]. Recently, an alternate
approach based on the nonlinearization technique of Lax pairs or the restricted
flow technique has been proposed. By this method or other methods, algebro-
geometric solutions for (1+1)- and (2+1)-dimensional soliton equations can now
be obtained [29-32].

The dispersive long wave (DLW) equation

ut = 2uux + 2vx + uxx,

vt = 2(uv)x − vxx.
(1.1)

was first derived by Whitham and Broer for simulating dispersive waves in
shallow water [33, 34]. Its symmetries, conservation laws, similarity reductions,
painlevé property and soliton solutions had been fully discussed [35-37]. In re-
cent years, the following spectral problem associated with the DLW equation
(1.1)

ψx = Uψ =
(
− 1

2 (λ− u) −v
1 1

2 (λ− u)

)
ψ, (1.2)

has been proposed [13,38]. Under two different constraints between the potentials
and eigenfunctions, the nonlinearization of the spectral problem gives two kinds
of finite-dimensional completely integrable systems [13].

In this paper, we would investigate some aspects related to the DLW equa-
tion (1.1) and its spectral problem (1.2). In the following Section 2, start-
ing from a spectral problem, we first derive a hierarchy associated with the
DLW equation by using an iterative algebraic method. It will be shown that
the hierarchy is integrable in Liouville sense and its bi-Hamiltonian structure
can be established from trace identity. In Section 3, from the nonlinearization
of the spectral problem (1.2), we devise a finite dimensional completely inte-
grable Hamiltonian system under a Bargmann constraint. The Abel-Jacobi co-
ordinates are introduced in Section 4 from which the algebro-geometric solu-
tions for the DLW equations will be derived by resorting to the Riemann theta
function.
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2 DLW Hierarchy and Its Bi-Hamiltonian Structure

Let G be a matrix Lie algebra over the complex field C, and G̃ = G⊗ C(λ, λ−1)
be its loop algebra, where C(λ, λ−1) is the set of Laurent polynomials in λ. The
gradation of G̃ is taken by

deg(ρ⊗ λn) = n, ρ ∈ G

Consider in the following a general spectral problem:

ψx = U(u, λ)ψ, (2.1)

where u = (u1, · · · , up)T ∈ S, S is a Schwarz space, and λ is a spectral parameter.
The function U(u, λ) can be unified to the following representation:

U = R+ u1e1 + · · ·+ upep,

where R, e1, · · · , ep ∈ G̃. We define the ranks for ∂, u, λ, and ρ ∈ G̃ in such a
way that if ab is well defined for any two entities a and b, then

rank(ab) = rank(a) + rank(b).

We also define the rank of R in such a way that above element U has homoge-
neous rank, i.e.,

rank(R) = rank(u1e1) = · · · = rank(upep).

Finally, we define

rank(ρ) = deg(ρ), ρ ∈ G̃; rank(λ) = deg(ρλ)− deg(ρ),
rank(ui) = α− εi; rank(∂) = α, rank(β) = 0, (β = constant),

where deg(R) = α and deg(ei) = εi.
Denote

g+ =
∑
n≥π

gn, g− =
∑
n<π

gn,

and call g+ the positive part of g, where π ∈ Z is a properly chosen integer.
The DLW hierarchy corresponding to equation (1.1) derived from the spectral

problem (1.2) is now given to be a basis of iterated algebra over C as follows:

h(n) =
(

1
2λ

n 0
0 − 1

2λ
n

)
, e(n) =

(
0 λn

0 0

)
, f(n) =

(
0 0
λn 0

)
, (2.2)

such that the following equalities

[h(m), e(n)] = e(m+ n), [f(m), h(n)] = f(m+ n),
[e(m), f(n)] = 2h(m+ n),

hold. The gradation for the basis is defined by
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degh(n) = dege(n) = degf(n) = n.

From equations (2.2), the U in (1.2) can be expressed as

U = −h(1) + f(0) + uh(0)− ve(0),

and we have

degh(1) = 1, dege(0) = degf(0) = 0,
rank(λ) = rank(∂) = rank(u) = rank(v) = 1.

The adjoint equation

Vx = [U, V ] = UV − V U

with
V = ah(0) + be(0)− cf(0)

can be solved and we obtain

ax = 2vc− 2b, bx = −bλ+ ub+ va,
cx = cλ+ uc+ a.

(2.3)

Substituting the Laurent expansion a =
∑
amλ

−m, b =
∑
bmλ

−m, c =
∑
cmλ

−m

into (2.3), we obtain the following recursive formulas:

amx = 2vcm − 2bm,
bmx = −bm+1 + ubm + vam,
cmx = cm+1 + ucm + am.

(2.4)

Taking a0 = 0, c0 = α, b0 = αv, we further derive from (2.4) that(
1
2am+1

cm+1

)
= L

(
1
2am

cm

)
,

where L is the matrix operator defined by

L =
(
−∂ + ∂−1u∂ ∂−1v∂ + v

2 ∂ + u

)
.

Set

(λnV )+ =
n∑

m=0

[amh(n−m) + bme(n−m)− cmf(n−m)].

Then, Vx = [U, V ] implies that

−(λnV )+x + [U, (λnV )+] = −(λnV )−x + [U, (λnV )−]. (2.5)

Notice that all the terms in the left-hand side of (2.5) have degrees ≥ 0, whereas
all the terms in the right-hand side of (2.5) have degrees ≤ 0. Therefore, we have

−(λnV )+x + [U, (λnV )+] ∈ Ch(0) + Ce(0) + Cf(0). (2.6)
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In other words, we only need to calculate those terms that contain h(0), e(0), f(0).
Direct calculation shows that

−(λnV )+x + [U, (λnV )+] = bn+1e(0) + cn+1f(0).

To cancel the term cn+1f(0), we introduce Δn = cn+1h(0). It is then easy to
prove that, for V (n) = (λnV )+ +Δn, we have

−(V (n))+x + [U, (V (n))+] = −cn+1xh(0)− 1
2
an+1xe(0).

Then zero curvature equation Ut − (V (n))+x + [U, (V (n))+] gives the following a
DLW hierarchy:

ut = cn+1x, vt =
1
2
an+1x, n = 1, 2, · · · (2.7)

We note here that the first two representative systems in the hierarchy (2.7) are

ut = αux, vt = αvx;

ut = α(uxx + 2vx + 2uux), vt = α(−vxx + 2uxv + 2uvx).

The second system is exactly the DLW equation (1.1) in the case when α = 1.
The following theorem serves to develop the Hamiltonian structure of the

hierarchy (2.7).

Theorem 2.1. The hierarchy (2.7) possesses the bi-Hamiltonian structure

wt = J
δHn

δw
= K

δHn−1

δw
, (2.8)

where the vector function w, the Hamiltonian operators J , K and the Hamilto-
nian function are given by

w =
(
u
v

)
, K = JL =

(
2∂ ∂2 + ∂u

−∂2 + u∂ v∂ + ∂v

)
,

J =
(

0 ∂
∂ 0

)
, Hn = 1

2an+2, n = 0, 1, · · ·
(2.9)

Proof. We introduce

Gn+1 =
(

1
2an+1

cn+1

)
, (2.10)

then hierarchy (2.7) can then be rewritten in the form of

wt = JGn+1 = KGn = JLn+1G0 = J(J−1K)n+1G0, n = 1, 2, · · · (2.11)

where G0 = (0, 1)T .



168 E. Fan

We take the Killing-Cartan form < A,B > to be tr(AB). From direct calcu-
lation we then obtain

〈V, ∂U
∂λ

〉 = −1
2
a, 〈V, ∂U

∂u
〉 =

1
2
a, 〈V, ∂U

∂v
〉 = c.

By using the result of trace identity [6], we have

δ

δw
(−1

2
a) = λ−γ ∂

∂λ
[λγ(

1
2
a, c)T ].

Substituting

a =
∞∑

n=0

anλ
−n, c =

∞∑
n=0

cnλ
−n

into the above equation yields
δ

δw
(−1

2
an+1) = (γ − n)Gn, (2.12)

which holds for all n = 0, 1, 2, · · · . The condition n = 0 in (2.12) gives γ = 1.
Therefore, we obtain

Gn+1 =
δHn

δw
, (2.13)

where Hn is given by (2.9).
Combining (2.11) with (2.13) we then obtain the desired Hamiltonian formu-

lation (2.8) for the DLW hierarchy (2.7).
Since J∗ = −J, JL = L∗J , we conclude that

Theorem 2.2. The Hamiltonian functions {Hn}∞n=0 defined by (2.9) constitute
common conserved densities for the whole hierarchy (2.8). It other words, it is
an integrable Hamiltonian system in Liouville sense.

3 A Finite Dimensional Hamiltonian System

To construct the algebro-geometric solution of DLW hierarchy, in this section
we investigate the finite dimensional Hamiltonian systems associated with the
spectral problem (1.2) through a nonlinearization approach [12,13]. Let λj , j =
1, . . . , N be N different eigenvalues of equation (1.2), and (pj , qj) be the associ-
ated eigenfunctions, i.e., we consider the following N eigenvalues⎛

⎝pj

qj

⎞
⎠

x

=

⎛
⎝− 1

2 (λj − u) −v

1 1
2 (λj − u)

⎞
⎠

⎛
⎝pj

qj

⎞
⎠ . (3.1)

Denote p = (p1, p2, · · · , pN )T , q = (q1, q2, · · · , qN )T , and ∧=diag(λ1, λ2, · · · , λN ).
From the Bargmann constraint

G1 =
(
v
u

)
=

N∑
j=1

∇λj =
(

< p, q >
− < q, q >

)
, (3.2)

we then obtain
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w =
(
u
v

)
=

(
− < q, q >
< p, q >

)
≡ h(p, q). (3.3)

From the constraint (3.3), the equation (3.1) can further be nonlinearized into
the following finite-dimensional Hamiltonian system:

px = −1
2
∧ p− 1

2
< q, q > p− < p, q > q = −∂H

∂q
,

qx = p+
1
2
∧ q +

1
2
< q, q > q =

∂H

∂p
,

(3.4)

whose Hamiltonian function H is given by

H =
1
2
< p, p > +

1
2
< ∧p, q > +

1
2
< q, q >< p, q > .

In the following, we proceed to show that the Hamilton system (3.4) is com-
pletely integrable in Liouville sense. The Poisson bracket of two functions in
symplectic space (R2N , dp ∧ dq) is defined as

(F,G) =
N∑

j=1

(
∂F

∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)
=

〈
∂F

∂q
,
∂G

∂p

〉
−

〈
∂F

∂p
,
∂G

∂q

〉
,

which is skew-symmetric, bilinear, and satisfies the Jacobi identity. In particular,
F and G are called involution if (F,G) = 0.

Consider a bilinear function Qλ(p, q) =< (λI − ∧)−1p, q > such that

Gλ = G0 +
N∑

j=1

∇λj

λ− λj
=

⎛
⎝ Qλ(p, q)

1−Qλ(q, q)

⎞
⎠ . (3.5)

From (3.4) and (3.5), we have

Vλ = V (Gλ) =

⎛
⎝− 1

2λ−Qλ(p, q) − < p, q > +Qλ(p, p)

1−Qλ(q, q) 1
2λ+Qλ(p, q)

⎞
⎠ .

Let Fλ = detVλ. Then, we have

Fλ = − 1
4λ

2 −Qλ(∧p, q) +Qλ(p, p)+ < p, p > Qλ(q, q)

+

∣∣∣∣∣∣
Qλ(p, p) Qλ(p, q)

Qλ(p, q) Qλ(q, q, )

∣∣∣∣∣∣ = −1
4
λ2 +

∞∑
m=0

Fmλ
−m−1,

(3.6)

where

F0 = 2H,

Fm =− < ∧m+1p, p >+< p, q >< ∧mq, q)+
m−1∑
m=0

∣∣∣∣∣∣
< ∧jp, p > < ∧m−1−jp, q >

< ∧jp, q > < ∧m−1−jq, q >

∣∣∣∣∣∣.
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By considering that Fλ is a Hamiltonian in the symplectic space (R2N , dp ∧
dq), the canonical equations of the Fλ-flow can be computed as:

d

dτλ

⎛
⎝pk

qk

⎞
⎠ = I∇Fλ =

⎛
⎝−∂Fλ/∂qk

∂Fλ/∂pk

⎞
⎠ = W (λ, λk)

⎛
⎝pk

qk

⎞
⎠ ,

where

W (λ, λk) =
2

λ− λk
Vλ + (1−Qλ(p, q))

(
1 0
0 −1

)
.

Lemma 3.1 The Lax matrix Vμ satisfies the Lax equation (3.7) alone the tλ-
flow:

dVμ

dτλ
= [W (λ, μ), Vμ] (3.7)

and
(Fμ, Fλ) = 0, ∀λ, μ ∈ C, (3.8)

(Fj , Fk) = 0, ∀j, k = 0, 1, · · · . (3.9)

Proof. Notice that

Qλ(∧ξ, η) = λQλ(∧ξ, η)− < ξ, η >,

< (μI − ∧)−1(λI − ∧)−1ξ, η >=
1

μ− λ
(Qλ(ξ, η)−Qμ(ξ, η)),

a direct calculation shows that (3.7) holds. From the Lax equation (3.7) we have

(Fμ, Fλ) =
N∑

j=1

(
∂Fμ

∂qj

∂Fλ

∂pj
− ∂Fμ

∂pj

∂Fλ

∂qj

)
=

N∑
j=1

(
∂Fμ

∂qj

dqj

dtλ
+
∂Fμ

∂pj

dpj

dtλ

)
,

=
dFμ

dτλ
=

d

dτλ
(detVμ) =

d

dτλ
(−1

2
trV 2

μ ) = −tr(Vμ
dVμ

dτλ
),

= −trVμtr[W (λ, μ), Vμ] = 0.

Substituting (3.6) into (3.8) and using the coefficients of λ and μ, we then obtain
(3.9).

We conclude the above results in the following theorem.

Theorem 3.1. The finite dimensional Hamiltonian system defined by (3.4) is
completely integrable in Liouville sense in the symplectic space (R2N , dp ∧ dq).
Theorem 3.2. Let (p, q) be a solution of the Hamiltonian system (3.4). Then,
u and v defined by (3.3) satisfy the following stationary DLW equation

XN + c1XN−2 + · · ·+ cN−1X0 = 0 (3.10)

with suitably chosen constants c1, · · · , cN−1.
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Introduce the generating function {gk}

gλ = G0 +
∞∑

k=0

Gkλ
−k, (3.12)

which satisfies
(K − λJ)gλ = 0,

we have
detV (gλ) = −1

4
λ2. (3.13)

Define a new set of integrals {Hk} respectively by

H0 =
1
2
F0, H1 = −1

2
F1, H2 = −1

2
F2,

Hm = −1
2
Fm + 2

m−3∑
j=0

HjHm−j−3, m ≥ 3.

Equation (3.6) can then be transformed into the following equivalent form

− 4
λ2
Fλ = (1− 4Hλ)2, (3.14)

where

Hλ =
∞∑

m=1

Hm−1λ
−m−1.

The involutivity of {Hk} is based on the equality

{Hμ,Hλ} =
1

16
√
FλFμ

{Fμ, Fλ} = 0.

By using (3.5) and (3.11), we have

Gλ = G0 +
∞∑

k=0

λ−k−1
N∑

j=1

λk
j∇λj ,

= G0 +
∞∑

k=0

c−k−1(Gk + c1Gk−2 + · · ·+ ck−1G0 + ckG−1,

= cλgλ +
∞∑

k=0

λ−k−1ckG−1,

where

cλ = 1 +
∞∑

k=0

ck+2λ
−k−2. (3.15)
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Using (3.6) and (3.14) again, we have

Vλ = V (cλgλ +
∞∑

k=0

λ−k−1ckG−1) = V (cλgλ).

Therefore, we have

Fλ = detVλ = −1
4
c2λg

2
λ. (3.16)

From (3.14) and (3.16), we obtain

cλ = 1− 4Hλ.

Denote the variables of Hλ−flow and Hk−flow by tλ and tk respectively.
Applying the Leibniz rule of the Poisson bracket, we obtain

1
2λ2

{ψ, Fλ} = (1− 4Hλ){ψ,Hλ},

for any smooth function ψ. Thus,

d

dtλ
=

1
2λ2(1− 4Hλ)

d

dτλ
=

1
2λ2cλ

d

dτλ
. (3.17)

For w = (u, v)T = h(p, q), we have

dw

dτλ
=

⎛
⎜⎜⎜⎝

−2 < q,
dq

dτλ
>

< p,
dq

dτλ
> + <

dp

dτλ
, q >

⎞
⎟⎟⎟⎠ = 2JGλ,

dw

dtλ
=

1
2λ2cλ

dw

dτλ
=

1
λ2cλ

JGλ =
1
λ2
Jgλ,

=
∞∑

k=0

JGKλ
−k−3 =

∞∑
k=0

JGKλ
−k−3.

Finally, we state the above result in the following theorem.

Theorem 3.3. Let (p(x, tk), q(x, tk)) be a compatible solution of the h0− and
Hk− flow. Then, w(x, tK) = h(p, q) solves the kth DLW equation

wt = Xk(w).
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4 Algebro-Geometric Solutions

Based on results presented in Sections 3 and 4, we give the construction of the
algebro-geometric solutions for the hierarchy (2.7) in the following lemmas and
theorem.

Lemma 4.1. The solutions u and v for the DLW hierarchy (2.7) can be expressed
in the form

u =
N∑

k=1

(λk − νk), ∂x ln v =
N∑

k=1

(μk − νk), (4.1)

where μk, νk are called the elliptic coordinates of the finite-dimensional Hamil-
tonian system (3.3).

Proof. We express Fλ in the form

Fλ = −V 11
λ

2 − V 12
λ V 21

λ = −1
4
λ2 +

N∑
k=1

Ek

λ− λk
,

where

Ek = −λkpkqk + p2
k+ < p, q > q2k +

N∑
j=1,j �=k

(pjqk − pkqj)2

λj − λk
.

Let

Fλ = − b(λ)
4a(λ)

= − R(λ)
4a2(λ)

, (4.2)

V 12
λ = − < p, q > +Qλ(p, p) = − < p, q >

m(λ)
a(λ)

,

V 21
λ = 1−Qλ(q, q) =

n(λ)
a(λ)

,

(4.3)

where

a(λ) =
N∏

k=1

(λ− λk), b(λ) =
N+2∏
k=1

(λ− λN+k),

m(λ) =
N∏

k=1

(λ− μk), n(λ) =
N∏

k=1

(λ− νk),

R(λ) = a(λ)b(λ) =
2N+2∏
k=1

(λ− λk).

Comparing the coefficients of λN−1 in (4.2) and (4.3) gives

< q, q >= −
N∑

k=1

(λk − νk),
< p, p >

< p, q >
=

N∑
k=1

(μk − λk). (4.4)

By using (3.2) and (4.4), we then obtain (4.1).
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From the Lax equation (3.7), we have

dV 12
μ

dtλ
= 2(W 11V 12 −W 12V 11),

dV 21
μ

dtλ
= 2(W 21V 11 −W 11V 21).

(4.5)

Taking λ = μk, νk in (4.2) and (4.3), we get

V 11
μk

=

√
R(μk)

2a(μk)
, V 11

μk
=

√
R(νk)

2a(νk)
.

Hence, we have
1

2
√
R(μk)

dμk

dτλ
=

m(λ)
a(λ)(λ− μk)m′(μk)

,

1
2
√
R(νk)

dνk

dτλ
= − n(λ)

a(λ)(λ− νk)n′(νk)
.

By using the polynomails interpolation formula, we have

N∑
k=1

μN−j
k

2
√
R(μk)

dμk

dτλ
=
λN−j

a(λ)
,

N∑
k=1

μN−j
k

2
√
R(νk)

dνk

dτλ
= −λ

N−j

a(λ)
. (4.6)

Define the hyperelliptic curve by

Γ : ξ2 − 4R(λ) = 0, (4.7)

with genus g = N and the usual holomorphic differentials by

ω̃j =
λN−jdλ

2
√
R(λ)

, j = 1, 2, · · · , N. (4.8)

Denote P (μk) = (λ, ξ = 2
√
R(λ)) ∈ Γ . Let P0 ∈ Γ be fixed. Define the quasi-

Abel-Jacobi coordinates by

φ̃j =
N∑

k=1

∫ P (μk)

P0

ω̃j , ψ̃j =
N∑

k=1

∫ P (νk)

P0

ω̃j , j = 1, 2, · · · , N. (4.9)

Then, (4.6) can be represented in the form

dφ̃j

dτλ
=
λN−j

a(λ)
,

dψ̃j

dτλ
= −λ

N−j

a(λ)
.

Let a1, b1, · · · , aN , bN be the canonical basis of cycles on the Γ and

C = (Ajk)−1
N×N , Ajk =

∫
ak

ω̃j .
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Define the normalized holomorphic differential by

ωs =
N∑

j=1

Csjω̃j , ω = (ω1, · · · , ωN )T = Cω̃.

Then, we have ∫
ak

ωs = δsk,

∫
bk

ωs = Bsk,

where the matrix B = (Bsk) is symmetric with positive-definite imaginary part.
This is used to define the Riemann theta function of Γ as

θ(ζ) =
∑

z∈ZN

exp(πi < Bz, z > +2πi < ζ, z >), ζ ∈ CN .

The Abel map A(P ) and the Abel-Jacobi coordinate are defined as

A(P ) =
∫ P

P0

ω, A(
∑

nkPk) =
∑

nkA(Pk),

φ = A(
N∑

k=1

P (μk)) =
N∑

k=1

∫ P (μk)

P0

ω = Cφ̃,

ψ = A(
N∑

k=1

P (νk)) =
N∑

k=1

∫ P (νk)

P0

ω = Cψ̃.

Let Sk = λk
1 + · · ·+λk

2N+2, and R̃(λ−1) =
∏2N+2

j=1 (1−λjλ
−1). The coefficients

in
1√

R̃(λ−1)
=

∞∑
k=1

Λkλ
−k

are then given by

Λ0 = 1, Λ1 =
1
2
S1, Λk =

1
2k

(Sk +
∑

i+j=k,i,j≥1

SiΛj).

From (4.2), we obtain √
R(λ) = λa(λ)cλ,

and the lemma is proved.

Lemma 4.2. Let Ck be the kth column vector of the matrix C. Under the
Abel-Jacobi coordinate system, we have straighten out the flows to

dφ

dtλ
=

∞∑
k=1

Ωk−1λ
−k−1,

dψ

dtλ
= −

∞∑
k=1

Ωk−1λ
−k−1, (4.10)
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dφ

dtk
= Ωk−1,

dψ

dtk
= −Ωk−1, (4.11)

where
Ω0 =

1
2
Λ0C1, Ω1 =

1
2
(Λ1C1 + Λ0C2),

Ωk =
1
2
(ΛkC1 + · · ·+ Λ0Ck+1), k ≤ N − 1,

Ωk =
1
2
(ΛkC1 + · · ·+ Λk−N+1CN ), k ≥ N − 1.

Proof. Notice that

dφ

dtλ
=

1
2λ2cλ

dφ

dτλ
=

1
2λ2cλ

C
dφ̃

dτλ
,

=
1
2

∞∑
k=0

Λkλ
−k−2

N∑
j=1

Cjλ
−j =

∞∑
k=0

Ωkλ
−k−3.

Similarly, we can obtain the second formula of (4.10) and compare the coefficients
of λ−k−1 in (4.10) to obtain (4.11).

From (4.11), we get

φ = φ0 +
∞∑

k=1

Ωk−1tk, ψ = ψ0 −
∞∑

k=1

Ωk−1tk.

Hence, the evolution picture of the 1 + 1 flow is given as

φ = φ0 +Ω0x+Ω1t, ψ = ψ0 −Ω0x−Ω1t. (4.12)

Since degR = 2N + 2 on Γ , there are two infinite points ∞1 and ∞2 which
are not branch points of Γ . From Riemann theorem, there exists two constants
M1,M2 ∈ CN such that θ(A(P ) − φ −M1), θ(A(P ) − ψ −M2) have exactly n
zeroes at μ1, · · · , μN and ν1, · · · , νN respectively. That is,

N∑
j=1

μj = I(Γ )−
2∑

j=1

Resλ=∞j
λd ln θ(A(P )− φ−M1), (4.13)

N∑
j=1

νj = I(Γ )−
2∑

j=1

Resλ=∞j
λd ln θ(A(P )− φ−M1), (4.14)

with the constant

I(Γ ) =
N∑

j=1

∫
aj

λωj .

For the same λ, there are two points on the different sheets of the Riemann
surface Γ :

P+(λ) = (λ,
√
R(λ)), P+(λ) = (λ,−

√
R(λ)).
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Under the local coordinate z = λ−1 at infinity, the hyperelliptic curve Γ : ξ2 −
4R(λ) = 0 in the neighborhood of infinity is expressed as ξ̃2 − 4R̃(z) = 0 with
ξ̃ = zN+1ξ and (z, 2(−1)s−1

√
R(z))|z=0 = (0, 2(−1)s−1), s = 1, 2. Thus, we have

ω = Cω̃ = (C1λ
−1 + · · ·+ CNλ

−N )
λN−1dλ

2
√
R(λ)

,

= (C1λ
−1 + · · ·+ CNλ

−N )
dλ

2λ2

√
R̃(λ−1)

,

=
1
2
(−1)s−1

∞∑
j=0

Ωkz
k, dz

and

A(P (z−1)) =
∫ P

P0

ω = −
∫ P0

∞s

ω +
∫ P

∞s

ω

= −πs +
1
2
(−)s−1

∞∑
k=0

1
k + 1

Ωkz
k+1

Since the theta function is an even function, we have

θ(A(P (z−1)−φ−M1) = θ(φ+M1 + ηs)+
1
2
z(−1)s−1 ∂

∂x
θ(φ+M1 + ηs)+ o(z2).

(4.15)
From (4.13) and (4.15), we obtain∑N

j=1 μj = I(Γ )− 1
2 (−1)s−1 ∂

∂xθ(φ+M1 + ηs),

= I(Γ ) +
1
2
∂x ln

θ(φ+M1 + η2)
θ(φ+M1 + η1)

.
(4.16)

Simiarly, we have

N∑
j=1

μj = I(Γ ) +
1
2
∂x ln

θ(ψ +M2 + π1)
θ(ψ +M2 + π2)

. (4.17)

Substituting (4.16) and (4.17) into (4.1), we then obtain the following algebro-
geometric solution for the DLW equation

u =
N∑

k=1

λk − I(Γ )− 1
2
∂x ln

θ(Ω0x+Ω1t+ α1)
θ(Ω0x+Ω1t+ α2)

,

v2 =
θ(Ω0x+Ω1t+ α2)θ(Ω0x+Ω1t+ β2)
θ(Ω0x+Ω1t+ α1)θ(Ω0x+Ω1t+ β1)

v2(0, t),

where
αl = φ0 +M1 + πl, βl = −ψ0 −M2 − πl, l = 1, 2.
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Abstract. The so-called WTC-Kruskal algorithm is presented in order
to study the Painlevé integrability of nonlinear partial differential equa-
tions, which combines the WTC algorithm and Kruskal’s simplification
algorithm. Based on the WTC, Kruskal and WTC-Kruskal algorithms,
we give an implementation in Maple called PDEPtest. The applications
of PDEPtest to several nonlinear partial differential equations are also
presented and some new results are reported.

1 Introduction

Since more and more problems have to involve nonlinearity, much attention
has been focused on the integrability of nonlinear models. There are close re-
lations between the integrability and the Painlevé property of nonlinear par-
tial differential equations (PDEs)[1]-[18]. Therefore, it is of great importance
to check whether nonlinear PDEs possess the Painlevé property or not. In or-
der to verify the Painlevé property of nonlinear PDEs (we call it the Painlevé
test), one may use different methods, such as the Ablowitz-Ramani-Segur (ARS)
method[1], the Weiss-Tabor-Carnevale (WTC) method[2], the Kruskal’s simpli-
fication method[3], Conte’s invariant method[4] and Pickering’s approach[5].

The WTC method and Kruskal’s simplification method are the most widely
applied tools to verify the Painlevé property. The WTC method, apart from its
usefulness in proving the Painlevé property, has rather interesting connections
with rich integrable properties of nonlinear PDEs, such as Hirota’s bilinear forms,
symmetries and special solutions[6]-[9]. However, it is rather cumbersome to
verify the Painlevé property especially for coupled system of equations or a single
equation with large resonance. If one only wants to verify the Painlevé property,
then it is sufficient to adopt the Kruskal’s simplification for the WTC method.
However, the Kruskal’s simplification cannot lead to some useful information
such as Bäcklund transformation and Lax pairs. Motivated by these facts, we

H. Li, P. J. Olver and G. Sommer (Eds.): 2004, LNCS 3519, pp. 179–190, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

IWMM-GIAE



180 G.-q. Xu and Z.-b. Li

combined them and presented the so-called WTC-Kruskal algorithm[10]. The
WTC-Kruskal algorithm can not only simplify the Painlevé test, but also obtain
some truncated expansions related to integrability at the same time.

It is very tedious to perform the Painlevé test by hand, thus the application
of computer algebra can be very helpful in such calculations. Various researchers
have developed computer programs for the Painlevé test of nonlinear ODEs[11]-
[13]. However, there is little code for nonlinear PDEs. Hereman et al. presented
two packages in Macsyma and Mathematica respectively, which are based on the
WTC method and the Kruskal’s simplification[14]-[16]. Xie et al. implemented
the WTC method for single PDE, its key step lies in dealing with the compatibil-
ity of the resonance equations by the Wu-Ritt elimination method[17]. Recently,
we have developed a package wkptest written in Maple, which is an imple-
mentation of the WTC-Kruskal algorithm[18]. wkptest has been used to test a
large variety of nonlinear PDEs and proved to be very efficient. Some integrable
properties such as self-consistent system of equations defining Lax pair can be
derived by the WTC method, but they cannot be obtained by using wkptest.
In addition, some users only want to quickly verify the Painlevé property of
nonlinear PDEs. In this paper, as far as the faultiness of wkptest, we rewrite a
new package PDEPtest(the Painlevé test for nonlinear PDEs) in Maple, which
integrates the WTC, Kruskal and WTC-Kruskal algorithms. The effectiveness
of PDEPtest is illustrated by applying it to a variety of nonlinear PDEs.

2 Algorithm of the Painlevé Test

Consider a system of nonlinear PDE, say in two independent variables x and t

Hs(u(i), u(i)
x , u

(i)
t , u

(i)
xt , u

(i)
xx, · · ·) = 0, i, s = 1, · · · ,m (1)

where u(i) = u(i)(x, t) (i = 1, · · · ,m) are dependent variables, the subscripts
denote partial derivatives, Hs(s = 1, · · · ,m) are polynomials about u(i) and
their derivatives, maybe after a preliminary change of variables.

Eqs.(1) is said to pass the Painlevé test if its solutions are “single-valued”
about arbitrary non-characteristic, movable singularity manifolds. In other words,
all solutions of Eqs.(1) can be expressed as Laurent series,

u(i) =
∞∑

j=0

u
(i)
j φ(j+αi), i = 1, · · · ,m (2)

with sufficient number of arbitrary functions among u
(i)
j in addition to φ, αi

should be negative integers. u(i)
j are functions of t only if the Kruskal’s simplifi-

cation is used. The WTC-Kruskal algorithm is made of four steps:
Step a. Leading order analysis

To determine leading order exponents αi and leading order coefficients u(i)
0 ,

letting
u(i) = u

(i)
0 φαi , i = 1, · · · ,m
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and inserting it into (1), then balancing the minimal power terms, one can obtain
all possible (αi, u

(i)
0 ). It may happen that there is more than one solution for

(αi, u
(i)
0 ). If the only possible αi

′s are not integers, then the algorithm stops.
Otherwise, one has to go on with the next step.
Step b. To generate truncated expansions

For each pair of (αi, u
(i)
0 ) from Step a, calculate the possible truncated ex-

pansions in the form

u(i) = u
(i)
0 φαi + u

(i)
1 φαi+1 + · · ·u(i)

−αi
φ0, i = 1, · · · ,m.

If u(i)
k (k = 0, · · · ,−αi − 1) cannot be determined, then the series (2) cannot be

truncated at constant terms.
Step c. To find the resonances

If all possible αi
′s are integers, calculate all resonances r for each pair of

(αi, u
(i)
0 ) by inserting

u(i) = u
(i)
0 φαi + u(i)

r φαi+r, i = 1, · · · ,m

into (1) and balancing the terms with the minimal power of φ.
For a single PDE, all resonances should be distinct integers, whether positive

or negative. As for a coupled system, the resonance with equal values (occurring
twice or more times) does not necessarily indicate a logarithmic branch point[8].
If a non-integer value is found when solving for r, the algorithm terminates.
Step d. To verify compatibility conditions

The final step is to compute the coefficients at the non-resonances, and verify
the compatibility condition at every positive integer resonance. This is done by
inserting

u(i) =
rmax∑
j=0

u
(i)
j φj+αi , i = 1, · · · ,m

into (1) and collecting the terms with the same power of φ, where rmax is the
largest resonance. If there are compatibility conditions which can not be satisfied,
one should turn to verify the compatibility conditions for the next branch.

Eqs.(1) is said to pass the Painlevé test if the above steps can be carried out
consistently. It should be pointed out that the singular manifold in Step c and
Step d is defined according to Kruskal’s simplification, i.e.

φ(x, t) = x− ψ(t), u(i)
j = u

(i)
j (t).

Kruskal’s simplification is a way of making the computation of the WTC method
drastically shorter by separating a variable in the singular manifold and it
has been widely used in verifying the Painlevé property in a vast amount of
literature[6]-[8].
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3 The Package PDEPtest

The algorithm of the Painlevé test mentioned in Section 2, while relatively simple
in principle, can be very tedious by hand. We have developed a Maple package
PDEPtest which is a complete implementation of all the algorithms mentioned
above. In PDEPtest, the main procedure is pltest(< eqnlist >,< algtype >
[, funclist]), which contains 15 sub-procedures. The parameter eqnlist represents
the nonlinear PDEs to be tested, funclist denotes the list of unknown functions
which appear in eqnlist. For the PDEs with constant coefficients, funclist is
optional. But for the PDEs with variable coefficients, funclist should be given
explicitly. The second parameter algtype can take string values as follows:
algtype =“wtc”: perform the Painlevé test according to the WTC algorithm;
algtype =“kruskal”: perform the Painlevé test according to Kruskal’s simplifi-
cation algorithm;
algtype =“wtc-kruskal”: perform the Painlevé test according to the WTC-
Kruskal algorithm.

As an example we consider the (3+1)-dimensional potential-YTSF equation[19]

− 4wxt + wxxxz + 4wxwxz + 2wxxwz + 3wyy = 0. (3)

To check whether Eq.(3) passes the Painlevé test, one proceeds as follows:

> pltest( [-4*diff(w(x,y,z,t),x,t)+diff(w(x,y,z,t),x$3,z)+4*diff(w(x,y,z,t),x)
*diff(w(x,y,z,t),x,z)+2*diff(w(x,y,z,t),x$2)*diff(w(x,y,z,t),z)
+3*diff(w(x,y,z,t),y$2)=0],“kruskal” );

The procedure pltest will generate the following results automatically:
The input equation is:

−4
∂2

∂x∂t
w(x, y, z, t) +

∂4

∂x3∂z
w(x, y, z, t) + 4

∂

∂x
w(x, y, z, t)

∂2

∂x∂z
w(x, y, z, t)

+ 2
∂

∂z
w(x, y, z, t)

∂2

∂x2
w(x, y, z, t) + 3

∂2

∂y2
w(x, y, z, t) = 0

The leading analysis of the first branch gives

α1 = −1, w0(y, z, t) = 2

The resonances of the first branch are:

−1, 1, 4, 6

The coefficients of the first branch are

w0(y, z, t) = 2, w1(y, z, t) = w1(y, z, t),

w2(y, z, t) =
2
∂

∂z
w1(y, z, t) + 4

∂

∂t
ψ(y, z, t) + 3

(
∂

∂y
ψ(y, z, t)

)2

6
∂

∂z
ψ(y, z, t)

,
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w3(y, z, t) =

∂2

∂y2
ψ(y, z, t)

4
∂

∂z
ψ(y, z, t)

The compatibility condition(s) cannot hold at resonance r=4 is(are):

2
∂2

∂y2ψ(y, z, t)
∂2

∂z2ψ(y, z, t)− 2
∂

∂z
ψ(y, z, t)

∂3

∂y2∂z
ψ(y, z, t) = 0

The equation fails the Painleve test in checking conditions.
The running time is: 0.235 seconds.

For Eq.(3), when the second parameter algtype =“wtc”, PDEPtest outputs
the leading order α = −1, w0 = 2φx, the resonances are at r = −1, 1, 4 and 6.
The coefficients of Laurent series read

w2 = − 1
6φ3

xφz
[3φxφ

2
y + 4φ2

xφzw1,x + 2φ2
xφxxz + 2φxφzφ3x − 2φxφxxφxz

− φ2
xxφz − 4φtφ

2
x + 2φ3

xw1,z],

w3 = − 1
12φ5

xφ
2
z

[(4φxzw1,z − 4w1,xzφz)φ4
x + (−4φzφxxxz − 2w1,zφzφxx

− 8φtφxz + 4φxzφxxz − 3φyyφz − 2φ2
zw1,xx + 8φzφxt)φ3

x + (−4φ2
xzφxx−

4φtφzφxx − 6φyφxyφz + 4φ2
zφxxw1,x + 6φxxφxxzφz + 4φxzφzφxxx − φ2

zφxxxx

+ 6φxzφ
2
y)φ2

x + (6φxxφzφ
2
y + 4φxxφxxxφ

2
z − 6φ2

xxφzφxz)φx − 2φ3
xxφ

2
z],

where w1 is an arbitrary function of {x,y,z,t}.
The compatibility condition at the resonance r = 4 reduces to

−2 [(φyyzφz − φyyφzz)φ4
x + (−2φyzφxyφz − 2φyφxyzφz + φyyφxzφz

−φxyyφ
2
z + 2φyφxyφzz)φ3

x + (2φyφxxyφ
2
z + 2φ2

xyφ
2
z − φxxφ

2
yφzz + φxxzφ

2
yφz

+2φxxφyφyzφz)φ2
x − (4φyφxxφxyφ

2
z + φ2

yφxxxφ
2
z)φx + 2φ2

yφ
2
xxφ

2
z] = 0,

which cannot hold for arbitrary singular manifold φ(x, y, z, t), therefore, our
package also concludes that Eq.(3) fails the Painlevé test. Meanwhile, PDEPtest
outputs the truncated expansion,

w = 2 (log φ)x + w1. (4)

By using (4), the special solutions can be further derived. In order to find
solitary wave solutions of (3), one may suppose

φ = 1 + exp(θ), θ = k1 x+ k2 y + k3 z + k4 t+ ξ0, (5)

inserting (4) and (5) into (3), collecting the terms with the same power of φ, we
get a set of homogeneous PDEs about φ. Solving it, the following shock wave
solution is obtained,
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Table 1. Time for testing examples under three algorithms(seconds)

Name of equations WTC Kruskal WTC − Kruskal Result Ref.

Burgers 0.109 0.062 0.093 Pass [1]

KdV 0.422 0.110 0.172 Pass [1]

mKdV 0.608 0.234 0.406 Pass [1]

KdV-Burgers 0.797 0.140 0.281 Fail [18]

Gen. Kawahara 0.360 0.155 0.703 Fail [10]

7th-order SK 2294.654 16.357 19.390 Pass [18]

Coupled mKdV 22.754 2.547 3.594 Pass [18]

Gen. Ito(I) > 10000 5.157 5.390 Pass [25]

Gen. Ito(II) 766.913 3.281 4.358 Pass [25]

2+1 Dimen. KK 151.904 1.486 1.952 Pass [10]

2+1 Dimen. Gen. NNV 70.000 2.438 3.733 Pass [18]

2+1 Dimen. Gen. Hirota 2984.273 13.331 19.503 Pass [22]

2+1 Dimen. Coupled KP > 10000 10.251 11.002 Pass [24]

3+1 Dimen KP 1.126 0.265 0.561 Fail [18]

3+1 Dimen. YTSF 1.236 0.235 0.311 Fail [19]

3+1 Dimen. KdV-ZK 1434.771 1.500 2.016 Fail [26]

3+1 Dimen. mKdV-ZK 91.674 0.952 8.843 Fail [26]

w = 2 k1 exp(k1 x+ k2 y + k3 z + k4 t+ ξ0)
1 + exp(k1 x+ k2 y + k3 z + k4 t+ ξ0)

= k1

[
1 + tanh(k1 x+ k2 y + k3 z + k4 t

2 + ξ0
2 )

]
, k4 = k3

1k3 + 3k2
2

4k1
,

(6)

where k1, k2, k3 and ξ0 are arbitrary constants.
In the package PDEPtest, we apply three algorithms which are WTC, Kruskal,

WTC-Kruskal. PDEPtest has been applied to a large variety of nonlinear PDEs,
and the involved time of the Painlevé test for 17 examples is listed in Table 1.
The tests performed on a Dell Dimension 4600 PC with 2.40GHz Pentium 4
Processor, 256MB of RAM with Maple V.6.0.

From Table 1, we can conclude the following result: for higher order PDEs,
higher dimensional PDEs and coupled system in more components, the more
time is needed. If one tries to verify the Painlevé property and obtain the trun-
cated expansion form, the WTC-Kruskal algorithm may be the better choice.

4 The Applications of PDEPtest

In what follows, we just consider several higher order equations, coupled system
of equations as well as special type of nonlinear PDEs.

Example 1. Let us first consider the Ito’s fifth-order mKdV equation[20]

ut +
(
6u5 + 10 p (u2uxx + uu2

x ) + uxxxx

)
x

= 0, (7)

where p is a parameter.
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When the second parameter algtype =“kruskal” PDEPtest outputs that
Eq.(7) has four different branches. For these four branches, the leading order
exponents for u are both -1. And the corresponding leading coefficients read

(a) u0(t) =

√
2
√

25p2 − 16− 10p
2

, (b) u0(t) = −

√
2
√

25p2 − 16− 10p
2

,

(c) u0(t) =

√
−2

√
25p2 − 16− 10p

2
, (d) u0(t) = −

√
−2

√
25p2 − 16− 10p

2
.

For the former two branches the resonances are given by r = −1, 5, 6, and

5 +
√

100p2 − 20p
√

25p2 − 16− 39
2

,
5−

√
100p2 − 20p

√
25p2 − 16− 39

2
,

and for the latter two branches the resonances are given by r = −1, 5, 6, and

5 +
√

100p2 + 20p
√

25p2 − 16− 39
2

,
5−

√
100p2 + 20p

√
25p2 − 16− 39

2
.

It is obvious that there are non-integer resonances, so PDEPtest outputs that
Eq.(7) fails the Painlevé test.

Since all the resonances r must be integers in order for Eq.(7) to pass the
Painlevé test, we can see that the above resonances are all integers when 100p2−
20p

√
25p2 − 16 = (2m+1)2 +39(m = 0, 1, 2, · · ·) and 100p2 +20p

√
25p2 − 16 =

(2m̃ + 1)2 + 39(m̃ = 0, 1, 2, · · ·) hold simultaneously. It can be shown that the
above conditions are both satisfied for p = −1 or p = 1.

When we take p = 1, the procedure pltest with algtype =“wtc-kruskal”
outputs that the the leading order exponent is -1, and the truncated expansions
of four branches read

(a)u = −i (log φ)x + u1, (b)u = i (log φ)x + u1,

(c)u = −2i (log φ)x + u1, (d)u = 2i (log φ)x + u1,

where i =
√
−1. The resonances for the former two branches arise at {−1, 2, 3, 5,

6}, and the resonances for the latter two branches occur at {−3,−1, 5, 6, 8}.
Then all compatibility conditions at positive integer resonances are proved to be
satisfied identically.

There are close connections between the truncated expansions and integrable
properties of nonlinear PDEs. For the above first truncated expansion, we con-
sider the vacuum solution u1 = 0, namely,

u = −i(log φ)x. (8)

Assuming now φ = g/f and inserting (8) into (7) and making use of the Hirota
D operators[21], we obtain the bilinear form:

(Dt +D5
x) g · f = 0, D2

x g · f = 0. (9)
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By means of Hirota’s bilinear method[21], N-soliton solution of Eq.(7) is given
by (8) and

f =
∑

μ=0,1

exp

⎡
⎣(N)∑

i<j

Aijμiμj +
N∑

j=1

μj(ηj +
π

2
i)

⎤
⎦ ,

g =
∑

μ=0,1

exp

⎡
⎣(N)∑

i<j

Aijμiμj +
N∑

j=1

μj(ηj −
π

2
i)

⎤
⎦ ,

where

ηj = pj x+ wj t+ η0
j , wj = −p5

j , exp(Aij) =
(pi − pj)2

(pi + pj)2
.

When we take p = −1, the procedure pltest with algtype =“wtc-kruskal”
outputs that the the leading order equals −1, and the truncated expansions of
four branches read

(a)u = −(log φ)x + u1, (b)u = (log φ)x + u1,

(c)u = −2(log φ)x + u1, (d)u = 2(log φ)x + u1.

The resonances for the former two branches are at {−1, 2, 3, 5, 6}, and the res-
onances for the latter two branches occur at {−3,−1, 5, 6, 8}. Then it is shown
that all compatibility conditions at positive integer resonances are satisfied iden-
tically.

With the assistance of the package PDEPtest, we can conclude that Eq.(7)
passes the Painlevé test if and only if p = ±1. It is very interesting that the
periodic-wave solutions are obtained just under the same parameter constraint[20].

Example 2. It is well known that physics and engineering often provide special
type of nonlinear equations such as sine-Gordon equation and Schrödinger equa-
tion. Such equations cannot be directly tested by our package and require some
kind of pre-processing technique. Next we consider a new (2+1)-dimensional
generalized Hirota equation{

i ψt + ψxy + i ψxxx + ψφ− i |ψ|2 ψx = 0,

3φx + (|ψ|2)y = 0,
(10)

which was studied by Maccari recently[22]. To apply the Painlevé test, we set
ψ = u+ i v, φ = w. Then Eq.(10) becomes⎧⎪⎪⎨

⎪⎪⎩
ut + vxy + uxxx + vw − (u2 + v2)ux = 0,

−vt + uxy − vxxx + uw + (u2 + v2)vx = 0,

3wx + 2uuy + 2vvy = 0.

(11)

When the second parameter algtype =“kruskal” PDEPtest outputs that
Eq.(11) has two different branches. For these two branches, the leading order
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exponents for u, v, w are -1, -1 and -2 respectively. The leading coefficients of the
two branches are

(a) u0 =
√

6− v2
0 , w0 = 2ψy, (b) u0 = −

√
6− v2

0 , w0 = 2ψy,

where v0 is an arbitrary function. In both cases the resonances are {−1, 0, 1, 2, 3, 4,
5}. The coefficients of the two branches are too tedious to be listed here. It is
shown that the compatibility conditions at all non-negative integer resonances
are satisfied identically. Therefore, Eq.(11) passes the Painlevé test.

When the second parameter algtype =“wtc”, it takes about 3000 seconds to
verify the Painlevé property for Eq.(11). If algtype =“wtc-kruskal”, we can not
only perform the Painlevé test quickly, but also obtain the truncated Laurent
series expansion. The truncated expansion was used to derive Lax pair and
Darboux transformation in Ref.[23].

Example 3 The package PDEPtest can be used to test coupled system in
three or more components, such as the following coupled KP system[24]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
qt = 1

4
(
qxxx − 6qqx + 3∂−1

x qyy + 6(pr)x

)
,

pt = 1
2
(
−pxxx + 3qpx − 3pxy + 3p∂−1

x qy

)
,

rt = 1
2
(
−rxxx + 3qrx + 3rxy − 3r∂−1

x qy

)
.

(12)

The bilinear form, N-soliton solution and algebraic-geometrical solutions have
been obtained. Its Painlevé property, as much as we know, has not been proved
in literature.

To investigate Eq.(12), let us now apply the transformation qy = sx, so as to
convert it into ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qy = sx,

qt = 1
4 (qxxx − 6qqx + 3sy + 6(pr)x) ,

pt = 1
2 (−pxxx + 3qpx − 3pxy + 3p s) ,

rt = 1
2 (−rxxx + 3qrx + 3rxy − 3r s) .

(13)

When the second parameter algtype =“wtc-kruskal”, it is shown that Eq.(13)
has two branches. For the first branch, the leading order and coefficients for
q, s, p, r read

α1 = α2 = −2, α3 = α4 = −1, q0 = 2φ2
x, s0 = 2φxφy,

where p0, r0 are arbitrary functions with respect to {x, y, t}. While for the second
branch, the leading order and coefficients for q, s, p, r read

α1 = α2 = α3 = α4 = −2, q0 = 4φ2
x, s0 = 4φxφy, r0 = 4φ2

x/p0,

with p0 being arbitrary function with respect to {x, y, t}.

.
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The resonances occur at {−1, 0, 0, 1, 1, 2, 4, 5, 5, 6} and {−1,−2, 0, 2, 2, 3, 4, 6,
7, 8}, respectively. Obviously, the first branch is principal one( the branch with
the most non-negative integer resonances), and its truncated expansion takes
the form

q = −2(log φ)xx + q2, s = −2(log φ)xy + s2, p = p0/φ+ p1, r = r0/φ+ r1.
(14)

The compatibility conditions at all non-negative integer resonances are satisfied
identically, so our package concludes Eq.(13) passes the Painlevé test.

If we consider the trivial solution q2 = s2 = p1 = r1 = 0 in (14) and inserting

q = −2(log f)xx, s = −2(log f)xy, p = g/f, r = h/f

into (13), we can obtain the following bilinear form:

(4DxDt −D4
x − 3D2

y)f · f + 6 g · h = 0,

(2Dt +D3
x − 3DxDy)h · f = 0,

(2Dt +D3
x + 3DxDy) g · f = 0.

(15)

N-soliton solution and Bäcklund transformation can be derived by means of the
bilinear form (15).

5 Summary

In this paper, the WTC-Kruskal algorithm is presented, which is based on
the WTC algorithm and Kruskal’s simplification. Also we have developed a
Maple package PDEPtest in which the WTC, Kruskal and WTC-Kruskal al-
gorithms are implemented at the same time. Up to now, PDEPtest has been
used to verify the Painlevé property of a large variety of nonlinear PDEs. This
package can handle a single nonlinear PDE and coupled nonlinear PDEs with
finite components, in which every equation is a polynomial (or can be con-
verted to a polynomial) in the unknown functions and their derivatives. How-
ever, there exist some limitations in our package. PDEPtest does not deal with
the theoretical shortcomings of the standard Painlevé test. Thus far, we have
implemented the traditional Painlevé test, but not taken account of the lat-
est advances in Painlevé type methods, such as the poly-Painlevé test, the
Fuchs-Painlevé test. Neither did we code the quasi- and weak Painlevé test
or other variants. In addition, our package is incapable of checking the com-
patibility conditions at negative integer resonances, even though we know that
negative integer resonances sometimes contain important information regarding
the integrability of an equation. The more study on how to develop our pack-
age and study other applications of the Painlevé analysis is worthwhile in the
future.
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4. Conte R.: Invariant Painlevé Analysis of Partial Differential Equations. Phys. Lett.
A.140(1989)383-389.

5. Conte R., Fordy A.P. and Pickering A.:A Perturbation Painlevé Approach to Non-
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Abstract. The structures of matrix algebra and geometric algebra are
completely compatible and in many ways complimentary, each having
their own advantages and disadvantages. We present a detailed study of
the hybrid 2×2 matrix geometric algebra M(2, IG) with elements in the 8
dimensional geometric algebra IG = IG3 of Euclidean space. The resulting
hybrid structure, isomorphic to the geometric algebra IG4,1 of de Sitter
space, combines the simplicity of 2 × 2 matrices and the clear geometric
interpretation of the elements of IG. It is well known that the geometric
algebra IG(4, 1) contains the 3-dimensional affine, projective, and confor-
mal spaces of Möbius transformations, together with the 3-dimensional
horosphere which has attracted the attention of computer scientists and
engineers as well as mathematicians and physicists. In the last section,
we describe a sophisticated computer software package, based on Wol-
fram’s Mathematica, designed specifically to facilitate computations in
the hybrid algebra.

1 Introduction

The structures of matrix algebra and geometric algebra are completely compat-
ible and in many ways complimentary, each having their own advantages and
disadvantages. In this paper, we present a detailed study of the the hybrid matrix
geometric algebra M(2, IG3), which exploits the advantages of both structures.
Some of the points we wish to make in this paper are the following:

– The geometric algebra IG3 is closely related to the familiar Gibbs-Heaviside
vector algebra.

– Working with 2× 2 matrices simplifies the computer implementation of the
resulting structure.

– The resulting hybrid structure is isomorphic both to the algebra of complex
4× 4 matrices and to the geometric algebra IG4,1.

– The geometric algebra IG4,1 is sufficiently rich to contain the 3-dimensional
affine, projective, and conformal spaces which includes Möbius transforma-
tions, as well as the 3-dimensional horosphere.

– The matrix geometric M(2, IG) is the building block for higher dimensional
hybrid matrix geometric algebrasM(2k, IG3) for the geometric algebras IG3+k,k

for k ≥ 1.
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2 The Geometric Algebra IG3 of Euclidean Space

The associative geometric algebra IG3 := gen{e1, e2, e3} is generated by taking
the geometric sums of products of 3 orthonormal real basis vectors e1, e2, e3,
subject to the rules that

e21 = e22 = e23 = 1.

Products of the basis vectors are denoted by ei...k := ei · · · ek. As a linear space,
the geometric algebra IG3 is spanned by the basis S, where

S = {1, e1, e2, e3, e23 = ie1, e31 = ie2, e12 = ie3, i = e123}.

Consequently, we can express a general element a ∈ IG3 in the form

a = a0 + a (1)

where a = a1e1 +a2e2 +a3e3 ∈ IG1,2
3 is a complex vector (vector + bivector), and

a0, a1, a2, a3 ∈ IG0,3
3 are complex scalars (scalars + pseudoscalars or trivectors).

Note that the complex scalars make up the center of the algebra IG3 in that they
commute with all of the elements of IG3.

The geometric algebra IG3 has a structure that is closely related to the Gibbs-
Heaviside vector algebra (see Sobczyk [8]). Let a = a0 + a and b = b0 + b be
elements of IG3. The geometric product

ab = (a0 + a)(b0 + b) = (a0b0 + a ◦ b) + (b0a + a0b + a⊗ b) (2)

where the complex inner product a ◦ b := a1b1 + a2b2 + a3b3, and the complex
vector product

a⊗ b := idet

⎛
⎝ e1 e2 e3
a1 a2 a3

b1 b2 b3

⎞
⎠ = ia× b

where a × b is the ordinary Gibbs-Heaviside cross product when the vectors a
and b are real. For real vectors a and b, ia × b := i(a × b) has the geometric
interpretation of the bivector normal to the vector a×b. Note also that we have
the complex triple product

a ◦ b⊗ c := idet

⎛
⎝ a1 a2 a3

b1 b2 b3
c1 c2 c3

⎞
⎠ .

The geometric product ab of complex vectors a,b ∈ IG1,2
3 can be expressed

in the form

ab =
1
2
(ab + ba) +

1
2
(ab− ba) = a ◦ b + a⊗ b

where a ◦ b = 1
2 (ab + ba) and a ⊗ b = 1

2 (ab − ba), and has no analogy in
the Gibbs-Heaviside vector algebra. To better understand the complex vector
products on IG3, we calculate abc for the three complex vectors a,b, c ∈ IG1,2

3 ,
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a(bc) = a(b ◦ c + b⊗ c) = (b ◦ c)a + a ◦ (b⊗ c) + a⊗ (b⊗ c).

The last triple product can be expanded as a⊗ (b⊗ c) = (a ◦ b)c− (a ◦ c)b.
Let a ∈ IG3. By a∗ we mean the inversion obtained from a by replacing v by

−v for all real vectors v contained in a. For example, if a = s + v + b + t for
real scalar s, real vector v, bivector b and trivector t , then a∗ = s− v + b− t.
The reversion a† of a is defined by reversing the order of the geometric product
of all real vectors in a. For a ∈ IG3 given above, a† = s + v − b − t. Finally,
the conjugation a is defined by a = (a∗)†. For the given a, a = s − v − b + t.
We see that, unlike the usual complex conjugation, for b = b0 + b ∈ IG3, b =
b0 − b. Clearly, the various multivector parts of a are all expressible in terms of
a, a∗, a†, a.

A general complex element a = a0 + a ∈ IG3 will have an inverse iff

det a := aa = a2
0 − a2 �= 0, (3)

and it is natural to define the determinant function deta of a ∈ IG3 in terms of
this quantity.

3 The Matrix Geometric Algebra M(2, IG3)

The matrix algebra M(2, IG3) consists of all matrices of the form [g] =
(
a b
c d

)
where a, b, c, d ∈ IG3. Addition and multiplication of matrices in M(2, IG3) is the
usual matrix addition and multiplication, but attention should be paid to the
order of the elements in the product (since, in general, ab �= ba in IG3). We say
that M(2, IG3) is the hybrid 2 × 2 matrix geometric algebra over IG3. Matrices
have been studied over the complex quaternions in (Tian [10]), and in other
works.

Let us now see how a general element [g] ∈M(2, IG3) represents an element g
in the larger geometric algebra IG4,1. We consider the geometric algebra IG4,1 to
be the geometric algebra IG3 extended by two additional orthonormal basis vec-
tors σ, γ satisfying σ2 = 1 = −γ2. The geometric algebra IG3 is thus a subalgebra
of the larger algebra IG4,1 = gen{e1, e2, e3, σ, γ}.

In order to represent an element g ∈ IG4,1 as a matrix [g] ∈ M(2, IG3), we
introduce the special elements

u = σγ, u± =
1
2
(1± u) (4)

and note that
σu = −uσ, σu± = u∓σ.

Because u2 = 1, it easily follows that u+ and u− are mutually annihilating
idempotents which partition 1,

( 1 σ )u+

(
1
σ

)
= u+ + u− = 1. (5)
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Noting that ua = au and σa = a∗σ for any element a ∈ IG3, we can express
any g ∈ IG4,1 in the form

g = au+ + bu+σ + c∗u−σ + d∗u−, (6)

for a, b, c, d ∈ IG3, (see Pozo and Sobczyk [9]). Now using (4), (5) and (6), we
easily find the matrix form [g] ∈M(2, IG3),

g = ( 1 σ )u+

(
1
σ

)
g ( 1 σ )u+

(
1
σ

)

= ( 1 σ )u+

(
g gσ
σg σgσ

)
u+

(
1
σ

)
= ( 1 σ )u+[g]

(
1
σ

)
,

where

[g] :=
(
a b
c d

)
.

Extending the operations of inversion g∗, reversion g†, and conjugation g to
the larger algebra IG4,1, we find

g∗ = a∗u+ − b∗u+σ − cu−σ + du−,

g† = du+ + bu+σ + c†u−σ + a†u−,

and
g = d†u+ − b†u+σ − cu−σ + au−,

from which follows the corresponding operations in the Hybrid matrix algebra

[g]† := [g†] =
(
d b
c a

)
, [g]∗ := [g∗] =

(
a∗ −b∗
−c∗ d∗

)
,

and

[g] := [g] =
(

d† −b†
−c† a†

)
.

Our objective now is to determine the condition on the elements in IG3 which
will guarantee that a given hybrid element [g] will have an inverse [g]−1. First,
we extend the determinant function to a function on the hybrid algebra by re-
quiring that it satisfies the following important properties: For a, b, c, d ∈ IG3,

det
(
a b
0 d

)
= aadd, det

(
ea eb
c d

)
= eedet

(
a b
c d

)
, and

det
(

a b
ea+ c eb+ d

)
= det

(
a b
c d

)
.

These properties agree with the usual definition of the determinant function, a
consequence of what is known as the generalized algorithm of Gauss, see Gant-
macher [3– p.45].

We can now prove the following theorem about hybrid determinants.

Theorem: det
(
a b
c d

)
= aadd+ bbcc− (abdc+ cdba).
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Proof. For convenience, let α = aa.

det
(
a b
c d

)
=

1
α

det
(
aa ab
c d

)
= α−3 det

(
aa ab
aac aad

)

= α−3 det
(
aa ab
0 aad− cab

)
=

1
α

[(aad− cab)(aad− bac)]

= aadd+ bbcc− (abdc+ cdba).

In the proof of the above theorem, we assumed that the element a ∈ IG3 was
invertible, which is not always the case. Never-the-less, the theorem remains
valid in these cases, as can be argued by standard continuity requirements.

The non-vanishing of the determinant function det[g] �= 0 is the condition

for the invertibility of a general element g ∈ IG4,1 where [g] =
(
a b
c d

)
. An

expression for the inverse of the Hybrid 2-matrix
(
a b
c d

)
can be derived by

the usual trick of applying the generalized Gauss algorithm to the augmented
matrix (

a b 1 0
c d 0 1

)
to get the result ((

1 0
0 1

) (
a b
c d

)−1 )
.

The computations are a little tricky because of the lack of general commutativity
of the elements of IG3. The final result is(

a b
c d

)−1

=
1

det
(
a b
c d

) (
add− cdb bbc− abd
bcc− dca aad− bac

)
,

which is related to a similar result which can be found in a web page by
Roweis, [7].

4 The Geometric Algebra IG4,1

Using (6), the matrix representation of the basis elements of IG4,1 are easily
calculated:

[ek] =
(
ek 0
0 −ek

)
, [σ] =

(
0 1
1 0

)
, [γ] =

(
0 −1
1 0

)
.

It is also interesting to note that

[u] = [σγ] =
(

1 0
0 −1

)
, [u+] =

(
1 0
0 0

)
, [u−] =

(
0 0
0 1

)
.
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The matrix representation of any other element can be easily calculated by taking
sums of products of the matrix representations of the vector basis elements. For
example, defining the null vectors e = 1

2 (σ + γ) and e = σ − γ, we find that

[e] =
(

0 0
1 0

)
, [e] =

(
0 2
0 0

)
.

Calculating the various conjugation operations on a general element

g = s+ v + b+ t+ f + p ∈ IG4,1,

where s =< g >0, v =< g >1, b =< g >2, t =< g >3, f =< g >4, p =< g >5,
gives

g∗ = s− v + b− t+ f − p, g† = s+ v − b− t+ f + p,

and
g = s− v − b+ t+ f − p,

which we use to find

1
4
[g + g∗ + g† + g] = s+ f,

1
4
[g − g∗ + g† − g] = v + p,

and
1
4
[g + g∗ − g† − g] = b,

1
4
[g − g∗ − g† + g] = t.

We see that for a general element in IG4,1, the conjugation operations cannot by
themselves distinguish between a real scalar and a 4-vector, or a vector and a
pseudoscalar.

A general (real) vector x ∈ IR4,1 can be written in the form

x = x + αe+
1
2
βe, (7)

where x ∈ IR3 and α, β ∈ IR. A general complex vector x ∈ IG1+4
4,1 has the form

x = x + iuy + (α1 + iuα2)e+
1
2
(β1 + iuβ2)e

The matrix representation of the real x is

[x] =
(

x β
α −x

)
,

and for the complex x,

[x] =
(

x + iy β1 + iβ2

α1 + iα2 −x− iy

)
,

as is easily verified. The matrix representation of the complex x ∈ IG1+4
4,1 is exactly

the same as for the real case, except that the real vector x ∈ IR3 is replaced by
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the complex vector x + iy ∈ IG1+2
3 and the real scalars α, β ∈ IR are replaced by

the complex scalars α1 + iα2, β1 + iβ2 ∈ IG0+3
3 . The determinant of [x] for both

the real and complex x is

det [x] = x4 + 2αβx2 + α2β2 = (x2 + αβ)2.

The group of all invertible elements of IG4,1, which is algebraically isomorphic
to the general linear group M4×4(C), is denoted by IG∗

4,1 (see Maks [5– p.18]).
The Lipschitz subgroup Γ4,1 of IG∗

4,1 consists of those elements in IG∗
4,1 for which

gxg ∈ IR4,1 for all x ∈ IR4,1 and is known to be generated by the product of
invertible vectors x ∈ IR4,1, see Lounesto [4– p. 220], and Porteous [6– p. 168].
For an invertible element g ∈ Γ4,1, it follows that both gg† ∈ IR∗ := R−{0} and
gg = ±gg† ∈ IR∗. This is the basis for the definition of the pseudo-determinant

of [g] =
(
a b
c d

)
, pdet

(
a b
c d

)
:= ad† − bc† ∈ IR∗. We see that

[gg] =
(
a b
c d

)(
a b
c d

)
=

(
a b
c d

)(
d† −b†
−c† a†

)

=
(
ad† − bc† 0

0 da† − cb†

)
= (ad† − bc†)

(
1 0
0 1

)
,

and

[gg†] =
(
a b
c d

)(
a b
c d

)†
=

(
a b
c d

)(
d b
c a

)

=
(
ad+ bc 0

0 da+ cb

)
= (ad+ bc)

(
1 0
0 1

)
from which it follows that

det[gg†] = (ad+ bc)2 = det[gg] = (ad† − bc†)2.

The vanishing of the off diagonal terms

cd† − dc† = ab† − ba† = cd+ dc = ab+ ba = 0 (8)

further implies that a0b0 = a ◦ b and c0d0 = c ◦ d.
It is interesting, and perhaps new, to go through the complexification of the

above arguments, see Porteous [6– p. 49, p. 168], which also exactly spells out the
relationship of the definition of the pseudodeterminant function to the standard
determinant function.

Definition: By a complex vector [x] ∈ M2×2 we mean any element of the form

[x] =
(

x β
α −x

)
for x ∈ IG1+2

3 and α, β ∈ IG0,3
3 .

The complex Lipschitz subgroup Γ c
4,1 of IG∗

4,1 consists of those elements of g ∈ IG∗
4,1

for which gxg† ∈ IG1+4
4,1 for all x ∈ IG1+4

4,1 .
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Letting [g] =
(
a b
c d

)
, we find that

[g][x][g†] =
(
axd+ αbd+ βac− bxc axb+ αbb+ βaa− bxa
cxd+ αdd+ βcc− dxc cxb+ αdb+ βca− dxa

)
.

Examining the complex products, we find that

< axd− bxc >0+3= x ◦ [b0c− a0d + d0a− c0b + a⊗ d− b⊗ c] = 0 (9)

for all x, or equivalently, < ad− bc >1+2= 0. We also have

< αbd+ βac >0+3= 0

for all α, β ∈ IG0+3
3 , or equivalently, bd = −db and ac = −ca.

Using the relations (8) and (9), we can now directly relate the pseudodeter-
minant function to the ordinary determinant function for elements g ∈ Γ c

4,1. We
find that

det[g] = det
(
a b
b c

)
= (daa− bac)

1
aa

(aad− cab)

= (daa+ bca)
1
aa

(aad+ acb) = (da+ bc)(ad+ cb)

= (ad+ cb)2 = (pdet[g])2,

since ad + cb =< ad + cb >0+3. Whereas it is clear that Γ4,1 ⊂ Γ c
4,1, it is not

obvious that the condition (9) implies that g ∈ Γ c
4,1 is a product of invertible

complex vectors in IG1+4
4,1 .

5 3-Dimensional Horosphere

We now consider special representations of the points x ∈ IR3 in the larger
pseudoeuclidean space IR4,1. We have already seen in (7) that each real vector
x ∈ IR4,1 has the form x = x + αe+ 1

2βe, where α, β ∈ IR. If α = 1 and β = 0,
we say that xh = x + e ∈ IR4,1 represents x ∈ IR3 in the affine plane

Ae(R3) := {x = x + e| x ∈ IR3}.

Properties of the affine planeAe(R3) have been studied in Bayro and Sobczyk [1–
p. 35, p. 263]. The horosphere H(R3) is a non linear representation of the points
in Euclidean space IR3, defined by the condition that xc := xh +βe = x+ e+βe
is a null vector for all x ∈ IR3. We see that

x2
c = x2

h + 2βe · xh = x2 + 2β = 0

or β = − 1
2x

2. Thus,

H(IR3) := {xc = x− x2

2
e+ e| x ∈ IR3}.
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Note that the horosphere can equally well be considered to be the horosphere of
homogeneous points, since xc = αxc

e·(αxc)
for all xc ∈ H(R3) and α ∈ IR∗.

Calculating [xc], we find

[xc] = [xh]− [
x2

2
e] =

(
x −x2

1 −x

)
=

(
x
1

)
( 1 −x ) .

The fact that [xc] can be written as the product of a column matrix and a row
matrix suggest that we may equally well represent points in the horosphere by
the column h-twistor [xc]t, defined by

[xc]t =
(

x
1

)
.

More generally, by the space of column h-twistors TIG3 of IG3 we mean

TIG3 := {[w]t =
(
a
b

)
| a, b ∈ IG3}. (10)

Given a column h-twistors [w]t =
(
a
b

)
, it is natural to define a corresponding

conjugate row h-twistor by [w]†t := ( b a ), and also an h-twistor inner product
by

< [w1]t, [w2] >t:= [w1]
†
t [w2]t = b1a2 + a1b2 ∈ IG1+3

3 ,

where [w1]t =
(
a1

b1

)
and [w2]t =

(
a2

b2

)
are h-twistors.

