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Preface

The 8th International Conference on Theory and Applications of Satisfiability
Testing (SAT 2005) provided an international forum for the most recent research
on the satisfiablity problem (SAT).

SAT is the classic problem of determining whether or not a propositional
formula has a satisfying truth assignment. It was the first problem shown by
Cook to be NP-complete. Despite its seemingly specialized nature, satisfiability
testing has proved to extremely useful in a wide range of different disciplines,
both from a practical as well as from a theoretical point of view. For example,
work on SAT continues to provide insight into various fundamental problems in
computation, and SAT solving technology has advanced to the point where it
has become the most effective way of solving a number of practical problems.

The SAT series of conferences are multidisciplinary conferences intended to
bring together researchers from various disciplines who are interested in SAT.
Topics of interest include, but are not limited to: proof systems and proof com-
plexity; search algorithms and heuristics; analysis of algorithms; theories beyond
the propositional; hard instances and random formulae; problem encodings; in-
dustrial applications; solvers and other tools.

This volume contains the papers accepted for presentation at SAT 2005. The
conference attracted a record number of 73 submissions. Of these, 26 papers
were accepted for presentation in the technical programme. In addition, 16 pa-
pers were accepted as shorter papers and were presented as posters during the
technical programme. The accepted papers and poster papers cover the full range
of topics listed in the call for papers.

We would like to thank a number of people and organizations: Ian Miguel,
the Local Chair who helped us organize the conference remotely; our generous
sponsors who helped us to keep costs down, especially for students; Daniel Le
Berre and Laurent Simon for once again organizing the SAT Solver Competition;
and Massimo Narizzano and Armando Tacchella for the QBF Solver Evaluation.
We would also like to thank the members of the Programme Committee and the
additional referees who contributed in the paper-reviewing process.

St Andrews Fahiem Bacchus, Toby Walsh
June 2005
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Solving Over-Constrained Problems with
SAT Technology�

Josep Argelich1 and Felip Manyà2

1 Computer Science Department, Universitat de Lleida,
Jaume II, 69, E-25001 Lleida, Spain

josep@eup.udl.es
2 Artificial Intelligence Research Institute (IIIA-CSIC),

Campus UAB, 08193 Bellaterra, Spain
felip@iiia.csic.es

Abstract. We present a new generic problem solving approach for over-
constrained problems based on Max-SAT. We first define a clausal form
formalism that deals with blocks of clauses instead of individual clauses,
and that allows one to declare each block either as hard (i.e., must be
satisfied by any solution) or soft (i.e., can be violated by some solu-
tion). We then present two Max-SAT solvers that find a truth assignment
that satisfies all the hard blocks of clauses and the maximum number
of soft blocks of clauses. Our solvers are branch and bound algorithms
equipped with original lazy data structures; the first one incorporates
static variable selection heuristics while the second one incorporates dy-
namic variable selection heuristics. Finally, we present an experimental
investigation to assess the performance of our approach on a representa-
tive sample of instances (random 2-SAT, Max-CSP, and graph coloring).

1 Introduction

The SAT-based problem solving approach presents some limitations when solv-
ing many real-life problems due to the fact that it only provides a solution when
the formula that models the problem we are trying to solve is shown to be sat-
isfiable. Nevertheless, in many combinatorial problems, some potential solutions
could be acceptable even when they violate some constraints. If these violated
constraints are ignored, solutions of bad quality are found, and if they are treated
as mandatory, problems become unsolvable. This is our motivation to extend the
SAT formalism to solve over-constrained problems. In such problems, the goal
is to find the solution that best respects the constraints of the problem.

In this paper we will consider that all the constraints are crisp (i.e., they
are either completely satisfied or completely violated), but constraints can be

� Research partially supported by projects TIN2004-07933-C03-03 and TIC2003-00950
funded by the Ministerio de Educación y Ciencia. The second author is supported
by a grant Ramón y Cajal.

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 J. Argelich and F. Manyà

either hard (i.e., must be satisfied by any solution) or soft (i.e., can be violated
by some solution). A solution best respects the constraints of the problem if it
satisfies all the hard constraints and the maximum number of soft constraints. In
the literature of over-constrained problems, fuzzy constraints (i.e., intermediate
degrees of satisfaction are allowed), as well as other ways of defining that a
solution best respects the constraints of the problem, are considered. We invite
the reader to consult [12] for a recent survey on different CSP approaches to
solving over-constrained problems.

Given a combinatorial problem which can be naturally defined by a set of
constraints over finite-domain variables, we have that each constraint is often
encoded as a set (block) of Boolean clauses in such a way that a constraint
is satisfiable if all those clauses are satisfied by some truth assignment and is
violated if at least one of those clauses is not satisfied by any truth assign-
ment. Thus, in contrast to the usual approach, the concept of satisfaction in
SAT-encoded over-constrained problems refers to blocks of clauses instead of in-
dividual clauses. This led in turn to design Max-SAT-like solvers that deal with
blocks of clauses instead of individual clauses, and exploit the new structure of
the encodings.

In this paper we present a new generic problem solving approach for over-
constrained problems based on Max-SAT. We first define a clausal form formal-
ism that deals with blocks of clauses instead of individual clauses, and that allows
one to declare each block either as hard (i.e., must be satisfied by any solution)
or soft (i.e., can be violated by some solution). We call soft CNF formulas to this
new kind of formulas. We then present two Max-SAT solvers that find a truth
assignment that satisfies all the hard blocks of clauses and the maximum number
of soft blocks of clauses. Our solvers are branch and bound algorithms equipped
with original lazy data structures; the first one incorporates static variable se-
lection heuristics while the second one incorporates dynamic variable selection
heuristics. Finally, we present an experimental investigation to assess the perfor-
mance of our approach on a representative sample of instances (random 2-SAT,
Max-CSP, and graph coloring).

Problem solving of over-constrained problems with Max-SAT local search
algorithms has been investigated before in [8, 4]. In that case, the authors dis-
tinguish between hard and soft constraints at the clause level, but they do not
incorporate the notion of blocks of hard and soft clauses. The notion of blocks of
clauses provides a more natural way of encoding soft constraints. Besides, to the
best of our knowledge, the treatment of soft constraints with exact Max-SAT
solvers has not been considered before.

The paper is structured as follows. In Section 2 we introduce the formalism
of soft CNF formulas. In Section 3 we describe a solver for soft CNF formulas
with static variable selection heuristics. In Section 4 we describe a solver for soft
CNF formulas with dynamic variable selection heuristics. In Section 5 we report
the experimental investigation we performed to assess the performance of our
formalism and solvers. Finally, we present some concluding remarks.
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2 Soft CNF Formulas

We define the syntax and semantics of soft CNF formulas, which are an extension
of Boolean clausal forms that we use to encode over-constrained problems.

Definition 1. A soft CNF formula is formed by a set of pairs (clause, label),
where clause is a Boolean clause and label is either hi or si for some i ∈ N. A
hard block of a soft CNF formula is formed by all the pairs (clause, label) with
the same label hi, and a soft block is formed by all the pairs (clause, label) with
the same label si.

All the clauses with the same label hi (si) model the same hard (soft) con-
straint.

Definition 2. A truth assignment satisfies a hard block of a soft CNF formula
if it satisfies all the clauses of the block. A truth assignment satisfies a soft
CNF formula φ if it satisfies all the hard blocks of φ. We say then that φ is
satisfiable. A soft CNF formula φ is unsatisfiable if there is no truth assignment
that satisfies all the the hard blocks of φ. A truth assignment satisfies a soft block
if it satisfies all the clauses of the block. A truth assignment is a solution to a soft
CNF formula φ if it satisfies all the hard blocks of φ and the maximum number
of soft blocks.

Definition 3. The Soft-SAT problem is the problem of finding a solution to a
Soft CNF formula.

Example 1. We want to solve the problem of coloring a graph with two colors
in such a way that the minimum number of adjacent vertices are colored with
the same color. If we consider the graph with vertices {v1, v2, v3} and with edges
{(v1, v2), (v1, v3), (v2, v3)}, that problem is encoded as a Soft-SAT instance as
follows: (i) the set of propositional variables is {v1

1 , v2
1 , v1

2 , v2
2 , v1

3 , v2
3}; the intended

meaning of variable vj
i is that vertex vi is colored with color j; (ii) there is one

hard black formed by the following at-least-one and at-most-one clauses:

(v1
1∨v2

1 ,h1),(¬v1
1∨¬v2

1 ,h1),(v1
2∨v2

2 ,h1),(¬v1
2∨¬v2

2 ,h1),(v1
3∨v2

3 ,h1),(¬v1
3∨¬v2

3 ,h1);

and (iii) there is a soft block for every edge:

(¬v1
1 ∨ ¬v1

2 , s1), (¬v2
1 ∨ ¬v2

2 , s1),
(¬v1

1 ∨ ¬v1
3 , s2), (¬v2

1 ∨ ¬v2
3 , s2),

(¬v1
2 ∨ ¬v1

3 , s3), (¬v2
2 ∨ ¬v2

3 , s3).

The use of blocks is relevant for two reasons. On the one hand, it provides to
the user information in a more natural way about constraint violations. On the
other hand, it allows us to get more propagation at certain nodes (this point is
discusses in the next section). Besides, the structure of blocks will be important
when we extend our formalism to deal with fuzzy constraints.
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3 Soft-SAT-S: A Solver with Static Variable Selection
Heuristic

The space of all possible assignments for a soft CNF formula φ can be represented
as a search tree, where internal nodes represent partial assignments and leaf
nodes represent complete assignments. The branch and bound algorithm for
solving the Max-SAT problem of soft CNF formulas with static variable selection
heuristics that we have designed and implemented, called Soft-SAT-S, explores
that search tree in a depth-first manner. At each node, the algorithm backtracks
if the current partial assignment violates some clause of the hard blocks, and
applies the one-literal rule1 to the literals that occur in unit clauses of hard
blocks.2 If the current partial assignment does not violate any clause of the
hard blocks, the algorithm compares the number of soft blocks unsatisfied by
the best complete assignment found so far, called upper bound (ub), with the
number of soft blocks unsatisfied by the current partial assignment, called lower
bound (lb). Obviously, if ub ≤ lb, a better assignment cannot be found from this
point in search. In that case, the algorithm prunes the subtree below the current
node and backtracks to a higher level in the search tree. If ub > lb, it extends the
current partial assignment by instantiating one more variable, say p, which leads
to create two branches from the current branch: the left branch corresponds to
instantiate p to false, and the right branch corresponds to instantiate p to true.
In that case, the formula associated with the left (right) branch is obtained from
the formula of the current node by applying the one-literal rule [11] using the
literal ¬p (p). The value that ub takes after exploring the entire search tree
is the minimum number of soft blocks that cannot be satisfied by a complete
assignment.

In branch and bound Max-SAT algorithms like [2, 17], the lower bound is
the sum of the number of unsatisfied clauses by the current partial assignment
plus an underestimation of the number of clauses that will become unsatisfied
if we extend the current partial assignment into a complete assignment, which
is calculated taking into account the inconsistency counts of the variables not
yet instantiated. The concept of inconsistency counts cannot be easily extended
to soft blocks3 and our lower bound is not so powerful as the lower bounds
of [2, 15, 17, 18]. In Soft-SAT-S, like in [2, 17], the initial lower bound is obtained
with a GSAT-like [14] local search algorithm.

In Section 5 we define the notion of inconsistency counts for SAT encoded
Max-CSP and graph coloring instances by exploiting the structure hidden in
the encoding, and we are able to define a lower bound that incorporates an

1 Given a literal ¬p (p), the one-literal rule [11] deletes all the clauses containing the
literal ¬p (p) and removes all the occurrences of the literal p (¬p).

2 Observe that this pruning technique cannot be applied to exact Max-SAT solvers
that deal with individual clauses; in Max-SAT solvers each clause can be viewed as
a soft block.

3 This is due to the fact that a block is unsatisfied by an interpretation I when I does
not satisfy one clause of the block.
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underestimation of the number of soft blocks that will become unsatisfied if we
extend the current partial assignment into a complete assignment.

When branching is done, algorithms for Max-SAT like [2, 17, 3] apply the
one-literal rule (simplifying with the branching literal) instead of applying unit
propagation (i.e., the repeated application of the one-literal rule until a satura-
tion state is reached) as in the Davis-Putnam-style [6] solvers for SAT. If unit
propagation is applied at each node, the algorithm can return a non-optimal
solution. For example, if we apply unit propagation to {p,¬q,¬p ∨ q,¬p} using
the unit clause ¬p, we derive one empty clause while if we use the unit clause
p, we derive two empty clauses. However, when the difference between the lower
bound and the upper bound is one, unit propagation can be safely applied, be-
cause otherwise by fixing to false any literal of any unit clause we reach the
upper bound. Soft-SAT-S performs unit propagation in that case too. Moreover,
as pointed out before, Soft-SAT-S applies the one-literal rule when a clause of
a hard block becomes unit. This propagation, which leads to substantial perfor-
mance improvements, cannot be safely applied in Max-SAT solvers like [2, 17, 3],
and is a key feature of our approach.

Our current version of Soft-SAT-S incorporates two static variable selection
heuristics:

– MO: We instantiate first the variables that appears Most Often (MO). Ties
are broken using the lexicographical order.

– csp: In SAT encodings that model CSP variables, each CSP variable with
a domain of size k is represented by a set of k Boolean variables x1, . . . , xk.
We associate a weight to each one of these sets: the sum of the total number
of occurrences of each variable of the set. We order the sets according to
such weight. Heuristic csp instantiates, first and in lexicographical order, the
Boolean variables of the set with the highest weight. Then, it instantiates, in
lexicographical order, the Boolean variables of the set with the second highest
weight, and so on. This heuristic is used, in the experimental investigation, to
solve problems with finite-domain variables (Max-CSP and graph coloring).
The idea behind this heuristic is to instantiate first the CSP variables that
occur most often. This way, we emulate an n-ary CSP branching by means
of a binary branching (i.e., we consider all the possible values of the CSP
variable under consideration before instantiating another CSP variable). As
we will see in the experiments, we get some performance improvements for
the fact of dealing with n-ary branchings.

The fact of using static variable selection heuristics allows us to implement
extremely efficient data structures for representing and manipulating soft CNF
formulas. Our data structures take into account the following fact: we are only
interested in knowing when a clause has become unit or empty. Thus, if we have a
clause with four variables, we do not perform any operation in that clause until
three of the variables appearing in the clause have been instantiated; i.e., we
delay the evaluation of a clause with k variables until k − 1 variables have been
instantiated. In our case, as we instantiate the variables using a static order, we
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do not have to evaluate a clause until the penultimate variable of the clause in
the static order has been instantiated.

The data structures are defined as follows: For each clause we have a pointer
to the penultimate variable of the clause in the static order, and the clauses of
a soft CNF formula are ordered by that pointer. We also have a pointer to the
last variable of the clause. When a variable p is fixed to true (false), only the
clauses whose penultimate variable in the static order is ¬p (p) are evaluated.
This approach has two advantages: the cost of backtracking is constant (we do
not have to undo pointers like in adjacency lists) and, at each step, we evaluate
a minimum number of clauses.

4 Soft-SAT-D: A Solver with Dynamic Variable Selection
Heuristic

The second solver we have designed and implemented is Soft-SAT-D, which is like
Soft-SAT-S except for the fact that its variable selection heuristics are dynamic.
This fact, in turn, did not allow us to implement the data structures we have
described in the previous section. The data structures implemented in Soft-SAT-
D are the two-watched literal data structures of Chaff [13]. They are also lazy
data structures, but are not so efficient because here we need to maintain the
watched literals.

Our current version of Soft-SAT-D incorporates two dynamic variable selec-
tion heuristics:

– MO: We instantiate first the variables that appears Most Often (MO). Ties
are broken using the lexicographical order. Observe that we do not use the
variable that appears most often in minimum size clauses (heuristic MOMS)
because this is difficult to know with the lazy data structures of Chaff. How-
ever, most of the instances we used in the experimental investigation contain
a big amount of binary clauses.

– MO-csp: This is the dynamic version of heuristic csp of Soft-SAT-S. We
associate a weight to each set of free Boolean variables that encode a same
CSP variable: the sum of the total number of occurrences of each variable of
the set that has not been yet instantiated. We select the set with the highest
weight and instantiate its variables in lexicographical order. Like in heuristic
csp, we emulate an n-ary branching.

5 Experimental Investigation

We next report the experimental investigation we conducted to evaluate the per-
formance of our problem solving approach. All the experiments were performed
on a 2GHz Pentium IV with 512 Mb of RAM under Linux.

We performed experiments with ssoft-SAT solvers as well as with weighted
Max-SAT solvers and a Max-CSP solver [10]. The solvers used are the following
ones:
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– Soft-SAT-S with heuristic MO and csp.
– Soft-SAT-D with heuristic MO and MO-csp.
– WMax-SAT: It is a weighted Max-SAT solver that we have implemented.

WMax-SAT uses the code of Soft-SAT but does not take into account the
notion of hard and soft block; conceptually, WMax-SAT is like Soft-SAT but
every clause is treated as a different soft block. The lower bound of WMax-
SAT is better than the lower bound of Soft-SAT because it is the sum of
the number of unsatisfied clauses by the current partial assignment plus an
underestimation of the number of clauses that will become unsatisfied if we
extend the current partial assignment into a complete assignment, which is
calculated taking into account the inconsistency counts of the variables not
yet instantiated. WMax-SAT incorporates the following variable selection
heuristic: It instantiates the variables taking into account the number of
occurrences in decreasing order (MO).

– BF-improved: It is an improved version of Borchers and Furman’s algo-
rithm [3] described in [2]. It uses the popular dynamic variable selection
heuristics MOMS (most often in minimum size clauses).

– PFC-MPRDAC: This is a highly optimized solver from the Constraint Pro-
gramming community for solving binary Max-CSP problems [10].

The benchmarks we used in our experiments are:

– Random 2-SAT instances: We have generated random 2-SAT instances to
which we have then assigned, randomly and uniformly, a label corresponding
to a hard block or to a soft block. The generator has as parameter the number
of blocks: one block is declared to be hard and the rest of blocks are declared
to be soft.

– Max-CSP instances: We used SAT-encoded random binary CSPs and solved
the Max-CSP problem (the problem of finding an assignment to the vari-
ables that satisfies as many constraints as possible). We used Max-CSP in-
stances because they have a natural representation using the formalism of
soft CNF formulas. The instances were encoded using the support encoding4

and generated with a generator of uniform random binary CSPs5 —designed

4 In the support encoding [9, 7], the idea is to encode into clauses the support for a
value instead of encoding conflicts. The support for a value j of a CSP variable Xi

across a constraint is the set of values of the other variable in the constraint which
allow Xi = j. If v1, v2, . . . , vk are the supporting values of variable Xl for Xi = j,
we add the clause ¬xij ∨ xlv1 ∨ xlv2 ∨ · · · ∨ xlvk (called support clause). There is
one support clause for each pair of variables Xi, Xl involved in a constraint, and
for each value in the domain of Xi. We need a similar clause in each direction, one
for the pair Xi, Xl and one for Xl, Xi. Besides, we need to add the at-least-one and
at-most-one clauses for each CSP variable to ensure that each CSP variable takes
exactly one value of its domain. All the at-least-one and at-most-one clauses were
encoded as a hard block, and each set of clauses that encodes a CSP constraint was
encoded as a different soft block.

5 http://www.lirmm.fr/˜bessiere/generator.html
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and implemented by Frost, Bessière, Dechter and Regin— that implements
the so-called model B [16]: in the class 〈n, d, p1, p2〉 with n variables of do-
main size d, we choose a random subset of exactly p1n(n − 1)/2 constraints
(rounded to the nearest integer), each with exactly p2d

2 conflicts (rounded
to the nearest integer); p1 may be thought of as the density of the problem
and p2 as the tightness of constraints.

– Graph coloring instances: we used unsatisfiable graph coloring instances and
the problem we solved was to find a coloring that minimizes the number of
adjacent vertices with the same color. We used individual instances from the
graph coloring symposium celebrated in CP-2002, and randomly generated
instances using the generator of Culberson [5]. We use the generator with
option IID (independent random edge assignment). The parameters of the
generator are: number of vertices (n), optimum number of colors to get a
valid coloring (k), and number of colors we use to color the graph (c).

All the benchmarks encoded as Soft CNF formulas were also encoded as
Boolean weighted Max-SAT instances in order to compare our solvers with
Boolean weighted Max-SAT solvers. The encoding is as follows: A soft block
si formed by a set of clauses {C1, . . . , Cm} is replaced with the set of clauses
{si; 1, C1 ∨ ¬si; 2, . . . , Cm ∨ ¬si; 2}, where si is a new Boolean variable and 1
and 2 are weights associated with the clauses. Moreover, we associate a weight
w +1, where w is the sum of weights of the clauses that encode soft blocks, with
each clause belonging to a hard block. Any truth assignment where the sum of
unsatisfied clauses is less than w + 1 is a feasible solution. A solution of a soft
CNF formula corresponds to a feasible solution of its weighted Max-SAT encod-
ing with the minimum sum of weights of unsatisfied clauses. Actually, with our
encoding, the minimum sum of weights of unsatisfied clauses is identical to the
minimum number of soft blocks unsatisfied by a truth assignment that satisfies
all the hard blocks.

The Max-CSP instances and the graph coloring instances were also encoded
as binary CSP using the format used by PFC-MPRDAC [10], which consists of
defining a constraint network by means of a list of nogoods. We believe that it
is important to compare our approach with the problem solving approach for
over-constrained problems developed in the constraint programming community
because they have worked for a long time on this topic and, in contrast to the
SAT community, it is a very active research subject.

5.1 Experiments with Random 2-SAT Instances

We compared Soft-SAT-S, Soft-SAT-D and WMax-SAT on random 2-SAT in-
stances using heuristic MO.6 Figure 1 shows the results for instances with 50
variables and with a number of clauses ranging from 200 to 430, and Figure 2
shows the results for instances with a number of variables ranging from 50 to 100

6 We tried also to solve the instances with BF-improved, but the results were not
competitive.
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Fig. 1. Random 2-SAT instances with 50 variables and with a number of clauses rang-
ing from 200 to 430
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Fig. 2. Random 2-SAT instances with a number of variables ranging from 50 to 100
and with 300 clauses

and with 300 clauses. In both figures we give mean and median time, and each
data point corresponds to the time needed to solve a set of 100 instances. In Fig-
ure 1 we observe that, in general, Soft-SAT-D is slightly better that Soft-SAT-S,
and in Figure 2 we observe that Soft-SAT-D is superior than Soft-SAT-S. WMax-
SAT is much worse: Even the fact of having a better lower bound in WMax-SAT
does not compensate the extra propagation achieved by exploiting the fact that
Soft-SAT knows which clauses encode hard constraints.

5.2 Experiments with Max-CSP Instances

In this section we describe a number of experiments we performed on random
binary CSP. For instances with CSP variables with domain size greater than 2,
we defined a lower bound that incorporates an underestimation of the number of
soft blocks that will become unsatisfied if we extend the current partial assign-
ment into a complete assignment. Each CSP variable with a domain of size k is
represented by a set of k Boolean variables x1, . . . , xk in a SAT encoding. The
inconsistency count associated with a Boolean variable xi (1 ≤ i ≤ k) is the
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Table 1. Comparison of Soft-SAT-S without underestimation and Soft-SAT-S with
underestimation on Max-CSP instances. Time in seconds

Soft-SAT-S Soft-SAT-S
(with underestimation) (without underestimation)

〈n, d, p1, p2〉 mean median mean median

〈10, 15, 45/45, 190/225〉 12.25 10.31 605.03 547.52

〈12, 13, 60/66, 130/169〉 17.94 16.21 2256.91 2010.26

〈13, 8, 78/78, 50/64〉 12.51 11.28 1028.91 973.41

〈15, 10, 50/105, 75/100〉 1.63 1.39 77.54 57.97

〈17, 5, 110/136, 18/25〉 3.35 2.83 394.82 343.61

〈18, 5, 80/153, 18/25〉 0.86 0.76 53.64 46.52

〈20, 5, 90/190, 18/25〉 3.06 2.42 406.53 378.00

〈22, 6, 70/231, 28/36〉 7.10 4.13 910.97 493.15

〈23, 4, 150/253, 12/16〉 16.25 13.59 4615.67 3797.04

〈25, 3, 160/300, 7/9〉 2.66 2.09 142.80 112.51

number of soft blocks violated when xi is set to true. The inconsistency count
associated with a CSP variable X, which is encoded by the Boolean variables
x1, . . . , xk, is the minimum of the inconsistency counts of xi (1 ≤ i ≤ k). As
underestimation for the lower bound, we consider exactly one CSP variable for
each soft block and take the sum of the inconsistency counts of such variables.

In Table 1 we compare Soft-SAT-S without underestimation with Soft-SAT-S
with underestimation for sets of 100 instances of a representative sample of Max-
CSP instances. The first column shows the parameters given to the generator of
random binary CSPs, and the remaining columns show the experimental results
obtained. For each set we give the mean and median time needed to solve an
instance of the set. The heuristic used is csp. Table 2 shows the number of
backtracks instead of the CPU time for the same instances. In both cases we

Table 2. Comparison of Soft-SAT-S without underestimation and Soft-SAT-S with
underestimation on Max-CSP instances. Mean and median number of backtracks

Soft-SAT-S Soft-SAT-S
(with underestimation) (without underestimation)

〈n, d, p1, p2〉 mean median mean median

〈10, 15, 45/45, 190/225〉 2.619.160 2.257.644 807.841.884 735.579.551

〈12, 13, 60/66, 130/169〉 3.432.624 3.005.897 >2.000.000.000 >2.000.000.000

〈13, 8, 78/78, 50/64〉 2.450.851 2.129.608 1.093.257.769 1.168.573.259

〈15, 10, 50/105, 75/100〉 339.848 267.922 141.343.132 96.429.278

〈17, 5, 110/136, 18/25〉 611.488 521.378 564.618.781 520.298.372

〈18, 5, 80/153, 18/25〉 175.118 145.393 114.017.436 92.915.266

〈20, 5, 90/190, 18/25〉 681.346 516.087 601.459.493 631.196.627

〈22, 6, 70/231, 28/36〉 1.750.568 934.992 416.141.039 513.696.823

〈23, 4, 150/253, 12/16〉 2.513.565 2.075.907 >2.000.000.000 >2.000.000.000

〈25, 3, 160/300, 7/9〉 424.359 318.227 337.120.904 262.771.567
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Table 3. Comparison of Soft-SAT-S, PFC-MPRDAC and WMax-SAT on Max-CSP
instances. Time in seconds

Soft-SAT-S PFC-MPRDAC WMax-SAT

〈n, d, p1, p2〉 mean median mean median mean median

〈10, 8, 45/45, 48/64〉 0.33 0.32 0.19 0.19 11.95 11.41

〈12, 6, 66/66, 27/36〉 0.48 0.47 0.23 0.23 45.50 45.48

〈14, 5, 91/91, 18/25〉 0.82 0.77 0.35 0.35 188.75 193.30

〈16, 4, 120/120, 12/16〉 0.37 0.32 0.22 0.22 275.45 276.25

〈18, 3, 153/153, 6/9〉 1.00 0.93 0.31 0.31 68.04 62.71

〈15, 6, 60/105, 27/36〉 0.25 0.24 0.20 0.20 777.94 538.63

〈18, 5, 80/153, 18/25〉 0.67 0.58 0.33 0.30 5382.68 3364.17

〈20, 5, 70/190, 18/25〉 0.54 0.44 0.33 0.31 4701.25 2714.86

observe that the fact of adding a lower bound of better quality leads to dramatic
performance improvements. In the rest of the paper, all the results reported take
into account the above described underestimation.

In the second experiment we compared Soft-SAT-S with heuristic csp,7 PFC-
MPRDAC and WMax-SAT on Max-CSP instances. The results obtained are
shown in Table 3. We observe that solver PFC-MPRDAC (which is specialized
on solving Max-CSP instances) is about 2 times faster than Soft-SAT-S, but
the Weighted Max-SAT approach is much worse. We do not display results with
BF-improved because they are worse than the results of WMax-SAT. Even when
our solver is not the best, it is quite competitive.

In the third experiment, whose results are shown in Table 4, we solve the
same instances of the previous experiment with Soft-SAT-D with heuristic MO-
csp and with Soft-SAT-D with heuristic MO in order to compare the n-ary
branching with the binary branching. We see that the fact of using an n-ary
branching allows us to solve the instances up to 3 times faster. Also observe that
Soft-SAT-S (which also uses an n-ary branching) is about 2 times faster than
Soft-SAT-D with heuristic MO-csp, and up to 6 times faster than Soft-SAT-D
with heuristic MO.

5.3 Experiments with Graph Coloring Instances

The last benchmark we used was graph coloring. In the first experiment we con-
sidered 7 sets of randomly generated instances, where each set had 100 instances.
We solved the instances with Soft-SAT-S with heuristic csp, Soft-SAT-D with
heuristic MO-csp, Soft-SAT-D with heuristic MO, and PFC-MPRDAC.8 The
results obtained are shown in Table 5: the first column displays the parameters

7 We used this solver of soft CNF formulas because is the best performing one for
Max-CSP instances.

8 We do not give results with Weighted Max-SAT because is not competitive with the
solvers used.
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Table 4. Comparison of Soft-SAT-D with heuristic MO-csp and Soft-SAT-D with
heuristic MO on Max-CSP instances. Time in seconds

Soft-SAT-D Soft-SAT-D

(MO-csp) (MO)

〈n, d, p1, p2〉 mean median mean median

〈10, 8, 45/45, 48/64〉 0.69 0.68 1.83 1.76

〈12, 6, 66/66, 27/36〉 1.20 1.11 2.92 2.66

〈14, 5, 91/91, 18/25〉 2.55 2.33 6.82 6.27

〈16, 4, 120/120, 12/16〉 2.69 2.54 5.44 5.11

〈18, 3, 153/153, 6/9〉 0.69 0.65 1.40 1.28

〈15, 6, 60/105, 27/36〉 1.16 1.01 2.21 1.92

〈18, 5, 80/153, 18/25〉 2.97 2.48 5.98 4.38

〈20, 5, 70/190, 18/25〉 1.85 1.52 3.80 2.82

Table 5. Comparison between Soft-SAT-S with heuristic csp, Soft-SAT-D with heuris-
tic MO-csp, Soft-SAT-D with heuristic MO, and PFC-MPRDAC on randomly gener-
ated graph coloring instances. Time in seconds

Soft-SAT-S Soft-SAT-D-MO-csp Soft-SAT-D-MO PFC-MPRDAC

〈n, k, c〉 mean median mean median mean median mean median

〈15, 15, 8〉 103.62 10.47 318.75 26.73 743.64 20.12 132.73 21.29

〈15, 15, 10〉 102.69 0.05 261.64 0.06 653.74 0.06 139.89 0.15

〈16, 14, 6〉 197.13 49.00 986.61 224.60 1350.28 342.58 234.14 78.63

〈16, 14, 8〉 164.81 19.38 391.85 29.45 611.52 42.81 207.56 26.26

〈16, 16, 6〉 208.48 129.61 950.25 545.06 1503.82 1089.34 250.16 180.93

〈16, 16, 8〉 91.87 23.33 224.92 37.11 287.99 46.66 147.50 37.01

〈18, 10, 5〉 72.17 32.84 314.09 144.96 435.76 212.44 73.74 42.64

given to the generator, and the rest of columns display the mean and median
time needed to solve an instance of the set with each one of the solvers used.

We repeated the previous experiments but using a representative sample of
individual instances from the graph coloring symposium celebrated in CP-2002.
The results obtained are shown in Table 6: the first column displays the name of
the instance, the optimum number of colors to get a valid coloring (k), and the
number of colors we used to color the graph (c); the second column displays the
number of violated constraints; and the rest of columns display the time needed
to solve the instance with each one of the solvers used.

We observe that, in both cases, our approach is superior to the constraint pro-
gramming approach. For all the sets of randomly generated instances, Soft-SAT-
S outperforms PFC-MPRDAC, while for the individual instances some times is
better Soft-SAT-S and sometimes Soft-SAT-D. We also observe in both exper-
iments that the n-ary branchings analyzed lead to better performance profiles
than the binary branching.

We have also solved some graph coloring instances with the pseudo-Boolean
solver PBS v2.1 [1]. Our preliminary results indicate that, at least for the in-
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Table 6. Comparison between Soft-SAT-S with heuristic csp, Soft-SAT-D with heuris-
tic MO-csp, Soft-SAT-D with heuristic MO, and PFC-MPRDAC on individual graph
coloring instances. Time in seconds

〈Instance, k, c〉 vc Soft-SAT-S Soft-SAT-D-MO-csp Soft-SAT-D-MO PFC-MPRDAC

〈myciel5.col, 6, 3〉 16 11.04 46.39 50.47 12.11

〈myciel5.col, 6, 4〉 4 78.50 226.59 344.79 96.41

〈myciel5.col, 6, 5〉 1 3177.85 31.87 73.73 44.34

〈GEOM30a.col, 6, 3〉 11 9.31 27.22 36.11 14.33

〈GEOM30a.col, 6, 4〉 4 4.48 2.35 7.29 22.89

〈GEOM30a.col, 6, 5〉 1 0.49 0.15 0.22 0.18

〈GEOM40.col, 6, 2〉 22 3.89 20.58 21.01 4.42

〈GEOM40.col, 6, 3〉 7 10.83 30.63 65.97 770.46

〈GEOM40.col, 6, 4〉 3 95.18 14.67 69.55 >7200.00

〈GEOM40.col, 6, 5〉 1 1.58 0.51 1.89 1574.44

〈queen5 5.col, 5, 3〉 29 57.60 167.60 205.37 27.27

〈queen5 5.col, 5, 4〉 12 37.50 124.24 148.27 73.67

stances tested, our Soft-SAT solvers outperform PBS. We plan to perform a
comprehensive comparison with more pseudo-Boolean solvers in an extended
version of this paper.

6 Concluding Remarks

We have presented a new generic problem solving approach for over-constrained
problems based on Max-SAT algorithms that deals with hard and soft blocks of
clauses. The distinction between hard and soft blocks allows us to model prob-
lems in a more natural way, and to traverse the search space of all possible truth
assignments in a more efficient way; the extra level of propagation achieved in
our solvers is a key factor of the good performance profiles obtained. Our ex-
periments indicate that our approach is better than reducing over-constrained
problems to weighted Max-SAT problems. Interestingly, for graph coloring in-
stances, we have shown that the problem solving approach based on Soft CNF
formulas also outperforms the approach based on Max-CSP instances. Taking
into account the amount of efforts devoted in the constraint programming com-
munity on investigating methods of solving over-constrained problems, we believe
that the results of this paper open an interesting research avenue.

An important point of our experimental investigation is the good results we
obtained due to the lower bound we have implemented, as well as to the fact of
using n-ary branching instead of binary branching. It is worth to consider these
two points when designing weighted Max-SAT solvers that have to solve more
realistic instances. One problem of state-of-the-art Max-SAT solvers is that they
are biased to solve randomly generated 2-SAT and 3-SAT instances. They are
rarely evaluated with more structured instances and with instances that encode
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CSP variables with domain size greater than 2. The results reported here can
provide some hints to improve Max-SAT solvers on more realistic instances.

Another important point of our experimental investigation is the good results
we obtained with Soft-SAT-S. The extremely efficient data structures that we
have implemented are the key of its success. We believe that the incorporation
of more sophisticated variable selection heuristics into Soft-SAT-D, will provide
us with faster Soft-SAT-D solvers.

As future work, we plan to extend the language of soft CNF formulas to
capture fuzzy constraints, to define alternative notions of “the solution that
best respects the constraints of the problem”, and to incorporate more advanced
variable selection heuristics.

It is worth mentioning that we have not found in the SAT literature any
approach of solving problems with hard and soft constraints using exact Max-
SAT algorithms. All the papers we have found refer to local search algorithms,
and do not incorporate the notion of block of clauses.

Finally, we would like to point out that we believe that it is worth exploring
how the SAT technology developed for decision problems can be applied to solve
optimization problems. This paper has tried to make a step forward in that
direction.
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Abstract. Solving Quantified Boolean Formulas (QBF) has become an impor-
tant and attractive research area, since several problem classes might be formu-
lated efficiently as QBF instances (e.g. planning, non monotonic reasoning, two-
player games, model checking, etc). Many QBF solvers has been proposed, most
of them perform decision tree search using the DPLL-like techniques. To set free
the variable ordering heuristics that are traditionally constrained by the static or-
der of the QBF quantifiers, a new symbolic search based approach (QBDD(SAT))
is proposed. It makes an original use of binary decision diagram to represent the
set of models (or prime implicants) of the boolean formula found using search-
based satisfiability solver. Our approach is enhanced with two interesting exten-
sions. First, powerful reduction operators are introduced in order to dynamically
reduce the BDD size and to answer the validity of the QBF. Second, useful cuts
are achieved on the search tree thanks to the nogoods generated from the BDD
representation. Using DPLL-likes (resp. local search) techniques, our approach
gives rise to a complete QBDD(DPLL) (resp. incomplete QBDD(LS)) solver.
Our preliminary experimental results show that on some classes of instances from
the QBF evaluation, QBDD(DPLL) and QBDD(LS) are competitive with state-
of-the-art QBF solvers.

Keywords: Quantified boolean formula, Binary decision diagram, Satisfiability.

1 Introduction

Solving quantified boolean formulas has become an attractive and important research
area over the last years. Such increasing interest might be related to different reasons
including the fact that many important artificial intelligence problems (planning, non
monotonic reasoning, formal verification, etc.) can be reduced to QBFs which is con-
sidered as the canonical problem of the PSPACE complexity class. Another important
reason comes from the recent impressive progress in the practical resolution of the sat-
isfiability problem.
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Many solvers for QBFs have been proposed recently (e.g. [11, 18, 12, 10]), most of
them are obtained by extending satisfiability results. This is not surprising since QBFs
is a natural extension of SAT where the boolean variables are universally or existentially
quantified. Most of these solvers take a formula in the prenex clausal form as input and
are variant of Davis Logemann and Loveland procedures (DPLL) [7]. However, one
of the main drawback of such proposed approaches is that variables are instantiated
according to their occurrences in the quantifier prefix (i.e. from the outer to the inner
quantifier group). Such preset static ordering limits the efficiency of the search-based
QBF solvers. Indeed, in some cases, invalidity of a given QBF might be related to its
subparts with variables from the most inner quantifier groups. Consequently, following
the order of the prefix might lead to a late and repetitive discovery of the invalidity of
the QBF.

The main goal of this paper is to set free the solver from the preset ordering of
the QBF and to facilitate the extension of the satisfiability solvers. To this end, binary
decision diagrams are used to represent in a compact form the set of models of the
boolean formula found by a given satisfiability solver. It give rise to a new QBF solver
QBDD(SAT) combining satisfiability search based techniques with binary decision dia-
gram. For completeness and efficiency reasons, our approach is enhanced with two key
features. On the one hand, reduction operators are proposed to dynamically reduce at
least to some extent the size of the binary decision diagram and to answer the validity
of the QBF. On the other hand, for each model found by the satisfiability search pro-
cedure, its prime implicant is represented in the BDD and a nogood is returned from
the reduced BDD representation and added to the formula. The approach we present
in this paper significantly extends our preliminary results [2]. We give a more general
framework with additional features such as prime implicants encoding, cuts generation.
Two satisfiability search techniques (DPLL and local search techniques) are extended
to QBF using our proposed approach.

The paper is organized as follows. After some preliminaries and technical back-
ground on quantified boolean formulas and binary decision diagram, it is shown how
binary decision diagram can be naturally combined with satisfiability search based tech-
niques to handle QBFs. Using systematic search (respectively stochastic local search)
techniques, preliminary experiments on instances of the last QBFs evaluation are pre-
sented and show that QBDD(SAT) is competitive and can somtimes achieve significant
speedups over state-of-the-art QBF solvers.

2 Preliminaries and Technical Background

Before introducing our approach, we briefly review some necessary definitions and no-
tations about quantified boolean formulas and binary decision diagram.

2.1 Quantified Boolean Formulas

Let P be a finite set of propositional variables. Then, LP is the language of quanti-
fied boolean formulas built over P using ordinary boolean formulas (including proposi-
tional constants � and ⊥) plus the additional quantification (∃ and ∀) over propositional
variables.
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We consider quantified boolean formula in the prenex form: Φ = QkXk, . . . , Q1

X1Ψ (in short QXΨ , QX is called the prefix of Φ and Ψ the matrix of Φ) where
Qi ∈ {∃,∀}, Xk, . . . , X1 are disjoint sets of variables and Ψ a boolean formula. Con-
secutive variables with the same quantifier are grouped. The rank of a variable x ∈ Xi

is equal to i (noted rank(x)). Variables in the same quantifier group have the same
rank value. We define a prefix ordering of QBF formula Φ = QkXk, . . . , Q1X1Ψ as
the partial ordering obtained according to the decreasing rank of the variables, noted
Xk < Xk−1 < · · · < X1. A QBF formula Φ is said to be in clausal form if Φ is in
prenex form and Ψ is in Conjunctive Normal Form (CNF). Note that we can consider
QBFs with inner quantifier Q1 as existential. Indeed, if Q1 is a universal quantifier
then suppressing Q1X1 from the prefix and all occurrences of x ∈ X1 from the matrix
lead to an equivalent QBF. We define V ar(Φ) =

⋃
i∈{1,...,k} Xi the set of variables

of Φ. A literal is the occurrence of propositional variable in either positive (l) or nega-
tive form (¬l). Lit(Φ) =

⋃
i∈{1,...,k} Lit(Xi) the set of complete literals of Φ, where

Lit(Xi) = {xi,¬xi|xi ∈ Xi}. We note var(l) the variable associated to a literal l. A
literal l ∈ Φ is a unit literal iff l is existentially quantified and ∃c = {l, l1, . . . , li} ∈ Ψ
s.t. ∀lj , 1 ≤ j ≤ i, var(lj) is universally quantified and rank(lj) < rank(l). A mono-
tone literal is defined in the usual way as in the pure boolean case (i.e. l is monotone in
Φ iff it appears either positively or negatively).

To define the semantic of quantified boolean formulas, let us introduce some nec-
essary notations. Let S be the set of assignments over the set of variables V . The
Up-projection (resp. Down-projection) of a set of assignments S on a set of variables
X ⊂ V , denoted S ↑ X (resp. S ↓ X), is obtained by restricting each assignment
to literals in X (resp. in V \X). The set of all possible assignments over X is denoted
by 2X . An assignment over X is denoted by a vector of literals −→x . In the same way,
Up-projection and Down-projection also apply on vector of literals −→x . If −→y is an as-
signment over Y s.t. Y ∩ X = ∅, then −→y .S denotes the set of interpretations obtained
by concatenating −→y with each interpretation of S. Finally, Ψ(−→x ) denotes the boolean
formula Ψ simplified with the partial assignment −→x . An assignment −→x is an implicant
or a model (resp. nogood) of Ψ ; noted −→x � Ψ (resp. −→x � Ψ ) iff Ψ(−→x ) = � (resp.
Ψ(−→x ) = ⊥). An implicant (resp. nogood) −→x is called prime implicant (resp. minimal
nogood) of Ψ iff �−→y ⊂ −→x s.t. −→y � Ψ (resp. −→y � Ψ ).

A QBF formula is valid (is true) if there exists a solution (called a total policy)
defined as follows. It is a simplified version of the definition by Sylvie Coste-Marquis
et al. [13].

Definition 1. Let Φ = QkXk, . . . , Q1X1Ψ a quantified boolean formula and π =
{−→x 1, . . . ,

−→x n} a set of models of the boolean formula Ψ . π is a total policy of the
quantified boolean formula Φ iff π recursively verifies the following conditions:

1. k = 0, and Ψ = �
2. if Qk = ∀, then π ↑ Xk = 2Xk , and ∀−→x k ∈ 2Xk , π ↓ −→x k is a total policy of

Qk−1Xk−1, . . . , Q1X1Ψ(−→x k)
3. if Qk = ∃, then π ↑ Xk = {−→x k} and π ↓ −→x k is a total policy of Qk−1Xk−1, . . . ,

Q1X1Ψ(−→x k)
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Remark 1. Let π be a total policy of Φ = QkXk, . . . , Q1X1Ψ . If Qk = ∀ then we can
rewrite π as

⋃
−→x k∈2Xk {−→x k.(π ↓ −→x k)} and if Qk = ∃, then π ↑ Xk = {−→x k} and π

can be rewritten as {−→x k.(π ↓ −→x k)}

Example 1. Let Φ = ∃x5x6∀x2x4∃x1x3Ψ be a QBF formula, where Ψ = (x1 ∨ x2) ∧
(x1 ∨ x3) ∧ (¬x4 ∨ x3) ∧ (x5 ∨ x6). Φ is a valid QBF, since the set of models π =
{(¬x5, x6, x2, x4,¬x1, x3),(¬x5, x6, x2,¬x4,¬x1, x3), (¬x5, x6,¬x2,¬x4, x1,¬x3),
(¬x5, x6,¬x2, x4, x1, x3)} is a total policy of Φ (Figure 1). The different projection op-
erations are illustrated as follow :
π ↑ {x5, x6} = {(¬x5, x6)}
π′=π ↓ {x5, x6}

={(x2, x4,¬x1, x3), (x2,¬x4,¬x1, x3), (¬x2,¬x4, x1,¬x3), (¬x2, x4, x1, x3)}
π′ ↑ {x2, x4}={(¬x2,¬x4), (¬x2, x4), (x2,¬x4), (x2, x4)} = 2{x2,x4}

x6

¬x5

¬x4

x1 x1

x3
¬x3

x4 x4 ¬x4

x3 x3

¬x1

¬x2 x2

¬x1

Fig. 1. Policy decision tree representation (example 1)

Motivated by the impressive results obtained in practical solving of the satisfiability
problem, several QBF solvers have been developed recently. Most of them are exten-
sions of the well known DPLL procedure including many effective SAT results such as
learning, heuristics and constraint propagation (QUBE [11], QUAFFLE [18], EVALUATE

[6], DECIDE[16]). For examples, QUBE [11] and QUAFFLE [18] extend backjumping
and learning techniques, EVAUATE[6] and DECIDE [16] extend some SAT pruning tech-
niques such as unit propagation.

Algorithm 1 gives a general scheme of a basic DPLL procedure for checking the
validity of QBFs. It takes as input variables of the QBF prefix < Xk, . . . , X1 > associ-
ated to quantifiers Qk, . . . , Q1 and a matrix Ψ in clausal form. It returns true if the QBF
formula Φ = QkXk, . . . , Q1X1Ψ is valid and false otherwise. The algorithm starts
by simplifying the formula using unit propagation and monotone literal rules. Then, if
the current simplified matrix contains the empty clause then the current QBF is invalid
(value false is returned); otherwise, if the current matrix is empty then the QBF formula
is valid (value true is returned). The next step consists in choosing the next variable
to instantiate (splitting rule) in the most external non empty set of variables Xk. This
differ from the DPLL satisfiability version, since variables are instantiated according to
their prefix ordering. Depending on the quantifier Qk of the chosen variable, left and/or
right branchs are generated. If Qk = ∀ (resp. Qk = ∃) the right branch is generated
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Algorithm 1: QDPLL for QBF

Data : Ψ : matrix of the QBF; < Xk, . . . , X1 > : prefix of the QBF Φ

Result : true if the QBF Φ s valid, false otherwise
begin

Simplify(Ψ );
if ∅ ∈ Ψ then return false;
if Ψ = ∅ then return true;
if Xk = ∅ then return QDPLL(Ψ, < Xk−1, . . . , X1 >);
choose (by heuristic) a literal l ∈ Xk;
if ((Qk = ∀) and QDPLL(Ψ ∪ {l}, < Xk − {l}, . . . , X1 >)=false) then

return false;
if ((Qk = ∃) and QDPLL(Ψ ∪ {l}, < Xk − {l}, . . . , X1 >)=true) then

return true;
return QDPLL(Ψ ∪ {¬l}, < Xk − {l}, . . . , X1 >);

end

only if the value returned in left branch is true (resp. false). The search tree developped
by the QBF DPLL procedure can be seen as an and/or tree search.

One of the major drawback of the extension of the DPLL procedure to QBF con-
cerns the imposed prefix ordering. Such restrictive ordering might lead to performance
degradation of the QBF solver. Since, good ordering might be lost. Furthermore, such
limitation makes difficult the extension of certain interesting results obtained on the
satisfiability problem (see for example [8] for random problem or [14] for structured
problems). One can cite, stochastic local search another search paradigm widely used
in SAT (e.g. [17]) that received little attention in QBF. A first integration of local search
in QBF solver (WalkQSAT) has been investigated in [10]. WalkQSAT is an implemen-
tation of conflict and solution directed backjumping in QBF. It uses a local search solver
to guide its search.

2.2 Binary Decision Diagram

A Binary Decision Diagram (BDD) [1, 5] is a rooted directed acyclic graph with two
terminal nodes that are referred to as the 0-terminal and the 1-terminal. Every non-
terminal node is associated with a primary input variable such that it has two outgoing
edges called the 0-edge corresponding to assigning the variable a false truth value, and
the 1-edge corresponding to assigning the variable a true truth value. An Ordered Binary
Decision Diagram (OBDD) is a BDD such that the input variables appear in a fixed
order on all the paths of the graph, and no variable appears more than once in the
path. A Reduced Ordered BDD (ROBDD) is an OBDD that results from the repeated
application of the following two rules:

1. Share all equivalent sub-graphs (Figure 2.a).
2. Eliminate all redundant nodes whose outgoing edges point to the same node (Fig-

ure 2.b).

A (RO)BDD representing a boolean formula Ψ is noted (RO)BDD(Ψ).
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Fig. 2. Reduction Rules
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x5

x2

x4
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Fig. 3. BDD representation of a policy (example 1)

Figure 3 illustrates the ROBDD representation of the policy π (ROBDD(π)) shown
in example 1 where the solid edges denote the 1-edges and the dashed edges denote the
0-edges. The ROBDD order is the same as the prefix ordering of variables ({x5, x6} <
{x2, x4} < {x1, x3}) of the QBF Φ.

ROBDDs have some interesting properties. They provide compact and unique rep-
resentation of boolean functions, and there are efficient algorithms performing all kinds
of logical operations on ROBBDs. For example, it is possible to check in constant time
whether an ROBDD is true or false. Let us recall that for boolean formula, such problem
is NP-complete. Despite the exponential size of the ROBDD in the worst case, ROBDD
is one of the most used data structure in practice.

In the rest of this paper, only reduced ordered BDDs are considered and for short we
denote them as BDDs. For aquantified boolean formula, the order used in the ROBDD
follows the prefix ordering of the QBF.

3 QBDD(SAT): A Symbolic Search Based Approach

In this section, to make the QBF solver freed from the preset ordering of the variables
(i.e. fixed by the QBF prefix), we propose an original combination of classical SAT
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Fig. 4. QBDD(SAT): general scheme

solver with binary decision diagrams. In figure 4, we give a general scheme of our sym-
bolic search based approach QBDD(SAT). More precisely, to check the validity of a
QBF Φ = QXΨ , our approach makes use of a satisfiability technique to search for
models (SAT enumerator) of the boolean formula Ψ . For each found model m, a prime
implicant pi is extracted (Compute PI) and disjunctively added to the BDD (bdd =
or(bdd, pi)) using the prefix ordering of the variables. If the current set of prime im-
plicants represent a total policy then its BDD representation is reduced to 1-terminal
node (see section 3.1) and the QBDD(SAT) answer the validity of Φ. As was mentioned
earlier, QBDD(SAT) can be instantiated with any satisfiability search technique. For
example, QBDD(DPLL) (resp. QBDD(LS)) refer to a QBF solver obtained by instan-
tiating SAT enumerator with DPLL-like (resp. local search) techniques. At the end of
the satisfiability search process, if the BDD is not reduced to a 1-terminal node (i.e. a
total policy is not found) then depending on the completeness of the SAT used enumer-
ator QBDD(SAT) return either invalid or unknown. Consequently, the QBDD(SAT) is
complete iff the satisfiability used solver is also complete.

For space complexity reason, only prime implicants of the boolean formula are en-
coded in the BDD, nogoods found during the satisfiability search process are not con-
sidered. Paths to 0-terminal node in the generated BDD do not represent the nogoods
of the boolean formula. Consequently, the 0-terminal node and its incoming edges can
be omitted. However, to reduce the search space, for each model (or prime implicant)
encoded in the BDD a new nogood is generated and added to the boolean formula (see
section 3.2).

3.1 Quantifier Reductions Operators

To reduce the BDD size and to answer the validity of the QBF, additional reduction
operator is given in Figure 5. If a node x is existentially quantified and one of its child
nodes is the 1-terminal node then any reference to the node x is simply replaced by a
reference to its 1-terminal node. We call such reduction operation existential reduction.
Interestingly enough, when x is universally quantified and its two child nodes are 1-
terminal, such node is eliminated using the classical BDD node reduction (Figure 2.b).

During the BDD construction process, in addition to classical reduction operations
2, existential reduction is applied. If the set of models represents a total policy of the
QBF formula then the BDD built from such models is reduced to a 1-terminal node as
stated by the following property :
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Fig. 5. Existential Reduction

Property 1. Let Φ = QkXk, . . . , Q1X1Ψ be a QBF formula and π = {−→x 1,
−→x 2, . . . ,−→x n} a set of models of Ψ . If π is a total policy of Φ then the BDD(π) is reduced to the

1-terminal node.

Proof. The proof is obtained by induction on k. For k = 0, the BDD representing
the constant � is a 1-terminal node (by definition of a total policy). Suppose that the
property holds for k − 1, let us prove that it holds for k. By definition of a total policy
two case are considered :

1. if Qk = ∀, then π ↑ Xk = 2Xk , and ∀−→x k ∈ 2Xk , π ↓ −→x k is a total policy of
the QBF formula Qk−1Xk−1, . . . , Q1X1Ψ(−→x k). By induction hypothesis, we can
deduce that BDD(π ↓ −→x k) is reduced to 1-terminal node. Consequently all the leaf
of the BDD(2Xk ) are 1-terminal nodes. Then by repeatedly applying the Redundant
node rule on such a BDD, we obtain a BDD reduced to a 1-terminal node.

2. if Qk = ∃, then π ↑ −→
Xk = {−→x k} and π ↓ −→x k is a total policy of the QBF formula

Qk−1Xk−1, . . . , Q1X1Ψ(−→x k). By induction hypothesis BDD(π ↓ −→x k) is a 1-
terminal node. Consequently, the BDD({−→x k}) can be seen as a branch ended on a
1-terminal node. Repeatedly applying the existential reduction rule, the BDD(π) is
reduced to a 1-terminal node.

Remark 2. Dually, universal reduction can also be defined. As 0-terminal node of the
BDD represents undefined state, then universal reduction operator can not be used in
our approach.

The following example shows the dynamic reduction of the BDD associated with
the set of models representing the total policy of the QBF given in the example 1.

Example 2. Let Φ be the QBF formula of the example 1 and π its associated policy.
The figure 6 represents the reduction phase of the BDD(π) representation:

– The figure 6.a is a BDD representation of the policy π (only paths with final 1-
terminal node are represented).

– The existential reduction rule allows the x3 elimination (figure 6.b) and the x1

elimination (figure 6.c).
– The redundant node reduction rule allows the x4 elimination (figure 6.d) and the x2

elimination (figure 6.e).
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Fig. 6. BDD reduction of a QBF total policy

– Finally the existential reduction rule suppresses x5 and x6 and the bdd of the policy
is restricted to the 1-terminal node representing the true formula (figure 6.f) and
proving that π is a total policy.

3.2 Generating Cuts from BDD

In order to avoid search of models belonging to different total policies, we introduce in
the following different possible cuts (nogoods) that can be generated from the model,
prime implicant or from the BDD under construction.

Definition 2. Let Φ = QkXk, . . . , Q2X2, Q1X1Ψ a QBF s.t. Q2 = ∀, Q1 = ∃ and
−→x is a model of Ψ . We define, nogoodm(−→x ) =

∨
{¬l|l ∈ −→x ↓ X1} as the nogood

obtained from −→x . In the same way we define nogoodpi(
−→
pi) as the nogood extracted

from a prime implicant
−→
pi .

Obviously, if
−→
pi is a prime implicant obtained from a model −→x then nogoodpi(

−→
pi) �

nogoodm(−→x ).
Using the example 1, we show in figure 7, that for a model −→x = {¬x5, x6,¬x2, x4,

x1, x3} the nogoodm(−→x ) = (x5 ∨ ¬x6 ∨ x2 ∨ ¬x4) ovoid useless search for models
of different policies. Considering

−→
pi = {x6, x1, x3} a prime implicant of −→x , we can

generate a strong cut nogoodpi(
−→
pi) = ¬x6. Interestingly enough, thanks to reductions

defined above, the BDD encoding such a prime implicant is reduced to a 1-terminal
node and the validity of the QBF is answered.
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Fig. 7. Cuts generation

Let us recall, that when a prime implicant is disjunctively added to the BDD un-
der construction, the reduction operators eliminate the variables of the inner existential
quantifier group X1. In addition, universally quantified variables in X2 can be elimi-
nated, when there two outgoing edges point to 1-terminal node. Such a reduction pro-
cess is iterated recursively. Consequently, to generate strong cuts, in practice each time
a prime implicant is added to the BDD, a nogood is extracted from the new reduced
BDD and added to the boolean formula.

3.3 QBDD(DPLL) Approach

The algorithm 2 represents the QBF solver obtained by a combination of DPLL pro-
cedure with BDD. As we can see, the algorithm search for all models until the BDD
representation (characterized by the global variable bdd initialized to the 0-terminal
node) is reduced to a 1-terminal node, in that case the algorithm terminates and an-
swers the validity of the QBF formula. If the algorithm backtrack to level 0, then the
QBF formula is invalid. In other case search continues (back is returned). The func-
tion Simplify() enforces the well known unit propagation process. While the function
conflictAnalysis() implements learning scheme used by the most efficient satisfia-
bility solvers. Function primeImplicants() extracts a prime implicant from a model
I of the boolean formula Ψ . Computing a prime implicant from a given model can be
done in linear time. Indeed, for each literal l of the given model m, we verify if the
m\{l} is also a model of Psi, in such a case the literal l is deleted from m. Finally,
cutsGeneration() generates from the current bdd a new nogood and add it to the cnf
Ψ (see section 3.2). Example 3 gives a possible trace of QBDD(DPLL) algorithm.

Example 3. Let us consider the formula Φ of example 1. Suppose that the algorithm
QBDD(SAT) starts the search by assigning x1 and x5. At this step, the clause (¬x4∨x3)
is satisfied. If we assign a truth value to the literal ¬x4 then a first model {x5,¬x4, x1}
is found and is added to the bdd. This variable is reduced to a single path to the 1-
terminal node : < x5,¬x4 > (variable x1 is deleted by existential reduction). The
clause (¬x5 ∨ x4) is added to the formula Ψ . A backtrack is done to search for other
models and the assignment of the literal x4 implies x3 using unit propagation. A second
model {x5, x4, x1, x3} is added to the bdd which becomes reduced to the 1-terminal
node using existential and redundant reduction operators. So, search ends and returns
the validity of the formula Φ.
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Algorithm 2: Combining BDD and DPLL : QBDD(DPLL)

Data : Ψ : set of clauses; X={Xk, . . . , X1} the prefix set of the QBF;
I a partial interpretation ; d level in the search tree, initially set to 0

Result : valid if the QBF is valid, invalid otherwise;
back is returned to continue the search for other models.

begin
Simplify(Ψ );
if ∅ ∈ Ψ then

conflictAnalysis();
return back;

if Ψ = ∅ then
pi := primeImplicants(I, Ψ);
bdd := or(bdd, pi);
if equal(bdd,1-terminal) then return valid;
cutsGeneration(pi,bdd);
return back;

Let l ∈ Xi (i ∈ {1 . . . k}) be the chosen branching variable;
if (QBDD(DPLL) (Ψ ∪ {l}, X − {l}, I ∪ {l}, d + 1)=valid) or QBDD(DPLL)
(Ψ ∪ {¬l}, X − {l}, I ∪ {¬l}, d + 1)=valid) then

return valid;
if (d = 0) then

return invalid;
return back;

end

3.4 QBDD(LS) Approach

One of the important features of our QBDD(SAT) is that any satisfiability search based
technique can be used without any major adaptation. Particularly, local search tech-
niques can be integrated in a simple way. Using the state-of-the-art local search Walk-
Sat, we obtain a new incomplete solver QBDD(LS). It answers that the QBF formula is
valid, when the set of found models represents a total policy (see property 1); otherwise
the solver returns unkown. Our QBDD(LS) solver differs from WalkQSat [10] in the
sence that our approach uses local search as a model generator instead of using it to
guide the DPLL search procedure.

4 Empirical Evaluation

The experimental results reported in this section are obtained on a Pentium IV 3 GHz
with 1GB RAM, and performed on a large panel (644 instances) of the QBF’03 evalu-
ation instances [3]. Theses instances are divided into different families (log, impl,
toilet, k_*...). For each instance cpu time (in seconds) limit is set to 600 sec-
onds. The QBDD(DPLL) solver is based on chaff like solver called minisat [9], and
the QBDD(LS) solver is based on walksat.
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4.1 Behaviour of QBDD(DPLL) Solver

Figure 8 presents a pictorial view on the behaviour of different versions of the QBDD

(DPLL) solver :

– QBDD(DPLL) is the basic version without computing prime implicants and with-
out generating cuts from the BDD

– QBDD(DPLL) +CUTS is augmented with the generation of cuts from BDD
– QBDD(DPLL) +PI computes prime implicants from a given sat model
– QBDD(DPLL) +PI+CUTS contains these two key features.

The plot in figure 8 is obtained as follows: the x-axis represents the number of
benchmarks solved and the y-axis (in log scale) the time needed to solve this number
of problems. This figure exhibits clearly that the basic version is the less effective one.
Adding only prime implicants does not significantly improve the basic version. How-
ever, generating cuts from BDD produces a real improvements, the number of solved
problems in less than 600 seconds increases from 130 to 220. Finally, the best version of
the QBDD(DPLL) solver is otained by ading cuts and by encoding prime implicants in-
stead of models. Table 1 gives some explanations about these results, it shows the num-
ber of models needed to answer the validity of different instances. Since only necessary
models are computed with the generation of cuts, the number of models is smaller than
without computing cuts. The generation of prime implicants produces some improve-
ments because each prime implicants includes a large potential part of the qbf policies.

Table 2 exhibits the number of instances solved with respect to the size of the quan-
tifier prefix. The method seems to be very efficient with 2QBF formulas and seems to
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Table 1. Number of models

problem valid QBDD(DPLL) QBDD(DPLL) +PI QBDD(DPLL) +CUTS QBDD(DPLL) +PI+CUTS

impl06 Y 6112 6012 2142 550
k_poly_n-1 Y >45000 >45000 1850 862

toilet_a_10_01.5 N 41412 41412 22486 20 917
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Table 2. Solved instances wrt prefix size

prefix size 2 3 4 5 6 7 ≥ 8

nb problems 57 339 8 34 7 22 154
nb solved 51 148 1 19 1 11 18

percent 89.5 43.6 12.5 55.8 14.2 50 11.6

be quite ineficcient with large prefix (for example only 11.6% of problems with prefix
greater than 8 are solved). However, QBDD(DPLL) is not restricted to 2QBF instances
since it solves half of 5-QBF instances. This result agree with those obtained in [15] on
2-QBF using an original combination of two satisfiability solver.

4.2 Comparison with State of the Art Solvers

We compare our solvers QBDD(SAT) to state of the art QBF solvers QUBE [11] and
QUANTOR [4]. Here, QBDD(DPLL) solver exploits cuts and prime implicants. Table 3
gives the cpu time comparison between these three solvers on different QBF families
instances. #N represents the number of problems in the family, #S the number of prob-
lem solved by a given solver and TT the total cpu time needed for a solver to solve
all instances of the family. If a method fails to solve an instance then 600 seconds are
added to the total cpu time.

Worst results of QBDD(DPLL) are obtained on toilet families since only 106
instances are solved in less than 600 seconds, whereas QUBE and QUANTOR solve
all quite easily. It’s the same for the k_* family. Best results are obtained on the
robot family. Since QBDD(DPLL) solves more and fastly instances than the two
other solvers. Furthermore, QBDD(DPLL) solves hard instances of the QBF’03 evalu-
ation for the first time. On a lot of families (z4, flipflop, log) results of all solvers
are comparable.

Table 3. CPU time comparison beetwen Qube, Quantor and QBDD(DPLL)

Qube Quantor QBFBDD
family #N #S TT #S TT #S TT

robots 48 36 7 214 35 7 970 42 4 270
k_* 171 98 44 813 99 43 786 32 83 658
flipflop 7 7 0.36 7 1.2 7 3.2
toilet 260 260 40 260 256 106 93 860
impl 8 8 0.01 8 0.02 6 1211
tree-exa10 6 6 0.07 6 0.01 6 1.7
chain 8 8 497 8 0.3 2 4183
tree-exa2 6 6 0.01 6 0.01 1 3000.1
carry 2 2 0.23 2 0.69 2 0.71
z4 13 13 0.06 13 0.08 13 0.1
blocks 3 3 0.2 3 0.47 3 3.2
log 2 2 18.4 2 42 2 31
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4.3 Comparison with QBDD(LS)

Since QBDD(LS) is an incomplete solver which can not prove the invalidiy of qbf
instances, it is quite difficult to make a fair comparison with other qbf solvers. We
present its preliminary behaviour on some valid instances and make short comparison
with QBDD(DPLL), Quantor and Qube. Table 4 gives the time to solve an instance
and the number of models computed during search (if available). For QBDD(LS), each
instance is solved 20 times and the median is reported.

Table 4. Comparison on valid instances

QBDD(LS) QBDD(DPLL) Quantor Qube
problem model time model time model time model time

impl10 3440 8 2673 2 - 0.01 - 0.01
toilet_c_04_10.2 2850 14 ? >600 - 0.01 - 0.01
robots_1_5_2_3.3 58 6 79 0.28 - 453 - 0.7
comp.blif_0.10_1.00_0_1_out_exact 3205 308 4647 1.8 - 0.03 - >600
tree_exa10-20 ? >600 1095 0.2 - 0.01 - 0.1

These preliminary experiments shows that QBDD(LS) is quite promising. It solves
76 of the 150 valid instances. It is competitive on some QBF instances and obtain better
results than other solvers on some other instances.

5 Conclusion

In this paper, a new symbolic search based approach for QBF is presented. It makes
an original combination of model search satisfiability techniques with a binary decision
diagrams. BDD are used to encode prime implicants of the boolean formula. Reduction
operators that prevent to some extent the blowup of the BDD size and answer the va-
lidity of the QBF are presented. Interestingly enough, nogoods are generated from the
reduced BDD allowing strong cuts in the SAT search space. The main advantage of our
approach is that it is freed from any ordering of the variables. This facilitates the exten-
sion of satisfiability solver to deal with quantified boolean formulas. Two satisfiability
search paradigms (systematic and local search) have been investigated giving rise to
two QBF solvers (QBDD(DPLL) and QBDD(LS)). Experimental results on instances
from the QBFs evaluation show the effectiveness of our approach. More interestingly,
some open hard QBF instances are solved for the first time.
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Abstract. The syntactic framework of the so-called saturated substitutions is de-
fined and used to obtain new characterizations of SAT as well as the classes of
minimal and maximal models of formulas of classical propositional logic.

1 Introduction

The standard two-valued semantics for classical propositional logic can be ‘recon-
structed’ in the logic’s proof theory when the logical constants T and F are chosen
to represent the truth-values 1 (true) and 0 (false). In this approach, substitutions of the
logical constants T and F for propositional variables are counterparts of truth-value
assignments. Furthermore, a formula α(p1, . . . , pn) is satisfiable if and only if there
exists a substitution S of T and F for the variables p1, . . . , pn which, when applied to
α, transforms this formula into a tautology. Hence, to establish the satisfiability of α,
the search for a satisfying truth-value assignment for α (as in WalkSAT procedure, cf.
[11]) can be replaced with the search for a ‘satisfying’ substitution.

In this paper we consider a construction of ‘satisfying’ substitutions as an alternative
to the search. We begin by providing a construction of a certain type of substitutions
which we call saturated substitutions for propositional formulas. Saturated substitutions
define, in a natural way, truth-value assignments. We show that for every formula α, the
class of truth-value assignments defined by all saturated substitutions for α coincides
with the class of all satisfying truth-value assignments for α (i.e., of all the models of
α). Since the construction of saturated substitutions is provided without any explicit
reference to semantics, we obtain a syntactic definition of satisfiability.

The second contribution of this paper is a new characterization of minimal and
maximal models of propositional formulas. This characterization is given in terms of
the so-called polarized substitutions. These saturated substitutions define minimal and
maximal models in a very special way. Apart from their definitional completeness (po-
larized substitutions for a formula α define all and only minimal and maximal models
of α), these substitutions carry enough semantic information to flag more truth-value
assignments as falsifying a formula α than what explicitly follows from the definitions
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of a minimal or a maximal model of α. In other words, polarized substitutions carry
more semantic information about the space of truth-value assignments of propositional
formulas than minimal and maximal models. This property of polarized substitutions
could be exploited, for instance, in the design of satisfiability-based problem solving
methods that require the construction of multiple or all models of propositional formu-
las (in areas such as model-based diagnosis, model-based reasoning, or planning, cf.
[2,5,6,8,10,12], see also [4]).

This paper is structured as follows. In the next section we introduce and discuss the
notions of a saturated and polarized substitutions. In Section 3 we provide a syntactic
characterization of SAT in the framework of saturated substitutions. Finally, in Section
4, we characterize the classes of minimal and maximal models of formulas of classical
propositional logic in terms of polarized saturated substitutions. For reasons of clarity
of presentation, the proofs of all the theoretical results stated in this paper are given in
the Appendix.

2 Saturated Substitutions

In this section we define the class of saturated substitutions for propositional formulas.
Informally speaking, these substitutions are syntactic counterparts of satisfying truth-
value assignments – the relationship that we shall explore in the following sections.

We begin with logical preliminaries. The formulas of classical propositional logic
are constructed, in the usual way, in terms of propositional variables, logical connec-
tives (negation ¬, disjunction ∨, conjunction ∧ and, possibly, other connectives), and
the logical constants T (truth) and F (falsehood). By V ar(α) we denote the set of
all the variables that occur in α. If V ar(α) is of cardinality n, then an enumeration
of V ar(α) is a bijection p from {1, . . . , n} onto V ar(α). If p is an enumeration of
V ar(α), then we shall frequently denote the i − th variable p(i) by pi. Finally, we
shall write α(p1, . . . , pk) to indicate that p1, . . . , pk are some or all the variables from
V ar(α).

Given a formula α and an enumeration p of its variables, a substitution is a mapping
S that assigns a formula S(pi) to every variable pi ∈ V ar(α). We shall frequently
represent a substitution S as a finite list of the form [p1/S(p1), . . . , pn/S(pn)] which
explicitly indicates the assignments of formulas S(pi) to variables pi, 1 ≤ i ≤ n. If
S = [p1/α1, . . . , pn/αn] is a substitution, then S(α)–the application of S to α–is the
formula obtained from α by the simultaneous replacement of every occurrence of every
variable pi with αi. We shall frequently write α(p1/α1, . . . , pn/αn) instead of S(α).

A truth-value assignment is a mapping from the set of all propositional variables
into {0, 1}; its extension to all well-formed formulas of propositional logic is defined
in the usual way. A truth-value assignment h satisfies a formula α (or h is a model of
α), if h(α) = 1. On the other hand, if h(α) = 0, then α is said to be false under h.
A formula is satisfiable if it has a model. We denote by SAT the set of all satisfiable
formulas. Finally, if h is a truth-value assignment, q is a propositional variable, and
v ∈ {0, 1}, then by h[q/v] we denote the truth-value assignment defined exactly like h
with the exception that h[q/v](q) = v.
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As mentioned in the introduction, the satisfiability of a formula α is equivalent to
the existence of a substitution S which assigns logical constants T and F to the vari-
ables of α in such a way that S(α) is a tautology. For every α ∈ SAT such a satisfying
substitution S (called a saturated substitution in the definition given below) can be con-
structed using the following lemma.

LEMMA 1. Let α be a propositional formula, let q ∈ V ar(α), and let h be a model
of α. Then:

(i) h is a model of α(q/α(q/T ));
(ii) h is a model of α(q/¬α(q/F )).

If h is a model of α(p1, . . . , pn), then, by Lemma 1, it is also a model of β =
α(p1/γ, p2, . . . , pn), where γ is either α(p1/T ) or ¬α(p1/F ). Note that p1 does not
occur in β. By applying Lemma 1 again, this time to β and p2, we obtain a satisfiable
formula with only p3, . . . , pn as its variables. It should be evident that n − 2 addi-
tional applications of Lemma 1 to the remaining variables p3, . . . , pn will result in a
variable-free formula of the form α(p1/γ1, . . . , pn/γn) from which a required satisfy-
ing substitution S can be extracted by making S(pi) equivalent to γi, 1 ≤ i ≤ n. This
leads us to the following definition.

DEFINITION 1 (Saturated Substitution). Let α be a formula and suppose that V ar(α)
is of cardinality n. Furthermore, let p be an enumeration of V ar(α) and let τ be a
map from V ar(α) into {0, 1}. A substitution string for α with respect to p and τ is

the sequence of substitutions S1, . . . , Sn defined as follows. Let S0(α)
def
= α. For every

1 ≤ i ≤ n:

Si(pi) =
{

(Si−1(α))(pi/T ), if τ(pi) = 1,
(Si−1(¬α))(pi/F ), if τ(pi) = 0.

Moreover,

for every j < i, Si(pj) = (Si−1(pj))(pi/Si(pi));
for every i < j ≤ n, Si(pj) = pj .

The substitution Sn is called a saturated substitution for α.

The complexity of the definition of a substitution string requires some clarifications.
Let us suppose that S1, . . . , Sn is the substitution string for α(p1, . . . , pn) with respect
to some enumeration p and a mapping τ . First, let us note that for every 1 ≤ i ≤ n,
the substitution Si affects only the first i variables p1, . . . pi, leaving the remaining vari-
ables pi+1, . . . pn unchanged. In particular, S1(p1) is either α(p1/T ) (when τ(p1) = 1,
see Lemma 1(i)) or ¬α(p/F ) (when τ(p1) = 0, see Lemma 1(ii)). For every j > 1,
S1(pj) = pj . Next, let us observe that for every i > 1, we first define Si(pi) guided by
the mapping τ . Only then we proceed to defining Si(pj), for every variable pj such that
j < i. Hence, S2(p2) is either (S1(α))(p2/T ) (when τ(p2) = 1) or (S1(¬α))(p2/F )
(when τ(p2) = 0). Having S2(p2) defined, we define S2(p1) as (S1(p1))(p2/S2(p2)),
i.e., we substitute S2(p2) for p2 in S1(p1). Let us look at the following example.
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EXAMPLE 1. Let α be q ∨ r, let p1 = q, p2 = r, and let τ be defined by: τ(p1) = 1 and
τ(p2) = 0. The substitution string for α with respect to p and τ is defined as follows:
S1(p1) = (α(p1, p2))(p1/T ) = T ∨ p2;
S1(p2) = p2;
S2(p2) = (¬S1(p1 ∨ p2))(p2/F ) = (¬(T ∨ p2)∨ p2))(p2/F ) = ¬((T ∨ F )∨ F ) and
is equivalent to F ;
S2(p1) = (S1(p1))(p2/S2(p2)) = (T ∨ p2)(p2/S2(p2)) = T ∨ (¬((T ∨F )∨F )) and
is equivalent to T .
S2 is a saturated substitution for α.

Note that if S is a saturated substitution for a formula α, then for every variable q ∈
V ar(α), S(q) is equivalent to either T or F , and, hence, so is S(α).

In Section 4, we shall characterize minimal and maximal models of formulas in
terms of polarized substitutions defined as follows. Suppose that S is a saturated sub-
stitution for a formula α defined with respect to some enumeration p and a map τ . S is
said to be positive, if τ(q) = 1, for all q ∈ V ar(α). Similarly, S is said to be negative,
if τ(q) = 0, for all q ∈ V ar(α). Finally, we shall call S a polarized substitution for α,
if it is either a positive or a negative saturated substitution for α.

EXAMPLE 2. Consider the formula α = p1∨p2 from Example 1. Let τ(p1) = τ(p2) =
1. The following steps define one of the positive saturated substitutions for α:
S1(p1) = (p1 ∨ p2)(p1/T ) = T ∨ p2;
S1(p2) = p2;
S2(p2) = (S1(p1 ∨ p2))(p2/T ) = ((T ∨ p2) ∨ p2)(p2/T ) = (T ∨ T ) ∨ T and is
equivalent to T ;
S2(p1) = (S1(p1))(p2/S2(p2)) = (T ∨ p2)(p2/S2(p2)) = T ∨ ((T ∨ T ) ∨ T ) and is
equivalent to T .

3 Saturated Substitutions and Propositional Satisfiability

In this section we establish a correspondence between saturated substitutions and satis-
fying truth-value assignments of propositional formulas (cf. Theorem 1).

DEFINITION 2. Let α be a formula and let S be one of its saturated substitutions.
The truth-value assignment hS is defined in the following way: for every variable
q ∈ V ar(α),

hS(q) =

⎧⎨
⎩

1, if q ∈ V ar(α) and S(q) ≡ T,
0, if q ∈ V ar(α) and S(q) ≡ F,
arbitrary, if q �∈ V ar(α).

THEOREM 1. Let α be a propositional formula. Then:

(i) if α ∈ SAT , then for every saturated substitution S, hS is a model of α;
(ii) for every model h of α there is a saturated substitution S such that h = hS .
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COROLLARY 2. Let α be a propositional formula and S be one of its saturated substi-
tutions. Then:

α ∈ SAT iff S(α) ≡ T .

In view of Theorem 1, saturated substitutions for a formula α can be considered
syntactic counterparts of models of α, that is, models of α can be defined in the syntax
of propositional logic in terms of saturated substitutions. Corollary 2 is the characteriza-
tion of SAT in terms of saturated substitutions: for every saturated substitution S, S(α)
is variable free and is equivalent to either T or F ; the result of this equivalence test
determines the membership in SAT.

4 Minimal and Maximal Models

Minimal and maximal models of propositional formulas are theoretical tools frequently
applied in Computer Science in areas such as model-based diagnosis, model-preference
default reasoning, or reasoning with models (cf. [5,6,8,10,12]). Maximal and minimal
model generation problems have also been widely discussed in the computational com-
plexity literature (cf. [1,7]). In this section we provide a new characterization of these
classes of models in terms of polarized substitutions introduced in Section 2. We also
prove that polarized substitutions carry, in general, more information about counter-
models of propositional formulas than the definitions of minimal and maximal models.

For every propositional formula α we define the relation ≤α between truth-value
assignments in the following way. Given truth-value assignments h0 and h1,

h0 ≤α h1 iff for every p ∈ V ar(α), h0(p) = 1 implies h1(p) = 1.

DEFINITION 3 (Minimal and maximal models). Let α be a propositional formula. A
model h of α is said to be a minimal (resp. a maximal) model of α, if it is ≤α-minimal
(resp. ≤α-maximal).

THEOREM 3. Let α be a propositional formula and let h be a truth-value assignment.
Then

(i) h is a minimal model of α iff h = hS , for some negative saturated substitution S for
α;

(ii) h is a maximal model of α iff h = hS , for some positive saturated substitution S
for α.

In view of Theorem 3, the definitions of negative (resp. positive) saturated substitutions
can be viewed as syntactic definitions of minimal (resp. maximal) models. It turns out
that these definitions contain more semantic information about truth-value assignments
than merely the fact that they define all the minimal and maximal models of propo-
sitional formulas. The following theorem unveils the ‘semantic contents’ of polarized
substitutions.

THEOREM 4 (Blocking Theorem). Let α(p1, . . . , pn) be a satisfiable formula and let
hS+ and hS− be truth-value assignments defined by a positive and a negative saturated
substitutions S+ and S−, respectively. Then:
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(i) if for some i, 1 ≤ i ≤ n, hS+(pi) = 0, then for every choice of truth-values
v1, . . . , vi−1,

hS+

[
p1

/
v1, . . . , pi−1

/
vi−1, pi

/
1
]
(α) = 0.

(ii) if for some i, 1 ≤ i ≤ n, hS−(pi) = 1, then for every choice of truth-values
v1, . . . , vi−1,

hS−
[
p1

/
v1, . . . , pi−1

/
vi−1, pi

/
0
]
(α) = 0.

When searching for multiple models of a formula α, one can use the definition of
a particular maximal or a minimal model of α (given in terms of a polarized substi-
tution) to flag some truth-value assignments as falsifying α. In view of the Blocking
Theorem, the definitions of polarized substitutions may prune the space of truth-value
assignments far more extensively than the definitions of minimal and maximal models
alone. We illustrate this comment with the following example.

EXAMPLE 4. Let α be ¬p1 ∧ p2 ∧ p3. Consider the negative saturated substitution
S (generated with respect to the enumeration p). The minimal model hS defined by S
is given by:

hS(p1) = 0, hS(p2) = 1, hS(p3) = 1.

Since hS is a minimal model, the following three truth-value assignments cannot be
models of α:

h1(p1) = 0, h1(p2) = 0, h1(p3) = 0,
h2(p1) = 0, h2(p2) = 0, h2(p3) = 1,
h3(p1) = 0, h3(p2) = 1, h3(p3) = 0.

However, the Blocking Theorem flags not only these three but also the additional three
assignments as falsifying α. These are:

h4(p1) = 1, h4(p2) = 0, h4(p3) = 0 (Theorem 4(ii), i = 3),
h5(p1) = 1, h5(p2) = 1, h5(p3) = 0 (Theorem 4(ii), i = 3),
h6(p1) = 1, h6(p2) = 0, h6(p3) = 1 (Theorem 4(ii), i = 2).

There is one more assignment to consider

h7(p1) = 1, h7(p2) = 1, h7(p3) = 1.

Neither Theorem 4(ii) nor the definition of a minimal model can flag this assignment
as falsifying α. However, it is easy to see that hS can be also defined by any positive
substitution S+ for α (i.e., hS = hS+). In other words, hS is also a maximal model of
α (cf. Theorem 3). Hence by either maximality of hS or by Theorem 4(i) (i = 1), h7

falsifies α. To conclude, by applying the Blocking Theorem to any negative substitution
S− and any positive substitution S+ for α we were able to demonstrate that hS is the
only model of α.

To conclude the discussion on Blocking Theorem, let us note that, in general, differ-
ent enumerations of V ar(α) in Definitions 1 and 2 may result in different polarized
substitutions for α. Theorem 4, of course, is applicable to all these substitutions.
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5 Conclusions and Future Research

This work is a part of a formal theory of logical substitutions which views saturated
substitutions as syntactic counterparts of satisfying truth-value assignments. We show
that saturated substitutions can be used to obtain new characterizations of SAT as well
as the classes of minimal and maximal models of formulas of classical propositional
logic.

If α is a satisfiable formula, then its polarized substitutions define all its maximal
and minimal models. If α is not satisfiable, then one can still define this formula’s sat-
urated substitutions. If, in addition, α is a conjunction of clauses, then, most likely, the
polarized substitutions for α define the solutions to MAX-SAT problem of determining
the maximal number of clauses of α that can be simultaneously satisfied by some truth-
value assignment. The meaning of a polarized substitution for an unsatisfiable free-form
formula is unclear at this point but related to the notion of the cumulative clash measure
of a formula introduced in [13,14].

Another line of future research concerns the study of saturated substitutions for the
purpose of the development of efficient algorithms for SAT, MAX-SAT, and Maximal
(Minimal) Model Generation. This includes the complete and incomplete methods as
well as algorithms for SAT based on such techniques as the search in Hamming Balls
[3] and Satisfiability Coding Lemma [9].

6 Appendix: Technical Results

This Appendix contains the proofs of all the technical results presented in this paper.

Proof of Lemma 1. Let α, q, and h be as stated. The proof of (i) is the case analy-
sis of the value of h(α(q/T )).

- If h(α(q/T )) = 1, then h(α(q/α(q/T ))) = h(α(q/T )) = 1.
- If h(α(q/T )) = 0, then h(q) = 0 (otherwise h(α(q/T )) = h(α) = 1). So

h(α(q/T )) = h(q) and h(α(q/α(q/T ))) = h(α) = 1.

The proof of (ii) is similar.

- If h(¬α(q/F )) = 0, then h(α(q/¬α(q/F ))) = h(α(q/F )) = 1−h(¬α(q/F )) =
1.

- If h(¬α(q/F )) = 1, then h(q) = 1 (otherwise h(¬α(q/F )) = h(¬α) = 0). So
h(¬α(q/F )) = h(q) and h(α(q/¬α(q/F ))) = h(α) = 1.

LEMMA 2. Let S1, . . . , Sn be the substitution string for a formula α with respect to an
enumeration p and a map τ . Then for every 1 ≤ i < n,

(i) Si+1(α) =
[
pi+1/Si+1(pi+1)

]
Si(α);

(ii) Sn(pi) =
[
pi+1

/
Sn(pi+1), . . . , pn

/
Sn(pn)

]
Si(pi).

Proof. Let α and S1, . . . , Sn be as stated.
To show (i) let us note that by the definition of a substitution string we have

Si+1(α) =
[
p1

/
Si+1(p1), . . . , pi

/
Si+1(pi), pi+1

/
Si+1(pi+1)

]
(α) (1)
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Furthermore, for every j < i + 1,

Si+1(pj) =
[
pi+1/Si+1(pi+1)

]
Si(pj).

We can therefore rewrite (1) as follows

Si+1(α) =
[
pi+1

/
Si+1(pi+1)

][
p1

/
Si(p1), . . . , pi

/
Si(pi)

]
(α)

=
[
pi+1/Si+1(pi+1)

]
Si(α).

We prove (ii) in a similar way. By the definition of a substitution string

Sn(pi) =
[
pn

/
Sn(pn)

][
pn−1

/
Sn−1(pn−1)

]
. . .
[
pi+1

/
Si+1(pi+1)

]
(Si(pi)) (2)

When computing the value of Sn(pi) in (2), each variable pj , j > i, will be replaced by[
pn

/
Sn(pn)

]
. . .
[
pj+1

/
Sj+1(pj+1)

]
Sj(pj),

which, by the definition of a substitution string, is Sn(pj). This justifies (ii).

LEMMA 3. Let S1, . . . , Sn be the substitution string for a formula α with respect to an
enumeration p and a map τ . Furthermore, let S′

1, . . . , S
′
n−1 be the substitution string

for S1(α) with respect to the enumeration p′ of V ar(S1(α)) and the map τ ′ defined as
follows:

– for every 1 ≤ i < n, p′i = pi+1,
– for every q ∈ V ar(S1(α)), τ ′(q) = τ(q).

Then, for every 2 ≤ i ≤ n,

(i) Si(pj) = S′
i−1(pj), for every 2 ≤ j ≤ i;

(ii) Si(α) = S′
i−1(S1(α)).

Proof. We prove (i) and (ii) by induction on i.
Base case: i = 2. From the definition of S2 we have

S2(p2) =

{
(S1(α))(p2/T ), if τ(p2) = 1,
¬(S1(α))(p2/F ), if τ(p2) = 0.

Since p′1 = p2 and τ ′(p′1) = τ(p2), we have

S2(p2) =

{
(S1(α))(p′1/T ), if τ ′(p′1) = 1
¬(S1(α))(p′1/F ), if τ ′(p′1) = 0.

This means that S2(p2) = S′
1(p

′
1) = S′

1(p2), as required.
To demonstrate (ii), let us note that, by Lemma 2(i),

S2(α) = (S1(α))(p2/S2(p2)).
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By (i) and the fact that p2 = p′1, we conclude that

S2(α) = (S1(α))(p′1/S′
1(p

′
1)) = S′

1(S1(α)).

Inductive step: Assume now that the lemma holds for i = m < n. We shall show
that the result also holds for i = m + 1.

We prove (i) by, first, showing that the result holds for pm+1 and, then, for the
remaining variables p2, . . . , pm.

By the definition of the substitution string S1, . . . , Sn, we have

Sm+1(pm+1) =

{
(Sm(α))(pm+1/T ), if τ(pm+1) = 1,
¬(Sm(α))(pm+1/F ), if τ(pm+1) = 0.

By the inductive hypothesis, Sm(α) = S′
m−1(S1(α)). Since pm+1 = p′m and τ(pm+1)

= τ ′(p′m), we get

Sm+1(pm+1) =

{
(S′

m−1(S1(α)))(p′m/T ), if τ ′(p′m) = 1,
¬(S′

m−1(S1(α)))(p′m/F ), if τ ′(p′m) = 0,

that is,
Sm+1(pm+1) = S′

m(p′m) = S′
m(pm+1), (3)

as required.
Now, consider a variable pj , 2 ≤ j ≤ m. From the definition of substitution string

S1, . . . , Sn, we have

Sm+1(pj) = (Sm(pj))(pm+1/Sm+1(pm+1)),

which, in view of the inductive hypothesis, the equality (3), and the assumption that
pm+1 = p′m, gives us

Sm+1(pj) = (S′
m−1(pj))(p′m/S′

m(p′m)).

Since, by the assumption of the lemma, pj = p′j−1, we finally obtain

Sm+1(pj) = (S′
m−1(p

′
j−1))(p

′
m/S′

m(p′m)) = S′
m(p′j−1) = S′

m(pj),

as required.
To prove (ii), let us note that, by Lemma 2(i),

Sm+1(α) = Sm(α)(pm+1/Sm+1(pm+1)),

which, by (3) and the assumption that pm+1 = p′m, means that

Sm+1(α) = Sm(α)(p′m/S′
m(p′m)).

By the inductive hypothesis, Sm(α) = S′
m−1(S1(α)). So

Sm+1(α) = (S′
m−1(S1(α)))(p′m/S′

m(p′m)).

By Lemma 2(i), the right hand side of this equation equals S′
m(S1(α)), which gives us

the desired Sm+1(α) = S′
m(S1(α)).
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Proof of Theorem 1. Let α be an arbitrary propositional formula and n = |V ar(α)|.
To show (i), let h be a model of α and let S1, . . . , Sn be a substitution string for α with
respect to some enumeration p of V ar(α) and a map τ . We claim that hSn

is a model
of α. We first show that for every 1 ≤ i ≤ n, h is also a model of Si(α). We proceed
by induction on i.

Base case: i = 1. If τ(p1) = 1, then S1(p1) = α(p1/T ). Therefore, S1(α) =
α(p1/α(p1/T )). Similarly, if τ(p1) = 0, then S1(α) = α(p1/¬α(p1/F )). Thus,

S1(α) =

{
α(p1/α(p1/T )), if τ(p1) = 1,
α(p1/¬α(p1/F )), if τ(p1) = 0.

Since h(α) = 1, by Lemma 1 we must have h(S1(α)) = 1.
Inductive step: Assume now that h(Sk(α)) = 1, for some 1 ≤ k < n. Consider the

substitution Sk+1. By the definition of a substitution string

Sk+1(pk+1) =

{
(Sk(α))(pk+1/T ), if τ(pk+1) = 1,
¬(Sk(α))(pk+1/F ), if τ(pk+1) = 0.

By Lemma 2(i), Sk+1(α) = (Sk(α))(pk+1/Sk+1(pk+1)). So,

Sk+1(α) =

{
(Sk(α))(pk+1/(Sk(α))(pk+1/T )), if τ(pk+1) = 1,
(Sk(α))(pk+1/¬(Sk(α))(pk+1/F )), if τ(pk+1) = 0.

By induction hypothesis, h(Sk(α)) = 1. So, using Lemma 1, we get h(Sk+1(α)) = 1,
which completes the inductive proof.

We have just demonstrated that h(Sn(α)) = 1. Since Sn(α) is variable-free,

T ≡ Sn(α) =
[
p1/Sn(p1), . . . , pn/Sn(pn)](α) (4)

Since all the formulas Sn(pi), 1 ≤ i ≤ n, are variable-free (and, hence, equivalent to
either T or F ), (4) implies that h∗ defined as follows: for every 1 ≤ i ≤ n,

h∗(pi) =

{
1, if Sn(pi) ≡ T ,

0, if Sn(pi) ≡ F ,

is a model of α. But h∗ coincides with hSn
on the variables of α. Hence, hSn

(α) = 1,
which completes the proof of (i).

To show (ii), let h be a model of α, let p be an arbitrary enumeration of V ar(α), and let
τ be h restricted to V ar(α). Let S1, . . . , Sn be a substitution string for α with respect
to p and τ . We claim that hSn

and h coincide on V ar(α), or, equivalently, that for any
1 ≤ i ≤ n,

Sn(pi) ≡
{

T, if h(pi) = 1,

F, if h(pi) = 0.
(5)

We proceed by induction on n, the number of variables in α.
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Base case: Suppose n = 1. Let h0 and h1 be truth-value assignments such that
h0(p1) = 0 and h1(p1) = 1.

If h = h0, then S1(p1) = ¬α(p1/F ), because τ(p1) = h(p1) = 0. Since h(α) =
1 and h(p1) = 0 we have α(p1/F ) ≡ T and, hence, S1(p1) = ¬α(p1/F ) ≡ F ,
confirming (5). Similarly, if h = h1, then S1(p1) = α(p1/T ). Since h(α) = 1 and
h(p1) = 1, α(p1/T ) ≡ T . Thus, S1(p1) = α(p1/T ) ≡ T , confirming (5).

Inductive step: Assume now that the result holds for any propositional formula of k
variables, k ≥ 1, and that α is a formula of n = k + 1 variables. We need to show that
for every 1 ≤ i ≤ k + 1,

Sk+1(pi) ≡
{

T, if h(pi) = 1,

F, if h(pi) = 0.
(6)

Consider the substitution S1. Since τ(p1) = h(p1) and S1(pj) = pj , for every 1 < j ≤
k + 1, we have

S1(α) =

{
α(p1/α(p1/T )), if h(p1) = 1,

α(p1/¬α(p1/F )), if h(p1) = 0.
(7)

Since h(α) = 1, by Lemma 1 we have h(S1(α)) = 1. Furthermore, S1(α) is a formula
of k variables. Consider the enumeration p′ of V ar(S1(α)) defined by: for 1 ≤ i ≤ k,

p′i = pi+1,

and the map τ ′ : V ar(S1(α)) �→ {0, 1} defined as follows: for every 1 ≤ i ≤ k,

τ ′(p′i) = h(p′i). (8)

By the inductive hypothesis, the substitution S′
k of the string S′

1, . . . , S
′
k for S1(α) with

respect to p′ and τ ′, has the following property: for every 1 ≤ i ≤ k,

S′
k(p′i) ≡

{
T, if h(p′i) = 1,

F, if h(p′i) = 0.
(9)

It is easy to verify that the substitution strings S1, . . . , Sk+1 and S′
1, . . . , S

′
k satisfy the

assumptions of Lemma 3, and, therefore, Sk+1(pi) = S′
k(pi), for all 2 ≤ i ≤ k + 1.

Thus, in view of (9), we obtain

Sk+1(pi) ≡
{

T, if h(pi) = 1,

F, if h(pi) = 0,
(10)

for every 2 ≤ i ≤ k + 1.
To complete the the proof it remains to show that

Sk+1(p1) ≡
{

T, if h(p1) = 1,

F, if h(p1) = 0.
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To this end, let us note that by Lemma 2(ii)

Sk+1(p1) =
[
p2

/
Sk+1(p2), . . . , pk+1

/
Sk+1(pk+1)

]
(S1(p1)).

If h(p1) = 1, then τ(p1) = 1 and S1(p1) = α(p1/T ). Hence

Sk+1(p1) =
[
p2

/
Sk+1(p2), . . . , pk+1

/
Sk+1(pk+1)

]
(α(p1/T ))

=
[
p1

/
T, p2

/
Sk+1(p2), . . . , pk+1

/
Sk+1(pk+1)

]
(α) ≡ T .

The last equivalence holds since h(α) = 1 and h(p1) = 1. If h(p1) = 0, then the proof
is similar.

Proof of Theorem 3. Let α be a satisfiable formula of n variables. We shall demonstrate
(i) only. The proof of (ii) is similar and is left to the reader.

Let p be some enumeration of V ar(α) and let S+ be a positive saturated substitution
for α with respect to p. We must show that hS+ is a maximal model of α.

By Theorem 1, hS+ is a model of α. If hS+(q) = 1, for all q ∈ V ar(α), then hS+

is maximal. Otherwise, the maximality of hS+ follows from Theorem 4(i).
Conversely, suppose that h is a maximal model of α. We shall construct an enumer-

ation p of V ar(α) such that for every 1 ≤ i ≤ n,

Sn(pi) ≡
{

T, if h(pi) = 1,
F, if h(pi) = 0,

(11)

where Sn is the positive saturated substitution for α with respect to p. We proceed by
induction on n.

Base case: Suppose that α has just one variable p1. Let S1 be the positive saturated
substitution for α, that is

S1(p1) = α(p1/T ). (12)

If h(p1) = 0, then α(p1/T ) ≡ F , because h is maximal. Hence S1(p1) ≡ F , as
required. If h(p1) = 1, then α(p1/T ) ≡ T , because h is a model of α. Hence S1(p1) ≡
T , as required.

Inductive step: Assume now that (i) holds for any propositional formula of k vari-
ables, k ≥ 1, and that α has n = k + 1 variables. We shall construct an enumeration p
of V ar(α) such that for every 1 ≤ i ≤ k + 1,

Sk+1(pi) ≡
{

T, if h(pi) = 1,
F, if h(pi) = 0,

(13)

where Sk+1 is the positive saturated substitution for α with respect to p.
Let q ∈ V ar(α) be such that h(q) = 0. If there is no such q, then we can repeat the

argument presented in the proof of Theorem 1 to show that for every positive saturated
substitution S for α, h = hS . Otherwise, consider the formula β = α(q/α(q/T )). β
has k variables and h is also one of its maximal models (this can be demonstrated by
induction on the number of variables in β). Thus, by the induction hypothesis, there
exists an enumeration p′ of V ar(β), such that for every 1 ≤ i ≤ k,
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S′
k(p′i) ≡

{
T, if h(p′i) = 1,
F, if h(p′i) = 0,

(14)

where S′
k is a positive saturated substitution for β with respect to p′.

Define the enumeration p of V ar(α) in the following way:

pi =

{
q, if i = 1,
p′i−1, if 2 ≤ i ≤ k + 1.

(15)

Note that the substitution string S1, . . . , Sk+1 for α with respect to p and the substitution
string S′

1, . . . , S
′
k for β with respect to p′ satisfy the assumptions of Lemma 3. Indeed,

since p1 = q, and τ(q) = 1, we have

S1(α) = α(q/α(q/T )) = β, (16)

and, by (15), p′i = pi+1, for every 1 ≤ i ≤ k. The second assumption of Lemma 3 is
also satisfied since both strings are positive. So, by Lemma 3(i), for every 2 ≤ i ≤ k+1,
Sk+1(pi) = S′

k(pi). Hence, we can use (14) to conclude that (13) holds for every
2 ≤ i ≤ k + 1.

To complete the proof we only need to show that (13) holds also for i = 1 or,
equivalently, that Sk+1(p1) ≡ F (since h(p1) = h(q) = 0). To this end, let us note that
by Lemma 2(ii),

Sk+1(p1) =
[
p2

/
Sk+1(p2), . . . , pk+1

/
Sk+1(pk+1)

]
(S1(p1)).

Since S1(p1) = α(p1/T ), this means that

Sk+1(p1) =
[
p1

/
T, p2

/
Sk+1(p2), . . . , pk+1

/
Sk+1(pk+1)

]
(α).

By (13), the maximality of h, and by the assumption that h(q) = 0, we conclude that
Sk+1(p1) ≡ h[q/T ](α) ≡ F .

Proof of Theorem 4. Let α, hS+ , hS− , S+, and S− be as stated. We shall demonstrate
(i) only. The proof of (ii) is similar and is left to the reader. We prove (i) by induction
on n, the cardinality of V ar(α).

Base case: suppose n = 1. Let p1 be the only variable of α and let S1 be the positive
substitution for α. Since hS1(p1) = 0, we must have S1(p1) ≡ F . On the other hand,
by the definition of a positive substitution, S1(p1) = α(p1/T ). Thus, α(p1/T ) ≡ F
which shows that hS1

[
p1

/
1
]
(α) = 0.

Inductive step: Assume now that (i) holds for any formula of k variables, k ≥ 1, and
that α has n = k +1 variables. Let us also assume that S+ = Sk+1, for the substitution
string S1, . . . , Sk+1 defined for some enumeration p of V ar(α). Finally, let us assume
that hSk+1(pi) = 0, for some 1 ≤ i ≤ k + 1. We shall consider the cases i = 1 and
1 < i ≤ k + 1 separately.

If i = 1, then hSk+1(p1) = 0 and, hence, Sk+1(p1) ≡ F . On the other hand, by
Lemma 2(ii),

Sk+1(p1) =
[
p2

/
Sk+1(p2), . . . , pk+1

/
Sk+1(pk+1)

]
(S1(p1)).
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Since S1(p1) = α(p1/T ), we have

Sk+1(p1) =
[
p1/T, p2

/
Sk+1(p2), . . . , pk+1

/
Sk+1(pk+1)

]
(α).

Thus, [
p1/T, p2

/
Sk+1(p2), . . . , pk+1

/
Sk+1(pk+1)

]
(α) ≡ F,

and, by the definition of hSk+1 , we obtain hSk+1

[
p1

/
1
]
(α) = 0, as required.

Now, suppose that 1 < i ≤ k + 1. By the definition of a positive saturated substitu-
tion, S1(p1) = α(p1/T ). Since S1(pj) = pj , for the remaining variables of α, we have

S1(α) = α(p1/S1(p1)) = α(p1/α(p1/T )). (17)

By Lemma 1, S1(α) is a satisfiable formula of k variables. Let us define the enumeration
p′ of V ar(S1(α)) in the following way: for every 1 ≤ j ≤ k,

p′j = pj+1. (18)

Consider the substitution string S′
1, . . . , S

′
k for S1(α) with respect to p′ and the map

τ ′ such that for every variable q, τ ′(q) = 1. It is straightforward to verify that the
substitution strings S1, . . . , Sk+1 and S′

1, . . . , S
′
k satisfy the assumptions of Lemma 3,

and, hence, for every 2 ≤ j ≤ k + 1,

Sk+1(pj) = S′
k(pj). (19)

Since, by assumption, hSk+1(pi) = 0, Sk+1(pi) must be equivalent to F . By (19), this
means that S′

k(pi) ≡ F or that hS′
k
(pi) = 0. If we put w = i− 1, then, in view of (18),

we get hS′
k
(p′w) = 0.

To summarize, S1(α) satisfies the assumptions of the inductive hypothesis with re-
spect to hS′

k
. Hence, for every choice of truth-values v1, . . . , vw−1,

hS′
k

[
p′1
/
v1, . . . , p

′
w−1

/
vw−1, p

′
w

/
1
]
(S1(α)) = 0. (20)

By the definition of hS′
k
, by (18) and (19), for every 1 ≤ j ≤ k,

hS′
k
(pj+1) =

{
1, if Sk+1(pj+1) ≡ T ,

0, if Sk+1(pj+1) ≡ F .

In other words, for every 2 ≤ j ≤ k + 1, hS′
k
(pi) = hSk+1(pi). From this and the fact

that p1 �∈ V ar(S1(α)) it follows that (20) can be rewritten as
hSk+1

[
p2

/
v1, . . . , pi−1

/
vw−1, pi

/
1
]
(S1(α)) = 0, and, further, using (17), as

hSk+1

[
p2

/
v1, . . . , pi−1

/
vw−1, pi

/
1
]
(α(p1/α(p1/T ))) = 0.

By Lemma 1, this implies that neither

hSk+1

[
p2

/
v1, . . . , pi−1

/
vw−1, pi

/
1
]

nor
hSk+1

[
p1

/
1 − hSk+1(p1), p2

/
v1, . . . , pi−1

/
vw−1, pi

/
1
]

are models of α. This completes the proof of (i).
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Abstract.  We propose a new decision heuristic for DPLL-based propositio  
nal SAT solvers.  Its essence is that both the initial and the conflict clauses are 
arranged in a list and the next decision variable is chosen from the top-most un-
satisfied clause.  Various methods of initially organizing the list and moving the 
clauses within it are studied.  Our approach is an extension of one used in 
Berkmin, and adopted by other modern solvers, according to which only con-
flict clauses are organized in a list, and a literal-scoring-based secondary heuris-
tic is used when there are no more unsatisfied conflict clauses.  Our approach, 
implemented in the 2004 version of zChaff solver and in a generic Chaff-based 
SAT solver, results in a significant performance boost on hard industrial bench-
marks. 

1   Introduction 

Propositional satisfiability (SAT) is the problem of determining, for a formula in the 
propositional calculus, whether there exists a satisfying assignment for its variables.  
This problem has numerous applications in Formal Verification (e.g., [14]), as well as 
in Artificial Intelligence (e.g., [8]).  SAT solvers are widely used in these and other 
domains. 

Modern complete SAT solvers (e.g., Chaff [10,13], Berkmin [5], Siege [15]) are 
based on the backtrack-search algorithm of Davis, Putnam, Loveland and Logemann 
(DPLL) [3].  A crucial factor influencing the performance of a DPLL-based SAT 
solver is its decision heuristic.  This heuristic decides which variable to choose at each 
decision point during the search and what value to assign it first.  This paper intro-
duces a new decision heuristic that has been found to be efficient on real-world hard 
industrial benchmarks.  It is designed to increase the likelihood that interrelated vari-
ables will be chosen in proximity. 

In recent years, the field has been a witness to a breakthrough in the design of deci-
sion heuristics that are empirically successful on real-world industrial SAT instances.  
The key observation was that the decision heuristic must be dynamic, that is, it must 
re-focus the search on recently derived conflict clauses.  VSIDS [13]—the first such 
dynamic heuristic—maintains a score for each literal.  The score is increased when 

-
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the literal appears in a conflict clause; once in a while, scores are halved.  This strat-
egy ensures that the prover picks literals that were involved in the derivation of recent 
conflict clauses.  

Another well-known decision heuristic, which proved to be even more successful 
than VSIDS on benchmark industrial instances, is Berkmin’s [5].  Its authors claimed 
that VSIDS is not sufficiently dynamic, in the sense that it may still pick literals that 
are irrelevant to the currently explored branch.  Instead, they proposed organizing all 
conflict clauses in a list and picking the next decision literal from the top-most unsat-
isfied clause on the list.  If no such clause exists, a secondary VSIDS-like choice-
heuristic is used.  Berkmin’s heuristic is indeed more dynamic than VSIDS, but we 
find another advantage of Berkmin’s heuristic over VSIDS, in that it tends to pick in-
terrelated variables, that is, variables whose joint assignment increases the chances of 
both quickly reaching a conflict in an unsatisfiable branch, as well as satisfying and 
removing “problematic” clauses in satisfiable branches.  However, this potential ad-
vantage is diluted by the fact that Berkmin does not put the initial clauses on the 
clause list and applies a secondary VSIDS-like heuristic.  

Our proposal, which we call the clause-based heuristic (CBH), maintains a clause 
list containing both the initial and the conflict clauses, thus increasing the chances of 
picking interrelated variables.  The next decision literal is picked from the top-most 
unsatisfied clause.  No secondary heuristic is required.  We propose various methods 
of initially organizing the clause list and for moving clauses within it.  Our approach 
results in a significant performance boost over both VSIDS and Berkmin’s heuristic.  

Basic definitions are provided in the next section.  In Section 3, we review the 
DPLL algorithm [3], enhanced by Boolean constraint propagation [17] and conflict 
clause recording [12].  Readers familiar with this material—included in the paper to 
make it self-contained—may skip ahead.   Some of the commonly used decision heu-
ristics are summarized in Section 4.  In Section 5, we present our clause-based heuris-
tic.  In Section 6, we report on experiments that show that CBH is superior to VSIDS, 
Berkmin’s decision heuristic and the Berkmin-like decision heuristic of zChaff-2004, 
when tested on hard industrial benchmarks used in the SAT’04 competition [9].  This 
is followed by a brief conclusion. 

2   Basic Definitions 

In what follows, we denote negation by ¬, conjunction by ∧ and disjunction by ∨.  A 
literal is a variable or its negation.  We use p, q, r, etc., for literals.  A clause is a dis-
junction of literals, usually denoted by letters A, B, ….  The number of literals in a 
clause A is denoted by |A|.  A conjunctive normal form (CNF) formula is a conjunc-
tion of clauses, like ϕ = (p) ∧ (¬p ∨ q) ∧ (¬q ∨ ¬r).  It is sometimes convenient to 
represent a CNF formula as a set of clauses, rather than as a conjunction.  For exam-
ple, an alternative way to represent ϕ is as the set { p, ¬p ∨ q, ¬q ∨ ¬r }.  We denote 
an empty clause by ∅.  

An (partial) assignment (σ) is a (partial) function assigning a truth value, 1 or 0, to 
all (some) variables.  An example is the assignment τ(p) = τ(r) = 1, τ(q) = 0.  It is 
sometimes convenient to consider a (partial) assignment as a subset of literals.  For 
example, an alternative way to represent τ is as {p, ¬q, r}.  A CNF formula ϕ evalu-
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ates under partial assignment σ to σ[ϕ] by applying the following rules for each vari-
able p:  

1.  If σ(p) = 1, remove ¬p from ϕ’s clauses and remove clauses containing p from 
ϕ. 
2.  If σ(p) = 0, remove p from ϕ’s clauses and remove clauses containing ¬p from 
ϕ.  

If σ[ϕ] contains no clauses, then σ[ϕ] = 1 and σ is a satisfying assignment or a model 
for ϕ, and we say that ϕ=1 under σ.  If ∅ ∈ σ[ϕ], then σ is an unsatisfying assign-
ment for ϕ, and we say that ϕ=0 under σ.  Formula ϕ is satisfiable if there exists an 
assignment σ, such that ϕ=1 under σ; otherwise, it is unsatisfiable. 

3   Enhanced DPLL  

The DPLL algorithm [3] is the basic backtrack-search algorithm for SAT.  DPLL is 
based upon the validity of the following two rules:  

1.  Splitting Literal Rule: Let σ = {p} and τ = {¬p}.  Formula ϕ is satisfiable iff 
σ[ϕ]  or τ[ϕ] is satisfiable. 

2.  Unit Clause Rule: Let  σ = {p}.  If there is a clause A ∈ ϕ such that A  = p, then 
ϕ is satisfiable iff σ[ϕ] is. 

Boolean constraint propagation (BCP) [17] is a process of extending a partial as-
signment by repeatedly applying the unit-clause rule.  A decision variable is a vari-
able assigned as a result of an application of the splitting rule.  A decision literal is 
the assigned literal of a decision variable.  An implied variable is a variable assigned 
as a result of the BCP process.  An implied literal is the assigned literal of an implied 
variable.  The decision level of an assigned variable p is one more than the number of 
decision variables assigned prior to p. 

Let ϕ be an input formula.  Modern complete SAT solvers implement the DPLL 
algorithm in the following way: A partial assignment σ, initialized to the empty par-
tial assignment, is maintained.  The partial assignment σ is extended by executing the 
BCP process.  Then, if the input formula ϕ is neither 1 nor 0 under σ, the splitting rule 
is used, that is, the satisfiability of ϕ is recursively checked under σ∪{p} and then 
under σ∪{¬p}, as required.  The literal p is picked using some decision heuristic. 

Next we describe a powerful technique, used by all the modern SAT solvers, 
namely conflict clause recording [12].  A conflict is a situation during DPLL invoca-
tion when a formula ϕ evaluates to 0 under the current assignment σ.  After such a 
conflict, it is possible to identify an assignment τ ⊆ σ, such that if χ is an assignment 
containing τ, extended by invoking BCP on τ[ϕ], then ϕ is 0 under χ.  In other words, 
applying τ to ϕ is sufficient to create the same conflict as applying σ to ϕ up to BCP.  
We refer to such a partial assignment τ as a conflict-sufficient assignment.  Let τ be a 
conflict-sufficient assignment.  Then a clause A consisting of the negations of all the 
literals contained in τ is referred to as a conflict clause.  The process of adding con-
flict clauses to the formula after each conflict is referred to as conflict clause re-
cording.  Conflict-clause recording prevents DPLL from re-exploring the same sub-
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space during the subsequent search.  Different conflict recording schemes add conflict 
clauses corresponding to different conflict-sufficient assignments.  The 1UIP conflict 
recording scheme [12,13] has empirically been shown to be the most efficient [15,18].  
In what follows, we describe the 1UIP conflict clause identification.  

First, we define an “implication clause” for an assigned literal p.  Let σ be a partial 
assignment held by DPLL prior to assigning p.  The implication clause of an implied 
literal p, denoted by ic(p), is the clause that became a unit under σ and made the im-
plication of p possible, during BCP.  The implication clause of a decision literal p is 
the empty clause ∅.  After a conflict, a conflicting variable r is the variable that had 
been assigned last, before it was identified that σ is an unsatisfying assignment.  Both 
literals of a conflicting variable are referred to as conflicting literals.  According to 
the definition of an unsatisfying assignment, an empty clause must belong to σ[ϕ].  It 
means that there is a clause F ∈ ϕ that is 0 under σ.  One of the conflicting literals 
must belong to F, otherwise r would not have been the last variable that was assigned 
a value.  We denote a conflicting literal that belongs to F by ecl(r).  For example, if ϕ 
= (p ∨ r) ∧ (p ∨ ¬r); σ = {¬p, r}, then σ[ϕ] = 0; p ∨ ¬r is the 0-clause under σ; r is 
the conflicting variable and ecl(r) = ¬r.  Observe that the implication clause is well 
defined for ¬ecl(r), since ¬ecl(r) is an assigned literal.  However, the implication 
clause is not defined for ecl(r), since ecl(r) is not an assigned literal.  We extend the 
definition of the implication clause by setting ic(ecl(r)) = F.  Note that by the ex-
tended definition, the conflicting variable has two implication clauses (one for each 
literal.) 

An implication graph is a directed acyclic graph, in which each vertex is associated 
with a literal corresponding to an assignment along with its decision level.  There is a 
directed edge from vertex p to vertex q if ic(q) = A and ¬p∈A.  Consider the example 
in Fig. 1, which illustrates concepts presented in this section.  DPLL has been invoked 
on formula ϕ and the situation at the time of the first conflict is shown in Table 1.  
The implication graph is shown at the bottom.  The decision literals ¬y, ¬p and ¬s do 
not have incoming edges.  Any implied literal y has | ic(y) | – 1 incoming edges.   

Now we are ready to describe the concept of conflict recording schemes.  Any con-
flict clause is generated by a conflict cut of the implication graph.  All the decision lit-
erals are on one side of the conflict cut (called the reason side).  Both conflicting lit-
erals are on the other side of the conflict cut (called the conflict side).  All vertices on 
the reason side that have at least one edge to the vertices of the conflict side comprise 
the conflict’s reason.  Let τ ⊆ σ be a partial assignment containing only the assigned 
literals corresponding to the reason of a conflict cut.  The partial assignment τ is a 
conflict-sufficient assignment. 

Next, we describe the 1UIP learning scheme.  Let p and q be two literals assigned 
at the same decision level dl.  Then, in an implication graph, p is said to dominate q, if 
and only if any path from the decision variable corresponding to level dl to q contains 
p.  A unique implication point (UIP) [12] is an assigned literal of the highest decision 
level dominating both literals of the conflicting variable.  Observe that the decision 
literal corresponding to the highest decision level is always a UIP.  The 1UIP learning 
scheme requires that any literal assigned after the first UIP (counting from the con-
flicting literals) will be on the conflict side of the corresponding conflict cut and all 
others will be on the reason side.  Consider again the example in Fig. 1.  The literals t 
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and ¬s are UIP’s, since both dominate x and ¬x.  The literal t is the first UIP, since it 
is closer than ¬s to the conflicting literals.  The 1UIP cut is shown on Fig. 1.  The 
corresponding conflict clause is ¬q ∨ ¬t. 

 
A1 = ¬w ∨ s ∨ v ∨ ¬q; A2 = p ∨ q; A3 = ¬q ∨ r ∨ s ∨ ¬w; A4 = ¬q ∨ ¬t ∨ x; 

A5 = s ∨ ¬r ∨ ¬v ∨ t; A6 = ¬t ∨ ¬x; A7 = y ∨ w; 
ϕ = A1 ∧ A 2 ∧ A 3 ∧ A 4 ∧ A 5 ∧ A 6 ∧ A 7. 

(1) 

 

 
Fig. 1. An example of an implication graph and 1UIP conflict clause identification.  The impli-
cation graph corresponds to a DPLL invocation on Formula (1).  The related variable values, 
implication clauses and decision level of the variables are shown on Table 1 

Table 1.  The implication graph and 1UIP conflict clause identification principles.  The value, 
decision level and implication clause for each variable of formula (1) are shown.  The corre-
sponding implication graph and 1UIP conflict cut are displayed in Fig. 1 

 p q r s t v w x y 

σ 0 1 1 0 1 1 1 1 0 
DL 2 2 3 3 3 3 1 3 1 
ic ∅ 2 3 ∅ 5 1 7 4 ∅ 

4   Existing Decision Heuristics  

In this section, we describe the most widely used decision heuristics, known to be ef-
ficient on real-world industrial benchmarks.  

Early static heuristics (e.g.  Jeroslaw-Wang [7], Literal Count [11]) picked the next 
variable based on the number of appearances (scores) of different variables in unsatis-
fied clauses.  A major drawback of such an approach is that score calculation requires 
visiting all the clauses at each node of the search tree, which implies a very significant 
overhead.  Another disadvantage of static heuristics is that they do not consider in-
formation that can be retrieved after a conflict during implication graph analysis.  

¬p[2] q[2] x[3] 

¬s[3] 

w[1]

¬x[3] 

r[3] 

t[3] 

 v[3] 

1UIP cut. Conflict 
clause: ¬q ∨ ¬t. 

 

¬y[1] 
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Heuristics based upon such analyses were found to be several orders of magnitude 
faster [5,13]. 

The first dynamic heuristic is called Variable State Independent Decaying Sum 
(VSIDS) [13].  According to VSIDS, each literal is associated with a counter cl(p), 
whose value is increased once a new clause containing p is added to the database.  
Counters are initialized to 0.  Every once in a while, all counters are halved.  The next 
literal to be picked is the one with the largest counter.  Ties are broken randomly.  Two 
major advantages of VSIDS over the previous heuristics are that: (1) VSIDS is charac-
terized by a negligible computational cost; (2) VSIDS gives preference to literals that 
participate in recent conflicts, i.e. it is dynamic.  MiniSat SAT solver [4] implements a 
variant of VSIDS.  Instead of infrequent halving of the scores, MiniSat multiplies the 
scores after each conflict by 0.95.  This makes the heuristic more dynamic. 

The authors of the Berkmin SAT solver [5] proposed a successful decision heuris-
tic that has been partially or fully adopted by the most modern SAT solvers, such as 
the 2004 version of zChaff [10], Satzoo [4], and Oepir [1].  We show, in the experi-
mental section, that Berkmin’s heuristic is indeed faster than VSIDS on hard indus-
trial benchmarks.  The main difference of Berkmin’s heuristic, when compared to 
VSIDS, is as follows: Conflict clauses are organized in a list, and every new conflict 
clause is appended to the head of the list.  The next decision variable is picked from 
the top-most unsatisfied clause.  If no such clause exists, the next decision variable is 
chosen according to a VSIDS-like heuristic.  We will describe Berkmin’s heuristic in 
detail and analyze why it is advantageous over VSIDS. 

Berkmin maintains a counter cl´(p) measuring the contribution of each literal to the 
search.  Unlike VSIDS, Berkmin augments cl´(p), not only for literals that belong the 
conflict clause itself, but also for literals that belong to one of the clauses that were 
traversed in the implication graph during 1UIP conflict clause identification.  At in-
tervals, Berkmin divides all the counters by 4 (compared to 2 for VSIDS).  Let cv´(p) 
be a counter measuring the contribution of each variable to the conflicts, defined as 
cl´(p) + cl´(¬p).  Berkmin maintains all conflict clauses in a list.  After each conflict, 
the new conflict clause is appended to the top of the list.  The next decision variable is 
one with the highest cv´(p) out of all the variables of the topmost unsatisfied clause.  
If no conflict clauses exist yet, or if all the conflict clauses are satisfied, then the vari-
able with the highest cv´(p) of all unassigned variables is chosen. 

Next, we describe how Berkmin decides which literal, out of the two possible liter-
als of the already chosen variable, to pick.  Berkmin maintains a counter gcl(p), 
measuring the global contribution of each literal to the conflicts.  The counter gcl(p) is 
initialized to 0 and is increased whenever cl´(p) is increased, but is not divided by a 
constant.  If a topmost unsatisfied clause exists, Berkmin picks a literal with the high-
est global score gcl(p).  Ties are broken randomly.  If there is no unsatisfied topmost 
clause, then Berkmin picks the literal with the highest value of two(p), where two(p) 
approximates the number of binary clauses in the neighborhood of literal p.  The func-
tion two(p) is computed as follows: First, the number of binary clauses containing p is 
calculated.  Then, for each binary clause B, containing p, the number of binary clauses 
containing ¬q is computed, where q is the other literal of B.  The sum of all computed 
numbers gives the value of two(p).  To reduce the amount of time spent computing 
two(p), a threshold value of 100 is used.  As soon as the value of two(p) exceeds the 
threshold, its computation is stopped.  Once again, ties are broken randomly. 
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The most important advantage of Berkmin's approach over VSIDS, as stated by the 
authors of Berkmin, is its additional dynamicity.  It quickly adjusts itself to reflect 
changes in the set of variables relevant to the currently explored branch.  Indeed, 
Berkmin picks variables from fresh conflict clauses and thus uses very recent data.  
Our understanding is that there is another important advantage of Berkmin’s heuristic 
over VSIDS: newly assigned variables tend to embrace more interrelated variables.  
By “interrelated,” we mean variables whose joint assignment increases the chances of 
both quickly reaching a conflict in an unsatisfiable branch and satisfying out “prob-
lematic” clauses in satisfiable branches.  According to Berkmin’s heuristic, a series of 
new decision variables appear in recent conflict clauses.  Hence, these variables were 
recently traversed during conflict analysis and consequently contributed to conflict 
derivation.  Moreover, even if the top-most conflict clauses were recorded a long time 
ago, the fact that their variables appeared closely together during conflict analysis, 
hints that they are interrelated.  However, the impact of this advantage is diluted by 
the fact that Berkmin does not put the initial clauses on the list, but instead uses 
VSIDS as a secondary heuristic.  The novel CBH heuristic, described in the next sec-
tion, takes advantage of this observation. 

5   The Clause-Based Heuristic 

In our clause-based heuristic (CBH), all clauses (both the initial and the conflict 
clauses) are organized in a list.  After each conflict, the conflict clause is prepended to 
the top of the list.  Conflict-responsible clauses, that is, clauses visited during 1UIP 
conflict-clause identification, are placed just after the new conflict clause.  The next 
decision literal is picked from the topmost unsatisfied clause of the list.  One can see 
that CBH is highly dynamic, since recently visited clauses are placed at the top of the 
list.  Also, CBH organizes the list in such way that clauses that were responsible for a 
recent conflict are placed together.  Hence, when one picks a series of decision vari-
ables after backtracking, it will tend to embrace interrelated variables.  Indeed, when 
literals are picked from the same clause they must be related, even if the clause is an 
initial clause.  When literals are picked from closely-placed clauses, they also tend to 
be related, since the list is organized in such a way that interrelated clauses are near 
each other, by placing conflict clauses at the top and moving conflict-responsible 
clauses towards the top.  

As a variant, CBH can also move clauses found to have exactly two unassigned lit-
erals during BCP to the top of the list.  We refer to this strategy as 2LitFirst.  The 
added value of this strategy is that: (1) more implications are learned during BCP; (2) 
short and potentially contradictory clauses tend to be immediately satisfied.  The first 
point guides the solver to find conflicts in an unsatisfiable area, and the second one is 
useful to eliminate conflicts in a satisfiable area.  The disadvantages of 2LitFirst are 
that: (1) it tends to separate between clauses that contain interrelated variables; (2) it 
may promote clauses that have never been responsible for conflicts.  

We found experimentally that while usually 2LitFirst hurts performance, it may be 
helpful for instances having high clause/variable ratio.  This can be explained by the 
fact that, in instances having a high clause/variable ratio, variables tend to appear in a 
greater number of clauses, since there are fewer variables per clause overall.  Hence, 
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two chains of decisions taken using different decision strategies tend to contain more 
common variables.  This gives more weight to the order between variables and the lo-
cal context of the search.  One should prefer variables whose assignment can have an 
immediate impact; this is exactly what 2LitFirst does.  The default version of CBH 
invokes 2LitFirst on instances where the clause/variable ratio exceeds 10.  

One can see that the major differences of CBH comparing with Berkmin’s heuristic 
are the following:  

(1) Both the initial and the conflict clauses, rather than only conflict clauses, are 
organized in a list; therefore, a second choice heuristic is not required.  Thus, 
any set of decision variables picked by CBH tends to contain more variables 
from the same clause. 

(2) After a conflict, in addition to the conflict clause, a number of clauses re-
sponsible for the conflict (including initial clauses) are moved towards the 
head of the list.  Thus, clauses that are placed nearby are likely interrelated. 

(3) As a variant, clauses that were discovered to have two unassigned literals are 
moved towards the top of the list. 

CBH can be easily implemented using a doubly-linked list.  A pointer to the cur-
rently watched clause C, initialized to the top-most clause, is maintained.  When a de-
cision is required, we seek the top-most unsatisfied clause A, starting from C towards 
the bottom of the list, and pick a literal from A (as described in Section 5.1).  Observe 
that if no top-most unsatisfied clause exists, then we have a satisfying assignment, 
since all the clauses, including the original ones are satisfied.  After each conflict, the 
solver updates the clause list and sets the currently watched clause to point to the top 
of the list.  

The next subsection explains how CBH chooses the decision literal from the top-
most unsatisfiable clause.  Subsection 5.2 explains the initial organization of the 
clause list.  Subsection 5.3 describes conflict-responsible clause identification in 
greater detail.  

5.1   Choosing the Decision Literal from the Top-Most Clause 

CBH maintains two counters, lcl(p) and gcl(p), measuring the local and global contri-
butions of each literal to the conflicts, respectively.  The counter lcl(p) is initialized to 
0 for each p, while gcl(p) is initialized with the number of p’s appearances in initial 
clauses.  Both counters are incremented whenever a literal belongs to one of the 
clauses traversed in the implication graph during 1UIP conflict-clause identification.  
Occasionally, the value of lcl(p) is divided by 2.  

CBH also maintains two counters for variables lcv(p) and  gcv(p), measuring the 
contribution of each variable to the conflicts.  We define:  

 
lcv(p) = (lcl (p) + lcl (¬p)) + 3 ⋅ min(lcl (p), lcl (¬p)). (2) 

The first term gives preference to variables for which both literals are important, 
and the second term eliminates variables where only one literal is important.  In a 
similar manner, we have: 
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gcv(p) = (gcl (p) + gcl (¬p)) + 3 ⋅ min(gcl (p), gcl (¬p)). (3) 

CBH chooses the decision variable from the topmost unsatisfied clause using the 
following algorithm: A variable p with maximal lcv(p) is chosen, so as to give prefer-
ence to variables that participated in recent conflicts.  Ties are broken by preferring 
variables with maximal global score gcv(p).  According to the next criterion, variables 
that used to have the maximal decision level when assigned the last time are pre-
ferred.  (If there still is a tie, it is broken by picking the lexicographically smallest 
variable.) 

CBH chooses the decision literal out of the two possible, based on the global con-
tribution value gcl(p). 

5.2   Initial Clause-List Organization 

In general, we aim to:  

(1) place clauses containing frequently appearing literals near the top of the list, 
and 

(2) place clauses containing common literals nearby.  

Point (1) guides the solver to start the search using frequent literals, and the second 
point increases the chances of picking interrelated literals. 

First, the initial global score igs(p) is calculated for each literal p.  The function 
igs(p) is initialized to 0 and is augmented for each clause that contains the literal p.  
The initial global score reflects the overall frequency of a literal. 

In the process of clause list construction, we also maintain the initial local score 
ils(p) for each literal p.  It is calculated similarly to igs(p), except that only clauses 
that were already placed on the clause list are considered.  The local score reflects the 
involvement of p in clauses that have been already appended to the clause list.  Ini-
tially, no clauses are included in the clause list, hence ils(p)=0 for each literal p.  We 
also define the initial overall score ios(p) = igs(p) + ils(p) for each literal p.  The ini-
tial overall score takes into consideration both the local and global influence of each 
literal.  

So far, we have defined three functions for each literal reflecting its global, local 
and overall influence.  Now, we can define the initial variable overall score for each 
variable p: 

 
iosv(p) = (ios(p) + ios(¬p)) + 3 ⋅ min(ios(p), ios(¬p)). (4) 

The clause list is constructed by repeating the following procedure until all the 
clauses are placed on the clause list: Let p be the variable having the maximal variable 
overall score amongst all variables that have not already been picked. (Ties are bro-
ken by preferring the smaller variable according to lexicographical order.) We append 
clauses containing the variable p that have not yet been appended to the end of the 
clause list.  Local and overall scores are updated for each literal participating in 
clauses that have been appended to the list.  Such dynamic update of scores does not 
require any overhead, given that we use a priority queue, indexed by the scores.  Lit-
erals can be moved within the queues in constant time.  



 A Clause-Based Heuristic for SAT Solvers 55 

 

5.3   Conflict-Responsible Clauses 

Recall that after a conflict, conflict-responsible clauses are placed at the head of the 
list, after the new conflict clause.  A clause is responsible for a conflict (in the context 
of CBH) if it appears in the implication clause of either a literal that appears on the 
conflict side of the 1UIP cut, or else of a literal whose negation appears in the 1UIP 
conflict clause.  

Consider the example in Fig. 1.  Clauses A4, A6, A2 and A5 are responsible for the 
conflict.  Indeed, clauses A4 and A6 are the implication clauses of the two literals x and 
¬x that appear on the conflict side of the 1UIP cut, and clauses A2 and A5 are the im-
plication clauses of the literals q and t, whose negation appear in the conflict clause. 

From a practical point of view, it is not hard to identify clauses that are responsible 
for the conflict, since these are all the clauses that were visited during 1UIP conflict-
clause construction. 

6   Experimental Results 

We implemented CBH within two SAT solvers.  The first is the newest version of the 
famous zChaff solver, namely zchaff_2004.11.15 [10].  zChaff won first place in the 
Industrial-Overall category of the SAT’04 competition [9].  This new version of 
zChaff implements Berkmin’s heuristic, in contrast with the old version of zChaff 
[13] which used VSIDS.  The performance of zChaff was measured on a machine 
with 4Gb of memory and two Intel® XeonTM CPU 3.06GHz processors with hyper-
threading.  The second solver we used in our experiments is SE—a Chaff-like solver, 
implementing 1UIP conflict-clause recording [13], non-chronological backtracking 
[12], frequent search restarts [5,6,10] and aggressive clause deletion [2,5,10] strate-
gies.  We designed SE to implement the aforementioned enhancements of DPLL, 
since they play a crucial role for the performance of a modern SAT solver, tuned for 
industrial benchmarks, as explained in papers on Berkmin [5] and the newest zChaff 
[10].  We did not check whether CBH boosts performance when one or more of the 
above mentioned techniques is not used.  The performance of SE was measured on a 
stronger machine with 4Gb of memory and two Intel® XeonTM CPU 3.20GHz proces-
sors with hyper-threading.  

In what follows, we first analyze the overall performance of CBH versus Berk-
min’s heuristic, VSIDS and Berkmin-like new zChaff’s heuristic.  We show that CBH 
outperforms both Berkmin’s heuristic and VSIDS within the SE SAT solver, and also 
that CBH significantly outperforms zChaff’s new Berkmin-like heuristic.  Then, we 
analyze how various strategies used by CBH contribute to its performance.  We tested 
CBH inside two solvers to ensure that its measured impact on performance is inde-
pendent of the implementation details of a particular solver.  The main measure for 
success in our experiments is the number of solved instances within an hour on hard 
industrial families used during SAT’04 competition [9].  We find this measure, which 
was used during the SAT’04 competition, more convincing than a comparison of the 
number of decisions or conflicts (omitted for lack of space), since reducing the run-
ning time is the final goal of any practical heuristic.  Our experiments required ap-
proximately 35 days of computation. 
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Table 2.  Description of the hard industrial benchmark families used in our experiments.  Fam-
ily name, number of instances in each family as well as the average, and maximal and minimal 
clause/variable ratios are provided 

Abbrevia-
tion 

Family Name Inst.  
Num. 

Cls/Var 
Avrg 

Cls/Var 
Max 

Cls/Var 
Min 

HEQ goldberg03-hard_eq_check 13 6.4 6.7 6.1 
GR maris03-gripper 10 9.1 9.7 8.5 
SCH schuppan03-l2s 11 3.2 3.3 3.0 
ST2 simon03-sat02 9 3.3 4.2 2.7 
ST2B simon03-sat02bis 10 23.9 71.9 2.9 
CLR vangelder-cnf-color 12 42.9 195.4 4.0 
PST velev-pipe-sat-1-1 10 33.7 33.8 33.7 
VUN velev-vliw_unsat_2.0 8 15.6 20.1 10.7 

Table 3.  Performance of CBH vs. two versions of VSIDS and Berkmin’s heuristic, imple-
mented in the SE SAT solver, on eight hard industrial families.  The first column contains an 
abbreviated family name.  Each pair of subsequent columns is dedicated to a specific heuristic,.  
The number of instances, solved within an hour, is provided 

Family CBH solved Berkmin heur.   VSIDSM 
 

VSIDS 

HEQ 5 4 4 3 

GR 1 1 0 1 

SCH 5 2 2 0 

ST2 5 4 4 2 

ST2B 2 2 2 1 

CLR 6 4 4 4 

PST 10 10 4 5 

VUN 4 2 1 0 

ALL 38 29 21 16 

Table 3 compares the performance of CBH, VSIDS, VSIDSM—MiniSat-like VSIDS 
with frequent scores decay and Berkmin’s heuristic, implemented in SE, on eight hard 
industrial families used during the SAT’04 competition (downloaded from the competi-
tion’s website [16]).  The description of these families is provided in Table 2.  VSIDSM 
multiplies the score by 0.95 after every 10 conflicts, rather than with each conflict.  The 
latter rate is used within MiniSat, but the former is preferable within SE.  Other heuris-
tics decay the scores each 6000 conflicts.  CBH solves at least as many instances within 
each family, when compared to either Berkmin’s heuristic or either version of VSIDS.  
CBH solves more instances than both version of VSIDS in 7 out of 8 cases, and solves 
more instances than Berkmin’s heuristic in 5 out of 8 cases. 

Table 4 shows the performance of CBH within the new version of zChaff.  The 
performance of a version of CBH that does not use 2LitFirst is also provided.  One 
can see that zChaff, enabled with CBH, outperforms zChaff in a very convincing 
manner for 6 out of 8 families and is inferior in only once case.  Moreover, if the 
2LitFirst strategy is not used, CBH is never inferior.   
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Table 4.  CBH vs. the default heuristic within zChaff_2004.11.15.  CBH_2L_N is a version of 
CBH that does not use the 2LitFirst strategy 

Family zChaff + CBH  zChaff+ CBH_2L_N  zChaff  default  
 

HEQ 8 8 4 

GR 3 3 0 

SCH 5 5 2 

ST2 4 4 1 

ST2B 2 2 1 

CLR 3 4 1 

PST 5 8 8 

VUN 2 2 2 

ALL 32 36 19 

One can conclude that CBH definitely contributes to modern SAT-solver perform-
ance, outperforming both VSIDS and Berkmin’s heuristic.  Our experiments also con-
firm that Berkmin’s heuristic is preferable to VSIDS, though the gap narrows if 
VSIDS uses frequent scores decay.  This is to be expected, but—to the best of our 
knowledge—has never been reported, despite the fact that Berkmin’s heuristic has 
been partially or fully adopted by the most modern SAT solvers [1,4,5,10].   

What remains is to analyze the performance of CBH when disabling some of its 
specific strategies.  Accordingly, we consider CBH_NM, a version that does not move 
conflict-responsible clauses to the top of the list (but still appends the conflict clause 
itself to the top of the list), and CBH_NI, which does not use the initial strategy, de-
scribed in Section 5.2, but rather appends all clauses to the list in the order of appear-
ance in the input instance.  We also experimented with CBH_2L_A, which always 
uses 2LitFirst, and with CBH_2L_N, which never does.  Table 5 and 6 compare the 
performance of CBH within SE and zChaff respectively.  

Switching off the initial strategy results in a performance degradation for 3 families 
within SE, and in performance gain for one family.  In zChaff, switching off the ini-
tial strategy resulted in performance degradation for 2 families.  In general, the initial 
strategy improves the performance within both SE and zChaff, although it is not the 
most crucial factor contributing to CBH’s performance.  Even if the initial strategy is 
switched off, CBH performs better than other decision heuristics.  This can be ex-
plained by the fact that during the search, CBH quickly reorganizes the clause list to 
contain groups of interrelated clauses. 

Switching off the moving of conflict-responsible clauses to the top of the list results in a 
performance degradation for 4 families and performance gain on 3 families in zChaff.  The 
overall number of solved instances is higher when the strategy is switched on.  Switching 
off the moving of conflict-responsible clauses to the top of the list leads to mixed results in 
the case of SE.  Performance seriously degrades for the SCH family, and also for the ST2 
family; however, there is a performance-boost for the GR, ST2B and VUN families.  The 
overall number of solved instances remains the same.  One can conclude that moving the 
conflict-responsible clauses to the top of the list can be useful for some families, but hurt 
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Table 5.  Performance of different configurations of CBH in terms of solved instances within 
an hour in SE solver 

Family CBH  CBH_NM CBH_NI CBH_2L_A CBH_2L_N 

HEQ 5 4 5 3 5 

GR 1 2 2 0 1 

SCH 5 2 4 5 5 

ST2 5 4 5 2 5 

ST2B 2 3 1 2 2 

CLR 6 7 5 5 6 

PST 10 10 10 10 10 

VUN 4 6 4 4 1 

ALL 38 38 36 31 35 

Table 6.  Performance of different configurations of CBH in terms of solved instances within 
an hour in zChaff solver 

Family CBH  CBH_NM CBH_NI CBH_2L_A CBH_2L_N 

HEQ 8 4 8 4 8 

GR 3 1 3 0 3 

SCH 5 2 4 0 5 

ST2 4 2 4 0 4 

ST2B 2 3 2 2 2 

CLR 3 3 3 3 4 

PST 5 10 3 5 8 

VUN 2 3 2 2 2 

ALL 32 28 29 16 36 

others.  We recommend invokeing it by default, since it results in an overall performance 
boost in the case of zChaff and does not hurt overall performance of SE. 

Regarding the impact of 2LitFirst strategy, first observe that according to Tables 5 
and 6, invoking 2LitFirst on every instance does not pay off.  Note that the default 
strategy used by CBH invokes 2LitFirst if the clause/variable rate is greater than 10.  
The motivating experimental observation for designing CBH in this manner is that SE 
without 2LitFirst performs the same as the default version on all families, except 
VUN, where performance seriously degrades.  VUN is the only family, other than 
PST, for which the clause/variable ratio is greater than 10 for all instances.  To con-
firm that SE performs better when 2LitFirst is invoked on instances with high 
clause/variable ratio, we launched SE on 26 handmade families that were submitted to 
SAT’04 (and are available at [16]).  SE was able to solve at least 1 instance from 13 
families.  The default CBH strategy performed better than a strategy with 2LitFirst 
disabled on 2 out of 13 families, and it performed the same on other families.  In the 
case of zChaff, we found that 2LitFirst invocation hurts performance in a dramatic 
manner on families with low clause/variable ratio, and leaves the performance the 
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same or slightly degraded on families having high clause/variable ratio.  The families 
HEQ, GR, SCH and ST2 are those with a ratio for all its instances lower than 10.  If 
2LitFirst is always used, zChaff is able to solve only 4 instances of these 4 families, 
comparing to 20 instances solved by the version that never uses 2LitFirst.  The other 
4 families have either mixed or high clause/variable ratio.  On these families, when 
2LitFirst is always used, zChaff is able to solve 12 instances, compared to 16 by a 
version that never uses 2LitFirst.  One can conclude that within zChaff, 2LitFirst us-
age is not justified.  Overall, 2LitFirst performs much better on instances having a 
high clause/variable ratio. 

7   Conclusions 

We have presented a novel clause-based heuristic, CBH.  It maintains a clause list or-
ganized in a manner that allows the algorithm to choose sequences of interrelated 
variables that were responsible for recent conflict derivation.  

CBH maintains both the initial and the conflict clauses in a single list.  The next 
decision literal is picked from the topmost unsatisfied clause of the list.  After each 
conflict, the conflict clause is prepended to the top of the list.  Clauses visited during 
conflict-clause identification, are placed just after the new conflict clause.  As a vari-
ant, if the clause/variable ratio of the input instance is greater than a predefined value 
(10 is a reasonable choice), newly identified binary clauses are moved to the top of 
the list. 

We have demonstrated that using CBH results in a significant performance boost 
on hard industrial families, when compared with Berkmin’s heuristic or VSIDS. 
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Abstract. Preprocessing SAT instances can reduce their size consid-
erably. We combine variable elimination with subsumption and self-
subsuming resolution, and show that these techniques not only shrink
the formula further than previous preprocessing efforts based on vari-
able elimination, but also decrease runtime of SAT solvers substantially
for typical industrial SAT problems. We discuss critical implementation
details that make the reduction procedure fast enough to be practical.

1 Introduction

The size of CNF formulas is often very large, particularly in the context of formal
verification. In theory, a very large formula may be easy to solve and a small
formula hard. However, in practice, it is often observed that the runtime of a
SAT solver is very much related to the size of the input formula, at least when
the formulas stem from the same set of problems.

This paper presents new techniques which reduce the size of a CNF formula
in order to speed up overall SAT solving time. Our experiments on problems
from industrial circuit verification show large speedups, not only compared to
plain SAT solving, but also compared to related preprocessing techniques [1].

Modern SAT solvers use unit propagation and the pure literal rule in a pre-
processing phase, as already described in the original DPLL algorithm [2]. More
sophisticated techniques focus on deriving units, implications and equivalent
literals [3, 4, 5, 6, 7]. Other similar techniques have been used in the context of
ATPG, such as recursive learning [8], or in circuit verification, in particular and-
inverter graphs [9] and BDD-sweeping [9]. The latter techniques have in common
that they allow to restructure circuits but do not directly apply to CNF. Our
approach is orthogonal to these techniques in the sense that it can be applied in
addition to restructuring, after a CNF has been produced. Furthermore, from the
CNF, individual clauses can be removed, an operation without correspondence
in the circuit representation.

Preprocessing in SAT is a trade-off between the amount of reduction achieved
and invested time. Light weight approaches such as [5] focus on fast preprocess-
ing. Their running time is usually negligible compared to the overall solving time.
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On the other side of the spectrum lie techniques which in practice take consider-
able time. Examples are saturation of hyper binary resolution [3], k-saturation
for k ≥ 2 in St̊almarck’s method [7], or saturation of recursive learning for
larger recursion depths. These techniques can only be applied if a huge benefit is
expected—which is application domain depended—or if a time limit is enforced.

Recently, the rule of elimination of atomic formulas from [10], which elimi-
nates variables from a CNF by clause distribution, has been reconsidered as a
basis for symbolic DPLL in the ZDD based SAT solver ZRES [11], as a way
to eliminate variables in the QBF solver QUANTOR [12], and, independently in
the preprocessor NIVER [1]. Clause distribution is a light weight preprocessing
technique, as long as a limit on the growth of the clause data base is enforced.

We extend [1] by three new techniques: subsumption, self-subsuming reso-
lution, and variable elimination by substitution. This results in much higher
reduction rates and faster SAT solving, as we show in our experiments. The
description of the implementation of NIVER [1] stays on a very high level. We
describe two implementation techniques for speeding up the process, based on
(1) restricting the set of variables considered for elimination to touched vari-
ables, and (2) using signatures for fast subsumption checks. The latter has has
also been used in [12], but the focus there is QBF, and no experimental results
for preprocessing SAT instances are given. The optimizations allow us to keep
the runtime small enough for a light weight approach.

Finally, we believe that preprocessing and encoding are two sides of the same
coin. One way of speeding up SAT solving is to work on sophisticated CNF
encoding algorithms such as [13, 14, 15, 16]. We suggest, as an alternative, that
the CNF is simplified after its generation, which is less application domain de-
pendent. From a pragmatic point of view, it also eases the burden of developing
good domain specific CNF encoders if the SAT solver is known to do a good
job of reducing verbose CNF formulations. Furthermore, our simplification tech-
niques are all resolution based and can therefore easily be incorporated in a
solver with refutation generation. We leave it to future work to compare the two
different approaches, particularly since the number of available CNF encoders
and propositional non-CNF problems is currently rather small.

Generally, our simplification techniques can be applied in three different ways:
(1) during preprocessing, (2) during SAT solving, e.g. at restart, or (3) between
two incremental SAT problems. We will focus on applying simplification as a pre-
processor, although a small study is included of an application in an incremental
SAT problem.

To summarize, our contributions are the following. We extend NIVER [1] by
subsumption, which was already discussed by one of the authors in the context
of QBF [12]. Furthermore, we present two new techniques, self-subsuming reso-
lution and variable elimination by substitution. Beside a compact description of
the preprocessing algorithm itself we discuss two important low-level optimiza-
tions. Finally we show the effectiveness of these techniques as implemented in
SATELITE on a comprehensive set of industrial benchmarks.
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2 Preliminaries

A CNF consists of a set of clauses, where each clause C is a set of literals. A
literal is a boolean variable x or its negation x.

Given two clauses C1 = {x, a1, . . . , an} and C2 = {x, b1, . . . , bm} the implied
clause C = {a1, . . . , an, b1, . . . , bm} is called the resolvent of the two original
clauses by performing resolution on the variable x. We write C = C1 ⊗C2. This
notion can be lifted to sets of clauses. Let S1 be a set of clauses which all contain
x, S2 a set of clauses which all contain x. Then S1 ⊗ S2 is defined as

S1 ⊗ S2 = {C1 ⊗ C2 | C1 ∈ S1, C2 ∈ S2}

The basic simplification technique in this paper, and also in NIVER [1], follows
[10] and simply eliminates variables. In a given CNF, let Sx be the set of clauses in
which x occurs, Sx be the set of clauses in which x occurs and define S = Sx∪Sx.

The elimination of a variable x in the whole CNF can be computed by pair-
wise resolving each clause in Sx with every clause in Sx. The produced resolvents
S′ = Sx⊗Sx replace the original clauses S containing x or x, resulting in a satis-
fiability equivalent problem. We refer to this procedure as elimination by clause
distribution, and count only non-trivial clauses as part of the result. A clause is
trivial if it contains a variable and its negation.

In principle, the resolution operator ⊗ should have the resolution variable
x as parameter. However, if clauses can be resolved with respect to different
resolution variables, then all the resolvents will be trivial anyhow.

3 New Simplifications

In early experiments and also in the context of QBF [12] we observed that
clause distribution produces many subsumed clauses. A clause C1 is said to
(syntactically) subsume C2 if C1 ⊆ C2. A subsumed clause is redundant and
can be discarded from the SAT problem. Particularly, a subsumed clause never
needs to be part of a resolution proof of unsatisfiability.

We also observed that often similar clauses of a particular kind occur: one
clause C2 almost subsumes a clause C1, except for one literal x, which, occurs
with the opposite sign in C2. For instance, let C1 = {x, a, b}, and C2 = {x, a},
then resolving on x will produce C ′

1 = {a, b}, which subsumes C1. Thus after
adding C ′

1 to the CNF, we can remove C1, in essence eliminating one literal.
In this case, we say that C1 is strengthened by self-subsumption using C2. This
simplification rule is called self-subsuming resolution.

As we will show in the experimental section, adding these subsumption tech-
niques to variable elimination through clause distribution gives huge benefits
compared to [1].

If a circuit is encoded in CNF, typically using the Tseitin transformation
[17], then many variables are actually functionally dependent on other variables,
particularly those introduced for gate outputs. In previous work, this informa-
tion has been used to restrict the set of decision variables in a SAT solver to
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functionally independent variables [18, 19]. We use the information to simplify
the CNF, essentially extracting gates as in [19]. Output variables of gates are
functionally dependent on input variables. If the following three clauses

. . . {x, a, b}, {x, a}, {x, b} . . . (1)

are part of a CNF then the AND gate x = (a ∧ b) can be extracted, showing
that x is functionally dependent. We also call this equation a definition of x.

If x has a definition and is eliminated by clause distribution, many redundant
resolvents are generated. By using the definition these clauses can be removed
easily. Let G be the set of clauses used for extracting a gate with output x.
Further recall that Sx is the set of clauses of S in which x occurs and similarly
define Gx, and Gx. Then the set S of all clauses with x or x can be partitioned
into S = G ∪ R, with R ≡ S\G the set of remaining clauses not used for
extracting the gate. From S = (Gx ∪ Rx) ∪ (Gx ∪ Rx) it follows that the set S′

of all resolvents can be partitioned into S′ = S′′ ∪ G′ ∪ R′ with

S′′ = (Rx ⊗ Gx) ∪ (Gx ⊗ Rx), G′ = Gx ⊗ Gx, and R′ = Rx ⊗ Rx.

Furthermore, we have the following Theorem, which shows that S′′ implies G′

and R′, allowing S′ to be replaced by S′′.

Theorem. S′′ |= G′ ∪ R′

The proof follows by first noticing, as in [20], that G′ contains only trivial clauses.
All the resolvents in R′ can be obtained through several resolution steps (linear
in the width of the gate or by just one hyper resolution step [3]) from clauses in
S′′. Another view is to substitute in R all occurrences of x by its definition (x
by a∧ b and x by a ∧ b in the example) and then apply the distributivity law to
obtain a flat CNF.

As a result, in the elimination of a functional dependent variable the clauses
in G′ and R′ do not have to be added, which always reduces the number of added
resolvents. We call this simplification rule variable elimination by substitution.
To continue the example in Eqn. (1) , let S be

1

{x, c},
2

{x, d}︸ ︷︷ ︸
Rx

,
3

{x, a, b}︸ ︷︷ ︸
Gx

,
4

{x, a},
5

{x, b}︸ ︷︷ ︸
Gx

,
6

{x, e, f}︸ ︷︷ ︸
Rx

The resolvents are:
1⊗4

{c, a},
1⊗5

{c, b},
2⊗4

{d, a},
2⊗5

{d, b},
3⊗6

{a, b, e, f} (S′′)
3⊗4

{a, b, a},
3⊗5

{a, b, b} (G′)
1⊗6

{c, e, f},
2⊗6

{d, e, f} (R′)

G′ has only trivial clauses. Since trivial clauses are not counted, we have |S′| =
7 > 5 = |S′′|. Replacing S with S′′ results in a decrease of the number of clauses
from 6 to 5, while the full clause distribution actually results in an increase from
6 to 7. Also note that the redundant clauses in R′ can be obtained from S′′
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through two resolution steps each (actually by one hyper resolution step [3]):
1⊗6 = (1⊗4) ⊗ ((1⊗5) ⊗ (3⊗6)) and 2⊗6 = (2⊗4) ⊗ ((2⊗5) ⊗ (3⊗6)) .

We also realized that subsumption sometimes removes clauses which could
be used to extract a gate. For instance if the clause C = {a, b} is added to the
CNF in Eqn. (1), then the clause {x, a, b} is removed and no AND gate can
be extracted anymore. However, by one hyper resolution step, or two ordinary
resolution steps, of C with the original two binary clauses the unit x can be
derived, which, of course, simplifies the CNF even further. For all clauses C, we
try to find binary clauses, that, if resolved with C in one hyper resolution step
produce a unit. We call this simplification rule hyper-unary-resolution, similar
to hyper-binary-resolution of [3].

4 Implementation

We present an implementation that should work for any clause based SAT solver,
including those with an incremental SAT interface. In that context, the simpli-
fication can be applied between the different incremental SAT instances.

The techniques in this paper aim at simplifying a SAT problem by reducing
its size. Variable elimination is applied greedily until no more improvement can
be made to the clause database by a single elimination. Different notions of
“improvement” can be used, and previous work [1] is focused on minimizing the
number of literal occurrences. In our implementation we minimize the number of
clauses. The rationale behind this is that propagation in a SAT solver is roughly
proportional to the number of clauses, independent of their size.

4.1 Touched-Lists

Subsumption and variable elimination interact, such that strengthening or re-
moving a clause by (self-) subsumption can turn the elimination of a variable
into an improvement, and eliminating a variable, which produces new clauses,
might give new opportunities for subsumption.

In our implementation, subsumption and elimination are alternated until a
fixed-point is reached. To make this efficient, it is important not to loop repeat-
edly over all clauses. Therefore, three sets are maintained, storing information
about the modifications made to the clause database:

Touched (set of variables). A variable is added to this set if it occurs in a clause
being added, removed, or strengthened. Initially all variables are “touched”.

Added (set of clauses). When a clause is added to the SAT problem (e.g. by
variable elimination), it is also added to this set. Initially all clauses are
considered “added”.

Strengthened (set of clauses). When a clause is strengthened (one literal is
removed, either by self-subsumption or toplevel propagation1) it is added to
this set. Initially the set is empty.

1 Unit propagation performed under no assumptions, as opposed to during the search.
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These sets are repeatedly cleared during the simplification procedure described
in Sect. 4.3, then populated again as new clauses are produced during variable
elimination, and while existing clauses are removed or strengthened by subsump-
tion and self-subsumption. The algorithm terminates with all sets empty. In an
incremental context—although not the focus of this paper—we note that new
clauses can be added between SAT problems, populating Added , and that unit
facts learned during the solving of one incremental SAT instance might remove
or strengthen clauses, populating Touched and Strengthened .

4.2 Subsumption

The efficiency of subsumption is most important and is achieved by two imple-
mentation techniques. First, for each clause a 64-bit signature is stored [12]. The
signature abstracts the set of literals of a clause in the following way: A hash
function h maps literals to numbers 0..63, and the signature of a clause C is
calculated as the bitwise Or of 2h(p) over its literals p ∈ C. Then for each literal
an occur list is maintained, pointing to all the clauses in which the literal occurs.

Now, backward subsumption, that is checking if a clause subsumes (as op-
posed to being subsumed by) some other clause in the database, can be imple-
mented as follows:2

findSubsumed(Clause C)
pick the literal p in C with the shortest occur list
for each C ′ ∈ occur(p) do

if (C �=C ′ && size(C)≤size(C ′) && subset(C, C ′))
add C ′ to result

return result
subset(Clause C, Clause C ′)

if (sig(C) & s̃ig(C ′) �= 0) return False
else return result of iterating over C and C ′ in a

complete (expensive) subset test

This algorithm is very fast and allows backward subsumption to be applied
eagerly to each added or strengthened clause. We rely on this fact in Sect. 4.3.
Given a procedure for finding subsumed clauses, we can now define a method
for using a clause C to strengthen other clauses by self-subsumption:

selfSubsume(Clause C)
for each p ∈ C do

for each C ′ subsumed by C[p := p] do
strengthen(C ′, p) – remove p from C ′

2 && denotes logical And, & bitwise And, and ˜ bitwise negation.
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For the clause {a, b, c} this method would call findSubsumed() for {a, b, c}, {a, b,
c}, {a, b, c}, and strengthen any result returned. It should be noted that the
order of strengthening matters, but is not optimized in our implementation.

4.3 The Toplevel Simplification Method

We now state the main algorithm. The post-conditions are: (1) No opportunities
remain for subsumption or self-subsumption. (2) No improvement can be made
by eliminating a variable, unless the heuristic cut-off is used (see below). (3) The
three sets Touched , Added , and Strengthened are empty.

simplify()
do

– Subsumption:
S0 = {set of clauses containing a literal occurring in

some clause in Added}
do

S1 = {set of clauses containing a literal occurring
negatively in some clause in Added}

∪ Added ∪ Strengthened
clear Added and Strengthened
for each C ∈ S1 do selfSubsume(C)
propagateToplevel() – may strengthen/remove clauses

while (Strengthened �= ∅)
for each C ∈ S0 not deleted do subsume(C)

– Variable Elimination:
do

S = Touched ; clear Touched
for each x ∈ S do maybeEliminate(x)

– eliminating variables will touch other variables
while (Touched �= ∅)

while (Added �= ∅)

The method subsume(C) removes any clause subsumed by C, and similarly
selfSubsume(C) removes a literal from any clause that may be strengthened
using C. The method maybeEliminate(x) removes x by clause distribution or
substitution if the number of clauses is reduced. Finally, propagateToplevel()
removes any satisfied clause or false literal permanently from the clause database,
assigning variables and repeating the process if unit clauses are produced.

In the subsumption phase, two sets are computed: S0 for standard subsumption,
and S1 for self-subsumption. Self-subsumption is applied first as it may render
more (standard) subsumptions possible.

Because backward subsumption is eagerly applied to all added or strength-
ened clauses, the only candidates for being subsumed are the clauses of Added .
Strengthened clauses cannot be subsumed as they now have fewer literals and
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were not subsumed before strengthening. A necessary condition for C to sub-
sume C ′ is that C has at least one literal in common with C ′. This motivates
the definition of S0.

Let “original clause” denote a clause not in Added or Strengthened . For self-
subsumption (the set S1) any added or strengthened clause can be used to re-
move literals from an original clause. Original clauses may self-subsume added
clauses. This does not apply to strengthened clauses, since they have already
been checked while still containing more literals. It remains to add to S1 the
original clauses that may strengthen a clause in Added . All the candidate clauses
have to contain one literal p for some p in the added clauses.

4.4 Variable Elimination

The variable elimination procedure relies on three readily implemented methods,
which we state here without pseudo-code:

maybeClauseDistribute(x) eliminates x by clause distribution if the result has
fewer clauses than the original (after removing trivially satisfied clauses).

findDefinition(x) returns either x ↔ p1∨p2∨ . . .∨pn or x ↔ p1∧p2∧ . . .∧pn

or NoDef. Unit information is also detected by hyper-unary-resolution and
returned as x ↔ True or x ↔ False. Note that in general there may
be many definitions. We use the shortest one and do not extract further
information from this.

maybeSubstitute(def ) takes the definition of a functionally dependent variable
and substitutes each occurrence of the variable by its definition, provided
this results in fewer clauses. Substituting a literal by a disjunction is unprob-
lematic; substituting by a conjunction requires duplicating the destination
clause for each literal of the conjunction, as explained in Sect. 3.

maybeEliminate(Var x)
if (x assigned or has zero occurrences) return
if (#occurs of x and x are both > 10) return – heuristic cut-off

def = findDefinition(x)
if (def �= NoDef) maybeSubstitute(def )
else maybeClauseDistribute(x)

if (x was eliminated)
propagateToplevel()
remove learned clauses with x – for incremental SAT only

It was observed in an early implementation of the simplification procedure that
on some problems the majority of time was spent on failed attempts to eliminate
variables occurring frequently in both polarities. This is why these variables are
heuristically excluded. The last line of the pseudo-code is only relevant in an
incremental context; if variable elimination is applied during preprocessing, no
learned clauses will exist.
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4.5 Variable Elimination Related Issues

The elimination of variables results in a partial model if the problem is satisfiable.
Clauses removed during variable elimination must therefore be stored and used
to complete the model, if the full model is not needed. If not, removed clauses
can simply be discarded.

Variable elimination also causes problems for the incremental SAT interface.
Later extensions of the SAT instance might reintroduce eliminated variables,
rendering the elimination unsound. Bringing back the removed clauses will solve
the problem, but a simpler solution is to extend the solver interface to let the
user explicitly prevent the elimination of selected variables.

5 Experimental Results

The techniques presented in this paper were implemented in a tool SATELITE. It
is downloadable together with the benchmarks and the result files used to pro-
duce the tables and diagrams of this section.3 Three SAT solvers were used in our
evaluation: (1) MINISAT v1.13 [21] with an improved conflict clause analysis [22];
(2) ZCHAFF version “Chaff II”; and (3) BERKMIN v5.61. The benchmarks were
selected to be relevant for circuit verification. To get a relevant measure for the
reduction achieved by our preprocessing techniques, unit clauses were removed
by performing a toplevel propagation using MINISAT prior to benchmarking.

For our evaluation, two benchmark sets were created. The first set, referred
to as “IBM Problems”, is a subset of the huge BMC benchmark set made avail-
able by E. Zarpas at IBM.4 The benchmark set is divided into directories, each
containing BMC problems of different lengths generated from the same circuit
with the same specification. Without any prior knowledge of the benchmarks,
we randomly selected a subset of the directories resulting in 355 problems.

The second set, referred to as “Industrial Mix” contains a mix of hardware
verification problems, obtained as follows: The available industrial problems of
the SAT-2004 Competition were downloaded. Problems concerning graph color-
ing, set covering and planning problems were removed. Our focus is on circuit
verification. We also removed Miroslav Velev’s problems because SATELITE ran
out of memory on some of them, which complicated benchmarking.5 However, we
note that the problems are already clausified in a smart way [16], which leaves
little room for improvement by our methods. For the CNFs which SATELITE
could preprocess, reduction rates of less than 5% were achieved, and no measur-
able speedup. This supports our hypothesis that our method is an alternative to
producing optimized CNFs directly from the source problem.

3 www.cs.chalmers.se/ ẽen/SatELite
4 www.haifa.il.ibm.com/projects/verification/RB Homepage/bmcbenchmarks.html
5 The occurrence lists necessary for our preprocessing double the memory footprint.

Although this is not a big issue, Velev’s problems are among the largest that today’s
SAT solvers can handle. The current version of SATELITE has not been optimized
for memory performance.
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Table 1. Size-reduction comparison with NIVER. “v”, “c”, “l” denote the number of
variables, clauses, and literals in thousands respectivly. Times “t” are in seconds as
provided by the Unix command “time”, and include parsing and writing the result file.
“SATELITE as NIVER” uses no subsumption and has the same heuristic as NIVER
for variable elimination (enforce fewer literals). It shows that SATELITE can mimic
NIVER well, and that our implementation techniques runs faster. The last column
shows SATELITE with all reductions on, which results in a strict improvement in size

Original NIVER SATELITE as NIVER Full SATELITE

Name v c l v c l : t v c l : t v c l : t

6pipe 16 395 1157 15 393 1155 : 4.4 15 393 1155 : 2.2 12 323 1018 : 53.0
abp1-1-k31 15 48 124 8 34 98 : 0.6 8 33 94 : 0.3 3 18 63 : 1.2
barrel9 9 37 102 4 21 66 : 0.5 4 20 65 : 0.5 2 16 87 : 3.3
cache 10 227 880 2192 130 606 1680 : 20.6 92 417 1146 : 7.9 29 178 748 : 58.6
comb2 32 112 274 20 89 231 : 1.6 20 89 231 : 0.8 3 18 63 : 4.4
f2clk 40 28 80 186 10 44 125 : 1.4 7 32 90 : 0.5 4 25 81 : 1.2
fifo8 400 260 708 1602 69 301 859 : 13.6 42 164 451 : 6.5 23 129 446 : 11.2
guid-1-k56 99 307 758 45 193 553 : 3.9 44 189 540 : 3.1 23 130 443 : 8.0
ibm-03 k80 89 375 973 56 308 887 : 5.5 44 230 661 : 1.9 28 190 629 : 5.8
ibm-20 k45 91 373 945 46 281 832 : 6.7 41 250 725 : 2.1 20 156 546 : 7.0
ip50 66 215 513 34 148 398 : 5.1 12 50 134 : 1.6 8 43 139 : 4.2
longmult15 8 24 59 4 16 46 : 0.3 3 14 39 : 0.1 1 9 28 : 0.4
w08 14 120 425 1038 69 324 859 : 7.2 69 324 856 : 3.7 34 220 688 : 15.7

Finally, we added 18 satisfiable and 18 unsatisfiable BMC problems used in
[23], mainly from the Texas’97 benchmarks;6 18 unsatisfiable BMC problems
generated from the PicoJava design7 and 13 liveness problems from SatLib.8

The result contains 115 CNF files.
Study 1 – Comparing reduction rates with NIVER. This study shows
that SATELITE is an improvement over earlier work. We use the same problem
set as presented in the NIVER paper [1]. The results are shown in Table 1.
Study 2 – Reduction rates and preprocessing time. Figure 1 shows the
effect of applying preprocessing in terms of the number of remaining variables,
clauses, and literal occurrences. We see that for most problems the number of
clauses drop significantly, as well as the number of literal occurrences (with some
exceptions), resulting in smaller CNFs and faster unit propagation.

The runtime of the preprocessing is also plotted in relation to the time of
solving the original CNF. For problems requiring between 30 seconds and 30
minutes to solve, preprocessing took less than 1/10th of the total time. Only for
some of the easiest problems did preprocessing dominate runtime, but never in
any really harmful way.
Study 3 – Runtime comparison solving with/without preprocessing. In
Figure 2 we plotted the preprocessing plus SAT solving time using the strongest
version of our preprocessing (y-axis) against SAT solving without preprocessing

6 www-cad.eecs.berkeley.edu/Respep/Research/vis/texas-97/
7 www.sun.com/microelectronics/communitysource/picojava/download.html
8 www.cs.ubc.ca/ hoos/SATLIB/Benchmarks/SAT/BMC/bmc.tar.gz
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Fig. 1. Relative Reduction and Preprocessing Time. The plots show the remaining
size of each one of the 115 problems in the Industrial Mix after reduction
by our preprocessing techniques. The abbreviations are: “ve” variable elimination, “s”
subsumption, “ss” self-subsumption, “ds” definitional substitution. The reduction is
measured relative to the size of the original CNF after applying unit propagation
(= 100%). The curves show the remaining variables (upper left), clauses (upper right),
and literals (lower left). For all three plots the instances on the x-axis are sorted in the
same way. The order is determined by the percentage of remaining variables
for the most effective version of the preprocessor (the lower curve in the upper
left plot labelled “ve s ss ds”). Our primary simplification target, the elimination of
variables induces a simplification of the number of clauses in most cases as well. The
number of literals follows more loosely the same trend. These three plots also show that
our new simplification techniques are very effective compared to the approach taken by
NIVER [1], which corresponds to the curves labelled “ve”. Often an additional factor
of two in reduction can be achieved.

The lower right plot shows in logarithmic scale the absolute time needed for pre-
processing in relation to the overall solution time. The upper curve refers to the time
for solving an instance with MINISAT not using preprocessing (timeout set to 1800
seconds). The remaining five curves show only the time used for preprocessing alone
with decreasing effort. Preprocessing time turns out to be negligible compared to the
overall solution time in most cases, even when our most aggressive techniques are used.
Only for very simple instances is it better to run the solver without preprocessing

of cases preprocessing lead to a significant performance increase. In particular
for ZCHAFF, the improvement was virtually exceptionless.

(x-axis). Although not a consistent improvement time-wise, in the big majority
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Fig. 2. Heads-up comparison, with and without preprocessing. The graphs shows a
time comparison between “SAT solving” and “preprocessing + SAT solving” (using
all reduction techniques). A mark below the diagonal means faster total solving time
when first applying preprocessing. A dot (•) represents MINISAT, a plus (+) ZCHAFF,
and a cross (×) BERKMIN. A timeout of 1800 seconds was used, and marks along the
edges represent tests which timed out for one of the two executions

Study 4 – Runtime effect of the different techniques. To evaluate the ben-
efit of the different levels of reduction, we run all three SAT solvers on all bench-
marks, both the IBM Problems and the Industrial Mix, with 5 different levels
of optimization: (1) Nothing (original CNF after propagating unit clauses), (2)
only variable elimination, (3) variable elimination plus subsumption, (4) variable
elimination, subsumption and self-subsumption, (5) variable elimination using
definitional substitution (when possible), subsumption and self-subsumption.

The result is plotted in Figure 3. The curves show that not only are more
problems solved fast by preprocessing, but also more problems in total when a
long timeout is given.
Study 5 – Incremental k-induction. In Table 2 and Figure 4, a small study
of applying our reduction techniques in an incremental context is presented. The
internal SAT solver of SATELITE, a less optimized version of MINISAT, allows
SATELITE to be used not only as a preprocessor, but also as an incremental
SAT solver. Simplification is applied between each incremental SAT problem.
Although this is a small study, the preliminary results suggest that our tech-
niques pay off in an incremental context too.

6 Conclusion

New simplification techniques were presented together with important imple-
mentation details. On a large representative set of industrial benchmarks it was
shown, that they speed up SAT solvers considerably. We also believe that pre-
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Fig. 3. Comparing different preprocessing options using SATELITE. Time includes both
preprocessing and solving. Even though variable elimination by definitional substitution
gives a consistent reduction compared to variable elimination by clause distribution, it
is not a clear winner in terms of CPU time, but seems to depend on which solver you
apply (the solid line vs. the long-dashed line). However, both lines are clearly above
the “(nothing)”-line, representing no preprocessing. The addition of self-subsumption
to normal subsumption seems to be a clear winner (often better, never worse). To get
an estimate of the speedup, the graphs could be read by fixing a particular number of
solved instances, and see what timeout is required to solve that number of instances.
On the IBM benchmarks, MINISAT requires a timeout of about 250 seconds to solve
275 problems with full preprocessing, but a timeout of more than 600 seconds with no
preprocessing
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Table 2. Study on k-induction. We modified TIP [23] to use SATELITE as a back-
end and ran the zigzag incremental induction algorithm on the “prodcell” problem
distributed with VIS. The table shows the total runtime of each problem in seconds,
omitting examples solved in less than 1 second. Within parenthesis, the number of
clauses of the final incremental SAT instance is printed. In the rightmost column, all
simplifications of SATELITE were invoked between each incremental step. The “depth”
is the induction depth needed to prove the property (all properties are true)

Name Depth Plain Simplifying

vis.prodcell 12 29 62.7 s (266k) 25.3 s (88k)
vis.prodcell 14 16 7.8 s (124k) 6.4 s (29k)
vis.prodcell 15 23 30.5 s (200k) 14.0 s (56k)
vis.prodcell 17 27 64.5 s (253k) 24.1 s (76k)
vis.prodcell 18 13 7.5 s (114k) 5.0 s (35k)
vis.prodcell 19 22 19.2 s (192k) 12.3 s (55k)
vis.prodcell 23 13 9.5 s (120k) 5.9 s (37k)
vis.prodcell 24 37 120.5 s (319k) 34.3 s (94k)
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Fig. 4. Case study on incremental k-induction. The curve shows the progress of the
temporal induction algorithm of TIP [23] running on the hardest example of Table 2.
The graph plots the total execution time (y-axis) of all induction steps performed upto
a certain length (x-axis). In this particular experiment, each step after length 25 takes
more or less constant time

processing techniques partially provide a solution to the important problem of
generating good CNFs in the application domain of circuit verification. As fu-
ture work, it would be interesting to compare SAT solving time on problems that
have been (1) clausified in a good way, and (2) clausified in a naive way, but pro-
cessed with SATELITE. We also want to combine and compare our preprocessing
techniques with the orthogonal techniques mentioned in the introduction.
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Resolution and Pebbling Games

Nicola Galesi� and Neil Thapen��

Abstract. We define a collection of Prover-Delayer games to charac-
terise some subsystems of propositional resolution. We give some natural
criteria for the games which guarantee lower bounds on the resolution
width. By an adaptation of the size-width tradeoff for resolution of [10]
this result also gives lower bounds on proof size.

We also use games to give upper bounds on proof size, and in par-
ticular describe a good strategy for the Prover in a certain game which
yields a short refutation of the Linear Ordering principle.

Using previous ideas we devise a new algorithm to automatically gen-
erate resolution refutations. On bounded width formulas, our algorithm
is as least as good as the width based algorithm of [10]. Moreover, it finds
short proofs of the Linear Ordering principle when the variables respect
a given order.

Finally we approach the question of proving that a formula F is hard
to refute if and only if is “almost” satisfiable. We prove results in both
directions when “almost satisfiable” means that it is hard to distuinguish
F from a satisfiable formula using limited pebbling games.

1 Introduction

Propositional resolution is one of the most intensively studied logical systems. It
is important both from applied and from theoretical points of view. On one hand
it provides the logical basis for almost all of the more important and efficiently
implemented automatic theorem provers (see [6]). On the other hand, it has
probably been the most studied proof system in the area of proof complexity
([16, 7, 5, 10, 22] among others).

Most of the work to understand the strength of resolution has been concen-
trated on proving lower bounds for the length of refutations. Recently Ben-Sasson
and Wigderson [10] based on ideas of [7] gave a unified approach to obtaining
lower bounds. They showed that if a bounded width formula has a short refu-
tation, then it has a narrow refutation. Using this relationship they give an
algorithm to generate resolution refutations based on the width measure.

Simple pebbling games were initially introduced into the world of resolution
in [20] to study size lower bounds in the subsystem of resolution where the proofs
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are treelike. Later the study of the space measure for resolution (see [13, 1, 8])
suggested the use of a more complex pebbling game.

It was soon clear that games also play an important role also in the study
of the width limit for the full resolution system. Atserias and Dalmau [3] have
given a finite model-theoretic characterization of the bounded width formulas
with narrow refutations, using a pebbling game. Atserias, Kolaitis and Vardi in
[4] gave a characterization, by combinatorial games from finite model theory, of
refutational width in a refutational system tailored for constraint satisfaction
problems.

In this paper we carry further the idea of using pebble games to study resolu-
tion. In section 3 we define a new modification of the resolution system (narrow
resolution) for which we give a unified way of proving lower bounds similar to
those for bounded width resolution of [10], but without having the restriction
that the original formula has bounded width.

We define a “witnessing” pebble game, played between a Prover and a De-
layer, and show that proofs in this system correspond to strategies for the Prover.
On the other hand, a good strategy for the Delayer corresponds to the formula
being extended dynamically satisfiable (EDS), an extension of an idea used in
[12, 14] to prove lower bounds on space and on treelike size.

In section 4 we give some sufficient conditions for a formula to be k-EDS. In
particular we show that if there is a satisfiable formula G which looks similar
to F in that G cannot be distinguished from F with k + 1 or fewer pebbles,
then F is k-EDS. We also adapt a criterion of Riis’ [21] to show that if F
is a translation of a combinatorial principle on some finite structure, and this
principle is satisfiable on a larger structure, then F is Ω(n)-EDS. This gives us
a useful sufficient condition for proving width lower bounds.

Starting from this witnessing pebble game we explore in two directions. In
Section 5 we study some more general “structured” games, and generalize the
width concept. In the earlier game the restriction on width corresponded to the
Prover only being able to remember the values of a limited number of variables.
In the structured game, the number of pebbles still limits how much the Prover
can remember, so the games have useful properties in common with bounded
width proofs; but each pebble can be labelled with information about several
variables, which means the Prover can refute things that would be impossible if
he was limited by width.

We show how to recover Resolution refutations from Prover strategies (theo-
rem 20). In particular, since we show that the Prover has a winning strategy for
a certain “ordered” structure game with only three pebbles over the Linear Or-
dering Principle LOP (theorem 26), we can recover a polynomial size refutation
of this principle.

The LOP principle was used in [11] to prove the optimality of the width-size
tradeoff for Resolution. It is one of the very few examples of CNF formulas having
polynomial size resolution refutations but on which the Ben-Sasson Wigderson
algorithm takes a very long (just subexponential) time to recover a refutation.
Moreover it is also hard for DPLL-based theorem provers. Motivated by the
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previous result we then look at the the question of automatically generating
resolution refutations using strategies for the game.

We devise a new algorithm based on reconstructing strategies for the Prover
which allows us to extend the Ben-Sasson and Wigderson algorithm to an al-
gorithm which, with some extra information about an ordering of the variables,
generates short refutations of LOP in polynomial time. Moreover we show that
for bounded width formula our algorithm is at least as good as the Ben-Sasson
and Wigderson algorithm.

Finally in section 6 we explore further the idea used in section 4, that if a
CNF F is similar (in some finite model theoretic sense) to a satisfiable formula
G, then F can be thought of as “almost satisfiable” and is hard to refute. While
this last result can be seen as a soundness theorem, in this section we also give
a kind of “completeness” theorem, and show that if F is hard to refute using a
certain game, then F is similar to a satisfiable CNF G.

Due to space limitations many proofs are shortened or omitted. A full version
is available as an ECCC technical report [15].

2 Preliminary Definitions

Resolution is a refutation proof system for formulas in CNF form based on the
following rule: C∨x x̄∨D

C∨D where if C and D have common literals, they appear
only once in C ∨ D. A resolution refutation of a CNF formula F is a derivation
of the empty clause from the clauses defining F , using the above inference rule.
As usual a refutation can be view as a directed acyclic graph.

The size of a refutation is the number of clauses in it. The width of clause is
the number of literals in it; the width of a refutation is the maximal width of
a clause in the proof; the width of refuting a formula is the minimal width of a
refutation of that formula.

We consider two standard families of CNF, the Pigeon Hole Principle, PHPm
n ,

with variables pij expressing “pigeon i goes to hole j”:∧
i∈[m]

∨
j∈[n] pij ∧

∧
i,i′∈[m],j∈[n],i 	=i′(¬pij ∨ ¬pi′j)

and the linear ordering principle LOPn, that expresses (the negation of) that
every linear ordering of n elements has a least element, with variables xi,j ex-
pressing “i is less than j”:∧

i,j,k∈[n](¬xi,j ∨ ¬xj,k ∨ xi,k) ∧
∧

i,j∈[n](xi,j ∨ xj,i)∧∧
i,j∈[n](¬xi,j ∨ ¬xj,i) ∧

∧
i∈[n]

∨
j∈[n],i 	=j xj,i.

3 The Witnessing Game

Definition 1. Fix k ∈ N. Call a clause narrow if it has width k or less; otherwise
it is wide. A width k narrow resolution refutation of a CNF F is a sequence
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of narrow clauses, beginning with the narrow clauses of F and finishing with
the empty clause. There are three ways that clauses can be introduced into the
sequence:

1. From B we can derive Bx (weakening);
2. From Bx and Cx̄ we can derive BC (resolution);
3. If x1 . . . xm is a (usually wide) clause in F , then from Bx̄1, . . . , Bx̄m we can

derive B (resolution by cases).

Lemma 2. If F is a r-CNF with a width k narrow resolution refutation, then
F has a width r + k − 2 “normal” resolution refutation.

We introduce a pebble game to accompany this proof system.

Definition 3. Let F be a CNF. The witnessing pebble game on F is played
between a Prover and a Delayer on the set of literals arising from the variables
in F . A pebble can never appear on both a literal and its negation. Normally
we will limit the game to some number k of pebbles, and call this the k-pebble
witnessing game. In each turn, one of three things can happen.

1. The Prover lifts a pebble from the board; the Delayer makes no response.
2. (Querying a variable) The Prover gives a pebble to the Delayer and names

an empty variable x (that is, neither x nor x̄ can be pebbled already). The
Delayer must put the pebble on either x or x̄.

3. (Querying a clause) The Prover gives a pebble to the Delayer and names a
clause C from F . The Delayer must place the pebble on one of the literals
in C, without contradicting any pebble already on the board. If this is not
possible then the Prover wins.

Notice that the Prover can win exactly when the pebbles on the board falsify
some clause of F and the Prover has one pebble left over.

The next theorem describes the exact relationships between winning strate-
gies for the Prover in the witnessing game, and refutational size and space.

Theorem 4. Let F be a CNF and k ∈ N.

1. If there is a winning strategy for the Prover in the k-pebble witnessing game
for F , then there is a narrow resolution refutation of F of width k.

2. If there is a narrow resolution refutation of F of width k then there is a
winning strategy for the Prover in the (k + 1)-pebble witnessing game for F .

3. If F has a (normal) resolution proof of width k, then there is a winning
strategy for the Prover in the (k + 1)-pebble witnessing game for F .

4. If F has a (normal) resolution proof of clause space k, then there is a winning
strategy for the Prover in the k-pebble witnessing game for F .

Proof. We include a proof of 1, as it illustrates the correspondence between a
strategy and a proof which we will be using throughout this paper. Consider the
Prover’s strategy as a tree, with each node labelled with the set of literals falsified
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under the assignment given by the pebbles currently in play. Then the root will
be the empty clause, and the leaves will be (some subset of) the narrow clauses
of F . If we read this tree from the leaves down to the root, we get precisely a
narrow resolution refutation of F . Removing a pebble corresponds to weakening,
the Prover querying a variable corresponds to a resolution step, and the Prover
querying a clause corresponds to a resolution-by-cases step. �

We can now adapt the Ben-Sasson Wigderson result that “short proofs are
narrow” to talk about games rather than proofs. This allows us to apply it
directly to CNFs of unbounded width.

Definition 5. If F is a CNF and x is a literal, we obtain F |x from F by re-
moving all clauses containing x and removing x̄ from any clause in which it
appears.

So from a resolution refutation of F we can obtain a refutation of F |x of
equal size or smaller, by substituting in a value of “true” for x and simplifying.

Lemma 6. If the Prover has a winning strategy for the k-pebble witnessing game
on F |x, then in the k-pebble witnessing game on F the Prover can force the
Delayer to either lose the game or place a pebble on x̄.

Proof. Let S be the k-pebble winning strategy for F |x. We will make this into
a strategy for the game on F as follows. Whenever a clause C is queried in S
such that C ∈ F |x but C /∈ F , it must be that Cx̄ ∈ F . So replace this query
with a query of Cx̄. Then either the Delayer must eventually place a pebble on
x̄, or the play of pebbles must be exactly the same as given in strategy S so that
the Delayer must eventually lose. �

Theorem 7 ([10]). Fix d, n ∈ N and let β = (1− d
2n )−1. Say that a clause is fat

if it has width greater than d. Then for any m ≤ n and any b, if F is a CNF on
m variables and has a (normal) resolution refutation Π containing < βb many
fat clauses, then the Prover has a winning strategy in the witnessing pebble game
on F , using d + b + 1 pebbles. (See corollary 11 for an application of this.)

Proof. The proof is by induction on m. The base case m = 0 is trivial, so
suppose m > 0.

If b = 0, then every clause in Π (and also every clause in F ) has width ≤ d,
so by an earlier observation there is a strategy for the Prover using d+1 pebbles.

Otherwise, let Π∗ be the set of fat clauses appearing in Π. Then there must
be some literal x appearing in at least d

2n |Π∗| fat clauses, since otherwise |Π∗| d ≤
|{(y, C) : y is a literal in C ∈ Π∗ }| < 2m d

2n |Π∗|.
The first part of the Prover’s strategy is to force the Delayer to put a pebble

on x. Now F |x̄ contains only m − 1 variables and has a refutation with fewer
than βb fat clauses, so by the inductive hypothesis the Prover has a strategy for
the game on F |x̄ using b + d + 1 pebbles. Hence by the lemma the Prover can
force the Delayer to satisfy x. Setting x to true will make all the clauses in Π
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containing x vanish, so F |x contains only m − 1 variables and has a refutation
with fewer than (1− d

2n )|Π∗| ≤ βb−1 fat clauses. Hence the Prover has a winning
strategy T for F |x with only b + d pebbles.

The Prover now leaves one pebble on x and uses the remaining b + d pebbles
to carry out strategy T on the remaining variables. As in the lemma, he must
change T slightly to make it into a strategy for the game on F , by replacing
queries to C ∈ F |x \ F with queries to Cx̄. But the Delayer can never put a
pebble on x̄, because there is already a pebble on x. So the game plays just like
the F |x game with strategy T , and the Prover wins. �

4 Extended Dynamic Satisfiability

Along similar lines to those used in [3] for resolution width and in [12] for res-
olution space, we characterize the Delayer’s strategy in the witnessing game,
in terms of families of partial assignments for the formula. We also generalize
this result by studying sufficient conditions that imply good strategies for the
Delayer, along the lines of the approaches in [21] and [18] using first order model
theory. The following definition was introduced in [12].

Definition 8. A CNF F is k-dynamically satisfiable (k-DS) if there is a class
R of partial assignments to the variables of F with the following properties:

1. R is closed under subset;
2. If α ∈ R, |α| < k and C is any clause of F , then there is an extension β ∈ R

of α that satisfies C (in the sense that it makes at least one of the literals in
C true, but does not necessarily assign a value to all the literals).

To characterize good strategies for the delayer in our witnessing game, we
alter the definition of dynamic satisfiability by adding a case to deal with queries
made to variables:

Definition 9. A CNF F is k extended-dynamically satisfiable (k-EDS) if there
is a class R of partial assignments satisfying the conditions of definition 8, with
the extra case:

3. If α ∈ R, |α| < k and x is any variable appearing in F , then there is an
extension β ∈ R of α that assigns some value to the variable x.

Lemma 10. A CNF F is k-extended dynamically satisfiable if and only if the
Delayer has a winning strategy for the k-pebble witnessing game on F .

Proof. Suppose F is k-EDS. Then the Delayer can guarantee that after every
turn the assignment α given by the k pebbles is in R. Hence by parts 2 and 3
of the definition of extended dynamic satisfiability, the Delayer is always able
to consistently satisfy any variable or clause of F that the Prover queries. Con-
versely, suppose that the Delayer has a winning strategy. Let R be the set of
all assignments corresponding to the configurations of pebbles that can appear
in a game in which the Delayer uses this strategy. Then R witnesses that F is
k-EDS. �
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Corollary 11. (to theorem 7) For any ε > 0, if a CNF F has n variables and
is (

√
8n

1+ε
2 + 1)-EDS, then it has no resolution refutation of size 2nε

.

4.1 A Sufficient Condition for Extended Dynamic Satisfiability

We will treat CNFs as two sorted structures, with a clause sort and a variable sort
and two binary relations “variable x appears positively in clause C” and “variable
x appears negatively in clause C”. We describe a kind of pebble game, the (1, k)-
embedding game. The game is played between a Spoiler and a Duplicator on the
set of clauses and variables of two CNFs F and G. Each player has k variable
pebbles and one clause pebble.

Each turn the Spoiler either plays a clause pebble on one of the clauses of
F , in which case the Duplicator must play his corresponding pebble on one of
the clauses of G; or the Spoiler plays a variable pebble on one of the variables of
either CNF, in which case the Duplicator must place his corresponding pebble
on one of the variables of the other CNF.

At the end of each turn, the pebbles in play give a correspondence between
some of the clauses and variables of F and those of G. The aim of the Duplicator
is to make sure that this is a partial isomorphism. If at any point it is not, then
the Spoiler has won.

Theorem 12. Suppose G is satisfiable, and there is a winning strategy for the
Duplicator in this game. Then there is a winning strategy for the Delayer in the
k pebble witnessing game on F . Hence F is k-EDS.

For an example, let F be PHPn+1
n and G be PHPn

n . Then G is satisfiable,
and the Duplicator wins the (1, n − 2)-embedding game on F and G (using a
strategy generated by the set of partial injective mappings from the pigeons of
F to the pigeons of G). This “almost satisfiability” of PHP seems to be related
to the idea of critical assignments that is often used in hardness proofs for it.

In general this theorem is not easy to use, because it is not necessarily easy
to prove that two CNFs F and G are in this relationship (although a sufficient
condition is for F and G to be indistinguishable in the normal k + 1 pebble
game of finite model theory). We give an easier-to-use, but weaker, sufficient
condition for extended dynamic satisfiability below, for the case where F and
G are propositional translations of some first order principle. The argument is
a standard one, see Krajicek [18, 17] or Riis [21] although we do not insist that
the structure in which the principle is satisfied is infinite.

Theorem 13. Let F be a CNF. Let φ be a first order quantifier free formula in
a relational language L with equality. Let Φ be the formula ∀x1 ∈ [n1] . . . ∀xk ∈
[nk]∃xk+1 ∈ [nk+1] . . . ∃xl ∈ [nl]φ(x̄), where n1, . . . , nl ∈ N.

Suppose that Φ is satisfiable “on a larger domain”, that is, there is an inter-
pretation in N of the relation symbols from L such that, with this interpretation,
N |= ∀x1 ∈ S1 . . . ∀xk ∈ Sk∃xk+1 ∈ Sk+1 . . . ∃xl ∈ Slφ(x̄), where S1, . . . , Sl are
(possibly infinite) subsets of N with |Sj | ≥ nj for each j and ni ≥ nj → Si ⊇ Sj

for each i, j.
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Let 〈Φ〉 be the formula
∧

i1∈[n1],...,ik∈[nk]

∨
ik+1∈[nk+1],...,il∈[nl]

φ(̄i). We treat
this as a propositional formula in the usual fashion, thinking of atomic sentences
involving a relation symbol as propositional variables, and of atomic sentences
involving equality between numbers as the appropriate one of the connectives
{T, F}. Let n = min{n1, . . . , nl} and let r be the maximum arity of any relation
symbol. Then 〈Φ〉 is (n

r − l + 1)-EDS (l is the number of variables).

It follows that if F is a CNF, and we can fix a one-to-one renaming of the
propositional variables of 〈Φ〉 with respect to which every clause of F is implied
by some clause of 〈Φ〉, and every variable in F appears in 〈Φ〉, then F is (n

r −l+1)-
EDS. (We call this condition “F is covered by Φ”.)

Corollary 14. LOPn is (n
2 − 3)-EDS. (Note that LOPn has n2 variables, so

corollary 11 does not apply.)

Proof. LOPn is covered by the formula ∀x, y, z ∈ [n]∃w ∈ [n], (¬P (x, y) ∨
¬P (y, x))∧ (P (x, y)∨P (y, x))∧ (P (x, y)∧P (y, z) → P (x, z))∧P (w, x), and this
is satisfiable if we let the quantifiers range over all of N and interpret P as any
total ordering with no least element. �

5 Pebbling Games and Subsystems of Resolution

We represent (usually partial) assignments by the following notation: [x1 �→
1, . . . , xn �→ 0]. Given an assignment α, we denote by α the negation of α, that
is, if α is the assignment [x �→ 1, y �→ 0, z �→ 1] then α is the clause (¬x∨y∨¬z).
Given a set S of assignments, we denote by S the set of clauses obtained by the
negation of all assignments in S.

Definition 15 (Structure). Let F be a CNF formula. For each clause C of
F , let SC be a set of partial assignments to the variables of C, such that

1. each assignment in SC satifies C
2. C implies the disjunction of the assignments (in other words, C ∪ SC is a

contradictory set of clauses).

We call S =
⋃

C∈F SC a structure for F .

The Structured Witnessing Game SWG(F,SF ), over a CNF F and with a
structure SF , is a two player (Prover and Delayer) game defined as follows.

At each round the Prover either

– puts a pebble on some clause C of F . Then the Delayer answers by choosing
one assignment α ∈ SC , and labelling the pebble with it; the Delayer is not
allowed to choose an assignment inconsistent with an assignment already in
play

– or removes a pebble, together with with its label.
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The game ends when the Delayer is unable to choose an assignment consis-
tently. This only happens when the the assignments labelling all the pebbles in
play together falsify some initial clause of F .

We say that a formula F is (k,S)-easy if the Prover has a winning strategy
for the game SWG(F,S) using at most k pebbles simultaneously. Otherwise the
Delayer has a winning strategy, and we say that F is (k,S)-hard.

We will look at three structures in this paper.

– In the unary structure UF , for each C ∈ F , SC = {[l �→ 1] : l ∈ C}. In other
words, assignments in SC satisfy exactly one literal in C. Note that the game
for this structure is similar to the witnessing game described above, except
that here the Prover is not allowed to query the value of individual variables.

– In the ordered structure OF , for each clause C ∈ F we first fix a total order
≺ on the variables of C (extended to literals by ignoring negations), then
define SC = {(

⋃
r∈C,r≺l[r �→ 0]) ∪ [l �→ 1] : l ∈ C}.

– In the full structure FF , for each clause C we let SC be the set of all possible
assignments to all of the variables in C.

In lemma 24 we show that the PHPm
n is (n/2 − 1,F)-hard. On the other

hand we also prove that LOPn formulas are (3,O)-easy, and that this gives us
an upper bound on the size of refutations of LOPn.

Clearly the more complex the structure is, the more information the Prover
can get using fewer pebbles, and the easier it will be to force the Delayer into a
contradiction. This is captured by the following lemma.

Definition 16. Let SF and TF be two structures for F . We write SF ≤ TF if
for all C ∈ F , it holds that: (1) for all α ∈ SC there is a β ∈ TC such that
β ⊆ α; (2) for all β ∈ TC there is α ∈ SC such that β ⊆ α.

Lemma 17. If F is (k,SF )-hard and SF ≤ TF , then F is (k, TF )-hard.

5.1 Feasible Structured Games and Short Refutations

Definition 18 (Feasible Structure). Let F be a CNF formula. We say that
a structure SF =

⋃
C∈F SC is feasible if there are two polynomials p and q, such

that for all C ∈ F :

– |SC | ≤ p(|F |);
– there is a resolution refutation of C ∪ SC of size bounded by q(|F |).

Lemma 19. The unary and the ordered structures are feasible.

From a winning strategy for the Prover in a feasible structured game, we can
construct a resolution refutation of F .

Theorem 20. Let F be CNF with m clauses and let SF be a feasible structure
for F . If F is (k,SF )-easy, then there is a resolution refutation of F of size
bounded by O(mk|SF |k)q(|F |).
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Proof. (sketch) Think of the Prover’s strategy as a dag. Each node is labelled
with a position in the game and the query that the Prover makes from that
position, hence there are at most O(mk|S|k) nodes. There is an edge going out
from a node for each possible reply that the Delayer makes.

We make this strategy into a resolution refutation as in the proof of theorem
4. We negate the assignments at each node so that the nodes are now labelled
with clauses, and we reverse the direction of all the edges. Finally we replace all
the edges now coming into a node with the resolution refutation (of C∪ S̄C from
the definition of feasible structure) corresponding to the clause C being queried
at that node. �

5.2 Structured Games as Subsystems of Resolution

In [14] it is proved that k-dynamic satisfiability is a sufficient condition for a
CNF F to require exponential size treelike resolution refutations. In the next
theorem we prove that it completely characterizes Delayer strategies for the
unary structure.

Theorem 21. F is k-dynamically satisfiable if and only if it is (k,U)-hard.

Extended dynamic satisfiability corresponds to the witnessing game, in which
the Prover is allowed to query variables. That is not allowed in our structured
games, but we do have the following relationship.

Theorem 22. If F is (k,F)-hard (that is, hard for the full game) then F is
k-EDS.

Now we will consider strategies for the Prover and Delayer for two standard
families of CNFs, the pigeonhole principle PHPm

n and LOPn:
From definition 16 and lemma 17, it is straighforward to observe that:

Lemma 23. F ≤ O ≤ U .

It is quite easy to prove that the PHPm
n is hard for all these games:

Lemma 24. PHPm
n is (n/2 − 1,F)-hard.

On the other hand, using the fact that LOPn is (n
2 −3)-dynamically satisfiable

(see [12] or corollary 14), we have:

Corollary 25. LOPn is (n
2 − 3,U)-hard.

The main result of this subsection follows from the next theorem.

Theorem 26. LOPn is (3,O)-easy.

Proof. Consider the following order on all variables, that in particular defines
an order on each clause: xi,j ≺ xh,k iff either j < k or j = k and i < h.

We describe the strategy of the Prover by stages: we prove that at each
stage the Prover, using only three pebbles, either wins or will force the Delayer
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to answer to a clause of the form
∨

j∈[n],j 	=r xj,r with an assignment assigning
strictly more literals to 0 than the previous stage. Hence, if he does not win
sooner, after at most n stages he will force a clause of this form to be falsified.

Assume w.l.o.g. that at the begining of a stage the Prover pebbles the clause
C1 =

∨
j∈[n],j 	=1 xj,1. Let α ∈ SC1 be the assignment chosen by the Delayer. α

will be of the form [x2,1 �→ 0, . . . , xj−1,1 �→ 0, xj,1 �→ 1] for some j ∈ [n], j �= 1.
The Prover then pebbles the clause Cj =

∨
k∈[n],k 	=j xk,j Let β be the assignment

chosen by the Delayer. β is of the form [x1,j �→ 0, . . . , xk−1,j �→ 0, xk,j �→ 1] for
some k ∈ [n], k �= j.

Now if k < j, then α(xk,1) = 0. But then all literals in the clause (¬xk,j ∨
¬xj,1 ∨ xk,1) are false, and the Prover can pebble this clause and win.

Assume then that k > j. The Prover then pebbles the clause ¬xk,j ∨ ¬xj,k.
Since β(xk,j) = 1, The Delayer must answer with the assignment γ setting xj,k

to 0 (and obviously xk,j to 1). At this point the Prover removes the pebbles
from C1 and Cj and places a pebble on Ck. The Delayer must answer with an
assignment δ of the form [x1,k �→ 0, . . . , xl−1,k �→ 0, xl,k �→ 1] where clearly l > j,
to not contradict the assignment γ. �

5.3 Automatic Generation of Refutations

These results show that the ordered structure, via theorem 20 and lemma 19,
gives rise to a subsystem of daglike resolution (corresponding to a strategy for
the Prover with O(1) pebbles): (1) powerful enough to obtain polynomial size
refutations of important families of contradictions like LOPn; and (2) where
PHP (and other classes of formulas we omit in this version) are hard to refute
and the hardness proof is relatively easy.

Since LOPn is an example of formulas known to be hard for many automatic
theorem provers (see [6]), the previous properties suggest that it is worth inves-
tigating algorithms for generating winning strategies for the Prover, as this gives
a way of generating resolution refutations.

We present such an algorithm below. It is analagous to the Ben-Sasson
Wigderson algorithm based on width. In our case, rather than limiting the width,
we limit the number of pebbles used in the strategy.

We first describe a subroutine. The input is a formula F , and the description
of the structure SF (this may be given in a simple way, e.g. as an ordering if
we are dealing with the ordered game), and a number k of pebbles. The output
is a winning strategy for the Prover using k pebbles, if one exists, otherwise
“NONE”.

The subroutine first builds up a dag A as follows: The nodes of A are all of
the positions possible in the game, ie. all the possible ways of labelling k or fewer
pebbles plus a source node. There are ≤ O(mk|SF |k) of them, where m is the
number of clauses in F . At the start of the algorithm all the positions that are
self contradictory or falsify clauses of F are marked, and the graph has no edges.
While the source node has not been marked the algorithm does the following: it
checks each not marked node X in A. If by removing a pebble the Prover can
move from X to a node Y already marked in A, then the algorithm marks X
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and labels it with the pebble to be removed and adds an edge from X to Y . If
there is a clause C that is not pebbled at X, and is such that whatever label
the Delayer could choose to give to C, it would lead to a position corresponding
to a node already marked in A, then the algorithm marks X, labels it with C,
and adds edges going to all the nodes corresponding to the Delayer’s possible
answers.

The subroutine stops when the source node has been marked, or when there
are no more edges to be added to the graph. If the source node has been marked,
the subroutine outputs only the marked subgraph of A, which is a winning
strategy for the Prover. Otherwise it outputs NONE.

The proof search algorithm works by calling this subroutine for increasing
values of k, until the subroutine outputs a strategy (which it will do eventually,
when the Prover is able to query all clauses at once).

The running time of the algorithm is O(mr+1|SF |r+1) where r is the minimal
number of pebbles used by the Prover to win SWG(F,SF ).

For feasible structures, using theorem 20, this algorithm allows us to generate
daglike resolution refutations of size polynomial in the size of the formula.

For the case of ordered structures we could add a preprocessing phase to try
all possible orders. Although in the worst case this can increase the running time
to exponential we notice that for LOPn, a good ordering is the one described in
theorem 26, and this (or one equally good) arises very naturally from the first
order combinatorial principle corresponding to the LOPn formula, together with
any ordering of the numbers 1, . . . , n.

Moroever we observe also that although the full structure is not feasible in
general, it become so in the case of formulas with O(1) initial width. Now by
theorem 4, lemma 10 and theorem 22, if F has width k refutations in resolution
then F is (k + 1,F)-easy, so if there is a constant width formula with a narrow
refutation then our algorithm (looking for strategies for the full game) works at
least as well on it as the Ben-Sasson and Wigderson algorithm.

6 Satisfiability vs Hardness

In Section 4 we showed how the existence of a satisfiable formula G similar to
F gives a good strategy for the Delayer in a certain game, which shows that F
has no narrow resolution refutation.

This suggests an attractive idea, that we should look for a sort of sound-
ness and completeness theorem for polynomial size resolution. It would have the
following form: a CNF F has no small resolution refutation if and only if F is
“almost” satisfiable, in that it is hard to distinguish from a satisfiable formula G.

In this section we give two results in this direction. We first show that if F
is hard to distinguish from G in the sense that it is hard to prove in resolution
that F and G are different, then F is hard to refute. We then show a converse,
although this talks about games rather than proofs: if there is a good strategy
for the Delayer in the full (structured) pebble game on F , then there exists a
satisfiable CNF G that looks similar to F , in a certain sense.
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Definition 27. Let F and G be CNFs, considered as two-sorted structures. We
define a new CNF, ISO(F,G), that expresses the statement “F is isomorphic to
G”. This is intended to be used when F is not isomorphic to G, as a generaliza-
tion of the pigeonhole principle. Let V ar(F ) and Cl(F ) be the sets of variables
and clauses in a CNF.

We take the conjunction of

1.
∨

D∈Cl(G) σCD for each C ∈ Cl(F );
∨

C∈Cl(F ) σCD for each D ∈ Cl(G);
2. ¬σCD∨¬σCD′ and ¬σCD∨¬σC′D for all C �= C ′ ∈ Cl(F ), D �= D′ ∈ Cl(G);
3.
∨

y∈V ar(G) σxy for each x ∈ V ar(F );
∨

x∈V ar(F ) σxy for each y ∈ V ar(G);
4. ¬σxy ∨ ¬σxy′ and ¬σxy ∨ ¬σx′y for all x �= x′ ∈ V ar(F ), y �= y′ ∈ V ar(G);
5. If x appears positively in C in F , but y does not appear positively in D in G,

then we include the clause ¬σxy ∨ ¬σCD; similarly for appearing negatively
or not appearing at all.

So 1 and 2 say that σ is a bijection on clauses, 3 and 4 say it is a bijection on
variables, and 5 says it preserves the structure.

Theorem 28. Suppose that G is satisfiable and F has a small resolution refu-
tation. Then ISO(F,G) has a small resolution refutation.

Proof. (sketch) Let α be a satisfying assignment to G. α partitions V ar(G)
into a set A of true variables and a set B of false variables. For x ∈ V ar(F ), let
X be the clause

∨
y∈A σxy and let X̄ be the clause

∨
z∈B σxz. Let F ∗ be F with

every variable x replaced by X and every negated variable ¬x replaced by X̄.
We can derive F ∗ from ISO(F,G), and then use the small refutation of F to

give a small refutation of F ∗. �

To use this to get lower bounds for F , we need lower bounds for ISO(F,G).
This is a generalization of the pigeonhole principle, so the many existing tools
for showing lower bounds for PHP may be useful here. The most tractable case
should be when F and G both arise as translations of some first order combi-
natorial principle, but on structures of slightly different sizes, so we can use the
hardness of PHP directly. Krajicek gives an argument like this is in [18], relating
the proof complexity of the weak pigeonhole principle and the Ramsey theorem.
Potentially this will give a sufficient criterion for a formula to have no small
daglike refutation, similar to Riis’ criterion for treelike refutations [21].

So far we have given “soundness” theorems, that if F is almost a satisfiable
CNF then F is hard to refute (or that it is hard for the Prover to win some
game). Now we give a “completeness” theorem.

We think of CNFs as two sorted structures with a clause sort and a variable
sort. There are two binary relations, “x appears positively in C” and “x appears
negatively in C.”

We define the sense in which our constructed CNF G will be similar to F .
Informally, we have “local” embeddings of the clauses of F into the clauses of
G. (If we had a global embedding, then the satisfying assignment for G would
immediately give a satisfying assignment for F .)
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Definition 29. Let F and G be CNFs. We say that F is strongly k-clause em-
beddable in G if there is a family H of partial isomorphisms from F to G with
the following properties:

1. Suppose f ∈ H maps clauses C1, . . . , Ck and no other clauses. Then the
variables mapped by f are precisely the variables appearing in C1, . . . , Ck.
In other words, f is first of all a partial isomorphism on clauses, but brings
with it a partial isomorphism on the variables appearing in those clauses.

2. If f ∈ H maps fewer than k clauses, and C is any other clause in F , then
there is g ∈ H that extends f and maps C somewhere.

Lemma 30. If F is strongly k-clause embeddable in G and G is satisfiable, then
the Delayer wins the k-pebble full game on F .

We could apply the following theorem to PHPn+1
n (with k = n/2 − 1).

Unfortunately the formula G that it gives does not seem to be as elegant as
PHPn

n .

Theorem 31. Suppose the Delayer wins the k-pebble full game on F . Then
there is a satisfiable finite CNF G such that F is strongly k-clause embeddable
in G.

Proof. We will build G out of the Delayer’s strategy for the game. Think of this
strategy as a dag consisting of positions in the game. Each position P is a tuple
(C1, α1), . . . , (Cr, αr) of at most k clauses from F together with assignments to all
the variables appearing in each clause, that are consistent and satisfy each clause.
Notice that only a finite number of different positions appear in the strategy.

Let G′ be the CNF whose clauses are all the pairs (C,α) that appear in the
Delayer’s strategy. We give variables to the clauses as follows: if C ∈ F contains
variables x1, . . . , xm, then (C,α) contains variables (x1, C, α), . . . , (xm, C, α) and
(xi, C, α) appears positively or negatively in (C,α) just as xi appears positively
or negatively in C. That is, G′ consists of clauses named by pairs (C,α) and
variables named by triples (x,C, α); each clause is isomorphic to some clause from
F , and no two clauses share any variables. Now define an equivalence relation ∼
on the variables of G′ as the transitive closure of the relation: (x,C, α) is related
to (y,D, β) if and only if x and y are the same variable (in F ) and (C,α) and
(D,β) appear together in some position in the Delayer’s strategy.

Let G be the CNF obtained from G′ by renaming every variable (x,C, α)
with its ∼-equivalence class [(x,C, α)].

The proof is completed by showing that G is satisfiable, and that F is strongly
k-clause embeddable in G. �
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Abstract. Solvers for Quantified Boolean Formulae (QBF) use many analogues
of technique from SAT. A significant amount of work has gone into extending
conflict based techniques such as conflict learning to solution learning, which is
irrelevant in SAT but can play a large role in success in QBF. Unfortunately, so-
lution learning techniques have not been highly successful to date. We argue that
one reason for this is that solution learning techniques have been ‘incomplete’.
That is, not all the information implied in a solution is learnt. We introduce two
new techniques for learning as much as possible from solutions, and we call them
complete methods. The two methods contrast in how long they keep informa-
tion. One, Complete Local Solution Learning, discards solutions on backtracking
past a previous existential variable. The other, Complete Global Solution Learn-
ing, keeps solutions indefinitely. Our detailed experimental analysis suggests that
both can improve search over standard solution learning, while the local method
seems to offer a more suitable tradeoff than global learning.

1 Introduction

Quantified Boolean Formulae (QBFs) can be seen as an extension of Satisfiability (SAT)
with the addition of a prefix in which every variable is universally or existentially quan-
tified. This increase in expressivity comes at a price; the decision problem for QBF is
PSPACE-complete. This allows QBF to be used to solve many other PSPACE problems
such as games, conditional planning problems and hardware verification.

There have been many advances in QBF solver technology. Many of the more recent
algorithms are based on an extension to the DPLL [3] procedure for SAT. The first such
example is presented in [2]. Many other SAT techniques have been extended and added
to this procedure, starting with conflict and solution directed backjumping [6], in which
pruning of the search tree is achieved through look-back techniques. This provided a
great improvement in both run-time and branching rate. Learning was then introduced
[5, 7, 10]. This had much less impact than occurred in SAT. While improvements were
seen on some problems, the algorithms actually performed worse on others.

Recently, it has been shown that solution learning for quantified Boolean formulae
is not very good in practice. In two separate papers [5, 10], the experimental analysis
of solution and conflict learning show that their combination does not perform well in
practice. Two other papers [7, 9] show that conflict learning for QBF used independently
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performs quite well. This implies that the detrimental effect of the combination learning
solver was likely to be due to the solution learning part of the solver. This effect is bad
enough to make the combination of conflict and solution learning perform poorly.

There are at least two reasons why solution learning might not perform well in prac-
tice. Firstly, the level of solution learning performed was unrestricted learning. This
means that when a solution is learned, it is kept for the remainder of the search. An
alternative approach would be to perform some sort of bounded learning. This was sug-
gested in [5] but was never implemented. A second reason is that the solutions learned
may not be the most useful in practice. As was stated in [10], there are many possi-
ble sets which can be learned on discovery of a solution. There may be an exponential
number of such solutions which would result in an exponential space requirement if all
solutions are learned using this technique.

We introduce a method of solution learning which addresses both of the aforemen-
tioned issues. This technique will allow the learning of all solutions without the expo-
nential space requirement. Furthermore, this technique will automatically throw away
learned information when it is no longer of any use. This will be a requirement of the
information as it will become invalid under certain conditions. A second technique will
also be introduced which, in extension to the first technique, will allow the storage of
the learned information for the duration of the search. This will allow other bounding
algorithms to be applied to the learning.

First, a proper introduction to solution learning in QBF will be given. This will be
followed by a description of the first new technique. The extension to this technique
will then be described. Finally, an experimental evaluation of the techniques will be
given. This will show that the new technique performs better than the standard solution
learning technique on many instances.

2 Background

We provide some basic details of QBF, but refer the reader elsewhere for a more de-
tailed introduction [2]. A QBF is of the form QC where Q is a sequence of quantifiers
Q1v1...Qnvn, where each Qi quantifies (∃ or ∀) a variable vi and each variable occurs
exactly once in the sequence Q. C is a Boolean formula in conjunctive normal form
(CNF), a conjunction of clauses where each clause is a disjunction of literals. Each lit-
eral is a variable and a sign. The literal is said to be negative if negated and positive
otherwise. Universals and existentials are those variables quantified by a universal or
existential quantifier respectively. A QBF of the form ∃v1Q2v2...QnvnC is true if ei-
ther Q2v2...QnvnC[v1 := T ] or Q2v2...QnvnC[v1 := F ] is true, where T represents
true and F represents false. Similarly, a QBF of the form ∀v1Q2v2...QnvnC is true if
both Q2v2...QnvnC[v1 := T ] and Q2v2...QnvnC[v1 := F ] are true.

A QBF is trivially false if it contains an all-universal clause or an empty clause.
An all-universal clause is a clause in which all the literals are universal. Such a clause
is false since we must be able to satisfy the formula for all valuations of universals,
including the combination which makes all literals false in the all universal clause. This
is true so long as the clause is not a tautology, which we remove with preprocessing. A
QBF is trivially true if it consists of an empty set of clauses.
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The basic procedure for solving QBF’s, [2], is similar to the DPLL procedure for
SAT [3]. The order of variables is now determined by the order in which the variables
occur in the prefix. Secondly, when the formula is found true, the procedure backtracks
to the most recently assigned universal that has not had both true and false values ex-
plored. Further propagation is possible using unit or single existential clauses. A unit or
single-existential clause is defined to be a clause in which only one existential variable
is left to be assigned and all universal variables are quantified after the existential in
the quantifier prefix. In this clause, the existential must be assigned true to avoid an
all-universal clause.

Conflict Directed Backjumping[8] is not covered in this paper. For a detailed de-
scription of Conflict Directed Backjumping for QBF see [6]. Solution Directed Back-
jumping can be performed during QBF search when assignments result in an empty set
of clauses. The first stage is to find a small set of universal literals from the current as-
signment which leaves the formula satisfied. This is known as a reason for the solution
or the solution set. To find the solution set, each clause is examined in turn. Where a
clause is satisfied by at least one existential, nothing is added to the solution set. Where
a clause is only satisfied by a universal assignment, we choose one of the universals in
the clause to be added to the set. We only backtrack on a universal variable when it oc-
curs in the solution set. When both true and false assignments to a universal result in the
QBF formula being true, we can combine the solution sets from both these assignments
and pass the new solution set back to be used for universals assigned earlier. For more
details see [6].

The idea behind solution learning is simple. The solution sets which are generated
by solution directed backjumping are stored at certain points in the search. These then
guide search away from previously visited solutions and thus reduce the amount of search
performed. The solution set cannot be learned as it is. Solution sets were introduced as
only containing universals. These universals come from the clauses that are not satisfied
by any existentials. For solution learning, the solution set must be augmented with a
subset of the existentials that satisfy the remaining clauses. This is because the solution is
not caused only by the universals. Only universals are added to the solution set in solution
directed backjumping because solution backtracking is only performed on universals.

In [5], solution learning was first introduced. It was realised here that not all solution
sets could be learned as they were. The criterion for learning a solution set is that the
solution set must be prefix closed. This means that for any variable v that occurs in the
solution set, every variable quantified before v in the prefix must also occur. This will
not always be the case in the solution set and so not all solution sets are learnable.

In [10], solution learning is performed using consensus for DNF cubes (the dual of
resolution of CNF clauses). The QBF CNF formula C is extended to initially contain
a DNF formula D such that C ⇐⇒ C ∨ D. Initially D is empty and is thus false.
When a new solution is learned, it is added to D as a DNF cube. In conflict learning by
resolution for SAT, resolution is performed on the clause that became empty, e, to cause
the conflict and the clause that was a unit clause immediately before the last variable
was assigned, u. The result of this is then resolved with the clause that became unit
before u. This continues until an assignment is encountered that was not performed by
propagation. At this point, the resolvent is added as a clause. Solution learning proceeds
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in the same way, except that the initial cube does not exist. This is instead created from
a solution set. Where solution learning is referred to in the remainder of this paper, it is
this method that will be considered.

We contrast ‘local solution learning’ with existing QBF solution learning tech-
niques, which we call global solution learning. In global solution learning [5, 10], the
solution set is augmented with existentials. Otherwise, the solution set would only be
valid under certain conditions. Hence a DNF cube generated from the solution set would
have to be removed if these conditions change. In local solution learning, the learned
cube must be removed when one of the existential variables is changed that is quantified
outside one of the universal variables in the cube. This ensures that local learning only
holds valid learned cubes. This is the ‘local’ part of the learning; the learned informa-
tion is only valid in a local sub-tree in the search tree. Unless a learned cube removal
system (such as relevance or size learning) is used, global learning will keep all learned
cubes until the end of the search. This can result in an exponential increase in the size of
the formula. Local solution learning can be considered a learned cube removal system.
The size of the learned cubes will also be smaller in local solution learning, since they
do not contain any existentials.

3 Complete Local Solution Learning

We call existing solution learning techniques ‘incomplete’. This indicates the fact that
they do not learn all the information possible from each solution found. The methods
we introduce are ‘complete’, in that any solution is reused directly whenever possible,
avoiding as much search as possible within the scope that solutions are preserved. The
two methods differ in the scope within which found solutions are preserved, one being
local and the other global. We introduce the local method first as the global method is
based on it but is more complicated.1

QBFs of the form ∀∃B. For simplicity, we first discuss the complete local solution
learning for formulae which have a prefix of the form ∀∃.