With these definitions in tow, we can now express any point xc on the horo-
sphere by

[xc] = [xc]t[xc]
†
t . (11)

Actually, we have gained much more. Let us say that two h-twistor are equiv-
alent, [w1]t ≡ [w2]t if [w1]t[w1]

†
t = [w2]t[w2]

†
t , and that they are projectively

equivalent if [w1]t[w1]
†
t = α[w2]t[w2]

†
t for α ∈ IR∗. It follows that [xc]t and [xch]t

are projectively equivalent for all h ∈ IG3 such that hh ∈ IR∗. Thus, points on
the horosphere need only be defined up to an invertible multivector h ∈ IG3. The
concept of an h-twistor cuts calculations on the horosphere in half. For example,

for any g ∈ IG4,1 with [g] =
(
a b
c d

)

[gxcg
†] = [g][xc][g]† = [g][xc]t([g][xc]t)†.

Reflections in IR3, when represented on the horosphere, have the homoge-
neous form

Sa(xc) := axca = axa− a2(e− x2

2
e).

In terms of the h-twistor representation, we have

[Sa(xc)] = ([a][xc]t)([a][xc]t)† =
(

a 0
0 −a

)(
x
1

)(
x
1

)† (
a 0
0 −a

)†
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=
(

ax
−a

)
(a xa ) =

(
axa a2x2

−a2 −axa

)
.

Rotations are the composition of two reflections. We find that

SbSa(xc) = baxc(ba)† = baxcab.

In terms of the h-twistor construction, we find

[ScSa(xc)] = ([ba][xc]t)([ba][xc]t)† =
(

ba 0
0 ba

)(
x
1

)(
x
1

)† (
ba 0
0 ba

)†

=
(

bax
ba

)
(ab −xab ) =

(
baxab −a2b2x2

a2b2 −baxab

)
.

We can also represent translations in the horosphere. For a ∈ IR3,

Ta(xc) := (1 +
ae
2

)xc(1−
ae
2

).

In terms of the h-twistor construction,

[Ta(xc)] = [1 +
ae
2

][xc]t([1 +
ae
2

][xc]t)†

=
(

1 a
0 1

)(
x
1

)(
x
1

)† ( 1 a
0 1

)†
=

(
x + a

1

)
( 1 −x− a )

=
(

x + a −(x + a)2

1 −x− a

)
.

For a general element g ∈ IG∗
4,1, with [g] =

(
a b
c d

)
, the h-twistor transfor-

mation (
a b
c d

)(
x
1

)
=

(
ax + b
cx + d

)
,

leads to the general linear fraction Möbius transformation or conformal trans-
formation

f(x) = (ax + b)(cx + d)−1,

because of the projective equivalence of the h-twistors(
ax + b
cx + d

)
and

(
(ax + b)(cx + d)−1

1

)

at all points where (cx+ d)−1 is defined, see Pozo and Sobczyk [9], Lounesto
[4, p. 244], and Porteous [6, p. 245].

To check that any linear fractional transformation f(x) does indeed define
a conformal transformation, we set f = f(x) and calculate the differential of
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the equation f(x)(cx + d) = (ax + b), getting df(cx + d) + fcdx = adx or
df = (a− fc)dx(cx + d)−1. Continuing the calculation,

df =
[a(cx + b)(d− xc)− (ax + b)(d− xc)c]dx(d− xc)

(cx + b)2(d− xc)2
.

We now work to simplify the first part of the numerator, in particular, our
objective is to move x to the right with the help of the relations (8) and (9),

a(cx + b)(d− xc)− (ax + b)(d− xc)c

= acxd− adxc+ bxcc− axdc+ add− accx2 − bdc+ ax2cc

= acxd− adxc+ bxcc− axdc+ d(da+ bc)

= acxd+ (adx + bxc)c− axdc+ d pdet(g)

= · · · = −acdx + bccx + d pdet(g) = pdet(g)(cx + d).

Putting everything back together gives the result

df =
pdet(g)(cx + d)dx(d− xc)

(cx + d)2(d− xc)2
= pdet(g)(d− xc)−1dx(cx + d)−1.

Squaring both sides gives the differential relation

(df)2 =
det g

(cx + d)2(xc− d)2
(dx)2,

which shows that y = f(x) is conformal at all points at which det(cx + d) �= 0.
(Note in the calculations above care must be taken to always distinguish between
the differential dx and the geometric product dx of d and x.)

6 Conversions

In this section, we give formulas for the representation of elements in IG3 as 2×2
matrices of complex scalars, and the representation of elements in IG4,1 as 4× 4
complex matrices.

We have already seen in (6) that g ∈ IG4,1 can be written in the form

g = au+ + bu+σ + c∗u−σ + d∗u− = ( 1 σ )u+

(
a b
c d

)(
1
σ

)
. (12)

Note now that a = a0 + a1e1 + a2e2 + a3e3 ∈ IG3, where each aμ ∈ IG0+3
3 , can

also be expressed in the matrix form

a = ( 1 e1 ) v+

(
a0 + a3 a1 − ia2

a1 + ia2 a0 − a3

)(
1
e1

)
,
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where v± = 1
2 (1 ± e3) and i = e1e2e3. We can put these last two expressions

together, by using the Kronecker product of matrices, to find that (where u = σγ)
g =

( 1 σ e1 σe1 )u+v+

⎛
⎜⎝
a0 + a3 a1 − ia2 b0 + b3 b1 − ib2
a1 + ia2 a0 − a3 b1 + ib2 b0 − b3
c0 + c3 c1 − ic2 d0 + d3 d1 − id2

c1 + ic2 c0 − c3 d1 + id2 d0 − d3

⎞
⎟⎠

⎛
⎜⎝

1
σ
e1
e1σ

⎞
⎟⎠ .

The matrix representation (12) can be directly solved for each of the elements
a, b, c, d ∈ IG3. Noting that au+ = u+gu+ and au− = u−σg∗σu−, and similar
expressions for the other components, we have

a = au+ + au− = u+gu+ + u−σg∗σu−,

b = bu+ + bu− = u+gσu+ − u−σg∗u−,

c = cu− + cu− = u+σgu+ − u−g∗σu−,

and
d = du+ + du− = u+σgσu+ + u−g∗u−,

or (
a b
c d

)
= u+

(
g gσ
σg σgσ

)
u+ + u−

(
σg∗σ −σg∗
−g∗σ g∗

)
u−.

7 Mathematica Implementation of M(2, G3)

The algebra described above encompasses multiple common subspaces currently
in use by the geometric algebra community. It is therefore appropriate to develop
a symbolic package that would allow the manipulation of elements in IG3 and
M(2, IG3). A useful package should include tools to convert between IG4,1 and
M(2, IG3), and output expressions in both spaces in a format consistent with
standard mathematical notation. This is accomplished through the formatting
facilities provided by the Mathematica system. Although many important details
are missing from this exposition, we hope the examples motivate the reader to
try out the package and provide feedback. The package has been developed
to operate at a symbolic level, and provides comprehensive simplification and
manipulation tools. As much as possible, we avoid decomposing expressions into
their coordinate components.

In order to provide a maximum amount of flexibility, we have constructed
a system based on a low level representation for paravectors and paramatrices.
A paravector is defined as a scalar and a vector pair a = a0 + a. Input of par-
avectors takes several forms: pV[a], pVv[a], and pVs[a], and a useful shortcut
pV[a, b, c] to set multiple paravectors. The first form defines the paravector as
a symbolic value. The second defines it as a scalar/vector pair, and the third
defines the paravector in terms of its four components. A paramatrix similarly
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has similar input mechanisms, pM[a], pMs[a], and pMs[a, b, c, d], where in the last
case, the arguments of pM are paravectors. The basic operations on elements
of IG3 are the oWedge (outer product), oDot (inner product), and oGeom (ge-
ometric product) operators defined earlier in the text. Note however, that we
have modified the oDot operator to act on general elements of IG3 according
to a � b := av � bv + a0bv + avb0. Commutativity of the geometric product,
invariance of the triple product with respect to argument cycling, and other
properties (such as a⊗a = 0) are built into the system to ease the simplification
task.

The operator expandAll provides the means for generic simplification. All
products are maximally expanded, consistent with the chosen representation for
either the paravectors or paramatrices. For example,

In[10] := aa = pVv[a]; oGeom[aa, aa]//expandAll

Out[10] = a2
v + 2ava0 + a2

0 (13)

In its internal implementation, expandAll successively applies the rules
flattenGeomRules, geomRules, expandRules, expandpVRules,
expandDotRules, expandWedgeRules, conjugationRules, inversionRules,
reversionRules, tripleRules, orderRules, and ExpandAll until there is no
further change. The definitions of these rules can be found in the source files. The
above rules apply to paramatrices as well, and act on a component by component
basis.

The operations of conjugation, inversion, and reversion have been imple-
mented via the operators of the same name, along with appropriate simplifica-
tion rules. Two such rules are that each of these operators, when squared, is the
identity operator, and that a reversion applied to an inversion is a conjugation.

One of the important simplification strategies is to recognize and extract
scalar quantities from complex expressions. For example, the geometric product
oGeom[a, conjugation[a]] is known to be a scalar:

In[14] := {aa, bb, cc} = pV[a, b, c]; oGeom[ba, aa, conjugation[aa], cc]

Out[14] = scalar[aa]oGeom[b, c]

The addition of the scalar operator was necessary to clearly differentiate the ge-
ometric multiplication from regular multiplication, both represented without an
explicit operator. In early experiments, we also found that not isolating scalar
components within an explicit operator could lead to ambiguities and errors
when working with expressions involving conjugation. Two very useful opera-
tors are scalarPartF and vectorPartF. When applied to a general paravector
expression, they extract its scalar and vector parts respectively. If this extrac-
tion is not explicitly possible, the desired operation is indicated by enclosing the
expression in angular brackets with a subscript s or v.

An interesting feature of our package is the ability to check potential iden-
tities. Because there is no general theory of simplification, different equivalent
mathematical expressions may simplify in different ways. As a consequence, it is
not always straightforward to prove whether a proposed identity is or is not valid.
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We make available the operator convertToComponents, which simply replaces
every paravector to component form. For example, if aa = pVv[a],

In[13] := convertToComponents[aa]

Out[13] = LL[a0, a1, a2, a3] (14)

The arguments of LL are the four components of the paravector pV.
Consider the trace operator applied to n paravectors p1 through pn. It is de-

fined as the scalar part of the geometric product of its arguments. Alternatively,
dtrace[expr ] := (expr+conjugation[expr])/2 It is easy to prove that the trace
acting on n arguments in IG3 is invariant with respect to cyclic shifting of its
arguments. With the above definitions, consider two supposedly equivalent forms
for the trace of the geometric product of six pure vectors av, bv, cv, dv, ev, fv:

((av ⊗ bv) � fv)((cv ⊗ dv) ⊗ ev) − ((av ⊗ bv) � ev)((cv ⊗ dv) � fv)

+((av � fv)(bv � ev) − (av � ev)(bv � fv))(cv � dv)

+(av � bv)((cv � fv)(dv � ev) − (cv � ev)(dv � fv))

+((av � dv)(bv � cv) − (av � cv)(bv � dv) + (av � bv)(cv � dv))(ev � fv)

and

(av � fv)(bv � cv)(dv � ev) − (av � cv)(bv � fv)(dv � ev)

+(av � bv)(cv � fv)(dv � ev) − (av � ev)(bv � cv)((dv � fv)

+(av � cv)(bv � ev)(dv � fv) − (av � bv)(cv � ev)(dv � fv)

+(av � dv)(bv � cv)(ev � fv) − (av � cv)(bv � dv)(ev � fv)

+(av � bv)(cv � dv)(ev � fv) + triple[av, bv, cv]triple[dv, ev, fv]

Subtraction and simplification produces an even longer expression. Applying the
convertToComponents operator to the difference of the above two expressions
gives LL[0, 0, 0, 0], which indicates that the two expressions are in fact equal.

As an application of our symbolic package, we compute an explicit formula
for the determinant of a 3 × 3 matrix A = {aij} of elements in IG3 in terms of
its elements and their conjugates. We wrote a function to implement a version
of Gaussian elimination to accomplish the task. Following the rules prescribed
in the paper,(

a11 a12 a13

a21 a22 a23

a31 a32 a33

)
= det(a11)

−1

(
a11a11 a11a12 a11a13

a21 a22 a23

a31 a32 a33

)

= det(a11)
−3

(
a22det(a11) − a21a11a12 a23det(a11) − a21a11a13

a32det(a11) − a31a12a12 a33det(a11) − a21a12a13

)
(15)

where det(a11) = a11a11. We have built in a formula for the determinant of a
general element of M(2, IG3) through the determinant operator. For example,

In[17] := determinant[pMs[b]] (16)

Out[17] = a11a11a22a22 + a12a12a21a21 − a11a21a22a12 − a12a22a21a11

Clearly, using (17) to compute (15) would be very tedious. Instead, we let
Mathematica do the work for us. A direct evaluation of the above determinant
generates
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D13 D22 D31 + D12 D23 D31 + D13 D21 D32

+ D11 D23 D32 + D12 D21 D33 + D11 D22 D33

− D11 Tr(c22, c32, c33, c23) − D21 Tr(c12, c32, c33, c13) − D31 Tr(c22, c12, c13, c23)

+
4Tr(c11c12c32c31Trc11c13c23c21)

D11
+

4Tr(c11c12c22c21Trc11c13c33c31)

D11

− 2Tr(c11c12c32c31c11c13c23c21)

D11
− 2Tr(c11c13c33c31c11c12c22c21)

D11

− D12 Tr(c21, c23, c33, c31) − D22 Tr(c11, c13, c33, c31) − D32 Tr(c11, c13, c23, c21)

− D13 Tr(c21, c22, c32, c31) − D23 Tr(c11, c12, c32, c31) − D33 Tr(c11, c12, c22, c21)

+ Tr(c11, c12, c32, c33, c23, c21) + Tr(c11, c13, c33, c32, c22, c21)

+ Tr(c12, c32, c31, c21, c23, c13) + Tr(c13, c33, c31, c21, c22, c12)

+ Tr(c22, c12, c11, c31, c33, c23) + Tr(c22, c32, c31, c11, c13, c23), (17)

where Dij = aijaij . In order to further simplify this expression (i.e., remove
the denominator, which we know should not be there), we created a rule that
recognizes that the trace is invariant with respect to the cyclic permutation of
its arguments. Furthermore, Tr(a)Tr(b) = 1

2 [Tr(a, b) + Tr(a, b)] and Tr(aab) =
aaTrb. Taking these rules into account, we finally find the following for the
determinant of a 3× 3 matrix of elements in M(2, IG3):

det = D13 D22 D31 + D12 D23 D31 + D13 D21 D32

+ D11 D23 D32 + D12 D21 D33 + D11 D22 D33

− D11 Tr(c22, c32, c33, c23) − D21 Tr(c12, c32, c33, c13) − D31 Tr(c22, c12, c13, c23)

− D12 Tr(c21, c23, c33, c31) − D22 Tr(c11, c13, c33, c31) − D32 Tr(c11, c13, c23, c21)

− D13 Tr(c21, c22, c32, c31) − D23 Tr(c11, c12, c32, c31) − D33 Tr(c11, c12, c22, c21)

+ Tr(c11, c12, c32, c33, c23, c21) + Tr(c11, c13, c33, c32, c22, c21)

+ Tr(c12, c32, c31, c21, c23, c13) + Tr(c13, c33, c31, c21, c22, c12)

+ Tr(c22, c12, c11, c31, c33, c23) + Tr(c22, c32, c31, c11, c13, c23) (18)

To the authors’ knowledge, this explicit form has not been presented previously.
While the structure of this expression is clear, an analytical derivation is still out
of reach. Documentation, along with the package source code and instructions
for use can be found online ([2]).
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Geometric Calculus�
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Abstract. Setting up a symbolic algebraic system is the first step in
mathematics mechanization of any branch of mathematics. In this pa-
per, we establish a compact symbolic algebraic framework for local ge-
ometric computing in intrinsic differential geometry, by choosing only
the Lie derivative and the covariant derivative as basic local differential
operators. In this framework, not only geometric entities such as the cur-
vature and torsion of an affine connection have elegant representations,
but their involved local geometric computing can be simplified.

Keywords: Intrinsic differential geometry, Clifford algebra, Mathemat-
ics mechanization, Symbolic geometric computing.

1 Introduction

Mathematics mechanization focuses on solving mathematical problems with sym-
bolic computation techniques, particularly on mathematical reasoning by alge-
braic manipulation of mathematical symbols. In differential geometry, the mech-
anization viz. mechanical theorem proving, is initiated by [7] using local coor-
dinate representation. On the other hand, in modern differential geometry the
dominant algebraic framework is moving frames and differential forms [1], which
are independent of local coordinates. For mechanical theorem proving in spatial
surface theory, [3], [4], [5] proposed to use differential forms and moving frames
as basic algebraic tools. It appears that differential geometry benefits from both
local coordinates and global invariants [6].

For extrinsic differential geometry, [2] proposed to use Clifford algebra and
vector derivative viz. Dirac operator as basic algebraic tools. This framework
combines local and global representations, and conforms with the classical frame-
work of vector analysis. The current paper intends to extend this representation
to intrinsic differential geometry.

In intrinsic differential geometry, there is already an algebraic system abun-
dant in coordinate-free operators:
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Algebraic operators: tensor product ⊗, exterior product ∧, interior product
ix, contraction C, the pairing � between a vector space and its dual, Rieman-
nian metric tensor g, etc.

Differential operators: exterior differentiation d, Lie derivative Lx, the bracket
[x, y] of tangent vector fields x, y, covariant differentiation Dx, curvature ten-
sor R, torsion tensor T , etc.

In our opinion, the existing algebraic system contains a lot of redundancy,
which may complicate its mechanization. The first task should be to reduce
the number of basic operators in the above list, in order to gain both compact
representation and effective symbolic manipulation for both local and global
geometric computing. This task is fulfilled in this paper.

We propose a compact algebraic framework for local geometric computing in
intrinsic differential geometry. We select the following operators as basic ones:

Basic algebraic operators: tensor product ⊗, exterior product ∧, interior
product “·”.

Basic local differential operators: Lie derivative La, vector derivative ∂, co-
variant differentiations δa and δ.

Basic global differential operators: Lie derivative Lx, exterior differentia-
tion d, covariant differentiation δ.

This framework is suitable for studying intrinsic properties of general vector
bundles, affine connections, Riemannian vector bundles, etc, and can be extended
to include spin structure and integration. Some typical benefits of this framework
include:

1. Exterior differentiation d is equal to the composition of the covariant dif-
ferentiation δa (or δ in the case of a torsion-free affine connection) and the
wedge product.

2. The curvature and torsion tensors can be represented elegantly by covariant
differentiation. By these representations, the famous Bianchi identities are
given “transparent” algebraic representations.

3. Some geometric theorems can be given simplified proofs, e.g., Schur’s Lemma
in Riemannian geometry.

This paper is organized as follows. In Section 2 we introduce some terminol-
ogy and notations. In Section 3 we construct exterior differentiation locally by
Lie derivative. In Section 4 we represent curvature tensor, torsion tensor and
Bianchi identities locally by covariant differentiation. In Section 5 we represent
the curvature tensor of Riemannian manifold explicitly as a 2-tensor of the tan-
gent bivector bundle, and use it to give a simple proof of Schur’s Lemma.

2 Some Terminology and Notations

We use the same symbol “·” to denote the pairing between a vector space and
its dual space, the interior product of a tangent vector field and a differential
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form, and the inner product induced by a pseudo-Riemannian metric tensor.
The explanation is that if no metric tensor occurs, then the dot symbol denotes
the interior product which includes the pairing naturally; if there is a fixed
pseudo-Riemannian metric tensor, then the tangent space and cotangent space
are identified, so are the pairing and the inner product induced by the metric. The
latter identification is further justified by the fact that in Riemannian geometry,
we use only the Levi-Civita covariant differentiation, which preserves both the
inner product and the pairing.

In this paper, we use the following extension [2] of the pairing “·” from V and
V∗ to their Grassmann spaces Λ(V) and Λ(V∗): for vectors xi ∈ V and yj ∈ V∗,

(x1∧· · ·∧xr)·(y1∧· · ·∧ys) =
{

(x1 · (x2 · (· · · (xr · (y1 ∧ · · · ∧ ys) · · ·), if r ≤ s;
(· · · (x1 ∧ · · · ∧ xr) · y1) · y2) · · ·) · ys), if r > s.

(2.1)
The topic “vector derivative” is explored in detail in [2]. Let V and V∗ be an
nD vector space and its dual space, Let {ai | i = 1 . . . n} and {aj} be a pair of
dual bases of V and V∗ respectively. The vector derivative at a point x ∈ V is
the following V-valued first-order differential operator:

∂x =
n∑

i=1

ai ∂

∂ai

∣∣∣∣
x

. (2.2)

Here ∂/∂ai|x denotes the directional derivative at point x. Obviously, ∂ = ∂x is
independent of the basis {ai} chosen, and for any vector a,

a · ∂ = ∂/∂a, a =
n∑

i=1

(a · ai)ai. (2.3)

Henceforth we consider an nD differentiable manifold M . The tangent and
cotangent bundles of M are denoted by TM and T ∗M respectively. The set of
smooth tangent and cotangent vector fields on M are denoted by Γ (TM) and
Γ (T ∗M) respectively.

The Lie derivatives of smooth scalar field f , tangent vector field y, and cotan-
gent vector field ω with respect to a smooth tangent vector field x, are defined by

Lxf = x(f),
Lxy = [x, y],
y · Lx(ω) = Lx(y · ω)− ω · Lxy.

(2.4)

Here [x, y] is the bracket defined by

[x, y](f) = x(y(f))− y(x(f)), ∀ f ∈ C∞(M). (2.5)

Below we introduce two notations. Let π be a differential operator taking
values in Λ(Γ (T ∗M)). Then in π ∧ u ∧ v, where u, v ∈ Λ(Γ (T ∗M)), the differ-
entiation is carried out to the right hand side of π, i.e., to both u and v. If we
want the differentiation be made only to u, we use π ∧ u̇ ∧ v to denote this, else
if we want it be made only to v, we use π ∧ ǔ ∧ v to denote this.
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If u itself is a differential operator taking values in Λ(Γ (T ∗M)), then it has
two parts: the Λ(Γ (T ∗M))-part and the scalar-valued differential operator part.
If the differentiation in π is made only to the Λ(Γ (T ∗M))-part of u, we use
π ∧ u̇ ∧ v to denote this. If the differentiation is not made to the Λ(Γ (T ∗M))-
part of u, we use π ∧ ǔ ∧ v to denote this. The scalar-valued differentiation
parts s(π), s(u) of π, u always act on v in the manner s(π)s(u)v. If v is also
a Λ(Γ (T ∗M))-valued differential operator, and the differentiation in π is made
only to the Λ(Γ (T ∗M))-part of v, we use π ∧ u ∧ v̇ or π ∧ ǔ ∧ v̇ to denote this,
depending on how u is differentiated.

3 Exterior Differentiation

Definition 1. A local natural basis {ai} of Γ (TM) at x ∈ M is a set of n
smooth tangent vector fields defined in a neighborhood N of x, such that there
exists a local coordinate system {ui} of N with the property

ai(f) =
∂f

∂ui
, ∀ f ∈ C∞(N). (3.6)

Let {ai} be a local basis of Γ (TM), and let {ai} be its dual basis in Γ (T ∗M).
Define

da =
n∑

i=1

ai ∧ Lai
=

n∑
i=1

aiLai
∧ . (3.7)

Lemma 1. (1) Let {ai} be a local basis of Γ (TM). Then it is natural if only if
[ai, aj ] = 0 for any 1 ≤ i < j ≤ n.

(2) (da)2 = 0 if and only if {ai} is natural.

Proof. We only prove the second part. By the definition of da, to prove (da)2 = 0
we only need to prove (da)2f = 0 for any f ∈ C∞(M).

(da)2f =
n∑

i,j=1

ai ∧ Lai
(ajaj(f))

=
n∑

i,j=1

(ai ∧ ajai(aj(f))) + aj(f)ai ∧ Lai
(aj)

=
∑
i<j

[ai, aj ](f)ai ∧ aj −
n∑

i,j,k=1

aj(f)ai ∧ ([ai, ak] · aj)ak

=
∑
i<j

[ai, aj ](f)ai ∧ aj −
n∑

i,k=1

[ai, ak](f)ai ∧ ak

= −
∑
i<j

[ai, aj ](f)ai ∧ aj .

Thus (da)2f = 0 if and only if [ai, aj ](f) = 0, i.e., {ai} is natural.
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Proposition 1. da is independent of the local natural basis {ai}. It is defined
globally on M , called the exterior differentiation operator of M , denoted by d.

Proof. It is easy to prove that da|C∞(M) is independent of ai. So we only need
to prove that da|Γ (T∗M) is independent of ai. The latter is true because

da(fda(g)) = daf ∧ dag + f(da)2g = daf ∧ dag

is independent of {ai}, for any f, g ∈ C∞(M).

For local calculus, we can further decompose d into two parts: the wedge
product “∧”, and the Γ (T ∗M)-valued local differential operator

δa =
n∑

i=1

aiLai
. (3.8)

This operator depends on the local basis {ai}. The benefit of introducing δa can
be seen from the following local expression of [x, y].

Proposition 2. (1) For any local natural basis {ai},

δa ∧ δa = 0. (3.9)

(2) For any smooth local tangent vector fields x, y,

[x, y] = x · δay − y · δax. (3.10)

Proof. We only prove the second part. For any f ∈ C∞(M),

[x, y](f) = x · δa(y · δaf)− y · δa(x · δaf)
= (x · δay) · δaf + y · (x · δaδaf)− (y · δax) · δaf − x · (y · δaδaf)
= (x · δay − y · δax)(f)− (x ∧ y) · (δa ∧ δa)f
= (x · δay − y · δax)(f).

4 Connection on a Vector Bundle

A connection of a vector bundle E over M is denoted by D. Its covariant deriva-
tive with respect to a vector field a is denoted by Da. As in the case of exterior
differentiation, we can decompose D into two parts: the tensor product “⊗”, and
the Γ (T ∗M)-valued local differential operator

δ =
n∑

i=1

aiDai
, (4.11)

where {ai} is a local basis of Γ (TM). The difference is that here the operator
δ is independent of the basis {ai} chosen, called the covariant differentiation
operator. We have

D = δ⊗, Da = a · δ. (4.12)
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The first benefit of introducing δ is that we can add it up with any differential
form ω. The sum is a new connection, and the new covariant derivative is a · (δ+
ω). The second benefit is its intrinsic characterization of the curvature tensor,
and in the case of affine connection, also the torsion tensor.

The scalar-valued operator (x ∧ y) · (δ ∧ δ) represents the difference between
the two compositions DxDy̌ and DyDx̌ of the differentiations Dx and Dy. So
δ ∧ δ measures the asymmetry of two successive covariant derivatives. In this
section, we decompose this asymmetry into two parts: the curvature part and
the torsion part. This characterization clarifies the intrinsic relationship between
an affine connection and its curvature and torsion tensors.

Definition 2. The differential operator

R(x, y) = DxDy −DyDx −D[x,y], ∀x, y ∈ Γ (TM) (4.13)

is called the curvature operator of the connection. The following (3,1)-tensor is
called the curvature tensor of the connection:

R(x, y, z, ω) = ω · ((DxDy −DyDx −D[x,y])z), ∀x, y, z ∈ Γ (TM), ω ∈ Γ (T ∗M).
(4.14)

We use the same symbol R with different number of arguments to denote both
the curvature operator and the curvature tensor.

Proposition 3. The curvature operator has the following local representation
with respect to a local natural basis {ai}:

R(x, y) = −(x ∧ y) · (δ ∧ δ̌). (4.15)

Proof. By R(ai, aj) = ai · δ(aj · δ)− aj · δ(ai · δ) and

δ ∧ δ̌ = −
n∑

i=1

ai ∧ δ(ai · δ) =
n∑

i,j=1

(ai ∧ aj)ai · δ(aj · δ), (4.16)

we get δ ∧ δ̌ =
∑

i<j(a
i ∧ aj)R(ai, aj). From this and the fact that R(x, y) is a

function of x ∧ y, we obtain (4.15).

Corollary 1. δ ∧ δ̌ is independent of {ai} as long as the local basis is natural.
Furthermore, δ ∧ δ̌

∣∣
C∞(M)

= 0.

Definition 3. The torsion tensor of an affine connection D is defined by

T (x, y) = Dxy −Dyx− [x, y], ∀x, y ∈ Γ (TM). (4.17)

The dual connection and dual covariant differentiation of D and δ are defined
by their actions on a local natural basis {ai}:

Dai
(aj) = Daj

ai, ai · δaj = aj · δai. (4.18)
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In fact, for any tangent vector fields x, y,
Dx(y) = y · δx+ [x, y],
T (x, y) = x · (δ − δy).

(4.19)

Proposition 4. For any tangent vector fields x, y and cotangent vector field ω,

T (x, y) · δ = (x ∧ y) · (δ ∧ δ̇),
T (x, y) · ω = (x ∧ y) · (δ ∧ ω − dω).

(4.20)

In particular, δ ∧ δ̇ is independent of {ai} as long as the local basis is natural.

Corollary 2. 1. d = δ∧ if and only if δ is torsion-free.
2. If δ is torsion-free, then

r︷ ︸︸ ︷
δ ∧ · · · ∧ δ =

n∑
i1,···,ir=1

ai1 ∧ · · · ∧ airai1 · δ · · · air
· δ. (4.21)

Proposition 5. For a local natural basis {ai}, the curvature and torsion of the
connection δa =

∑n
i=1 a

iLai
are both zero. It is called a local natural affine

connection.

Theorem 1. [Commutation Formula]

(x ∧ y) · (δ ∧ δ) = T (x, y) · δ −R(x, y). (4.22)

Proof. In a local natural basis {ai}, the conclusion follows (4.15), (4.20) and the
Lebniz rule δ ∧ δ = δ ∧ δ̇ + δ ∧ δ̌. If {ai} is not natural, then

−R = δ ∧ δ̌ + dδ, T · δ = δ ∧ δ̇ − dδ. (4.23)

The relation (4.22) still holds.

When T = 0, then R = δ ∧ δ. This representation crystalizes the famous
Bianchi identities as follows.

Proposition 6. [Bianchi] Let δ be torsion-free, R be its curvature. Let {ai} be
a local natural basis of Γ (TM). The components of R and DR with respect to
{ai} and its dual basis {ai} are denoted by Rj

ikl, R
j
ikl,h respectively. Then

Ri
jkl +Ri

klj +Ri
ljk = 0

Ri
jkl,h +Ri

jlh,k +Ri
jhk,l = 0 (4.24)

Proof. We have −Ri
jkl = ai · ((ak ∧ al) · (δ ∧ δ̌)aj), and the relation

(ak ∧al) · (δ∧ δ̌)(ai ·aj) = ai · ((ak ∧al) · (δ∧ δ̌)aj)+aj · ((ak ∧al) · (δ∧ δ̌)ai) = 0.

Then

Ri
jkl +Ri

klj +Ri
ljk = aj · ((ak ∧ al) · (δ ∧ δ̌)ai) + ak · ((al ∧ aj) · (δ ∧ δ̌)ai)

+al · ((aj ∧ ak) · (δ ∧ δ̌)ai)
= (aj ∧ ak ∧ al) · (δ ∧ δ̌ ∧ ai).
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The first Bianchi identity is equivalent to

δ ∧ δ̌ ∧ ai = 0 (4.25)

when T = 0 and {ai} is natural. It follows d2 = 0.
From

Ri
jkl,h = (ah · δR)(ak, al, aj , a

i) = (ak ∧ al) · (ah · δR)(aj , a
i),

we get
Ri

jkl,h +Ri
jlh,k +Ri

jhk,l = (ak ∧ al ∧ ah) · (δ ∧ Ṙ)(aj , a
i).

The second Bianchi identity is equivalent to

δ ∧ Ṙ = δ ∧ (δ ∧ δ̌)· = 0 (4.26)

When T = 0 and {ai} is natural. It follows δ ∧ δ̇ = 0 and

δ ∧ (δ ∧ δ̌)· = δ ∧ δ̇ ∧ (δ̌)∨ + δ ∧ δ̌ ∧ (δ̌)·.

5 Riemannian Geometry

The Levi-Civita connection δ of a generalized Riemannian manifold is the unique
torsion-free connection preserving the metric tensor. Its curvature tensor R in-
duces a new differential operator, denoted by R′:

R′(z, ω)(x, y) = R(x, y, z, ω). (5.27)

Since R′(z, ω) is a C∞(M)-linear function on Λ2(Γ (TM)), there exists a unique
Ω(z, ω) ∈ Λ2(Γ (T ∗(M))) such that R′(z, ω)(x, y) = (x ∧ y) · Ω(z, ω). Below we
compute Ω.

By (4.15),

Ω(z, ω) = −δ ∧ δ̌(ż · ω) = δ ∧ δ̌(ω̇ · z) = z · (δ ∧ δ̌ ∧ ω)− (z · (δ ∧ δ̌)) ∧ ω,

so for any local natural basis {ai},

Ω(ai, aj) = −(ai · (δ ∧ δ̌)) ∧ aj

= −
n∑

k=1

ak ∧ (ai · δak · δaj − ak · δai · δaj)

= −
n∑

k=1

ak ∧ (ai · δaj · δak) + δ ∧ (ai · δaj).

Since Ω(ai, aj) = −Ω(aj , ai) and ai · δaj = aj · δai,

Ω(ai, aj) = −1
2

n∑
k=1

ak ∧R(ai, aj)ak. (5.28)
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A direct corollary of (5.28) is that R = R′, i.e.,

R(ak, al)(ai, aj) = R′(ai, aj)(ak, al) = (ak ∧ al) ·Ω(ai, aj) = R(ai, aj)(ak, al).

Because of this, we can identify the curvature tensor with the following symmet-
ric 2-tensor in the space Λ2(Γ (TM)), still denoted by R:

R(x ∧ y, z ∧ ω) = R(x, y)(z, ω) = R(x, y, z, ω). (5.29)

Proposition 7. For any local basis {ai} which is not necessarily natural,

R = −1
2

n∑
k=1

(ak∧δ)⊗(δ̌∧ak) = −1
2
(δ∧δ̌)⊗(

n∑
k=1

ȧk∧ak) = −1
2
(δ∧δ̌)⊗(

n∑
k=1

ȧk∧ak).

Let B2 be a 2-blade of TpM , p ∈M . Then

K(B2) = R(B−1
2 , B2) (5.30)

is called the sectional curvature at point p.

Proposition 8. At every point p of M , R is determined by K.

Proof. Let ∂ be the vector derivative in the vector space Λ2(TpM). For any
A2 ∈ Λ2(Γ (TM)), by the multilinearity of R, we have

A2 · ∂(R(B−1
2 , B2)) = 2

R(A2, B2)B2 ·B2 −R(B2, B2)A2 ·B2

(B2 ·B2)2
, (5.31)

so
R(A2, B2) = KA2 ·B2 +

1
2
(B2 ·B2) (A2 · ∂K). (5.32)

If at p ∈ M , K(B2) is independent of B2, we say M is isotropic at p. If
M is isotropic at every point and K = Kp is independent of p, we call M a
constant-curvature space.

Proposition 9. [F. Schur] If M is an nD connected Riemannian manifold (n >
2) and is isotropic at every point, then it is a constant-curvature space.

Proof. We only need to prove that K = Kp is independent of p. First, since Kp

is constant at Λ2(TpM), i.e., A2 · ∂Kp = 0 for any A2 ∈ Λ(Γ (TpM)), by (5.32),
we have R(A2, B2) = KpA2 ·B2 for any B2 ∈ Λ(Γ (TpM)), so

R(B2) = KB2. (5.33)

Below we compute δ ∧R(B2) using the relation δ ∧ Ṙ = 0:

δ ∧R(B2) = δ ∧ Ṙ(B2) + δ ∧ Ř(Ḃ2) = Kδ ∧B2. (5.34)

On the other hand, by differentiating the right-hand side of (5.33) directly, we
get

δ ∧R(B2) = δ ∧ (KB2) = (δK̇) ∧B2 +Kδ ∧B2. (5.35)

So for any B2 ∈ Λ2(Γ (TpM)), (δK̇) ∧ B2 = 0. Since the dimension of
Λ2(Γ (TpM)) is greater than one, it must be that δK = 0 for any p, i.e., K
is constant over M .
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6 Conclusion

In this paper, we set up a compact symbolic algebraic system for local geometric
computing in intrinsic differential geometry. In this system, the exterior differ-
entiation, the curvature tensor of a connection, the torsion tensor of an affine
connection, the Bianchi identities of a torsion-free affine connection, and the
curvature tensor of a Levi-Civita connection are given elegant representations,
which can be used to simplify the involved geometric computing, e.g. in the proof
of Schur’s Lemma. The idea behind the system is the use of vector derivative
and Clifford algebra. Our investigation shows that this is a promising research
direction for both mathematics mechanization and differential geometry.
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On Miquel’s Five-Circle Theorem�
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Abstract. Miquel’s Five-Circle Theorem is difficult to prove algebraically.
In this paper, the details of the first algebraic proof of this theorem is
provided. The proof is based on conformal geometric algebra and its
accompanying invariant algebra called null bracket algebra, and is the
outcome of the powerful computational techniques of null bracket algebra
embodying the novel idea breefs.

Keywords: Miquel’s Theorem, Mathematics mechanization, Conformal
geometric algebra, Null bracket algebra, “breefs”.

1 Introduction

Miquel’s Five-Circle Theorem is among a sequence of wonderful theorems in
plane geometry bearing his name. It states that by starting from a pentagon in
the plane, one can construct a 5-star whose vertices are the intersections of the
non-neighboring edges of the pentagon. If five circles are drawn such that each
circle circumscribes a triangular corner of the star, then the neighboring circles
intersect at five new points which are cocircular.

The sequence of Miquel’s Theorems is as follows: Let there be an n-gon in the
plane. When n = 3, the three vertices of a triangle are on a unique circle, which
can be taken as the unique circle determined by the three edges of the triangle,
called the Miquel 3-circle. When n = 4, the 4 edges of a quadrilateral form 4
distinct 3-tuples of edges, each determining a Miquel 3-circle, and Miquel’s 4-
Circle Theorem says that the 4 Miquel 3-circles pass through a common point
(i.e., are concurrent), called the Miquel 4-point. Miquel’s Five Circle Theorem
says that the 5 Miquel 4-points of a pentagon are cocircular, and the unique circle
is the Miquel 5-circle of the pentagon. In general, Miquel’s 2m-Circle Theorem
says that the 2m Miquel (2m − 1)-circles of an (2m)-gon are concurrent, and
Miquel’s (2m + 1)-Circle Theorem says that the 2m + 1 Miquel (2m)-points of
an (2m+ 1)-gon are cocircular.

The first proof of Miquel’s n-Circle Theorem is given by Clifford in the 19th
century in a purely geometric manner. By now, an algebraic (analytic) proof has
not been found yet. While for n = 4 an algebraic proof is easy, for n = 5 it is

� Supported partially by NKBRSF 2004CB318001 and NSFC 10471143.
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c© Springer-Verlag Berlin Heidelberg 2005

IWMM-GIAE



218 H. Li, R. Xu, and N. Zhang

.

. .

.

.

.

.
.

.

.

.
.

e

.

.

.

D

B

E

d

A

C

4

5

1

2

3

c

b
a

Fig. 1. Miquel’s Five-Circle Theorem

extremely difficult. In fact, the first algebraic proof for n = 5 was found in 2001
[4]. In mechanical geometric theorem proving, the first machine proof for n = 5
was produced in 1994 [1], which is a purely geometric one.

Below let us analyze how to prove Miquel’s 5-Circle Theorem algebraically.
The geometric configuration has linear construction, i.e., the constrained ob-
jects can be constructed sequentially as unique geometric intersections, whose
algebraic representations can be given explicitly by polynomial expressions. The
following is a typical linear construction:

Free points in the plane: A,B,C,D,E.
Intersections:

1 = EA ∩BC, 2 = AB ∩ CD, 3 = BC ∩DE, 4 = CD ∩ EA,
5 = DE ∩AB, a = AE5 ∩AB1, b = BA1 ∩BC2, c = CB2 ∩ CD3,
d = DC3 ∩DE4, e = ED4 ∩ EA5.

Conclusion: a, b, c, d, e are cocircular.
Here 1 = EA ∩ BC denotes that point 1 is the intersection of lines EA and

BC, and a = AE5 ∩ AB1 denotes the second intersection of circles AE5 and
AB1 other than A if they intersect, or A itself if the two circles are tangent to
each other.

By symmetry, we only need to prove the cocircularity of a, b, c, d. Since the
construction is linear, we only need to substitute the explicit expressions of
a, b, c, d in terms of the free points A,B,C,D,E into the algebraic equality f
representing the cocircularity of a, b, c, d, and then expand the result to get zero.

Indeed, the proof is strategically very easy: it is composed of a first procedure of
substitution (elimination) and a second procedure of simplification. However, both
procedures are too difficult to handle by either coordinates and any other classical
invariants, because extremely complicated symbolic computations are involved.

In 2001, a new powerful algebraic tool for geometric computation, called con-
formal geometric algebra, was proposed [3]. Its accompanying invariant algebra
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called null bracket algebra was proposed at the same time [4]. The two algebras
can provide elegant simplifications in symbolic computation of geometric prob-
lems. The idea leading to such simplifications is recently summarized as “breefs”
(bracket-oriented representation, elimi- nation and expansion for factored and
shortest result) [6], [7], [8], [9], [10], [11].

In this paper, we are going to show the detailed procedure of the algebraic
proof of Miquel’s 5-Circle Theorem [4], which has never been shown before. We
will show how the idea breefs is used in the proof, and how the simplifications are
achieved by using conformal geometric algebra and its accompanying invariant
algebra. Due to the limit of space we only cite the necessary theorems and
formulas in both algebras needed in the proof. For details we refer to [3], [5], [9].

2 Conformal Geometric Algebra

We omit the introduction of geometric algebra, and recommend [2] for a clear
reading.

Conformal geometric algebra is the geometric algebra set on the so-called
“conformal model” of classical geometry: To study nD Euclidean (or hyperbolic,
or spherical) geometry, we elevate the geometric space into the null cone of an
(n + 2)D Minkowski space M. Let e1, . . . , en be an orthonormal basis of Rn,
let e, e0 be a standard null basis of the Minkowski plane orthogonal to Rn, i.e.,
e2 = e2

0 = 0 and e · e0 = −1, then a point a ∈ Rn corresponds to the following
null vector:

a = e0 + a+
a2

2
e. (2.1)

By setting a = 0 we see that the origin of Rn corresponds to vector e0.
No point corresponds to e: it represents the point at infinity. Vector a satisfies
a · e = −1. It is the inhomogeneous representation of point a. The homogeneous
representation is any null vector collinear with a, and is more convenient for
symbolic computation. On the other hand, the inhomogeneous representation is
more convenient for geometric interpretation. For example, in the inhomogeneous
representation,

a1 · a2 = −d(a1, a2)2

2
. (2.2)

i.e., the squared distance of two points becomes the inner product of the corre-
sponding null vectors. The circles and spheres of various dimensions correspond
to Minkowski subspaces, and can be computed homogeneously. The conformal
transformations are realized by orthogonal transformations in M and can be
computed by spin representations.

In conformal geometric algebra, geometric objects and relations often have
universal and compact algebraic representations. For example, when 1 is the
point at infinity, then 123∩ 12′3′ is exactly the intersection of two lines 23, 2′3′.
In fact, when any of the points is replaced by the points at infinity, the corre-
sponding circle becomes a straight line, but the algebraic representation is still
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the same. The algebraic representation of 123 ∩ 12′3′, denoted by 123 ∩ 12′3′,
has two different forms:

123 ∩ 12′3′

= 2 · 3[122′3′][132′3′]1− 1
2
[12312′3′][132′3′]2 +

1
2
[12312′3′][122′3′]3

= 2′ · 3′[1232′][1233′]1 +
1
2
[12312′3′][1233′]2′ − 1

2
[12312′3′][1232′]3′.

(2.3)

Obviously, 123∩12′3′ = 132∩12′3′ = 123∩13′2′ = 12′3′∩123. Let 2′′, 3′′

be points on circle 12′3′. Then

1 · (123∩12′3′) = [12312′3′]2, 2 · (123∩12′3′) = (1 ·3)(2 ·3)[122′3′]2. (2.4)

3 Null Bracket Algebra

Null bracket algebra is the accompanying invariant algebra of conformal geo-
metric algebra when all geometric constructions are based on points. However,
it can be defined and employed independent of conformal geometric algebra. The
following is a self-contained definition of this algebra.

Definition 1. Let K be a field of characteristic �= 2. Let n ≤ m be two positive
integers. The nD null bracket algebra generated by symbols a1, . . . ,am, is the
quotient of the polynomial ring over K with indeterminates 〈ai1 . . .ai2p

〉 and
[aj1 . . .ajn+2q−2 ] for p, q ≥ 1 and 1 ≤ i1, . . . , i2p, j1, . . ., jn+2q−2 ≤ m, modulo the
ideal generated by the following 8 types of elements:

B1. [ai1 . . .ain
] if ij = ik for some j �= k.

B2. [ai1 . . .ain
]− sign(σ)[aiσ(1) . . .aiσ(n) ] for a permutation σ of 1, . . . , n.

B3. 〈aiaj〉 − 〈ajai〉 for i �= j.
N. 〈aiai〉 for any i.

GP1.
n+1∑
k=1

(−1)k+1〈ajaik
〉 [ai1 . . . ǎik

. . .ain+1 ].

GP2. [ai1 . . .ain
][aj1 . . .ajn

]− det(〈aik
ajl

〉)k,l=1..n.

AB. 〈ai1 · · · ai2l
〉 −

2l∑
j=2

(−1)j〈ai1aij
〉 〈ai2 · · · x̌ij

· · · ai2l
〉.

SB. [ai1 · · · ain+2l
]−

∑
σ

sign(σ, σ̌)〈xσ(1) · · ·xσ(2l)〉×[xσ̌(1) · · ·xσ̌(n)] for all par-

titions σ, σ̌ of 1, 2, . . . , n+2l into two subsequences of length 2l and n respectively.

In practice we usually use notations a ·aj and a2
i instead of 〈aiaj〉 and 〈aiaj〉.

When n = 4, the following are some typical brackets and their geometric
meanings:

1.

〈ea1a2a3〉 = (a3 − a2) · (a1 − a2) = |a1a2||a2a3| cos � (a2a3, a2a1);

[ea1a2a3] = 2Sa1a2a3 = |a1a2||a2a3| sin � (a2a3, a2a1).
(3.1)
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Here Sa1a2a3 is the signed area of triangle a1a2a3, and � (a2a3, a2a1) is the
oriented angle from vector a2a3 to vector a2a1. In particular, a1, a2, a3 are
collinear if and only if [ea1a2a3] = 0.

2.

〈a1a2a3a4〉 = −8
ρa1a2a3ρa1a3a4Sa1a2a3Sa1a3a4

|a1a3|2
cos � (Na1

a1a2a3
, Na1

a1a3a4
)

[a1a3a2a4] = −8
ρa1a2a3ρa1a3a4Sa1a2a3Sa1a3a4

|a1a3|2
sin � (Na1

a1a2a3
, Na1

a1a3a4
)

= (ρ2
a1a2a3

− |oa1a2a3a4|2)Sa1a2a3 .
(3.2)

Here oa1a2a3 is the center of circle a1a2a3; ρa1a2a3 , ρa1a3a4 are the radii of
circles a1a2a3, a1a3a4 respectively, andNa1

a1a2a3
, Na1

a1a3a4
are the outward nor-

mal directions of circles a1a2a3, a1a3a4 at point a1 respectively. In particular,
points a1, a2, a3, a4 are cocircular if and only if [a1a2a3a4] = 0.

3.

[ea2a3ea4a5] = −4Sa2a4a3a5 = 2|a2a3||a4a5| sin � (a4a5, a2a3),

〈ea2a3ea4a5〉 = 2(a3 − a2) · (a5 − a4) = 2|a2a3||a4a5| cos � (a4a5, a2a3).
(3.3)

Here Sa2a4a3a5 is the signed area of quadrilateral a2a4a3a5. In particular,
[ea2a3ea4a5] = 0 if and only if a2a3 || a4a5; 〈ea2a3ea4a5〉 = 0 if and only if
a2a3 ⊥ a4a5.

In this paper, we often use the following shorthand notation:

[a1a2;a3a4] = −1
2
[ea1a2ea3a4] = e · a1[ea2a3a4]− e · a2[ea1a3a4]. (3.4)

4.

〈a1a2a3a1a4a5〉 = 8ρa1a2a3ρa1a4a5Sa1a2a3Sa1a4a5 cos � (Na1
a1a2a3

, Na1
a1a4a5

),

[a1a2a3a1a4a5] = 8ρa1a2a3ρa1a4a5Sa1a2a3Sa1a4a5 sin � (Na1
a1a2a3

, Na1
a1a4a5

)
= 16Sa1a2a3Sa1a4a5Sa1o123o145 .

(3.5)
Here o123, o145 are the centers of circles a1a2a3, a1a4a5 respectively. In par-
ticular, [a1a2a3a1a4a5] = 0 if and only if circles a1a2a3, a1a4a5 are tangent
to each other; 〈a1a2a3a1a4a5〉 = 0 if and only if they are perpendicular.

5.

[a1;a2a3;a4a5] = e·a4 e·a5[ea1a2a3]−e·a2 e·a3[ea1a4a5]+e·a2 e·a4 [ea1a3a5]

is twice the signed area of pentagon a1a2a3a5a4. Furthermore,

[a1;a2a3;a4a5] = −[a1;a4a5;a2a3];
[a1;a2a3;a5a4] = [a2;a3a4;a1a5] = · · · = [a5;a1a2;a4a3].

(3.6)

The following are some typical formulas for algebraic computation in 4D null
bracket algebra:
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– Fundamental formulas:

a1a2 · · · aka1 = 2
k∑

i=2

(−1)ia1 · ai (a2 · · · ǎi · · · aka1). (3.7)

In particular, a1a2a3a1 = −a1a3a2a1.
– Expansion formulas:

1
2
[a1a2a3a4a1a5 · · · a2l+5]

= 〈a1a2a3a4〉 [a1a5 · · · a2l+5] + [a1a2a3a4] 〈a1a5 · · · a2l+5〉,
1
2
〈a1a2a3a4a1a5 · · · a2l+5〉

= 〈a1a2a3a4〉 〈a1a5 · · · a2l+5〉 − [a1a2a3a4] [a1a5 · · · a2l+5],
1
2
[a1a2a3a1a4a5a1a6 · · · a2l+6]

= [a1a2a3a1a4a5]〈a1a6 · · · a2l+6〉+ 〈a1a2a3a1a4a5〉[a1a6 · · · a2l+6],
1
2
〈a1a2a3a1a4a5a1a6 · · · a2l+6〉

= 〈a1a2a3a1a4a5〉〈a1a6 · · · a2l+6〉 − [a1a2a3a1a4a5][a1a6 · · · a2l+6].
(3.8)

– Distribution formulas:

1
2
[a1a2a4a5][a3a1a2a3a4a5] = a1 · a2 [a1a3a4a5][a2a3a4a5]

−a4 · a5 [a1a2a3a4][a1a2a3a5],
1
2
[a1a2a4a5]〈a3a1a2a3a4a5〉 = a1 · a2 [a1a3a4a5]〈a2a3a4a5〉

+a4 · a5 〈a1a2a3a4〉[a1a2a3a5].

(3.9)

– Factorization formulas:
Group 1.

a2 · a3[a1a2a5a6][a3a4a5a6] + a5 · a6[a1a2a3a6][a2a3a4a5]

= −1
2
[a1a2a3a4a5a6][a2a3a5a6],

a2 · a3[a1a2a5a6]〈a3a4a5a6〉 − a5 · a6[a1a2a3a6]〈a2a3a4a5〉

= −1
2
〈a1a2a3a4a5a6〉[a2a3a5a6].

(3.10)

Group 2.

〈a1a2a3a4〉[a1a2a3a1a5a6]− 〈a1a2a3a1a5a6〉[a1a2a3a4]
= −2a1 · a2 a2 · a3[a1a3a4a1a5a6],

〈a1a2a3a4〉〈a1a2a3a1a5a6〉+ [a1a2a3a1a5a6][a1a2a3a4]
= −2a1 · a2 a2 · a3〈a1a3a4a1a5a6〉.

(3.11)
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Group 3.

a2 · a3[a1a2a5a6][a1a2a5a1a3a4]− a2 · a5[a1a2a3a4][a1a2a3a1a5a6]

=
1

2
[a1a2a3a4a1a2a5a6][a1a2a3a5],

a2 · a3〈a1a2a5a6〉[a1a2a5a1a3a4]− a2 · a5[a1a2a3a4]〈a1a2a3a1a5a6〉

=
1

2
〈a1a2a3a4a1a2a5a6〉[a1a2a3a5].

(3.12)

4 The Five-Circle Theorem: Elimination

We are now equipped with all necessary algebraic tools to prove the 5-circle
theorem. In order to simplify the proof, we need to make some symmetry analysis
of the geometric configuration of the theorem before the formal start of the proof.

– The conclusion that a, b, c, d are cocircular can be represented by [abcd] =
0. We need to compute the expressions of a,b, c,d by the 5 free points
A,B,C,D,E. Since [abcd] = [(a ∧ b) ∧ (c ∧ d)], we need to compute a ∧ b
and c ∧ d.

– If a = f(A,1,5,B,E) = g(A,C,D,B,E), then since points a, b are sym-
metric with respect to line 1D combinatorially, it must be that

b = f(B,1,2,A,C) = g(B,E,D,A,C), (4.1)

i.e., b can be derived from a by the interchanges A ←→ B and C ←→ E.
– Since (d, c) and (a, b) are symmetric with respect to line 2E combinatorially,

if we have obtained a ∧ b = f(1,2,5,A,B,C,D,E) = g(A,B,C,D,E),
then we can get directly

c ∧ d = −f(3,2,4,D,C,B,A,E) = −g(D,C,B,A,E). (4.2)

Thus, the first stage of the proof, i.e., elimination, should contain the following
steps: (1) compute a, (2) compute b by interchanges of symbols, then compute
a ∧ b, (3) compute c · d by interchanges of symbols, then compute [abcd]. In
this stage, computation means the elimination of 1, · · · ,5.

Step 1. Compute a = AB1 ∩AE5: We express a as a linear combination of
A,B,1 instead of A,E,5 in order to employ the symmetry between a and b.

a = B · 1 [AE5B][AE51]A− 1
2
[AE51][AB1AE5]B +

1
2
[AE5B][AB1AE5]1.

(4.3)

To eliminate 1,5 from the brackets, in A ·1 we use 1 = 1(e,A,E) and (2.4),
and in B · 1 we use 1 = 1(e,B,C). The results are two bracket monomials. In
[AE5B] we use 5 = 5(e,A,B) so that A,B in the bracket annihilate the same
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vector symbols in the representation of 5, leading to a bracket monomial result.
Similarly, in [AE51] we use 1 = 1(e,A,E), and either of 5 = 5(e,A,B) and
5 = 5(e,D,E). We get

[AE51] = −A ·E [eABC][eABE][eADE][eBCE][AB;DE],

[AE5B] = −A ·B [eABE][eADE][eBDE],

A · 1 = e ·EA ·E [eABC]2,

B · 1 = e ·CB ·C [eABE]2,

and

−1
2
[AB1AE5]

= A ·B[AE51]−A · 1[AE5B]

= A ·BA ·E [eABC][eABE][eADE]
(−[eBCE][AB;DE] + e ·E [eABC][eBDE])

= A ·BA ·E [eABC][eABE][eADE]
(e ·D[eABE][eBCE]− e ·E[eABD][eBCE] + e ·E [eABC][eBDE])

= A ·BA ·E [eABC][eABE][eADE]
(e ·D[eABE][eBCE]− e ·E[eABE][eBCD])

= A ·BA ·E [eABC][eABE]2[eADE][BC;DE].

The next to the last step is based on a Grassmann-Plücker relation [10]:

−e ·E[eABD][eBCE] + e · E [eABC][eBDE] =−e · E[eABE][eBCD]. (4.4)

After removing8 common bracket factors A·BA·E [eABC][eABE]3[eADE],
we get

a = e ·CB ·C [eABE][eBCE][eBDE][AB;DE]A

+ A ·E [eABC][eBCE][AB;DE][BC;DE]B

−A ·B [eBDE][BC;DE]1.

(4.5)

Step 2. Compute b = AB1 ∩BC2 and a ∧ b:

b = B ·C [eABE][eACE][AB;CD][EA;CD]A

− e ·EA ·E [eABC][eACD][eACE][AB;CD]B

+ A ·B [eACD][EA;CD]1

(4.6)

and a ∧ b = λABA ∧B + λA1A ∧ 1 + λB1B ∧ 1, where

λAB = −A ·EB ·C [eABC][eABE][eACE][eBCE][eCDE][AB;CD]
[AB;DE][D;AC;BE],

λA1 = −A ·BB ·C [eABC][eABE][eBDE][eCDE][EA;CD][A;CE;DB],

λB1 = A ·BA ·E [eABC][eABE][eACD][eCDE][BC;DE][B;DA;EC].
(4.7)
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After removing 4 common factors [eABC][eABE][eCDE][D;AC;BE], we
get

a ∧ b = −A ·EB ·C [eACE][eBCE][AB;CD][AB;DE]A ∧B
+A ·BB ·C [eBDE][EA;CD]A ∧ 1
+A ·BA ·E [eACD][BC;DE]B ∧ 1.

(4.8)

Step 3. Compute c ∧ d and[abcd]:

c ∧ d = λCDC ∧D + λC3C ∧ 3 + λD3D ∧ 3

= B ·CD ·E [eBCE][eBDE][AB;CD][EA;CD]C ∧D
+C ·DD ·E [eABD][EA;BC]C ∧ 3
+B ·CC ·D [eACE][AB;DE]D ∧ 3

(4.9)

and

[abcd] = λABλCD[ABCD] + λABλC3[ABC3] + λABλD3[ABD3]
+λA1λCD[A1CD] + λA1λC3[A1C3] + λA1λD3[A1D3]
+λB1λCD[B1CD] + λB1λC3[B1C3] + λB1λD3[B1D3].

(4.10)

Here λAB , λA1, λB1 denote the coefficients of A ∧B,A ∧ 1,B ∧ 1 in (4.8).
After eliminating 1,3 from (4.10), using the first of the distribution formulas

(3.9) to get rid of the square brackets not involving e, then removing 5 common

bracket factors (B · C)2 [eACE][eBCE][eBDE], we get an expression of 14
terms:

[abcd]

= A ·EC ·DD ·E[AB;CD][AB;DE][EA;CD][eBCE][eABC][eABD]

−A ·BA ·ED ·E[AB;CD][AB;DE][EA;CD][eACD][eBCD][eBCE]

−A ·EC ·DD ·E[AB;CD][AB;DE][EA;BC][eABC][eABD][eCDE]

−A ·EB ·CC ·D[AB;CD][AB;DE]2[eABD][eACE][eCDE]

+ A ·E (C ·D)2[AB;DE]2[BC;DE][eABC][eABD][eACE]

−A ·BA ·EC ·D[AB;DE]2[BC;DE][eACD][eACE][eBCD]

+ A ·BB ·CD ·E[AB;CD][EA;CD]2[eABE][eACD][eBDE]

+ A ·BC ·DD ·E[EA;BC][EA;CD]2[eABC][eABD][eBDE]

− (A ·B)2 D ·E[EA;BC][EA;CD]2[eACD][eBCD][eBDE]

+ A ·BA ·EC ·D[AB;DE][EA;CD][BC;DE][eABC][eADE][eBCD]

−A ·BC ·DD ·E[AB;DE][EA;BC][EA;CD][eABC][eADE][eBCD]

+ A ·BA ·ED ·E[AB;CD][EA;CD][BC;DE][eABE][eACD][eBCD]

+ e ·BA ·BC ·DD ·E[EA;BC][EA;CD][eABC][eABD][eADE][eCDE]

− e ·CA ·BA ·EC ·D[AB;DE][BC;DE][eABE][eACD][eADE][eBCD].
(4.11)
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5 The Five-Circle Theorem: Simplification

On a Pentium III/500MHz, setting A = (0, 0), B = (1, 0), we get zero from (4.11)
in 0.315 seconds. This is pretty satisfactory for a machine proof. However, we
shall show that by means of the term reduction and factorization techniques in
null bracket algebra, we can get zero from (4.11) in two steps of term collection
without resorting to either coordinate representation or computer program.

Step 4. Grouping terms on the right side of (4.11) according to the inner
products not involving e, we can reduce the number of terms to 6 by factorization
within each group of terms:

(1) A ·EC ·DD ·E[AB;CD][AB;DE][EA;CD][eBCE][eABC][eABD]
−A ·EC ·DD ·E[AB;CD][AB;DE][EA;BC][eABC][eABD][eCDE]

= e ·EA ·EC ·DD ·E[AB;CD][AB;DE][eABC][eABD][eACE][eBCD];

(2) −A ·BA ·ED ·E[AB;CD][AB;DE][EA;CD][eACD][eBCD][eBCE]
+A ·BA ·ED ·E[AB;CD][EA;CD][BC;DE][eABE][eACD][eBCD]

=− e ·EA ·BA ·ED ·E[AB;CD][EA;CD][eABC][eACD][eBCD][eBDE];

(3) −A ·BA ·EC ·D[AB;DE][BC;DE][AB;DE][eACD][eACE][eBCD]
+A ·BA ·EC ·D[AB;DE][EA;CD][BC;DE][eABC][eADE][eBCD]
−e ·CA ·BA ·EC ·D[AB;DE][BC;DE][eABE][eACD][eADE][eBCD]

= A ·BA ·EC ·D[AB;DE][BC;DE][eBCD]
([AB;CD][eACE][eADE]− [AB;DE][eACD][eACE])

=− e ·AA ·BA ·EC ·D[AB;DE][BC;DE][eABD][eACE][eBCD][eCDE];

(4) A ·BC ·DD ·E[EA;BC][EA;CD][EA;CD][eABC][eABD][eBDE]
−A ·BC ·DD ·E[AB;DE][EA;BC][EA;CD][eABC][eADE][eBCD]

+e ·BA ·BC ·DD ·E[EA;BC][EA;CD][eABC][eABD][eADE][eCDE]

= A ·BC ·DD ·E[EA;BC][EA;CD][eABC]
(−[AB;CD][eADE][eBDE] + [EA;CD][eABD][eBDE])

= e ·DA ·BC ·DD ·E[EA;BC][EA;CD][eABC][eABE][eACD][eBDE];

(5) −A ·EB ·CC ·D[AB;CD][AB;DE]2[eABD][eACE][eCDE]
+A ·EC ·DC ·D[AB;DE]2[BC;DE][eABC][eABD][eACE]

= −
1

4
A ·EC ·D[AB;DE]2[eCBAeCDE][eABD][eACE][eBCD];

(6) A ·BB ·CD ·E[AB;CD][EA;CD]2[eABE][eACD][eBDE]
−A ·BA ·BD ·E[EA;BC][EA;CD]2[eACD][eBCD][eBDE]

= −
1

4
A ·BD ·E[EA;CD]2[eCBAeCDE][eABC][eACD][eBDE].
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In factorization (5) and (6), we have used the first of formulas (3.12). The
result after the term reduction is

[abcd]

= e ·EA ·EC ·DD ·E[AB;CD][AB;DE][eABC][eABD][eACE][eBCD]

− e ·EA ·BA ·ED ·E[AB;CD][EA;CD][eABC][eACD][eBCD][eBDE]

− e ·AA ·BA ·EC ·D[AB;DE][BC;DE][eABD][eACE][eBCD][eCDE]

+ e ·DA ·BC ·DD ·E[EA;BC][EA;CD][eABC][eABE][eACD][eBDE]

− 1
4
A ·EC ·D[AB;DE]2[eCBAeCDE][eABD][eACE][eBCD]

− 1
4
A ·BD ·E[EA;CD]2[eCBAeCDE][eABC][eACD][eBDE].

(5.12)
Step 5. Grouping terms on the right side of (5.12) according to the inner

products not involving e and doing factorization within each group of terms,
using the first of formulas (3.8) and (3.11), we get zero from each group, thus
finishing the proof of the theorem.

(a) e ·EA ·EC ·DD ·E[AB;CD][AB;DE][eABC][eABD][eACE][eBCD]
−e ·AA ·BA ·EC ·D[AB;DE][BC;DE][eABD][eACE][eBCD][eCDE]

−1
4
A ·EC ·D[AB;DE][AB;DE][eCBAeCDE][eABD][eACE][eBCD]

=
1
2
A ·EC ·D[AB;DE][eABD][eACE][eBCD]

(2 e ·ED ·E[AB;CD][eABC] + 〈eCDE〉[AB;DE][eABC]
−2 e ·AA ·B[BC;DE][eCDE]− 〈eABC〉[AB;DE][eCDE])

= 0;

(b)−e ·EA ·BA ·ED ·E[AB;CD][EA;CD][eABC][eACD][eBCD][eBDE]
+e ·DA ·BC ·DD ·E[EA;BC][EA;CD][eABC][eABE][eACD][eBDE]

−1
4
A ·BD ·E[EA;CD][EA;CD][eCBAeCDE][eABC][eACD][eBDE]

=
1
2
A ·BD ·E[EA;CD][eABC][eACD][eBDE]

(−2 e ·EA ·E[AB;CD][eBCD]− 〈eEAB〉[EA;CD][eBCD]
+2 e ·DC ·D[EA;BC][eABE] + 〈eBCD〉[EA;CD][eABE])

= 0.

Step 6. Nondegeneracy conditions: The above algebraic proof is valid
under the assumption that ABC,BCD,CDE,DEA,EAB are triplets of non-
collinear points, i.e., the pentagon is nondegenerate.
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6 Conclusion

In this paper, we present the details of an algebraic proof of Miquel’s 5-circle
theorem. The proof shows that tremendous simplification by using conformal
geometric algebra and null bracket algebra, in that the expressions can be more
easily factored, and the number of terms can be more easily reduced. The major
idea behind the simplification is breefs, which in this example is:

– Eliminate constrained points within each bracket.
– Choose suitable elimination rules to make the number of terms after the

elimination as small as possible.
– Group terms by inner products, preferably those not involving e, before

doing factorization.
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On Averaging in Clifford Groups�

Sven Buchholz and Gerald Sommer
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Abstract. Averaging measured data is an important issue in computer
vision and robotics. Integrating the pose of an object measured with
multiple cameras into a single mean pose is one such example. In many
applications data does not belong to a vector space. Instead, data often
belongs to a non-linear group manifold as it is the case for orientation
data and the group of three-dimensional rotations SO(3). Averaging on
the manifold requires the utilization of the associated Riemannian met-
ric resulting in a rather complicated task. Therefore the Euclidean mean
with best orthogonal projection is often used as an approximation. In
SO(3) this can be done by rotation matrices or quaternions. Clifford
algebra as a generalization of quaternions allows a general treatment of
such approximated averaging for all classical groups. Results for the two-
dimensional Lorentz group SO(1, 2) and the related groups SL(2, IR) and
SU(1, 1) are presented. The advantage of the proposed Clifford frame-
work lies in its compactness and easiness of use.

1 Introduction

Averaging measured data is one of the most frequently arising problems in
many different applications. For example, integrating the pose of an object
measured with multiple cameras into a single mean pose is a standard task
in computer vision. Feature–based registration of images would be another such
example. The original motivation for this paper has been the following. In a
neural network where every neuron represents a geometric transformation, say
three–dimensional rotation, one has to average over several neurons in order to
adjust the network topology to new presented data.

Surely, averaging data belonging to some vector space is rather trivial. For a
set of points {x}n

i one only has to calculate the barycentre

A =
1
n

n∑
i=1

xi . (1)

In IRd this also minimizes the sum of the squared distances to the given points.
Because of that variational property, (1) is then also called the arithmetic mean.
Distance here refers of course to the usual Euclidean metric dE(·, ·) yielding
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A = arg min
x∈IRd

n∑
i=1

dE(x, xi)2 . (2)

All of the examples given above, however, involve data which does not belong to
a vector space. Rather, the data are elements of a group, like SO(3) as for the
case of three–dimensional rotations. In fact one therefore has to deal with non–
linear manifolds having different geometrical structure than that of “flat” vector
spaces. So let M be a matrix group. Then the Riemannian distance between two
group elements is given by

dR(G1, G2) =
1√
2
‖ log(GT

1 , G2)‖ , (3)

where log refers to matrix logarithm and the usual Frobenius norm is applied
(see e.g. [5]). The Riemannian metric (3) measures the length of the shortest
geodesic connecting G1 and G2. Since every group acts transitively on itself
there is a closed form solution to that. However, the shortest geodesic may not
be unique. The Riemannian mean associated with (3) now reads

R = arg min
G∈M

n∑
i=1

‖ log(GT
i , G)‖2 . (4)

For many important groups solving (4) analytically is not possible. Recently,
in [11] it was proven that there is no closed form solution of (4) for SO(3).
Therein it was also demonstrated that Riemannian averaging is already a very
hard problem for one–parameter subgroups of SO(3).

As an alternative to computing the Riemannian mean, approximative em-
bedding techniques are well established (see e.g. [4]). The basic idea is to embed
the data into a larger vector space in which operations are then performed, and
project the result back onto the manifold. Technically, one thereby performs
constrained optimization and usually uses orthogonal projection. Both aspects
are treaded extensively in [3]. The natural embedding for a matrix group is of
course the covering general linear group GL(n), which in turn is also a vector
space. Hence the Frobenius norm induces the following metric on GL(n)

dF (G1, G2) = ‖G1 −G2‖ . (5)

Associated with (5) is the mean

E = arg min
G∈M

n∑
i=1

‖Gi −G)‖2 , (6)

which will be termed Euclidean mean from now on. Note that without back–
projection E does not have to be an element of M.

Whenever the group M is a differentiable manifold, i.e. a Lie group, there is a
further alternative for an approximation of the Riemannian meanR (4). Roughly
speaking, the Riemannian distance in the Lie group can be approximated by the
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Euclidean distance in the corresponding Lie algebra. This is done by virtue of
the famous Baker–Campbell–Hausdorff formula [8]. The whole method is very
common in robotics [13]. A recent example for its use for motion estimation
is [6].

This paper, however, concentrates on the study of Clifford groups for approx-
imating the Riemannian mean R. It is well known, that any three–dimensional
rotation can be represented by a rotation matrix or a unit quaternion (among
other possible representations like Euler angles). Unit quaternions do form a
group which acts by a two–sided operation. That way a different Riemannian
mean approximation results than the one induced by rotation matrices. Unit
quaternions are a particularly example of a Clifford group. In fact all classical
groups do have a covering Clifford group. Hence the Clifford algebra framework
offers a general alternative for averaging on such groups.

The remainder of this paper is organized as follows. In section 2 we briefly
present basic facts about Clifford groups. This is then followed in section 3
by reviewing what is known about averaging on SO(3) using both rotations
matrices and unit quaternions. Additionally, an experimental comparison of the
two approaches for noisy data is presented. Averaging on the two–dimensional
Lorenz group SO(1, 2) and its covering Clifford group Γ1,2 is discussed in section
4. Therein a closer look on the related groups SL(2, IR) and SU(1, 1) is also
provided. The paper finishes with some concluding remarks.

2 Clifford Groups

Associated with every Clifford algebra there is the so–called Clifford group (or
Lipschitz group) formed by all of its invertible elements. A Clifford algebra can
be constructed from a quadratic space. Here we are particularly interested in
real quadratic spaces IRp,q , meaning IRp+q equipped with a quadratic form Q
of signature (p, q).

Definition 1 ([10]). An associative algebra over IR with unity 1 is the Clifford
algebra Cp,q of IRp,q if it contains IRp+q and 1 · IR = IR as distinct subspaces so
that
(a) x2 = Q(x) for any x ∈ IRp+q

(b) IRp+q generates Cp,q

(c) Cp,q is not generated by any proper subspace of IRp+q .

Let {e1, e2, . . . , en} be an orthonormal basis of IRp,q . Then the following relations
hold

e2i = 1, 1 ≤ i ≤ p, e2i = −1, p < i ≤ n eiej = −ejei, i < j . (7)

That way an algebra of dimension 2n is generated (putting e0 = 1). The canonical
basis of a Clifford algebra is therefore formed by

Bμ = ej1ej2 · · · ejr
, 1 ≤ j1 < . . . jr ≤ p+ q . (8)
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Those basis vectors which consist of an even number of factors do form a subal-
gebra. This subalgebra C+

p,q is called the even part of Cp,q.
For Clifford algebras the following isomorphisms hold

C0,0
∼= IR (9a)

C0,1
∼= C (9b)

C0,2
∼= IH , (9c)

with C denoting complex numbers and IH denoting quaternions as usual. The
embedding used in Definition 1 (a) above can be made more explicit as follows.
Define

α : IRp+q → Cp,q , x → x =
n∑

i=1

xiei (10)

and identify IRp+q with its image under that mapping. The elements α(IRp+q)
are termed vectors again. All invertible vectors (x2 �= 0) already generate the
Clifford group. For a more revealing characterization the following two mappings
are required. Inversion, which is an automorphism, is defined by x̂ = −x and
âb = âb̂. Reversion is an anti–automorphism defined by x̃ = x and ãb = b̃ã.
Using (8) these mappings become

B̂μ = (−1)rBμ B̃μ = (−1)
r(r−1)

2 Bμ . (11)

Definition 2. The Clifford group associated with the Clifford algebra Cp,q is
defined by

Γp,q = {s ∈ Cp,q | ∀x ∈ IRp,q , sxŝ−1 ∈ IRp,q} .
Hence the Clifford group is determined by its two–sided action on vectors. Fur-
thermore the map x → sxŝ−1 is an orthogonal automorphism of IRp,q [12].

Normalizing the Clifford group Γp,q yields

Pin(p, q) = {s ∈ Γp,q | ss̃ = ±1} . (12)

The group Pin(p, q) is a two–fold covering of the orthogonal group O(p, q).
Further subgroups of Pin(p, q) are

Spin(p, q) = Pin(p, q) ∩ C+
p,q (13)

and
Spin+(p, q) = {s ∈ Spin(p, q) | ss̃ = 1} . (14)

Both groups are again two–fold covers of their classical counterparts. The whole
situation can be summarized as

Pin(p, q)\{±1} ∼= O(p, q) (15a)
Spin(p, q)\{±1} ∼= SO(p, q) (15b)

Spin+(p, q)\{±1} ∼= SO+(p, q) . (15c)
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Thereby SO+(p, q) is formed by those elements which are connected with the
identity. This does not carry over to the covering groups, i.e. Spin+(p, q) does
not have to be connected [10]. In case of q = 0 one has SO+(p, 0) = SO(p, 0)
and Spin+(p, 0) = Spin(p, 0) (analogously for q = 0). Further on we simply write
SO(p) and Spin(p) then. Finally note that every Lie group can be represented
as spin group [2]. Hence averaging using Lie methods is also possible inside the
Clifford framework.

3 Averaging on Spin(3) and SO(3)

The already mentioned group of unit quaternions is isomorphic to the three–
sphere S3. The latter, in turn, being isomorphic to the group Spin(3). Addition-
ally C+

0,3
∼= C0,2

∼= IH yields, and therefore averaging rotations using Spin(3) is the
same as if using quaternions. To remain consistent everything in the following
will be denoted in terms of Spin(3).

Before actually turning to the problem of averaging rotations, a more theo-
retical remark may be in order. The group Spin(3) can also be used for averaging
on the three-sphere, which of course can not be done by using rotation matrices.
On the other hand no disadvantage results from the fact that Spin(3) is a two–
fold cover of SO(3). Formally, some care has to be taken due to the existence of
antipodal points (s,−s ∈ Spin(3) induce the same rotation). A consistent set of
group elements, however, can always be chosen easily if necessary.

As for representing rotations itself, the Euclidean mean can be defined both
in terms of SO(3)

ESO(3) = arg min
R∈SO(3)

n∑
i=1

‖Ri −R)‖2 (16)

and Spin(3)

ESpin(3) = arg min
s∈Spin(3)

n∑
i=1

‖si − s)‖2 . (17)

For the latter note that every Clifford algebra is of course also a real vector
space. The following was derived (using quaternions) in [7] for the Euclidean
mean on Spin(3)

ESpin(3) = arg max
s∈Spin(3)

n∑
i=1

ssi = arg max
s∈Spin(3)

s
n∑

i=1

si =
∑n

i=1 si

‖
∑n

i=1 si‖2
(18)

which is the ordinary arithmetic mean with normalization. Solving for the matrix
mean (16) is a special case of the famous Procrustes problem yielding

ESO(3) = arg max
R∈SO(3)

n∑
i=1

tr(RTRi) = arg max
R∈SO(3)

tr(RT
n∑

i=1

Ri)

= arg max
R∈SO(3)

tr
(
RT

∑n
i=1Ri

n

)
, (19)
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which is the orthogonal projection of the arithmetic mean onto SO(3). The
actual solution can then be obtained by using Singular Value Decomposition
(SVD). This, although not too complicated, is somehow more costly than simple
normalization as in (18). Moreover the two discussed approximation methods
for the Riemannian mean are indeed based on different linearizations.

A rotation is represented in the algebra C0,2 as

cos(
φ

2
)e0 + sin(

φ

2
)(xe1 + ye2 + ze1e2) , (20)

with (x, y, z) being the rotation axis and θ being the angle of rotation. Since
every Clifford group operates by a two–sided action (see Definition 2 again) the
approximation (18) is based on half the angle θ. Contrary, every matrix group
acts by ordinary matrix multiplication and the approximation (16) is therefore
based on the whole angle θ. An experimental comparison of the two methods
have been already provided in [7] using a Gaussian sampling for the angle and
a uniform one for the axis. Both methods have been reported as equally very
good. In our opinion a Gaussian sampling for both parameter types seems to be
at least as realistic.

For demonstration a little experiment on synthetic data has been carried
out. The sample size is set to 20, the mean is set to [1, 2, 3, 4]/‖[1, 2, 3, 4]‖ with
standard deviation of 0.2 (first setup) and 0.5 (second setup). Each setup is re-
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Fig. 1. Abbreviation of the approximated mean from the Riemannian mean for stan-
dard deviation of 0.2 (top) and 0.5 (bottom). See text for details
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peated 30 times. The true Riemannian mean is computed by using non–linear
optimization from MATLAB. The angle of the rotation transforming the approxi-
mated mean into the Riemannian mean is used as error measure. The obtained
results are shown in Fig. 1.

The average error in the small standard deviation setup is 0.83 deg. for
Spin(3) averaging versus 1.13 deg. for SO(3) averaging. Both values are very
good and the difference is rather insignificant. For the larger standard deviation
setup the value for Spin(3) is 2.17 deg. compared to 3.98 deg. for SO(3). Here
the difference is obviously noticeable. All in all in our chosen setup averaging
using Spin(3) seems therefore preferable.

Approximating the Riemannian mean using the aforementioned projected
Euclidean means works quite nice for three–dimensional rotations in reasonable
setups (taken into consideration both [7] and the above experiment). One pre-
requisite for any approximation to make sense is of course that the entity being
approximated makes sense itself. The Riemannian metric (shortest geodesic) for
three–dimensional rotation does. For example, it is bi–invariant [11]. For the
Special Euclidean group SE(3), of which SO(3) is a subgroup, however, no bi–
invariant metric does exist [1].

4 Averaging on Spin(1,2) and SO(1, 2)

When not familiar with Clifford algebra everything about quaternions seems to
be quite exceptional at first sight. As we have seen this is not true. All Clifford
groups do operate in the same way by a two–sided action yielding an orthogonal
automorphism. Hence there is also a general treatment of averaging on other
orthogonal (sub–)groups in terms of Clifford algebra. Quaternions being just
one example. Another such example will be studied in this section. In oder to
simplify notations we will use the canonical ordered basis derivable from (8) do
denote elements of a Clifford algebra. That is we just write (a, b, c, d) ∈ C0,2

instead of ae0 + be1 + ce2 + de1e2, for example.
In the following we want to study the two–dimensional Lorentz group SO(1,2).

As shown in [9] this group comes into play whenever measurements with respect
to motion are (realistically) considered as taking their own time. The group
SO(1,2) has time dimension (t) and spatial dimension (x, y) leaving invariant
the scalar product

< (t, x, y), (t′, x′y′) >= tt′ − xx′ − yy′ . (21)

More precisely, it is formed by those 3× 3 matrices with determinant one which
preserve (21). Geometrically, everything about SO(1,2) is related to cones. An
important example being the future cone {(t, x, y) | t2 − x2 − y2 ≥ 0, t ≥ 0}.

The group SO(1,2) has the two well known covering groups SU(1,1) and
SL(2, IR), which are defined by{(

y1 y2

y2 y1

)
| y1, y2 ∈ C, |y1|2 − |y2|2 = 1

}
, (22)

and
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{(
a b
c d

)
| a, b, c, d ∈ IR, ad − bc = 1

}
, (23)

respectively. Using the Euclidean mean as approximation for the Riemannian
mean requires to project the arithmetic mean onto the manifold. This, yet, is
a rather complicated problem for SO(1,2) since the orthogonality condition is
now RRT = diag(1,−1,−1). Of course things are easier using SL(2, IR) instead.
In that case, however, there is no need to use a matrix group at all since the
following relations hold

SL(2, IR) ∼= SU(1, 1) ∼= Spin(1, 2) , (24)

the latter being a two–fold cover of SO(1,2) by definition. Hence as abstract
groups all groups in question are isomorphic. Moreover, the different represen-
tations as elements of the Clifford algebra C1,2 do only differ by permutation.
That can be easily checked using the fact C1,2

∼= C(2), where C(2) denotes the

space of all complex 2×2 matrices. A matrix
(
a b
c d

)
∈ SL(2, IR) is represented

in C1,2 by
1
2
(a+ d, b+ c, 0, c− b, 0, a− d, 0, 0) . (25)

Setting y1 = 1
2 ((a + d) + i(b − c)) and y2 = 1

2 ((b + c) − i(d − a)) yields the
corresponding SU(1,1) matrix, which in turn is represented by

1
2
(a+ d, b+ c, b+ c,−(c− b), 0, d− a, 0, 0) . (26)

Hence all groups have essentially the same representation in the Clifford algebra
C1,2. Furthermore the Euclidean means

ESpin(1,2) = arg min
s∈Spin(1,2)

n∑
i=1

‖si − s)‖2 (27a)

ESL(2,IR = arg min
R∈SL(2,IR)

n∑
i=1

‖Ri −R)‖2 (27b)

ESU(1,1) = arg min
U∈SU(1,1)

n∑
i=1

‖Ui − U)‖2 (27c)

are then also identical and can be computed all inside the algebra C1,2 just by
simple normalization ∑n

i=1mi

‖
∑n

i=1mi‖2
, (28)

with mi = si, mi = Ri, or mi = Ui accordingly to the cases in (27). Moreover,
everything could also been carried out in the algebra C3,0, which is isomorphic
to C1,2. For example,

1
2
(a+ d, 0, b+ c, d− a, 0, 0, b− c, 0) (29)
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corresponds to (25). In the following we will only consider the group Spin(1,2).
In oder to evaluate the quality of approximation by (28) the Riemannian mean
has to be studied first a little bit closer. Formally, (4) does apply again. So we
are rather looking for a parameterization of SO(1,2). One such parameterization
is the Cartan decomposition SO(1,2)= KAK having factors

K =

⎛
⎝1 0 0

0 cosφ − sinφ
0 sinφ cosφ

⎞
⎠ and A =

⎛
⎝ coshψ 0 sinhψ

0 1 0
sinhψ 0 coshψ

⎞
⎠ . (30)

Again an experiment on synthetic data has been performed to compare the
approximated Euclidean mean on Spin(1,2) with the true Riemannian mean.
Both angles arising from the Cartan decomposition (30) have been sampled
using a Gaussian distribution. In the first experiment we used φ = 30 deg. and
ψ = 20 deg. as mean values and a standard deviation of 2 deg. in both cases for
a sample of size 30. The obtained results are separately reported for both angles
in Fig. 2.
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Fig. 2. Abbreviation of the approximated mean from the Riemannian mean for stan-
dard deviation of 2 deg. for φ (left) and ψ (right). See text for details

The results are quite good. The average error is 1.27 deg. for φ and 2.03 for ψ.
Using a standard deviation of both 5 deg. resulted in average errors of 2.56 and
3.87, respectively. As before the error was measured as angles of the transfor-
mation needed to carry over the approximated mean into the true Riemannian
one. The latter was computed using non–linear optimization from Matlab again.
From the obtained results averaging in Spin(1,2) seems to be a useful approxi-
mation method for practical applications.

5 Conclusions

In this paper we studied averaging in Clifford groups. More precisely, the approx-
imation of the Riemannian means by Euclidean means of such groups have been
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discussed. The Clifford algebra framework allows a general and elegant treatment
of averaging problems. The particular case of three–dimensional rotations has
been reviewed comparing averaging in SO(3) (rotation matrices) with averaging
in Spin(3) (unit quaternions). In the chosen setup the latter performed slightly
better. More important, the Euclidean mean is always easy to compute for a Clif-
ford group, namely by just performing normalization in the associated algebras.
This was further demonstrated on SO(1, 2), where it has been also demonstrated
how related groups can be handled in the same manner. The obtained results
suggest that Clifford algebra is a useful and flexible tool for averaging. Future
work will be on testing the proposed methods for particular neural networks in
practical applications. Also a comparison with common Lie algebra averaging
seems to be interesting. Studying the influence of embeddings like the conformal
model of Clifford algebra for averaging in SE(3) might also be worthwhile.
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Abstract. We state three combinatorial lemmas on Young tableaux,
and show their role in the proof of the triangularity theorem about the
action of Young-Capelli symmetrizers on symmetrized bitableaux. As an
application, we describe in detail the way to specialize general results
to the representation theory of the symmetric group and to classical
invariant theory.

1 Introduction

The theory of letterplace superalgebras, regarded as bimodules with respect to
the action of a pair of general linear Lie superalgebras, is a fairly general one, and
encompasses a variety of classical theories such as the ordinary representation
theory of the symmetric group, the representation theory of general linear and
symmetric groups over tensor spaces, as well as a substantial part of classical
algebraic invariant theory, to name but a few.

The purpose of the present work is twofold. On the one hand, we prove that
the general theory can be founded, by the systematic use of the superalgebraic
version of Capelli’s method of virtual variables, on a handful of combinatorial
lemmas on Young supertableaux; this fact should be regarded as an ultimate by-
product of the van der Waerden-von Neumann argument in the representation
theory of the symmetric group. On the other hand, we describe in detail the
way to specialize the general theory to two classical settings: the representation
theory of the symmetric group and the invariant theory of algebraic forms over
vector variables.

The paper is organized as follows. In section 2, we provide a survey of the
basics of the representation theory of general linear Lie superalgebras acting on
letterplace superalgebras. This theory gets its effectiveness from the superalge-
braic version of Capelli’s method of virtual variables. For an exposition of the
method of virtual variables, we refer the reader to our recent work [3].

We envision section 3 as the methodological core of the present contribution;
we state three combinatorial lemmas (whose proofs will be published elsewhere)
from which we derive in a rather immediate way the cornerstone of the gen-
eral theory, namely, the triangularity theorem about the action of Young-Capelli
symmetrizer operators on standard symmetrized bitableaux.
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By way of application, in section 4 we derive from the general theory a three
pages self-contained treatment of the whole theory of ordinary representations
of the symmetric group, up to the Young natural form of irreducible matrix
representations; in section 5, we prove a canonical form of the beautiful Capelli’s
polar expansion formula and briefly discuss its relevance in classical algebraic
invariant theory.

The authors thank Stefano Sarti for his valuable comments on the subject of
section 4.

2 The Letterplace Algebra as a Bimodule
pl(L) · Super[L|P ] · pl(P )

2.1 Letterplace Superalgebras

A signed set is a set A endowed with a signature map | | : A → Z2; the sets
A+ = {a ∈ A; |a| = 0} and A− = {a ∈ A; |a| = 1} are called the subsets of
positive and negative symbols, respectively.

In the following, we consider a pair of signed alphabets X = X− ∪X+ and
Y = Y − ∪Y + (X−, X+, Y −, Y + countable sets), that we call the letter alphabet
and the place alphabet, respectively. The letterplace alphabet

[X|Y ] = {(x|y); x ∈ X, y ∈ Y }

inherits a signature by setting |(x|y)| = |x|+ |y| ∈ Z2.
In the following, K will denote a field, char(K) = 0.
The letterplace K−superalgebra Super[X|Y ] is the quotient algebra of the

free associative K−algebra with 1 generated by the letterplace alphabet [X|Y ]
modulo the bilateral ideal generated by the elements of the form:

(x|y)(z|t)− (−1)(|x|+|y|)(|z|+|t|)(z|t)(x|y), x, z ∈ X, y, t ∈ Y.

Remarks

1. Super[X|Y ] is a commutative superalgebra (i.e., it is Z2−graded and super-
symmetric);

2. Super[X|Y ] is an N−graded algebra

Super[X|Y ] =
⊕
n∈N

Supern[X|Y ]

Supern[X|Y ] = 〈(xi1 |yi1)(xi2 |yi2) . . . (xin
|yin

), xih
∈ X, yjk

∈ Y 〉K;

3. the Z2−gradation and the N−gradation of Super[X|Y ] are coherent, that is

(Super[X|Y ])i =
⊕
n∈N

(Supern[X|Y ])i, i ∈ Z2.
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2.2 Superpolarization Operators

Let x′, x ∈ X. The superpolarization Dx′,x of the letter x to the letter x′ is
the unique left superderivation of Z2−grade |x′| + |x|, that is a linear operator
Dx′,x : Super[X|Y ] → Super[X|Y ] such that

Dx′,x(AB) = Dx′,x(A)B + (−1)(|x
′|+|x|)|A|ADx′,x(B),

for all monomials A,B ∈ Super[X|Y ], defined by the conditions

Dx′,x(z|t) = δx,z(x′|t),

for every (z|t) ∈ [X|Y ].
Here and in the following the Greek letter δ will denote the Kronecker symbol.
Let y′, y ∈ Y. The superpolarization y,y′D of the place y to the place y′ is

the unique right superderivation of Z2−grade |y′|+ |y|, that is a linear operator
(mirror notation) Super[X|Y ] ← Super[X|Y ] : y,y′D such that

(−1)(|y|+|y′|)|B|(A) y,y′DB +A(B) y,y′D = (AB) y,y′D,

for all monomials A,B ∈ Super[X|Y ], defined by the conditions

(z|t) y,y′D = δt,y(z|y′),

for every (z|t) ∈ [X|Y ].
We hardly need to recall that every letter-polarization operator commutes

with every place-polarization operator.
Let L = L+ ∪ L− ⊂ X and P = P+ ∪ P− ⊂ Y be finite subsets of the

“universal” letter and place alphabets X and Y, respectively. The elements x ∈ L
(y ∈ P ) are called proper letters (proper places), and the elements x ∈ X \L (y ∈
Y \ P ) are called virtual letters (places). The signed subset [L|P ] = {(x|y); x ∈
L, y ∈ P} ⊂ [X|Y ] is called a proper letterplace alphabet.

The Z2−graded subalgebra Super[L|P ] ⊂ Super[X|Y ] generated by the set
of proper letterplace variables [L|P ] is called the proper letterplace superalgebra
generated by the proper alphabets L and P.

2.3 General Linear Lie Superalgebras, Representation Theory and
Polarization Operators

Consider the (finite dimensional) general linear Lie superalgebras pl(L) and
pl(P ) associated to the finite signed subsets L and P, respectively, and their
Z2−homogeneous standard bases {Ex′x; x, x′ ∈ L} and {Ey′y; y, y′ ∈ P} (see
e.g. [3], [13]).

The (even) mappings

Ex′x → Dx′,x, x, x′ ∈ L, Ey′y → y,y′D, y, y′ ∈ P

induce Lie superalgebra actions of pl(L) and pl(P ) over any N−homogeneous
component Supern[L|P ] of the proper letterplace algebra.
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Furthermore, by the commutation property, Supern[L|P ] is a bimodule over
the universal enveloping algebras U(pl(L))) and U(pl(P )).

In the following, we will denote by Bn, nB the (finite dimensional) subalge-
bras of EndK(Supern[L|P ]) induced by the actions of U(pl(L)) and U(pl(P )),
respectively. The operator algebras Bn, nB are therefore the algebras generated
by the proper letter and place polarization operators (restricted to Supern[L|P ]),
respectively.

2.4 Young Tableux on a Signed Set: Basic Definitions

Assume that a finite signed linearly ordered set A = A+ ∪ A− is given. The
symbol Tab(A) will denote the set of all Young tableaux on A. The shape of a
tableau S ∈ Tab(A) is the partition λ = (λ1 ≥ λ2 ≥ . . .) whose parts λi are the
lengths of the rows of the tableau S and is denoted by the symbol sh(S); we
write sh(S) = λ  n to mean that the shape sh(S) is a partition of the integer
n. The content of a Young tableau T is the set of the symbols that appear in T,
together with their multiplicities.

A Young tableau S ∈ Tab(A) is called (super)standard when each row of S
is non-decreasing, with no repeated negative symbols, and each column of S is
non-decreasing, with no repeated positive symbols. The set of all the standard
tableaux over A is denoted by Stab(A). Consistently, we denote by Stabλ(A)
the set of all the standard tableaux S over A such that sh(S) = λ.

Let H(A) = {λ = (λ1 ≥ λ2 ≥ . . .); λr+1 < s + 1}, where r denotes the
cardinality of the set A+ and s denotes the cardinality of the set A−. We recall
that the set of standard tableaux of shape λ over A is non empty if and only if
λ ∈ H(A).

A tableau C is said to be of coDeruyts type whenever any two symbols in the
same row of C are equal, while any two symbols in the same column of C are
distinct. A tableau D is said to be of Deruyts type whenever any two symbols
in the same column of D are equal, while any two symbols in the same row of
D are distinct. In the following, the symbol C will denote a coDeruyts tableau
filled with virtual positive symbols, and the symbol D will denote a Deruyts
tableau filled with virtual negative symbols. In the formulas below, the shapes
of the tableaux C and D, and the fact that the virtual symbols were letter or
place symbols should be easily inferred from the context.

2.5 Symmtrized Bitableaux and Young-Capelli Symmetrizers

Given a Young tableau S ∈ Tab(A), by reading its entries from left to right and
from top to bottom, we get a word w(S) on A, called the row word of S.

Let T ∈ Tab(X), U ∈ Tab(Y ), with sh(T ) = sh(U)  n. The bitableau
monomial TU is defined as follows:

TU = (t1|u1)(t2|u2) . . . (tn|un) ∈ Supern[X|Y ],

where t1 . . . tn = w(T ) and u1 . . . un = w(U).
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Let S′, S ∈ Tab(X), with sh(S′) = sh(S)  n. The letter polarization mono-
mial of the tableau S to the tableau S′ is defined to be the K−linear operator

S′S = Dx′
1x1Dx′

2x2 . . .Dx′
nxn

∈ EndK[Supern[X|Y ]],

where x′1 . . . x
′
n = w(S′) and x1 . . . xn = w(S).

Let V, V ′ ∈ Tab(Y ), with sh(V ) = sh(V ′)  n. The place polarization mono-
mial of the tableau V to the tableau V ′ is defined to be the K−linear operator

V V ′ =y1y′
1
D y2y′

2
D . . . yny′

n
D ∈ EndK[Supern[X|Y ]],

where y1 . . . yn = w(V ) and y′1 . . . y
′
n = w(V ′).

Definition 1. (Right Symmetrized Bitableaux) For every λ  n and every T ∈
Tab(L), U ∈ Tab(P ), with sh(T ) = λ = sh(U), we define the right symmetrized
bitableau (T | U ) ∈ Supern[L|P ] by setting

(T | U ) = TC CD DU

where C is any virtual tableaux of coDeruyts type, D is any virtual tableaux of
Deruyts type, all of shape λ.

A quite useful (see section 3), but not trivial, fact is that symmetrized
bitableaux admit different equivalent definitions.

Proposition 1. For every λ  n and every T ∈ Tab(L), U ∈ Tab(P ), with
sh(T ) = λ = sh(U), we have

(T | U ) = TC1 C1D DU = TC CD DU = TC CD1 D1U

where C,C1 are any virtual tableaux of coDeruyts type, D,D1 are any virtual
tableaux of Deruyts type, all of shape λ.

The symmetrized bitableau (T | U ) is supersymmetric in the rows of T, i.e.
any transposition of two letters t′ and t in the same row of T gives rise to a
sign change (−1)|t

′||t|, and dual supersymmetric in the columns of U, i.e. any
transposition of two places u′ and u in the same column of U gives rise to a
sign change (−1)(|u

′|+1)(|u|+1). A symmetrized bitableau is called standard when
both its letter tableau and its place tableau are standard.

Theorem 1. (The Gordan–Capelli Basis [3]) The set of standard right sym-
metrized bitableaux (T | U ), with sh(T ) = sh(U)  n, is a K−linear basis of
Supern[L|P ].

Given an element f in Supern[L|P ], it can be expanded it into a linear
combination of the elements of the Gordan-Capelli basis:

f =
∑
λ�n

∑
T ∈ Stabλ(L)
U ∈ Stabλ(P )

cfT,U ( T |U), cfT,U ∈ K.

Such an expansion is called the Gordan-Capelli expansion of f .
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Definition 2. (Right Young-Capelli symmetrizers) Let λ  n and let S′, S ∈
Tab(L), with sh(S′) = λ = sh(S). The product of letter bitableau polarization
monomials S′C CD DS defines, by restriction, a linear operator

γn(S′, S ) = S′C CD DS ∈ EndK[Supern[L|P ]],

which is independent from the choice of the virtual tableau C of coDeruyts type
and of the virtual tableau D of Deruyts type. The operator γn(S′, S ) is called
a (right) Young–Capelli symmetrizer.

By the metatheoretic significance of the method of virtual variables (see,
e.g. [3]), the crucial fact is that γn(S′, S ) belongs to the subalgebra Bn, the
algebra generated by proper letter polarizations. In plain words, even though the
operator γn(S′, S ) is defined by using virtual variables, it admits presentations
involving only superpolarizations between proper letters.

A right Young–Capelli symmetrizer is called standard when both its tableaux
are standard.

We define a partial order on the set of all standard tableaux over L whose
shapes are partitions of a given integer n : for every standard tableau S, we
consider the sequence S(p) p = 1, 2, . . . , of the subtableaux obtained from S
by considering only the first p symbols of the alphabet, and consider the fam-
ily sh(S(p)), p = 1, 2, . . . , of the corresponding shapes. Since the alphabet is
assumed to be finite, this sequence is finite and its last term is sh(S). For stan-
dard tableaux S, T we set

S ≤ T ⇔ sh(S(p)) ≤ sh(T (p)), p = 1, 2, . . . ,

where ≤ stands for the dominance order on partitions. We recall that the domi-
nance order on the set of all the partitions of a given positive integer n is defined
as follows: λ = (λ1 ≥ λ2 ≥ . . .) ≤ μ = (μ1 ≥ μ2 ≥ . . .) if and only if

λ1 + · · ·+ λi ≤ μ1 + · · ·+ μi,

for every i = 1, 2, . . .

Theorem 2. (Triangularity Theorem, [3]) The action of standard Young–Capelli
symmetrizers on standard symmetrized bitableaux is given by

γn(S′, S )(T | U ) =
{
hλθ

D
ST (S′| U ), sh(S) = sh(T ) = λ

0 otherwise
,

where θD
ST are integers, θD

ST = 0 unless S ≥ T, θD
ST �= 0 for S = T, and hλ is a

non zero integer.

We claim that the integer hλ admits a deep combinatorial interpretation: hλ

is the product of the hook lengths of the shape λ (see e.g. [12], [10]).
Given any linear extension of the partial order defined above, the matrix

[θD
S,T ] is lower triangular with nonzero integral diagonal entries; the matrix

[�D
S,T ] = [θD

S,T ]−1

is called the Rutherford matrix.
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For every S′, S ∈ Stab(L), with sh(S′) = sh(S) = λ  n, we define the
orthonormal generator Yn(S′, S ) ∈ Bn by setting

Yn(S′, S ) =
1
hλ

∑
T∈Stab(L)

�D
ST γn(S′, T ).

From Theorem 2 and the definitions above, the next result immediately follows.

Theorem 3. The action of the orthonormal generators on the standard sym-
metrized bitableaux is given by

Yn(S′, S )(T | U ) = δS,T (S′| U );

therefore, the orthonormal generators Yn(S′, S ) form a K−linear basis of the
algebra Bn.

2.6 Complete Decomposition Theorems

In the following, given a subset E of a K− vector space, the symbol

〈E〉K

will denote the K− vector subspace spanned by the subset E.
As matter of fact, the following results are corollaries of Theorem 3.

Theorem 4. We have the following complete decomposition of Supern[L|P ] as
a module with respect to the action of the general linear Lie superalgebra pl(L) :

Supern[L|P ] =
⊕

λ∈H(L)∩H(P )
λ�n

⊕
T∈Stab(P )
sh(T )=λ

〈(S| T ), S ∈ Stab(L)〉K,

where the outer sum indicates the isotypic decomposition of the semisimple mod-
ule, and the inner sum describes a complete decomposition of each isotypic com-
ponent into irreducible submodules .

Given a standard tableau T ∈ Stab(P ), we recall that the Schur module ST is
the pl(L)−module defined as follows:

ST = 〈(S| T ), S ∈ Tab(L)〉K.

By using the straightening formula of Grosshans–Rota–Stein [9], it can be proved
that the set {(S| T ), S ∈ Stab(L)} is a K−linear basis of ST .

Therefore, the decomposition formula of Theorem 4 can be rewritten in the
more compact form:

Supern[L|P ] =
⊕

λ∈H(L)∩H(P )
λ�n

⊕
T∈Stab(P )
sh(T )=λ

ST .
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Theorem 5. We have the following complete decomposition of the operator al-
gebra Bn generated by the letter polarization operators acting on Supern[L|P ] :

Bn =
⊕

λ∈H(L)∩H(P )
λ�n

⊕
S∈Stab(L)
sh(S)=λ

〈Yn(S′, S ), S′ ∈ Stab(L)〉K,

where the outer sum indicates the isotypic components of the semisimple algebra,
and the inner sum describes a complete decomposition of each simple subalgebra
into minimal left ideals.

A significant and extremely useful (see, e.g., sect.5) alternative (“dual”) ver-
sion of the theory above can be obtained just by interchanging the roles of the
virtual tableaux D and C of Deruyts and coDeruyts type; this is an instance
of the Schur-Weyl duality. Specifically, we define the left symmetrized bitableau
( T |U) ∈ Supern[L|P ] by setting ( T |U) = TD DC CU and, consistently,

the left Young–Capelli symmetrizers γn( S′ , S) ∈ Bn by setting γn( S′ , S) =
S′D DC CS.

We have a “dual” version of the triangularity theorem:

γn( S′ , S)( T |U) =
{
hλθ

C
ST ( S′ |U), sh(S) = sh(T ) = λ

0 otherwise
,

where θC
ST = θD

TS .
Therefore, writing [�C

S,T ] for the matrix [θC
S,T ]−1, we set

Yn( S′ , S) =
1
hλ

∑
T∈Stab(L)

�C
ST γn( S′ , S).

and, obviously, we get

Yn( S′ , S)(( T |U) = δS,T (( S′ |U).

In closing this section, we submit that a completely parallel theory holds for
the operator algebra nB generated by the proper place polarization operators
acting on Supern[L|P ]. As a consequence, we immediately get:

Theorem 6. (The Double Commutator Theorem) The subalgebras Bn and nB
of EndK(Supern[L|P ]) are the centralizer of each other.

3 Combinatorial Foundations

In the following, we will use the dominance (partial) order for shapes and the
(partial) order defined in the previous section for standard tableaux.

Lemma 1. (A Gale-Ryser type Lemma) Let AB be a letterplace monomial with
all letters negative and all places positive, let D be a Deruyts tableau of the same
content of A, and C be a coDeruyts tableau of the same content of B. We have
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1. if sh(D) �≥ sh(C), then AB = 0;
2. if sh(D) = sh(C), then AB = η DC, where DC �= 0 and η ∈ {0,±1}.

Let DS be a polarization monomial and TC a letterplace monomial, and
assume that sh(D) = sh(S) and sh(T ) = sh(C) are partitions of the same
integer. We consider the action DS TC of DS on TC; note that the result is 0
unless S and T have the same content. If S and T have the same content, then
DS TC =

∑
i AiBi, where the content of each Ai is the same as the content of

D and the content of each Bi is the same as the content of C.
By Lemma 1, if sh(S) �≥ sh(T ), then each summand AiBi equals zero, and,

therefore,
DS TC = 0.

Again by Lemma 1, if sh(S) = sh(T ), then each summand AiBi equals ηiDC,
with ηi ∈ {0,±1}, and, therefore,

DS TC = θD
ST DC,

where θD
ST is an integer coefficient depending on S and T. These coefficients are

called symmetry transition coefficients.

Lemma 2. (Triangularity Lemma) For every standard letter-tableaux S, T, with
sh(S) = sh(T ), we have

θD
ST =

{
= 0 if S �≥ T
�= 0 if S = T

Moreover, each diagonal coefficient θD
SS is, up to a sign, the product of the facto-

rials of the multiplicities of positive symbols in each row and of negative symbols
in each column of the tableau S.

We claim that, for every choice of coDeruyts tablaux C,C1, C2 and Deruyts
tableau D,D1, D2 of the same shape λ, the following identities hold:

CD2 D2C1 C1D = CD1 D1C1 C1D = CD1 D1C2 C2D = hλCD,

where hλ is an integer coefficient.

Lemma 3. For every shape λ, the coefficient hλ is a positive integer.

Proof of Theorem 2. First of all, by definition, we have

γn(S′, S )(T | U ) = S′C1

(
C1D1

(
D1S TC2

)
C2D2

)
D2U

We note that, by Lemma 1, D1S TC2 �= 0 implies that sh(D1) ≥ sh(C2) and
C1D1 D1S TC2 C2D2 �= 0 implies that sh(C1) ≤ sh(D2). Thus, the whole
expression is nonzero only if S and T have the same shape, say sh(S) = sh(T ) =
λ. Under this condition, again by Lemma 1, we have

γn(S′, S )(T | U ) = S′C1 C1D1

(
D1S TC2

)
C2D2 D2U

= θD
STS

′C1 (C1D1 D1C2 C2D2) D2U

= hλθ
D
STS

′C1 C1D2 D2U

= hλθ
D
ST (S′| U ).
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The coefficients θD
ST and hλ satisfy the triangularity and nondegeneracy condi-

tions by Lemma 2 and 3.

The previous Lemmas have several non trivial consequences, obtained by
passing from letterplace identities to operator identities. For example, the iden-
tity DS TC = θD

STDC has the operator analog DS TC = θD
STDC, when the

action of the operators DS, TC, DC is restricted to the subspace Supern[X|Y ].
Furthermore, the symmetry transition coefficients θC

ST arise, in a natural way,
just by interchanging the roles of C and D. As a matter of fact, they are defined
by the relations CS TD = θC

ST CD, and satisfy the identity θC
ST = θD

TS . In the
sequel, the qualifiers D and C in the θ’s will be dropped, when clear by the
context.

4 The Natural Form of Irreducible Matrix
Representations

4.1 The General Case

Let L,P be arbitrary finite signed sets, and m a fixed positive integer. In the
sequel, given a partition λ  m, we will write S1, S2, . . . , Sfλ

to mean the list of
all standard tableaux of shape λ over L with respect to a linear order which is
a linear extension of the partial order defined in section 2. In the following, we
write θλ

ij in place of θSiSj
, and �λ

ij in place of �SiSj
.

Given an operator G ∈ Bm = ⊕λ�mBλ, we will denote by Gλ its component
in the simple subalgebra Bλ (Theorem 5).

We have

Ym(Sh, Sh ) G Ym(Sk, Sk ) = dλ
hk(G)Ym(Sh, Sk ),

where the coefficients dλ
hk(G) are precisely the coefficients that appear in the

expansion of Gλ with respect to the basis {Ym(Sh, Sk ); h, k = 1, 2, . . . fλ} of
Bλ.

On the other hand, given any standard tableau T of shape λ over P, we have

G(Sk| T ) = Gλ(Sk| T ) =
∑

h

cThk(G)(Sh| T ), cThk(G) ∈ K.

Clearly, we have:

Proposition 2. For every tableau T, standard over P, with sh(T ) = λ,

dλ
hk(Gλ) = dλ

hk(G) = cThk(G) = cThk(Gλ),

for every G ∈ Bm, and for every h, k = 1, 2, . . . fλ.

In the following, we write cλhk in place of cThk.
Note that, by setting

DSh G SjC = θλ
hj(G) DC,
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we have:

cλij(G) (Si| T ) = Ym(Si, Si ) G (Sj | T )

=
1
hλ

SiC CD
∑

h

�λ
ih

(
DSh G SjC

)
CD DT

=
1
hλ

SiC CD
∑

h

�λ
ih θλ

hj(G) DC CD DT

=
∑

h

�λ
ih θλ

hj(G)
1
hλ

SiC CD DC CD DT

=
∑

h

�λ
ih θλ

hj(G) SiC CD DT

=
∑

h

�λ
ih θλ

hj(G) (Si| T ).

Since [θλ
ij ] = [θλ

ij(I)], where I denotes the identity in Bm, and [�λ
ij ] = [θλ

ij(I)]
−1,

then we get a compact expression for the coefficients cλij(G) in terms of the
ordinary product of the matrices Θλ(I)−1 = [θλ

ij(I)]
−1 and Θλ(G) = [θλ

hj(G)].

Theorem 7. Cλ(G) = Θλ(I)−1 ×Θλ(G).

For every λ  m such that λ ∈ H(L)∩H(P ) and every standard place tableau
T of shape λ, the module structure U(pl(L)) · ST , induces a surjective algebra
morphism

νT : U(pl(L)) → EndK[ST ];

by choosing the basis of the standard symmetrized bitableaux (Si| T ) in the
irreducible Schur module ST , the morphism νT induces an irreducible matrix
representation

νT : U(pl(L)) →Mfλ

where, for every G ∈ U(pl(L)),

νT (G) = [cλhk(νT (G))].

4.2 The Symmetric Group Sn

In this subsection, we fix the linearly ordered alphabets L = L− = n = P− = P,
where n = {1, 2, . . . , n}. Consider the subspace

SuperM
n [n|n] ⊂ Supern[n|n]

spanned by all the monomials (in commutative letterplace variables) of the form

(τ(1)|1)(τ(2)|2) · · · (τ(n)|n), τ ∈ Sn.

The space SuperM
n [n|n] is a K[Sn]−module with respect to the action

σ · ((τ(1)|1)(τ(2)|2) · · · (τ(n)|n)) = (στ(1)|1)(στ(2)|2) · · · (στ(n)|n), ∀σ ∈ Sn.
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The map
F : (τ(1)|1)(τ(2)|2) · · · (τ(n)|n) → τ

induces a K[Sn]−module isomorphism

F : SuperM
n [n|n] → K[Sn],

where the group algebra K[Sn] is regarded as a regular left K[Sn]−module.

A tableau S over the set n is said to be multilinear whenever each symbol
appears just once in S. In the sequel, given a partition λ  n, we will write
S1, S2, . . . , SfM

λ
to mean the set of all multilinear standard tableaux of shape

λ over n endowed with a linear order which is a linear extension of the partial
order defined in section 2.

By specializing Theorem 1, the set of right symmetrized bitableux (Si| Sj ),

i, j = 1, 2, . . . , fM
λ , is a K−linear basis of SuperM

n [n|n].

Proposition 3. Let Si, Sj be standard multilinear tableaux of shape λ  n. Then

F ((Si| Sj )) = πij(
∑

τ ∈ R(Sj)
ξ ∈ C(Sj)

(−1)|τ |τξ),

where the subgroups R(Sj) and C(Sj) of Sn are the row-stabilizer and the column-
stabilizer of Sj , respectively, and πij ∈ Sn is the (unique) permutation such that

πij(Sj) = Si.

In the classical notation, F ((Si| Sj )) = πijej = eij , where ej denotes the
Young symmetrizer associated to the tableau Sj (see, e.g. [10]).

The module structure

K[Sn] · SuperM
n [n|n]

induces a representation

ρM : K[Sn] → EndK[SuperM
n [n|n]].

We define a semisimple subalgebra of EndK[SuperM
n [n|n]] by setting

BM
n =

⊕
λ�n

⊕
j=1,2,...,fM

λ

〈Y (Si| Sj ), i = 1, 2, . . . , fM
λ 〉K =

⊕
λ�n

BM
λ ,

where each simple component BM
λ is isomorphic to MfM

λ
, the full K−algebra of

square matrices of order fM
λ .
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Theorem 8. We have
ρM [K[Sn]] = BM

n ,

and, therefore, ρM induces a K−algebra isomorphism K[Sn] ∼= BM
n . Moreover,

ρM (eij) = γn(Si, Sj ).

The proof of the theorem above follows from the proof of Prop. 3 of [3] in
combination with the Robinson-Schensted correspondence.

By combining Theorem 4 with Theorem 8, we get immediately

Theorem 9. (Complete decomposition of K[Sn] as a left regular module)

K[Sn] = F [SuperM
n [n|n]]

= F

⎡
⎣⊕

λ�n

⊕
j=1,2,...,fM

λ

〈(Si| Sj ), i = 1, 2, . . . , fM
λ 〉K

⎤
⎦

=
⊕
λ�n

⊕
j=1,2,...,fM

λ

F
[
〈(Si| Sj ), i = 1, 2, . . . , fM

λ 〉K
]

=
⊕
λ�n

⊕
j=1,2,...,fM

λ

〈πijej ; i = 1, 2, . . . , fM
λ 〉K

=
⊕
λ�n

⊕
j=1,2,...,fM

λ

K[Sn]ej ,

where the outer sum is the isotypic decomposition, and, given λ,

〈πijej ; i = 1, 2, . . . , fM
λ 〉K = K[Sn]ej , j = 1, 2, . . . , fM

λ

are minimal left ideals of K[Sn].

The irreducible K[Sn]−module

SM
Sj

= 〈(Si| Sj ), i = 1, 2, . . . , fM
λ 〉K = F−1[K[Sn] · ej ]

is the Specht module (of the first kind) associated to the multilinear standard
tableau Sj of shape λ (see e.g. [5, 12]).

For every λ  n and every multilinear standard place tableau Sj , the module
structure K[Sn] · SM

Sj
induces an surjective algebra morphism

νM
λ,j : K[Sn] → EndK[SM

Sj
].

By choosing the basis of the (Si| Sj ) in SM
Sj
, the morphism νM

λ,j induces an
irreducible matrix representation

νM
λ,j : K[Sn] →MfM

λ

where, for every σ ∈ Sn,
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νM
λ,j(σ) = [cλhk(νM

λ,j(σ))].

For every λ  n, the module structure K[Sn] ·SuperM
n [n|n] induces an surjective

algebra morphism
ρM

λ : K[Sn] → BM
λ ;

by choosing the basis of the Y (Si| Sj ), in BM
λ , the morphism ρM

λ induces an
irreducible matrix representation

ρM
λ : K[Sn] →MfM

λ

where, for every σ ∈ Sn,

ρM
λ (σ) = [dλ

hk(ρM
λ (σ))].

By Proposition 1, we have

Proposition 4. The irreducible representations ρM
λ and νM

λ,j are equal.

In closing this section, we specialize Theorem 7 to the multilinear case, there-
fore obtaining a simple combinatorial interpretation of the coefficients
cλhk(νM

λ,j(σ)) = dλ
hk(ρM

λ (σ)). We have:

CλM (σ) = ΘλM (I)−1 ×ΘλM (σ),

where
θλM

ij (σ) = θSiSj
(σ) = θSi σSj

.

In the multilinear case, the symmetry transition coefficients θST

DS TC = θST DC

admit a simple combinatorial description; specifically

θST =
{

(−1)|τ | if ∃ (!) σ ∈ C(S), τ ∈ R(T ) : σS = τT
0 otherwise

,

where the subgroups R(T ) and C(S) of Sn are the row-stabilizer and the column-
stabilizer of T, S, respectively. Hence, the matrix ΘλM (I)−1 is the same as the
transition matrix from the (normalized) generalized Young symmetrizers 1

hλ
eij

to the Young natural units γij in K[Sn], (see e.g. [10, 11]). As a matter of fact,
we have

ρM (γij) = ρM (
∑

h

�λ
ih

1
hλ

ehj) =
∑

h

�λ
ih

1
hλ

γ(Sh, Sj ) = Y (Si, Sj ).

Therefore, ρM
λ = νM

λ,j is indeed the Young natural form of the irreducible matrix
representations of Sn, for every λ  n (see,e.g. [8]).
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5 Capelli’s Polar Expansion Formula

As a further by-product of the present approach, we state and prove a canonical
version of Capelli’s polar expansion formula. This expansion formula appeared
in Capelli’s book ([4], pagg.124-153), but not in a canonical form. It is one of
the deepest achievements of classical invariant theory, and leads to the so-called
reduction principle (see, e.g. [14], [7]).

Informally speaking, the polar expansion formula says that any homogeneous
polynomial function f in n vector variables in dimension d may be expressed as
a linear combination of polarized determinantal polynomials involving only the
first d vector variables; furthermore, these determinantal polynomials may be
obtained, in turn, by polarizing the original polynomial function f.

Since the polarization process is an invariantive process, the study of invari-
ant homogeneous polynomial functions in n vector variables in dimension d is
reduced to the study of invariant homogeneous polynomial functions in d − 1
vector variables (see Corollary 1).

5.1 Preliminaries

Let L = {x1, x2, . . . , xn} and P = {1, 2, 3, . . . , d} be two negatively signed proper
Z2-graded alphabets, that is |xi| = |j| = 1, for every i = 1, 2, . . . , n and j =
1, 2, . . . , d.

The letterplace superalgebra is a commutative algebra

Super[L|P ] = K[(xi|j)]i=1,...,n;j=1,...,d

and, therefore, if char(K) = 0, it can be regarded as the algebra K[V ⊕n] of poly-
nomial functions over the direct sum of n copies of a vector space V , dim(V ) = d.
Actually, given a basis of the dual space V ∗, we can read the letterplace variable
(xi|j) as the j-th coordinate function over the i-th copy of V in the direct sum
V ⊕n, for every i = 1, 2, . . . , n, j = 1, 2, . . . , d.

The contragradient action of the general linear Lie algebra gl(d) on any ho-
mogeneous component

Superm[L|P ] = Km[(xi|j)] ∼= Km[V ⊕n]

is described by the algebra of P -place polarizations; more specifically, the action
of the elementary matrix Ehk is given by −hkD, the opposite of the polarization
of the place h with respect to the place k.

Since, as it is well known, the operator algebra induced by the (contragra-
dient) action of the enveloping algebra U(gl(d)) equals the operator algebra
induced by the (contragradient) action of the group algebra K[GL(d)] of the
general linear group GL(d), this algebra is the algebra generated by the place-
polarization operators, and the algebra of GL(d)−equivariant endomorphisms is
generated by the letter polarization operators (see Theorem 6).

It is worth to recall a basic definition.
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Definition 3. (Determinantal bitableaux [1], [6]) For every T ∈ Tab(L), U ∈
Tab(P ), with sh(T ) = λ = sh(U), the determinantal bitableaux of the pair (T,U)
is the element

(T |U) ∈ K[(xi|j)]

defined by setting

(T |U) = TC2 C2U = (λ!)−1TC1 C1C2 C2U = TC1 C1U

where C1, C2 are virtual tableaux of coDeruyts type of shape λ = (λ1, λ2, . . . , λp),
and λ! = λ1!λ2! . . . , λp!.

Even though the virtual definition given above plays a crucial role in our
proof of Capelli’s polar expansion formula, determinantal bitableaux admit also
a direct combinatorial description.

If λ = (t) is a partition with one part, and T = xi1 xi2 . . . xit
, U =

j1 j2 . . . jt, then

(T |U) = (xi1 xi2 . . . xit
| j1 j2 . . . jt) = (−1)(

t
2)det[(xir

|js)]r,s=1,...,t

where det[(xir
|js)] is the formal determinant of the matrix [(xir

|js)].
In general, if T1, T2, . . . , Tp are the rows of the tableau T and U1, U2, . . . , Up

are the rows of the tableau U, then the determinantal bitableau (T |U) equals,
up to a sign, the product (T1|U1)(T2|U2) · · · (Tp|Up).

5.2 Capelli’s Polar Expansion Formula

In the sequel, for every λ  m, with λ1 ≤ min(n, d), we will denote by

Xλ =

x1 x2 . . . xλ1

x1 x2 . . . xλ2

...
x1 x2 . . . xλp

the Deruyts tableau of shape λ filled with the first λ1 proper letters (vectors);
when no ambiguity will arise, we will write X in place of Xλ.

We recall that, for every standard letter tableau S of shape λ  m, we have
an idempotent in the algebra of polarizations on Km[(xi|j)] :

Ym( S , S) = SD DC
1
hλ

∑
A∈Stabλ(L)

�S,A CA ,

where hλ is the product of the hook lengths of λ and the �SA’s are elements of
the Rutherford matrix for the shape λ. By the final remarks of section 3, we can
write

Ym( S , S) =
1
cλ

SD DX
1
hλ

XC
∑
A

�S,A CA ,
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where cλ is the product of the factorials of the lengths of the columns of λ; then,
by setting

PSX =
1
cλ

SD DX, P ′
XS =

1
hλ

XC
∑
A

�S,A CA ,

we have
Ym( S , S) = PSXP ′

XS .

The operators PSX and P ′
XS implement the transition from determinantal

bitableaux to symmetrized bitableaux, and viceversa.

Theorem 10. For every standard tableaux S, T, U whose shapes are partitions
of the integer m, we have

1. PSX (X|T ) = ( S |T );

2. P ′
XS = 1

cλ
Ym( X ,S);

3. P ′
XS ( U |T ) = δS,U (X|T );

Proof.

1. PSX (X|T ) = 1
cλ

SD DX XC CT = SD DC CT = ( S |T );

2. 1
hλ

XC
∑

A �S,A CA = 1
cλ

1
hλ

XD DC
∑

A �S,A CA = 1
cλ

Ym( X ,S);

3. P ′
XS ( U |T ) = 1

cλ
Ym( X ,S)( U |T ) = 1

cλ
δSU ( X |T ) = δSU (X|T ).

Theorem 11. (Capelli’s Polar Expansion Theorem [4]) Let f ∈ Km[(xi|j)];
then f can be written in the form

f =
∑

λ � m
λ1 ≤ d

∑
S∈Stabλ(L)

PSXλ
FXλS ,

where Xλ is the Deruyts tableau of shape λ, filled with the first λ1 ≤ d letters,
and

1. FXλS =
∑

T c
f
S,T (Xλ|T ), cfS,T ∈ K;

2. FXλS = P ′
XλS(f).

Proof. Let
f =

∑
λ � m
λ1 ≤ d

∑
S ∈ Stabλ(L)
T ∈ Stabλ(P )

cfS,T ( S |T )

be the Gordan-Capelli expansion of f (see subsection 2.5).
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From assertion 1 of Theorem 10 it follows that

f =
∑

λ � m
λ1 ≤ d

∑
S ∈ Stabλ(L)
T ∈ Stabλ(P )

cfS,T ( S |T )

=
∑

λ

∑
S,T

cfS,T PSXλ
(Xλ|T )

=
∑

λ

∑
S

PSXλ

∑
T

cfS,T (Xλ|T ) =
∑

λ

∑
S

PSXλ
FXλS .

On the other hand, from assertion 3 of Theorem 10 it follows that

P ′
XλS(f) = P ′

XλS

∑
μ � m
μ1 ≤ d

∑
U ∈ Stabμ(L)
T ∈ Stabμ(P )

cfU,T ( U |T )

=
∑

μ

∑
U,T

cfU,T P ′
XλS( U |T ) =

∑
T

cfS,T (Xλ|T )

= FXλS .

Note that every FXλS can be written in the form

FXλS = [x1x2 . . . xd]qλϕS(x1, x2, . . . , xd−1),

where qλ = #{i; λi = d}. Therefore, if FXλS is a relative G−invariant, then
ϕS(x1x2 . . . xd−1) is also G−invariant, for every subgroup G of GL(d).

Corollary 1. (The reduction principle of classical invariant theory) Let G be
a subgroup of GL(d), and let f = f(x1, x2, . . . , xn) be a relative G−invariant
m−homogeneous polynomial function in n vector variables, n ≥ d. Then

f =
∑

λ � m
λ1 ≤ d

∑
S∈Stabλ(L)

PSXλ
([x1x2 . . . xd]qλϕS(x1, x2, . . . , xd−1)) ,

where the ϕS’s are relative G−invariants involving only the first d − 1 vector
variables x1, x2, . . . , xd−1.

For example, since the GL(d)−invariant polynomial functions involving at
most d− 1 vector variables are just the constant functions and a polarization of
a bracket yields a new bracket, then the following well-known result immediately
follows.

Corollary 2. (The first fundamental theorem for vector GL(d)−invariants) Let
f = f(x1, x2, . . . , xn) be a relative GL(d)−invariant homogeneous polynomial
function on n vector variables, n ≥ d. Then f can be written as a homogeneous
polynomial in the brackets

[xi1xi2 . . . xid
]

filled with the variables x1, x2, . . . , xn.
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Robot Vision
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Abstract. In this tutorial paper we will report on our experience in
the use of geometric algebra (GA) in robot vision. The results could be
reached in a long term research programme on modelling the perception-
action cycle within geometric algebra. We will pick up three important
applications from image processing, pattern recognition and computer
vision. By presenting the problems and their solutions from an engineer-
ing point of view, the intention is to stimulate other applications of GA.

1 Introduction

In this paper we want to present a survey on applications of geometric alge-
bra (GA) in robot vision. We will restrict our scope to results contributed by
the Kiel Cognitive Systems Group in the last few years. For more details and
for getting a wider view on this topic a visit of the publications on the web-
site http://www.ks.informatik.uni-kiel.de is recommended. We will take on an
engineer’s viewpoint to give some impression of the need of such complex mathe-
matical framework as geometric algebra for designing robot vision systems more
easily. In fact, we are using GA as a mathematical language for modelling. This
includes the task related shaping of that language itself.

The aim of robot vision is to make robots seeing, i.e. to endow robots with
visual capabilities comparable to those of human. While contemporary appli-
cations of robots are restricted to industrial artificial environments, the hope is
that future generations of robots are able to cope with real world conditions. The
term robot vision indicates a concentration of research activities onto modelling
of useful visual architectures. In the framework of behaviour-based robotics the
coupling of (visual) perception and action is the key paradigm of system design.
A behaviour is represented in the so-called perception-action cycle. Of practical
importance are the projections of the perception-action cycle: “vision for action”
means controlling actions by vision and “action for vision” means controlling the
gaze (or body) for making vision more easier.

Robot vision is emerging from several contributing disciplines which are as
different as image processing, computer vision, pattern recognition and robotics.
Each of these have their own scientific history and are using different mathe-
matical languages. The demanding task of system design is aiming at a unique
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framework of modelling. With respect to the quest of a useful cognitive architec-
ture the perception-action cycle may be the right representation. With respect
to unifying the mathematical language geometric algebra is hopefully the frame-
work of merging the above mentioned disciplines in a coherent system.

Such system has to be an embodiment of the geometry and the stochastic
nature of the external world. This should be understood in a dynamic sense
which enables internal processes converging at reasonable interpretations of the
world and useful actions in the environment.

While merging the different disciplines is one main motivation of using ge-
ometric algebra in robot vision, the other one is to overcome several serious
limitations of modelling within the disciplines themselves. These limitations re-
sult from the dominant use of vector algebra. A vector space is a completely
unstructured algebraic framework endowed with a simple product, the scalar
product, which only can destroy information originally represented in the pair
of vectors by mapping them to a scalar.

Imagine, for instance, that a cognitive system as a human could reason on
the world or could act in the world only by its decomposition into sets of points
and having no other operations at hand than the scalar product. This in fact
is an impossible scenario. The phenomena of the world we can cope with are of
global nature at the end in comparison to the local point-like entities we have
in vector space. They are phenomena of higher order in the language of vector
algebra. Hence, most of the basic disciplines of robot vision are getting stuck
in non-linearities because of the complexity of the problem at hand, which are
non-tractable in real-time applications.

In fact, only the tight relations of GA to geometric modelling [12] have been
considered, yet. We are just starting with the fusion of stochastic modelling and
GA. The benefit we derive from using GA in geometric modelling is rooted in the
rich algebraic structure of the 2n-dimensional linear space Rp,q,r resulting from
the vector space R

p,q,r. The indexes p, q, r with p+ q+ r = n mark its signature.
By choosing a certain signature the decision for certain geometries adequate to
the problem at hand can be made. On the other hand, the blade structure of a GA
represents higher-order relations between vectors which, once computed, can be
further processed in a linear manner. Hence, multi-dimensional or higher-order
phenomena can be reduced to one-dimensional or linear representations. This
has not only impact on modelling of geometric problems but also of stochastic
ones. Therefore, there is need of using GA in context of higher-order statistics
too.

In the following sections we want to show the advantages of using GA in three
different areas of robot vision. These are signal analysis, pattern recognition
using the paradigm of neural computing, and computer vision. In each case we
will emphasize the inherent limitations of modelling in the classical scheme and
the benefits we gain from using GA instead. In the conclusion section we will
give a summary of all these advantages in a more general way.
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2 Analysis of Multi-dimensional Signals

Image analysis as a fundamental part of robot vision does not mean to deliver
complete descriptions of scenes or to recognize certain objects. This is in fact
the subject of computer vision. Instead, the aim of image analysis is deriving
a set of rich features from visual data for further processing and analysis. In
(linear) signal theory we are designing (linear shift invariant) operators which
should extract certain useful features from signals. The Fourier transform plays
a major role because representations of both operators and images in spectral
domain are useful for interpretation.

In this section we want to give an overview on our endavours of overcoming
a not well-known representation gap in Fourier domain in the case of multi-
dimensional signals. In fact, the well-known complex-valued Fourier transform
cannot explicitely represent multi-dimensional phase concepts. The Fourier trans-
form is a global integral transform and amplitude and phase are global spectral
representations. In practice more important is the incompleteness of local spec-
tral representations in the multi-dimensional case. This is a representation prob-
lem of the Hilbert transform which delivers the holomorphic complement of a
one-dimensional real-valued signal. Therefore, the aim of this section is showing
generalizations of both Fourier and Hilbert transform from the one-dimensional
to the multi-dimensional case which are derived from embeddings into geometric
algebra.

In that respect two different concepts of the term dimension of a function have
to be distinguished. The first one is the global embedding dimension, which is
related to the Fourier transform. The second one is the (local) intrinsic dimen-
sion, which is related to the Hilbert transform and which means the degrees of
freedom that locally define the function.

2.1 Global Spectral Representations

It is well-known that the complex-valued Fourier transform, F c ∈ C,

F c(u) = Fc {f(x)} =
∫
f(x) exp(−j2πu · x) dNx (1)

enables computing the spectral representations amplitudeAc(u) and phase Φc(u),

Ac(u) = |F c(u)| (2a)

Φc(u) = arg (F c(u)) , (2b)

of the real-valued N–dimensional (ND) function f(x) , x ∈ R
N . Although it is

commonsense that the phase function is representing the structural information
of the function, there is no way in the complex domain to explicitly access to ND
structural information for N > 1. This problem is related to the impossibility of
linearly representing symmetries of dimension N > 1 in the complex domain.
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In fact, the Fourier transform in the 1D case can be seen as a way to compute
the integral over all local symmetry decompositions of the function f(x) into an
even and an odd component according to

f(x) = fe(x) + fo(x) (3)

F c(u) = F c
e (u) + F c

o (u). (4)

This results from the Euler decomposition of the Fourier basis functions

Qc(u, x) = exp(−j2πux) = cos(2πux)− j sin(2πux). (5)

In the case of 2D complex Fourier transform the basis functions can also be
separately decomposed,

Qc(u,x) = exp(−j2πux) = exp(−j2πux) exp(−j2πvy). (6)

From this results a signal decomposition into products of symmetries with re-
spect to coordinate axes,

F c(u) = F c
ee(u) + F c

oo(u) + F c
oe(u) + F c

eo(u). (7)

But this concept of line symmetry is partially covered in the complex domain
because of the limited degrees of freedom. If F c

R(u) and F c
I (u) are the real and

imaginary components of the spectrum, respectively, F c(u) = F c
R(u) + jF c

I (u),
then

F c
R(u) = F c

ee(u) + F c
oo(u) , F c

I (u) = F c
eo(u) + F c

oe(u). (8)

If we consider the Hartley transform [10] as a real-valued Fourier transform,
F r(u), then also in the 1D case the components F r

e (u) and F r
o (u) are totally

covered in F r ∈ R. This observation supports the following statement [6]. Given
a real valued function f(x) , x ∈ R

N , all its global decompositions into even
and odd symmetry components with respect to coordinate axes are given by the
Clifford valued Fourier transform F Cl ∈ R2N ,

F Cl(u) = FCl {f(x)} =
∫

RN

f(x)
N∏

k=1

exp(−ik2πukxk) dNx. (9)

In the 2D case the Fourier transform has to be quaternionic, F q ∈ H,

F q(u) = Fq {f(x)} =
∫

R2
f(x) exp(−i2πux) exp(−j2πvy) d2x (10)

with

Qq(u,x) = exp(−i2πux) exp(−j2πvy). (11)
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Fig. 1. Left: basis functions of the complex 2D Fourier transform. Right: basis func-
tions of the quaternionic 2D Fourier transform. Only the even/even-even part is shown
each

Because

F q(u) = F q
R(u) + iF q

I (u) + jF q
J (u) + kF q

K(u) (12a)

F q(u) = F q
ee(u) + F q

oe(u) + F q
eo(u) + F q

oo(u), (12b)

all symmetry combinations are explicitely accessible by one real and three imagi-
nary parts. As figure 1 visualizes, the basis functions according to (11) are intrin-
sically two-dimensional in contrast to those of (6) and, thus, they can represent
2D structural information. This can also be seen in the polar representation of
the quaternionic Fourier transform [6], where φ and θ represent each a 1D phase,
ψ is a 2D phase.

F q(u) = |F q(u)| exp (iφ(u)) exp (kψ(u)) exp (jθ(u)) . (13)

2.2 Local Spectral Representations

We call functions of local energy, e(x), (or amplitude, a(x) =
√
e(x)), and local

phase, φ(x), as local spectral representations:

e(x) = f2(x) + f2
H(x) (14a)

φ(x) = arg (fA(x)) , (14b)

which are derived from a complex-valued extension, fA(x), of a real 1D function
f(x) by an operator A,

fA(x) = A{f(x)} = f(x) + jfH(x). (15)
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In signal theory fA(x) is called analytic signal and fH(x) is derived from f(x)
by a local phase shift of −π

2 , which is gained by the Hilbert transform, H, of
f(x),

fH(x) = H{f(x)} . (16)

In the complex analysis this corrresponds to computing the holomorphic com-
plement of f(x) by solving the Laplace equation. In the complex Fourier domain
the Hilbert transform reads

H(u) = −j u|u| , (17)

thus, the operator of the analytic signal is given by the frequency transfer func-
tion

A(u) = 1 +
u

|u| . (18)

The importance of the analytic signal in signal analysis results from the eval-
uation of the local spectral representations, equations (14a) and (14b): If the
local energy exceeds some threshold at x, then this indicates an interesting loca-
tion. The evaluation of the local phase enables a qualitative signal interpretation
with respect to a mapping of the signal to a basis system of even and odd sym-
metry according to equation (3). In image processing we can interprete lines as
even symmetric structures and edges as odd symmetric ones, both of intrinsic
dimension one. But in images we have as an additional unknown the orientation
of lines or edges. Hence, the operators A or H, respectively, should be rotation
invariant. Although the analytic signal is also used in image processing since one
decade, only by embedding into GA, this problem could be solved.

Simply to take over the strategy described in section 2.1 from global to local
domain is not successful. The quaternionic analytic signal [7], which is derived
from a quaternionic Hilbert transform, delivers no rotation invariant local en-
ergy. Hence, the applied concept of line symmetry cannot succeed in formulating
isotropic operators. Instead, an isotropic generalization of the Hilbert transform
in the case of a multidimensional embedding of a 1D function can be found by
considering point symmetry in the image plane. This generalization is known in
Clifford analysis [3] as Riesz transform.

The Riesz transform of a real ND function is an isotropic generalization of
the Hilbert transform for N > 1 in an (N+1)D space. In Clifford analysis, i.e. an
extension of the complex analysis of 1D functions to higher dimensions, a real ND
function is considered as a harmonic potential field, f(x), in the geometric algebra
RN+1. The Clifford valued extension of f(x) is called monogenic extension and
is located in the hyperplane where the (N + 1)th component, say s, vanishes. It
can be computed by solving the (N+1)D Laplace equation of the corresponding
harmonic potential as a boundary value problem of the second kind for s = 0
(see [8]).

Let us consider the case of a real 2D signal, f(x), represented as e3-valued
vector field f(x) = f(x)e3 in the geometric algebra R3. Then in the plane s = 0
a monogenic signal fM exists [9],
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Fig. 2. The phase decomposition of a monogenic signal expressing symmetries of a
local i1D structure embedded in R3. The great circle is passing |fM |e3 and fM defines
the orientation of a complex plane in R

3

fM (x) = f(x) + fR(x), (19)

where fR(x) is the vector of the Riesz transformed signal. In our considered case
the monogenic signal is a generalization of the analytic signal, equation (15), for
embedding an intrinsically 1D function into a 2D signal domain. Similarly the
Riesz transform with the impulse response

hR(x) =
xe3

2π|x|3 = − x

2π|x|3 e31 +
y

2π|x|3 e23 (20)

and the frequency transfer function

HR(u) =
u
|u|I

−1
2 , I2 = e12 (21)

generalizes all properties known from the Hilbert transform to 2D.
The local energy, derived from the monogenic signal is rotation invariant.

Furthermore, the phase generalizes to a phase vector, whose one component is
the normal phase angle and the second component represents the orientation
angle of the intrinsic 1D structure in the image plane. Hence, the set of local
spectral features is augmented by a feature of geometric information, that is the
orientation. In figure 2 can be seen how the complex plane of the local spectral
representations rotates in the augmented 3D space. This results in an elegant
scheme of analyzing intrinsically 1D (i1D) structures in images.

So far, we only considered the solution of the Laplace equation for s = 0.
The extension to s > 0 results in a set of operators, called Poisson kernels and
conjugated Poisson kernels, respectively, which not only form a Riesz triple with
quadrature phase relation as the components in equation (19), but transform the
monogenic signal into a representation which is called scale-space representation.
In fact, the s-component is a scale-space coordinate. A scale-space is spanned
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by (x, s). This is a further important result because for nearly 50 years only the
Gaussian scale-space, which results as a solution of the heat equation, has been
considered as scale-space for image processing. One advantage of the Poisson
scale-space in comparison to the Gaussian scale-space is its alibity to naturally
embed the complete local spectral analysis into a scale-space theory. Recently
we could demonstrate the superiority of using the monogenic scale space for
signal reconstruction from phase in comparison to the use of the orientation
selective phase of an analytic signal. Recently we extended the generalization
of the monogenic signal to 3D images. The 3D monogenic signal represents a
phase vector with three components. In the context of image sequence analysis
our first application is computing the optical flow. There one of the orientation
angles represents the velocity of motion.