We use an example to show what incomplete learning misses. Consider the formula
∀u1∀u2 . . . ∀un∃e1 . . .∃em[(u1∨u2∨e1)∧(u3∨u4∨e2)∧. . .]. Say the formula is satis-
fied by the assignments where e1 = e2 = F , so that the two clauses are only satisfied by
universals. Let the assignments to all the existentials in the current assignment be called
E1. Say now that the universal variables are all assigned true in the order u1, u2, u3, u4.
So there are four possible solution sets that can be built. These are {u1, u3}, {u1, u4},
{u2, u3} and {u2, u4}. Incomplete solution learning will only learn one of these sets.
Yet, if we ever find ourselves assigning the universals true from any of the four sets, E1

can still be used to satisfy the remaining clauses. Incomplete learning methods cannot
exploit this fact, leading to unnecessary backtracks. Redundant search could be avoided
in solution learning if all of the possible solution sets were learned at this stage, but this
has the potential for causing an exponential increase in the size of the formula. Suppose

1 Complete Local Solution Learning is the same algorithm as GR-Learning reported in our tech-
nical report [4], but we hope with a more descriptive name. It has been reimplemented, how-
ever, so results in this paper are new.
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instead that the assignments to the universals were u1 = T, u2 = T, u3 = T, u4 = F .
There are now two solution sets available: {u1, u3} and {u2, u3}. Now when backjump-
ing assigns u3 = F , the algorithm will be free to choose u4 = T to satisfy the second
clause. Again the original existential assignment E1 can be used to satisfy the remain-
ing clauses. Even if existing solution learning methods were to learn all the solution
sets, this situation would not be covered. This is because solution learning is restricted
to the set of universals that have been assigned.

In general, let the set of clauses not satisfied by an existential be Cu. As long as all
the clauses in Cu are satisfied by some universal assignment, the remaining clauses can
be satisfied by the existential assignment E1. The only cases to be considered are those
in which one or more of the clauses in Cu are not satisfied by any universal assignment.
The new contribution of complete solution learning methods is to learn that the formula
is satisfied so long as every clause in Cu is satisfied by a universal variable. We now
describe how we can achieve this in one combined learning operation which does not
increase the formula size exponentially.

Let Ui be the ith clause with the existentials removed. Let Cu = {cp, cq, . . .}. We
are to learn that so long as Ln = Up∧Uq ∧ . . . is true, the original formula is true. Ln is
not in DNF, making it hard to use standard learning methods. Note that in QBF learning,
the original formula is true iff the DNF formula is true. Therefore, the QBF solver tries
to make the DNF false to ensure that only new parts of the tree are explored. To put Ln

in DNF, we replace each Ui by an ‘indicator’ variable Ii, using a simple encoding trick.
We encode that a variable Ii is assigned true if and only if one of the universal variables
in clause i satisfies the clause. This is encoded as several DNF cubes which can be added
to the original formula before search begins. If Ui = (u1 ∨ u2 ∨ . . . ∨ un), the cubes
added will be (u1∧u2∧. . .∧un∧Ii)∨(u1∧Ii)∨(u2∧In)∨. . .∨(un∧Ii). This formula
shall be known as the indicator formula. So Ln = Ip ∧ Iq ∧ . . . can be added as a DNF
cube when learning is performed. DNF unit propagation attempts to make the DNF
formula false, and so the correct assignments are made. The indicator variables must be
quantified after the variables in Ui, so that it is not possible to assign them before the
variables which they indicate. The indicator variables must be universally quantified, as
otherwise the cubes in the indicator formula would all be single-universal cubes. This
would mean that the universals in the cubes would be assigned by propagation. The
assignments of the correct value to the indicator variables is done by unit propagation
in the DNF formula [10].

In solution learning, it is guaranteed that the addition of the DNF cubes does not
affect the satisfiability of the formula i.e. C ⇐⇒ C ∨ D where C is the original
CNF formula and D is the additional DNF formula. If all the universal literals in Ui

are assigned false, this removes all the binary cubes in the indicator formula and forces
the indicator to be false by DNF unit propagation. If one of the universal literals in
Ui is true, the indicator is assigned true by DNF unit propagation. This removes the
remaining cubes. Thus the indicator formula can never make the formula true by itself.
When a learned cube has been added, the formula can be made true by satisfying the
learned cube. This will only occur if the universal variables are assigned so as to force
the indicators to the values required to satisfy the learned cube. This will mean that the
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assignments to the universals are such that the current state has been visited previously
and so no further search is required.

Solution backjumping must be slightly modified in order to support a solution set
built from indicator variables. In building a solution set, where a clause is not satisfied
by an existential, the indicator is added to the solution set instead of choosing one of
the universals. Thus the final solution set will represent all the equivalent solution sets
for the current assignment of variables. The resulting technique for backjumping is very
similar to that of conflict-directed backjumping, and is shown in the context of our local
complete learning algorithm in figure 4.

Unlike standard solution learning, complete solution learning does not guarantee to
use the learned cube to invert the assignment to the universal. When the universal is
assigned it may cause more than one indicator to be assigned through DNF unit prop-
agation. This means that there is a possibility that more than one unassigned indicators
occur in the learned cube when it is added. So the learned cube will not necessarily be
a unit or single universal cube when it is added. Therefore, the algorithm must not rely
on DNF unit propagation to reassign the universal after backtracking.

Take the example ∀u1∀u2 . . . ∀un∃e1 . . . ∃em[(u1 ∨ u2 ∨ e1) ∧ (u3 ∨ u4 ∨ e2) ∧
(u4∨e2) . . .]. Before search begins, the formula is augmented with the indicator formula
(u1 ∧u2 ∧ I1)∨ (u1 ∧ I1)∨ (u2 ∧ I1)∨ (u3 ∧u4 ∧ I2)∨ (u3 ∧ I2)∨ (u4 ∧ I2)∨ (u4 ∧
I3) ∨ (u4 ∧ I3). The indicators are quantified in a universal quantifier at the end of the
formula. Now the assignments are made as follows: u1 = T, (I1 = T ), u2 = T, u3 =
T, (I2 = T ), u4 = F, (I3 = F ), E1, where E1 is an assignment to the existentials
such that e1 = F, e2 = F ∈ E1. The assignments in brackets are those which are
performed by unit propagation following the previous assignment. The solution set is
built to contain {I1, I2}. Backjumping is performed to return to I2. I2 is removed and
replaced with u3. Backjumping then returns and unassigns u3. The solution set now
consists of {I1}. Now the cube (I1 ∧ I2) is learned, adding the indicators relevant to
u3 that were removed from the solution set during backtracking. As u1 and u2 are still
assigned true, I1 is true. I2 must be assigned false by unit propagation. So u3 and u4 are
assigned false by unit propagation. E1 is no longer sufficient to satisfy the remaining
formula so a new existential assignment must be found if the formula is to be proved
true. So a new assignment E2 is deduced such that e1 = F, e2 = T ∈ E2. This results in
the creation of the solution set {I1, I3}. Backjumping replaces I3 with u4 and returns to
u4. As both assignments have been made to u4, the solution sets are combined to make
{I1}. Backjumping returns to the assignment of I1 replacing it with u1. The cube (I1)
is learned. This is a unit cube and thus I1 is assigned false. This in turn assigns u1 and
u2 false. This also removes the previously learned cube (I1 ∧ I2). The algorithm is now
free to choose values for u3 and u4.

General QBFs. The complete learning method described above only works when the
formula prefix is of the form ∀∃. If there is an existential quantified outside the univer-
sal, the learned cubes can become invalid. Our first solution to this is local: a learned
cube can remain so long as no assignment to an existential quantified outside the uni-
versals indicated in the cube is changed. If such an existential assignment is changed,
the learned cube is simply discarded.
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If there is more than one level of universal quantification, the situation becomes fur-
ther complicated. It becomes important to distinguish between the quantification levels
of the universals. Take the quantifier sequence ∀U1∃E2∀U3∃E4 where U1, E2, U3 and
E4 are sets of variables. The assignments to the variables in U1 do not depend on any
existential assignments. The assignments to the variables in U3, however, depend on the
assignments to the variables in E2. Therefore, any locally learned cube that depends on
a variable in U3 must be deleted if a variable in E2 is changed. A locally learned cube
that only depends on variables from U1 does not need to be deleted if E2 is changed.
Therefore we distinguish between the level of quantification of the information learned,
by splitting the indicator variables for each clause. There is now one indicator variable
for each level of universal quantification for each clause. The indicator variable Ii,j is
the indicator variable for the ith clause and the universals quantified in the jth quantifier.
The rest of the procedure continues as before. Now, only universals that are quantified
at the same level in a clause are considered to be equivalent. For example, take a QBF
with a prefix ∀u1, u2∃e3∀u4, u5 and a clause (u1 ∨ u2 ∨ e3 ∨ u4 ∨ u5). The indicator
clauses added would be (u1 ∧u2 ∧ I1,1)∨ (u1 ∧ I1,1)∨ (u2 ∧ I1,1)∨ (u4 ∧u5 ∧ I1,2)∨
(u4 ∧ I1,2) ∨ (u5 ∧ I1,2). So two indicators exist for the one clause.

When building a solution set, the algorithm may now be faced with two or more
levels of universals to choose from. It makes sense to choose the outermost level of
quantification when such a choice arises, since choosing the innermost level would
mean that the variables in the outermost level would still satisfy the clause.

The main points of complete local solution learning are as follows:

1. For each clause, a disjunction of the universal literals with the same level of quan-
tification are made equivalent to an indicator variable.

2. The indicator variables are all quantified in a universal quantifier at the end of the
prefix.

3. All the indicator equivalences are encoded in a DNF formula and DNF unit propa-
gation is used to enforce the equivalences.

4. When a solution is found, one indicator is put in the solution set for each clause not
satisfied by an existential. This is the indicator for the outermost universal variable
that satisfies the clause.

5. When backjumping is performed, and an indicator is unassigned, the indicator is
replaced by one of the universals it indicates. This indicator is remembered.

6. When backjumping concludes with the reassignment of a universal, this universal is
removed from the solution set and replaced by the indicators that are relevant to the
universal and that were removed during backjumping. The solution set (consisting
now only of indicators) is then added as a DNF cube.

7. When backjumping merges the solution sets for both assignments to a universal
variable, all the indicators of the universal variable are removed from the resultant
solution set.

Figures 1 - 4 show the important details of the algorithm. Figure 1 shows the top
level of the algorithm. The main differences between this and the basic QBF algorithm
are as follows. Firstly, the indicator formula must be generated. Secondly, as this is a
local learning algorithm, any invalid cubes must be removed after backtracking. This
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CompleteLocalSolutionLearn(PB)
1. P (B ∨ D) := GenerateIndicatorFormula(PB);
2. do
3. result := propagate(P (B ∨ D));
4. if (result = UNDEF)
5. (variable, value) := nextvariable(P (B ∨ D));
6. else if (result = TRUE)
7. (variable, value) := CompleteLocalLearn(P (B ∨ D));
8. else if (result = FALSE)
9. (variable, value) := falselearn(P (B ∨ D));

10. S := the set of learned cubes in D that contain indicators
that indicate variables quantified inside variable;

11. D := D − S;
12. if (variable �= -1)
13. P (B ∨ D) := P (B ∨ D)[variable := value];
14. while (variable �= -1)
15. return result;

Fig. 1. The Algorithm for Complete Local Solution Learning. P is a prefix of quantifiers, B is a
Boolean formula in CNF and D is a Boolean formula in DNF

CompleteLocalLearn(P (B ∨ D))
1. S := getIndicatorSet(P (B ∨ D));
2. (variable, value, R) := clsbackjump(P (B ∨ D), S);
3. R′ := {r|r is an indicator of variable and r ∈ R};
4. S := S ∪ R;
5. L := set of learned cubes in D that contain indicators

that indicate variables quantified inside variable;
6. D := D − L;
7. D := D + (

∧
si∈S

si);
8. return (variable, value);

Fig. 2. The algorithm for learning the solutions

is automatically handled by CompleteLocalLearn on a true backtrack but must be
done explicitly after a false backtrack.

getIndicatorSet(P (B ∨ D))
1. if D is true
2. return the set of indicators in the cube that satisfies D;
3. else
4. S := {};
5. for each clause c in B
6. if c is not satisfied by an existential
7. v := the outermost universal that satisfies the clause;
8. l := the level of quantification of v;
9. I := the indicator for clause c, level l;

10. S := S ∪ {I};
11. return S;

Fig. 3. The algorithm for calculating the indicator sets

Figure 2 shows the details of the CompleteLocalLearn function. This calcu-
lates an indicator set, performs backjumping, then learns a new cube at the backtracking
point. The learned cubes that are no longer valid after this backtrack are removed. Fig-
ure 3 shows the function for calculating the initial indicator set for backjumping. This
is similar to calculating a solution set except that a universal variable chosen for the set
is replaced by its indicator variable. Figure 4 shows how the indicator set is used by the
solution directed backjumping procedure. For any variable assigned by unit propagation,
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clsbackjump(P (B ∨ D), S)
1. R := {};
2. while there is backtracking to be done
3. variable := the last assigned variable;
4. P (B ∨ D) := P (B ∨ D)[variable unassigned];
5. if variable ∈ S and variable ∈ ∀
6. if l was assigned by single universal propagation
7. c := the cube that caused the assignment of l;
8. Add to every literal in c to S;
9. Remove variable from S;

10. if variable is an indicator variable
11. Add variable to R;
12. else if both values of variable have been assigned
13. S′ := the indicator set from the last assignment of variable;
14. S := S ∪ S′;
15. else
16. value := value assigned to variable;
17. return (l, value, R);
18. return (-1, false, {});

Fig. 4. Algorithm for backjumping using indicator sets. S is an indicator solution set

the variable is replaced by the variables in the cube that caused the variable to be assigned.
Otherwise, if the variable has been backtracked to before, the indicator set obtained on
the previous backtrack is joined with the new indicator set and the variable is removed.
If the variable has not been backtracked on, it is now used as the backtrack point.

4 Complete Global Solution Learning

Local solution learning requires that learned information is thrown away when it is
no longer valid. The use of only the universals in the solution sets means that the
learned information can become invalid when some existentials are changed. The sim-
plest way to overcome this problem is to add some existentials to the solution set. This
is done in the same way as is done with solution learning. This way, the solutions
can be kept beyond the reassignment of an existential. This means that the same so-
lution will be avoided if it occurs later in the search. Take, for example, the formula
∃e1∀u2, u3∃e4∀u5, u6∃e7[(e4 ∨ u5 ∨ u6 ∨ e7) ∧ (e4 ∨ u5) ∧ . . .] and that there is an
indicator I1,4 for the first clause shown such that I1,4 ⇐⇒ u5∨u6. Say that e1, u2, u3,
u5 and u6 are assigned true and that e4 and e7 are assigned false and that the remaining
clauses are satisfied by the existentials. So now the solution set is built and I1,4 is added
to the set. Additionally, e4 is added to the solution set as it satisfies the second clause.
If e1 does not satisfy any clause on its own then it does not need to be added to the
solution set. So the cube learned is (I1,4 ∧ e4). Now if later, e4 is assigned true, this
cube will be removed and so it cannot cause the DNF formula to become true. If later
still, e4 is unassigned, this cube will become active again. If e4 is again assigned false,
DNF unit propagation will assign I1,4 false, resulting in u5 and u6 being assigned false.
Hence, the same solution will not be explored again.

There is a second choice to make when considering the existentials that satisfy the
clause. Only one existential is needed from each clause that is satisfied by an existen-
tial. In both normal solution learning and complete global solution learning, it makes
sense to choose the innermost existential that satisfies a clause for the solution set when
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presented with a choice. Universals in a clause that are quantified inside all existentials
in that clause can be removed [1]. Similarly, existentials in a cube that are quantified
inside all universals in that cube can be removed [10]. By choosing the innermost exis-
tential that satisfies a clause at the same time as choosing the outermost universal where
no existential satisfies a clause, there is more chance that the existential will be quan-
tified inside the universals in the solution set. Therefore, the innermost existentials can
be removed and so the added cube will be smaller and easier to manage.

There are reasons why local learning might be better than global learning. First, the
learned information is dynamically deleted in local learning. Therefore, the size of the
formula is less likely to grow exponentially in size. In global learning, learned informa-
tion is kept for the duration of the search. However, two methods have been described
[5] which dynamically delete the learned information. These are size bounded and rel-
evance bounded learning. Local learning does not need these methods as it contains
its own dynamic deletion system. If size and relevance bounding prove to be the best
methods for controlling size growth of the formula then global learning will prove to
be more useful. It may prove, however, that solutions do not reoccur outside the local
branch being explored. Solutions depend on more information than conflicts in general;
a conflict only requires one clause to become empty whereas a solution requires all
clauses to be removed. Therefore, it is less likely that solutions will reoccur in different
parts of the search tree, and local learning might prove to be the better learning method.

For space reasons we omit pseudocode for the global learning functions, as they are
very similar to those for local learning. For global learning the algorithm is almost iden-
tical to that in figure 1. The main change is to call the global learning function Com-
pleteGlobalLearn instead of CompleteLocalLearn on line 7. Also, the learned cubes
are not discarded after an existential is reassigned, i.e. lines 10 & 11 are omitted. The
global learning function CompleteGlobalLearn is also almost identical to Complete-
LocalLearn shown in figure 2. As with the main function, the learned cubes are not
removed: in this case we omit lines 5 & 6 of the previous function. Finally, the indica-
tor set is built in the same way as for local learning, except now, if a clause is satisfied by
an existential, the innermost existential that satisfies the clause is added to the solution
set. That is, we omit lines 11, 12 & 13.

5 Experimental Evaluation

In the experiments presented here, the hypothesis will be clearly stated so that the ex-
perimental analysis is given more direction. On occasion, our original hypothesis will
be wrong and corrected in discussion.

In all the implementations of algorithms presented, the same QBF solving library
was used. The solving library performs all the basic tasks of the QBF solver. This in-
cludes reading the QBF instance from a file and initialising the data structures, as-
signing and unassigning variables and performing propagation steps. This avoids any
differences between algorithms other than the intended differences. The library and all
the solvers were written in C++ and compiled using GNU gcc 3.2. The compiler was
passed the -O3 flag for optimisation of the code and the -static flag to statically link
the libraries used. When a choice of variables is available the solvers all use the same
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heuristic, choosing the unassigned variable from the outermost quantifier which has the
smallest variable index. The solvers were run on a cluster of Intel Pentium II 450 Mhz
computers with 386 MB RAM running Redhat Linux 7.1. Each algorithm was given
a timeout of 1200 seconds on each problem. The instances used were the benchmark
instances available from QBFLib (www.qbflib.org) as of 15th March 2004.

Two types of graphs are presented, comparing the the number of backtracks of two
algorithms, and comparing the run time. In a backtrack comparison, the number of
backtracks performed by the base algorithm is plotted on the x-axis. The y-axis shows
the improvement factor gained from using the second algorithm. This is calculated by
dividing the number of backtracks performed by the algorithm without the new idea by
the number performed by the algorithm with the new idea. A line is drawn at a value
of 1 on the y-axis. This is called the equality line. Points which lie on this line are
where both algorithms performed the same number of backtracks. A point which lies
above the equality line is where the second algorithm performs less backtracks than the
base algorithm on an instance. The distance of the point from the equality line indicates
how much better or worse the algorithm with the new idea performed compared to the
algorithm without the new idea. No points are plotted where either algorithm did not
complete before the time-out. In a run time comparison, the graph is similar. This graph
shows points where one algorithm timed out on an instance. Additionally, a diagonal
line is drawn on the graph starting below the equality line and meeting the equality line
at a value of 1200 seconds. This is known as the time-out line. A point which lies on
this line is where the comparison algorithm timed-out but the base algorithm did not.
Points which lie at 1200 seconds on the x-axis above the equality lines are ones where
the base algorithm timed out but the comparison algorithm did not.

In order to evaluate the performance of the new solution learning techniques, each
is compared to an algorithm that uses solution directed backjumping. Four QBF algo-
rithms were implemented. These were CLearn, CSLearn, CLSLearn and CGSLearn.
CLearn implements conflict learning and solution backjumping. CSLearn implements
conflict and incomplete solution learning. CLSLearn implements conflict learning and
complete local solution learning. CGSLearn implements conflict learning and complete
global solution learning. We used CLearn and CSLearn as reference implementations,
as they have all the same data structures, heuristics, etc, so run time and backtrack
counts can be compared directly. In all comparisons, the number of solution backtracks
is used. This is because the solution learning algorithms should directly affect the num-
ber of solution backtracks. The run time is also used in the comparisons. As new cubes
are added to the QBF, more work must be done in assigning each variable. This work
will directly affect the run time. It may not be worth doing the additional work in re-
ducing the number of backtracks if more time is taken overall. In the complete learning
techniques, some cubes are added during preprocessing. There may be a better way
of setting up the indicators. An example of this is the use of an implicit assignment
of the indicator variables. Therefore, the run time measure of these algorithms, whilst
presented, does not necessarily reflect the best obtainable performance of the algorithm.

Our first experiments compared the existing and our new solution learning tech-
niques with solution backjumping. All algorithms implement conflict learning.
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Hypothesis

1. Solution learning performs the same or less solution backtracks than solution di-
rected backjumping on a QBF benchmark instance.

2. Complete local solution learning performs the same or less solution backtracks than
solution directed backjumping on a QBF benchmark instance.

3. Complete global solution learning performs the same or less solution backtracks
than solution directed backjumping on a QBF benchmark instance.

Unfortunately, space precludes us from presenting our results in detail, but we sum-
marise them as they inform the next set of experiments. Standard solution learning can
perform less universal backtracks than solution backjumping. Unfortunately, there are
very few points for which the difference between the algorithms is significant. As so-
lution learning is just an overhead in most cases, using solution learning can result in
the algorithm timing out where it would have completed if solution learning was not
used. It is very rare when solution learning does complete faster than solution back-
jumping. Complete local solution learning performs better that solution backjumping
on many problems. There are still many points for which complete local solution learn-
ing (CLSLearn) is an overhead overall. CLSLearn can sometimes solve problems that
solution backjumping cannot within the timeout. Complete global solution learning per-
forms better than solution backjumping on many problems. However, there are no points
where complete global solution learning can solve problems that solution backjumping
cannot but there are points that solution backjumping can solve that complete global
solution learning cannot. It is unlikely that complete global solution learning is much
better than incomplete solution learning when the run time is compared.

We are now more positive about complete local solution learning than in our previ-
ous report [4]. We ascribe this to more efficient implementation. This also suggests that
performance of solution backjumping and learning techniques is critically dependent
on small features of implementation, such as choice of solution sets in backjumping.
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Fig. 5. A comparison of the number of universal backtracks (left) and run time (right) performed
by solution learning and CLSLearn. For a description of the presentation of the graphs, see the
main text
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Fig. 6. A comparison of the number of universal backtracks (left) and run time (right) performed
by solution learning and complete global solution learning

We next compare our new complete solution learning techniques, i.e. CLSLearn and
CGSLearn, with the incomplete solution learning technique, i.e. CSLearn.

Hypothesis

1. Complete local solution learning performs the same or less universal backtracks
than solution learning on a QBF benchmark instance.

2. Complete global solution learning performs the same or less universal backtracks
than solution learning on a QBF benchmark instance.

Figure 5(left) shows that the improvement factor is often better than 1, though never
reaching 10. Most points lie on or close to the equality line, with just 2 showing a
significant deterioration. Figure 5(right) shows many points with an improvement factor
better than one, and many that this enables CLSLearn to solve that CSLearn cannot. The
best shows an improvement factor of over three orders of magnitude. There are three
points that lie on the time-out line of CLSLearn.

Figure 6(left) is very similar to figure 5(left). Figure 6(right) shows a much smaller
improvement in run time and many more cases where run time increases through the
use of CGSLearn, compared to CLSLearn.

The results show that CLSLearn almost always performs the same or less universal
backtracks than the incomplete solution learning technique. However, there are some
points where this is not the case. This means that the first part of the hypothesis must
be rejected. These points are likely to be caused by the CLSLearn technique missing
out on finding a particularly good solution set and therefore performing more solution
backtracks. As both the incomplete solution learning technique and CLSLearn both
cause some overheads, the run time graph is much different to the comparison with
solution backjumping. CLSLearn does cause some additional overheads compared to
the incomplete solution learning technique. Therefore there are some instances that are
not solved by CLSLearn but are solved by incomplete solution learning. There are many
more points that can now be solved by CLSLearn that incomplete solution learning
could not solve before the time-out. This shows the importance of learning more of the
solutions in a solution learning technique.
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The results for complete global solution learning (CGSLearn) are similar. Again, the
second part of the hypothesis must be rejected. CGSLearn has even more overheads, as
reflected in the run time comparison. There are more points where solution learning
solves the instances but CGSLearn does not, and fewer points where CGSLearn solves
the instance but incomplete solution learning does not. These points show that the com-
plete learning technique is still worth doing. What is less obvious is whether it is worth
performing global learning compared to performing local learning. This is explored in
the next experiment.

Hypothesis

1. Complete global solution learning performs the same or less universal backtracks
than complete local solution learning on a QBF benchmark instance.

Figure 7(left) shows some points with an improvement, but none with an improve-
ment factor greater than 2.5. Figure 7(right) shows that the overheads cause most in-
stances to deteriorate in run time, suggesting that CLSLearn is more effective than
CGSLearn.
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Fig. 7. A comparison of the number of universal backtracks (left) and run time (right) performed
by CLSLearn and CGSLearn

The results show that the hypothesis is correct as CGSLearn never performs more
universal backtracks than CLSLearn. However, only small improvements are obtained.
As CGSLearn keeps the solutions for the remainder of the search, more overheads are
caused than with CLSLearn. This is reflected in the run time where CGSLearn can-
not solve many instances that CLSLearn can. There are no instances where CGSLearn
solves the instance but CLSLearn does not. Therefore, it appears that it is not worth
performing the global learning compared to local learning.

6 Conclusions

We presented two new techniques for solution learning. The first learns more informa-
tion than would be learned by the incomplete solution learning technique. This is done
without an exponential increase in formula size per solution despite the learning of an
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exponential number of solutions. This is achieved by using a simple but effective en-
coding trick. The second technique extends the first technique by allowing the learned
solutions to be stored for the duration of the search.

Our experimental analysis shows that complete local solution learning performs bet-
ter than the existing solution learning technique in most cases. Our second learning
technique, complete global solution learning, does not perform as well, but still does
better than the incomplete solution learning technique on many instances.

The implementations of the complete solution learning algorithms presented are
not likely to be optimal. The encoding trick used in the solution learning adds to the
original formula. This could be avoided by holding this information implicitly in the
data structures of the QBF, or by only adding the indicator formula when it is needed.
This may result in better operation of the complete solution learning techniques. It is
worth first testing the hypothesis that the time taken to solve a QBF benchmark problem
with indicator cubes is more than that taken to solve the QBF benchmark problem alone.
This is likely to be the case since the indicator formula must be handled in addition to
the original formula. This would also show how much more work must be done by the
solver to deal with the indicator formula. It would also be interesting to try size and
relevance bounding with the complete global solution learning technique.
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Abstract. We consider the problem of equivalence checking of circuits
N1,N2 with a common specification (CS). We show that circuits N1 and
N2 have a CS iff they can be partitioned into toggle equivalent subcircuits
that are connected “in the same way”. Based on this result, we formulate
a procedure for checking equivalence of circuits N1 and N2 with specifi-
cations S1 and S2. This procedure not only checks equivalence of N1 and
N2 but also verifies that S1 and S2 are identical. The complexity of this
procedure is linear in specification size and exponential in the value of a
specification parameter. Previously we considered specifications parame-
terized by the size of the largest subcircuit (specification granularity). In
this paper we give a more general parameterization based on specification
“width”.

1 Introduction

Studying equivalence checking (EC) of combinational circuits is of great practical
and theoretical importance. A key problem of electronic chip design is to build a
circuit that implements a Boolean function f and at the same time optimizes a
cost function. In a typical design flow, this task is performed by a logic synthesis
procedure. Such a procedure starts with some circuit N implementing f , and
then gradually modifies N trying to improve the value of the cost function. Each
optimization step requires EC to prove that the modified implementation of f
is functionally equivalent to the previous one. Typically, due to high complexity
of EC, a logic synthesis procedure uses only very simple transformations. So
any discovery of a new powerful EC procedure will enable more powerful logic
optimization steps thus drastically improving the quality of synthesized circuits.

Studying EC may be also very useful from a theoretical point of view for
the following reasons. In terms of EC, the problem of checking if a circuit N is
satisfiable (further referred to as Circuit-SAT) reduces to testing inequivalence
of N and a trivial circuit N(0) implementing constant 0. In [5] we showed that
EC of circuits with a “similar” structure is easy. This result implies that it may
be unreasonable to check for equivalence circuits N and N(0). (Because N may
have a very involved structure while N(0) does not have any structure at all and
so N and N(0) are definitely not “similar”.) Instead, one may try to build a
sequence of circuits N1,. . . , Nk where N1 = N and Nk = N(0) such that EC of

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 107–121, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Circuits N1 and N2 with a common specification of three mv-gates

a pair of consecutive circuits Ni,Ni+1 is easy. Performing this kind of transitions
from a “hard” circuit to an “easy” one requires a good understanding of EC
complexity.

In [5] we studied EC of circuits with a common specification (CS). A CS S
of N1 and N2 is just a circuit of multi-valued gates (mv-gates for short) such
that N1 and N2 are different implementations of S. An example of a CS is given
in Figure 1. Circuits N1 and N2 have a CS of 3 mv-gates shown on the left.
Subcircuits N i

1, N i
2 are different implementations of multi-valued mv-gate Gi of

S. Circuit N i
m (m=1,2) implements a multi-output Boolean function whose truth

table is obtained from that of Gi by replacing values of multi-valued variables
with their binary codes. So the difference between N i

1 and N i
2 is in the choice of

binary encodings for the variables of S.
The main result of [5] is that, given circuits N1 and N2 and their CS rep-

resented by partitions N1
1 ,.., Nk

1 and N1
2 ,.., Nk

2 , there is a short “specification
driven” resolution proof that N1 and N2 are equivalent. This proof is linear in
the number of subcircuits k and exponential in size of the largest subcircuit
N j

i , i=1,2, j=1,. . . , k (granularity of specification). (The main point of [5] was
to show that there is a very important class of practical formulas of very low
“non-deterministic” complexity that are most likely hard for any deterministic
resolution based SAT-solver.)

In this paper we develop further the theory of [5] and report the following
new results.

– In [5] we gave an “explicit” definition of a CS S of circuits N1 and N2 where
one needs to know not only the functionality of mv-gates of S but also the
binary encodings of multi-valued variables. In this paper we show that N1

and N2 have a CS iff N1 and N2 can be partitioned into toggle equivalent
subcircuits that are connected “in the same way”. This result allows one to
represent a CS of N1 and N2 “implicitly” as a partitioning of N1 and N2

into subcircuits.
– Based on the result above, we give a new procedure for EC of circuits with

a CS.
– We give parameterization of our EC procedure in terms of specification width

that generalizes the notion of specification granularity introduced in [5].
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– We clarify the relation between fixed-parameter tractability and parameter-
ized EC

The novelties of our EC procedure are as follows.

– In contrast to [5], when checking for equivalence of circuits N1 and N2 with
specifications S1 and S2, our EC procedure does not assume that S1 and S2

are identical. Instead, it verifies the identity of S1 and S2 “on the fly”.
– Our procedure works not only if circuits N1 and N2 are equivalent (as in [5])

but also when they are anti-equivalent (a special case of inequivalence).
– In contrast to [5], no restrictions are imposed on the length of binary en-

codings of multi-valued variables (in [5] we considered only minimal length
encodings).

For lack of space, this paper does not contain any experimental results. A
comparison of our EC procedure with a powerful industrial equivalence checker
is given in [6]. The report [6] also describes application of our theory to logic
synthesis. Namely, in [6] we formulate a powerful logic synthesis procedure that,
given a circuit N1 with a specification (represented as partition of N1 into sub-
circuits), generates a circuit N2 that implements the same specification as N1.
Today’s state-of-the-art algorithms can neither generate such a circuit N2 nor
prove it to be equivalent to N1.

This paper is structured as follows. In Section 2 the relation between fixed-
parameter tractability and parameterized complexity of EC is discussed. In Sec-
tion 3 we recall the notion of circuits with specifications. Section 4 introduces
the notion of toggle equivalence of Boolean functions. In Section 5 we show that
circuits N1 and N2 have a CS iff they can be partitioned into toggle equivalent
subcircuits that are connected “in the same way” in N1 and N2. In Section 6 we
give a procedure for EC of circuits N1 and N2 with predefined specifications. In
Section 7 we discuss the complexity of our EC procedure and introduce width
based parameterization of EC. In Section 8 we explain why it is hard to find a
CS. Finally, we draw some conclusions in Section 9.

2 Fixed Parameter Tractability and Parameterized
Complexity of Equivalence Checking

In this section, we discuss (very informally) the relation between fixed parameter
tractability and parameterized complexity of equivalence checking. The notion
of parameterized tractability [4] is an elegant way to form tractable subprob-
lems of computationally hard problems. To parameterize a problem K means to
build a function ξ(K) that maps each instance I of K to an integer p=ξ(I). A
parameterized problem K is called fixed-parameter (FP) tractable if there is an
algorithm that solves every instance I of K in time O(g(p) ∗ Lm). Here g(p) is
an arbitrary function of p, L is the length of I, and m is a constant. It is not
hard to see that any set of instances of the problem K that has the same value
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of p can be solved by this algorithm in time O(Lm). (The same applies to any
set of instances of K that may have different values of p but the number of these
values is finite.)

The EC procedure we give in this paper implies that EC has features of
an FP tractable problem. Let K be the EC problem and I be an instance of
K that is to check Boolean circuits N1 and N2 for equivalence. The function
ξ(K) is defined as follows. If N1 and N2 are functionally equivalent or anti-
equivalent, then p= ξ(I) is the width of a CS of N1 and N2 (see Section 7 for
the definition). (Anti-equivalence means that Boolean functions implemented
by N1 and N2 are complements of each other). As we will see if N1 and N2

are inequivalent but not anti-equivalent, then they do not have a CS. In that
case, the value of ξ(I) is arbitrary. Our EC procedure tests equivalence or
anti-equivalence of N1, N2 or rejects the instance I (in case specifications of
N1 and N2 are not identical) in time O(g(p) ∗L) where L is the instance
length. A major difference between parameterized EC and an FP tractable
problem is that our EC procedure needs an “advice”. This advice is given in
the form of specifications S1={N1

1 ,.., Nk
1 } and S2={N1

2 ,.., Nk
2 } represented as

partitions of N1 and N2 into subcircuits.
Let us explain the relation between parameterized EC and FP tractability by

the example of Circuit-SAT. Circuit-SAT is an NP-complete problem which
is to test if a circuit N is satisfiable. Circuit-SAT is known to be an FP
tractable problem (see for example [3, 8]. The satisfiability of N can be solved
in time O(exp(c ∗ w)∗|N|) where w is the circuit width, c is a constant and
|N | is the circuit size. (We do not clarify which definition of circuit width we
use because the discussion below applies to any of them.) The quick growth
of exp(c ∗ w) makes it possible to efficiently solve Circuit-SAT only for very
“narrow” circuits. On the other hand, our EC procedure can be efficiently
applied to circuits N1 and N2 of arbitrary width. The limiting factor is the
width of each pair N i

1, N i
2, i = 1,.., k of corresponding subcircuits of S1

and S2. In other words, in the case of Circuit-SAT, the parameter describes
the “absolute” circuit width. In the case of EC the parameter describes the
“differential” width of circuits N1 and N2 that indicates how different N1

and N2 are.
One can view width-based tractability of Circuit-SAT as a “special case” of

width-based tractability of EC. Indeed, on the one hand, testing the satisfiabil-
ity of a circuit reduces to testing inequivalence of this circuit to constant 0. On
the other hand, if N2 is a trivial implementation of constant 0, then the relative
width of N1 and N2 is actually the absolute width of N1. While FP tractabil-
ity looks for circuits that are “immediately” simple, parameterized EC implies
the possibility of making circuits simpler “gradually” by performing “narrow”
(and so easily verifiable) changes. For example, if the absolute width of N2 is
smaller than that of N1 and the width of their CS is small, then one can replace
Circuit SAT (N1) with Circuit SAT (N2) easily proving that this replacement is
correct.
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3 Boolean Circuits with Specifications

In this section, we recall the “old” definition of a CS of two circuits N1 and N2

given in [5]. In Section 5 we will give a new definition allowing to represent CS
“implicitly” as partitioning of N1 and N2 into toggle equivalent subcircuits. We
will also show that these two definitions are equivalent.

An mv-circuit (here mv stands for multi-valued) is a network of mv-gates ,
exactly as a Boolean circuit is a network of Boolean gates. An mv-gate of n
inputs is a device that implements an mv-function of n mv-variables. (Similarly,
a Boolean gate of n inputs is a device implementing a Boolean function of n
Boolean variables.)

We will call a Boolean function f (or a Boolean circuit implementing f )
specifying a mapping {0,1}m → {0,1}p a multi-output function (a multi-
output circuit respectively) if p ≥ 1 and a single-output function (a single
output circuit respectively) if p = 1. Let X be a multi-valued variable. Let q(X)
be a Boolean function mapping each value X ′ of X to a point of {0,1}n. The
function q(X) is called an (n-bit) encoding of X if different values X ′ and X ′′

of X are mapped to different points i.e. q(X ′) �= q(X ′′). The value of q at X ′

is called the code of X ′.
Let G(X1, . . ., Xn) be the mv-function implemented by an mv-gate G and Y

be the mv-variable describing the output of G. A Boolean function f imple-
ments G if there are n+1 Boolean encodings q1(X1),q2(X2),. . . ,qn(Xn),q(Y )
such that a) Y = G(X1,.., Xn) implies q(Y )=f (q1(X1),..,qn(Xn)) and b) each
combination of output values produced by f is a code of a value of Y . If a
Boolean circuit N implements a Boolean function f implementing an mv-gate
G, we will say that N implements G.

A multi-valued circuit S of k gates G1,..,Gk is called a specification of a
Boolean circuit N if N is a composition of k subcircuits N1,..,Nk such that a)
subcircuit Ni is an implementation of mv-gate gate Gi; b) subcircuits of N are
connected as corresponding gates of S (for example, the circuit N1 shown in the
center of Figure 1 consists of three subcircuits N1

1 , N2
1 , N3

1 connected as the
corresponding mv-gates G1,G2,G3 of the specification shown on the left.)

Definition 1. An mv-circuit S is called a common specification (CS) of
Boolean circuits N1 and N2 if S is a specification of both N1 and N2.

In this paper we make the following assumptions.

1. Each gate of a Boolean circuit has only two inputs (no assumptions are made
about the number of inputs of an mv-gate).

2. Circuits N1 and N2 to be proven equivalent have only one output.
3. Every specification has only one output and this output takes only Boolean

values. Every specification has only Boolean inputs. (This means, for ex-
ample, that the inputs of gates G1 and G2 and the output of gate G3 in
Figure 1 take only Boolean values.) In other words, only “internal” vari-
ables of a specification can be multi-valued. All the “external” variables are
Boolean.
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4 Toggle Equivalence of Boolean Functions

According to Definition 1, to show that circuits N1, N2 have a CS one has to
present an mv-circuit S and binary encodings of the mv-gates of S that prove
N1 and N2 to be implementations of S. In Sections 4 and 5 we show that one can
represent a CS of N1 and N2 “implicitly” as a partitioning of N1 and N2 into
toggle equivalent subcircuits. In this case, no explicit knowledge of encodings or
the functionality of mv-gates is necessary.

In this section, we introduce the notion of toggle equivalence. We show that
toggle equivalent Boolean functions can be considered as different implementa-
tions of the same multi-valued function.

4.1 Toggle Equivalence of Functions with Identical Sets of
Variables

Definition 2. Let f1:{0,1}n → {0,1}m and f2:{0,1}n → {0,1}k be m-output
and k-output Boolean functions of the same set of variables. Functions f1 and
f2 are called toggle equivalent if f1(x) �= f1(x′) ⇔ f2(x) �= f2(x′). Circuits
N1 and N2 implementing toggle equivalent functions f1 and f2 are called toggle
equivalent circuits.

Informally, toggle equivalence means that for any pair of input vectors x,x′ for
which at least one output of N1 “toggles”, the same is true for N2 and vice versa.

Definition 3. Let f be a multi-output Boolean function of n variables. Denote
by Part(f) the partition of the set {0,1}n into disjoint subsets B1,. . . ,Bk such
that f(x) = f(x′) iff x, x′ are in the same subset Bi.

Proposition 1. Two Boolean functions f1 and f2 are toggle equivalent iff
Part(f1)=Part(f2) i.e. iff for each element Bi of the partition Part(f1) there
is an element B′

j of the partition Part(f2) such that Bi=B′
j and vice versa.

Proof. If f 1 and f 2 are toggle equivalent, there cannot exist a pair of vectors
x,x′ such that x,x′ are in the same subset of one partition and in different
subsets of the other partition. (Because that would mean that one function
produces two identical output assignments while the other function toggles.)

Proposition 2. Let f1 and f2 be toggle equivalent single output Boolean func-
tions. Then f1=f2 or f1=f2 where f2 is the negation of f2.

Proof. From Proposition 1 it follows that Part(f1)=Part(f2). Since f1 and
f2 are single output Boolean functions, Part(f1) and Part(f2) consist of two
elements each. So f1=f2 or f1=f2.

Proposition 3. Let f1 and f2 be toggle equivalent. Then f1 and f2 are two dif-
ferent implementations of the same multi-valued function of Boolean variables.

Proof. According to Proposition 1, Part(f 1)=Part(f 2). Let Part(f 1), Part(f 2)
consist of k elements each. Then f 1 and f 2 are implementations of the function
F : {0,1}n → {1,..,k} where F (x )=m, iff x ∈ Bm, i.e. iff x is in the m-th element
of Part(f1).
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4.2 Toggle Equivalence of Functions with Different Sets of
Variables

In this subsection, the notion of toggle equivalence is extended to the case of
Boolean functions with different sets of variables that are related by constraint
functions.

Definition 4. Let X and Y be two disjoint sets of Boolean variables (the number
of variables in X and Y may be different). A function Cf(X,Y ) is called a
correlation function if there are subsets AX ⊆ {0,1}|X|and AY ⊆ {0,1}|Y |

such that

1. |AX | = |AY | and
2. Cf(X,Y ) specifies a bijective mapping M : AX → AY . Namely Cf(x, y)=1

iff x ∈ AX and y ∈ AY and y = M(x).

Remark 1. Informally, Cf (X,Y ) is a correlation function if it specifies a bijective
mapping between a subset AX of {0,1}|X| and a subset AY of {0,1}|Y |. So one
can view Cf (X,Y ) as relating two different encodings of an |AX |-valued variable.

As Proposition 4 below shows, one can check if a Boolean function H(X,Y ) is a
correlation one without explicitly finding subsets AX and AY .

Proposition 4. Let X and Y be two disjoint sets of Boolean variables. A Boolean
function H(X,Y ) is a correlation one iff the following two conditions hold.

1. There do not exist three vectors x, x′,y (where x, x′ are assignments to
variables of X and y is an assignment to variables of Y ) such that x �= x′

and H(x,y)=H(x′,y)=1.
2. There do not exist three vectors x,y,y′ such that y �= y′ and H(x,y)=

H(x,y′)=1.

Proof. Only if part. If H(X,Y ) is a correlation function, the fact that condi-
tions 1) and 2) hold, follows from Definition 4.

If part. If conditions 1) and 2) hold then, H(X,Y ) specifies a bijective
mapping between subsets AX and AY defined in the following way. Subset AX

consists of all the assignments x ∈ {0,1}|X| such that H(x , y)=1 for some
y ∈ {0,1}|Y |. Subset AY consists of all the assignments y ∈ {0,1}|Y | such that
H(x , y)=1 for some x ∈ {0,1}|X|.

Remark 2. Checking if H(X,Y ) is a correlation function reduces to solving two
instances of the satisfiability problem (SAT). Checking condition 1) of Proposi-
tion 4 reduces to testing the satisfiability of the expression H(X,Y ) ∧ H(X ′, Y ′)
∧ Neq(X,X ′) ∧ Eq(Y, Y ′). Here H(X ′, Y ′) is a “copy” of H(X,Y ) where vari-
ables of X ′, Y ′ are independent of those of X,Y . Neq(x,x′) is equal to 1 iff
x �= x′. Function Eq(Y, Y ′) is the negation of Neq(Y, Y ′). Checking condition
2) of Proposition 4 reduces to testing the satisfiability of H(X,Y ) ∧ H(X ′, Y ′)
∧ Eq(X,X ′) ∧ Neq(Y, Y ′). If either expression is constant 0 (i.e. unsatisfiable),
then H is a correlation function.
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Definition 5. Let f1:{0,1}n → {0,1}m and f2:{0,1}p → {0,1}k be m-output and
k-output Boolean functions and X and Y specify their sets of Boolean variables
where |X| = n and |Y | = p. Let Dinp(X,Y ) be a Boolean function. Functions f1
and f2 are called toggle equivalent under constraint function Dinp(X,Y )
if (f1(x) �= f1(x′) ∧ (Dinp(x, y)= Dinp(x′,y′)=1)) ⇒ (f2(y) �= f2(y′) and vice
versa (f2(y) �= f2(y′) ∧ (Dinp(x,y)=Dinp(x′,y′)=1)) ⇒ f1(x) �= f1(x′).

Proposition 5. Let X,Y be sets of Boolean variables and {X1, . . . , Xs} and
{Y1, . . . , Ys} be partitions of X and Y respectively. Let Cf(X1,Y1),..,Cf(Xs,Ys)
be correlation functions. Let f1(X) and f2(Y ) be toggle equivalent under the con-
straint function Dinp(X,Y )=Cf(X1,Y1)∧ . . . ∧ Cf(Xs,Ys). Then f1 and f2 are
implementations of the same multi-valued function of s multi-valued variables.

Proof follows from Proposition 3 and Remark 1.

4.3 Testing Toggle Equivalence

In this subsection, we show how to test toggle equivalence of multi-output
Boolean circuits N1 and N2. Namely we show that testing the toggle equiva-
lence of N1 and N2 reduces to checking if function Dout(N1, N2) specified by
Definition 8 (see below) is a correlation one. This test can be performed by two
satisfiability checks as described in Remark 2.
Definition 6. Let N be a Boolean circuit. Denote by v(N) the set of Boolean
variables associated with the output or an input of a gate of N . Denote by
Sat(v(N)) the Boolean function such that Sat(z)=1 iff the assignment z to
variables v(N) is “possible” i.e consistent. For example, if circuit N consists
of just one AND gate y = x1 ∧ x2, then v(N)={y, x1, x2} and Sat(v(N))=
(x1∨ x2 ∨y)∧ (x1 ∨ y)∧ (x2 ∨ y).

Definition 7. Let f be a Boolean function. We will say that function f∗

is obtained from f by existentially quantifying away variable x if f∗ =
f(. . . , x=0,. . . ) ∨f(. . . , x=1,. . . .).

If f is represented as a CNF formula F , then to existentially quantify away
a variable x one just needs to add to F all the clauses produced by resolving
clauses of F in x and to remove from F all the clauses having a literal of x.
Definition 8. Let N1 and N2 be Boolean circuits whose inputs are specified by
sets of variables X and Y respectively. Let Dinp(X,Y ) be a Boolean function. De-
note by Dout(N1, N2) the Boolean function obtained from the Boolean function
H, where H=Sat(v(N1)) ∧ Sat(v(N2)) ∧ Dinp(X,Y ), by existentially quantify-
ing away all the variables of H but the output variables of N1 and N2 (i.e. the
variables associated with outputs of N1 and N2).

Proposition 6. Let N1 and N2 be Boolean circuits with input variables speci-
fied by sets X, Y respectively. Let Dinp(X,Y ) be a Boolean function relating X
and Y . Let Dinp(X,Y ) be a correlation function. Then N1 and N2 are toggle
equivalent under constraint function Dinp(X,Y ) iff the function Dout(N1,N2)
specified in Definition 8 is also a correlation function.
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Proof . Only If part. Let N1 and N2 be toggle equivalent under constraint
function Dinp(X,Y ). Then Dout(N1,N2) satisfies either condition of Proposi-
tion 4 and hence it is a correlation function. For example, there cannot exist
Boolean vectors z , z′ and h (where z �= z′ and z , z′ are output assignments of
N1 and h is an output assignment of N2) such that Dout(z ,h)=Dout(z′,h)=1.
Indeed, it would mean that there exist pairs of vectors x , y and x′, y′ such
that a) z=N1(x ), z′ = N2(x′) and h = N2(y)=N2(y′);b) Dinp(x , y)=1 and
Dinp(x′, y′)=1; c) x �= x′ and y �= y′ ; d) N1(x )�= N1(x′) while N2(y) = N2(y′).
But this is impossible because N1 and N2 are toggle equivalent.

If part can be proven in a similar manner.

5 Common Specification and Toggle Equivalence

In this section, we show that the existence of a CS of single output combinational
circuits N1 and N2 means that N1, N2 can be partitioned into toggle equivalent
subcircuits that are connected in N1 and N2 “in the same way”. This result is
formulated in Proposition 7.

Definition 9. Let N= (V ,E) be a directed acyclic graph (DAG) representing a
Boolean circuit. (Here V ,E are sets of nodes and edges of N respectively.) A sub-
graph N∗=(V ∗, E∗) of N is called a subcircuit if the following two conditions
hold:

1. if g1, g2 are in V ∗ and there is a path from g1 to g2 in N , then all the nodes
of N on that path are in V ∗ ;

2. if g1, g2 of V ∗ are connected by an edge in N , then they are also connected
by an edge in N∗.

Definition 10. Let N∗ be a subcircuit of N . An input of a gate g of N∗ is called
an input of N∗ if it is not connected to the output of some other gate of N∗.
The output of a gate g is called an output of subcircuit N∗ if a) it is the output
of N or b) it is connected to an input of a gate of N that is not in N∗.

Definition 11. Let a Boolean circuit N be partitioned into k subcircuits N1,
..., Nk . Let T be a directed graph of k nodes such that nodes Gi and Gj of T
are connected by a directed edge (from Gi to Gj) iff an output of N i is con-
nected to an input of Nk in N . T is called the communication specification
corresponding to the partition N1, ..., Nk. The partition N1, ..., Nk is called
topological if T is a DAG (i.e. if T does not contain cycles).

Definition 12. Let T be the communication specification of circuit N with re-
spect to a topological partition N1, ..., Nk. Let Gi be the node of T corresponding
to subcircuit N i. The length of the longest path from an input of T to Gi is called
the level of Gi and N i (denoted by level(Gi) and level(N i) respectively).

Definition 13. Let N1
1 , ...,Nk

1 and N1
2 , ..., Nk

2 be topological partitions of sin-
gle output Boolean circuits N1,N2. Let communication specifications of N1 and
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Fig. 2. Illustration to Definition 13

N2 with respect to partitions N1
1 , ..., Nk

1 and N1
2 , ..., Nk

2 be identical. Denote
by Dout(N

m
1 ,Nm

2 ), m=1,. . . ,k functions computed by induction in topologi-
cal levels. Namely, we first compute functions Dout for the subcircuits of level
1, then for those of level 2 and so on. Function Dout(Nm

1 ,Nm
2 ) is obtained

from function Hm=Sat(v(Nm
1 )) ∧ Sat(v(Nm

2 )) ∧Dinp(Nm
1 ,Nm

2 ) by existentially
quantifying away all the variables except the output variables of Nm

1 , Nm
2 . The

function Dinp(Nm
1 ,Nm

2 ) is equal to Dout(Nm1
1 ,Nm1

2 )∧ . . . . ∧Dout(Nms
1 ,Nms

2 )∧
Eq(xm1,ym1)∧. . . ∧ Eq(xmr,ymr). Here Nm1

1 ,..,Nms
1 ,Nm1

2 ,..,Nms
2 are the s sub-

circuits (if any) whose outputs are connected to inputs of Nm
1 ,Nm

2 respectively.
(See illustration in Figure 2.) Variables xm1,. . . ,xmr,ym1,.., ymr are the r input
variables of N1 and N2 (if any) that feed Nm

1 and Nm
2 respectively. Function

Eq(xmt,ymt), 1≤t ≤ r is equal to 1 iff xmt is equal to ymt.

Proposition 7. Let N1, N2 be two single-output Boolean circuits and T be a
DAG of k nodes. Circuits N1 and N2 are implementations of a specification S
whose topology is given by T iff there is a partition Spec(N1) = {N1

1 , ..., Nk
1 } of

N1 and a partition Spec(N2) = {N1
2 , ..., Nk

2 } of N2 into k subcircuits such that

– Communication specifications T1,T2 of N1 and N2 with respect to partitions
Spec(N1), Spec(N2) are equal to T ;

– Each pair of circuits Nm
1 , Nm

2 is toggle equivalent under constraint function
Dinp(Nm

1 , Nm
2 ) specified by Definition 13.

Sketch of the proof. If part . It is proven by induction (in levels) using
Proposition 5 and Proposition 6. Only if part is proven by induction using the
fact that two Boolean functions implementing the same multi-valued function
are toggle equivalent.

Proposition 7 allows one to specify a CS S of circuits N1 and N2 “implicitly”
by giving partitions {N1

1 ,.., Nk
1 } and {N1

2 ,. . . , Nk
2 }. Of course, knowing these

partitions one can always obtain the functionality of all mv-gates of S and find
the binary encodings using which circuits N1 and N2 can be produced from S.

From Proposition 7 it follows that if N1 and N2 have a CS, then Nk
1 and Nk

2

(i.e. the “last” subcircuits of N1 and N2 respectively) and hence N1 and N2 are
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toggle equivalent. From Proposition 2 it follows then that N1 and N2 are either
equivalent or anti-equivalent. In other words, if N1 and N2 are neither equivalent
nor anti-equivalent, they have no CS.

6 A Procedure for Equivalence Checking of Circuits
with a Common Specification

In this section, we describe a procedure for EC of circuits N1, N2 with predefined
specifications S1, S2. We will refer to this procedure as ECCS (EC of circuits with
a CS). The ECCS procedure essentially mimics a specification guided resolution
proof introduced in [5]. However there are a few differences.

– The ECCS procedure does not assume that specifications S1 and S2 are
identical. Instead, using Proposition 7, it checks if S1 and S2 are identical
on the fly.

– The ECCS procedure not only proves that N1 and N2 are functionally equiv-
alent but can also prove that N1 and N2 are anti-equivalent.

– The ECCS procedure is described in terms of functions and existential quan-
tification independently of the way these functions are represented.

The pseudocode of the ECCS procedure is shown in Figure 3. The procedure
topol partition checks if Spec(N 1) and Spec(N 1) are topological partitions (see
Definition 11). The procedure equiv commun specs checks if communication spec-
ifications T1 of N1 (with respect to Spec(N 1)) and T2 of N2 (with respect to
Spec(N 2)) are identical.

In the main loop, functions Dout(N i
1, N i

2) are computed in topological order
as described in Definition 13. Before computing Dout(N i

1, N i
2) the procedure con-

/* Spec(N 1)= {N1
1 ,..,Nk

1 },Spec(N 2)= {N1
2 ,..,Nk

2 } */
ECCS(N1, N2, Spec(N 1),Spec(N 2)) {

if (topol partition(N 1,N2,Spec(N 1),Spec(N 2)) == ‘no’)
return(‘reject ’);

if (equiv commun specs( N1,N2,Spec(N 1),Spec(N 2)) == ‘no’)
return(‘reject ’);

for (i=1; i <= k ; i++) {
Dinp = constr func(N i

1,N
i
2,N1,N2);

Dout(N
i
1, N i

2) = exist quantify(N i
1,N

i
2, Dinp);

if (correlation function(Dout) == ‘no’)
return(‘reject ’);}

/* At this point we know that Dout(N
k
1 , Nk

2 ) is a correlation function */

if (Dout(N
k
1 , Nk

2 ) implies equivalence of N 1 and N 2 )
return(‘equivalent ’);

if (Dout(N
k
1 , Nk

2 ) implies anti-equivalence N 1 and N 2)
return(‘anti-equivalent ’);}

Fig. 3. Pseudocode of the ECCS procedure
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str func forms the expression Dinp (see Definition 13). The exist quantify proce-
dure existentially quantifies away from the function Hi=Sat(v(N i

1)) ∧ Sat(v(N i
2))

∧ Dinp all the variables except the output variables of N i
1 and N i

2. Then the
correlation function procedure checks if the result of quantification Dout is a
correlation function. This check reduces to two SAT-checks as described in
Remark 2.

Finally, the ECCS procedure checks if the correlation function of Dout(Nk
1 ,

Nk
2 ) relating outputs Nk

1 and Nk
2 (and so outputs of N1 and N2) implies that N1

and N2 are equivalent or anti-equivalent. If Dout(Nk
1 , Nk

2 ) is equal to (z1∨ z2)∧
(z1 ∨ z2) (here z1 and z2 are Boolean variables associated with the output of Nk

1

and Nk
2 respectively), then N1 and N2 are functionally equivalent. If Dout(Nk

1 ,
Nk

2 ) is equal to z1 ∧ z2 (respectively z1 ∧ z2) then N1 and N2 are functionally
equivalent and implement constant 1 (respectivley 0). If Dout(Nk

1 , Nk
2 ) is equal to

(z1∨ z2)∧(z1 ∨z2) or z1∧z2 or z1∧z2, then functions implemented by N1 and N2

are complements of each other. It is not hard to show that any Boolean function
of z1,z2 different from the six functions above is not a correlation function.

ECCS procedure returns the ‘reject’ answer if any of the checks performed by
topol partition, equiv commun specs and correlation function fails. The rejection
means that partitions Spec(N1) and Spec(N2) do not represent a CS of N1 and N2.

7 Parameterization of EC by Specification Width

In this section we discuss the complexity of the ECCS procedure and give a new
parameterization of EC based on specification width.

First we recall the parameterization based on specification granularity [5].
Definition 14. Let N1, N2 be two Boolean circuits with a CS S represented
by partitions Spec(N1)={N1

1 ,..,Nk
1 }, and Spec(N2)= {N1

2 ,..,Nk
2 }. The gran-

ularity of S is the size (i.e. the number of gates) of the largest subcircuit
N j

i , i=1,2, j=1,..,k.

The ECCS procedure is exponential in the granularity p of S and linear in
the number of subcircuits in Spec(N 1), Spec(N 2) (i.e. in the number of mv-
gates in S). The exponentiality in p is due to procedures exist quantify and
correlation function. The reason why the ECCS procedure is exponential only
in p and not in the circuit size is that the two exponential procedures above
are applied only to subcircuits N i

1, N i
2 whose size is bounded by p. So the time

complexity of the ECCS procedure is the same as the size of a specification
guided resolution proof from [5].

The granularity based parameterization can be easily improved using the fol-
lowing two observations. First, suppose that the number of outputs of a subcir-
cuit N j

i , i=1,2, j=1,..,k is bounded by a constant w. Then the complexity of the
correlation function procedure is bounded by 34w. Indeed, the number of vari-
ables of the function Dout(N i

1, N i
2) is bounded by 2 ∗w. Testing if Dout(N i

1, N
i
2)

is a correlation function reduces to two SAT-checks over functions of 4 ∗w vari-
ables (see Remark 2) . In general resolution, the complexity of either check is
bounded by 34w (the total number of clauses of 4 ∗ w variables).
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Second, to quantify from the function Hi=Sat(v(N i
1)) ∧ Sat(v(N i

2)) ∧
Dinp(N i

1, N i
2) all the variables except the output variables of N i

1, N i
2, it suf-

fices to perform no more than 22w SAT-checks. Each SAT-check just tests if
a function Hi ∧ A is satisfiable. Here A is a Boolean function that is equial
to 1 iff a particular set of assignments to the outputs of N i

1, N i
2 is made. So

if the compelxity of each SAT-check is bounded by a function f(w′) where w′

is another parameter, then the complexity of the ECCS procedure is bounded
by (f(w′)∗22w+34w) ∗ k where k is the number of subcircuits in Spec(N1) and
Spec(N2). So, if the values of w and w′ are bounded, the complexity of the ECCS
procedure is linear in the size of N1 and N2.

Let CNF (Hi ∧A) be a CNF representing Hi ∧ A. To parameterize the com-
plexity of checking the satisfiability of Hi ∧ A we use the results on FP tractabil-
ity of SAT [8]. This FP tractability is achieved by parameterizing SAT with the
width of a graph relating variables and clauses of a CNF formula. Given a for-
mula F , one can build different graphs relating clauses and variables of F (e.g.
incidence graph, primal graph, hypergraph [8]). Besides, one can use different
definitions of graph width (e.g. cut-width [2, 3, 7], tree width, branch width [1, 8]).
We do not choose a particular width-based parameterization here because the
reasoning below is mostly independent of such a choice.

Denote by G(Hi ∧ A) a graph of choice to describe a relation between
clauses and variables of CNF (Hi ∧ A). To complete parametrization we show
how one can compute G(Hi ∧ A). Of course its computing is trivial if
CNF (Hi ∧ A) is given explicitly. However, this is not the case. Nevertheless
one can “approximate” G(Hi ∧ A) as follows. CNF (Hi ∧ A) can be represented
as CNF (Sat(v(N i

1))) ∧ CNF (Sat(v(N i
2))) ∧ CNF (Dinp(N i

1, N i
2)) ∧ CNF (A).

Knowing circuits N i
1 and N i

2 one can easily build CNF formulas CNF(Sat(v(N i
1))),

CNF (Sat(v(N i
2))). So their contribution to G(Hi ∧ A) can be easily computed.

CNF (A) can be represented as a conjunction of unit clauses, each clause describ-
ing an assignment one has to make to an output of N1 or N2. Since the number
of outputs of N i

1 and N i
2 is known, the contribution of CNF (A) to G(Hi ∧ A)

is easy to compute. To compute the contribution of CNF (Dinp(N i
1, N i

2)) to
G(Hi ∧ A) we can just assume the “worst” case. Namely, if outputs of the cir-
cuit N j

1 (respectively N j
2 ) are connected to inputs of N i

1 (respectively to inputs
of N i

2) we can assume that CNF (Dinp(N i
1, N i

2)) contains 3q clauses each clause
containing all the variables corresponding to the outputs of N j

1 and N j
2 . Here

q is the total number of outputs of N j
1 and N j

2 . (By assumption, q ≤ 2 ∗ w.)
The definition below summarizes our effort to parameterize EC by specification
width.

Definition 15. Let N1 and N2 be two Boolean circuits and partitions Spec(N1)=
{N1

1 ,.., Nk
1 } and Spec(N2)={N1

2 ,.., Nk
2 } represent their specifications. The spec-

ification width is the maximum of w and w′ where w is the maximum number
of outputs of a circuit N j

i ,i=1,2, j=1,., k and w′ is the maximum width of graph
G(Hi ∧ A) for all i. (Graph G(Hi ∧ A) is built as described above.)
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8 Why It Is Hard to Find a Common Specification

As we mentioned in Section 2 in contrast to an FP tractable problem, parame-
terized EC of circuits N1, N2 needs an “advice” in the form of a CS. A natural
question is whether this advice is crucial or there is an efficient algorithm that,
given circuits N1, N2, can efficiently find a CS of width w. In [5] it was con-
jectured that finding a CS is hard for any deterministic algorithm. (So EC of
circuits may serve as a source of formulas that have linear complexity, say, in
general resolution but are extremely hard for a deterministic algorithm.) Armed
with the new definition of CS based on toggle equivalence we can better justify
this conjecture.

Suppose that N1 and N2 are two circuits to be checked for equivalence and
we only know that N1 and N2 have a CS of width w. To find such a CS one needs
to find a partition {N1

1 ,.., Nk
1 } of N1 and a partition {N1

2 ,. . . , Nk
2 } of N2 into

subcircuits that are connected in the “same way” and are toggle equivalent. Here
we face the following two big problems. The first problem is that finding a pair
of subcircuits that are toggle equivalent is computationally very expensive. Even
though the parameter w limits the number of outputs a subcircuit can have, the
number of candidate subcircuits in Nj ,j=1,2 is roughly speaking proportional
to |Nj |w (here |Nj | is the number of gates in Nj).

The second problem is that if N i
1, N i

2 is a part of a CS S, they have to satisfy
the following two conditions.

– One should be able to check toggle equivalence of N i
1, N i

2 in terms of their
local inputs restricted by previously computed constraint function Dinp.

– The same should hold for the subcircuits of S whose inputs are connected
to outputs of N i

1, N i
2.

Thus, even if we find two subcircuits N i
1, N i

2 of width w that are toggle
equivalent, it does not necessarily mean that they are a part of any CS of N1 and
N2 of width w. (It may be the case that they are toggle equivalent “accidentally”
and so we will not be able to find any toggle equivalent subcircuits of width w
that are connected to outputs of N i

1 and N i
2.) Due to the two problems above, it

is very unlikely that there is an efficient algorithm for finding a CS of bounded
width.

9 Conclusions

We give an efficient procedure for checking the equivalence of Boolean circuits
with a common specification of bounded width. This result implies that one can
consider parameterized equivalence checking as a generalization of FP tractabil-
ity of Circuit-SAT. Instead of looking for circuits that are easy in absolute terms
(e.g circuits of bounded width) one can search for pairs of circuits that are easy
“relatively” i.e. with respect to each other (e.g circuits with a CS of bounded
width). One can view parameterized EC as a way to study “natural” transfor-
mations of a circuit i.e transformations that preserve its functionality and can
be easily verified.
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Abstract. We introduce two incomplete polynomial time algorithms to
solve satisfiability problems which both use Linear Programming (LP)
techniques. First, the FlipFlop LP attempts to simulate a Quadratic
Program which would solve the CNF at hand. Second, the Weighted-
LinearAutarky LP is an extended variant of the LinearAutarky LP
as defined by Kullmann [6] and iteratively updates its weights to find
autarkies in a given formula. Besides solving satisfiability problems, this
LP could also be used to study the existence of autark assignments in
formulas. Results within the experimental domain (up to 1000 variables)
show a considerably sharper lower bound for the uniform random 3-Sat
phase transition density than the proved lower bound of the myopic al-
gorithm (> 3.26) by Achlioptas [1] and even than that of the greedy
algorithm (> 3.52) proposed by Kaporis [5].

1 Introduction

Although Linear Programming (LP) techniques exist which run in polynomial
time, it must be said that these techniques certainly are not among the most pop-
ular tools in the Satisfiability area. In those cases where they are used they are
mainly applied in a preprocessing phase, in order to detect a specific structure of
the CNF at hand. Examples of practical applications in this field using LP tech-
niques are measuring the complexity of a CNF formula [2] and the detection of
so-called equivalence clauses [9]. The reason why LP techniques are rarely used
as a reasoning engine is that the straightforward LP relaxation of the Satisfiabil-
ity Problem is always feasible (when unit clauses are absent). This means that
in any trial to make LP techniques useful for CNF reasoning one has to come

� Supported by the Dutch Organization for Scientific Research (NWO) under grant
617.023.306.

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 122–134, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Observed Lower Bounds for Random 3-SAT Phase Transition Density 123

up with a sophisticated reformulation. In this paper we introduce two LP based
techniques which both result in a polynomial time running incomplete solver.

The first one, the FlipFlop LP, finds its motivation in the fact that the Sat-
isfiability Problem can straightforwardly be reformulated as a Quadratic Pro-
gramming Problem. We simulate this Quadratic Program through an iterated
sequence of LP’s, where the optimal solution of the n-th iteration is used as an
input for the n + 1-th iteration. That is, we reformulate the Quadratic Program
as a “Contraction” problem, although not in the strict Mathematical sense. Sat-
isfying assignments are among the “Contraction” fixed points, but unfortunately,
the zero solution, which reveals no information at all, is also one of those fixed
points. Hence, in order to make things work, we have to invoke certain tricks,
which could be classified as “artificial”, to stay away from this trivial fixed point.

The second LP is based on the detection of autarkies - partial assignments
that satisfy all clauses that are “touched”. We call it the WeightedLinear-
Autarky LP, which finds its origin in Kullmann’s Linear Autarky detection [6].
Also in this case we introduce in fact a sequence of LP’s in order to find suitable
weights for autarky detection. Again, we have to invoke tricks and some tuning
to obtain a satisfactory performance.

Both of the above methods are generally applicable, but here we want to focus
on their performance on uniform random 3-Sat formulas. From the presented
results it becomes evident that the second approach is monotonically better than
the first on these set of instances. Nevertheless we present both techniques, since
we observed that outside the domain of random 3-Sat the situation is sometimes
reversed.

The search for lower bounds for the uniform random 3-Sat phase transition
density has a rich history by now [3]. To our knowledge the best result found by
myopic algorithms is due to Achlioptas [1], but the greedy algorithm of Kaporis
et al [5] pushes this bound a bit further. We emphasize that this contribution does
not claim to come up with an even sharper proven lower bound. In order to do so
one needs algorithms which are subject to some profound (likely probabilistic)
analysis and LP techniques do not easily subject themselves as such. At least,
such an analysis is beyond the capacity of the authors at this stage.

The question we address here has a more modest objective: to what observed
densities can polynomial time algorithms of a given complexity solve uniform
random 3-Sat problems. The experimentally obtained results show that both of
our LP based techniques have the potential to go well above Kaporis’ bound. We
find this interesting as such, but most of all we take these results as an indication
that LP based techniques are useful tools in the Satisfiability area.

As far as presenting the capacity of our methods within the context of uniform
random 3-Sat and relating our results to the lower bound question, one might
object that local search based solvers easily almost reach the phase transition
density and that because of this feature our methods are situated in a sort of a
“twilight zone”: no analysis possible at the moment and outperformed by local
search methods. To some extent this is indeed the case, however the authors
are not aware of the existence of a local search solver with a default scalable
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parameter setting resulting in an incomplete polynomial time solver reaching the
phase transition density consistently. In case they exist, we hope to be alerted
by the Sat community, and complexity comparisons must be made.

2 Preliminaries

A formula (denoted as F = c1 ∧ c2 ∧ . . . ∧ cm) in Conjunctive Normal Form
(CNF) is a conjunction of clauses; each clause (denoted as ci = l1 ∨ l2 ∨ · · · ∨ lk)
being a disjunction of literals; and each literal is an atomic Boolean variable xj

or its negated form ¬xj . The satisfiability (Sat) problem deals with the question
whether a CNF formula is Satisfiable (has a Boolean solution) or not. A formula
is satisfiable if an assignment satisfies all clauses. A clause is satisfied if at least
one of its literals is satisfied.

The clause-variable matrix A associated to a CNF formula F is the matrix
defined by

Ai,j =

⎧⎨
⎩

1 if the ith clause of F contains the jth variable with sign 1
−1 if the ith clause of F contains the jth variable with sign -1
0 otherwise.

Thus if F is a CNF formula with propositional variables x1, . . . , xn the Sat
problem for F reads as the -1,1 Feasibility problem{

Ax ≥ −L + 2e
x ∈ {−1, 1}n

In the above, L is the length vector, having the length of clause i as its ith entry,
and e is the all one vector of appropriate dimension. Notice that we use {-1,1}
Boolean variables instead of the commonly used {0,1}.

As defined by Kullmann [6], a formula with clause-variable matrix A has a
Linear Autarky x ∈ Qn if {

Ax ≥ 0
x �= 0

The above concept generalizes an earlier version of Warners and van Maaren [10]
which provides a decomposition of a formula in case the kernel of its clause-
variable matrix is non-zero.

A so-called monotone variable is the best known example of a Linear Autarky:
if variable xj appears only positive (negative) in the formula, vector x = ej

(x = −ej), (ej is the jth unit vector), is a Linear Autarky. In general, a Linear
Autarky x leads to an autark partial assignment of the formula involved by
rounding. To examine this, let partial assignment sign be

sign(xj) =

⎧⎨
⎩

1 if xj > 0
−1 if xj < 0

undefined if xj = 0.
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and substitute all defined sign(xj) into the formula. If a clause i is affected by
this substitution, that is, if a variable with defined sign occurs in clause i, this
clause is obviously satisfied by the partial assignment since∑

j

Aijxj =
∑
xj 	=0

Aijxj ≥ 0

and hence not all Aijxj with defined sign(xj) can be negative. The above im-
plies that a Linear Autarky leads to a non-trivial decomposition of the formula
at hand. One part is satisfied by sign and the other part contains only vari-
ables undefined by sign. Clearly, the latter part is Satisfiability Equivalent to the
original formula: it is satisfiable if and only if the original formula is.

3 The FlipFlop LP

A Quadratic Program (QP) formulation of the Sat problem as defined in the
preliminaries is shown in Fig. 1(a). Since max

∑
x2

i is a quadratic objective
function (not a linear), solving this QP could not be executed in polynomial time,
unless P = NP. We propose a linear simulation of this QP that is incomplete -
in contrast to the QP - but could solve CNF formulas in polynomial time. This
linear simulation is shown in Fig. 1(b). We use parameters vi that represent
“guessed” outcomes of xi in max

∑
x2

i .

max
∑

x2
i

s.t.

{
Ax ≥ −e

−1 ≤ xi ≤ 1

max
∑

vixi

s.t.

{
Ax ≥ −e

−1 ≤ xi ≤ 1

(a) (b)

Fig. 1. (a) A 3-Sat QP formulation; (b) A possible linear simulation of (a)

Solving difficult problems requires a close approximation of xi by vi. We experi-
mented with initial weights vi :=

∑
xi∈F -

∑
¬xi∈F . This LP could solve uniform

random 3-Sat instances up to density of approximately 2.5.
To stretch this result, we experimented with various update strategies for

the weights vi. One rather intuitive update strategy applies the outcomes of xi

in the solution of max
∑

vixi as an “educated guess” for the weights in a new
iteration: vn+1

i := Rn(xi) with Rn(xi) referring to the value of xi in the solution
of the linear simulation after iteration n. Even if one allows many iterations, this
LP is unable to solve many problems apart from the ones that could be solved
using the initial weights.

Of the various update strategies we used during our experiments, one clearly
solved the most problems. The recipe: divide the variables in two disjunct sets
A and B. Variables were randomly divided between sets A and B with an equal
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xi ∈
{ A p(0.5)

B otherwise
vn+1

i :=

⎧⎨
⎩ Rn(xi)

if xi ∈ A and n ≡ 0 (mod 2) or
if xi ∈ B and n ≡ 1 (mod 2)

0 otherwise

(a) (b)

Fig. 2. (a) Initial set definition; (b) Update strategy

probability. The weights are updated in such a way that the weights become 0 if
the corresponding variable is alternately in set A or set B. This update strategy
attempts to assign variables - as many as possible - in one set to the sign of
the corresponding weights. This results in assigning values �= 0 to variables in
the other set. The Rn(xi) values will be used in iteration n + 1 where the same
process is performed, but with swapped sets (see Fig. 2). We refer to iteratively
solving the linear simulation defined in Fig. 1(b) using the update strategy as
defined in Fig. 2 as the FlipFlop LP.

4 Weighted Linear Autarkies

In this section, we explain the concept of weighted linear autarkies and the
corresponding LP. A proper weight matrix is required to solve CNF’s. First
we show how LP techniques can be used to determine the importance of the
variables. Second, we propose an update strategy which use this information to
construct the weight matrix.

4.1 The Weighted Linear Autarky LP

We refer to the weighted clause-variable matrix W associated to a CNF formula
F as the weighted analogue of matrix A using weights wi,j > 0:

Wi,j =

⎧⎨
⎩

wi,j if the ith clause of F contains the jth variable with sign 1
−wi,j if the ith clause of F contains the jth variable with sign -1

0 otherwise.

The definition of the LinearAutarky LP as proposed by Kullmann [6] is
shown in Fig. 3(a). Our variant uses the weighted clause-variable matrix W
(see Fig. 3(b)). We refer to this LP as the WeightedLinearAutarky LP. For
both LP’s, one can try to achieve the constraint x �= 0 by an objective function.
Two possible objective functions are shown in Fig. 4.

{
Ax ≥ 0

x = 0

{
Wx ≥ 0

x = 0

(a) (b)

Fig. 3. (a) LinearAutarky LP; (b) WeightedLinearAutarky LP
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max
∑

xi

max
∑

vixi

vi :=
∑

xi∈F −∑¬xi∈F

(a) (b)

Fig. 4. (a) Elementary objective function; (b) Advanced objective function

The advanced objective function seemed more effective, since it finds all
monotone variables directly. This in contrast to the elementary objective func-
tion which will not find monotone variables that occur only negative. However,
during our experiments we found no differences in the solving capacity of both
objective functions. Therefore we selected the elementary one.

As with the LinearAutarky LP, the set of variables with xi �= 0 in the
solution of a WeightedLinearAutarky LP forms an autark assignment. The
advantage of the WeightedLinearAutarky LP is that it could - in theory -
solve many problems. The following theorem is quite similar to Lemma 3.2 by
Kullmann in [7].

Theorem 1. For every satisfiable formula F , there exists a weighted clause-
variable matrix W of which its WeightedLinearAutarky LP results in a
solution.

Proof: Given a satisfying assignment of F , construct W in such a way that
satisfied literals xi,j have corresponding weight wi,j = Li−1 and falsified literals
xi,j have corresponding weight wi,j = 1. Li refers to the length of clause i. The
WeightedLinearAutarky LP will result in the given satisfying assignment.

�

In practice, it is hard to construct a W leading to a solution. We propose
a method to construct matrix W using Linear Programming techniques. First,
we solve a LP called the UpdateWeights LP, which is quite similar to the
WeightedLinearAutarky LP. Second, we use the values of variables xi in
the solution of that UpdateWeights LP to construct W by applying an update
strategy.

4.2 The Update Weights LP

We saw that solving the LP with constraints Wx ≥ 0 and x �= 0 would result in
an autark assignment if it is feasible. The LP with constraints Wx+y ≥ 0, x �= 0,
and y > 0 is always feasible, but would rarely result in an autark assignment.
However, solutions for this LP could be useful to update W in such a way that
the LP with constraints Wx ≥ 0 and x �= 0 becomes feasible. This idea is the
foundation of the UpdateWeights LP as defined in figure 5.

The values of parameters ymin and ymax are essential for the solving capacity of
the algorithm. Since the variables xi are unbounded, there is only one parameter
that needs to be measured: ymax

−ymin
. One must choose ymin and ymax in such a way
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max
∑

yi

⎧⎨
⎩

Wx + y ≥ 0
x = 0

ymin ≤ yi ≤ ymax

(a) (b)

Fig. 5. UpdateWeights LP definitions: (a) objective function; (b) constraints

that in as many relaxations of clauses at least one xi,j exists with sign(xi,j) = 1.
If ymax

−ymin
is too large, many clauses will have either three literals with sign(xi,j) = 1

or three literals with sign(xi,j) = −1. On the other hand, if ymax

−ymin
is too small,

many variables will have an undefined sign(xi,j). Throughout our experiments on
uniform random 3-Sat formulas, ymax

−ymin
≈ 2 appeared to solve most instances near

the phase transition density. More specific, we used ymin := -0.3 and ymax := 0.6.

4.3 Update Strategy

We refer to Sn(xi) as the value of xi in the solution of the UpdateWeights
LP after iteration n. We want to use these values Sn(xi) to construct matrix
Wn+1. An update strategy must satisfy the definition property that all wi,j > 0.
Notice that Sn(xi) is unbounded, since variables xi are unbounded in the Up-
dateWeights LP. Now it seems natural to make wn+1

i,j := baseSn(xi)w
n
i,j . To

prevent that weights might reach either 0 or ∞, we introduce two parameters
wmin and wmax which refer to the minimum and the maximum of the weights,
respectively. This results in the following strategy:

⎧⎨
⎩

W 0 = A

wn+1
i,j = baseSn(xi)w

n
i,j

0 < wmin ≤ wi,j ≤ wmax

Fig. 6. Update strategy for the WeightedLinearAutarky LP

Parameter wmin has no significant influence on the performance of the algo-
rithm as long as its value is small. We chose wmin := 0.01. A small performance
gain could be achieved by making wmax ≈ 5 (assuming ymin = -0.3 and ymax = 0.6).
We did some small scale experiments to determine an effective value for parame-
ter base: using the other parameters on their chosen values as mentioned above,
we experimented with uniform random 3-Sat formulas. We generated 1000 in-
stances on density 3.7 using 200 variables. The influence of parameter base on
the performance was measured starting with base = 1 using steps of 0.25 and
from 4.0 we used only integer values.

Results are shown in Fig. 7. The optimal value base = 2.5 shown here is used
during our further experiments. Notice that for base = 1 the WeightedLinear-
Autarky LP equals the Linear Autarky LP. So using the LinearAutarky
LP, we cannot solve one single sample of these instances.
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Fig. 7. Influence of parameter base on the solving capacity of the algorithm

Although intensively tweaking of the various parameters might result in a
better performance of the algorithm, we used these settings for our experiments.

5 Experimental Results

This section deals with the performance of the two solvers based on the LP’s
described above. Our goal is to observe a lower bound for the uniform random 3-
Sat phase transition density. During the experiments we used an Intel Pentium
4 with 3.5 GHz running on Fedora Core 2. All LP’s were solved using glpsol from
the GNU Linear Programming Kit1 (GLPK). To generate the uniform random
3-Sat formulas, we used the generator of Van Gelder2 [8].

As we will see, the WeightedLinearAutarky LP clearly performs better
than the FlipFlop LP on uniform random 3-Sat formulas. The reason for
presenting the results of the latter is the fact that for some structured problems
we observed a reverse effect. Presentation of these results is outside the scope of
this paper.

Since Linear Programming is a polynomial time solving procedure, the com-
plexity of the presented LP’s is also polynomial. But only, of course, as long
as the required iterations to solve a formula does not grow exponentially with
respect to its size. We used a small constant to limit the number of iterations
(MAX ITERATIONS := 50). Using this constant, we already reached a point
where, as the number of variables increased, the density on which all instances
were solved increased accordingly. A higher constant can only increase the per-
formance of the solvers using the presented LP’s. This will be explained later.
For reasons of comparison we added the results of Kaporis’ algorithm on the
same samples (see Fig. 12) at the end of this section.

1 available at http://www.gnu.org/software/glpk/glpk.html
2 available at http://www.satlib.org
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proved lower bound by Kaporis [5]
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Fig. 9. Average number of iterations required by the FlipFlop LP

5.1 Flip Flop Solver

The FlipFlop solver (see algorithm 1) first attempts to assign all variables
to {-1,1} by using initial weights based on the occurrences of the variables in
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F . In the first iteration these weights are used to solve the linear simulation
in Fig. 1(b). For all next iterations, it uses the FlipFlop update strategy. A
solution is found when all variables are assigned a value {-1,1} by the LP.

Algorithm 1 FlipFlop solver(F)
1: for i ∈ {1, .., n} do
2: vi :=

∑
xi∈F −∑¬xi∈F

3: end for
4: for j ∈ {1, .., MAX ITERATIONS} do
5: v := FlipFlopLP(AF , v, j modulo 2)
6: if

∑n
i=1 v2

i = n then
7: return SATISFIABLE
8: end if
9: end for

10: return UNKNOWN

We experimented for each density (using steps of 0.1) with 1000 instances of
200 variables, 600 instances of 400 variables, 400 instances of 600 variables, 200
instances of 800 variables and 100 instances of 1000 variables. Figure 8 shows
the percentage of instances solved by the FlipFlop solver. We observed that
by increasing the number of variables, higher densities are reached where all
instances were solved. However, it consequently lags behind the WeightedLin-
earAutarky solver.

Figure 9 shows the average number of iterations required to find a solution
of the solved instances. Recall that we terminate the solver after 50 iterations.
Up to density 3.0 these averages are slightly lower than the averages by the
WeightedLinearAutarky solver (see for comparison Fig. 11). The FlipFlop
solver owes its performance to the many instances that were solved in the first
iteration - due to the initial weights.

5.2 Weighted Linear Autarky Solver

The WeightedLinearAutarkySolver, as shown in algorithm 2, attempts to
solve a formula F by alternately solving the WeightedLinearAutarky LP
and the UpdateWeights LP. We used the update strategy as defined above to
construct W in each iteration.

The WeightedLinearAutarkyLP(WF ) returns set I, which contains all
variables with xi �= 0. If I �= ∅, then the LP found an autark assignment. All
clauses that contain at least one variable in I are removed from the formula.
This is denoted by IterativeUnitPropagation(F ∩ I). If no clause is left
in F after this removal, the formula is satisfiable.

As with the FlipFlop solver, we experimented for each density with 1000
instances of 200 variables, 600 instances of 400 variables, 400 instances of 600
variables, 200 instances of 800 variables and 100 instances of 1000 variables (us-
ing steps of 0.1). Figure 10 shows the percentage of instances solved by the
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Algorithm 2 WeightedLinearAutarkySolver(F)
1: WF := AF
2: for j ∈ {1, .., MAX ITERATIONS} do
3: I := WeightedLinearAutarkyLP(WF )
4: if I = ∅ then
5: F := IterativeUnitPropagation(F ∩ I)
6: WF := AF
7: if F = ∅ then
8: return SATISFIABLE
9: end if

10: else
11: WF := UpdateWeightsLP(WF )
12: end if
13: end for
14: return UNKNOWN

WeightedLinearAutarky solver. With an increasing number of variables
come higher densities where all instances were solved: all instances consisting
of 200 variables on density 3.4 were solved, while on density 3.7 all instances
consisting of 1000 variables were solved. Figure 11 shows the average number of
iterations required to find a solution of the solved instances. Although there is
a small increase in this average - while increasing the number of variables - the
number of iterations divided by the number of variables is decreasing.

During our experiments, a vast majority of the found autark assignments
were either monotone variables or satisfying assignments. Up to density 3.4, we
found some autark assignments consisting of multiple literals that only satisfied
a part of the formula. However, this only occurred in approximately 0.5% of the
formulas, regardless of the number of variables.

6 Conclusions

Within the experimental domain, both our methods show a threshold shaped suc-
cess performance ratio of proving Satisfiability with respect to increasing density,
growing steeper with increasing size. In this context, our second method shows a
better performance. If the reader allows us to extrapolate to infinity the observed
success ratio of 100% seems to be located well above the Kaporis’ bound. For rea-
sonsof comparisonwe implemented thegreedyalgorithmofKaporis described in [4]
and investigated its performance on the same samples.The emergedfigure 12 shows
that this algorithm has to catch up quite a bit within the range [1000,∞]. From its
decreasing performance with growing size (within our domain of experimentation)
above the Kaporis’ bound one could guess that for very large size instances this suc-
cess performance ratio must have a perfect threshold shape. Our main conclusion
however is thatLP techniques, having amodest polynomial complexity, apparently
are able to reveal hidden structure inCNF’s, even in case of randomlygenerated for-
mulas. The interesting aspects lie in the fact that they are not evidently resolution
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Fig. 12. Performance of the greedy algorithm proposed by Kaporis [4]. Dashed vertical
line shows the proved lower bound by Kaporis in [4]; straight vertical line shows the
proved lower bound by Kaporis in [5]

based and that their reasoning mechanisms, which clearly must be there, are rather
unconventional compared to the standard ones used in the Satisfiability area.
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Abstract. Goerdt [Goe91] considered a weakened version of the Cut-
ting Plane proof system with a restriction on the degree of falsity of
intermediate inequalities. (The degree of falsity of an inequality written
in the form

∑
aixi +

∑
bi(1 − xi) ≥ A, ai, bi ≥ 0 is its constant term

A.) He proved a superpolynomial lower bound on the proof length of
Tseitin-Urquhart tautologies when the degree of falsity is bounded by

n
log2 n+1

(n is the number of variables).

In this paper we show that if the degree of falsity of a Cutting Planes
proof Π is bounded by d(n) ≤ n/2, this proof can be easily transformed
into a resolution proof of length at most |Π|·( n

d(n)−1

)
64d(n). Therefore, an

exponential bound on the proof length of Tseitin-Urquhart tautologies
in this system for d(n) ≤ cn for an appropriate constant c > 0 follows
immediately from Urquhart’s lower bound for resolution proofs [Urq87].

1 Introduction

During the past forty years the research concerning propositional proof systems
was advancing mostly by proving exponential lower bounds on the length of
proofs of specific tautologies in specific systems. For example, the resolution
proof system had been a subject of a very thorough study that yielded expo-
nential lower bounds for the propositional pigeonhole principle [Hak85], Tseitin-
Urquhart tautologies [Tse68, Urq87], random formulas [BSW01] and many other
families of tautologies. Also algebraic proof systems (the ones that deal with
polynomial equalities) attracted a lot of attention in the 90s and similar lower
bounds were proved for them (see [BGIP01] and references therein).

Much less is known about semialgebraic proof systems, which restate a
Boolean tautology as a system of inequalities and prove that this system has no

� Supported in part by Russian Science Support Foundation, by INTAS grant #04-77-
7173, and by grant #NSh-2203-2003-1 of the President of RF for leading scientific
schools support.
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0/1-solutions. No exponential lower bounds are known for higher degree proof
systems (though there are exponential bounds for systems of inequalities that
are not produced from Boolean tautologies; see [GHP02] and definitions and
references therein). Concerning proof systems that work with linear inequalities,
exponential lower bounds are known only for variations of the clique-coloring
principle (see [Pud97] for a bound for the Cutting Plane proof system and [Das02]
for a bound for a restricted version of the Lovasz-Schrijver system [LS91]).

The technique that allows to prove the bounds for linear semialgebraic proofs
uses monotone interpolation and Razborov’s lower bound on the monotone com-
plexity of the clique problem [Raz85]. Therefore it is not suitable for proving
lower bounds, for example, for Tseitin-Urquhart tautologies. Goerdt [Goe91]
introduced a weaker version of Cutting Plane proofs by restricting the degree
of falsity of inequalities (see Definition 1 below). He proved a superpolynomial
lower bound on the proof length of Tseitin-Urquhart tautologies in the restricted
system when the degree of falsity is bounded by n

log2 n+1
, n being the number of

variables. Goerdt’s proof is a purely combinatorial argument obtained by modi-
fying Urquhart’s proof for resolution [Urq87].

In this paper we show the relation between the Cutting Plane proofs with
restricted degree of falsity and the resolution proofs. Namely, we show that a
length l Cutting Plane proof with degree of falsity bounded by d(n) ≤ n/2 can
be easily transformed into a resolution proof of length at most l ·

(
n

d(n)−1

)
64d(n).

Therefore, an exponential bound on the proof length of Tseitin-Urquhart tau-
tologies for d(n) ≤ cn for an appropriate constant c follows immediately from
Urquhart’s lower bound [Urq87] on the length of resolution proofs.

2 Definitions

2.1 Propositional Proof Systems and Formulas

A proof system [CR79] for a language L is a polynomial-time computable func-
tion mapping strings in some finite alphabet (proof candidates) onto L (whose
elements are considered as theorems). In this paper we are interested in a specific
(yet very important) kind of proof systems: proof systems for the co-NP-complete
language of unsatisfiable formulas in CNF (equivalently, tautologies in DNF).

In what follows, we use x to denote a variable (if not otherwise stated), l to
denote a literal (i.e., a variable x or the negation x of it), and a, b, c, d, e, A, B to
denote non-negative integers (all these letters may bear subscripts). A formula
in CNF is a set of clauses, which are disjunctions (i.e., again sets) of literals and
are usually denoted by letters C, D. We assume that a clause cannot contain a
variable together with its negation.

A truth assignment π for a set of variables assigns a value (either 0 or 1)
to each variable; the result of substituting π into a formula F is denoted F |π
(where the clauses containing satisfied literals are removed, and falsified literals
are dropped from the remaining clauses). We define the result of substituting π
into other objects (clauses, inequalities, etc.) by analogy.
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The proof systems we consider are dag-like derivation systems, i.e., a proof is
a sequence of lines such that every line is either an axiom or is obtained by an
application of a derivation rule to several previous lines. The proof finishes with
a line called goal (in our case, this will be a simple form of contradiction). Such
a proof system is thus determined by its set of axioms, set of derivation rules
and the notion of a goal. Note that different proof system may have different
notions of a line (it may be a clause, or an inequality, or anything else).

2.2 Resolution

The resolution proof system [Rob68] has clauses as its proof lines. Given a for-
mula in CNF, one takes its clauses as the axioms and uses two rules:

– Resolution:

C ∪ l D ∪ l

C ∪ D

provided there is no literal l′ ∈ C such that l′ ∈ D.
– Weakening:

C

C ∪ l

provided l /∈ C.

The goal is to derive the empty clause.

2.3 The Cutting Plane Proof System

The proof lines in the Cutting Plane proof system (CP) are linear inequalities
with integer coefficients. To refute a formula in CNF in this system, one trans-
lates each its clause l1 ∨ . . . ∨ lk into the inequality l1 + . . . + lk ≥ 1, where
a negative literal li = ¬xi is written as 1 − xi; the obtained system of linear
inequalities has the same 0/1-solutions as the original set of clauses (where 1
corresponds to True, and 0 corresponds to False). The proof lines are algebraic,
i.e., when we write x+(1−y) ≥ 1, we mean x−y ≥ 0. CP allows to derive a con-
tradiction (i.e., the inequality 0 ≥ 1) if and only if the original set of inequalities
has no 0/1-solutions.

We state the initial inequalities as axioms, and add also the axioms

x ≥ 0
,

1 − x ≥ 0
(1)

for every variable x. The derivation rules are (xi’s denote variables, i ranges over
all variables subscripts, other letters denote integer constants):

– Addition: ∑
aixi ≥ A

∑
bixi ≥ B∑

(ai + bi)xi ≥ A + B
. (2)
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– Rounding rule: ∑
aixi ≥ A∑ ai

c xi ≥ $A
c %

, (3)

provided c ≥ 1 and ∀i c|ai.

– Multiplication rule: ∑
aixi ≥ A∑

caixi ≥ cA
, (4)

where c ≥ 1.

The notion of the degree of falsity of an inequality was introduced by Goerdt
in [Goe91] as follows:

Definition 1. Consider an inequality ι of the form
∑n

i=1 aixi ≥ A, and let π
be a truth assignment for the variables of ι. The degree of falsity of ι under π
is given by

DGF(ι, π) = A − LHS(ι, π),

where LHS(ι, π) is the value of the left-hand side of ι under π.
The degree of falsity of ι is given by

DGF(ι) = max
π

DGF(ι, π).

The degree of falsity of a Cutting Plane proof Π is given by

DGF(Π) = max
ι∈Π

DGF(ι).

3 Boolean Representations of Inequalities

Definition 2. The literal form of an inequality is obtained from its canonical
form

∑
i cixi ≤ A by replacing each summand cixi where ci < 0 with −ci(1−xi)

and adding the corresponding constant −c to the free coefficient. (The terms of
the form xi or (1 − xi) are called literals.)

Example 1. For example, 2(1 − x) + 2y + (1 − z) ≥ 3 is the literal form of
−2x + 2y − z ≥ 0.

Lemma 1. DGF(ι) is the free coefficient of ι written in the literal form.

Proof. Note that minimizing LHS(ι, π) in the definition of DGF(ι) is a trivial
task: we should assign 0 to each variable xi such that ai > 0, and assign 1 to
each xi such that ai < 0 (in terms of Definition 1). This assignment π0 yields
DGF(ι, π0) = A−

∑
i:ai<0 ai, which is equal to the free coefficient of ι in the literal

form. &'



Simulating Cutting Plane Proofs with Restricted Degree of Falsity 139

Lemma 2. An integer inequality ι with DGF(ι) ≤ n
2 can be represented as a

conjunction of at most
(

n
DGF(ι)−1

)
Boolean clauses, where n is the number of

variables in it.

Proof. Consider all inequalities obtained by satisfying literals occurring in the
literal form of ι with sum of coefficients up to DGF(ι)−1. That is, we satisfy literals
one by one and stop just before the inequality trivializes (i.e., the degree of falsity
becomes non-positive), whatever coefficient we would choose next; we consider
all inequalities that can be obtained from ι in this way (dropping duplicates,
of course). It is easy to see that the obtained inequalities are equivalent to
Boolean clauses. Indeed, consider an inequality

∑n
1 aili ≥ c, where ∀i ai ≥ c.

This inequality holds iff any one of li is true, which is equivalent to l1∨l2∨. . .∨ln.
The number of clauses is as claimed, because we cannot satisfy more than

DGF(ι) − 1 literals without making ι trivial, and if an assignment results in a
clause, its sub-assignments don’t.

We have so far established a set of clauses that follows from the initial inequal-
ity. To prove the converse, consider an assignment π that falsifies ι. Substitute
its part that satisfies literals of (the literal representation of) ι. The obtained
inequality

∑
j∈J aj lj ≥ c′ > 0 is still non-trivial, because the original assignment

falsifies ι. Then continue satisfying the remaining lj ’s similarly to the construc-
tion above until the inequality becomes a clause. Clearly, this clause is falsified
by (the remaining part of) π. &'

Definition 3. We call the set of clauses obtained from an inequality ι by the
procedure described in the proof of Lemma 2 the Boolean representation of an
inequality ι and denote it by B(ι).

Lemma 3. If ι is derived from {ιj}j∈S in CP then, for each C ∈ B(ι), there is
a resolution proof of C from

⋃
j∈S B(ιj) that only contains literals occurring in

{C} ∪
⋃

j∈S B(ιj).

Proof. By Lemma 2, ι and B(ι) have the same set of 0/1 solutions. Since the
Cutting Plane proof system is sound and the resolution proof system is impli-
cationally complete, the lemma follows (it is easy to see that one can get rid of
the literals that do not occur in {C} ∪

⋃
j∈S B(ιj): it suffices to eliminate the

applications of the weakening rule introducing such literals). &'

4 Simulation by Resolution

In this section we prove the bounds by establishing a direct connection between
proofs in CP and proofs in the resolution proof system.

Lemma 4. The rounding and multiplication rules do not change the Boolean
representation.



140 E.A. Hirsch and S.I. Nikolenko

Proof. Suppose that ι′ is obtained from ι by the rounding rule

ι :
∑
i∈I

cili ≥ A

ι′ :
∑
i∈I

ci

c
li ≥

⌈
A

c

⌉ ,

where c|ci for all i ∈ I. For each clause C ∈ B(ι), there is a (partial) assignment
π that produced C from ι:

ι|π :
∑
i∈J

cili ≥ A −
∑

i∈I\J

ci.

Substitute this assignment into ι′:

ι′|π :
∑
i∈J

ci

c
li ≥

⌈
A

c

⌉
−
∑

i∈I\J

ci

c
.

Then ι′|π is also equivalent to a clause, because $A
c % −

∑
i∈I\J

ci

c ≥ 1
c · (A −∑

i∈I\J ci) > 0 and (since c|ck for all k) ∀j ∈ J

cj

c
−

⎛
⎝⌈A

c

⌉
−
∑

i∈I\J

ci

c

⎞
⎠ =

⎢⎢⎢⎣cj

c
−

⎛
⎝A

c
−
∑

i∈I\J

ci

c

⎞
⎠
⎥⎥⎥⎦

=

⎢⎢⎢⎣1
c
·

⎛
⎝cj −

⎛
⎝A −

∑
i∈I\J

ci

⎞
⎠
⎞
⎠
⎥⎥⎥⎦ ≥ 0

Similarly, every assignment that produces a clause from ι′ also produces a clause
from ι.

The same holds (by an easier yet very similar argument) for the multiplication
rule. &'

Lemma 5. Let integer inequality ι be an integer linear combination of integer
inequalities ι1 and ι2, let DGF(ι1), DGF(ι2) ≤ A. Then every clause C of the
Boolean representation B(ι) (given by Lemma 2) can be derived from B(ι1)∪B(ι2)
in at most 26A−2 resolution steps.

Proof. We may rewrite our inequalities as follows (here xi, yi, zi denote literals):

ι1 :
N∑
1

e′izi +
K∑
1

aixi +
L∑
1

diyi ≥ A1,

ι2 :
N∑
1

e′′i zi +
K∑
1

bi(1 − xi) +
L∑
1

di(1 − yi) ≥ A2,

ι :
N∑
1

eizi +
K∑
1

(ai − bi)xi ≥ A1 + A2 −
K∑
1

bi −
L∑
1

di.
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Here all coefficients are strictly positive, possibly except for some of the e′i’s
and e′′j ’s, which are nonnegative. In other words, Z contains literals that are
not cancelled by the application of the addition rule, X contains literals that
are partially cancelled, and Y contains literals that are cancelled completely.
We denote X = {x1, . . . , xK}, Y = {y1, . . . , yL}, Z = {z1, . . . , zN}. Also denote
S = {s | s ∈ S} for any set S.

By Lemma 3 there exists a resolution proof Π of C from the clauses of
B(ι1) ∪ B(ι2). Note that Z ∩ C = ∅ and Z ∩ D = ∅ for every D ∈ B(ι1) ∪ B(ι2).
Hence, Lemma 3 provides Π that does not contain any negative occurrences of
zi’s. Let π be the assignment that turns ι into C; denote Zπ = {z ∈ Z |π(z) = 1}
and Z ′ = Z \ Zπ. Note that Z ′ ⊆ C. Therefore, if one adds Z ′ to each clause
in Π, the proof will remain a valid proof of C from the clauses D∗

i = Di ∪ Z ′,
where Di ∈ B(ι1) ∪ B(ι2). Note that |X| + |Y | + |Zπ| < 2A; otherwise DGF(ι|π)
would be non-positive, and the clause C would be a constant True. There are
at most 23|X∪Y ∪Zπ| ≤ 26A−3 possible clauses of the form Z ′ ∪ T , where T ⊆
X ∪X ∪Y ∪Y ∪Zπ, hence the modified (dag-like) version of the proof Π cannot
contain more than 26A−3 clauses. It remains to add at most 26A−3 steps needed
to obtain D∗

i ’s from Di’s by the weakening rule. &'
Theorem 1. A Cutting Plane proof Π with maxι∈Π DGF(ι) ≤ d ≤ n/2 of a
formula in CNF with n variables can be transformed into a resolution proof of
size at most

(
n

d−1

)
|Π|26d.

Proof. Each step
ι1, ι2

ι
or

ι1
ι

of Π can be replaced by at most
(

n
d−1

)
26d−2 res-

olution steps inferring the
(

n
d−1

)
(see Lemma 2) possible clauses of B(ι) from⋃

i B(ιi), by a 26d−2-length resolution proof each. (For addition steps such a res-
olution proof is given by Lemma 5, for other steps it is not needed by Lemma 4.)

&'
Corollary 1. If formulas Fn (where Fn contains n variables) have no resolution
proofs containing less than 2cresn clauses (cres > 0 is a constant), then these
formulas do not have Cutting Plane proofs of size less than 2cCPn and degree of
falsity bounded by cDGFn for every choice of positive constants cCP < cres and
cDGF ≤ 1

2 such that

cCP + 6cDGF − cDGF log2 cDGF − (1 − cDGF) log2(1 − cDGF) ≤ cres. (5)

In particular, formulas Fn have only exponential-size Cutting Plane proofs of
degree of falsity bounded by an appropriate linear function of n.

Proof. By Theorem 1 Cutting Plane proofs of size less than 2cDGFn could be
converted into resolution proofs of size less than(

n
cDGFn−1

)
2cCPn+6cDGFn = o(2(cCP+6cDGF−cDGF log2 cDGF−(1−cDGF) log2(1−cDGF))n) = o(2cresn)

(the first equality uses Stirling’s formula).
Finally, note that f(c) = 6c − c log2 c − (1 − c) log2(1 − c) decreases to 0

as c decreases from 1
2 to 0. Therefore, for every cCP < cres there is cDGF that

satisfies (5). &'
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Corollary 2. There exists a positive constant δ such that Tseitin-Urquhart for-
mulas of n variables (described in [Urq87]) have only 2Ω(n)-size Cutting Plane
proofs with degree of falsity bounded by δn.

Proof. Follows immediately from Corollary 1 and Urquhart’s theorem:
Theorem. ([Urq87–Theorem 5.7]) There is a constant c > 1 such that for suf-
ficiently large m, any resolution refutation of Sm contains cn distinct clauses,
where Sm is of length O(n), n = m2. &'

5 Further Research

A straightforward open question is to prove an exponential lower bound on the
lengths of CP refutations of Tseitin tautologies without the restriction on the
degree of falsity. One way to do it could be to characterize the inequalities that
follow from subformulas of these tautologies and have a large degree of falsity.
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Abstract. We show how to aggressively add uninferred constraints, in
a controlled manner, to formulae for finding Van der Waerden numbers
during search. We show that doing so can improve the performance of
standard SAT solvers on these formulae by orders of magnitude. We ob-
tain a new and much greater lower bound for one of the Van der Waerden
numbers, specifically a bound of 1132 for W (2, 6). We believe this bound
to actually be the number we seek. The structure of propositional formu-
lae for solving Van der Waerden numbers is similar to that of formulae
arising from Bounded Model Checking. Therefore, we view this as a pre-
liminary investigation into solving hard formulae in the area of Formal
Verification.

1 Introduction

Resolution is a general procedure that may be used to determine whether a given
CNF expression has a model and to supply a certificate of unsatisfiability if it
doesn’t. The idea predates the often cited work reported in [22] and for decades
resolution has been one of the primary engines for CNF SAT solvers. In the
last 10 years tree resolution, in the form of variants of DPLL [10], has given
way to DAG resolution through the introduction of clause learning and record-
ing during search. This and other ideas have led to a spectacular improvement
in the performance of resolution-based SAT solvers. Hardware and algorithmic
improvements have together contributed to perhaps an order 109 speed-up in
SAT solving over the past 15 years and, consequently, some problems considered
very difficult then are now considered trivial. But there remain many problems
which are considered hard, for example in the important domains of protocol
and hardware verification.

The last 15 years has also seen some brilliant theoretical work that has re-
vealed exponential lower bounds for tree and DAG resolution, and has illumi-
nated the reasons for it, when resolution is applied to “sparse,” unsatisfiable
CNF formulae (e.g. [2, 3, 4, 8, 13, 18, 29]). In such cases, very large resolvents
must be created first, then resolved to get the smaller clause constraints that
play a significant role in establishing the refutation. Generating the large resol-
vents is expensive, particularly since exponentially many have to be generated.

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 143–157, 2005.
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In DPLL terms, this means a search space of great breadth may have to be
explored. Metaphorically, we may think of search breadth as a mountain that
must be climbed; on the other side of the mountain the search breadth may
be significantly reduced due to the short resolvents that are finally generated.
Clearly, we need to find some way to “tunnel” through this mountain and arrive
quickly in the fertile valley of low-breadth search space, if it exists. It is the aim
of this paper to explore this possibility for Boolean expressions with a particular
structure.

In the Satisfiability literature, the term “tunnel” has been applied to Stochas-
tic Local Search algorithms, a class which includes members of the WalkSAT,
GSAT, and other families [14, 16, 17, 20, 25]. In that context, one may think of
a location as an assignment of values to variables and the height at a location
as the number of constraints falsified by the assignment at that location. Then,
for a given, hard Boolean expression, there are generally many mountain peaks
and the objective is to locate and enter the deepest valley. Changing the value
of a single variable merely moves the current location up and down the side of
a mountain but changing values of several variables permits “tunneling” into
another valley. This use of tunneling is to be distinguished from the way we use
it: in our context there is one principal mountain to get over or around and the
valley on the other side can be quite wide. To reach the top of our mountain
one must wait for many large constraints to be learned. But, in many cases, we
cannot afford to wait: to reach the valley in a reasonable time, constraints must
be efficiently added before they are learned.

There are several ways to do this, some safe and some risky. A reasonably effi-
cient method for finding a safe tunnel, which is actually more like a cut, through
the mountain has been identified in [31] for a class of non-CNF formulae. Given
Boolean formulae b1, b2, ..., bm, let φ = b1 ∧ · · · ∧ bm and let V ′ = {v1, · · · , vk}
be a subset of variables occurring in φ. Re-index the formulae so that at least
one variable of V ′ occurs in bi for all 1 ≤ i ≤ n, and no variables of V ′ occur
in bi, for n < i ≤ m. Let M′ = {M ′

1, · · · ,M ′
2k} be the set of all possible truth

assignments to the variables in V ′. Write bj |M ′
i

or φ|M ′
i

to mean the variables of
bj or φ, respectively, are assigned values according to assignment M ′

i , or are left
unassigned if they are not assigned in M ′

i .

Theorem 1. ([31]) For every 1 ≤ i ≤ 2k, define

δi =
∨

1≤j≤n

(bj |M ′
i
∧

∨
1≤s≤2k

s �=i

bj |M ′
s
).

Then, for any 1 ≤ i ≤ 2k, if δi ≡ False then φ|M ′
i

is satisfiable if and only if φ

is satisfiable.

According to Theorem 1, it may be possible to assign values to a particular set
of variables in such a way that the satisfiability of φ is unaffected. Those values
may not be inferred at all, but they are nevertheless safe to assign and doing
so reduces φ somewhat. A safe assignment is a generalization of the notion of
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autarky [21], defined for CNF formulae, to formulae that are conjunctions of
arbitrary Boolean formulae. The test implied in the theorem can be conducted
with reasonable efficiency (see [31] for details).