Regrettably, this nice theory derived from the Clifford analysis framework is
relevant only for i1D signals, yet. The extension to i2D structures in images like
curved lines/edges, crosses or any other more general structure in a linear way will
be matter of future research. Nevertheless, in [8] a so-called structure multivector
is proposed from which a rich set of features can be derived for a special model
of an i2D structure. That is built from two perpendicularly crossing lines/edges.
The linear operator model uses spherical harmonics up to the order three. The
local image structure is represented by a set of five independent features which are
main orientation, two local i1D amplitudes and two local i1D phases. That local
filtering scheme enables classification between i1D and i2D structures. But a linear
approach to filtering a more flexible model is not at hand, yet. Instead, we recently
used a tensor representation of the monogenic signal resulting from two crossing
lines/edges with flexible angles for decomposing that mixed signal into both single
contributing monogenic signals. The idea is based on an eigenvalue decomposition
of the local signal tensor. But the used tensor model is a non-linear one.

3 Knowledge Based Neural Computing

Neural nets are computational tools for learning certain competences of a robot
vision system within the perception-action cycle. A net of artificial neurons as
primitive processing units can learn for instance classification, function approx-
imation, prediction or control. Artificial neural nets are determined in their
functionality by the kind of neurons used, their topological arrangement and
communication, and the weights of the connections. By embedding neural com-
puting into the framework of GA, any prior algebraic knowledge can be used for
increasing the performance of the neural net. The main benefit we get from this
approach is constraining the decision space and, thus, preventing the curse of
dimensionality. From this can follow faster convergence of learning and increased
generalization capability. For instance, if the task is learning the parameters of
a transformation group from noisy data, then noise does not follow the algebraic
constraints of the transformation group and will not be learned.

In subsection 3.1 we will consider such type of problems under orthogonal
constraints. Another advantage of embedding neural computing into geometric
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algebras is related to learning of functions. Neural nets composed by neurons
of perceptron type - this is the type of neurons we will consider here - are able
to learn nonlinear functions. If the nonlinear problem at hand is transformed in
an algebraic way to a linear one, then learning becomes much easier and with
less ressources. We will consider such problems in the case of manifold learning
in subsection 3.1 and in the case of learning non-linear decision boundaries in
subsection 3.3. In subsection 3.2 we will show the learning of the cross-ratio with
a Möbius transform by using only one spinor Clifford neuron in R1,2.

3.1 The Spinor Clifford Neuron

In this subsection we will consider the embedding of perceptron neurons into a
chosen geometric algebra. The output, y, of such neuron for a given input vector
x and a weight vector w, x,w ∈ R

n, is given by

y = g (f(x;w)) . (22)

The nonlinear function g : R −→ R is called activation function. It shall be
omitted in the moment, say, by setting it to the identity. More important for
our concern is the propagation function f : R

n −→ R,

f(x) =
n∑

i=1

wixi + θ, (23)

where θ ∈ R is a bias (threshold). Obviously, one single neuron can learn a
linear function, represented by equation (23), as linear regression by minimizing
the sum of squared errors over all samples (xj , rj) from a sufficiently composed
sample set (universe). We assume a supervised training scheme where rj ∈ R is
the requested output of the neuron. By arranging a certain number of neurons
in a single layer fully connected to the input vector x, we will get a single layer
perceptron network (SLP). A SLP obviously enables task sharing in a parallel
fashion and, hence, can perform a multi-linear regression. If x,y ∈ R

n, then

y = Wx (24)

is representing a linear transformation by the weight matrix W .
After introducing the computational principles of a real-valued neuron, we

will extend now our neuron model by embedding it into the GA Rp,q, p+ q = n,
see [5]. Hence, for x,w, θ ∈ Rp,q the propagation function f : Rp,q −→ Rp,q reads

f(x) = wx + θ, (25)

where wx is the geometric product instead of the scalar product of equation
(23). A neuron with a propagation function according to equation (25) is called a
Clifford neuron. The superiority of equation (25) over equation (23) follows from
explicitly introducing a certain algebraic model as constraint by choosing Rp,q

for learning the weight matrix of equation (24) instead of additionally learning
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the required constraints. It is obviously more advantageous to use a model than
to perform its simulation. This leads in addition to a reduction of the required
resources (neurons, connections). By explicitly introducing algebraic constraints,
statistical learning will become a simpler task.

We will further extend our model. If the weight matrix W in equation (24)
is representing an orthogonal transformation, we can introduce the constraint of
an orthogonal transformation group. This is done by embedding the propagation
function now into R

+
p,q. Instead of equation (25) we get for f : R

+
p,q −→ R

+
p,q:

f(x) = wxw̃ + θ. (26)

We will call a neuron with such propagation function a spinor Clifford neuron be-
cause the spinor product of the input vector with one weight vector is computed.
The representation of an orthogonal transformation by a spinor [12] has several
computational advantages in comparison to a matrix representation which will
not be explicitly discussed here.

3.2 Learning the Cross-Ratio with Möbius Transformation

In this subsection we will describe the application of the concept of spinor Clifford
neurons to a really hard problem which cannot be learned in practice by real
neurons. We will see that only one single spinor neuron in the algebra R1,2 is
sufficient, although some effort will be needed.

The cross-ratio is an important projective invariant. It is defined in the fol-
lowing way. Let A, B, C, D be four collinear points with the coordinates a, b, c
and d in the real projective plane R2,1. Then their collinearity may be expressed
by c = αa + βb and d = γa + δb for suitable numbers α, β, γ, δ,∈ R. The
cross-ratio, [a, b, c,d], is then defined by the ratio of the ratios β/α and δ/γ,

[a, b, c,d] =
βγ

αδ
. (27)

To compute the cross-ratio in the real projective plane is the standard way if
projective transformations mapping lines to lines are of interest. This will be
also our concern. But instead of using real numbers α, β, γ, δ, we will use com-
plex numbers z, q, r, s ∈ R0,1 of the complex plane. Then there exists a known
theorem [14] which states: The cross-ratio [z, q, r, s] is the image of z under that
Möbius transformation that maps q to 0, r to 1 and s to ∞, respectively. The
Möbius transformation m(z) ∈ M(0, 1) of a complex number z ∈ R0,1 is the
fractional, bilinear transformation

m(z) =
az + b

cz + d
(28)

with a, b, c,d ∈ R0,1 and ad− bc �= 0. A Möbius transformation is a conformal
transformation of the extended complex plane. It is uniquely determined by three
points of the complex plane. The Möbius group M(p, q) of the geometric algebra
Rp,q is covered by the orthogonal group O(p+ 1, q + 1) of Rp+1,q+1 [11]. Hence,
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Table 1. Transformation parameters

Parameter Value Learned parameters

a 0.2 + 0.5 i 0.20019 + 0.50010 i

b 0.11 - 0.16 i 0.11001 - 0.15992 i

c - 0.2 + i - 0.20079 + 0.99939 i

d - 0.08 - 0.64 i - 0.07930 - 0.64007 i

Table 2. Cross-ratios of test points (rounded)

z Value Clifford neuron output

2 + 3i 0.3578 - 0.3357 i 0.3577 - 0.3364 i

4 - 7i 0.4838 - 0.3044 i 0.4838 - 0.3051 i

0.3 + 0.1 i 0.0077 - 0.6884 i - 0.0082 + 0.6884 i

by embedding our problem, which is formulated in R0,1, into the algebra R1,2, we
can interpret Möbius transformations as orthogonal ones. Then we are able to
learn those transformations and, thus, also the cross-ratio, by one single spinor
neuron in R1,2. This has been published in [4, 5]. Details of the implementation
will therefore be omitted here. Instead, in tables 1 and 2 the results are shown
for the following components of the cross-ratio: q = 0.2 + 0.3i, r = 0.4 − 0.7i
and s = 0.6− 0.2i. In table 1 we compare the learned parameters of the Möbius
transformation with the expected ones. The results are quiet acceptable. In table
2 we see the learned cross-ratios in comparison to the true ones for several test
points.

As a whole, the presented results are a convincing demonstration of the pro-
posed model of a Clifford spinor neuron for linear learning of orthogonal trans-
formations in the chosen algebraic domain which are non-linear transformations
in the Euclidean domain.

3.3 The Hypersphere Neuron

In subsection 3.1 we neglected the activation function in describing our algebraic
neuron models. This is possible if a kind of function learning is the task at hand.
In the case of a classification task the non-linear activation function is manda-
tory to complete the perceptron to a non-linear computing unit which in the
trained state represents a linear decision boundary in R

n. The decision bound-
ary enables solving a 2-class decision problem by dividing the sample space in
two half-spaces. Regrettably, the higher the dimension n of the feature vectors,
the less likely a 2-class problem can be treated with a linear hyperplane of R

n.
Therefore, parallel (SLP) or sequential (MLP - multilayer perceptron) composi-
tions of neurons are necessary for modelling non-linear decision boundaries.

One special case is a hypersphere decision boundary. This can be only very
inefficiently modelled by using perceptrons. But spheres are the geometric basis
entities of conformal geometry. That is, in conformal geometry we can operate
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Fig. 3. The decision boundaries and the first two principal components of three toy
objects rotated by 360o in steps of one degree

on hyperspheres in a linear manner just as operating on points in Euclidean
geometry (points are the basis entities of Euclidean geometry).
In the last few years the conformal geometric algebra (GA) Rp+1,q+1 [13] became
an important embedding framework of different problems relevant to robot vision
because of several attractive properties. We will come back to that point in
section 4. As mentioned above, the conformal group C(p, q), which is highly
non-linear in R

p,q transforms to a representation which is isomorphic to the
orthogonal group O(p+1, q+1) in Rp+1,q+1. Second, a subspace of the conformal
space R

n+1,1 which is called horosphere, Nn
e , is a non-Euclidean model of the

Euclidean space R
n with the remarkable property of metrical equivalence. This

is the property we want to exploit for constructing the hypersphere neuron. Here
we need in fact only the vector space R

n+1,1 = 〈Rn+1,1〉1 of the CGA.
Any point x ∈ R

n transforms to a point x ∈ R
n+1,1 with x2 = 0. That is, points

are represented as null vectors on the horosphere. Because hyperspheres are the
basis entities of R

n+1,1, a point x can be seen as a degenerate hypersphere s
with radius zero.

Let be x,y ∈ R
n two points with Euclidean distance d(x,y) = ‖x− y‖ and

let be x,y ∈ Nn
e ⊂ R

n+1,1 with distance d(x,y) = x · y (scalar product), then

d(x,y) = −1
2
d2(x,y). (29)

Therefore, the distance of a point x to a hypersphere s will be

d(x, s) :

⎧⎨
⎩
> 0 if x is outside s
= 0 if x is on s
< 0 if x is inside s.

(30)

That distance measure is used for designing the propagation function of a hy-
persphere neuron [1]. If the parameters of the hypersphere are interpreted as



270 G. Sommer

the weights of a perceptron, then by embedding any data points into R
n+1,1,

the decision boundary will be a hypersphere. In fact, the hypersphere neuron
subsumes the classical perceptron because a hypersphere with infinite radius is
a hyperplane.

To simplify the implementation we take advantage of the equivalence of the
scalar products in R

n+1,1 and in R
n+2. This enables a data coding which makes

the hypersphere neuron to a perceptron with a second bias component. For an
example see figure (3).

4 Pose Estimation of Free-Form Objects

As a rather complex example for using GA in robot vision we will report on
estimating the pose of an object which is moving in 3D space. In that example
computer vision and robotics meet very obviously. As pose we denote position
and orientation. Hence, pose estimation means estimating the parameters of
the special Euclidean transformation in space by observations of the rigid body
motion in the image plane. Pose estimation is a basic task of robot vision which
can be used in several respects as part of more complex tasks as visual tracking,
homing or navigation. Although there is plenty of solutions over the years, only
CGA [13] gives a framework which is adequate to the problem at hand [15].

The diversity of approaches known so far results from the hidden complexity
of the problem. Estimation of the parameters of the special Euclidean trans-
formation, which is composed by rotation and translation, has to be done in a
projective scenario. But the coupling of projective and special Euclidean trans-
formations, both with non-linear representations in the Euclidean space, results
in a loss of the group properties. Another problem is how to model the object
which serves as reference. In most cases a set of point features is used. But this
does not enable to exploit internal constraints contained in higher order entities
as lines, planes, circles, etc. Finally, it can be distinguished between 2D and 3D
representations of either model data and measurement data.

To be more specific, the task of pose estimation is the following: Given a
set of geometric features represented in an object centered frame and given
the projections of these features onto the image plane of a camera, then, for a
certain parametrized projection model, determine the parameters of the rigid
body motion between two instances of an object centered frame by observations
in a camera centered frame.

In our scenario we are assuming a 2D-3D approach, i.e. having 2D measure-
ment data from a calibrated full perspective monocular camera and 3D model
data. As model we are taking either a set of geometric primitives as points,
lines, planes, circles or spheres, or more complex descriptions as a kinematic
chain (coupled set of piecewise rigid parts) or free-form curves/surfaces given
as CAGD-model. From the image features we are projectively reconstructing
lines or planes in space. Now the task is to move the reference model in such a
way that the spatial distance of the considered object features to the projection
rays/planes becomes zero. This is an optimization task which is done by a gradi-
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ent descent method on the spatial distance as error measure. Hence, we prevent
minimizing any error measure directly on the manifold.

4.1 Pose Estimation in Conformal Geometric Algebra

We cannot introduce here the conformal geometric algebra (CGA) [13] because of
limited space. There is plenty of good introductions, see e.g. the PhD thesis [15]
with respect to an extended description of pose estimation in that framework.

We are using the CGA R4,1 of the Euclidean space R
3. If R

3 is spanned by
the unit vectors ei, i = 1, 2, 3, then R4,1 is the algebra of the augmented space
R

4,1 = R
3,0⊕R

1,1 with the additional basis vectors eo (representing the point at
origin) and e (representing the point at infinity). The basis {eo, e} constitutes
a null basis. From this follows that the representation of geometric entities by
null vectors is the characteristic feature of that special conformal model of the
Euclidean space.

The advantages we can profit from within our problem are the following.
First, R4,1 constitutes a unique framework for affine, projective and Euclidean
geometry. If R3,0 is the geometric algebra of the 3D Euclidean space and R3,1 is
that one of the 3D projective space, then we have the following relations between
these linear spaces:

R3,0 ⊂ R3,1 ⊂ R4,1.

Because the special Euclidean transformation is a special affine transformation,
we can handle either kinematic, projective or metric aspects of our problem in
the same algebraic frame. Higher efficiency is reached by simply transforming
the representations of the geometric entities to the respective partial space.

Second, the special Euclidean group SE(3) is a subgroup of the conformal
group C(3), which is an orthogonal group in R

+
4,1. Hence, the members of SE(3),

represented in R4,1, which we call motors, M, are spinors representing a general
rotation. Any entity u ∈ R4,1 will be transformed by the spinor product,

u′ = MuM̃. (31)

Let be R ∈ R
+
4,1 a rotor as representation of pure rotation and let be T ∈ R

+
4,1

another rotor, called translator, representing translation in R
3, then any g ∈

SE(3) is given by the motor

M = TR. (32)

Motors have some nice properties. They concatenate multiplicatively. If e.g. M
= M2M1, then

u′′ = MuM̃ = M2u′M̃2 = M2M1uM̃1M̃2. (33)

Furthermore, motors are linear operations (as used also in context of spinor
Clifford neurons). That is, we can exploit the outermorphism [11], which is the
preservation of the outer product under linear transformation.
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This leads directly to the third advantage of CGA. The incidence algebra of
projective geometry generalizes in CGA. If s1, s2 ∈ 〈R4,1〉1 are two spheres, then
their outer product is a circle, z ∈ 〈R4,1〉2,

z = s1 ∧ s2. (34)

If the circle is undergoing a rigid motion, then

z′ = MzM̃ = M(s1 ∧ s2)M̃ = Ms1M̃ ∧Ms2M̃ = s′1 ∧ s′2. (35)

In very contrast to the (homogeneously extended) Euclidean space, we can han-
dle the rigid body motion not only as linear transformation of points but of
any entities derived from points or spheres. These entities are no longer only
set concepts as subspaces in a vector space but algebraic entities. This enables
also to handle any free-form object as one algebraic entity which can be used
for gradient based pose estimation in the same manner as points. That is a real
cognitive approach to the pose problem.

Finally, we can consider the special Euclidean group SE(3) as Lie group and
are able to estimate the parameters of the generating operator of the group
member. This approach leads to linearization and very fast iterative estimation
of the parameters. Although this approach is also applicable to points in an
Euclidean framework, in CGA it is applicable to any geometric entity built from
points or spheres.

The generating operator of a motor is called twist, Ψ ∈ se(3), represented in
R4,1. The model of the motor as a Lie group member changes in comparison to
equation (32) to

M = TRT̃. (36)

This equation, which expresses a general rotation as Lie group member in R4,1,
can be easily interpreted. The general rotation is performed as normal rotation,
R, in the rotation plane l ∈ 〈R3〉2, which passes the origin, by an angle θ ∈ R,
after correcting the displacement t ∈ 〈R3〉1 of the rotation axis l∗ ∈ 〈R3〉1 from
the origin with the help of the translator T̃. Finally, the displacement has to be
reconstructed by the translator T. From this follows equation (36) in terms of
the parameters of the rigid body motion in R3,

M = exp
(

et
2

)
exp

(
−θ

2
l
)

exp
(
−et

2

)
. (37)

This factorized representation can be compactly written as

M = exp
(
−θ

2
Ψ

)
. (38)

Here

Ψ = l + e(t · l) (39)



Applications of Geometric Algebra in Robot Vision 273

is the twist of rigid body motion. Geometrically interpreted is the twist repre-
senting the line l ∈ 〈R4,1〉2 around which the rotation is performed in R4,1.

Now we return to our problem of pose estimation. The above mentioned
optimization problem is nothing else than a problem of minimizing the spatial
distance of e.g. a projection ray to a feature on the silhouette of the reference
model. If this distance is zero, then a certain geometric constraint is fulfilled.
These constraints are either collinarity or coplanarity for points, lines and planes,
or tangentiality in case of circles or spheres.

For instance, the collinearity of a point x ∈ 〈R4,1〉1, after being transformed
by the motor M, with a projection line lx is written as their vanishing commu-
tator product,

(MxM̃) × lx = 0. (40)

This equation has to be written in more details to see its coupling with the
observation of a point x in the image plane of the camera:

λ
(
(MxM̃) × (e ∧ (O ∧ x))

)
· e+ = 0. (41)

This in fact is the complete pose estimation problem written as a symbolic
dense but nevertheless algebraic correct equation. The outer product O ∧ x
of the image point x with the optical center O of the camera results in the
projection ray representation in projective space R3,1. By wedging it with e, we
transform the projection ray to the conformal space R4,1, hence, lx = e∧O∧ x.
Now the collinearity constraint can be computed in R4,1. Finally, to assign the
constraint an Euclidean distance zero, the expression has to be transformed to
the Euclidean space 〈R3〉1 by computing the inner product with the basis vector
e+ which is derived from the null basis and by scaling with λ ∈ R. In reality
the commutator product will take on a minimum as a result of the optimization
process.

4.2 Twist Representations of Free-Form Objects

So far we only considered the pose estimation problem on the base of modelling
a rigid object by a set of different order geometric entities. In robotics exists
another important object model which is piecewise rigid. A kinematic chain is
the formalization of several rigid bodies coupled by either revolute or prismatic
joints. If pose estimation is applied to observatons of e.g. a robot arm for con-
trolling grasping movements, this is the adequate model. Each of the parts of an
arm is performing movements in mutual dependence. Hence, the motion of the
j-th joint causes also motions of the preceding ones. If uj ∈ R4,1 is a geometric
entity attached to the j-th segment, e.g. a fingertip, its net displacement caused
by a motor M, represented in the (fixed) base coordinate system, is given by

u′
j = M(M1...MjujM̃j ...M̃1)M̃. (42)

Here, the motors Mi are representing the constrained motion of the i-th joint.
While in the homogeneous space R

4 this equation is limited to points as moving
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entities and in the framework of the motor algebra [2] lines and planes can be
considered in addition, there is no such restriction in CGA.

The idea of the kinematic chain can be further generalized to a generator
of free-form shape. We will consider the trajectory caused by the motion of the
entity u in space as the orbit of a multi-parameter Lie group of SE(3). This
multi-parameter Lie group represents a possibly very complex general rotation
in R4,1 which is generated by a set of nested motors, contributing each with its
own constrained elementary general rotation. If the entity u would be a point,
then the orbit can be a space curve, a surface or a volume. But u can also
be of higher order (e.g. a tea pot). Hence, the generated orbit may be of any
complexity.

This kinematic model of shape in CGA [16] has not been known before,
although there is a long history of relating kinematics and geometry, e.g. with
respect to algebraic curves, or of the geometric interpretation of Lie groups.

The mentioned generalization of the model of a kinematic chain is twofold.
First, the rotation axes of the motors must not be positioned at the periphery
of the shape but may be (virtually) located anywhere. Second, several different
oriented axes may be fixed at the same location.

The principle of constructing higher order 3D curves or surfaces as orbit of
a point which is controlled by only a few coupled twists as generators is simple.
Let be xz an arbitrary point on a circle z, that is xz · z = 0, and let be M(l; θ)
the corresponding motor, then for all θ ∈ [0, ..., 2π]

x(1)
z = MxzM̃ (43)

generates the circle z. If the motor is representing a pure translator, then any
arbitrary oriented line l will be generated. Such primitive curves will be called
3D-1twist curves.

By coupling a second twist to the first one, either a 3D-2twist curve or surface
will be generated. In fact, already this simple system has a lot of degrees of
freedom which enable generating quite different figures [15]. This can be seen by
the following equation:

x(2)
c = M2M1xcM̃1M̃2 (44)

with

Mi(li;λi, θi) = exp
(
−λiθi

2
Ψi

)
, (45)

Here λi ∈ R is the ratio of the angular frequency, θi ∈ [α1, ..., α2] is the angular
segment which is covered by θi and finally Ψi defines the position and orientation
of the general rotation axis li and the type of motion, that is rotation-like,
translation-like, or a mixed form.

Finally, the twist model of a closed shape is equivalent to the well-known
Fourier representation, we started with this survey. Since the Fourier series ex-
pansion of a closed 3D curve C(φ) can be interpreted as the action of an infinite
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Fig. 4. Regularization of iterative pose estimation by Fourier representation (numbers
indicate the iteration steps)

set of rotors, Rφ
k , fixed at the origin of 〈R3〉1, onto phase vectors pk, there is no

need of using CGA. A planar closed curve is given by

C(φ) = lim
N→∞

N∑
k=−N

pk exp
(

2πkφ
T

l
)

= lim
N→∞

N∑
k=−N

Rφ
kpkR̃

φ
k . (46)

The phase vectors pk are the Fourier series coefficients. Instead of the imaginary
unit of the harmonics, the unit bivector l ∈ R3, l2 = −1, is used which defines
the rotation plane of the phase vectors. Based on the assumption that any closed
3D curve can be reconstructed from three orthogonal projections, a spatial curve
is represented by

C(φ) = lim
N→∞

3∑
m=1

N∑
k=−N

pm
k exp

(
2πkφ
T

lm

)
. (47)

This scheme can be extended to free-form surfaces as well and has been
used for pose estimation in the presented framework. In that respect the in-
verse Fourier transform of discretized curves/surfaces was applied. The necessary
transformation of the Euclidean Fourier representation, CE(φ), to a conformal
one, CC(φ), can simply be done by the following operation:

CC(φ) = e ∧ (CE(φ) + e−), (48)

where e− stands for the homogeneous coordinate of the projective space R3,1

and wedging with e again realizes the transformation from R3,1 to R4,1.
One advantage of using the Fourier interpretation of the twist approach in

pose estimation is the possibility of regularizing the optimization in the case
of non-convex objects. This is demonstrated in figure (4). During the iteration
process, which needs for that object only a few milliseconds, successively more
Fourier coefficients are used. Hence, getting stuck in local minima is prevented.
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The presented methods used in pose estimation clearly demonstrate the
strength of the applied algebraic model of conformal geometric algebra.

5 Conclusions

We have demonstrated the application of geometric algebra as universal math-
ematical language for modelling in robot vision. Here we will summarize some
general conclusions.

First, GA supports generalizations of representations. In section 4 we used
the stratification of spaces of different geometry. This enables simple switching
between different aspects of a geometric entity. Instead of points, in a certain
GA as CGA, higher order entities take on the role of basis entities from which
object concepts with algebraic properties can be constructed. We have shown
that kinematics, shape theory and Fourier theory are unified in the framework
of CGA. Besides, in section 2 we could handle multi-dimensional functions in a
linear signal theory.

Second, the transformation of non-linear problems to linear ones is another
important advantage. This could be demonstrated in all presented application
fields. In learning theory this enables designing algebraically constrained knowl-
edge based neural nets.

Third, GA is a mathematical language which supports symbolic dense for-
mulations with algebraic meaning. We are able to lift up representations where
besides the above mentioned qualitative aspects also reduced computational
complexity results. This is important in real-time critical applications as robot
vision.

We can state that the progress we made in robot vision could only be possible
on the base of using geometric algebra and this enforces its use also in other
application fields.
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of Shape�
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Abstract. We give a contribution to the representation problem of free-
form curves and surfaces. Our proposal is an operational or kinematic
approach based on the Lie group SE(3). While in Euclidean space the
modelling of shape as an orbit of a point under the action of SE(3)
is limited, we are embedding our problem into the conformal geometric
algebra R4,1 of the Euclidean space R

3. This embedding results in a
number of advantages which makes the proposed method a universal
and flexible one with respect to applications. It makes possible the robust
and fast estimation of the pose of 3D objects from incomplete and noisy
image data. Especially advantagous is the equivalence of the proposed
shape model to that of the Fourier representations.

1 Introduction

Shape is a geometric concept of the appearance of an object, a data set or a
function which “can be defined as the total of all information that is invariant
under translations, rotations, and isotropic rescalings. Thus two objects can
be said to have the same shape if they are similar in the sense of Euclidean
geometry.” This quotation from [26] is very general because of the consideration
of scale invariance. By leaving out that property, we can define the shape of an
object as that geometric concept that is invariant under the special Euclidean
group, e.g. SE(3) if we consider 3D shape in Euclidean space R

3. Furthermore,
we allow our objects to change their shape in a well-defined manner under the
action of some external forces which may include also a re-normalization of size.

The literature on shape modelling and applications is vast. Examples are vi-
sualization and animation in computer graphics or shape and motion recognition
in computer vision. The central problem for the usefulness of a model in either
field is the chosen representation of shape.
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Here we present a new approach to the modelling of free-form shape of curves
and surfaces which has some features that make it especially attractive for com-
puter vision and computer graphics. In our applications of pose estimation of 3D
objects we could easily handle incomplete and noisy image data for numerically
stable estimations with nearly video real-time capability.

That new representation results from the fusion of two concepts:

1) Free-form curves and surfaces are modelled as the orbit of a point under
the action of the Lie group SE(3), caused by a set of coupled infinitesimal
generators of the group, called twists [18].

2) These object models are embedded in the conformal geometric algebra (CGA)
of the Euclidean space R

3 [16], that is R4,1. Only in conformal geometry
does the (above mentioned) modelling of shape unfold a rich set of useful
features.

The concept of fusing a local with a global algebraic framework has been pro-
posed already in [27]. But only the pioneering work of Hestenes, Li and Rockwood
[16] made it feasible to consider the Lie algebra se(3), the space of tangents to
an object, embedded in R4,1, as the source of our shape model instead of using
se(3) in R

3.

The tight relations of geometry and kinematics are known to the mathemati-
cians for centuries, see e.g. [4]. But in contrast to most applications in mechanical
engineering, we are not restricted in our approach by physically feasible motions
nor will we get problems in generating spatial curves or surfaces.

By embedding our design method into CGA, both primitive geometric entities
such as points or objects on the one hand and actions on the other hand will
have algebraic representations in one single framework. Furthermore, objects are
defined by actions, and also actions can take on the role of operands.

Our proposed kinematic definition of shape uses infinitesimal actions to gen-
erate global patterns of low intrinsic dimension. This phenomen corresponds to
the interpretation of the special Euclidean group in CGA, SE(3), as a Lie group,
where an element g ∈ SE(3) performs a transformation of an entity u ∈ R4,1,

u′ = u(θ) = g {u(0)} (1)

with respect to the parameter θ of g. Any special g ∈ SE(3) that represents a
general rotation in CGA corresponds to a Lie group operator M ∈ R

+
4,1 which

is called a motor and which is applied by the bilinear spinor product

u′ = MuM̃ , (2)

where M̃ is the reverse of M . This product indicates that M is an orthogonal
operator. If g is an element of the Lie group SE(3), its infinitesimal generator,
ξ, is defined in the corresponding Lie algebra, that is ξ ∈ se(3). That Lie alge-
bra element of the rigid body motion is geometrically interpreted as the rotation
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axis l in conformal space. Then the motor M results from the exponential map
of the generator l of the group element, which is called a twist:

M = exp
(
−θ

2
l

)
. (3)

While θ is the rotation angle as the parameter of the motor, its generator is
defined by the five degrees of freedom of a line l in space.

In our approach, the motor M is the effective operator which causes arbi-
trarily complex object shape. This operator may result from the multiplicative
coupling of a set of primitive motors {M i|i = n, ..., 1} ,

M = MnMn−1...M2M1. (4)

Each of these motors M i represents a circular motion of a point around its own
axis.

Based on that approach, rather complex free-form objects can be designed
which behave as algebraic entities. That means, they can be transformed by
motors in a covariant and linear way. To handle complete objects in that way as
unique entities makes sense from both a cognitive and a numeric point of view.

The conformal geometric algebra R4,1 makes this possible. This is due to two
essential facts. First, the representation of the special Euclidean group SE(3)
in R4,1 as a subgroup of the conformal group C(3) is isomorphic to the special
orthogonal group SO+(4, 1). Hence, rigid body motion can be performed as
rotation in CGA and therefore has a covariant representation. Second, the basic
geometric entity of the conformal geometric algebra of the Euclidean space is the
sphere. All geometric entities derived by incidence operations from the sphere
can be transformed in CGA by an element g ∈ SE(3), that is a motor M ∈ R

+
4,1,

in the same linear way, just as a point in the homogeneous Euclidean space R
4.

Because there exists a dual representation of a sphere (and of all derived entities)
in CGA, which considers points as the basic geometric entity of the Euclidean
space in the conformal space, all the known concepts from Euclidean space can
be transformed to the conformal one.

Finally, we can take advantage of the stratification of spaces by CGA. Since
the seminal paper [5] the purposive use of stratified geometries became an im-
portant design principle of vision systems. This means that an observer in de-
pendence of its possibilities and needs can have access to different geometries as
projective, affine or metric ones. So far this could hardly be realized. In CGA
we have quite another situation.

The CGA R4,1 is a linear space of dimension 32. This mighty space repre-
sents not only conformal geometry but also affine geometry. Note that the special
Euclidean group is a special affine group. Because R4,1 is derived from the Eu-
clidean space R

3, it encloses also Euclidean geometry, which is represented by
the geometric algebra R3,0. In addition, the projective geometric algebra R3,1

is enclosed in R4,1. Thus, we have the stratification of the geometric algebras
R3,0 ⊂ R3,1 ⊂ R4,1. This enables to consider metric (Euclidean), projective and
kinematic (affine) problems in one single algebraic framework.
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2 Geometric Entities and Motion in Conformal
Geometric Algebra

After giving a bird’s eye view on construction of the conformal geometric algebra,
its features and geometric entities, will present the possibilities of representing
the rigid body motion in CGA.

2.1 CGA of the Euclidean Space

A geometric algebra (GA) Rp,q,r is a linear space of dimension 2n, n = p +
q + r , which results from a vector space R

p,q,r. We call (p, q, r) the signature
of the vector space of dimension n. This indicates that there are p/q/r unit
vectors ei which square to +1/ − 1/0, respectively. While n = p in case of the
Euclidean space R

3, R
p,q,r indicates a vector space with a metric different than

the Euclidean one. In the case of r �= 0 there is a degenerate metric. We will omit
the signature indexes from right if the interpretation is unique, as in the case of
R

3. The basic product of a GA is the associative and anticommutative geometric
product, indicated by juxtaposition of the operands. There can be used a lot of
other product forms in CA too, as the outer product (∧), the inner product (·),
the commutator product (×) and the anticommutator product ×. The space
Rp,q,r is spanned by a set of 2n linear subspaces of different grade called blades.

The conformal geometry of Euclidean and non-Euclidean spaces is known for
a long time [32] without giving strong impact on the modelling in engineering
with the exception of electrical engineering. There are different representations
of the conformal geometry. Most disseminated is a complex formulation [19].
Based on an idea in [13], in [16] and in two other papers of the same authors in
[28], the conformal geometries of the Euclidean, spherical and hyperbolic spaces
have been worked out in the framework of GA.

The basic approach is that a conformal geometric algebra (CGA) Rp+1,q+1

is built from a pseudo-Euclidean space R
p+1,q+1. If we start with an Euclidean

space R
n, the construction R

n+1,1 = R
n ⊕ R

1,1, ⊕ being the direct sum, uses a
plane with Minkowski signature for augmenting the basis of R

n by the additional
basis vectors {e+,e−} with e2

+ = 1 and e2
− = −1. Because that model can be

interpreted as a homogeneous stereographic projection of all points x ∈ R
n to

points x ∈ R
n+1,1, this space is called the homogeneous model of R

n. Further-
more, by replacing the basis {e+,e−} with the basis {e,e0}, the homogeneous
stereographic representation will become a representation of null vectors. This
is caused by the properties e2 = e2

0 = 0 and e · e0 = −1. The relation between
the null basis {e,e0} and the basis {e+,e−} is given by

e := (e− + e+) and e0 :=
1
2
(e− − e+). (5)

Any point x ∈ R
n transforms to a point x ∈ R

n+1,1 according to

x = x +
1
2
x2e + e0 (6)

with x2 = 0.
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In fact, any point x ∈ R
n+1,1 is lying on an n-dimensional subspace Nn

e ⊂
R

n+1,1, called horosphere [16]. The horosphere is a non-Euclidean model of the
Euclidean space R

n.
It must be mentioned that the basis vectors e and e0 have a geometric in-

terpretation. In fact, e corresponds the north pole and e0 corresponds the south
pole of the hypersphere of the stereographic projection, embedded in R

n+1,1.
Thus, e is representing the points at infinity and e0 is representing the origin of
R

n in the space R
n+1,1.

By setting apart these two points from all others of the R
n makes R

n+1,1 a ho-
mogeneous space in the sense that each x ∈ R

n+1,1 is a homogeneous null vector
without having reference to the origin. This enables coordinate-free computing
to a large extent. Hence, x ∈ Nn

e constitutes an equivalence class {λx, λ ∈ R}
on the horosphere. The reduction of that equivalence class to a unique entity
with metrical equivalence to the point x ∈ R

n needs a normalization.
The CGA R4,1, derived from the Euclidean space R

3, offers 32 blades as
basis of that linear space. This rich structure enables one to represent low order
geometric entities in a hierarchy of grades. These entities can be derived as
solutions of either the IPNS or the OPNS depending on what we assume as the
basis geometric entity of the conformal space, see [21]. So far we only considered
the mapping of an Euclidean point x ∈ R

3 to a point x ∈ N3
e ⊂ R

4,1. But
the null vectors on the horosphere are only a special subset of all the vectors of
R

4,1. All the vectors of R
4,1 are representing spheres as the basic entities of the

conformal space. A sphere s ∈ R
4,1 is defined by its center position, c ∈ R

3, and
its radius ρ ∈ R according to

s = c +
1
2
(c− ρ)2e + e0. (7)

And because s2 = ρ2 > 0, it must be a non-null vector. A point x ∈ N3
e can

be considered as a degenerate sphere of radius zero and a plane p ∈ R
4,1 can be

interpreted as a sphere of infinite radius. Hence, spheres s, points x and planes
p are entities of grade 1. By taking the outer product of spheres si, other entities
of higher grade can be constructed.
So we get a circle z, a point pair q and a point y as entities of grade 2, 3 and 4,
respectively, which exist outside the null cone in R

4,1,

z = s1 ∧ s2 (8)
q = s1 ∧ s2 ∧ s3 (9)
y = s1 ∧ s2 ∧ s3 ∧ s4 (10)

as solutions of the IPNS. If we consider the OPNS on the other hand, we are
starting with points xi ∈ N3

e and can proceed similarly to define a point pair Q,
a circle Z and a sphere S as entities of grade 2, 3 and 4 derived from points xi

on the null cone of R4,1 according to

Q = x1 ∧ x2 (11)
Z = x1 ∧ x2 ∧ x3 (12)
S = x1 ∧ x2 ∧ x3 ∧ x4. (13)
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These sets of entities are obviously related by the duality u∗ = U .
In OPNS, for lines L and planes P , we have the definitions

L = e ∧ x1 ∧ x2 (14)
P = e ∧ x1 ∧ x2 ∧ x3 (15)

and in IPNS we get the lines l and the planes p as entities of grade 2 and 1 as
the dual of L and P , respectively. Finally,

X = e ∧ x

is called the affine representation of a point [16]. This representation of a point
is used if the interplay of the projective with the conformal representation is of
interest in applications as in [24]. The same is with the line L and the plane P .

Let us come back to the stratification of spaces mentioned in Section 1. Let
be x ∈ R

n a point of the Euclidean space, X ∈ R
n,1 a point of the projective

space and X ∈ R
n+1,1 a point of the conformal space. Then the operations which

transform the representation between the spaces are for R3 −→ R3,1 −→ R4,1

X = e ∧X = e ∧ (x + e−), (16)

and for R4,1 −→ R3,1 −→ R3

x = − X

X · e−
=

((e+ ·X) ∧ e−) · e−
(e+ ·X) · e−

· (17)

2.2 The Special Euclidean Group in CGA

A geometry is defined by its basic entity, the geometric transformation group
which is acting in a linear and covariant manner on all the entities which are
constructed from the basic entity by incidence operations, and the resulting
invariances with respect to that group. The search for such a geometry was
motivated in Section 1. Next we want to specify the required features of the
special Euclidean group in CGA.

To make a geometry a proper one, we have to require that any action A of
that group on an entity, say u, is grade preserving, or in other words structure
preserving. This makes it necessary that the operator A applies as versor product
[22]

A{u} = AuA−1. (18)

This means that the entity u should transform covariantly [15], [3]. If u is com-
posed by e.g. two representants u1 and u2 of the basis entities of the geometry,
then u should transform according to

A{u} = A{u1 ◦ u2} = (Au1A
−1) ◦ (Au2A

−1) = AuA−1. (19)
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The invariants of the conformal group C(3) in R
3 are angles. The conformal

group C(3) is mighty [19], but other than (18) and (19) it is nonlinear and
transforms not covariantly in R

3. Besides, in R
3 there exist no entities other

than points which could be transformed.
As we have shown in Section 2.1, in R4,1 the situation is quite different be-

cause all the geometric entities derived there can be seen also as algebraic entities
in the sense of Section 1. Not only the elements of the null cone transform covari-
antly but also those of the dual space of R4,1. Furthermore, the representation
of the conformal group C(3) in R4,1 has the required properties of (18) and (19),
see [16] and [15]. All vectors with positive signature in R4,1, that is a sphere,
a plane as well as the components inversion and reflection of C(3) compose a
multiplicative group. That is called the versor representation of C(3). This group
is isomorphic to the Lorentz group of R4,1. The subgroup, which is composed
by products of an even number of these vectors, is the spin group Spin+(4, 1),
that is the spin representation of O+(4, 1). To that group belong the subgroups
of rotation, translation, dilatation, and transversion of C(3). They are applied
as a spinor S, S ∈ R

+
4,1 and SS̃ = |S|2. A rotor R,R ∈ 〈R4,1〉2 and RR2 = 1,

is a special spinor. Rotation and translation are represented in R4,1 as rotors.
The special Euclidean group SE(3) is defined by SE(3) = SO(3) ⊕ R

3.
Therefore, the rigid body motion g = (R, t), g ∈ SE(3) of a point x ∈ R

3

writes in Euclidean space

x′ = g {x} = Rx + t. (20)

Here R is a rotation matrix and t is a translation vector. Because SE(3) ⊂ C(3),
in our choice of a special rigid body motion the representation of SE(3) in CGA
is isomorphic to the special orthogonal group, SO+(4, 1). Hence, such g ∈ SE(3),
which does not represent the full screw, is represented as rotation in R4,1. This
rotation is a general one, that is the rotation axis in R

3 is shifted out of the
origin by the translation vector t.

That transformation g ∈ SE(3) is represented in CGA by a special rotor M
called a motor, M ∈ 〈R4,1〉2. The motor may be written

M = exp
(
−θ

2
l

)
, (21)

where θ ∈ R is the rotation angle and l ∈ 〈R4,1〉2 is indicating the line of the
general rotation. To specify l by the rotation and translation in R

3, the motor
has to be decomposed into its rotation and translation components. The normal
rotation in CGA is given by the rotor

R = exp
(
−θ

2
l

)
(22)

with l ∈ 〈R3〉2 indicating the rotation plane which passes the origin. The trans-
lation in CGA is given by a special rotor, called a translator,

T = exp
(

et

2

)
(23)
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with t ∈ 〈R3〉1 as the translation vector. Because rotors constitute a multiplica-
tive group, a naive formulation of the coupling of R and T would be

M = TR. (24)

But if we interprete the rotor R as that entity of R4,1 which should be trans-
formed by translation in a covariant manner, a better choice is

M = TRT̃ . (25)

We call this special motor representation the twist representation. Its exponential
form is given by

M = exp
(

1
2
et

)
exp

(
−θ

2
l

)
exp

(
−1

2
et

)
. (26)

This equation expresses the shift of the rotation axis l∗ in the plane l by the
vector t to perform the normal rotation and finally shifting back the axis.

Because SE(3) is a Lie group, the line l ∈ 〈R4,1〉2 is the representation of the
infinitesimal generator of M , ξ ∈ se(3). We call the generator representation a
twist because it represents rigid body motion as general rotation. It is parame-
terized by the position and orientation of l which are the Plücker coordinates,
represented by the rotation plane l and the inner product (t · l), [24],

l = l + e(t · l). (27)

The most general formulation of the rigid body motion is the screw motion [23].
It is formulated in CGA as

M s = T sTRT̃ (28)

with the pitch translator

T s = exp
(
d

2
el∗

)
, (29)

where l∗ ∈ 〈R3〉1 is the screw axis as the dual of l and ts = dl∗ is a translation
vector parallel to that axis and of length d. If we formulate M s as

M s = exp
(
−θ

2
(l + em)

)
(30)

with the vector m ∈ 〈R3〉1

m = t · l− d

θ
l∗, (31)

then all special cases of the rigid body motion, represented in the CGA R4,1 can
be derived from (31):
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m = 0 : pure rotation (M s = R)
m = t, θ −→ 0 : pure translation (M s = T )
m ⊥ l∗ : general rotation (M s = M)
m �⊥ l∗ : general screw motion.

A motor M transforms covariantly any entity u ∈ R4,1 according to

u′ = MuM̃ (32)

with u′ ∈ R4,1. An equivalent equation is valid for the dual entity U ∈ R4,1.
Because motors concatenate multiplicatively, a multiple-motor transformation
of u resolves recursively. Let be M = M2M1, then

u′′ = MuM̃ = M2M1uM̃1M̃2 = M2u
′M̃2. (33)

It is a feature of any GA that also composed entities, which are built by the outer
product of other ones, transform covariantly by a linear transformation. This is
called outermorphism [12] and it means the preservation of the outer product
under linear transformations. Let z ∈ 〈R4,1〉2 be a circle, which is composed by
two spheres s1, s2 ∈ 〈R4,1〉1 according to z = s1 ∧ s2. Then the transformed
circle computes as

z′ = MzM̃ = M(s1 ∧ s2)M̃ = 〈M(s1s2)M̃〉2 (34)

= 〈Ms1M̃Ms2M̃〉2 = Ms1M̃ ∧Ms2M̃ (35)
= s′

1 ∧ s′
2. (36)

Following Section 1, this is an important feature of the chosen algebraic embed-
ding that will be demonstrated in Section 3.

3 Shape Models from Coupled Twists

In this section we will approach step by step the kinematic design of algebraic
and transcendental curves and surfaces by coupling a certain set of twists as
generators of a multiple-parameter Lie group action.

3.1 Constrained Motion in a Kinematic Chain

In the preceding section we argued that each entity ui contributing to the rigid
model of another entity u is performing the same transformation, represented
by the motor M . Now we assume an ordered set of non-rigidly coupled rigid
components of an object. This is for example a model of bar-shaped mechanisms
[18] if the components are coupled by either revolute or prismatic joints. Such
model is called a kinematic chain [17]. In a kinematic chain the task is to for-
mulate the net movement of the end-effector at the n-th joint by movements of
the j-th joints, j = 1, ..., n − 1, if the 0-th joint is fixed coupled with a world
coordinate system. These movements are discribed by the motors M j . Let Tj
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be the transformation of an attached joint j with respect to the base coordinate
system, then for j = 1, ..., n the point xj,ij

, ij = 1, ...,mj , transforms according
to

Tj(xj,ij
,M j) = M1...M jxj,ij

M̃ j ...M̃1 (37)

and

T0(x0,i0
) = x0,i0

. (38)

The motors M j are representing the flexible geometry of the kinematic chain
very efficiently. This results in an object model O defined by a kinematic chain
with n segments and described by any geometric entity uj,ij

∈ R4,1 attached to
the j-th segment,

O =
{
T0(u0,i0

), T1(u1,i1
,M1), ..., Tn(un,in

,Mn)|n, i0, ..., in ∈ N
}
. (39)

If uj,ij
is performing a motion caused by the motor M , then

u′
j,ij

= M
(
Tj(uj,ij

,M j)
)

M̃ (40)

= M(M1...M juj,ij
M̃ j ...M̃1)M̃ . (41)

Obviously, this equation describes a constrained motion of the considered
entities.

3.2 The Operational Model of Shape

We will now introduce another type of constrained motion, which can be real-
ized by physical systems only in special cases but should be understood as a
generalization of a kinematic chain. This is our proposed model of operational
or kinematic shape [24]. An operational shape means that a shape results from
the net effect, that is the orbit, of a point under the action of a set of coupled
operators. So the operators at the end are the representations of the shape. A
kinematic shape means the shape for which these operators are the motors as
representations of SE(3) in R4,1. The principle is simple. It goes back to the
interpretation of any g ∈ SE(3) as a Lie group action [18], see equation (1). But
only in R4,1 we can take advantage of its representation as rotation around the
axis l, see equations (21), (25) and (26).

In Section 2.1 we introduced the sphere and the circle from IPNS and OPNS,
respectively. We call these definitions the canonical ones. On the other hand, a
circle has an operational definition which is given by the following.
Let xφ be a point which is a mapping of another point x0 by g ∈ SE(3) in R4,1.
This may be written as

xφ = Mφx0M̃φ (42)

with Mφ being the motor which rotates x0 by an angle φ,

Mφ = exp
(
−φ

2
Ψ

)
. (43)
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Here again is Ψ the twist as a generator of the rotation around the axis l, see
equation (21). Note that Ψ = αl, α ∈ R. If φ covers densely the whole span
[0, ..., 2π], then the generated set of points

{
xφ

}
is also dense. The infinite set{

xφ

}
is the orbit of a rotation caused by the infinite set {Mφ}, which has the

shape of a circle in R
3. The set {xφ} represents the well-known subset concept

in a vector space of geometric objects in analytic geometry. In fact, that circle is
on the horosphere N3

e because it is composed only by points. We will write for
the circle z{1} instead of

{
xφ

}
to indicate the different nature of that circle in

comparison to either z or Z of Section 2.1. The index {1} means that the circle
is generated by one twist from a continuous argument φ. So the circle, embedded
in R4,1, is defined by

z{1} =
{
xφ| for all φ ∈ [0, ..., 2π]

}
. (44)

Its radius is given by the distance of the chosen point x0 to the axis l and its
orientation and position in space depends on the parameterization of l. That
z{1} is defined by an infinite set of arguments is no real problem in the case
of computational geometry or applications where only discretized shape is of
interest. More interesting is the fact that in the canonical definitions of Section
2.1 the geometric entities are all derived from either spheres or points. In the
case of the operational definition of shape, the circle is the basic geometric entity
instead, respectively rotation is the basic operation.

A sphere results from the coupling of two motors, Mφ1 and Mφ2 , whose twist
axes meet at the center of the sphere and which are perpendicularly arranged.
The following twists are possible generators, but any other orientation is even
good,

Ψ1 = e12 + e(c · e12) (45)
Ψ2 = e31 + e(c · e31) (46)

with the sphere center c, and e12, e31 are two orthogonal planes.
The resulting constrained motion of a point x0,0 performs a rotation on a

sphere given by φ1 ∈ [0, ..., 2π] and φ2 ∈ [0, ..., π],

xφ1,φ2
= Mφ2Mφ1x0,0M̃φ1M̃φ2 . (47)

The complete orbit of a sphere is given by

s{2} =
{
xφ1,φ2

| for all φ1 ∈ [0, ..., 2π] , φ2 ∈ [0, ..., π]
}
. (48)

Let us come back to the point of generalization of the well-known kinematic
chains. These models of linked bar mechanisms have to be physically feasible.
Instead, our model of coupled twists is not limited by that constraint. Therefore,
the sphere expresses a virtual coupling of twists. This includes both location and
orientation in space, and the possibility of fixating several twists at the same
location, for any dimension of the space R

n. There are several extensions of the
introduced kinematic model which are only possible in CGA.
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First, while the group SE(3) can only act on points, its representation in R4,1

may act in the same way on any entity u ∈ R4,1 derived from either points or
spheres. This results in high complex free-form shapes caused from the motion
of relatively simple generating entities and low order sets of coupled twists.

Second, only by coupling a certain set of twists, high complex free-form shapes
may be generated from a complex enough constrained motion of a point.

Let u{n} be the shape generated by n motors Mφ1 , ...,Mφn
. We call it the

n-twist model,

u{n} =
{
xφ1,...,φn

| for all φ1, ..., φn ∈ [0, ..., 2π]
}

(49)

with

xφ1,...,φn
= Mφn

...Mφ1x0,...,0M̃φ1 ...M̃φn
. (50)

Then the last equation may also be written

xφ1,...,φn
= Mφn

...Mφ2x{φ1,0,...,0}M̃φ2 ...M̃φn
. (51)

By continuing that reformulation, we get finally

xφ1,...,φn
= Mφn

x{φ1,...,φn−1,0}M̃φn
. (52)

This corresponds also to

xφ1,...,φn
= Mx0,...,0M̃ (53)

with M = Mφn
...Mφ1 . The set

{
xφ1,0,...0

}
represents a circle and the set{

xφ1,...,φn−1,0

}
represents an entity which, coupled with a circle, will result in{

xφ1,...,φn

}
. While equation (50) is representing a multiple-parameter Lie group

form of SE(3), where the nested motors are carrying the complexity of u{n}, the
complexity is stepwise shifted to u{n−1} in equation (52). Furthermore, while
both equations (52) and (53) are linear in the motors, equation (53) looks so
simple because the parameters of the resulting motor M are now a function in
the space spanned by the parameters of the generating twists Ψ1, ..., Ψn and the
arguments of the motors φ1, ..., φn. Instead of using the single-parameter form
(53), we prefer equation (50).

3.3 Free-Form Objects

There are a lot of more degrees of freedom to design free-form objects embedded
in R4,1 by the motion of a point caused by coupled twists. While a single rotation-
like motor generates a circle, a single translation-like motor generates a line as
a root of non-curved objects. Of course, several of both variants can be mixed.

Other degrees of freedom of the design result from the following extensions:

– Introducing an individual angular frequency λi to the motor Mφi
also in-

fluences the synchronization of the rotation angles φi.
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– Rotation within limited angular segments φi ∈ [αi1 , ..., αi2 ] with 0 ≤ αi1 <
αi2 ≤ 2π is possible.

Let us consider the simple example of a 2-twist model of shape,

u{2} =
{
xφ1,φ2

| for all φ1, φ2 ∈ [0, ..., 2π]
}

(54)

with

xφ1,φ2
= Mλ2φ2Mλ1φ1x0M̃λ1φ1M̃λ2φ2 , (55)

λ1, λ2 ∈ R and φ1 = φ2 = φ ∈ [0, ..., 2π].
That model can generate not only a sphere, but an ellipse (λ1 = −2, λ2 = 1),

several well-known algebraic curves (in space), see [24], such as cardioid, nephroid
or deltoid, transcendental curves like a spiral, or surfaces. For the list of examples
see Table 1.

Table 1. Simple geometric entities generated from up to three twists

Entity Generation Class

point twist axis intersected with a point 0twist curve
circle twist axis non-collinear with a point 1twist curve
line twist axis is at infinity 1twist curve
conic 2 parallel non-collinear twists 2twist curve λ1 = 1, λ2 = −2
line segment 2 twists, building a degenerate conic 2twist curve λ1 = 1, λ2 = −2
cardioid 2 parallel non-collinear twists 2twist curve λ1 = 1, λ2 = 1
nephroid 2 parallel non-collinear twists 2twist curve λ1 = 1, λ2 = 2
rose 2 parallel non-collinear twists, j loops 2twist curve λ1 = 1, λ2 = −j
spiral 1 finite and 1 infinite twist 2twist curve λ1 = 1, λ2 = 1
sphere 2 perpendicular twists 2twist surface λ1 = 1, λ2 = 1
plane 2 parallel twists at infinity 2twist surface
cylinder 2 twists, one at infinity 2twist surface
cone 2 twists, one at infinity 2twist surface
quadric a conic rotated with a third twist 3twist surface

Interestingly, the order of nonlinearity of algebraic curves grows faster than
the number of the generating motors.

By replacing the initial point x0 by any other geometric entity, u0, built from
either points or spheres by applying the outer product, the concepts remain the
same. This makes the kinematic object model in conformal space a recursive
one.

The infinite set of arguments φi of the motor Mφi
to generate the entity

u{n} will in practice reduce to a finite one, which results in a discrete entity
u[n]. The index [n] indicates that n twists are used with a finite set of arguments
{φi,ji

|ji ∈ {0, ...,mi}}.
The previous formulations of free-form shape did assume a rigid model. As

in the case of the kinematic chain, the model can be made flexible. This happens
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by encapsulating the entity u[n] into a set of motors
{

Md
j |j = J, ..., 1

}
, which

results in a deformation of the object.

ud
[n] = Md

J ...M
d
1u[n]M̃

d

1...M̃
d

J (56)

Finally, the entity ud
[n] may perform a motion under the action of a motor

M , which itself may be composed by a set of motors {M i|i = I, ..., 1} according
to equation (4),

ud′
[n] = Mud

[n]M̃ . (57)

But a twist is not only an operator, it may also play in CGA the role of an
operand,

Ψ ′ = MΨM . (58)

This causes a dynamic shape model as an alternative to (56). If the angular
argument of M is specified by, e.g. θ = 2πt , t∗ ≤ t ≤ t∗, then the twist axis
l may move along the arc of a circle. An interesting application is the so-called
ball-and-socket joint required to accurately model shoulder and hip joints of
articulated persons [10].

So far, the entity u{n} was embedded in the Euclidean space. Lifting up the
entity to the conformal space, u{n} ∈ R4,1, is simply done by

u{n} = e ∧
(
u{n} + e−

)
= e ∧U{n} (59)

with U{n} being the shape in the projective space R3,1.

4 Twist Models and Fourier Representations

The message of the last subsection is the following. A finite set of coupled twist
(or nested motors) performs a constrained motion of any set of geometric entities,
whose orbit uniquely represents either a curve, a surface or a volume of arbitrary
complexity. This needs a parameterized model of the generators of the shape.
In some applications the reverse problem may be of interest. That is to find
a parameterized twist model for a given shape. That task can be solved: Any
curve, surface or volume of arbitrary complexity can be mapped to a finite set of
coupled twists, but in a non-unique manner. That means, that there are different
models which generate the same shape.

We will show here that there is a direct and intuitive relation between the
twist model of shape and the Fourier representations. The Fourier series decom-
position and the Fourier transforms in their different representations are well-
known techniques of signal analysis and image processing [20]. The interesting
fact that this equivalence of representations results in a fusion of concepts from
geometry, kinematics, and signal theory is of great importance in engineering.
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Furthermore, because the presented modelling of shape is embedded in a confor-
mal space, there is also a single access for embedding the Fourier representations
in either conformal or projective geometry. This is quite different from the recent
publications [29], [30]. It will hopefully enable image processing which is con-
formally embedded and, in the case of image sequences, the pose in space can
be coupled with image analysis in a better way than in [31]. Our first attempt
to formulate projective Fourier coefficients [24] showed some serious problems
which have to be overcome in future work. We will not go into details here.

4.1 The Case of a Closed Planar Curve

Let us consider a closed curve c ∈ R
2 in a parametric representation with t ∈ R.

Then its Fourier series representation is given by

c(t) =
∞∑

ν=−∞
γν exp

(
j2πνt
T

)
(60)

with the Fourier coefficients γν , ν ∈ Z as frequency and j, j2 = −1, as the
imaginary unit and T as the curve length.

This model of a curve has been used for a long time in image processing for
shape analysis by Fourier descriptors (these are the Fourier coefficients) [33],
[9]. Furthermore, affine invariant Fourier descriptors can be used [1] to couple a
space curve to its affine image.

We will translate this spectral representation into the model of an infinite
number of coupled twists by following the method presented in [25]. Because
equation (60) is valid in an Euclidean space, the twist model has to be reformu-
lated accordingly. This will be shown for the case of a 2-twist curve c{2}. Then
equation (55) can be written in R3 for φ1 = φ2 = φ as

xφ = Rλ2φ

(
(Rλ1φ(x0 − t1)R̃λ1φ + t1)− t2

)
R̃λ2φ + t2 (61)

= p0 + V 1,φp1Ṽ 1,φ + V 2,φp2Ṽ 2,φ. (62)

Here the translation vectors have been absorbed by the vectors pi and the V i

are built by certain products of the rotors Rλiφ. We call the pi the phase vectors.
Next, for the aim of interpreting that equation as a Fourier series expansion, we
rewrite the Fourier basis functions as rotors of an angular frequency i ∈ Z, in
the plane l ∈ R2, l2 = −1,

Rλiφ = exp
(
−λiφ

2
l

)
= exp

(
−πiφ

T
l

)
. (63)

All rotors of a planar curve lie in the same plane as the phase vectors pi. After
some algebra, see [25], we get for the transformed point

xφ =
2∑

i=0

pi exp
(

2πiφ
T

l

)
(64)

and for the curve as subspace of R
3 the infinite set of points
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c{2} = {xφ| for all φ ∈ [0, ..., 2π] and for all i ∈ {0, 1, 2}} . (65)

A general (planar) curve is given by

c{∞} = {xφ| for all φ ∈ [0, ..., 2π] and for all i ∈ Z} , (66)

respectively as Fourier series expansion, written in the language of kinematics

c{∞} =

{
lim

n−→∞

n∑
i=−n

pi exp
(

2πiφ
T

l

)}
(67)

=

{
lim

n−→∞

n∑
i=−n

RλiφpiR̃λiφ

}
. (68)

A discretized curve is called a contour. In that case equation (67) has to consider
a finite model of n twists and the Fourier series expansion becomes the inverse
discrete Fourier transform. Hence, a planar contour is given by the finite sequence
c[n] with the contour points ck,−n ≤ k ≤ n, in parametric representation

ck =
n∑

i=−n

pi exp
(

2πik
2n+ 1

l

)
, (69)

and the phase vectors are computed as a discrete Fourier transform of the contour

pi =
1

2n+ 1

n∑
k=−n

ck exp
(
− 2πik

2n+ 1
l

)
. (70)

These equations imply that the angular argument φk is replaced by k. If the
contour can be interpreted as a satisfactory sampled curve [20], the curve c{∞}
can be reconstructed from c[n].

4.2 Extensions of the Concepts

The extension of the modelling of a planar curve, embedded in R
3, to a 3D

curve is easily done. This happens by taking its projections to either e12, e23,
or e31 as periodic planar curves. Hence, we get the superposition of these three
components. Let cj

[n] be these components in the case of a 3D contour with the
rotation axes l∗j perpendicular to the rotation planes lj . Then

c[n] =
3∑

j=1

cj
[n] (71)

with the contour points of the projections cjk, j = 1, 2, 3 and −n ≤ k ≤ n,

cjk =
n∑

i=−n

pj
i exp

(
2πik

2n+ 1
lj

)
. (72)
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Another useful extension is with respect to surface representations, see [25]. If
this surface is a 2D function orthogonal to a plane spanned by the bivectors
eij , then the twist model corresponds to the 2D inverse FT. In the case of an
arbitrary orientation of the rotation planes lj instead, or in the case of the surface
of a 3D object, the procedure is comparable to that of equation (72). The surface
is represented as a two-parametric surface s(t1, t2) generated as a superposition
of the three projections sj(t1, t2).

In the case of a discrete surface in a two-parametric representation we have
the finite surface representation s[n1,n2],

s[n1,n2] =
3∑

j=1

sj
[n1,n2]

(73)

with the surface points of the projections sj
k1,k2

, j = 1, 2, 3 and −n1 ≤ k1 ≤ n1,
−n2 ≤ k2 ≤ n2,

sj
k1,k2

=
n1∑

i1=−n1

n2∑
i2=−n2

pj
i1,i2

exp
(

2πi1k1

2n1 + 1
lj

)
exp

(
2πi2k2

2n2 + 1
lj

)
(74)

and the phase vectors

pj
i1,i2

=
1

2n1 + 1
1

2n2 + 1
pj′

i1,i2
(75)

pj′
i1,i2

=
n1∑

k1=−n1

n2∑
k2=−n2

sj
k1,k2

exp
(
− 2πi1k1

2n1 + 1
lj

)
exp

(
− 2πi2k2

2n2 + 1
lj

)
. (76)

Finally, we will formulate an alternative model of a curve c ∈ R4,1 [24]. While
equation (67) expresses the additive superposition of rotated phase vectors in
Euclidean space, the following model expresses a multiplicative coupling of the
twists directly in conformal space.

c{∞} =

{
lim

n−→∞

(−n∏
i=n

T λiφ

)
O

(
n∏

i=−n

T̃ λiφ

)}
. (77)

This equation results from the assumption that the point x0 = (0, 0, 0) ∈ R
3,

expressed as the affine point O ∈ R4,1, O = e ∧ e0, is translated 2n + 1 times
by the translators

T λiφ =
1 + etλiφ

2
(78)

with the Euclidean vector

tλiφ = RλiφpiR̃λiφ. (79)

It turns out that equation (77) has some numeric advantages in application [24].
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The discussed equivalence of the twist model and the Fourier representation
has several advantages in practical use of the model. The most important may
be the applicability to low-frequency approximations of the shape. For instance
in pose estimation [24] the estimations of the motion parameters of non-convex
objects can be regularized efficiently in that way. Instead of estimating motors,
the parameters of the twists are estimated because of numeric reasons.

It turned out that the paper [14] already proposed an elliptic approximation
to a contour. The authors call their Fourier transform (FT) the elliptic FT. The
generating model of shape is that of coupled ellipses. Later on, after Bracewell
[2] rediscovered that this type of FT has been already proposed in [11] as real-
valued FT, it is well-known as Hartley transform. Taking the Hartley transform
instead of the complex-valued FT has the advantage of reducing the computa-
tional complexity by a factor of two in both contour and surface based free-form
objects. In the case of a surface model equation (73) involves three complex-
valued 2D Fourier transforms. Instead of that one single quaternion-valued 3D
Fourier transform can be applied. This leads to a slight reduction of the compu-
tational complexity. But finally, neither of the presented versions of the Fourier
transform must be applied in real time. Instead, precomputing and table look
up is the fastest version.

In some applications it is not necessary to have at hand the global shape of
an object as an inverse discrete Fourier transform. Instead, a local spectral rep-
resentation of the shape would be sufficient. The Gabor transform [8] could be a
candidate. But a better choice is the monogenic signal [6]. This is computed by
scale adaptive filters [7] for getting the spectral representations of oriented lines
in the plane. That approach is comparable to the model of coupled twists. But
in contrast to our former assumption, the orientation of the orientation plane l is
not fixed but adapted to the orientation of the shape tangents in the plane. An
extension to lines in R

3 and to its coupling to the twist model is work in progress.

5 Summary and Conclusions

We presented an operational or kinematic model of shape in R
3. This model is

based on the Lie group SE(3), embedded in the conformal geometric algebra R4,1

of the Euclidean space. While the modelling of shape in R
3 caused by actions of

SE(3) is limited, a lot of advantages result from the chosen algebraic embedding
in real applications. One of these is the possibility of conformal (and projective)
shape models. We did not discuss any applications in detail. Instead, we refer the
reader to the website http://www.ks.informatik.uni-kiel.de with respect to the
problem of pose estimation. In that work we could show that the pose estimation
based on the presented shape model can cope with incomplete and noisy data.
In addition to that robustness, pose estimation is numerically stable and fast.

Because the chosen twist model is equivalent to the Fourier representation
(in some aspects it overcomes that), the proposed shape representation unifies
geometry, kinematics, and signal theory. It can be expected that this will have a
great impact on both theory and practice in computer vision, computer graphics
and modelling of mechanisms.
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23. J. Rooney. A comparison of representations of general screw displacements. Envi-
ronment and Planning B, 5:45–88, 1978.

24. B. Rosenhahn. Pose estimation revisited. Technical Report 0308, PhD thesis,
Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische
Mathematik, 2003.

25. B. Rosenhahn, C. Perwass, and G. Sommer. Free-form pose estimation by using
twist representations. Algorithmica, 38:91–113, 2004.

26. C.G. Small. The Statistical Theory of Shape. Springer-Verlag, New York, 1996.
27. G. Sommer. Algebraic aspects of designing behavior based systems. In G. Sommer

and J.J. Koenderink, editors, Algebraic Frames for the Perception-Action Cycle,
volume 1315 of Lecture Notes in Computer Science, pages 1–28. Proc. Int. Work-
shop AFPAC’97, Kiel, Springer–Verlag, Heidelberg, 1997.

28. G. Sommer, editor. Geometric Computing with Clifford Algebras. Springer-Verlag,
Heidelberg, 2001.

29. J. Turski. Projective fourier analysis for patterns. Pattern Recognition, 33:2033–
2043, 2000.

30. J. Turski. Geometric fourier analysis of the conformal camera for active vision.
SIAM Review, 46(2):230–255, 2004.

31. T.P. Wallace and O.R. Mitchell. Analysis of three-dimensional movements using
fourier descriptors. IEEE Trans. Pattern Analysis and Machine Intell., 2(6):583–
588, 1980.

32. M. Yaglom. Felix Klein and Sophus Lie. Birkhäuser, Boston, 1988.
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Abstract. We discuss a new covariant approach to geometry, called
conformal geometric algebra, concentrating particularly on applications
to projective geometry and new hybrid geometries. In addition, a new
method of working, which can achieve similar results, but using only one
extra dimension instead of two, is also discussed.

1 Introduction

Our aim is to show how useful the covariant approach is in geometry. Like
Klein, we will consider a particular geometry as a class of transformations which
leave a particular object invariant. However, by starting with null vectors and
using a conformal representation (as in the conformal representation of Euclidean
geometry introduced by Hestenes [1]), we will see that covariance (retention of
same physical content after transformation) is also of fundamental importance.
Keeping covariance, and using not just null vectors but the whole representation
space, we will be able to step outside conformally flat geometries to include
projective geometry as well. This occurs in a fashion different from that which
Klein envisaged and retains, at least in this approach, a fundamental role for
null vectors. In the final sections, we discuss a new approach to the area of
conformal geometric algebra, which needs only one extra dimension in which to
carry out computations, as against the two needed in the Hestenes approach.
This has potential savings in computational time, and in physics applications,
seems a more natural framework in which to work. The examples we use are
mainly drawn from geometry and physics. However, as already demonstrated
in [2, 3] and other papers, the conformal geometric algebra approach has many
applications in computer graphics and robotics. Thus the methods developed
here may similarly be expected to be useful in application to this area, and we
illustrate with the specific example of interpolation.

In order to allow space here to adequately describe new material, we refer the
reader to [3] (this volume), for a summary of the conformal geometric algebra
approach to Euclidean geometry. We also assume that the reader is familiar with
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the extension of this to non-Euclidean spaces. This was first carried out in [4] and
[5, 6, 7, 8]. The full synthesis, whereby exactly the same techniques and notation
can be used seamlessly in all of spherical, hyperbolic and Euclidean geometry,
has been described in [2, 9, 10, 11].

Despite not giving a beginning summary of the mathematics, it is important,
to avoid any confusion, to stress what notation we will be using. We follow here
the notation for the two additional vectors that are adjoined to the base space,
which was used by Hestenes & Sobczyk in [12], Chapter 8. These two vectors
are e, with e2 = 1, and ē, with ē2 = −1. The null vectors which are formed from
them are n = e+ ē and n̄ = e− ē, and in the conformal approach to Euclidean
geometry play the roles of the point at infinity, and the origin, respectively. This
differs from the notation used subsequently by Hestenes in [1].

We should note, as a global comment, that no pretence of historical accuracy
or completeness is made as regards the descriptions of geometry and geometrical
methods given here. Almost certainly, all the geometrical material contained
here, even when described as ‘new’, has been discovered and discussed many
times before, in a variety of contexts. The aim of this contribution is therefore
to try to show the utility, and unification of approach, that conformal geometric
algebra can bring.

2 Comparison of Kleinian and Covariant Views of
Geometry

The Kleinian view of geometry is illustrated schematically in Fig. 1. Here the
primary geometry, from which others are derived, is projective geometry, as
exemplified for example by the geometry of the real projective plane in n di-
mensions, RP

n (see e.g. [13]). Projective geometry is primary, in that the largest

Inversive Projective Hyperbolic

Affine Spherical

Euclidean

RP
n

Fig. 1. The Kleinian view of geometry
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group of transformations is allowed for it. Other geometries are then derived
from it via restrictions which are imposed on the allowed transformations. For
example spherical geometry is the subgroup of projective geometry which pre-
serves the Euclidean angle between two lines through the origin, while affine
and then Euclidean geometry represent increasing degrees of restriction in the
behaviour under transformation of ‘ideal points’ at infinity (see [13, 14, 15]). The
view of geometry which we begin with here, however, puts Euclidean, spherical
and hyperbolic in a different relationship. As stated above, let us denote by e and
ē, the additional vectors which we adjoin to the three basis vectors, e1, e2 and
e3 of ordinary Euclidean space, in order to construct the conformal geometric
algebra, and let n = e+ ē. Then, in the null vector representation

Euclidean geometry ↔ set of transformations which preserve n

Hyperbolic geometry ↔ set of transformations which preserve e

Spherical geometry ↔ set of transformations which preserve ē

Inversive geometry ↔ set of transformations of the form SOS,

(1)

where in the last line S represents a sphere in one of the above geometries, and
O, the object being reflected in the sphere is one of a point, line, circle, plane
or sphere (see [2]). Euclidean, hyperbolic and spherical geometry thus appear as
much more similar to each other in this approach — effectively on the same level
as each other, rather than being quite different specialisations of projective ge-
ometry. Also inversive geometry is reduced to the study of generalised reflections
in each space.

What is the significance of covariance in this approach? The key idea is
that we can freely write down expressions composed of elementary objects in
the geometry, such as lines, planes, spheres and circles (including non-Euclidean
varieties of each), and that these remain geometrically meaningful after a trans-
formation of the appropriate kind for the geometry. An example can illustrate
this. Let P be a point and L a line. Consider the new point Q = LPL, the
(possibly non-Euclidean) reflection of P in the line L. Suppose we carry out a
transformation in the geometry, given by the rotor R (e.g. this might be a trans-
lation, rotation, or dilation) to get a new point P ′ = RPR̃, and line L′ = RLR̃.
The question is, does the new point we obtain by carrying out the reflection
process with the transformed P ′ and L′, correspond to the transformation of the
old Q? That is, is the following true:

RQR̃ = L′P ′L′? (2)

The r.h.s. is (RLR̃)(RPR̃)(RLR̃), which since the algebra is associative and
RR̃ = R̃R = 1 for a rotor, means that we obtain RQR̃ as required. This may
seem trivial, but is the essence of the advantages of conformal geometric algebra
for geometry. We can compose ‘objects’ into expressions in the same way as
words are composed into sentences, and the expressions will be geometrically
meaningful if they are covariant.
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3 Extending the Framework

We have seen that with this conformal framework, where null vectors in our 5d
algebra represent points, we can nicely represent Euclidean, spherical, inverse
and hyperbolic geometry. But, is there any way of extending it to encompass
Affine and Projective geometries? This would be very desirable in many fields.
For example, in computer vision, projective geometry is used a great deal, partly
for the obvious reason that it is related to the images projected down from the
3-dimensional world to the camera screen or retina, but also used because a pro-
jective approach allows the linearization of transformations that would otherwise
be non-linear. In particular, by adding a third coordinate to the usual two in a
camera plane, translations in 2-space become homogeneous linear transforma-
tions in 3-space. Also, incidence relations between points, lines and planes can
be expressed in an efficient manner. However, using a purely linear algebra pro-
jective approach, one cannot extend these incidence relations to include conic
sections, and moreover metric relations between objects, for example relations
between conic sections and sums and differences of lengths, are lost, since a
metric is not accessible, except by going to a Euclidean specialization.

If it were possible to extend the conformal approach to include projective
and affine geometry, however, it might be possible to remedy these deficiencies,
and to include incidence relations between lines and conic sections, and metric
relations between points. We now show, that this is indeed possible, and that the
method of achieving it has a natural structure which emphasizes the covariance
properties of objects. The resulting theory does not quite achieve all we might
ideally want, since although lines can be intersected with conic sections in a useful
way, conic sections cannot be intersected with each other in the same fashion
which is possible for the intersection of circles and spheres. An extension of this
kind does not seem to be possible. However, that we have still done something
significant is clear when one applies the principles we set up in the section, with
an underlying Euclidean geometry, to the case where the underlying geometry
is hyperbolic or spherical. Amazingly, all the same constructions and types of
results still hold, thus generating what appear to be completely new geometries,
with possible applications in many areas.

To start with then, we consider how to encode projective geometry in the
null-vector description of Euclidean space already summarised.

Clearly we cannot embed projective geometry in our conformal setup as it
stands. The essence of conformal mappings is that they preserve angles, and
the essence of projective and affine transformations is that they do not preserve
angles! Thus we have to step outside the framework we have set up so far. This
framework has at its core the assumption that points in a Euclidean space R

(p,0)

are represented by null vectors in the space R
(p+1,1), two dimensions higher, A

projective transformation cannot be represented by a function taking null vectors
to null vectors in this space, since then it would be a conformal transformation
in the Euclidean space. The only possible conclusion, is that projective transfor-
mations must involve non-null vectors. But then how can we relate the results
back to points in Euclidean space?
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The key to the resolution of this is the following result. Let Y be any vector
in R

(p+1,1) such that Y ·n �= 0. Then there exists a unique decomposition of Y
of the form

Y = αX + βn (3)

where α and β are scalars, X is null, and X·n = −1. The proof of this is
constructive. Assume it can be done, then

Y 2 = 2αβX·n = −2αβ
Y ·n = αX·n = −α

(4)

This entails

α = −Y ·n, β =
Y 2

2Y ·n

X = −
(

Y

Y ·n − Y 2

2(Y ·n)2
n

)
= − Y nY

2(Y ·n)2

(5)

The values just given for α, β and X, satisfy X·n = −1 and αX + βn = Y ,
and so this proves the decomposition can be carried out and that the answer is
unique. Up to scale, we see that X is the reflection of the point at infinity n, in
the (generally non-null) vector Y .

What we have found then, is a unique mapping from any non-null vector Y
satisfying Y ·n �= 0, to a null vector X. Thus any non-null vector of this kind can
be taken as representing a point in the finite Euclidean plane. Projective trans-
formations can therefore work by mapping null vectors representing Euclidean
points to non-null vectors — thereby avoiding the problem that ‘null’ → ‘null’
would be a conformal transformation — and then these non-null vectors can be
taken as representing Euclidean points, thus overall achieving a mapping from
points to points. Note if the vector Y is such that Y ·n = 0, so that we cannot
employ the above construction, then we will need some supplementary rule for
what to do, and this is discussed further below.

The mappings we use will be linear mappings h taking R
(p+1,1) → R

(p+1,1).
Our main assertion is as follows:

Projective transformations correspond to linear functions which preserve the
point at infinity up to scale, i.e. for which h(n) ∝ n.

Using functions of this kind, points in Euclidean space are mapped to points
in Euclidean space via

h(X) = Y = αX ′ + βn→ X ′ (6)

which defines a mapping from null X to null X ′. If the value of α is independent
of X, the mapping is an Affine transformation.

The mapping we have described,

h(X) = αX ′ + βn (7)

is implicit as regards obtaining X ′, but using the result above we can get a
properly normalised point explicitly via

X ′ = − 1
[h(X)·n]2

h(X)nh(X) (8)
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i.e. (up to scale) we just need to reflect the point at infinity in h(X). This is just
an easy way of carrying out the construction; the key question is the covariance
of the h(X) = αX ′ + βn mapping itself. As already described, covariant means:
do we get the same result if we transform first then carry out our mapping as if
we map first then transform? One finds:

Rh(X)R̃ = αRX ′R̃+ βRnR̃

= αRX ′R̃+ βn
(9)

So this works due to the invariance of the point at infinity under the allowed
rotors. We note that we could allow dilations as well, which rescale n. These lead
to the same output vector RX ′R̃, since β would then just be rescaled.

3.1 Boundary Points

Before giving examples of how all this works, we first consider the question raised
above: what null vector should we associate with a non-null Y if Y ·n = 0, and
what then happens to our projective mapping?

Now in the case of hyperbolic geometry, we know that the boundary of the
space (the edge of the Poincaré disc in 2d) is given by the set of points satisfying
the covariant constraint X·e = 0. This is covariant since the allowed rotors keep e
invariant in the hyperbolic case. Thus the boundary points are mapped into each
other under translations and rotations. In [10] it is shown that for this hyperbolic
case, as well as for de Sitter and anti-de Sitter universes, the boundary points can
be represented by null vectors. For example, for the Poincaré disc, the boundary
points are of the form

X = λ(cosφe1 + sinφe2 + ē) (10)

where λ is a scalar, and we have a whole set of them — one for each ‘direction’
in the underlying space.

In the Euclidean case, however, we have not yet achieved an equivalent to
this, having only the single vector n available to represent points at infinity. The
resolution to this is now clear — the vectors representing the boundary points
must be the set of vectors satisfying the covariant constraint Y ·n = 0, but we
must admit as solutions non-null as well as null vectors. Thus the boundary
points are the set of vectors

Y = a+ βn (11)

where a is a Euclidean vector. If we impose the further (covariant) constraint
Y 2 = 1, then this reduces the set of vectors to just a direction in Euclidean
space, plus an arbitrary multiple of n. This seems a very sensible definition for
a set of ‘points at infinity’.

We can summarize this setup as follows.

Interior points satisfy: X·n = −1, X2 = 0

Boundary points satisfy: Y ·n = 0, Y 2 = 1
(12)
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There is quite a neat symmetry in this. Note that the Euclidean transformations
of rotation, translation and even dilation, when carried out using the rotor ap-
proach, all preserve the condition Y 2 = 1. (This is because only rotation affects
the Euclidean a part of the vector.) In the case of non-Euclidean geometry, e.g.
for the Poincaré disc, the boundary points, being null, are only preserved by the
allowed transformations up to scale.

It is now obvious what to do if the mapping h(X) produces a point Y such
that Y ·n = 0. We just accept this non-null point Y as the output of the mapping,
instead going through a further stage of finding an associated null vector X ′, for
which the construction is impossible in this case. The non-null point Y contains
more information than simply assigning a null vector output of n, since as well
as seeing that we are at infinity, we can also tell from what direction infinity is
approached.

3.2 Specialization to Affine Geometry

Above we made the brief comment that restricting α to a constant in equation
(6), was the same as restricting the projective transformations to affine trans-
formations. Armed with the new concept of ‘boundary points’ we can now un-
derstand this further. We give an alternative definition of affine transformations
as follows:

Affine transformations correspond to the subset of projective transfor-
mations which map boundary points to boundary points, up to scale.
Thus h is affine if Y ·n = 0 =⇒ h(Y )·n = 0.

In this form we can recognize the classical approach to restricting projective
transformations to affine form. E.g. in 2d, one would ask that the so called ‘line
at infinity’ be preserved , while in 3d it would be the ‘plane at infinity’ [15, 14].
These objects correspond to our ‘boundary points’.

To see the link with our previous version of an affine transformation, we can
argue as follows. Let Z be a vector in R

(p+1,1) which is general except that it
satisfies Z·n = 0. A fully general vector in R

(p+1,1) can be derived from this by
adding an arbitrary multiple of n̄, and we set Y = Z + θn̄, where θ is a scalar.
We then have the following results:

h(Y ) = h(Z) + θh(n̄)
h(Y )·n = θh(n̄)·n

Y ·n = 2θ

h(Y )·n =
(

1
2
h(n̄)·n

)
Y ·n

(13)

We note the pre-factor in front of Y ·n in the last equation is independent of Y
for a given h. Now in equation (6), we can see that α = (h(X)·n)/(X ′·n). Thus
providing X and X ′ are both normalised, which we are assuming, we can deduce
that for an affine transformation α is constant, as stated.
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3.3 Specialization to Euclidean Geometry

An aspect of the conventional approach to projective geometry which often ap-
pears rather mysterious, particularly in applications to computer vision, is the
use of ideal points, i.e. points lying in the line or plane at infinity, with complex
coordinates. These are used in particular for encoding the specialization of affine
geometry to Euclidean geometry, where the latter is defined to include the set
of similitudes, as well as rotations and translations.

In this conventional approach, the Euclidean geometry of the plane is recov-
ered from projective geometry as the set of affine transformations which leave
the points (1, i, 0) and (1,−i, 0) invariant. These are called the ideal points I and
J (where we use calligraphic letters to avoid confusion with our pseudoscalar
I).

Similarly the Euclidean geometry of 3d space, is recovered by asking that an
affine transformation leaves invariant a certain quadratic form involving complex
ideal points, known as the absolute conic [15, 14]. This form is

4∑
i=1

x2
i = 0 (14)

where x4 = 0 in order to place the set of points in the ideal plane at infinity.
The form of geometric algebra we use restricts itself to an underlying real

space only, and does not make use of an uninterpreted scalar imaginary i. By
taking this approach, one can often find a geometrical meaning for the various
occurrences of i in the conventional approaches — a meaning that is often ob-
scured without geometric algebra. It is thus interesting to see if the geometric
algebra approach can shed light on the points I and J , and give some increased
understanding of the absolute conic.

Since h(n) is proportional to n and maps boundary points to boundary points
(since it is assumed affine), and also since the length of a+ βn does not depend
on β when a is Euclidean, we can specialize our discussion of the ideal points I
and J to a simple linear function f say, taking R

2 to R
2, which is the restriction

of h to these spaces.
In terms of the orthogonal basis {e1, e2}, this has the matrix equivalent

fij = f(ei)·ej (15)

We now write down the conventional matrix relation for the ideal points and
reconstitute from this what it means in a GA approach.

Saying that I is invariant under f means conventionally that(
f11 f12

f21 f22

)(
1
i

)
= z

(
1
i

)
(16)

where z is some complex number. Now complex numbers are the spinors of the
geometric algebra of R

2, and we accordingly represent z = x+ iy by Z = x+I2y
where I2 = e1e2 is the pseudoscalar in 2d. Our translation of the invariance
condition is thus that
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f(e1)·e1 + I2f(e1)·e2 = Z

f(e2)·e1 + I2f(e2)·e2 = ZI2
(17)

Now I2f(e1)·e2 = 〈I2f(e1)e2〉2 = 〈−f(e1)I2e2〉2 = −f(e1)∧e1. We deduce

e1f(e1) = Z, e1f(e2) = ZI2 (18)

Premultiplying by e1 we obtain

f(e1) = Z̃e1 and f(e2) = Z̃e2 (19)

from which we can deduce that

f(a) = Z̃a = aZ ∀ Euclidean vectors a in R
2 (20)

A general spinor Z or Z̃ applied to the left or right of a dilates a by |Z| and
rotates it through tan−1(〈Z〉2/〈Z〉0), so we have indeed found that demanding
that the ideal point I is preserved is equivalent to specializing to Euclidean
transformations. We note that requiring that J is preserved as well as I, is
redundant (which it is also in the conventional approach, in fact) since the in-
variance condition

f(e1)·e1 − I2f(e1)·e2 = Z ′

f(e2)·e1 − I2f(e2)·e2 = −Z ′I2
(21)

reconstitutes to give

f(a) = aZ̃ ′ = Z ′a ∀ Euclidean vectors a in R
2 (22)

just identifying Z ′ as Z̃, and giving no new information.
So having seen that (16) is directly equivalent to (20) can we say whether the

GA formulation offers any improvement over the conventional one? We think the
answer is yes, in that (20) more directly reveals the geometrical origins of what
is going on, and also clearly refers homogeneously to all vectors in the space,
rather than singling out particular points as being preserved. It also avoids the
need for introducing complex coordinates of course.

The Absolute Conic. We now consider a similar process in 3d. We will again
let f be the specialization of h to the Euclidean portion of the space, and we
will let zi and z′i (i = 1, 2, 3) be general complex numbers. In the conventional
approach, ‘leaving the absolute conic invariant’ amounts to the following:

The matrix ||fij || is such that the output vector (z′1, z
′
2, z

′
3) in the relation⎛

⎝z′1z′2
z′3

⎞
⎠ =

⎛
⎝f11 f12 f13

f21 f22 f23

f31 f32 f33

⎞
⎠

⎛
⎝z1z2
z3

⎞
⎠ (23)

satisfies (z′1)
2 + (z′2)

2 + (z′3)
2 = 0 if z2

1 + z2
2 + z2

3 = 0.
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Framed like this, the statement looks rather odd, since we have clearly in-
troduced a non-Hermitian metric on the space of complex vectors. In the GA
approach, we can make more sense of things since we have available entities
which are naturally null. For example, consider the vector and bivector combi-
nation e1+I3e2, where I3 is the pseudoscalar for R

3. Then (e1+I3e2)2 = 0. Such
combinations arise naturally in electromagnetism for example, where e1 would
be interpreted as a ‘relative vector’ and I3e2 as a relative bivector’, with both
actually being bivectors in spacetime. (For example, in a spacetime basis {γ0, γi}
we would identify ei = γiγ0 and I3 = e1e2e3 = γ0γ1γ2γ3.) Taking the sum of
them is natural in forming the Faraday electromagnetic bivector F , where the
two parts would then correspond to the electric and magnetic fields, and the null
condition is that F 2 = 0.

Following this line, our reformulation of the notion of leaving the absolute
conic invariant is as follows.

Let a and b be Euclidean vectors. Then we require the linear function f
to satisfy the relation

(f(a) + I3f(b))2 = 0 ⇐⇒ (a+ I3b)
2 = 0 (24)

In this version it is easy to see the link with specializing to Euclidean transfor-
mations, since

(f(a) + I3f(b))2 = f2(a)− f2(b) + 2I3f(a)·f(b)

(a+ I3b)
2 = a2 − b2 + 2I3a·b

(25)

(a+ I3b)
2 is thus only zero for vectors a and b which are the same length and

orthogonal, and f is required to preserve both these features. This pins down f
to a combination of rotation and dilatation.

To see how (23) is equivalent to (24) is also easy. If we set zi = xi + iyi,
(i = 1, 2, 3), we simply need to make the identification a = xiei, b = yiei, and
we see the same result is achieved in both cases.

To judge here whether the GA formulation is superior to the conventional
one, is more difficult than in the 2d case, since the availability of a pseudoscalar
which squares to -1 and commutes with all vectors in 3d, means that the GA
and conventional formulations are closely parallel. However, the GA formulation
does reveal that the complex points made use of in the notion of the absolute
conic, which many have found rather mysterious, are actually vector plus bivector
combinations, and that the idea of these being null takes on a familiar look when
we see the parallel with electromagnetism, where the analogue of the second
equation of (25) is

F 2 = 0, with F = E + I3B =⇒ E2 −B2 = 0 and E·B = 0 (26)

which is the statement that the Faraday bivector is null if the electric and mag-
netic fields have the same magnitude and are orthogonal (as in an electromag-
netic plane wave for example).
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4 Lines and Conics

Having considered the specialization to Affine and Euclidean geometry in some
detail, we now give a short, schematic account of some remaining major fea-
tures of projective geometry. A more comprehensive account will be given in
a future publication, and some applications and further details are given in
[3].

We need to see what happens to lines under an h transformation. This works
well, since the requirement h(n) = n means that if we are transforming the line
L = A∧B∧n, we obtain

h(L) = h(A)∧h(B)∧n
= αAαBA

′∧B′∧n,
(27)

with only α appearing since the wedge kills off the β parts.
Thus we get a line through the transformed points, while the factor αAαB

contains information that can be expressed via cross-ratios.
For conics, if C is a multivector representing a circle or sphere in Euclidean

space, then the equation Y ∧h(C) = 0, where Y = αX ′+βn, and h−1(Y ) is null,
successfully produces a solution space corresponding to a general conic, which we
can think of as the image of C under h. However, one cannot use this approach
to intersect two different conics, unless it happens that they correspond to the
same h function acting on different initial circles or spheres.

h itself for an object transforms covariantly as

h(X) → Rh(R̃XR)R̃. (28)

This means that we can use rotors to achieve transformation of any conic, or
quadric in 3d, thus achieving one of our main objectives. For example rotation
and translation of a quadric in 3d via use of rotors, is shown in Fig. 2(a) and
(b).The rotors can encompass all of rotation, translation and dilation, and thus
we can position and scale any conic or quadric using rotor techniques.

The other success of this method is that one can use the machinery which
enables intersection of any line or plane with a circle or sphere, to look at intersec-
tions of lines and planes with conics and quadrics. There are many applications
of this in computer graphics.

The way we can do this is to use reflection of h−1(X ′) in n to bring back
points X ′ to where they originated before application of h:

X = − 1
[h−1(X ′)·n]2

h−1(X ′)nh−1(X ′) (29)

A line transforms back under this to another line, whilst a conic transforms back
to the underlying circle or sphere. We can then intersect the new line with the
resulting circle or sphere, using the standard intersection techniques in conformal
geometric algebra, and then forward transform again to find the solution to the
original problem. An example of this is shown schematically Fig. 3, which whilst
not looking very exciting, was worked out using this method, and thus constitutes
proof that we can indeed intersect lines with arbitrary conics.
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(a) (b)

Fig. 2. Illustration of the result of using rotors to (a) rotate and (b) translate a quadric
surface, defined by an h function, in R
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Fig. 3. Intersection of a line and a hyperbola using conformal method described in text

5 Creating New Geometries

We now reach our second overall topic in this brief survey. This is the use of
conformal geometry to create new, hybrid geometries, which combine the fea-
tures of both projective and non-Euclidean geometries. In particular, using this
method can we carry out projective transformations within hyperbolic or spher-
ical spaces. This is quite different from, for example, the representation of hy-
perbolic geometry in terms of projective geometry, as in the Klein approach.

The way we do this is illustrated in Fig. 4. We apply linear functions which
now preserve e, or ē, rather than n, and wind back to null vectors using
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Euclidean Spherical Hyperbolic

X Y

αX ′ + βe
αX ′ + βē
αX ′ + βn

X ′
h(X)

=

null non-null

non-null

null

h(n) = n h(ē) = ē h(e) = e

Fig. 4. Schematic diagram showing how the new hybrid geometries are created

h(X) = αX ′ + βe (30)

for the hyperbolic case, and

h(X) = αX ′ + βē (31)

for the spherical case. Considering for example the hyperbolic case, we see that
(30) implicitly defines a null vector X ′ for each X, and that this happens in a
fully covariant manner, since now e is the object preserved under the relevant
rotor operations.

So what might we expect to be able to do using this structure? Most impor-
tantly, we will want to see if it is possible to obtain a non-Euclidean version of
the family of conics (quadrics in 3d), which are familiar in projective geometry as
applied in Euclidean space. For the latter there are two separate ways of defining
them. For example, an ellipse may be defined as the locus of points which have
a constant summed distance to two fixed points (the focii) or alternatively via
the projective transformation of a circle. It is a theorem for conics that these
two approaches lead to the same object. Ideally then, for non-Euclidean conics,
we will want both of the following being true and leading to the same object:

1. The sum or difference of non-Euclidean lengths being constant defines the
locus;

2. The shape arises via a projective transformation (linear mapping in one
dimension higher) of e.g. a circle.

So can we form for example a non-Euclidean ellipse? This would have constant
sum of non-Euclidean distance to two given points (the non-Euclidean foci). Such
an object can of course be defined, and we will end up with a certain definite
locus. But will it also correspond to a projective transformation applied to a
circle? Here is an example. Let us take as our h-function:
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h(a) = a+
1
2
δ a·e1ē (32)

where δ is a scalar. This looks very simple, but the actual expressions implied
by it are quite complicated. Temporarily writing x = (x, y) for the real space
coordinates, and x′ = (x′, y′) for those they are transformed to via (30), then,
taking the appropriate branches of the square root functions, one finds:

x′ = 2λ2x/
(
x2 + y2 + λ2 + δ λx+√

x4 + 2x2y2 − 2λ2x2 + 2x3δ λ+ y4 − 2λ2y2 + 2 y2δ λx+ λ4 + 2λ3δ x+ δ2λ2x2
)

(33)

Thus there is a radial dilation, but with a factor which is a complicated function
of position. Choose δ = 2.25, and map the circle r = 1/4 using the above h
function in the basic construction

h(X) = αX ′ + βe (34)

This gives the result shown in Fig.5.

–1

–0.5

0.5

1

 

–1 –0.5 0.5 1 

Fig. 5. Mapping of the circle r = 1/4 using the h-function of equation (32) with
δ = 2.25. As discussed in the text, this is actually a non-Euclidean parabola

This particular case is actually a limiting case of an non-Euclidean ellipse —
one of the foci has migrated to infinity! Thus it should be regarded as a non-
Euclidean parabola. We will not substantiate this here, but instead, to get to a
more easily understandable version of an ellipse, let us try a slightly different
form of transformation which still preserves e, namely

h(a) = a+
1
2
δ a·e1 e1 (35)

This form leads to centered objects. As an example, choose δ = 2.24, and map
the circle r = 1/4 again. This leads to the locus shown in Fig.6.The explicit
equations for (x′, y′) in this case are
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Fig. 6. Mapping of the circle r = 1/4 using the h-function of equation (35) with
δ = 2.24. This is a non-Euclidean ellipse
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Fig. 7. The same non-Euclidean ellipse as in the previous figure, but with the locations
of the non-Euclidean foci marked

x′ = λ2x(2 + δ)/
(
x2 + y2 + λ2

+
√
x4 + 2x2y2 − 2x2λ2 + y4 − 2λ2y2 + λ4 − 4x2λ2δ − δ2λ2x2

)
y′ = 2λ2y/

(
x2 + y2 + λ2

+
√
x4 + 2x2y2 − 2x2λ2 + y4 − 2λ2y2 + λ4 − 4x2λ2δ − δ2λ2x2

)
(36)

Now can we tie these structures into the concept of constant sum of non-
Euclidean distances from two foci positions? If so where are they? One finds
that indeed foci can be found such that sums of non-Euclidean distances agree
with the h function method. However, this is quite complicated to prove, so we
shall not go through this here, but instead just illustrate in the context of the
example just given. The foci are in fact at x = ±0.925, whilst the intersections of
the ‘ellipse’ with the x axis are at x = ±0.934. The relationship of the foci to the
ends of the axes is illustrated in Fig.7, and of course in terms of our normal view
of the relationship between an ellipse and its foci looks rather odd. However, the
total sum of non-Euclidean distances to the two foci is genuinely constant (at
3.372).
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Fig. 8. A non-Euclidean ellipse/hyperbola displayed on the sphere. The curve is the
image of the circle r=1/4, and uses δ = 10 in the h-function given in equation (37)

The same procedures can also be carried out for spherical, as against hyper-
bolic geometry. In this case we need to preserve ē rather than e. Also, here it
is possible to visualise the results rather more easily, by directly lifting the loci
up onto a sphere for display purposes. Shown in Fig. 8 is the typical type of
locus on the sphere that can result. A very interesting feature of such curves on
the sphere is that they are simultaneously ellipses and hyperbolae! That is, the
curve shown (in multiple views) in Fig. 8 satisfies simultaneously that the sum
of distances (in a great circle sense on the surface of the sphere) to two given
points is constant, and also that the difference of distances to two points is also
constant. One can see that indeed, from some viewpoints the curve looks like an
ellipse, whilst for others it looks like a hyperbola. Defining these curves this way,
can of course be carried out without any recourse to geometric algebra. What is
new here, is that these curves are actually constructed via a ‘projectivity’ acting
on a circle in a non-Euclidean spherical space. The particular projectivity used
corresponds to an h function

h(a) = a+
1
2
δ a·e1e (37)

and the curve plotted is the image of a circle of radius 1/4, with δ = 10.
Overall, as regards projective geometry, we see that the GA approach provides

a flexible framework enabling a wide range of geometries to be treated in a unified
fashion. Everything said here extends seamlessly to 3d and higher dimensions,
although a lot of work remains to be done to explore the structures which become
available this way.

6 The ‘1d Up’ Approach to Conformal Geometry

In the approach to conformal geometry advocated by David Hestenes, two extra
dimensions are necessary. However, do we really need these? From investigations
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that are still ongoing, it appears that for physics problems, just one extra di-
mension may be sufficient, and indeed more natural, while for pure geometry
aspects, occasionally having in mind a further dimension is useful for abstract
manipulation, but again one may not need it for actual calculation.

In terms of the physics applications, what makes this possible is using de
Sitter or anti-de Sitter space as the base space, rather than Lorentzian spacetime.
The rotor structure in these spaces allows us to do rotations and translations
as for the ‘Euclidean’ (here Lorentzian) case, so that as regards the physics we
can do everything we want, aside perhaps from dilations. (These, however, can
be taken care of by an h-function, if necessary.) This can be achieved using only
one extra dimension, namely ē in the de-Sitter case, and e in the anti-de Sitter
case, as we show below.

However, in the current conformal geometric algebra approach to Euclidean
space, then conceptually one is always using both extra dimensions, since n̄ is
required as the origin, and n is integral in the translation formulae.

It may be objected that we do not wish to work with e.g. de Sitter space as
a base space, since then there is intrinsic curvature in everything, and while this
may be alright, maybe even desirable for physics purposes, it does not make any
sense for engineering applications.

However, it turns out that in applications we can take a Euclidean limit at
the end of the calculations, such that the curvature is removed, but we have
nevertheless derived what we wanted whilst still only going up 1 dimension, so
actually this is not a problem.

To be more specific on what we are going to do here, we shall start with a
physical context, and embed spacetime in a 5d space, in which conceptually we
are keeping e constant, therefore it is de Sitter space. However, we never actually
need to bring e in to do the physics. Our basis vectors are thus

e0(≡ γ0), e1(≡ γ1), e2(≡ γ2), e3(≡ γ3), and ē (38)

with squares +1, −1, −1, −1, −1 respectively.
Let Y = yμeμ be a general vector in this space. For our purposes here, it

is sufficient to restrict ourselves to the part of Y space in which Y 2 < 0. Our
fundamental representation can be expressed via the null vector X used in our
previous 6d embedding space for the de Sitter case [10]. This was scaled so that
X·e = −1. Our new representation works via

Ŷ = X + e (39)

which then via X corresponds to a point in 4d. Ŷ is a scaled version of Y
satisfying

Ŷ 2 = −1 (40)

We note that Ŷ ·e = X·e+ e·e = −1 + 1 = 0, so that indeed Ŷ does not contain
e. Moreover,

Ŷ 2 = (X + e)2 = 2X·e+ e2 = −1 (41)

consistent with the definition of Ŷ .
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Of course we could also go directly from a general Y point to a point in 4d de
Sitter space, without using X as an intermediary. The formulae for this, which
we give assuming y4 > 0, are quite simple:

xμ =
λyμ

l + y4
, μ = 0, 1, 2, 3 (42)

where l =
√
−Y 2. We can see that the xμ so defined are homogeneous of degree

0 in the yμ, and therefore depend only on the direction of Y , Ŷ , in agreement
with the definition via X.

6.1 Geometry

As a start, we need to reassure ourselves that the conformal geometry we carried
out in 6 dimensions in e.g. [10], is all still possible and works here in 5d.

We have seen so far that points in spacetime are no longer represented by
null vectors, but by unit vectors, the Ŷ discussed above. However, null vectors
still turn out to be very important — these are the vectors which represent
the boundary points. In physical terms, they are null momenta, and we shall
label boundary points as P to emphasise this. To convince ourselves that the
boundary points are null, as in the treatment in [10], even though the interior
points have unit square (actually negative unit square, but the same principle),
we can take a limit as an interior point approaches the boundary.

Using the notation for coordinates as in [10], consider as an example the Ŷ
corresponding to the point

x = (t, x, y, z) = (−λ(1− δ), 0, 0, 0) (43)

This is
Ŷ =

1
δ(2− δ)

((2− 2δ + δ2)ē− 2(1− δ)e0) (44)

It is easy to verify that this indeed satisfies Ŷ 2 = −1. Taking the limit as δ → 0
we obtain

Ŷ → 1
δ
(ē− e0) (45)

as the first term of an expansion of Ŷ in δ. This tells us that indeed Ŷ is tending
to a null vector as x tends to the lower boundary. We decide on a choice of scale
for this particular null vector by writing

P = P0 = ē− e0 (46)

for this point. We will define the corresponding point on the top boundary by
P ′

0 = ē+ e0 (see Fig. 9).
One of the main features of the Hestenes approach to conformal geometry, is

that it encompasses distance geometry [16], in that inner products of null vectors
correspond to Euclidean distances between points. In [10] this was extended to
the non-Euclidean case. He we can achieve exactly the same by noting that for
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Fig. 9. The boundaries of de Sitter space (blue lines) in our conformal setup. The
positions of the 4d points corresponding to the null momenta P0 = ē−e0 and P ′

0 = ē+e0

are also shown

two points Ŷ1 and Ŷ2, with corresponding null vectors X1 and X2, we have from
equation (39) that

Ŷ1·Ŷ2 = (X1 + e)·(X2 + e)
= X1·X2 − 1

(47)

Thus the new version of equation (3.6) from [10] is

d(x1, x2) =

⎧⎪⎪⎨
⎪⎪⎩
λ sinh−1

√
−(Ŷ1·Ŷ2 + 1)/2 if Ŷ1·Ŷ2 < −1,

0 if Ŷ1·Ŷ2 = −1,

λ sin−1
√

(Ŷ1·Ŷ2 + 1)/2 if Ŷ1·Ŷ2 > −1.

(48)

Note that Ŷ1·Ŷ2 = −1 is the condition for x1 and x2 to lie on each others light
cones.

We now need to decide what operations can be carried out on points in
our new representation. Equation (39) shows that any operation in the old null
vector approach which preserves e will transfer covariantly to the new approach.
This means that the three basic operations discussed in [10] will all work here,
namely:

Rotations, carried out with rotors with bivector generators eμeν

Translations, carried out with rotors with bivector generators ē eν

Inversions, carried out via ‘object’ → e ‘object’ e
(49)

(Here μ and ν belong to the set {0, 1, 2, 3}.) We see that in terms of their effect
on a point, inversions correspond to Ŷ → −Ŷ . The geometrical significance of
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this is important physically, but would take us too far afield to discuss further
here.

In terms of building up a geometry, the next step is to find out what lines
(geodesics) correspond to. In the conformal geometry approach using two extra
dimensions, a d-line in de Sitter space through the points with null vector rep-
resentatives A and B is A∧B∧ e (see [10]). For us, lines become bivectors, and if
A and B are now the unit vector representatives, then the (un-normalised) line
through them is represented by

L = A∧B (50)

In particular, if the point Y lies on the line, then

Y ∧L = Y ∧A∧B = 0 (51)

This corresponds to how we would represent a line in projective geometry.
However, even though we only use the same dimensionality as would be used in
projective geometry, the availability of the operations in equation (49) means we
can go far beyond the projective geometry in terms of how we can manipulate
lines and points. E.g. the rotor for translation through a timelike 4d vector a is
(see [10])

RT =
1√

λ2 − a2
(λ+ ēa) (52)

Applying this to L, we get a translated line, in exactly the same way as we would
get if we applied it to the null vector version, except here we only have to work
in 5d geometry rather than 6d. This is a computational advantage to having
lines as bivectors rather than trivectors. Two more profound advantages are as
follows.

A problem of the null vector representation is that if two null vectors are
added together, then we do not in general get another null vector. Thus we
cannot form weighted sums of points, in the same way as one could in projective
geometry. However, here we can. If we take

Y3 = αŶ1 + βŶ2 (53)

then the resulting Y3 is generally normalisable, so that we can define a new point
this way, exactly as in the projective case. The set of points formed this way (i.e.
as α and β are varied over some range) corresponds to the line Ŷ1∧Ŷ2, since of
course

(αŶ1 + βŶ2)∧(Ŷ1∧Ŷ2) = 0 (54)

for all α and β. Exactly the same comments apply to d-planes, formed via

Φ = Ŷ1∧Ŷ2∧Ŷ3 (55)

and linear combinations of the form

Y4 = αŶ1 + βŶ2 + γŶ3 (56)

etc.
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The second advantage of the new approach is as follows. Consider a d-line L
formed from two normalised points A and B as in equation (50). Let us contract
L with a point on the line, say A. We obtain

L·A = (A∧B)·A = (B·A)A−A2B = (B·A)A+B (57)

We claim this is the tangent vector to the line at A. The point is that if we add
a multiple of this vector to A, we will get a point along the line joining A to B.
This is a very direct definition of tangent vector. We shall see below that if we
normalise things appropriately, then with the path along the geodesic L written
as Ŷ (s), with s a scalar parameter, then

˙̂
Y =

dŶ (s)
ds

= L·Ŷ (s) (58)

gives a unit tangent vector at each point of the path, which we can take as
the velocity of traversing the path. Thus we can see that the line itself acts as
a bivector generator of motion along the line. Clearly one will also be able to
form a rotor version of this equation as well. A novelty here is that the bivector
generator acts on the position to give the velocity. This is in contrast to similar
equations in 4d, e.g. the Lorentz force law, where the bivector generator (the
electromagnetic Faraday) acts on the velocity to give the acceleration.

Within the null vector approach to conformal geometry, if we attempt to
take a tangent to a line we obtain a bivector which must be wedged with e again
before it becomes meaningful. This then recovers the line itself again [2]. This is
sensible, at one level, but precludes anything to do with the bivector generator
approach, which we have found to be very useful in physical applications.

We next return to the boundary points. These give a very good way of en-
coding geodesics. Let P be a point on the lower boundary, and P ′ a point on
the upper boundary, as in Fig. 10.

If we form a linear combination of P and P ′, with positive coefficients, say

Y = αP + βP ′ (59)

then this defines an interior point Y on the geodesic (d-line) joining them. Fur-
thermore, the bivector representing this line is P∧P ′. Since P and P ′ are null,
then we see that the tangent vector at Y is given up to scale by

TY = βP ′ − αP (60)

We will discuss elsewhere how to relate the direction of this tangent vector in Y
space, with the direction of the corresponding tangent vector (e.g. as shown on
the plot) in x space, but note here that it works in a simple and straightforward
manner.

6.2 Non-euclidean Circles and Hyperbolae

Obviously a key feature of the Hestenes approach to conformal geometry is the
way it deals with circles and spheres. This is discussed in the context of non-
Euclidean geometry in, for example, [2, 9]. This approach is obviously very useful,



Recent Applications of Conformal Geometric Algebra 319

λ

P ′
0

P0 P

P ′

Ŷ
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Fig. 10. Plot illustrating the formation of an interior point by linear combination of
two boundary points. For the example shown, Y = 3P + P ′. The part of the geodesic
between the boundary points is given by considering the set of points αP + βP ′ for
all positive α and β. The direction in Y space of the tangent vector at Ŷ , is given in
general by βP ′ − αP (see text), and so is in the direction P ′ − 3P at the point shown

and may be preferable to what we are going to discuss here in some applications.
However, what we will show here, is that the functionality of this approach can
be effectively reproduced using one less dimension for the actual computations.
Taking the specific case of de Sitter spacetime, we show that while the availability
of the basis vector e is very useful for conceptual and analytic purposes, it is
actually better not to have any e component in the vectors representing the
points. This is because it is then possible to separate out cleanly the parts of an
equation containing e and those that do not, and then results can be obtained
from each part separately. These tend to give expressions which achieve what we
want, but with many fewer computations than in the ‘two dimensions up’ case.

To take a specific case, we consider finding the centre and radius of a non-
Euclidean circle in the (x, y, z) hyperplane within a de Sitter spacetime. (This
transfers through directly to the approach to 3d Euclidean space which we discuss
below.)

We take the circle to be defined by three unit vector points A, B and C. We
therefore know from the null vector approach that the circle is represented by

Σ = (A− e)∧(B − e)∧(C − e) (61)

and that points Ŷ on the circle must satisfy

(Ŷ − e)∧(A− e)∧(B − e)∧(C − e) = 0 (62)

Expanding out (61) we obtain

Σ = V − eS (63)

where
V = A∧B∧C and S = A∧B +B∧C + C∧A (64)
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Now none of Ŷ , V or S contains e. Thus (62) rearranges to

Ŷ ∧V − eV + eŶ ∧S = 0 (65)

and thus we get the two conditions

Ŷ ∧V = 0 (66)

Ŷ ∧S = V (67)

In fact (67) implies (66), so we need just (67), plus the fact that Ŷ is a unit
vector, for the circle to be specified.

Now, to get the centre of the circle passing through A, B and C, we know
that in the null vector approach the quantity ΣeΣ will be important. This is
a covariant construction yielding a vector, but of course not a null vector, and
finding the explicit null vector representing the centre from this is slightly messy
(see [2, 9]). Here we know straightaway that the point we want will be the ‘non-e’
part of ΣeΣ. Since S and V commute, we get

ΣeΣ = e(S2 − V 2)− 2V S (68)

from which we can deduce that the unit vector representing the non-Euclidean
centre of the circle is

D = − SV

|S||V | (69)

(The choice of sign here corresponds to keeping y4 > 0.) Furthermore, it is easy
to show that the non-Euclidean ‘radius’ (in the sense of minus the dot product
of a point on the circle with the centre), is given by

ρ = −Ŷ ·D =
|V |
|S| (70)

(Ŷ being any point on the circle).
These operations (particularly the one for finding the centre) seem likely to

be much easier to compute than the equivalent ones in the ‘two dimensions up’
approach. Moreover, they are susceptible of a further conceptual simplification.
The fact that V and S commute is due to V acting as a pseudoscalar within
the (non-Euclidean) plane spanned by the triangle. Viewed this way, we can see
that the centre of the circumcircle is the ‘dual’ of the sum of the sides. This is a
nice geometrical result.

More generally, for any point Ŷ in the plane of the triangle, we can form its
dual in V , which will be a d-line, and for any d-line we can get a corresponding
dual point. To see this, let us take e.g. the dual of the ‘side’ A∧B. We will denote
this by C ′, i.e.

C ′ = −A∧BEV (71)

where EV = V/|V |2 and we have adopted a convenient normalisation for the
dual point. We see that Ŷ ·C ′ = 0 for any Ŷ on the d-line A∧B. Thus all points
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on this line are equidistant from C ′, which provides another definition of this
dual point. Defining further

A′ = −B∧C EV and B′ = −C∧AEV (72)

we can see that D satisfies

D = ρ(A′ +B′ + C ′) (73)

i.e., in order to find the circumcircle centre, we take a linear combination, with
equal weights, of the points dual to the sides.

A yet further useful way to understand this, is via the notion of reciprocal
frame. Defining

A1 = A, A2 = B, A3 = C

A1 = A′, A2 = B′, A3 = C ′ (74)

then we have
Ai·Aj = −δi

j for i, j = 1, 2, 3 (75)

which (modulo a sign) is the usual defining relation for a reciprocal frame. This
relation immediately makes clear how (73) is consistent with (70). For example,
dotting (73) with A, we immediately get A·D = −ρ, as expected.

This then suggests perhaps the simplest way of finding the centre and radius
of a non-Euclidean circle defined by three points. Let the three points be called
A1, A2 and A3, and define a reciprocal frame to these via (75). Then the centre
and radius of the (non-Euclidean) circle through the three points are given by

D′ = A1 +A2 +A3 (76)

and
ρ2 = − 1

D′2 (77)

respectively.
The calculations to get the reciprocal frame are of course the same as in (71)

and (72), but this route seems very clean conceptually, and gets both the centre
and radius in one go. Moreover, we can immediately generalise to a sphere and
its centre.

Let Ai, i = 1 . . . 4, be four points through which we wish to find a non-
Euclidean sphere. Form the reciprocal frame Ai and then let

D′ =
4∑

i=1

Ai (78)

Then with ρ2 = −1/D′2, we have that ρ is the radius of the sphere, and ρD′ is
the (normalised) point representing its centre. At this point we have a method
which is entirely independent of the ‘null vector’ approach and of the use of e.
This statement follows since the result can be proved immediately in its own
terms — in particular, by virtue of the definition of the reciprocal frame, the D′

defined by (78) is clearly equidistant from each Ai, with ‘distance’ given by ρ.
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7 Electromagnetism, Point Particle Models and
Interpolation

The remark after equation (58) suggests an analogy with the Lorentz force law
of electromagnetism in GA form: this is dv/ds = F ·v where v is the particle
4-velocity and F is the Faraday bivector E + IB (the I here being the pseu-
doscalar for spacetime). The details will be the subject of a further paper, but
it is possible to set up electromagnetism in an interesting way in the 5d space
described above. Using this approach, standard problems take on an intrigu-
ingly geometrical character, and then one can move down to 4d spacetime in
order to find their physical consequences. An important feature is that solutions
can be ‘moved around’ with rotors in 5d, which then correspond to translated
and rotated solutions in 4d. This can be expected to be useful e.g. in numerical
calculations of the scattered fields from conductors which can be decomposed
into surface facets. Fields can then be moved round between facets, themselves
described with conformal geometric algebra, by using appropriate rotors in 5d.

We content ourselves with one illustration here, which shows clearly the geo-
metrical character which electromagnetism takes on in 5d. After this we show how
the type of point particle model which this view leads to, can give us an insight into
something more directly relevant for computer graphics, namely interpolation.

It is possible to set up a point particle Lagrangian which leads to an equa-
tion for the position of a particle that is same as for d-line motion above, namely
dY/ds = L·Y where L is the line the particle is currently moving along. This
would be constant d-line in the absence of any forces. The effect of an electro-
magnetic field is that now the line L, instead of being constant, satisfies

dL

ds
= F×L (79)

where × is the GA commutator product (A×B = (1/2)(AB − BA)) and F is
the 5d Faraday bivector. As an example of the latter, the field at position Y due
to a point charge moving along a geodesic (d-line) L′ is (ignoring some constant
factors)

F =
Y · (Y ∧ L′)
|Y ∧ L′|3 (80)

This is clearly singular, as one would expect, if Y lies on the line L′ itself. In the
last two equations we see a very interesting feature of the physics that emerges
in 5d, which is that it is not points which are important, but the whole world
line which a particle travels over.

One can also set up a rotor version of the above in which the rotor encodes
the rotation of a fixed set of fiducial axes, in a similar way to the GA formulation
of rigid body mechanics. The fixed axes are ē (the origin) and e0 (the reference
timelike velocity of the body). These get rotated to Ŷ (the particle position) and
T̂ (the instantaneous velocity), via

Ŷ = ψēψ̃, T̂ = ψe0ψ̃ (81)

where ψ is the rotor. It turns out that ψ itself then satisfies the rotor equation
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Fig. 11. Motion of a charged particle in the 5d version of a constant electric field. The
particle emanates from past infinity, initially along a d-line (free-particle geodesic), but
is then accelerated by the field onto a different d-line before reaching future infinity

dψ

ds
=

1
2
Lψ − 1

2
F (Ŷ )·T̂ T̂ψ (82)

where L = Ŷ T̂ . This is very novel. We now have a axis pointing out of the
particle, Ŷ , which represents where it is, rather than its velocity. An actual
example of such a computation is shown in Fig. 11. This is for the 5d version of
a constant electric field in the x direction. At the lower edge of the diagram is the
past infinity surface from which the particle emanates. The geodesic motion that
would be implied by its initial motion is shown as the ‘line corresponding to past
infinity’. Similarly its asymptotic final motion is shown as the ‘line corresponding
to future infinity’. Inbetween, one can see the actual path of the particle, which
suffers acceleration in the x direction, due to the action of the electric field. A
very intriguing feature of this diagram, is that the asymptotic motion of the
particle towards past and future follows free-particle geodesic lines, rather than
becoming ever more accelerated, which is what happens in the standard approach
for motion under a constant field in 4d.

The point particle model we are using prompts the question of whether one
could use bivector interpolation to interpolate motion between any two ψs. This
will then be performing interpolation of position and rotation simultaneously,
but just using one dimension up. In addition to reduced computational com-
plexity, we suggest that this removes an ambiguity which would otherwise be
present in the 2d up approach. In particular, we claim that the ‘1d up’ approach
has exactly the right number of degrees of freedom to simultaneously represent
the position and rigid body attitude of a body in n dimensions. We see this
as follows. Starting with e.g. a 3d body we have that the rigid body attitude
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accounts for 3 d.o.f., while rigid body position accounts for another 3, implying
overall 6. This is the same as the number of components of a 4d bivector and
thus of a rotor in 4d. Generally, to describe rotation in n dimensions, we need
1/2n(n − 1) components to describe rotation, whilst position needs another n.
Therefore the total is 1/2n(n+ 1), which is the same as the number of bivector
(and therefore independent rotor) components in n + 1 dimensions. In the 2d
up approach, rotors have more components than we need, and thus there is an
inherent ambiguity in linking rotors with the actual attitude and position of a
rigid body. Of course, it may be objected that we have only achieved the possi-
bility of working with one dimension extra by going to curved space. However,
one can explicitly demonstrate for this case of interpolation, that one can bring
everything back unambiguously to Euclidean geometry, by letting λ→∞ at the
end of the calculations.

A further problem, which we believe this approach solves, is that so far no
proper Lagrangian formulation or motivation has been found for interpolation
in the ‘2d up’ approach. A Lagrangian approach would be very desirable, since
it would then give a rationale for preferring a particular method of interpolation
over others. For modelling rigid body motion in the 1d up approach, we propose
the rotor Lagrangian

L = −1
2
(−ψ̃ψ̇ + ˜̇

ψψ) · (−ψ̃ψ̇ + ˜̇
ψψ) + θ(ψψ̃ − 1) (83)

Here θ is a Lagrange multiplier enforcing the rotor character of ψ. This La-
grangian is the specialisation of that for rigid body dynamics given on page 426
of [9], to the case where the inertia tensor is spherically symmetric. Its first
term is effectively the ‘rotational energy’ of the spinning point particle we are
using to represent the axes in our higher dimensional space. The differentiation
is w.r.t a path parameter s. One finds the solution to the equations of motion is
ψ = exp(Bs), where B is a constant bivector. This therefore indeed gives bivec-
tor interpolation as the way in which one set of axes transforms into another.
Two examples of this type of motion are shown in Fig. 12. In these examples, we
are dealing with rigid body motion in 3d, and using a rotor in 4d. In dealing with
3d space and using the ‘1d up’ approach, we have a choice of signature of the
extra axis. Assuming we take the 3 space axes as having positive square, then if
we add an extra axis with negative square, we will be working with hyperbolic
3d space, whilst if we add an axis with positive square, we will have spheri-
cal space. The example given above for finding the centre of a (non-Euclidean)
sphere through 4 points, was in a spherical space, which is the natural restriction
of our version of de Sitter space to spatial directions only. For some other appli-
cations, hyperbolic space might be more appropriate. The question would then
be, for engineering applications, whether the Euclidean limit differs, depending
on whether one works in spherical or hyperbolic space in 1d up. Both the exam-
ples shown in Fig. 12 are for spherical space, as is evident in the picture at the
left, which shows a complete closed curve as the orbit under ψ = exp(Bs) inter-
polation. At the right, we see a different case, which is in the Euclidean limit in
which λ→∞. Here the position interpolation reduces to a constant pitch helix,
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Fig. 12. Examples of interpolation based upon the ‘spinning point particle’ Lagrangian
(83). The position of the rigid body, based upon the direction of the Ŷ axes, is shown.
Both are calculated in 4d ‘spherical space’, and at the left a complete closed path is
shown. At the right, the Euclidean limit is shown, resulting in a helical path near the
origin

and one can show (details will be given elsewhere), that exactly the same helix
is obtained whether one reduces to the Euclidean limit from spherical space or
hyperbolic space, which is reassuring as to the meaningfulness of the result.

8 Non-euclidean Projective Geometry Revisited, and the
Role of Null Vectors

Having established the utility of the 1d up approach, it is worth returning to
what we did in Section 5 and asking whether the role of null vectors in 2d up
is crucial in this. The answer is no! We can achieve all the results given in that
section by only moving 1d up. This is to some extent obvious from the fact that
we insisted that h(n), h(e) and h(ē), left n, e or ē invariant, respectively, in the
Euclidean, hyperbolic or spherical cases. We can thus ‘throw away’ e or ē as
appropriate, and work only in the 1d up space left. As a specific example, let us
say that we want to carry out projective geometry in the hyperbolic 2d plane
(the Poincaré disc). Then our basis vectors in the 1d up conformal representation
are e1, e2 and ē, with e21 = 1, e22 = 1 and ē2 = −1. We let h(a) be a general,
constant linear transformation in this 3d space, and define for a general point
Y , that its image under the ‘projectivity’ h is

Y ′ = h(Y ) (84)

There is no need to try to go back to a null vector here. Assuming Y 2 is non-zero
and has the right sign, a general point Y immediately represents a point in the
disc, and if it is null it represents a point on the boundary. It is then easy to
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Fig. 13. Diagram illustrating the relation between intersection of hyperplanes in the
Poincaré ball, and the intersection of circles, defined via null vectors, in the boundary
surface of the ball. See text for details

show that an h which leaves the boundary invariant corresponds to ‘rigid’ (rotor)
motions in the interior, whilst if it does not, it corresponds precisely to the non-
Euclidean projective transformations we studied above. As an example, the h
given in equation (32) can be used directly in (84) and again yields the non-
Euclidean figure shown in Fig. 5. We can see that it will be a projectivity, since
e.g. the boundary point e1 + ē is mapped to the (non-null) vector representing
an interior point e1 + (1 + (1/2)δ)ē.

Where then, can one see a natural role for the 2d up approach, and the null
vectors it uses? The most natural way this seems to appear is shown in the
example of Fig. 13. Here we have the ‘Poincaré ball’ in 3d. The boundary of this
consists of a set of null vectors (the surface of the sphere). This boundary is a 2d
space, corresponding with the set of null vectors (with scale ignored) in the 4d
space spanned by e1, e2, e3, ē. Thus in this boundary space we are automatically
working with null vectors in the 2d up approach! The example shown of this, is
for the intersection of two d-planes within the unit ball. Each d-plane is specified
by 3 boundary points, A, B, C and A′, B′, C ′ respectively. When we intersect
the d-planes, we get a d-line in the interior, which intersects the boundary at
the points labelled P and Q. On the boundary itself, the interpretation is that
we have intersected the two circles A∧B∧C and A′∧B′∧C ′ and the result is
the bivector formed from the points of intersection P and Q. This construction
throws some light on the role of wedges of two null points, which occurs very
frequently in the 2d up approach. We see that we can reinterpret them as the end
points of a d-line in one dimension higher, and in fact this bivector is precisely
the representation of the d-line in the 1d up approach.
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Applications of Conformal Geometric Algebra in
Computer Vision and Graphics

Rich Wareham, Jonathan Cameron, and Joan Lasenby

Cambridge University Engineering Department,
Trumpington St., Cambridge, CB2 1PZ, United Kingdom

Abstract. This paper introduces the mathematical framework of con-
formal geometric algebra (CGA) as a language for computer graphics
and computer vision. Specifically it discusses a new method for pose and
position interpolation based on CGA which firstly allows for existing
interpolation methods to be cleanly extended to pose and position in-
terpolation, but also allows for this to be extended to higher-dimension
spaces and all conformal transforms (including dilations). In addition,
we discuss a method of dealing with conics in CGA and the intersection
and reflections of rays with such conic surfaces. Possible applications for
these algorithms are also discussed.

1 Introduction

Since its inception in the mid-1970s, Computer Graphics (CG) has almost uni-
versally used linear algebra as its mathematical framework. This may be due
to two factors; most early practitioners of computer graphics were mathemati-
cians familiar with it and linear algebra provided a compact, efficient way of
representing points, transformations, lines, etc.

As computing power becomes cheaper, the opportunity arises to investigate
new frameworks for CG which, although not providing the time/space efficiency
of linear algebra, may provide a conceptually simpler system or one of greater
analytical power.

We intend to introduce a system that makes use of Clifford Algebras and
in particular the geometric interpretation introduced by [14], termed Geometric
Algebra. We then describe the use of this system for both pose and position
interpolation and for the reflection and intersection of rays with conics.

1.1 Brief Overview of Geometric Algebra

We shall assume a basic familiarity with Clifford Algebras and merely describe
the mechanism whereby they may be used to perform geometric operations.
There already exist many introductions to Geometric Algebra that may be con-
sulted [13, 9, 17].

We first write down a basis which can generate all elements of the Clifford
Algebra with vector elements in R

2 through linear combination

{1, e1, e2, e1e2} (1)

H. Li, P. J. Olver and G. Sommer (Eds.): 2004, LNCS 3519, pp. 329–349, 2005.
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where e1, e2 are the usual orthonormal Euclidean basis vectors and hence e1e2 =
e1 · e2 + e1 ∧ e2 = e1 ∧ e2. For convenience we shall denote eiej as eij and,
generally, eiej . . . ek as eij...k. A general linear sum of these components is termed
a multivector whereas a sum of only grade-n components is called a n-vector.
This paper will use the convention of writing multivectors, bivectors, trivectors
and higher-grade elements in upper-case and vectors and scalars in lower-case.

Firstly, note that

(e1e2)2 = e1e2e1e2 = −e1e2e2e1 = −1 (2)

and thus we have an element of the algebra which squares to −1. As shown by
[12, 9] this can be identified with the unit imaginary i =

√
−1 in C and, as such,

the highest-grade basis-element in a geometric algebra is often denoted I and
referred to as the pseudoscalar.

Note that in spaces with dimension n the maximum grade object possible
has grade n and the n-vector e1 ∧ ...∧ en = I is therefore the pseudoscalar. The
result of the product xI is termed the dual of x, denoted as x∗.

In [12] it was also shown that many of the identities and theorems dealing
with complex numbers have a direct analogue in Clifford Algebra. Therefore a
geometrical interpretation, which was named Geometric Algebra, was suggested.

It can be shown [17, 14] that there is a general method for rotating a vector
x involving the formation of a multivector of the form R = e−Bφ/2. This rep-
resents an anticlockwise rotation φ in a plane specified by the bivector B. The
transformation is given by

x → RxR−1. (3)

We refer to these bivectors which have a rotational effect as rotors. The computa-
tion of the inverse of a multivector is rather computationally intensive in general
(and indeed can require a full 2n-dimension matrix inversion for a space of di-
mension n). To combat this we define the reversion of a n-vector X = eiej ...ek

as X̃ = ek...ejei, i.e. the literal reversion of the components. Since the reversion
of eiej is ejei = −eiej , and by looking at the expression for R, it is clear that
R̃ ≡ R−1 for rotors. Computing R̃ is easier since it involves only a sign change
for some orthogonal elements of a multivector.

It is worth comparing this method of rotation to quaternions. The three
bivectors B1 = e23, B2 = e31 and B3 = e12 act identically to the three imaginary
components of quaternions, i,−j and k respectively. The sign difference between
B2 and j is due to the fact that the quaternions are not derived from the usual
right-handed orthogonal co-ordinate system.

A particular rotation is represented via the quaternion q given by

q = q0 + q1i + q2j + q3k

where q20 + q21 + q22 + q23 = 1. Interpolation between rotations is then performed
by interpolating each of the qi over the surface of a four-dimensional hyper-
sphere. If we are interpolating between unit quaternions q0 and q1 the SLERP
interpolation is
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q =
{
q0(q−1

0 q1)λ if q0 · q1 ≥ 0
q0(q−1

0 (−q1))λ otherwise
(4)

where λ varies in the range (0, 1) [19, 23].
Recalling that, in complex numbers, the locus of exp(iφ

2 ) is the unit circle, it
is somewhat simple to show that, for some bivector B, where B2 = −1, the locus
of the action of exp(−B φ

2 ) upon a point with respect to varying φ is also a circle
in the plane of B. Therefore if we consider some rotations R1, R2 = exp(kB)R1,
where k is a scalar and B is some normalised bivector, it is easy to see after
some thought that the quaternionic interpolation is exactly given by

Rλ = (R2R̃1)λR1 = exp(λkB)R1

where λ, the interpolation parameter, varies in the range (0, 1). A further mo-
ment’s thought will reveal that this method, unlike quaternionic interpolation,
is not confined to three dimensions but instead readily generalises to higher-
dimensions.

Reflections. Reflections are particularly easy to represent in Geometric Alge-
bra. Reflecting a vector a in a plane with unit normal n̂ we obtain a reflected
vector a′ given by

a′ = −n̂an̂

which may easily be verified by expanding out to

a′ = a− 2(n̂ · a)n̂

and noting that this does indeed give the reflection of a. This pattern of ‘sand-
wiching’ an object between two others is often found in GA-based algorithms
and can be thought of as representing the reflection of the central object in the
‘sandwiching’ object.

1.2 Conformal Geometric Algebra (CGA)

In the Conformal Model [14, 13, 18, 17, 20] we extend the space by adding two
additional basis vectors. We first define the signature, (p, q) of a space A(p, q)
with basis vectors, {ei}, such that e2i = +1 for i = 1, ..., p and e2j = −1 for
j = p + 1, ..., p + q. For example R

3 would be denoted as A(3, 0). We extend
A(3, 0) so that it becomes mixed signature and is defined by the basis

{e1, e2, e3, e, ē}

where e and ē are defined so that

e2 = 1, ē2 = −1, e · ē = 0

e · ei = ē · ei = 0 ∀ i ∈ {1, 2, 3}.
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This space is denoted as A(4, 1). In general a space A(p, q) is extended to
A(p+ 1, q + 1). We may now define the vectors n and n̄:

n = e+ ē, n̄ = e− ē

It is simple to show by direct substitution that both n and n̄ are null vectors
(i.e. n2 = n̄2 = 0). It can be shown [14, 17] that rigid body transforms may be
represented conveniently via rotors in this algebra.

We shall also make use of a transform based upon that proposed by Hestenes
in [14]. The original transform is dimensionally inconsistent however so we in-
troduce a fundamental unit length scale, λ, into the equation to make it dimen-
sionally consistent

F (x) =
1

2λ2

[
x2n+ 2λx− λ2n̄

]
≡ X (5)

where λ is usually set to be unity. At this point, notice that we can identify the
origin with n̄ since F (0) ∝ n̄ and that as x→∞, F (x) becomes n. We may also
find the inverse transform

F−1(X) = λ(X ∧ n) · e (6)

Rotations. As one might expect from their relation to complex numbers, there
exists an element of the algebra which performs rotation in the plane. These
pure-rotation rotors all have the form e−B where B has only components of the
form eij , i, j ∈ {1, 2, 3}.

A useful property of this mapping is that pure-rotation rotors retain their
properties as can be shown by considering the effect of a rotor R = exp(−φ

2 eij),
i, j ∈ {1, 2, 3} upon F (x). Setting λ = 1 for the moment,

RF (x)R̃ =
1
2
R(x2n+ 2x− n̄)R̃ (7)

=
1
2

(
x2RnR̃+ 2RxR̃−Rn̄R̃

)
= F (RxR̃) (8)

since rotors leave n and n̄ invariant and (RxR̃)2 = x2.

Translations. The translation rotor Ta is defined [17, 18] as

Ta = exp
[na

2

]
= 1 +

na

2

and will transform a null-vector representation of the vector x to the null-vector
representation of xa = x+ a in the following manner:

F (xa) = TaF (x)T̃a

Dilations. It can also be shown [17, 18] that the rotor Dα = exp(αeē/2) has
the effect of dilating x by a factor of e−α, i.e. DαF (x)D̃α ∝ F (e−αx)
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Table 1. Representations of various geometric objects

Line – L = X1 ∧ X2 ∧ n Circle – C = X1 ∧ X2 ∧ X3

Plane – Φ = X1 ∧ X2 ∧ X3 ∧ n Sphere – Σ = X1 ∧ X2 ∧ X3 ∧ X4

Inversions. Finally, inversions (x → x2/x) may be represented [17, 18] as F (x) →
eF (x)e. Although this will not be discussed here, this becomes particularly im-
portant when considering non-Euclidean geometry.

This mapping has provided a similar advantage to that of homogeneous co-
ordinates, namely that rigid body transforms become multiplicative and any such
transform may be represented by a rotor. In addition, transforms followed by,
or preceded by, a dilation or inversion may also be represented multiplicatively.

Representation of Geometric Objects. We have shown how rigid body
transformations may be performed on a vector x by operating on its null-vector
representation F (x). We may also ask what form the multivector M takes if the
solutions of F (x)∧M = 0 lie on a circle, sphere, line or plane. It has been shown
in [17, 18] that the form of M depends only on the null-vector representation
of points which lie on the object. The forms of M for various objects are sum-
marised in Table 1. Note that if we identify the vector n with the point at infinity,
a line is just a special case of a circle which passes through infinity and a plane
is equally a special case of a sphere. It becomes convenient, therefore, to group
planes and spheres by the collective term generalised spheres and, similarly, to
define a generalised circle as either a circle or a line.

Suppose we have a generalised sphere which passes through the points x1, · · · ,
x4. Hence, for all points x on the object, F (x) ∧M = 0 where

M = F (x1) ∧ F (x2) ∧ F (x3) ∧ F (x4). (9)

Now consider the effect of a rotor R upon M

RMR̃ = RF (x1)R̃ ∧RF (x2)R̃ ∧RF (x3)R̃ ∧RF (x4)R̃ (10)

as R(a ∧ b)R̃ = R(a)R̃ ∧R(b)R̃. Furthermore we can say

RMR̃ = F (Rx1R̃) ∧ F (Rx2R̃) ∧ F (Rx3R̃) ∧ F (Rx4R̃) (11)

which represents a generalised sphere passing through the transformed points
Yi = RXiR̃. Clearly, if R represents a conformal transformation, the generalised
sphere represented by M is similarly transformed.

Intersections may be performed efficiently using the meet operator. The gen-
eral meet operation can be found by noting that for r-grade and s-grade blades
Mr and Ms, a point, X, on the intersection must satisfy X ∧Mr = X ∧Ms = 0
which can then be shown to be equivalent to

X ∧
[
〈MrMs〉2l−r−s

]∗ = 0
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where [ · ]∗ denotes multiplication by the pseudoscalar, l is the dimension of the
space (in the case of A(4, 1), l = 5) and 〈X〉i denotes the extraction of the
i-grade component from X. If we define the meet operator

Mr ∨Ms =
[
〈MrMs〉2l−r−s

]∗
then we can interpret the meet of two objects as their intersection in many cases.

The key feature of this approach is that we have placed few constraints on
the form of Mr and Ms and thus we can intersect objects in a fairly general
manner instead of using object-specific algorithms.

2 Pose and Position Interpolation

In this section we shall use the term displacement rotor to refer to a rotor
which performs some rigid-body transform. Referring to the displacement rotors
presented above, we see that all of them have a common form; they are all ex-
ponentiated bivectors. Rotations are generated by bivectors with no component
parallel to n and translations by a bivector with no components perpendicular
to n. We may therefore postulate that all displacement rotors (we shall deal with
rotors including a dilation later) can be expressed as

R = exp(B)

where B is the sum of two bivectors, one formed from the outer product of
two vectors which have no components parallel to e or ē. The other is formed
from the outer product with n of vectors with no components parallel to e or
ē. The effect of this is to separate the basis bivectors of B into bivectors with
components of the form ei ∧ ej , ei ∧ e and ei ∧ ē.

We shall proceed assuming that all displacement rotors can be written as the
exponentiation of a bivector of the form B = ab+ cn where a, b and c are spatial
vectors, i.e. if n ∈ A(m+ 1, 1) then {a, b, c} ∈ R

m. It is clear that the set of all
B is some linear subspace of all the bivectors.

We now suppose that we may interpolate rotors by defining some function
!(R) which acts upon rotors to give the generating bivector element. We then
perform direct interpolation of this generator. We postulate that direct interpola-
tion of such bivectors, as in the reformulation of quaternionic interpolation above,
will give some smooth interpolation between the displacements. It is therefore a
defining property of !(R) that

R ≡ exp(!(R)) (12)

and so !(R) may be considered to act as a logarithm-like function in this context.
It is worth noting that !(R) does not possess all the properties usually associated
with logarithms, notably that, since exp(A) exp(B) is not generally equal to
exp(B) exp(A) in non-commuting algebras, !(exp(A) exp(B)) cannot be equal
to A+B except in special cases.
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To avoid the the risk of assigning more properties to !(R) than we have
shown, we shall resist the temptation to denote the function log(R). The most
obvious property of log(·) that !(·) doesn’t possess is log(AB) = log(A)+log(B).
This is clear since the geometric product is not commutative in general whereas
addition is.

2.1 Form of exp(B) in Euclidean Space

The form of exp(B) may be derived after a little work. We start by assuming
that B is of the form B = φP + tn where t ∈ R

n, φ is some scalar and P is a
2-blade where P 2 = −1 and it is formed from spatial vectors. We then define
t‖ to be the component of t lying in the plane of P and t⊥ = t − t‖. From this
assumption it can be shown [26, 25] that the form of exp(B) is

exp(B) = [cos(φ) + sin(φ)P ] [1 + t⊥n] + sinc(φ)t‖n

It is also shown in [25] that this can only represent an Euclidean translation
and rotation rotor. It is worth exploring the geometric interpretation of this
expression. me vector satisfying a · n = a · P = 0.