Although safe assignments can be useful, substantial decreases in computa-
tional effort require more aggressive use of uninferred constraints. This need not
lead to errors: a constraint can be retracted during search if it is inferred False.
The field of non-monotonic reasoning has provided many insights on how this
might be done. Of course, we would like to be able to add constraints aggressively
without having to worry about retracting them and, as we show in this paper,
this can sometimes be done to achieve a result which is an approximation to
the actual result. In other words, the extra constraints may prevent an optimal
solution from being returned but are weak enough to admit suboptimal solutions
that are not far from optimal. But, if the extra constraints are too weak, a solver
may take too much time and not find a good suboptimal result. So, we need a
good “heuristic” for adding constraints in some optimal way.

At this point in time, it seems the spectacular tunneling success we seek,
which will be a consequence of our choice of tunnel heuristic, is practical only
by a careful analysis of the specific structure of a given formula. In this paper
we underscore this point by developing aggressive tunnel heuristics for formulae
associated with the problem of finding Van der Waerden numbers (described in
the next section). Such formulae are currently extremely difficult for off-the-shelf
SAT solvers, even though most of them are satisfiable. By adding aggressive tun-
nel constraints to the formulae, however, we are able to find the best bound yet,
by far, for W (2, 6). Our analysis serves as an example for attempting aggressive
tunnel heuristics for other hard problems.

2 Van der Waerden Numbers and Satisfiability

Van der Waerden numbers arise from a set partition problem [30]. Partition the
set Sn = {1, ...n} of the first n positive consecutive integers into k classes. Let
Pn,k(l) be a proposition that is True if and only if all partitions of Sn into k
classes contain at least one arithmetic progression of length l in at least one
class. The k, l Van der Waerden number, denoted W (k, l), is the minimum n for
which Pn,k(l) is True.

There is no known closed form expression for W (k, l) and all but five of the
first few numbers are unknown. Table 1 shows all the known Van der Waerden
numbers. In 1979 W (4, 3) became the most recent addition to this table.

Table 1. Known Van der Waerden numbers

k \ l 3 4 5

2 9 35 178

3 27

4 76
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Upper and lower bounds on some of the remaining numbers have been derived
but they are so far apart that they are of little practical use. An unpublished
general upper bound is [32]

W (k, l) ≤ ee(1/k)ee(l+110)

,

and a general lower bound, due to the Lovász local lemma, is [32]

W (k, l) >

(
kl

elk

)
(1 + o(1)).

Work on specific Van der Waerden numbers has sharpened some of these
bounds as the results of Table 2 (taken from [11]) show.

The number W (k, l) can be found by determining whether solutions exist for
certain formulae of a class of CNF formulae described in Table 3. We refer to a
formula of this class, with parameters n, k, l, by ψn

k,l. A solution exists for ψn
k,l if

and only if n < W (k, l). So, several of these formulae may be solved for various
values of n until that boundary is reached. In this manuscript ψn

k,l is treated as
a set of clauses to make some algorithmic operations easier to express.

The nature of ψn
k,l is such that the number of solutions increases with n up

to a point, then decreases. The formulae, as expected, become more difficult in

Table 2. Known bounds on van der Waerden numbers

k \ l 3 4 5 6 7 8

2 9 35 178 > 695 > 3702 > 7483

3 27 > 291 > 1209 > 8885 > 43854 > 161371

4 76 > 1047 > 10436 > 90306 > 262326

5 > 125 > 2253 > 24044 > 177955

6 > 206 > 3693 > 56692

Table 3. Formula ψn
k,l for finding Van der Waerden numbers. Equivalence classes are

named C1, C2, ..., Ck for convenience

Variables Subscript Range Meaning

vi,j 1 ≤ i ≤ n, 1 ≤ j ≤ k vi,j ≡ 1 iff i ∈ Cj

Clauses Subscript Range Meaning

{v̄i,r, v̄i,s} 1 ≤ i ≤ n, 1 ≤ r < s ≤ k i is in at most one class

{vi,1, . . . , vi,k} 1 ≤ i ≤ n i is in at least one class

{v̄r,j , v̄r+1,j , . . . , v̄r+l−1,j} 1 ≤ r ≤ n − l + 1
{v̄r,j , v̄r+2,j . . . , v̄r+2(l−1),j} 1 ≤ j ≤ k no arithmetic progression

... ... of length l in Cj

{v̄r,j , v̄r+t,j . . . , v̄r+t(l−1),j} t = �(n − r)/(l − 1)�
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Table 4. Bounds on van der Waerden numbers obtained by SAT solvers ([11])

k \ l 3 4 5 6 7 8

2 9 35 178 > 341 > 614 > 1322

3 27 > 193 > 676 > 2236

4 76 > 416

5 > 125 > 880

6 > 194

the latter range. This difficulty may prevent the boundary from being reached
or even approached. In that case, there is no choice but to accept a lower bound
which is the largest n for which a solution to ψn

k,l is found.
SAT solvers have been applied to the above formulations with the results

shown in Table 4 (taken from [11]), all lower bounds. Except in one case, all
these bounds are greatly inferior to those obtained analytically.

We are interested in W (2, 6). When we employ aggressive tunneling tech-
niques, we can push the lower bound to 1132 from the previously known best
value of 696 [28] [27] shown in Table 2 which itself far exceeds the best prior
bound of 342 obtained by SAT solvers and shown in Table 4. The reason we have
a bound instead of the actual number is that aggressive tunneling forces our SAT
solver to be incomplete. We emphasize that although an incomplete solver pre-
cludes finding a refutation for the formula, it does provide an apparently tight
bound for W (2, 6). We believe the bound is tight because it is obtained using
three widely different tunnels. In addition, using tunnels aggressively we have
found a bound for W (3, 4) which matches the best analytic bound shown in
Table 2 and greatly exceeds the best bound obtained by SAT solvers as shown
in Table 4. This is further evidence of the tightness of bound in the presence of
these aggressive tunnels.

Our interest in examining tunnels for Van der Waerden numbers is due partly
to this being an interesting problem to many mathematicians but mainly because
the propositional formulae for solving Van der Waerden numbers have a structure
that is similar to formulae found in Bounded Model Checking and other practical
applications. Therefore, we view this work as a preliminary to investigations on
problems in the area of Formal Verification, among others.

Formulae showing structural similarities to Van der Waerden formulae do so,
in part, because their corresponding problems are typically circuit queries with a
time dependent nature, such as verification problems. In such problems a circuit
is fixed so there are numerous repetitions of subformulae, each corresponding
to the circuit properties at a different time step. The subformulae differ in the
variables they contain. This structure is characteristic of the Van der Waerden
formulae shown in Table 5. This structure sometimes is partly responsible for
difficult formulae since the making of small inferences is delayed considerably in
such cases.
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3 Formulation for W (2, 6) and the Tunnels

3.1 Formulation

Since we consider a case where k = 2, we reinterpret variables to remove some
of the constraints shown in Table 3. The formulae we consider are described
in Table 5. They use single index variables. For puposes of discussion, variable
indices have been translated so that v0 and v1 are the middle variables. In doing
so, the number of variables is always even. It is straightforward to consider odd
variable formulae as well and we leave this for the reader. In what follows, n is
even when we consider formulae ψn

2,6.

Table 5. Formula ψn
2,6, n even, for finding W (2, 6). Classes are named C1, C2 for

convenience

Variables Subscript Range Meaning

vi −n/2 < i ≤ n/2 vi ≡ 1 if i + n/2 ∈ C1

vi ≡ 0 if i + n/2 ∈ C2

Clauses Subscript Range Meaning

{v̄i, v̄i+1, . . . , v̄i+5} −n/2 < i ≤ n/2 − 5
{v̄i, v̄i+2 . . . , v̄i+10} no arithmetic progression

... ... of length 6 in C1

{v̄i, v̄i+t . . . , v̄i+5t} t = �(n/2 − i)/5�
{vi, vi+1 . . . , vi+5} −n/2 < i ≤ n/2 − 5
{vi, vi+2 . . . , vi+10} no arithmetic progression

... ... of length 6 in C2

{vi, vi+t . . . , vi+5t} t = �(n/2 − i)/5�

3.2 Motivating the Use of a Tunnel - Analyzing ψn
2,l

The approach to finding W (2, 6) that is described below is the result of an anal-
ysis of the performance of an off-the-shelf SAT solver on formulae ψn

2,l (Table 3),
and patterns of variable assignments satisfying those formulae.

Figure 1 shows SAT solver performance on ψn
2,5, for various values of n.

The vertical axis measures the number of nodes of the search space at the depth
indicated by the horizontal axis. In all cases, the entire search space was explored,
even if the input formula was satisfiable, but the results are similar if the solver
stops immediately upon discovering a solution. Although the displayed results
have been obtained using stock settings, similar results, which are not shown,
apply for various settings of SAT solver parameters. According to Figure 1 there
is a performance mountain that has roughly the same shape, regardless of n.
The mountain tails off to a point of little significance after rising to a formidible
peak. In addition to the mountain is a smaller peak which behaves more like a
wave since it always appears near n.
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Fig. 1. Typical SAT solver performance on ψn
2,5 for various values of n. Each curve

shows the breadth of the search space at the search depth indicated on the horizontal.
Curves shown are due to SBSAT which is a SAT solver currently under development at
the University of Cincinnati. Other SAT solvers have been shown to perform similarly

From performance curves and known Van der Waerden numbers and bounds
we have observed the following:

Observation 1. Consider a performance plot of search breadth vs. depth for any
common SAT solver applied to ψn

2,l. Such a plot has two maxima, the greatest
of which occurs at approximately the same depth, say W (2, l)/(2(l − 1)), for
n > W (2, l)/(l − 1). The value of the greatest maximum is approximately the
same for n > W (2, l)/(l − 1) and several orders of magnitude greater than the
search breadth at depth W (2, l)/(l − 1).

Observation 2. W (2, l) ≈ l ∗ W (2, l − 1), at least for small l.

From the above observations we propose a way to solve the very difficult
W (2, 6) formulae. Start by searching for solutions to ψno

2,6 where no is large
enough so that the mountain can be crossed but smaller than the suspected
value of W (2, 6). By Observations 1 and 2, no should be greater than about 210.
To get through the mountain, append a tunnel to the formula. We have devel-
oped three applicable tunnels which are specially designed to take advantage of
certain structural or analytical characteristics of the formulae and are described
separately in Section 3.4. The mountain is crossed when the search breadth is
considered “low.” From then on, by Observation 1, search is accomplished ef-
ficiently no matter what. Retract the tunnel. Add clauses so that the solver is
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effectively seeing ψno+x
2,6 for x = 1, 2, 3, ... until search breadth falls to 0. The

depth at which this occurs is a bound on W (2, 6).
Details are given in the following sections.

3.3 Procedure for Finding a Bound on W (2, 6)

We used a SAT solver designed specifically to solve formulae ψn
2,l, and which

incorporates special optimizations as outlined in Section 3.6. The outline below
briefly describes the search process using the special solver.

1. The solver is started on the input ψno
2,6, for some even no, plus a collection of

clauses representing the tunnel. The parameter no is determined according
to the description given in Section 3.2. There are three types of tunnels that
have been applied. Detailed descriptions are given in Section 3.4. All three
yield the same lower bound on W (2, 6) as stated in Section 3.4. Other tunnels
are possible but were not tried.

2. Instead of a depth-first, or even priority-driven evaluation of the search space,
as is commonly practiced, the solver conducts a strictly breadth-first evalua-
tion. We chose breadth-first search to find all solutions (not just the first one)
so we can at the point of no remove the tunnel and continue the search by
extending the existing set of solutions. The order in which variables are con-
sidered for evaluation is fixed for all branches of the search tree, regardless of
values assigned previously. The order represents a reflection around the cen-
ter variable and is given as follows, from left to right: v0, v1, v−1, v2, v−2, ....
This is undoubetdly an inferior choice with respect to building the entire
search space. Reasons for this choice are given in Section 3.5.

3. The search reaches depth no because there are so many solutions to ψno
2,6 and

the tunnel constraints do not filter some of them. At this depth all variables
of ψno

2,6 have been assigned values on all leaves of the search tree. Clauses
from the set ψno+1

2,6 \ψno
2,6 are then added to the clause database of the solver

and the search commences as before. The tunnel is retracted.

Remark: The tunnel has been designed so that the mountain has been
crossed, for the most part, by this time. From this point on, the breadth
of the search space is moderately small because the values of many variables
are inferred on all branches, so the search continues quickly.

4. The following is repeated for m = 2, 3, ... until the search breadth becomes
0: when the search depth reaches no +m−1, clauses from ψno+m

2,6 \ψno+m−1
2,6

are added to the solver’s clause database and the search continues. When
the search breadth becomes 0, a lower bound of no + m is found for W2,6.

Remark: Upon completion of every iteration of this step, a non-zero search
breadth means at least one solution for ψno+m−1

2,6 exists, hence no + m is a
lower bound for W (2, 6).

Remark: There is no clause recording. Experiments show that zChaff, for
example, does not benefit from clause recording on this family of formulae.
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We believe this is because the structure of the formulae is such that infer-
ences can only be determined at high search depth. This is why we needed
the tunnels in the first place.

With the above modifications to the SAT solver, and the improved formu-
lation shown in Table 5, a greatly improved bound for W (2, 6) was obtained.
However, this was not the case if no tunnels had been added at the outset.

Below we present performance figures for zChaff (v.2004.11.15) and Berkmin
(v.561) as well as the special SAT solver described above. It is important to
realize that zChaff and Berkmin can succeed with tunnels only if some mecha-
nism is provided for determining when the other side of the mountain is reached.
The mechanism we used was to apply our special solver up to Step 3. Then we
removed the tunnel, and sequentially applied zChaff or Berkmin to the given for-
mula for every partial assignment not falsified at depth no until either a solution
was found or it was determined that no solution was possible.

3.4 The Tunnels

Three different aggressive tunneling techniques to improve SAT solver perfor-
mance are described in the subsections below. All three yield the same new
lower bound of 1132 for W (2, 6). This is significant for two reasons: 1) this is
a big improvement over the previous best bound of 696 [28] [27]; 2) since three
different techniques stopped at the same point, we conjecture W (2, 6) = 1132.

First Tunnel. The first tunnel arises from an analysis of solutions to ψ
W (2,l)−1
2,l

(recall W (2, l)− 1 is the greatest n for which a solution to ψn
2,l exists). Figures 2

and 3 help visualize patterns associated with a typical solution to ψ34
2,4 and ψ177

2,5 ,
respectively. For both figures, the solution is shown as a sequence of 0’s and 1’s
representing an assignment of values to variables in increasing order of index,
from left to right. Each curve shown is called a solution curve and is derived from
the solution in the figure. A solution curve rises one unit for every 1 encountered
and drops one unit for every 0 encountered when traversing the solution from
left to right. Observe that the number of peaks in each figure is l − 1 and, more
importantly, there appears to be a limited length pattern of reverse symmetry,
which we call a reflected pattern, in the vicinity of at least one of the peaks.

We conjecture the following based on observations such as those depicted in
Figures 2 and 3:

Conjecture 1. For every ψ
W (2,l)−1
2,l there exists a solution that contains at least

one reflected pattern of length W (2, l)/((l − 1) ∗ 2) with the middle positioned
somewhere between W (2, l)/(l − 1) and W (2, l) ∗ (l − 2)/(l − 1).

The tunnel is designed as a filter for consecutive variable assignment pat-
terns that are not reverse symmetric. The tunnel consists of clauses involving s
consecutive variables where, s is even and by Conjecture 1 and Observation 2,
s < (1068/10) = 106. We tried several values for s including 60, 80, 100, even
150 and all worked, but speed increased significantly with increasing s up to 150.



152 M. Kouril and J. Franco

Fig. 3. Typical solution curve for ψ177
2,5 . This is the largest satisfiable formula for

W (2, 5). For both figures, the solution is shown as a sequence of 0’s and 1’s repre-
senting an assignment of values to variables in increasing order of index, from left to
right. The top of each curve rises one unit for every 1 encountered and drops one unit
for every 0 encountered when traversing the solution from left to right

Table 6. First tunnel constraints added to ψno
2,6 initially, then retracted after “tunnel-

ing”

Tunnel Clauses Subscript Range Meaning

{v−i, vi+1}, {v̄−i, v̄i+1} 0 ≤ i < s/2 force v−i ≡ v̄i+1.

The first family of tunneling constraints is shown in Table 6. By using negative
indices in Table 5 these constraints remain fixed as n grows. Otherwise, the
tunnel would have to move with n.

Second Tunnel. From the results obtained by using the first tunnel alone, it
was observed that some small assignment patterns did not occur in solutions.
The second tunnel filters those patterns. This action is opposite to that of forcing
patterns to occur which is the objective of the first tunnel. Consequently, the first
tunnel spans a small number of variables because longer forced reverse symmetric
patterns do not exist in any solution to ψ

W (2,6)−1
2,6 , but the second tunnel spans

all variables because non-solution patterns can appear anywhere in the clauses
of ψ

W (2,6)−1
2,6 .

The second family of tunneling constraints is shown in Table 7. The maximum
value of 20 for t is a compromise: the tunnel needs to be big enough to have an
impact but small enough to keep some solutions around to the end. The number
20 was determined by experiment on ψn

2,6 formulae.

Fig. 2. Typical solution curve for ψ34
2,4. This is the largest satisfiable formula for W (2, 4)
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Table 7. Second tunnel constraints added to ψno
2,6 initially, then retracted after “tun-

neling”

Tunnel Clauses Subscript Range Filters

{vi, v̄i+t, vi+2t, v̄i+3t, vi+4t, v̄i+5t} −n/2 < i ≤ n/2 − 5t 010101
{v̄i, vi+t, v̄i+2t, vi+3t, v̄i+4t, vi+5t} 1 ≤ t ≤ 20 101010

{vi, vi+t, v̄i+2t, v̄i+3t, vi+4t, v̄i+5t, v̄i+6t, vi+7t} 00110110
{v̄i, v̄i+t, vi+2t, vi+3t, v̄i+4t, vi+5t, vi+6t, v̄i+7t} 11001001
{vi, v̄i+t, v̄i+2t, vi+3t, v̄i+4t, v̄i+5t, vi+6t, vi+7t} 01101100
{v̄i, vi+t, vi+2t, v̄i+3t, vi+4t, vi+5t, v̄i+6t, v̄i+7t} −n/2 < i ≤ n/2 − 7t 10010011
{vi, vi+t, v̄i+2t, v̄i+3t, v̄i+4t, vi+5t, vi+6t, v̄i+7t} 1 ≤ t ≤ 20 00111001
{v̄i, v̄i+t, vi+2t, vi+3t, vi+4t, v̄i+5t, v̄i+6t, vi+7t} 11000110
{v̄i, vi+t, vi+2t, v̄i+3t, v̄i+4t, v̄i+5t, vi+6t, vi+7t} 10011100
{vi, v̄i+t, v̄i+2t, vi+3t, vi+4t, vi+5t, v̄i+6t, v̄i+7t} 01100011

Third Tunnel. In [27] solutions to ψn
2,6 are found for various values of n includ-

ing 565 and 695. The latter number implies the best known analytic lower bound
on W (2, 6). Regarding the solution to ψ565

2,6 , re-index the assigned variables

v−282, ..., v0, v1, ...v282
to

v−564, v−562, ..., v0, v2, ..., v562, v564

and add unassigned variables
v−565, v−563, ..., v1, ..., v563, v565.

Observe that this operation will not introduce any arithmetic progression among
the even indexed variables. The assignment to the even indexed variables is the
third tunnel. Search for a solution to ψ1131

2,6 among the variables above, keeping
the values of the even indexed variables fixed. Search completes in a reasonable
time with a solution.

Remarkably, using any of the three tunnels or even combining them leads to
the same bound of 1132 for W (2, 6).

3.5 Choosing the Search Heuristic

Variables are always considered in the following order, regardless of assignment:

v0, v1, v−1, v2, v−2, v3, v−3, ...

The reason is that by assigning values to middle variables first, there is a good
chance of inferences developing, symmetrically, for higher and lower indexed
variables. If, say, the lower indexed variables were assigned first, perhaps half of
the potential future inferences would not be realized early. This is particularly
important for the first tunnel where the inferences are needed to appear outside
of the tunnel variables.
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3.6 Optimizations and Special Procedures

We were able to get the lower bound of 1132 for W (2, 6) with either tunnel using
the special solver described in Section 3.3 with the optimizations mentioned
below. However, for stock SAT solvers we could not get this result in reasonable
time using either the first or second tunnels alone but could get the result using
both simultaneously.

The following optimizations to the special solver were used.

1. Data structures specifically designed for very fast checking of arithmetic
progressions and inferences were used. Estimated speed up due to these
structures is about a factor of 25. Another factor of approximately 2 speedup
is due to item 3 below.

2. Without optimization, all nodes of the search space would have two chil-
dren representing True and False assignments to the variable of that node.
However, we generate two children only when inferences force that to be
necessary. In other words, we implement a primitive form of conflict-analysis
but do not record the result as a clause as is done in modern SAT solvers.
Estimated speed up due to this optimization is about a factor of 2.

3. The static search heuristic described in Section 3.5 accounts for an estimated
factor of 2 speed up.

4 Performance Results

On W (2, 5) formulae, our solver with special data structures took 1 second with
the first tunnel of 6 variable width on a 2 GHz Pentium 4 computer and made
143184 variable assignments. Without a tunnel our solver with special data struc-
tures took 8 seconds on the same machine and made 719640 variable assignments.
On the same machine zChaff (2004.11.15) took 702 seconds and made 570981
assignments and Berkmin (561) took greater than 1500 seconds without a tunnel
(see the end of Section 3.3 for information about how zChaff and Berkmin were
run). Upon adding the first tunnel of 6 variable width to the Van der Waer-
den formulae, zChaff (2004.11.15) took 25 seconds and made 93031 assignments.
This factor of 30 improvement demonstrates the strength of the idea on the same
SAT solver. On W (2, 6) formulas zChaff ran out of memory (2GB) in a few hours
and BerkMin took greater than 24 hours and was not able to finish, hence this
comparison could not be made, only estimated, from the W (2, 5) results.

5 Conclusions

We have shown how an analysis of performance curves and solution patterns of a
class of CNF formula can present insight for designing effective tunnels through
search depth of high breadth. We have chosen to experiment with formulae for
finding Van der Waerden numbers since they are a difficult class for standard
SAT solvers, apparently because clause recording (learning) is ineffective. By
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tunneling, reasonable yet uninferred constraints are added just long enough to
get to a search depth that has relatively low breadth. Then the tunnel is retracted
with the hope that not all solutions have been destroyed by the tunnel. Doing so,
we found a solution to ψ1131

2,6 and therefore a new, significantly improved lower
bound on the number W (2, 6) of 1132.

The symmetric nature of the formulae and solution played an important
part in designing effective tunnels and three tunnels were tried with the same
result. This type of symmetry is common in many formula classes that arise
from practical applications including problems of formal verification. We believe
other difficult problems will succumb to tunneling.

We believe performance curves of search breadth vs. depth, such as shown
in Figure 1, provide a “fingerprint” for tunnel effectiveness of problem classes.
We speculate the fingerprint will not change much qualitatively from one solver
to the next but cannot rule out that possibility. Assuming this, we make some
claims about the performance curve with respect to hardness as follows. If a
performance curve should reach a peak at very high depth, tunneling is unlikely
to be effective. The family of queue formulae from bounded model checking seem
to fall into this category. We speculate that early, large peaks mean delayed
inferences and force exhaustive exploration at search depths corresponding to
many unassigned variables.

Although the development of general purpose propositional solvers that work
well on all inputs is strongly desireable, at this point it is hard to imagine how this
is going to be accomplished. However, a general purpose solver can be assisted
greatly by giving special consideration to an input problem class, mining its
structure for some property that may be used to improve search. This is what
we have done with tunneling. Although we do not forsee generally applicable
principals for developing tunnels, we do believe that normal human intuition is
enough to uncover exploitable structure in many cases. The Van der Waerden
numbers illustrate both points.
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Abstract. The choice of the variable to flip in the Walksat family procedures is
always random in that it is selected from a randomly chosen unsatisfied clause c.
This choice in Novelty or R-Novelty heuristics also contains some determinism
in that the variable to flip is always limited to the two best variables in c. In this
paper, we first propose a diversification parameter for Novelty (or R-Novelty)
heuristic to break the determinism in Novelty and show its performance com-
pared with the random walk parameter in Novelty+. Then we exploit promising
decreasing paths in a deterministic fashion in local search using a gradient-based
approach. In other words, when promising decreasing paths exist, the variable
to flip is no longer selected from a randomly chosen unsatisfied clause but in a
deterministic fashion to surely decrease the number of unsatisfied clauses. Exper-
imental results show that the proposed diversification and the determinism allow
to significantly improve Novelty (and Walksat).

1 Introduction

Consider a propositional formula F in Conjunctive Normal Form (CNF) on a set of
boolean variables {x1, x2, . . . , xn}, the satisfiability problem (SAT) consists in testing
whether all clauses in F can be satisfied by some consistent assignment of truth values
to variables.

SAT is the first known [1] and one of the most well-studied NP-complete problems.
It has many applications like graph coloring, circuit designing or planning, since such
problems can be encoded into CNF formulas in a natural way and solved by a SAT
solver.

Given a CNF formula F and an assignment, local search procedures repeatedly re-
pair locally this assignment, i.e. flipping the value of one variable, to find an assignment
satisfying all clauses of F . Since the introduction of GSAT [14] in which the best vari-
able is picked to be flipped to decrease the number of unsatisfied clauses, there has been

� This work is partially supported by Programme de Recherches Avancées de Cooprations
Franco-Chinoises (PRA SI02-04) and project Tolérant (Bestfit) under the research program
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considerable research on local search methods to find satisfying assignments for CNF
formulae, see, e.g. [3, 9, 12, 13, 7, 10, 11, 4].

Perhaps the most significant early improvement was to incorporate a ”random walk”
component where variables were flipped from some unsatisfied clause [12], leading to
the development of the well-known Walksat procedure [13] in which the variable to flip
is always picked from a randomly selected unsatisfied clause. Another contemporary
idea was to break ties in favor of least recently flipped variables [3]. This improvement
to GSAT resulted in HSAT. McAllester, Selman and Kautz introduced Novelty and R-
Novelty heuristics into the Walksat family by combining two concerns when picking a
variable to flip from within a unsatisfied clause: favoring the best variable to maximize
the number of satisfied clauses and avoiding flipping the most recently flipped variable
in the clause to prevent the local search from repeating earlier flips [10].

Novelty and R-Novelty are among the best local search methods. However, Hoos
[5] showed that they are essentially incomplete in the sense that in some situations, they
can get stuck in a local basin of attraction and fail to get out. Hoos developed slightly
modified procedures Novelty+ and R-Novelty+ by forcing a random walk with a fixed
probability in which the variable to flip is randomly picked from a random unsatisfied
clause. Novelty+ and R-Novelty+ are probabilistically approximately complete (PAC),
meaning that by running them long enough, the probability of missing an existing sat-
isfying assignment can be made arbitrarily small [5].

We note that on one hand, the variable to flip is always randomly picked in the
Walksat family procedures from a unsatisfied clause in the sense the unsatisfied clause
is randomly selected, and on the other hand, the choice of the variable to flip in Novelty
and R-Novelty also involves some determinism: the picked variable is necessarily one
of the two best variables in the unsatisfied clause.

In this paper, we propose new local search procedures in the Walksat family in two
ways:

(i) We weaken the determinism in Novelty in a way that all variables in the randomly
selected unsatisfied clause c can be picked to be flipped instead of limited to the two
best variables in c. Concretely, we introduce diversification moves in which THE least
recently flipped variable in c is picked to be flipped, resulting a new heuristic called
Novelty++. Novelty++ can be considered as a reinforcement of Novelty+ in the sense
that while Novelty+ makes a random walk in which all variables in c can be picked with
equal probability, Novelty++ deterministically picks THE least recently flipped variable
in c in a diversification step.

(ii) We weaken the randomness of the Walksat family procedures by combining
GSAT with Walksat. In some precisely defined situations, the variable to flip is picked
in a deterministic way as in GSAT instead of from a randomly selected unsatisfied
clause. We call the new procedure G2WSAT for Gradient-based Greedy Walksat. In
the remaining situations, G2WSAT uses Novelty++ or other Walksat family heuristics
to pick the variable to flip.

This paper is organized as follows. Section 2 presents Novelty++ and compares its
performance with Novelty and Novelty+. Section 3 presentsG2WSAT and compares the
performanceofG2WSAT usingNovelty++withSDF[11]andUnitWalk[4],thetwoother
effective local search procedures, as well as Novelty and Walksat. Section 4 concludes.
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2 Extending Novelty with Diversification

Originally introduced in [13], Walksat differs from its predecessor GSAT essentially in
that the variable to be flipped is no longer (deterministically with probability 1-p and
randomly with probability p) picked among all variables but from a randomly selected
unsatisfied clause. It starts with a randomly generated truth assignment. Then it repeat-
edly changes (flips) the assignment of a variable picked according to a heuristic, until
either a satisfying assignment is found or a given maximum number of flips, Maxsteps,
is reached. This process is repeated up to a maximum number of Maxtries times.

Algorithm 1: Walksat

Input: SAT-formula F , Maxtries, Maxsteps, Heuristic
Output: A satisfying truth assignment A of F , if found
begin

for try=1 to Maxtries do
A←randomly generated truth assignment;
for flip=1 to Maxsteps do

if A satisfies F then return A;
c← randomly selected clause unsatisfied under A;
v← pick a variable from c according to Heuristic;
A← A with v flipped;

return “Solution not found”;
end;

Let x be a variable, break(x) be the number of clauses in F which are satisfied
by the current assignment A but would be unsatisfied if x is flipped, make(x) be the
number of clauses in F that currently are unsatisfied but would be satisfied if x is
flipped. Let score(x) be the difference of make(x) and break(x) (score(x)=make(x) -
break(x)). Walksat provides several heuristics to pick a variable to flip from a randomly
chosen unsatisfied clause c, among which:

Walksat(p): If there are variables x in c such that break(x)=0, randomly pick one of
them, otherwise with probability p, randomly pick a variable from c and with prob-
ability 1-p, randomly pick one of variables x such that break(x) is the smallest.

Novelty(p): Sort the variables x in c by score(x), breaking ties in favor of the least
recently flipped variable. Consider the best and second best variable under this sort.
If the best variable is not the most recently flipped one in c, then pick it. Otherwise,
with probability p, pick the second best one, and with probability 1-p, pick the best
variable.

R-Novelty(p): This is the same as Novelty, except in the case where the best variable
is the most recently flipped one in c. In this case, pick the variable to flip among the
best and second best variables according to p and the difference of score of these
two variables. For more details, see [10].

We now concentrate on Novelty heuristic. Obviously, it always picks one of the two
best variables according to their score that would result in the smallest (or the second
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smallest) total number of unsatisfied clauses. The intuition of parameter p (called noise)
is that if the best variable is the most recently flipped one in c, flipping it risks to cancel
a useful earlier move. To avoid this, the second best variable is picked with probability
p [10].

Hoos studied the run time behavior of Novelty and found that while Novelty is very
effective, it may sometimes get stuck in a loop. As an example, Hoos gave a formula F
consisting of the 6 following clauses:

c1 : x̄1 ∨ x2

c2 : x̄2 ∨ x1

c3 : x̄1 ∨ x̄2 ∨ ȳ

c4 : x1 ∨ x2

c5 : z̄1 ∨ y

c6 : z̄2 ∨ y

This formula has a unique solution x1=x2=1, y=z1=z2=0. Hoos showed that if the
initial assignment is x1=x2=y=z1=z2=1, Novelty never reaches the unique solution [5],
because y is never flipped.

The restart mechanism in Walksat allows to remedy the situation. However in prac-
tice this mechanism critically relies on the use of good Maxsteps setting which is
difficult to obtain a priori. Hoos then extended Novelty by forcing a random walk with
probability wp (walk probability) in which a variable in c is randomly selected. The
extended Novelty is called Novelty+.

Novelty+(p, wp): With probability wp, randomly pick a variable from c (random
walk), with probability 1-wp, do as Novelty.

Let us look at Hoos example once again. The reason that Novelty gets stuck in a loop
is due to the fact that y is never flipped. The purpose of the random walk in Novelty+
is to make the heuristic pick y when c3 is selected. However the random walk does so
only with probability 1/3. This observation leads us to extend Novelty in the following
way:

Novelty++(p, dp): With probability dp (diversification probability), pick the least re-
cently flipped variable in c (diversification), with probability 1-dp, do as Novelty.

Obviously, the difference between Novelty+ and Novelty++ is that the random walk
in Novelty+ is replaced by the diversification in Novelty++. In practice, Novelty++ is
stronger than Novelty+. For instance, Novelty++ directly picks y in c3 in the above
example in a diversification step while Novelty+ may still pick x1 or x2 in a random
walk as Novelty does.

When Novelty gets stuck in a local basin of attraction, probably there is a clause
c that is unsatisfied again and again. The diversification in Novelty++ allows to flip
all variables in c by turns when the search proceeds, since after the least recently
variable in c is flipped, a different variable in c becomes the new least recently flipped.
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So Novelty++ presumably improves (further than Novelty+) the coverage rate of Nov-
elty as defined in [11] to measure how systematically the search explores the entire
space.

Table 1 compares the performance of Novelty(p), Novelty+(p, wp) and
Novelty++(p, dp) (respectively N(p), N+(p, wp) and N++(p, dp) in the table) for ran-
dom 3-SAT problems and several classes of structured problems, where p is the noise
parameter which is fixed to be 0.20, 0.35 and 0.50. wp and dp respectively are the
random walk probability in Novelty+ and the diversification probability in Novelty++
which are fixed to be 0.01, 0.02 and 0.05.

A total of 21 local search procedures are evaluated in table 1. All these procedures
share the same implementation and the same data structure from Satz [8], and simplify
the input formula by satisfying the eventual unit clauses in the formula before the local
search. Note that Novelty(p)≡Novelty+(p, 0)≡Novelty++(p, 0).

We generate 2000 random 500 variable and 2125 clause 3-SAT formulas and elim-
inate the 912 unsatisfiable ones using Satz. For larger hard random 3-SAT problems,
we generate 1000 random 600 variable and 2550 clause formulas and 300 random 1000
variable and 4250 clause formulas. However no solver is available to eliminate unsatis-
fiable formulas of these sizes in reasonable time. So the 1000 hard random 600 variable
formulas, as well as the 300 hard random 1000 variable formulas, probably contain
about a half of unsatisfiable problems also used in the experimentation. Maxsteps is
fixed to be 105 for 500 variable problems, 2×105 for 600 variable problems and 5×105

for 1000 variable problems. 105 is the default cutoff value of the original Walksat fam-
ily procedures, while 2×105 and 5×105, as well as 106 and 107 used below, are cutoff
values somewhat arbitrarily fixed here.

The behavior of the local procedures for other cutoff values deserves future study.
We run Novelty, Novelty+, Novelty++ with Maxtries = 1 (one run) for each for-

mula in each class. We say a formula is solved by a procedure if the procedure finds a
solution satisfying all clauses of the formula. The number of solved formulas in a class
represents the success rate of the procedure for this class. This execution is repeated
100 times to get the final averaged success rate given in the table 1.

Structured problems Flat200-479, QG, AIS, Logistics, Blockworld, all available in
SATLIB1, are also used to evaluate the performance of Novelty++ compared with Nov-
elty and Novelty+. In order to make the comparison clearer, we eliminate unsatisfiable
formulas in the QG class, and smaller formulas in the AIS, Logistics and Blockworld
classes in which larger a formula, harder it is. So in our experimentation, local search
procedures are run to solve the 100 satisfiable formulas in Flat200-479 class, the 10 sat-
isfiable formulas in QG (satQG in the table) and the largest (and the hardest) formula
remaining in the AIS, Logistics and Blockworld classes. Maxsteps is fixed to be 106

to all these problems except bw large.d for which 107 flips are used. As for random
problems, we run each procedure with Maxtries = 1 for each formula in a class to
get a success rate for this class and repeat the execution 100 times to get final averaged
success rate given in table 1.

1 http://www.satlib.org
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Table 1. Average success rate and successful run length (the number of flips to find a solution in a
successful run) of Novelty, Novelty+ and Novelty++ for random 3-SAT and structured problems

500vars 600vars 1000vars Flat200 satQG ais12 logistics.d bw large.d
succ rate succ rate succ rate succ rate succ rate succ rate succ rate succ rate

#flip #flip #flip #flip #flip #flip #flip #flip
N(.2) 0.0358 0.0137 0.0020 0.0772 0.610 0 0.94 0.81

43919 89461 263457 314589 157354 0 314949 3819298
N+(.2, .01) 0.0620 0.0257 0.0073 0.1329 0.626 0.09 0.94 0.74

43407 87354 244555 342308 177019 600588 272877 4092116
N++(.2, .01) 0.0752 0.0331 0.0096 0.1665 0.621 0.32 0.97 0.70

41308 83556 233827 326908 174334 517261 255227 3769416
N+(.2, .02) 0.0717 0.0307 0.0091 0.1554 0.610 0.15 0.98 0.68

42755 84166 230063 331649 166960 394956 252352 4803834
N++(.2, .02) 0.0922 0.0409 0.0121 0.2023 0.642 0.47 0.99 0.54

39599 81692 216712 314755 168948 472868 257194 4281634
N+(.2, .05) 0.0944 0.0407 0.0138 0.1911 0.628 0.36 0.97 0.47

39612 80012 226484 307785 176049 530276 245133 4755044
N++(.2, .05) 0.1299 0.0592 0.0225 0.2937 0.662 0.78 0.98 0.13

37599 75300 218320 314195 155574 370399 187548 4551418
N(.35) 0.1889 0.0942 0.0405 0.3778 0.684 0 1 0.01

39923 81522 233992 336305 101838 0 150960 523016
N+(.35, .01) 0.2236 0.1137 0.0537 0.4887 0.663 0.08 1 0.01

38523 78222 225226 329866 82270 374812 139387 3935403
N++(.35, .01) 0.2525 0.1315 0.0676 0.5601 0.655 0.16 1 0.01

36874 74005 210373 299901 78833 513290 146827 9034913
N+(.35, .02) 0.2411 0.1250 0.0626 0.5224 0.660 0.08 1 0.01

37778 74336 214503 302060 84524 284610 154852 7636423
N++(.35, .02) 0.2850 0.1503 0.0805 0.6283 0.655 0.28 1 0.01

35694 71890 197205 287165 84537 472346 171744 4258715
N+(.35, .05) 0.2807 0.1498 0.0808 0.5997 0.650 0.24 1 0.01

36191 72502 197306 290165 80302 494390 169413 7666983
N++(.35, .05) 0.3727 0.2036 0.1234 0.7947 0.634 0.49 1 0

34111 68382 184949 252688 55898 512219 212222 0
N(.5) 0.5185 0.3118 0.2375 0.8585 0.613 0 0.71 0

34169 67335 188880 225958 67213 0 434699 0
N+(.5, .01) 0.5360 0.3262 0.2561 0.8877 0.612 0.09 0.57 0

33618 65780 179796 208462 69846 597206 487620 0
N++(.5, .01) 0.5617 0.3449 0.2798 0.9154 0.604 0.1 0.50 0

32575 63487 171378 189963 67538 505106 438835 0
N+(.5, .02) 0.5482 0.3354 0.2673 0.9011 0.602 0.07 0.43 0

33223 65321 177141 199674 59886 481570 453581 0
N++(.5, .02) 0.5870 0.3634 0.3048 0.9223 0.603 0.21 0.27 0

31879 61308 162701 174457 69033 599057 382697 0
N+(.5, .05) 0.5708 0.3520 0.2949 0.9142 0.601 0.11 0.37 0

32511 62915 167434 188466 73372 459436 529073 0
N++(.5, .05) 0.5919 0.3641 0.3163 0.9397 0.593 0.33 0.14 0

30953 59633 153879 175887 73184 473227 437366 0
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Table 1 shows that Novelty++ is consistently better than Novelty and Novelty+ in
case noise is important (random 3-SAT, Flat200) and in case stagnation behavior occurs
(ais12). In other words, when random walk is needed, diversification systematically
does better. Novelty++ generally has a success rate 2 or 3 times larger than Novelty+
for ais12 for the same value of wp and dp. It also solves significantly more random
3-SAT and Flat200 formulas, especially when noise parameter is low (0.2 and 0.35).

Note that the success rate in table 1 can be computed in an equivalent way as follows.
We consider a multi-set based on each class where every formula occurs 100 times. We
run a local search procedure with Maxtries = 1 for every formula in the multi-set.
The number of formulas solved divided by the number of elements in the multi-set is
the success rate. For example, the Flat200 class has 100 formulas. The corresponding
multi-set has 100*100=10000 formulas. Novelty++(0.35, 0.05) solves 7947 formulas
in the multi-set. Its success rate for the class Flat200 is 0.7947. It solves 1950 (over
10000) formulas more than Novelty+(0.35, 0.05) in the multi-set.

We recall that about a half of formulas in the random 600 and 1000 variable 3-SAT
classes probably might be unsatisfiable. The success rate for these two classes probably
might be multiplied by 2. Consequently, the success rate difference between Novelty++
and Novelty+ for these two classes might also be multiplied by 2.

It appears in Table 1 that QG problems are not sensitive to noise nor to random walk,
since the success rates for different noise parameters don’t have significant difference.
The only cases Novelty+ is better than Novelty++ are the logistics.d and bw large.d
problems for which Novelty(0.2) is the best. In other words, Neither random walk nor
diversification is necessary for these two problems. Moreover, noise should be low to
solve them.

All evaluated procedures roughly have the same time complexity per flip. Table 1
shows that when Novelty++ has better success rate, it also generally needs fewer flips
to find a solution.

3 Exploiting Promising Decreasing Paths in Local Search

The behavior of GSAT before finding a solution might roughly be characterized as
follows:

1. Repeatedly decrease the number of unsatisfied clauses (move down along a de-
creasing path) while possible;

2. Escape from a local minimum;
3. Go to 1.

One major difference between Walksat family and GSAT is that the behavior of
Walksat can no longer be characterized as above, since the variable to flip is always
picked from a randomly selected unsatisfied clause and may increase the number of
unsatisfied clauses in non local minima. The difficulty in GSAT is how to recognize a
promising decreasing path from previous moves, since moving along a decreasing path
risks to simply repeat (or cancel) earlier flips, which might explain the performance of
Walksat over GSAT.
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However we believe that the purpose of a local search procedure always is to re-
peatedly decrease the number of unsatisfied clauses. Even when the procedure flips a
variable such that the number of unsatisfied clauses is increased, it hopes that decreasing
variables appear and can lead to a solution satisfying all clauses.

This observation suggests us that the decreasing variables resulted from a move
could be better and more promising than variables in a randomly picked unsatisfied
clause c, and that in this case, a local search procedure should pick one of these de-
creasing variables instead of a variable in c.

We now formally define promising decreasing variables and promising decreasing
paths.

A variable is said decreasing if flipping it would decrease the number of unsatisfied
clauses. Let x and y be variables, x �= y, y is not decreasing. If it becomes decreasing
after x is flipped, then we say that y is a promising decreasing variable after x is flipped.
There may be 0, 1, or several promising decreasing variables after x is flipped. All
promising decreasing variables are collected in a set.

Let y be a promising decreasing variable after some variable is flipped. If y is always
decreasing after one or more other moves, it is always promising and remains in the
promising decreasing variable set. Otherwise it should be removed from the set.

A promising decreasing path is a sequence of moves in which every move flips a
promising decreasing variable.

Note that if a variable x is flipped such that the number of clauses is increased,
re-flipping x would decrease the number of unsatisfied clauses, i.e., x is decreasing.
However x is not a promising decreasing variable, since re-flipping x would simply
cancel a previous move. The major originality of our approach is that such x is never
considered when exploiting promising decreasing paths.

We want a local search procedure which, whenever there are promising decreasing
variables, does as GSAT and deterministically picks the best of them to minimize the
total number of unsatisfied clauses, breaking ties in favor of the least recently flipped
variable as in HSAT [3]. In other cases, the procedure does as Walksat and uses a heuris-
tic such as Novelty++ to pick the variable to flip.

For this purpose, we need a method to efficiently find all promising decreasing vari-
ables after a flip and remove old promising decreasing variables which are no longer
decreasing.

A variable x is decreasing iff score(x)=make(x)-break(x) > 0. The following
gradient-based approach originally introduced in [7] allows us to compute the score
of every variable after a flip.

Assume that the formula F contains m clauses on n variables. Let ci (1 ≤ i ≤ m)
be a clause in F . ci=xi1 ∨ ... ∨ xik

∨ x̄ik+1 ∨ ... ∨ x̄ik+r
. Note that we put all positive

literals in ci before the negative ones.
We consider now all variables in ci as integer variables taking values 0 or 1. We

define:

Ei(xi1 , ..., xik
, xik+1 , ..., xik+r

) = (1 − xi1)...(1 − xik
)xik+1 ...xik+r

Obviously Ei has value 0 iff one of xij
(1 ≤ j ≤ k) is assigned 1 or one of xis

(k + 1 ≤ s ≤ r) is assigned 0. In other words, Ei=0 iff ci is satisfied. otherwise Ei=1.
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We now define:

E(x1, ..., xn) =
m∑

i=1

Ei (1)

Given an assignment A (a point in the search space), the value of E is the number
of unsatisfied clauses in F . If A satisfies all clauses in F , then E = 0.

Since each variable appears at most once in a clause, E is a linear function for any
variable xf and can be written as E(xf ). Let vf be the current value of xf . E(vf ) stands
for E simplified after the substitution of xf by vf . Taylor’s equation gives us

E(xf ) = E(vf ) + (xf − vf )
∂E(xf )

∂xf
(2)

So ∂E(xf )
∂xf

�= 0 indicates the variation of E when xf changes. If ∂E(xf )
∂xf

> 0, then

E(xf ) increases (decreases) when xf increases (decreases). If ∂E(xf )
∂xf

< 0, then E(xf )
decreases (increases) when xf increases (decreases). So we can get all decreasing vari-

ables at a given point A by computing ∂E(A)
∂xf

for every variable xf .

For example, if at point A, x1=0, x2=1, x3=0, x4=1, ∂E(A)
∂x1

=2, ∂E(A)
∂x2

=2, ∂E(A)
∂x3

=-2,
∂E(A)
∂x4

=-2, then x1 and x4 are increasing variables (E will be increased by 2 if x1 or x4

is flipped), and x2 and x3 are decreasing variables (E will be decreased by 2 if x2 or x3

is flipped). Note that score(x1)=-∂E(A)
∂x1

=-2, score(x2)=∂E(A)
∂x2

=2, score(x3)=-∂E(A)
∂x3

=2,

score(x4)=∂E(A)
∂x4

=-2. In other words, |score(xf )|=|∂E(A)
∂xf

| for all xf , but the sign may
be different.

We now rewrite Taylor’s equation 2 as

E(x1, ..., xf , ..., xn) = E(x1, ..., vf , ..., xn) + (xf − vf )
∂E(x1, ..., xf , ..., xn)

∂xf
(3)

Then for any variable xg �= xf , we have:

∂E(x1, ..., xf , ..., xn)
∂xg

=
∂E(x1, ..., vf , ..., xn)

∂xg
+ (xf − vf )

m∑
i=1

∂2Ei

∂xf∂xg
(4)

We denote the assignment after t flips by At in local search. The value of xj is vt
j

(1 ≤ j ≤ n). After a new flip, At becomes At+1 in which vt
j = vt+1

j except for one

variable xf =vt+1
f = 1 − vt

f . Assuming that we know the value of ∂E(xj)
∂xj

for every xj

at point At, equation 4 suggests us a reasonable and efficient way to compute ∂E(xj)
∂xj

at

point At+1.
In fact, we note that vf = vt

f at point At. At point At+1, ∂E(x1,...,xf ,...,xn)
∂xg

is
∂E(At+1)

∂xg
, but

∂E(x1,...,vt
f ,...,xn)

∂xg
is equal to ∂E(At)

∂xg
, since At+1 differs from At only
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in the value of xf (recall that
∂E(x1,...,vt

f ,...,xn)

∂xg
is ∂E(x1,...,xf ,...,xn)

∂xg
with xf replaced by

vt
f so that all variables in it have value by At).

Since xf − vt
f = vt+1

f − vt
f = 1 − vt

f − vt
f at point At+1, equation 4 becomes:

∂E(At+1)
∂xg

=
∂E(At)

∂xg
+ (1 − 2vt

f )
m∑

i=1

∂2Ei

∂xf∂xg
(5)

Note that
m∑

i=1

∂2Ei

∂xf∂xg
= 0 for all xg not occurring in any clause containing xf . To

see this, let ci = x1∨ x̄2∨x4, Ei = (1−x1)x2(1−x4). ∂2Ei

∂x2∂xg
= 0 for any g �∈ {1, 4}

(including g = 2). The following properties hold:

∂E(At+1)
∂xg

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂E(At)
∂xg

, if xg not occurring in any clause with xf

∂E(At)
∂xg

+ (1 − 2vt
f )

∑
xf and xg occur in clause ci

∂2Ei

∂xf∂xg

∂E(At)
∂xf

, if xg = xf

(6)

Equation 6 shows that when xf is flipped, ∂E(x1,...,xf ,...,xn)
∂xg

should be re-computed
only for those xg occurring in some clause containing xf . These variables and corre-
sponding clauses can be stored by a preprocessing in a list associated with xf to speed
up the calculus.

In summary, the local search procedure, which we call G2WSAT for Gradient-
based Greedy Walksat, uses equation 6 to maintain a set of promising decreasing vari-
ables and flips the best promising decreasing variable if any. Otherwise, it uses a heuris-
tic such as Novelty++ to pick a variable to flip.

G2WSAT is defined in algorithm 2.
Table 2 compares the success rate of G2WSAT using Novelty++ (G2(p, dp) in the

table) with Novelty++ (N++(p, dp) in the table) on the same problems as in table 1.
Novelty++(p, 0) is just Novelty(p). Recall the only difference between G2WSAT and
Novelty++ here is that G2WSAT flips the best promising decreasing variable if any.
Otherwise it is the same as Novelty++. The success rate is also computed in the same
manner. The Maxsteps (cutoff value for the number of flips) is also the same as in
table 1 (105 for random 500 variable 3-SAT, 2×105 for 600 variables, 5×105 for 1000
variables; 107 for bw large.d and 106 for other structured problems).

Due to the lack of space, we don’t give the successful run lengths (#flips) of
G2WSAT and Novelty++ in table 2. G2WSAT generally needs fewer flips than Nov-
elty++ to find a solution. Table 3 gives some typical examples of the successful lengths
of G2WSAT which can be compared with those of Novelty++ given in table 1.

Table 2 shows that G2WSAT is almost always better than Novelty++ except for
Flat200 problems. In particular, the best success rate is always obtained by G2WSAT ,
even for Flat200 problems. It is remarkable that G2WSAT (0.2, dp) improves Nov-
elty++(0.2, dp) and raises its success rate to 100%.
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Algorithm 2: G2WSat

Input: SAT-formula F , Maxtries,Maxsteps, Heuristic
Output: A satisfying truth assignment A of F , if found
begin

for try=1 to Maxtries do
A ← randomly generated truth assignment;
Compute ∂E(x1,...,xn)

∂xj
for all xj at A;

Store all decreasing variables in stack DecV ar;
for flip=1 to Maxsteps do

if A satisfies F then return A;
if DecV ar is not empty then x ← x in DecV ar such that | ∂E(x1,...,xn)

∂x
| is the

largest, breaking ties in favor of the least recently flipped variable;
else c ← randomly selected clause unsatisfied under A;

x ← pick a variable from c according to Heuristic;
A ← A with x flipped;
update ∂E(x1,...,xn)

∂xj
for all xj using equation 6;

delete all variables which are no longer decreasing from DecV ar;
push all new decreasing variables into DecV ar which are different from x and
were not decreasing before x is flipped;

return “Solution not found”;
end;

As in table 1, the success rate difference between G2WSAT and Novelty++ for
random 600 and 1000 variable 3-SAT problems might probably be multiplied by 2. It
appears in table 2 that the success rate difference for 3-SAT increases with the noise and
diversification parameters. For example, for 500 variable 3-SAT problems, the largest
success rate difference is 0.0337 when the noise parameter is 0.2, it is respectively
0.0404 and 0.0625 when the noise parameter is 0.35 and 0.5. On the other hand, when
the noise parameter is 0.5, the success rate difference between G2WSAT and Nov-
elty++ respectively is 0.0150, 0.0177, 0.0342 and 0.0625 when the diversification pa-
rameter is 0, 0.01, 0.02 and 0.05. The same phenomenon can be observed for the 600
and 1000 variable problems.

The difference of 0.0625 here for random 500 variable 3-SAT means that
G2WSAT (0.5, 0.05) solves 6807 more formulas than Novelty++(0.5, 0.05) in our ex-
perimentation. Refer to table 1, G2WSAT (0.5, 0.05) solves 9098 more random 500
variable 3-SAT formulas than Novelty+(0.5, 0.05), representing a success rate differ-
ence of 0.0836. Considering the hardness to improve the Walksat family procedures
which are already highly effective, we believe that G2WSAT combining with Nov-
elty++ is a significant improvement. As a comparison, the success rate difference be-
tween Novelty(0.5) and Walksat(0.5) for these formulas is 0.0704, see table 3 below.

In table 3, we compare G2WSAT combined with Novelty++(p, dp) (G2(p, dp)
in the table) with Walksat, Novelty, UnitWalk, SDF on the same problems as in ta-
ble 1 or in table 2. In addition to the success rates computed in the same manner as
in table 1, we also report the average number of flips to find a solution (i.e. average
length of a successful run) and the total real run time in seconds on an Athlon2000+
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Table 2. Average success rate of Novelty++ and G2WSAT using Novelty++ for random 3-SAT
and structured problems

500vars 600vars 1000vars Flat200 satQG ais12 logistics.d bw large.d
N++(.2, 0) 0.0358 0.0137 0.0020 0.0772 0.610 0 0.94 0.81
G2(.2, 0) 0.0477 0.0188 0.0034 0.0693 0.672 0 1 0.93

N++(.2, .01) 0.0752 0.0331 0.0096 0.1665 0.621 0.32 0.97 0.70
G2(.2, .01) 0.0992 0.0416 0.0123 0.1607 0.679 0.52 1 0.89

N++(.2, .02) 0.0922 0.0409 0.0121 0.2023 0.642 0.47 0.99 0.54
G2(.2, .02) 0.1178 0.0513 0.0160 0.1955 0.685 0.68 1 0.77

N++(.2, .05) 0.1299 0.0592 0.0225 0.2937 0.662 0.78 0.98 0.13
G2(.2, .05) 0.1636 0.0754 0.0285 0.2701 0.725 0.88 1 0.26
N++(.35, 0) 0.1889 0.0942 0.0405 0.3778 0.684 0 1 0.01
G2(.35, 0) 0.2104 0.1056 0.0438 0.3207 0.732 0 1 0.17

N++(.35, .01) 0.2525 0.1315 0.0676 0.5601 0.655 0.16 1 0.01
G2(.35, .01) 0.2884 0.1490 0.0754 0.5083 0.730 0.25 1 0.03

N++(.35, .02) 0.2850 0.1503 0.0805 0.6283 0.655 0.28 1 0.01
G2(.35, .02) 0.3229 0.1710 0.0904 0.5778 0.747 0.40 1 0.01

N++(.35, .05) 0.3727 0.2036 0.1234 0.7947 0.634 0.49 1 0
G2(.35, .05) 0.4131 0.2278 0.1318 0.7226 0.737 0.59 1 0
N++(.5, 0) 0.5185 0.3118 0.2375 0.8585 0.613 0 0.71 0
G2(.5, 0) 0.5335 0.3218 0.2372 0.8312 0.734 0 0.84 0

N++(.5, .01) 0.5617 0.3449 0.2798 0.9154 0.604 0.1 0.50 0
G2(.5, .01) 0.5894 0.3568 0.2832 0.9051 0.710 0.13 0.65 0

N++(.5, .02) 0.5870 0.3634 0.3048 0.9223 0.603 0.21 0.27 0
G2(.5, .02) 0.6212 0.3788 0.3127 0.9283 0.713 0.25 0.53 0

N++(.5, .05) 0.5919 0.3641 0.3163 0.9397 0.593 0.33 0.27 0
G2(.5, .05) 0.6544 0.4018 0.3521 0.9511 0.699 0.38 0.34 0

under Linux of each procedure to run 100 times for each class. Note that G2WSAT
uses equation 6 to incrementally update the score of each variable, which is quite
different from the original Walksat procedures. To show that the gradient-based ap-
proach improves the time performance, we use original Walksat v37 downloaded from
http://www.cs.washington.edu/homes/kautz in table 3.

UnitWalk is downloaded from http://logic.pdmi.ras.ru/˜arist/UnitWalk. SDF is
downloaded http://www.cs.ualberta.ca/˜dale/software.html.

We run UnitWalk using the following command line
UnitWalk -f F -p Maxsteps -r 100 -sr -T 20000

where a time cutoff of 2 × 104 seconds is set to solve formula F , and run SDF using
the following command line

sdfflt -mf Maxsteps -mr 1 -rep 100 -ne -f F
to solve formula F .

The Maxsteps value is the same as in table 1 or in table 2 for different problems.
The best success rate, #flips, total run time for each class are bold-faced in table

3. Generally, a procedure with a better success rate is faster and has shorter success-
ful runs. However, SDF uses a float-point implementation in which search steps are
more expensive. So-called substitution operations are needed in UnitWalk in addition
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Table 3. Experimental results for UnitWalk, SDF, G2WSAT , Novelty and Walksat

500vars 600vars 1000vars Flat200 satQG ais12 logistics.d bw large.d
#flips #flips #flips #flips #flips #flips #flips #flips
time time time time time time time time

SDF 0.3674 0.1707 0.0437 0.9859 0.42 1 1 ?
36218 70702 215026 134555 93207 145781 65080 ?
56165s 115162s 210688s 7057s ? 267s 2442s ?

UnitWalk 0.4409 0.2731 0.2399 0.8960 0.5280 1 1 0.02
41429 76443 205646 325342 134808 232861 3791 5362045
25132s 53733s 55543s 24646s 93620s 10374s 53s 19899s

G2(.2, 0) 0.0477 0.0188 0.0034 0.0693 0.672 0 1 0.93
40950 86223 236392 312826 167887 0 133848 3419339
12263s 23166s 20951s 5532s 5452s 221s 28s 2733s

G2(.2, .05) 0.1636 0.0754 0.0285 0.2692 0.725 0.88 1 0.26
35207 70840 198330 293976 162965 278722 98065 4543846
11519s 22970s 21147s 4813s 5642s 80s 26s 8867s

G2(.5, 0) 0.5335 0.3218 0.2372 0.8312 0.734 0 0.84 0
33214 66156 183047 240477 87954 0 438108 0
8771s 19963s 19151s 2297s 6392s 227s 172s 14329s

G2(.5, .05) 0.6544 0.4018 0.3521 0.9511 0.699 0.38 0.34 0
29238 55478 145030 154994 84898 521013 565058 0
7666s 18835s 17701s 1264s 7184s 186s 318s 15047s

Novelty(.2) 0.036 0.0140 0.0023 0.0734 0.098 0 0.95 0.79
43200 89277 278784 315588 262181 0 296197 3672728
14631s 29099s 26590s 7763s 27657s 409s 57s 3819s

Novelty(.5) 0.5178 0.3123 0.2371 0.8544 0.189 0 0.64 0
34225 66702 186607 226115 399360 0 467981 0
10786 25613s 24614s 2940s 36628s 427s 210s 17557s

Walksat(.2) 0.1129 0.0525 0.0187 0.1093 0.064 0.26 0.64 0.51
41111 82424 234638 337845 176761 492378 617464 4574077
13582s 26269s 21509s 7115s 27397s 343s 104s 3976s

Walksat(.5) 0.4474 0.2844 0.2341 0.8118 0.04 0.05 0.60 0
40169 77768 202990 296044 447541 554170 476361 0
12074s 25334s 20614s 4155s 38714s 391s 168s 15368s

to flips. Some irregularities may also happen in some problem classes. For example,
G2WSAT (0.2, 0) solves more easily qg7-13 problems in QG class for which unsuc-
cessful runs are very time-consuming, which explains the better time performance of
G2WSAT (0.2, 0) with a lower success rate.

Table 3 shows that G2WSAT generally has better performance than Novelty using
the same parameters except for Flat200 problems, for which G2WSAT (p, dp) is not
better than Novelty(p) when dp=0, but G2WSAT (p, dp) is significantly better than
Novelty(p) when dp > 0.

When noise p is 0.2, G2WSAT (0.2, 0) generally is not better than Walksat(0.2).
Again the diversification allows to remedy the situation and makes G2WSAT (0.2,
0.05) substantially better than Walksat(0.2). When noise p is 0.5, G2WSAT (0.5, 0)
generally is substantially better than Walksat except for ais12 for which diversification
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is necessary and makes G2WSAT (0.5, 0.05) significantly better than Walksat(0.5), and
except for logistics.d and bw large.d for which noise should be low.

We observe that G2WSAT always gives the best result among all Walksat family
procedures in table 3, using appropriate noise and diversification parameters. Further-
more, it seems that G2WSAT spends less time per flip than the original Novelty and
Walksat used here, thanks to the gradient-based approach. For example, G2WSAT (0.5,
0) spends 227 seconds to make the 100×106 flips to solve ais12 100 times without suc-
cess, while Novelty(0.2) and Novelty(0.5) respectively spend 409 and 427 seconds to
do the same thing2.

G2WSAT (0.5, 0.05) has a success rate significantly better than UnitWalk for ran-
dom 3-SAT, Flat200 and QG problems, while G2WSAT (0.2, 0.05) is better for QG and
bw large.d problems. UnitWalk performs well for ais12 formula with a success rate 1
while the best rate of G2WSAT for this formula is 0.88. Nevertheless, G2WSAT is
substantially faster than UnitWalk for all problems in table 3. G2WSAT (0.2, 0.05) also
has the success rate 1 for ais12 formula using 3 × 106 flips in a run and is still much
faster than UnitWalk using 106 flips in a run.

The same observation can be made when comparing G2WSAT and SDF. We fail
to run SDF for some QG problems. When solving bw large.d formula, we stopped SDF
after 30000 seconds.

Remark. QG problems contains several unit clauses. The local search procedures com-
pared in tables 1 and 2 all simplify the input formula by satisfying unit clauses before
the local search. It seems that the Walksat and Novelty procedures used in table 3 don’t
contain this simplification, which might explain the success rate difference of Novelty
for QG problems. On other formulas which don’t contain any unit clause, our imple-
mentation of Novelty reproduces the same success rate of the original Novelty.

4 Conclusion

We have proposed two extensions of the Walksat family local search procedures. The
first extension is the diversification in Novelty so that in each search step, with proba-
bility dp the least recently flipped variable in a randomly selected unsatisfied clause c
is picked to be flipped, while in the remaining cases, normal Novelty heuristic is used
to pick the variable to flip in c. The new heuristic is called Novelty++. The diversi-
fication allows to weaken the determinism in Novelty which always picks one of the
two best variables in c. It is also stronger than the random walk in Novelty+, since it
deterministically picks the least recently flipped variable in c.

The second extension is the deterministic exploitation of so-called promising de-
creasing variables using a gradient-based approach. The new procedure is called
G2WSAT . We have combined G2WSAT with Novelty++ such that whenever there

2 After our experimentation is done, we are told that the new version (version 45) of Walksat
has been speeded up (by 30-50% for large problems) using an improvement to the Walksat
variable flip algorithm due to Alex Fukunaga (The search behavior (the assignments explored)
is totally unaffected) [2].
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are promising decreasing variables, the best (according to its score) of them is picked
to be flipped, otherwise Novelty++ is used to pick the variable to flip.

Experimental results on a large number of random 3-SAT and structured prob-
lems show the performance of Novelty++ compared with Novelty and Novelty+ under
different parameter settings, and the performance of G2WSAT combined with Nov-
elty++ compared with state-of-the-art local search procedures such as Novelty, Nov-
elty+, Walksat, UnitWalk and SDF.

Similar to other heuristics in the Walksat family, Novelty++ is sensitive to noise
and diversification parameters. An adaptive noise mechanism as presented in [6] might
be used to automatically adjust the parameters when the search proceeds, in order to
further improve the performance of Novelty++.
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Abstract. Much attention has been given in recent years to the problem of
finding Minimally Unsatisfiable Subformulas (MUSes) of Boolean formulas.
In this paper, we present a new view of the problem, strongly linking it to the
maximal satisfiability problem. From this relationship, we have developed a
novel technique for extracting all MUSes of a CNF formula, tightly integrat-
ing our implementation with a modern SAT solver. We also present another
algorithm for finding all MUSes, developed independently but based on the
same relationship. Experimental comparisons show that our approach is con-
sistently faster than the other, and we discuss ways in which ideas from both
could be combined to improve further.

Many computational problems in a wide range of fields are posed as constraint satisfac-
tion problems, often in the form of Boolean CNF formulas analyzed with satisfiability
(SAT) solvers. While SAT solvers can return a short proof in the form of a satisfying
assignment when a formula is satisfiable, typically no proof or explanation is given
when a formula is found to be unsatisfiable. Explanations of infeasibility are often val-
uable, and techniques for finding them have been developed for use in these problems.
Some techniques have focused on reducing the original set of constraints to produce a
minimal, unsatisfiable core representing a cause of infeasibility. In this paper, we
present a new approach to finding these cores, focusing on a complete method for find-
ing all unsatisfiable cores of any given formula.

Consider an unsatisfiable CNF formula . A Minimally Unsatisfiable Subformula
(MUS) of  is a subset of 's clauses that is both unsatisfiable and minimal in the sense
that all of its proper subsets are satisfiable. An MUS can be seen as an irreducible cause
of the infeasibility of the original formula.  could have multiple reasons for its infea-
sibility. In this case  would contain multiple MUSes, and fixing any single MUS may
not make  satisfiable. As long as any MUS is present in the formula, it will remain
infeasible. In many applications, it is valuable to find the set of all MUSes, because di-
agnosing infeasibility is hard, if not impossible, without a complete view of its causes.
Additionally, an algorithm that finds all MUSes provides a basis for approximations
and techniques that find multiple, though not all, MUSes.

Many methods for finding MUSes have been developed in recent years, both for
Boolean satisfiability problems and for other types of constraints. Most techniques find
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a single unsatisfiable subformula (US), often not guaranteeing it to be minimal. For ex-
ample, AMUSE [10], Bruni & Sassano’s algorithm [3,4], and zCore [13] all use infor-
mation from a SAT solver’s resolution procedure to find a single US, but none guaran-
tee its minimality. For these, a “Minimal Unsatisfiability Prover” [7] can be used to
minimize the US into an MUS. Chinneck and Dravnieks [5] studied MUSes in the do-
main of linear and integer programs, calling them Irreducible Infeasible Subsets. Their
algorithms return multiple, but not all, MUSes.

Recently, we have developed a sound and complete technique for finding all MUS-
es of a CNF formula [9], based on a strong relationship between maximal satisfiability
and minimal unsatisfiability. The relationship and algorithms derived from it also hold
for any other type of constraint with a strict definition of satisfiability (i.e., they do not
apply directly to “soft” constraints). Independently, Bailey and Stuckey [1] have also
noted this relationship and developed an implementation for a type of constraint used
for type-error debugging in software verification.

While both our work and theirs are based on the same underlying concept, the al-
gorithms we developed to exploit it differ greatly. In this paper, we present a compari-
son of our two approaches, having implemented their algorithm for Boolean con-
straints. We show that, for the case of Boolean constraints, our algorithm outperforms
theirs by one to two orders of magnitude. We further assess the differences between the
two approaches and discuss the strengths and weaknesses of both. (In [1], the authors
compare their algorithm to the best known previous method for finding all MUSes in
[2]. They show that their algorithm is superior to that in [2], so we have not included
that method in our comparison.)

The rest of this paper is organized as follows. Section 2 lays the foundation by de-
scribing the relationship between maximal satisfiability and minimal unsatisfiability
that is the basis for both algorithms. In Section 3, we present our algorithm, and we
present Bailey and Stuckey's algorithm in Section 4. Section 5 contains the experimen-
tal results comparing the two algorithms, with discussion and analysis in Section 6. Fi-
nally, Section 7 contains conclusions and ideas for future work.

Both our technique and Bailey and Stuckey’s algorithm are based on a strong relation-
ship between maximal satisfiability and minimal unsatisfiability. The Maximum Satis-
fiability problem (Max-SAT) is an optimization problem on a CNF formula  in which
the goal is to find an assignment to the variables of  that maximizes the number of
satisfied clauses. In other words, Max-SAT yields a satisfiable subset of ’s clauses
with maximum cardinality. For example, the formula

has a Max-SAT solution with three satisfied clauses:

.

Whereas  the  Max-SAT  problem  has  been  defined with the cardinality  of a subset of
clauses as the optimization goal, the problem can be relaxed to have inaugmentability

x1 x1 x1 x2 x2=

x1 x1 x2 x2
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(MSS). Each MSS of a formula  is a subset of the clauses in  that is satisfiable and
inaugmentable; adding any of the other clauses in  to an MSS will render it unsatisfi-
able. The definition of the set of MSSes of a formula  follows, with the set of MUSes
defined similarly for comparison:

Notice that MSSes( ) and MUSes( ) are essentially duals of one another! An
MSS is satisfiable and cannot be made larger, and an MUS is unsatisfiable and cannot
be made smaller. Their relationship is more than cosmetic; the complete set of one type
(i.e., all MSSes or all MUSes) is actually an implicit encoding of the other.

The distinction between Max-SAT and MSS is subtle. Any Max-SAT solution is
also an MSS; the maximal cardinality of the Max-SAT solution entails the inaugment-
ability required to be an MSS. MSSes, however, may be of different sizes, and not all
will necessarily have maximum cardinality, as shown by the earlier example formula.
One MSS of that formula is , which corresponds to the
Max-SAT solution.  is another MSS (adding either of the other two con-
straints would make it unsatisfiable), though it is smaller.

Now consider , the clause not included in the Max-SAT solution to our earlier
example. Removing this clause from  makes it satisfiable. In general, given any MSS
of an infeasible formula, the clauses not in that MSS describe an irreducible “fix” to the
formula in the sense that removing them will correct the infeasibility. Therefore, we de-
fine a “CoMSS” as the complement of an MSS, and the set of CoMSSes is simply:

This complementary view of MSSes provides the real link to MUSes. Note that the
presence of any MUS in a CNF formula makes that formula unsatisfiable. Therefore, to
correct the infeasibility by removing constraints, at least one constraint from every
MUS must be removed in order to “neutralize” all of the MUSes. A CoMSS of a for-
mula  is a set of constraints whose removal renders  satisfiable, thus every CoMSS
must contain at least one clause from each MUS of .

This relationship between a CoMSS and the set of MUSes of a formula can be de-
scribed as a solution to a set covering problem. Specifically, a CoMSS is a hitting set of
the set of MUSes. A hitting set of a collection of sets is a set that contains at least one
element from each set in the collection. In this case, the collection is the set of MUSes,
and the CoMSS is a set of clauses that contains at least one clause from every MUS. A
CoMSS is a hitting set of the MUSes with the additional restriction that it cannot be any
smaller without losing its defining property: it is an irreducible hitting set. Figure 1
shows the example formula from above along with its MSSes, CoMSSes, and MUSes
to illustrate the relationship. Notice how each CoMSS is a hitting set of the MUSes.

:   is satisfiable, and
MSSes( )

( ),  { } is unsatisfiable

,   is unsatisfiable, and
MUSes( )

,  { } is satisfiable

m m
c m m c

m m
c m m c

x1 x1 x2 x2

x1 x2

x1

CoMSSes( ) :  ( ) MSSes( )m m
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In line with the duality noted earlier, every MUS of a formula is an irreducible hit-
ting set of the CoMSSes of that formula (which also can be seen in Figure 1). The in-
tersection of any CoMSS of a formula with any MUS of that formula must be non-emp-
ty. The duality between CoMSSes and MUSes comes from this commutative relation-
ship between them. The relationship also gives us a way to compute all MUSes of a
formula, and it is the basis for the two algorithms compared in this paper.

In our algorithm for finding all MUSes of a formula , we decompose the process into
two steps: 1) Finding the complete set of CoMSSes of , and 2) Extracting MUSes
from the set of CoMSSes. This decomposition follows naturally from the relationship
described in the previous section. And it has a nice property in that each step is inde-
pendent of the other, which allows different algorithms to be used for each step without
affecting the other.

Every CoMSS is the set of clauses not included in some maximally satisfiable subfor-
mula. To find MSSes, we incrementally solve a Max-SAT problem, removing solutions
as they are found to continue the search until all have been found. Figure 2 provides a
pseudocode outline of the procedure.

Our algorithm is tightly integrated with and takes advantage of a modern SAT solv-
er. We find maximally satisfiable subsets of constraints by giving the solver the ability
to enable and disable constraints and check for the satisfiability of the enabled con-
straints all within a single search tree. Every clause  in  is aug-
mented with a negated clause selector variable  to give  in
a new formula . This is accomplished by AddYVars in the pseudocode. While solv-
ing , assigning a certain  FALSE has the effect of disabling or removing  from
the set of constraints, as the augmented clause is satisfied by the assignment to . Con-
versely, assigning  TRUE enables the original clause. An MSS can be obtained by
finding a satisfying assignment with a minimal number of  variables assigned
FALSE, which ensures that as few constraints as possible are disabled. The clauses left
unsatisfied, which are a CoMSS, are indicated by the set of  variables assigned
FALSE.

MSSes( ) CoMSSes( )

{B,C,D} {A}
{A,D} {B,C}
{A,C} {B,D}

MUSes( )

{A,B}
{A,C,D}

x1 x1 x1 x2 x2=
A          B              C               D

Ci xi
1 xi

m=
yi Ci yi xi

1 xi
m=

yi Ci

yi

yi

yi

yi
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3.1   Finding CoMSSes(  )  

Fig. 1. Example formula with its MSSes, CoMSSes, and MUSes  



Instead of solving an optimization problem for every solution, however, we utilize
a sliding objective approach that allows us to use a more efficient incremental search.
We set a bound on the number of  that may be assigned FALSE using an AtMost
bound. Given a set of literals  and a positive integer , an AtMost bound
is defined as

where assign( ) is 1 if  is assigned TRUE and 0 otherwise. In practice, an efficient
implementation of this constraint propagates the negation of each of the remaining lit-
erals in its set once  of them have been assigned TRUE. Because we only use one such
constraint at a time, the same effect could easily be created by modifying any standard
SAT solver to “watch” the assignments to the variables involved in the constraint and
to force the remaining assignments as necessary once the bound has been reached.

In this application, we add a constraint of the form AtMost( )
to place a bound on the number of disabled constraints. For each value of the bound,
starting at 1 and incrementing by 1, we exhaustively search for all satisfiable assign-
ments to the augmented formula , which will find all CoMSSes the size of the bound.
Within this search, the incremental SAT solver can utilize learned clauses and dynamic
variable ordering heuristics to full effect.

When one solution is found, the corresponding CoMSS is recorded, and the search
continues incrementally after adding a blocking clause that forces out that solution. The
blocking clause is a disjunction of the y variables for the clauses in that CoMSS. For
example, if the solution contains , indicating that  is a
CoMSS, then we add a blocking clause: . This excludes the CoMSS, and
any supersets of it, from future solutions. Finding CoMSSes in order of increasing size

CoMSSes(formula)
1. // formula is a CNF instance
2. formula AddYVars(formula)
3. bound  1
4. CoMSSes  
5. While (Sat(formula))
6. boundedFormula AddAtMost(formula, bound)
7. Repeat
8. newCoMSS IncrementalSat(boundedFormula)
9. If (newCoMSS = )
10. End Repeat
11. CoMSSes  CoMSSes  {newCoMSS}
12. boundedFormula  AddBlocking(boundedFormula, newCoMSS)
13. formula  AddBlocking(formula, newCoMSS)
14. bound  bound+1
15. Return CoMSSes

yi

l1 l2 ln k

1 2
1

AtMost , , , , assign
n

n i
i

l l l k l k

li li

k

y1 y2 yn k

y2 y4 y7 F= = = C2 C4 C7

y2 y4 y7
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(i.e., MSSes in order of decreasing size) and excluding supersets from future solutions
ensures that only irreducible CoMSSes are found.

As long as we are adding constraints (the blocking clauses), we can use an incre-
mental search. For each search with a particular AtMost bound, every new solution is
removed with a blocking clause and the search continues until no further solutions exist
for the current bound. Incrementing the bound, however, relaxes a constraint on the sys-
tem, so the search must start over with a new copy of the formula, augmented with all
blocking clauses created thus far.

Before beginning the search with the next bound, the algorithm checks that  aug-
mented with all collected blocking clauses is still satisfiable without any bound on the

 variables. If there is no satisfying assignment, even with no restrictions on the  var-
iables, the entire set of CoMSSes has been found, and the algorithm terminates.

The set of CoMSSes implicitly encodes the entire set of MUSes of a formula, and in-
formation can be extracted from it in a variety of ways. Here, we focus on methods for
extracting MUSes, though it is likely that other useful data can be obtained by analyzing
the set as well.

Extracting a Single MUS in Polynomial Time
Every MUS of a formula  is an irreducible hitting set of the CoMSSes of . Although
MINIMAL-HITTING-SET is an NP-Hard problem [8], irreducibility is a less strict require-
ment than minimal cardinality. Along with the fact that no CoMSS is a subset of any
other, this allows us to find an irreducible hitting set for the set of CoMSSes in polyno-
mial time. We can generate an MUS by a greedy, iterative construction, with no search
necessary. Figure 3 outlines the construction in pseudocode.

yi yi

ExtractMUS(CoMSSes)
1. MUS  
2. While (CoMSSes  )
3. curCoMSS  Pop(CoMSSes)
4. newClause  Pop(curCoMSS)
5. MUS  MUS  {newClause}
6. // Remove all clauses in curCoMSS from all remaining CoMSSes
7. For Each clause  curCoMSS
8. For Each testCoMSS  CoMSSes
9. If (clause  testCoMSS)
10. testCoMSS  testCoMSS - {clause}
11. // Remove any CoMSSes containing newClause
12. For Each testCoMSS  CoMSSes
13. If (newClause  testCoMSS)
14. CoMSSes  CoMSSes - {testCoMSS}
15. Return MUS
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Intuitively, we want to generate a set of clauses with at least one clause from each
CoMSS, such that every clause is an essential element of the set. By “essential” we
mean that removing a clause will leave at least one CoMSS unrepresented in the gener-
ated MUS; this enforces the irreducibility requirement.

The algorithm works by sequentially adding clauses to a forming MUS. In the main
loop, a clause is selected for inclusion in the MUS, the working set of CoMSSes is al-
tered to force that clause to be essential, and the process iterates with the altered set of
CoMSSes. The first two lines in the loop choose a CoMSS and a clause from that
CoMSS (the choices can be arbitrary). The clause is added to the MUS. Then, all of the
other clauses in the chosen CoMSS are removed from the remaining problem. This pre-
vents any of those clauses from being added to the MUS in later iterations, which could
make the chosen clause non-essential. Next, any CoMSSes containing the chosen
clause are removed, because they are now represented in the MUS. After these modifi-
cations are made, the algorithm iterates with the resulting set of CoMSSes. When no
more CoMSSes remain, the constructed set of clauses is a complete MUS.

Extracting All MUSes
Finding all MUSes involves searching for all irreducible hitting sets of the set of
CoMSSes. In general, this may be impractical due to the possibly exponential number
of MUSes, but in many cases the result is tractable.

Our algorithm for extracting the complete set of MUSes from the CoMSSes uses
the general form of the algorithm in Figure 3. The order in which CoMSSes and clauses
are selected (the choices made in the first two lines of the while loop) determines the
particular MUS created by the algorithm; therefore, by branching on these two deci-
sions, all possible MUSes can be generated. We implemented this with a recursive al-
gorithm that takes as input the remaining set of CoMSSes (initially the entire set) and
the MUS under construction in the given branch of the recursion (initially the empty
set). The branching is not ideal, and many duplicate branches are encountered in prac-
tice. We employ ordering heuristics to prune as many duplicate branches as possible
without missing any MUSes.

The algorithm developed by Bailey and Stuckey in [1] was implemented to find all min-
imally unsatisfiable subsets of systems of Herbrand constraints, used for type-error de-
bugging of Haskell programs. It exploits the same relationship between maximal satis-
fiability and minimal unsatisfiability as ours, however, and so it can be applied to any
type of constraint as well. We present an overview of their algorithm here.

They call the algorithm “Dualize and Advance” (DAA), as it interleaves the use of
the hitting-set duality with the search for what we call CoMSSes. Whereas our tech-
nique finds all CoMSSes before finding hitting sets of them, DAA computes hitting sets
on a partial set of CoMSSes after finding each CoMSS — it outputs any MUSes found
at that stage and also uses the results to direct the search for the next CoMSS. The full
DAA algorithm is presented in pseudocode in Figure 4.
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DAA(Constraints)
1. MUSes  
2. CoMSSes  
3. Seed  
4. Repeat
5. MSS  Grow(Seed, Constraints)
6. CoMSSes  CoMSSes  {Constraints - MSS}
7. PotentialMUSes  ExpandHittingSets(MUSes, {Constraints - MSS})
8. Seed  
9. For Each S  (PotentialMUSes - MUSes)
10. If (Sat(S))
11. Seed  S
12. Break
13. Else
14. MUSes  MUSes  {S}
15. Until (Seed = )
16. Return MUSes

Grow(S, Constraints)
1. For Each c  (Constraints - S)
2. If (IncrementalSat(S  {c}))
3. S  S  {c}
4. Return S

ExpandHittingSets(MUSes, CoMSS)
1. If MUSes = 
2. For Each c  CoMSS
3. MUSes  MUSes  {c}
4. Else
5. // Compute cross product
6. newMUSes  
7. For Each MUS  MUSes
8. For Each c  CoMSS
9. newMUSes  newMUSes  {(MUS  {c})}
10. // Perform minimization
11. newMUSes  Sort(newMUSes)// in order of increasing cardinality
12. MUSes  
13. For Each testMUS  newMUSes
14. If (  m  MUSes. m testMUS)
15. MUSes  MUSes  {testMUS}
16. Return MUSes
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DAA finds MSSes in a straightforward manner by “growing” them. Given a seed
in the form of a satisfiable set of constraints (which is empty in the first iteration), an
MSS is constructed by attempting to add each of the problem's remaining constraints to
the seed, only keeping those which do not create a conflict. After going through all pos-
sible constraints, this process will have collected a maximally satisfiable subset of the
constraints, because those excluded were left out specifically because they would make
it unsatisfiable. This is all contained in the Grow subroutine.

When an MSS is found in this manner, the complement is added to the growing set
of CoMSSes. At this point, the hitting sets of the CoMSSes are computed to potentially
output MUSes and/or create a new seed. Each minimal hitting set that is unsatisfiable
is an MUS (they are all guaranteed to be unsatisfiable only if the complete set of
CoMSSes is used), and if one is found that is satisfiable, then this set is used as a seed
for the next iteration. The seed created in this way is guaranteed to not intersect with
any of the MSSes found thus far because it was created from the CoMSSes. For every
MSS found previously, the seed will contain at least one constraint not in that MSS.
Thus, the MSS grown from the seed is guaranteed to be new.

Bailey and Stuckey mention that there are many ways to compute minimal hitting
sets, noting that the problem is equivalent to the hypergraph transversal problem. For
their implementation, they chose a simple method that “is simple to implement and be-
haves reasonably efficiently.” They compute the hitting sets of a set G by ordering the
sets in G, then computing partial cross products of those sets, minimizing the results at
each step. In the case of the DAA algorithm, the process can be made incremental. At
each iteration, only a single set is added to the set of CoMSSes; by remembering the
hitting sets computed in the last iteration, the hitting sets for the current iteration can be
computed by taking the cross products of the new CoMSS with each of the hitting sets
from the previous iteration. Their paper described the process, including the minimiza-
tion, in mathematical terms, which we interpreted and implemented algorithmically as
shown in Figure 4.

Bailey and Stuckey also discuss an optimization to their algorithm in the form of a
heuristic for the order of adding constraints in the Grow subroutine. They aim to collect
CoMSSes in increasing order of size to optimize the partial hitting set calculations. Us-
ing the constraint interaction graph, they estimate which constraints are most likely to
cause unsatisfiability, ordering the constraints to choose these later in the Grow subrou-
tine. In their results, the heuristic only decreased the runtime by at most half, and in
some cases its use resulted in longer runtimes. Due to this and the lack of details de-
scribing it in the paper, we did not implement this heuristic in our version of DAA.

We evaluated both our own technique and our implementation of Bailey and Stuckey's
DAA algorithm using a large set of unsatisfiable CNF benchmarks from automotive
product configuration [11,12]. Each benchmark encodes a set of available configura-
tions for a product, along with constraints enforcing a specific property to be checked.
We observed that the encodings were not “tight,” in that they contained numerous du-
plicate clauses. Duplicate clauses can yield a combinatorial explosion of MUSes, so
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they were removed before gathering data. There are a total of 84 benchmarks in the set,
each with around 1500-1800 variables and 4000-8000 clauses. This set of benchmarks
was chosen because of the range of results it provides. Though all of the instances were
generated in the same manner and have the same general size, the number and size of
CoMSSes and MUSes in each instance vary widely. Some have a single MUS, while
others have millions; runtimes can range from less than a millisecond to days or longer.

All of the algorithms were implemented in C++. Both our algorithm for finding
CoMSSes and our implementation of DAA used MiniSAT [6] as a framework for con-
straint solving. MiniSAT is primarily a SAT solver, but it can be extended to handle oth-
er types of constraints as well. This made it possible to integrate AtMost constraints
alongside the standard Boolean CNF clauses for our CoMSSes algorithm. The data
were collected in Linux on a PC with a 2.2GHz Opteron processor and 8GB of RAM.

We ran every instance against both algorithms, with a 600 second timeout for both.
Of the 84 benchmarks, all MUSes were found for 31 of them within the timeout by at
least one of the two algorithms. The results for these 31 are presented in Table 1. The
first column lists the benchmark name, and columns 2 and 3 give the size of each bench-
mark with the number of variables and clauses, respectively. The following three col-
umns list the time in seconds our algorithm spent in finding the set of CoMSSes, the
time spent on the set of MUSes, and the total time as the sum of both. The seventh col-
umn lists the runtime in seconds of the DAA algorithm for finding the complete set of
MUSes. The “Ratio” column provides the ratio of the runtime of DAA to that of our
algorithm (column 7 divided by column 6). Finally, the last two columns list the number
of CoMSSes and the number of MUSes in each benchmark.

Of the 31 benchmarks for which at least one algorithm completed, ours finished all
31 while DAA reached the 600 second timeout for 6. Additionally, our algorithm is con-
sistently faster than DAA, usually by about one to two orders of magnitude. The bench-
marks which DAA was not able to complete all had more than 10,000 MUSes, indicat-
ing that calculating sets of potential MUSes at each stage was taking most of the time.
Our algorithm is likewise affected by benchmarks with large numbers of MUSes, but
because the set of MUSes is only calculated once, the impact is much smaller.

We should also note that of the 53 benchmarks that neither algorithm completed,
ours was able to find the complete set of CoMSSes for 18. These instances all timed out
in the MUS extraction stage. For each of the 18 instances, many MUSes were generated
(up to 4.5 million) before the 600 second timeout was reached. This illustrates how the
problem can be made intractable by the sheer number of MUSes. In one instance,
C170_FR_SZ_95, our algorithm found the complete set of CoMSSes in just 0.34 sec-
onds, and it had generated more than 1.5 million MUSes by the time the 600 second
timeout was reached.

The performance numbers paint a clear picture that our algorithm is faster than DAA
for Boolean constraints. However, the performance of each algorithm is dependent on
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Benchmark Our Algorithm DAA Ratio Solutions

Name #V #C CoMSSes
(sec)

MUSes
(sec)

Sum
(sec)

DAA
(sec)

#
CoMSSes

#
MUSes

C208_FC_SZ_128 1513 4469 0.06 0.00 0.06 11.1 201.8 32 1

C208_FC_SZ_127 1513 4469 0.06 0.00 0.06 12.0 206.9 34 1

C208_FA_SZ_121 1516 4247 0.07 0.00 0.07 9.9 135.3 32 2

C208_FA_SZ_120 1516 4247 0.07 0.00 0.07 10.5 141.9 34 2

C202_FS_SZ_122 1556 5385 0.09 0.00 0.09 16.5 189.7 33 1

C170_FR_SZ_92 1528 4195 0.13 0.00 0.13 38.2 293.8 131 1

C202_FW_SZ_124 1561 7435 0.15 0.00 0.15 27.6 190.3 33 1

C210_FS_SZ_130 1607 4894 0.18 0.00 0.18 11.1 61.0 31 1

C210_FS_SZ_129 1607 4894 0.19 0.00 0.19 12.1 63.4 33 1

C210_FW_SZ_136 1628 6384 0.25 0.00 0.25 17.0 67.2 31 1

C202_FW_SZ_123 1561 7437 0.26 0.00 0.26 25.0 96.9 38 4

C210_FW_SZ_135 1628 6384 0.26 0.00 0.26 18.3 70.7 33 1

C168_FW_UT_852 1804 6756 0.45 0.00 0.45 15.1 33.5 30 102

C168_FW_UT_851 1804 6758 0.45 0.00 0.45 15.2 33.6 30 102

C168_FW_UT_854 1804 6753 0.45 0.00 0.45 15.2 33.6 30 102

C168_FW_UT_855 1804 6752 0.47 0.00 0.47 15.3 32.3 30 102

C220_FV_RZ_14 1530 4013 0.57 0.00 0.57 4.3 7.7 20 80

C208_FA_RZ_64 1516 4246 0.61 0.00 0.61 48.0 78.8 212 1

C220_FV_SZ_121 1530 4035 0.65 0.00 0.65 25.3 38.9 102 9

C208_FC_RZ_70 1513 4468 0.67 0.00 0.67 53.9 80.9 212 1

C202_FS_SZ_121 1556 5387 0.83 0.00 0.83 9.5 11.4 24 4

C202_FW_RZ_57 1561 7434 1.11 0.00 1.11 137.0 123.3 213 1

C208_FA_SZ_87 1516 4255 0.46 1.41 1.87 >600 >320.5 139 12884

C170_FR_RZ_32 1528 4067 0.64 1.96 2.60 >600 >230.4 242 32768

C220_FV_RZ_13 1530 4014 1.22 2.34 3.56 47.7 13.4 76 6772

C208_FA_UT_3254 1805 6153 1.63 8.94 10.57 >600 >56.8 155 17408

C208_FA_UT_3255 1805 6156 1.68 18.40 20.08 >600 >29.9 155 52736

C210_FS_RZ_40 1607 4891 0.44 30.10 30.54 73.7 2.4 212 15

C210_FW_RZ_59 1628 6381 0.56 30.40 30.96 114.0 3.7 212 15

C220_FV_RZ_12 1530 4017 1.23 65.20 66.43 >600 >9.0 150 80272

C220_FV_SZ_65 1530 4014 2.05 65.80 67.85 >600 >8.8 198 103442

DAA
Sum
-------------
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One difference contributing greatly to the performance of our algorithm is its tight
integration with a modern SAT solver. By formulating the problem with clause-selector
variables, we let the SAT solver handle the search for MSSes itself. Additionally, by
finding multiple MSSes (of a single size) within a single search tree, we immediately
take advantage of all of the features of modern SAT solvers, especially learned clauses.
While DAA can use an incremental search within the Grow subroutine, it must restart
the search after any added constraint makes the growing MSS unsatisfiable. It also re-
starts with a new search tree for every MSS, as compared to our algorithm which only
restarts the search after all MSSes of a particular size have been found.

Note that while our approach is more heavily integrated with a SAT solver, it is still
fairly independent of the particular solver itself. It can be implemented with any SAT
solver that provides an incremental solving interface, allows the addition of constraints
mid-search, and supports the AtMost constraint. (While the last requirement is not
standard, its implementation in MiniSAT is quite simple, and as noted earlier, the effect
can be obtained by modifying other SAT solvers with little difficulty.) The DAA algo-
rithm simply calls a standard solver as a subroutine, making it even simpler to imple-
ment with different solvers.

The strength of our algorithm’s integration with the solver is also a drawback, in
that it makes it less immediately applicable to other constraint types. We rely on the
ability to encode constraint enabling and disabling within the syntax of the constraints
themselves. This is easy to do with Boolean disjunctions, but other types of constraints
may not be as suitable. DAA, on the other hand, can immediately be implemented using
a solver of any type of constraint.

Another large difference between our algorithm and DAA is the distinction between
our serial, two-phase algorithm and DAA's interleaved approach. Obtaining MUSes be-
fore computing the entire set of CoMSSes is beneficial in applications that do not re-
quire the complete set of CoMSSes nor all MUSes because it can provide results sooner.
The interleaved approach could easily be adopted in our algorithm. Hitting sets of the
partial set of CoMSSes could be calculated after every CoMSS is found, between stages
of the incremental search (when incrementing the bound on CoMSS size), or at any de-
sired interval. This could add a great deal of overhead, however, especially if every po-
tential MUS had to be checked for unsatisfiability (as opposed to aborting after one set
is found to be satisfiable, as DAA does to use that set as the next seed). This seems to
be the case for DAA, as the instance for which it had its fastest runtime also had the
fewest CoMSSes, and thus the fewest incremental hitting-set calculations. Though our
algorithm could be interleaved to potentially gain efficiency, DAA could not be “de-
interleaved,” as it depends on the set of potential MUSes to provide the seed for the next
iteration and to determine when it has found all CoMSSes.

The process of “growing” an MSS from a seed has potential application within our
algorithm as well. Recall that we restart the search for MSSes after exhausting the
search space for each bound on the CoMSS size. Each restart throws away valuable
learned clauses. We could relax the AtMost constraints to search for CoMSSes of 2, 3,

M.H. Liffiton and K.A. Sakallah  184 

a number of factors, and in this section we discuss the details behind the performance,
comparing the strengths and weaknesses of each algorithm.



however, so the Grow subroutine could be used to maximize the corresponding satisfi-
able subset (thus minimizing the CoMSS). When that search tree is exhausted, the
bound could be increased by 3, finding CoMSSes of size 4, 5, and 6 in the next iteration.
In general, the range of sizes covered by each iteration could be extended at the cost of
increased overhead from calls to Grow. The impact of this tradeoff is unclear, and it
should be investigated to determine an optimal range.

Finally, the constraint-graph heuristic used in DAA to guide it towards smaller
CoMSSes could be adapted for our algorithm. For example, the ranking of constraints
generated by the heuristic could be implemented as an influence on the variable order-
ing of the clause-selector variables. In general, heuristics specific to finding CoMSSes
and relevant to the constraints themselves (as opposed to the formula’s variables) could
be effective for both algorithms.

We have presented a relationship between maximal satisfiability and minimal unsatis-
fiability that can be used to find all Minimally Unsatisfiable Subformulas of a Boolean
CNF formula. We experimentally compared two methods that exploit this relationship,
our own algorithm and DAA, developed by Bailey and Stuckey [1]. The results show
that ours is about one to two orders of magnitude faster. We discussed the relative
strengths and weaknesses of each approach, examining the causes of the performance
difference as well as practical implementation details.

There are many possible directions for future improvement. Though ours is the fast-
est known algorithm for finding all MUSes of a Boolean CNF formula, it does not scale
nearly as well as modern SAT solvers. While this is unavoidable due to the much great-
er complexity of the problem, work should be done to make it more efficient and prac-
tically useful. We discussed some ways in which our algorithm could be combined with
ideas from Bailey and Stuckey’s approach which might lead to increased performance.
Additionally, performance may be increased by relaxing optimality constraints.

Finally, we believe that the relationship on which both of the algorithms in this pa-
per are based should be explored further. The relationship between MUSes, CoMSSes,
and the general idea of constraint conflicts could yield further algorithms and practical
applications.

This material is based upon work supported by the National Science Foundation under
ITR Grant No. 0205288. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the view
of the National Science Foundation (NSF).
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7   Conclusion and Future Work  
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Abstract. Advances in SAT solver technology have enabled many automated
analysis and reasoning tools to reduce their input problem to a SAT problem, and
then to use an efficient SAT solver to solve the underlying analysis or reasoning
problem. The solving time for SAT solvers can vary substantially for semantically
identical SAT problems depending on how the problem is expressed. This prop-
erty motivates the development of new optimization techniques whose goal is to
produce more efficiently solvable SAT problems, thereby improving the overall
performance of the analysis or reasoning tool.

This paper presents our experience using several mechanical techniques that
enable the Alloy Analyzer to generate optimized SAT formulas from first-order
logic formulas. These techniques are inspired by similar techniques from the field
of optimizing compilers, suggesting the potential presence of underlying connec-
tions between optimization problems from two very different domains. Our ex-
perimental results show that our techniques can deliver substantial performance
improvement results—in some cases, they reduce the solving time by an order of
magnitude.

1 Introduction

In recent years, dramatic advances in the capabilities of SAT solvers have made them
an attractive target for model checkers and other automated reasoning systems [13, 3,
14, 24]. The standard approach is to automatically generate a SAT problem, invoke the
SAT solver to produce a solution, then transform the SAT solution back into a solution
for the initial problem.

The efficiency of this approach depends largely on the efficiency of the SAT solver.
However, the SAT solving times can vary by significant factors for semantically identi-
cal SAT problems depending on the precise formulation of the SAT problem [7]. This
suggests that appropriately optimizing the generated SAT problems may significantly
improve the overall performance of systems that use SAT solvers.
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This paper presents our experience with several techniques that are designed to opti-
mize the SAT problems generated by the Alloy Analyzer [10, 12]—a tool that analyzes
declarative specifications by translating them into boolean formulas. Our techniques
transform a given Alloy specification into an equivalent Alloy specification that induces
faster analysis. These transformations are mechanical and therefore suitable for inclu-
sion in an automatic SAT problem generator. Our experimental results show that our
techniques can substantially reduce the solving time for a set of benchmark problems
from the standard Alloy distribution and previous case studies. The speed-ups range
from a low of 1.04X to a high of 14.52X (it is 14.52 times faster to translate and solve
the optimized version than the unoptimized version).

Conceptually, our set of transformations draws heavily on techniques from the field
of optimizing compilers [2]. We have developed analogs of standard optimizations such
as loop unrolling, loop fission and fusion, loop-invariant code motion, common subex-
pression elimination, constant propagation, and algebraic simplifications. Like their
standard compiler optimization counterparts, the goal of these transformations is to re-
duce the amount of work that the execution engine (the microprocessor or SAT solver)
must perform.

We investigated the effect of applying a range of transformations on a suite of bench-
mark problems. The initial results showed that the most effective transformations were
those that focus on formulas that were universally quantified and expressions that use
transitive closure. We have implemented these transformations in our prototype tool.
The tool allows the user to select a sequence of optimizations which it then applies
fully automatically on the given model.

The ostensible purpose of our transformations is to provide an Alloy solver with
improved performance. To this end, our transformations focus on specific Alloy con-
structs (such as transitive closure and quantified formulas) that are responsible for the
vast majority of the SAT solving time. (Note the recurring analogy with traditional
compiler optimizations, which often focus on loops because programs tend to spend
much of their time in loops.) Despite our focus on Alloy constructs, we expect many of
the general patterns we exploit in Alloy problems to show up in other domains, which
makes our techniques ripe for incorporation into a range of systems that automatically
generate SAT problems.

One intriguing aspect of our system is that SAT solvers are a substantially more
complex compilation target than the microprocessors that are the traditional compilation
targets. In particular, microprocessors often have an available performance model that
the compiler writer can use to guide the optimization decisions. The performance of
SAT solvers, in contrast, is much less well understood. There are two heuristics in the
field: reducing the number of variables tends to reduce the solving time (presumably
because it reduces the search space that the SAT solver must explore) and increasing the
number of constraints also tends to reduce the solving time (again because it reduces
the search space). These are just heuristics so do not hold always [7]. Interestingly
enough, one of our performance-improving transformations (constant subexpression
elimination) also increases the number of variables. This fact illustrates the need to
explore a variety of transformations, not just transformations that are consistent with
the current understanding of the performance of SAT solvers.
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It is worth emphasizing that the optimizations we propose translate Alloy models
into equivalent Alloy models that enable faster analysis—we do not present how to op-
timize SAT solvers in general. Our approach is inspired by compiler optimizations and
can be extended to various other SAT-based techniques, such as bounded model check-
ing [4, 24]. In fact, our approach is not limited to SAT. Any technique that translates a
more complicated logic to a simpler logic for reasoning purposes has the potential to
benefit from our compiler analogy. As the use of decision procedures becomes more
and more popular, we hope this can get more attention from the research community.

This paper makes the following contributions:

– Optimization Concept: It introduces the concept of mechanically transforming
problems to improve the solving time of the resulting automatically generated SAT
problems.

– Transformations: It presents a precisely defined set of transformations that opti-
mize the SAT problems that the Alloy Analyzer generates.

– Implementation: It presents our implementation, which allows the user to select a
sequence of transformations that are then applied fully automatically.

– Experimental Results: It presents experimental results that characterize the effec-
tiveness of our optimized SAT problem generator. The results show that our tech-
niques can substantially decrease the solving time for the generated SAT problem.

2 Example

This section illustrates some performance gains that compiler optimizations can provide
for SAT-based constraint solving. We present a simple example that models in Alloy a
singly-linked acyclic list. We formalize three different constraints that specify acyclic-
ity. We then use the Alloy Analyzer to check that these formulations are equivalent. We
re-write the model by applying our optimizations and illustrate how they enable faster
analysis. We describe essentials of Alloy as we introduce them. Section 3.1 describes
Alloy in more detail.

The following Alloy code declares a list:
sig List {

header: option Entry }

sig Entry {
next: option Entry }

Each list has a header entry, and each entry has a next entry. The keyword sig

introduces signatures, i.e., basic sets/types. Fields in signature declarations introduce
relations. The field header, for example, introduces the relation header: List ->

Entry. Further, the keyword option constrains this relation to be a partial function.
The following three Alloy functions use various Alloy constructs to state the acyclic-

ity constraint:
fun Acyclic1(l: List) {

all e: l.header.*next | e !in e.ˆnext }

fun Acyclic2(l: List) {
no l.header || (some e: l.header.*next | no e.next) }

fun Acyclic3(l: List) {
no e: l.header.*next | e -> e in ˆnext }
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The dot operator (‘.’) represents relational join. Alloy allows intuitive path expres-
sions that use transitive closure (‘ˆ’) and reflexive transitive closure (‘*’). For example,
l.header.*next denotes the set of all entries reachable along the next field from the
header entry of the list l.

Acyclic1 uses universal quantification (‘all’), negation (‘!’), and set membership
(‘in’) to state that it is not possible to start a traversal from any list entry and follow one
or more fields to get back to the same entry. Acyclic2 uses existential quantification
(‘some’) and states that the list is either empty or contains an entry that is reachable
from the header and has no next entry. Acyclic3 uses cross product (‘->’) to state that
the transitive closure of next does not contain any self-loops.

To check equivalence of these definitions, we use the following assertion:
assert Equiv {

all l: List {
Acyclic1(l) => Acyclic2(l)
Acyclic2(l) => Acyclic3(l)
Acyclic3(l) => Acyclic1(l) } }

check Equiv for 6

The check command instructs the Alloy Analyzer to try to generate a counterexample
to the given assertion, i.e., a list l that does not satisfy the (implicit conjunction of)
implication formulas. The analyzer performs the analysis within the given scope—a
bound on the universe of discourse. In this example, a scope of 6 states that the number
of elements in each basic set (known also as “atoms in the signature”) should be at most
6, i.e., at most 6 Entry and Object elements.

The analyzer takes 199.91 seconds to check Equiv and reports that no counterex-
ample exists for this assertion. We next illustrate how compiler optimizations could
improve the analyzer’s performance.

Our first optimization is inspired by common subexpression elimination (CSE) [2].
Note that the transitive closure operator (‘ˆ’) appears in the formula body of Acyclic1
and also of Acyclic2. A naive translation of our Alloy assertion to a boolean formula
would translate each of these expressions independently. However, they represent the
same value and we can apply CSE.

The CSE transformation adds a new state component in our model: it introduces a
new field, nextPlus, in the declaration of Entry and constrains it to be the transitive
closure of next.

sig Entry {
next: option Entry,
nextPlus: set Entry }

fact { nextPlus = ˆnext }

Each fact specifies a constraint that all solutions to the model must satisfy. We next
replace each occurrence of ˆnext in the functions with nextPlus. The analyzer now
takes 138.03 seconds to check Equiv and (as before) reports no counterexample. It is
worth pointing out that by applying an optimization that adds a new state component
and is therefore seemingly counter-intuitive (since it increases the size of the underlying
state space), we have achieved a reduction in the solving time.

The above optimization factors out the transitive closure operation. We can, in fact,
represent the closure directly by its definition; for our example, in the scope of 6, we
can unroll the closure with respect to this scope and replace the above fact with:
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fact { nextPlus = next + next.next + next.next.next + next.next.next.next +
next.next.next.next.next + next.next.next.next.next.next }

where ‘+’ denotes set union in Alloy.
For a given scope, we can also unroll some quantified formulas, besides unrolling

the definition of the transitive closure. In particular, we can unroll the formulas, such as
all e: l.header.*next | e !in e.ˆnext, where the quantified variable ranges
over a path expression. (Section 4.1 presents the details of unrolling.) We next apply
the loop unrolling transformation, which automatically unrolls all three definitions of
acyclicity with respect to scope 6, and check the assertion. The analyzer now takes
only 15.84 seconds to check Equiv and (as before) reports no counterexample. It is
worth pointing out that as a result of this series of optimizations, the Alloy-to-CNF
compilation time has gone up from 0.75 seconds to 1.13 seconds; however, in the same
time, the SAT-solving time has gone down from 199.16 seconds to just 14.71 seconds.

In summary, even this simple example shows a good potential for optimization: by
applying common-subexpression elimination and loop unrolling, we obtain a reduction
of more than 92% in the total time to check the formula, i.e., a 12X speedup!

3 Background

This section gives a brief overview of Alloy and SAT technology; following the com-
piler analogy, Alloy is our input language, and SAT is the target language. We also
discuss some of the optimizations that already exist for generating boolean formulas
that are likely to induce efficient solving.

3.1 Alloy

Alloy [10] is a first-order declarative language based on sets and relations. The Alloy
Analyzer [12] is a tool for automatically analyzing models written in Alloy. The ana-
lyzer translates Alloy models into boolean formulas and uses off-the-shelf SAT tech-
nology to solve the formulas. Following the compiler analogy, the analyzer consists of
the following: a front-end that parses Alloy models into an intermediate representation
(IR), a set of optimizations on this IR, and a back-end that translates IR into boolean
formulas.

Each Alloy model consists of data (i.e., several sets and relations), several facts (i.e.,
formulas that put constraints on the data) and an assertion (i.e., a formula to check on
the data). These formulas can be structured using functions (i.e., parameterized formu-
las that can be invoked elsewhere), which the analyzer inlines into the facts and the
assertion. Additionally, each analysis specifies a scope (i.e., a bound on the size of ba-
sic sets within which to check the formulas). The analyzer translates a conjunction of
all facts and the negation of the assertion into a boolean formula such that the boolean
formula has a solution iff there are some sets and relations that satisfy all the fact and
the negation of the assertion (thus providing a counterexample for the assertion).

Alloy is a relational language; every expression in Alloy denotes a relation (or a set
in the case of a relation of arity one). Even the scalars are represented as singleton sets.
More details of the Alloy language are available elsewhere [10].
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3.2 SAT

Given a propositional formula over a set of boolean variables, the boolean Satisfiability
Problem (SAT) asks whether there exists a variable assignment that makes the formula
evaluate to true. SAT is a classical NP-Complete problem; therefore, it is unlikely that
there is a polynomial algorithm for solving the SAT problem. However, due to its prac-
tical importance in areas such as theorem proving, formal verification, and AI planning,
much research effort has been put into developing efficient algorithms for solving SAT
problems. Although in the worst case these algorithms require exponential time, in prac-
tice current state-of-the-art SAT solvers can often determine the satisfiability of boolean
formulas with tens of thousands of variables in a reasonable amount of time [27].

Modern SAT solvers determine the satisfiability of a formula by systematically
searching the entire boolean space of the formula. They typically require the input
formula to be in the Conjunctive Normal Form (CNF), i.e., a conjunction of clauses,
where each clause is a disjunction of literals. A literal is either a positive or negative oc-
currence of a boolean variable. Some recent SAT solvers can operate without the CNF
requirement [8], but the Alloy Analyzer translates all formulas into CNF.

Applications that use SAT as the reasoning engine often look like compilers. They
take the domain-specific description of the problem as input and translate it into a
boolean formula or a sequence of formulas. The formulas are then given to a SAT
solver to determine their satisfiability, and the results are fed back to the application to
extract meaningful information for the user to understand. For some applications such
as circuit verification [17], translation to SAT is straightforward. On the other hand, for
applications such as checking the Alloy models, the translation is not trivial [12]. In
these applications, different translations of a high-level description may greatly influ-
ence the time it takes to solve the output boolean formula.

3.3 Existing Optimizations

There are many heuristics and optimizations developed for making SAT solving effi-
cient in real-world applications. For example, there are several SAT pre-processors [16,
23] that can take a SAT instance and transform it into another form that the SAT solver
can easier solve. These transformations happen at the propositional formula level, i.e.
after the actual translation has been done. These low-level formulas make it harder or
impossible to detect optimizations that can be applied at the higher-level, before the
translation. Some researchers tried to influence the output with different translations.
For example, Velev [25, 26] tried different encodings of circuit structures for efficient
microprocessor verification. Seshia et al. [20] evaluated different encodings for decid-
ing separation logic and proposed a hybrid approach.

Translation has also been studied in the context of Alloy, and the analyzer includes
several optimizing translations. Symmetry breaking [21] conjoins new boolean con-
strains with the input formula to direct the SAT solver’s search on non-isomorphic in-
stances. Efficient encoding of (partial) functions [24] replaces the general translation
for Alloy relations with a specialized, tighter translation that targets partial functions.
Type-based reduction of the number of variables [6] introduces subtyping in Alloy and
assigns individual scopes to the subtypes, which partition their supertype, to reduce the
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overall search space. Narain [19] provides three guidelines for manual rewriting of Al-
loy models to obtain a more efficient analysis but does not consider automation of these
rewritings.

A key difference of our work from the previous work is that our optimizations are
automatic and at the level of Alloy: they transform an Alloy model to an equivalent Al-
loy model (without requiring a new type system) that is likely to induce faster solving.
This allows our optimizations to be employed in conjunction with existing optimiza-
tions in a seamless fashion, thereby increasing the overall performance gain.

4 Optimizations

This section presents some of the optimizations that are applicable to Alloy models.
These optimizations are either inspired by or lifted directly from the optimizing com-
piler literature. We present the following optimizations:

– loop-invariant hoisting (LIH)
– loop fusion (LFU)
– loop unrolling (LUR)
– common subexpression elimination (CSE)
– algebraic transformations (AT)
– partial evaluation (PE)

4.1 Loop Optimizations

Quantifiers (and transitive closure) in Alloy serve a similar purpose as loops in im-
perative programs. We therefore apply several standard loop optimizations to Alloy
formulas that use quantifiers. Each quantified formula introduces a quantified variable
(analogous to a loop-index variable) that ranges over some set (analogous to the set of
values for the loop index) and has a body formula (analogous to the body of the loop).

Loop-Invariant Hoisting (LIH). This optimization first identifies those subformulas
in a body of a given quantified formula that do not depend on the quantified variables
and then moves these subformulas out of the quantifier scope. For example, in the Al-
loy formula all n: Node | (some Node || n !in n.ˆnext), the subformula
some Node is independent of the variable n. Moving the subformula outside of the
quantification gives the formula some Node || all n: Node | n !in n.ˆnext.
This optimization does not give a substantial speedup if the hoisted subformula is much
simpler than the rest of the body.

Loop Fusion (LFU). Just as the standard loop fission and fusion optimizations split
or merge loops (to make them parallelizable or eliminate the overhead of checking
branches), we can split or merge several Alloy quantifiers that range over the same set.
For example, the Alloy formulas (all n: N | F1(n)) && (all n: N | F2(n))

and (all n: N | (F1(n) && F2(n))) are semantically equivalent. It turns out,
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however, that there can be a significant difference in the solving time for these for-
mulas. We have thus implemented loop fusion in the Alloy Analyzer.

Loop Unrolling (LUR). This optimization targets quantified Alloy formulas where the
quantified variables range over some path expression. For instance, the example sec-
tion shows the formula all e: l.header.*next | e !in e.ˆnext. We illustrate
how such formulas can be completely unrolled for all elements from l.header.*next.

Consider the general formula all x: E | F , where E is an expression of some
basic type/set α, and F is the quantified formula that depends on the variable x. An op-
erational reading of this formula would first evaluate E to some set {a1, . . . , ak} ⊆ α
and then check F for each ai substituted for x, i.e., F [ai/x]. However, Alloy formulas
need to be translated into declarative SAT, so the translation does not follow the opera-
tional view. Instead, the analyzer must translate this formula under the assumption that
E can evaluate to any subset of α, i.e., in the general form

∧
a∈α a ∈ E ⇒ F [a/x]. The

analyzer does not use the general form directly, but applies several optimizations [9].
Consider the special case where the analyzer can statically enumerate the elements

{a1, . . . , ak} that E evaluates to in some scope. It can then translate all x: E | F

into the Alloy formula F(a1) && . . . && F(ak). Universally quantified formulas
translate into a conjunction; existentially quantified formulas analogously translate into
a disjunction: some x: E | F translates into F(a1) || . . . || F(ak).

A common pattern in Alloy formulas is to quantify over path expressions. For such
expressions, we cannot enumerate the elements in the set, but we can represent them
using the equality on reflexive transitive closure, expressed in Alloy for the example
next relation: *next = iden[Node] + next + next.next + ... + nexts−1,
where s is the scope for Node. (A similar equality also holds for transitive closure:
ˆnext = next + next.next + ... + nexts.)

The relations in the path expressions are often (partial) functions, e.g., when mod-
eling fields of object-oriented programs [24]. If next is a partial function, n.next
denotes a set with at most one element when n denotes a set with at most one element.
The Alloy formula some n holds iff the set denoted by n is not empty. In the case
of n.next, some n.next holds iff n denotes a singleton set, which in Alloy repre-
sents a scalar. We can therefore translate all n: l.header.*next | F(n) into the
following conjunction:
some l.header => F(l.header)
some l.header.next => F(l.header.next)
...
some l.header.nexts−1 => F(l.header.nexts−1)

where the guard some n ensures that we preserve the semantics of Alloy in this transla-
tion. In the general case, next could be an arbitrary relation, and the translation would
need to use one n (instead of some n) to specify that n has exactly one element. How-
ever, the translations of some n and one n into boolean formulas differ significantly,
and the translation of some n is much more efficient than one n.

Similarly, we can translate some n: l.header.*next | F(n) into the disjunc-
tion of (some l.header.nexti && F(l.header.nexti)) for 0 ≤ i ≤ s − 1.

To illustrate an application of loop unrolling, let us reconsider the list declaration
from Section 2 and checking the equivalence of formulas for acyclicity. We can apply
loop-unrolling to rewrite Acyclic1 as:
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fun Acyclic1(l: List) { // all n: l.header.*next | n !in n.ˆnext
some l.header => l.header !in l.header.ˆnext
some l.header.next => l.header.next !in l.header.next.ˆnext
some l.header.next.next => l.header.next.next !in l.header.next.next.ˆnext
some l.header.next.next.next =>
l.header.next.next.next !in l.header.next.next.next.ˆnext

some l.header.next.next.next.next =>
l.header.next.next.next.next !in l.header.next.next.next.next.ˆnext

some l.header.next.next.next.next.next =>
l.header.next.next.next.next.next !in l.header.next.next.next.next.next.ˆnext }

Our implementation of LUR automatically determines whether it is legal to apply
LUR to each loop and applies LUR whenever legal.

4.2 Non-loop Optimizations

We next present the optimizations that do not target quantified Alloy expressions.

Common Subexpression Elimination (CSE). This is a standard compiler optimization
that replaces the evaluation of N identical expressions with (1) one evaluation whose
result is stored and (2) N − 1 reads of the stored result. This optimization effectively
trades the space that stores the result for the time to recompute the expressions. Alloy
has no operational computation, but it is still desirable to save and reuse results. Others
have observed this effect, and the back-end of the Alloy Analyzer actually implements
a sophisticated optimization that detects and exploits sharing of subformulas during
the translation of quantified Alloy formulas into boolean formulas [22]. However, our
results (Section 5) show that a substantial amount of sharing can be detected even in the
front-end, at the level of Alloy, before the translation to SAT.1

Algebraic Transformations (AT). Alloy expressions offer numerous opportunities for
applying algebraic transformations, i.e., using the equational rules of the relational al-
gebra that underlies the Alloy semantics to replace selected expressions with equivalent
rewritten expressions. For example, one such rule is that the transitive reflexive closure
is idempotent: **next = *next for all relations next. Our anecdotal experience in-
dicates that Alloy users sometimes write (typically by making a typographic mistake)
such expressions that can be significantly optimized. For example, replacing **next

with *next in the formula **next = iden[Node] + ˆnext reduces the checking
time by 2X (in scope 7).

Algebraic transformations also apply to the models discussed in Section 5. More-
over, even the transformations that produce expressions of similar complexity, and thus
do not look profitable by themselves, can enable the profitable application of other
optimizations. For example, one of the algebraic rules is that transpose and reflexive
transitive closure commute for example, *˜next = ˜*next. Our implementation ap-
plies this rule as a rewrite from left to right to enable CSE to detect more common
subexpressions that contain transitive closures.

Partial Evaluation (PE). Partial evaluation is a standard optimization technique for
evaluating expressions at compile-time. It generalizes constant folding (which evaluates

1 We have recently found that we can obtain some of the CSE speed-up by adding to the Alloy
model new fields that trigger the existing sharing, without performing the whole CSE.
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only basic operations on constant arguments). We illustrate partial evaluation for Alloy
models on the following function adapted from [11]:

fun modifies(pre, post: State, mods: set Ref) {
(all r: Ref - mods | F2) &&
(all r: mods | F1) &&
F3 }

This function is a part of the model that specifies state transitions. Specifically,
modifies expresses the general constraint that a transition from the pre state to the
post state can modify only references in the set mods. Each specific transition instan-
tiates the generic function with the appropriate value for mods. Transitions that do not
modify any reference thus instantiate mods with the empty set: modifies(s, s’,

none[Ref]), where none[Ref] represents the empty set.
This constant argument offers the opportunity to partially evaluate modifies. We

can clone modifies and specialize the copy for the empty set: Ref - mods evaluates
to Ref, and the whole second quantification evaluates to true:

fun modifiesEmpty(pre, post: State) {
(all r: Ref | F2) &&
F3 }

We then replace the calls involving the empty set with modifiesEmpty(s, s’). Stan-
dard partial evaluation usually involves cloning of functions. However, the translation
of Alloy already inlines all functions2 so we can instead specialize the inlined formulas.

Although this optimization in theory bears great potential, we found that it is rarely
applicable in Alloy models, so we did not implement it. Our experiment with manual
application of PE showed a speed-up of 1.16X for the analysis of the model Views [11].

5 Experiments

This section presents the performance results for several Alloy models taken from the
Alloy distribution (http://alloy.mit.edu/) and from previous case studies that
used Alloy models. We evaluate the effectiveness of the optimizations by using our
implemented Alloy transformation system to automatically apply the optimizations to
these models. We report the total time that the Alloy Analyzer takes to compile and
solve the original and optimized models.

We have implemented our optimizations by changing the Java source code of the
Alloy Analyzer version 2.0. (The most recent version is 3.0; we have modified 2.0
because 3.0 was unstable when we had started implementing the optimizations.)

We performed all experiments on a Linux machine with a 1.8 GHz Pentium 4 pro-
cessor using Sun’s Java 2 SDK 1.3.1 JVM. We used our modified Alloy Analyzer and
the mChaff [18] SAT solver.

2 Alloy does not support recursive functions, because it needs to generate SAT formulas. Hence,
non-termination of inlining or partial evaluation is not an issue.
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Table 1. Benchmark models

model description solving (#solutions) optimizations #ncnb

List from the example section satisfiability (0) CSE, LUR 21
Types soundness of Java type system satisfiability (0) CSE 106
INS dynamic networks satisfiability (0) AT, CSE, LUR 117
ProtonId patient identity for proton machine satisfiability (0) AT, LFU, CSE 164
Life game of life satisfiability (1) AT, LFU, CSE 88
NetConf network configuration satisfiability (1) LUR 192
BinTree binary search trees enumeration (1430) LFU, CSE 62
RedBlack red-black trees enumeration (35) LFU, CSE, LUR 115

5.1 Benchmarks

Table 1 lists the benchmark models that we use to evaluate our optimizations:

– List models singly linked-lists as described in Section 2. It checks the equivalence
of the three definitions of acyclicity.

– Types [6] models a part of the Java type system and checks its soundness by check-
ing a subject reduction theorem: statement executions preserve the correspondence
between run-time types and the compile-time types.

– INS [14] models the key data structures and algorithms of the Intentional Nam-
ing System [1], a resource discovery and service location architecture for mobile
networks. It checks partial correctness of these algorithms.

– ProtonId [6] models the tracking of patients in a (proton) radiotherapy facility. It
checks that patients are correctly identified.

– Life [22] is a model of Conway’s game of life. It simulates multi-step executions
of the game on a variable size grid.

– NetConf [19] is a complex Alloy model for network configuration management. It
builds network configurations that satisfy given management policies.

– BinTree models simple binary search trees [5, 15].
– RedBlack models red-black trees [5, 15], which implement balanced binary search

trees. The last two models enumerate all appropriate trees within a given size.

For each model, we list whether we are just checking satisfiability (i.e., looking for
one solution or showing that none exists) or enumerating all possible solutions (which
is, for instance, useful in testing [15]). We also list the optimizations that are applied
to get from an original model to an optimized version. We finally show the number of
non-comment non-blank lines in each original model. This is a simple illustration of
the model size and not a measure of the model complexity. (It may be a measure of the
complexity of developing the model but not solving the model.)

5.2 Results

Table 2 summarizes the results that we obtain by applying the optimizations to the
different models. For each model, we present corresponding sets of data for both the
original (unoptimized) version and the optimized version. We report the number of
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Table 2. Comparison of analyses for models with and without optimizations

unoptimized optimized
model indep. vars total vars clauses time indep. vars total vars clauses time speed-up

List 150 3686 19113 199.92 204 4068 20075 15.85 12.61
Types 1888 82713 381816 4.30 2088 77672 357334 3.49 1.23
INS 1295 75725 728022 1208.47 1511 76176 727564 83.21 14.52
ProtonId 1370 37566 237175 3.97 1514 37938 238227 3.83 1.04
Life 351 38312 188423 51.71 927 35844 186088 27.61 1.87
NetConf 770 44848 415018 10.36 770 44700 414574 8.19 1.26
BinTree 146 4504 20064 39.93 274 4056 19024 28.39 1.41
RedBlack 263 7662 34472 136.22 361 7459 34230 27.30 4.99

independent variables in the translated boolean formula, the total number of variables
and clauses in the CNF formula, and the time (in seconds) it takes to check (i.e., translate
and solve) the formula. We also present the speed-up resulting from the optimizations.

The models for List, Types, INS, and ProtonId all check an assertion; the scopes
were set to 6, 12, 6, and 6, respectively. The analyzer does not find any counterexam-
ple. For Life and NetConf, the analyzer generates a solution (a simulation of the game
and an appropriate network configuration, respectively). We present the time to find
the first solution in both the unoptimized and the optimized versions. We used a scope
of 12 for Life and a varying scope for different network elements in NetConf (from 4
security tunnels to 6 routers to 12 interfaces). For BinTree and RedBlack, we present
the times the analyzer takes to enumerate all corresponding trees with 8 and 7 nodes,
respectively. For Types, INS, and Life (all of which are available as models in the Alloy
distribution), we ran the analyzer using the maximum scopes for which those models
were previously analyzed (as stated in the distribution files). For other models (which
are not yet a part of the standard Alloy distribution), we chose sizes that are representa-
tive from previous case studies [6,15,19]. The performance results indicate the benefits
of applying optimizations, both for determining the satisfiability of boolean formulas
and for enumerating all solutions.

In all cases the optimizations produce a performance improvement. The speed-up
varies from 1.04X to 14.52X. We point out that the optimizations do not necessarily
decrease the number of variables (whether independent or total) or increase the number
of clauses. In fact, for INS (for example) the optimizations both increase the number of
(independent and total) variables and decrease the number of clauses. Nevertheless, the
benchmark still exhibits a more than 10X speed-up.

Note that we obtain the maximum speed-up on one of the most complex models
(INS). INS models recursive algorithms that were implemented in Java [14], which re-
quires non-trivial fixed-point computations to be expressed in Alloy. Several researchers,
including the first two authors of this paper, analyzed this model in various projects [14,
6, 22]. During these projects, the model was optimized (by both manual rewriting and
some automatically applied SAT-generation optimizations) to reduce the solving time.
Based on our previous experience with this model, it came as a great surprise to us that
it was possible to obtain such a substantial speed-up. We hypothesize that more com-
plex models would indeed benefit the most from systematic compiler optimizations, in
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part because the complexity of the model inhibits the manual application of large-scale
transformations such as loop unrolling.

We next discuss how different optimizations contribute to the speed-up. For Types
and NetConf, the entire speed-up comes from a single optimization—CSE for Types
and LUR for NetConf. For List, the overall speed-up is split between CSE and LUR as
33.6% for CSE and 66.4%, for LUR. For INS, the overall speed-up is split between AT,
CSE, and LUR as 2.8%, 98.4%, and -1.2%, respectively. In other words, applying all
optimizations (AT, CSE, LUR) to INS does not give the best speed-up; namely, applying
just AT and CSE, without LUR, gives 17.34X speed-up over the unoptimized version!
This problem is well-known for the compiler optimizations: the “optimizations” are
heuristics that improve the code in most cases but can also degrade the code in some
cases. Choosing the best set of optimizations to apply (and the best order in which to
apply them) is an open research problem in compiler community. We plan to investigate
this problem in the context of Alloy.

Our experiments include the change in the compilation time that results from the
automatic application of the optimizations. Specifically, the time that we present is the
sum of execution times of three parts: (1) the compilation time that includes the time
required to parse the Alloy model and apply the optimizations, (2) the translation time
required to translate the (optimized) model into a boolean formula, and (3) the SAT
solving time. For the original models, the compilation time ranges from 0.39 sec (for
List) to 2.55 sec (for RedBlack), and the translation time ranges from 0.35 sec (for
List) to 1.52 sec (for Types). With all our optimizations, the compilation time increases
by at most 0.24 sec (for List), and the translation time increases by at most 0.37 sec
(for NetConf).3 Some optimizations even decrease the total compilation time as also
observed in other compilation projects [22]. Our results indicate that the compilation
and translation times in the experiments were negligible in comparison with the SAT
solving time, so even a small increase in the compilation and translation times can be
easily outweighed by a decrease in the SAT solving time.

5.3 Discussion

The experiments indicate that the most beneficial optimizations are common subex-
pression elimination and loop unrolling. The most commonly factored out expressions
were those that were based on transitive closure. Indeed, loop unrollings also involved
formulas that used (quantified expressions with) transitive closure. Alloy specifications
often use transitive closure and quantifiers. These constructs tend to be heavily used
since they are the source of much of Alloy’s expressive power (as compared to first-
order logic without transitive closure or relational queries without quantification) [10].
These Alloy constructs are also analogous to loops in code. Solving formulas with these
constructs, however, is expensive. Our experience indicates that, in much the same way
that the optimizations in a regular compiler focus on the most expensive parts of the

3 Due to our unfamiliarity with the details of the analyzer, our modified version does not translate
the internal representation of the model after optimizing it. Instead, our version parses the
model, optimizes it, then pretty-prints it and parses it again. Our times do not include pretty-
printing and reparsing, since an actual implementation would not have these two steps.
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code (i.e., the inner loops), the Alloy compilation should focus on the most expensive
constructs (i.e., quantified formulas and formulas involving transitive closure).

It is worth pointing out that we use the analyzer to check the partial correctness of
our optimizations. It is conceivable that our optimizations, because of a compiler bug,
could incorrectly create optimized models that are not equivalent to the original models.
To check the (partial) correctness, we employ two techniques: (1) we check the equiva-
lence of the original and optimized formulas (using the analyzer) and (2) we enumerate
all solutions to the original formula and all solutions to the optimized formulas and
compare the number of solutions. Even though the second technique does not, in gen-
eral, check equivalence of the formulas, it increases our confidence in the correctness
of the translation and tends to complete more quickly than the first technique. We there-
fore use it when the first technique times out. Note that determining the equivalence of
boolean formulas, which are our compilation target, is decidable. In regular compilers,
on the other hand, determining the equivalence of the unoptimized and optimized code
is undecidable in general.

6 Conclusions

In many situations, the performance of an analysis or reasoning tool is the critical factor
that determines its utility to the user or the size of the problem that it can meaningfully
address. Reduction to SAT is an increasingly popular solution technique. Previous re-
sults, as well as ours, show that the overall performance of the system depends not only
on the inherent capabilities of the underlying SAT solver, but also on how the problem
is expressed: semantically identical SAT problems have widely varying solving times.

We have presented a set of mechanical transformations that, for Alloy model check-
ing problems, can substantially reduce the SAT solving time. As currently formulated,
these transformations apply specifically to Alloy models. However, they all have direct
analogs in the field of traditional compiler optimizations, and we anticipate that other
researchers should be able to apply similar optimizations to their systems. The overall
result should be a substantial improvement in the performance of systems that use SAT
solvers to solve important analysis and reasoning problems.
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Abstract. Many current local search algorithms for SAT fall into one of
two classes. Random walk algorithms such as Walksat/SKC, Novelty+
and HWSAT are very successful but can be trapped for long periods
in deep local minima. Clause weighting algorithms such as DLM, GLS,
ESG and SAPS are good at escaping local minima but require expen-
sive smoothing phases in which all weights are updated. We show that
Walksat performance can be greatly enhanced by weighting variables
instead of clauses, giving the best known results on some benchmarks.
The new algorithm uses an efficient weight smoothing technique with no
smoothing phase.

1 Introduction

Local search algorithms have a long history in combinatorial optimization. In
recent years they have been applied to SAT problems, usually by treating them
as MAX-SAT and trying to minimise the objective function (the number of
clause violations) to zero. Local search for SAT has steadily improved and is an
active area of research.

Some local search algorithms fall into the category of random walks, which
were a significant advance over earlier successful algorithms such as GSAT [26]
and those of Gu [10]. The best-known such algorithm is Walksat [17, 25] which
has a number of variants. Walksat/G randomly selects a violated clause then
flips the variable (reassigns it from true to false or vice-versa) that minimizes
the total number of violations. Walksat/B selects flips that incur the fewest
breaks (non-violated clauses that would be violated by the flip). Both select a
random variable in the clause (a random walk move) with probability p (the
noise parameter). Walksat/SKC (Selman-Kautz-Cohen) is a version of B that
allows freebies to override the random walk heuristic. Freebies are flips that incur
no breaks, and if at least one freebie is possible from a violated clause then a
random one is always selected. HWSAT [8] is a version of G that breaks ties by
preferring the least recently flipped variable, based on a similarly modified GSAT
called HSAT [7]. Novelty and R-Novelty use similar but more complex criteria.
These were later elaborated to the Novelty+ and R-Novelty+ variants [12] that
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use occasional random walk steps to avoid stagnation, and are among the most
competitive local search algorithms. In TABU search [13, 15, 17] variables that
were flipped less recently than a threshold number of flips ago (the tenure) cannot
be flipped. The tenure replaces the noise parameter of random walk algorithms.
In the Iterated Robust Tabu Search (IRoTS) algorithm [27] variables that have
not been flipped for a given period are automatically flipped to avoid stagnation.

Some problems defeat random walk algorithms, but are solved quite easily by
an alternative form of local search based on clause weighting . These algorithms
modify the objective function during search. They attach a weight to each clause
and minimize the sum of the weights of the violations. The weights are varied
dynamically, making it unlikely for the search to be trapped in local minima.
Clauses that are frequently violated tend to be assigned higher weights. An early
SAT algorithm of this form was Breakout [19] which increments violated clause
weights at local minima. A similar approach was used in the later WEIGHT
algorithm [2], and variants of GSAT increment weights at local minima [24]
or at each flip [4], and may allow weights to slowly decay [5]. The Discrete
Lagrangian Method (DLM) [34] periodically smooths the weights to reduce the
effects of out-of-date local minima, and is based on the Operations Research
technique of Lagrangian relaxation. MAX-AGE [28] is a simplified DLM with
fewer runtime parameters and new heuristics. Guided Local Search (GLSSAT)
[18] is related to DLM but differs in detail, and derives instead from work on
Neural Networks. Smooth Descent and Flood (SDF) [23] introduced the Machine
Learning technique of multiplicative weights, and was later elaborated to the
Exponentiated SubGradient (ESG) method [22]. The Scaling And Probabilistic
Smoothing (SAPS) algorithm [14] is related to ESG but uses a more efficient
smoothing mechanism. The Pure Additive Weighting Scheme (PAWS) [29] is a
version of SAPS that increases weights additively instead of multiplicatively.

Clause weighting algorithms are excellent at guiding local search out of local
minima by consulting the clause violation history. An interesting question is: can
we achieve a similar effect by consulting the variable flip history? This might
lead to useful new heuristics for random walk algorithms, and would have tech-
nical advantages discussed in Section 5. We shall describe new flip heuristics for
random walks that emulate clause weighting performance by maintaining vari-
able weights. Section 2 examines a simple additive heuristic for variable weights.
Section 3 describes a new smoothing technique for both clause and variable
weights that requires no smoothing phase, reducing runtime overheads. Section
4 evaluates an algorithm with smoothed variable weights. Section 5 discusses the
relative merits of variable and clause weighting, and future work.

2 Additive Variable Weighting

The usual rationale for clause weighting is that it escapes local minima by learn-
ing about features in that region of the search space. But recent evidence indi-
cates that this picture is flawed, and that clause weighting acts instead as a di-
versification mechanism [32]. This suggests that random walk algorithms should
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be able to emulate clause weighting performance by diversifying the selection of
variables in the flip heuristic. An obvious way to do this is to prefer variables
that were not flipped recently, but this is an old idea used in several algorithms.
HSAT, HWSAT, Novelty and R-Novelty prefer least-recently flipped variables,
the latter incorporating a tabu tenure of 1 flip. Tie-breaking flip heuristics were
added to GSAT and Walksat using a first-in-first-out rule [6]. The MAX-AGE
clause weighting algorithm prefers variables that were flipped longer ago than a
threshold number of flips. TABU forbids recently-flipped variables from being se-
lected, and IRoTS additionally flips variables that have not been flipped recently.
Flip heuristics preferring variables that were not recently flipped have been well
explored, yet they do not seem to compete with clause weighting heuristics in
their ability to escape local minima.

Might variable selection be improved by importing ideas from clause weight-
ing? To explore this idea we shall attach a dynamic weight to each variable
and experiment with heuristics for updating these weights. To the best of our
knowledge this is a new approach, though variable assignment (literal) weights
have been used before. In [16] a literal weighting heuristic was proposed to com-
bine local search with the DPLL backtracking procedure. When a local search
algorithm fails to solve a problem, literals that occur most often in violated
clauses are assigned higher scores, which can be used to guide DPLL in a proof
of unsatisfiability. In [35] a variant of Walksat for SAT (and MAX-SAT) weights
literals by analysing local minima during short runs. The aim is to estimate
the frequency of each assignment in (optimal) solutions, called pseudo-backbone
frequencies. These frequencies are used as weights in longer runs to guide initial
variable assignments, flip selection and violated clause selection. Some versions
of Guided Local Search also weight variable assignments, though not GLSSAT.

As a first experiment we add a new tie-breaking heuristic to Walksat/SKC:
select flip variables as usual, but break ties (among non-freebies) by preferring
the variable that has been flipped least often in the search so far; break further
ties randomly. Thus the weight of a variable is the number of times it has been
flipped, and we select variables with minimal weight as long as this does not
conflict with the SKC flip heuristic. We shall evaluate a C implementation of
the new algorithm, which we call VW1. Other algorithms used for comparison
are implemented in the UBCSAT system [30]. All experiments are performed on
a Dell 2.4 GHz Pentium 4 with SuSE Linux 9.1 kernel 2.6.

2.1 Experiments on Ternary Chains

The ternary chain problem Tk studied in [21, 33] contains clauses

v1 v2 v1 ∧ v2 → v3 . . . vk−2 ∧ vk−1 → vk

and has a single solution in which all variables are true. This highly artificial
problem can be solved in linear time by unit propagation, as in DPLL back-
tracking or hybrid local search algorithms such as Saturn [20] and UnitWalk
[11], and quite quickly by clause weighting (see below). Its interest lies in the
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fact that random walks solve Tk in a number of flips that is exponential in k.
Chain problems are intended to simulate the chains of variable dependency that
occur in some highly-structured, real-world problems, and to guide the design of
new local search techniques. One such technique is a preprocessing method for
adding a small number of redundant clauses [33], which makes chain and other
problems much easier to solve.

Why is this problem so hard for random walk? A random walk algorithm
selects a variable from a violated clause v̄i ∨ v̄i+1 ∨ vi+2. In a violated clause all
literals are false so vi = vi+1 = T while vi+2 = F . An unbiased random walk
selects a variable randomly from these three, so it is twice as likely to flip a
variable from true to false than vice-versa. The problem has a single solution in
which all variables take the value true, so it is twice as likely to move away from
the solution as toward it. (See [33] for a detailed analysis of this and related
problems.)

Figure 1 compares VW1 with five other local search algorithms on ternary
chains. Each point is the median number of flips over 1000 runs. Optimal values
of the SKC, HWSAT and VW1 random walk parameter p are used (found by
trying values 0.1–1.0 in steps of 0.1), similarly for the Novelty+ probability
parameter used to choose between variables in a clause, and the SAPS smoothing
parameter ρ. Novelty+ sets the random walk parameter p to a default value of
0.01. SAPS performance is reported to be robust under different values of its
other parameters, and a reactive version called RSAPS varies only ρ [14]. TABU
was used with a fixed tabu tenure of 10.

The graphs show that most algorithms scale exponentially. However, VW1
scales polynomially: on a log-log plot (not shown) its graph is a straight line.
SAPS also scales polynomially for k up to approximately 100, after which it scales
exponentially. It is unclear why this occurs, but we conjecture that multiplica-
tive weights cause small floating-point errors that erase long-term information.
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Fig. 1. Local search algorithms on ternary chain problems
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HWSAT and TABU use simpler forms of memory and scale only slightly better
than Novelty+, which scales slightly better than SKC. Surprisingly, increasing
the tabu tenure did not improve TABU. These problems seem to require a par-
ticular form of long-term memory currently provided only by clause and variable
weighting.

We propose ternary chains as a benchmark for clause and variable weighting
algorithms, and other techniques designed to escape local minima. However, it is
a very artificial problem so we will also evaluate variable weighting on common
SAT benchmarks.

2.2 Experiments on SAT Benchmarks

Next we compare SKC, Novelty+ and SAPS with VW1 on other problems.
Figure 2 shows results on selected SAT benchmark problems from the SATLib
repository.1 The figures shown are numbers of flips, taking medians over 100 runs.

instance SKC Novelty+ SAPS VW1

aim50-2.0-1 71933 318514 669 5510
aim50-2.0-2 10727 10338 520 4858
aim50-2.0-3 89040 361853 885 4684
aim50-2.0-4 57098 69040 603 5863
aim100-2.0-1 — — 4423 324847
aim100-2.0-2 — — 4898 221535
aim100-2.0-3 — — 2878 95709
aim100-2.0-4 — — 5044 175616
aim200-2.0-1 — — 488547 —
aim200-2.0-2 — — 181770 3655956
aim200-2.0-3 — — 298473 —
aim200-2.0-4 — — 506329 —

logistics.a 64866 46385 6288 36144
logistics.b 88186 54102 5472 25369
logistics.c 104610 81732 7578 37341
logistics.d 425746 117649 33781 183611

bw large.a 14459 5114 2208 8085
bw large.b 422723 100830 24649 87843
bw large.c 8154220 3631196 1904852 582056
bw large.d — 5093099 3807160 630464

ais6 891 5388 331 984
ais8 19306 123949 3996 18661
ais10 106752 1523002 18228 101157
ais12 1219293 — 141211 816645

f600 130625 65476 38159 148749
f1000 491262 360709 243377 939022
f2000 2536333 4086895 2849808 —

Fig. 2. Additive variable weighting on SAT benchmarks

1 http://www.cs.ubc.ca/˜hoos/SATLIB/
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Again optimal parameter values are used, and in these experiments we tune both
the ρ and α SAPS parameters using α values {1.1, 1.3, 2.0, 3.0}. Figures greater
than 107 flips are denoted by —.

– The AIM benchmarks [1] are random 3-SAT problems modified to be very
hard for random walk. They can be solved with polynomial preprocessing
so they are not intrinsically hard. Each instance i is denoted by aimn-r-i,
meaning that it has n variables and clause/variable ratio r. We use satisfiable
instances with clause-variable ratios of 2.0, which are known to be partic-
ularly hard for Walksat-style algorithms. Variable weighting greatly boosts
SKC performance so that VW1 outperforms SKC and Novelty+, though not
SAPS.

– On logistics planning problems VW1 lies between SKC and Novelty+ in
performance, and SAPS is again the best algorithm.

– On Blocks World (bw) planning problems VW1 is the best algorithm.
– On All-Interval Series (ais) problems VW1 is similar to SKC, beating Nov-

elty+ but beaten by SAPS.
– On large random 3-SAT problems (f) VW1 is the worst algorithm.

These results show that guiding random walks by variable weighting can greatly
boost random walk performance, though not on all problems. Our next step is
to import another important technique from clause weighting: smoothing.

3 Phased and Continuous Smoothing

Smoothing techniques for clause weighting algorithms considerably improve per-
formance. Smoothing can be adapted to variable weights, but current clause
weighting schemes use expensive smoothing phases in which all weights are ad-
justed to reduce the differences between them. As the number of clauses is of-
ten large, this is a significant overhead. We propose a cheaper method with no
smoothing phase that can be used for clause or variable weighting.

Smoothing reduces the effect of the earlier search history, placing more em-
phasis on recent events and adapting the search heuristics to the current search
space topology. Our smoothing technique does this as follows. Associate with
each variable v a weight wv, initialised to 0 and updated each time v is flipped
according to the formula:

wv ← (1 − s)(wv + 1) + s × t

where t denotes time (measured as the number of flips since the start of the
search) and a parameter 0 ≤ s ≤ 1 controls smoothing. Setting s = 1 causes
variables to forget their flip history: only a variable’s most recent flip has an
effect on its weight. Using weights for tie-breaking we obtain an HWSAT-like
heuristic. Conversely s = 0 causes wv to behave like a simple counter as in VW1,
so that every move in the history has an equal effect. Choosing s between 0 and 1
interpolates between these two extremes, causing older events to have smaller but
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non-zero effects. We call this continuous smoothing because smoothing occurs
as weights are updated, without the need for smoothing phases. It also requires
only the single s parameter, though when integrating it into a search algorithm
in Section 4 we find a further parameter necessary.

To compare phased and continuous smoothing we simulate the evolution of
weights during search. In this simulation there are three variables v1, v2, v3 that
are flipped during search. The search is divided into three parts. In the first part
v1 is flipped in 2

3 of the iterations and v2 in the remaining 1
3 , so variables are

flipped in the order v1, v1, v2, v1, v1, v2 . . . In the second part the same is true of
v2 and v3 respectively, and in the third part of v3 and v1. The simulation shows
what happens when variables change from being frequently flipped to rarely
flipped, and vice-versa. We use a simple phased weighting method in which
weights are increased additively by 1, and smoothed multiplicatively every 50
iterations by 0.8. We compare this with continuous smoothing using s = 0.02.
The simulations are shown in Figures 3 and 4. The results are qualitatively
similar: both methods adjust weight rankings to new situations in almost the
same way, though the actual values are different.

Care must be taken when implementing continuous smoothing: if we use
integer arithmetic then overflow may occur, though this only occurs on long
runs because all weights are bounded above by the number of flips in the search
so far. Floating-point arithmetic can be used for long runs, but as weights become
very large the term wv + 1 becomes indistinguishable from wv. A solution is to
periodically scale all integer weights down by some factor, similar to a smoothing
phase; but whereas phased smoothing typically occurs after a few tens of flips,
integer weights (and the flip counter) need not be rescaled more often than
every few million flips. Alternatively weights could be implemented using infinite-
precision integer arithmetic.

The same method may be applied to clause weighting. At each local minimum
we update the weight of each violated clause using the above formula. These
weights may then be used as in other clause weighting algorithms. However, in
this paper we test only variable weighting.
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4 A New Local Search Algorithm

We now describe and evaluate a new local search algorithm called VW2, com-
bining continuously smoothed variable weights with heuristics based on Walk-
sat/SKC. The VW2 algorithm is shown in Figure 5 and is identical to SKC
except for its flip heuristic. Instead of using weights for tie-breaking we use
them to adjust the break counts as follows. From a random violated clause we
select the variable v with minimum score bv + b(wv − M) where bv is the break
count of v, wv is the current weight of v, M is the current mean weight, and c
is a new parameter (c ≥ 0 and usually c < 1). Ties are broken randomly. VW2
has three parameters p, s, c but we shall only explore a fraction of the parameter
space using p values {0.05, 0.1, 0.2, 0.3, 0.4}, s values {10−1, 10−2, 10−3} and c
values {10−1, 10−2, 10−3, 10−4, 10−5, 10−6}.

Figure 6 shows results for VW2 on the same benchmarks as in Figure 2 except
for the smaller AIM problems, plus two hard graph colouring benchmarks. They
are almost uniformly better than those for VW1, and we now compare them
to our SKC, Novelty+ and SAPS results in Figure 2; also to published results,
where available, for the clause weighting algorithms DLM and MAX-AGE from
[28] and SAPS and PAWS from [14, 29] (all using medians over 100 runs).

– On the AIM problems VW2 beats SKC, Novelty+ and SAPS.
– On the logistics planning problems VW2 is beaten by SAPS but beats SKC

and Novelty+.
– On the Blocks World planning problems VW2 beats SKC, Novelty+, SAPS,

PAWS, DLM and MAX-AGE.
– On the AIS problems VW2 beats SKC and Novelty+, and is comparable to

SAPS.
– On the random 3-SAT problems (f) VW2 beats SKC, Novelty+ and (on the

largest problem) SAPS, but is beaten by DLM and MAX-AGE.
– On the graph colouring (g) VW2 beats SAPS but is beaten by PAWS, DLM

and MAX-AGE.

initialise all variables to randomly selected truth values

initialise all variable weights to 0

repeat until no clause is violated

( randomly select a violated clause C

if C contains freebie variables

randomly flip one of them

else with probability p

flip a variable in C chosen randomly

else with probability 1-p

flip a variable in C chosen by the new heuristic

update and smooth the weight of the flipped variable

)

Fig. 5. The VW2 algorithm
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instance p s c flips sec

aim200-2.0-1 0.05 0.01 0.001 121735 0.087
aim200-2.0-2 0.05 0.01 0.001 55128 0.040
aim200-2.0-3 0.05 0.01 0.001 66884 0.046
aim200-2.0-4 0.05 0.01 0.001 83576 0.060

logistics.a 0.05 0.1 0.001 13114 0.027
logistics.b 0.05 0.1 0.001 14559 0.034
logistics.c 0.05 0.01 0.001 17734 0.046
logistics.d 0.05 0.01 0.0001 87817 0.21

bw large.a 0.2 0.01 0.001 5854 0.012
bw large.b 0.2 0.01 0.0001 73994 0.26
bw large.c 0.2 0.01 0.00001 508254 3.17
bw large.d 0.2 0.01 0.000001 570471 5.56

ais6 0.1 0.001 0.1 891 0.0015
ais8 0.1 0.001 0.1 5485 0.013
ais10 0.1 0.001 0.01 27356 0.076
ais12 0.1 0.01 0.001 135394 0.54

f600 0.4 0.1 0.000001 68040 0.10
f1000 0.4 0.1 0.000001 272392 0.53
f2000 0.4 0.1 0.000001 969650 3.05

g125.17 0.2 0.1 0.000001 1820914 29.8
g250.29 0.2 0.1 0.000001 1508571 96.3

Fig. 6. Smoothed variable weighting on SAT benchmarks

The results are clearly competitive with those for current random walk and clause
weighting algorithms, and the blocks world planning results are (as far as we know)
thebestreported.VW2currentlytakesanorderofmagnitudemoreflipsthanthebest
algorithmson16-bitparity learningproblems,butclauseweightingalgorithmshave
undergone several generations of development andwehope to emulate their success
in future work. We also hope to improve its robustness under different parameter
values, following techniques already developed for the Walksat noise parameter.

We now compare flip rates for VW2 and SAPS. SAPS has a more efficient
smoothing algorithm than most clause weighting algorithms, but continuous
smoothing scales better to large problems. For example on the 600-variable ran-
dom 3-SAT benchmark the ratio of the VW2 flip rate to that of SAPS is 1.62;
on the 1000-variable benchmark it is 1.73; and on the 2000-variable benchmark
it is 2.13. Similarly on the Blocks World planning problems the ratio is 1.75 for
problem (a), 2.26 for problem (b), 2.80 for problem (c), and 2.99 for problem
(d). This is despite the fact that the UBCSAT implementation is generally more
efficient than ours. For example on the 600-variable random 3-SAT problem its
version of Novelty+ performs roughly 1.42 more flips per second than VW2, on
the 1000-variable problem the ratio is 1.78, and on the 2000-variable problem
it is 1.94. Similarly on blocks world planning problem (a) the ratio is 1.37, on
problem (b) 1.29, on problem (c) 2.10 and on problem (d) 2.95. Combining the
implementation techniques of the UBCSAT system with continuous smoothing
should yield very scalable algorithms.
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5 Discussion

It was recently conjectured that clause weighting works as a form of diversifica-
tion [32]. We showed that an alternative diversification technique called variable
weighting , based on variable flip histories, can emulate clause weighting per-
formance. This contributes to the understanding of local search heuristics by
supporting the conjecture. It also provides an alternative to clause weighting for
problems with deep local minima, and is a promising source of new local search
heuristics. We also introduced an efficient new continuous smoothing technique
for variable weights, which we will test on clause weights in future work.

An advantage of variable weighting is that at each search step only one weight
is adjusted, whereas an unbounded (though typically small) number of clause
weights may need to be updated at a local minimum. Another advantage is
that variable weighting is amenable to lifting [9], a technique for compressing
a large set of clauses into a single formula via quantification. Lifted clauses are
not represented explicitly so dynamically changing weights cannot be assigned
to them, but variables can be dynamically weighted. Thus we can achieve clause
weighting-like performance on extremely large problems. Variable weighting may
also be better suited than clause weighting to weighted MAX-SAT, though this
remains to be tested. One of the best local search algorithms on MAX-SAT is
currently SAPS [31] and the authors speculate that it will also perform well on
weighted MAX-SAT, but note that there are several ways of combining the static
clause weights of the problem with the dynamic clause weights of the algorithm.
This may be easier with our approach because the static clause weights can be
treated separately from the dynamic variable weights.

Finally, a note on completeness. Some local search algorithms have a weak
form of completeness called probabilistic asymptotic completeness (PAC), mean-
ing that as time tends to infinity the probability of finding a solution tends to
one [12]. Does VW2 possess this property? A drawback of freebies is that they
make PAC hard to prove, and it is still an open question for SKC except for the
special case of 2-SAT [3]. But SKC appears to behave empirically like a PAC
algorithm so a proof may eventually be found. Any such proof is likely to reason
on freebies and random walk moves alone. VW2 differs from SKC only in its
other moves, so we conjecture that VW2 is PAC if and only if SKC is. PAC
seems to be less of an issue in clause weighting research, though an inefficient
PAC version of Breakout is described in [19].
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Abstract. The PPSZ Algorithm presented by Paturi, Pudlak, Saks, and
Zane in 1998 has the nice feature that the only satisfying solution of a
uniquely satisfiable 3-SAT formula can be found in expected running
time at most O(1.3071n). Using the technique of limited independence,
we can derandomize this algorithm yielding O(1.3071n) deterministic
running time at most.

1 Introduction

The problem of deciding whether a k-CNF G has a satisfying assignment is
well known as the k-SAT problem, which is NP-complete for k > 2. Hence, if
NP �= P holds (which is widely assumed), there is no hope to find a polynomial
time algorithm for the k-SAT problem for k > 2.

For a CNF G on n variables, a naive approach is to enumerate all possi-
ble assignments and to check for each one whether it satisfies G. This algo-
rithm has O (poly(|G|) · 2n) running time at most. There are significantly more
sophisticated algorithms known, and the evolution of expected running time
bounds for 3-SAT, which are somewhat below the deterministic ones, is given as
[1, 2, 3, 4, 5, 6] with bounds of O(1.334n), O(1.3302n), O(1.32971n), O(1.3290n),
O(1.32793n), and O(1.3238n).

In [7], Paturi, Pudlak, Saks, and Zane proved that for a uniquely satisfiable
3-CNF, the solution can be found in O(1.3071n) expected running time at most.
This is the best randomized bound known for Unique-3-SAT. We refer to their
algorithm as the PPSZ Algorithm. But paradoxically, the bound gets worse when
the number of solutions increases. This is even more curious since Unique-k-SAT
has been proven to be the hardest case of k-SAT for k tending to infinity (cf. [8]).
Alas, for the general 3-SAT resp. 4-SAT case, this algorithm achieves expected
running time bounds of O(1.362n) resp. O(1.476n) only, which is worse than the
best known randomized bounds of O(1.3238n) resp. O(1.474n), established in
[6] by Iwama and Tamaki.

The best bounds for k-SAT make excessive usage of random bits so that enu-
merating the entire probability space would yield useless bounds, i.e. much more
than O(2n). But, do random bounds really compete with deterministic bounds
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when the existence of true randomness is not provable? At least, randomized
algorithms often supply a good starting point to develop fast deterministic al-
gorithms. For example, for k-SAT, the algorithm of Schöning in [1], based on
randomized local search and restart, yields a bound of O((2 − 2/k + ε)n) ex-
pected running time at most, which has been derandomized in [9] to the best
known deterministic bound of O(1.481n) for k = 3 and O((2 − 2/(k + 1) + ε)n)
for k > 3, based on limited local search and covering codes. Alas, like so of-
ten, the deterministic bound is much worse than the original randomized one.
However, in this paper, we derandomize the PPSZ Algorithm, already men-
tioned in the paragraph before, for the uniquely satisfiable case yielding (al-
most) the same bound as the randomized version making it the best known
deterministic bound for Unique-k-SAT. We use the technique of limited inde-
pendence (cf. [10]) to prove that the algorithm can be adapted to enumerate
some small probability space yielding a deterministic running time which equals
to the former expected running time up to a subexponential factor. Moreover,
this means that the best bound for Unique-3-SAT is not only a determinis-
tic one, but also better than the best known randomized bound for (general)
3-SAT.

2 Preliminaries

Firstly, we make some common definitions. A literal is a variable or its negation.
An assignment β to a set of variables X maps each variable in X to 0 or 1.
A literal l is satisfied by β if X(l) = 1 if l is not negated resp. X(l) = 0 if l
is negated. A clause is a set of literals based on different variables. A clause is
satisfied by some assignment β if at least one literal is satisfied by β. A formula
is a set of clauses. A formula is satisfied by β if each clause is satisfied by β. A
k-clause is a clause of size k and a k-CNF is a set of clauses of size at most k.
Finally, a 1-clause is commonly known as unit clause. For a set of clauses G, let
vars(G) be the set of variables occurring in G.

We will not consider polynomial factors in complexity calculations because
we always expect an exponential expression which outweighs all polynomials for
large problems, and because the number of clauses is O(|vars(G)|k), polynomials
that depend on the number of clauses can also be replaced by some polynomial
in |vars(G)|.

For a CNF G and a literal l, we denote with G|l the formula obtained by
making l true in G, i.e. we remove all clauses that contain l and remove l from
all clauses that contain it.

A clause pair (C1, C2) is a resolvent pair if they have only one variable v in
common whereby v ∈ C1 and v ∈ C2. Their resolvent R(C1, C2) is the clause
(C1 − v) ∪ (C2 − v). Because any satisfying assignment of C1 and C2 must also
satisfy R(C1, C2), adding R(C1, C2) to a CNF does not change its set of satisfying
assignments.

s-bounded resolution means to add to G all resolvent pairs of clauses in G
where the size of the resolvent is at most s, over and over again until there is
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nothing more to do. Note that, if s is a constant, this has polynomial time and
space complexity in |vars(G)|.

3 The Algorithm

Now, we present our algorithm, which is a derandomized form of the PPSZ Algo-
rithm. Note that π denotes a permutation of the variables of G computed using a
polynomial time function π(α) where α is a member of some set Ω(n,w,L). The
definition of both objects and the role of the parameters is deferred to Section 4.

Algorithm 1. dPPSZ(k-CNF G, integer d, integer L, integer t)
1 G := do kd-bounded resolution on G

2 for each π = π(α) with α ∈ Ω(|vars(G)|, (k − 1)d+1 − 1, L) and for each
bit string b of size t do {

3 G′ := G

4 repeat as long as there is an unused bit in b {
5 v := next unused variable in π
6 if G′ contains a unit clause v resp. v
7 then G′ := G′|v resp. G′ := G′|v
8 else Choose G′ := G′|v or G′ := G′|v depending on the next unused

bit of b being 1 or 0
9 }
10 If G′ is the empty formula then return true

11 }
12 return false

The only difference between the PPSZ Algorithm and this one is that PPSZ
choose a permutation π of vars(G) and a bit string b of length |vars(G)| uni-
formly at random.

4 The Analysis

Without loss of generality, we denote the variables of G with the integers in [n].
Moreover, let β denote the one and only satisfying assignment of G.

4.1 Deterministic Bounds for Unique-k-SAT

In the algorithm, we use a set Ω(n,w,L) with w = (k−1)d+1−1, the set will be
defined in Section 4.2. But for now, let us use it as a black box probability space
that can be used to draw permutations π of [n] at random so that the following
lemma is satisfied, which is proved in Section 4.4:

Lemma 2. Let d and L be integers and let G be a uniquely satisfiable k-CNF G
with more than d variables. Fix some variable v of G. Assume that Algorithm 1
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reaches variable v and all variables before v in π were set according to β. At this
step, there will be a unit clause for v with probability at least λk,d,L with

λk,d,L =
μk

k − 1
− εk,d,L and

μk =
∞∑

j=1

1

j
(
j + 1

k−1

)
where εk,d,L can be made arbitrary small positive by choosing L and d large
enough.

Using linearity of expectation, we can expect to have λk,d,Ln unit clauses
on the average. Because we try all elements of Ω(n,w,L), we must encounter at
least on permutation π, where the number of unit clauses is at least λk,d,Ln. Now,
assume that the bit string b is chosen so that all bits used for variables agree
with β. But, because at least λk,d,Ln variables are determined using unit clauses,
we only need at most n − λk,d,Ln bits from b. So, if we set t = $n − λk,d,Ln% ,
we will face that good bit string.

Enumerating all bit strings of length t takes time at most O(2t). In Sec-
tion 4.2, we will prove that Ω(n,w,L) can be constructed and enumerated in
polynomial time in O(nLw/2) which is a polynomial in n for constant k, d, and
L. Formulas which do not satisfy the precondition of Lemma 2, i.e. which have at
most d variables, can be solved in polynomial time since d is a constant. Finally,
we can state:

Proposition 3. For a uniquely satisfiable k-CNF on n variables, integers d > 0,
L > 0, and t = $n − λk,d,Ln% , Algorithm 1 finds the satisfying assignment in
deterministic running time at most

O
(
2(1− μk

k−1 )n+εk,d,Ln
)

where εk,d,L can be made arbitrary small positive by choosing L and d large
enough.

Corollary 4. For a uniquely satisfiable 3-CNF resp. 4-CNF on n variables,
the satisfying assignment can be found in deterministic running time at most
O(1.3071n) resp. O(1.4699n).

4.2 A w-Wise Independent Probability Space for n Reals with
Precision L

The (original) PPSZ Algorithm chooses a permutation π uniformly at random,
but in Section 4.3, we will see that we need only randomness with respect to a
subset of the variables which has size bounded by a constant w for the Unique-
k-SAT case. So, we could just draw n integers from a finite pool (to have a finite
probability space) of w-wise independent integers and order π according to the
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rank of these. But, what do we do if we draw the same integer for two variables?
Fortunately, the bigger the pool is, the less likely it is for two variables to clash.
Guided by this idea, we will discuss a handy construction of π and show some
useful properties. For that, our basic tool is Theorem 2.1 from [10–Chapter 15]:

Theorem 5. For every n ≥ w ≥ 1 there exists a probability space Ω(n,w) of
size O(nw/2) and w-wise independent random variables y1, ..., yn over Ω(n,w)
each of which takes 0 or 1 with probability 1/2. Ω(n,w) can be constructed in
polynomial time.

Let us start with a mapping α which assigns each integer in [n] a real value
in [0, 1). We construct a random α in the following way. Define integers w > 0,
L > 0. For each l ∈ [L] and independently from each other, draw n w-wise
independent random variables y1,l, ..., yn,l as stated in the theorem using Ω(n,w).
Define

α(v) =
∑
l∈[L]

2−lyv,l,

i.e. yv,. is seen as a binary encoding for α(v) with length L. Let A(L) be the set
of all possible real values α(.) can take. For fixed v, the random variables yv,.

are fully independent since they are drawn from independent probability spaces.
Hence, each value in A(L) has equal probability to be chosen for α(v). On the
other hand, for fixed l, the random variables y.,l are w-wise independent since
they are drawn using Ω(n,w). Because this holds for every l independently, the
values of α are w-wise independent.

Therefore, the construction above yields w-wise independent α values where
each of them takes a value from A(L) uniformly at random. We call this proba-
bility space a w-wise independent probability space for n reals with precision L,
denoted by Ω(n,w,L). We have:

Lemma 6. Ω(n,w,L) can be constructed with size O(nLw/2) and in polynomial
time in its size.

Given α, we construct a permutation π = π(α) of [n] so that α(u) < α(v)
implies that u occurs before v in π. Such a permutation can clearly be constructed
in a deterministic way by ordering [n] due to the values α takes on them with
some arbitrary deterministic rule if two take the same value.

Fix some arbitrary v ∈ [n] and fix some arbitrary V ⊆ [n] − v with |V | < w.
We want to have a lower bound for the probability that a variable u in V occurs
before v in π. The fact that α(u) = α(v) could hold, makes the analysis a little
bit complicated. Fortunately, this is not very likely. So, we call v unique with
respect to V if α(u) �= α(v) holds for all u ∈ V. Clearly, the probability that v is
unique with respect to V is (1 − 2−L)|V |.

Now, assume that we already know that v is unique with respect to V. All
α(u) for u ∈ V can still be seen as being drawn independently at random from
A(L) − α(v). Again, fix a variable u in V. Under the condition that v is unique
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with respect to V , the probability that α(u) < α(v), i.e. that u occurs before v in
π, is equal to α(v) · 2L/(2L − 1). This comes from the fact that we have α(v) · 2L

elements in A(L) which are strict less than α(v) and because the condition allows
all 2L − 1 elements of A(L) − α(v) to be chosen for α(u) uniformly at random.
Let us sum up:

Lemma 7. Let v ∈ [n] be a variable and V ⊆ [n] be a set of variables with
|V | < w and v �∈ V. Then the following are true:

1. The probability that v is unique is (1 − 2−L)|V |.
2. Given that v is unique, all α(u) with u ∈ V are independent, and for each

u ∈ V, the probability that α(u) < α(v) holds is equal to α(v) · 2L/(2L − 1).

4.3 Admissible Trees

Before we can go back to Unique-k-SAT, we need the notion of an admissible
tree and have to prove some important properties.

Let T be a tree where the root is labeled by v. Each node of the tree can have
a label in [n] or it is unlabeled. Moreover, for each path from a leaf to the root,
no integer occurs more than once as a label. Then T is called an admissible tree.
The depth of T is the maximum distance from any leaf to the root, e.g. a tree
containing only one node has depth 0. We limit the depth of an admissible tree
to d and we limit the number of children of each node to k − 1. Then T has at
most (k − 1)d+1 − 1 nodes. A cut A is a set of nodes that does not include the
root, and every path from the root to a leaf includes a node in A.

Let π = π(α) where α is drawn from Ω(n, (k − 1)d+1 − 1, L) at random. We
say a cut A happens if all variables corresponding to labeled nodes of A occur
before v in π.

Given that v is unique and a subtree T0 of T, we denote with QT0(r) the
probability that at least one of the possible cuts of T0 happens and conveniently,
where we use r to stand for α(v) · 2L/(2L − 1). We will establish a lower bound
for QT0(r) :

Lemma 8. Given an admissible tree T with root labeled by v, let T0 be some
subtree of T with more than one node and let T1, ..., Tt be the subtrees rooted
at the labeled children of the root of T. Let u1, ..., ut be the labels of their roots.
Then it is true that

QT0(r) ≥
t∏

i=1

(r + (1 − r)QTi
(r))

holds where the empty product is interpreted as 1.

Proof. 1 Consider the case that t = 0. Since T0 has at least one child, there
is a cut in the tree. But because, no child is labeled, the cut is empty, which

1 Note that this proof is almost the same like the one for Lemma 4 in [7], which can
be found in [11].
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corresponds to an empty event, which occurs with probability 1. So, assume
t ≥ 1.

Let U be the set of variables occurring as labels in T. Since |U | ≤ (k−1)d+1−1
and since we have chosen α from Ω(n, (k−1)d+1 −1, L), we can apply Lemma 7
using U − v for V.

Consider the event that α(ui) < α(v), which has probability r, and the event
that a cut in Ti occurs. Because a subtree of an admissible tree is also admissible,
ui does not occur anywhere else in Ti. Thus, both events are independent, causing
their union, denoted with Ki, to have probability r + (1 − r)QTi

(r).
To finish the proof, we have to show that P[

⋂t
i=1 Ki] ≥

∏t
i=1 P[Ki]. At first,

let us recall some standard correlation inequality, which is a special case of the
FKG-inequality (cf. Theorem 3.2 in [10–Chapter 6]):

Lemma 9. Let N be a finite set and let A and B be two monotone increasing
families of subsets of N, i.e. each super-set of a set in A resp. B is also contained
in A resp. B. Draw a random set M ⊆ N by choosing each u in N independently
with probability p. Then it is true that

P[M ∈ A ∩ B] ≥ P[M ∈ A]P[M ∈ B].

We set N to be the set of all variables occurring as labels in T0, but we
exclude v. Moreover, we determine M as follows. For all u ∈ N, we include u
in M if it occurs before v in π. These events occur independently each with
probability r. Let Wi denote the family of all subsets of N that imply Ki, i.e.
all sets of variables W ⊆ [n] for which holds that Ki happens when all u ∈ W
occur before v in π. Because Ki only depends on variables in N, M is a member
of Wi if and only if the event Ki happens. Clearly, Wi is monotone increasing
since all supersets of a set that implies Ki also imply Ki, i.e. more variables
than necessary before v in π is not bad. The set Vi =

⋂i−1
j=1 Wi is also monotone

increasing. We plug Vi and Wi as A and B in the Lemma and obtain

P[M ∈ Vi+1] ≥ P[M ∈ Vi]P[M ∈ Wi]

≥
∏
j≤i

P[M ∈ Wj ].

Because M ∈ Vt+1 means that the event
⋂t

i=1 Ki happens, we can conclude that

P

[
t⋂

i=1

Ki

]
≥

t∏
i=1

P[Ki]

is true, which completes the proof. &'
Let us multiply the probability for the event that v is unique with QT (r) to

obtain:

Corollary 10. Given an admissible tree T of depth d with root labeled by v and
given that α(v) = r′ is true, the probability that a cut of T occurs is at least
Q′

T (r) with

Q′
T (r′) = QT

(
r′ · 2L/

(
2L − 1

))
·
(
1 − 2−L

)(k−1)d+1−1
.
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To calculate the probability that at least one cut occurs, we have to average
Q′

T (r′) with respect to all possible values r′ ∈ A(L). This is given by:

2−L
2L−1∑
l=0

Q′
T

(
l/2L

)
= 2−L

2L−1∑
l=0

QT

(
l/(2L − 1)

)
·
(
1 − 2−L

)(k−1)d+1−1

Some simple calculations show

lim
L→∞

2−L
2L−1∑
l=0

QT

(
l/
(
2L − 1

))
· (1 − 2−L)(k−1)d+1−1 =

∫ 1

0

QT (r′)dr′.

Clearly, the difference between the integral and the sum can be made arbi-
trary small positive by chosing L large enough. From Section 3.4 in [7], we have
that

lim
d→∞

∫ 1

0

QT (d)(r′)dr′ =
μk

k − 1

where T (d) is an admissible tree of depth d, i.e. we can come arbitrarily close
to the right hand side by increasing the depth of T. Combining this with the
equation before yields the following result:

Lemma 11. Given an admissible tree T of depth d, the probability that at least
one cut of T occurs is at least λk,d,L with

λk,d,L =
μk

k − 1
− εk,d,L

where εk,d,L can be made arbitrary small positive by choosing L and d large
enough.

4.4 Critical Clause Trees

So, let us draw the connection between Unique-k-SAT and our abstract admis-
sible trees.

We call a clause C ∈ G a critical clause for v if the only true literal in C
with respect to β is the one corresponding to v, i.e. flipping the value assigned
to v in β would make C instantly false.

Algorithm 1 applies kd-bounded resolution to G and then steps through the
variables ordered by a permutation π. Assume that the bit string b is chosen
so that all bits used for variables agree with β. When the algorithm reaches a
variable v and there is a critical clause C for v so that the variables vars(C)− v
occur before v in π, C has been reduced to a unit clause for v so that the
algorithm can immediately determine the right assignment to v. But, when is
there a clause C meeting this condition? We need the notion of a critical clause
tree.

We call an admissible tree T with root labeled by v a critical clause tree for v
if for each cut A in T, there exists a critical clause for v in G where vars(C)− v
contains only variables which occur as labels in A. The existence of a critical
clause tree is given by Lemma 4 in [7]:
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Lemma 12. Let G be a uniquely satisfiable k-CNF with more than d variables.
Apply kd-bounded resolution to G. For each v ∈ vars(G), there exists a critical
clause tree for v with depth d.

So, if a cut of a critical clause tree of v happens with respect to π, there
must be a critical clause C corresponding to that cut meeting the condition. By
Lemma 11, this has probability at least λk,d,L, and we have proved what was
claimed in Lemma 2.

5 Conclusion

We derandomized the uniquely satisfiability case of the PPSZ Algorithm using
an approximation of the uniform distribution on [0, 1] using a discrete subset of
[0, 1] and showed that we can come arbitrary close to the randomized bound by
making the discrete subset large enough.

We can also conclude that a sufficient pseudo-random number generator can
be used for the PPSZ Algorithm instead of true randomness for the unique
satisfiability case.
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Abstract. An important extension of satisfiability testing is model-counting, a
task that corresponds to problems such as probabilistic reasoning and comput-
ing the permanent of a Boolean matrix. We recently introduced Cachet, an ex-
act model-counting algorithm that combines formula caching, clause learning,
and component analysis. This paper reports on experiments with various tech-
niques for improving the performance of Cachet, including component-selection
strategies, variable-selection branching heuristics, randomization, backtracking
schemes, and cross-component implications. The result of this work is a highly-
tuned version of Cachet, the first (and currently, only) system able to exactly
determine the marginal probabilities of variables in random 3-SAT formulas with
150+ variables. We use this to discover an interesting property of random formu-
las that does not seem to have been previously observed.

1 Introduction

The substantial progress in practical algorithms for satisfiability has opened up the pos-
sibility of solving many related, and even more difficult, logical problems. In recent
work [10], we introduced Cachet, which applies techniques for practical satisfiability
algorithms to the associated counting problem, #SAT, that requires the computation of
the number of all satisfying assignments of a given CNF formula.

Cachet is an exact model-counting algorithm which combines formula caching [7,
2, 5], clause learning [8, 13, 14], and dynamic component analysis [4, 2, 3]. Cachet was
shown to outperform other model counting algorithms on a wide range of problems.

In [10], the primary focus was on managing the component caching, and integrating
it with clause learning since the combination of the two can cause subtle errors if certain
cross-component implications are not controlled. Handling these problems involved
techniques to flush certain cache entries and to detect and prevent cross-component
implications involving learned clauses.

In this paper we examine a wide range of different techniques for improving the
performance of Cachet, including component-selection strategies, variable-selection
branching heuristics, backtracking schemes, and randomization. Many of these tech-
niques have previously worked well in SAT solvers. In addition to studying these heuris-
tics we also study the impact of using a more liberal but still sound method, suggested
in [10], controlling cross-components implications involving learned clauses.

One major goal of this work beyond improving the performance of Cachet itself is
to determine which of the heuristics from SAT solvers are well-suited for use in #SAT

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 226–240, 2005.
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solvers in general. Our results show that some popular techniques such as randomization
and aggressive non-chronological backtracking perform quite poorly when combined
with component caching as in Cachet and do not appear to be particularly well-suited
to use in #SAT solvers in general.

In the case of variable-selection branching heuristics, we observe that in Cachet the
tradeoffs between heuristics are somewhat different than in the case of SAT solvers.
Based on previous heuristics, we develop a new hybrid branching heuristic, VSADS,
which appears to be a good choice for model counting algorithms involving compo-
nent caching. We also observe that the right application of variable-selection heuristics
is secondary to component selection, and we use a new method for selecting compo-
nents that reduces the amount of wasted effort when the component cache must be
flushed. Our experiments also show that the more liberal method for controlling cross-
component implications has only a relatively small impact on almost all problems.

Finally, we show how our tuned version of Cachet can be extended to compute
all marginal probabilities of variables in random 3-CNF formulas of 150+ variables
(at sufficiently high clause-variable ratios). This allows us to discover a new pattern in
these marginals. At a clause-variable ratio of roughly 3.4 the conditional probability that
a randomly-chosen variable in a satisfying assignment is true is uniformly distributed
between 0 and 1. Moreover we derive curves that allow us to predict these probabilities
at other ratios. Such results may have explanatory power in the analysis of simple DPLL
algorithms.

In the next section we give an overview of Cachet. In Section 3 we discuss the im-
pact of branching heuristics, followed by randomization in Section 4, cross-component
implications in Section 5, and non-chronological backtracking in Section 6. Finally, we
discuss our methods and results in computing marginal probabilities in Section 7.

2 Overview of Cachet

Cachet, presented in [10], is a practical tool for solving #SAT. It is implemented as a
modification and extension of the state-of-the-art SAT solver zChaff [14]. In addition
to the 1UIP clause learning of zChaff, Cachet adds two other features that are critical
to its performance: an explicit on-the-fly calculation of the connected components of
the residual formula at each node in the search tree, and a cache to store the compo-
nents’ model counts so that they do not need to be recalculated when those components
reappear later in the search.

Although SAT solvers typically eschew explicit computation of residual formulas,
the higher complexity of #SAT complexity means that the sizes of the residual formulas
we can deal with are smaller and the benefits of explicit computation outweigh its costs.
For the #SAT problems that we can solve using Cachet, the entire overhead of main-
taining the residual formulas and calculating connected components is usually roughly
half of the total runtime. The learned clauses are used for unit propagations but not
considered in the component computation, because their large number would make the
component computation much more expensive, and because they would connect sub-
formulas that would otherwise be disjoint components, reducing the advantage of the
component decomposition.
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Cached components are represented explicitly together with their values in a hash
table. The size of this hash table is fixed via an input parameter, and a lazy deletion
scheme based on the age of a cached entry is used to keep the table small.

As shown in [10], there can be a very subtle interaction between the component
decomposition and unit propagation involving learned clauses. To avoid this, in the
original version of Cachet we disallowed any unit propagation inference between two
connected components of the residual formula. However, we also showed that this re-
striction is not strictly necessary and determined the general conditions under which
such cross-component unit propagation is safe.

In the original version of Cachet, we also did not use certain features of zChaff,
including non-chronological backtracking and its VSIDS variable selection heuristic.
Some aspects of non-chronological backtracking as implemented in zChaff are not
suitable for model counting. For example, zChaff uses unit propagation from learned
clauses rather than explicitly flipping values of decision variables, which works for SAT
because all previously explored branches are unsatisfiable; this is not the case for #SAT.
We also happened not to use VSIDS because we were exploring heuristics that took
advantage of the explicit connected component computation.

In this paper we study the range of options usually considered for SAT solvers
and see how they apply in Cachet. These heuristics include branching heuristics
as well as randomization and non-chronological backtracking. We also analyze the
importance of cross-component implications in component caching context. Finally,
we present an extension to Cachet that computes all marginals for satisfiable CNF
formulas.

3 Branching

3.1 The Role of Components in Branching Decisions

At any decision-making point, Cachet explicitly maintains the residual formula deter-
mined by the current variable assignment, in the form of disjoint components. Thus, at
any such point, Cachet can use this partition of variables as part of its branching deci-
sions, information that is not usually available to SAT solvers. Moreover, because these
components are disjoint, each component is largely independent of the others. (There is
some cross-component information available in the form of learned clauses but, as we
will see in section 5, exploiting this information does not have a major impact on the
performance of the algorithm.)

Therefore, we separate branching heuristics into two parts: the choice of component
and the choice of decision variable/literal within that component. The component selec-
tion strategy that the version of Cachet from [10] applied was a pure DFS strategy; that
is, only a child of the most recently branched component can be selected as the next
component to branch on.

If a component is satisfiable, then all of its child components are satisfiable and it
does not matter which child is chosen first; eventually every child component needs
to be analyzed, and cached component values are not helpful to their disjoint siblings.
However, if a component is unsatisfiable, then at least one of its child components must
be unsatisfiable and the values of the others are irrelevant. Naturally, it is preferable
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to find such a child component first to avoid unnecessary work on satisfiable children.
Moreover, not only is the work done on those satisfiable child components useless, but
as shown in [10], the calculated values stored in the cache for these components can
actually be corrupted by the existence of their not-yet-discovered unsatisfiable sibling
and must be explicitly removed from the cache.

Unfortunately, there is no easy predictor for which component will be unsatisfiable.
We tried choosing the component with the largest clause/variable ratio, but that was
not particularly effective. The solution we have settled on is simple: select the smallest
component first, measured by number of variables. Because calculating the value of a
smaller component is easier, if we do indeed have to abandon this work later because
of an unsatisfiable sibling, the amount of wasted effort will be minimized.

We also modified the pure DFS branching order described in [10] so that Cachet at-
tempts to discover unsatisfiable sibling components as quickly as possible. If there are
a number of branchable components available, Cachet selects the smallest component
C and applies the variable branching heuristics to begin the exploration of C. However,
once the first satisfying assignment is found for C, further search in that component is
temporarily halted and search within the next smallest remaining component is initiated
from that point in the search tree. Once the last child component is found to be satisfi-
able its analysis is completed and the algorithm backtracks to complete the next-to-last
child component, etc. If one of the child components is found to be unsatisfiable, the al-
gorithm backtracks to the point in the search tree where the components were generated.
The amount of work in the satisfiable case is still only the sum of the costs of analyzing
each component and substantial work may have been saved in the unsatisfiable case.

3.2 Variable Branching Heuristics

Good variable branching heuristics can be critical to the performance of DPLL-based
SAT solvers and, since Cachet is a DPLL-based #SAT solver, it is natural that its per-
formance also depends on a good variable branching heuristic. We explore a number
of the different branching heuristics available including dynamic literal count heuris-
tics, conflict driven heuristics, and unit-propagation based heuristics. We also develop
a new heuristic, VSADS, that seems to be well-suited for #SAT. All these heuristics are
currently implemented in Cachet and can be selected by a command line argument. We
first review these heuristics.

Literal Count Heuristics. Literal count heuristics [12], make their branching decision
based only on the number of occurrences of a variable in the residual formula. If the
positive literal +v appears Vp times and the negative literal −v appears Vn times in the
residual formula, using a score for variables v as either Vp +Vn or max(Vp, Vn) results,
respectively, in the Dynamic Largest Combined Sum (DLCS) and Dynamic Largest In-
dividual Sum (DLIS) heuristics. The highest scored v is selected as the decision vari-
able, and its value is set to true if Vp > Vn, false otherwise. The goal is to eliminate as
many clauses as possible without considering the impact of unit propagation.

Our original version of Cachet used only these simple heuristics, which are easy to
evaluate during component detection. We tried several versions and in our experiments
observed that the best was to choose the highest DLCS score with DLIS as a tie-breaker;
we refer to this as DLCS-DLIS in our tables of results.
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Exact Unit Propagation Count (EUPC) Heuristics. Various unit-propagation-based
heuristics have been widely used since early SAT solvers. Such heuristics compute
the score of a variable by some magic function over the weights of its positive and
negative forms, where a literal’s weight is obtained by considering the amount of sim-
plification it yields in unit propagations. Setting proper parameters for such a function
is a bit of a black art. In Cachet we tested an EUPC procedure similar to that described
for relsat [4]. To compute the score of variable v, the EUPC heuristic in ideal form
will select a literal whose unit propagation will generate a conflict, and otherwise will
choose the best variable score given by the following formula:

score(v) = |UP (+v)| × |UP (−v)| + |UP (+v)| + |UP (−v)|

where UP (�) is the number of unit propagations induced by setting � to true. Evaluating
exact unit propagations for many variables is very expensive, so we also use a prepro-
cessing step as described in [4]. That is, for every variable we compute its approximate
score with |UP (+v)| approximated by the number of binary clauses containing literal
−v and |UP (−v)| approximated by the number of binary clauses containing literal +v.
Then the unit propagations and exact scores are computed only for the 10 variables with
the best approximate scores.

Approximate Unit Propagation Count (AUPC) Heuristics. By computing a better esti-
mate of the amount of unit propagation that will take place, the AUPC heuristic, sug-
gested in the paper on Berkmin [6], avoids any explicit unit propagations and can be
computed more efficiently. The idea is simple: to estimate the impact of assigning v = 0
more correctly, not only should the binary clauses containing literal +v be counted, but
the binary clauses touching the literals whose negated forms are in binary clauses with v
should also be counted. For example, if there is a binary clause (−u, v), when estimat-
ing unit propagations resulting from assigning v = 0, all the binary clauses containing
literal +u should be counted too. The score of a variable is defined as the sum of the
scores of its positive form and negative form, and the variable with highest score is
chosen as decision variable.

Variable State Independent Decaying Sum (VSIDS). The VSIDS selection heuristic is
one of the major successes of Chaff [9, 14]. It takes the history of the search into account
but does not analyze the residual formula directly. (This is the reason for the word
‘Independent’ in its name.) Initially, all variable scores are their literal counts in the
original formula. When a conflict is encountered, the scores of all literals in the learned
conflict clause are incremented. All variable scores are divided by a constant factor
periodically. The idea is to give a higher priority to the literals satisfying recent conflict
clauses, which are believed to be more important and necessarily satisfied first. An
advantage of VSIDS is its easy score-computing procedure, because it does not require
any information from the current residual formula. In fact zChaff does not need to
maintain a residual formula.

After many decaying periods, the influence of initial variable scores and old conflicts
decay to negligible values and variable scores only depend on recent conflict clauses.
If there are very few recent conflicts, then most variables will have very low or even
0 scores, thus decision-making can be quite random. For SAT-solving purposes, this is
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Problems variables clauses solutions DLCS VSIDS VSADS EUPC AUPC

Circuit
2bitcomp 6 150 370 9.41E+20 121 43 15 92 112
2bitmax 6 252 766 2.07E+29 189 22 2 21 35

rand1 304 578 1.86E+54 9 X 23 10 16
ra 1236 11416 1.87E+286 3.2 X 3.4 8.2 3.9
rb 1854 11324 5.39E+371 7.1 X 7.5 23 7.9
rc 2472 17942 7.71E+393 172 X 189 736 271
ri 4170 32106 1.30E+719 206 78 119 1296 1571

Grid-Pebbling
grid-pbl-8 72 121 4.46E+14 0.10 0.10 0.06 0.21 0.15
grid-pbl-9 90 154 6.95E+18 1.1 0.44 0.35 0.35 0.27
grid-pbl-10 110 191 5.94E+23 4.6 0.58 0.37 12 3.2
Logistics
prob001 939 3785 5.64E+20 0.19 0.13 0.06 0.11 0.06
prob002 1337 24777 3.23E+10 30 10 8 16 21
prob003 1413 29487 2.80E+11 63 15 9 20 35
prob004 2303 20963 2.34E+28 116 68 44 32 133
prob005 2701 29534 7.24E+38 464 11924 331 456 215
prob012 2324 31857 8.29E+36 341 X 304 231 145

flat-200(100) 600 2337
average - - 2.22E+13 102 4.5 4.8 4.6 6.8
median - - 4.83E+11 63 2.8 2.9 2.7 3.9

uf200(100) 200 860
average - - 1.57E+9 21 7.1 7.2 3.0 4.8
median - - 3074825 18 6.6 6.5 2.5 3.7

Fig. 1. Runtime in seconds of Cachet on a 2.8 GHz Pentium 4 processor with 2 GB memory
using various dynamic branching heuristics (X=time out after 12 hours)

not a serious problem, because it probably means the formula is under-constrained and
thus easily satisfied. However, in the context of model counting, it is often the case that
there are few conflicts in some part of the search tree and in these parts VSIDS will
make random decisions.

Variable State Aware Decaying Sum (VSADS). VSADS combines the merits of both
VSIDS and DLCS. It is expressly suited for Cachet and can benefit from both conflict-
driven learning and dynamic greedy heuristics based on the residual formula. Since all
literal counts can be obtained during component detection with little extra overhead,
there is no reason for the algorithm not to be “Aware” of this important information for
decision-making when most variables have very low VSIDS scores. The VSADS score
of a variable is the combined weighted sum of its VSIDS score and its DLCS score:

score(V SADS) = p × score(V SIDS) + q × score(DLCS)

where p and q are some constant factors. Within a component, the variable with the best
VSADS score is selected as decision variable. With this derivation, VSADS is expected
to be more like VSIDS when there are many conflicts discovered and more like DLCS
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when there are few conflicts. We report experimental results for p = 1 and q = 0.5, but
the runtime is not particularly sensitive to these precise values.

Experimental Results. Figure 1 shows the results of different heuristics on a num-
ber of benchmark problems, including logistics problems produced by Blackbox, sat-
isfiable grid-pebbling problems [10], and benchmarks from SATLIB including circuit
problems, flat-200 (graph coloring) and uf200 (3-SAT). The last two sets each contain
100 instances, and the average runtime and the median runtime are given respectively.

Despite being a simple combination of VSIDS and DLCS, VSADS frequently out-
performs each of them alone by a large margin. The superiority of VSADS over VSIDS
is particularly evident in cases in which VSIDS does not even finish. This is likely
because of the random decisions that VSIDS makes when there are few conflicts. In
most instances VSADS also significantly improves on DLCS alone. Unit-propagation-
count based heuristics EUPC and AUPC are often quite good too, especially on flat-200,
uf200 and some logistics problems, but VSADS usually outperforms them and seems
to be the most stable one overall. For the remainder of our experiments we report on
results using the VSADS heuristic.

4 Randomization

Randomization is commonly used in SAT solvers and appears to be helpful on many
problems. In fact, every heuristic discussed before can be randomized easily. The ran-
domization can be either on a tie-breaker among variables with the same score or a
random selection of variables whose scores are close to the highest.

We expected that randomization would be somewhat less of a help to #SAT search
than for SAT search. One of the major advantages that randomization gives SAT solvers
is the ability to find easily searchable portions of the space and avoid getting stuck in
hard parts of the space. #SAT solvers, however, cannot avoid searching the entire space
and thus might not benefit from this ability. However, it was a little surprising to us
that randomization almost always hurts model counting. Figure 2 shows the impact of
using randomized VSADS on some problems. VSADS-rand computes variable scores
the same way as VSADS does, but it selects a decision variable randomly from the
variables whose scores are within 25% of the best score. On the first three problems,
we ran VSADS-rand 100 times and used statistical results. Since there are already 100
instances of randomly chosen problems in flat-200 and uf200, we just run VSADS-rand
on each problem once. We tried a number of other experiments using other fractions and
other heuristics such as EUPC but the results were similar. It is very clear that the effect
of randomization is uniformly quite negative. In fact the minimum runtime found in
100 trials is often worse than the deterministic algorithm.

While we do not have a complete explanation for this negative effect, a major rea-
son for this is the impact of randomization on component caching. Using randomiza-
tion would seem to lower the likelihood of getting repeated components. Consider the
search tree on formula F in which there are two large residual formulas A and B that
have many variables and clauses in common but are not exactly the same. Since A and
B have similar structure, a deterministic branching heuristic is likely to have similar
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Problems grid-pbl-10 prob004 2bitcomp 6 flat-200(100) uf200(100)

VSADS 0.37 44 15 4.8 / 2.9 7.2 / 6.5
VSADS-rand

average 6.8 433 54 7.0 12
median 3.7 402 54 3.7 11

maximum 29 1073 81 N/A N/A
minimum 0.24 145 38 N/A N/A
STDEV 7.7 200 12 N/A N/A

Fig. 2. Runtimes in seconds of VSADS versus randomized VSADS on selected problems

variable scores and make similar choices that could easily lead to cache hits involving
subproblems of A and B. A randomized heuristic is more likely to create subprob-
lems that diverge from each other and only leads to cache hits on smaller subformulas.
Although our experiments showed similar total numbers of cache hits in using random-
ization, there seemed to be fewer cache hits at high levels in the search tree.

5 Cross-Component Implications

As discussed in our overview, in combining clause learning and component caching
we only determine components on the residual formula, not on the the learned clauses.
Learned clauses that cross between components can become unit clauses by instantia-
tions of variables within the current component. Unit implications generated in this way
are called cross-component implications.

In [10], it was shown that cross-component implications can lead to incorrect val-
ues for other components. To guarantee correctness cross-component implications were
prohibited; each unit propagation from learned clauses was generated but if the variable
was not in the current component the unit propagation was ignored.

However, it was also shown that any implications of literals within the current com-
ponent that result from further propagations of the literals found in cross-component
implications are indeed sound. In prohibiting all cross-component implications, these
sound inferences that could help simplify the formula were lost.

In the current version of Cachet such sound implications of cross-component unit
propagation are optionally allowed by maintaining a list of cross-component impli-
cations. Cross-component implications are detected at the unit-propagation stage, and
stored in the list. When branching on a component, it is checked to see if it contains
any variable in the list. If the current component has been changed by previous cross-
component implications, before branching on it, a new component detection is per-
formed over it, which will update the related data structures correctly. This solution
is easy to implement but the overhead can be high, for every element of the cross-
component implication list needs to be checked at every decision-making point. For-
tunately, the ratio of cross-component implications is very small, at most 0.14% of all
implications in our tested formulas, so the overhead is negligible.

Figure 3 shows the impact of cross-component implications. We ran experiments
on a much larger suite of problems than are listed; all those not shown have fewer than
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Problems cross-component total time without time with
implications implications cross-implications cross-implications

2bitcomp 6 13 3454480 15 15
rand1 6195 5131281 23 23

grid-pbl-8 25 5713 0.06 0.06
prob001 49 16671 0.06 0.06
prob002 225 474770 8 8
prob003 133 426881 9 9
prob004 8988 6575820 50 44
prob005 20607 39391726 482 331
prob012 3674 31862649 313 304

flat-200(100)
average 277 1010086 4.9 4.8
median 239 767136 2.9 2.9

Fig. 3. Runtime in seconds of VSADS with and without cross-component implications

5 cross-component implications, mostly none. There was one instance in which the
speedup using cross-component implications was 46%, but most others were negligible.
We conclude that cross-component implication is not an important factor in general.

6 Chronological vs. Non-chronological Backtracking

Non-chronological backtracking is one of the most successful techniques used in SAT
solvers. When a clause is learned, the search backtracks to the highest level in the search
tree at which the learned clause yields a unit propagation. All decisions made between
the level at which the clause is learned and the backtrack level are abandoned since
they are in some sense irrelevant to the cause of the conflict found. Since no satisfying
assignments have yet been found in that subtree, the only information lost by this aban-
donment is the path from the backtracking destination to the conflict point, which does
not take much time to recover.

However, in the model counting scenario, a direct implementation of the above non-
chronological backtracking scheme would abandon work on subtrees of the search tree
in which satisfying assignments have already been found and tabulated, and this tab-
ulation would have to be re-computed. This is even worse in the component caching
context in which the conflict found may be in a completely separate component from
the work being abandoned. Moreover, redoing dynamic component detection and cache
checking has an even more significant cost.

As discussed earlier, the basic version of Cachet does have some form of non-
chronological backtracking in that finding unsatisfiable components can cause a back-
track that abandons work on sibling components. In contrast to this we use the term far-
backtracking to refer to the form of non-chronological backtracking described above.

We considered two forms of far-backtracking, the full original far-backtracking and
one in which the backtrack moves up to the highest level below the far backtrack level
at which the subtree does not already have a satisfying assignment found. This latter
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Problems # of far total #conflicts total #conflicts time with time w/o
backtracks with far-back w/o far-back far-back far-back

Circuit
2bitcomp 6 930 1212 1393 15 15
2bitmax 6 1031 1501 1222 6 2

rand1 1270 2114 4095 18 23
ra 0 0 0 3.4 3.4
rb 101 176 220 9 7.5
rc 353 502 511 199 189
ri 13010 13070 10212 164 119

Grid-Pebbling
grid-pbl-8 75 122 286 0.15 0.06
grid-pbl-9 275 388 773 0.22 0.35
grid-pbl-10 355 506 730 1.8 0.37
Logistics
prob001 355 506 730 0.07 0.06
prob002 1968 2042 2416 10 8
prob003 2117 2176 2022 14 9
prob004 5657 6694 5492 1062 44
prob005 26233 31392 21951 10121 331
prob012 12020 13563 15677 2860 304

flat-200(100)
average 6884 6958 7119 4.9 4.8
median 5150 5188 5105 3.0 2.9

uf200(100)
average 24101 24144 26469 7.5 7.2
median 23014 23067 25778 6.9 6.5

Fig. 4. Runtimes in seconds and number of backtracks using VSADS in Cachet with and without
far-backtracking

approach eliminates the problem of abandoned satisfying assignments but it does not
backtrack very far and creates additional overhead. It did not make a significant differ-
ence so we do not report the numbers for it.

Figure 4 shows the comparison of Cachet with and without far-backtracking. Even
with far-backtracking enabled, some of the backtracks are the same as they would be
without it, and we report the number of far backtracks separately from the total num-
ber of backtracks that are due to conflicts in the case that far-backtracking is turned
on. (In SAT algorithms all backtracks are due to conflicts but in model counting most
backtracks involve satisfiable left subtrees.)

While far-backtracking occasionally provides a significant improvement in runtime
when the input formula is indeed unsatisfiable, overall it typically performed worse than
without far-backtracking. As a result, we do not use far-backtracking as the default but
we allow it as an option.
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7 Computing All Marginals

We now show how our basic exact model counting algorithm Cachet can be modified
to compute marginal probabilities for all variables, that is, the fraction of satisfying as-
signments in which each variable is true. Although Cachet does not maintain explicit
information about the satisfying assignments found, we can maintain enough statistics
as we analyze each component to determine the overall marginal probabilities. The ba-
sic idea requires that each component is associated not only with a weight representing
the fraction of all assignments that satisfy it but also with a vector of marginal proba-
bilities for each of its variables.

In Figure 5 we show a simplified recursive algorithm marginalizeAll that returns
the count and passes up the marginal probabilities as well as the count. In this sim-
plified version, the left branch is assumed to correspond to the assignment v = 0

Algorithm marginalizeAll
marginalizeAll(Φ, Marginals)
// returns satisfying probability of formula φ
// marginals of all variables are returned in vector Marginals as well

if Φ is empty, return 1
if Φ has an empty clause, return 0
LeftV alue = RightV alue = 1/2 // initializing
initializeV ector(LeftMarginals, 0)
initializeV ector(RightMarginals, 0)
select a variable v in Φ to branch // branching
extractComponents(Φ|v=0)
for each component φ of Φ|v=0

LeftV alue × = marginalizeAll(φ, LeftMarginals)
for each variable x ∈ Φ

if x ∈ Φ|v=0

LeftMarginals[x] × = LeftV alue // adjusting
else

LeftMarginals[x] = LeftV alue/2
LeftMarginals[v] = 0
extractComponents(Φ|v=1)
for each component φ of Φ|v=1

RightV alue × = marginalizeAll(φ, RightMarginals)
for each variable x ∈ Φ

if x ∈ Φ|v=1

RightMarginals[x] × = RightV alue // adjusting
else

RightMarginals[x] = RightV alue/2
RightMarginals[v] = RightV alue
Marginals = sumV ector(LeftMarginals, RightMarginals)
Marginals / = (LeftV alue + RightV alue) // normalizing
return LeftV alue + RightV alue

Fig. 5. Simplified version of algorithm to compute marginal probabilities of all variables



Heuristics for Fast Exact Model Counting 237

and the parameter Marginals is passed by reference. Variables in different compo-
nents are disjoint, so their marginals can be calculated separately but finally need to
be adjusted by the overall satisfying probability. The marginal of any variable that has
disappeared in the simplified formula is just equal to half of the satisfying probabil-
ity by definition. For the decision variable, only its positive branch should be counted.
LeftV alue+RightV alue is the satisfying probability of Φ and the normalizing factor
for all marginals of Φ.

Though described in a recursive fashion, the real implementation of this algorithm
works with component caching in the context of non-recursive backtracking that it in-
herits from zChaff. Moreover, in this simplified version we have ignored the issue of
unit propagations. Variables following via unit propagation do not appear in the formula
on which a recursive call is made so their marginals are not computed recursively but
must be set based on the fraction of satisfying assignments found in the recursive call.
The details of this calculation and extension to using arbitrary weights is addressed in
[11] where Cachet is extended to handle Bayesian inference.

The overhead of computing all marginals is proportional to the number of variables
in the components, rather than the total number of variables, because at a node in the
search where the model count is returned, only those relevant variables need to be exam-
ined. But it may need a significant amount of memory for caching the marginal vectors.
In this way, we are able to compute all marginals quite efficiently, usually with only
10% to 30% extra overhead if the problem fits in the memory.

7.1 Marginals of Random 3-CNF Formulas

In this section we show how the extension of Cachet for computing all marginal prob-
abilities allows us to study new features of random 3-SAT problems. This problem has
received a great deal of interest both algorithmically and theoretically. It is known ex-
perimentally that there is a sharp satisfiability threshold for random 3-SAT at a ratio
of roughly 4.3 clauses per variable. However, the largest proved lower bound on the
satisfiability threshold for such formulas is at ratio 3.42 [1] using a very restricted ver-
sion of DPLL that does not backtrack but makes irrevocable choices as it proceeds. (In
fact, almost all analyses of the lower bounds on the satisfiability thresholds for random
3-SAT are based on such restricted DPLL algorithms.)

In Figures 6 and 7 we show the the experimental cumulative distribution of
marginals of random 3-CNF formulas of 75 and 150 variables respectively at differ-
ent ratios. The plots are the result of running experiments with 100 random formulas
at each ratio, sorting the variables by their marginals, and taking a subsample of 150
equally-spaced points in this sorted list for ease of plotting the results. Thus the X-axis
represents the fraction of all variables considered and the Y-axis represents the marginal
probability that a variable is true in satisfying assignments of the formula in which it
appears. (Although this is plotted in aggregate, individual formulas have similar plots
to these aggregate plots.)

For a cumulative distribution derived in this manner (sometimes called a QQ or
quantile-quantile plot), a uniform distribution would be represented as a straight line
from (0, 0) to (1, 1). Moreover, we can read off simple properties from these plots.
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Fig. 6. Cumulative distribution (QQ plot) of marginal probabilities of variables in random 3-CNF
formulas of 75 variables at various ratios
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Fig. 7. Cumulative distribution (QQ plot) of marginal probabilities of variables in random 3-CNF
formulas of 150 variables at ratios ≥ 3.4

For example, for 75 variables at ratio 4.1, more than 20% of variables were virtually
always false in all satisfying assignments and a similar fraction were virtually always
true. Since randomly chosen formulas are chosen symmetrically with respect to the



Heuristics for Fast Exact Model Counting 239

signs of their literals, we should expect that the cumulative distribution functions will
be symmetric about the point (0.5, 0.5) as is borne out in our experiments.

Our experiments show, not surprisingly, that at low ratios the biases of variables
are rarely extreme and that variables become significantly more biased as the ratios
increase. At the lowest ratio, 0.6, in Figure 6, a constant fraction of variables do not
appear in the formula so the flat section of the curve shows that a constant fraction of
variables is completely unbiased at marginal probability 0.5.

In other plots of curves for fixed ratios and varying numbers of variables, we ob-
served that the shape of the curves of the cumulative distribution function seemed to
be nearly the same at a given ratio, independent of the number of variables. For exam-
ple, at ratio 3.9, the lack of smoothness in the plots due to experimental noise almost
compensated for any differences in the shapes of the curves.

One interesting property of these cumulative distribution functions is the precise
ratio at which the marginal probabilities are uniform. As can be seen from both the
75 variable and 150 variable plots, this point appears to be somewhere around ratio
3.4, although it is a bit difficult to pinpoint precisely. Above this ratio, the marginal
probabilities of variables are skewed more towards being biased than unbiased. It seems
plausible that the distribution of marginal probabilities is particularly significant for the
behavior of non-backtracking DPLL algorithms like the one analyzed in [1]. Is it merely
a coincidence that the best ratio at which that algorithm succeeds is very close to the ratio
at which the distribution of variable biases becomes skewed towards biased variables?

8 Conclusion

Many of the techniques that apply to SAT solvers have natural counterparts in exact
#SAT solvers such as Cachet but their utility in SAT solvers may not be indicative of
their utility in #SAT solvers.

We have shown that popular techniques for SAT solvers such as randomization and
aggressive non-chronological backtracking are often detrimental to the performance of
Cachet. We have developed a new hybrid branching heuristic, VSADS, that in conjunc-
tion with a careful component selection scheme seems to be the best overall choice
for Cachet. Furthermore, based on experiments, more sophisticated methods for cross-
component implications appear to be of only very marginal utility.

Finally, we observed that #SAT solutions are merely the start of what can be ob-
tained easily using Cachet by demonstrating the ability to obtain interesting results on
the marginal probabilities of random 3-CNF formulas.
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Abstract. In this paper, we present a hybrid method for deciding prob-
lems involving integer and Boolean variables which is based on generic
SAT solving techniques augmented with a) a polynomial-time ILP
solver for the special class of Unit-Two-Variable-Per-Inequality (unit
TVPI or UTVPI) constraints and b) an independent solver for general
integer linear constraints. In our approach, we present a novel method
for encoding linear constraints into the SAT solver through binary “in-
dicator” variables. The hybrid SAT problem is subsequently solved us-
ing a SAT search procedure in close collaboration with the UTVPI
solver. The UTVPI solver interacts closely with the Boolean SAT solv-
er by passing implications and conflicting assignments. The non-UTV-
PI constraints are handled separately and participate in the learning
scheme of the SAT solver through an innovative method based on the
theory of cutting planes. Empirical evidence on software verification
benchmarks is presented that demonstrates the advantages of our
combined method.

1 Introduction

Many applications in hardware and software verification, such as RTL datap-
ath verification [7], symbolic timing verification [2], and buffer over-run vulner-
ability detection [32], are naturally cast as decision problems that involve
systems of constraints over the Booleans and unbounded integers. In the past
several years, there has been considerable progress in solving these types of
problems by leveraging the recent advances in Boolean SAT and combining
them with methods that decide the feasibility of systems of linear integer con-
straints.

In this paper we are concerned with quantifier-free Mixed Integer Boolean
formulas (MIB formulas for short) whose atoms are a) Boolean constants and
variables, and b)  linear  integer  constraints. Any  such  atom  is a valid  MIB

 formula, and if  and  are valid MIB formulas then so are
. We note that a MIB formula reduces to a quanti-

fier-free Presburger (QFP) formula when the set of Boolean atoms is empty. A
MIB formula is said to be in Conjunctive Normal Form (MIB-CNF) if it is the
conjunction of a set of clauses each of which is the disjunction of a set of liter-
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MIB formula can be expressed in MIB-CNF in linear time and space by intro-
ducing a set of Boolean auxiliary variables, if necessary [33]. When the distinc-
tions are not important, we will use the terms MIB formula and MIB-CNF
formula in the sequel to generically refer to a QFP formula.

Current methods for deciding the satisfiability/unsatisfiability of MIB-CNF
formulas can be divided into four categories:

1. SAT-Based Abstraction/refinement methods [4, 20] In these approaches,
the MIB-CNF formula  is abstracted to a pure Boolean CNF formula 
by replacing each linear integer constraint with an unrestricted Boolean
indicator variable. A SAT solver is then used to check the satisfiability of

. If  turns out to be unsatisfiable, then so is  since . On the
other hand, if  is satisfiable, an ILP solver is called to verify the consis-
tency of that solution. This is done by constructing and solving a system
of simultaneous linear integer constraints corresponding to the satisfying
assignments found for the indicator variables. If the integer constraints are
found to be inconsistent, the abstract formula  is refined by eliminating
its current solution and the SAT solver is re-invoked to find another solu-
tion. The procedure terminates if the ILP solver establishes the consisten-
cy of one of these SAT solutions or proves that all the (potentially expo-
nential) satisfying assignments to  are inconsistent. The combination
strategies employed in these classes of solvers are either Shostak-like [29]
combination methods or the ones based on work by Nelson-Oppen [24].
For a complete survey of these solvers, the reader is referred to [23].

2. SAT-Based Finite-Domain Instantiation Methods Recently there has been
increasing interest in a special class of QFP formulas in which most linear
constraints are separation constraints of the form ; where x and
y are integer variables and d is a constant. In [28], the authors computed
an upper bound on integer variables and therefore could set the number of
bits in each variable in order to reduce the problem to an equi-satisfiable
finite-domain and consequently Boolean problem. They showed that the
number of bits per integer variable is linearly proportional to the number
of non-separation constraints and logarithmically to the number and size
of non-zero coefficients. The separation constraints, on the other hand, are
pre-processed using the EIJ method [31] which relies on augmenting the
Boolean problem with “transitivity constraints” on the values of indicator
variables in order to rule out assignments to those variables that do not
have any corresponding solutions in the ILP problem. In the worst case,
this process can add an exponential number of transitivity constraints de-
pending on the number of separation constraints. 

3. Automata-Based Methods [15]  The key idea here is to convert the MIB
formula to a deterministic finite-state automaton (DFA) such that the lan-
guage of this automaton corresponds to the set of all solutions of the MIB
formula. These methods seem to be efficient for formulas whose integer
constraints have large coefficients. However, as observed in [15], the effi-

ˆ

ˆ ˆ ˆ
ˆ

ˆ

ˆ

x y– d

als where a literal is either an atom or the negation of an atom. An arbitrary
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ciency of this technique declines considerably as the number of variables
and/or constraints increases.

4. Integer Linear Programming Methods In these techniques, disjunctions
are either removed using Big-M method and the result is checked for sat-
isfiability using a Simplex-based ILP solver [10, 17], or they are enumer-
ated in a Disjunctive Normal Form and then solved using Fourier-Motzkin
algorithm [26].

The method we introduce in this paper belongs to the SAT-based abstrac-
tion/refinement category. Unlike [4, 20], however, in which the SAT and ILP
solvers are loosely integrated, our approach tightly integrates a specialized
transitive-closure algorithm with the SAT solver. It achieves its performance
by taking advantage of the structure of MIB formulas that arise in verification
applications. Specifically, it capitalizes on the fact that the majority of the lin-
ear integer constraints involve at most two variables that have unit coefficients,
namely UTVPI constraints. Such constraints can be checked quickly using a
transitive-closure algorithm which is tightly integrated within the search pro-
cess of a modern SAT solver. The UTVPI solver can yield implications and
generate conflict-induced learned constraints in the SAT solver as soon as such
combinations are detected. The non-UTVPI constraints, on the other hand, are
handled off-line and may yield conflict-induced UTVPI constraints that help to
minimize the number of calls on the non-UTVPI solver. For this purpose, a
novel strategy based on theory of cutting-planes is adopted in order to learn
from the conflicts detected among the non-UTVPI constraints.

These choices work extremely well in practice since the number of UTVPI
constraints is usually much larger than the number of non-UTVPI constraints
[11, 28]. Unlike the method of [28, 31] whose efficiency heavily relies on having
a low number of separation and non-separation constraints, our method while
benefitting from the separation of the UTVPI and non-UTVPI solvers, has no
such dependencies on the number of constraints.

The remainder of this paper is organized as follows. In Section 2 we cover
some preliminaries. In Section 3 our adopted incremental method in solving
UTVPI problems is described. Section 4 covers our approach for encoding and
solving the MIB problem. Experimental results are reported in Section 5 and
we conclude in Section 6.

2 Preliminaries

An integer linear constraint has the general form

where  and . The special form 
with  is referred to as a unit two-variables-per-inequality
(UTVPI) constraint. Single-variable constraints are treated as UTVPI con-
straints by introducing a dummy variable with a zero coefficient. A constraint

1
n

i ii
a x b

=

, ,i ia b x { , , , , , }> < = i i j ja x a x b+
, {0, 1}i ja a ±

.
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equalities and negated-equalities can be transformed to conjunction and dis-
junction of two UTVPI constraints respectively.

The modern algorithms for propositional SAT are quite well-known and will
not be elaborated here; in particular we assume that the reader is familiar with
the concepts of Boolean Constraint Propagation (BCP) and its efficient imple-
mentation using watched literals, conflict analysis, clause recording, non-chro-
nological backtracking, the VSIDS decision heuristic, restarts, etc. For details
on these, readers are referred to [21, 22].

Notationally, we will use  (resp. ) to denote the origi-
nal (resp. indicator) Boolean variables in a MIB-CNF formula. Integer vari-
ables will be denoted by lower case letters such as . We will use the
formula in Figure 1 as a running example throughout the paper.

3 Deciding Systems of UTVPI Integer Constraints

Problems consisting of conjunctions of UTVPI constraints can be decided using
generic ILP solvers such as CPLEX [17] or XPRESS-MP [10]. However, the
full-scale Simplex techniques adopted in these solvers do not take advantage of
the simple structure of UTVPI constraints and cannot be efficiently integrated
within the backtrack search process of modern SAT solvers.

The solution method we adopt in this paper for deciding systems of UTVPI
integer linear constraints is a polynomial-time transitive closure algorithm pro-
posed by Jaffar et al. [19] which, in turn, is an extension of Shostak’s method
for TVPI real constraints [30].

A set of UTVPI constraints is said to be transitively closed if for each pair of
constraints sharing a variable with opposite signs there exists an inequality
constraint between the two remaining variables. For instance, the transitive
closure of  is  and we
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that has more than two variables or that has non-unit coefficients will be
referred to as a non-UTVPI constraint. Note that unit two-variable integer

Fig. 1. Example MIB-CNF instance
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tightened in order to maintain the unit coefficient property. Specifically, the
constraint implied by  and (recall that

) is  whose tightening yields . It is
easy to show that the worst-case complexity of maintaining a tightened and
transitively-closed set of UTVPI constraints is quadratic in time and space. 

To illustrate consider the following set of UTVPI constraints:

(1)

The transitively-closed and tightened set of constraints derived from (1) is eas-
ily shown to be:

(2)

Jaffar et al. [19] showed that a set of UTVPI integer constraints C is satisfi-
able iff Tighten(Trans(C)) does not contain a constraint of the form 
where . An example of an unsatisfiable constraint set is:

(3)

Our MIB-CNF SAT solver maintains a database of transitively closed and
tightened constraint sets. Specifically, suppose that in the course of searching
for a solution the sequence of UTVPI constraint sets  is gener-
ated. As each such set  is produced, the corresponding 
set is computed incrementally by adding/removing any implied constraints
when a new constraint is added/removed.

4 The MIB-CNF Solver

The architecture of our proposed MIB-CNF solver is shown in Figure 2. It con-
sists of three separate solvers: a modern Boolean SAT solver, an incremental
UTVPI integer solver, and a generic ILP (non-UTVPI) solver. The Boolean
solver orchestrates the entire process and interacts very closely with the
UTVPI solver. Specifically, the Boolean solver views the UTVPI solver as a
“super clause” that participates in the implication and conflict analysis steps of
the search process. The non-UTVPI solver, on the other hand, is invoked only
when the combined Boolean/UTVPI solver returns a satisfying assignment to

ax by d+ ax by d
, {0, 1}a b ± 2ax d d+ ( ) 2ax d d+

C y z 4 x y– 5 x y+ 2,,+{ }=

Trans C( ) C x z+ 9 2x 7,{ }=

Tighten Trans C( )( ) C x z+ 9 x 3,{ }=

0 d
d 0<

C y z– 1 x y– 1 z x– 3–,,{ }=

Tighten Trans C( )( ) C x z– 2 0 1–,{ }=

C1 C2 C3 …, , ,
Ci Trans Tighten Ci( )( )

context, we will be interested in a dynamically-changing set of UTVPI con-
straints. To keep such a set transitively closed, whenever a new constraint is
added to the set, all its implied constraints must be derived and added. When
an implied constraint ends up involving a single variable, it may need to be

say that  is implied by  and . In the MIB-CNFx z+ d d+ x y– d y z d+
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conflicts in non-UTVPI solver, are adopted. By passing only those absolutely
necessary constraints/variables to the non-UTVPI solver, its performance is
improved exponentially and by learning from its conflicts in terms of UTVPI
constraints, the number of calls to the non-UTVPI solver reduces considerably.

In the remainder of this section we describe how a MIB-CNF instance is
encoded for processing by the MIB-CNF solver, and detail the interactions
between the Boolean solver and the UTVPI and non-UTVPI solvers.

The first step in solving a MIB-CNF instance is to introduce a set of indepen-
dent Boolean indicator variables  to label each of the linear integer con-
straints and to conjoin the formula with additional relations that establish the
equivalence between the indicator variables and their corresponding integer
constraints. Specifically, if

(4)

denotes a MIB formula defined over n Boolean variables  and k lin-
ear integer constraints , we construct

UNS
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the subset of Boolean and UTVPI constraints. This solver checks the consis-
tency of simultaneous activation of UTVPI and non-UTVPI constraints whose
indicator variables are true, by adopting a Simplex-based method. Comparing
to other parts of the overall system, the non-UTVPI solver relatively acts as
the bottleneck in the process. Therefore, in order to minimize its overall contri-
bution to the run-time of the MIB-CNF solver, two techniques, namely mini-
mizing the size of the ILP problem and learning UTVPI constraints from

Fig. 2. Overall Architecture of the MIB-CNF Solver
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(6)

Since  is a superset of , this can be viewed as a conservative abstraction:
when  is unsatisfiable, so is , and when  is satisfiable, it is possible that

 is unsatisfiable. However, because of the form of  and the fact that, by
construction, g is positive unate in all indicator variables , the only situation
in which this happens is when at least one  is 0 and its corresponding linear
integer constraint is forced to be satisfied. Such a solution can be changed so
that , restoring consistency between the integer constraint and its indi-
cator variable without affecting the satisfiability of the original formula.

The practical effect of checking  rather than  is that the linear integer
solvers need only process those constraints that are “active,” i.e. those whose
indicator variables are true; constraints whose indicator variables are false can
be safely disregarded. This optimization has a major impact on the perfor-
mance of the MIB-CNF solver.