In [25] we discuss how to obtain a geometrical description of the action of
the rotor in terms of the bivector B. We shall state this here without proof. We
state that the action of the rotor

R = exp
(
ψ

2
P +

tn

2

)

is to translate along a vector t⊥ which is the component of t which does not lie
in the plane of P , rotate by ψ in the plane of P and finally translate along t′‖
which is given by

t′‖ = −sinc
(
ψ

2

)
t‖

(
cos

(
ψ

2

)
− sin

(
ψ

2

)
P

)

which is the component of t lying in the plane of P , rotated by ψ/2 in that
plane.

2.2 Method for Evaluating �(R)

We have found a form for exp(B) given that B is in a particular form. Now
we seek a method to take an arbitrary displacement rotor, R = exp(B) and re-
construct the original B. Should there exist a B for all possible R, we will show
that our initial assumption that all displacement rotors can be formed from a
single exponentiated bivector of special form is valid. We shall term this initial
bivector the generator bivector (to draw a parallel with Lie algebras).

We can obtain the following identities for B = (ψ/2)P + tn/2 by simply
considering the grade of each component of the exponential:
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〈R〉0 = cos
(
ψ

2

)

〈R〉2 = sin
(
ψ

2

)
P + cos

(
ψ

2

)
t⊥n+ sinc

(
ψ

2

)
t‖n

〈R〉4 = sin
(
ψ

2

)
Pt⊥n

It is somewhat straightforward to reconstruct ψ, t⊥ and t‖ from these com-
ponents by partitioning a rotor as above. Once we have a method which gives
the generator B for any displacement rotor R we have validated our assumption.

Theorem 1. The inverse-exponential function !(R) is given by

!(R) = ab+ c⊥n+ c‖n

where

‖ab‖ =
√
|(ab)2| = cos−1(〈R〉0)

ab =
(〈R〉2 n) · e
sinc (‖ab‖)

c⊥n = − ab 〈R〉4
‖ab‖2 sinc(‖ab‖)

c‖n = −
ab 〈ab 〈R〉2〉2

‖ab‖2 sinc(‖ab‖)

Proof. It is clear from the above that the form of ‖ab‖ is correct. We thus proceed
to show the remaining equations to be true

〈R〉2 = cos(‖ab‖) c⊥n+ sinc(‖ab‖)
[
ab+ c‖n

]
〈R〉2 n = sinc(‖ab‖) abn

(〈R〉2 n) · e = sinc(‖ab‖) ab

and hence the relation for ab is correct.

〈R〉4 = sinc(‖ab‖) abc⊥n
ab 〈R〉4 = −‖ab‖2 sinc(‖ab‖) c⊥n

and hence the relation for c⊥n is correct.

〈R〉2 = cos(‖ab‖) c⊥n+ sinc(‖ab‖)
[
ab+ c‖n

]
ab 〈R〉2 = cos(‖ab‖) abc⊥n+ sinc(‖ab‖)

[
abc‖n− ‖ab‖2

]
〈ab 〈R〉2〉2 = sinc(‖ab‖) abc‖n

and hence the relation for c‖n is correct.
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3 Interpolation via Logarithms

We have shown that any displacement of Euclidean geometry may be mapped
smoothly onto a linear subspace of the bivectors. This immediately suggests
applications to smooth interpolation of displacements. Consider a set of poses
we wish to interpolate, {P1, P2, ..., Pn} and a set of rotors which transform some
origin pose to these target poses, {R1, R2, ..., Rn}. We may map these rotors
onto the set of bivectors {!(R1), !(R2), ..., !(Rn)} which are simply points in
some linear subspace of the bivectors. We may now choose any interpolation of
these bivectors which lies in this space and for any bivector on the interpolant,
B′

λ, we can compute a pose, exp(B′
λ). We believe this method is more elegant

and conceptually simpler than many other approaches based on Lie-algebras
[11, 21, 22, 5].

Another interpolation scheme is to have the poses defined by a set of chained
rotors so that {P1, P2, ..., Pn} is represented by

{R1,ΔR1R1,ΔR2R2, ...,ΔRnRn}

where Ri = ΔRi−1Ri−1 as in figure 1. Using this scheme the interpolation
between pose Ri and Ri+1 involves forming the rotor Ri,λ = exp(Bi,λ)Ri−1

where Bi,λ = λ!(ΔRi−1) and λ varies between 0 and 1 giving Ri,0 = Ri−1 and
Ri,1 = Ri.

We now investigate two interpolation schemes which interpolate through tar-
get poses, ensuring that each pose is passed through. This kind of interpolation
is often required for key-frame animation techniques. The first form of inter-
polation is piece-wise linear interpolation of the relative rotors (the latter case
above). The second is direct quadratic interpolation of the bivectors representing
the final poses (the former case).

3.1 Piece-Wise Linear Interpolation

Direct piece-wise linear interpolation of the set of relative bivectors is one of the
simplest interpolation schemes we can consider. Consider the example shown in
figure 1. Here there are three rotors to be interpolated. We firstly find a rotor,
ΔRn which takes us from rotor Rn to the next in the interpolation sequence,
Rn+1.

R1

ΔR2
ΔR1

Origin

R2 = ΔR1R1

R3 = ΔR2ΔR1R1

Fig. 1. Rotors used to piece-wise linearly interpolate between key-rotors
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Fig. 2. Examples of (a) piece-wise linear and (b) quadratic interpolation for 3 repre-
sentative poses

Rn+1 = (ΔRn)Rn

ΔRn = Rn+1R̃n.

We then find the bivector, ΔBn which generates ΔRn = exp(ΔBn). Finally
we form a rotor interpolating between Rn and Rn+1:

Rn,λ = exp(λΔBn)Rn

where λ is in the range [0, 1] and Rn,0 = Rn and Rn,1 = Rn+1. Clearly this
interpolation scheme changes abruptly at interpolation points, something which
is reflected in the resulting interpolation as shown in figure 2. It is interesting to
note, after a moment’s thought, that for pure-rotation rotors this reduces exactly
to the quaternionic SLERP interpolation in equation 4.

3.2 Quadratic Interpolation

Another simple form for interpolation is the quadratic interpolation where a
quadratic is fitted through three interpolation points, {B1, B2, B3} with an in-
terpolation parameter varying in the range (−1,+1):

B′
λ =

(
B3 +B1

2
−B2

)
λ2 +

B3 −B1

2
λ+B2

giving
B′

−1 = B1, B′
0 = B2 and B′

+1 = B3

This interpolation varies smoothly through B2 and is reflected in the final in-
terpolation, as shown in figure 2. Extensions to the quadratic interpolation for
more than three interpolation points, such as smoothed quadratic interpolation
[7] or even a traditional cubic spline or Bézier interpolation are readily available.

It is worth noting that each of the methods described above may be performed
using either direct interpolation of the bivector !(R) corresponding to a rotor R
or by interpolating the relative rotors which take one rotor to another. It is not
yet clear which will give the best results and indeed it is probably application
dependent.
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3.3 Form of the Interpolation

We now derive a clearer picture of the precise form of a simple linear interpolation
between two rotors in order to relate the interpolation to existing methods used
in mechanics and robotics. We will consider the method used above whereby the
rotor being interpolated takes one pose to another.

Path of the Linear Interpolation. Since we have shown that exp(B) is indeed
a rotor, it follows that any Euclidean pure-translation rotor will commute with
it. Thus we only need consider the interpolant path when interpolating from
the origin to some other point since any other interpolation can be obtained by
simply translating the origin to the start point. This location independence of
the interpolation is a desirable property in itself but also provides a powerful
analysis mechanism.

Wehave identified in section2.1 theactionof the exp(B) rotor in termsofψ, P, t‖
and t⊥. We now investigate the resulting interpolant path when interpolating from
the origin. We shall consider the interpolant Rλ = exp(λB) where λ is the inter-
polation co-ordinate and varies from 0 to 1. For any values of ψ, P, t‖ and t⊥,

λB =
λψ

2
P +

λ(t⊥ + t‖)n
2

from our expansion of exp(B) we see that the action of exp(λB) is a translation
along λt⊥, a rotation by λψ in the plane of P and finally a translation along

t′‖ = −sinc
(
λψ

2

)
λt‖

(
cos

(
λψ

2

)
− sin

(
λψ

2

)
P

)
.

We firstly resolve a three dimensional orthonormal basis, {a, b, t⊥}, relative to
P where a and b are orthonormal vectors in the plane of P and hence P = ab.
We may now express t‖ as t‖ = taa+ tbb where t{a,b} are suitably valued scalars.

The initial action of exp(B) upon a frame centred at the origin is therefore to
translate it to λt⊥ followed by a rotation in the plane of P . Due to our choice of
starting point, this has no effect on the frame’s location (but will have an effect
on the pose, see the next section).

Finally there is a translation along t′‖ which, using c = cos
(

λψ
2

)
and s =

sin
(

λψ
2

)
, can be expressed in terms of a and b as

t′‖ = − 2s
λψ

λ(taa+ tbb)(c− sab)

= −2s
ψ

[
c(taa+ tbb) + s(tba− tab)

]
≡ −2s

ψ

[
a(tac+ tbs) + b(tbc− tas)

]
.

The position, rλ, of the frame at λ along the interpolation is therefore

rλ = −2s
ψ

(a(tac+ tbs) + b(tbc− tas)) + λt⊥

which can easily be transformed via the harmonic addition theorem to
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rλ = −2s
ψ
α

[
a cos

(
λψ

2
+ β1

)
+ b cos

(
λψ

2
+ β2

)]
+ λt⊥

where α2 = (ta)2 + (tb)2, tanβ1 = − tb

ta and tanβ2 = −−ta

tb . It is easy, via
geometric construction or otherwise, to verify that this implies that β2 = β1 + π

2 .
Hence cos(θ + β2) = − sin(θ + β1). We can now express the frame’s position as

rλ = −2α
ψ

[
a sin

(
λψ

2

)
cos

(
λψ

2
+ β1

)
− b sin

(
λψ

2

)
sin

(
λψ

2
+ β1

)]
+ λt⊥

which can be re-arranged to give

rλ = −α

ψ
[a (sin (λψ + β1)− sinβ1) + b (cos (λψ + β1)− cosβ1)] + λt⊥

= −α

ψ
[a sin (λψ + β1) + b cos (λψ + β1)] +

α

ψ
[a sinβ1 + b cosβ1] + λt⊥

noting that in the case ψ → 0, the expression becomes rλ = λt⊥ as one would ex-
pect. Since a and b are defined to be orthonormal, the path is clearly some cylin-
drical helix with the axis of rotation passing through α/ψ [a sinβ1 + b cosβ1].

It is worth noting a related result in screw theory, Chasles’ theorem [2],
which states that a general displacement may be represented using a screw mo-
tion (cylindrical helix) such as we have derived. Screw theory is widely used
in mechanics and robotics and the fact that the näıve linear interpolation gen-
erated by this method is indeed a screw motion suggests that applications of
this interpolation method may be wide-ranging, especially since this method
allows many other forms of interpolation, such as Bézier curves or three-point
quadratic to be performed with equal ease. Also the pure rotation interpolation
given by this method reduces exactly to the quaternionic or Lie group interpola-
tion result allowing the method to easily extend existing ones based upon these
interpolations.

Pose of the Linear Interpolation. The pose of the transformed frame is
unaffected by pure translation and hence the initial translation by λt⊥ has no
effect. The rotation by λψ in the plane, however, now becomes important. The
subsequent translation along t′‖ also has no effect on the pose. We find, therefore,
that the pose change λ along the interpolant is just the rotation rotor Rλψ,P .

3.4 Interpolation of Dilations

In certain circumstances it is desirable to add in the ability to interpolate dila-
tions. It can be shown [6] that this can be done by extending the form of the
bivector, B, which we exponentiate, as follows

B = φP + tn+ ωN

where N = eē. This bivector form is now sufficiently general [6] to be able
to represent dilations as well. In this case obtaining the exponentiation and
logarithm function is somewhat involved [6]. We obtain finally that
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exp(φP + tn+ ωN)

= (cos(φ) + sin(φ)P ) (cosh(ω) + sinh(ω)N + sinhc(ω)t⊥n)

+(ω2 + φ2)−1[−ω sin(φ) cosh(ω) + φ cos(φ) sinh(ω)]P

+(ω2 + φ2)−1[ω cos(φ) sinh(ω) + φ sin(φ) cosh(ω)]t‖n

where sinhc(ω) = ω−1 sinh(ω). Note that this expression reduces to the original
form for exp(B) when ω = 0, as one would expect.

It is relatively easy to use the above expansion to derive a logarithm-like
inverse function.

If we let R = exp(B) then we may recreate B from R using the method
presented below. Here we use 〈R|ei〉 to represent the component of R parallel
to ei, i.e. 〈R|N〉 = 〈R|e45〉 in 3-dimensions. We also use 〈R〉i to represent the
i-th grade-part of R and S(X) to represent the ‘spatial’ portion of X (i.e. those
components not parallel to e and ē).

ω = tanh−1
(

〈R|N〉
〈R|1〉

)
φ = cos−1

(
〈R|N〉
sinh(ω)

)
P = S(〈R〉2)

sin(φ) cosh(ω)

t⊥ = − 〈R〉4−sin(φ) sinh(ω)PN

sin(φ)sinhc(ω)

(
Pn̄
2

)
t = t‖ + t⊥

W = 〈R〉2 − cos(φ) sinh(ω)N
− sin(φ) cosh(ω)P
− cos(φ)sinhc(ω)t⊥n

X = −ω sin(φ) cosh(ω) + φ cos(φ) sinh(ω)

Z = ω cos(φ) sinh(ω) + φ sin(φ) cosh(ω)

t‖ = (−XP+Z)
sin2(φ) cosh2(ω)+cos2(φ) sinh2(ω)

W

Path of Interpolation. We now consider the path resulting from the simple
linear interpolation of both pose and dilation using the results derived above.
In [6] a full derivation is given and here we present only the result. As before,
the derivation proceeds by considering the position, rλ, of the frame formed by
applying the interpolation rotor R = exp(λ(φP + tn + ωN)) to n̄ (the origin),
with the interpolation parameter λ varying from 0 to 1. After a little work we
obtain the path of the interpolation as

rλ = − 1
ω
|t⊥|t̂⊥ −

ω

ω2 + φ2
|t‖|t̂‖ +

φ

ω2 + φ2
|t‖|t̂ � + e−2λω ·⎛

⎝ |t⊥|
ω
t̂⊥ +

cos
(
2λφ+ tan−1

(
φ
ω

))
√
ω2 + φ2

|t‖|t̂‖ −
sin

(
2λφ+ tan−1

(
φ
ω

))
√
ω2 + φ2

|t‖|t̂ �

⎞
⎠

where t̂‖ is the normalised component of t parallel to P , t̂⊥ is the normalised
component perpendicular to P and t̂ � is a unit vector perpendicular to both t̂‖
and t̂⊥. This is the equation of a conical helix.

It can be shown [6] that when setting the dilation component, ω, to zero this
path is equivalent to that derived for pose interpolation.
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3.5 Applications

The method outlined is applicable to any problem which requires the smooth
interpolation of pose. We have chosen to illustrate an application in mesh defor-
mation. Smooth mesh deformation is often required in medical imaging applica-
tions [8] or video coding [15]. Here we use it to deform a 3d mesh in a manner
which has a visual effect similar to ‘grabbing’ a corner of the mesh and ‘twisting’
it into place. We do this by specifying a set of ‘key-rotors’ which certain parts of

Fig. 3. A cube distorted via the linear interpolation of rotors specifying its corner
vertices

Fig. 4. The Stanford Bunny[24] distorted by the same rotors
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the mesh must rotate and translate to coincide with. Our implementation takes
advantage of the hardware acceleration offered by the Graphics Processing Units
(GPUs) available on today’s consumer-level graphics hardware. A full discussion
of the method will appear elsewhere.

We believe this method leads to images which are intuitively related to the
rotors specifying the deformation. Furthermore, the method need not only be
applied to meshes with simple geometry and can readily be applied to meshes
with complex geometry without any tears or other artifacts appearing in the
mesh. Figures 3 and 4 illustrate the method in the case of a cube and a mesh
with approximately 36,000 vertices.

4 Conics

So far we have been limited in which objects we can manipulate and intersect in
CGA. Specifically we can only deal with planes, circles, spheres, lines and points.
In this section we consider a method of extending our approach to conics and in-
tersections thereof. We shall proceed by considering the 3-dimensional Euclidean
case but this method may be generalised to higher dimensions if required; here
we follow the procedure outlined in [16]. We shall begin by considering the set
of points on the unit sphere at the origin:

{cθe1 + sθcφe2 + sθcφe3 : θ ∈ (0, 2π], φ ∈ (0, π]}

where cθ = cos(θ), sθ = sin(θ) and similarly for sφ and cφ. We apply the trans-
form F (·) to obtain the set, S, of representations for these points:

S =
{n

2
+ cθe1 + sθcφe2 + sθcφe3 −

n̄

2
: θ ∈ (0, 2π], φ ∈ (0, π]

}
and consider the effect of the transform from [16] below

Cα(X) = β
[
X +

α

2
(X · e1) ∧ n̄

]
which we shall term the conic transform, upon the elements of S where β is
chosen so that our normalisation constraint Cα(X) · n = −1 still holds:

{Cα(X) : X ∈ S}

≡
{

1
1− α cos θ

(n
2

+ cθe1 + sθcφe2 + sθcφe3

)
− n̄

2
: θ ∈ (0, 2π], φ ∈ (0, π]

}

The elements of this set are no-longer null-vectors (they have extra components
parallel to n) but one may still apply the inverse mapping F−1(·) and extract
a spatial vector (i.e. one with no components parallel to e or ē). It is found
[16, 6] that the spatial vectors extracted thus lie on the surface of a quadric
with a rotational cross-section corresponding to a conic. The form of this conic
cross-section is determined by the parameter α which can be interpreted as the
eccentricity:
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– α = 0 : The set of points lie on the unit sphere.
– 0 < α < 1 : The set of points lie on an ellipsoid formed by rotating an ellipse

in the e12 plane about e1. The origin lies at one of the foci and α is the
eccentricity.

– α = 1 : The set of points lie on a paraboloid specified by the points

{x : 2x · e1 = [(x · e2)2 + (x · e3)2]− 1}.

– α > 1 : The set of points lie on a two-sheeted hyperboloid formed by rotating
an hyperbola in the e12 plane about e1. The origin is once again one of the
foci and the eccentricity is α.

We may therefore form a set of representations for points lying on these conics
by simply applying appropriate translation, dilation and rotation rotors after
the conic transform.

4.1 Properties of the Conic Transform

It can further be shown [6] that the conic transform preserves the outer product
but not the inner (and hence geometric) products. That is to say Cα(X ∧ Y ) =
Cα(X)∧Cα(Y ). It also preserves the ‘special’ vectors n and n̄. From this we can
easily show that Cα(·) does not change the nature of ‘flat’ objects (i.e. planes
and lines transform to other planes and lines) since

Cα (X1 ∧X2 ∧ · · · ∧Xi ∧ n) = Cα(X1) ∧ Cα(X2) ∧ · · · ∧ Cα(Xi) ∧ Cα(n)
= Cα(X1) ∧ Cα(X2) ∧ · · · ∧ Cα(Xi) ∧ n.

It is also easy to verify by direct substitution that the conic transform pre-
serves direction of points from the origin, i.e. that

F−1(Cα(F (aiei))) =
ai

1− αa1
ei

where we have adopted the usual summation convention.

4.2 Intersections

We may now consider how to apply this transform to intersecting conics with
lines. Suppose that we have found a rotor R and value of α such that the set of
points represented by

{RCα(X)R̃ : X ∈ S}

lie on the conic we wish to intersect. Suppose further that we wish to intersect it
with the line represented by the trivector L (as in figure 5a). We shall denote the
points of intersection A and B. Now consider the effect of applying C−1

α (R̃XR)
to each of our objects and points (where X is the appropriate object). The points
on the conic are transformed to the unit sphere. The line, L, is transformed to
C−1

α (R̃LR) (figure 5) which is still a line since the conic transform maps lines to



Applications of Conformal Geometric Algebra 345

Fig. 5. Intersection of line L with (a) conic and (b) transformation back to intersection
with unit sphere

lines. The points of intersection between this new line and our unit sphere may
be found via the usual meet formulation:

A′ ∧B′ = Σ ∨ C−1
α (R̃LR)

where Σ is the multivector representing the unit sphere which may be formed
as

Σ = F (e1) ∧ F (e2) ∧ F (e3) ∧ F (−e1)

or similar.
Finally we consider the transformed pointsA = RCα(A′)R̃ andB = RCα(B′)·

R̃. They must lie upon our original line L sinceA′ andB′ clearly lie on C−1
α (R̃LR)

and
RCα(C−1

α (R̃LR))R̃ = L.

They must also lie upon our conic since A′ and B′ lie on the unit sphere and
the transformation is exactly that which generated our original conic. If they lie
upon our conic and upon L they must therefore be the points of intersection.
We have therefore formulated a method for intersecting lines and conics.

4.3 Reflections

We now consider the reflection of rays from conics. In order to reflect a ray we
wish to find the tangent plane for a conic at the intersection point of the incoming
ray with the conic. Again we make use of the fact that Cα(·) maps planes to
planes and apply C−1

α (R̃XR) to all objects moving the points on the conic to
the unit sphere. We then find the intersection point and tangent plane for the
unit sphere. It can be shown [6] that when transformed back via RCα(·)R̃ the
tangent plane of the sphere maps to the tangent plane for the conic. Reflection
can then be performed by simply reflecting the incoming ray L in this plane, Φ:

L′ = ΦLΦ.
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5 Line Images in a Para-Catadioptric Camera

As an illustration of the power of the techniques described above, let us consider
the simple but useful question of what the image of a straight line in a parabolic
mirror based Single View Point catadioptric (SVP Para-catadioptric) camera is.
This problem has been considered in a number of papers e.g. [10, 27, 3, 4] and is
useful for calibration and scene reconstruction.

The setup in question is illustrated in figure 6. With a parabolic mirror the
SVP constraint requires that all the rays from the mirror imaged by the camera
are parallel to the mirror axis and hence the camera is orthographic. Let us
consider the source of light forming an image at the point xe2 + ye3. As we are
imaging with an orthographic camera, for the setup shown, this ray is in the e1
direction, which is axis of both the camera and the parabolic mirror. The focus
of the parabolic mirror is situated at the origin.

S1 = [e23 + (xe3 − ye2)n]∗

This result is easily established if we consider the form of the dual of a line [17].

L∗ = m̂I3 + [(a ∧ m̂)I3]n

with m̂ = e1 (the ray’s direction), a = xe2 + ye3 (a point on the ray) and I3 =
e123. This form is analogous to writing the line in terms of Plücker coordinates
where 3 of the coordinates give the line’s direction and the other 3 give its
moment about the origin.

We are interested in the reflection of this ray in the mirror. This reflected
ray, S2 is found as described in Section 4.3.

S2 =
1− x2 − y2

2
e145 − xe245 − ye345 (13)

Fig. 6. Para-catadioptric Line Image Formation
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For this ray to be the image ray of a point on a line L they must intersect and
hence

L ∨ S2 = 0 (14)

As stated above, a line, L, with unit direction vector m̂ = m1e1 +m2e2 +m3e3
(such that m̂2 = 1) passing through the point a = a1e1 + a2e2 + a3e3, can be
expressed as

L = [m̂I3 + ((a ∧ m̂)I3)n]∗ (15)

Substituting equations 15 and 13 into 14 and rearranging, the condition ob-
tained is (

x+
a3m1 − a1m3

a2m3 − a3m2

)2

+
(
y +

a1m2 − a2m1

a2m3 − a3m2

)2

−
(

1 +
(
a3m1 − a1m3

a2m3 − a3m2

)2

+
(
a1m2 − a2m1

a2m3 − a3m2

)2
)

= 0 (16)

As others have observed [10], this is a circle (L′ in figure 6). A similar derivation
can be used to establish the image of a sphere in such a camera the only signif-
icant change being that the resulting condition is the product of two separate
circle equations, indicating an ambiguity which can trivially be resolved.

6 Conclusions

In this paper we have developed and discussed a natural, extensible method for
interpolating pose and position in both 3-dimensions and higher. The method
allows for any traditional path interpolation method to be extended to encom-
pass both pose and position whilst retaining its desirable properties. We further
extend this method to deal with dilations. A method of handling conics within
the CGA framework together with algorithms for ray-conic intersections and
reflections was also discussed.

These algorithms could form a useful basis for many applications in computer
graphics and computer vision. For example the use of jointed ellipsoidal models in
marker-less motion capture requires computing the intersection of a ray with an el-
lipsewhichmaybecalculatedusingthemethodabove. Inthecaseofsingleviewpoint
catadioptric cameras [1, 10] the reflection of rays from conics is often used and the
method above may be used to form analytic solutions to a number of problems [6].
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Abstract. This paper first gives a brief overview over some interesting
descriptions of conic sections, showing formulations in the three geome-
tric algebras of Euclidean spaces, projective spaces, and the conformal
model of Euclidean space. Second the conformal model descriptions of
a subset of conic sections are listed in parametrizations specific for the
use in the main part of the paper. In the third main part the meets of
lines and circles, and of spheres and planes are calculated for all cases
of real and virtual intersections. In the discussion special attention is on
the hyperbolic carriers of the virtual intersections.

1 Introduction

Previous Work

D. Hestenes used geometric algebra to give in his textbook New Foundations for
Classical Mechanics [1] a range of descriptions of conic sections. The basic five
ways of construction there are:

– the semi-latus rectum formula
– with polar angles (ellipse)
– two coplanar circles (ellipse)
– two non-coplanar circles (ellipse)
– second order curves depending on three vectors

Animated and interactive online illustrations for all this can be found in [2].
Reference [2] also treats plane conic sections defined via Pascal’s Theorem by
five general points in a plane in

– the geometric algebra of the 2+1 dimensional projective plane
– the conformal geometric algebra of the 2+2 dimensional conformal model of

the Euclidean plane.

This was inspired by Grassmann’s treatment of plane conic sections in terms of
five general points in a plane [3]. In both cases the meet operation is used in an
essential way. The resulting formulas are quadratic in each of the five conformal
points.
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By now it is also widely known that the conformal geometric algebra model
of Euclidean space allows for direct linear product representations [7, 12] of the
following subset of conics: Points, pairs of points, straight lines, circles, planes
and spheres. It is possible to find direct linear product representations with 5
constitutive points for general plane conics by introducing the geometric algebra
of a six dimensional Euclidean vector space [4].

Beyond this the meet [8] operation allows to e.g. generate a circle from the
intersection of two spheres or a sphere and a plane. The meet operation is well
defined no matter whether two spheres truly intersect each other (when the
distance of the centers is less then the sum of the radii but greater than their
difference), but also when they don’t (when the distance of the centers is greater
than the sum of the radii or less than their difference).

The meet of two non-intersecting circles in a plane can be interpreted as a
virtual point pair with a distance that squares to a negative real number [5]. (If
the circles intersect, the square is positive.)

This leads to the following set of questions:

– How does this virtual point pair depend on the locations of the centers?
– What virtual curve is generated if we continuously increase the center to

center distances?
– What is the dependence on the radii of the circles?
– Does the meet of a straight line (a cirle with infinite radius) with a circle

also lead to virtual point pairs and a virtual locus curve (depending on the
distance of straight line and circle)?

– How is the three dimensional situation of the meet of two spheres or a plane
and a sphere related to the two dimensional setting?

All these questions will be dealt with in this paper.

2 Background

2.1 Clifford’s Geometric Algebra

Clifford’s geometric algebra Cl(n − q, q) = Rn−q,q of a real n-dimensional vec-
tor space Rn−q,q can be defined with four geometric product axioms [9] for a
canonical vector basis, which satisfies

1. e2
k = +1 (1 ≤ k ≤ n− q), e2

k = −1 (n− q < k ≤ n).
2. The square of a vector x = xkek (1 ≤ k ≤ n) is given by the reduced

quadratic form
x2 = (xkek)2 =

∑
k

(xk)2e2k,

which supposes ekel + elek = 0, k �= l, 1 ≤ k, l ≤ n.

3. Associativity: (ekel)em = ek(elem), 1 ≤ k, l,m ≤ n.

4. αek = ekα for all scalars α ∈ R.
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A geometric algebra is an example of a graded algebra with a basis of real scalars,
vectors, bivectors, ... , n-vectors (pseudoscalars), i.e. the grades range from k = 0

to k = n. The grade k elements form a
(
n
k

)
dimensional k-vector space. Each k-

vector is in one-to-one correspondence with a k dimensional subspace of Rn−q,q .
A general multivector A of Rn−q,q is a sum of its grade k parts

A =
n∑

k=0

〈A〉k.

The grade zero index is often dropped for brevity: 〈A〉 = 〈A〉0. Negative grade
parts k < 0 or elements with grades k > n do not exist, they are zero. By way of
grade selection a number of practically useful products of multivectors A,B,C
is derived from the geometric product:

1. The scalar product
A ∗B = 〈AB〉. (1)

2. The outer product

A ∧B =
n∑

k,l=0

〈〈A〉k〈B〉l〉k+l. (2)

3. The left contraction

A B =
n∑

k,l=0

〈〈A〉k〈B〉l〉l−k (3)

which can also be defined by

(C ∧A) ∗B = C ∗ (A B) (4)

for all C ∈ Rn−q,q .
4. The right contraction

A B =
n∑

k,l=0

〈〈A〉k〈B〉l〉k−l = (B̃ Ã)̃ (5)

or defined by
A ∗ (B ∧ C) = (A B) ∗ C (6)

for all C ∈ Rn−q,q . The tilde sign Ã indicates the reverse order of all ele-
mentary vector products in every grade component 〈A〉k.

5. Hestenes and Sobczyk’s [8] inner product generalization

〈A〉k · 〈B〉l = 〈〈A〉k〈B〉l〉|k−l| (k �= 0, l �= 0), (7)
〈A〉k · 〈B〉l = 0 (k = 0 or l = 0). (8)
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The scalar and the outer product (already introduced by H. Grassmann) are well
accepted. There is some debate about the use of the left and right contractions
on one hand or Hestenes and Sobczyk’s ”minimal” definition on the other hand
as the preferred generalizations of the inner product of vectors [6]. For many
practical purposes (7) and (8) are completely sufficient. But the exception for
grade zero factors (8) needs always to be taken into consideration when deriving
formulas involving the inner product. Hestenes and Sobczyk’s book [8] shows this
in a number of places. The special consideration for grade zero factors (8) also
becomes necessary in software implementations. Beyond this, (4) and (5) show
how the salar and the outer product already fully imply left and right contrac-
tions. It is therefore infact possible to begin with a Grassmann algebra, introduce
a scalar product for vectors, induce the (left or right) contraction and thereby
define the geometric product, which generates the Clifford geometric algebra. It
is also possible to give direct definitions of the (left or right) contraction [10].

2.2 Conformal Model of Euclidean Space

Euclidean vectors are given in an orthonormal basis {e1, e2, e3} of R3,0 = R3 as

p = p1e1 + p2e2 + p3e3, p2 = p2 . (9)

One-to-one corresponding conformal points in the 3+2 dimensions of R4,1 are
given as

P = p +
1
2
p2n + n̄, P 2 = n2 = n̄2 = 0, P ∗ n̄ = n ∗ n̄ = −1 (10)

with the special conformal points of n infinity, n̄ origin. This is an extension
of the Euclidean space similar to the projective model of Euclidean space. But
in the conformal model extra dimensions are introduced both for origin and
infinity. P 2 = 0 shows that the conformal model first restricts R4, 1 to a four
dimensional null cone (similar to a light cone in special relativity) and second
the normalization condition P ∗ n̄ = −1 further intersects this cone with a
hyperplane.

We define the Minkowski plane pseudoscalar (bivector) as

N = n ∧ n̄, N2 = 1 . (11)

By joining conformal points with the outer product (2) we can generate the
subset of conics mentioned above: pairs of points, straight lines, circles, planes
and spheres [7, 11, 12, 13, 14]. Detailed formulas to be used in the rest of the
paper are given in the following subsections [15].

2.3 Point Pairs

P1 ∧ P2 = p1 ∧ p2 +
1
2
(p2

2p1 − p2
1p2)n− (p2 − p1)n̄ +

1
2
(p2

1 − p2
2)N (12)

= . . . = 2r{p̂ ∧ c +
1
2
[(c2 + r2)p̂− 2c ∗ p̂ c]n + p̂n̄ + c ∗ p̂N} , (13)
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Fig. 1. Pair of intersection points P1, P2 with distance 2r, midpoint C and unit direc-
tion vector p̂ of the connecting line segment

with distance 2r, unit direction of the line segment p̂, and midpoint c (comp.
Fig. 1):

2r = | p1 − p2 |, p̂ =
p1 − p2

2r
, c =

p1 + p2

2
. (14)

For p̂ ∧ c = 0 (p̂ ‖ c) we get

P1 ∧ P2 = 2r{C − 1
2
r2n}p̂N (15)

for p̂ ∗ c = 0 (p̂ ⊥ c) we get

P1 ∧ P2 = −2r{C +
1
2
r2n}p̂ (16)

with conformal midpoint

C = c +
1
2
c2n + n̄ . (17)

2.4 Straight Lines

Using the same definitions the straight line through P1 and P2 is given by

P1 ∧ P2 ∧ n = 2rp̂ ∧ C ∧ n = 2r{p̂ ∧ c n− p̂N} (18)

2.5 Circles

P1 ∧ P2 ∧ P3 = α{c ∧ Ic +
1
2
[(c2 + r2)Ic − 2c(c Ic)]n + Icn̄− (c Ic)N}

= α(C +
1
2
r2n) ∧ {Ic + n(C Ic)} (19)

describes a circle through the three points P1, P2 and P3 with center c, radius
r, and circle plane bivector

Ic =
(p1 − p2) ∧ (p2 − p3)

α
, (20)

where the scalar α > 0 is chosen such that

I2
c = −1 . (21)
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For the inner product we use the left contraction in (19) as discussed in
section 2.1. For c ∧ Ic = 0 (origin n̄ in circle plane) and the conformal center
(17) we get

P1 ∧ P2 ∧ P3 = −α{C − 1
2
r2n}IcN. (22)

2.6 Planes

Using the same α, C and Ic as for the circle

P1 ∧ P2 ∧ P3 ∧ n = α C ∧ Ic ∧ n = α{c ∧ Icn− IcN} (23)

defines a plane through P1, P2, P3 and infinity. For c∧ Ic = 0 (origin n̄ in plane)
we get

P1 ∧ P2 ∧ P3 ∧ n = −αIcN. (24)

2.7 Spheres

P1 ∧ P2 ∧ P3 ∧ P4 = β(C − 1
2
r2n)IN (25)

defines a sphere through P1, P2, P3 and P4 with radius r, conformal center C,
unit volume trivector I = e1e2e3, and scalar

β = (p1 − p2) ∧ (p2 − p3) ∧ (p3 − p4) I−1 . (26)

3 Full Meet of Two Circles in One Plane

The meet of two circles (comp. Fig. 2)

V1 = (C1 −
1
2
r21n)IcN, V2 = (C2 −

1
2
r22n)IcN , (27)

with conformal centers C1, C2, radii r1, r2, in one plane Ic (containing the origin
n̄), and join four-vector J = IcN is1

M = (V1 J−1) V2 (28)

=
1
2
[(c2

1−r21)−(c2
2−r22)]Ic+

1
2
[(c2

2−r22)c1−(c2
1−r21)c2]Icn+(c2−c1)Icn̄+c1∧c2IcN

(29)

= . . . =
d

2r
P1 ∧ P2 (30)

1 The dots (. . .) in (13), (30), (41) and (47) indicate nontrivial intermediate algebraic
calculations whose details are omitted here because of lack of space.

with
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d =| c2 − c1 | , (31)

r2 =
M2

(M ∧ n)2
= d2{r

2
1r

2
2

d4
− 1

4
(1− r21

d2
− r22
d2

)2} (32)

and [like in (14)]
p1 = c + rp̂, p2 = c− rp̂ , (33)

c = c1 +
1
2
(1 +

r21 − r22
d2

)(c2 − c1), p̂ =
c2 − c1

d
Ic . (34)

We further get independent of r2

M ∧ n = dp̂ ∧ C ∧ n , (35)

which is in general a straight line through P1, P2, and in particular for r2 = 0
(M2 = 0, p1 = p2 = c) the tangent line at the intersection point.2 Note that r2

may become negative (depending on r1 and r2, for details compare Fig. 4). The
vector from the first circle center c1 to the middle c of the point pair is

c− c1 =
1
2
(1 +

r21 − r22
d2

)(c2 − c1) , (36)

with (oriented) length

d1 =
1
2
(d+

r21 − r22
d

) (37)

This length d1, half the intersection point pair distance r and the circle radius
r1 are related by

r2 + d2
1 = r21 . (38)

We therefore observe (comp. Fig. 2, 3 and 4) that (38)

– describes for r2 > 0 all points of real intersection (on the circle V1) of the
two circles.

– For r2 < 0 (38) becomes the locus equation of the virtual points of intersec-
tion, i.e. two hyperbola branches that extend symmetrically on both sides of
the circle V1 (assuming e.g. that we move V2 relative to V1).

– The sequence of circle meets of Fig. 3 clearly illustrates, that as e.g. circle
V2 moves from the right side closer to circle V1, also the virtual intersection
points approach along the hyperbola branch (r2 < 0) on the same side of
V1, until the point of outer tangence (d = r1 + r2, r = 0). Then we have real
intersection points (r2 > 0) until inner tangence occurs (d = r2 − r1, r =
0). Reducing d < r2 − r1 even further leads to virtual intersection points,
wandering outwards on the same side hyperbola branch as before until d
becomes infinitely small. Moving C2 over to the other side of C1 repeats the
phenomenon just described on the other branch of the hyperbola (symmetry
to the vertical symmetry axis of the hyperbola through C1).

2 We actually have limr→0 M = d{p̂ + C ∗ p̂ n} ∧ C, which can be interpreted [5] as
the tangent vector of the two tangent circles, located at the point C of tangency.
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– The transverse symmetry axis line of the two hyperbola branches is given
by C1 ∧ C2 ∧ n, i.e. the straight line through the two circle centers.

– The assymptotics are at angles ±π
4 to the symmetry axis.

– The radius r1 is the semitransverse axis segment.

Fig. 2. Two intersecting circles with centers C1, C2, intersecting in points P1, P2 at
distance 2r, with midpoint c and unit direction vector p̂ of the connecting line segment.
Left side: Real intersection (r2 < d < r1 + r2), right side: Virtual intersection (d >
r1 + r2)

Fig. 3. Real and virtual intersection points (33) and vertical carrier line M ∧ n of
(35) for two circles with radii r1 < r2 and centers C1, C2 at central distances d (31).
Top left: d > r1 + r2, r2 < 0. Top center: r2 < d < r2 + r1, r2 > 0. Top right:
r2 − r1 < d < r2, r2 > 0. Bottom left: d + r1 < r2, r2 < 0. Bottom center: smaller d.
Bottom right: similar to bottom left, but C1 on other side of C2
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Fig. 4. Left side: Positive (+) and negative (−) signs of r2 depending on the radii of
the two circles and the circle center distance d. r = 0 (0) on the border lines (shape of
an open U tilted in the r1 = r2 direction), which separate (−) and (+) regions. Right
side: Black dot for case r1 < r2. Eight different values of d are indicated, showing the
tilted U-shaped (0) border lines between the (−) and (+) regions. d1 < r2 − r1 (−),
d2 = r2 − r1 (0), d3 = r1 (+), r2 − r1 < d4 < r2 (+), d5 = r2 (+), r2 < d6 < r1 + r2

(+), d7 = r1 + r2 (0) and d8 > r1 + r2 (−)

4 Full Meet of Circle and Straight Line in One Plane

Now we turn our attention to the meet of a circle with center C1, radius r1 in
plane Ic, I2

c = −1 (including the origin n̄)

V1 = (C1 −
1
2
r21n)IcN , (39)

and a straight line through C2, with direction p̂ and in the same plane Ic,

V2 = p̂ ∧ C2 ∧ n = p̂ ∧ c2n− p̂N . (40)

(For convenience C2 be selected such that d =| c2 − c1 | is the distance of the
circle center C1 from the line V2. See Fig. 5.)

The meet of V1 and V2 is

M = (V1 J−1) V2 = . . . =
−1
2r

P1 ∧ P2 (41)

Fig. 5. Real and virtual intersections of circle and straight line
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with the join J = IcN ,
r2 = M2 = r21 − d2 , (42)

and
p1 = c2 + rp̂, p2 = c2 − rp̂ . (43)

r and p̂ have the same meaning as in (14). Note that r2 < 0 for d > r1.
We observe that

– Equations (38) and (42) are remarkably similar.
– The point pair P1∧P2 is now always on the straight line V2, and has center
C2!

– For r2 > 0 (d < r1)
r2 + d2 = r21 (44)

describes the real intersections of circle and straight line.
– For r2 < 0 (d > r1)

r2 + d2 = r21 (45)

describes the virtual intersections of circle and straight line.
– The general formula M ∧ n = −V2 holds for all values of r, even if r2 =
M2 = 0 (p1 = p2 = c2). In this special case V2 is tangent to the circle.3

– In all other repects, the virtual intersection locus hyperbola has the same
properties (symmetry, transverse symmetry axis, assymptotics and semi-
transverse axis segment) as that of the meet of two circles in one plane.

5 Full Meet of Two Spheres

Let us assume two spheres (see Fig. 6)

V1 = (C1 −
1
2
r21n)IN, V2 = (C2 −

1
2
r22n)IN . (46)

Fig. 6. Real and virtual intersections of two spheres (r1 < r2). Left: d < r2 − r1 < r2,
center: r2 < d < r1 + r2, right: d > r1 + r2

with centers C1, C2, radii r1, r2, and (3+2)–dimensional pseudoscalar join J =
IN . The meet of these two spheres is

3 For the case of tangency we have now limr→0 M = −{p̂+C2 ∗ p̂ n}∧C2, which can
be interpreted [5] as a vector in the line V2 attached to C2, tangent to the circle.
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M = (V1 J−1) V2

=
1
2
[(c2

1−r21)−(c2
2−r22)]I−

1
2
[(c2

2−r22)c1−(c2
1−r21)c2]In+(c1−c2)In̄+c1∧c2IN

= . . . = d(C +
1
2
r2n) ∧ {Ic + n(C Ic)} , (47)

where r and d are defined as for the case of intersecting two circles [r2 =
−M2/(M ∧n)2, note the sign!] We further introduced in (47) the plane bivector

Ic =
(c1 − c2)

d
I (48)

and the vector (see Fig. 6)

c = c1 +
1
2
(1 +

r21 − r22
d2

)(c2 − c1) . (49)

Comparing (19) and (47) we see that M is a conformal circle multivector with
radius r, oriented parallel to Ic in the plane M ∧ n = dC ∧ Ic ∧ n, and with
center C.

Regarding the formula
r2 + d2

1 = r21 (50)

with d1 = |c− c1| it remains to observe that

– equation (50) describes for r2 > 0 (d1 < r1) the real radius r circles of
intersection of two spheres.

– These intersection circles are centered at C = c + 1
2c

2n + n̄ in the plane
M ∧ n perpendicular to the center connecting straight line C1 ∧C2 ∧ n, i.e.
parallel to the bivector of (48).

– For r2 = 0, M ∧ n gives still the (conformal) tangent plane trivector of the
two spheres.4

– We have for r2 < 0 (d1 > r1) virtual circles of intersection forming a hyper-
boloid with two sheets, as shown in Fig. 7.

– The transverse symmetry axis (straight) line of the two sheet hyperboloid is
C1 ∧ C2 ∧ n.

– The discussion of the meet of two circles in section 3 related to Fig. 3 and
Fig. 4 applies also to the case of the meet of two spheres. r2 is now the
squared radius of real and virtual meets (circles instead of point pairs).

– The asymptotic double cone has angle π/4 relative to the transverse sym-
metry axis.

– The sphere radius (e.g. r1) is again the semitransverse axis segment of the
two sheet hyperboloid (assuming e.g. that we move V2 relative to V1).

4 For the case of tangency (r2 = 0) we have now M = d C ∧ {Ic + n(C Ic)}, which
can be interpreted [5] as tangent direction bivector Ic of the two tangent spheres,
located at the point C of tangency.
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Fig. 7. Two sheet hyperboloid of virtual intersections of two spheres

6 Full Meet of Sphere and Plane

Let V1 be a conformal sphere four-vector [as in (46)] and V2 a conformal plane
four-vector [(23) with normalization α = 1]. The analogy to the case of circle
and straight line is now obvious. For the virtual (r2 < 0) intersections we get
the same two sheet hyperboloid as for the case of sphere and sphere, but now
both real and virtual intersection circles are always on the plane V2, as shown
in Fig. 8. The general formula M ∧ n = V2 holds for all values of r, even if
r2 = M2 = 0. In this special case V2 is tangent to the sphere.

Fig. 8. Real and virtual intersections of sphere and plane
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Single 2D Line Drawing�
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Abstract. In this paper, we propose the wireframe representation of
nD object, which is a single 2D line drawing. A wireframe model of an
nD object is composed of a set of edges connecting a set of vertices, a
subset of closed r-chains called boundary r-chains which surround the
(r+1)D pieces of the object, and a set of filling patterns for the boundary
r-chains for 0 < r < n. The wireframe representation is the perspective
projection of the wireframe model of the object from its surrounding
space to the image plane. Combining the projective geometric constraints
of the wireframe representation with the idea of local construction and
deletion, we propose an algorithm for high dimensional object detection
from single 2D line drawing, under the most general assumption that
neither the dimension of the object nor the dimension of the surrounding
space is known, two neighboring faces can be coplanar, and whether or
not the object is a manifold is unknown. Our algorithm outperforms any
other algorithm in 2D face identification in that it generally does not
generate redundant cycles that are not assigned as faces, and can handle
3D solids of over 10,000 faces.

1 Introduction

Representing and perceiving nD object has been a very fascinating problem in
both science and art [14], [11]. If the representation media is a monitor, a typical
technique is called grand tour [2], in which the nD object is projected onto a
moving 2D plane, and by visually perceiving coherence in the contiguous 2D
images, one can get an idea of the actual structure of the nD object. If the
representation media is a piece of paper, then for n = 3 the simplest represen-
tation is a line drawing which is the projection of the wireframe of the object,
like drafting in geometric design and mathematical diagram. To perceive the nD
object one needs to rebuild the nD structure from its 2D projection.

� Supported partially by NKBRSF 2004CB318001 and NSFC 10471143.
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Example 2. nD cubes.
The wireframe of a 1D cube is an edge. The wireframe of a 2D cube is a

square obtained by connecting the corresponding vertices of two copies of a 1D
cube. Recursively, the wireframe of an nD cube is an edge-vertex graph obtained
by connecting the corresponding vertices of two copies of an (n − 1)D cube. In
the graph, every square cycle is the boundary of a 2D cube, and every closed
r-chain composed of 2r + 2 different rD cubes is the boundary of an (r + 1)D
cube. Any boundary r-chain is filled with an (r+1)D flat patch bounded by the
chain. The reconstruction is unique topologically.

Fig. 2. 4D cube. Left: bird view. Right: window view

Example 3. nD spheres.

Fig. 3. nD spheres. Here n = 2, 3, 4

An nD sphere is the boundary of an (n + 1)D ball, so its wireframe can be
induced from that of the (n + 1)D ball. The classical triangulation of the unit
ball provides the following wireframe model: let e1, . . . , en+1 be a basis of Rn+1,
then for any 1 ≤ i < j ≤ n+ 1, the unit circle is drawn on the coordinate plane
of ei, ej . All together there are n(n+ 1)/2 circles connecting 2n+ 2 points ±ek
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for 1 ≤ k ≤ n + 1, and there are 2n + 2 rectilinear edges connecting the center
of the sphere with ±ek. Every triangular cycle is the boundary of a 2D cell,
and every closed r-chain composed of r+ 2 different rD cells is the boundary of
an (r + 1)D cell. Any boundary r-chain is filled with an (r + 1)D flat patch if
it contains any rectilinear edge, or an (r + 1)D spherical patch otherwise. The
(n+1)D ball is composed of 2n+1 cells of dimension (n+1). The reconstruction
from the wireframe is unique topologically.

Example 4. nD spheres, another wireframe model.

Fig. 4. nD spheres. Here n = 2, 3, 4

The following wireframe model of nD sphere is not induced from (n + 1)D
ball. It consists of (n− 1)2n−2 pairs of antipodal points on the sphere and 2n−1

great circles connecting them. The great circles are divided into n layers. The
layers, numbered from 1 to n, are from the outermost of the wireframe to the
innermost. The i-th layer for 1 ≤ i ≤ n, contains Ci−1

n−1 circles; each circle in the
layer contains n− i circles of layer i+ 1 and is contained in i− 1 circles of layer
i− 1. So each circle contacts n− 1 other circles, and all its contacting circles are
in the neighboring layers.

The above model can be interpreted as follows: the image of any 2D sphere
under a parallel projection onto the plane can be represented by a circle circum-
scribing an ellipse at two antipodal points. The circle is the contour of the sphere,
and the ellipse is any great circle on the sphere. So we can make the regulation
that for a pair of great circles on the nD sphere to represent a 2D sphere, it is
necessary and sufficient that their images under a fixed parallel projection are
a closed 1-chain composed of two ellipses in contact at two antipodal points, in
which one ellipse is contained in another. In the wireframe, every closed 1-chain
of this type is the boundary of a 2D sphere, and every closed r-chain composed
of 2r different rD spheres is the boundary of an (r+ 1)D sphere. Any boundary
r-chain is filled with an (r+ 1)D sphere. The reconstruction from the wireframe
is unique topologically.

For over two decades, the wireframe representation of 3D object has been an
active research topic in computer-aided design [1] and [4], computer graphics [3],
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[10], [15] and computer vision [13], [9], [6]. A 2D line drawing is the projection
of a wireframe object where all the edges and vertices are visible, which makes
it possible to reconstruct the complete 3D model. The reconstruction consists of
two steps: face identification and 3D geometry reconstruction. Face identification
is to find those closed cycles which are boundaries of faces of a prescribed filling
pattern. 3D geometry reconstruction is to determine the spatial positions and
orientations of the faces.

In this paper, we study the wireframe representation of nD object from the
projective geometric point of view. In particular, we study the face identification
of a high dimensional wireframe model from its single 2D line drawing, under the
most general assumption that the dimension of the object is unknown, the di-
mension of the surrounding space is unknown, two neighboring faces of the object
can be in the same plane, and whether or not the object is a manifold is unknown.

When n > 3, we have not found any publication on face identification. When
n = 3, most algorithms in the literature consist of two steps: searching for
cycles in the line drawing, and searching for faces from the cycles. In searching
for cycles, a graph-based method is proposed by [12], and further improved by
a depth-first searching algorithm of [7]. If the object is a 2D manifold, i.e.,
the boundary of a 3D solid, the method proposed by [8] is very efficient in
reducing the number of redundant cycles which cannot be assigned as faces. All
these methods are global in that the searching is within the whole wireframe. A
consequence is that the number of cycles potential for being faces is usually much
larger than the number of correct faces. In searching for faces from the cycles,
[12] used an optimization-based method, [7] used a maximal weight clique finding
algorithm, and [8] used an algorithm of backtracking the state-space tree. Since
the searching for faces from the cycles is a NP-complete problem, the fastest
algorithm can only handle wireframe models of less than 30 faces.

In this paper we propose a very efficient algorithm for face identification.
When the dimension of the surrounding space is three, the algorithm outperforms
all other algorithms on face identification in both speed and range of application.
For all the examples in [12], [7], [8], our algorithm can generate all the solutions
for ambiguous wireframe models, and generally do not produce any redundant
cycles that are not assigned as faces. In other words, the step of searching for
faces from the cycles is generally skipped. Moreover, our algorithm can handle
complicated 3D objects of over 10,000 faces.

The idea is to locally construct the (r + 1)D faces and delete useless rD
faces. Starting from a vertex called the origin, we localize the wireframe by
considering only the subgraph of the origin and its neighboring vertices. Within
the local wireframe, we look for rD cycles corresponding to (r+1)D faces based
on topological and geometric consideration. The identified faces can reduce the
searching scope by blocking off some branches. For an rD face, the number
of (r + 1)D faces containing it is sufficient to prevent any more new (r + 1)D
faces from passing through it, then it can be deleted. After the construction and
deletion, we set the origin to be the current local wireframe, and repeat the
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previous localization, construction and deletion procedure. The older origins are
gradually deleted, so that the local wireframe remains a medium size.

In Section 2 we investigate some properties of the wireframe representation.
In Section 3 we propose some techniques for high dimensional face identifica-
tion. In Section 4 we propose an object detection algorithm together with some
experimental results.

2 Wireframes and Line Drawings

We assume that the wireframe representation of an nD object is obtained by a
perspective projection from an mD projective space to a projective plane, where
m ≥ n, such that all the edges and vertices are revealed, and if three vertices
are not collinear in the mD space, nor should their images. Let us see if such
projection exists.

2.1 nD Perspective Projection

The perspective projection from Pn to P2 can be invariantly represented in
Grassmann algebra or Clifford algebra [5]. In Grassmann algebra, the exterior
product of r vectors is called a decomposable r-extensor, or r-blade. The prod-
uct is denoted by juxtaposition of elements. Let Xn−2 be a nonzero (n − 2)-
blade in the Grassmann algebra over the base vector space Rn+1, i.e., Xn−2 =
x1x2 · · ·xn−2 where the x’s are linearly independent vectors. The perspective
projection with center Xn−2 is

x → Xn−2x, for x ∈ Rn+1. (1)

It can also be taken as the composition of n − 2 perspective projections with
centers x1,x2, . . . ,xn−2 respectively.

In coordinate representation, let e1, . . . , en+1 be a basis of Rn+1. We can
always find three vectors ei1 , ei2 , ei3 from the basis such that they form a new
basis with vectors x1,x2, . . . ,xn−2, i.e., the (n + 1) × (n + 1) determinant f =
det(Xn−2ei1ei2ei3) �= 0. Rearrange the indices so that the three vectors in f
have indices 1, 2, 3. Then

e′1 = Xn−2e1/f, e′2 = Xn−2e2/f, e′3 = Xn−2e3/f (2)

is a basis of the projective image plane. Any Xn−2ei for i > 3 can be written as
a linear combination of e′1, e

′
2, e

′
3:

Xn−2ei = det(Xn−2eie2e3)e′1 + det(Xn−2eie3e1)e′2
+ det(Xn−2eie1e2)e′3.

(3)

The coordinate representation of the perspective projection (1) is that for any
x = x1e1 + x2e2 + · · ·xn+1en+1,
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Xn−2x = (x1 det(Xn−2e1e2e3) +
n+1∑
i=4

xi det(Xn−2eie2e3))e′1

+(x2 det(Xn−2e1e2e3) +
n+1∑
i=4

xi det(Xn−2eie3e1))e′2

+(x3 det(Xn−2e1e2e3) +
n+1∑
i=4

xi det(Xn−2eie1e2))e′3.

Given finitely many vertices x1, . . . ,xm which do not lie in the same projec-
tive line, we want to find a perspective center Xn−2 such that (1) every vertex
has an image, (2) no two vertices are projected onto the same image point, (3)
no three non-collinear vertices are projected onto the same image line. It is easily
seen that the above constraints are equivalent to

det(Xn−2xixjxk) �= 0, for any xi,xj ,xk not on the same line. (4)

Almost all (n− 2)-blades satisfy (4).

2.2 Constraints on Wireframe Models

We consider the wireframe models whose fillings are affine flat patches unani-
mously, called rigid wireframe models. The filling has a strong constraint, called
the rD face adjacency constraint [12]: if two rD faces share two (r − 1)D faces
of different (r − 1)D planes, they must belong to the same rD plane.

By a perspective projection, a 2D face is projected onto a patch in the image
plane whose boundary can only go across itself at a vertex. The 2D non-self-
intersection constraint [6] says that (1) if a cycle has two edges intersecting not
at a vertex, then it can not be a 2D face, (2) if two edges intersect not at a
vertex then they cannot be coplanar.

In awireframemodel, it often occurs that three vertices are collinear. Suchaper-
manent collinearity constraint must be provided additionally in its wireframe rep-
resentation. Similarly, any rD permanent coplanarity constraint must be provided
additionally. In thispaperweonly consider the caser = 1.Theedges inapermanent
collinearity constraint form a line. The connected components of a line are the real
parts, while the virtual connections between real parts are the virtual parts [8].

If the enclosed regions of two 2D faces intersect, the faces must be coplanar.
Let there be two 1D cycles sharing exactly two vertices and the vertices are not
connected either by an edge or by a line. If in the image plane, the line segment
between the two vertices intersects both the enclosed regions of the cycles, then the
two cycles must be coplanar to be assigned as faces. This is the 2D non-interior-
intersection constraint [8]. It has no rD generalization, because the interior and the
exterior of an rD face for r > 2 cannot be distinguished in a line drawing.

If an rD face Fr is not in an rD cycle but their intersection is exactly the
constituent (r− 1)D faces of Fr, then Fr is a chord of the cycle [12]. A face with
chord can always be decomposed along its chord into two coplanar faces sharing
one common side. On the other hand, if a cycle with chord is not assigned as a
face, then it can be decomposed into two shorter ones, and by assigning them to
be faces they do not need to be coplanar. To gain more degree of freedom, an rD
cycle with chord is not assigned as a face. This is the rD non-chord constraint.
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2.3 Face Identification

A 0D face is a vertex, a 0D cycle is a pair of vertices of an edge, a 1D face is
an edge. For r > 0, an rD cycle is a set of rD faces such that (1) if two faces
intersect, the intersection belong to their iD faces for 0 ≤ i < r, (2) any (r−1)D
face of one rD face is shared by exactly one other rD face in the set, (3) not all
rD faces belong to the same rD plane.

All edges are 1D faces. For r > 1, the rD face identification is to select a
subset called rD faces, from the (r − 1)D cycles satisfying the constraints in
the previous subsection, and fill them with a prescribed rD pattern. In previous
work on face identification, it is generally assumed that any two neighboring
faces are not coplanar. We feel that this is too strong a constraint to include
many interesting models, so we discard it.

Even when n = 3, face identification is a difficult problem. The number of
cycles of a graph is generally exponential in the number of vertices [8]. Given
that all the cycles satisfying the constraints are found, the number of possible
combinations of potential faces is exponential in the number of the cycles. When
n is unknown, face identification becomes increasingly more difficult. As a result,
the solution is generally not unique.

To design an algorithm for this double-exponential complexity problem, the
goal should be first on the detection of the highest dimension n, second on the
finding of as many different nD pieces as possible, third on the derivation of as
many different solutions in dimension n as possible. To achieve this, the design
guideline is to produce as many rD faces on different rD planes as possible.

2.4 Some Terminology on Wireframe Models

Neighbor: Two rD faces are neighbors if their intersection is (r−1)-dimensional.

Simple cycle: An rD cycle is said to be simple if its rD faces satisfy the rD
non-chord constraint and 2D non-self-intersection constraint.

Rigid cycle and face: An rD cycle is said to be rigid if when its rD faces are
in general position in the surrounding space, the minimal affine space containing
the cycle is (r + 1)-dimensional.

Any 2D rigid cycle is triangular. Any rD rigid simple cycle is the bound-
ary of an (r + 1)D flat patch. A face assigned to a rigid cycle is said to be
rigid.

Elastic cycle and face: An rD cycle is said to be elastic if when its rD faces
are in general position, the minimal affine space containing the cycle is (r + 2)-
dimensional.

Any 2D elastic cycle is square. Any rD rigid simple cycle is generally the
boundary of two (r+1)D flat patches in an (r+2)D affine space. A face assigned
to a elastic cycle is said to be elastic.

Plastic cycle and face: An rD cycle is plastic if it is neither rigid nor elastic.
Its assigned face is said to be plastic.
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Grid: A 1D grid is a line. For r > 1, an rD grid consists of at least two rD
faces. It is obtained from a set C originally containing only one rD face Br by
repeatedly putting into C all the iD faces (0 ≤ i < r) in the same (r−1)D plane
with an (r − 1)D face of C.

Polyface: If two or more rD faces or grids belong to the same rD plane but are
not in the same rD grid, they can merge together to form an rD polyface, which
is a patch of the plane. Whenever a new vertex is joined, the polyface is said to
be a new one.

Contradictory grid and polyface: A grid is said to be contradictory if it
violates the 2D non-self-intersection constraint. A new polyface is said to be
contradictory if it violates either the non-self-intersection constraint or the non-
interior-intersection constraint, or it includes two existing faces not belonging to
the same rD plane.

Degree: The degree of an rD face Fr with respect to a set of (r + 1)D faces is
the number of (r + 1)D faces containing Fr.

Stretch: An rD stretch is either an rD face containing no (r−1)D face of degree
two, or a maximal number of connected rD faces in which any rD face shares at
least one (r − 1)D face of degree two with another rD face. The boundary of an
rD stretch is the (r − 1)D faces included in only one rD face of the stretch. In
[8], a 1D stretch is called an unambiguous path.

Saturation: An rD face Fr is said to be saturated in a wireframe model if it has
an (r − 1)D face Br−1 such that every rD face of the wireframe model passing
through Br−1 is in an (r + 1)D face containing Fr. An rD stretch not lying in
an rD plane is said to be saturated if it is contained in an (r + 1)D face.

Fork: Let Fr be an rD face, grid or polyface of a wireframe model. Let Br−2 be
an (r−2)D face of Fr. If not every (r−1)D face of the wireframe model passing
through Br−2 is in an rD face, grid or polyface having (r−1)D intersection with
Fr, then Br−2 is called an (r − 2)D fork of Fr.

When Fr is an rD grid and Cr−1 is an (r − 1)D face of Fr, if not every rD
face of the wireframe model passing through Cr−1 is in an (r + 1)D face, grid
or polyface having rD intersection with Fr, then Cr−1 is called an (r− 1)D fork
of Fr.

3 Face Identification Techniques

3.1 Deletion

When n = 3, the idea of deleting edges in cycle searching can be found in [8].
There the object is a 3D solid in which any edge occurs in exactly two faces, so
if two faces containing the edge have been found, the edge can be deleted.

In high dimensional cycle searching for a general object, deletion is very
important because it reduces the search scope. An rD stretch can be deleted if
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the deletion does not influence the assignment result of (r+1)D faces, grids and
polyfaces.

Theorem 1. [Deletion Theorem] Let Fr be a saturated rD stretch. In searching
for (r+1)D faces, Fr can be deleted if one of the following conditions is satisfied:

(1) Fr is in an rD plane, but neither in any rD grid or polyface nor in any
(r + 1)D grid or polyface. Through every rD face neighboring Fr there is an
(r + 1)D face which contains Fr and in which there is at most one rD face not
neighboring Fr.

(2) r = 1. After other previous deletions, in the remaining part of any 1D grid
or 2D face, grid or polyface containing F1, the deletion of F1 does not disconnect
any two path-connected fork vertices.

Proof. (1) Let the number of (r − 1)D faces in Fr be k. Let B1, . . . Bp be
all the rD faces neighboring Fr. Since Fr is not in any rD or (r + 1)D grid or
polyface, the B’s and Fr are pairwise not in the same rD plane. Let C1, . . . , Cq

be all the (r + 1)D faces containing Fr. Then each Ci contains exactly k of the
faces B’s, and the C’s are pairwise not in the same (r + 1)D plane. If any new
rD cycle passing through Fr is a face, it has to form a new polyface with one of
the C’s, say Ci. Then the new cycle has to pass through all the neighboring rD
faces of Fr in Ci. As a result, the cycle must have the chord which is the unique
rD face of Ci not neighboring Fr. By the non-chord constraint, the cycle cannot
be assigned as a face.

(2) If F1 is part of a line, since all fork vertices of the line are at the same side
of F1, any new chordless cycle containing part of the line does not passes through
F1. Assume that F1 is not on any line. If any new cycle passing through F1 is
a face, it has to form a new polyface with one of the faces, grids and polyfaces
containing F1. If F1 is deleted, since in the remaining part of any of the above
faces, grids and polyfaces, any two fork vertices are still connected, the deletion
does not influence the forming of the new polyfaces.
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Fig. 5. Deletion and localization

Example 5. In Figure 5(a), three cycles 125a04, 138c94 and 126b73 are already
2D faces. Then 12, 13, 14 are all saturated stretches, and vertex 1 is not a fork of
any face. Edge 12 is contained in two faces, and its deletion does not disconnect
any two forks in either face. So edge 12 can be deleted. Similarly, edges 13, 14
can be deleted. Vertex 1 can also be deleted because it is no longer connected
with any other vertex. The result is Figure 5(b).
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3.2 Localization

Let W be a wireframe model. A local wireframe model of W is a subset of
the vertices of W together with all the rD faces formed by the vertices. A lo-
calization filter, or localization, of W is a sequence of local wireframe models
S1 ⊂ S2 ⊂ . . . ⊂ Sk = W in which each successor introduces more vertices than
its predecessor.

Localization is very important in face identification. With the introduction of
new vertices, all the edges among them and the existing vertices are introduced,
so are all the higher dimensional connections. By introducing new vertices ac-
cording to the closeness of their relations with the existing ones, the complexity
of cycle searching can be reduced. Below are some typical localizations.

The first is the neighbor localization: (1) Start from a vertex and put it in an
empty set C. (2) Put all the neighboring vertices of C into C. (3) Repeat step 2
until all vertices are in C. In neighbor localization, the older elements in C may
be deleted earlier because their contributions to cycle generation are exhausted
earlier.

The second is the family localization: (1) Start from a set C containing only
one vertex, put all the neighboring vertices of C into C. (2) Put the vertices
which are common neighbors of at least two vertices of C into C, and if no such
vertices then use step 2 of the neighbor localization. (3) Repeat step 2 until all
vertices are in C. This localization makes easier the generation of new cycles.

The third is the couple localization: Steps 1 and 3 are the same with those
in the family localization. Step 2 is to put the following vertices into C: each
vertex is a common neighbor of at least two vertices of C, and the vertex forms
a triangular or square simple cycle with some vertices in C. If there is no such
vertex then use step 2 of the family localization.

The fourth is the rigid couple (or family, or neighbor) localization: Steps 1
and 3 are the same with those in the couple (or family, or neighbor) localization.
Step 2 is to put all the vertices collinear with at least two vertices of C into
C, and if there is no such vertex then use step 2 of the couple (or family, or
neighbor) localization.

Example 6. In Figure 5(a) there is neither square nor triangular cycle, nor
collinearity constraint. In the neighbor localization, we have

{1} ⊂ {1, 2, 3, 4} ⊂ {1, 2, 3, 4, 5, 6, 7, 8, 9, 0}
⊂ {1, 2, 3, 4, 5, 6, 7, 8, 9, 0, a, b, c}.

By this step the edges 12, 13, 14 can be deleted, so is the isolated vertex 1. The
next step will be another “wave propagation” starting from the cycle of vertices
26b738c940a5.

3.3 Cycle Searching and Blocking

rD cycles are classified into rigid, elastic and plastic cycles according to their
rigidity. Rigid cycles are always faces, so they should be found first. rD rigid
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cycles can be found by the following algorithm. For every pair of rD faces sharing
one (r − 1)D face:

(1) Let C be a set containing only the pair.
(2) Repeatedly put into C all the rD faces, grids and polyfaces sharing with C
at least two (r − 1)D faces of different (r − 1)D planes.
(3) Search in C for an rD cycle containing the pair.

Elastic cycles are most likely to be faces because they have the next strongest
rigidity. In the above rigid cycle searching algorithm, if the pair of rD faces
is replaced by a triplet of rD faces F1, F2, F3 such that F1, F2 and F2, F3 are
neighbors but F1, F3 are not, the algorithm can also be used to find rD elastic
cycles.

To find a general rD cycle passing through a fixed rD face, the depth-first
searching strategy is necessary. Finding all cycles, or less ambitiously, finding
all simple cycles, is a NP-complete problem. For a wireframe of 3D solid, [8]
proposed to find only those cycles satisfying properties of real faces by the depth-
first-searching-with-properties (DFSP) strategy, i.e, to use constraints to reduce
branches in the searching.

2D non-self-intersection constraint can block some branches permanently.
The blocks are called intersection blocks. 2D non-interior-intersection constraint
can block some branches from including the interior of an existing 2D face. The
blocks are called face blocks. rD non-chord constraint can permanently block
some branches from generating cycles with chords. The blocks are called chord
blocks. To further reduce the number of redundant cycles, the above blocks are
far from being enough.

In [8], the models are 3D solids in which no two neighboring faces are copla-
nar. If a cycle is identified as a face then no other path through two edges of
it can generate a face. This blocking is based on 2D face-adjacency constraint,
and is extremely efficient in reducing the number of branches: among the 11
examples they tested, 3 have no redundant cycles at all, and 7 each have less
than four redundant cycles.

The idea can be readily generalized to rD case by the rD face adjacency
constraint. If an rD branch intersects an rD face, grid or polyface F and the
intersection has rD affine closure, then the branch is blocked by F . The block
is called a face, grid or polyface block. There are two typical cases: (1) the in-
tersection is two (r − 1)D faces of different (r − 1)D planes, (2) the intersection
contains an (r − 1)D face and another face not in the same (r − 1)D plane.

If the blocks of a branch are all face (grid, polyface) blocks of the same (grid,
polyface), then the branch and the (grid, polyface) form an new rD polyface.
If the polyface is not contradictory then it is accepted. This cycle searching
strategy can be named depth-first searching with blocks (DFSB).

Example 7. Vertices 1, 4, 9 and 5, 8, 0 are respectively collinear. Assume that
1364 and 4687 are already identified as faces. Find all faces passing through
edge 90.