Figure 3 demonstrates the result of applying this method of encoding on
problem of Figure 1.
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Clearly, , and the satisfiability/unsatisfiability of 
implies that of . Strict equivalence between the indicator variables and their
corresponding linear integer constraints is not necessary, however. The satisfi-
ability/unsatisfiability of  can be determined by checking the simpler formula

( )1 ˆ, , kB B= ˆ

Fig. 3. Encoding of the MIB-CNF instance of Figure 1. Note that constraint ω8 does
not require an indicator variable since it must be satisfied unconditionally
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cator variable to 1 triggers the UTVPI solver which, in turn, activates the
corresponding linear integer constraint and incrementally updates the database
of active UTVPI constraints to keep it transitively-closed and tightened. This
update can be viewed as continuing the BCP process within the UTVPI solver,
and can yield further implications to other indicator variables or can result in
conflicts. Inconsistency of the active UTVPI constraints is communicated back
to the Boolean solver as a conflicting assignment on the relevant indicator vari-
ables. The Boolean conflict analysis procedure takes over at that point to cre-
ate an appropriate conflict-induced clause [21] and backtracks to eliminate the
conflict. The backtrack level is passed to the UTVPI solver so that it can de-
activate the linear integer constraints whose indicator variables were reset to 0
or unassigned (as well as any constraints they implied by transitive closure and
tightening).

To illustrate the process of implying indicator variables in the UTVPI
solver, let B be an indicator variable for a UTVPI constraint C. B is implied to
1 in the UTVPI solver if the process of transitive closure and tightening pro-
duces a constraint that is identical or stricter than C. On the other hand, B is
implied to 0 if transitive closure and tightening produces a constraint that is
inconsistent with C. For example, if B is the indicator variable for ,
generating  causes B to be implied to 1, whereas generating

 causes the implication of B to 0.

1A¬ 1B ( )5u w

( )6v w+

( )11u v+

2A¬ 2B

3A 4A¬ 4B ( )12u v+

( )0 1

UTVPI ImplicationsBoolean Implications

x y– 5
x y– 3

y x– 6–

The Boolean and UTVPI solvers interact dynamically during the search pro-
cess and communicate through the indicator variables of the UTVPI con-
straints (the non-UTVPI constraints are ignored in this phase.) The Boolean
solver is responsible for making decisions on the Boolean variables and for per-
forming BCP and conflict analysis. A decision or implication that sets an indi-

Fig. 4. Implication sequence leading to a conflict in the UTVPI solver. The indicator
variables enclosed by the dashed outline are returned by the UTVPI solver as a con-
flicting assignment. The conflict analysis procedure of the Boolean solver traces back
from this assignment to learn and record the conflict-induced clause(¬A3∨¬B1∨¬B2∨)
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the next theorem shows, however, only a subset of the active UTVPI con-
straints needs to be processed by the ILP solver.

A given system of satisfiable transitively-closed UTVPI constraints
together with a set of non-UTVPI linear constraints is equi-satisfiable with a
subset of those UTVPI constraints sharing both variables with variables in the
non-UTVPI system and the set of non-UTVPI constraints.

Chvátal [9] showed that cutting planes provide a canonical way of prov-
ing that every integral solution of a given system of linear inequalities satisfies
another given inequality. Therefore, a cutting plane proof of unsatisfiability is
to prove that there exists a sequence of inequalities such that their non-nega-
tive combination results in inequality . Thus, since we know that the0x 1–

1B
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73B
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The handling of UTVPI conflicts is illustrated in Figure 4 for our running
example.

When the combined Boolean/UTVPI solver returns a satisfying solution, the
non-UTVPI solver must be invoked to check the consistency of that solution
against any activated non-UTVPI constraints. This can be naively done by col-
lecting all of the active linear integer constraints, i.e., the UTVPI and non-
UTVPI constraints whose indicator variables are set to 1 in the current solu-
tion, and passing them on to a generic Simplex-based ILP solver [10, 17]. As

Fig. 5. Conflict analysis in the non-UTVPI solver. After determining that the high-
lighted constraints are inconsistent, the non-UTVPI solver can either return the con-
flicting assignment (B1 ∧ B2 ∧ B3 ∧ B64 ∧ B73) , or it can derive and return the
learned UTVPI constraint (x+y ≤ 2) along with the learned clause (B1 ∧ B2 ∧ ¬ B8).
The latter is preferable since it minimizes future invocations of the ILP solver
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much better performance by the ILP solver. Using our running example, the
constraints that must be checked by the ILP solver are highlighted in Figure 5.

If the constraints passed to the ILP solver are found to be consistent, the
process terminates with a satisfying solution to the original formula. If, on the
other hand, the ILP solver finds the constraints to be inconsistent, it must
communicate this fact to the Boolean/UTVPI solver which, in turn, must find
another solution. This can be done in a manner similar to that used by the
UTVPI solver to communicate unsatisfiability to the Boolean solver, namely
by returning a set of conflicting indicator variables. This is sufficient, but can
be quite inefficient. This is illustrated for our example in Figure 5. After
detecting inconsistency, the non-UTVPI solver returns the conflicting assign-
ment  to the Boolean solver which uses it to per-
form conflict analysis and backtracking. Upon finding another satisfying
solution, e.g., , the non-
UTVPI solver is invoked again and returns with another conflicting assign-
ment. In fact, this iteration will be repeated twelve times exhausting all possi-
ble satisfying assignments to constraints  and  before the search process
backtracks and reverses an assignment to an A variable.

To reduce the calls to the ILP solver, the non-UTVPI solver can perform its
own “intelligent” conflict analysis before returning to the Boolean solver. The
goal of this analysis is to derive, using cutting planes, a UTVPI constraint that
is implied by the current conflicting assignment. Such a constraint can then be
returned to the Boolean/UTVPI solver to help confine the “bactracking” itera-
tions inside that solver. For our example, this is accomplished by combining the
non-UTVPI constraint  with the UTVPI constraint

 yielding  which is tightened to . Assigning a
fresh indicator variable  to this learned constraint, it is returned to the
Boolean/UTVPI solver along with the associated learned clause

 (see Figure 5). Upon learning this clause, the Boolean/
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UTVPI constraints, it is sufficient to only consider those constraints among the
UTVPI constraint that share variables with them knowing that no new con-
straint can be generated by combining only UTVPI constraints because they
are transitively closed. Therefore, the set of non-UTVPI constraints together
with those UTVPI constraints which share variables with them is equi-satisfi-
able with all UTVPI and non-UTVPI constraints. 

To utilize this theorem, the non-UTVPI solver returns the variables associ-
ated with its active constraints to the UTVPI solver which uses them to select
the subset of UTVPI constraints that must be checked for consistency with the
active non-UTVPI constraints. In general, the number of UTVPI constraints
that are passed to the ILP solver using this “filter” is much smaller than the
total number of active UTVPI constraints, and that directly contributes to

set of UTVPI constraints is satisfiable, the proof of unsatisfiability, if any,
should include at least one of the newly added non-UTVPI constraints. In
order to yield  from combining linear constraints with those non-0x 1–

UTVPI solver would eventually know that either  or  should be true byA1 A2
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details of API’s, and adopting an automatic technique based on bounded, infi-
nite-state model checking. The benchmarks include both satisfiable and unsat-
isfiable instances and incorporate UTVPI and non-UTVPI constraints
combined with Boolean connectors. Un-interpreted functions were initially
eliminated using Ackermann’s technique [1] and the satisfiability of the result-
ing formula was tested using different hybrid SAT solvers. Characteristics of
the benchmarks used in this evaluation are displayed in Table 1.

benchmark Result Variables
int/bin

Constraints

CNF UTVPI non-UTVPI

s-20-20 SAT 60/973 864 778 6
s-20-30 SAT 60/973 864 778 6
s-20-40 UNS 60/973 864 778 6
s-30-30 SAT 80/1393 1244 1128 6
s-30-40 SAT 80/1393 1244 1128 6
xs-20-20 SAT 82/1116 1046 959 6
xs-20-30 SAT 82/1116 1046 959 6
xs-20-40 UNS 82/1116 1046 959 6
xs-30-40 SAT 112/1606 1516 1399 6

As it is obvious, this process will result in an strictly more powerful learned
clause than that of the naive method explained earlier and would considerably
help the search algorithm by pruning its infeasible search space more effi-
ciently. 

5 Implementation and Experimental Results

The UTVPI solver was implemented within our ARIO SMT solver [3]. ARIO is
built on top of MiniSAT [12] and inherits its strategy for random restarts,
VSIDS and clause removal. For the Simplex-based ILP solver, we used
XPRESS-MP [10] and all experiments were conducted on a Pentium-IV
2800MHz machine with 1 GB of RAM running Linux.

To evaluate our method, we experimented on formulas obtained from the
Wisconsin Safety Analyzer (WiSA) project [14]. These instances are concerned
with finding API-level exploits by introducing a framework to model low-level

checking all combinations of  and  without referring to the non-UTVPI
solver and those would be the only satisfying solutions to the problem. 

B6i B7j

The results of running ARIO on the benchmarks of Table 1 are displayed in
Table 2. This table also includes CPU run-times obtained from [28] for solving
the same instances using the parametrized solution bounds method along with

Table 1. WiSA benchmarks
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tion of cutting planes to preserve their discreteness. For details of their
method, the reader is referred to [27].

The clear advantage of ARIO method over the online method of ICS is
mainly due to its strategy of separating UTVPI and non-UTVPI constraints,
its unique strategy for refinement and more efficient handling of integer con-
straints.

Comparing to the pre-processing and solution-bound approach of UCLID,
our method outperformed on all satisfiable instances due to its more effective
learning and on-demand collaboration strategy of its solvers. The cases that
UCLID performed better, i.e. mainly small unsatisfiable instances, are the ones
in which all the transitivity constraints could be efficiently pre-encoded into
the SAT solver in the form of CNF clauses, effectively shifting all the search
work into the SAT solver rather than sharing it with the slower UTVPI solver
as in our method. However, it is important to remember the high dependence
of such methods on having a low number of separation and non-separation con-
straints that cause the solver to slow down exponentially as the number of con-
straints increase

We  could  not obtain  the version  of UCLID supporting  integer  non-separation
constraints from  its developers  and  therefore  our  information on its performance
is limited to what they reported in [28] and the characteristics of their algorithm.

UCLID and also the timings of ICS version 2.0c [13] for the same problems
translated by ARIO before applying Ackermann conversion. The hybrid
method of ICS is based on lazy, online integration of a non-clausal SAT solver
with an incremental, backtrackable constraint engine. The approach adopted in
their constraint engine is an extension of Nelson’s version of Simplex algorithm
where equalities and disequalities are added to a Simplex tableau incremen-
tally. Integer constraints are processed, in the same framework with the addi-

benchmark
UCLID
timea

a from [28] and adjusted to CPU speed of 2.8 GHz

ICS
time

ARIO time 

UTVPI non-UTVPI total
s-20-20 8.78 0.25 0.17 0.01 0.26
s-20-30 9.50 0.37 0.32 0.01 0.61
s-20-40 4.50 286.84 2.77 0.01 5.05
s-30-30 20.89 1.64 0.28 0.01 0.45
s-30-40 19.21 7.41 1.21 0.01 2.06
xs-20-20 26.03 17.77 0.35 0.02 0.57
xs-20-30 21.42 1482.80 0.1 0.01 0.23
xs-20-40 14.18 >3600 173.9 0.01 276.43
xs-30-40 33.22 >3600 1.88 0.06 3.01

As demonstrated in Table 3, adopting our intelligent refinement method
based on cutting plane theory resulted in a considerable decrease in calls to

Table 2. Run-times (in sec.) of ARIO, UCLID and ICS on WiSA benchmarks
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6 Related Work, Conclusions and Future Work

In this paper, we presented a new scalable, cooperative and intelligent method
for solving decision problems involving integer linear arithmetic constraints
together with Boolean variables. The unique characteristics contributing to the
efficiency of our combined method can be summarized as follows:

• Separation of UTVPI and non-UTVPI engines based on the general struc-
ture of problems in software and hardware verification applications,

• Online collaborative algorithm for solving UTVPI constraints while the
Boolean search proceeds,

• Efficient offline communication between the solvers,
• Intelligent and powerful refinement of inconsistencies by the offline solver.

Tight integration of theory solvers into the SAT solver was also suggested in
[16] where any given theory (linear arithmetic for instance) is coupled into the
generic DPLL-based propositional solver. Similarly, in our method, the UTVPI
constraints are tightly integrated into the SAT solver, but non-UTVPI con-
straints are handled only after a satisfiable solution to the Boolean/UTVPI

non-UTVPI solver and in some cases enormous speed-ups. This table also
depicts the number of conflicts due to inconsistencies detected among UTVPI
constraints that are all detected online rather than being delayed until the
search is complete. Large numbers of such conflicts in these problems makes
their online handling vital to the efficiency of the overall algorithm. The num-
ber of conflicts detected by cutting planes refers to those conflicts that would
have needed a call to the non-UTVPI solver to be detected.

benchmark
number of conflicts Number of runs

total in UTVPI in Cutting 
Planes

with Cutting 
Planes

no Cutting 
Planes (time)

s-20-20 1111 1057 6 10 84 (0.66 s)
s-20-30 3172 3009 12 8 2066 (15.36 s)
s-20-40 30611 30418 3 1 time-out
s-30-30 1500 1436 2 1 447 (10.17 s)
s-30-40 7631 7281 29 11 273 (7.07 s)
xs-20-20 877 811 11 17 160 (2.09 s)
xs-20-30 396 388 3 1 318 (3.62 s)
xs-20-40 748710 746239 3 1 time-out
xs-30-40 3739 3596 18 16 255 (8.01 s)

Table 3. Running ARIO on WiSA benchmarks. Number of runs is the number of
times a solution to SAT/UTVPI problem was found to be inconsistent by non-UTVPI
engine
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One promising direction of future research involves improving the efficiency
of the collaboration between the SAT solver and its UTVPI engine and also
extending the cutting plane techniques described above to add more refinement
power in order to minimize the number of inconsistent solutions. Since in most
verification applications, the integer solvers are the bottleneck in the SAT-
based algorithms, the methods described in this paper when combined with
other ILP methods provide a viable option. Specifically, the independent char-
acteristics of our method together with its ability to collaborate with the SAT
solver efficiently, makes it more practical for large problems and more amena-
ble to parallelization.
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In [6], a layered decision procedure for the satisfiability of linear arithmetic
logic, implemented in MathSAT, is presented. MathSAT is mainly organized in
a layered hierarchy of solvers in increasing solving capabilities. Similar to our
method, MathSAT also differentiates between Difference Logic (DL) con-
straints of the form  (a special class of UTVPI constraints) and gen-
eral linear arithmetic constraints. The former is solved using a Bellman-Ford
algorithm and the latter by a simplex-based solver. Integer constraints are han-
dled using branch-and-bound for small problems or Omega Test [26] as the last
resort. Unlike MathSAT, in our method the UTVPI constraints are tightly
integrated into the SAT solver and by adopting an incremental approach for
solving the UTVPI problem and taking advantage of the property introduced
in Theorem 1, the integer problem becomes considerably smaller, effectively
eliminate the need to the computationally-expensive Omega Test.

Compared to these methods, our method is more robust and reliable as it
preserves the completeness of the procedure while maintaining a high level of
efficiency. As we learn more about the trade-offs involved, we will be able to
develop effective integration strategies that outperform individual techniques. 

x y– c

and effectively prunes the search space of the SAT solver. By not integrating a
full-scale linear arithmetic theory into the SAT solver, our approach maintains
both efficiency and completeness of the DPLL-based solver.

The use of a modified implication graph to take into account mathematical
deductions was also proposed in [18]. In their method, the DPLL-style SAT
solver is combined with a constraint solver based on Fourier-Motzkin elimina-
tion. The hybrid conflict analysis scheme for finite-domain integer and Boolean
variables, introduced in their work, is comparable to the hybrid UTVPI and
Boolean learning method adopted in our method and illustrated in Figure 4.

problem is found. Our proposed refinement method for inconsistencies in the
SAT solutions leads to a considerable reduction in the number of offline calls
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Abstract. We present DPVIS, a Java tool to visualize the structure of SAT in-
stances and runs of the DPLL (Davis-Putnam-Logemann-Loveland) procedure.
DPVIS uses advanced graph layout algorithms to display the problem’s inter-
nal structure arising from its variable dependency (interaction) graph. DPVIS is
also able to generate animations showing the dynamic change of a problem’s
structure during a typical DPLL run. Besides implementing a simple variant of
the DPLL algorithm on its own, DPVIS also features an interface to MiniSAT, a
state-of-the-art DPLL implementation. Using this interface, runs of MiniSAT can
be visualized—including the generated search tree and the effects of clause learn-
ing. DPVIS is supposed to help in teaching the DPLL algorithm and in gaining
new insights in the structure (and hardness) of SAT instances.

1 Introduction

Although SAT is an NP-complete problem, there are many real-world instances that can
be solved surprisingly fast by modern (mainly DPLL-based) solvers. The typical expla-
nation for this phenomenon that can be found in the literature is that those instances
are equipped with some kind of internal (and sometimes hidden) “structure” that makes
these problems tractable. The term “structure”, due to its vagueness, leaves much room
for interpretation, though, and it remains unclear how this structure manifests itself and
how it could be exploited. We have therefore proposed a visualization approach [1], that
is supposed to deliver some hints on why solving a particular instance is hard or easy.

Our approach is based on the problem’s (variable) interaction graph [2], which is
supposed to appropriately reflect (at least part of) the problem’s structure. In a SAT
instance given by a set S of clauses over a set X of propositional variables, the interac-
tion graph’s vertices are the instance’s propositional variables, and variables occurring
together in any clause of S are connected by an edge. Thus, if two variables are con-
nected, this indicates that assigning a truth value to one of the connected variables has
the potential to determine the truth value of the other (thus they interact).

DPVIS (see Fig. 1) reads problems in DIMACS CNF format and shows their vari-
able interaction graph. The interaction graph is laid out using algorithms that are known
to reflect graph clustering and symmetry especially well [3]. Moreover, DPVIS visual-
izes changes of the interaction graph during the run of a DPLL algorithm. This includes
visualizing the effects of unit propagation (Boolean constraint propagation) on the in-
teraction graph as well as showing the search tree generated by the DPLL algorithm.

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 257–268, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. DPVIS tool showing a visualized SAT instance (hanoi4 of the DIMACS Benchmark
Collection): The variable interaction graph is shown on the left and a manually generated, partial
search tree on the right

We expect DPVIS to be a useful tool for examining the structure of SAT instances—
especially in generating hypotheses on what makes an instance tractable. Moreover, we
believe that DPVIS can be a valuable tool in teaching the DPLL algorithm. As DPVIS

can also display learned clauses, non-chronological back-jumping, and search restarts,
it encompasses most features that can be found in a modern implementation of the
DPLL procedure.

2 Theoretical Background
2.1 SAT Instances as Graphs

To transform a SAT instance represented as a set S of clauses into a (directed or undi-
rected) graph G = (V,E) with vertex set V and edge set E a number of methods have
been suggested [2, 4, 5, 6]. We have decided to use a variant of Rish and Dechter’s inter-
action graphs1 for our visualization, as they put an emphasis on variable dependencies.

1 Interaction graphs are also known as primal graphs. Slater [6] calls them co-occurrence-of-
variables-graphs.
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The interaction graph is an undirected graph, where the vertex set V is the set of
variables of S and {x, y} ∈ E if and only if there is a clause c ∈ S that contains
both variables x and y. Note, that this is a lossy representation, as the signs of literals in
clauses are ignored. For the purpose of structural analysis and visualization we consider
this not a disadvantage, however.

For our visualization experiments we have decided to use a refined variant of in-
teraction graphs, in which 2-clauses (i.e. clauses containing exactly two literals) are
represented as visually emphasized directed or undirected arcs in the graph. We make
the following distinction:

1. A clause with two positive literals is shown as a red, double-ended arrow.
2. A clause with one positive and one negative literal, say (¬x ∨ y), is written as a

blue arrow from variable x to variable y, indicating the implication direction.
3. A clause with two negative literals is written as a green, double-ended arrow.

All other clauses are displayed without highlighting, i.e. as black edges between the
involved variables. Moreover, we allow duplicate edges in our graphs; thus, e.g., two
clauses both involving variables x and y result in a double edge between the corre-
sponding vertices.

Special treatment of 2-clauses is motivated by their importance for tractability: A
problem consisting only of 2-clauses is solvable in linear time [4]. Moreover, experi-
ments with random instances from the (2 + p)-model (problems with a fraction of p
3-clauses and (1 − p) 2-clauses) indicate that random instances with up to 40 percent
of 3-clauses (i.e. p ≤ 0.4) might be computationally tractable [7].

2.2 Graph Layout

The graph layout or graph drawing problem consists of generating a geometric rep-
resentation of a graph in two or three dimensions. Nodes have to be positioned in the
Euclidean space while optimizing certain layout properties like minimal number of edge
crossings, uniform edge length, reflection of inherent symmetry, etc [3, 8].

Different algorithms are available for graph layout, a prominent one being the spring
embedder model of Eades [9] or its close relative, the force-directed placement algo-
rithm of Fruchterman and Reingold [3]. Both are known to produce layouts that reflect
symmetry convincingly.2 The physical model used by the spring-embedder assumes
metal springs of a certain length attached between each pair of connected nodes. The
springs impose attractive and repellent forces on the nodes depending on their current
distance in the layout. The layouter attempts to minimize the sum of all affecting forces
by iteratively repositioning the nodes.

DPVIS builds upon the commercially available graph layout package yFiles of
yWorks (http://www.yworks.com), from which it uses the Organic Layouter
and Smart Organic Layouter, both of which implement force-directed placement al-
gorithms.

2 We have considered other existing layouts as well, like hierarchical or orthogonal layout, but
found them not being equally suitable for our purpose.
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3 DPVIS Functionality

Upon start-up, DPVIS reads a SAT instance in DIMACS CNF format from a file, per-
forms unit propagation, and displays the instance’s variable ineraction graph with vari-
ables (the graph’s nodes) placed randomly (on the left part of the screen) and an empty
DPLL search tree (on the right). The user can then choose a graph layouter and DPVIS

computes a visually more attractive layout. Thereafter, variables can be set to true or
false (by clicking on the graph’s nodes with either the left or right mouse button), or
an automatic DPLL run can be started. In the first case, after setting a variable, unit
propagation is automatically initiated.

A detailed description of all available display and animation options is given in the
following paragraphs.

Fig. 2. Larger layout example: Bounded model-checking instance longmult11 (see Sec. 4 for a
reference) with 5103 variables and 15259 clauses laid out using DPVIS’ Smart Organic Layouter

3.1 Visualizing Internal Structure

To display the static problem structure and show the effects of setting individual vari-
ables and subsequent unit propagation, DPVIS offers these features:

– Two Different Layout Algorithms: Graph layouts can be computed using two
different force-directed layout algorithms, each equipped with a set of additional
parameters, e.g. for controlling preferred edge length or graph compactness.
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– Zooming the Interaction Graph: After the layout is computed, the user can zoom
into the interaction graph to focus on an area of special interest. The user may also
search for variables and center the view on them, or optimally fit the graph into the
available display area.

– Setting Variables to true resp. false: By clicking on a variable, the user can set a
variable to true (by clicking the left mouse button) or false (right mouse button).
Each setting of a variable also extends the search tree by a new leaf.

– Performing Unit Propagation: Unit propagation is automatically initiated after
setting of a variable: first, all variables affected by unit propagation are highlighted;
then they are removed one by one (or at once, if this option is selected) and the in-
teraction graph is updated accordingly, resulting in an animated view of unit prop-
agation.

An example of a typical layout obtained with DPVIS is displayed in Fig. 2.

3.2 Animating DPLL Runs

DPVIS also allows generating and visualizing complete runs of the DPLL procedure.
There are three possibilities to generate such a run. They differ in the way in which the
case-splitting literal L is selected in the DPLL algorithm (see Fig. 3).

1. Manual Selection of Case-Distinction Variable: The user selects the case-splitting
variable by clicking on a node in the variable interaction graph or by entering the
variable index into a field at the bottom of the screen. This option delivers enough
flexibility for the user to experiment with his own (manually generated) variable
selection heuristics, e.g. one that tries to generate independent subproblems.

2. Simple Variable Selection Heuristics: DPVIS also implements two simple vari-
able selection heuristics: one that randomly selects the case-splitting variable, and
one that is based on counting literal occurrences: the variable with the maximal
number of occurrences (making no distinction between positive and negative oc-
currences) is selected.

3. Interface to Modern DPLL Implementation: An interface to external SAT-solvers
is also contained in DPVIS. This allows DPVIS to read traces of DPLL runs from

boolean DPLL(ClauseSet S)
{

while (S contains a unit clause {L}) {
delete clauses containing L from S // unit-subsumption
delete L from all clauses in S // unit-resolution

}
if (∅ ∈ S) return false // empty clause?
if (S = ∅) return true // no clauses?
choose a literal L occurring in S // case-splitting on L
if (DPLL(S ∪ {{L}}) return true // first branch
else if (DPLL(S ∪ {{L}}) return true // second branch
else return false

}

Fig. 3. Pseudo-code of the basic DPLL algorithm
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Fig. 4. DPVIS-interface to MiniSAT. Program traces (top right window) produced by MiniSAT
are read in by DPVIS, and can be played back. Play-back is controlled by an animation console
(bottom right window)

solvers like zChaff or MiniSAT3. Currently, the only interface available is that to
MiniSAT (see Fig. 4). Using this interface, DPLL traces containing information
about case-splitting, unit propagation, learned clauses and back-jumps can be ani-
mated and analyzed with DPVIS. The user can choose between playback mode, in
which—starting with an initial interaction graph layout—the program trace is pre-
sented to the user (resembling a movie). Alternatively, the user can employ single-
step mode, in which after each step he or she may compute a new graph layout.

Independent of which mode was used to generate the DPLL search tree, the follow-
ing additional options are available:

– Free navigation in the search tree: At each point in the DPLL program trace, the
user can stop the trace and navigate to any point in the thitherto existing search tree.

– Re-compute layout at any time and each node of the search tree: When the play-
back of the animation trace is stopped (or interrupted), different layout algorithms
and parameter settings may be applied either to the current state (see Fig. 5) or
(by combining it with the search tree navigation feature) to already visited search
nodes. Different states during search can thus easily be compared.

3 SAT-solvers that are intended to interface with DPVIS have to be slightly modified in order to
output the appropriate program traces.
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1 2

Fig. 5. At each point during play-back of a DPLL trace, the layout of the interaction graph may
be re-computed: after having learned some clauses (left diagram, yellow arcs; instance ssa0432-
003 of the DIMACS Benchmark Collection), re-computing the graph layout shows the locality
of the learned lemmas (right diagram)

4 Two Sample Applications

We now briefly present two examples, how DPVIS can effectively be employed. The
first is concerned with the analysis of DPLL search spaces, the second deals with so-
called top-level assignments.

4.1 Comparing Search Spaces

The intention of this experiment is to compare search spaces resulting from random
problem instances with search spaces generated by “real-world” problems. We use the
following SAT instances for our experiments:

longmult1: encoding of a bounded model checking (BMC) problem (equivalence of
output bit 0 of two hardware multiplier designs)

uuf50-0188: unsatisfiable uniform random 3-SAT instance with 50 variables and a
clause-variable-ratio of α = 4.36 (i.e. near the satisfiability threshold)

ssa2670-141-d7: instance from test-patterngeneration(checks for single-stuck-at fault),
where seven randomly selected variables have been fixed (to random Boolean val-
ues in order to reduce the search space to a size comparable with the other instances)

bw large.b-d8: encoding of an AI planning problem, with eight randomly selected
variables fixed to random Boolean values (as with ssa2670-141-d7)

The longmult1-instance can beobtainedfromwww.cs.cmu.edu/∼{}modelcheck
/bmc.html, all other instances can be downloaded from www.satlib.org. All
instances are unsatisfiable, additional statistical information about these problem in-
stances can be found in Table 1.
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Table 1. Characteristic numbers for some SAT instances (all instances unsatisfiable), including
MiniSAT results (number of conflicts and decisions) and balancedness-coefficients

Instance #Vars #Clauses #Confl. #Dec B-Coeff.
longmult1 631 1611 5 20 3.7021
uuf50-0188 50 218 145 186 1.0611
ssa2670-141-d7 753 1619 41 253 7.3231
bw large.b-d8 889 9949 4 19 3.0603

The table’s columns show—from left to right—the instance name, the number of
variables and the number of clauses occurring in the problem (after having performed
unit propagation), the number of conflicts and decisions produced during a MiniSAT
run, and the B-coefficient, which is an indicator of the balancedness of the search tree
of the instance (as generated by MiniSAT). More exactly, for a search tree T the B-
coefficient B is defined by B := h/$ld(c)%, where h is the height of the search tree
(the length of the longest path from the root), c is the number of conflicts produced by
MiniSAT (i.e. the number of leaves in the search tree), and $ld(c)% is the dual logarithm
of c rounded up to the next larger integer, i.e. the height of a balanced tree with c nodes.
Thus, a B-coefficient of 1 indicates a balanced tree, whereas a large coefficient stands
for an unbalanced, degenerate tree.

The search spaces for all four problem instances are shown in Fig. 6. The random
3-SAT instance (Fig. 6-2) reveals an almost balanced search tree, whereas the other,
“real-world” instances (1, 3, 4) possess more or less degenerate trees. This observation
is also reflected by the B-coefficient of the real-world instances being much higher than
that of the random 3-SAT instance.

We suppose that hard SAT instances have low B-coefficients whereas easy instances
possess high ones. Further assuming that the search space is uniform (in the sense of
having similar B-coefficients in different parts), the B-coefficient may be used to esti-
mate the run-time of a SAT solver after having processed only a small fraction of the
search space.

We expect that by making experiments with DPVIS other notions similar to that of
the B-coefficient might come up in the future, hopefully allowing for a better distinction
between hard and easy problem instances.

4.2 Analyzing the Effect of Top-Level Assignments

Eén and Sörensson introduced the notion of top-level assignments for unit-clauses that
are learned during search [10]. Each top-level assignment (TLA) fixes the value of a
variable for the whole instance and thus indicates that in each solution of the instance
the TLA-variable must have that fixed value.4

In a further experiment with DPVIS, we compared the number of TLAs produced
by different SAT instances during a MiniSAT run. Some results of these experiments
are presented in Table 2.

4 The notion of a top-level assignment is closely related to that of a backbone variable[11].
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1

2

3 4

Fig. 6. Search trees for different problem instances: 1: bounded model checking (longmult1); 2:
random 3-SAT (uuf50-0188); 3: test-pattern generation (ssa2670-141 d7); 4: planning problem
(bw large.b-d8)

Table 2. Number and percentage of top-level assignments (TLAs) for some SAT instances

Instance #Vars #Clauses #TLAs #TLA/#Vars
longmult1 631 1611 151 23.93%
uuf50-0125 50 218 13 26.00%
ssa2670-141-d7 753 1619 336 44.62%
bw large.b-d8 889 9949 233 26.21%

Although the number of top-level assignments is considerable in all cases, a more
elaborate study with more problem instances from each problem class showed that the
number of TLAs is typically much higher for real-world problems than for random
3-SAT problems (29.5% vs. 11.0% in our experiments).
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1 2

1 2

Fig. 7. Comparing interaction graphs before (on the left) and after (on the right) having added
TLAs (top-level assignments): Real-world instance ssa2670-141-d7 (shown on top) reveals a
considerable simplification and decomposition into independent components after having added
TLAs. The random 3-SAT instance uuf50-0125 (shown below) also possesses a considerable
amount of TLAs, but exhibits no such simplification

Comparing (using DPVIS) the interaction graphs of the original instances with those
where the detected TLAs were added, revealed a considerable simplification for the
real-world instances, whereas the structure of random 3-SAT instances remained mainly
unchanged (see Fig. 7).

5 Conclusion and Related Work

We presented DPVIS, a tool to visualize the structure of SAT instances and to display
DPLL search trees. We see a twofold purpose for our visualization tool: First, it may
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help in building hypotheses on why problem instances are hard or easy. We have indi-
cated in Sec. 4 how experiments in this direction might look like. Second, we suggest
using DPVIS in teaching the basic DPLL algorithm and recent extensions of it like
clause learning and restarts. By having an integrated view on both the problem struc-
ture (via its variable interaction graph) and the search tree, students can obtain a good
intuition how the DPLL method works.

Future experiments should include the analysis of an instance’s component structure
(resp. its decay into independent components) and the examination of long implica-
tion chains, as suggested in [1]. Moreover, in order to handle large graph layouts more
conveniently, it would be desirable to have additional tools, e.g. for grouping sets of
variables or merging them into a single node.

The only work on visualization of SAT instances that we are aware of is that of
Slater [6] and preliminary work by Selman [12]. Slater uses different graph translation
techniques (interaction graph, co-occurrence of literals and further ones) and visual-
izes the resulting graphs with the GraphVis software package from AT&T. However,
the hierarchical layouter he uses is not as efficient in revealing symmetries as force-
directed placement algorithms are. Selman uses a specialized three-dimensional lay-
outer to display variable interaction graphs. In his approach nodes with different degree
are placed on different “height levels”, and nodes with the same degree are equally
distributed on circles growing with the number of nodes that have to be placed on
them.

Availability: DPVIS is available both as on-line version (Java Applet) and stand-alone
application (Java Application including MiniSAT) from http://www-sr.informatik.uni-
tuebingen.de/˜sinz/DPvis.
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Constraint Metrics for Local Search

Finnegan Southey

University of Alberta, Dept. of Computing Science

Abstract. Over the years, a steadily improving series of local search solvers for
propositional satisfiability (SAT) have been constructed. However, these solvers
are often fragile, in that they have apparently minor details in their implementa-
tion that dramatically affect performance and confound understanding. In order
to understand and predict the success of differing strategies, various local search
metrics have been proposed. Many of these metrics summarize properties of the
boolean assignments examined during the search. This has two consequences:
first, they only capture one side of satisfiability, failing to characterize the be-
haviour with respect to constraints. Secondly, the boolean requirement limits the
applicability of these metrics to more general constraint satisfaction problems
(CSPs), which can have non-boolean domains.

In response, we present dual metrics, derived from existing primal (boolean
assignment) metrics, that are based on the states of constraints during the search.
Experimental results show a strong relationship between the primal and dual ver-
sions of these metrics on a variety of random and structured problems. This dual
perspective can be easily applied to both SAT and general CSPs, allowing for new
insights into the workings of a broad class of local search methods.

1 Introduction

Local search methods for satisfiability (SAT) came to notice with the surprisingly good
performance of GSAT, giving rise to a wave of local search research in the subsequent
years. A wide variety of algorithms [14, 5, 13, 10, 16, 12, 9, 15] have been proposed over
the years, often as the result of extensive experimentation with minor variations. Some
of these algorithms are quite fragile, having small and seemingly unimportant details
that nonetheless have tremendous impact on performance (e.g the variants of WalkSAT
discussed in [10]). This makes it very hard to predict whether a given method will work
well, or to a priori design features likely to succeed. Where intuition seems somewhat
unreliable and formal analysis is difficult, objective, empirical metrics can assist the
comparison of algorithms and provide insight into their underlying properties.

Aside from improving understanding, metrics can serve as mechanisms for the au-
tomatic tuning of parameters [16, 9] or for the selection of algorithms from a collection
of methods [8]. They can also offer insights into different classes of problems and their
interactions with various methods. SAT has been the primary area of investigation for
local search CSP methods, and for their metrics in particular. Most of the proposed met-
rics characterize the behaviour of assignments to the boolean variables, often featuring
functions of Hamming distances. In more general CSPs the domains are not necessarily
boolean, or even of uniform size across variables. Domain-values may be ordinal, in

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 269–281, 2005.
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which case distance measures are natural, but frequently they are not, and the lack of
obvious distance measures leads to ad hoc metrics.

We propose two new metrics based on existing measures for SAT. These previously
explored metrics are functions of the boolean variable assignments, which we will call
the primal space. We apply these metrics instead to the dual space of constraints. Since
constraints are either satisfied or unsatisfied, they form a natural boolean domain, even
when primal space is non-boolean. The intuitive interpretation of these metrics from the
primal space carry over nicely to the dual space. Any local search method for SAT or
general CSPs can be evaluated in terms of these dual metrics. For general CSPs, we gain
a set of metrics that we can apply to any local search. In the SAT case, we gain a new
perspective, examining algorithms in terms of their exploration of infeasible regions.

We start by explaining a particular set of metrics in detail. We then present the
dual versions of these metrics. Experimental results on random and structured SAT
instances are used to compare the dual and primal metrics. These results show that the
dual versions are in remarkably close agreement with the primal versions and offer a
similar ability to predict solver performance. The experiments also expand previous
results on primal metrics by demonstrating them on structured instances as well as on
random instances. Related metrics from the literature are then explored, showing the
relevance of these results by indicating where similar metrics have been used before.
We conclude with some discussion on the potential of these metrics.

2 Three Metrics

A previous study of local search metrics identified three useful measures, demonstrating
their value on random 3-SAT instances [11]. These measures were: depth, mobility, and
rate of coverage. We will describe these metrics in some detail before showing how
they can be related the dual space. Since we also present previously unavailable results
for these original metrics (i.e. on structured instances), it is worth understanding the
originals in some detail.

2.1 Depth

A very natural metric when using an objective function, and one commonly used by
experimenters, is the solver’s average objective value over the course of the search. The
use of an objective function to evaluate neighbours implicitly assumes that solutions are
likely to be found near favourable objective values. Under this assumption, one might
suppose that the more time spent in regions with favourable objective values, the more
likely one is to find solutions. A weaker but safer claim is that spending a lot of time in
regions with unfavourable objective values is unlikely to produce solutions.

The simplest measure of what we will call depth is the average objective value over
all points visited during the search. Practically, this can give rise to a problem. A poor
solver may spend a long time searching for a solution before finding one, whereas a
good solver may find one very quickly. In measuring depth we are really interested in
the long term behaviour, the amount of time spent in promising regions. In hill-climbing
searches with random starting points, the searcher frequently starts in poor regions and
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rapidly descends to much better regions. However, a particularly effective solver may
find a solution during, or soon after, this initial descent. Thus, its average behaviour will
look quite poor compared to a weaker solver that has a similar initial descent but spends
more time searching.

There are several possible corrections one can imagine, but one simple choice is to
ignore some fixed number of initial steps dskip to get past the initial descent, and then
average over the remaining search. The number of steps to skip can be easily selected
by examining several initial descents. In all results reported here, the same skip count
(dskip = 100) was used across all solvers after examining their collective behaviour.

depth(dskip) =
1

T − dskip

T∑
t=dskip+1

g(a(t)) (1)

where g() is the objective function used by the solver, or some other objective for which
we expect the solver to maintain reasonable values, T is the number of steps taken
during the search, and the vectors a(t) are assignments to the boolean variables. Note
that if T ≤ dskip, the average depth is zero.1

2.2 Mobility

Clearly depth alone is not sufficient. One easy way to achieve good average depth is to
find a region of favourable values and simply stay there. However, a successful search
must explore new regions. Mobility is a measure that detects this tendency. It is simply
the average Hamming distance travelled over some fixed interval. For each step t in the
search, we compute the Hamming distance H(a(t),a(t+w)) between the assignment at
step t and the assignment w steps later. Mobility is the average of these distances:

mobility(w) =
1

T − w

T−w∑
t=1

H(a(t),a(t+w))

where T is the total number of steps in the search.
This metric has the disadvantage of having a single parameter, w, which is the length

of the window. Again, it is not hard to select a value for this parameter by looking at
average run lengths for solvers and also the maximum possible Hamming distance.
Local search solvers which flip only a single variable at each step cannot move more
than min(w, n) steps within a window, where n is the number of variables. In all our
experiments here, we select the window size to be the same as the number of variables
(i.e. w = n).

Given that we have a maximum distance, it also makes sense to use a normalized
version of this measure:

1 Comparing depth in solvers with different objective functions (e.g WalkSAT and ESGint) is
meaningless unless depth is defined in terms of some common objective function. Therefore,
we have measured depth in the same objective function, gUNSAT (), for all solvers (i.e. the
number of unsatisfied clauses), while the solvers search in their own particular objective.
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normmobility(w) =
1

T − w

T−w∑
t=1

H(a(t),a(t+w))
min(w, n)

We report the normalized version in all experiments.

2.3 Coverage

High mobility ensures that a solver does not simply sit in one place. However, given the
windowed nature of the measurement, it is still possible to be trapped in a large basin
in the search space. A solver can repeatedly visit a large “circle” of assignments, with a
length considerably larger than the window, leading to a false conclusion. One solution
is to consider how much of the search space is actually visited by the solver.

This informal notion of coverage makes considerable intuitive sense but turning
it into a precise measure presents some problems. One possibility is simply to count
the number of unique assignments visited. This is a very weak notion for a couple of
reasons. First, the number of possible assignments is exponential, so that the actual
proportion explored becomes increasingly trivial in any practical application. Second,
all visited points could be near each other, so we obtain little information about the
global nature of the search.

A more interesting measure can be obtained by considering the Hamming distance
between some explored point ae and an unexplored point au. In particular, we would
like information about the distance between a given au and its nearest explored point.
This distance can be normalized by dividing by the maximum distance. We call this
normalized distance the gap of au:

gap(au) =
1
n

min
ae∈Ae

H(ae,au)

where Ae and Au are the sets of explored and unexplored points, respectively, and
au ∈ Au.

If we now consider all unexplored points, the largest gap gives us a notion of how
well our space has been covered by our search. If a large gap exists, then some unex-
plored point is far from any explored point, and we consider this to be poor coverage:

maxgap =
1
n

max
au∈Au

min
ae∈Ae

H(ae,au)

For the intuitive convenience of having a coverage measure that is larger as coverage
improves, we define coverage to be the maximum distance (n) minus the maximum gap:

coverage =
1
n

[n − max
au∈Au

min
ae∈Ae

H(ae,au)]

Unfortunately, computing this value is NP-hard. It is equivalent to computing the
covering radius of a set of codes [4]. In our research, the following approximation
was used. The furthest point from any given assignment, a, is its complement, ā. We
therefore construct the set Āe which contains the complement of every explored point.
We use this set instead of Au to compute our approximate coverage:
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approxcoverage =
1
n

[n − max
au∈Āe

min
ae∈Ae

H(ae,au)]

Computing this measure is only quadratic in |Ae|. The idea is that if we are only
going to consider a small set of unexplored points, we will at least consider points
known to be at a large (in fact, maximum) distance from at least one explored point.
While far from at least one explored point, there is no guarantee that it will not be close
to some other explored point. There may also be other unvisited points farther from all
explored points than any in Āe. Thus, our approximate measure gives a lower bound on
the largest gap, which corresponds to an upper bound on coverage.

How well the approximation agrees with the exact version has not been evaluated.
For our purposes, we seek practical metrics which give some predictive value. There-
fore, we have confined our studies to how predictive the approximate metric is, without
worrying about the properties of a metric we can’t use in general. How predictive the
“true” coverage is remains an interesting research question insofar as one might try to
construct other approximations which may offer better predictive value than ours.

With coverage, we run into a problem similar to that encountered with depth. A
successful solver may require only a short exploration to solve a problem whereas a
poor solver may explore many points during its search. Clearly the relative coverage of
two solvers which have sampled differing numbers of points is meaningless.

One way to deal with this would be to consider only a small number of explored
points for each solver, but this introduces another parameter or forces us to discard
valuable information. Instead, we measure the rate of coverage, the rate at which the
maximum gap diminishes. This is simply the (approximate) coverage at the end of the
search, divided by the number of search steps:

rate of approximate coverage =
1

nT
[n − max

au∈Āe

min
ae∈Ae

H(ae,au)]

3 Dual Space Metrics

Of the three metrics we described in detail above, mobility and coverage are primal
space metrics, measuring properties of the set of assignments to the variables. Depth
is clearly a dual space metric, albeit a very crude summary of the patterns of con-
straint satisfaction. If we consider a single step in the search, we can view the set of
constraints as forming a vector of booleans, much like the variables assignments. It is
natural to consider Hamming distances between these vectors. This allows us to adapt
the other two metrics to the dual space, giving us dual mobility and dual coverage. We
rename the original two, primal mobility and primal coverage. The adaptation is fairly
straightforward, so we will only describe it briefly.

Every recent successful local search method for satisfiability flips only a single vari-
able at a time. This means the Hamming distance between the assignments in two con-
secutive steps is at most one. Clearly, this is not the case for the dual space. Changing a
single variable can “flip” several constraints. Since we are measuring the “per step” be-
haviour of algorithms, it is slightly more complicated to track the required information.
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However, in the vast majority of SAT instances, typically only a very small fraction of
constraints are flipped in a single step, so while tracking something like dual mobility
has a worst-case update time that is linear in the number of constraints, in practice the
update is more or less constant, and quite small.

3.1 Dual Mobility

The dual mobility metric is almost identical to the primal, but uses vectors of constraint
states c(t) instead of variable assignments. Here, the maximum Hamming distance for
a single step is the number of constraints, m. While not as natural a choice as in the
primal case, we nonetheless set w to equal m in all of our experiments.

dualMobility(w) =
1

T − w

T−w∑
t=1

H(c(t), c(t+w))
min(w,m)

The intuitive interpretation is similar as well. If the search persistently revisits a
small set of constraint states, it is likely to be trapped. In fact, it may have considerable
mobility in variable space but still be oscillating between a small number of constraint
states, since there may be many variables that can be flipped without affecting the con-
straint state (e.g. they could be satisfying or unsatisfying literals in a clause that always
has one other literal satisfied).

3.2 Dual Coverage

Again, this new metric is virtually identical to the primal version, substituting the sets
of visited constraint configurations, Ce, and the set of complements, C̄e.

rate of approximate dual coverage =
1

mT
[m − max

cu∈C̄e

min
ce∈Ce

H(ce, cu)]

Effective local search solvers typically have only a small number of unsatisfied con-
straints at any given time (i.e. good depth). However, the search frequently explores
many distinct sets before discovering a solution. While any reasonable solver is unlikely
to visit states where many constraints are unsatisfied (e.g. gaps will be predominantly
large), it seems likely that coverage of the small sets of violations will be a good in-
dicator of success. Therefore, we expect the dual coverage rates to be small but still
informative.

4 Experimental Results

While we are interested in applying these metrics to general CSPs, we have confined
our initial studies to SAT solvers, where the primal and dual metrics can be directly
compared. We use a selection of standard algorithms, reimplemented by us and instru-
mented to record the required information. Specifically, we consider GSAT [14], HSAT
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[5], WalkSAT [13], Novelty+ [10, 6], and ESGint [12].2 We use a selection of satisfiable
instances from the standard DIMACS and SATLIB [7] collections.

Each problem instance was run 100 times and the results averaged over all runs.3

Where a problem set contains multiple instances, results were averaged over all runs of
all instances. The solvers were allowed 500,000 steps and no restarts. All solvers were
run with default parameters.4

We report five metrics: average depth (Depth - lower is better), average primal mo-
bility (PMob - higher is better), average primal coverage rate (PCov - higher is better),
average dual mobility (DMob - higher is better), and average dual coverage rate (DCov
- higher is better). We also report the percentage of runs that failed to find a satisfying
solution (Fail% - lower is better), the average steps before terminating (avgSteps - lower
is better), and the estimated expected number of steps under an optimal restart scheme
(OEESS - lower is better) (see [11] for a full explanation of this measure; in brief, it
is an estimate of how many steps would be taken if restarts were used and the restart
period tuned).5 Since the objective here is not to compare the solvers, per se, but rather
to understand the relationship between the various metrics and solver performance, this
methodology is quite appropriate. For brevity, and because the instrumented solvers in-
cur extra runtime penalties, we only report search steps. The results are very similar
when performance is evaluated in terms of runtime. Results are given in Tables 1-10.

Previous experiments [11] showed that high depth implies poor performance but that
low depth is relatively uninformative (could indicate a trapped solver). Primal coverage
is a much better indicator than depth, and primal mobility is best of all. The study
likewise showed that no one of these metrics is sufficient to explain performance but
that good rating in all three is necessary. Less conclusively, experiments suggested that
the three might represent a set of sufficient conditions.

Turning now to our new results, one uniform observation is that if the failure rate is
high, then typically depth is quite small, and mobility and coverage are likewise small.
This indicates that the solver spent most of its time trapped in some local minimum.
GSAT falls prey to this often, and HSAT, which employs a Tabu-like strategy of prefer-
ring the least recently flipped variable when breaking ties, suffers from it only slightly
less.

Generally speaking, ranking the methods by the primal and the dual versions of a
given metric give the same results. Similarly, high values of primal or dual mobility

2 ESGint is a pure integer implementation of ESG (previous versions used floating-point for
weights). It has several new features, including a non-unit clause list, and decouples the weight
increase and smoothing operations as first implemented in SAPS [9]. It behaves almost iden-
tically to the original ESG but runs faster and with no numerical drift due to floating point
error.

3 Except for primal and dual coverage results. Coverage is expensive to compute so it was only
averaged over the first 10,000 steps in each of 20 runs.

4 WalkSAT (noise=0.5), Novelty+ (noise=0.5, secondBest=0.01), ESGint (noise=0.01,
smoothRate=0.8, smoothProb=0.05, reweightSize=1.3).

5 There are some very low estimated expected steps in the results for solvers which have per-
formed very poorly. The estimates are very unreliable when failure rates are high. We distin-
guish these cases with the following symbol:†.



276 F. Southey

Table 1. Problem set "ais06" : 61v, 518c, All-Interval Series (SATLIB)

Solver Fail% Av Steps OEESS Depth PMob DMob PCov DCov
GSAT 94 470002 829† 0.0022 0.0502 0.014 0.00041 0.00027
HSAT 98 490000 1499† 0.0023 0.0504 0.009 0.00078 0.00049
WalkSAT 0 1072 997 0.0050 0.2235 0.156 0.00062 0.00023
Novelty+ 0 1932 1761 0.0047 0.1899 0.110 0.00058 0.00024
ESGint 0 595 595 0.0034 0.2282 0.173 0.00219 0.00096

Table 2. Problem set "ais08" : 113v, 1520c, All-Interval Series (SATLIB)

Solver Fail% Av Steps OEESS Depth PMob DMob PCov DCov
GSAT 100 500000 500000 0.001178 0.025 0.0017 2.05e-05 9.6e-06
HSAT 100 500000 500000 0.001181 0.026 0.0012 2.10e-05 10.0e-06
WalkSAT 0 29362 10800 0.002816 0.170 0.0447 3.66e-05 12.9e-06
Novelty+ 0 44385 35131 0.002712 0.149 0.0322 4.95e-05 18.7e-06
ESGint 0 4985 4954 0.001764 0.178 0.1189 18.15e-05 64.7e-06

Table 3. Problem set "anomaly" : 48v, 261c, Blocks World 3 Blocks, 3 Steps (SATLIB - Kautz
and Selman)

Solver Fail% Av Steps OEESS Depth PMob DMob PCov DCov
GSAT 79 395007 240† 0.011 0.07 0.048 0.0009 0.0004
HSAT 79 395006 200† 0.009 0.06 0.045 0.0014 0.0006
WalkSAT 0 403 249 0.014 0.22 0.168 0.0023 0.0009
Novelty+ 0 598 401 0.016 0.20 0.160 0.0024 0.0011
ESGint 0 96 96 0.006 0.32 0.206 0.0049 0.0018

Table 4. Problem set "medium" : 116v, 953c, Blocks World 5 Blocks, 4 Steps (SATLIB - Kautz
and Selman)

Solver Fail% Av Steps OEESS Depth PMob DMob PCov DCov
GSAT 90 450009 1308† 0.0059 0.04 0.022 0.00015 0.00007
HSAT 88 440007 622† 0.0060 0.05 0.026 0.00037 0.00017
WalkSAT 0 1085 1085 0.0080 0.19 0.181 0.00091 0.00035
Novelty+ 0 1362 847 0.0086 0.20 0.174 0.00046 0.00018
ESGint 0 273 271 0.0042 0.31 0.213 0.00163 0.00060

Table 5. Problem set "bw_large.b" : 1087v, 13772c, Blocks World 11 Blocks, 9 Steps (SATLIB -
Kautz and Selman)

Solver Fail% Av Steps OEESS Depth PMob DMob PCov DCov
GSAT 100 500000 500000 0.001205 0.0095 0.0068 2.42e-05 1.04e-05
HSAT 100 500000 500000 0.001060 0.0100 0.0065 2.48e-05 1.03e-05
WalkSAT 59 386811 386811 0.001519 0.0571 0.0214 2.76e-05 1.13e-05
Novelty+ 69 419241 419241 0.001517 0.0610 0.0148 2.75e-05 1.16e-05
ESGint 0 52559 49560 0.002034 0.1318 0.1053 3.64e-05 1.49e-05



Constraint Metrics for Local Search 277

Table 6. Problem set "logistics.a" : 828v, 6718c, Logistics, 8 Packages, 11 Steps (SATLIB - Kautz
and Selman)

Solver Fail% Av Steps OEESS Depth PMob DMob PCov DCov
GSAT 100 500000 500000 0.00292 0.008 0.0034 1.95e-05 8.81e-06
HSAT 100 500000 500000 0.00285 0.010 0.0032 1.99e-05 9.08e-06
WalkSAT 3 133271 132120 0.00134 0.072 0.0225 2.86e-05 9.03e-06
Novelty+ 18 253471 253471 0.00130 0.067 0.0148 2.93e-05 9.31e-06
ESGint 0 13213 9068 0.00198 0.157 0.1365 5.10e-05 16.14e-06

Table 7. Problem set "huge" : 459v, 7054c, Blocks World 9 Blocks, 6 Steps (SATLIB - Kautz
and Selman)

Solver Fail% Av Steps OEESS Depth PMob DMob PCov DCov
GSAT 99 495003 39500† 0.00210 0.0184 0.007 2.39e-05 1.10e-05
HSAT 100 500000 500000 0.00206 0.0181 0.005 2.41e-05 1.12e-05
WalkSAT 0 21831 20852 0.00251 0.0926 0.127 3.65e-05 1.50e-05
Novelty+ 0 19395 19155 0.00261 0.0934 0.130 3.27e-05 1.33e-05
ESGint 0 2971 2971 0.00300 0.2297 0.216 16.42e-05 6.57e-05

Table 8. Problem set "ii08" : 14 instances, Inductive Inference (DIMACS - Resende)

Solver Fail% Av Steps OEESS Depth PMob DMob PCov DCov
GSAT 35 186597 120342 0.00138 0.257 0.103 0.0007 0.00032
HSAT 49 243184 148152 0.00144 0.224 0.108 0.0014 0.00044
WalkSAT 0 530 527 0.01212 0.230 0.186 0.0016 0.00095
Novelty+ 0 1268 1268 0.00604 0.199 0.213 0.0012 0.00078
ESGint 0 344 316 0.00268 0.180 0.205 0.0014 0.00100

Table 9. Problem set "par08" : 5 instances, Unsimplified Learning Parity Function, 8 orig. vars
(DIMACS - Crawford)

Solver Fail% Av Steps OEESS Depth PMob DMob PCov DCov
GSAT 96.0 485223 472390 0.0128 0.29008 0.016 8.10e-05 2.42e-05
HSAT 99.4 497004 406017 0.0136 0.36490 0.009 7.85e-05 1.48e-05
WalkSAT 9.8 163143 83621 0.0321 0.13042 0.063 7.28e-05 2.50e-05
Novelty+ 0.2 59040 36949 0.0215 0.10570 0.047 14.91e-05 5.20e-05
ESGint 0.0 9429 8774 0.0139 0.13048 0.053 37.07e-05 10.53e-05

Table 10. Problem set "uf250" : 100 instances, 250v, 1065c, hard, random 3-SAT (SATLIB)

Solver Fail% Av Steps OEESS Depth PMob DMob PCov DCov
GSAT 90.0 456413 276154 0.0024 0.068 0.004 3.54e-05 0.75e-05
HSAT 88.3 441720 58028 0.0024 0.099 0.013 10.35e-05 1.90e-05
WalkSAT 1.5 40660 34723 0.0075 0.133 0.034 9.54e-05 2.40e-05
Novelty+ 3.1 59397 36017 0.0061 0.101 0.031 8.11e-05 2.23e-05
ESGint 0.1 18581 13108 0.0066 0.255 0.054 20.24e-05 4.04e-05
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and coverage are good predictors of performance, in terms of average steps, and also
in terms of expected steps (when high failure rates do not render the estimate meaning-
less). This seems to correspond to the earlier study’s view that good depth, mobility and
coverage are necessary, but it now appears we can consider either the primal or the dual
versions.

Only one data set shown here corresponds to random instances (10). The rest are so-
called structured instances. This provides fresh evidence for the general applicability
of the primal metrics since the earlier study focused on random instances.

We note the following specifics:

– Tables 1 and 8 both show the dual metrics giving a better general prediction of
performance.

– Table 9 is the only example where the dual version (of mobility in this case) is
significantly worse predictive. However, performance appears to be more related to
coverage in this instance, and the dual coverage is nicely predictive.

– Table 10 shows HSAT with high primal coverage, but poor performance. The dual
coverage much better reflects performance. Mobility is similar.

In summary, these results show a (to us) surprisingly close relationship between primal
and dual versions of metrics. They are almost equally predictive. Our expectations were
that there would be more disparity due to local searchers becoming trapped in large
basins, thus achieving high primal mobility but visting only a small set of constraint
states (low dual mobility).

In one sense, this result is disappointing, because it suggests that the dual metrics
have revealed little new information about the search. However, we believe it might be
because we have not examined enough scenarios where local searchers fail. The only
marked failures in our study are GSAT/HSAT, which are trivially stuck in local minima,
and therefore easily explained by primal metrics alone. If, for example, the studies were
scaled to larger structured instances, where even the best solvers tend to perform poorly,
we might be able to explain some of the failures by comparing primal and dual metrics.
We intend to perform such studies in the near future. More generally, we believe it is
worth examining both the primal and dual metrics whenever a failure in local search is
encountered, if only to rule out possibilities.

As far as general CSPs are concerned, the outlook is very positive. The results of-
fer a strong hope that the dual metrics will offer good predictions for the local search
CSP solvers. We plan to test this experimentally as well. An interesting correspond-
ing study could examine the metrics on the general CSPs and on SAT solvers solving
CNF-encoded versions of the same problems.

Finally, the new results obtained for structured instances show that the predictive
value of the original primal metrics are not limited to the random 3-SAT instances
(uf250 in this study), but extend across a range of problem classes.

5 Related Metrics Research

Metrics often play a background role in local search research, used behind the scenes
to study or tune algorithms. We will now discuss related work with metrics in order
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to show how much metrics similar to those presented here have been involved in the
evolution of local search.

Attempts to characterize local search behaviour crop up frequently in the literature,
although they are typically formulated in order to automatically tune search parame-
ters. Cha and Iwama use a notion similar to mobility in analyzing the behaviour of
weighted GSAT [2, 3] by explicitly counting how many previously unvisited assign-
ments are reached in a given period of the search. They were working with small in-
stances where such a measure is not unreasonable. They also plot the Hamming distance
between assignments and the eventual solution.

In an attempt to tune the ’noise’ parameters for algorithms such as WalkSAT and
Novelty, both of which contain a random walk component, McAllester et al. [10] use
two metrics that they demonstrate to give similar values across six different algorithms
(WalkSAT, Novelty, and some variants) when each algorithm is optimally tuned. That is,
there is a value for these metrics which corresponds to optimal performance, regardless
of the method. The two metrics are:

– average number of unsatisfied clauses (noise level invariant)
– mean over variance of number of unsatisfied clauses (optimality invariant)

The first closely resembles the depth metric. Its invariant property means that if one
knows the average depth for an algorithm when optimally tuned, one could obtain op-
timal tunings for some other algorithm by trying to obtain the same average depth. The
second metric is a more complex view of the behaviour of the objective function that
manages to capture some notion of mobility. The intuition is that, if the variance in
objective value over the course of the search is low, then it is likely that the search is
trapped. The evidence presented suggests that nearly minimizing this ratio will pro-
vide an optimal noise tuning. While this research focuses on the issue of how to tune
noise parameters in particular, it is similar in spirit to our own work in attempting to
characterize behaviour over several different algorithms.

In their work on reactive search for MAX-SAT [1], Batitti notes that there is a
tradeoff between bias (essentially the same as depth) and diversification (similar to mo-
bility6). They examine how various features found in local search methods for SAT and
MAX-SAT tradeoff these two metrics in an effort to understand what features are ef-
fective. Additionally, they use their diversity metric to automatically tune the list length
parameter of a Tabu search method.

Something like mobility and depth are proposed in [16], along with several other
metrics. The goal in this case was to automatically tune the many parameters that con-
trol DLM-99 [17]. Among the metrics they considered for this purpose are:

– least number of unsatisfied clauses (LUC)
– average number of unsatisfied clauses (AUC)
– Hamming distances computed over a history (DIS)

6 The diversification measure used is the average over all explored assignments of the assign-
ments’ Hamming distances from the initial assignment. This is an interesting measure but
clearly has some problems since a search trapped at some distance from the initial assignment
will appear to have high diversity.
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There are several other metrics relating to clause weights and other features of DLM.
These metrics are not independent of the solver, so we do not consider them in the same
light.7 Clearly, AUC is just like our average depth measure (although without the initial
skipped steps). DIS, although not clearly explained, appears to be similar to mobility,
and is motivated in a similar manner by the authors. Trial and error experimentation
led the authors to conclude that LUC and DIS were valuable measures (along with two
relating to clause weights). They use these measures after a short run to decide which
of five parameters sets to use for DLM-99, according to a hand-crafted heuristic. They
did not apply these measures to other solvers.

It is interesting that they found LUC more informative than AUC, and it might be
worth exploring the predictive value of LUC. The predictive value of DIS agrees well
with our own results.

6 Conclusions

The results presented here strongly suggest that the new dual metrics are at least as
effective as the original primal versions, and possibly more so. Furthermore, both pri-
mal and dual metrics are effective on structured instances. This offers a strong hope
that these metrics can be effectively applied to local search solvers for general CSPs
and forms a key part of extending this research. Aside from that, more systematically
measuring the relationship between the various metrics and solver performance would
strengthen our belief in their efficacy. Exploring a even wider range of problems and
solvers, particularly in cases where solvers fail, would help establish their generality.
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Abstract. Input Distance (Δ) is introduced as a metric for proposi-
tional resolution derivations. If F = Ci is a formula and D is a clause,
then Δ(D,F) is defined as mini|D − Ci|. The Δ for a derivation is the
maximum Δ of any clause in the derivation. Input Distance provides
a refinement of the clause-width metric analyzed by Ben-Sasson and
Wigderson (JACM 2001) in that it applies to families whose clause width
grows, such as pigeon-hole formulas. They showed two upper bounds on
(W − width(F)), where W is the maximum clause width of a narrow-
est refutation of F . It is shown here that (1) both bounds apply with
(W −width(F)) replaced by Δ; (2) for pigeon-hole formulas PHP(m, n),
the minimum Δ for any refutation is Ω(n). A similar result is conjectured
for the GT (n) family analyzed by Bonet and Galesi (FOCS 1999).

1 Introduction

The reader is assumed to be generally familiar with the propositional satisfia-
bility problem, CNF formulas, and resolution derivations. Some definitions are
briefly reviewed in Section 2, but are not comprehensive.

Ben-Sasson and Wigderson [3] showed that, if the minimum-length general
resolution refutation for a CNF formula F has S steps, and if the minimum-
length tree-like refutation of F has ST steps, then there is a (possibly different)
refutation of F using clauses of width at most:

w(F + ⊥) ≤ w(F) + c
√

n lnS; (1)
w(F + ⊥) ≤ w(F) + lg ST . (2)

Note that the w(F) terms were omitted from their statement in the introduction,
but appear in their statements of the theorems. The notation for this expression is:

– n is the number of propositional variables in F ;
– w(F) is the width of the widest clause in F ;
– w(F + ⊥) denotes the minimum resolution width of π ranging over all res-

olution derivations that refute F , where the resolution width of π, denoted
wF (π), is the width of the widest clause in π;

– c is a constant, independent of F ;
– ln and lg denote natural and binary logs, respectively.

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 282–293, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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All formulas and clauses are propositional, clauses are disjunctions of literals,
formulas are in CNF, unless specified otherwise.

Our main results essentially eliminate the w(F) terms in the Ben-Sasson
and Wigderson theorems [3], and replace resolution width by ΔF (π), the input
distance, as defined next, in Section 1.1. For families of formulas whose widest
clause is bounded by a constant, input distance and resolution width are essen-
tially equivalent measures.

1.1 Input Distance

We define input distance for nontautologous clauses (primarily derived clauses
in a resolution proof) for input CNF formula F .

Definition 1.1. (input distance) All clauses mentioned are non-tautologous.
Let D be a clause; let C be an input clause, i.e., a clause of formula F . The
input distance of D from C is |D − C|, treating D and C as sets of liter-
als, and using “−” for set difference. The input distance of D from F , de-
noted ΔF (D), is the minimum over C ∈ F of the input distances of D
from C.

For a resolution proof π the input distance of π from F , denoted ΔF (π), is
the maximum over D ∈ π of the input distances of D from F .

When F is understood from the context, Δ(D) and Δ(π) are written. Follow-
ing Ben-Sasson and Wigderson [3], Δ(F + D) denotes the minimum of ΔF (π)
over all π that are derivations of D from F .

1.2 Summary of Results

The theorems shown here are that, if π is a resolution refutation of F and π uses
all clauses of F and the length of π is S, then there is a refutation of F using
clauses that have input distance from F that is at most:

Δ(F + ⊥) ≤ c
√

n lnS; (3)
Δ(F + ⊥) ≤ lg ST . (4)

Also, we show that the pigeon-hole family of formulas PHP(m,n) require
refutations with input distance Ω(n), although they contain clauses of width
n. This result suggests that input distance provides a refinement of the clause-
width metric as a measure of resolution difficulty. That is, when a family of
formulas with increasing clause-width, such as PHP(m,n), is transformed into
a bounded-width family, such as EPHP(m,n), and the bounded-width family
has large resolution width, this is not simply because they rederive the wide
clauses of the original family, then proceed to refute the original family. Rather,
it is the case that wide clauses substantially different from those in the original
family must be derived. However, note that input distance Ω(n) does not imply
any useful lower bound on general resolution refutation length for PHP(m,n),
at least not through any known theorem.
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2 Preliminaries

2.1 Notation

This section collects notations and definitions used throughout the paper. Stan-
dard terminology for conjunctive normal form (CNF) formulas is used. Notations
are summarized in Table 1. Although the general ideas of resolution and deriva-
tions are well known, there is no standard notation for many of the technical
aspects, so it is necessary to specify our notation in detail.

Table 1. Summary of notations

a, . . . , z Literal; i.e., propositional variable or negated propositional variable.
¬x Complement of literal x; ¬¬x is not distinguished from x.
|x| The propositional variable in literal x; i.e., |a| = |¬a| = a.
A, . . . , Z Disjunctive clause, or set of literals, depending on context.
A, . . . ,H CNF formula, or set of literals, depending on context.
π Resolution derivation DAG.
σ Total assignment, represented as the set of true literals.

[p1, . . . , pk] Clause consisting of literals p1, . . . , pk.
⊥ The empty clause, which represents false.
� The tautologous clause, which represents true; (see Definition 2.2).
α, . . . , δ Subclause, in the notation [p, q, α], denoting a clause with literals p,

q, and possibly other literals, α.
C− Read as “C, or some clause that subsumes C”.

p In a context where a unit clause is expected, [p] may be abbreviated
to p.

C, p In a context where a formula is expected, {C} may be abbreviated to
C and {[p]} may be abbreviated to p.

+, − Set union and difference, as infix operators, where operands are for-
mulas, possibly using the abbreviations above.

res(q, C, D) Resolvent of C and D, where q and ¬q are the clashing literals (see
Definition 2.2).

C|A, F|A,
π|A

C (respectively F , π) strengthened by A (see Definition 2.4).

Definition 2.1. (assignment, satisfaction, model) A partial assignment is
a partial function from the set of variables into {false, true}. This partial func-
tion is extended to literals, clauses, and formulas in the standard way. If the
partial assignment is a total function, it is called a total assignment, or simply
an assignment.

A clause or formula is satisfied by a partial assignment if it is mapped to true;
A partial assignment that satisfies a formula is called a model of that formula.

&'

A partial assignment is conventionally represented by the (necessarily con-
sistent) set of unit clauses that are mapped into true by the partial assignment.
Note that this representation is a very simple formula.
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2.2 Resolution as a Total Function

Definition 2.2. (resolution, subsumption, tautologous) A clause is tau-
tologous if it contains complementary literals. All tautologous clauses are con-
sidered to be indistinguishable and are denoted by �.

If C = [q, α] and D = [¬q, β] are two non-tautologous clauses (α and β are
subclauses), then

res(q, C,D) = res(q,D,C) = res(¬q, C,D) = res(¬q,D,C) = [α, β]

defines the resolution operation, and [α, β] is called the resolvent, which may be
tautologous. Resolution is extended to include � as an identity element:

res(q, C,�) = C

provided C contains q or ¬q.
Resolution is further extended to apply any two non-tautologous clauses and

any literals, as follows. Fix a total order on the clauses definable with the n
propositional variables such that ⊥ is smallest, � is largest, and wider clauses
are “bigger” than narrower clauses. Other details of the total order are not
important.

If C = [α] does not contain q and D = [¬q, β] is non-tautologous, then

res(q, C,D) = res(q,D,C) = res(¬q, C,D) = res(¬q,D,C) = [α]

If C = [α] and D = [β] and neither contains q or ¬q, and both are non-
tautologous, then

res(q, C,D) = res(q,D,C) = res(¬q, C,D) = res(¬q,D,C)
= the smaller of C and D.

With this generalized definition of resolution, we have an algebra, and the
set of clauses (including �) is a lattice, based on ⊆, with the convention that
every clause is a subset of �. We shall see later that the benefit of this struc-
ture is that resolution “commutes up to subsumption” with strengthening (see
Definition 2.4), so strengthening can be applied to any resolution derivation to
produce another derivation.

If clause C ⊂ D, we say C properly subsumes D; if C ⊆ D, we say C subsumes
D. Also, any non-tautologous clause properly subsumes �. Notation D− is read
as “D, or some clause that subsumes D”. &'

Definition 2.3. (derivation, refutation) A derivation (short for propositional
resolution derivation) from formula F is a rooted, directed acyclic graph (DAG)
in which each vertex is labeled with a clause and possibly with a clashing literal.
Let D be the clause label of vertex v. If D = C ∈ F , then v has no out-edges
and no clashing literal, and is called a leaf. Otherwise v is called a resolution
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vertex, has two out-edges, say to vertices with clause labels D1 and D2, and is
also labeled with the clashing literal q such that

D = res(q,D1, D2),

where res is the total function defined in Definition 2.2. In much of the discus-
sion, vertices are referred to by their clause labels.

A derivation derives its root clause. When the root clause is ⊥, the derivation
is called a refutation. &'

2.3 The Strengthening Operation

Definition 2.4. (strengthened formula, strengthened derivation) Let A
be a partial assignment for formula F . Let π be a derivation from F . The clause
C|A, read “C strengthened by A”, and the formula F|A, read “F strengthened
by A”, are defined as follows.

1. C|A = �, if C contains any literal that occurs in A.
2. C|A = C − {q | q ∈ C and ¬q ∈ A}, if C does not contain any literal that

occurs in A. This may be the empty clause.
3. F|A =

{
C|A

∣∣ C ∈ F
}
; i.e., apply strengthening to each clause in F .

Usually, occurrences of � (produced by part (1)) are deleted in F|A.
4. π|A is the same DAG as π structurally, but the clauses labeling the vertices

are changed as follows. If a leaf (input clause) of π contains C, then the
corresponding leaf of π|A contains C|A. Each derived clause of π|A uses
resolution on the same clashing literal as the corresponding vertex of π.

The operation F|p (i.e., F|{[p]}) is sometimes called “unit simplification”. &'

The term “strengthen” comes from the theorem-proving community [7]. Ben-
Sasson and Wigderson [3] and others in the proof-complexity community use the
term “restriction” for “unit simplification” or “strengthening by a single literal”;
several different terms for this operation may be found in the literature.

Example 2.5. Let F consist of clauses C1 = [a, b], C2 = [¬a, c], C3 = [¬b, e],
and C4 = [¬c,¬d]. Let π consist of leaves C1, C2 and C4 and the derived clauses

D1 = res(a,C1, C2) = [b, c] ,
D2 = res(c,D1, C4) = [b,¬d] ,
D3 = res(b,D2, C3) = [e,¬d] .

Then F|a = {[c] , [¬b, e] , [¬c,¬d]}, Also, F|{a, c} = {[¬b, e] , [¬d]}.
Now consider π|a. The leaves are C1|a = �, C2|a = [c], C3|a = C3, and

C4|a = C4. The derived clauses are E1, E2 and E3, where:

E1 = res(a,�, [c]) = [c] ;
E2 = res(c, [c] , [¬c,¬d]) = [¬d] ;
E3 = res(b, [¬d] , [¬b, e]) = [¬d] .
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Notice that Ei �= Di|a in any case, but Ei = (Di|a)− in all cases. Also notice
that the clashing literal is absent from one operand in the resolution for E3, so
the resolvent is just the other operand. &'

Lemma 2.6. Given formula F , and a strengthening literal p,

res(q,D1|p,D2|p) ⊆ res(q,D1, D2)|p.

Proof. The principal case that requires checking is when q = p and q ∈ D1 and
¬q ∈ D2 (or vice versa). In this case,

res(q,D1, D2)|p = res(q,D1, D2) = (D1 − p) ∪ (D2 − ¬p).

Then res(q,D1|p,D2|p) = D2|p = (D2−¬p). Therefore, D2|p ⊆ res(q,D1, D2)|p.
&'

Lemma 2.7. Given formula F , and a strengthening literal p, if π is a derivation
of C from F , then π|p is a derivation of (C|p)− (a clause that subsumes C|p)
from F|p.

Proof. The proof is by induction on the structure of π with edge v → w inter-
preted to mean that v is greater than w. Thus, the base cases are the vertices
that are clauses in F , called the leaves. By Lemma 2.6, if a vertex of π contains
the derived clause C, and the two adjacent operand vertices satisfy the lemma,
then the corresponding vertex of π|p contains (C|p)−. &'

If C is the root of π and C|p �= �, then a �-free derivation of (C|p)− can be
constructed from π|p by changing all resolution vertices that have exactly one �
operand to “copy” vertices that use the non-� operand, then deleting all the �
vertices, then compressing out all the copy vertices. Finally, the resulting DAG
might have multiple sources, so delete all vertices that cannot be reached from
the original root, which now contains (C|p)−. This procedure does not change
the clause in any vertex of π|p.

Notice that Ben-Sasson and Wigderson [3] define π|p differently, as clause-by-
clause strengthening (restriction, in their terminology) of the originally derived
clauses. As Example 2.5 showed, this definition does not necessarily produce a
derivation; they do not discuss this issue. The definitions used herein do ensure
that the strengthening of a derivation is a derivation, without using weakening.
The point of Lemma 2.7 is that the clauses derived from the strengthened formula
are at least as strong as the clause-by-clause strengthenings of the originally
derived clauses.

2.4 Input Distance and Strengthening

A few properties of input distance on clauses that result from strengthening are
stated.
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Lemma 2.8. Let C be a clause of F and let A be a partial assignment. If
C|A �= � (i.e., A does not satisfy C), then ΔF (C|A) = 0.

Proof. |(C|A) − C| = 0. &'

Lemma 2.9. Let D be a clause of F , let A be a partial assignment, and let
G = F|A. If D|A �= � (i.e., A does not satisfy D), then ΔF (D) ≤ ΔG(D|A)+|A|.

Proof. Suppose C|A ∈ G is a clause for which ΔG(D|A) = |(D|A) − (C|A)|.
Then |D − C| ≤ |D − (C|A)| ≤ |(D|A) − (C|A)| + |A|. &'

3 Size vs. Input Distance Relationships

Ben-Sasson and Wigderson [3] derived size-width relationships that they describe
as a “direct translation of [CEI96] to resolution derivations.” Their informal
statement, “if F has a short resolution refutation then it has a refutation with
a small width,” applies only when F has no wide clauses.

This section shows that by using input distance rather than clause width,
the restriction on the width of F can be removed. That is, the relationships are
strengthened by removing the additive term, width(F).

The use of strengthening for recursive construction of refutations with special
properties originates with Anderson and Bledsoe [2], who used it as a uniform
framework for showing completeness of various restrictions on resolution, in-
cluding linear resolution, set-of-support strategy, positive resolution, and others.
Clegg et al. [5] used it in connection with Groebner-basis refutations. Ben-Sasson
and Wigderson [3] used it to construct resolution refutations of small width. We
use it here to construct resolution refutations of small input distance, closely
following Ben-Sasson and Wigderson.

Lemma 3.1. Given formula F , and a strengthening literal p, let G = F|p. If
derivation π1 derives clause D from G with input distance ΔG(π1) = (d − 1),
then there is a derivation π2 that derives (D +¬p)− from F with input distance
ΔF (π2) ≤ d.

Proof. Since G contains neither p nor ¬p, we can assume w.l.o.g. that no vertices
of π1 have p or ¬p as the clashing literal. Define π2 to have the same DAG
structure as π1, and the same clashing literal at each vertex, but wherever a
leaf of π1 is labeled with C|p, label the corresponding leaf of π2 with C. Each
clause of F has at most one additional literal, ¬p, compared to the corresponding
clause of G, or else contains p. But no clauses of F containing p are leaves of
π2. Complete the clause labeling of π2 according to the definition of resolution.
Clearly π2 derives (D +¬p)−. For each clause E in π2, the corresponding clause
in π1 is E|p. By Lemma 2.9, ΔF (E) ≤ ΔG(E|p) + 1. So ΔF (π2) ≤ d. &'
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Lemma 3.2. Given formula F , and a strengthening literal p, let G = F|p and
H = F|¬p. If derivation π1 derives ⊥ from G with input distance ΔG(π1) = d−1,
and derivation π2 derives ⊥ from H with input distance ΔH(π2) = d, then there
is a derivation π3 that derives ⊥ from F with input distance ΔF (π3) ≤ d.

Proof. Using Lemma 3.1, there is a derivation π4 that derives [¬p]− from G with
input distance ΔF (π4) ≤ d. If the root of π4 is ⊥, let π3 = π4 and we are done.
Otherwise, construct π3 as follows:

1. Use π4 as the initial part of π3. This part of π3 has input distance at most
d from F .

2. Resolve every clause of F that contains p with the root of π4, which contains
[¬p]. Call this set of resolvents F1. All of these resolvents have input distance
0 from F (Lemma 2.8), so they do not contribute to ΔF (π3); also, they and
are in H.

3. Let F2 consist of those clauses in F that contain neither ¬p nor p. Note that
F1 + F2 = H.

4. Complete the derivation π3 according to the derivation π2, using clauses from
F1 and F2 in place of H at the leaves of π2. Since |D − C| ≤ |(D − C|¬p)|
for any clauses, C, D, this part of π3 has input distance at most d from F .

Thus ΔF (π3) ≤ d. &'

Theorem 3.3. Let F be an unsatisfiable formula on n ≥ 1 variables and let
d ≥ 0 be an integer. Let ST be the size of the shortest tree-like refutation of F .
If ST ≤ 2d, then F has a refutation π with input distance ΔF (π) ≤ d.

Proof. The proof is by induction on the pair (n, d) with the component-wise
partial order, and follows Ben-Sasson and Wigderson [3], except that it uses
input distance and Lemma 3.2 above. The bases cases are d = 0 or n = 1, and
are immediate. For d > 0 and n > 1 assume the theorem holds for smaller pairs.
Let x be the clashing literal at the root of π, a shortest tree-like refutation of
F . The children of the root are themselves the roots of tree-like derivations of
x and ¬x; call them π1 and π0. Assume the size of π1 is at most 2d−1. But
π1|¬x is a tree-like refutation of G = F|¬x. By the inductive hypothesis, G has
a refutation π2 with input distance ΔG(π2) ≤ d− 1. Also, H = F|x has at most
n − 1 variables, so by the inductive hypothesis, H has a refutation with input
distance ΔH(π1) ≤ d. By Lemma 3.2, F has a refutation π with input distance
ΔF (π) ≤ d. &'

Corollary 3.4. ST (F) ≥ 2Δ(F�⊥).

Theorem 3.5. Let F be an unsatisfiable formula on n ≥ 1 variables and let
d ≥ 0 be an integer. Let S(F) be the size of the shortest refutation of F . If
S(F) ≤ e

d2
8n , then F has a refutation π1 with ΔF (π1) ≤ d.
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Proof. The proof is by induction on the pair (n, d) with the component-wise
partial order, and follows Ben-Sasson and Wigderson [3], except that it uses
input distance and Lemma 3.2 above. Their local variable d is renamed to f
here and denotes the input distance that causes a clause to be classified as fat ;
f = $

√
2n ln S(F)%. For any derivation π, let π∗ be the set of clauses D ∈ π

with ΔF (D) > f . Define a = 2n/(2n− f). The theorem follows from this claim:

Claim: For all b ≥ 0 and 1 ≤ m ≤ n, if formula G has m variables and π is a
refutation of G and |π∗| < ab, then Δ(G + ⊥) ≤ f + b.

Setting b = f and G = F , and using the identity − ln(1−f/2n) > f/2n, ensures
that ab ≥ S(F), so ensures the hypothesis, |π∗| < ab, is true. Setting d = 2f
proves the theorem.

The claim is proved by induction on on the pair (m, b) with the component-
wise partial order. The base cases are b = 0 or m = 1, for which the claim is
immediate, as |π∗| = 0. For b > 0 and m > 1, there is some literal x that appears
in at least |π∗| f/2n clauses of π∗. Let π|x be as defined in Definition 2.4. By
Lemma 2.7 and the discussion following it, there is a �-free derivation π1 with
the same nontautologous clauses as π|x. Then |π∗

1 | ≤ (1−f/2n)|π∗| ≤ ab−1. But
π1 refutes G|x, so by the inductive hypothesis, Δ(G|x + ⊥) ≤ f + b − 1. Let π0

be the �-free version of π|¬x, which refutes G|¬x. Since G|¬x has fewer than
m variables and |π∗

0 | ≤ ab, by the inductive hypothesis, Δ(G|¬x + ⊥) ≤ f + b.
Applying Lemma 3.2 proves the claim. &'

Corollary 3.6. S(F) ≥ e
Δ(F�⊥)2

8n .

4 Pigeon-Hole Formulas

The well-known family of Pigeon-Hole formulas for m pigeons and n holes
(PHP(m,n)) is defined by these clauses:

Ci = [xi,1, . . . , xi,n] for 1 ≤ i ≤ m

Bijk = [¬xi,k,¬xj,k] for 1 ≤ i ≤ m, 1 ≤ j ≤ m, 1 ≤ k ≤ n.

For the standard version, m = n + 1. We shall show that any refutation of
PHP(m,n) with m > n has input distance Ω(n). An (already known) exponen-
tial lower bound for tree-like refutations follows by Corollary 3.4, but no useful
lower bound for general refutations follows by Corollary 3.6, since the “n” in
that corollary is the number of variables, which is nm in the notation of this
section. The method follows Ben-Sasson and Wigderson [3], except that it uses
input distance and the original PHP clauses of width n.

Theorem 4.1. Any refutation of PHP(m,n) with m > n has input distance at
least n/3 − 2.
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Proof. For 1 ≤ i ≤ m, define

Ai = {Ci, Bijk, 1 ≤ j ≤ m, 1 ≤ k ≤ n}

which consists of all the constraints on pigeon i. Define μ(D), the complexity of
a clause D, as the minimum number of Ai’s needed to logically imply D. Then
μ(⊥) = n + 1 and μ(C) = 1 where C is any input clause. Suppose I is the index
set for a minimum-cardinality set of Ai’s that imply D and n/3 ≤ |I| < 2n/3.
That is, (∧

i∈I

Ai

)
→ D (5)

is a tautology. Such an I must exist, because μ(res(q,D1, D2)) ≤ μ(D1)+μ(D2).
Equation (5) holds if and only if the following is unsatisfiable (note that ¬(D)

constitutes a set of unit clauses):(∧
i∈I

Ai

)
∧ ¬(D) (6)

Let P0 be the set of pigeons (first index of variables) that have negative literals
in D; let P1 be the set of pigeons that have positive literals in D. If D has at
least n/3 negative literals, then its input distance is at least n/3−2; assume this
is not the case. Therefore, I − P0 is nonempty.

The plan of the proof is to show that, if I −P0 is nonempty and D has fewer
than n/3 negative literals, either there is an assignment that satisfies (6) or P1

has at least n/3 − 1 pigeons. Table 2 illustrates some of the notation.
Since I −P0 is nonempty, let p ∈ I −P0 and let I∗ = I −{p}. Thus p is some

pigeon whose hole is not forced by ¬(D). By the minimality of I there is an
assignment σ that makes ¬(D) true, makes Ap false and satisfies Ai for i ∈ I∗.
W.l.o.g. let σ be chosen to have as few positive literals as possible. Then σ sets
all xik = 0 for i not in I ∪ P0 ∪ P1 and 1 ≤ k ≤ n. Further, σ sets all xpk = 0,
1 ≤ k ≤ n, since none of these positive literals occur in ¬(D). Choose a function
k(i) for i ∈ I∗ such that xi,k(i) = 1 in σ. Necessarily, k(i1) �= k(i2) for distinct
i1, i2 ∈ I∗. Let K be the set of indexes in the range 1 through n that are not
in the range of k(i); |K| ≥ n/3 + 2. These are the holes that are available for
pigeon p.

Recall that σ sets xpk = 0 for all k ∈ K. Also, σ sets xik = 1 for i ∈ I∗

and k �= k(i) only if xik ∈ ¬(D). If, for any k ∈ K, xpk can be flipped to 1
and xik can be set to 0 for all i �= p without falsifying ¬(D), that would create
a satisfying assignment for (6). Therefore, for each k ∈ K, ¬(D) contains ¬xpk

or xik for some i �= p. Since |K| > n/3 and we assumed D has fewer than n/3
negative literals, it must be the case that ¬(D) contains ¬xpk for some k ∈ K.

Finally, we argue that since ¬(D) contains ¬xpk, for some k ∈ K, it must
contain ¬xik for all i ∈ I∗. Suppose this fails for some i. Then modify σ by setting
xp,k(i) = 1, xp,k = 0, xi,k(i) = 0, and xi,k = 1 (see Table 2). This produces a
satisfying assignment for (6).
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Table 2. Changing σ to expose a faulty index set I, in proof of theorem

D = [¬x11, x32, x52] , ¬(D) = [x11] ∧ [¬x32] ∧ [¬x52] , I = {2, 3, 5}, I∗ = {2, 3}.
Original σ

pige– holes
ons 1 2 3 4

1 1 0 0 0
2 0 0 1 0
3 0 0 0 1
4 0 0 0 0

p = 5 0 0 0 0
6 0 0 0 0

i k(i)

2 3
3 4

K = {1, 2}

Modified σ

pige– holes
ons 1 2 3 4

1 1 0 0 0
2 0 1 0 0
3 0 0 0 1
4 0 0 0 0

p = 5 0 0 1 0
6 0 0 0 0

To summarize, if ¬(D) contains ¬xpk for some k ∈ K, then D contains
positive literals for at least n/3 − 1 different pigeons, i.e.,|P1| ≥ n/3 − 1, giving
D an input distance of at least n/3 − 2. &'

5 Conclusion

We proposed the input distance metric as a refinement of clause width for study-
ing the complexity of resolution. For families with wide clauses, the trade-off be-
tween resolution refutation size and input distance is sharper than the trade-off
between resolution refutation size and clause width.

We showed that any refutation of PHP(m,n) requires input distance at least
n/3 − 2. Moreover, the proof showed that this input distance can arise in two
possible ways: by having n/3 negative literals in a derived clause, or by having
n/3 − 1 positive literals that refer to distinct pigeons.

We conjecture that a similar exercise can be carried out for the family called
GT(n) [6], which has general refutations of polynomial size [8], but for which tree-
like refutations are exponential [4]. This family can be modified so that regular
refutations are also exponential [1]. Bonet and Galesi introduced a bounded-
width variant called MGT(n), and showed that refutations of MGT(n) have
width Ω(n) [4]. However, the complexity function they used does not transfer
straightforwardly to a lower bound on input distance, as there are clauses with
input distance zero and complexity between n/3 and 2n/3.

Some open problems remain. Can input distance improve the lower bound for
weak PHP(m,n), where m >> n? Ben-Sasson and Wigderson [3] transformed
this problem into a family with clause width proportional to log m. Are there
other natural families to which input distance can be applied? Is there a trade-off
between regular refutation size and input distance?
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Abstract. Recently the Mathematical Programming community
showed a renewed interest in Hilbert’s Positivstellensatz. The reason for
this is that global optimization of polynomials in IR[x1, . . . , xn] is NP-
hard, while the question whether a polynomial can be written as a sum
of squares has tractable aspects. This is due to the fact that Semidef-
inite Programming can be used to decide in polynomial time (up to a
prescribed precision) whether a polynomial can be rewritten as a sum
of squares of linear combinations of monomials coming from a specified
set. We investigate this approach in the context of Satisfiability. We ex-
amine the potential of the theory for providing tests for unsatisfiability
and providing MAXSAT upper bounds. We compare the SOS (Sums Of
Squares) approach with existing upper bound and rounding techniques
for the MAX-2-SAT case of Goemans and Williamson [8] and Feige and
Goemans [6] and the MAX-3-SAT case of Karloff and Zwick [9], which
are based on Semidefinite Programming as well. We show that the com-
bination of the existing rounding techniques with the SOS based upper
bound techniques yields polynomial time algorithms with a performance
guarantee at least as good as the existing ones, but observably better in
particular cases.

1 Introduction

Hilbert’s Positivstellensatz states that a non-negative polynomial in
IR[x1, . . . , xn] is a SOS in case n = 1, or has degree d = 2, or n = 2 and
d = 4. Despite these restrictive constraints explicit counter examples for the
non-covered cases are rare although Blekherman [2] proved that there must be
many of them. On the other side [10] claims that for purposes of optimization,
the replacement of the fact that a polynomial is non-negative by the fact that
it is a SOS gives very good results in practice. This claim could imply that we
can develop an upper bound algorithm for MAXSAT using this SOS approach
which gives tighter bounds than the existing ones.
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Let us go into more detail now. Suppose a given polynomial p(x1, . . . , xn) ∈
IR[x1, . . . , xn] has to be minimized over IRn. This minimization can be written
as the program:

max α (1)
s.t. p(x1, . . . , xn) − α ≥ 0 on IRn

α ∈ IR

Clearly, the program:

max α (2)
s.t. p(x1, . . . , xn) − α is a SOS
α ∈ IR

would result in a lower bound for problem (1).
There is a benefit in the approach above using the theory of ‘Newton Poly-

topes’. The exponent of a monomial xa1
1 . . . xan

n is identified with a lattice point
ā = (a1, . . . , an). The Newton polytope associated with a polynomial is the
convex hull of all those lattice points associated with monomials appearing in
the polynomial involved. Monomials useful for finding a SOS decomposition are
those with an exponent ā for which 2ā is in the Newton polytope. Thus adding
more monomials would not enlarge the chance of success. This means that for
purposes of global optimization of a polynomial over IRn we have the advantage
to know which monomials are possibly involved in a SOS decomposition (if ex-
isting) while we face the disadvantage that non-negative polynomials need not
be decomposable as SOS.

Involving the Boolean constraints of the form x2
1 − 1 = 0, . . . , x2

n − 1 = 0 the
situation turns. It can be proven that polynomials which are non-negative on
{−1, 1}n (please note that we use {−1, 1}- values for Boolean variables instead
of the more commonly used {0, 1}-values, which is much more attractive when
algebraic formalisms are involved) can always be written as a SOS modulo the
ideal IB generated by the polynomials x2

1 − 1, . . . , x2
n − 1. However, in this case

the ’Newton Polytope Property’ is not valid, because higher degree monomials
may cancel ones with lower degree, when performing calculations modulo IB.
Hence, we have to consider possibly an exponential set of monomials in the
SOS decomposition. To see this consider a polynomial p(x1, . . . , xn) which is
non-negative on {−1, 1}n. The expression

SP (x) =
∑

σ∈{−1,1}n

p(σ)
2n

(1 + σ1x1) . . . (1 + σnxn) (3)

is easily seen to give the same outputs on {−1, 1}n as p(x1, . . . , xn). Each 1+σjxj

2
is a square modulo IB because(

1 + σjxj

2

)2

≡ 1 + σjxj

2
modulo IB (4)
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Hence, SP (x) is seen to be a SOS modulo IB. At the same time it becomes
evident that we might need an exponentially large basis of monomials in real-
izing this decomposition. We see that if we want to optimize a polynomial over
{−1, 1}n we have the advantage to know that a basis of monomials exists which
will give an exact answer, while we are facing the disadvantage that this basis
could be unacceptably large.

We now come to the point of explaining the SOS approach. Let MT =
(M1, . . . , Mk) be a row vector of monomials in variables x1, . . . , xn and
p(x1, . . . , xn) a given polynomial in IR[x1, . . . , xn]. The equation MT LT LM = p
involving any matrix L of appropriate size would give an explicit decomposition
of p as a SOS over the monomials used. Conversely, any SOS decomposition of
p can be written in this way. This means that the Semidefinite Program

MT SM = p (5)
S positive semidefinite (S , 0)

gives a polynomial time decision method for the question whether p can be
written as a SOS using M1, . . . , Mk as a basis of monomials (up to prescribed
precision: the method uses real numbers represented with a certain precision).
The constraint MT SM = p in fact results in a set of linear constraints in the
entries of the matrix S.

If we consider the Boolean side constraints we have a similar program. In this
case however the equation MT SM = p needs to be satisfied only modulo IB. Also
this constraint results in a set of linear constraints in the entries of thematrixS, but
different from the ones above. This is caused by the above mentioned cancellation
effects. First we shall associate polynomials to CNF formulae. With a literal Xi we
associate the polynomial 1

2 (1 − xi) and with ¬Xj we associate 1
2 (1 + xj). With

a clause we associate the products of the polynomials associated with its literals.
Note that for a given assignment σ ∈ {−1, 1}n the polynomial associated with
each clause outputs a zero or a one, depending of the fact whether σ satisfies the
clause or not. With a CNF formula φ we associate two polynomials Fφ and FB

φ . Fφ

is the sum of squares of the polynomials associated with the clauses from φ . FB
φ

is just the sum of those polynomials. Clearly, Fφ is non-negative on IRn and FB
φ is

non-negative on {−1, 1}n. Fφ(σ) and FB
φ (σ) give the number of clauses violated by

assignment σ. The following two examples illustrate the construction of Fφ and FB
φ

and the outcome of the corresponding SDP’s.

Example 1. Let φ be the CNF formula with the following three clauses

X ∨ Y, X ∨ ¬Y, ¬X (6)

Fφ =
(

1
2
(1 − x)

1
2
(1 − y)

)2

+
(

1
2
(1 − x)

1
2
(1 + y)

)2

+
(

1
2
(1 + x)

)2

=
3
8

+
1
4
x +

3
8
x2 +

1
8
y2 +

1
4
xy2 +

1
8
x2y2
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In order to attempt to rewrite Fφ − α as a SOS it suffices to work with the
monomial basis MT = (1, x, y, xy). The program

max α (7)
s.t. Fφ − α = MT SM

α ∈ IR, S , 0

gives an output α = 1
3 , from which we may conclude that 22

3 is an upper bound
for the MAXSAT-solution of φ. Notice that Fφ = 1

3 + 3
8

(
x + 1

3

)2 + 1
8 (xy − y)2.

For this φ, FB
φ = 1

2 (1 − x) 1
2 (1 − y) + 1

2 (1 − x) 1
2 (1 + y) + 1

2 (1 + x) = 1. Clearly,
FB

φ = 1 means that any assignment will exactly violate one clause.

Example 2. Let φ be the following CNF formula

X ∨ Y ∨ Z, X ∨ Y ∨ ¬Z, ¬Y ∨ ¬T, ¬X, T (8)

FB
φ =

3
2

+
1
4
x − 1

4
t +

1
4
xy +

1
4
yt (9)

The Semidefinite Program (SDP)

max α (10)
s.t.FB

φ − α ≡ (1, x, y, t)S(1, x, y, t)T modulo IB
α ∈ IR, S , 0

gives output α = 0.793, from which we may conclude that 4.207 is an upper
bound for the MAXSAT-solution of φ. The SDP

max α (11)
s.t.FB

φ − α ≡ (1, x, y, t, xy, xt, yt)S(1, x, y, t, xy, xt, yt)T modulo IB
α ∈ IR, S , 0

gives output α = 1. Note that the second SDP gives a tighter upper bound,
because more monomials are contained in the basis.

Next, we formulate some useful properties on the polynomials Fφ and FB
φ .

Let m be the number of clauses and n the number of variables in φ.

Theorem 1. 1. For any assignment σ ∈ {−1, 1}n, Fφ(σ) = FB
φ (σ). Both give

the number of clauses violated by σ.
2. minσ∈{−1,1}n Fφ(σ) and minσ∈{−1,1}n FB

φ (σ) give rise to an exact
MAXSAT-solution of φ: respectively m − minσ∈{−1,1}n Fφ(σ) and m −
minσ∈{−1,1}n FB

φ (σ).
3. FB

φ ≡ Fφ modulo IB.
4. Fφ attains its minimum over IRn somewhere in the hypercube [−1, 1]n (a

compact set), while it can be zero only in a partial satisfying assignment.
5. φ is unsatisfiable if and only if there exists an ε > 0 such that Fφ − ε ≥ 0 on

IRn.
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6. If there exists an ε > 0 such that Fφ − ε is a SOS, then φ is unsatisfiable.
7. If there exists a monomial basis M and an ε > 0 such that FB

φ − ε is a SOS
based on M , modulo IB, then φ is unsatisfiable.

8. Let M be a monomial basis, then

m − max α (12)
s.t. Fφ − α is a SOS
α ∈ IR
and
m − max α (13)
s.t. FB

φ − α ≡ MT SM modulo IB
α ∈ IR, S , 0

give upper bounds for the MAXSAT-solution of φ.

Proof. Except for part 1.4 the reasonings behind the other parts are already
discussed before or they are direct consequences of earlier statements. Here we
prove Theorem 1.4: suppose Fφ takes its minimum in x and assume x1 = 1+δ for
some δ > 0. This gives rise to contributions (1

2 (1+(1+δ)))2 and (1
2 (1−(1+δ)))2.

Both contributions are smaller with δ = 0 than with δ > 0. The same argument
can be applied for x1 = −1 − δ. Thus x ∈ [−1, 1]n. Furthermore, Fφ = 0 only
if in each polynomial associated to a clause at least one of the factors equals
zero because Fφ is a sum of squares and hence non-negative. This can only be
realized if in each polynomial associated to a clause at least one of the variables
takes value 1 or -1 resulting in a partial satisfying assignment for φ.

Program (13) is the basis for the search for MAXSAT-upper bounds in this
paper.

2 Upper Bounds for MAX-2-SAT

Although the SOS approach provides upper bounds for general MAXSAT-
solutions, we restrict ourselves in this section to MAX-2-SAT. The reason is
that we want to present a comparison with the results of the famous methods of
Goemans and Williamson [8] and Feige and Goemans [6].

The first monomial basis we consider in the SOS approach (13) is MGW =
(1, x1, . . . , xn), where the xi’s come from the variables in φ.

Semidefinite Programming formulations come in pairs: the so-called primal
and dual formulations, see for example [5] and [4]. Here we present a generic
formulation of a primal semidefinite problem P , and its dual program D. In our
context, D and P give the same optimal value.

Consider the program P

min Tr(CX) (14)
s.t. diag(X) = e (15)
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Tr(AjX) ≥ 1, j = 1, . . . , k (16)
X , 0

In the above formulation, C and X are symmetric square matrices of size,
say p × p. Tr means the trace of the matrix, i.e. the sum of the entries on the
diagonal.

Tr(CX) =
p∑

i=1

p∑
j=1

cijxij

diag(X) = e means that the entries on the diagonal of matrix X are all ones.
The Aj ’s are square symmetric matrices.

The program P has the following dual program D

max
p∑

i=1

γi +
k∑

j=1

yj (17)

s.t.Diag(γ) +
k∑

j=1

yjAj + U = C

U , 0, yj ≥ 0

in which the yj ’s are the dual variables corresponding to constraints (16) and
the γi’s the dual variables corresponding to constraints (15). U is a symmetric
square matrix and Diag(γ) is the square matrix with the γi’s on the diagonal
and all off-diagonal entries equal to zero.

2.1 Comparison of SOS Approach and Goemans-Williamson
Approach

The original Goemans-Williamson approach for obtaining an upper bound for a
MAX-2-SAT problem starts with FB

φ too. The problem

min FB
φ (x) (18)

x ∈ {−1, 1}n

is relaxed by relaxing the Boolean arguments xi. With each xi, a vector vi ∈
IRn+1 is associated, with norm 1, and products xixj are interpreted as inproducts
vi •vj . In this way, they turn (18) into a Semidefinite Program, after making FB

φ

homogenous by adding a dummy vector vn+1 in order to make the linear terms
in FB

φ quadratic as well. For example, 3xi is replaced by 3(vi • vn+1). Let F̂B
φ

be the polynomial constructed from FB
φ in this way. The problem Goemans and

Williamson solve is

min F̂B
φ (v1, . . . , vn, vn+1) (19)

s.t. ‖vi‖ = 1, vi ∈ IRn+1
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To transform (19) to a semidefinite program, vi • vj is replaced by tij . Let bij

be the coefficient of MGW
i MGW

j in the polynomial FB
φ . Let fij = fji = 1

2bij and
fii = 0 for each i. Let M(F ) be the symmetric matrix with entries fij and T is
a symmetric matrix of the same size. Furthermore, let c0 be the constant term
in FB

φ . To be precise, c0 equals 1
2 times the number of 1-literal clauses plus 1

4
times the number of 2-literal clauses in φ.

Consequently, (19) is equivalent to the following semidefinite program

c0 + min
n+1∑
i=1

n+1∑
j=1

fijtij (20)

s.t. tii = 1, T , 0

or in matrix notation,

c0 + min Tr(M(F )T ) (21)
s.t. diag(T ) = e, T , 0

While Goemans and Williamson relax the input arguments of FB
φ , the SOS-

method is a relaxation by replacing non-negativity by being a SOS. The next
theorem proves that the SOS-approach with monomial basis MGW gives the
same upper bound for MAX-2-SAT as program (21).

Theorem 2. The SOS-approach with monomial basis MGW gives the same
upper bound as the upper bound obtained by the algorithm by Goemans and
Williamson.

Proof. In the Goemans-Williamson SDP (21) we only have the constraints of
type (15), and not of type (16). This implies that we have to deal only with the
γj-variables. The size of the variable matrix T is n + 1, with n the number of
variables in the CNF formula.

The dual problem of the GW -semidefinite program (21) is

c0 + max
n+1∑
i=1

γi (22)

s.t. Diag(γ) + U = M(F )
U , 0, γi free

We start with the program

max α (23)
s.t. FB

φ − α ≡ MT SM modulo IB
S , 0, α ∈ IR

with monomial basis M = MGW = (MGW
1 , . . . , MGW

n+1 ) = (1, x1, . . . , xn) and
prove that it is equal to (22). Let sij be the (i, j)-th element of matrix S.
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We can reformulate program (23) as

max α (24)

s.t.
n+1∑
i=1

n+1∑
j=1

sijM
GW
i MGW

j ≡ FB
φ − α modulo IB

S , 0, α ∈ IR

Consider the constraint in program (24) for the coefficient of the constant. On
the left hand side we have

∑n+1
i=1 sii, on the right hand side we have c0 −α. This

results in the equality

α = c0 −
n+1∑
i=1

sii (25)

We transform (24) to matrix notation. In the matrix formulation (26), on both
left and right hand sides we have a matrix with on position (i, j), i �= j, the
coefficient of MGW

i MGW
j using symmetry. Substituting (25) and using matrix

notation we can reformulate (24) as

c0 + max
n+1∑
i=1

−sii (26)

s.t. S − diag(S) = M(F )
S , 0

Identifying γi with matrix entries −sii and U with S, it is immediate that (26)
is equivalent to (22).

Hence, we proved that (23) with monomial basis MGW equals (22). It can be
concluded that the Goemans-Williamson SDP and the SDP of the SOS-approach
with monomial basis MGW are dual problems providing the same upper bound
to the MAX-2-SAT solution.

Still, there is something more to say about these two different approaches.
(20) has 1

2 (n + 1)(n + 2) variables tij (not (n + 1)2 because T is symmetric). In
the SOS approach (13) with monomial basis MGW , it is not hard to see that in
fact only the diagonal elements are essentially variable, because the off-diagonal
elements are fixed. This means that the actual dimension of the SOS-program
with monomial basis MGW is linear in the number of variables, while in the
Goemans-Williamson formulation (20) the dimension grows quadratically.

In our experiments we tried several semidefinite programming solvers like Se-
dumi [11], DSDP [1], CSDP [3] and SDPA [7], but none of them could fully benefit
fromthisfact.However,wefoundthatCSDPperformedbestonSDP’softheform(13).

2.2 Adding Valid Inequalities vs Adding Monomials

Feige and Goemans [6] propose to add so-called valid inequalities to (21) in or-
der to improve the quality of the relaxation. A valid inequality is an inequality
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that is satisfied by any optimal solution os the original (unrelaxed) problem but
may be violated by the optimal solution of the relaxation. Valid inequalities
improve the quality of the relaxation because they exclude a part of its feasible
region that cannot contain the optimal solution of the original problem. Triangle
inequalities are among the most frequently used valid inequalities. Two types of
these ’triangle inequalities’ are considered. The first is the inequality

1 + xi + xj + xixj ≥ 0 (27)

Note that in (21) tij has replaced xixj and ti,n+1 replaces xi from FB
φ . In fact,

they consider the homogeneous form 1+ ti,n+1 + tj,n+1 + ti,j ≥ 0 which is added
to (21). One might add all these inequalities, also the ones obtained by replacing
xi and/or xj by −xi or −xj . Another possibility is to add only those inequalities
where Xi and Xj appear together in the same clause. In this section, we examine
how this compares with the SOS approach. It can be shown that 1+xi+xj +xixj

cannot be recognized as a SOS based on M = (1, xi, xj). However, if we add xixj

to the monomial basis we have

1 + xi + xj + xixj ≡ 1
4

(1 + xi + xj + xixj)
2 modulo IB

A similar argument can be given for the three inequalities with xi and/or xj

replaced by −xi and/or −xj . Hence, the effect of adding the valid inequality
(27) and the three similar inequalities is captured in the SOS approach by adding
the monomial xixj to the basis. Below we prove a theorem from which follows
that adding the monomial xixj results in upper bounds that are at least as
tight as the upper bound of the Feige-Goemans program with the four triangle
inequalities of the form (27). The experiments in section 2.4 support this fact.

Feige and Goemans [6] further showed that adding for each triple of variables
Xi, Xj and Xk to (21) the valid inequalities

1 + tij + tik + tjk ≥ 0, 1 − tij + tik − tjk ≥ 0 (28)
1 + tij − tik − tjk ≥ 0, 1 − tij − tik + tjk ≥ 0

improves the tightness of the relaxation. Note that

1 + xixj + xixk + xjxk ≡ 1
4

(1 + xixj + xixk + xjxk)2 modulo IB

Hence, the effect of adding the four inequalities (28) is captured by adding xixj ,
xixk and xjxk to the monomial basis. Also in this case, the effect of adding
the monomials to the monomial basis results in upper bounds at least as tight
compared to adding valid inequalities to the Goemans-Williamson SDP as shown
in Theorem 3.