First extend 90 to a stretch 4908. Then 41, 47, 85, 87 are blocked by face 4687
according to the 2D non-interior-intersection constraint. At vertex 4, edge 46 is
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Fig. 6. Face blocks

blocked by faces 1364 and 4687; at vertex 8, edge 86 is blocked by face 4687.
So every path through the stretch is blocked by face 4687; the stretch has to be
coplanar with the face. This coplanarity is forbidden by the two different face
blocks over edge 46. The stretch cannot be in any face.

3.4 Combination

Let S1 ⊂ S2 be two local wireframe models, and assume that all (r + 1)D faces
in S1 have been identified. In S2, there are two kinds of new rD cycles: a cycle
containing only one vertex in S2 − S1 is called a singleton of the vertex; a cycle
containing at least two vertices in S2−S1 is called a twin. In face identification,
elastic cycles have priority over plastic cycles, and singletons have priority over
twins. Thus, there are four levels of priority in new cycles which are not rigid.

Assume that all cycles satisfy the constraints in Subsection 2.2. Within the
same level, if multiple cycles are generated, it must be determined if they are
degrading or not. A set of rD cycles is said to be degrading, if when assigning
all of them to be new faces, one cycle in the set forms a new polyface with an
existing face or another cycle in the set. For a set of degrading cycles, a face
assignment with minimal number of new polyfaces is optimal.

The technique combination is to find an optimal face assignment for a level
of degrading cycles. Assume that all new elastic cycles are generated at the same
time, only after their face identification are the plastic cycles generated. Below
we consider only elastic cycles. The plastic ones are similar.

Step 1. Singletons. Let V be the vertices in S2 − S1 each of which has de-
grading rD singleton set. Let there be l elements in V , and let the number of
singletons of vertex i be ki. By choosing one singleton for each vertex, there are
k1k2 · · · kl different combinations. Delete the combinations which are a degrad-
ing set. Among the combinations left, find those leaving the maximal number of
new elastic cycles from forming new polyfaces. Such combinations are optimal.

If there is only one optimal combination, then the singletons in the combina-
tion are assigned as faces. If there are multiple optimal combinations, they must
be saved as nodes in the state-space tree [8]. Starting from each node, the cycle
searching continues, with all singletons in the node assigned as faces.

Step 2. Singletons and twins. The singletons and twins not in the optimal
combination are selected one by one according to the principle that its acceptance
as a face does not produce any contradictory polyface. Among the selected set T ,
find a subset whose assignment as faces produces from T the maximal number
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of (r+ 1)D faces on different (r+ 1)D planes. If there are multiple such subsets
then the state-space tree extends to accept them as new nodes. The cycles not
assigned as faces are redundant.

Example 8. A diagonal is drawn in a cube, which makes the face identification
very difficult to reach dimension three [12]. The family localization produces new
vertex series

1 −→ 2, 3, 4, 5 −→ 6, 7, 8. (5)

Only in the last local model do the cycles appear. The elastic simple singletons are

(6 : 1264, 1364); (7 : 1275, 1273, 1375); (8 : 1284, 1485). (6)

6 4

3 1

7 5
2

8

Fig. 7. Combination

The elastic simple twins are 2637, 2648, 2758. The singleton set of each new
vertex is degrading. There are 12 combinations, among which only the combi-
nation (1364, 1375, 1485) prevents the maximal number of elastic cycles from
forming polyfaces. This number is three, which is exactly what we need to build
the 3D model. No state-space tree is generated.

3.5 Repair and Recovery

The virtual parts of lines usually lead to the generation of plastic cycles. The
repair and recovery technique is to fill each virtual part with a virtual edge, make
face identification in the repaired wireframe, and then recover the original wire-
frame by merging among the faces containing the virtual edges. The technique
is very helpful in simplifying 1D cycle searching and avoiding the generation of
“topologically correct but geometrically impossible” solutions [12].

The time to recover an original line is when the repaired line is to be com-
pletely deleted. First find all faces containing any virtual edge of the line, called
virtual faces. For every virtual edge, its virtual faces on the same side of the
line are merged in pairs, and new cycles are formed by deleting the virtual edge.
There may be multiple combinations, so the state-space tree may be extended.

After the merging there are two possibilities: (1) If there are two faces un-
merged, one on each side of the virtual edge, then they can merge to form a
new cycle. (2) If there is only one face unmerged, then delete it. The newly
formed cycles are accepted as new faces if they are simple and do not produce
contradictory polyfaces.

Example 9. In Figure 8, there is one line 1563 with virtual part 56. Without
repairing, cycles 123685 and 143675 may be identified as faces, against the 2D
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non-interior-intersection constraint. After repairing, the eight triangular cycles
are easily found, which block the generation of any other cycle. In recovery, there
is a unique pattern to recover two faces from the four virtual faces of edge 56.

1

2
3

4

7 8

5

6

1

2
3

4

7 8

5

6

Fig. 8. Repair and recovery

4 Object Detection Algorithm and Practice

Input: (1) a 2D line drawing composed of vertices and edges. A vertex is rep-
resented by 2D coordinates, an edge by two vertices.
(2) A set of lines. A line is represented by a sequence of edges.
(3) A vertex as the origin of localization. The default is any vertex of maximal
degree.

Output: Objects of dimension > 1: faces, grids and polyfaces.

Initialization: (1) Find all pairs of edges and lines intersecting not at a vertex.
(2) Repair lines.

Step 1. Localization:(1) Start from the origin, use rigid family localization
to generate a set of new vertices S. (2) Set r = 1. Set the root node of the
state-space tree to be empty.
Step 2. Cycle searching:
(1) Find all new rD rigid simple cycles.
(2) Find all new rD elastic simple cycles and make (r + 1)D face identifica-
tion. Use the combination technique if necessary. If there are multiple optimal
combinations then put current information of all the dimensions into the cur-
rent node of the state-space tree, generate descendant nodes to save the optimal
combinations.
(3) Find all new rD plastic simple cycles and make (r + 1)D face identification.
(4) In the end of face identification for every level of new cycles, use the Deletion
Theorem to delete rD stretches. If a line with virtual edges is completely deleted,
then recover the real faces of the original wireframe. Delete any rD stretch having
degree-one (r − 1)D face repeatedly.
(5) If S does not contain all the vertices of the line drawing, then set the origin
to be S, and go back to Step 1.
Step 3. Exploring the state-space tree: If the state-space tree is not empty,
find a new node by depth-first searching. Start from the node to make another
interpretation of the line drawing.
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Remark. When Step 2 finishes, a complete interpretation of the line drawing is
obtained, which may not reach the highest dimension. Further exploration of
the state-space tree gives different interpretations. An alternative is to change
the origin, run the algorithm again to generate a new interpretation. In our
experiments, the state-space tree is generally always empty, and changing the
origin is generally the only way to get a different interpretation; if a default
origin is used, then an interpretation reaching the highest dimension is always
obtained without further exploring the state-space tree.

Example 10. In Figure 9(a) there are two lines 1584 and 2673. As a 2D manifold,
it has 16 faces. By the algorithm in [8], 21 redundant cycles are produced and
further selection is needed to figure out the real ones. By our algorithm, 1 grid
(composed of 3 faces) and 18 faces outside the grid are found, besides 4 rigid
faces of dimension three. No redundant cycle is generated.
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Fig. 9. Manifold reconstruction

The results are different because we do not assume that the surrounding
space is 3D and the object is a single solid. The 2D manifold interpretation can
be easily derived from our 3D result once their assumption is provided. Without
the assumption, the triangular cycles 149, 58a, 67b, 230 and the square cycle cdef
are all faces, while the cycles 15a849, 26b730 are not.

Below we show the procedure of 2D face identification in Figure 9(a). The
rigid family localization produces new vertex series:

1 −→ 2, 5, 8, 4, 9, c −→ 6, 7, 3, a, d, 0, f −→ b, e −→ g, h, i, j.

New cycles in the second local wireframe model: rigid cycle 149.
New cycles in the third local wireframe model:

(1) Rigid cycles 58a, 230.
(2) Vertex 6 has one elastic singleton 1256. Grid 12345678 is formed.
(3) Vertex d has one elastic singleton 12cd.
(4) Vertex 0 has one elastic singleton 1290.
(5) Vertex f has one elastic singleton 14cf .
(6) There is one elastic twin 9034.
(7) The deletable stretches are 12, 1c, 02, 03, 09, 19, 49, 1584. The fork vertices on
the grid is 2, 3. No plastic cycle is found. The local wireframe after the deletion
is shown in Figure 9(b).
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New cycles in the fourth local wireframe model:

(1) Rigid cycle 67b.
(2) Vertex b has two elastic singletons: 56ba, ab78.
(3) Vertex c has three elastic singletons: cdfe, 43fe, 23de.
(4) The deletable stretches are 2673, ab, 5a, 8a, 6b, 7b, 34, 56, 78.
No plastic cycle is found. The local wireframe after the deletion is a square cdef .

New cycles in the last local wireframe model:

(1) No elastic singleton.
(2) Five elastic twins: cdhg, cfjg, feij, deih, ijgh.
(3) All edges are deleted.

We have implemented the algorithm in VC++ 6.0, have tested all the ex-
amples in [7], [8], [12], [1], in addition to higher dimensional examples made
by ourselves. They amount to 32 examples of dimension within three and 12
examples of dimension over three.

The most striking example is k copies of Figure 9(a) connected by cubes, see
Figure 10. When k = 100, there are 2496 faces of dimension two, among which
300 are in 100 grids and 2296 are not. They are found within 55 seconds by an
IBM PC of Intel 2.60GHz CPU and 248MB RAM. When k = 401, there are
10021 faces, among which 1203 are in 401 grids and 9219 are not. They take 76
minutes to be found.

Fig. 10. k copies of Figure 9(a) connected by k − 1 cubes

The table in the end of this paper lists some examples we tested and their high
dimensional interpretations. In the table, V,E,L denote the number of vertices,
edges and lines respectively; Fi, Gi, Pi denote the iD faces, grids and polyfaces,
where only the faces not belonging to any grid or polyface are counted.
Figure 11 (1): This is an example for which the algorithm fails to find all 3D
interpretations. because of the two collinearity constraints, the cube on the left
cannot coexist with the column of pentagon top and bottom on the right. Since a
pentagon cycle is plastic and a square cycle is elastic, the current priority regula-
tion disallows the column to be found first. Indeed, in the column interpretation,
at least three square cycles are redundant, while in the cube interpretation, only
one pentagon cycle is redundant.
Figure 11 (13): A left vertex of a cube is dragged to the right. It is no longer
3D geometrically.
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Figure No. V,E,L F2, G2, P2 F3, G3, P3 F4 F5

6 10, 15, 2 6, 0, 0 1, 0, 0
7 8, 13, 0 6, 0, 0 1, 0, 0
8 8, 12, 1 6, 0, 0 1, 0, 0
9 20, 36, 2 18, 1, 0 4, 0, 0

11(1) 15, 25, 2 12, 0, 0 1, 0, 0
11(2) 16, 25, 1 12, 0, 0 2, 0, 0
11(3) 20, 30, 5 10, 0, 1 2, 0, 0
11(4) 16, 24, 1 10, 0, 0 1, 0, 0
11(5) 22, 33, 10 7, 0, 2 0, 1, 0
11(6) 20, 30, 2 10, 0, 0 1, 0, 0
11(7) 23, 37, 3 11, 3, 0 0, 0, 1
11(8) 18, 29, 0 14, 0, 0 2, 0, 0
11(9) 24, 28, 1 2, 0, 0
11(10) 17, 26, 2 11, 0, 0 1, 0, 0
11(11) 48, 72, 0 26, 0, 0 1, 0, 0
11(12) 48, 72, 0 26, 0, 0 1, 0, 0
11(13) 8, 12, 0 4, 0, 0
11(14) 16, 28, 2 10, 1, 2 1, 1, 0
11(15) 26, 39, 2 12, 1, 0 1, 0, 0
11(16) 12, 20, 0 7, 0, 2 0, 0, 1
11(17) 10, 21, 0 18, 0, 0 7, 0, 0 1
11(18) 14, 21, 2 7, 1, 0 1, 0, 0

11(19) 16, 24, 1
{
10, 0, 0
10, 0, 0

1, 0, 0
1, 0, 0

11(20) 9, 15, 2

⎧⎨
⎩

4, 1, 0
3, 0, 1
2, 0, 1

11(21) 8, 16, 0 14, 0, 0 6, 0, 0 1
11(22–24) 8, 24, 0 38, 0, 0 40, 0, 0 25 3

11(25) 16, 32, 0 24, 0 ,0 8, 0, 0 1
11(26) 24, 38, 5 9, 3, 0 1, 0, 0
11(27) 9, 18, 0 15, 0, 0 6, 0, 0 1
11(28) 40, 50, 0 54, 0, 0 14, 0, 0 1
11(29) 42, 68, 2 32, 0, 2 7, 0, 0
11(30) 15, 50, 25 0, 10, 0 0, 1, 0

Figure 11 (19): There are two different interpretations having the same number
of 2D and 3D objects. This is a classical example of ambiguous wireframe [12].
Figure 11 (20): Diagonal 28 intersects side 14 in a cube. This is no longer 3D
geometrically. There are various 2D interpretations, depending on where to start
the localization.
Figure 11 (21): The diagonals in two faces of a cube cross but do not intersect.
This is impossible in 3D, but explicable in 4D.
Figure 11 (22–24): They are wireframes of the same 5D object by different
perspective projections. The interpretations are identical.
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Figure 11 (28): Two copies of a dodecahedron are connected by connecting
their corresponding vertices. The resulting wireframe has a 4D interpretation.
Figure 11 (30): This is the barycentric subdivision of tetrahedron ABCD.

5 Conclusion

This may be the first time that the wireframe representation of nD object is
studied algorithmically. Various properties of the representation are studied from
the projective geometric point of view. For wireframe models with rigid filling
pattern, a very efficient algorithm for face identification is designed and imple-
mented, under the most general assumption.

For high dimensional interpretation of a single 2D curvilinear line drawing
with non-rigid filling pattern, with the aid of virtual vertices and virtual recti-
linear edges in [8], the techniques developed in this paper can be readily applied.
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Abstract. Polyhedral scene analysis studies whether a 2D line drawing
of a 3D polyhedron is realizable in the space, and if so, parameteriz-
ing the space of all possible realizations. For generic 2D data, symbolic
computation with Grassmann-Cayley algebra is necessary. In this paper
we propose a general method, called parametric calotte propagation, to
solve the realization and parameterization problems in polyhedral scene
analysis at the same time. Starting with the fundamental equations of
Sugihara in the form of bivector equations, we can parameterize all the
bivectors by introducing new parameters. The realization conditions are
implied in the scalar equations satisfied by the new parameters, and can
be derived by further analysis of the propagation result. The propaga-
tion procedure generally does not bifurcate, and the result often contains
equations in factored form, thus makes further algebraic manipulation
easier. In application, the method can be used to find linear construction
sequences for non-spherical polyhedra.

Keywords: polyhedral scene analysis, imaging algebra, Grassmann-Cay
ley algebra, constraint satisfaction, projective reconstruction.

1 Introduction

Polyhedral scene analysis is a classical problem in artificial intelligence, robotics
and computer vision. The main topic is to determine whether a 2D line drawing
of a 3D polyhedron is realizable in the space, and if so, give a parameterization
of the space of all possible realizations.

In the computer vision society, the realization problem was first studied by
Mackworth (1973), Huffman (1977) using labeling schemes and reciprocal dia-
grams. Their approach can provide necessary but not sufficient conditions. Sug-
ihara (1982, 1984a, 1984b, 1986) established a necessary and sufficient condition
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on the general realizability, which is the existence of solutions in a linear pro-
gramming problem. Sugihara (1999) further proposed the concept “resolvable
sequences” for polyhedra and proved that they always exist for spherical poly-
hedra, i.e., polyhedra which are homeomorphic to a sphere. This result is used
by Ros and Thomas (2002) to overcome the super-strictness in scene analysis.

In the combinatorial geometry society, the realization problem was studied in
a different approach. Whiteley (1987, 1989, 1991, 1992), Crapo and Ryan (1986),
Crapo (1991), Crapo and Whiteley (1993) studied the realization problem with
structure geometry (Crapo and Whiteley, 1982; White and Whiteley, 1983),
invariant theory (Doubilet et al., 1974; White, 1975) and synthetic geometry
(Bokowski and Sturmfels, 1989; Sturmfels, 1993; Richter-Gebert, 1996). Various
necessary and sufficient conditions are established in terms of either the existence
of compatible cross-sections, or strict self-stresses in frameworks, or Grassmann-
Cayley algebraic or bracket algebraic equalities.

According to Crapo (1991), the polyhedral scene analysis is an example in
which a system of linear equations whose rank controls the critical qualitative
features. The combinatorial pattern determines a sparse matrix pattern that has
both a generic rank, for general independent values of the nonzero entries, and a
geometric rank, for special values for the coordinates of the points and planes in
the scene. While considerable work has been carried out on the generic rank and
the parameterization problem therein, only a few work deals with the geometric
rank, and ever fewer on the parameterization.

In our opinion, the major difference between Sugihara’s linear programming
approach and the invariant approach of Crapo, Whiteley, et al., is that the former
is numerical while the latter is symbolic. For symbolic computation, Grassmann-
Cayley algebra and bracket algebra are a good help. Although the problem itself
is linear, the realization conditions for a polyhedron whose 2D coordinates are
generic, can be very involved, bifurcated, and difficult to obtain. To make this
clear let us raise an example.

Example 1. In the space there is a torus composed of 9 vertices and 9 faces.
Each vertex is in four faces and each face has four vertices. Assume that no three
vertices in a face are collinear, reconstruct the 3D torus from its 2D image.

1

2

3

1’

2’

3’

3’’
1’’

2’’

Fig. 1. Example 1
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This example is taken from Sugihara (1986) as an example in which the
realization conditions are difficult to find. Sugihara (1999) further showed that
the torus does not have any resolvable sequence. His fundamental equations
reflect the incidence relations of all pairs of incident vertices and faces. In this
example, there are 36 fundamental equations in 36 unknowns. To reduce the size
of the system, Crapo (1991) established a set of syzygy equations, which can be
taken as the result of eliminating all the faces from the fundamental equations.
For this example, there are 9 syzygy equations in 9 unknowns. Although the
latter system is linear and sparse, it is still too difficult to solve symbolically.
Following a different approach, we obtain the rank classification of the coefficient
matrix M of the syzygy equations and the associated realization conditions as
follows. It can be seen that the conditions are highly bifurcated.

Let N = {[123], [1′2′3′], [1′′2′′3′′], [11′1′′], [22′2′′], [33′3′′]}, and let

E1 = {12 ∧ 1′2′ ∧ 1′′2′′,13 ∧ 1′3′ ∧ 1′′3′′,23 ∧ 2′3′ ∧ 2′′3′′},
E2 = {11′ ∧ 22′ ∧ 33′,11′′ ∧ 22′′ ∧ 33′′,1′1′′ ∧ 2′2′′ ∧ 3′3′′}.

(1.1)

For any element x ∈ E1 ∪ E2, let x̃ be the unique bracket in N whose three
elements do not occur in x.

1. 4 ≤ rank(M) ≤ 6. The generic rank is 6.
2. rank(M) = 4 if and only if E1 = E2 = {0}.

When rank(M) = 4, the line drawing can be lifted to 9 distinct spatial
planes, i.e., no two faces are coplanar.

3. rank(M) = 5 if and only if either
(1) E1 = {0}, E2 has only one element x equal to zero, and x̃ = 0, or
(2) E2 = {0}, E1 has only one element x equal to zero, and x̃ = 0.
When rank(M) = 5, the line drawing can be lifted to 3 or 5 distinct planes.

4. rank(M) = 6 if and only if there are at most 3 elements in E1 ∪E2 equal to
zero.
When rank(M) = 6, the line drawing can only be lifted to a spatial plane.
The torus is said to be trivial, or unrealizable.

In the literature, there are three strategies that can be used to find the
realization conditions symbolically. The first is Crapo (1991)’s syzygy equations.
When the realization conditions contain only one equality, it can be obtained
from the syzygy equations directly. Two important cases are covered by this
strategy: (1) the truncated pyramid, (3) n-calotte. However, as in Example 1, this
strategy may be difficult to employ for polyhedra whose realization conditions
are bifurcated and contain multiple equalities.

The second strategy is the compatible cross-sections of Whiteley (1991). It
is applicable only to spherical or disk polyhedra (Ros, 2000). The third strategy
is the star-delta reductions of Ros and Thomas (1998). It is applicable only
to spherical polyhedra. By either strategy, the realization conditions can be
represented by Grassmann-Cayley algebraic equalities, but are not invariant due
to the introduction of extraneous objects.
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It remains an open problem to find a general and efficient strategy for the
classification of the geometric ranks and the parameterization of the correspond-
ing solution spaces. Our first attack to this problem is to use some elimination
techniques for polynomial systems to manipulate the fundamental equations.
We write the equations in terms of vectors, bivectors and their brackets for easy
manipulation by vectorial equation solving (Li, 2000). By a suitable choice of an
order for elimination, we can arrive at an algebraic classification. However, bi-
furcation in the procedure of elimination will inevitably occur. For complicated
problems, elimination methods often fail to be efficient.

Our second attack is to use the global parametric propagation technique based
on vectorial equation solving. In some sense, parametric propagation is the re-
verse of elimination. While in elimination the leading unknown is to be elimi-
nated first, in parametric propagation the least leading unknown is labeled as
the “origin”, and new parameters are introduced to solve the unknown next to
the origin. The origin is gradually enlarged by encompassing more and more
solved unknowns, and the solving procedure propagates from the ever-refreshing
origin to its surroundings. The system is ultimately transformed into such a
system that the unknowns become the parameters introduced in every round of
propagation. Compared with elimination, global parametric propagation has the
following advantages: (1) the order of propagation is easy to determine, (2) the
propagation procedure generally does not bifurcate.

The result of global parametric propagation is generally much easier to deal
with than the original one. For further analysis of the result, Cayley factorization
among bracket polynomial equations is required. However, even Cayley factor-
ization for a single bracket polynomial equation remains an open problem. Crapo
(1991) suggested that for bracket polynomials produced in geometric computa-
tion, the geometric background can help finding rational Cayley factorization.
Tay (1994) successfully employed this idea in the rational Cayley factorization
of Calotte equations.

Our third attack is stimulated by this idea of algebraic factorization with
geometric means. The technique local calotte analysis is proposed to replace as
many syzygy equations as possible by an equivalent system of calotte equations
in factored form. It appears that a significant number of factored equations can
be produced in this way.

Our method for polyhedral scene analysis is a combination of global paramet-
ric propagation with local calotte analysis. We have implemented it with Maple
8, and have tested it by 20 examples. Surprising results include the discovery of
linear construction sequences for some non-spherical polyhedra whose resolvable
sequences do not exist. The linear construction sequences have all the properties
of resolvable sequences needed in application.

This paper is organized as follows. In Section 2 Grassmann-Cayley algebra
is briefly introduced. In Section 3 a novel algebraic formulation of polyhedral
scene analysis is introduced. In Section 4 the global parametric propagation by
vectorial equation solving is introduced. Section 5 is on local calotte analysis.
Section 6 contains some further examples.
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2 Grassmann-Cayley Algebra

Grassmann-Cayley algebra is the most general structure in which projective
properties are expressed in a coordinate-free way. The following is a coordinate-
free definition of this algebra.

Let V be an n-dimensional vector space over a field F whose characteristic
is not 2. Then V generates the Grassmann algebra (Λ(V),∨) which is composed
of the Grassmann space Λ(V) and the outer product “∨”. The outer product of
k vectors is called a k-extensor, and k is called the grade. The linear subspace
spanned by all k-flats is called the k-vector space. Its elements are called k-
vectors. The whole space Λ(V) is the direct sum of the k-vector spaces with k
ranging from 0 to n. An element in Λ(V) is called a multivector. The k-graded
part of a multivector x is denoted by 〈x〉k. In application, the outer product is
usually denoted by the juxtaposition of elements.

Let In be a fixed nonzero n-vector in Λ(V). The bracket of a multivector x
with respect to In is defined by

[x] = 〈x〉n/In. (2.1)

The bilinear form (x, y) → [xy] for x, y ∈ Λ(V) is nonsingular, and induces
a linear invertible mapping i from Λ(V) to its dual space Λ(V∗), where V∗ is
the dual space of V. The pullback of the outer product from Λ(V∗) to Λ(V)
through i is called the wedge product, or meet product, in Λ(V), and is denoted
by “∧”. The Grassmann space Λ(V) equipped with the two products is called
the Grassmann-Cayley algebra over V.

The following are representations of some geometric objects and incidence
relations in 2D projective geometry by Grassmann-Cayley algebra.

(1) A point is represented by a nonzero vector, which is unique up to scale.
In this paper, a point is always denoted by a bold-faced integer or character.

(2) A line passing through points 1,2 is represented by 12. Three points
1,2,3 are collinear if and only if their outer product is zero, or equivalently,
[123] = 0.

(3) The intersection of two lines 12,1′2′ is represented by 12 ∧ 1′2′.
(4) Three lines 12,1′2,1′′2′′ are collinear if and only if their wedge product

is zero, i.e., 12 ∧ 1′2′ ∧ 1′′2′′ = 0.

Bracket algebra refers to the ring of brackets. Cayley factorization is the trans-
formation from a bracket polynomial to an expression in Grassmann-Cayley al-
gebra called Cayley expression. It is a crucial step from algebraic characterization
to geometric description. White (1991) developed a general Cayley factorization
algorithm for multilinear bracket polynomials. Li and Wu (2003) developed a set
of Cayley factorization formulas for non-multilinear bracket polynomials based
on Cayley expansion, the inverse of Cayley factorization.
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3 A New Formulation of Polyhedral Scene Analysis

A polyhedral line drawing is either a perspective or a parallel projection of a
polyhedron. A polyhedron can be described by its vertices {V1, . . . , Vm}, faces
{F1, . . . , Fn} and the incidence structure composed of all the incidence pairs
(Vi, Fj). Let n be either a point or a direction in the space. Then by either the
perspective projection centered at the point n, or the parallel projection along
the direction n, the vertices of a polyhedron are projected into an image plane I,
with 2D coordinates (xi, yi) for the image i of vertex Vi. Both n and the image
plane are already given in the space.

Conventional Assumption:
(1) Any face of the polyhedron has at least three non-collinear vertices;
(2) n is not incident to any plane supporting a non-triangular face.

The 3D projective reconstruction, or scene analysis of the polyhedron, is to
recover under the Conventional Assumption the 3D positions of the vertices and
faces from the 2D coordinates so that the incidence structure is preserved.

In 3D projective geometry, the vector space is 4D in which the image plane
is a 3D vector subspace I, and n is a 1D subspace outside I. Let e1, e2, e4 be a
basis of I. When n = (n1, n2, n3) is a space point, let e3 = (n1, n2, n3, 1); when
n is a spatial direction, let e3 = (n1, n2, n3, 0). Then e1, e2, e3, e4 form a basis
of the 4D vector space. The homogeneous coordinates of image i with respect
to the basis e1, e2, e4 are (xi, yi, 1), so the homogeneous coordinates of point Vi

with respect to the basis e1, e2, e3, e4 are (xi, yi, hi, 1), where hi is the unknown
“height”. The homogeneous coordinates of face Fj is (aj , bj ,−1, cj). Now point
Vi is in face Fj if and only if

ajxi + bjyi + cj = hi. (3.2)

When (i, j) ranges over all incidence pairs, we obtain a set of linear homogeneous
equations in the unknowns a, b, c, h’s, called Sugihara’s fundamental equations.

Let
Bj = aje2e4 − bje1e4 + cje1e2. (3.3)

Then Bj is a bivector in the Grassmann space generated by I, called the inho-
mogeneous coordinates of face Fj . Now (3.2) can be written as an equality in the
Grassmann-Cayley algebra generated by I:

hi = [iBj ]. (3.4)

For any 4-tuple of vertices V1, V2, V3, V4 in face Fj , their 2D coordinates satisfy
the GP syzygy:

[1Bj ][234]− [2Bj ][134] + [3Bj ][124]− [4Bj ][123] = 0. (3.5)

When j ranges over all faces with more than three vertices, and the 4-tuples
of vertices range over all vertices in the same face, we obtain a set of linear
equations of the h’s by substituting (3.4) into (3.5):
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h1[234]− h2[134] + h3[124]− h4[123] = 0. (3.6)

They are called Crapo’s syzygy equations.

Theorem 1. Under the Conventional Assumption, the fundamental equations
and the syzygy equations have the same solutions for the h’s.

In practice, the following stronger assumption covers all the interesting cases
in scene analysis. Henceforth, it will be adopted throughout this paper.

Practical Assumption:
(1) No three neighboring vertices in a face are collinear;
(2) n is not incident to any plane supporting a non-triangular face.

Although the syzygy equations have much less unknowns than the funda-
mental equations, they are often difficult to solve. In this paper, we split the
fundamental equations into two systems. The first system is that the height of
a vertex Vi computed from any incident face F1, . . . , Fk is the same:

[iB1] = [iB2] = · · · = [iBk], for any 1 ≤ j ≤ k. (3.7)

It is called the B-system, or bivector system. The second system is that one face
F1 is sufficient to characterize the height of vertex Vi:

hi = [iB1]. (3.8)

It is called the h-system, or height system. The h-system is obviously trivial. The
B-system is much easier to solve than both the fundamental equations and the
syzygy equations.

4 Vectorial Equation Solving and Parametric
Propagation

In this paper, by a vectorial equation we mean a Grassmann-Cayley algebraic or
bracket algebraic equality in which the leading variable is either a vector or a
bivector (2-vector). To solve a set of vectorial equations with the same leading
variable is to find all solutions and their existence conditions.

The bivector system is a set of linear bracket equations with bivector un-
knowns in 3D vector space. The idea global parametric propagation is to con-
struct the solutions parametrically. New parameters are introduced every time
the number of equations is not sufficient in the construction. The parameters
may be either free or constrained, and the constraints may not be obtained un-
til all the unknowns are constructed. The goal is to transform the system into
one in which the unknowns are the new parameters, and which is usually much
easier to solve. The propagation is realized by solving the system parametrically
following a dynamically changing order of the bivector unknowns.

Below is a list of equations with single unknown bivectors and their solutions.
In the list, the V’s are vectors, the B’s are bivectors, the μ’s are scalars, and
the ω’s are new parameters.
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Type B.1. ⎧⎪⎪⎨
⎪⎪⎩

[V1B] = μ1

[V2B] = μ2

[V3B] = μ3

V1V2 �= 0

(4.1)

Solution: either{
[V1V2V3] �= 0,
[V1V2V3]B = μ1V2V3 − μ2V1V3 + μ3V1V2;

or ⎧⎪⎪⎨
⎪⎪⎩

[V1V2V3] = 0,
μ1V2V3 − μ2V1V3 + μ3V1V2 = 0,
[V1B] = μ1,
[V2B] = μ2.

In particular, if μi = [ViB′] for i = 1, 2, 3, then either (1) [V1V2V3] �= 0
and B = B′, or (2) [V1V2V3] = 0 and B = B′ + ωV1V2.

Type B.2. For m ≥ 4, ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[V1B] = μ1

[V2B] = μ2

· · · · · · · · ·
[VkB] = μm

V1V2 �= 0

(4.2)

Solution: either⎧⎨
⎩

[V1V2Vk] �= 0 for some 3 ≤ k ≤ m,
[V1V2Vk]B = μ1V2Vk − μ2V1Vk + μkV1V2,
μ1[V2VkVl]− μ2[V1VkVl] + μk[V1V2Vl]− μl[V1V2Vk] = 0, ∀l �= 1, 2, k;

or ⎧⎪⎪⎨
⎪⎪⎩

[V1V2Vk] = 0, for any 3 ≤ k ≤ m,
μ1V2Vk − μ2V1Vk + μkV1V2 = 0, for any 3 ≤ k ≤ m,
[V1B] = μ1,
[V2B] = μ2.

Type B.3. ⎧⎨
⎩

[V1B] = [V1B′]
[V2B] = [V2B′]
V1V2 �= 0

(4.3)

Solution: B = B′ + ωV1V2.

As an example, we solve the bivector system in Example 1. Let i, j, k be an
even permutation of 1, 2, 3. The face with vertices Vi, Vj , Vi′ , Vj′ is denoted by
Fk′′ , with coordinates Bk′′ . Similarly, the face with vertices Vi, Vj , Vi′′ , Vj′′ is
denoted by Fk′ , and the face with vertices Vi′ , Vj′ , Vi′′ , Vj′′ is denoted by Fk.
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Fig. 2. Example 1 continued

The bivector system is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1B2′ ] = [1B2′′ ] = [1B3′ ] = [1B3′′ ]
[2B1′ ] = [2B1′′ ] = [2B3′ ] = [2B3′′ ]
[3B2′ ] = [3B2′′ ] = [3B1′ ] = [3B1′′ ]
[1′B2] = [1′B2′′ ] = [1′B3] = [1′B3′′ ]
[2′B1] = [2′B1′′ ] = [2′B3] = [2′B3′′ ]
[3′B1] = [3′B1′′ ] = [3′B2] = [3′B2′′ ]
[1′′B2] = [1′′B2′ ] = [1′′B3] = [1′′B3′ ]
[2′′B1] = [2′′B1′ ] = [2′′B3] = [2′′B3′ ]
[3′′B1] = [3′′B1′ ] = [3′′B2] = [3′′B2′ ]

(4.4)

Choose B3′′ as the origin by setting B3′′ = 0. The following are different
rounds of propagation.

Round 1: Propagation towards B3.

[1′B3] = 0, [2′B3] = 0 B.3−→ B3 = ω1′2′1′2′.

Round 2: Propagation towards B3′ .

[1B3′ ] = 0, [2B3′ ] = 0, [1′′B3′ ] = ω1′2′ [1′2′1′′], [2′′B3′ ] = ω1′2′ [1′2′2′′]

B.2−→
{

[121′′]B3′ = ω1′2′ [1′2′1′′]12,
ω1′2′12 ∧ 1′2′ ∧ 1′′2′′ = 0.

Round 3: Propagation towards B1′′ .

[2B1′′ ] = 0, [2′B1′′ ] = 0 B.3−→ B1′′ = ω22′22′.

Round 4: Propagation towards B2′′ .

[1B2′′ ] = 0, [1′B2′′ ] = 0, [3B2′′ ] = −ω22′ [232′], [3′B2′′ ] = ω22′ [22′3′]

B.2−→
{

[131′]B2′′ = ω22′ [232′]11′,
ω22′11′ ∧ 22′ ∧ 33′ = 0.



392 H. Li, L. Zhao, and Y. Chen

Round 5: Propagation towards B1.

[3′B1] = ω22′ [22′3′], [2′′B1] = ω1′2′ [1′2′2′′], [2′B1] = 0
B.1−→ [2′3′2′′]B1 = ω1′2′ [1′2′2′′]2′3′ − ω22′ [22′3′]2′2′′.

Round 6: Propagation towards B2.

[3′B2] = ω22′ [22′3′], [1′′B2] = ω1′2′ [1′2′1′′], [1′B2] = 0,

[2′3′2′′][3′′B2] = ω1′2′ [1′2′2′′][2′3′3′′]− ω22′ [22′3′][2′2′′3′′]

B.2−→
{

[1′3′1′′]B2 = ω1′2′ [1′2′1′′]1′3′ − ω22′ [22′3′]1′1′′,
(1′1′′ ∧ 2′2′′ ∧ 3′3′′)(ω1′2′ [1′2′3′]− ω22′ [22′3′]) = 0.

Round 7: Propagation towards B1′ .

[3B1′ ] = −ω22′ [232′], [2′′B1′ ] = ω1′2′ [1′2′2′′], [2B1′ ] = 0,

[2′3′2′′][3′′B1′ ] = ω1′2′ [1′2′2′′][2′3′3′′]− ω22′ [22′3′][2′2′′3′′]

B.2−→
{

[232′′]B1′ = ω22′ [232′]22′′ + ω1′2′ [1′2′2′′]23,
(23 ∧ 2′3′ ∧ 2′′3′′)(ω1′2′ [1′2′2′′]− ω22′ [22′2′′]) = 0.

Round 8: Propagation towards B2′ .

[3B2′ ] = −ω22′ [232′], [1′′B2′ ] = ω1′2′ [1′2′1′′], [1B2′ ] = 0,

[2′3′2′′][3′′B2′ ] = ω1′2′ [1′2′2′′][2′3′3′′]− ω22′ [22′3′][2′2′′3′′]

B.2−→

⎧⎪⎨
⎪⎩

[131′′]B2′ = ω1′2′ [1′2′1′′]13 + ω22′ [232′]11′′,

ω22′([11′′3′′][232′][2′3′2′′] + [131′′][22′3′][2′2′′3′′])
= ω1′2′([131′′][1′2′2′′][2′3′3′′]− [133′′][1′2′1′′][2′3′2′′]).

Solution: With new parameters ω1′2′ , ω22′ and by setting B3′′ = 0, (4.4) is
changed into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B3′′ = 0,
B3 = ω1′2′1′2′,
[121′′]B3′ = ω1′2′ [1′2′1′′]12,
B1′′ = ω22′22′,
[131′]B2′′ = ω22′ [232′]11′,
[2′3′2′′]B1 = ω1′2′ [1′2′2′′]2′3′ − ω22′ [22′3′]2′2′′,
[1′3′1′′]B2 = ω1′2′ [1′2′1′′]1′3′ − ω22′ [22′3′]1′1′′,
[232′′]B1′ = ω1′2′ [1′2′2′′]23 + ω22′ [232′]22′′,
[131′′]B2′ = ω1′2′ [1′2′1′′]13 + ω22′ [232′]11′′,

(4.5)

together with⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ω22′11′ ∧ 22′ ∧ 33′ = 0,
ω1′2′12 ∧ 1′2′ ∧ 1′′2′′ = 0,
(ω1′2′ [1′2′3′]− ω22′ [22′3′])1′1′′ ∧ 2′2′′ ∧ 3′3′′ = 0,
(ω1′2′ [1′2′2′′]− ω22′ [22′2′′]) 23 ∧ 2′3′ ∧ 2′′3′′ = 0,

ω22′([11′′3′′][232′][2′3′2′′] + [131′′][22′3′][2′2′′3′′])
= ω1′2′([131′′][1′2′2′′][2′3′3′′]− [133′′][1′2′1′′][2′3′2′′]).

(4.6)
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It is clear that the order of bivectors in the propagation is very important.
In this example, the propagation sequence is B3′′ = 0

ω1′2′−→ B3
B.2−→ B3′

ω22′−→
B1′′

B.2−→ B2′′
B.1−→ B1

B.2−→ B2, B1′ , B2′ .
In our implementation, the origin can be set to be any face, and the order of

bivectors is determined by the construction difficulty of the faces they represent.
First, the construction level of a vertex is the minimum of all the construction
levels of the faces incident to it. Second, the construction level of a face equals
one plus the maximum of all the construction levels of the vertices used in
constructing the face. The origin of construction is of level zero. Third, the
construction difficulty of a face is the sum of the construction levels of the vertices
used in constructing the face. In the above example:

Round 1. The origin F3′′ has four neighboring faces each sharing one edge with
it. They all have zero construction difficulty. The propagation is towards F3.

Round 2. Only face F3′ has more than two constructed vertices. It is then
constructed.

Round 3–4. The six remaining faces each have two constructed vertices. Only
faces F1′′ , F2′′ each have zero construction difficulty.

Round 5–8. Faces F1, F2, F1′ , F2′ have the same construction difficulty.

5 Local Calotte Analysis

Consider the last equation in (4.6). Is it factorable? The answer is no if only
this single equation is considered, and yes if the other four equations are taken
into account. In fact, the last equation can be replaced by any of the following
factored equations:{

(ω1′2′ [131′][1′2′1′′]− ω22′ [11′1′′][232′])13 ∧ 1′3′ ∧ 1′′3′′ = 0,
(ω1′2′ [11′3′][1′2′1′′]− ω22′ [11′1′′][22′3′])13 ∧ 1′3′ ∧ 1′′3′′ = 0. (5.1)

On one hand, (5.1) is much better for further algebraic manipulation. On the
other hand, it is too difficult to obtain algebraically from the equations in (4.6).
In this section, we propose a geometric method to realize the factorization. The
method is based on the geometric concept “calotte” originally proposed by Crapo
(1991). The following is a generalization of this concept.

Definition 1. An (n,m)-calotte in the space, where 3 ≤ m ≤ n, is composed
of two sequences of vertices An = P1 . . . Pn and Bm = Q1 . . . Qm such that (1)
the intersection of the two sets of vertices is empty, (2) the P ’s are pairwise
distinct, (3) PiPj is an edge for i < j if and only if |i − j| = 1 mod n, (3) for
any edge PiPi+1, there is a unique pair of vertices Qli and Qli+1 such that if
Qli �= Qli+1 then they are coplanar with PiPi+1. The face containing the four
vertices is called a circumface of the calotte.

A calotte is said to be regular if the P ’s are the vertices of a face. An (n, n)-
calotte is said to be symmetric, called an n-calotte.
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Fig. 3. A 5-calotte and a (6,3)-calotte

Theorem 2. For calotte (P1 . . . Pn, Q1 . . . Qm), let the homogeneous coordi-
nates of vertices Pi, Qj be (i, hi), (j′, hj′) respectively. For 1 ≤ i ≤ m, let Bi

be the inhomogeneous coordinates of circumface Pki
Pki+1Q(i+1)Qi, and let

Ci = ki(ki + 1),
gi = −hki

[i′(i + 1)′(ki + 1)] + hki+1[i′(i + 1)′ki],
(5.2)

Assume that the P ’s and m−1 circumfaces have been constructed. Then the last
circumface exists if and only if the following calotte equation in h1′ has solution:

c h1′ =
m∑

i=1

gi

i−1∏
j=1

[j′Cj ]
m∏

l=i+1

[(l + 1)′Cl], (5.3)

where
c = −[1′C1][2′C2] · · · [(m− 1)′Cm−1][m′Cm]

+[2′C1][3′C2] · · · [m′Cm−1][1′Cm] (5.4)

is the Crapo binomial of the calotte.
If the calotte is regular, let B0 be the inhomogeneous coordinates of the face

of the P ’s, then the calotte equation can be written as (Bi − B0)c = 0, or
equivalently, (Bi+1 −Bi)c = 0 for some 1 ≤ i ≤ m.

For 3-calotte, the calotte equation is (B2 −B1)11′ ∧ 22′ ∧ 33′ = 0.

In vectorial equation-solving, the equation set of type B.2 (4.2) is most often
encountered. The solution is composed of the explicit expression of the unknown
bivector, together with m−3 syzygy equations which are usually not factorizable.
The above theorem can be used to replace the syzygy equations with calotte
equations, and even in factored form in some cases. The task is then to search
for the suitable calottes locally. This procedure is called local calotte analysis.
We show this with Example 1.

During Rounds 2, 4, 6, 7 of the parametric propagation, the calotte equations
of calottes (V1V1′V1′′ , V2V2′V2′′), (V1V2V3, V1′V2′V3′), (V1′V2′V3′ , V1′′V2′′V3′′),
(V2V2′V2′′ , V3V3′V3′′) occur. In Round 8, both calottes (V1V1′V1′′ , V3V3′V3′′)
and (V1V2V3, V1′′V2′′V3′′) occur. The equation of either calotte can be used to
replace the last equation in (4.6). For calotte (V1V1′V1′′ , V3V3′V3′′), the calotte
equation is



Polyhedral Scene Analysis Combining Parametric Propagation 395

(ω1′2′ [131′][1′2′1′′]1′3′ − ω22′ [131′][22′3′]1′1′′ − ω22′ [1′3′1′′][232′]11′)
13 ∧ 1′3′ ∧ 1′′3′′ = 0. (5.5)

It has two equivalent scalar forms (5.1).

6 Further Analysis of the Propagation Result

The technique combining global parametric propagation with local calotte anal-
ysis is called parametric calotte propagation. Its result is a set of explicit expres-
sions of the bivectors and a system of linear homogeneous equations satisfied by
the new parameters. After eliminating the new parameters, we obtain a variety
of systems of bracket polynomials formed by the 2D coordinates of vertices. Fur-
ther analysis of the propagation result includes (1) solving the system of new
parameters, (2) solving the systems of bracket polynomials, (3) explaining the
results geometrically. In general, the last step needs Cayley factorization.

As an example, let us analyze the result of Example 1. (5.5) has a scalar
factor and a bivector factor, denoted by A, which is a multiple of 1′3′. A can
be replaced by [AV] for any vector V as long as [AV] �= 0. Here V can be any
of 1,3,1′′,3′′. Vectors 1,1′′ each change A into a bracket binomial, which are
given in (5.1); vectors 3,3′′ each change A into a 3-termed bracket polynomial.
If necessary, A can be replaced by either of its two shortest scalar forms.

The parametric system P composed of (4.6) with the last equation replaced
by (5.5) is a set of linear equations in factored form. Below we discuss all the
branches of the solutions of ω1′2′ , ω22′ .
Case 1. If ω1′2′ = ω22′ = 0, then P is trivially satisfied. Since all the B’s are
zero, the corresponding 3D realization is trivial in that all faces are coplanar.
Case 2. If ω1′2′ = 0 �= ω22′ , then B3 = B3′ = B3′′ , i.e., faces F3, F3′ , F3′′ are
coplanar. System P becomes⎧⎪⎪⎨

⎪⎪⎩
11′ ∧ 22′ ∧ 33′ = 0,
1′1′′ ∧ 2′2′′ ∧ 3′3′′ = 0,
[22′2′′]23 ∧ 2′3′ ∧ 2′′3′′ = 0,
([131′][22′3′]1′1′′ + [1′3′1′′][232′]11′)13 ∧ 1′3′ ∧ 1′′3′′ = 0.

(6.6)

The bivector factor A can be replaced by [11′1′′], if either 1 or 1′′ is used to
change it to a scalar factor.

Case 2.1. If both 13∧ 1′3′ ∧ 1′′3′′ = 0 and 23∧ 2′3′ ∧ 2′′3′′ = 0, then by the
following lemma, the six tuples

(12,1′2′,1′′2′′), (13,1′3′,1′′3′′), (23,2′3′,2′′3′′),
(11′,22′,33′), (11′′,22′′,33′′), (1′1′′,2′2′′,3′3′′) (6.7)

are all concurrent lines. The corresponding configuration is called the triple De-
sargues configuration. By Desargues Theorem, the six intersections A,B,C,A′,
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B′,C′ of the six tuples lie on two lines, with each line passing through three in-
tersections. According to (4.5), The line drawing can be lifted to a spatial torus
supported by 7 distinct planes.

A

C

B

1
2

3

1’

2’
3’1’’

2’’

3’’

B’

A’

C’

Fig. 4. Triple Desargues configuration

Lemma 1. If ⎧⎪⎪⎨
⎪⎪⎩

12 ∧ 1′2′ ∧ 1′′2′′ = 0
23 ∧ 2′3′ ∧ 2′′3′′ = 0
11′ ∧ 22′ ∧ 33′ = 0
1′1′′ ∧ 2′2′′ ∧ 3′3′′ = 0

(6.8)

then
13 ∧ 1′3′ ∧ 1′′3′′ = 0, 11′′ ∧ 22′′ ∧ 33′′ = 0. (6.9)

If ⎧⎪⎪⎨
⎪⎪⎩

12 ∧ 1′2′ ∧ 1′′2′′ = 0
13 ∧ 1′3′ ∧ 1′′3′′ = 0
23 ∧ 2′3′ ∧ 2′′3′′ = 0
11′′ ∧ 22′′ ∧ 33′′ = 0

(6.10)

then under the condition [1′2′3′] �= 0,

11′ ∧ 22′ ∧ 33′ = 0, 1′1′′ ∧ 2′2′′ ∧ 3′3′′ = 0. (6.11)

Case 2.2. If [11′1′′] = [22′2′′] = 0, then 3,3′,3′′ must be collinear. Lines
11′1′′,22′2′′,33′3′′ concur. By (4.5), the lift lies in 3 planes, because

B1 = B1′ = B1′′ = 22′, B2 = B2′ = B2′′ =
[232′]
[131′]

11′. (6.12)

Case 2.3. If [11′1′′] = 0 �= [22′2′′], then 3,3′,3′′ are not collinear. For two
nondegenerate triangles 22′2′′,33′3′′, since lines 23,2′3′,2′′3′′ concur, by De-
sargues Theorem, the three distinct intersections 22′∩33′,22′′∩33′′,2′2′′∩3′3′′
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are not collinear, i.e., 11′′ ∧ 22′′ ∧ 33′′ = 0. By (4.5), B2 = B2′ = B2′′ . The lift
lies in 5 distinct planes.

Case 2.4. If [11′1′′] �= 0 = [22′2′′], the case is similar to Case 2.3.
Case 3. If ω22′ = 0 �= ω1′2′ , then B1′′ = B2′′ = B3′′ . The system P becomes⎧⎪⎪⎨

⎪⎪⎩
12 ∧ 1′2′ ∧ 1′′2′′ = 0,
[1′2′3′](1′1′′ ∧ 2′2′′ ∧ 3′3′′) = 0,
23 ∧ 2′3′ ∧ 2′′3′′ = 0,
13 ∧ 1′3′ ∧ 1′′3′′ = 0.

(6.13)

Case 3.2. If [1′2′3′] = 0, then B1 = B2 = B3. Furthermore, B1′ = B2′ =
B3′ = 0 if and only if [123] = 0.

Case 3.1. If 1′1′′ ∧ 2′2′′ ∧ 3′3′′ = 0, then when [123] �= 0, by Lemma 1, the
corresponding configuration is the triple Desargues configuration; when [123] =
0, B1′ = B2′ = B3′ = 0. Furthermore, B1 = B2 = B3 if and only if [1′2′3′] = 0.
Case 4. Suppose that ω1′2′ , ω22′ are both nonzero. We prove that at most one
of the three equalities holds:

ω1′2′ [131′][1′2′1′′]1′3′ − ω22′([131′][22′3′]1′1′′ + [1′3′1′′][232′]11′) = 0 (6.14)
ω1′2′ [1′2′2′′]− ω22′ [22′2′′] = 0 (6.15)
ω1′2′ [1′2′3′]− ω22′ [22′3′] = 0 (6.16)

If (6.15) and (6.16) hold, then

[1′2′3′][22′2′′]− [1′2′2′′][22′3′] = [21′2′][2′3′2′′] = 0,

which violates the Practical Assumption. If (6.14) and (6.16) hold, then by sub-
stituting (6.16) into the second of the following two shortest scalar forms of
(6.14),

ω1′2′ [131′][1′2′1′′]− ω22′ [11′1′′][232′] = 0,
ω1′2′ [11′3′][1′2′1′′]− ω22′ [11′1′′][22′3′] = 0,

we get
[11′3′][1′2′1′′]− [11′1′′][1′2′3′] = [11′2′][1′3′1′′] = 0,

which violates the Practical Assumption. Similarly, (6.14) and (6.15) cannot hold
at the same time.

By Lemma 1, if system P is not the triple Desargues configuration, then it
must be ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

11′ ∧ 22′ ∧ 33′ = 0,
12 ∧ 1′2′ ∧ 1′′2′′ = 0,
23 ∧ 2′3′ ∧ 2′′3′′ = 0,
13 ∧ 1′3′ ∧ 1′′3′′ = 0,
[1′′2′′3′′] = 0,
ω1′2′ [1′2′3′] = ω22′ [22′3′].

(6.17)

By (4.5), B1 = B2 = B3. The case is similar to Cases 2.2 and 2.3.
From the above analysis, we obtain the rank classification of the syzygy

equations of Example 1 presented in Section 1.
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7 Linear Construction Sequence

In Sugihara (1999), a resolvable sequence of a polyhedron is defined to be a
permutation of all its vertices and faces such that (1) when a vertex occurs, it is
incident to at most three previous faces; (2) when a face occurs, it is incident to at
most three previous vertices; (3) when two faces share three or more vertices, they
appear earlier than the third of the common vertices; (4) when two vertices are
incident to three or more faces, they appear earlier than the third of the common
faces. Sugihara proved that all spherical polyhedra have resolvable sequences.
Ros and Thomas (2002) used such sequences to parameterize the 2D coordinates
of the vertices in a correct line drawing, which in turn enables them to choose
a subset of numerical data that is non redundant and that is still enough to
specify the polyhedron unambiguously.

In our viewpoint, a resolvable sequence is nothing but a linear construction
sequence in which the constructions are among the given incidence relations. In
a general linear construction sequence, the constructions are not restricted to
the given incidence relations, but also include some derived incidence relations.
All the properties of resolvable sequences needed in application are occupied by
linear construction sequences.

Theorem 3. In Example 1, under the assumption that (1) no three neigh-
boring vertices in a face are collinear, (2) no two faces sharing a common
edge are coplanar, the torus has multiple linear construction sequences. Let
2,3,1′,2′,3′,1′′,2′′ be free points in the plane, let B3′′ be a free bivector in the
plane and let ω1′2′ , ω22′ be free parameters, then the following is a sequence of
linear constructions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 = 2(1′2′ ∧ 1′′2′′) ∧ 1′(22′ ∧ 33′),
3′′ = (23 ∧ 2′3′)2′′ ∧ (1′1′′ ∧ 2′2′′)3′,
B3 = B3′′ + ω1′2′1′2′,
B3′ = B3′′ + ω1′2′([1′2′1′′]/[121′′])12,
B1′′ = B3′′ + ω22′22′,
B2′′ = B3′′ + ω22′([232′]/[131′])11′,
B1 = B3′′ + ω1′2′([1′2′2′′]/[2′3′2′′])2′3′ − ω22′([22′3′]/[2′3′2′′])2′2′′,
B2 = B3′′ + ω1′2′([1′2′1′′]/[1′3′1′′])1′3′ − ω22′([22′3′]/[1′3′1′′])1′1′′,
B1′ = B3′′ + ω1′2′([1′2′2′′]/[232′′])23 + ω22′([232′]/[232′′])22′′,
B2′ = B3′′ + ω1′2′([1′2′1′′]/[131′′])13 + ω22′([232′]/[131′′])11′′,
h1 = [1B3′′ ], h2 = [2B3′′ ], h3 = [3B1′′ ],
h1′ = [1′B3′′ ], h2′ = [2′B3′′ ], h3′ = [3′B1′′ ],
h1′′ = [1′′B3], h2′′ = [2′′B3], h3′′ = [3′′B1].

8 Further Examples

The parametric calotte propagation algorithm is implemented with Maple 8,
and has been tested by 20 examples. The examples include both trihedral and
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non-trihedral, both spherical and non-spherical, polyhedral scenes. In the ex-
periment, no bifurcation occurs during the propagation. However, bifurcation
occurs immediately after the elimination is invoked to solve the new parameters.
This suggests that by fewer parameters, no matter if they are independent or
not, only part of the solution space may be parameterized.
Example 2. Two tori in Example 1 are merged together by identifying two of
their outward faces. As in Figure 5, such a polyhedron has 14 vertices and 16
faces. Each face has four vertices. 10 vertices are each on four faces and 4 vertices
are each on six faces. Vertices V1, V3, V8, V10 are no longer coplanar.

F1

F2

F4F3
F5

F6

F7

F8

F9

F10

F11
F12

F13

F14

F15

F16
V1

V2

V3V9

V10

V5

V6

V7
V8

V4

V11

V13

V12

V14

Fig. 5. Example 2

Propagation:

B1 = 0 ω57−→ B2
ω15−→ B5

B.2−→ B8
B.1−→ B6

B.2−→ B7, B9, B10
ω13−→ B3

B.2−→ B4
ω1,13−→ B14

B.2−→ B11
B.1−→ B12

B.2−→ B13,B15,B16.

Four parameters ω13, ω15, ω1,13, ω57 are introduced. They satisfy 9 equations,
among which only 8 are algebraically independent.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω15V1V5 ∧V2V6 ∧V3V7 = 0,

ω1,13V1V13 ∧V3V14 ∧V4V12 = 0,

(ω15[V1V5V8]− ω57[V5V7V8])V1V2 ∧V5V6 ∧V8V9 = 0,

(ω15[V1V5V6] + ω57[V5V6V7])V5V8 ∧V6V9 ∧V7V10 = 0,

ω57V5V7 ∧V8V10 ∧V13V14 − ω13V1V3 ∧V8V10 ∧V13V14 = 0,

(ω57[V5V7V8]− ω13[V1V3V8] + ω113[V1V8V13])
V1V4 ∧V8V11 ∧V12V13 = 0,

(ω15[V1V5V6][V3V7V10] + ω57[V3V6V7][V5V7V10])
V2V3 ∧V6V7 ∧V9V10 = 0,

(ω57[V5V7V10][V12V13V14] + ω1,13[V1V12V13][V10V13V14]
+ω13[V1V3V10][V12V13V14])V8V13 ∧V10V14 ∧V11V12 = 0,

(ω57V1V4 ∧V5V7 ∧V8V10 − ω1,13[V1V4V13][V1V8V10]
−ω13[V1V3V4][V1V8V10])V3V4 ∧V10V11 ∧V12V14 = 0.
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In the list, there are 8 factored calotte equation. The other equation can also
be replaced by a calotte equation. The 9 calottes are

(V1V2V3, V5V6V7) (V1V5V8, V2V6V9) (V2V6V9, V3V7V10)
(V5V6V7, V8V9V10) (V12V13V14, V1V3V4) (V3V10V14, V4V11V12)

(V4V12V13, V8V10V11) (V4V11V12, V1V8V13) (V1V5V8V13, V3V7V10V14)

This example also has multiple linear construction sequences.
Example 3. Two trihedral spherical polyhedra S1 and S2 are connected through
two tubes T1, T2 at two pairs of five-vertexed faces. The two pairs of faces are
then removed so that the corresponding vertices are no longer coplanar. Thus, S1

has 60 vertices and 30 faces, among which 20 faces are six-vertexed and 10 faces
are five-vertexed. S1 has 20 vertices and 10 faces, and each face has five vertices.
Both tubes are composed of three columns, and each column is composed of five
square faces. All together there are 100 vertices and 70 faces.
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Fig. 6. Example 3

We decompose the polyhedron into four smaller parts S1,S2, T1 and T2, run
parametric calotte propagation in each part, then assemble the polyhedron by
joining the parts at the junction loops.

Step 1. Start from a face of S1, run parametric propagation in S1. One pa-
rameter is introduced, which satisfies 24 equations. The equations can be
replaced by calotte ones, among which 22 are in factored form.

Step 2. Start from the loop S1 ∩ T1, run parametric propagation in T1. Three
parameters are introduced, which satisfy 3 non-factored calotte equations.

Step 3. Start from the loop S1 ∩ T2, run parametric propagation in T2. Three
parameters are introduced, which satisfy 3 non-factored calotte equations.

Step 4. Start from the two loops S2∩T1 and S2∩T2, run parametric propagation
in S2. No parameter is introduced. There are 10 parametric equations, 2 of
which are factored calotte equations. After the four parts are put together,
the 8 equations can be replaced by 8 calotte equations in non-factored form.
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Abstract. Projective geometric invariants play an important role in
computer vision. To set up the invariant relationships between spatial
points and their images from a single view, at least six pairs of spatial
and image points are required. In this paper, we establish a unified and
complete framework of the invariant relationships for six points. The
framework covers the general case already developed in the literature
and two novel cases. The two novel cases describe that six spatial points
and the camera optical center lie on a quadric cone or a twisted cubic,
called quadric cone case or twisted cubic case. For the general case and
quadric cone case, camera parameters can be determined uniquely. For
the twisted cubic case, camera parameters cannot be determined com-
pletely; this configuration of camera optical center and spatial points is
called a critical configuration. The established unified framework may
help to effectively identify the type of geometric information appearing
in certain vision tasks, in particular critical geometric information. An
obvious advantage using this framework to obtain geometric informa-
tion is that no any explicit estimation on camera projective matrix and
optical center is needed.

1 Introduction

Projective geometric invariants play an important role in computer vision [13,
14, 19]. Bracket algebra is a basic algebraic tool for studying projective geomet-
ric invariance [22, 23]. Due to the powerful computations of geometric algebra,
bracket algebra, as a subalgebra of geometric algebra on scalars, has found more
and more applications in computer vision [2, 3, 4, 5, 6, 7, 11, 20, 24, 25]. Applica-
tions of geometric algebra and its subalgebras [10, 22, 12, 21] are developing in
many fields of engineering. This paper presents a computation of bracket alge-
bra on invariance of six points in 3D reconstruction, an important problem of
computer vision.

There have been many studies on the invariant relationship, also called the
invariance, of six spatial points and their images [2, 4, 5, 9, 15, 16, 17, 18]. In 1994,
Quan [15, 16] gave the invariance of six spatial points and their images for
the general non-degenerate configuration under the canonical coordinates, from
which the invariance under any coordinate system is obtained by a coordinate

H. Li, P. J. Olver and G. Sommer (Eds.): 2004, LNCS 3519, pp. 403–417, 2005.
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transformation. In 1995, Carlsson [4, 5] derived the invariance for the general
non-degenerate configuration and the invariance for a specific non-degenerate
configuration of the four-point-coplanar case by bracket algebra. The resulting
invariants are coordinate-free. In 2000, Roh and Kweon [17] provided the invari-
ance of six spatial points and their images under the same specific non-degenerate
configuration as the one in [4, 5] under the canonical coordinates, then the invari-
ance under any coordinate system is obtained by a coordinate transformation.
In 2002, Bayro-Corrochano and Banarer [2] re-derived the invariance of six spa-
tial points and their images for the general non-degenerate configuration, and
reported some applications of the invariance. As shown in their work, the invari-
ance can be applied to 3D reconstruction, object recognition, robot vision and
further tasks.

Motivated by their work and the importance of invariance, in this paper we
set up invariant relationships for two specific configurations, i.e. when six spatial
points and camera optical center lie on a quadric cone or a twisted cubic. We
call them quadric cone case and twisted cubic case respectively. It is interesting
that the number of equations describing the invariant relationship for the twisted
cubic case is two rather than one as for the general case developed in the previous
literature. In addition, the invariant relationship for the general case reported
in the previous work, and the ones here for the quadric cone case and twisted
cubic case constitute a complete framework, unified by brackets, in which the
invariant relationships are coordinate-free, free of camera optical center, and free
of camera projective matrix.

Estimation of camera parameters is a key problem for 3D reconstruction. One
of the popular methods for this problem is to recover the camera parameters from
at least six pairs of corresponding spatial and image points [1]. By using this
method, for the general case and the quadric cone case, camera parameters can
be determined uniquely; for the twisted cubic case, camera parameters cannot
be recovered completely. This configuration of camera and spatial points in the
twisted cubic case is critical for camera parameter estimation [8]. The estab-
lished complete framework of invariant relationships between six spatial points
and their images could help researchers to clearly and efficiently identify the
type of geometric information, in particular, the critical geometric information,
when they calibrate a camera from six points. An obvious advantage using this
framework to detect the relative position information of camera and scene is that
no any reconstruction on camera projective matrix or optical center is needed. A
detailed algorithm applying the novel invariant relationship of the twisted cubic
case to recognize critical configuration of 3D reconstruction, and experiments on
simulated and real data, are reported in our recent technical report [25].

The organization of the paper is as follows. Some preliminaries are listed in
Section 2. Section 3 gives the invariant relationships between six spatial points
and their images when camera optical center and the six spatial points lie on
either a quadric cone or a twisted cubic. The complete and unified framework
of invariant relationships for six points is elaborated in Section 4. Some experi-
mental results are shown in Section 5. Section 6 gives some conclusions.
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2 Preliminaries

In this paper, a bold capital letter denotes either a homogeneous 4-vector or
a matrix; a bold small letter denotes a homogeneous 3-vector; a bracket ”[] ”
denotes the determinant of vectors in it. Different columns in the brackets are
separated with commas, and the commas are omitted if no ambiguity could arise.
In addition, throughout this paper, we assume that no three image points are
collinear (then neither three spatial points can be collinear nor coplanar with
the optical center), and no two image points are coincident (i.e. different spatial
points have different image points respectively, or the optical center cannot be
collinear with any two spatial points).

Bracket algebra is in fact the algebra on determinants, which is the basic
algebra tool for computing projective geometric invariants [22, 23]. Exchang-
ing two vectors in a bracket will change the sign of the bracket. For exam-
ple: [a1a2a3] = −[a2a1a3]. [a1a2a3] = 0 means that a1,a2,a3 are collinear.
[A1A2A3A4] = 0 means that Ai, i = 1..4 are coplanar, especially if three of
them are collinear.

There exist relations among determinants. One kind of these relations are
the following Grassmann-Plücker relations:

[a1a2a5][a3a4a5]− [a1a3a5][a2a4a5] + [a1a4a5][a2a3a5] = 0, (1)

[A1A2A5A6][A3A4A5A6]− [A1A3A5A6][A2A4A5A6]
+[A1A4A5A6][A2A3A5A6] = 0, (2)

where (1) is with respect to 2D homogeneous vectors ai, i = 1..5, and (2) is
with respect to 3D homogeneous vectors Ai, i = 1..6. They are often used to
simplify bracket computations, and to find the geometric meanings of a bracket
equation [23]. For example: [a1a2a5][a3a4a5] + [a1a4a5][a2a3a5] can be simpli-
fied as [a1a3a5][a2a4a5] by (1), thus, [a1a2a5][a3a4a5] + [a1a4a5][a2a3a5] = 0 is
equivalent to [a1a3a5][a2a4a5] = 0, which means at least that either a1,a3,a5

are collinear, or a2,a4,a5 are collinear.
Under a pinhole camera, a point Mi in space is projected to a point mi in

the image plane by:
ximi = K(R t)Mi, (3)

where K is the 3× 3 matrix of camera intrinsic parameters, and R, t are a 3× 3
rotation matrix and a translation 3-vector, xi is a nonzero scalar, called the depth
of Mi. If xi is zero, then Mi could not be projected to the image plane. If the
optical center, denoted as O, is not at infinity, its non-homogeneous coordinate
are given by Ô = −Rτt. We assume that O is not at infinity throughout this
paper.

Consider points Mi = (M̂τ
i , 1)τ not at infinity, i = 1..6, where M̂τ

i are non-
homogeneous coordinates, then by (3) we have:
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xixjxk[mi,mj ,mk]
= [ximi, xjmj , xkmk]
= det(K)[RM̂i + t,RM̂j + t,RM̂k + t]
= det(K)[M̂i + Rτt, M̂j + Rτt, M̂k + Rτt]
= det(K)[M̂i − Ô, M̂j − Ô, M̂k − Ô]

= det(K)
[
M̂i, M̂j , M̂k, Ô
1 1 1 1

]
= det(K)[Mi,Mj ,Mk,O].

(4)

Thus, [mi,mj ,mk] = 0 if and only if [Mi,Mj ,Mk,O] = 0. Namely, mi,mj ,mk

are collinear if and only if Mi,Mj ,Mk,O are coplanar.
For the optical center and five spatial points, there is a Grassmann-Plücker

relation of (2) as:

[Mi,Mj ,Mm,Mn][Mk,O,Mm,Mn]− [Mi,Mk,Mm,Mn][Mj ,O,Mm,Mn]
+[Mj ,Mk,Mm,Mn][Mi,O,Mm,Mn] = 0.

From this equation and from (4), we have:

xk[Mi,Mj ,Mm,Mn][mk,mm,mn]− xj [Mi,Mk,Mm,Mn][mj ,mm,mn]
+xi[Mj ,Mk,Mm,Mn][mi,mm,mn] = 0. (5)

This equation is free of the image and world coordinate system.
In the following sections, for the notational convenience, if no ambiguity can

be aroused, Mi, i = 1..6 will be simply denoted as 1,2,3,4,5,6.
Theorem 1 in [24] is recalled here. There exists a unique proper quadric cone

with 1 as the vertex and passing through 2,3,4,5,6 with no three collinear and
no four coplanar. Any point X belongs to this quadric cone if and only if:

[1246][1356]
[1236][1456]

=
[124X][135X]
[123X][145X]

.

The above representation is not unique since the one obtained by a permutation
of 2,3,4,5,6 is also a representation of the quadric cone.

Theorem 2 in [24] is recalled here too. There exists a unique proper twisted
cubic passing through 1,2,3,4,5,6 with no three collinear and no four coplanar.
Any point X belongs to this twisted cubic if and only if:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1246][1356]
[1236][1456]

=
[124X][135X]
[123X][145X]

,

[1246][2356]
[1236][2456]

=
[124X][235X]
[123X][245X]

,

X is not on the line 12 except for 1,2.

The above representation is not unique since the one obtained by a permutation
of 1,2,3,4,5,6 is also a representation of the twisted cubic.
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3 Invariance of Six Points for the Quadric Cone and
Twisted Cubic Cases

This section further assumes no four of 1,2,3,4,5,6 are coplanar. Then the
bracket on spatial points is nonzero.
Proposition 1. Let Q be the quadric cone with 1 as the vertex and passing
through 2,3,4,5,6. Then the camera optical center O lies on Q if and only if:

[1246][1356]
[1236][1456]

=
[m1m2m4][m1m3m5]
[m1m2m3][m1m4m5]

.

Each side is a cross ratio invariant. After a permutation of 2,3,4,5,6 and their
corresponding images, the equation is still an invariant relation of O lying on
the same quadric cone, so is not independent of the one without permutation.

Proposition 1 is obtained as follows: according to Theorem 1 in [24] as shown
in Section 2, there exists a unique proper quadric cone through 1,2,3,4,5,6
and with 1 as the vertex, and its equation is

[1246][1356]
[1236][1456]

=
[124X][135X]
[123X][145X]

,

where X is the varying vector. If O lies on it, then O satisfies the above equation.
Furthermore by (4), we have:

[1246][1356]
[1236][1456]

=
[124O][135O]
[123O][145O]

=
[m1m2m4][m1m3m5]
[m1m2m3][m1m4m5]

,

and vice versa. We can permute 2,3,4,5,6 and their corresponding images in
the above equation to obtain different equations, but among these equations,
only one is independent since there is only one independent representation for a
quadric cone.