Finally, note that adding all inequalities of the form (28) amounts to adding
O(n3) inequalities, while in the SOS approach O(n2) monomials of degree 2 need
to be added. For the moment it is too early to decide whether existing SDP-
solvers are suitable, or can be modified, to turn this effect into a computational
benefit as well.
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Theorem 3. Adding monomials xixj, xixk and xjxk to the monomial basis in
the SOS approach gives an upper bound at least as tight as the upper bound ob-
tained by adding triangle inequalities of the type (28) to the Goemans-Williamson
SDP.

Proof. Without loss of generality we consider the triangle inequality

1 + x1x2 − x1x3 − x2x3 ≥ 0 (29)

In the notation of (20) this equation is 1+ t12− t13− t23 ≥ 0. In matrix notation
this inequality is Tr(AT ) ≥ 1 with

A =

⎛
⎝ 1 1 −1

1 1 −1
−1 −1 1

⎞
⎠

We consider the program

min Tr(M(F )T ) (30)
s.t. diag(T ) = e

Tr(AT ) ≥ 1
T , 0

Assume that F is an homogenous polynomial of degree 2 in three variables
x1, x2, x3 only. This does not harm the general validity of this proof but makes
the key steps more transparent. M(F ) is the coefficient matrix associated with
the polynomial F . Let F (x1, x2, x3) = 2ax1x2 + 2bx1x3 + 2cx2x3. Then,

M(F ) =

⎛
⎝ 0 a b

a 0 c
b c 0

⎞
⎠

The dual program of (30) is the following

max γ1 + γ2 + γ3 + y (31)
s.t. yA + Diag(γ) + U = M(F )
U , 0, y ≥ 0

with Diag(γ) the 3 × 3-matrix with on its diagonal γ1, γ2, γ3.
Program (31) can be reformulated as

max γ1 + γ2 + γ3 + y (32)
s.t. M(F ) − Diag(γ) − yA , 0
y ≥ 0

Now suppose that (γ̂1, γ̂2, γ̂3, ŷ) is an optimal solution for (32). We will show
that from this optimal solution a feasible solution for (33) can be constructed
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with M = (1, x1, x2, x3, x1x2, x1x3, x2x3). In fact, we will even show that the
monomial basis M1 = (1, x1x2, x1x3, x2x3) is already sufficient in this respect.

max α (33)
s.t. MSMT ≡ F − α modulo IB

Program (33) with monomial basis M1 can be reformulated as

max

(
−

4∑
i=1

sii

)
(34)

s12 + s21 + s34 + s43 = 2a
s13 + s31 + s24 + s42 = 2b
s23 + s32 + s14 + s41 = 2c
S , 0

1 + x1x2 − x1x3 − x2x3 is a SOS modulo IB, because the following holds

1 + x1x2 − x1x3 − x2x3 =
1
4
M1ΔMT

1 (35)

with Δ the positive semidefinite matrix

Δ =

⎛
⎜⎜⎝

1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1

⎞
⎟⎟⎠

Let Z be the 4× 4 matrix with the 3× 3 matrix M(F )−Diag(γ̂)− ŷA starting
in the upper left corner and having zeros in fourth row and column. We can
conclude that Z + 1

2 ŷΔ , 0 because Z , 0, Δ , 0 and ŷ ≥ 0. The matrix
Z + 1

2 ŷΔ satisfies the constraints in (34) and −
∑4

i=1 sii = γ̂1 + γ̂2 + γ̂3 + ŷ.

Because the optimal solution of Feige-Goemans SDP with valid inequalities
equals a feasible solution of the SDP approach with monomials of degree 2 in
the monomial basis, it can be concluded that the SOS approach gives at least
as tight upper bounds.

2.3 SOS-Approach on Feige-Goemans Example

In general the CNF formula of dFGn in n variables is defined as

x1 ∨ x2, x2 ∨ x3, x3 ∨ x4, . . . , xn ∨ x1 (36)
¬x1 ∨ ¬x2, ¬x2 ∨ ¬x3, ¬x3 ∨ ¬x4, . . . , ¬xn ∨ ¬x1

Feige and Goemans [6] present dFG5 as worst-known case example with respect
to the performance guarantee of their approach.
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Note that we can satisfy 2n − 1 of the clauses if n is odd by setting the
odd-numbered variables to true and the even-number variables to false. It is not
possible to satisfy all clauses for odd n. In this section, we show that the SOS-
approach with a monomial basis 1, all variables and all possible monomials of
degree 2 solves (36) to optimality.

Theorem 4. Let n be an odd number. The polynomial FB
φn

− 1 with

FB
φn

=
1
2

(n + x1x2 + x2x3 + . . . + xn−1xn + xnx1) (37)

is a sum of squares if we choose as monomial basis M = {1, x1, . . . , xn} extended
with the set of all possible monomials of degree 2.

Proof. As initial step we start with dFG3. The polynomial FB
φ3

is

FB
φ3

=
1
2

(3 + x1x2 + x2x3 + x3x1) (38)

Notice that FB
φ3

− 1 is a sum of squares modulo IB, because

1
2

(
1
2

(1 + x1x2 + x2x3 + x3x1)
)2

≡ 1
2

(1 + x1x2 + x2x3 + x3x1)

We use this fact to prove by induction that FB
φn

−1 is also a sum of squares relative
to the monomial basis considered. Assume that the polynomial FB

φn−2
−1 related

to dFG(n − 2) is a sum of squares modulo IB.
The polynomial FB

φn
equals

FB
φn

= FB
φn−2

+
1
2
(2 + xn−2xn−1 + xn−1xn + xnx1 − xn−2x1) (39)

We assumed that FB
φn−2

− 1 is a sum of squares. Let T1(x) = 1 − x1xn−2 +
xn−2xn−1 + x1xn−1 and T2(x) = 1−x1xn−1 + xn−1xn + xnx1. Note that FB

φn
=

FB
φn−2

+ 1
2 (T1(x) + T2(x)) and for i = 1 and i = 2

1
2

(
1
2
Ti(x)

)2

≡ 1
2
Ti(x) modulo IB

This proves that FB
φn

− 1 is also a sum of squares.

From this theorem we can conclude that the SOS-approach with monomial
basis 1, the variables and all possible monomials of degree 2 identifies FB

φn
− 1

as a sum of squares. Hence, the minimum of FB
φn

is at least 1. We conclude that
our SOS approach solves (36) to optimality.
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2.4 Experimental Results

In this section we consider besides the Goemans-Williamson upper bound the
next four variants of the Feige-Goemans method.

Variant FGm: The valid inequalities added in this variant are only those coming
directly from the clauses. For instance, if X ∨ ¬Y is a clause, we add the valid
inequality 1 − x + y − xy ≥ 0.
Variant FG4p: For each pair of variables Xi and Xj occurring in a same clause,
the four inequalities of the type (27) are added.
Variant FGap: For each pair of variables the four inequalities of the type (27)
are added.
Variant FGpt: All inequalities of variant FGap are added and additionally for
each triple of variables the four inequalities of type (28) added.

We compare the upper bounds resulting from these variants with the upper
bound obtained from the semidefinite program (13) with monomial basis Mp

consisting of the set {1, x1, . . . , xn} extended with all xixj for variables Xi and
Xj appearing in a same clause. We call the corresponding upper bound SOSp.
SOSap is the variant with monomial basis {1, x1, . . . , xn} extended with all xixj

for each pair of variables Xi and Xj . We will restrict ourselves to small-scale
problems in this section, because solving the SDP’s of SOSp takes a lot of time
with the SDP-solvers currently available.

In our initial experiments we used a set of 900 randomly generated instances
with 10 variables and different densities. For each of the densities 1.0, 1.5, 2.0, . . .,
5.0, 100 instances are considered. The ’bound ratio’ R is defined as the optimal
MAXSAT solution divided by the upper bound found. In Table 1 we give for each
method theaverageR over the set of unsatisfiable instances out of the 100generated
instances for each density. In Table 1, the first column indicates the density, the
second the upper bounds by SOSp, the third column gives the results of SOSap,
the fourth gives the Goemans-Williamson upper bound, the fifth gives the upper
bound of variant FGm, the next the upper bound by variant FG4p, then the upper
bound of FGap and the last column gives upper bound of variant FGpt.

From Table 1 we see that the upper bounds obtained by SOSap are at least
as tight as the other ones. This is not only true on average but in fact for each

Table 1. 10 variables, MAX-2-SAT

d SOSp SOSap GW FGm FG4p FGap FGpt

1.0 1 1 0.933480 0.984195 0.993151 0.993151 1
1.5 1 1 0.953544 0.989779 0.993869 0.993869 1
2.0 0.99984 1 0.969460 0.994136 0.997043 0.997242 1
2.5 1 1 0.979549 0.996760 0.998317 0.998420 1
3.0 1 1 0.981904 0.996485 0.998044 0.998188 1
3.5 1 1 0.985519 0.997435 0.998904 0.998975 1
4.0 0.999995 1 0.987250 0.997538 0.998873 0.998930 0.999964
4.5 0.999973 0.999973 0.986327 0.997120 0.998692 0.998776 0.999936
5.0 0.999979 0.999979 0.987015 0.997779 0.998764 0.998841 0.999971
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Table 2. 25 variables, MAX-2-SAT

d SOSp GW FGap

1.5 0.999403 0.955241 0.995686
2.0 0.999607 0.968157 0.997279
2.5 0.999577 0.976133 0.997639
3.0 0.999906 0.979769 0.998238
3.5 0.999691 0.981444 0.997520
4.0 0.999908 0.982812 0.997890
4.5 0.999882 0.983297 0.997721
5.0 0.999989 0.984816 0.998196

individual instance. SOSp is almost always, except for one instance, at least
as good as the best Feige-Goemans variant FGpt. In these experiments with
MAX-2-SAT instances with 10 variables, the SDP’s of each variant are solved by
Sedumi [11]. Table 2 gives the same type of results for instances with 25 variables
but only for the upper bounds that are most relevant and computationally not
too expensive to obtain. For the instances with 25 variables GW and FGap are
solved by Sedumi. The SDP’s of SOSp are solved by CSDP [3], because this
solver is faster, more accurate and uses less memory when solving these SDP’s.

2.5 Note on the Complexity of Different Approaches

The complexity of short step semidefinite optimization algorithms (like for exam-
ple Sedumi) is O((2V 2+C)

√
V ) if V is the size of the semidefinite variable-matrix

in the SDP and C the number of constraints. We will compare the computational
complexity of the different upper bound variants in this section. Let φ be a CNF
formula with n variables and m clauses.

For each of the variants considered the V ’s and C’s involved lead to the
following complexities

CPGW = O(n2
√

n) (40)
CPFGm

= O((n2 + m)
√

n) (41)
CPFG4p

= O((n2 + m)
√

n) (42)

CPFGap
= O

(
n2

√
n
)

(43)

CPFGpt
= O(n3

√
n) (44)

CPSOSp = O
(
(n + m)2

√
n + m

)
(45)

CPSOSap = O(n5) (46)

3 Conclusions and Future Research

In this paper, we presented a new approach for computing upper bounds for MAX-
SAT. We show theoretically and experimentally that it gives for MAX-2-SAT at
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least as tight upper bounds as the approaches by Goemans and Williamson [8] and
Feige and Goemans [6].

In a next paper, we conclude that a combination of the original rounding pro-
cedures of Goemans and Williamson and of Feige and Goemans, which provide
the lower bounds they use to obtain the performance ratio guarantee of their
methods, with the SOS based upper bound techniques we proposed, leads to
polynomial time algorithms for MAX-2-SAT having performance ratio guarantee
at least as good, but observably better in particular cases. A similar conclusion
can be drawn with respect to the Karloff and Zwick results for MAX 3-SAT.

Future research should mainly concentrate on developing SDP software which
is specifically designed for dealing with the type of problems emerging from the
SOS approach. They possess a very special structure which could be explored.
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Abstract. We present an algorithm that decides the satisfiability of a
formula F on CNF form in time O(1.1279(d−2)n), if F has at most d
occurrences per variable or if F has an average of d occurrences per
variable and no variable occurs only once. For d ≤ 4, this is better than
previous results. This is the first published algorithm that is explicitly
constructed to be efficient for cases with a low number of occurrences
per variable. Previous algorithms that are applicable to this case exist,
but as these are designed for other (more general, or simply different)
cases, their performance guarantees for this case are weaker.

1 Introduction

The boolean satisfiability problem, and its restricted variants, is one of the most
well studied classes of NP-complete problems. Since no algorithm for general
formulae on conjunctive normal form (CNF) with a worst-case running time
of O(cn) for c < 2 is known, or even believed to exist (the currently fastest
algorithms for SAT run in O(2n(1−1/ log2 2m)) time [6, 15] where m is the number
of clauses and expected time O(2n−c

√
n) for a constant c [5]), a large amount

of work has been done on restricted variants of the problem that are easier to
solve. Most notable of these restricted problems is k-sat where a clause may
have at most k literals. This is polynomial for k = 2 and NP-complete for k > 2
[9]. The best results for 3sat are a probabilistic algorithm which runs in time
O(1.3238n) [11] and a deterministic one which runs in time O(1.473n) [1], and
for general k-sat a probabilistic algorithm with running time in O((2 − 2/k)n)
[14] and a deterministic algorithm in time O((2 − 2/(k + 1))n) [4].

If every variable is limited to at most d occurrences in a formula, SAT is
solvable in linear time when d = 2 and NP-complete when d ≥ 3, and k-sat
where every clause has exactly k literals is trivial when d ≤ k (every such formula
is satisfiable) and NP-complete otherwise. If shorter clauses are allowed, 3sat
is NP-complete when d ≥ 3 [17]. Previous comparable algorithms include an
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unpublished result by Kullmann (cited in [13]), where he achieves O(3n/9) ≈
O(1.1299n) for SAT instances where d = 3, and two algorithms with running
times characterised by measures other than n that give non-trivial results for
some of these cases. Hirsch has given algorithms [10] that run in time O(1.2389K)
and O(1.0740L) for a general SAT formula with K clauses or total length L,
which would give O(1.2389n) for d = 3 and O(1.3305n) for d = 4, and Szeider has
given a fixed-parameter tractable algorithm with a running time characterised
by the maximum deficiency of a formula F [16]. If K(F ) is the number of clauses
in F and N(F ) the number of variables, the maximum deficiency of F is D =
maxF ′(K(F ′)−N(F ′)) over every subformula F ′ of F , and Szeider’s algorithm
runs in time O(2Dn4). For a k-sat instance where every clause has exactly k
literals, and with d ≥ k, this would give us a running time of O(2(d/k−1)n), or
O(1.2600n) when d = 4 and k = 3 (or indeed for any formula F where d = 4
and where no clause has fewer than three literals). When 2-clauses are allowed,
the result is not as strong. In this paper, we present an algorithm that runs
in time O(1.1279(d−2)n) for any CNF formula with at most d occurrences per
variable, i.e. O(1.1279n) when d = 3 and O(1.2721n) when d = 4, regardless of
the lengths of the clauses. In a slight variation of this, we get the same running
time if a formula F is free of singletons (variables with one occurrence) and the
average number of occurrences per variable is d. Hirsch’s results hold for this
case as well. This latter case is perhaps of less complexity theoretical interest,
but might occur in practice, if one has an application that creates formulae with
few high-degree variables. The reason that we cannot allow singletons in the
latter case is that they lower the average degree too much. While all singletons
disappear in reductions without adding any significant extra running time, the
value of the function used as an upper bound on the running time, which is
a function of (d − 2) · n, actually decreases when singletons are added–in the
extreme case, one could add singletons until d < 2 and the upper bound would
collapse. It would be possible to compensate for this by introducing extra terms
in the function, but this would make the entire analysis more complex. We feel
that the restriction, which only applies when one is counting the average number
of occurrences per variable, is not severe enough to warrant this.

The results in this paper are achieved by a compact recursive algorithm with
about a dozen cases. The strategy used in the algorithm is to use reductions
and branchings to gradually impose more structure onto the problem instance,
until finally the problem is structured enough to be converted into an instance of
(3, 2)-CSP with a third as many variables. This instance can then be solved by a
fast algorithm for this problem, such as Eppstein’s algorithm [8]. In particular,
we found it possible to enforce a large amount of structure when every variable
occurs at most three times in F . Another key component is our measure of
complexity f(F ) = L(F ) − 2N(F ), which we use to guide the decision of when
to apply certain reductions. It is this measure that allows us to construct an
algorithm that is simultaneously very strong when every variable occurs at most
three times, and able to handle instances where some variables have a higher
number of occurrences well.



Faster Exact Solving of SAT Formulae 311

The structure of this paper is as follows. Section 2 contains some notes on
standard concepts used in the text, Section 3 presents the algorithm, Section 4
contains the proof of its running time, and finally Section 5 contains conclusions
and some discussion of future work.

2 Preliminaries

A SAT instance is a boolean formula F in CNF form, with no restrictions on the
clause lengths. A k-sat instance is a SAT instance where no clause contains more
than k literals; a clause with exactly k literals is a k-clause. The problem instances
that are considered in this paper belong to the general SAT class, without restric-
tions on clause lengths. V ars(F ) is the set of all variables that occur in F .

Regarding notation, if v is a variable then ¬v is its negative literal, and if l
is the literal ¬v then ¬l is the literal v. In general, l (or l′, li, etc) represents a
literal that may be positive or negative, while other lowercase letters represent
variables or positive literals. |C| for a clause C denotes the number of literals
in C (also called the length of C), and a clause (l ∨ C) for some literal l and
clause C is the clause that contains all literals of C plus the literal l. Similarly,
(l ∨ C ∨ D) for literal l and clauses C and D would be the clause containing
l plus every literal occurring in C or D. Unless explicitly stated otherwise, the
clauses C,D must be non-empty.

If l is a literal of a variable occurring in F , F [l] is the formula one gets if
every clause C in F that contains l, and every occurrence of ¬l in other clauses,
is removed. For a set of literals A, F [A] is the result of performing the same
set of operations for every literal l′ ∈ A. Note that F [l] and F [A] may contain
empty clauses.

For a variable v ∈ V ars(F ), define the degree d(v, F ) of v in F to be the
number of occurrences of either v or ¬v in the clauses of F . Usually, the formula
is understood from the context, and d(v) is used. d(F ) is the maximum degree
of any v ∈ V ars(F ), and F is k-regular if d(v) = k for every v ∈ V ars(F ). A
variable v where the literal v occurs in a clauses and ¬v occurs in b clauses is
an (a, b)-variable, in which case v is an a-literal and ¬v a b-literal. If b = 0, then
v is a pure literal (similarly, if a = 0 then ¬v is a pure literal). We will usually
assume, by symmetry, that a ≥ b, so that e.g. any 1-literal is always a negative
literal ¬v. If d(v) = 1, then v is a singleton.

The neighbours of a literal l are all literals l′ such that some clause C in F
contains both l and l′. If a clause C contains a literal of both variables a and b,
then a and b co-occur in C.

We write L(F ) for the length of F and N(F ) for the number of variables in
F (i.e. L(F ) =

∑
v∈V ars(F ) d(v, F ) and N(F ) = |V ars(F )|).

We use the classic concept of resolution [7]. For clauses C = (a∨ l1 ∨ . . .∨ ld)
and D = (¬a ∨ m1 ∨ . . . ∨ me), the resolvent of C and D by a is the clause
(l1 ∨ . . . ∨ ld ∨ m1 ∨ . . . ∨ me), shortened to remove duplicate literals. If this
new clause contains both v and ¬v for some variable v, it is said to be a trivial
resolvent.



312 M. Wahlström

For a formula F and a variable v occurring in F , DPv(F ) is the formula where
all non-trivial resolvents by v have been added to F and all clauses containing
the variable v have been removed from F . Resolution is the process of creating
DPv(F ) from F .

(d, l)-CSP is the constraint satisfaction problem where each variable has d
possible values and every constraint involves l variables. (3, 2)-CSP is used in a
subcase of the algorithm in this paper, and for this problem there is an algorithm
due to Eppstein [8] which runs in O(1.3645n) time for n variables. The problem
formulation we use is the one used by Eppstein: An instance I of (d, l)-CSP is a
collection of variables and a collection of constraints. For each variable v, there
is a list of up to d values (called colours) that v can take, and each constraint
is a tuple of up to l (variable,colour)-pairs. The constraints are seen as illegal
combinations: A constraint ((v1, X1), . . . , (vk, Xk)) is satisfied if, for at least one
i, 1 ≤ i ≤ k, variable vi is assigned a colour different than Xi. The instance I
is satisfied if there is an assignment of one colour to each variable that satisfies
every constraint.

3 The Algorithm

The algorithm LowdegSAT (F ) for determining the satisfiability of a CNF for-
mula F is shown in Figure 1. It is shown as a list of cases, where the earliest
case that applies is used, e.g. case 8 is only used if none of cases 0–7 apply. Case
0 is a base case. Cases 1–5 are referred to as simple reductions, since the effect
of these cases is only to remove literals or variables from F , without adding any
new literals or variables. Cases 6–7 are the non-simple reductions, and cases 8–12
are branchings.

We use f(F ) = L(F ) − 2N(F ) =
∑

v∈V ars(F )(d(v, F ) − 2) as a measure
of complexity, motivated by the fact that this is the maximum number of oc-
currences of v that need to be removed from F before v can be removed by
a polynomial-time reduction. As an indication that this is a relevant measure,
when using this measure the worst cases for d(v) = 3 and d(v) = 4 both get the
same branching number, as we see in the next section. f(F ) is also used in the
algorithm for deciding whether to apply certain reductions and branchings or
not.

We say that a formula F ′ is the step k-reduced version of F if F ′ is the result
of applying the reductions in cases 0–k, in the order in which they are listed,
until no such reduction applies anymore. F ′ is called step k-reduced (without
reference to F ) if no reduction in case k or earlier applies (i.e. F is step k-
reduced if LowdegSAT (F ) reaches case k + 1 without applying any reduction).
A synonym to step 7-reduced is fully reduced.

Definition 1. Standardising a CNF formula F refers to applying the following
reductions as far as possible:

1. Subsumption: If there are two clauses C,D in F , and if every literal in C
also occurs in D, then D is subsumed by C. Remove D from F .
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Algorithm LowdegSAT(F)
Case 0: If F = ∅, return 1. If ∅ ∈ F , return 0.
Case 1: If F is not on standard form, standardise it (see Def. 1).
Case 2: If there is some 1-clause (l) ∈ F , return LowdegSAT (F [l]).
Case 3: If there is a pure literal l in F , return LowdegSAT (F [l]).
Case 4: If there is a 2-clause (l1∨l2) and a clause D = (l1∨¬l2∨C) in F for some possi-
bly empty C, construct F ′ from F by deleting ¬l2 from D and return LowdegSAT (F ′).
Case 5: If there is a variable x in F with at most one non-trivial resolvent (such as a
(1, 1)-variable), return LowdegSAT (DPx(F )).
Case 6: If there is a variable x in F with d(x) = 3 such that resolution on x is admis-
sible (see Def. 2), return LowdegSAT (DPx(F )).
Case 7: If there are two clauses (C ∨ D), (C ∨ E), with |C| > 1, construct F ′ from F
by replacing these two clauses by (C ∨ ¬x), (x ∨ D), (x ∨ E) for a newly introduced
variable x, and return LowdegSAT (F ′).
Case 8: If d(F ) > 3, pick a variable x of maximum degree. If some literal of x, as-
sume ¬x, occurs in a single clause (¬x ∨ l1 ∨ . . . ∨ lk), return LowdegSAT (F [x]) ∨
LowdegSAT (F [{¬x,¬l1, . . . ,¬lk}]). If both x and ¬x occur in at least two clauses,
return LowdegSAT (F [x]) ∨ LowdegSAT (F [¬x]).
Case 9: If there is a 2-literal l such that f(F ) reduces by at least six in a branch
F [l], assume that ¬l occurs in a clause C along with literals l1, . . . , lk and return
LowdegSAT (F [l]) ∨ LowdegSAT (F [{¬l,¬l1, . . . ,¬lk}]).
Case 10: If there is a clause C = (¬v1 ∨ . . . ∨ ¬vk) that contains only 1-literals, and
|C| ≥ 4, return LowdegSAT (F − C + (¬v1 ∨ . . . ∨ ¬v�k/2�)) ∨ LowdegSAT (F − C +
(¬v�k/2�+1 ∨ . . . ∨ ¬vk)).
Case 11: Let a be a 2-literal (assumed to be positive) with a maximum number of
neighbours. Let the clause that contains ¬a be (¬a ∨ ¬b ∨ ¬c). If the literal a has at
least three neighbours, return LowdegSAT (F [a]) ∨ LowdegSAT (F [{¬a, b, c}]).
Case 12: If no previous case applied, the formula can be converted into a (3, 2)-CSP
instance with N(F )/3 variables, as described in Lemma 1. Perform this conversion,
and apply Eppstein’s algorithm from [8].

Fig. 1. Algorithm for SAT when most variables have few occurrences

2. Trivial clauses: If there is a clause C in F such that both literals v and ¬v
occur in C for some variable v, then C is a trivial clause. Remove it from
F .

3. Multi-occurring literals: If there is a clause C in F where some literal l occurs
more than once, remove all but one of the occurrences of l from C.

A formula F where none of these reductions apply is said to be on standard
form.

Definition 2. Let F be a step 5-reduced SAT formula, and let F ′ be the step
5-reduced version of DPx(F ), for some variable x that occurs in F . Then,
resolution on x in F is admissible if f(F ′) ≤ f(F ), i.e. L(F ) − L(F ′) ≥
2(N(F ) − N(F ′)).

Definition 3. Backwards resolution is the operation of replacing two clauses
(C ∨ D), (C ∨ E) in a formula F with (¬a ∨ C), (a ∨ D), (a ∨ E) for a new
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variable a. To avoid loops of reductions, we only use this when |C| > 1, so that
the net difference in f(F ) is strictly positive.

Lemma 1. Given a 3-regular SAT formula F where all 2-literals occur only in
2-clauses and all 1-literals occur only in 3-clauses, there is a corresponding (3, 2)-
CSP instance I, constructible in polynomial time and with N(F )/3 variables,
that is satisfiable if and only if F is satisfiable.

Proof. By Lemma 14.6 of [13], a formula F with c 3-clauses and otherwise only
2-clauses can be converted into an instance I of (3, 2)-CSP with c variables
(by first creating one variable in I for each clause in F , and then performing a
reduction used by Eppstein in [8] to remove every variable with only two values).
Since every variable of F occurs in only one 3-clause, the resulting instance I
has N(F )/3 variables. &'

Next we show the correctness of LowdegSAT . First we show the correctness
of the branching that is used in some of the cases (introduced in [12], under
the name complement search), and then the overall correctness of the algorithm.
The proof contains some references to lemmas in the next section, as we feel
that the correctness belongs to this section while these other lemmas are more
easily shown in the context of algorithm analysis. No circular references occur,
since no lemma in the analysis section refers to this lemma.

Lemma 2. Let ¬x be a 1-literal in a formula F , and let the clause where ¬x
occurs be C = (¬x ∨ l1 ∨ . . . ∨ ld). Then either F [x] is satisfiable, or F [¬x]
and F [{¬x,¬l1, . . . ,¬ld}] are equi-satisfiable (i.e. either both are satisfiable, or
neither).

Proof. Assume that F [x] is unsatisfiable. Then, if there is a satisfying assignment
A to F , it must set ¬x to true and changing the value of x in A must create
an unsatisfied clause. The only possible such clause is C, which means that all
other literals of C must be false in A. &'

Lemma 3. The algorithm LowdegSAT applied to a CNF formula F correctly
calculates the satisfiability of F .

Proof. Case 0 is correct by the definition of the problem, and cases 1–4 are
easily checked. Cases 5–7 use resolution, and the correctness of this operation
is proven in e.g. [7]. Furthermore, the reduction process will terminate. If F ′ is
the step 3-reduced version of F , by Lemma 4 the simple reductions keep f(F ′)
non-increasing and decrease L(F ′). Resolution keeps f(F ) non-increasing while
decreasing the number of variables, implying that L(F ) decreases, and creates
no singletons. Backwards resolution decreases f(F ) strictly and also creates no
singletons. This shows that no infinite chain of reductions is possible from F ′

onwards, and the process of applying reductions 1–3 is certainly finite. Cases 8,9
and 11 either use a branching with two assignments x and ¬x, which is obviously
correct, or branchings that are correct by Lemma 2. Case 10 is correct, as any
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assignment that satisfies C must satisfy at least one of the new clauses. In case
11, the length of the clause containing the 1-literal must be 3, as a 2-clause with
a 1-literal ¬x implies that resolution on x is admissible (see Lemma 6). The
correctness and completeness of case 12 given that cases 0–11 do not apply is
proven in Lemma 15 in the next section, as this proof uses a number of other
lemmas, that are best shown in the context of the algorithm analysis. &'

4 Analysing the Running Time

This section contains the proof of the upper bound O(1.1279f(F )) on the worst-
case running time of the algorithm, presented by lemmas roughly following the
cases of the algorithm. The section is split into subsections in the following way:
Section 4.1 presents the method of analysis and contains some results regarding
this and the measure f(F ). Section 4.2 deals with cases 0–7 of the algorithm, and
gives the basic structural properties that are enforced there. Section 4.3 deals
with case 8, where all variables with degrees higher than 3 are handled, and
Section 4.4 with case 9, where most of the structure of the problem is enforced.
Finally, Section 4.5 deals with the rest of the cases and concludes the proof of
the running time of the algorithm. With the help of the structure enforced by
case 9, cases 10-11 are easier cases that prepare for the applicability of the CSP
construction in case 12.

4.1 Technical Aspects of the Method of Analysis

We use Kullmann’s method from [13] to get an upper limit on the running time
of LowdegSAT . In summary, if F is a fully reduced formula and if LowdegSAT
applied to F branches into formulas F [A1], . . . , F [Ad], let Fi be the fully re-
duced version of F [Ai] for i = 1, . . . , d. The branching number of this particular
branching is τ(f(F )−f(F1), . . . , f(F )−f(Fd)), where τ(t1, . . . , td) is the unique
positive root to the equation

∑
i x−ti = 1. If α is the biggest branching num-

ber for all branchings that can occur in LowdegSAT , then the running time of
the algorithm for a formula F is O(αf(F )). For a more detailed explanation, see
Kullmann’s paper.

As mentioned, we use f(F ) = L(F ) − 2N(F ) =
∑

v∈V ars(F )(d(v, F ) − 2) as
a measure of complexity. While this measure might seem odd at first, there is
an intuitive reading of it: d(v, F ) − 2 is the number of occurrences of v that
need to be removed before a simple reduction on v is possible. Thus, it can be
viewed as assigning a weight to each variable depending on its degree, so that
one variable of degree four counts for as much as two variables of degree three. If
F is 3-regular (such as after case 8 of the algorithm), f(F ) = N(F ), but even for
a 3-regular F we use f(F ) to guide when we should apply certain reductions and
branchings. Furthermore, f(F ) obeys all the required properties of a measure,
provided that F is free of singletons, as proven in the next lemma.
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Lemma 4. Let F be a CNF formula with d(x) ≥ 2 for every variable x occurring
in F . Let F ′ be the fully reduced version of F . Then, f(F ) ≥ 0, f(F ) = 0 if and
only if F ′ is empty, and f(F ′) ≤ f(F ).

Proof. The first is obvious from f(F ) =
∑

v∈V ars(F )(d(v, F )−2). For the second,
note that the simple reductions never increase the degree of any variable, and
that no variable of degree 2 can remain after the simple reductions have been
applied. f(F ) = 0 if and only if all variables in F have degree 2, which implies
that all variables will be removed by the simple reductions.

For the final part, f(F ) is non-increasing over all simple reductions, by the
previous observations, and over standard and backwards resolution whenever
these are applied, by the restrictions in the algorithm. To complete the argument,
we only need to show that no singletons are created in these steps. For standard
resolution, a variable that occurs in only one resolvent must co-occur exactly
once with x in F , as both resolvents are non-trivial. For backwards resolution,
the only change in the degrees of variables is that the variables in C have their
degrees decreased by one. Thus, f(F ) is non-increasing over the entire process
of reductions. &'

Given these properties, we need one more lemma to give a lower bound for
f(F ) − f(F ′) when F ′ is the result of an assignment and reductions on F .

Lemma 5. Let F be a fully reduced formula, A an assignment to variables of
F and F ′ the reduced version of F [A]. Further, let F0 be the result of a sequence
of applications of the reductions in cases 1–3 in any order to F [A]. If F0 is free
of singletons, and if F ′ contains no empty clause, we have f(F ′) ≤ f(F0).

Proof. This can be shown by induction on the number of reductions applied.
Remember that cases 1–3 only remove clauses and literals from F , and note
that the only case of these that will ever remove the last occurrence of a literal
from a clause without also removing the entire clause is case 2.

First, if some reduction is applicable on F [A], then every clause and literal
that would be removed by the application of this reduction will be removed by
any sequence of applications of cases 1–3 ending in a step 3-reduced formula.
This can be verified without any great difficulty (using the above observations
and the fact that F ′ contains no empty clause).

Second, assume that the induction hypothesis is true for every sequence of k
of these reductions acting on F [A]; that is, for any sequence of k applications of
cases 1–3 acting on F [A], removing a set of clauses C∗ and a set of literals L,
every possible sequence of such reductions ending in a step 3-reduced formula
will remove at least these clauses and literals. It can be verified without any
great difficulty that any extra clauses and literals that would be removed by the
application of one further reduction will also be missing in any resulting step
3-reduced formula (again using that F ′ contains no empty clause).

Thus, if F1 is the true step 3-reduced version of F [A], then for every variable
v that occurs in both F0 and F1, d(v, F0) ≥ d(v, F1). If F0 is free of singletons,
this gives us f(F0) ≥ f(F1), and the previous lemma gives us f(F1) ≥ f(F ′). &'
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Thus, even though we do not know the exact sequence of reductions that will
be made after a particular assignment (this is not even defined in the algorithm),
this result guarantees that we can safely underestimate the amount of reduction
due to cases 1–3. We will permit ourselves to say that a particular chain of re-
ductions occurs, rather than using cumbersome more exact phrases. Calculating
f(F ) − f(F0) is easily done using f(F ) =

∑
v(d(v, F ) − 2).

4.2 Basic Structural Properties

This section contains some results regarding the basic structural properties that
exist in a fully reduced formula. First we give a lemma that shows a sufficient
condition for when resolution on a variable x is admissible.

Lemma 6. Let F be a step 5-reduced CNF formula, and x, d(x) = 3, be a
variable occurring in F such that applying resolution to x increases the degree
of at most c variables, while the resolution together with the reductions in cases
1–5 removes or decreases the degree of at least c variables, including x. Then
resolution on x is admissible.

Proof. Use f(F )−f(F ′) =
∑

v∈V ars(F )(d(v, F )−2)−
∑

v∈V ars(F ′)(d(v, F ′)−2),
where F ′ is the step 5-reduced version of DPx(F ). Note that since d(x, F ) = 3,
a variable can increase its degree by at most one in the resolution process. &'

Next, Lemmas 7–8 show the mentioned structural properties.

Lemma 7. If F is a 3-regular, fully reduced formula, and if C,D are two clauses
in F , then |V ars(C)∩V ars(D)| ≤ 2. If |C| = 2, then |V ars(C)∩V ars(D)| ≤ 1,
so V ars(C) �⊆ V ars(D).

Proof. For the first part, note that some reduction applies both if l1, l2 ∈ C
and l1, l2 ∈ D, and if l1, l2 ∈ C,¬l1,¬l2 ∈ D. There is no way for C and D to
share three variables without one of these cases occurring. For the second part,
if C = (l1 ∨ l2) and l1,¬l2 ∈ D, then case 4 applies and D is shortened. &'

Lemma 8. Let F be a step 5-reduced formula, and let a, b be (2, 1)-variables in
F . The following structures all guarantee an admissible resolution.

1. 2-clause C with ¬a ∈ C
2. 3-clause C with ¬a, b ∈ C and clause D with a, b ∈ D
3. 3-clause C with ¬a, l ∈ C, clause D with a, b ∈ D and 2-clause (¬l ∨ b) for

some literal l.

Proof. In the first two cases, we see immediately by Lemma 6 that resolution
on a is admissible. In the third case, we see that one resolvent is either a copy
of an existing clause or will be shortened or removed in case 4 at the latest. In
either case, f(F ) has increased by at most 1 in the resolution process, and at
least one simple reduction which strictly decreases f(F ) applies, guaranteeing
that resolution on a is admissible. &'

With these tools, we can prove that all cases 8–12 get a branching number
of τ(4, 8) or better.



318 M. Wahlström

4.3 Case 8: Variables of Higher Degree

Here, we prove that the branching number is sufficiently good when branching
on any variable x with d(x) > 3.

Lemma 9. If F is a reduced formula with d(F ) > 3, then applying case 8 of the
algorithm results in a branching number of at most τ(4, 8).

Proof. For any variable y occurring in any 2-clause with x, we are limited to
the following options: d(y) = 3 so that the 2-literal y occurs in a 2-clause and
x and y have no co-occurrences in any other clauses; d(y) > 3 and 2-clauses
(x ∨ y), (¬x ∨ ¬y) are the only co-occurrences of x and y; or finally d(y) > 3
and x and y co-occur in only one 2-clause, say (x ∨ y). In the latter case, one
longer clause (¬x ∨ ¬y ∨ C) for some C can occur. Similarly, for any variable y
occurring with x, but not in any 2-clause, we have the following options: d(y) = 3
and x and y co-occur only once; d(y) = 3 and x and y co-occur only in clauses
(x ∨ y ∨ C), (x ∨ ¬y ∨ D) (or similarly with ¬x), where C and D do not share
variables and |D| > 1 if ¬y is a 1-literal; or finally d(y) > 3, where x and y can
co-occur several times as long as the same pair of literals never occurs in more
than one clause (in other words, the variable y occurs at most twice with the
literal x). From all of this, we can infer the following: The reduction in f(F ) in
a branch F [x] is at least d(x) − 2 plus the number of 2-clauses that contain the
variable x plus the contribution from the longer clauses involving the literal x.
With only one such clause, this contribution is at least 2. With two such clauses,
the contribution is at least 4. With three, the contribution is at least 5, occurring
in a situation such as clauses (x∨ y ∨ a), (x∨ z ∨ b), (x∨¬y ∨¬z ∨ c), if d(v) = 3
for every involved variable v. Let a be the reduction of f(F ) in the x branch,
and b the reduction in the ¬x branch. If each literal x and ¬x is involved with
at most two clauses longer than a 2-clause, then a + b ≥ 12 and we need only
prove that a, b ≥ 4. Assume that ¬x has at most as many occurrences as x.

If ¬x is at least a 2-literal, or a 1-literal present in a 3-clause or longer clause,
then the result is immediate. If ¬x is a 1-literal present in a 2-clause, say (¬x∨y),
then the extra assignment ¬y will ensure the result.

The remaining case is that there are three longer clauses containing the literal
x, which ensures a reduction of f(F ) in the x branch of at least 7 plus the
contribution from 2-clauses. If ¬x is at least a 2-literal, then either there are two
2-clauses and a reduction of at least 4 in the ¬x branch, or a reduction of at
least 5 in the ¬x branch. If ¬x is a 1-literal, finally, then we shall see that f(F )
reduces by at least 5 in the branch ¬x. If ¬x occurs in a 3-clause or longer, or
in a 2-clause (¬x ∨ y) where d(y) > 3, then the immediate assignments reduce
f(F ) by at least 4 and at least one more variable is affected by the assignments.
If ¬x occurs in a 2-clause (¬x ∨ y) with d(y) = 3, then y must be a 2-literal, so
that ¬y is a 1-literal occurring in a clause of length at least 3. This concludes
the proof. &'

In every case after this one, F is 3-regular.
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4.4 Case 9: Imposing More Structure

We give some conditions under which case 9 of the algorithm applies, and show
that the branching number will be at most τ(6, 6).

Lemma 10. If F is a 3-regular, fully reduced formula, the following statements
are true. For the sake of convenience, assume w.l.o.g. that for any variable v,
the literal ¬v occurs only once in F .

1. Any branch F [¬a] for a variable a reduces f(F ) by at least 6.
2. Any branch F [a] for a variable a where the literal a occurs in some clause C

with |C| ≥ 5 reduces f(F ) by at least 6.
3. If literals a, b occur together in one clause, and a,¬b occur together in an-

other, then a branch F [a] reduces f(F ) by at least 6.

Proof. 1: Let S be the set of literals that occur in a clause together with ¬a in
F . For every literal l ∈ S, ¬l is assigned in the branch. We know that if l1, l2 ∈ S,
then any clause containing ¬l1 does not contain ¬l2 or a, and a clause C with
¬l1, l2 ∈ C has |C| > 2 and |S| > 2 if l1 is a negated literal, |C| > 3 if l1 is an
unnegated literal. Either way, each assignment ¬li affects at least two literals
not from the variables in S.

If |S| ≥ 3, then at least four variables are assigned in the branch, and at least
six literals beyond these are removed from F . By a simple counting argument,
this requires at least six variables to be affected.

If |S| = 2, let S = {l1, l2} where l1, l2 are some literals for variables b and c,
respectively.

If some clause C contains both literal ¬l1 and variable c, then by necessity
l1 = b, l2 = c and C = (¬b ∨ c ∨ C ′) where |C ′| ≥ 2 and C ′ contains no literals
of variables a, b, c. In this case, no clause containing ¬c can be formed without
using a sixth variable, by Lemma 7.

Otherwise, any clause containing ¬li for i = 1, 2 has no other variable in
common with the clause containing ¬a. We have three further cases, depending
on the negations in S.

If S = {b, c}, then there must exist clauses (¬b∨C), (¬c∨D) with |C|, |D| ≥ 2.
If less than six variables are affected, V ars(C) = V ars(D) and |C| = |D| = 2,
but then, either resolution or backwards resolution is admissible on a variable in
C. Otherwise, at least six variables are removed in the branch.

If S = {b,¬c}, then there exist clauses (¬b ∨ C) with |C| ≥ 2 and (c ∨ D),
(c ∨ E) with |D|, |E| ≥ 1. If less than six variables are affected, |D| = |E| = 1
and V ars(C) = V ars(D) ∪ V ars(E), and by Lemma 8, we must have clauses
(¬b ∨ ¬u ∨ ¬v), (c ∨ u), (c ∨ v) for variables u, v. Now, the second appearances
of literals u and v must occur in different clauses, where no other literal of the
variables a, b, c, u or v can occur. Counting these clauses, at least six variables
are removed in the branch.

If S = {¬b,¬c}, then we have clauses (b∨A), (b∨B), (c∨C), (c∨D), where no
case uses only six variables. By Lemma 8 and since case 7 does not apply, we have
A,B �= C,D, and by Lemma 7, V ars(A) �= V ars(B) and V ars(C) �= V ars(D),
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so either A–D are all of length one with distinct variables (for a reduction of at
least 7 in the branch) or at least one, say C, has |C| > 1. In the latter case, D
still introduces a variable not in C, for a total reduction of at least 6.

2: Assume w.l.o.g. that C = (a ∨ l1 ∨ l2 ∨ l3 ∨ l4), where l1–l4 are literals of
variables b–e, respectively. By assumption, there is one more clause D containing
literal a, and by Lemma 7, D contains at least one variable other than a–e. At
least six variables are affected by the assignment a.

3: By Lemma 8, the clauses can w.l.o.g. be assumed to be (a ∨ b ∨ l1), (a ∨
¬b ∨ l2 ∨ l3) where l1–l3 are literals of variables c–e. If the reduction in f(F ) is
less than 6, the second occurrence of literal b must occur in a clause using only
these variables. No such clause can exist. &'

Lemma 11. Let F be a 3-regular, fully reduced SAT formula where no condition
from Lemma 10 applies. Assume w.l.o.g. that for every variable v, literal ¬v is
a 1-literal. Then the following statements hold:

1. If there is a clause C with literals a, ¬b and ¬c for some variables a, b, c,
then a branch F [a] reduces f(F ) by at least 6.

2. If there is no such clause, but there is a clause C with literals a and ¬b for
some variables a, b, then a branch F [a] reduces f(F ) by at least 6.

Proof. 1: Assignments b and c will be made. By the various restrictions on F ,
it can be verified that whether C = (a ∨ ¬b ∨ ¬c) or C = (a ∨ ¬b ∨ ¬c ∨ l1), at
least six variables are affected.

2: Assignment b will be made, and |C| ≥ 3. By similar arguments as before,
considering both clauses that contain the literal a as well as the clauses contain-
ing literal b, at least six variables are affected. &'

We see that for any F where none of cases 0–9 apply, we have a specific
structure where every clause C contains either only 2-literals, in which case
2 ≤ |C| ≤ 4, or only 1-literals, in which case |C| ≥ 3. Additionally, every pair of
variables co-occurs in at most one clause.

4.5 The Final Cases

Given the structure imposed by case 9, showing the rest of the results is relatively
easy. Case 10 imposes a stricter limit on the length of a clause with 1-literals,
case 11 gives us stronger guarantees on the neighbourhood of a 2-literal, and
finally, if all other cases fail to apply, case 12 can be applied to convert the
formula to an instance of (3, 2)-CSP.

Lemma 12. Let F be a SAT formula where case 10 is the earliest case of the
algorithm LowdegSAT that applies. The branching number for this case is at
least τ(6, 6).

Proof. Let C be the clause that is being split. For any literal li ∈ C that is not
included in the new clause, ¬li becomes a pure literal, so that an assignment ¬li
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is made. For each such assignment, two literals for other variables are affected.
If there are at least three such assignments ¬li, we have at least six additional
literals, and by a counting argument at least six variables are affected in total.

If only two literals become pure, say a, b, let Si for i = 1, 2 be the set of literals
v such that v occurs in i clauses together with literal a or b. Assume w.l.o.g. that
S1 = {u1, . . . , ud} and S2 = {v1, . . . , ve}. |S1| + 2|S2| ≥ 4, and for every literal
l ∈ S2 an additional assignment ¬l is made. We trace these assignments.

First, if S2 = ∅, the reduction in f(F ) is at least 2 + |S1| ≥ 6.
Second, if |S2| = 1, |S1| ≥ 2. Let D be the clause where ¬v1 occurs. If less

than six variables are to be removed, D = (¬u1 ∨ ¬u2 ∨ ¬v1), but then u1 and
u2 are assigned and must lie in different clauses, which requires extra variables.

Third, if |S2| = 2, then some literal ¬w shares a clause with some ¬vi, and
assignment w is made. At least one occurrence of w is in a clause with some new
variable, for a reduction of at least 6.

Finally, |S2| ≥ 3. If |S2|+|S1| > 3, then the reduction is at least 6. Otherwise,
some extra variable is required to form a clause with ¬vi. &'

Lemma 13. Let F be a CNF formula such that no case before case 11 of
LowdegSAT applies. Let a be a variable. W.l.o.g., assume that literal ¬a oc-
curs once in F . Then, if a is a member of k 2-clauses, an assignment F [¬a]
reduces f(F ) by at least 7 + k.

Proof. Let the clause that contains ¬a be (¬a ∨ ¬b ∨ ¬c), so that assignments b
and c are made. Each 2-clause containing a, b or c contributes one variable, and if
there are l literals otherwise removed from F , these literals belong to at least l/2
variables. Since no clause contains both b and c, the result follows from this. &'

Lemma 14. If F is a CNF formula such that case 11 is the earliest case of
LowdegSAT that applies, then the branching number is at most τ(4, 8). If case
11 does not apply either, then every 2-literal l is involved in two 2-clauses.

Proof. If a is part of no 2-clauses, then the number of variables affected by
assignment a is at least 5, which by Lemma 13 leads to a branching with a
branching number of at most τ(5, 7) < τ(4, 8). If literal a is neighbour to only
three other variables, a must be involved in one 2-clause, and by the same lemma,
we have a branching with a branching number of at most τ(4, 8). The remaining
case, with only two other variables, can only be achieved by two 2-clauses. &'

Lemma 15. If F is a CNF formula such that no case among cases 0–11 of
LowdegSAT applies to F , then the construction in Lemma 1 is applicable, and
the total time for LowdegSAT (F ) is O(1.3645N(F )/3) ⊂ O(1.1092f(F )).

Proof. In addition to the structural properties noted previously, we have by case
10 that |C| = 3 for every clause C with 1-literals and by case 11, as noted in
Lemma 14, |C| = 2 for every clause C with 2-literals, which proves the applica-
bility of the construction. Eppstein’s algorithm [8] runs in time O(1.3645n), and
the resulting CSP instance has N(F )/3 variables. With f(F ) = N(F ) at this
point in the algorithm, we get the described running time. &'
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This concludes our sequence of lemmas. We will proceed with the main
theorem.

Theorem 1. If F is a CNF formula without singletons, then LowdegSAT (F )
decides the satisfiability of F in time O(1.1279L(F )−2N(F )).

Proof. This follows from the various relevant lemmas. &'

Corollary 1. If F is any CNF formula where the degree of a variable x is limited
to at most d, the running time is in O(1.1279(d−2)·N(F )).

Proof. All singletons will be removed in simple reductions before any branching
is done. If F ′ is the step 3-reduced version of F , then d(v, F ′) ≤ d for every
v ∈ V ars(F ′) and L(F ′) − 2N(F ′) ≤ (d − 2) · N(F ′) ≤ (d − 2) · N(F ). &'

5 Conclusions

We have presented an algorithm which decides the satisfiability of a CNF formula
F , with N(F ) variables and of length L(F ), in time O(1.1279L(F )−2N(F )) if F is
free of singletons. This implies a running time of O(1.1279(d−2)N(F )) when F is
either a formula with at most d occurrences for any variable or a singleton-free
formula with d occurrences per variable on average. For d ≤ 4, this is better
than previous results.

No previous algorithms have been published for SAT problem instances where
the number of occurrences per variable is limited. Looking at other NP-hard
problems, we find only a few papers where similar attacks have been made.
In [2], Chen et al. apply advanced methods of algorithm analysis to get an
algorithm that solves the Vertex Cover problem for a graph of maximum degree
3 in parameterised time O(1.194kk + n) for a maximum cover size of k, and
in time O(1.1255n) for the non-parameterised version. Closer to the work in
this paper, one of the helper algorithms for the problem of counting max-weight
models for 2sat formulae in [3] is an algorithm that runs in time O(1.1892N(F ))
when d = 3. This helper algorithm is then used to extend this into running times
of O(1.2400N(F )) when d = 4 and O(1.2561N(F )) for the general problem.

For future research, it could be fruitful to apply techniques similar to or
inspired by those in [3] to extend the results in this paper to an algorithm that
is more effective when d > 4.

References

[1] Tobias Brueggemann and Walter Kern. An improved deterministic local search
algorithm for 3-SAT. Theoretical Computer Science, 329(1–3):303–313, 2004.

[2] Jianer Chen, Iyad A. Kanj, and Ge Xia. Labeled search trees and amortized
analysis: Improved upper bounds for NP-hard problems. In Proceedings of the
14th Annual International Symposium on Algorithms and Computation (ISAAC
2003), pages 148–157, 2003.



Faster Exact Solving of SAT Formulae 323
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Abstract. We introduce ApproxCount, an algorithm that approximates
the number of satisfying assignments or models of a formula in propo-
sitional logic. Many AI tasks, such as calculating degree of belief and
reasoning in Bayesian networks, are computationally equivalent to model
counting. It has been shown that model counting in even the most restric-
tive logics, such as Horn logic, monotone CNF and 2CNF, is intractable
in the worst-case. Moreover, even approximate model counting remains
a worst-case intractable problem. So far, most practical model counting
algorithms are based on backtrack style algorithms such as the DPLL
procedure. These algorithms typically yield exact counts but are lim-
ited to relatively small formulas. Our ApproxCount algorithm is based
on SampleSat, a new algorithm that samples from the solution space of
a propositional logic formula near-uniformly. We provide experimental
results for formulas from a variety of domains. The algorithm produces
good estimates for formulas much larger than those that can be handled
by existing algorithms.

1 Introduction

In recent years, we have seen tremendous improvements in our abilities to solve
large Satisfiability (SAT) problems. The field benefits from significant progress
both in terms of our theoretical understanding of the SAT problem, and in terms
of practical algorithm design and engineering of solvers. Because the state-of-
the-art SAT solvers can often handle formulas with thousands of variables [19],
problems from many other domains, such as planning [8] and microprocessor
verification [16], have been encoded to SAT instances, and solved effectively by
SAT solvers. This indirect approach is often competitive with, if not faster than,
solving the problems directly with methods developed specifically for the domain
under consideration.

Broadly speaking the “SAT approach” appears to work quite well for NP-
complete problems. However, many tasks in AI belong to higher complexity
classes than NP, and therefore, presumably, cannot be encoded as SAT problems,
without introducing exponentially many variables. A number of these tasks are
computationally equivalent to counting the satisfying assignments of a formula
in propositional logic [11]. For example, consider a knowledge base (KB) written
in propositional logic with no explicit probabilistic information and a statement
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s. The degree of belief in s, which is defined as P (s|KB), can be calculated by
M(s∧KB)
M(KB) , where M(·) is the model (satisfying assignment) count of the input

formula. Moreover, probabilistic reasoning using Bayesian belief networks can
also to be reduced effectively to counting models of Boolean formulas.

It has been shown that many algorithms and techniques developed for SAT,
such as DPLL [4] and clause learning [9], can be adapted to solve model counting
problems. However the memory usage and run time of such algorithms often in-
crease exponentially with problem size, and such algorithms are therefore limited
to relatively small formulas.

In this paper, we present ApproxCount, an approximate model counting al-
gorithm based on a biased random walk strategy. Random walk strategies have
been shown to be effective on a variety of SAT instances [13]. Recently, a bi-
ased random walk strategy was used in SampleSat [17], a new algorithm that
samples from the solution space of a Boolean formula near-uniformly. Follow-
ing the scheme outlined by Jerrum et al [7], ApproxCount uses SampleSat to
repetitively draw samples from the solution spaces of a Boolean formula and its
sub-formulas.

A key advantage of a sampling approach for counting over approaches based
on complete backtrack search is that the run time can be controlled much better.
After the first several samples (satisfying assignments) are drawn, we can obtain
a reasonably accurate estimate of total run time depending on how accurate we
want our final count to be. In applications where a decision has to be made by
a certain deadline, the algorithm can adapt by drawing fewer samples in each
iteration.

The number of calls ApproxCount makes to SampleSat is determined by the
number of variables in the formula under consideration. An intriguing question
is whether the error in each intermediate result due to SampleSat’s deviation
from uniformly sampling will accumulate to an unmanageably large overall er-
ror rate. After all, even a small error in each step can potentially lead to an
exponential deviation from the exact count, which would make our approach of
little practical use. Somewhat surprisingly, our experiments show that the errors
from setting different variables appear to offset each other, resulting in an overall
final estimate that is within a factor two of the exact count in many domains,
including random 3CNF formulas, several structured problems, and constructed
combinatorial instances.

For random 3CNF formulas, the complexity of model counting is determined
by the clause/variable (C/V) ratio. Low C/V ratios are particularly difficult for
counting procedures because of the very large number of satisfying assignments.
In recent years, in work on DPLL based model counters, the C/V ratio that
requires the largest run time has shifted from 1.2 to 2.0, with the introduction
of new techniques and algorithms. In our work, we show that the error rate of
ApproxCount on random 3CNF formulas stays relatively constant for different
C/V ratios, when given the same total run time. This suggests that our approach
is more robust compared to the DPLL style techniques.
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The difficulty in evaluating our ApproxCount algorithm is that exact model
counting programs often do not work on larger instances. We therefore introduce
a class of structured formulas, where we know the exact number of satisfying
assignments (obtained from basic combinatorics). For DPLL style methods, the
run time explodes exponentially with the problem size. However, we will show
that ApproxCount approximates the model counts will high accuracy, while the
run time scales only polynomially with problem size.

The reminder of this paper is organized as follows. Background with theoret-
ical results and development of existing model counting approaches is discussed
in the next section. In Section 3, we review the SampleSat algorithm. Section
4 provides a detailed description of our new approximate model counting algo-
rithm, and discusses on several implementation issues. Experimental results are
given in Section 5. We then discuss how to extend our algorithm to deal with
real numbers in probabilistic reasoning. In the last section, we summarize the
main results of this paper.

2 Background

Before we start our discussion, we first define some terms that we use throughout
this paper. Without loss of generality, the Boolean formulas we discuss are in
their conjunction normal form (CNF) unless otherwise indicated. A CNF is a
conjunction of clauses. A clause is defined as a disjunction of literals. A literal is
a Boolean variable, which ranges over {True, False}, or its negation. When an
assignment of truth values to the Boolean variables makes a formula evaluate to
True, the formula is said to be satisfied, and the assignment is called a satisfy-
ing assignment, or interchangeably, a model of the formula. M(F ) denotes the
number of unique satisfying assignments of formula F .

2.1 Complexity Results

The problem of counting the satisfying assignments of a propositional logic for-
mula is #P-complete [15], a complexity class that is at least as hard as the
polynomial-time hierarchy [14]. To approximate the model count within δ, we
look for a number M that satisfies

M/(1 + δ) ≤ M(F ) ≤ M(1 + δ).

For any positive δ, approximating the model count of an arbitrary Boolean
formula F is NP-hard. This is straightforward because given an approximate
counting oracle, one can determine the satisfiablity of F by the positivity of M .
M > 0 is equivalent to F being satisfiable.

However, it is somewhat surprising that counting and approximate counting
of some most restrictive classes of propositional logic are intractable in the worst
case. One of such examples is 2MONCNF, a subset of both monotone CNF (all
variables occur positively) and 2CNF. Determining satisfiability of 2MONCNF
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is trivial because each formula in 2MONCNF is satisfied by assigning truth value
True to each variable. Counting the models of 2MONCNF is shown to be #P-
complete, and it is NP-hard to approximate the count to a factor of 2n1−ε

for any
positive constant ε [11]. Note that approximating to a factor of 2n is equivalent
to satisfiability problem.

Because of these strong negative results, for any interesting classes of proposi-
tional logic, guaranteed approximate counting algorithms that run in worst-case
polynomial time are not expected to exist. There must be tradeoffs between
the approximate factor guarantee and the worst-case run time guarantee. In
practice, most existing algorithms sacrifice the run time guarantee to achieve a
guaranteed approximation, which is often the exact count.

2.2 Counting by DPLL Searching

DPLL algorithm [4] was designed to find a satisfying assignment of a Boolean
formula. The basic strategy of DPLL is that instead of looking for a satisfying
assignment of the original formula F directly, one chooses any variable α that
appears in F , and a satisfying assignment of either formula (F ∧ α) or formula
(F ∧¬α) is also a satisfying assignment of F . The two sub-formulas can be sim-
plified by unit-propagation, and solved recursively by calling DPLL algorithm.

The algorithm can be extended to a model counting algorithm in the following
way [2]. Because the satisfying assignments of formula (F ∧ α) and formula
(F ∧ ¬α) are disjoint,

M(F ) = M(F ∧ α) + M(F ∧ ¬α).

It is observed that when the two sub-formulas are simplified by unit-propagation,
variables that appear in F may not appear in the simplified version of (F ∧ α)
or (F ∧ ¬α). To expedite the search, if there are n variables in formula F , n+

variables in Unitprop(F ∧ α), and n− variables in Unitprop(F ∧ ¬α), then

M(F ) = M(Unitprop(F ∧ α)) · 2n−n+
+ M(Unitprop(F ∧ ¬α)) · 2n−n−

.

In 2000, the idea of connected component analysis was introduced by Bayardo
and Pehoushek [1] as an enhancement to Relsat’s model counting ability. They
draw connectivity graph for the formula. Nodes in the graph are variables in the
formula. Two nodes are connected if the corresponding variables appear in the
same clause. If a formula F can be decomposed to sub-formulas F1, F2, . . . , Fi,
which are induced by the connected components of its connectivity graph, then

M(F ) =
i∏

j=1

M(Fj).

Therefore before picking a variable and branching on it as described previously,
a formula is divided into components, and the models of each component is
counted by a DPLL model counter recursively.
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The most recent additions to DPLL model counting are the ideas of com-
ponent caching and clause learning [12]. Component caching records the previ-
ous counted sub-problems, and therefore avoids counting the same components
repetitively. Clause learning is much like that of ZChaff [9], where reasons of pre-
viously discovered conflicts are captured in new clauses, and the learned clauses
are added to the original formula to avoid running into the same conflicts again.
The introduction of these two powerful tools accelerate the model counting pro-
cedure by orders of magnitude.

2.3 Counting by Compiling

Another existing approach to model counting is to compile CNF formulas to
logics for which counting operation is tractable. Examples of such logics include
Ordered Binary Decision Diagrams (OBDD) [6], and its superset, Determinis-
tic, Decomposable Negation Normal Form (d-DNNF) [3]. Model counting is a
polynomial operation for both OBDD and d-DNNF, but CNFs cannot always
be compiled to these forms of polynomial size. Although this approach is con-
ceptually different from that of DPLL, the actual computation is often similar.
For example, the search tree constructed by DPLL with component analysis can
be view as a tree-structured d-DNNF, and the component caching idea corre-
sponds to reuse of NNF fragments in non-tree-structured d-DNNF. Huang and
Darwiche [6] show that DPLL algorithm can be used to compile CNFs to OB-
DDs efficiently, and techniques in SAT solvers, such as clause learning and unit
propagation, can be utilized in the compiling process.

2.4 Our Proposal: Counting by Sampling

Since model counting problem is downward self-reducible [7], meaning that it
can be solved using oracles to solve its sub-problems, approximate counting
of solutions can be reduced to almost-uniform sampling of the solution space
in polynomial time. ApproxCount algorithm is based on near-uniform sampling.
One advantage of using sampling-based approximate counter is that the run time
and accuracy are based on the number of samples the algorithm draws in each
iteration. One can get a faster (and less accurate) approximation by reducing
sample size. This is especially important in time-critical decision making. In
searching and compiling based model counters, one cannot halt the execution
and retrieve an approximation since it is very possible that many solutions reside
in the final branches of the search tree, and, in case of connected component
analysis, non-existence of solutions in the last component implies non-existent
of solutions in the whole formula.

The best known methods for sampling from a predefined distribution in com-
binatorial space are Markov Chain Monte Carlo (MCMC) methods. MCMC
methods set the target distribution as the stationary distribution of an ergodic
Markov chain. With infinite time, the constructed Markov chain is guaranteed
to reach its stationary distribution. However, in practice for complex combina-
torial problems such as SAT, the Markov chain almost always takes exponential
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time to reach its stationary distribution [17]. The most widely used sampling
algorithms such as Gibbs sampling are often trapped in modes (local minima)
and does not converge in practical time limit.

For this reason, we built ApproxCount on SampleSat algorithm [17]. Sam-
pleSat is capable of sampling from solution space of a propositional logic near-
uniformly and efficiently. We will first briefly review SampleSat algorithm, and
then we will describe our implementation of an approximate counter based on it.

3 SampleSat

SampleSat algorithm is based on random walk strategies widely used in solving
satisfiability problem [13, 18]. The inherent randomness in random walk style
SAT solvers often leads the algorithms to different models in different runs. This
provides a biased sampling of solution space. To reduce this bias, MCMC moves,
more specifically, Metropolis moves are injected to interleave with random walk
moves. This hybrid approach makes the sampling much more uniform, and is
useful in many domains, including approximate model counting discussed in
this paper.

3.1 Random Walk

Random walk (RW) as a local search heuristic was first proposed by Papadim-
itriou [10]. The algorithm starts from a random truth assignment. If the assign-
ment has not already satisfied the formula, at each step, one unsatisfied clause
is chosen uniformly at random. And then a variable in the clause is chosen by
some heuristic ChooseVar. The value of the variable is flipped. The algorithm
repeats these steps until a satisfying assignment is reached.

Procedure RW
repeat

c:= an unsatisfied clause chosen at random
x:= a variable in c chosen by heuristic ChooseVar(c)
flip the value of x;

until a satisfying assignment is found.

Fig. 1. Random walk strategies

It has been shown that when ChooseVar(c) is “picking a variable in c uni-
formly at random”, the RW procedure solves any 2CNF instance in quadratic
time with high probability. For more general instances however, the algorithm
needs to adopt a heuristic with greedy bias, which tries to satisfy more clauses
on each flip. Therefore, the concept of “break value” of a variable is introduced.
The break value of a variable is defined by the number of clauses that are cur-
rently satisfied but become unsatisfied when the truth value of the said variable
is changed. In SampleSat, we follow the heuristic used in WalkSat [13], and define
ChooseVar as in Figure 2.
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Heuristic ChooseVar(c)
if there exists a variable x in c with break value = 0

return variable x
else

with probability q
x:= a variable in c chosen at random;
return variable x

with probability (1-q)
x:= a variable in c with smallest break value
return variable x

Fig. 2. Heuristic ChooseVar used in WalkSat and SampleSat

With multiple runs, we found that WalkSat is able to reach every solution of
instances from many domains, such as random 3CNF, planning, and verification.
However, the sampling is biased, especially for random 3CNF formulas. For
example, we found in our experiments on a 70-variable random 3CNF formula
near the transition point that the most frequently visited solution is reached
17,000 times more often than the least frequently visited solution. From the
theoretically point of view, it is possible to construct a formula, for which a
random walk strategy visits one model exponentially more often than it visits
another model [17]. Intuitively, a model whose neighbors are all models of the
formula cannot be reached by random walk unless it was hit by the initial guess
of the algorithm. To reduce the bias and make the sampling more uniform, we
incorporate Metropolis moves to the algorithm.

3.2 Metropolis

Metropolis moves are injected into random walk moves because of their favor-
able limiting properties. The limiting distribution of Metropolis algorithm is uni-
formly distributed over all models. Metropolis algorithm determines the change
of a variable assignment by the decrease in the number of satisfied clauses, Δcost,
caused by the change and a predetermined constant T representing temperature.
The detail of our Metropolis move implementation is given in Figure 3.

Metropolis Algorithm
x:= a variable chosen uniformly at random;
if Δcost(x) ≤ 0

flip the value of x;
else

with probability e−Δcost/T

flip the value of x.

Fig. 3. Metropolis moves

SampleSat combines random walk moves with Metropolis moves. At each
step, the algorithm makes a random walk move with probability p, and it makes
a Metropolis move with probability (1 − p). Experiments show p = 50% yields
good sampling results in many domains.
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Figure 4 shows the sampling result of this hybrid algorithm on the 70-variable
random formula mentioned in Section 3.1. The instance has 2531 solutions. Each
dot in the figure presents one solution. The y-axis represents the solution fre-
quency (#hits/#runs) of the solutions. We observe that the models are sam-
pling quite uniformly. More specifically, the ratio between the highest solution
frequency and the lowest solution frequency is reduced to a factor of around 10,
compared to a factor of 17,000 when using the random walk strategy alone.

4 ApproxCount Algorithm

Since SampleSat produces efficient near-uniform sampling of the solution space,
ApproxCount extends it to an approximate model counter based on the work
of Jerrum et al [7]. The idea is to count the model of formula F , we first draw
K samples from the solution space of F . (Note that a sample is a satisfying
truth assignment.) The value of K is determined by the accuracy we want for
our algorithm. If we consider a variable x1 in F , and among the K samples,
we denote the number of samples in which x1 is assigned truth value True as
#(x1 = True), and the number of samples in which x1 is assigned truth value
False as #(x1 = False). Assume the K samples are drawn from the uniform
distribution over the models, and K is sufficiently large, then

M(F ∧ x1)
M(F )

≈ #(x1 = True)
K

, and
M(F ∧ ¬x1)

M(F )
≈ #(x1 = False)

K
.

To ensure the stability of the algorithm, in each step we always pick truth value
t such that #(x1 = t) ≥ #(x1 = ¬t). Without loss of generality, we assume t is
True. The approximation above is equivalent to
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ApproxCount Algorithm
repeat

Draw K samples from the solution space of F ,
x := choose a variable in F by PickVar(F )
Among these K samples,
if #(x = True) > #(x = False)

F := Unitprop(F , x = True)
multiplier Mx := K/#(x = True)

else
F := Unitprop(F , x = False)
multiplier Mx := K/#(x = False)

until F = empty
output product of all multipliers.

Fig. 5. Approximate Counts

M(F ) ≈ K

#(x1 = True)
· M(F ∧ x1).

Mx1 = M(F )
M(F∧x1)

, called multiplier of variable x1, can be approximated by
K

#(x1=True)
, and formula (F ∧ x1) is simplified with unit propagation and the

simplified sub-formula Fx1=True can be counted by the above procedure recur-
sively. The overall calculation is

M(F ) =
M(F )

M(Fx1=t1)
· M(Fx1=t1)
M(Fx1=t1,x2=t2)

· · · · ·
M(Fx1=t1,x2=t2,...,xn−1=tn−1)

1
= Mx1 · Mx2 · · · · · Mxn

,

where t1, t2, · · · , tn−1 are chosen such that the multipliers are always no greater
than 2.

The outline of the algorithm is given in Figure 5. We have experimented with
4 heuristics for PickVar in the algorithm:

– pickbiased: always pick the variable that maximizes |#(x = True) − #(x =
False)|. The variables first selected by this heuristic are likely backbone vari-
ables, and setting them to their right values may help simplify the whole
formula.

– pickunbiased: always pick the variable that minimizes |#(x = True)−#(x =
False)|. The variables first selected by this heuristic are likely don’t-care
variables, and setting them early may help the accuracy of counting.

– pickrandom: pick a variable uniformly at random.
– pickbyorder: first choose variable 1, and then variable 2, etc. In many struc-

tured problems, the variable order in the input formula often carries some
domain information. For example, in graph coloring problems, the first vari-
able may represent the first node is colored with the first color, etc. Following
this order may help model counting. This heuristic is also designed for users
who want to specify the order in which the variables should be set. To do
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Table 1. We rank heuristics pickbiased, pickunbiased, and pickrandom according to
their accuracy in a suite of 100 formulas. The suite includes 50 random formulas and
50 structured formulas

position pickrandom pickunbiased pickbiased

1st place 78 18 4

2nd place 10 59 31

3rd place 12 23 65

so, users just need to rename the variables in input formula according their
desired order of assignment.

We did experiments to compare the effectiveness of the first three heuristics.
(The last one is fully user-definable and encoding dependent, and will require
separate study.) Table 1 shows that pickrandom clearly dominates the other 2
heuristics. In all experiments that we will show in the next section, we used
heuristic pickrandom.

The run time of ApproxCount algorithm is upper-bounded by the product of
the number of variables n, the number of solutions drawn in each iteration K, and
the time needed to draw a solution c. Interesting and hard solution counting prob-
lems are usually under-constrained and have many solutions1. For these problems,
c does not increase drastically with the problem size, and ApproxCount has a poly-
nomial run time with regard to the problem size. In the left pane of Figure 7, we
show the run time of ApproxCount for a class of synthetic formulas.

5 Experimental Results

We tested our algorithm on formulas from a variety of domains. It is well-known
in satisfiability testing that algorithms’ performance depends heavily on the
problem structures. This is also true for model counting. Algorithm that per-
forms well in one domain may not work well in other domains.

5.1 Random Formulas

There has been much interest in counting the satisfying assignments of random
3CNF formulas. Random formulas are generated for different clause/variable
(C/V) values. Unlike in satisfiability testing, where different algorithms all ex-
perience the peak of difficulty at phase transition point around C/V = 4.26, the
peak of difficulty for 3CNF model counting apparently shifts with the develop-
ment of algorithms. Birnbaum and Lozinskii [2] report the peak of difficulty at
C/V = 1.2 with their DPLL based CDP algorithm. Bayardo and Pehoushek [1]
incorporate connected component analysis, and report the peak of difficulty at
C/V = 1.5 with their DDP algorithm. Sang et al [12] add clauses learning and
component caching to component analysis, and find the peak at the ratio of 1.8.

1 We will discuss more about this in Section 5.1.
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ratio. Exact model counts of the instances were calculated by Cachet [12]

Darwiche [3] compiles random 3CNF formulas to d-DNNFs, and also finds the
peak at C/V = 1.8. Huang and Darwiche [6] use DPLL to compile these formu-
las to OBDDs, and find the peak at C/V = 2.0. The peak of difficulty is away
from the peak of satisfiability test at 4.26 for these algorithms because instead
of stopping at the first model, the algorithms need to visit every branch of the
search tree with models. Formulas with less constraints have many more models,
and make the counting harder.

For ApproxCount algorithm, counting models of formulas with the same num-
ber of variables and different ratios consumes almost the same amount of time2.
Figure 6 shows the quality of approximation for different C/V ratios. The x-axis
is the C/V ratio for random 3CNF formulas, and y-axis is the average error rate.
If the approximate model count is a, and exact model count is t, the error rate is
defined as |a−t|

min(a,t) . 20 instances were generated at each ratio. From the figure, we
see the error rates are quite low considering that approximation is NP-hard in
the worst-case. We also observe that the error does seem relatively independent
of the C/V ratio.

5.2 Application Domains

We also tested ApproxCount on structured formulas. Most of these formulas are
taken from SATLIB [5]. The counting results are given in Table 2. In most of
these domains, ApproxCount approximates the true model count within a factor

2 Actually higher ratio formulas have more clauses, and make ApproxCount spend
slightly more time than lower ratio formulas, but the difference is very small.
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Table 2. ApproxCount results in application domains

All Interval Series

instance #var #clauses #models ApproxCount result

ais6 61 581 24 24

ais8 113 1520 40 40

Circuit Fault Analysis

instance #var #clauses #models ApproxCount result

ssa7552-158 1363 3064 25 × 1030 7 × 1030

ssa7552-159 1363 3032 7 × 1033 3 × 1033

Graph Coloring

instance #var #clauses #models ApproxCount result

flat30-3 90 300 1968 2422

flat30-4 90 300 720 985

flat30-5 90 300 1362 1338

Boolean Vector

instance #var #clauses #models ApproxCount result

2bitcomp 5 125 310 9.8 × 1015 3.6 × 1015

2bitcomp 6 252 766 21 × 1028 3.8 × 1028

Logistics

instance #var #clauses #models ApproxCount result

prob004-log-a 1790 18026 2.6 × 1016 1.4 × 1016

Bounded Model Checking

instance #var #clauses #models ApproxCount result

dp02s02.shuffled 319 683 1.5 × 1025 1.2 × 1025

of 2 or better. There are some domains, such as Boolean Vector, that are harder
than others for ApproxCount.

5.3 Synthetic Domains

So far we have discussed instances that DPLL-based model counters can count
exactly in order to evaluate the accuracy of our approximate model counter.
However, ApproxCount can also provide good estimates for formulas that DPLL-
based counters cannot count in reasonable time and memory limits. To show this,
we need to design a class of formulas that we know the exact model counts by
other means.

For this reason, we encode the following combinatorial problem to Boolean
logic: suppose there are n different items, and you want to choose from the n
items a list (order matters) of m different items (m ≤ n). Let P (n,m) represent
the number of different lists you can construct. The value of P (n,m) is given by
P (n,m) = n!

(n−m)! .
The encoding to propositional logic works as follows. For each position i, and

each item j, we use a Boolean variable xi,j to represent “whether position i will
hold item j”. We have the following three kinds of clauses:
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– “each position holds at most one item”: this translates into mn(n − 1)/2
clauses

¬xi,j1 ∨ ¬xi,j2 , for any i, j1 > j2;

– “each position holds at least one item”: this translates into m clauses

∨n
j=1xi,j , for any i;

– “different positions hold different items”: this translates into nm(m − 1)/2
clauses

¬xi1,j ∨ ¬xi2,j , for any j, i1 > i2.

Therefore, each instance of the problem is encoded to a Boolean formula with mn
variables and (mn(m+n−2)/2+m) clauses. These formulas seem hard for DPLL-
based counters. As shown in the left pane of Figure 7, with the increase of length
of the list, the run time of both Relsat [1] and Cachet [12] grows exponentially.
The run time of ApproxCount is polynomially related to the problem size. In
the right pane, we see that the estimates produced by ApproxCount are very
close to the theoretical results.

We have experimented with larger formulas in the class than those given in
Figure 7 to see how the algorithm scales. The results are given in Table 3. From
the table, we see the algorithm scales well on this class of formulas. Because
ApproxCount calculates the total count by the product of estimated multipliers
of each variable, the error at each step could potentially accumulate to a large
overall error. To understand why this does not happen, we calculate the error
rate of ApproxCount at each step of a small formula P (20, 4) using Cachet, and
find the average error rate (as defined in Section 5.1) of each estimated multiplier
is 0.71%, with a standard deviation of 0.48%. However, in about 50% of the steps
ApproxCount over-estimates the multipliers, and in the other 50% of the steps
it under-estimates the multipliers. Overall these errors cancel out each other for
the most part, and result in an overall error rate of around 5%. If we distribute
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Table 3. ApproxCount results on P (n, m). The last column gives the average error in
each step that actually contributes to the final error

n m #var #clauses #models ApproxCount result error per step

20 10 200 2810 6.7 × 1011 7.2 × 1011 0.05%

20 15 300 4965 2.0 × 1016 1.6 × 1016 0.09%

20 20 400 7620 2.4 × 1018 2.8 × 1018 0.04%

25 10 250 4135 1.2 × 1013 1.1 × 1013 0.04%

25 15 375 7140 4.3 × 1018 4.8 × 1018 0.03%

25 20 500 10770 1.3 × 1023 1.4 × 1023 0.02%

30 10 300 5710 10.9 × 1013 9.1 × 1013 0.07%

30 15 450 9690 2.0 × 1020 2.1 × 1020 0.01%

30 20 600 14420 7.3 × 1025 5.9 × 1025 0.04%

this error to the 80 steps, each step only contributes 0.06% to the final error, and
other part is canceled by the opposite errors at other steps. For larger formulas,
however, we can no longer calculate error rate at each step. In the last column
in Table 3, we calculate the average error rate at each step that contributes to
the final error. This error rate is consistently low across all sizes of formulas in
the table.

6 Dealing with Real Numbers in Probabilistic Reasoning

In many probabilistic reasoning models, such as in Bayesian networks, proba-
bilities are represented by real numbers, therefore the reasoning tasks can often
be converted naturally to weighted model counting of Boolean formulas [12]3. In
weighted model counting, each variable a is assigned a weight wa ∈ [0, 1], and its
negation ¬a is assigned weight 1−wa. w(a = t) is defined as wa when t is True,
and 1−wa when t is False. The weight of a model is the product of the weights
of its literals. The weighted model count of a formula F , noted as Mw(F ), is
the sum of the weights of all of its models.

Unweighted counting we discussed in previous sections can be considered as
a special case of weighted counting where each variable has a weight 0.5. We can
use pure propositional logic to encode these real number weights. For example,
if a variable a has a weight 0.375 we can encode a as (a1 ∧ a2) ∨ (a3 ∧ a4 ∧ a5),
and use unweighted model counter to count the model. The weighted model
count can be calculated as the model count of the encoded formula divided by
2n, where n is the number of variables. However, this approach introduces many
new variables, and makes the counting inefficient.

ApproxCount algorithm can be easily modified to calculate weighted model
count. Because

3 Discussion about the conversion is available at http://www.cs.washington.edu
/homes/kautz/talks/counting-sat04.ppt.
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Weighted ApproxCount Algorithm
product := 1;
repeat

Draw K samples from the solution space of F ,
x := choose a variable in F by PickVar(F )
Among these K samples,
if #w(x = True) > #w(x = False)

F := UnitProp(F , x = True)
multiplier Mx := w(K)/#w(x = True)
product := product * multiplier * w(x = True)

else
F := UnitProp(F , x = False)
multiplier Mx := w(K)/#w(x = False)
product := product * multiplier * w(x = False)

until F = empty
output product.

Fig. 8. Approximate Weighted Model Counts

Mw(F )

=
( Mw(F )
Mw(Fx1=t1) · w(x1 = t1)

w(x1 = t1)
)

·
( Mw(Fx1=t1)
Mw(Fx1=t1,x2=t2) · w(x2 = t2)

· w(x2 = t2)
)
·

· · · ·
(Mw(Fx1=t1,x2=t2,...,xn−1=tn−1)

1 · w(xn = tn)
· w(xn = tn)

)
=
(
Mx1 · w(x1 = t1)

)
·
(
Mx2 · w(x2 = t2)

)
· · · · ·

(
Mxn

· w(xn = tn)
)
.

At each step, the multiplier is estimated by the sum of weights of all samples
divided by the sum of weights of samples that assign truth value t to the variable
in consideration, where t is chosen such that the multiplier is no greater than 2
to maintain the stability of the estimate.

Figure 8 gives the modified ApproxCount algorithm. In the algorithm, w(K)
represents the sum of weights of the K samples drawn, and #w(x = True/False)
represents sum of weights of samples that assign x to True/False among the K
samples drawn.

7 Conclusion

We have presented ApproxCount algorithm that approximates the model count
of a formula in propositional logic. We have shown that ApproxCount generates
good estimates for formulas in several domains. The approach extends the range
of formulas whose models can be counted approximately. ApproxCount proceeds
incrementally, setting one variable at a time and computing a multiplier at each
step. Most interestingly, our work suggests that the individual errors in the
multipliers have a tendency to cancel out, thereby making the approach a very
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promising one. We also proposed modifications of the algorithm to deal with real
numbers in probabilistic reasoning models.
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Abstract. Modern SAT solvers are highly dependent on heuristics.
Therefore, benchmarking is of prime importance in evaluating the per-
formances of different solvers. However, relevant benchmarking is not
necessarily straightforward. We present our experiments using the IBM
CNF Benchmark on several SAT solvers. Using the results, we attempt
to define guidelines for a relevant benchmarking methodology, using SAT
solvers for real life BMC applications.

1 Introduction

Over the past decade, formal verification via model checking has evolved from a
theoretical concept to a production-level technique. It is being actively used in
chip design projects across the industry, where formal verification engineers can
now tackle the verification of large industrial hardware designs. Bounded Model
Checking (BMC) [1] has recently enabled the verification of problems that used
to be beyond the reach of formal verification. However, BMC performance relies
heavily on the performance of the underlying SAT solver.

We conducted several experiments using the IBM CNF benchmark [12, 11]
to evaluate SAT tools. Often, we found discrepancies between our results and
the experimental results found in the literature. For example, our results are not
necessarily in line with the results of the SAT03 contest [4]. The main goal of this
paper is to outline a methodology for benchmarking SAT solvers on Bounded
Model Checking problems.

The paper is organized as follows: In Section 2, we present experimental
results for some famous SAT solvers. Section 3 presents a new version of the
IBM Benchmark and discusses correlation of the CNF characteristics and solvers
performance. Section 4 contains a discussion on SAT benchmarking for BMC,
where we try to learn from our experimental results in light of other experiments
such as the SAT contests. Section 5 concludes the paper.

2 Experiments with IBM 2002 Benchmark: SAT Solver
Comparison

Our experiments compared four famous SAT solvers: zChaff I (2001.2.17 version)
[7] , zChaff II (zChaff 2004.5.13) [3], BerkMin561 [2] and Siege v4 [8]. We used the
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2002 version of the IBM CNF Benchmark[12], whose CNFs are generated through
BMC from the IBM Formal Verification Benchmark Library[11]. This library is a
collection of models from real-life industrial hardware verification projects.

For each model, we used the CNF formulas (SAT dat.k.cnf) for bound with
k=1, 10, 15, 20, 25, 30, 35, 40, 45, 50. The time-out was set at 10,000 seconds
on a workstation with 867841X Intel(R) Xeon(TM) CPU 2.40GHz, with 512 KB
first level cache and 2.5 GB physical memory. We used the default configuration
for each engine.

2.1 zChaff I vs. BerkMin561

We ran zChaff I (2001.2.17 version) and BerkMin561 on the 2002 version of the
IBM CNF Benchmark1. Table 1 is a summary of the results obtained. More

Table 1. The results are displayed in seconds and include the timeout 10,000 seconds

zChaff BerkMin561

Total time (10000 sec time-out) 344765 414094

First (# of CNF where the engine is the fastest) 298 131

# of unsolved problems (timeout reached) 25 30

+ (# of CNF where the engine is the fastest
by more than a minute and 20%) 67 32

First by model (# of model where the engine is the fastest) 28 18

complete experimental results are presented in Table 8, where for each model in
the table, we present the sum of the results of SAT dat.k.cnf with k=1, 10, 15,
20, 25, 30, 35, 40, 45, 50 (i.e., the BMC translation of each model for the different
k). For more details, see the complete results in [13]. Because SAT solvers do
not always behave in homogeneous manner (Cf. detailed results in [13] or table
2), the complete results analysis should not be disregarded.

The results show that zChaff and BerkMin561 achieved close results. On
some CNFs, zChaff runs faster, and on others, BerkMin561 runs faster. In most
cases, the differences in their performance is not very significant, the highest
speed is not faster by more than one minute or 20%. However, while zChaff
seems to perform slightly better overall, BerkMin561 gets better results than
zChaff on the UNSAT CNFs. From these results, it is not possible to conclude
that BerkMin561 performs better than zChaff. This is not consistent with what
can be read in the literature or with the final results of the SAT03 contest (Cf.
section 2.4).

This is not a very satisfying conclusion and the previous metrics do not tell
us in a simple way how much faster zChaff is than Berkmin5612. We need some

1 BerkMin561 was second in the SAT03 contest industrial benchmarks category in the
SAT03 contest; the winner Forklift is not publicly available.

2 It is very important to be able to give clear and concise values for results dissemi-
nation.
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Table 2. The results are displayed in seconds for the CNFs from 18 rule model. The
time-out was set to 10000 seconds. zChaff performs the worst for k=15, 20, 35; Berk-
Min561 performs the worst for k=30, 40, 50; Siege v4 has the best performance, except
for k=15, 25

18 rule CNF Result zChaff BerkMin Siege

SAT dat.k1.cnf unsat 0 0 0

SAT dat.k10.cnf unsat 1 1 0

SAT dat.k15.cnf unsat 13 4 5

SAT dat.k20.cnf unsat 65 47 41

SAT dat.k25.cnf unsat 951 109 251

SAT dat.k30.cnf sat 700 755 557

SAT dat.k35.cnf sat time-out 2230 1730

SAT dat.k40.cnf sat 5510 8060 247

SAT dat.k45.cnf sat time-out time-out 959

SAT dat.k50.cnf sat 5010 time-out 1370

additional metrics in order to compare these SAT solvers. The arithmetic mean
of the speedup seems irrelevant. Let’s say we want to compare the performances
of solvers A and B. If the speedup of A vs. B is 10 on test 1 and 0.0001 on
test 2, the arithmetic mean of the speedup (A vs. B) would be 5 and the mean
of the speedup (B vs. A) would be 5000. This is clearly not relevant. The global
speedup (Total time A / Total Time B) is good to have but the “long runs”
have far more weight than the short ones. The median is much more interesting.
however it does not take into account the extreme values (e.g, if on test 1 the
speedup is equal to median + 10 or to median + 0.1, it does not change the
median value). On the other hand, the median insensivity to extreme values
makes it less dependent on the time-outs. The geometrical mean seems to be
a good solution. It definitely takes into account the weight of the “negative
speedup” (i.e., a speedup of less than 1)3.

We felt these values should be computed these values only on a relevant
subset of the benchmark. For example, we discarded all the cases where the
four SAT solvers time-out. In addition, we discarded cases for which the four
solvers (zChaffI, Berkmin561, Siege v4, zChaffII) run in less than five seconds.
The rational is that it is difficult to accurately compare very small runtimes and
that these very small runtimes are arguably not relevant. The results displayed
in Table 3 (b) show that Berkmin561 is nearly two times slower than zChaff I,
but that Berkmin behaves somehow better in the “long” cases.

2.2 Siege v4

Siege was hors-concours for the SAT03 contest, therefore it did not participate
in the second stage. Nevertheless, the Siege results were pretty good for the

3 Note that the logarithm of the geometrical mean is equal to the arithmetical mean
of the logarithms.
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Table 3. With a 10000 sec. time-out

Total Time #time-outs
(in seconds)

zChaff I 344,764 25

berkmin561 414,035 30

Siege v4 197 239 14

zChaff II 389,304 31

Speedup zChaffI
Berkmin

zChaffI
Siege

zChaffI
zChaffII

median 0.55 2.90 1.23

geomean 0.41 2.87 1.29

global 0.75 3.58 0.75

(a) (b)

first stage and Siege has a reputation for being one of the best SAT solvers
available. We ran Siege v4[8] on the benchmark using 123456789 as a seed. Table
3 displays the overall conclusions. For more details see Table 8 and [13]. Siege v4
is the fastest in 298 cases (CNFs) out of 498. In many difficult cases, Siege v4
is fastest by an order of magnitude, or more. In some cases, Siege v4 performed
significantly worse than zChaff or BerkMin561. For example, for 26 rule, Siege v4
is slower than zChaff by an order of magnitude and slower than BerkMin by two
orders of magnitude. In addition, within the time-out, several CNFs can be solved
only by Siege v4 4. In conclusion, we see that Siege v4 performs significantly
better (roughly speaking 2.5 times faster) than zChaff I, Berkmin561 and zChaff
II on the IBM CNF 2002 benchmark.

2.3 zChaff II

The industrial category of the SAT04 competition [6] was won by zChaff II
(zChaff 2004.5.13). However “black-box” solvers such as Forklift (the 2003 edi-
tion winner) were “hors-concours” and as such not allowed to enter the second
stage of the competition. We focus here on the performance of zChaff II vs
zChaff I. zChaff II is faster than: zChaff for 229 CNFs (out of 442), Berkmin561
for 208 CNFs (out of 442), Siege v4 for 82 CNFs (out of 442). In addition, zChaff
II reached time-out more often than zChaff I (for six more cases). Table 3 dis-
plays a synthetic view of the results. The zChaff II code was left unchanged, so
it used random seeds. Siege v4 is roughly three time faster than zChaff I. Figure
1 gives us a graphic view of the performance of zChaff II vs. zChaff I. The over-
all performance difference between zChaff I and zChaff II on our benchmark is
small5, even though the two solvers can behave very differently in specific cases.

4 Siege is a randomized solver, therefore, it could be argued that the comparison is
not fair since the zChaff and BerkMin561, versions we used were not randomized.
Nevertheless, even a deterministic solver can be lucky and providing Siege with a
seed of Siege makes it deterministic.

5 It should be note that zChaff II is randomized, so the results could be different for
other runs. It would be interesting to have a statistical description of the range of
zChaff II performances.
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Fig. 1. Histogram (b) gives the distribution of the decimal logarithm of
zChaff I/zChaff II speedup with 10000 sec time-out

2.4 Comparison with SAT Contest Results

In order to understand whether or not our results are consistent with those of
the SAT03 contest6 (for details results see [5]), we had a look at the results of
the first and second stages of the competition.

First stage. Looking at the results7 for the industrial category [5], we note the
following:

– Series 13 rule 8 is over-represented (Cf. Table 4). Besides, since all solvers
time-out on most of the CNFs from this series, it is not very meaningful.

– Except for series 13 rule and 11 rule , the series from the IBM CNF bench-
mark are easy for zChaff, BerkMin561, and Siege v1.

– Results for rule 07 are not consistent with our own experiences. This dis-
crepancy is probably caused by the “Lisa syndrome”[4]: CNFs were shuffled
for SAT03 and solver performance can differ dramatically between a shuffled
CNF and the original.

The SAT03 contest results for BerkMin561, Forklift, Siege v1, and zChaff on
(shuffled) series from the IBM CNF Benchmark are summarized in Table 4. If
results from series 07 rule and 13 rule are discarded, zChaff shows better results
than BerkMin561.

6 In the first stage of the SAT04 competition, zChaff I and zChaff II have very close
results and the solvers that outperformed them (Forklift, Oepir) are not available
for experimentation.

7 The Siege version used for the SAT03 contest is Siege v1.
8 The names of the SAT03 series appears in italics in order to differentiate them from

the series we used in our experiments. For the exact composition of the SAT03 series,
see [5].
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Table 4. Partial results from first stage SAT03 contest

BerkMin561 forklift Siege 1 zChaff

Total # of Solved Benchmarks 112 112 112 101

Total CPU time needed (sec) 105000 103000 103000 114000

without 13 rule (sec) 1510 518 408 4160

without 13 rule and 07 rule (sec) 1410 424 268 553

We believe that the differences in results for the first stage of SAT03 contest
results for IBM the benchmark and our experiments are due to clause shuffling
in SAT03 and to the fact that the SAT03 experiment used a smaller test-bed of
CNFs from the IBM benchmark.

Second stage. During the second stage of the competition, solvers were ranked
according to the number of CNFs they could solve from a restricted benchmark.
Forklift was ranked first, Berkmin561 second, and zChaff I sixth on the industrial
benchmark9.

Clearly, the respective zChaff I and BerkMin561 ranking do not correspond to
our experimental results (see Table 3). However, in the second stage, all solvers
“timed-out” on the IBM benchmarks selected. In other words, the ranking of
the solvers selected for the second stage of the competition did not take into
account performance on the IBM benchmarks. This probably explains why our
evaluation of zChaff and BerkMin561 on the IBM CNF Benchmark gives results
that are not in line with the second stage results (on industrial benchmarks) of
the SAT03 contest.

3 Experiments with IBM 2004 Benchmark: Search for
Correlation

3.1 Description of the IBM 2004 Benchmark

Bounded Model Checking translation technology is continuously evolving. There-
fore, we re-generated the IBM CNF Benchmark from the IBM Model Benchmark
using an alternative BMC tool. We ran the new translation for the following
bounds k = 0..10, k = 11..15, k = 16..20, k = 21..25, . . . , k = 95..100. The 2004
CNFs are available on-line. In this paper, we refer to the 2002 and 2004 versions
as the old and the new benchmarks, respectively .

Table 5 and 6 present statistical descriptions of the old and the new bench-
marks. In these two tables, average is the arithmetical mean, STDEV is the
standard deviation, clauses

var is the ratio between the number of clauses and the
number of variables, %unit is the percent of unit (i.e., of length one) clauses in a
CNF, %bin is the percent of clauses of length two, %ter is the percent of clauses

9 Siege was hors-concours, therefore not selected for the second stage.
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Table 5. Old (2002) benchmark

var clauses clauses
var

%unit %bin %ter %l=4 %l > 4

average 80,167 343,826 4.12 0.3 75.5 14.2 3.5 6.5

median 54,857 220,180 4.08 0.2 77.0 12.2 3.5 6.6

STDEV 81,924 388,156 0.52 0.3 6.4 7.7 1.0 1.3

max 636,089 3,172,107 5.42 1.6 84.5 55.3 5.2 9.1

min 3,645 14,681 2.48 0 40.8 4.3 0.1 0.1

Table 6. New (2004) Benchmark

var clauses clauses
var

%unit %bin %ter %l=4 %l > 4

average 73,414 305,301 3.99 0.6 74.5 15.0 3.6 6.3

median 50,897 195,612 3.98 0.4 76.1 13.1 3.6 6.6

STDEV 75,553 349,248 0.45 0.6 6.1 7.3 0.9 1.2

max 565,889 2,760,502 5.48 4.6 84.5 51.6 4.9 9.1

min 3,606 14,104 2.55 0 46.5 4.4 0.1 0.1

of length three, %l=4 is the percent of clauses of length 4 and %l > 4 is the
percent of clauses longer than 4.

These two tables tell us that the new benchmark CNFs are roughly 10%
smaller than the old benchmark CNFs. However, they encompass roughly the
same proportion of length two, three, and four clauses. The higher proportion
of unit clauses in the new benchmark is due to specific optimizations. We also
see that the ratio clauses

var is slightly lower in the new benchmark (see the next
subsection for a discussion on the relevance of this ratio). Figure 2 displays the
histogram of %bin, where two models (07 and 13 1) have a “non standard”
percent of binary clauses and are in the 45%-55% and not in the 70%-85%.

We looked at some statistics for the structure of the CNFs of the new bench-
mark. We found that for any model of the benchmark, there are four real num-
bers a, b, c, d such that for all the CNFs of the model, #(variables) ≈ ak + b
and #(clauses) ≈ ck + d, with k being the bound used to generate the CNFs.
In a more general way, for any model and for any integer n strictly greater than
0, there are two real numbers e and f such that for all CNFs of the model
#(clauses of length n) ≈ ek + f (of course e and f can be null, for example in
most models, the number of unit clauses is a constant). The correlations (for
a discussion about statistic techniques for NP-complete problems see [10]) be-
tween the series from the benchmark and the series predicted with the previous
equations are about 0.99. This is not surprising since the CNFs are generated
from the model in a way essentially linear to the bound. In addition, we found
out that, in our benchmark, the length of the longest clause is the same for all
CNFs generated from the same model. Figure 2 (b) displays the histogram of
the longest clauses in the new benchmark. Note that two models, 07 and 13 1,
which have the greater longest clauses, are also the ones with a “non standard”
percent of binary clauses.
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Fig. 2. Histograms (a) and (b) give respectively the distribution of %bin and length
of the longest clause

3.2 Experimentations and Correlations

How do zChaff I and Siege behave on the new benchmark? We ran zChaff I and
Siege v4 on both benchmarks (for k = 10, 15, 20, . . . , 50) on the same workstation
described in Section 1. Figure 3 displays the overall results.

Strangely enough, the “long” cases of the new benchmark are more difficult
for zChaff I but easier for Siege v4. For both solvers, the correlation between
performance on old and new benchmark is somewhat higher than 0.7. The cor-
relation between the zChaff I and Siege runtimes on the new benchmark is also
0.72.

Can the “hardness” of a CNF be predicted from the value of the ratio (number
of clauses)/(number of variables) ? We could not find any relevant correlation
between this ratio and the zChaff I and Siege performances. In fact, as we saw
previously, for each model, #clauses and #var are strongly correlated with the
bound k; therefore, for each model, there are a, b, c, d four real numbers, such
that, the ratio is also strongly correlated with (ak + b)/(ck + d). This explains
the appearance of Figure 4.

Can we predict the “hardness” of a CNF from the number of variables? This could
also be the number of clauses, since both numbers are strongly correlated. In our
experimentswe foundarelatively low(about0.3) correlationbetweenthenumberof
variablesandtheruntimesforzChaffIandSiege.However,whenwe“standardized”10

the runtimes, we got a higher correlation (about 0.7). See Figure 5 for illustration.

10 For a given SAT solver, we standardized the runtimes in the following way: For each
model, we divided each of the nine runtimes (corresponding to the nine bounds k =
0..10, k = 11..15, k = 16..20, . . . , k = 46..50) by the greatest of these nine runtimes.
The idea is to be able to compare results between different models.
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Speedup zChaff I Siege

median 1.69 1.07

geomean 2.13 0.97

global 1.02 1.19
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Fig. 3. Performance comparison between the old and the new benchmark. Time-out:
10000 sec. (a) and (b) display zChaff I and Siege runtimes on the old benchmark vs.
on the new benchmark. In both comparaisons, we discarded the cases which ran in less
than 5 seconds in both cases or which time-out in both cases
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Can we predict the “hardness” of a CNF from the proportion of clauses of length
one, two, three and four ? We did not find any relevant correlation between the
proportion of clauses of lenght two, three, four and more and the zChaff I and
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Fig. 5. (a): zChaff I runtime vs bound k, (b): standardized zChaff I runtime vs bound k

Table 7. Performance on SAT/UNSAT CNFs

zChaff I Siege speedup

All CNFs median 30 22 2.28

geomean 56.52 31.80 1.75

Total 192,323 44,632

global 4.31

UNSAT (109 CNFs) median 18 12 2.46

geoman 39 20 1.94

total 77,120 14,642

global 5.27

SAT (67 CNFs) median 55 59 1.84

geoman 98 66 1.48

total 115,203 29,989

global 3.84

Siege runtimes. We did find a low negative correlation (about -0.4) between the
standardized proportion of unit clauses and the runtimes. We think this can be
explained by the fact that for most models, the unit clause number is constant,
so %unit ≈ c

ak+b , which explains the correlation.

Are “SAT” and “UNSAT” CNFs as hard? This is difficult to say since it is
obviously not possible to compare performance on the same CNFs. It is not
relevant to compare the geometrical mean of the runtime on the SAT and on
the UNSAT CNFs, as displayed in Table 7. However, it is easier to compare the
behavior of two SAT solvers on SAT and UNSAT CNFs. When we look at Table
7, we see that Siege behaves slower than to zChaff I on SAT CNFs as opposed
to UNSAT CNFs.
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4 Lessons for Benchmarking

Our experimental results, especially the comparison between zChaff and Berk-
Min561, are not in line with other results, such as those from SAT03[4]. In this
section, we attempt to learn lessons from the previous experiments.
Use relevant benchmarks. To compare two SAT solvers for BMC, it is extremely
important to use relevant benchmarks from BMC applications. For instance, re-
sults from theoretical problems such as 3-SAT problems, hand-made problems,
or problems from applications others than BMC (such as planning), are not
relevant and will not provide a good comparison between SAT solver perfor-
mance for BMC applications. It is not sufficient to use only the CNFs generated
by BMC; the models from which the CNFs are generated should be relevant.
Therefore, it is of prime importance to use models from real-life industrial veri-
fication projects.
Use relevant time-out. The time-out used for the SAT03 contest was 600 seconds
or 900 seconds for the first stage, and up to 2400 seconds for the second stage
of the competition. For our experimentation, we used a 10000 second time-out.
From the detailed experimental results [13], it is clear that the lower the time-
out, the less relevant the results. Additionally, the lower the time-out, the more
time-out results would be received for all the SAT solvers. Consequently, these
time-outs can actually cover up different situations. For example, in our first
experiments for CNF k45 from model 11 rule 1, with a time-out of 900 seconds,
zChaff and BerkMin561 both timed out. However, with a 10000 second time-out,
we realized that one solver performs seven times faster than the other on this
CNF.

The ideal solution would be not to use any time-out or at least use very
long time-outs (e. g., one week). In this way, the results for the SAT solvers can
always (or almost always) be compared for a given CNF (at least a “reasonable”
CNF). The obvious drawback is that this makes the experiments very, very long,
hence limiting the scope of such experiments. In the SAT contests, the choice of
a short time-out allows a great number of SAT solvers to be run against a very
broad spectrum of CNFs. In our experiments, we ran a very limited number of
SAT solvers against a smaller (but more relevant for BMC) number of CNFs
with a longer time-out. We believe that this is one of the main explanations for
the difference in results between SAT03 and our experiments. More precisely, if a
longer time-out would have been used for the second stage of the SAT03 contest,
some solvers would probably have solved the benchmark from the IBM CNF
Benchmark; therefore, the final results would more likely have been consistent
with our experiments. In summary, using shorter time-outs can be very useful for
larger scopes experiments with many SAT solvers and very broad benchmarks.
However, to get more relevant results for BMC11, these kinds of experiments
must be refined by limiting the scope (e. g., the number of SAT solvers).

11 The SAT contest goals are not identical to ours. We are mainly interested in perfor-
mance for real-life BMC problems, while the SAT contests try to establish “global”
performance.
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Shuffling clauses in benchmark CNFs is tricky. Shuffling clauses in benchmark
CNFs can have a dramatic effect [4] and potentially change the ranking for
solvers performance. However, in real life, SAT users don’t shuffle their CNFs.
One of the major differences between our experiments and SAT03 is that we did
not shuffle CNFs.

Use a broad benchmark: easy for a SAT solver, does not mean easy for all. When
assessing the performance of a new SAT solver, a common trend is to run the new
solver against CNFs that are difficult to solve with a well-established solver (e. g.,
zChaff). Although it seems reasonable, this can be very misleading. Modern SAT
solvers rely heavily on heuristics; therefore, a CNF can be solved very easily with
one solver and still be very difficult with others. For example, the CNFs from model
01 rule are very easy for zChaff to solve but difficult forBerkMin561.On the 01 rule
series, zChaff typically runs faster than BerkMin561 by two orders of magnitude.
On the 26 rule series Siege v4 typically runs slower than zChaff by one order of
magnitude and slower than BerkMin561 by two orders of magnitude. The reason
for this kind of behavior is not that some models are “special”, but more likely the
limitation of the heuristics used by different solvers. The fact that solver perfor-
mance ranking often varies for different CNFs generated from the same model12

comforts us with the idea that the relationship between solvers (and heuristics)
performance and model specifics is not as strong as one would think.

Discard cases with unrelevant runtimes. It does not make a lot of sense to use
a CNF C to, say, discriminate between two solvers A and B, if both A and
B solve C in a very short period of time. Indeed, it is likely that the time
sampling would not be accurate and relevant, especially because most solvers
run on Unix/Linux machines. In the second part of our experiments, we took 5
seconds as a threshold.

For results analysis, there is no real reason to discriminate between results for
satisfiable and unsatisfiable CNFs. We believe that it does not make much sense
to differentiate between the performance of solvers for satisfiable and unsatisfi-
able CNFs – at least for BMC applications. Firstly, BMC is usually run in an
incremental manner (e.g., k = 0 . . . 10, k = 11 . . . 15, . . .). Therefore, before you
can get a satisfiable result you often have to get several unsatisfiable results.
Secondly, some models cannot be falsified and CNFs generated by BMC will
always be unsatisfiable. Therefore, only the global performance is really relevant
for real-life BMC SAT use.

Use several metrics for comparisons. Since SAT solvers rely heavily on heuris-
tics, it is unlikely (or at least rare) that a SAT solver would be better on all pos-
sible CNFs (from real-life models). For example, even though Siege v4 performs
better than zChaff and BerkMin561 on most CNFs of the IBM benchmark, it
does not perform better for all (e.g., model 26 in Table 8). The following metrics
can be used to compare two SAT solvers, solver 1 and solver 2:

12 In addition, Table 2 shows that the evolution between the bound k and the runtime is
not the same for the three solvers.
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Table 8. The results are displayed in seconds. The time-out was set to 10000 seconds.
For each model, the number of time-outs, if any, appears in brackets

Model zChaff BerkMin561 Siege v4 Model zChaff BerkMin561 Siege v4

01 166 22800 (1) 262 14 2 3490 2480 378

02 1 1 347 34 38 15 6 21100 (1) 1

02 1 2 336 69 104 16 2 1 0 10 0

02 1 3 26 16 10 16 2 2 0 9 1

02 1 4 34 12 13 16 2 3 0 11 0

02 1 5 32 16 19 16 2 4 3 16 0

02 2 118 83 11 16 2 5 1 17 2

02 3 1 96 157 22 16 2 6 1 18 1

02 3 2 702 34 13 17 1 1 0 509 0

02 3 3 154 133 18 17 1 2 219 427 70

02 3 4 333 39 13 17 2 1 1 28 0

02 3 5 126 172 25 17 2 2 1 98 0

02 3 6 396 34 16 18 32200(2) 31200 (2) 5160

02 3 7 262 86 39 19 127 2910 482

03 190 733 126 20 21800 (1) 9590 4020

04 170 597 161 21 150 2245 383

05 33 267 124 22 5290 5980 582

06 296 1140 130 23 38700 (2) 28500 (1) 2820

07 61 73 69 26 155 26 2850

09 7 1 2 27 53 364 134

11 1 5080 21900 (1) 1760 28 385 843 96

11 2 6640 14500 (1) 982 29 35700 (2) 58200 (5) 16700

11 3 24100 (2) 24000 (2) 3135 30 76600 (7) 72000 (7) 66000(5)

12 0 0 0 14 1 191 719 126

13 1 90000 (9) 90000 (9) 90000 (9)

– Global times or the global speedup. This presents two drawbacks: 1) There
is no perfect solution to take time-outs into account, and 2) All the weight
is on the CNFs that take the longest to be solved.

– Ratio between the number of CNFs solved more quickly by solver 1 and the
number of CNFs solved more quickly by solver 2) Optionally, only the cases
where performance differences are significant can be taken into account. The
median of the speedups is a better and more concise metric.

– The geometrical mean of the speedup is also a very interresting metric.
However, it is also quite sensitive to the time-out definition.

– Time-out numbers. There are quite relevant if one considers that the time-
out value is roughly equivalent to the real-life time-out (i. e., the maximum
reasonable waiting time of the real-life formal tool users). On other hand,
this metric can easily give a biased view of reality. Imagine, for example,
that the geometrical mean of the speedups for solver A vs. solver B. is 3,
but solver A time-out slightly more often than solver B, should we really
conclude that solver A is the slowest.



Benchmarking SAT Solvers for Bounded Model Checking 353

Each of these metrics have their pros and cons. We believe that the best
solution is to use more than one of them to compare two SAT solvers. We
believe that it is difficult to decide which solver is the best when, for example
the geometrical mean, the median, and the global speedups give contradictory
results.