Remark: If 2,3,4,5,6 are coplanar, 1 is not coplanar with them, and no bracket
containing 1 is zero, the equation of Proposition 1 still means that O lies on the
same proper quadric cone.

Similarly, according to Theorem 2 in [24] and (4) shown in Section 2, we have:

Proposition 2. The camera optical center O lies on the proper twisted cubic
passing through 1,2,3,4,5,6 if and only if⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[1246][1356]
[1236][1456]

=
[m1m2m4][m1m3m5]
[m1m2m3][m1m4m5]

,

[1246][2356]
[1236][2456]

=
[m1m2m4][m2m3m5]
[m1m2m3][m2m4m5]

.

Each side is a cross ratio invariant. After a permutation of 1,2,3,4,5,6 and
the corresponding images, the resulting equation system is still the invariant
relationship of O lying on the same twisted cubic, but is not independent of the
original one.
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Note that in Theorem 2 of [24], there is another condition for the represen-
tation of the twisted cubic such as: X does not lie on the line through 1 and 2.
Here, this additional condition is unnecessary because if O is on the line through
1 and 2, then m1 = m2, which is contrary to our assumption.

4 A Unified and Complete Framework of Invariance for
Six Points

If 1,2,3,4,5,6 are all coplanar, or five of them are coplanar, the invariant
relationship between them and their images is reduced to the 2D case, which
can be established easily. So, such cases will not be discussed and we always
assume no five spatial points are coplanar in the subsequent discussion.

With the above assumptions, at least two coefficients of xi, xj , xk in (5) are
nonzero. For example, if the coefficients of xi and xj are zero, i.e.
[mk,mm,mn][Mi,Mj ,Mm,Mn] = 0 and [mj ,mm,mn][Mi,Mk,Mm,Mn] =
0, then since the brackets on image points are assumed nonzero, we obtain
[Mi,Mj ,Mm,Mn] = 0 and [Mi,Mk,Mm,Mn] = 0, which mean that Mi,Mj ,
Mk,Mm,Mn are coplanar or Mi,Mm,Mn are collinear. This is contrary to our
assumptions. So, at least two coefficients of xi, xj , xk in (5) are nonzero, i.e. (5)
is not identical to zero.

 

1 

3 2 

6 

5 

4 

Fig. 1. For six spatial points, if no five of them are coplanar, and no three of them are
collinear, then at most three brackets could be zero, and at least four brackets cannot
be zero. Here only [1234] = 0, [1256] = 0, [3456] = 0. And, [1235] �= 0, [1236] �= 0,
[1245] �= 0, [1246] �= 0

On 1,2,3,4,5,6, there are in total C4
6 = 15 brackets as S = {[1234], [1235],

[1236], [1245], [1246], [1256], [1345], [1346], [1356], [1456], [2345], [2346],
[2356], [2456], [3456]}. Under the assumption that no five spatial points are
coplanar and no three spatial points are collinear, at most three brackets in S
can be zero, or it is equivalent to that at least four brackets in S cannot be zero.
For example, if [1234] = 0, [1256] = 0, [3456] = 0, then any bracket in the set
S − {[1234], [1256], [3456]} cannot be zero as shown in Fig. 1. Otherwise, five
spatial points would be coplanar, or three spatial points would be collinear. So,
we can always let [1235] �= 0, [1236] �= 0, [1245] �= 0, [1246] �= 0 by arranging
the order of 1,2,3,4,5,6.
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The polynomial on the left side of (5) is denoted by fijk,mn, which means
that the equation is linear with respect to xi, xj , xk, and the brackets on image
points share mm, mn, the brackets on spatial points share Mm, Mn. Let P =
K(R, t). Among all the equations fijk,mn = 0, there are at most six independent
ones. This is because from (3) there are in total 18 equations, and all possible
fijk,mn = 0 are obtained by eliminating 12 parameters on P from these 18
equations. We list six fijk,mn = 0 as follows:

f123,45 = x3[m3m4m5][1245]− x2[m2m4m5][1345] + x1[m1m4m5][2345] = 0,
(6)

f123,46 = x3[m3m4m6][1246]− x2[m2m4m6][1346] + x1[m1m4m6][2346] = 0,
(7)

f124,35 = x4[m3m4m5][1235]− x2[m2m3m5][1345] + x1[m1m3m5][2345] = 0,
(8)

f124,36 = x4[m3m4m6][1236]− x2[m2m3m6][1346] + x1[m1m3m6][2346] = 0,
(9)

f125,36 = x5[m3m5m6][1236]− x2[m2m3m6][1356] + x1[m1m3m6][2356] = 0,
(10)

f126,35 = x6[m3m5m6][1235]− x2[m2m3m5][1356] + x1[m1m3m5][2356] = 0.
(11)

These equations are multi-linear with respect to xi, brackets on image points,
and brackets on spatial points.

The invariant relationship between spatial and image points is not related to
the depths, so we are to eliminate xi from the above equations in the following.

Since [m3m4m5][1245] �= 0, we can solve x3 from (6), and then substitute it
into (7). After that, we obtain:

x1([m1m4m5][m3m4m6][2345][1246]− [m3m4m5][m1m4m6][1245][2346])
= x2([m2m4m5][m3m4m6][1345][1246]− [m3m4m5][m2m4m6][1245][1346]).

(12)
Similarly, we solve x4 from (8), then substitute it into (9), and obtain:

x1([m1m3m5][m3m4m6][2345][1236]− [m3m4m5][m1m3m6][1235][2346])
= x2([m2m3m5][m3m4m6][1345][1236]− [m3m4m5][m2m3m6][1235][1346]).

(13)
Then (6), (7), (8), (9), (10), (11) are equivalent to (6), (12), (8), (13), (10), (11).
Let the coefficients of x1 and x2 in (12) be c1 and c2, and the ones in (13) be
e1 and e2. Since x1 �= 0 and x2 �= 0, we have: c1 = 0 if and only if c2 = 0, also
e1 = 0 if and only if e2 = 0. Thus, there are only three cases: (i) c1 �= 0 and
e1 �= 0; (ii) c1 = 0 but e1 �= 0; Or e1 = 0 but c1 �= 0; (iii) c1 = 0 and e1 = 0. We
will discuss each case in the following.
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Case (i). c1 �= 0 and e1 �= 0 (The general case already developed in the lit-
erature that is non-degenerate for camera parameter estimation. See the last
paragraph of this section).
Since c1 �= 0 and e1 �= 0 (also c2 �= 0, e2 �= 0), solving out x1/x2 from (12)
and (13) gives x1/x2 = c2/c1 = e2/e1. So we obtain c1e2 − c2e1 = 0. Simplify
c1e2− c2e1 = 0 by some Grassmann-Plücker relations of (1) on image points, we
get its equivalent form as:

[m3m4m5][m1m2m6][1235][1245][1346][2346]
+[m1m2m5][m3m4m6][1345][2345][1236][1246]
+[m2m3m5][m1m4m6][1245][1345][1236][2346]
+[m1m4m5][m2m3m6][1235][2345][1246][1346]
−[m2m4m5][m1m3m6][1235][1345][1246][2346]
−[m1m3m5][m2m4m6][1245][2345][1236][1346] = 0.

(14)

This equation can be completely analyzed from the following three aspects:
(ia). [1346][2346] �= 0 (Main case);
(ib). [1346] = 0 (Four-point-coplanar case);
(ic). [2346] = 0 (Four-point-coplanar case).

Let us have a close look on them respectively.

(ia). If [1346][2346] �= 0, dividing each term by the first term in (14) gives:

[m1m2m5][m3m4m6]
[m3m4m5][m1m2m6]

I1 −
[m1m3m5][m2m4m6]
[m3m4m5][m1m2m6]

I2

+
[m1m4m5][m2m3m6]
[m3m4m5][m1m2m6]

I3 +
[m2m3m5][m1m4m6]
[m3m4m5][m1m2m6]

I4

− [m2m4m5][m1m3m6]
[m3m4m5][m1m2m6]

I5 + 1 = 0,

(15)

where

I1 =
[1345][2345][1236][1246]
[1235][1245][1346][2346]

, I2 =
[2345][1236]
[1235][2346]

,

I3 =
[2345][1246]
[1245][2346]

, I4 =
[1345][1236]
[1235][1346]

, I5 =
[1345][1246]
[1245][1346]

.

It is easy to see that I1 = I3I4 = I2I5. I2, I3, I4, I5 are all cross ratios on the
six spatial points, and the coefficients of Ii, i = 1..5 are all cross ratios on the
six image points. (15) is just the constraint pointed out by Quan [15, 16], and
revisited by Carlsson [4, 5], Bayro-Crrochano and Banarer [2]. The following
cases (ib) and (ic) were studied by Carlsson [4, 5], Roh and Kweon [17].

(ib). If [1346] = 0 , then [1345] �= 0 and [2346] �= 0 (otherwise five spatial
points are coplanar, three spatial points are collinear). Let [1346] = 0 in (14),
and then divide each term by the last term in the result, we have:

[m1m2m5][m3m4m6][2345][1236]
[m2m4m5][m1m3m6][1235][2346]

+
[m2m3m5][m1m4m6][1245][1236]
[m2m4m5][m1m3m6][1235][1246]

− 1 = 0.
(16)
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Fig. 2. [1346] = 0 and [2345] = 0

This is an equation on the invariants of spatial points and image points. Moreover
if [2345] = 0 (see Fig. 2), (16) becomes:

[1245][1236]
[1235][1246]

=
[m2m4m5][m1m3m6]
[m2m3m5][m1m4m6]

. (17)

Each side is a cross ratio invariant. In Fig. 2, if [1256] = 0 additionally, then by
the Grassman-Plücker relation of (2) as [1234][1256]−[1235][1246]+[1236][1245] =
0, there is [1245][1236] = [1235][1246], (17) becomes:

[m2m3m5][m1m4m6]− [m2m4m5][m1m3m6] = 0.

Its geometric meaning is that the three lines m1m6, m2m5 and m3m4 intersect
at a point, which means that the three spatial lines 16, 25, 34 are concurrent.
Namely, at the time, the invariant relationship identically holds.

(ic). If [2346] = 0, the discussion is similar to the above case (ib).

Case (ii). c1 = 0 but e1 �= 0; or e1 = 0 but c1 �= 0 (The quadric cone case that
is non-degenerate for camera parameter estimation).
If c1 = 0 but e1 �= 0, then:

c1 = [m1m4m5][m3m4m6][2345][1246]− [m3m4m5][m1m4m6][1245][2346]
= 0,

c2 = [m2m4m5][m3m4m6][1345][1246]− [m3m4m5][m2m4m6][1245][1346]
= 0.

From the above equations, we can conclude that [2345][2346][1345][1346] �=
0 (otherwise either five spatial points are coplanar or three spatial points are
collinear). So, by division, the above equations are changed into:

[2345][1246]
[1245][2346]

=
[m3m4m5][m1m4m6]
[m1m4m5][m3m4m6]

,

[1345][1246]
[1245][1346]

=
[m3m4m5][m2m4m6]
[m2m4m5][m3m4m6]

.

(18)
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The geometric meaning of these equations is:
a) If no four of the spatial points are coplanar, by Proposition 1, (18) means
that 1,2,3,4,5,6,O lie on a proper quadric cone with 4 as the vertex, and we
know that only one of the two equations in (18) is independent.
b) If there are four points to be coplanar, then the brackets possibly to be zero
are only in S1 = {[1234], [1456], [2456], [3456], [1256], [1356], [2356]}.
If one of the first four brackets in S1 is zero, then there will be three image
points to be collinear, which is contrary to our assumption. For example, if
[1234] = 0, then by a Grassmann-Plücker relation, we have [2345][1246] =
[1245][2346]. So, the first one of (18) is changed into [m3m4m5][m1m4m6] −
[m1m4m5][m3m4m6] = 0, which means that [m1m3m4] = 0 or [m4m5m6] = 0
by a Grassmann-Plücker relation.
If one of the last three brackets in S1 is zero, i.e. if one of {[1256], [1356], [2356]}
is zero, (18) still means that 1,2,3,4,5,6,O lie on the proper quadric cone
with 4 as the vertex because no bracket in {[1256], [1356], [2356]} contains the
vertex 4.
If two of the last three brackets in S1 are zero, i.e. if two of {[1256], [1356], [2356]}
are zero, then three spatial points will be collinear or five spatial points will be
coplanar, which is contrary to our assumption.
Thus from above analyses of a) and b), we know that the case c1 = 0 and e1 �= 0
mean that 1,2,3,4,5,6,O lie on a proper quadric cone. At the same time, only
one of {[1256], [1356], [2356]} could be zero.

If e1 = 0 but c1 �= 0, the invariant relationships from e1 = 0, e2 = 0 are:

[2345][1236]
[1235][2346]

=
[m3m4m5][m1m3m6]
[m1m3m5][m3m4m6]

,

[1345][1236]
[1235][1346]

=
[m3m4m5][m2m3m6]
[m2m3m5][m3m4m6]

.

(19)

Similarly, the geometric meaning is that 1,2,3,4,5,6,O lie on a proper quadric
cone with 3 as the vertex, and only one of them is independent. At the same
time, only one of {[1256], [1456], [2456]} could be zero.

Case (iii). c1 = 0 and e1 = 0 (The twisted cubic case that is degenerate for
camera parameter estimation).
By c1 = 0 and e1 = 0, there are:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[2345][1246]
[1245][2346]

=
[m3m4m5][m1m4m6]
[m1m4m5][m3m4m6]

,

[2345][1236]
[1235][2346]

=
[m3m4m5][m1m3m6]
[m1m3m5][m3m4m6]

.

(20)

By Proposition 2, the geometric meaning of the above equation system is that
1,2,3,4,5,6,O lie on a proper twisted cubic if no four of the spatial points are
coplanar. If there are four coplanar spatial points, by the analysis in Case (ii), we
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know that if c1 = 0, only one of {[1256], [1356], [2356]} could be zero. If e1 = 0,
only one of {[1256], [1456], [2456]} could be zero. Thus, if c1 = 0 and e1 = 0,
only [1256] could possibly be zero. If [1256] = 0, this implies that three image
points are collinear, which is contrary to our assumption. This is because elimi-

nating
[2345]
[2346]

in the first equation of (20) by the second equation of (20) gives:

[1235][1246]
[1245][1236]

=
[m1m3m5][m1m4m6]
[m1m4m5][m1m3m6]

. (21)

By the Grassmann-Plücker relation [1234][1256]− [1235][1246]+[1245][1236]
= 0 and [1256] = 0, we obtain [1235][1246] = [1245][1236]. Then, (21) is
changed into: [m1m3m5][m1m4m6]− [m1m4m5][m1m3m6] = 0 . Again by the
Grassmann-Plücker relation [m1m3m4][m1m5m6]− [m1m3m5][m1m4m6]
+ [m1m4m5][m1m3m6] = 0, we obtain [m1m3m4][m1m5m6] = 0. This is a
contradiction.

Here is a summary: See Table 1. If no five spatial points are coplanar, and no
three image points are collinear, the invariant relationships between six spatial
points and their images consist of three cases: (i) the non-degenerate case includ-
ing the general main case and four-point-coplanar case; (ii) the non-degenerate
case when the camera optical center and the six spatial points lie on a proper
quadric cone; (iii) the degenerate case when the camera optical center and the
six spatial points lie on a proper twisted cubic. The first case has already been
studied in the previous literature. The latter two cases are novel. The three cases
constitute a complete and unified framework of invariance for six points. This is
not only because the above three cases are the complete classification from (12)
and (13), but also because (6), (7), (8), (9), (10), (11), or (6), (12), (8), (13),
(10), (11) include all of the independent results after eliminating P = K(R, t)
from those 18 equations ximi = PMi, i = 1..6. The equations (6), (12), (8),
(13), (10), (11) are just six independent ones since xi, i = 2..6 can be solved
out and a further additional invariant relationship can be obtained from these
six equations for Case (i) and (ii), and since for Case (iii), xi, i = 3..6 can be
solved out and two further additional invariant relationships can be obtained
from these six equations.

Case (i) and Case (ii) are non-degenerate for camera parameter estimation
from six points. Case (iii) is degenerate [8, 25]. Because, for Case (i) and (ii),
yi = xi/x1, i = 2..6 can be determined uniquely by spatial and image points,
and then P can be estimated uniquely. While, (12) and (13) are identically zero
for Case (iii). And so y2 = x2/x1 could not be found and P has one degree of
freedom. For details, see [25].

5 Experiments

The established invariance can be applied to detect the relative position infor-
mation between camera and spatial points without any explicit estimation on
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Table 1. A complete framework for the invariance of six spatial points and their images
under the condition that no five spatial points are coplanar, and no three image points
are collinear

Classified condition Invariant relationship

Case(i) c1 �= 0 and e1 �= 0, the general case, non-degenerate:

The general main case; (15)

The one four-point-coplanar case; (16)

The two four-point-coplanar case (17)

Case(ii) c1 = 0 but e1 �= 0; or e1 = 0 but c1 �= 0

The quadric cone case, non-degenerate (18) or (19)

Case(iii) c1 = 0 and e1 = 0

The twisted cubic case, non-degenerate (20)

Fig. 3. A real image of a calibration grid

the camera projective matrix or the optical center. Based on the invariant rela-
tionship for the twisted cubic case, we construct an adaptive weighed criterion
function g to recognize the nontrivial critical configuration of 3D reconstruction.
The detailed algorithm and experiments can be found in [25] (Here, the details
are omitted due to the space limit). Some experimental results are shown below.

We generate seven pairs of spatial and image points such that 1,2,3,4,5,6,O
do not lie on a twisted cubic, and 1,2,3,4,5,7,O do lie on a twisted cubic. The
image size is not greater than 1000×1000 pixels. Gaussian noise with mean 0 and
standard deviation ranging from 0 to 6 pixels is added to each image points. With
100 runs under each noise level, the averaged value of the criterion function g(6)
from 1,2,3,4,5,6, and the averaged value of the criterion function g(7) from
1,2,3,4,5,7 are computed. The results from eight independent groups of data,
denoted as Di, i = 1..8, are shown in Table 2. As it can be seen, our invariance
can distinguish robustly between the degenerate configuration (that camera and
spatial points lie on a twisted cubic) and the non-degenerate configuration, and
the criterion function g is quite stable against noise.
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Table 2. The values of g(6), g(7) under different noise levels

Noise level (pixel) 0 1 2 4 6

D1 g(6) 7.40 7.40 7.41 7.41 7.45

g(7) 0.00 0.04 0.09 0.18 0.31

D2 g(6) 3.69 3.66 3.73 4.00 5.02

g(7) 0.00 0.13 0.26 0.70 1.66

D3 g(6) 2.62 2.62 2.62 2.62 2.62

g(7) 0.00 0.01 0.02 0.04 0.06

D4 g(6) 3.25 3.25 3.25 3.25 3.26

g(7) 0.00 0.02 0.05 0.10 1.13

D5 g(6) 2.12 2.13 2.13 2.17 2.23

g(7) 0.00 0.04 0.09 0.17 0.31

D6 g(6) 3.20 3.20 3.21 3.22 3.52

g(7) 0.00 0.06 0.15 0.32 0.55

D7 g(6) 2.00 2.00 2.00 2.00 2.00

g(7) 0.00 0.02 0.03 0.06 0.09

D8 g(6) 1.90 1.90 1.90 1.90 1.90

g(7) 0.00 0.01 0.03 1.05 0.08

An experiment based on real data is also performed. The real image we used
from a grid is shown in Fig. 3 (1024× 768 size). We extract 108 pairs of spatial
and image points, then calibrate camera parameters by the DLT method [1], and
denote the calibrated results of intrinsic parameter matrix and pose parameters
as K0,R0, t0. Among these 108 pairs of spatial and image points, 126 groups
of six pairs are combined randomly with no three image points collinear, no
four spatial points coplanar. The group with the maximal value of g, denoted as
Gmax, and the group with the minimal value of g, denoted as Gmin are chosen to
calibrate the camera respectively. We denote the calibrated results as K1,R1, t1

and K2,R2, t2 respectively, and compare them with K0,R0, t0:

K1−K0 =

⎛
⎝52.10, 0.50, −22.11

0, 50.87, −68.41
0, 0, 0

⎞
⎠ , K0−K2 =

⎛
⎝1069.41, −29.68, 92.98

0, 1180.05, −147.71
0, 0, 0

⎞
⎠ ,

R1−R0 =

⎛
⎝ 0.0066 0.0082 −0.0036

0.0192 0.0213 −0.0139
−0.0005 0.0182 0.0283

⎞
⎠,R2−R0 =

⎛
⎝−1.4450 1.3725 −0.0208

0.2443 0.3405 1.8911
0.1759 −0.0208 0.4848

⎞
⎠.

t1 − t0 =

⎛
⎝0.3248

1.0234
0.6420

⎞
⎠ , t2 − t0 =

⎛
⎝ −0.2954

−6.3999
−48.7613

⎞
⎠ .
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These results show that the accuracy of calibrated results from Gmax is much
higher than that from Gmin except for the first element of the translation. For
the first element of the translation, the absolute error of t11 (0.3248) is greater
than the absolute error of t21 (0.2954), but the difference between the two errors
is not as large as that for the second or third element of the translation.

Namely, the calibrated result from six pairs of spatial and image points with
smaller value of the criterion function g (i.e. spatial points and optical center
are near to the twisted cubic degenerate configuration) is not better than that
with larger value of the criterion function g (i.e. spatial points and optical center
are far from the twisted cubic degenerate configuration). Extensive experiments
in [25] show that the criterion function g or the established invariance can be
faithfully trusted for camera parameter estimation.

6 Conclusion

With bracket computations, we establish a unified and complete framework for
the invariance of six points. It consists of three cases, one case is already fully
studied in the literature, and two cases are novel as: 1) the case when the cam-
era optical center and the spatial points lie on a quadric cone; 2) the case when
the camera optical center and the spatial points lie on a twisted cubic. The
established invariance framework can be applied to effectively detect the rela-
tive position geometric information between the camera and the spatial points
without any explicit estimation on camera projective matrix or optical center.
Experiments on the twisted cubic case are performed to validate the invariance.
We believe this framework will have further useful implications in 3D reconstruc-
tion. For example, when applying RANSAC during the process of determining
the camera parameters, the critical groups of data can be filtered out by the
invariance or the criterion function in the twisted cubic case.
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Abstract. In this paper the concept logical animation is described in a
formal manner. It is abstracted from numerous popular animation ap-
plets made by dynamic geometry softwares. The concept is illustrated
by a number of examples generated by the logical animation software
SuperSketchpad (SSP), and some features and prospects related to ap-
plications of it are discussed.

Keywords: logical animation; dynamic geometry; educational software.

1 Introduction

A usual animation is a sequence of finite and discrete pictures. This kind of mo-
tion picture can be called time-sequential animation. In recent 20 years, another
kind of animation appears, in the form of animation applets created by dynamic
geometry softwares [1], [2], [3], [4], [5]. These applets are often used in education
for teaching and studying mathematics, physics and other courses. Teachers and
students like them, they like to construct the applets by themselves by working
with dynamic geometry softwares.

In such an applet, a picture is generated by a set of rules, the user can
drag one object in the picture to drive other objects by these rules. Such an
animation is no longer restricted to geometric structures, as logical structures
are also involved. So we call it logical animation.

The following is a simplest example: in a picture there are two line segments
AB and CD, and their point of intersection P . If one drag with mouse any of
the four endpoints, say point A, then line segment AB moves accordingly and
so does the point of intersection P . If both A and B are on the same side of line
CD, then point P vanishes.

Up to now, numerous logical animation applets have been created and em-
ployed in schools, with the accompanying instructions on how to create these
applets with softwares. It is time to gather together the constructions of these
applets and find their common properties. In this paper, we try to formulate a
formal description of the concept logical animation and discuss its properties.
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This paper is organized as follows: Section 2 gives the definition of logical
animation, Section 3 shows some examples generated by our logical animation
software SuperSketchpad (SSP), Section 4 analyzes some features and prospects
of logical animation.

2 Logical Animation

Intuitively, an object means a pattern with some parameters to describe its prop-
erty. In the picture, an object may be a point, a line segment, a circle, a curve,
a block of text or a button, etc. The position, size, color and shape of an object
depend on the values of the parameters. For example, a conic may be an ellipse,
a hyperbola, or a parabola depending on different values of a parameter.

Let X be a set of objects and u be a set of parameters or expressions. A
construction A(X,u), is the command or function for creating a new object
from X with u. Here A is the name for the class of the new object. The equality
Y = A(X,u) means that an object Y is created by executing the construction.
When all parameters of object Y are fixed, we have a state of the object.

Definition 2.1. Let X = {X1, X2, . . . , Xk} be a set of objects. Let X0 = ∅ be
the empty set and let u be a set of parameters. If for i ≥ 1, Xi is generated by
construction Ai(X1, . . . , Xi−1, u), then X = A(X,u) is called an ordered logical
animation. If at least one Xi is not generated in this way, then X = A(X,u) is
called a non-ordered logical animation.

Example 2.1. In our logical animation system SSP [5], there are over one
hundred geometric constructions. The following basic ones will be used in this
paper:

Point(a,b): a point with initial coordinates (a, b).
Segment(X,Y): a line segment with endpoints X and Y.
Midpoint(A,B): the midpoint of line segment AB.
IntersectionOfLine(L,M): the point of intersection of lines L and M.
VerticalLine(P,L): a line through point P, perpendicular to line L.
PointFlexRotate(A,B,r,a): a point P with PB=rAB and � PBA = a.
Square(A,B): a square with edge AB.
Circle(O,r): the circle with center O and radius r.
PointOnCurve(C,b): a point with parameter b on parametric curve C.
MeasureVariable(rand(0,1),3): a block of text showing the value of func-

tion rand(0,1), with 3 digits after the radix point. Here rand(0,1) generates
a random number between 0 and 1.

Function(a*x^2+b*x+c,-6,6): curve y = ax2 + bx + c for x ∈ [−6, 6].
Group(A,B,...,X): the set of objects A, B, . . . , X.
Symmetric(X,L): the reflection of object X with respect to line L.
Translate(X,P,Q): the translation of object X along vector PQ.
DiscretePointCurve(A,B,...,X): Bezier curve through points A, B to X.
Animation(P): a button to make point P move or stop.
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Fig. 1. A demo of Example 2.1

AnimationVar(t,a,b): a button to make parameter t vary from a to b.
Locus(A,B,C,...,X): the locus of point X when points A, B, C, . . . move.
Trace(X): the trajectory of object X when moving.

In the list, most parameters characterizing the properties of the objects are
omitted, because their values are default. There are functions to list the param-
eters and change their values.

Now we construct a sequence of objects as follows (see Figure 1):

A=Point(0,0);
B=Point(0,a);
CR=Circle(A,r);
P=PointOnCircle(C,b);
PB=segment(P,B);
PA=segment(P,A);
M=Midpoint(P,B);
LN=VerticalLine(M,PB);
Q=Intersection(L,PA);
LC=Locus(P,Q);
TR1=Trace(Q);
TR2=Trace(LC);

It constitutes an ordered logical animation with 3 parameters a, r, b.
We explain below how to generate a sequence of pictures from an ordered or

non-ordered logical animation.
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Definition 2.2. Let X = A(X,u) = {X1, X2, . . . , Xk} be an ordered logical
animation. Let parameters u take a series of values u(i) for i = 0, 1, . . . , N . Set

X(i) = {X1(i), X2(i), . . . , Xk(i)}, for i = 0, . . . , N, where
Xj(i) = Aj(X1(i), . . . , Xj−1(i), u(i)), for j = 1, . . . , k. (1)

The sequence X(0), X(1), . . . , X(N) is called a demo of the ordered logical an-
imation A(X,u). Here Xj(i) is a state of Xj at the “parameter instant” u(i),
and X(i) is the whole picture at the instant.

Ordered logical animations are convenient to construct by visualized opera-
tions. Up to now, most animation applets made by dynamic geometry are ordered
logical animations.

Example 2.2. In Example 2.1, let a and r be constant, let b take a series of
values so that point P moves on circle CR, then the locus of Q is an ellipse for
a < r (Figure 1), and a hyperbola for a > r.

If we hide TR1, let b and r be constant, and let a take a series of values, we
get another demo of this same logical animation, see Figure 2. The locus of Q will
change and its trajectory is a series of conics varying from ellipses to hyperbolas.

Definition 2.3. Let X = A(X,u) = {X1, X2, . . . , Xk} be a non-ordered logical
animation. Let parameters u take a series of values u(i) for i = 0, 1, . . . , N . Set

X(i) = {X1(i), X2(i), . . . , Xk(i)}, for i = 0, . . . , N, where
Xj(i) = Aj(X1(i∗), . . . , Xk(i∗), u(i)), for j = 1, . . . , k. (2)

Fig. 2. Another demo of Example 2.1
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In (2), we have i∗ = i in Xh(i∗) if i < h and i∗ = i−1 otherwise. If Xh(0) occurs
then it takes some default initial value. The sequence X(0), X(1), . . . , X(N) is
called a demo of the non-ordered logical animation A(X,u).

Example 2.3. We construct a sequence of objects as follows:

A=Point(-5,-5);
B=Point(-5,5);
O=Point(0,0);
SQ=Square(A,B);
CR=Circle(O,5);
M1=MeasureVariable(rand(-5,5),12);
M2=MeasureVariable(rand(-5,5),12);
R=Point(M1,M2);
M3=MeasureVariable(sign(t)*(M3+1),0);
M4=MeasureVariable(sign(t)*(M4+sign(25-M1^2-M2^2)),0);
M5=MeasureVariable(4*M4/M3,4);
TR=Trice(R);

Here sign(x) equals 1 for x > 0 and 0 otherwise. Since object M3 appears in
its own construction, so does M4, the above sequence is a non-ordered logical
animation (Figure 3).

If the only parameter t is given a series of values 0 = t(0) < t(1) < · · · <
t(N) = 1, then the varying pictures display an experiment of throwing bean
R into square SQ randomly. At the initial value t(0) = 0, point R(0) is at a
random position. For t(1) > 0, both M1 and M2 are renewed, so is point R. By
the construction, M3 is the number of beans in the square, and M4 is the number
of beans in the disk. For larger number i, M5(i) tends to π probabilistically.

Fig. 3. Simulation of bean throwing
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3 More Examples Generated by SSP

To disclose more features of logical animation, in this section we show more ex-
amples generated by SSP. In SSP, one can make construction by either visualized
operations or by text commands.

Example 3.1. This is a simulation of the Doppler phenomenon, which shows
the change in the observed frequency of an acoustic or electromagnetic wave due
to some relative movement between the source and the observer (Figure 4).

Fig. 4. Doppler phenomenon

A=Point(t,0);
P(k)=Point(k,0); (k=1 to 15)
CR(k)=Circle(P(k),u*(t-k)*sign(t-k)); (k=1 to 15)

When parameter t takes a series of values increasing from 0 to 16, the source
point A moves along the x-axis from (0, 0) to (16, 0). The waves represented by
circles CR(k) enlarge gradually for t > k. The wave speed can be faster or slower
than the source speed, depending on whether or not u > 1.

Example 3.2. Figure 5 shows a planar tiling with a great deal of variety. It is
generated by the following constructions:

A=Point(x,0);
B=Point(y,0);
C=Point(-y,0);
K=Point(a,1);
Z=Point(0,0);
P(k)=Point(x(k),y(k)); (k=1 to 5)
CV(1)=DiscretePointCurve(B,P(1),P(2),C);
CV(2)=DiscretePointCurve(B,P(3),P(4),P(5),A);
CV(3)=Symmetric(CV(1),BC);
CV(4)=Symmetric(CV(2),AK);
CV(5)=Translate(CV(3),B,Z);
CV(6)=Translate(CV(4),A,C);
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Fig. 5. Versatile planar tiling

CV=Group(CV(1),CV(2),CV(5),CV(6));
CU(1)=Translate(CV,Z,A);
CU(j+1)=Translate(CV(j),Z,A); (j=1 to 3)
CVS=Group(CV,CU(1),CU(2),CU(3),CU(4));
CVS1=Translate(CVS,C,B);
CVS2=Translate(CVS1,C,B);
CVS3=Translate(CVS2,C,B).

In Figure 5, curves CV(3) and CV(4) and point K are hidden, points P(1) to
P(5) are denoted by D to H respectively. If these points are dragged, or parameters
x and y are changed, then pattern CV and the whole picture change their shapes.

Example 3.3. Figure 6 shows a fractal tree created by about one thousand
objects. The fractal tree is generated by

A=Point(0,-3);
B=Point(0,0);
SG=Segment(A,B);
FT=mtree(A,B,r,s,x,y,8);

where the function mtree is defined recursively by

mtree(P,Q,r,s,a,b,k)
{

if (k==1) {tree(P,Q,r,s,a,b);}
else {

X=PointFlexRotate(P,Q,r,a);
Y=PointFlexRotate(P,Q,s,b);
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Fig. 6. Fractal tree

M=Segment(Q,X);
N=Segment(Q,Y);
mtree(Q,X,r,s,a,b,k-1);
mtree(Q,Y,r,s,a,b,k-1);
}

and the pattern tree is constructed as follows:

tree(P,Q,r,s,a,b)
{X=PointFlexRotate(P,Q,r,a);
Y=PointFlexRotate(P,Q,s,b);
M=Segment(Q,X);
N=Segment(Q,Y);}

Line segment AB serves as the stem of the tree and is the first-level pattern.
From one end of it grows two branches, which are the second-level pattern. In
mtree(A,B,r,s,x,y,1), two line segments QX, QY are constructed such that

QX = rPQ, QY = sPQ, � XQP = a, � YQP = b. (3)

The last parameter k in mtree(A,B,r,s,x,y,k) indicates the level of recursion.
If the four parameters r,s,x,y change periodically within a certain scope

and at an assigned ratio of speed, then the fractal tree can sway, swing, spread,
stretch, and shrink with various shapes and spectacles.

Example 3.4. Figure 7 shows a simulation of a dog chasing after a rabbit. The
only constraint is that the chasing direction is always from the instant position
of the dog to that of the rabbit.

This is a non-ordered animation. The construction is

X=MeasureVariable(r*cos(t),12);
Y=MeasureVariable(r*sin(t),12);
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Fig. 7. Dog chasing after rabbit

R=Point(X,Y);
O=(0,0);
CR=Circle(O,r);
M=MeasureVariable(p*sign(a-t)+sign(t-a)*(M+d*(X-M)/K),12);
N=MeasureVariable(q*sign(a-t)+sign(t-a)*(N+d*(Y-N)/K),12);
D=Point(M,N);
K=MeasureLength(R,D,12);
TR=Trice(D);

Let point R be a rabbit running along a circle with radius r, let point D be
a dog chasing after the rabbit. Let parameters r,p,q,a,d be constant, and let
t take a series of values increasing from a− 1 to a + 100. At the beginning, the
dog is at position (p, q). When t > a, the dog moves towards the rabbit with
speed d relative to the rabbit.

Example 3.5. This is a simulation of Buffon’s needle test (Figure 8).

LN(k)=Line(y=k); (k=0 to 8)
M0=MeasureVariable(rand(0,2*pi),12);
A=Point(a*cos(M0),a*sin(M0));
B=Point(0,0);
SG=Segment(B,A);
M1=MeasureVariable(rand(0,12),12);
M2=MeasureVariable(rand(0,8),12);
P=Point(M1,M2);
ND=Translate(SG,B,P);
TR=Trace(ND);
M3=MeasureVariable(sign(p-1)*(M3+1),0);
M4=MeasureVariable(sign(abs([M2+a*sin(M0)]-[M2])),0);
M5=MeasureVariable(sign(p-1)*(M5+M4),0);
M6= MeasureVariable(2*a*M3/M5,4);



An Introduction to Logical Animation 427

Fig. 8. Buffon’s needle test

In the constructions, the LN(k)’s are a sequence of parallel lines with distance
1 between neighbors. Vector SG gives both the length and the direction of the
needle. Point P gives the position of the tail of the needle, and ND the whole
needle. [x] denotes the biggest integer not greater than x.

M4 equals 1 or 0 depending on whether or not the needle hits a line in {LN(k)}.
M3 denotes the number of needle drops and M5 the number of hits. If parameter
p takes a series of values increasing at a speed greater than 1, then M6 tends to
π probabilistically for large values of M3.

4 Features and Prospects

From the previous examples we may draw some conclusions, which can explain
why logical animation is a better choice for web-based education and training.

1. The construction can be stated in plain language step by step. The sequence
of constructions for creating the objects may be used to analyze the behavior
of different demos.

2. Logical animation is easy to create. One only need to design a basic pattern,
a basic motion and the relationship between the basics and others.

3. Logical animation costs less web resources. By our software SSP, when the
animation applets are transferred into html format, the file size of Examples
3.3 is 433k bytes, while for the other 6 examples, the sizes are 8k, 4k, 8k,
16k, 1k, 8k bytes respectively.
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4. Logical animation has nice interactivity. It only needs the user to drag some
point or adjust some parameter to control the pattern and style, which ben-
efits the user to make detailed investigation as if in a scientific experiment.

5. Logical animation can represent exact relations. Since it can display the exact
relations among the parameters and locations, logical animation is suitable
for exploring the rules and laws intuitively.

Logical animation has a history no more than three decades. There remain
many very important problems waiting for an answer. Here are some:

(1) How to describe the structure of a logical animation more intuitively? A
graph or matrix may be used to represent the relations among the objects.

(2) Any continuous function can be approximated by polynomials. Can logical
animations serve as a basis to approximate other animations?

(3) To meet different purposes in animation design, one needs to describe the
behavior of the animation to be designed. How to make the description formally?

(4) To make logical animation easy to learn and practice, what programming
language and platform should be designed? What standard may be proposed?

With the development of more powerful logical animation tools, the applica-
tion of logical animation may be further extended to web-based education and
training, telecommunication, commercial advertisement service, computer games
and internet games.
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Abstract. Many objects can be mathematically represented as smooth
surfaces with arbitrary topology, and smooth surface reconstruction from
images could be cast into a variational problem. The main difficulties are
the intrinsic ill-posedness of the reconstruction, image noise, efficiency
and scalability. In this paper, we discuss the reconstruction approaches
that use volumetric, graph-cut, and level-set optimization tools; and the
objective functionals that use different image information, silhouette,
photometry, and texture. Our discussion is accompanied by the imple-
mentations of these approaches on real examples.

1 Introduction

Surface reconstruction from multiple images is an old, fundamental yet diffi-
cult problem in computer vision, which has been extensively investigated over
the past three decades. The aim is to create a 3D model of a scene using 2D
images taken from arbitrary positions. An early application was robot navi-
gation. Recent developments in camera calibration and multimedia computing
have broadened interest in the problem, and its emphasis has shifted to generat-
ing more “appearance” views of the scene. Applications include virtual reality,
movie making, entertainment and so on. Different from early applications, these
require highly detailed surfaces that are constructed within a tolerable dura-
tion and limited memory. Such a task, however, is difficult to accomplish due
to the intrinsic ill-posedness of the reconstruction, image noise, efficiency and
scalability.

Traditional stereo vision has been based on image matching, using either
intensity-based (direct) methods or feature-based methods. This class of recon-
struction methods compute correspondences across images and then use trian-
gulation to recover a 3D structure. They are effective with video sequences,
and are especially successful when combined with graph-cut techniques to ob-
tain optimal solutions. However, they rely on the assumptions that views must
be close together and that correspondences must be maintained when spanning
large changes in viewpoint. Moreover, occlusion is often ignored between different
views.
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An alternative approach is the class of volumetric reconstruction methods.
They divide the 3D scene space into a set of small units (voxels) and construct
the scene by finding a subset of these units that are consistent with the input
images. Instead of matching features in an image space, they perform a search
in a scene space, and avoid several disadvantages of the first approach listed
above. However, this leads to more computational cost especially when a high
resolution is required. Moreover, the voxel suffers from noisy input and often
lacks enough details for final surfaces.

A recent elegant addition is surface representation by a dynamic hyper-
surface in 4D (3D space + 1D time). This representation is the basis of the
level-set reconstruction methods, and has the advantage of being able to repre-
sent surface evolution with topological changes. In order to ensure convergence,
they employ relatively high order derivatives in the dynamic surface evolution,
and often produce over-smoothed results.

In this paper, we provide a general discussion of methods developed primarily
for reconstructing natural, real world scenes using arbitrarily positioned off-the-
shelf cameras. Most of these methods require accurate geometric information of
the given cameras. We assume that the cameras have been fully calibrated, since
camera calibration is itself a challenging problem with a large literature devoted
to it [17]. The discussion is carried out according to visual cues of silhouette,
photometry and texture. Therefore, the cues from single view, such as shading,
focus, are not included, and medical imaging and active light methods are not
covered. Meanwhile, we mainly focus on recent approaches, including volumetric
methods, graph-cut methods and level-set methods. Several of our approaches
are discussed in detail, and real scene examples demonstrate the quality of these
reconstructions.

The remaining parts of the paper are organized as follows: Section 2 first
describes visual cues of surface reconstruction from multiple views; Section 3
describes several volumetric methods, and two of the most recent approaches,
Silhouette Carving and Robust Carving for non-Lambertian Objects, are focused
on. In section 4 and 5, we discuss energy minimization methods, including graph-
cut methods and level-set methods, and show details of two novel algorithms,
Surface Propagation and Surface Reconstruction by Integrating 3D and 2D Data
of Multiple Views. Finally, in section 6, we conclude the paper by providing
a general analysis among different reconstruction methods and possible future
research directions.

2 Visual Cues

2.1 Silhouette

Among different kinds of image cues, silhouette has been considered an effective
psychophysical clue to shape understanding [1]. The 2D silhouette is obtained
as a parallel or perspective projection of the object onto the image plane, which
is a binary image, with the value at a point indicating whether or not the visual
ray from the optical center through that image point intersects an object in the
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scene. The silhouette is usually obtained by the blue-screen technique, which
is a computationally simple task. The algorithms for obtaining the silhouette
are robust and perform well even with noisy images. Therefore, silhouette is a
favorite cue for surface reconstruction.

In scene space, combined with camera calibration information, each point in
the silhouette defines a ray that intersects the object at some unknown depth
along this ray. The union of the rays for all points in the silhouette defines a
generalized cone within which the 3D object must lie. The visual hull is then
defined as the intersection of the generalized cones associated with a set of cam-
eras, which is the maximal shape that gives the same silhouettes as the actual
object for all views outside the convex hull of the object [25]. The visual hull has
some interesting properties. First, it is a convex over-estimation of the object.
Second, it depends on the number of views, the positions of the viewpoints and
the complexity of the object. In practice, only a finite number of silhouettes are
combined to reconstruct the scene, resulting in a rough shape approximation.
Finally, it can be constructed efficiently, and thus the visual hull is often used
as a first estimation for further refinements of surface reconstruction.

2.2 Photometry

Photo-consistency is another important image cue, which is especially useful
when input images are grayscale or color rather than the binary images processed
by shape-from-silhouette methods. The additional photometric information is
used to improve the 3D reconstruction process. A set of images can be thought
of as defining a set of constraints on the scene, in that a valid 3D scene model
that is projected using the camera matrices associated with the input images
must produce synthetic images that are the same as the corresponding real
input images. The similarity measurement depends on the characteristics and the
accuracy of both the geometric model and the reflectance model. It is important
to notice here that photo-consistency does not guarantee a unique reconstruction,
since there may be many 3D scenes that are consistent with a particular set of
images.

In a simple case, when the reflectance model is assumed to be Lambertian,
photo-consistency is defined to measure the similarity of its visible projections on
the images. That is, a point on a surface is photo-consistent with a set of images
if, for each image in which the point is visible, the radiance of that point is equal
to the intensity of its projection pixel. Thus, photo-consistency can be defined
in a number of ways as described in [37, 24]. The simplest is to threshold the
variance of the intensities of the corresponding pixels. Experiments using other
definitions of photo-consistency have also been conducted. This consistency can
be defined as the standard deviation or, alternatively, the sum of the distances
between all intensities and their expected value:

σ2 =
1
K

∑
(Ii − I)2 or, σ =

1
K

∑
|Ii − I|

The photo hull is defined as the maximal shape that satisfies photo-consistency
with the original images in [24]. Similar to the visual hull, the photo hull has
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some interesting properties. First, it is an over-estimation of the object. Sec-
ond, it depends on the number of views, the positions of the viewpoints and the
complexity of the object. In practice, the photo hull may contain several fault ar-
eas over intensity-homogeneous regions. Finally, to justify the photo-consistency
criterion, a visibility test is necessary, which in turn is a difficult problem.

2.3 Texture

Texture correlation is the visual cue that is often used in the stereo matching
problem to find correspondences between images of two cameras. It is based
on a correlation of local windows or on matching of sparse features. Although
texture correlation is based on the Lambertian assumption, the extended ver-
sions, e.g. Zero-mean Normalized Cross-Correlation, are quite tolerant to some
non-Lambertian effects. This makes texture correlation quite useful when con-
structing textured surface with an unknown reflectance model. The correlation
between the locations at X1 = (x1, y1)T in the first image and at X2 = (x2, y2)T

in the second image is defined as:

ZNCCX1,X2 =
∑

i(I1(X1 + i)− I1)(I2(X2 + i)− I2)√∑
i(I1(X1 + i)− I1)2

∑
i(I2(X2 + i)− I2)2

where I1 and I2 are the means of pixel luminance for the given windows centered
at X1 and X2.

The biggest drawback concerning texture correlation is the need for an aggre-
gation window of a certain size. The optimal size of this window highly depends
on local variations of intensity and disparity. The window has to be both large,
in order to decrease the influence of noise, and small, in order to avoid projective
distortion effects. In practice, texture correlation is often combined with a cer-
tain kind of global optimization method, so that the errors caused by choosing
window size are controlled.

3 Volumetric Methods

Several scene representations are proposed in different kinds of reconstruction
methods, including 2D representations for view morphing [36], 3D volumetric
representations [37] and 4D light fields [26]. Among these representations, octree
[43] is space-efficient if the scene contains a large transparent or unseen region.
Disparity space representation [6, 19] is easy to determine the visibility. Layer
representation [2] divides the scene into a collection of parallel planar regions.
Volumetric representations have developed quickly since their first introduction
in the early 70’s in the context of 3D medical imaging. The exponential growth
of computational storage and processing during the last three decades have let
these representations become more and more useful in computer vision.

The key point of classical two-view stereo vision is finding correspondences
accurately and robustly. In the reconstruction process, these correspondences
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are converted to 3D points or lines in a world space. It has been put forward
that correspondence algorithms have some difficulty in reasoning occlusion in
image space [37]. Volumetric representations, on the other hand, are based on
a world space formulation for which occlusion can be properly solved. Input
images are considered as a set of constraints on the final surface, in that a valid
model should produce the same images in the given camera positions. Thus, a
hypothesized 3D scene model is tested by comparing the real and synthesized
images. Moreover, volumetric representations also provide powerful flexibility to
represent shapes of arbitrary topologies.

Volumetric representations assume that the scene lies in a big known bound-
ing box and divide this box into small regions [37]. The most common approaches
use regular cubes, called voxels, in Euclidean 3D space. The task of a volumet-
ric reconstruction algorithm then, is to identify a set of voxels that accurately
represent objects in the scene. For a scene without a transparent object, all
voxels can be classified into one of two states, transparent or opaque. Transpar-
ent voxels represent empty space. Opaque voxels represent objects in the scene.
Finally, surface voxels can be defined as opaque voxels which are adjacent to
a transparent voxel. After reconstruction, a polygonal surface of the scene is
constructed by the Marching Cubes algorithm [29]. Readers are referred to the
survey [39].

3.1 Volumetric Visual Hulls

As mentioned in the above section, with camera calibration information, all sil-
houette pixels in one image define a generalized cone within which the object
must lie. Then, the intersection of this set of generalized cones of all cameras
is the visual hull [25, 30, 31]. Thus, the computation of the volumetric visual
hull is quite straightforward. The determination about whether each voxel is
transparent or not is made by projecting this voxel onto all images and testing
whether it is contained by the silhouettes [43]. If all of its projection are fore-
ground pixels, the voxel is opaque; otherwise, it is transparent. For example, the
octree representation [40, 43, 14] starts with a low resolution voxel space. Each
voxel is then projected onto the reference views. If all the pixels in a voxel’s
projection in any image are background pixels, the voxel must be transparent,
so it is removed, or carved from the volume. If all the pixels in the voxel’s pro-
jection in all images are foreground pixels, the voxel is opaque, so it remains
in the volume. If in one of voxel’s projection, there exist both silhouette pixels
and background pixels. This voxel is divided into eight smaller voxels for further
testing. The algorithm ends when high resolution is reached or all voxels have
been classified.

The advantage of volumetric visual hull is its efficiency. It can be designed to
finish the task in real time. Its applications includes virtual reality, real time hu-
man motion modeling, constructing light fields and lumigraphs [16], and building
an initial coarse scene model [9]. Since the 90’s, visual hulls have been computed
from video streams originating from multiple cameras. There also exist more pre-
cise approaches [45,41] that evaluate local curvature along occluding contours.
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3.2 Silhouette Carving from Multiple Images of an Unknown
Background

To compute the visual hull of the object, one needs to know the 2D silhouettes,
which are often obtained by segmentation or the blue-screen technique. However,
these silhouette extraction algorithms rely on a known background. Compared
with them, our focus is given to a set of static images taken from different
positions and the background is arbitrarily unknown. We describe, in this section,
a novel method for visual hull computation (or silhouette extraction) for an
unknown background. The details are in [49].

The algorithm is based on the single-view consistency criterion. We consider
the continuity of the object in each image, as any geometric and radiometric
continuity in 3D necessarily induces a continuity in 2D. In other words, we make
a Color-Continuity assumption, as shown in Figure 1.

y

z

x

Fig. 1. Color-Continuity Assumption: Two adjacent 3D points on the object’s surface
with similar properties have similar projections on images, which often differ from those
of the background

Based on the above color-continuity assumption, the projections of the object
and the background are distinguishable. Thus, either foreground or background
is a union of a certain set of regions. We have converted the color-continuity into
geometric continuity, which guarantees that each reasonable part (region) fully
belongs to either the foreground or the background. We call this as single-view
consistency. Single-view consistency indicates that the silhouette comprises some
region boundaries, which helps to locate the silhouette.

To achieve the goal, we use multiple calibrated images. Each input image
is first segmented into regions. The algorithm is a space-carving-like algorithm,
which is initialized with a bounding box of the object and gradually carves the
inconsistent voxels. In each step, the algorithm first projects the current shape
onto the images to form its silhouettes, these silhouettes then shrinks to some
region boundaries to satisfy the single-view consistency criterion. The voxels
that are projected outside the shrinked silhouettes are carved. The algorithm is
iterated until all projections of the current shape are the union of certain regions.
The correctness is guaranteed since the shape is always an over-estimation of the
object during the process. An evolution example and results are in Figures 2-4.
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Fig. 2. Silhouette estimations in the first 9 steps: Note that they are over-estimations.
The new estimations are computed based on the previous estimations

(a)

(b)

(c)

"Toy" "Girl"

Fig. 3. Results of Silhouette Carving Algorithm: (a) Input images, (b) Segmentations,
(c) Output silhouettes

(a) (c)(b)
Fig. 4. Result of Silhouette Carving Algorithm: (a) One of input images, (b) Result
with color, (c) Result without color
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3.3 Volumetric Photo Hulls

Compared with silhouette, photo-consistency allows us to get a more accurate
model using original intensity information. The volumetric photo hull is com-
puted by gradually carving inconsistent voxels from an initial over-estimation.
An important question is whether a voxel that is photo-consistent in the final
model might become inconsistent in some step during the process. In fact, it
does not happen if a suitable consistency measure is used. The measure must
be monotonic [24]: If it finds a set of pixels to be inconsistent, it will find any
superset of these pixels to be also inconsistent. Since the algorithm only carves
opaque voxels, remaining opaque voxels become more and more visible as the
algorithm runs. Thus, if the monotonic consistency measure finds a voxel to be
inconsistent, this voxel will be inconsistent in the final model.

The remaining question is how to check the visibility, which is required for
photo-consistency computation. As inconsistent voxels are carved, opaque voxels
occlude each other from the input images in a complex and constantly chang-
ing pattern. Thus the visibility test has to be performed many times, resulting
in a very slow process. Computing visibility is a difficult problem and several
interesting variations have been developed.

Restricted Camera Placement. To simplify the visibility checking, Seitz and Dyer
[37] imposed what they called the ordinal visibility constraint on the camera
locations. It requires that all the voxels can be visited in a single scan in near-to-
far order relative to every camera, like [8]. A simple example is that the cameras
are placed on one side of the scene and voxels are visited in planes from near to
far. In this way, the transparency of all voxels that might occlude a given voxel is
determined before the given voxel is processed. It guarantees that the visibility
of a voxel stops changing before computing the photo-consistency criterion. This
results in an efficient Voxel Coloring algorithm [37]. Seitz and Dyer also showed
that topological sorting of voxels is possible for any camera configuration in
which the scene volume lies outside the convex hull of the cameras’ optical
centers. Thus, instead of a plane sweep at increasing distances from the cameras,
the scene space is partitioned into an expanding front of layers at increasing
distances from the cameras’ convex hull.

Arbitrary Camera Placement. Kutulakos and Seitz proposed the Space Carving
algorithm [24] that scans all voxels for photo-consistency by evaluating a plane
of voxels at a time. Different from Voxel Coloring, it checks photo-consistency of
each voxel in the current plane using a subset of cameras that are in front of the
plane. Also, to speed up and limit the number of plane orientations swept, the
planes that are parallel to the sides of the big bounding box are used. Compared
with Space Carving, Generalized Voxel Coloring [10] computes exact visibility.
It uses a data structure called item buffers (IBs) to record the closest surface
voxel along the visual ray of the corresponding pixel. These IBs are computed
by rendering all surface voxels, and the visibility of a voxel is found by the IBs of
its projections. For efficiency, IBs are updated only after all inconsistent voxels
of current surface are carved.
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3.4 Robust Carving for Non-lambertian Objects

Most existing techniques discussed in the above section are based on the Lam-
bertian assumption. However, this assumption is clearly insufficient for most
common materials that have more complex behaviors like highlight, reflection,
transparency or subsurface scattering. Handling all these effects in a unified way
still appears unachievable, as some of them duplicate the characteristics of other
objects. Here we focus on opaque and non-reflective objects and describe a gen-
eral reconstruction for non-Lambertian objects without any specific constraint.
The range of materials we consider is therefore broad: plastic, unpolished metal,
general cloth, skin, and so on. The details of the algorithm are in [47].

We extend the carving criterion by considering a general specularity that
introduces both reflectance models and robust statistics. We combine the Lam-
bertian model and the Phong model to describe both view-independent and
view-dependent effects: I(v) = α +

∑
βi(ri · v)σ, where v is the unit vector in

the viewing direction and ri is the unit vector in the mirror reflection (maximum
reflection) direction of each light source, with α and βi controlling the quantity
of the Lambertian and non-Lambertian effects. σ indicates the shininess of the
material. In practice, one light source is enough to model the reflection because
of the only significant highlight. Thus, we approximate r by the viewing direction
of the camera in which the point appears the brightest.

Like traditional photo-consistency, the criterion of multi-view consistency is
defined as the mean deviation between the colors predicted by the reflectance
model and the colors actually seen from the images:

MVC = min
α,βi,σ

{√
1
k

∑
(Ij − I(vj))2

}

where k is the number of visible cameras, with Ij being the projection on the
jth visible image and vj being the corresponding viewing direction.

Finally, we simply ignore the worst matches to allow a significant but not
major deviation from the Phong model. We handle image noise: we estimate the
criterion through a process that starts with the above classical form and refines
it by iteratively singling out samples whose distance to the current model is
higher than the others. Thus, the multi-view consistency is defined as follows:

MVCr = min
α,β,σ

{√
1

k − r

∑
wj(Ij − I(vj))2

}

with wj = 0, 1 and
∑

wj = k − r.

The algorithm includes two parts: We first use the multi-view and single-
view consistency criteria to robustly reconstruct an overall shape of the object
but lacks precision, which we call a photo-visual hull. We then use ZNCC to
refine this shape into a finely detailed surface. This second step relies on the
orientation information of the shape in the first step. We also introduce global
and local optimizations to construct the final shape [47], and the results are
shown in Figure 5 and 6.
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(a) (b) (c) (d) (e)

(a) (c) (d) (e)(b)

Fig. 5. Result of Robust Carving Algorithm: (a) Photo-visual hull, (b) Global opti-
mization, (c-d) Local optimization, (e) Comparison with inputs

(a) (b) (c) (d) (e)

(b) (c) (d) (e)(a)

Fig. 6. Result of Robust Carving Algorithm: (a) Photo-visual hull, (b) Global opti-
mization, (c-d) Local optimization, (e) Comparison with inputs

4 Graph Cut Methods

Surface reconstruction problems are often naturally expressed in terms of energy
minimization. The energy minimization formalism has several advantages. It
allows a clean specification of the problem to be solved, and naturally allows
the use of soft constraints, such as spatial coherence. However, sometimes the
energy is a non-convex function resulting in quite a heavy computational task.
Recently, graph cut optimization methods have been developed, which are to
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construct a specialized graph so that the minimum cut on this graph minimizes
the energy.

Suppose G = (V, E) is a directed graph with nonnegative edge weights that
has two special vertices called the source s and the sink t. A cut C = S, T is a
partition of the vertices in V into two disjoint sets S and T such that s ∈ S and
t ∈ T . The cost of the cut is the sum of costs of all edges that go from S to T :

c(S, T ) =
∑

u∈S,v∈T,(u,v)∈E
c(u, v).

The minimum cut is the cut with the minimum cost, which is a classic problem
that can be solved very efficiently by max flow algorithms [7] and [15].

Kolmogorov and Zabih [22] gave a characterization of the energy functions
that can be minimized by graph cuts. Although their work are restricted to func-
tions of binary variables, it is easily applicable to vision problems that involve
large numbers of labels. They claim that, if E is a function of n binary variables
from the class F2, i.e.,

E(x1, x2, . . . , xn) =
∑

i

Ei(xi) +
∑
i<j

Ei,j(xi, xj),

it is graph-representable if and only if each term Ei,j satisfies the inequality

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0).

The authors also mentioned a general method to construct a graph to solve the
problem. The readers are referred to [22] for the details.

The graph cut methods have been successfully used for a wide variety of vision
problems, including image restoration, stereo and motion, image synthesis, image
segmentation, voxel occupancy, multi-camera scene reconstruction, and medical
imaging. Related to surface reconstruction, Kolmogorov and Zabih [23], Roy [35],
and Ishikawa and Geiger [20] proposed direct discrete minimization formulations
that are solved by graph cuts. These approaches achieve disparity maps with
accurate contours but limited depth precision.

Boykov and Kolmogorov [3] proposed an extension to count for the geometric
properties in graph cuts. They show a method for building a grid graph using
data segmentation so that the cost of cuts is arbitrarily close to the length (area)
of the corresponding contours (surface) for anisotropic Riemannian metric. Paris
et al [34] also proposed a method to construct a graph to count for geometric in-
formation. This leads to an accurate global optimization. However their method
only reconstructs the front part of the objects as they handle z = f(x, y) surfaces.

Surface Reconstruction by Propagating 3D Stereo Data in Multiple
2D Images

Surface reconstruction is a natural extension of the point-based geometric meth-
ods, which robustly and accurately detect feature points to survive the geometry
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scrutiny of multiple images. Unfortunately, using 3D data from such a passive
system in the same way as range scanner data is often insufficient for a direct
surface reconstruction method. The main difficulties are that the 3D points are
sparse, irregularly distributed and missing in large areas. On the other hand,
most image-based surface reconstruction approaches equally consider all surface
points. They ignore the feature points although these points can be precisely
matched between multiple images and therefore lead to accurate 3D locations.
These difficulties and limitations motivated our approach [48], which constructs
surface representations from 3D stereo data [27], but using extra 2D image in-
formation that is still available from a passive system.

The idea is therefore to first construct small surface patches from some re-
liable 3D stereo points, then to progressively propagate these patches in their
neighborhood from images into the whole surface. The problem reduces to search-
ing for an optimal local surface patch going through a given set of 3D points
from images. Since the patch is local, it is reasonable to parameterize it as a
single valued height field z = h(x, y). Then, we may look for a surface patch by
minimizing a functional of type:

∫∫
D c(h(x, y))dxdy, where c(h(x, y)) is a cost

function accounting for the consistency of the surface point (x, y, h(x, y)) in
multiple images, for instance, either photo-consistency or cross-correlation. We
require that the optimized surface patch goes through the existing 3D points
if they do exist in the specified neighborhood. We are therefore looking for an
interpolating surface through the given 3D points. That is, to minimize∫∫

D
c(h(x, y))dx dy with h(x′i, y

′
i) = z′i,

where (x′i, y
′
i, z

′
i) is the local coordinates of a given stereo point. Finally, we follow

a recent discrete graph-cut approach that reaches sharp results [34]. We simply
add first derivative as smoothing terms

s(h(x, y)) =
∣∣∣∣∂h∂x (x, y)

∣∣∣∣ +
∣∣∣∣∂h∂y (x, y)

∣∣∣∣
to minimize the following functional

3D points

Input images

Propagation

Seeds

Local
optimization

Local update
Stereo

matching

Initialization

2D data

3D data

SurfaceLocal patch

Fig. 7. Surface Propagation is centered on the loop that progressively extends the
surface. Each iteration of the loop picks a seed (i.e. a 3D point), builds an optimal
patch surrounding it, updates the surface and selects new seeds for further propagation.
This process is initialized with 3D points computed by a stereoscopic method
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∫∫
D

(c(h(x, y)) + s(h(x, y))) dx dy with h(x′i, y
′
i) = z′i.

This constrained optimization for a local surface patch could be nicely handled
by a graph cut technique, and thus a detailed surface geometry is obtained by
keeping the best 3D and 2D information. A summary of the algorithm is given
in Figure 7, and samples reconstructions are shown in Figure 8.

(a) (b) (c) (d) (e)

Fig. 8. Results of Surface Propagation Algorithm: Each row shows the results for one
example: (a) One of the input images, (b) Reconstructed 3D points, (c,d) Surface shape
at two different viewpoints, (e) Surface shape with color

5 Level Set Methods

The level set method [33] is another approach to solve the energy minimization
problem : the surface is represented by an implicit function, and its evolution
toward the expected solution is driven by a steepest-descent defined by a partial
differential equation (PDE). The major distinction between this approach and
graph cuts is that the problem formulation of the former is continuous and
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implicit while that of the latter is discrete and parametric. The continuous energy
minimization approach is known to lead to smooth surfaces.

The level set method is introduced by Osher and Sethian [33] for capturing
moving interfaces (the object surface in our context). The time-evolving surface
Γ (t) is implicitly represented at time t by a level-set function φ(x, t), such that
φ(Γ (t), t) = 0 and x ∈ R3. The value of this function is positive when x is
outside the surface and negative inside. Differentiating the above equation with
respect to t, leads to the Euler PDE : φt + dΓ (t)

dt · ∇φ = 0, or

φt = −vn|∇φ|

where vn is the normal velocity of Γ (t), to be defined below. Topological changes,
accuracy, and stability of the PDE discretization are handled by using the proper
numerical schemes developed by Osher and Sethian [33].

The surface Γ is defined by a weighted minimal surface formulation : we seek
Γ minimizing the functional

p(Γ ) =
∫ ∫

Γ

wds

where w is positive (a weight) and ds is the infinitesimal surface element along
surface Γ . The solutions of the minimization are given by PDEs : the Euler-
Lagrange equation designated by ∇p = 0. The normal velocity is chosen by

vn = −∇p.n

where n is the normal of the evolving surface. Assuming that w = w(x), the
resulting expression of the Euler PDE is

φt = ∇w.∇φ+ w||∇φ||div ∇φ
||∇φ|| .

This minimal surface formulation was introduced by Caselles and al [4, 5] and
Kichenassamy and al [21] for 3D segmentation. They define w = g(||∇I||) where
g is a decreasing function of the image gradient modulus ||∇I||.

Faugeras and Keriven [12] developed a surface reconstruction from multiple
images by minimizing the functional

∫ ∫
wds using a weighting function w that

measures the consistency of the reconstructed objects reprojected onto 2D im-
ages. This measure is taken to be a function of the correlation functions ρ(x,n)
between pairs of 2D images. The correlation function is dependent not only on
the position x of the object surface, but also its orientation n.

In a different context for surface reconstruction from dense and regular sets
of scanned 3D point data, Zhao et al. [46] proposed to minimize the functional∫ ∫

wds using a weighting function w to be the distance function of any surface
point x to the set of 3D data points. Given a set of data points P and d(x,P)
the Euclidean distance of the point x to P, the weighting function is simply
w(x) = dp(x,P), where p is a scaling factor.
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Surface Reconstruction by Integrating 3D and 2D Data of Multiple
Views

In this section, we describe a variational approach for surface reconstruction [28]
that combines several types of the information, such as 3D stereo points, 2D
image and silhouettes. The general methodology that we follow is inspired by all
the works referenced in the previous paragraph.

It is important to emphasize that the set of 3D points considered here is not
from scanned data like [18, 42, 11, 13, 32, 46, 44], but is derived from the given
set of images by the first step of our surface reconstruction method using stereo
and bundle-adjustment methods [27]. The “passive” 3D points are difficult to
reconstruct by a surface as they are sparser and irregularly distributed and
have more missing parts than the “active” data. The goal is to improve the
insufficiency of 3D stereo data by using original 2D image information. Also a
pure 2D approach like [12,37,24] is not satisfactory because of its local minima.
We introduce two new intrinsic functionals

∫ ∫
wds which take into account both

3D data points and 2D original image informations, unlike previous works that
consider either only 2D image information [12] or only scanned 3D data [46].

The first functional is defined by a weight w, which is a combination of 3D
points and the visual hull defined implicitly by the silhouettes in the images :

w(x) = min(d(x,P), ε+ d(x,S)),

where d is the 3D Euclidean distance function; P is the set of 3D stereo points;
S is the surface of the intersections of the cones defined by the silhouettes (the
visual hull); and ε is a small constant favoring 3D points over the visual hull in
the neighborhood of 3D points.

If the silhouettes are not available, a second functional is defined by a weight
w, which is a combination of 3D points and photo-consistency/correlation func-
tion :

w(x) = d(x,P) + λe(x,n, I)

where e(x,n, I) is a consistency measure of the reconstructed object in the origi-
nal 2D image space. This second method assume that background and foreground
colors are different.

a. b. c. d. e.

Fig. 9. From left to right : (a) One of the original images; Surfaces computed from (b)
3D points only, (c) 3D points and silhouettes, (d) 3D points and photo-consistency,
and (e) silhouettes only
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Both methods are initialized by the surface evolution obtained with w =
d(x,P), and the surface will not be modified in the immediate neighborhood
of P. We also propose a “bounded regularization” method to accelerate the
calculations thanks to the stability analysis in [28]. Reconstructed surfaces and
experiments summary are shown in Figures 9 and 10.

Fig. 10. Each row illustrates one example of reconstruction by showing two frames
of the sequence, the reconstructed quasi-dense 3D points [27], Gouraud-shaded surface
geometry, and the textured-mapped surface geometry. The Lady and Bust examples
are reconstructed from 3D points only. The Apple example is reconstructed from 3D
points and silhouettes

6 Conclusion

In this paper, we have discussed several recent approaches of surface reconstruc-
tions. They are mainly developed for reconstructing natural, real world scene
using arbitrarily positioned off-the-shelf cameras. The discussion has been car-
ried out according to visual cues of silhouette, photometry and texture. Mean-
while, we mainly focus on volumetric methods, graph-cut methods and level-set
methods.

We have provided detailed description of the Silhouette Carving algorithm,
which is based on the single-view consistency criterion to construct the visual
hull without silhouettes. It is a volumetric method that gradually carves incon-
sistent voxels by projecting them onto the image and checking the continuity
of the image regions. Although it only constructs a rough over-estimation, it
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is computationally efficient, and can be used as the initial shape for further
refinements.

The Robust Carving algorithm aims at constructing surface geometries for
non-Lambertian objects. It extends the traditional carving criterion by consid-
ering a general specularity that introduces both reflectance models and robust
statistics. It also combines the Lambertian model and the Phong model to de-
scribe both view-independent and view-dependent effects. This results in a multi-
view consistency criterion, which has been proved to be quite robust for real scene
reconstructions.

Finally, we describe two energy minimization methods that combine both 3D
stereo points and 2D image to obtain a more accurate reconstruction. This is
motivated by the fact that only robust and accurate feature points that survived
the geometry scrutiny of multiple images are reconstructed in space. The shape
surface to be reconstructed should be constrained to go through these points.
The density insufficiency and the inevitable holes in the stereo data should be
filled in by using information from multiple images. These two methods are
quite different from each other, since they are based on different formulations.
The Surface Propagation algorithm employs a graph cut method to construct
local surface patches, then use these patches to propagate the reliable stereo
points into the whole surface, resulting in a sharp reconstruction. The Surface
Integration algorithm combines multiple data within the level set framework,
which produces a more smooth surface and is robust to handle the errors of the
inputs.

Future work may be carried out to combine more additional image infor-
mation, such as the shading and focus, and to exploit more accurate reflection
models. An more efficient approach is also needed for a fast reconstruction of
detailed surface geometry.
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