5 Conclusion

In this paper, we showed that benchmarking is not a trivial task and that it can
be misleading. For example, our experiments on zChaff and BerkMin561 present
results that are contradictory with what is commonly accepted by the SAT com-
munity (i.e. BerkMin561 outperforms zChaff I). We also showed that it can be
difficult to compare two SAT solvers (e. g., CNFs that are difficult for zChaff I
are not the same as CNFs that are difficult for BerkMin561). Even when a SAT
solver such as Siege v4 seems to clearly outperform BerkMin561 and zChaff, it
is not necessarily so for all benchmark CNFs. In order to help benchmarking
and compare between solvers results, we proposed guidelines that sketch out a
rough methodology. We believe that the systematic use of such a benchmarking
methodology can improve the general quality of experimental performance eval-
uations for SAT and will help to produce practical and fundamental advances
in the area. We plan to keep investigating possible correlations between CNFs
static characteristics and the performances of SAT solvers.

Acknowledgment. The author wishes to thank Daniel Le Berre for his valuable
comments and remarks on an earlier version of this paper.
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Abstract. In this paper, the notions of polynomial–time model equiv-
alent reduction and polynomial–space model equivalent reduction are
introduced in order to investigate in a subtle way the expressive power
of different theories. We compare according to these notions some classes
of propositional formulas and quantified Boolean formulas. Our results
show that classes of theories with the same complexity might have dif-
ferent representation strength under some conjectures which are widely
believed to be true in computation complexity theory.

1 Introduction

Generally speaking, a finite theory is a propositional formula, or a quantified
Boolean formula, or a (disjunctive) logic program, and so on. Different theories
may have different semantics. A model for a propositional formula is a subset of
propositional variables such that its characteristic function is a satisfying truth
assignment for the formula. A model for a quantified Boolean formula with free
variables can be considered as a subset of free variables of the formula such that
after replacing each free variable by its truth value the resulting formula is true.
The well-known semantics for (disjunctive) logic programs is the stable model
semantics. A theory is consistent if it has a model.

In representation theory, there are several notions for comparing the expres-
sive power of different theories. One is the inference equivalence between theo-
ries, that is, to determine whether a theory can be represented as another theory
such that they have the same inference ability. For inference equivalence, some
theories with large size may be equivalent to theories with very small size and
vice versa. For example, any propositional tautology is equivalent to x ∨ ¬x;
and some propositional formulas can be represented by quantified Boolean for-
mulas with essentially small size. Another topic in representation theory is to
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determine whether theories can be transformed into other theories preserving
the models. This approach may also have drawbacks. One is that the transfor-
mation may cost super-polynomial time; another is that the target theories may
have super-polynomial size. It is well known that every propositional formula
can be transformed into a formula in conjunctive normal form (CNF) such that
they have the same models. However, there is a propositional formula ϕ such
that any formula in CNF equivalent to ϕ has super-polynomial size. A theorem
by Lin and Zhao [20] shows how to turn a normal logic program P to a proposi-
tional formula ϕ such that any model of ϕ is a stable model of P and vice-versa.
The formula generated by Lin and Zhao’s process can also be significantly larger
than the original program. More recently, Lifschitz and Razborov have shown
under the assumption P�⊆NC1/poly that any equivalent translation from logic
programs to propositional formulas involves a significant increase in size.

That means, if we demand that transformations cost polynomial–time and
preserve models, then classes of theories may have different expressiveness even
if they have the same complexity. We shall introduce a reduction relationship
to compare the representability of classes of theories. Let C, C′ be two classes of
theories. We say C can be polynomial–time model–equivalently reduced to C′ if
every theory T ∈ C can be transformed in polynomial time into a theory T ′ ∈
C′ such that there is a polynomial-time computable one-to-one correspondence
between the models of T and T ′.

If the consistency checking problem for C is harder than that forC′, then itwould
be hopeless to construct a polynomial–time model–equivalent reduction from C to
C′. If we just require that the transformation from T to T ′ cost polynomial size
instead of requiring that the transformation cost polynomial time then we say that
C can be polynomial–space model-equivalently reduced to C′.

The main results we obtain belong to the following categories.

1. For some classes C1 and C2 with the same complexity of the satisfiability
problem (up to some polynomial), C1 can not even be polynomial–space
model-equivalently reduced to C2. Let ∃CNF∗ be the class of quantified
Boolean formulas with only existential quantifiers and CNF kernels (here
free variables are allowed). Clearly, the satisfiability problem for ∃CNF∗ is
also NP-complete, while ∃CNF∗ can not be polynomial–space reduced to
PF, the class of all propositional formulas. Such results are proved under
some widely accepted conjectures on complexity classes.

2. Some classes C1 and C2 with the same complexity of the satisfiability prob-
lem (up to some polynomial), can be polynomial–time model–equivalently
reduced to each other. For example, CNF can be polynomial–time model–
equivalently reduced to 3CNF. That is, every propositional formula ϕ in con-
junctive normal form can be model-equivalently transformed in polynomial
time into a formula ϕ′ in 3CNF. This is interesting because no polynomial–
time transformation from CNF to 3CNF exists if we demand that ϕ and ϕ′

be equivalent.
3. For some classes C1 and C2 for which the satisfiable problem for C1 has

lower complexity than that for C2, C1 can not even be polynomial–space
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model-equivalently reduced to C2. For example, the satisfiable problem for
∀¬HORN∗ can be solved in polynomial time [13], while it can not be
polynomial–space model–equivalently reduced to PF. Here ∀¬HORN∗ is the
class of quantified Boolean formulas with only universal quantifiers and ker-
nels given as a negation of HORN formulas. These results are also subject
to some conjectures on complexity classes.

Besides the insight into the power of the representation of various classes of
formulas, our work may also find applications in practice. In knowledge represen-
tation, users may prefer to represent their knowledge base with required abilities
in a concise way. QBF are also used in VLSI design specification. Since a piece
of chip is extremely expensive the designer would like to design a circuit which
can provide required functionality using a number of pieces as small as possible.
Results of polynomial–time model–equivalent reduction may also allow us to use
algorithms in one area to solve problems in other areas. More precisely, suppose
C1 can be polynomial–time reduced to C2 and suppose we have had some effi-
cient algorithms solving C2, then we could transform theories in C1 to those in C2

and then apply the known algorithms. The polynomial–space model–equivalent
reduction might solve hard problems by doing off-line preprocessing. Suppose C1

can be polynomial–space model–equivalently reduced to C2 and a problem for
C1 is hard while it is solvable in polynomial–time for C2, then we could trans-
form off-line theories in C1 to those in C2, and then use algorithms for C2 to
solve the problem on-line (for the notions of off-line, on-line, and compilability,
please see [2]). Therefore, our research might be helpful and useful in knowledge
representation and reasoning, circuit designing, model checking, and etc.

The remainder of this paper is organized as follows. In section 2, we recall
some notions and terminologies which will be used later on. In sections 3, pre-
cise definitions of polynomial–time model–equivalent reduction and polynomial–
space model-equivalence reduction are introduced. Section 4-5 are devoted to the
investigation of model-equivalent relations between some classes of propositional
formulas and some classes of quantified Boolean formulas with free variables. In
section 6, we propose some open questions and some future work.

2 Preliminaries

2.1 Propositional Formulas and Quantified Boolean Formulas

In this paper, we use x, y, z, w to denote propositional (or Boolean) variables
and Li for literals (variables or their negation). Clauses are finite disjunctions of
literals. PF is the class of propositional formulas and CNF (resp. DNF) is the
class of propositional formulas in conjunctive (resp. disjunctive) normal form.
The classes of propositional formulas such as kCNF, HORN and so on, are
defined as usual. Given a class C of propositional formulas, ¬C is the class of
formulas ¬ϕ with ϕ ∈ C. A model for a propositional formula ϕ is a subset M
of variables occurring in ϕ such that the characteristic function is a satisfying
truth assignment for ϕ.
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QBF is the class of closed quantified Boolean formulas (every variable is
quantified) in prenex normal form. That means, a quantified Boolean formula is
of the form Q1x1 · · ·Qnxnϕ, where Qi ∈ {∀,∃} and ϕ is a propositional formula
over variables x1, · · · , xn. Q1x1 · · ·Qnxn is called the prefix and ϕ the kernel
of the formula. Usually, we simply write Φ = Qϕ. A literal x or ¬x is called
a universal resp. existential literal, if the variable x is bounded by a universal
quantifier resp. by an existential quantifier. A closed formula Φ ∈ QBF is true, if
there exists an assignment of truth values to the existential variables depending
on the truth values for the preceding universal variables, for which the propo-
sitional kernel of the formula is true. Given a class C of propositional formulas,
QC denotes the class of QBF formulas with kernel in C, for example QCNF,
QkCNF, and QHORN.

For a subclass B of QBF, the class B∗ is defined in the same way as B except
allowing free variables (i.e., variables in the kernel being not quantified). For
example, QCNF∗ is the class of quantified Boolean formulas with CNF kernel
and free variables. Propositional formulas can be considered as QBF∗ formulas
with empty prefix.

For a class B∗ of QBF∗ formulas and a natural number k, Σk-B∗ (Πk-B∗,
respectively) is the class of formulas in B∗ with prefix type Σk (Πk, respectively).
Here, the prefix type Σ0 = Π0 is the empty prefix (no quantifiers). If a prefix Q
has type Σk (Πk, respectively), then the prefix ∀xQ (∃xQ, respectively) has type
Πk+1 (Σk+1, respectively), where x = x1, · · · , xn, and ∀x is the abbreviation
for ∀x1 · · · ∀xn, likewise for ∃x.

We often write a formula in QBF∗ as Φ(z) to state that free variables in Φ
are among z. Φ(z) is satisfiable if and only if there is a truth assignment v for
the free variables, such that the closed QBF formula Φ(z/v) resulting from the
partial evaluation is true. And we call the truth assignment v a model for Φ.
Because a subset of free variables determines uniquely a truth assignment, we
do not distinguish between truth assignments and subsets of variables.

2.2 Complexity

Next we give a brief review of the relevant notions of complexity theory. P is the
class of problems decidable in polynomial time. For the classes ΣP

k , and ΠP
k of

the polynomial hierarchy please see [15].
A problem L is in P/poly (resp. NP/poly) if there is a problem L′ in P (resp.

NP) and a polynomial f(n) such that x ∈ L if and only if (x, f(|x|)) ∈ L′.
In other words, P/poly (resp. NP/poly) is the class of problems solvable by
polynomial–time deterministic (resp. nondeterministic) Turing machines aug-
mented by polynomial advice.

NC1 is the class of problems solvable by a uniform family of Boolean circuits
of logarithmic depth O(log n) (for detailed definition please see [8]). Similarly,
FNC1 is the of class of functions computable by uniform families of logarithmic
depth circuits. NC1/poly is the analogue of the class NC1 in which no unifor-
mity conditions on families of circuits are imposed. A classical result on circuit
complexity in [23] states that NC1/poly coincides with the class of languages
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decidable by polynomial size propositional formulas. NC1/poly consists of un-
countable languages, thus it can not be subset of P. On the other hand, it is
strongly believed that P is not a subset of NC1/poly, either. However, the proof
for this conjecture is open.

A problem L in P is called P-complete if any problem L′ in P can be NC1

many-one reduced to L (see [8]). The problem of determining whether a 3HORN
formula is unsatisfiable is P-complete.

3 Reductions

In this section we give precise definitions of various reductions. We write var(T )
for the set of free variables of a formula T , and M(T ) for the set of models
of T . Intuitively, a class C1 of formulas can be model-equivalently reduced to
a class C2 if every formula T in C1 can be transformed into a theory T ′ in C2

such that T and T ′ have the same number of models, and models of T ′ can
be computed efficiently from those of T . If the transformation costs polynomial
time (resp. polynomial space) then we will call the reduction a polynomial-time
(resp. polynomial-space) model-equivalent reduction.

Definition 1. Let C, C′ be two classes of formulas. We say C can be
polynomial–time model–equivalently reduced to C′ , denoted as C .ptime

C′, if there are two polynomials p(n) and q(n), a p(n)-time computable function
f : C −→ C′, and a q(n)-time computable mapping

g : {(T, v) : T ∈ C, v ⊆ var(T )} −→ {u : u ⊆ var(T ′) for some T ′ ∈ C′}

such that for any fixed T ∈ C, the mapping gT , defined by gT (v) := g(T, v) is a
bijection from M(T ) to M(f(T )).

If the mapping g satisfies g(T, v) = v for all T ∈ C and v ⊆ var(T ),i.e.,
T and f(T ) are equivalent, then we say C can be polynomial–time equivalently
reduced to C′, denoted as C .equ

ptime C′.

Please note that in the above definition we only know the transformation
f and the mapping g, we do not know whether T or f(T ) has models. More
precisely, for v ⊆ var(T ) and u ⊆ var(f(T )), we have the following:

(1) if v is a model of T then gT (v) must be a model of f(T ), and
(2) if u is a model of f(T ) then g−1

T (u) must be a model of T .

Roughly speaking, that C can be polynomial-time model-equivalently reduced
to C′ means that the representability of C′ is not weaker than that of C and
theories in C′ can be computed efficiently from those in C , in other words, any
knowledge base represented as a theory in C can be transformed efficiently to
a theory in C′ such that they have the same abilities. The relations .ptime and
.equ

ptime are reflexive and transitive.
Suppose the satisfiability problem for C1 is complete for a level in the poly-

nomial hierarchy while the satisfiability problem for C2 is at a lower level, then
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it would be impossible that C1 .ptime C2 unless the polynomial hierarchy col-
lapses. The question is: if Ci and Cj have the same complexity up to a polynomial,
whether Ci can be model-equivalently reduced to Cj .

Now we introduce a weaker reduction which only requires that the trans-
formation f : C −→ C′ must be computable in polynomial space instead of
polynomial time. That means we can spend more time but the length of the
calculated formulas are bounded by a polynomial.

Definition 2. Let C, C′ be two classes of formulas. We say C can be
polynomial–space model-equivalently reduced to C′, denoted as C .pspace

C′, if there are two polynomials p(n) and q(n), a p(n)-space computable function
f : C −→ C′, and a q(n)-time computable mapping

g : {(T, v) : T ∈ C, v ⊆ var(T )} −→ {u : u ⊆ var(T ′) for some T ′ ∈ C′}

such that for any fixed T ∈ C, the mapping gT , defined by gT (v) := g(T, v) is a
bijection from M(T ) to M(f(T )).

If the mapping g satisfies g(T, v) = v for all T ∈ C and v ⊆ var(T ), i.e.,
T and f(T ) are equivalent, then we say C can be polynomial–space equivalently
reduced to C′, denoted as C .equ

pspace C′.

Roughly speaking, that C can be polynomial–space model-equivalently re-
duced to C′ means that the representability of C′ is not weaker than that of C,
in other words, any knowledge base represented as a theory T in C can be repre-
sented as a theory T ′ in C′ such that up to a polynomial they have the same size.
However, T ′ may be not polynomial-time computable. Again, the polynomial–
space model–equivalent reduction is reflexive and transitive. Furthermore, any
polynomial–time reduction is a polynomial–space reduction.

A monotone and symmetric formula is a CNF formula ϕ in which each clause
either contains only positive literal or only negative literals and for each clause
(L1 ∨ · · · ∨ Lk) ∈ ϕ the clause (¬L1 ∨ · · · ∨ ¬Lk) also occurs in ϕ. Let S-M-
CNF be the class of all monotone and symmetric CNF formulas. Please note
that any satisfiable formula in S-M-CNF has an even number of satisfying truth
assignments. Since there are CNF formulas with an odd number of satisfying
truth assignments, we obtain CNF �.pspace S-M-CNF.

Definition 3. We write C1 /ptime C2 if C1 .ptime C2 and C2 .ptime C1.
Likewise for the definition of /equ

ptime, /pspace, and /equ
pspace.

4 Propositional Formulas and Quantified Boolean
Formulas

Every propositional formula can be transformed into a logically equivalent CNF
formula. But the problem is the length of the resulting formulas. It is well–known
that there are DNF formulas ϕn of length 2n for which any equivalent CNF
formula has length greater or equal than 2n. Hence, we obtain DNF�.equ

pspaceCNF.
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If we demand that there is a one-to-one mapping between the models instead
of the logical equivalence, then such a reduction exists.

Lemma 1. DNF .ptime CNF

Proof. Suppose ϕ = D1 ∨ D2 ∨ · · · ∨ Dn is an arbitrary DNF formula with
Di = (Li

1 ∧ · · · ∧ Li
ki

). Pick new variables y1, · · · , yn. For simplicity, we write
ϕ′

i for the formula Di ∨ Di+1 ∨ · · · ∨ Dn ∨ y1 ∨ · · · ∨ yi−1, and write ϕ′′
i for

Di+1 ∨ · · · ∨ Dn ∨ y1 ∨ · · · ∨ yi−1. We shall adopt the following procedure to
transform ϕ to a CNF formula which has the same models as ϕ with respect to
a one-to-one mapping. At first, define ψ1 to be

ψ1 := (L1
1 ∨ ¬y1) ∧ · · · ∧ (L1

k1
∨ ¬y1) ∧ (¬(D2 ∨ · · · ∨ Dn) ∨ ¬y1) ∧ ϕ′

2

It is easy to see that there is a 1-1 correspondence between models of ϕ and
ψ1. Further, please note that ¬(D2 ∨ · · · ∨ Dn) ∨ ¬y1 can be easily transformed
into an equivalent CNF formula by using the distributivity law. Thus ψ1 is in
fact the conjunction of a CNF formula and a DNF formula.

Suppose ψi = ψ′
i ∧ ϕ′

i+1 has been obtained such that ψ′
i is a CNF formula

and that ψi and ϕ have the same models with respect to a one-to-one mapping.
Now define

ψi+1 := ψ′
i ∧ (Li+1

1 ∨ ¬yi+1) ∧ · · · ∧ (Li+1
ki+1

∨ ¬yi+1) ∧ (¬ϕ′′
i+1 ∨ ¬yi+1) ∧ ϕ′

i+2.

Finally, ψn is a CNF formula which has the same models with ϕ with respect
to a 1-1 correspondence. It is not hard to see that this procedure cost no more
than quadratic time. The mapping g(ϕ, v) can be computed in the following way.
If v makes (D2 ∨ · · · ∨ Dn) false then define v1 := v ∪ {y1}, otherwise, v1 := v.
Then define v2 according to whether v1 makes (D3 ∨ · · · ∨Dn ∨ y1) false or not.
Continuing this procedure, finally we get vn. Define g(ϕ, v) := vn.

Remark. Please notice that, assuming P �= NP, CNF cannot be polynomial-
time model-equivalently reduced to DNF, CNF�.ptime DNF, because the SAT–
problem for DNF is solvable in linear time whereas the SAT–problem for CNF
is NP–complete. However, it is open whether CNF.pspace DNF. Obviously, we
can calculate in PSPACE the number of satisfying truth assignments for a CNF
formula and construct a DNF formula with the same number of satisfying truth
assignments. But the problem is to establish a one-to-one mapping between the
models, which can be computed in polynomial time.

Lemma 2. CNF /ptime 3CNF

Proof. Clearly, 3CNF .ptime CNF. For the inverse direction we present a proce-
dure to reduce the length of the clauses. For any clause (L1∨L2∨· · ·∨Lk−1∨Lk)
with k > 3 we introduce a new variable x, and replace the clause by the following
clauses

(L1 ∨ L2 ∨ · · · ∨ Lk−2 ∨ ¬x) ∧ (Lk−1 ∨ Lk ∨ x) ∧ (Lk−1 → ¬x) ∧ (Lk → ¬x).
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It is easy to see that there is a polynomial–time computable one-to-one mapping
between the models of the clause and the models of the associated clauses. Now
we apply the procedure as long as clauses of length greater than 3 exists. The
length of the generated formula is linear in the length of the initial formula, the
procedure can be performed altogether in polynomial time, and finally there is
a polynomial–time one–to–one mapping between the models.

However, whether PF can be polynomial–time model-equivalently reduced to
CNF remains open.

Let us recall the key idea of Tseitin’s procedure for transforming a propo-
sitional formula into a satisfiability equivalent CNF formula, which is based on
the replacement of α ∨ (β ∧ γ) by (α ∨¬y)∧ (γ ∨ y)∧ (β ∨ y) for a new variable
y (see e.g. [24]). Because of the De Morgan’s law we only consider propositional
formulas in negation normal form. By the commutative law and the associative
law every propositional formula can be written as the conjunction of some for-
mulas in CNF or with the form α ∨ (β ∧ γ). Suppose ϕ = ϕ′ ∧ (α ∨ (β ∧ γ)) is
a such formula, then we obtain that ϕ and ∃y(ϕ′ ∧ (α ∨ ¬y) ∧ (γ ∨ y) ∧ (β ∨ y))
have the same models. By iterative applications of this substitution we can find
for any propositional formula ϕ a CNF formula ψ such that ϕ and ∃y1 · · · ∃ymψ
have the same models.

Suppose Φ = ∃y1 · · · ∃ym(α1∧· · ·∧αr) is in ∃CNF∗. We can further transform
the formula into a formula in ∃3CNF∗. For each clause αi = (Li,1 ∨ · · · ∨ Li,ki

)
with ki > 3, define

ϕ(αi) := (Li,1 ∨ Li,2 ∨ ¬yi,2)
∧(yi,2 ∨ Li,3 ∨ ¬yi,3) ∧ · · · ∧ (yi,(ki−3) ∨ Li,(ki−2) ∨ ¬yi,ki−2)
∧(yi,(ki−2) ∨ Li,(ki−1) ∨ Li,ki

)

where yi,2, · · · , yi,(ki−2) are new variable. Clearly,

∃y1 · · · ∃ym∃yi,2 · · · ∃yi,(ri−2)(α1 ∧ · · · ∧ αi−1 ∧ ϕ(αi) ∧ αi+1 ∧ · · · ∧ αr)

and Φ have the same models (see [13]). Therefore, after several applications
finally we can obtain a formula Ψ in ∃3CNF∗ such that Φ and Ψ have the same
models. Therefore

Lemma 3. PF.equ
ptime ∃CNF∗ .equ

ptime ∃3CNF∗.

Next we will show that every formula in ∃CNF∗ can be transformed into a
propositional formula, but the transformation from ∃CNF∗ into PF involves a
significant increase in size.

Suppose Φ = ∃y1 · · · ∃ymϕ is a formula with ϕ in CNF. Let

ϕ := ϕ′ ∧ (y1 ∨ f1) ∧ · · · ∧ (y1 ∨ fs) ∧ (¬y1 ∨ g1) ∧ · · · ∧ (¬y1 ∨ gt),

where ϕ′ does not contain any occurrences of y1 or ¬y1. Define

ϕ1 := ϕ′ ∧

⎛
⎝ ∧

1≤i≤s,1≤j≤t

(fi ∨ gj)

⎞
⎠ .
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Lemma 4. Φ and Φ1 := ∃y2 · · · ∃ymϕ1 have the same models.

Proof. Suppose v is a truth assignment for which Φ is true. Then we can extend
v to v′ with v′ = v∪{y1, · · · , ym} so that v′ satisfies ϕ. Let v1 be the restriction
of v′ to v ∪ {y2, · · · , ym}. If v′ makes y1 false then for v1, f1, · · · , fs must be
true; else g1, · · · , gt are true. Thus, v1 satisfies ϕ1. That is, v is a satisfying truth
assignment for Φ1.

Conversely, suppose v is a truth assignment for Φ1. Then v can be extended
to v1 with v1 = v ∪ {y2, · · · , ym} so that v1 satisfies ϕ1. Suppose without loss of
generality that v1 makes some fi false. Thus v1 must make each gj true. Then
we can extend v1 to v′ by setting y1 = 1. Clearly, v′ satisfies ϕ. Thus, v is a
satisfying truth assignment for Φ.

We may call the procedure from Φ to Φ1 the complete resolution over y1. From
Lemma 4, successively applying the complete resolution over y1, y2, · · · , ym, we
finally get a CNF formula which has the same models with Φ. However, the
following example shows that this procedure may costs super-polynomial time.

Example 1. For each number n > 1, let

Φn := ∃y1 · · · ∃yn

⎛
⎝(¬y1 ∨ · · · ∨ ¬yn) ∧

∧
1≤i,j≤n

(¬xi,j ∨ yi)

⎞
⎠ .

The length of Φn is clearly O(n2). Applying complete resolution we get a CNF
formula

ϕn :=
∧

1≤j1,··· ,jn≤n

(¬x1,j1 ∨ · · · ∨ ¬xn,jn
).

The length of ϕn is O(nn). It follows that the CNF formulas generated by the
transformation from ∃CNF∗ into CNF may be significantly larger than the orig-
inal formulas.

However, Φn is logically equivalent to∨
1≤i≤n

(¬xi,1 ∧ · · · ∧ ¬xi,n)

which has length O(n2). The question is whether any formula in ∃CNF∗ can be
polynomial–time model-equivalently reduced to a propositional formula.

Theorem 1. (1) ∃CNF∗ .ptime PF implies NP=P
(2) NP �⊆P/poly implies ∃CNF∗ �.pspacePF

Proof. (1) Please note that for a formula ∃yϕ(x,y) and a truth assignment for
the free variable x, the problem of deciding whether v satisfies ∃yϕ(x,y) (i.e.,
whether ∃yϕ(x/v,y) is true) is NP-complete. The membership in NP is trivial.
The hardness can be seen from the following reduction. For any propositional
formula ϕ over y = y1, · · · , ym, it is satisfiable if and only if ∃y(ϕ ∧ x) is true
for the truth assignment x = 1.
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Suppose ∃CNF∗ .ptime PF. Then for any formula Φ = ∃yϕ(x) and any
truth assignment v for the free variable x, we can construct in polynomial time
a propositional formula ψ and a truth assignment v′ defined on variables of
ψ such that v satisfies Φ if and only if v′ satisfies ψ. Since we have only two
truth assignments v(x = 1 and x = 0), the satisfiability of ψ can be decided
in polynomial time. Please note that whether v′ satisfies ψ can be solved in
polynomial time. Therefore, we obtain NP=P.

(2) For each n > 0, let Sn be the set of all formulas in 3CNF with |ϕ| = n
and var(ϕ) ⊆ {x1, · · · , xn}. Define S :=

⋃
n>0 Sn. It is well-known that the

satisfiability problem for S is NP-complete.
Let π(n) be the set of all 3-clauses over x1, · · · , xn. Clearly, the number of

clauses in π(n) is O(n3).
We associate with each clause γ ∈ π(n)} a new variable cγ and we denote

C = {cγ | γ ∈ π(n)}.
Define

Tn :=
(∧

γ∈π(n)(γ ∨ cγ)
)

Ψn := ∃x1 · · · ∃xnTn.

Let ϕ be a 3CNF formula with |ϕ| = n. W.l.o.g we assume var(ϕ) ⊆
{x1, · · · , xn}. Suppose ϕ = α1 ∧ · · · ∧ αh. Define a truth assignment vϕ by
setting each cαi

to 0, i = 1, · · · , h and other variables in C to 1. Clearly vϕ can
be computed in time polynomial in |ϕ|.

Now, it is not hard to see that ϕ is satisfiable if and only if vϕ satisfies Ψn.
Suppose ∃CNF∗ .pspace PF, then there is a sequence ψ1, ψ2, · · · , ψn, · · · of

propositional formulas such that

(1) the size of each ψn is bounded by a polynomial, and
(2) for each n, there is a polynomial-time computable one-to-one mapping

between the models of Ψn and ψn.
Then we define an advice-taking Turing machine in the following way. The

advice oracle is ψn. Given an instance ϕ of S with |ϕ| = n, the machine loads
ψn, then computes vϕ in polynomial time in n, then computes v′

ϕ according
to the one-to-one mapping, finally checks whether v′

ϕ satisfies ψn. Please note
that to check whether a truth assignment satisfies a propositional formula can
be done in polynomial time. Therefore, the advice-taking machine works in time
polynomial in |ϕ|. Since the satisfiability problem for S is NP-complete, it follows
that NP⊆P/poly.

Theorem 2. P �⊆ NC1/poly implies ∀¬HORN∗ �.equ
pspacePF.

Proof. We know that the problem of deciding whether a 3-Horn formulas is
unsatisfiable is P-complete.

For each n > 0, let Sn be the set of all formulas in 3-Horn with |ϕ| = n and
var(ϕ) ⊆ {x1, · · · , xn}. Define S :=

⋃
n>0 Sn. S is P-complete.

Let π(n) be the set of all 3-Horn clauses over x1, · · · , xn. Clearly, the number
of clauses in π(n) is not more than O(n3).



Model-Equivalent Reductions 365

We associate with each clause γ ∈ π(n) a new variable cγ and we denote
C = {cγ | γ ∈ π(n)}.

Define
Tn :=

(∧
γ∈π(n)(γ ∨ ¬cγ)

)
.

Ψn := ∀x1 · · · ∀xn¬Tn.

Note that the size of Ψn is O(n3), and Tn is a 4-Horn formula.
Let ϕ be a 3-Horn formula with |ϕ| = n. W.l.o.g. we assume var(ϕ) ⊆

{x1, · · · , xn}. Suppose ϕ = α1 ∧ · · · ∧ αh. Define a truth assignment vϕ by
setting each cαi

to 1, i = 1, · · · , h and other variables in C to 0.
Now it is easy to show that ϕ is unsatisfiable if and only if vϕ satisfies Ψn.
Suppose ∀¬HORN∗ .equ

pspace PF. Then there is a sequence of propositional
formulas F1, F2, · · · , Fn, · · · such that

(1) for each n, Ψn and Fn have the same models
(2) the size of the formulas Fn are bounded by a polynomial in n.

Then by Spira’s theorem [23] which states that NC1/poly is equal to the class
of languages decidable by polynomial size propositional formulas, we obtain that
S ∈NC1/poly. Since S is P-complete, it follows that P⊆NC1/poly.

We think that the above theorem is interesting because the satisfiable problem
for ∀¬HORN∗ is solvable in polynomial time, whereas the satisfiability problem
for PF is NP-complete. However, for Q2CNF∗ we have the following.

Proposition 1. Q2CNF∗ /equ
ptime 2CNF.

Proof. See Theorem 7.4.6 and Theorem 7.6.1 in [13].

5 Some Classes of Quantified Boolean Formulas

In this section we are interested in the model-equivalent relations between the
following classes of quantified Boolean formulas: QCNF∗, Q¬CNF∗, QHORN∗,
and

gQEHORN∗: the class of formulas Q(α1 ∧ · · · ∧ αm) in QCNF∗ for which
each αi is a Horn clause after removing the universal literals and free literals.

QEHORN∗: the class of formulas Q(α1 ∧ · · · ∧ αm) in QCNF∗ for which each
αi is a Horn clause after removing the universal literals.

Besides QHORN∗ all the classes have a satisfiability problem which is
PSPACE-complete.

Let Φ(z) = Qϕ(z), v a truth assignment of z. Then Qϕ[z/v] is true if and
only if Q¬ϕ[z/v] is false. Here the prefix Q is obtained from Q by replacing
existential resp. universal quantifiers by universal resp. existential quantifiers.
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Lemma 5. (1) QBF∗ /equ
ptime QCNF∗.

(2) QBF∗ /equ
ptime Q¬CNF∗.

Proof. (1) QCNF∗ .equ
ptime QBF∗ is trivial. The other direction follows immedi-

ately by means of Lemma 3, since any propositional kernel of a QBF∗ formula
can be transformed into a ∃QCNF∗ formula in polynomial time preserving the
models.

(2) Q¬CNF∗ .equ
ptime QBF∗ is trivial. For the inverse, let Φ = Qϕ be any

formula in QBF∗. Consider Q¬ϕ. By (1), we can find in polynomial time a CNF
formula ϕ′ such that Q¬ϕ and Q′ϕ′ have the same models. Therefore, Qϕ and
Q′¬ϕ′ have the same models.

Theorem 3. (1) QBF∗ /equ
ptime QCNF∗ /equ

ptime gQEHORN∗.
(2) QCNF∗ �.equ

pspace QEHORN∗.
(3) Suppose ΣP

2 �=NP. Then for any fixed natural number k ≥ 1,
∃CNF∗ �.ptime Σk-gQEHORN∗.

Proof. (1) We only need to show QCNF∗ .equ
ptime gQEHORN∗. In [7], a reduction

is given which transforms each formula Φ in QCNF into a formula F(Φ) in
QEHORN such that the formulas have the same truth value (see Theorem 6.33
in [7]). We just use the same reduction except allowing free variables.

Let Φ(z) = ∀w1∃x1 · · ·wk∃xk(ϕ1 ∧ · · · ∧ ϕm) with wi = wsi−1+1, · · · , wsi

and xi = xti−1+1, · · · , xti
for i = 1, · · · , k, and z = z1, · · · , zn . Here s1 and n

are possible to be 0.
Pick new variables y0, y1, · · · , ytk

and y′
tk

which do not occur in Φ.
Please note that every clause ϕi consists of three parts: some free literals,

some universal literals, and some existential literals. [ϕi] is the clause obtained
from ϕi by replacing each existential literal by its negation.

Now define Φ′ to be the following formula:

Φ′(z) =
∀w1∃y0∀x1∃y1∀x2 · · · ∃yt1−1∀xt1

∀w2∃yt1∀xt1+1∃yt1+1∀xt1+2 · · · ∃yt2−1∀xt2
...
∀wk∃ytk−1∀xtk−1+1∃ytk−1+1∀xtk−1+2 · · · ∃ytk−1∀xtk

∃ytk
∃y′

tk⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(x1 ∨ · · · ∨ xtk
∨ ytk

) ∧
(¬x1 ∨ · · · ¬xtk

∨ ¬y′
tk

) ∧∧tk−2
j=0 (y′

tk
→ xj+1 ∨ ¬xj+2 ∨ · · · ∨ ¬xtk

∨ yj) ∧∧tk−2
j=0 (y′

j → ¬xj+1 ∨ xj+2 ∨ · · · ∨ xtk
∨ ytk

) ∧
(y′

tk
→ xtk

∨ ytk−1) ∧
(ytk−1 → ¬xtk

∨ ytk
) ∧

(ytk
→ [ϕ1)] ∨ y′

tk
) ∧

...
(ytk

→ [ϕm] ∨ y′
tk

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Clearly, Φ′ is in gQEHORN∗. It is easy to see that Φ′(z/v) is F(Φ(z/v)) for each
truth assignment v on z. Thus we have

Φ(z/v) is true if and only if F(Φ(z/v)) is true if and only if Φ′(z/v) is true.

(2) By Theorem 7.4.6 in [13] we know that every formula in QEHORN∗ is
equivalent to a Horn formula. QCNF∗ .equ

pspace QEHORN∗ would imply that
every QCNF∗ formula, especially, every CNF formula is logically equivalent to a
Horn formula. But the CNF formula (x1 ∨ x2) has no logically equivalent Horn
formula.

(3) Suppose ∃CNF∗ .ptime Σk-gQEHORN∗. Then for any formula Φ(z) in
∃CNF∗, we can find in polynomial time a formula Ψ(z′) in Σk-gQEHORN∗ such
that Φ and Ψ have the same models wrt a one-to-one mapping. Then ∀zΦ is false
if and only if ∀z′Ψ is false. Please notice that ∀z′Ψ is in QEHORN. By Theorem
3.3 in [12] the Πk+1-QEHORN is in co-NP. However, Π2-QCNF is ΠP

2 -complete.
The assertion follows.

Because it is widely believed that the polynomial hierarchy does not collapse,
the expressiveness of QEHORN∗ is much weaker than QCNF∗ although they
have the same complexity (PSPACE-complete). For gQHORN∗, which has the
same representability with QCNF∗, its subclasses Σk-gQEHORN∗ are even not
stronger than Σ1-QCNF∗ for any k ≥ 1.

Theorem 4. Suppose ΣP
2 �⊆NP/poly. Then for any fixed natural number k ≥ 1,

Π2-CNF∗ �.pspace Πk-gQEHORN∗.

Proof. Let Sn be the class of formulas ∀x1∃x2ϕ with xi = x(i−1)n+1, · · · , xin

for i = 1, 2, ϕ is a 3CNF formula over variables x1, · · · , x2n, and define

S :=
∞⋃

n=1

Sn.

For any Π2-Q3CNF formula Φ we can add some dummy quantifiers in the prefix
and rename the variable properly to get a formula Ψ in S such that Φ and Ψ
have the same satisfiability.

Let π(n) be the set of all 3-clauses over x1, · · · , xn, xn+1, · · · , x2n. Clearly,
the number of clauses in π(n) is O(n3).

We associate with each clause γ ∈ π(n) a new variable cγ and we denote
C = {cγ | γ ∈ π(n)}.

Define
Tn :=

(∧
γ∈π(n)(γ ∨ cγ)

)
Ψn := ∀x1∃x2Tn.

Please note that |Ψn| is O(n3). Let ∀x1∃x2ϕ be a formula in Sn. Suppose
ϕ = α1∧· · ·∧αh. Define a truth assignment v by setting each cαi

to 0, i = 1, · · · , h
and other names in C to 1. Clearly v is computed in time polynomial in |ϕ|.

Now we can see that ∀x1∃x2ϕ is satisfiable if and only if v satisfies Ψn.
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Let k be a fixed natural number. Suppose Π2-QCNF∗ .pspace

Πk-gQEHORN∗. Then there is a Ψ ′
n in Πk-gQEHORN∗ with polynomial size

in n such that there is a in polynomial time computable one-to-one mapping
between models of Ψn and Ψ ′

n. Let C ′ be the set of free variables in Ψ ′
n and v′

is the truth assignment corresponding to v. Then Ψ ′
n(C ′/v′) is a Πk-QEHORN

formula. By Theorem 3.3 in [12], the problem of determining the truth of Πk-
QEHORN formulas is in co-NP. The theorem follows.

6 Conclusions and Open Questions

In this paper, we have introduced two model-equivalent relations—polynomial-
time reduction and polynomial–space reduction between theories, which we think
are finer notions to compare the expressiveness of different theories. We have
compared according to these notions some classes of propositional formulas and
quantified Boolean formulas. Our results show that classes of theories with the
same complexity might have different representation strength under some con-
jectures which are widely believed in computation complexity theory. The main
results of this paper are summarized by the following diagram. The existence of
a path from class C1 to class C2 means that C1 can be polynomial–time model–
equivalently reduced to C2. Whereas the non-existence of pathes means that
C1 �.pspace C2 or C1 �.equ

pspace C2 (under some conjectures) or it is unknown whether
C1 .pspace C2 holds.

3CNF ∃3CNF∗ QEHORN∗�

�

�
�

����
�

��

Π2k-QEHORN∗

Π2k-gQEHORN∗

�
�

���
���

	



	

DNF

gQEHORN∗

CNF

�
	

PF ∃CNF∗
 


�
	

QCNF∗
	


 


Q¬HORN∗ Q¬CNF∗

However, this paper is the first step to explore the expressiveness by study-
ing model-equivalence relations. Several issues remain for further work. More
technically, we have the following open questions:

1: Does CNF.pspace DNF hold?
2: Does PF /ptime 3CNF hold?
3: Is ∃CNF∗ a .ptime-maximal NP-complete class?
4: How about the model-equivalence relation between Π2k-QEHORN∗ and

Π2k+2-QEHORN∗. (The satisfiability problem for both classes is in co-NP
(see [12]) for any fixed number k ≥ 1).

5: How about the model-equivalence relation between Π2k-QHORN∗ and
Π2k+2-QHORN∗. (The satisfiability problem for both classes is solvable in
polynomial time (see [12]) for any fixed number k ≥ 1). (Just recently, Uwe



Model-Equivalent Reductions 369

Bubeck, Hans Kleine Büning and Xishun Zhao claimed that they solved this
question by showing QHORN∗ .equ

ptime ∃HORN∗.)
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Abstract. We present two new branch and bound weighted Max-SAT
solvers (Lazy and Lazy�) which incorporate original data structures and
inference rules, and a lower bound of better quality.

1 Introduction

In recent years we have seen an increasing interest in propositional satisfiability
(SAT) that has led to the development of fast and sophisticated complete SAT
solvers. Unfortunately, such solvers are not able to solve Max-SAT: Given a
Boolean CNF formula φ, find a truth assignment that minimizes the number
of unsatisfied clauses in φ. A more general and related problem is weighted
Max-SAT. In this case, a positive weight is associated with each clause and
the problem consists of finding a truth assignment that minimizes the sum of
weights of unsatisfied clauses. When all the clauses have at most k literals per
clause (weighted) Max-SAT is called (weighted) Max-k-SAT.

In this paper we first present two new branch and bound weighted Max-SAT
solvers: Lazy and Lazy�. They differ from previous solvers in the data structures
used to represent and manipulate CNF formulas, in the simplification prepro-
cessing techniques applied, in the lower bound, in the variable selection heuristic
(which is static in our solvers), and in the incorporation of the Dominating Unit
Clause (DUC) rule. We then report on an experimental investigation we have
conducted in order to evaluate our solvers on (weighted) Max-SAT instances.
The results obtained provide experimental evidence that our solvers are very
competitive and outperform some of the best performing (weighted) Max-SAT
solvers on a wide range of instances.

2 Description of Lazy

The space of all possible assignments for a CNF formula φ can be represented as
a search tree, where internal nodes represent partial assignments and leaf nodes

� Research partially supported by projects TIN2004-07933-C03-03 and TIC2003-00950
funded by the Ministerio de Educación y Ciencia. The second author is supported
by a grant Ramón y Cajal.

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 371–377, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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represent complete assignments. A branch and bound algorithm for weighted
Max-SAT explores the search tree in a depth-first manner. At every node, the
algorithm compares the sum of the weights of the number of clauses unsatisfied
by the best complete assignment found so far —called upper bound (UB)—
with the sum of the weights of the number of clauses unsatisfied by the current
partial assignment (unsat) plus an underestimation of the sum of the weights of
the number of clauses that become unsatisfied if we extend the current partial
assignment into a complete assignment (underestimation). The sum unsat +
underestimation is called lower bound (LB). Obviously, if UB ≤ LB, a better
assignment cannot be found from this point in search. In that case, the algorithm
prunes the subtree below the current node and backtracks to a higher level in
the search tree. If UB > LB, it extends the current partial assignment by
instantiating one more variable; which leads to create two branches from the
current branch: the left branch corresponds to instantiate the new variable to
false, and the right branch corresponds to instantiate the new variable to true.
In that case, the formula associated with the left (right) branch is obtained from
the formula of the current node by deleting all the clauses containing the literal
¬p (p) and removing all the occurrences of the literal p (¬p); i.e., the algorithm
applies the one-literal rule. The solution to weighted Max-SAT is the value that
UB takes after exploring the entire search tree.

Lazy implements a branch and bound solver for weighted Max-SAT that
incorporates a number of improvements:

– First upper bound: Before starting to explore the search tree, Lazy obtains
an upper bound on the sum of the weights of unsatisfied clauses in an op-
timal solution using a variant of the local search procedure GSAT [8]. This
technique was first used by Borchers & Furman in their solver BF [3].

– Formula reduction preprocessing: Before the search starts, Lazy simplifies
the initial formula by applying the resolution rule to a particular class of
binary clauses. We replace every pair of clauses (p1 ∨ p2, w1) and (¬p1 ∨
p2, w2) with the clauses (p2,min(w1, w2)), (p1 ∨ p2, w1 − min(w1, w2)) and
(¬p1 ∨ p2, w2 − min(w1, w2)).1 The advantage of this preprocessing is that
we generate new unit clauses.

– Boolean Constraint propagation: When branching is done, branch and bound
algorithms for weighted Max-SAT apply the one-literal rule (simplifying with
the branching literal) instead of applying unit propagation as in most SAT
solvers.2 If unit propagation is applied at each node, the algorithm can return
a non-optimal solution. However, whenever a unit clause has a weight greater
than or equal to the difference between the lower bound and the upper
bound, unit propagation can be safely applied. This technique, which Lazy
incorporates, was also first used by Borchers & Furman [3].

1 Clauses with weight 0 are removed from the formula. Note that when w1 = w2 = 1,
which corresponds to Max-SAT, only (p2, 1) is added.

2 By unit propagation we mean the repeated application of the one-literal rule until a
saturation state is reached.
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– Lower bound: LBLazy(φ) = unsat+
∑

p occurs in φ min(ic(p), ic(¬p)), where
φ is the formula associated with the current partial assignment, and ic(p)
(ic(¬p)) —inconsistency count of p (¬p)— is the sum of the weights of the
clauses that become unsatisfied if the current partial assignment is extended
by fixing p to true (false). Note that ic(p) (ic(¬p)) coincides with the sum
of the weights of unit clauses of φ that contain ¬p (p). Such a lower bound
is a generalization to weighted Max-SAT of the lower bound for Max-SAT
defined in [10].

– Dominating Unit Clause (DUC) rule: DUC [6] is an inference rule that allows
one to fix the truth value of a variable; i.e., it avoids to apply branching on
that variable. We have generalized DUC to weighted Max-SAT as follows: If
the sum of the weights of the clauses in which appears a literal p (¬p) is not
bigger than the sum of the weights of the unit clauses in which appears the
literal ¬p (p), then the value of p can be set to false (true). Lazy only ap-
plies this rule when the input formula contains at most two literals per clause.

– Data structures: Existing (weighted) Max-SAT solvers use adjacency lists to
represent formulas, and their variable selection heuristics are typically dy-
namic. Lazy uses a static variable selection heuristic (defined bellow) that
allows us to implement extremely efficient data structures for representing
and manipulating formulas. Our data structures take into account the fol-
lowing fact: we are only interested in knowing when a clause has become
unit or empty. Thus, if we have a clause with four variables, we do not per-
form any operation in that clause until three of the variables appearing in
the clause have been instantiated; i.e., we delay the evaluation of a clause
with k variables until k − 1 variables have been instantiated. Each clause
is represented by an ordered list, which contains the literals of the clause
ordered following the order used to instantiate variables. As we instantiate
the variables using a static order, we do not have to evaluate a clause until
the variable of the penultimate literal in the clause has been instantiated.

The data structures are defined as follows: Clauses are represented by or-
dered lists, and we have a pointer to the penultimate literal and to the last
literal of the clause. When a variable p is fixed to true (false), the clauses
whose penultimate literal is ¬p (p) are evaluated. If some of the instantiated
literals in the clause is true, the clause become satisfied; otherwise, we derive
a unit clause with the same weight whose only literal is the last literal of
the clause. This approach has two advantages: the cost of maintaining that
data structure when the solvers backtracks is constant (we do not have to
undo pointers like in adjacency lists) and, at each step, we evaluate a min-
imum number of clauses (we do not evaluate all the clauses that contain
the variable we are instantiating, we only evaluate the clauses in which the
penultimate literal contains that variable). In addition, we also maintain an
array that contains, for each literal, the sum of the weights of the unit clauses
in which that literal appears. This array is used to derive empty clauses and
to compute lower bounds. This array is the only data structure that the
algorithm maintains when it backtracks.
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– Static variable selection heuristic: Lazy uses heuristic MOMS [7] adapted to
weighted Max-SAT. Lazy orders the variables by the sum of the weights
associated with the clauses of minimum size in which the variable appears.
Variables are instantiated following that ordering.

3 Description of Lazy�

Lazy� is basically Lazy without applying DUC and with a lower bound of better
quality. The new lower bound, LBLazy� , can be understood as LBLazy extended
with a specialization of the so-called star rule [6] that we have generalized to
weighted Max-SAT. The star rule for Max-SAT states that if we have a clause
of the form l1 ∨ · · · ∨ lk, where l1, . . . , lk are literals, and k unit clauses of the
form ¬l1, . . . ,¬lk, then the lower bound can be incremented by one. In our case,
we only consider clauses of length two, 3 and it is defined as follows: if we have
a binary clause (l1 ∨ l2, w1) and two unit clauses (¬l1, w2) and (¬l2, w3), then
we can increment the lower bound by w = min(w1, w2, w3) and replace those
clauses with (l1 ∨ l2, w1 − w), (¬l1, w2 − w), and (¬l2, w3 − w).4

The pseudo-code of LBLazy� , for an input formula φ, is defined as follows:5

1: LBLazy�(φ) := 0
2: for every clause (l1 ∨ l2, w1) ∈ φ do
3: if (¬l1, w2) ∈ φ and (¬l2, w3) ∈ φ then
4: w := min(w1, w2, w3)
5: LBLazy�(φ) := LBLazy�(φ) + w
6: φ := φ − {(l1 ∨ l2, w1), (¬l1, w2), (¬l2, w3)}∪
7: {(l1 ∨ l2, w1 − w), (¬l1, w2 − w), (¬l2, w3 − w)}
8: end if
9: end for

10: w′ := LBLazy�(φ)
11: LBLazy�(φ) := LBLazy(φ) + w′

To compute the new lower bound efficiently we have also modified the data
structures of Lazy. We now have pointers, besides to the last and penultimate
literals, to the second from last literal of each clause. In addition, we maintain
an array that contains, for each literal, the sum of the weights of the unit clauses
in which that literal appears, and an array that contains the binary clauses. The
idea behind the new data structure is that we keep track of both the unit and
binary clauses that are generated as the search proceeds. This way we are able
to compute the new lower bound efficiently.

3 For longer clauses the star rule did not lead to performance improvements in our
experimental investigation.

4 Clauses with weight 0 are removed from the formula. Note that when w1 = w2 =
w3 = 1, which corresponds to Max-SAT, no clause is added.

5 Note that after applying our variant of the star rule, Lazy� applies the lower bound
of Lazy to the resulting formula (line 11 of the pseudo-code).
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4 Experimental Results

We conducted an experimental investigation in order to compare the perfor-
mance of Lazy and Lazy� with the following state-of-the-art solvers:

– BF [3]: It is a branch and bound weighted Max-SAT solver which uses
MOMS as dynamic variable selection heuristic, and neither it considers un-
derestimations in the lower bound nor formula reduction preprocessing and
DUC. Formulas are represented using adjacency lists. It was developed by
Borchers &Furman in 1999.

– AMP [2]: It is a branch and bound Max-SAT solver based on BF that incor-
porates the lower bound of Lazy, and uses the Jeroslow-Wang rule [5]6 as
dynamic variable selection heuristic. It was developed by Alsinet, Manyà &
Planes in 2003.

– GLMS [4]: It is a weighted Max-SAT solver that encodes the input instance
as a weighted constraint network and solves that network with a state-of-
the-art weighted Max-CSP solver with a sophisticated and good performing
lower bound. It was developed by Givry, Larrosa, Meseguer & Schiex in
2003.

– XZ [11]: It is a branch and bound weighted Max-SAT solver developed by
Xing & Zhang in 2004. We used the second release of this solver which is
known as MaxSolver.

– AGN [1]: It is a branch and bound Max-2-SAT solver (the weighted version
was not implemented). It was developed by Alber, Gramm & Niedermeier
in 1998.

– ZSM [12]: It is a branch and bound Max-2-SAT solver (the weighted version
was not implemented). It was developed by Zhang, Shen & Manyà in 2003.
Improved lower bounds for this solver are described in [9].

As benchmarks we used randomly generated (weighted) Max-2-SAT and
(weighted) Max-3-SAT instances. The experiments were performed on a 2GHz
Pentium IV with 512 Mb of RAM under Linux.

In our first experiment, we generated sets of random Max-2-SAT instances
with 50 and 100 variables and a different number of clauses. Each set had 500
instances. The results of solving such instances with BF, AMP, GLMS, ZSM,
AGN, Lazy and Lazy� are shown in Fig. 1. Along the horizontal axis is the
number of clauses, and along the vertical axis is the mean time (in seconds)
needed to solve an instance of a set. Notice that we use a log scale to represent
run-time. Observe that Lazy outperforms the rest of solvers in almost all the
instances, even ZSM and AGN that are specifically designed to solve Max-2-
SAT instances. GLMS shows a good behavior on large clauses/variables ratios.

In our second experiment, we generated sets of random Max-3-SAT instances
with 50 variables and a different number of clauses. Each set had 300 instances.

6 Given a formula φ, for each literal l of φ the following function is defined: J(l) =∑
l∈C∈φ 2−|C|, where |C| is the length of clause C. It selects a variable p of φ among

those that maximize J(p) + J(¬p).
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Fig. 1. Experimental results for 50-variable and 100-variable Max-2-SAT instances.
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Fig. 2. Experimental results for 50-variable Max-3-SAT instances. Mean time (in
seconds)

The results of solving such instances with BF, AMP,GLMS, Lazy and Lazy� are
shown in Fig. 2. We observe that Lazy� outperforms the rest of solvers, and that
GLMS and Lazy have a similar behavior. BF and AMP are much worse than
the rest of solvers. When the input formula is a Max-3-SAT instance, the only
difference between Lazy and Lazy� is the lower bound. The results indicate that
for Max-3-SAT pays off to use a more sophisticated lower bound.

In our third experiment, we generated sets of random weighted Max-2-SAT
and weighted Max-3-SAT instances with 50 variables and a different number of
clauses. Each set had 500 instances. The results of solving such instances with
BF, AMP, XZ, GLMS, Lazy and Lazy� are shown in Fig. 3. We observe that
Lazy is the best performing solver for weighted Max-2-SAT, and Lazy� is the best
performing solver for weighted Max-3-SAT. XZ has a good performance profile
for weighted Max-2-SAT, but it is not competitive for weighted Max-3-SAT.
GLMS is competitive in both cases, while BF and AMP are not competitive.
It is worth mentioning that weighted Max-CSP has been intensively studied in
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Fig. 3. Experimental results for 50-variable weighted Max-2-SAT and weighted Max-
3-SAT instances. Mean time (in seconds)

the constraint programming community during the last decade, while solvers for
weighted Max-SAT have only been recently investigated in the SAT community.
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Abstract. We present a method—called quantifier tree reconstruction—that al-
lows to efficiently recover ex-post a portion of the internal structure of QBF in-
stances which was hidden as a consequence of the cast to prenex normal form.
Means to profit from a quantifier tree are presented for all the main families of
QBF solvers. Experiments on QBFLIB instances are also reported.

1 Introduction

Quantified Boolean Formulas (QBFs) are often represented in the standard prenex con-
junctive normal form. Standardization enables a complete decoupling between the pro-
duction of instances and their solution, with countless benefits. On the negative side,
one should consider the loose of structural information that happens when instances
are flattened onto a fixed format: Experiments show that the original structure of the
formula could be exploited to achieve gains in solving performances [13]. We propose
an approach that preserves the benefits of standardization and attempts to recover part
of the lost information ex-post. QBFs are converted to prenex CNF in two steps:

a. A prenex form is generated by moving all the quantifiers outside an (arbitrarily
shaped) quantifier-free matrix.

b. The matrix is converted into conjunctive normal form.

One source of structure obfuscation here is that linear prefixes impose unnecessarily
strong restrictions w.r.t. the intrinsic dependencies between existential and universal
variables in a given matrix. So, we revert Step a, to some extent, even if the matrix is
left in CNF form (Section 3). In essence, we extract a tree-shaped syntactic structure—
which we call quantifier tree—out of a flat prenex conjunctive normal form instance.
Then, we show (Section 4) how QBF solvers can profit from a quantifier tree (we con-
sider three major families of CNF-based approaches to QBF satisfiability).

Many related works exist, ranging from the miniscoping technique in FOL to quanti-
fier shifting algorithms for QBFs. We refer the reader to [1] for a comparison with these
works, and for an in-depth presentation of the quantifier-tree extraction technique.

∗ This work is funded by PAT (Provincia Autonoma di Trento, Italy), under grant n. 3248/2003.
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2 QBFs and Their Structure

We consider prenex CNF formulas F = Q1V1Q2V2 . . .QnVn F̃ , where the matrix
F̃ is a CNF on variables var(F ), and the prefix Q1V1Q2V2 . . .QnVn is such that
Qi ∈ {∀,∃}, i = 1, . . . , n and Qi �= Qi+1, i = 1, . . . , n − 1, while {Vi} is a par-
tition of var(F ). A scope Vi is existential (universal) if Qi = ∃ (Qi = ∀). The scope
σ(v) of a variable is the index i such that v ∈ Vi. Variables v ∈ Vi are existentially
(universally) quantified ifQi = ∃ (Qi = ∀). The set of existentially (universally) quan-
tified variables is denoted by var∃(F ) (var∀(F )). We write Q(v) to mean Qσ(v). The
total ordering V1 < · · · < Vn induces a relation of dominanceRF

� ⊆ var(F )×var(F )
which is a partial order relation defined as 〈w, v〉 ∈ RF

� iff w = v or σ(w) < σ(v).
When no ambiguity arises, we simply write w 	 v (read “w dominates v”). The or-
der defined by any RF is not total, but sequentially total: v 	 w or w 	 v whenever
σ(v) �= σ(w). Given S ⊆ var(F ), we define Sup(S) = {v ∈ S|�v′ ∈ S.v 	 v′}.
For clauses: Sup(Γ ) = {v ∈ var(Γ )|�v′ ∈ var(Γ ).v 	 v′}. The universal depth
δ(v) of an existential variable v is the number of dominating universal variables for v:
δ(v) = |var∀(F ) ∩ {w|w 	 v}|. We say that 	2 is a restriction of 	1 when a 	1 b
implies a 	2 b. By fixing an arbitrary order for the variables in each scope, we re-
strict the relation 	 and obtain a total ordering. Though the results presented here can
be lifted to work with a sequentially total order, we limit to consider the simpler total
order case.

3 Building a Quantifier Tree

In this section we characterize a class of QBF instances which lays in between prenex
CNF instances and general, unrestricted quantified formulas. In particular, we retain
a clause-based negated normal form, but relax the restriction on linearly shaped pre-
fixes. The formulas we consider have a tree-like structure with clauses attached to the
leaves.

Our aim is to show that a tree-like formula F tree with certain interesting properties
can be extracted efficiently out of any given flat QBF instance F , guaranteeing the key
property F tree ≡ F . Our starting point is the notion of quantifier tree.

Definition 1 (Quantifier Tree). A quantifier tree t for a QBF F (whose prefix induces
the partial order 	 among variables) is a labeled tree with the following properties:

1. The root is labeled by an “and" connective.
2. The internal nodes are labeled by some variable in F . Existential variables appear

once in the tree, while any two internal nodes not laying on the same branch can
be labeled by the same universal variable. The labeling of nodes is such that 	 is
a restriction of the relation 	t induced by the tree, where v 	t w iff a descending
path from v to w exists in t involving at least one universal and one existential node.

3. Each leaf node n is labeled with a non-empty set of clauses G(n) ⊆ F , and is
such that the set of variables encountered along the path from the root to n always
contains var(G(n)). Every clause in F appears exactly once in the whole tree.
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Let us denote by trees(F ) the set of quantifier trees for F . The set trees(F ) is never
empty: It is easy to verify that at least the tree
made up of one single branch linearly replicating
the sequence of variables in the prefix of F be-
longs to trees(F ) for every F . In general, further
(non-trivial) quantifier trees exist. We focus on such
“structured” elements of trees(F ). As an example,
let us consider the following prenex QBF.

∀a∀b∃c∀d∀e∃f∃g∃h.(a∨¬c) ∧ (a∨h)∧
(c∨¬d∨g) ∧ (¬a∨b∨f)∧
(c∨e∨¬h) ∧ (¬b∨¬f) ∧ (a∨c∨¬g)

(1)

A quantifier tree for (1) is depicted in Figure 1. It is
straightforward to interpret a quantifier tree t as the
syntactic tree of a non-prenex quantified boolean
formula qbf(t) inductively defined as follows:

aa

b

f

c

d e

g h

a ¬c

c ¬d
c a ¬

a h
c e ¬

¬b ¬f
¬a b f

Fig. 1. A quantifier tree for (1)

qbf(n) =

⎧⎨
⎩

qbf(c1) ∧ . . . ∧ qbf(cn) for the root
Qσ(v)v. (qbf(c1) ∧ . . . ∧ qbf(cn)) for a node labeled by v
Γ1 ∧ . . . ∧ Γn for a leaf labeled by {Γ1, . . . , Γn}

where c1, . . . , cn are the children of n.

Lemma 1. For each quantifier tree t ∈ trees(F ), it is F ≡ qbf(t).

We are interested in extracting quantifiers trees with certain properties. To this end, we
employ Algorithm 1. It works in a bottom-up way, growing the tree from the leaves to
the root. For the sake of simplicity, we assume that to describe a tree it is sufficient to
know the father node father(n) of each node n. Each node n is labeled by a variable
label(n) as soon as it is created, and has attached a set of variables free(n) updated at
each step to represent the variables that occur free in the current qbf(n). A leaf node n
is also labeled by a set of clauses clauses(n). Let us call miniscoped a quantifier tree t
such that none of the rules in Table 1 can be applied to qbf(t) in a left-to-right direction.

Lemma 2. Given a prenex QBF F , Algorithm 1 generates a quantifier tree in trees(F ).

Lemma 3. Algorithm 1 produces miniscoped quantifier trees. It runs in O(max(|F | ·
|var(F )|, |var∃(F )| · |var(F )|2))) requiring O(|var(F )| · |var∃(F )|) memory.

4 How to Profit from a Quantifier Tree
The primary objective of quantifier tree extraction is to help solvers in deciding QBF
instances. Most solvers fall into one of three classes, depending on the strategy they
follow to attack the problem. We show how each of these approaches benefits from
quantifier trees with almost no modification to its core reasoning mechanisms.
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Algorithm 1: An algorithm to construct a quantifier tree for a QBF formula
input : A prenex QBF formula f
output: A quantifier tree for f

// First, we create the root;
1 r ← the root node for the tree;
2 label(r) ← “ ∧ ”;

// Then, we create the leaves together with their lists of attached clauses;
3 openNodes ← ∅;
4 foreach v ∈ var∃(f) do
5 n ← new node;
6 label(n) ← v;
7 clauses(n) ← {Γ ∈ F̃ |v ∈ Sup(Γ )};
8 free(n) ← ∅;
9 foreach Γ ∈ clauses(n) do

10 foreach γ ∈ Γ do
11 free(n) ← free(n) ∪ var(γ);

12 free(n) ← free(n) \ {v};
13 F̃ ← F̃ \ clauses(n);
14 openNodes ← openNodes ∪ {n};

// Finally, the rest of the tree in a bottom-up way;
15 while openNodes �= ∅ do
16 n ← pick one variable from Sup(openNodes);
17 if free(n) = ∅ then
18 father ← r;

else
19 v ← pick one from Sup(free(n));
20 if isUniversal(v) then
21 father ← new node;
22 label(father) ← v;
23 openNodes ← openNodes ∪ {father};
24 free(father) ← free(n) \ {label(n)};

else
25 father ← the node n with label(n) = v ;
26 free(father) ← free(father) ∪ free(n) \ {label(n)};

27 father(n) ← father;
28 openNodes ← openNodes \ {n};

Table 1. Equivalence-preserving FOL rules that move quantifiers

Logical equivalences Condition
1a. ∃x.(¬φ) ≡ ¬(∀x.φ) 1b. ∀x.(¬φ) ≡ ¬(∃x.φ)
2a. ∀x.φ ≡ φ 2b. ∃x.φ ≡ φ x /∈ free(φ)
3a. ∀x.(φ ∧ ψ) ≡ (∀x.φ) ∧ ψ 3b. ∃x.(φ ∧ ψ) ≡ (∃x.φ) ∧ ψ x /∈ free(ψ)
4a. ∀x.(φ ∨ ψ) ≡ (∀x.φ) ∨ ψ 4b. ∃x.(φ ∨ ψ) ≡ (∃x.φ) ∨ ψ
5a. ∀x.(φ ∧ ψ) ≡ (∀x.φ) ∧ (∀x.ψ) 5b. ∃x.(φ ∨ ψ) ≡ (∃x.φ) ∨ (∃x.ψ)



382 M. Benedetti

4.1 Search-Based Solvers

Search-based solvers extend the DPLL-approach to the quantified case [6]. Examples
of solvers in this class are Quaffle[14], QuBE [8], ZQSAT [7], and semprop [10].
These algorithms look for models in the most natural way: They follow the left-to-right
order of the variables in the prefix during a top-down, depth-first visit of the semantic
evaluation tree. Such solvers could be easily lifted to work with the partial order induced
by the internal structure of a quantifier tree. The advantage is that nodes with more than
one child induce sets of disjoint sub-instances to be solved in isolation of one another.
For example, suppose we have reached an existential node n with two children, with
the assignment Δ along the path from the root to n. The formula to be decided has
the following shape: ∃v.(φ1 ∧ φ2). Once v has got a truth value—say positive—the
two instances φ1 ∗ v and φ2 ∗ v only share universal variables (if any): all the common
existential variables have been assigned in Δ, while the clauses in φ1 and φ2 cannot
share existential quantifiers by construction. Thus, φ1 ∗ v and φ2 ∗ v can be solved
separately. The resulting situation is depicted for a sample case in Figure 2.

4.2 Resolution-Based Solvers

Rather than search for a model, it is possible to solve the formula by applying a refuta-
tionally complete procedure (quantor [4], QMRES [12], QBDD [12]) that builds upon
generalizations of propositional resolution such as q-resolution [9, 5]. There are sev-
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Fig. 2. The top-most part of an AND/OR, divide-et-impera search tree for the quantifier tree
t ∈ trees(F ) such that qbf(t) = ∀a((∃b(∀c f1(a, b, c)) ∧ ∀d f2(a, b, d)) ∧ ∀c∀e f3(a, c, e))
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eral possible complete strategies for applying resolution. For example, we can focus
on eliminating quantifiers in a right-to-left order (w.r.t. the order in the prefix), get-
ting rid of existential quantifiers by q-resolution. If such solvers were able to exercise
brute force against any instance, there would be no point in quantifier trees and, more
in general, in heuristic reasoning. Unfortunately, space limits prevent most inference
sequences form being feasible, in so as finding a viable solution is the key problem
the solver has to face. Quantifier trees help resolution-based solvers in finding bet-
ter ways to carry on. Let us consider, for example, quantor [4]: At each step, it
chooses whether to eliminate by q-resolution one of the variables in the deepest ex-
istential scope S∃ or to eliminate by expansion one of the variables in the deepest
existential scope S∀. Variables in S∀ ∪ S∃ are ranked according to a heuristic cost
function and the cheapest one is greedily eliminated. With a linear prefix there is only
one deepest existential scope and one deepest universal scope. Conversely, within a
quantifier tree there are up to one existential/universal scope per branch. This pro-
duces two potential benefits: (1) a possibly wider pool of quantifiers to choose from,
and (2) one more degree of freedom in the elimination strategy (for example: prefer
a quantifier with minimal/maximal depth in the quantifier tree, or focus on one single
branch).

4.3 Skolemization-Based Solvers

Skolemization-based solvers replace the original QBF satisfiability problem with the
satisfiability problem on the skolemized instance Sk(F ). During skolemization, ex-
istential quantifiers are eliminated by replacing the variables they bind with Skolem
functions whose definition domains are appositely chosen to preserve satisfiability. In
outer skolemization [11] the function introduced for e ∈ var∃(F ) depends on all the
universal variables that have e in their scope, i.e. (for prenex formulas) all the universal
variables to the left of e in the prefix. For example, by outer skolemizing (1) we obtain

(a∨¬sc(a, b)) ∧ (¬a∨b∨sf (a, b, d, e)) ∧ (¬b∨¬sf (a, b, d, e)) ∧
∧ (a∨sh(a, b, d, e)) ∧ (sc(a, b)∨e∨¬sh(a, b, d, e)) ∧
∧ (sc(a, b)∨¬d∨sg(a, b, d, e)) ∧ (a∨sc(a, b)∨¬sg(a, b, d, e))

(2)

where sx is the function with arity δ(x) introduced to skolemize x, and all the variables
are meant to be universally quantified. Once (2) is obtained from (1), methods from
FOL automated theorem proving or ad-hoc strategies such as the ones presented in [3]
can be employed. Quantifier trees allows us to reduce the arity of the skolem functions.
Given that qbf(t) ≡ F for t ∈ trees(F ), we work on Sk(qbf(t)) rather than on
Sk(F ). For example, we obtain for the instance (1):

(a∨¬sc(a)) ∧ (¬a∨b∨sf (a, b)) ∧ (¬b∨¬sf (a, b)) ∧
∧ (a∨sh(a, e)) ∧ (sc(a)∨e∨¬sh(a, e)) ∧
∧ (sc(a)∨¬d∨sg(a, d)) ∧ (a∨sc(a)∨¬sg(a, d))

Simpler skolem functions help the solver in a way that depends on the approach to
evaluation it takes. For example, in the case of sKizzo [2], each skolemized clause
C with m universal variables is translated into (the symbolic representation of) 2δ−m

propositional clauses, with δ = δ(C) for prenex formulas, and δ = δt(C) ≤ δ(C) for a
quantifier tree t. This produce a linear shrinking of the symbolic representation, and up
to an exponential advantage over linear prefixes when ground reasoning is attempted.
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5 Experimental Results

We refer to the QBFLIB’s archive. Table 2 gives first results on some families of in-
stances. It compares the depth, average universal depth, maximal universal depth, and
number of branches before and after tree reconstruction. The time taken to build the
tree is also reported. The impact of our reconstruction algorithm over these instances
is strong. Conversely, on some other classes (such as mutex or chain) results are much
weaker. The reader may experiment with the downloadable tool qTree[2] which takes
a QBF as input and produces statistics on the reconstructed tree.

Table 2. The effect of tree-reconstruction over the structure of the syntactic tree

Before reconstruction Time After reconstruction
Instance Depth Max &Avg ∀-depth Br. (ms) Depth Max &Avg ∀-depth Branches

adder-14-sat 3,641 1,281 1,093.5 1 20 267 94 50.2 28
adder-14-unsat 3,667 665 381.1 1 20 2,988 483 331.8 1

adder-16-sat 4,769 1,672 1,426.4 1 30 307 108 57.4 32
adder-16-unsat 4,799 872 500.6 1 30 3,911 632 434.6 1

Adder2-12-c 11,580 642 603.0 1 60 957 432 414.5 3624
Adder2-12-s 11,580 786 756.9 1 50 116 68 35.3 3624
Adder2-14-c 15,862 875 822.0 1 70 1,296 588 564.2 4956
Adder2-14-s 15,862 1,071 1,031.5 1 70 134 80 41.2 4956
flipflop-7-c 15,213 35 35.0 1 50 1,330 21 20.7 5,121
flipflop-9-c 56,175 45 45.0 1 220 5,466 27 26.9 18,246

flipflop-11-c 159,837 55 55.0 1 720 16,610 33 32.9 50,705
k-branch-n-20 13,822 127 97.9 1 150 5568 127 64.3 2646
k-branch-p-19 12,544 121 93.2 1 130 5063 121 61.3 2400

k-d4-n-16 1,438 69 51.7 1 10 755 69 35.3 310
k-d4-p-19 1,176 62 45.9 1 10 638 62 31.6 250
k-grz-n-18 792 24 17.4 1 10 393 24 11.2 175
k-grz-p-19 767 24 17.7 1 10 379 24 11.5 169
k-ph-n-21 11,131 12 9.7 1 450 5347 12 6.5 1,643
k-ph-p-20 10,444 12 9.7 1 460 5067 12 6.4 1,524

k-poly-n-18 1,465 110 84.0 1 10 926 110 69.1 323
k-poly-p-17 1,384 104 79.4 1 10 875 104 65.4 305
k-t4p-n-19 2,725 123 90.9 1 20 1446 122 61.4 620
k-t4p-p-19 1,470 69 50.6 1 10 782 68 34.5 333

TOILET7.1.iv.13 400 3 2.2 1 10 216 3 1.5 32
TOILET7.1.iv.14 431 3 2.2 1 10 234 3 1.5 32

TOILET10.1.iv.20 855 4 3.0 1 10 457 4 2.0 44
TOILET16.1.iv.32 2,133 4 3.0 1 30 1,117 4 2.0 68

tree-exa10-20 41 20 20.0 1 <1 4 2 2.0 19
tree-exa10-25 51 25 25.0 1 <1 4 2 2.0 24
tree-exa10-30 61 30 30.0 1 <1 4 2 2.0 29

Table 3. Some instances solved on a 900MHz G3 with a 400s timeout

Solving time (s) Solving time (s)
Instance Personality Linear prefix qTree Instance Personality Linear prefix qTree

tree-exa10-10 B 7.7 0.1 k-dup-p-16 QBGS timeout 75.5
tree-exa10-20 B timeout 0.2 k-dup-p-17 QBGS timeout 327.0
tree-exa10-30 B timeout 0.3 adder-2-sat B timeout 0.3

TOILET2.1.iv.3 BG 0.3 0.2 adder-2-sat BG timeout 0.9
TOILET6.1.iv.11 BG 4.0 3.4 adder-4-sat B timeout 3.0
TOILET7.1.iv.13 BG 26.4 5.3 adder-4-sat BG timeout 26.8

k-dup-p-8 QBGS 50.4 0.2 adder-6-sat RS 13.9 10.7
k-dup-p-11 QBGS 54.5 9.7 adder-8-sat RS 57.1 37.4
k-dup-p-15 QBGS timeout 74.1 adder-10-sat RS 286.5 198.1
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Solving advantages depend on the evaluation strategy and on the implementation.
We here consider sKizzo [2, 3], a hybrid QBF solver that can be configured to exercise
the following strategies (freely combinable to obtain personalities): symbolic BDD-
based incomplete reasoning (abbreviated in “S”), symbolic resolution-based solving
(“R”), branching reasoning with backjumping/learning (“B”), SAT-based solution of
ground sub-problems (“G”), and q-resolution reasoning (“Q”). The preliminary results
in Table 3 suggest that advantages are expected to cover a broad family of solvers.

6 Conclusions

We presented a method that allows to recover ex-post a portion of the internal structure
of QBF instances, hidden as a consequence of the cast to prenex normal form. Means to
profit from this reconstruction have been presented. Future work on this topic relates to
what makes some instances much more sensible to tree reconstruction than others, and
to the generalization of our algorithm towards trees with depth minimality properties.
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Abstract. In this paper, quantified Horn formulas with free variables
(QHORN∗) are investigated. The main result is that any quantified Horn
formula Φ of length |Φ| with free variables, |∀| universal quantifiers and
an arbitrary number of existential quantifiers can be transformed into an
equivalent formula of length O(|∀| · |Φ|) which contains only existential
quantifiers. Moreover, it is shown that quantified Horn formulas with
free variables have equivalence models where every existential quantifier
is associated with a monotone Boolean function.

The results allow a simple representation of quantified Horn formulas
as purely existentially quantified Horn formulas (∃HORN∗). An appli-
cation described in the paper is to solve QHORN∗-SAT in O(|∀| · |Φ|) by
using this transformation in combination with a linear-time satisfiability
checker for propositional Horn formulas.

1 Introduction

Quantified Boolean Formulas (QBF ) offer a concise way to represent formulas
which arise in areas such as planning, scheduling or verification. The ability
to provide compact representations for many Boolean functions does however
come at a price: determining the satisfiability of formulas in QBF is PSPACE-
complete, which is assumed to be significantly harder than the NP-completeness
of the propositional SAT problem. However, continued research and the lifting
of propositional SAT techniques to QBFs have recently produced interesting
improvements (see, e.g., [2, 3, 9, 10]) and have lead to the emergence of more
powerful QBF -SAT solvers [8].

Furthermore, the satisfiability problem is known to be tractable for some re-
stricted subclasses like QHORN [5] or Q2−CNF [1]. Those classes are defined
by imposing restrictions on the syntactic structure of the formula matrices. The
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interesting question which we are investigating in this paper is how such a syn-
tactic restriction is affecting the structure of the set of satisfying truth value
assignments to the existentially quantified variables.

A suitable concept for describing the satisfiable truth value assignments to
the existential variables is the notion of models for formulas in QBF , which
has been introduced in [6]: for a quantified formula Φ with existential variables
y = y1, ..., ym, let M = (fy1 , ..., fym

) be a mapping which maps each existen-
tial variable yi to a propositional formula fyi

over universal variables whose
quantifiers precede the quantifier of yi. Then M is a satisfiability model for Φ
if the resulting formula Φ[y/M ] := Φ[y1/fy1 , ..., ym/fym

], where simultaneously
each existential variable yi is replaced by its corresponding formula fyi

and the
existential quantifiers are dropped from the prefix, is true.

The concept of models for closed formulas can easily be extended to quanti-
fied Boolean formulas with free variables (QBF ∗) [7]. In that case, the propo-
sitional formulas fyi

may also contain free variables. For QBF ∗ formulas, an
interesting additional constraint is to require that Φ and Φ[y/M ] must be equiv-
alent. Formally, equivalence models are defined as follows: let Φ(z) = Q φ(x,y, z)
be a quantified Boolean formula with prefix Q and matrix φ, universal variables
x = x1, ..., xn, existential variables y = y1, ..., ym and free variables z = z1, ..., zr.
For propositional formulas fyi

over z and over universal variables whose quan-
tifiers precede ∃yi, we say M = (fy1 , ..., fym

) is an equivalence model for Φ(z) if
and only if Φ(z) ≈ ∀x1...∀xn φ(x1, ..., xn,y, z)[y/M ].

In this paper, we focus on the class of quantified Horn formulas with free
variables (QHORN∗). While it has been previously known that closed quan-
tified Horn formulas have equivalence models consisting of monotone mono-
mials and the constant functions 0 or 1 (see [6]), the structure of QHORN∗

equivalence models has been an open problem. In Section 2, we show that
QHORN∗ formulas have equivalence models where the propositional formulas
fyi

contain only conjunctions and disjunctions of positive literals, i.e. the fyi
are

monotone.
In the second part of this paper, we turn to the universal quantifiers. Section 3

demonstrates that we can eliminate all universal quantifiers and the correspond-
ing universal variables in QHORN∗ formulas without significantly increasing
the length of the formula. To be more precise, we show that a quantified Horn
formula Φ of length |Φ| with free variables, |∀| universal quantifiers and an ar-
bitrary number of existential quantifiers can be transformed into an equivalent
formula of length O(|∀| · |Φ|) which contains only existential quantifiers.

We finally explain how this transformation can be used to solve the satisfia-
bility problem for QHORN∗ in time O(|∀| · |Φ|) with a very simple algorithm.

We need some additional notation: for Φ ∈ QBF ∗, Φ(z) = Q φ(x,y, z) with
Q = ∀x1,1...∀x1,n1∃y1,1...∃y1,m1 ...∀xr,1...∀xr,nr

∃yr,1...∃yr,mr
, ni ≥ 1 and mi ≥ 1

for i = 1, .., r, we combine successive quantifiers of the same kind and simply
write Q = ∀X1∃Y1 ...∀Xr∃Yr with Xi = (xi,1, ..., xi,ni

) and Yi = (yi,1, ..., yi,mi
).

Another notation that we use is ab := (a1, ..., am, b1, ..., bn) to denote the con-
catenation of two tuples a = (a1, ..., am) and b = (b1, ..., bn).
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2 Equivalence Models for QHORN * Formulas

Definition 1. Let M = (fy1 , ..., fym
) be an equivalence model for a quantified

Boolean formula Φ ∈ QBF ∗. Then M is a monotone equivalence model if
and only if the functions fyi

, 1 ≤ i ≤ m, do not contain negative occurrences
of atoms, i.e. the fyi

can be written using only positive literals and the reduced
operator set {∧,∨} as well as fyi

= 0 or fyi
= 1.

Theorem 1. Any formula Φ ∈ QHORN∗ has a monotone equivalence model
M = (fy1 , ..., fym

) which satisfies the following properties: Φ[y/M ] ∈ QHORN∗,
and any clause in Φ with a positive existential variable contributes only tauto-
logical clauses to Φ[y/M ].

Proof: Due to space limitations, we omit the proof. It is by induction on the
number of quantifiers and can be outlined as follows: in the induction base, when
there is only one single existential variable, a monotone model is chosen such
that tautological clauses are created when the model is substituted for positive
instances of the existential variable. On the other hand, the negative instances
produce the set of possible Q-resolvents, which is known to be equivalent to
the original formula. In the induction step, we compose a monotone equivalence
model for k − 1 existential variables and a monotone equivalence model for the
k-th existential variable to obtain a model for all k existential variables.

Unfortunately, these models may be of exponential length, as a short ar-
gument reveals. It is known (see, e.g., [5]) that converting a quantified Horn
formula into an equivalent propositional Horn formula may result in an ex-
ponential increase in length required. But if we had an equivalence model of
polynomial length, we could use it to eliminate the existential variables, which
in turn would allow us to drop the universal variables, and we would end up
with a purely propositional formula of polynomial length. That contradiction
leads to the conclusion that the equivalence model may have exponential length.
Nevertheless, knowing about the monotony of those models is useful, as it allows
for concise and elegant proofs.

3 Eliminating Universal Quantifiers

As converting a quantified Horn formula into an equivalent propositional Horn
formula may result in an exponentially longer formula, it is not a practical way
to go. As discussed above, eliminating only the existential quantifiers is not
practical either. But as it turns out, eliminating just the universal quantifiers
does not lead to this exponential increase in length. We will now prove this
surprising result and present the corresponding algorithm.

Definition 2. A formula Φ ∈ QHORN∗ is an existentially quantified Horn
formula with free variables if it is of the form Φ(z) = ∃y1...∃ym φ(z) (m ≥ 0),
i.e. if it does not contain universally quantified variables. The class of all such
formulas we denote by ∃HORN∗.
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The goal of the following investigation is to transform an arbitrary formula in
QHORN∗ into an equivalent formula in ∃HORN∗ with a polynomial increase
in length. The method that we present is a specialization of the known expo-
nential method of expanding universal quantifiers in general QBF ∗ formulas.
We first present the general technique and then show how it can be refined for
QHORN∗.

3.1 Eliminating Universal Quantifiers in QBF ∗ Formulas

The general method for expanding universal quantifiers is rather straightforward:
two copies of the original matrix are generated, one for the universally quantified
variable being true, and one for that variable being false. As explained in [2],
existential variables which depend on that universal variable need to be du-
plicated as well. For example, the formula ∃y1∀x∃y2 φ(x, y1, y2) is expanded to
∃y1∃y2∃y′

2 φ(0, y1, y2)∧φ(1, y1, y
′
2). For multiple universal quantifiers, we succes-

sively expand each universal quantifier, starting with the innermost.
Based on this informal description, we now provide a formal representation.

Let Φ ∈ QBF ∗ with Φ(z) = ∀X1∃Y1...∀Xr∃Yr φ(X1, ...,Xr, Y1, ..., Yr, z), where
Xi = (xi,1, ..., xi,ni

) and Yi = (yi,1, ..., yi,mi
) (ni ≥ 1 and mi ≥ 1, i = 1, ..., r,

r ≥ 1). Without loss of generality, we assume that the outermost quantifiers are
universal and the innermost quantifiers are existential.

The expanded formula is then given asΦ∃exp(z) :=

∧
A1∈{0,1}n1

∃Y A1
1

⎛
⎝ ∧

A2∈{0,1}n2

∃Y A2
2 ....

⎛
⎝ ∧

Ar∈{0,1}nr

∃Y Ar
r φ(A1...Ar, Y1...Yr, z)

⎞
⎠ ...

⎞
⎠

The tuples Ai represent the possible truth value assignments to the universal
variables xi,1, ..., xi,ni

. The expression
∧

Ai∈{0,1}ni should be understood as a
conjunction of 2ni clauses, one for each truth value assignment. Finally, ∃Y Ai

i

is an abbreviation for ∃yAi
i,1 ...∃y

Ai
i,mi

, the copies of the i-th sequence of existen-
tial quantifiers. The index Ai is used to have a unique name for each of those
copies. For example, four copies of yi,j would be named y

(0,0)
i,j , y

(0,1)
i,j , y

(1,0)
i,j and

y
(1,1)
i,j .

If there are n universal quantifiers in a formula Φ, its expansion Φ∃exp contains
2n copies of the formula’s original matrix. This exponential increase in length
makes the method unusable in general, but we can significantly simplify it:

3.2 Special Case: QHORN∗ Formulas

Definition 3. Let Φ(z) = ∀X1∃Y1...∀Xr∃Yr φ(X1, ...,Xr, Y1, ..., Yr, z) with
Xi = (xi,1, ..., xi,ni

) and Yi = (yi,1, ..., yi,mi
) (ni ≥ 1 and mi ≥ 1, i = 1, ..., r,

r ≥ 1) be a quantified Horn formula whose outermost quantifiers are universal
and whose innermost quantifiers are existential.
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Then we define the formula Φ∃poly(z) as

Φ∃poly(z) :=
∧

A1∈Assign1

∃Y A1
1

⎛
⎝ ∧

A2∈Assign2(A1)

∃Y A2
2 ....

⎛
⎝ ∧

Ar∈Assignr(A1...Ar−1)

∃Y Ar
r φ(A1...Ar, Y1...Yr, z)

⎞
⎠ ...

⎞
⎠

with the restricted set of possible assignments

Assign1 = MaxOneZero(n1)

Assigni(A1, ..., Ai−1) =
{

MaxOneZero(ni) , ifA1...Ai−1 = {1}n1+...+ni−1

{1}ni , else

where

MaxOneZero(n) = {(a1, ..., an) | ∃i : ai = 0and aj = 1 for j �= i} ∪ {(1, ..., 1)}

is the set of n-ary tuples of binary values with at most one component being zero.

The only difference between the formula Φ∃poly and the expansion Φ∃exp

for general QBF ∗ formulas is that for quantified Horn formulas, not all possi-
ble truth value assignments to the universally quantified variables have to be
considered. For Horn formulas, we discard assignments where more than one
universally quantified variable is false.

Lemma 1. Φ∃poly is equivalent to Φ.

Proof: We need to show that for a quantified Horn formula Φ with free variables z,
Φ∃exp(z) ≈ Φ∃poly(z) holds. Due to space considerations, we also have to omit
this proof. The main proof idea is as follows: if the matrix of Φ∃poly can be
satisfied when exactly one universal variable is false, we can compensate for an
additional universal variable being false by modifying the truth value assignment
to the existential variables.

In the definition of Φ∃poly, we can observe that there is one instantiation of
the matrix of the original formula for each possible assignment to the universal
variables where either all of those variables are true, or exactly one of them is
false. There are n + 1 such assignments. Furthermore, the previous lemma has
shown that Φ∃poly is equivalent to Φ∃exp, which in turn is equivalent to Φ, so we
immediately have the following theorem:

Theorem 2. For any quantified Horn formula Φ ∈ QHORN∗ with free vari-
ables, there exists an equivalent formula Φ′ ∈ ∃HORN∗ without universal quan-
tifiers. The length of Φ′ is bounded by |∀|·|Φ|, where |∀| is the number of universal
quantifiers in Φ, and |Φ| is the length of Φ.
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3.3 The Transformation Algorithm

Listing 1 presents an algorithm to transform Φ into Φ∃poly as described above.
In the main loop of the algorithm, one universal variable xi,j is given the value
false, while all the others are true. For any such assignment Ax, all universal
variables which are dominated by xi,j (i.e. their corresponding quantifier follows
∀xi,j) have to be replaced by independent new variables y′. Then, the matrix of
the original formula has to be duplicated, with Ax being substituted for x and
y′ being substituted for y. After executing the main loop, one additional copy
is needed for the case where all universal variables are true.

Listing 1: The Transformation Algorithm

// Input: Φ ∈ QHORN∗, Φ(z) = ∀X1∃Y1...∀Xr∃Yr φ(X1, ..., Xr, Y1, ..., Yr, z),
// where Xi = (xi,1, ..., xi,ni) and Yi = (yi,1, ..., yi,mi)
// Output: Φ∃poly ∈ ∃HORN∗ with Φ∃poly ≈ Φ

φ∃poly = ∅;
for (i = 1 to r) do
for (j = 1 to ni) do Axi,j = 1;

for (i = 1 to r) do {
for (j = 1 to ni) do {

Axi,j = 0;
for (k = i to r) do
for (l = 1 to mk) do y′

k,l = new ∃−var;
φ∃poly = φ∃poly ∪ φ[x/Ax,y/y′]; // (∗)
Axi,j = 1;

}
for (l = 1 to mi) do y′

i,l = new ∃−var;
}
φ∃poly = φ∃poly ∪ φ[x/Ax,y/y′]; // (∗)

The lines marked with (*) need time O(|Φ|). They are executed n1 + ... +
nr + 1 = |∀|+ 1 times, so the algorithm in total requires time O(|∀| · |Φ|).

3.4 Application: Satisfiability Testing

Let Φ(z) ∈ ∃HORN∗ be an existentially quantified Horn formula of the form
Φ(z) = ∃y1...∃ym φ(y1, ..., ym, z). Then Φ(z) is satisfiable if and only if its matrix
φ(y1, ..., ym, z) is satisfiable. The latter is a purely propositional formula, there-
fore a SAT solver for propositional Horn formulas can be used to determine the
satisfiability of an arbitrary formula in ∃HORN∗.

That observation leads to the following algorithm for determining the satis-
fiability of a formula Ψ ∈ QHORN∗:

1. Transform Ψ into Ψ∃poly ∈ ∃HORN∗ with |Ψ∃poly| = O(|∀| · |Ψ |). This re-
quires time O(|∀| · |Ψ |) as discussed in Section 3.3.
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2. Determine the satisfiability of ψ∃poly, which is the purely propositional ma-
trix of Ψ∃poly. It is well known (see [4]) that SAT for propositional Horn
formulas can be solved in linear time, in this case O(|ψ∃poly|) = O(|∀| · |Ψ |).

In total, the algorithm requires time O(|∀| · |Ψ |). The best existing algorithm
presented in [5] has the same complexity, but is significantly more complicated.

4 Conclusion and Outlook

In this paper, we have given two new properties of QHORN∗ formulas:

(1) they can easily be transformed into equivalent purely existentially quantified
formulas of length O(|∀| · |Φ|), (2) they have monotone equivalence models. Both
properties characterize QHORN∗ as a rather simple subclass of QBF ∗ formulas.

Based on these results, a new algorithm for determining the satisfiability of
QHORN∗ formulas in time O(|∀| · |Φ|) has been presented. Further investigation
is needed to determine whether the simplicity of this new algorithm also trans-
lates to better real-world performance than the previously known algorithm.
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Abstract. Many solvers have been designed for QBFs, the validity
problem for Quantified Boolean Formulas for the past few years. In this
paper, we describe a new branching heuristics whose purpose is to pro-
mote renamable Horn formulas. This heuristics is based on Hébrard’s
algorithm for the recognition of such formulas. We present some experi-
mental results obtained by our qbf solver Qbfl with the new branching
heuristics and show how its performances are improved.

1 Introduction

qbf, the validity problem forQBFs, has a growing importance in AI. This can be
explained by the fact that, as the canonical PSPACE-complete problem, many AI
problems can be polynomially reduced to qbf; furthermore, there is some em-
pirical evidence from various AI fields (including among others planning, non-
monotonic reasoning, paraconsistent inference) that a translation-based approach
can prove more “efficient” than domain-dependent algorithms dedicated to such
AI tasks (see [1, 2, 3, 4, 5]). Accordingly, many qbf solvers have been designed and
evaluated for the past few years (see mainly [6, 7, 8, 9, 10, 11, 12, 13, 14]).

Among the few approaches to increase the set of instances that are feasible
from the practical point of view are the restriction-based ones. The key idea
is to recognize instances for which specific algorithms can prove much more
efficient than general qbf solvers. Several tractable restrictions of QBF have
been identified so far. [15, 16] show that quantified Krom formulas (QKF) are
polynomially solvable. [17] proved that quantified Horn formulas (QHF) form
a tractable restriction of QBF . As an easy consequence, quantified renamable
Horn formulas (renQHFs for short), are polynomially solvable too.

The main objective of this paper is to present a new branching heuristics for
qbf solvers based on the DPLL procedure. This new heuristics aims at promoting
the generation of quantified renamable Horn formulas, for which efficient solvers
exist. The rest of this paper is organized as follows. Some formal preliminaries
are given in Section 2. The new heuristics is presented in Section 3. Experimental
results obtained by our qbf solver with this heuristics are reported in section 4.
Finally, Section 5 concludes the paper and gives some perspectives.
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2 Quantified Boolean Formulas

Let V ar(Σ) be the set of variables of the propositional formula Σ. A QBF
formula Σ is said to be prenex if and only if Σ = Qx1(. . . Qxn(φ) . . .) where
each occurrence of Q stands for either ∀ or ∃, and φ does not contain any
quantified occurrence of a variable. φ is said to be the matrix of Σ and the
sequence Qx1 . . . Qxn of quantifications is the prefix of Σ. A formula is said to
be closed if and only if it has no free variable. In this paper, we always consider
a QBF in prenex form with a CNF matrix. We focus in this paper on two
restrictions of QBFs: QHFs and renQHFs.

Definition 1 (Quantified Horn Formula). Clauses of a QHF contain at
most one positive literal.

Our branching heuristics oriented towards the generation of renQHFs is
based on Hébrard’s recognition of renamable Horn formulas [18]. Before pre-
senting it, we first need to recall some notions introduced by Hébrard. Let Σ
be a QBF and let L be a set of literals. L is consistent if it does not contain p
and ¬p for every propositional variable p. L is complete if p belongs to L or ¬p
belongs to L, for all p in V ar(Σ). A renaming R is a complete and consistent
set of literals. R is a Horn renaming for Σ if a QHF formula is obtained when
replacing in the matrix of Σ every occurrence of a literal by its complementary
literal if the negative literal belongs to R.

Definition 2 (⇒, ⇒∗ and Clos(l)).
Let l and t be two literals and Σ a CNF formula being the matrix of a QBF .

– l⇒ t iff ∃ a clause C ∈ Σ s.t. l ∈ C, ¬t ∈ C and l �= ¬t.
– The reflexive transitive closure of ⇒ is denoted by ⇒∗.
– Clos(l) denotes the set {t |l⇒∗ t}.

A set of literals L is said to be closed if Clos(l) ⊆ L, ∀l ∈ L.

Proposition 1. A renaming R is a Horn renaming if and only if it is closed,
i.e. ∀l ∈ R, Clos(l) ⊆ R(Proposition 1.1 from [18]).

A sketch of Hébrard’s variables renaming algorithm is presented in algorithm
1.1.

3 A New Branching Heuristics

The idea of our heuristics is to branch first on variables whose propagation leads
to a renamable Horn formula, or a formula that is “almost” renamable Horn.
We use Hébrard’s algorithm to detect renamable Horn formulas. This algorithm
computes a set of literals to be renamed in order to obtain a Horn formula. If
such a set exists, then we can use Klëıne-Büning polynomial time algorithm [17]
in order to solve the instance. Otherwise, we use the algorithm to measure how
far we are from a renQHF : the greater the measure is, the closer we are from a
renQHF . We call that measure the Contradiction’s distance.
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Algorithme 1.1: Hébrard’s Horn renaming algorithm (on the left) and measure of
the contradiction’s distance δ (on the right)

function RHClos
Input : a QBF Q

Output : ∅ if Q is not Horn renamable,
else a Horn renaming R for Q.

begin
R ← ∅ ;
foreach variable p in Var(Q) do

if p �∈ R and ¬p �∈ R then
if ∀q ∈ Clos(p)\R, ¬q �∈ Clos(p)\R then

# Clos(p)\R is consistent
R ← R ∪ (Clos(p)\R) ;

else if ∀q ∈ Clos(¬p)\R, ¬q �∈
Clos(¬p)\R then

# Clos(¬p)\R is consistent
R ← R ∪ (Clos(¬p)\R) ;

else return ∅ ;

end

function δ
Input : a QBF Q, a litral l

Output : the distance δ of l to a Horn renaming.

begin
Closl ← {l} ;
Distance ← 0 ;
Put(lQueue, l) ;
while not EmptyQueue(lQueue) do

m ← Get(lQueue) ;
LeadsTo ← {¬t|m ⇒ t} ;
foreach e ∈ LeadsTo do

if ¬e ∈ Closl then
return Distance + 1 ;

else if e ∈ Closl then
Closl ← Closl ∪ {e} ;
Put(lQueue, e) ;

Distance ← Distance + 1 ;

return Distance + 1 ;

end

Definition 3 (Contradiction’s distance). The distance from a contradiction
of Horn renamability δl for a literal l in a QBF Q is defined as follows:

δl =

⎧⎨
⎩

0 if �v|l⇒ v
1 if l⇒ t and l⇒ ¬t
1 + min(δv|l⇒ v) otherwise.

The idea behind that distance is that the closer we are to a renamable Horn
formula, the greater the contradiction distance should be.

In order to compute that distance, we need to slightly modify Hébrard’s algo-
rithm: Hébrard’s algorithm performs DFS (Depth-First Search) while ours use
BFS (Breadth-First Search). This is mandatory to ensure that the value returned
by the algorithm is minimal. The right part of the algorithm 1.1 describes such
a computation. It’s in linear complexity (O(n+m), with n the number of literals
and m the number of clauses, considering that size of the clauses is bounded by
a constant).

This distance is often not sufficient to elect a single variable. As a conse-
quence, we refine it using the well-known two-sided Jeroslow-Wang heuristics
[19] with a setting widely used in complete solvers for random k-sat inherited
from POSIT [20]. We restrict the selection of the variables to the outermost
quantifier scope and we branch first on the literal having the greatest contradic-
tion distance.

Definition 4 (Heuristics Δ of Horn Renamability). Let X1 be the outer-
most quantifier group. Our heuristic function Δ is as follows:

– Δx = 1024× δx × δ¬x + δx + δ¬x ;
– the variable x is chosen if x ∈ X1 and, ∀y ∈ X1, (x �= y ⇒ Δx ≤ Δy) ;
– the literal x is finally chosen if δx > δ¬x, ¬x otherwise.
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4 Experimental Results

4.1 Methodology

The empirical results presented in this section have been obtained on PIV 3GHz
computers with 512MB of RAM. In order to compare Qbfl (version 1.7) with
other solvers, we chose to use QuBE-Rel1 (version 1.3) and Semprop2 (version
010604) for those experiments since those two solvers are two state-of-the-art qbf
solvers according to the recent QBF evaluations3 [21] that are freely available. In
the following tables, only the CPU time of instances solved is taken into account.
As a result, it is necessary to also check the number of benchmarks solved in
order to compare the behavior of the solvers.

4.2 “Polynomial” Benchmarks

Our first experiments are on sets of randomly generated QHF and renQHF
benchmarks4 The instances are generated as follows:

QHF for each clause, we randomly choose the size of the clause. Then, a literal
is chosen to be the positive one in the clause. We complete it by randomly
choosing negative literals;

renQHF we first chose the number of variables to be renamed then those vari-
ables are chosen before generating clauses using the same method as the one
used for generating QHFs but renaming the chosen literals.

We chose to use only two alternations of quantifiers, ∀X∃Y , such that |X| > α
with 2 < α < 2/3×#V with #V the number of variables of the formula.

Those benchmarks are sorted by groups of 1000 (resp. 100) instances ofQHFs
(resp. renQHFs). Each instance has 400 variables and we increase the usual
clauses over variables ratio from 3 to 6. The timeout is fixed at 60 seconds. Note
that this timeout is 3 orders of magnitude greater than the CPU time needed by
our dedicated solver for those benchmarks and that similar results were obtained
using a timeout of 300s.

Figure 1 reports empirical comparisons on renQHFs. The behavior of the
solvers is quite similar to the QHFcase. However, those benchmarks look more
difficult for Semprop which fails on 10% of them.

Note that Qbfl does not appear on the graph on the right hand side because
our solver solved all those benchmarks.

We can observe that the runtime used by Qbfl to solve those polynomial
formulas increases slowly and regularly. Those first experiments do not show
that our approach is useful: They only show that our solver can detect and solve
QHF and renQHF formulas quite efficiently and that those formulas are not
trivial for current state-of-the-art qbf solvers. We submitted to the 2005 QBF

1 http://www.star.dist.unige.it/˜qube.
2 http://www4.in.tum.de/˜letz/semprop.
3 Some results of the evaluations are available on http://www.qbflib.org/qbfeval.
4 Generators are available at http://www.cril.uni-artois.fr/˜letombe/qbfg.
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Fig. 1. Comparison between Semprop, QuBE and Qbfl on sets of 100 renamable Horn
random instances

Evaluation the benchmarks on which Semprop failed. It is more interesting to
see how our solver behave on last year QBF evaluation set of benchmarks.

4.3 QBF 2004 Evaluation Benchmarks

We focus first on formulas proposed by G. Pan, translated from modal logic K
from TANCS’98 [22]. Those 378 instances - 9 types of 21 benchmarks valid and
9 not valid - have been proposed for 2003 QBF solvers evaluation and most of
them were classified as hard5. Since 2003, solvers have improved and in the 2004
QBF evaluation classification, those benchmarks appear a bit easier.

Results obtained by Qbfl on those instances are sketched in Table 1. For
each type of instance, the ratio of instances solved over all instances are shown
in column “%solved” and the ratio of renamable Horn formulas reached over all
checks performed are shown in the column “%RH”. Those data are presented
for both Qbfl with Jeroslow-Wang’s and Δ heuristics.

The main observation is that really much more (about twice) benchmarks are
solved by our solver using the heuristic Δ compared with Jeroslow-Wang’s. The
result is impressive, especially for k grz n instances: 30 benchmarks are solved
with Jeroslow-Wang’s heuristic while up to 59 are solved with Δ. Unfortunately,
it is difficult to know if that good behavior is related to the renamable Horn
detection or if the change of heuristics is alone responsible of it. Indeed, we have
no way to compare the number of renamable Horn formulas found during the
search by the two heuristics: reducing the search space also reduces the number
of renamable Horn formulas found.

We tried Δ on some other types of formulas. In the crowd of existing bench-
marks, we tried all instances proposed by A. Ayari (72), C. Castellini (169),
M. Mneimneh and K. A. Sakallah (202), J. Rintanen (67) and C. Scholl and
B. Becker (64)6. The main observation is that Δ does not alter significantly the

5 Hard instances of this evaluation are those solved by one solver or even none.
6 All those benchmarks are available on http://www.qbflib.org.
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Table 1. Percents of benchmarks solved and renamable Horn instances reached

Instance Jeroslow-Wang Renamable Horn Δ
type %solved %RH %solved %RH

k branch n 4.76 25.26 9.52 9.29
k d4 n 4.76 13.25 4.76 5.63
k dum n 4.76 11.69 23.80 11.51
k grz n 0 - 61.90 11.94
k lin n 9.52 20.00 9.52 24.26
k path n 9.52 5.47 14.28 12.12
k ph n 23.80 2.66 23.80 11.73
k poly n 9.52 0 14.28 6.66
k t4p n 4.76 11.37 4.76 26.62
Total valid 7.93 11.21 18.51 13.30

Instance Jeroslow-Wang Renamable Horn Δ
type %solved %RH %solved %RH

k branch p 4.76 24.56 4.76 9.33
k d4 p 9.52 26.33 14.28 25.34
k dum p 4.76 11.71 14.28 11.40
k grz p 0 - 0 -
k lin p 9.52 11.88 19.04 8.65
k path p 14.28 7.43 19.04 7.64
k ph p 19.04 10.06 19.04 6.89
k poly p 4.76 12.91 9.52 11.04
k t4p p 0 - 4.76 26.02
Total false 7.40 14.98 11.64 13.28

Instance Jeroslow-Wang Renamable Horn Δ
type %solved %RH %solved %RH

Total valid 7.93 11.21 18.51 13.30

Total false 7.40 14.98 11.64 13.28

Total 7.67 13.09 15.07 13.29

behavior of Qbfl without it: Among the 283 instances solved using the Jeroslow-
Wang heuristics, only 14 instances were not solved using Δ. Taking into account
the Pan benchmarks, Qbfl equipped with Δ perform better than without it.

5 Conclusion

Our work focuses on the practical use of tractable restrictions of QBF in solvers.
We proposed a heuristics based on Hébrard’s algorithm to detect Horn renam-
ability. We noticed that in practice current qbf solvers are not able to solve
in reasonable time some instances of QHF or renQHF . Quantor[23], which is
a solver somehow different from the other qbf solvers, performs also badly on
those benchmarks.

In contrast, we tried some classical sat solvers on the very same benchmarks
(without the prefix): They can solve them easily. An explanation is that the
extra complexity in the qbf case is due to the constraint on the prefix that
most solvers try to satisfy first. We are currently investigating the behavior of
Audemard and Säıs solver [14] on those benchmarks: Their solver considers last
that constraint. Unfortunately, first experimental results show that even this
solver can’t easily solve those instances.

We are waiting for the results of the 2005QBF evaluation to gather additional
information that could help us to explain the behavior of the tested solvers.
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Abstract. We give a randomized algorithm for testing satisfiability of
Boolean formulas in conjunctive normal form with no restriction on
clause length. Its running time is at most 2n(1−1/α) up to a polyno-
mial factor, where α = ln(m/n) + O(ln ln m) and n, m are respectively
the number of variables and the number of clauses in the input formula.
This bound is asymptotically better than the previously best known
2n(1−1/ log(2m)) bound for SAT.

1 Introduction

During the past few years there has been considerable progress in obtaining
upper bounds on the complexity of solving the Boolean satisfiability problem.
This line of research has produced new algorithms for k-SAT. They were further
used to prove nontrivial upper bounds for SAT (no restriction on clause length).

Upper bounds for k-SAT. The best known upper bounds for k-SAT are based
on two approaches: the satisfiability coding lemma [8, 7] and multistart random
walk [10, 11]; both give close upper bounds on the time of solving k-SAT. The
randomized algorithm in [10] has the (2 − 2/k)n bound where n is the num-
ber of variables in the input formula; the randomized algorithm in [7] has a
slightly better bound. The multistart-random-walk approach is derandomized
using covering codes in [2], which gives the best known (2− 2/(k + 1))n bound
for deterministic k-SAT algorithms. For small values of k, these bounds are im-
proved: for example, 3-SAT can be solved by a randomized algorithm with the
1.324n bound [6] and by a deterministic algorithm with the 1.473n bound [1].

Upper bounds for SAT (no restriction on clause length). The first nontrivial up-
per bound for SAT is given in [9]: the 2n(1−1/2

√
n) bound for a randomized algo-

rithm based on the satisfiability coding lemma. A close bound for a deterministic
algorithm is proved in [3]. A much better bound for SAT is the 2n(1−1/ log(2m))

bound, where m is the number of clauses in the input formula. This bound is
due to Schuler [12] who gives a randomized algorithm that solves SAT using the
k-SAT algorithm [8] as a subroutine. Schuler’s algorithm is derandomized in [4].
The derandomization gives a deterministic algorithm that solves SAT with the
same bound.
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c© Springer-Verlag Berlin Heidelberg 2005

.



An Improved Upper Bound for SAT 401

In this paper we improve the 2n(1−1/ log(2m)) bound: we give a randomized
algorithm that solves SAT with the following upper bound on the running time:

2
n

(
1− 1

ln(m
n )+O(ln ln m)

)
(1)

Idea of the algorithm. Our algorithm for SAT is basically a repetition of a
polynomial-time procedure P that tests satisfiability of an input formula F .
If F is satisfied by a truth assignment A, the procedure P finds A with proba-
bility at least p. As usual, repeating P on the input formula O(1/p) times, we
can find A with a constant probability.

When describing P, we view clauses as sequences (rather than sets) of literals.
We divide each clause into blocks of length k. More exactly, for a given integer
k ≥ 1, a clause l1, l2, . . . , ls is divided into b = �s/k� blocks as follows:

l1, . . . , lk, lk+1, . . . , l2k, . . . lk(b−1)+1, . . . , ls

where each block (except the last one) consists of k literals. By the first block
we mean the block consisting of l1, l2, . . . , lk. We say that a block is true under
an assignment A if at least one literal in the block is true under A; otherwise we
say that the block is false under A. If A is fixed, we omit the words “under A”.

Let F consist of clauses C1, . . . , Cm; let A be a fixed satisfying assignment to
F . The procedure P is based on the following dichotomy:

Case 1. The input formula F has “many” clauses in which the first block is
false. We suppose that the number of such clauses is greater than or equal
to some d. If we choose a clause Ci from C1, . . . , Cm at random, the first
block in Ci is false with probability at least d/m. Then we can simplify F
by assigning “false” to all literals occurring in the first block of Ci.

Case 2. The input formula F has “few” clauses in which the first block is false.
We suppose that the number of such clauses is less than d. Then we find
A as follows. First, we guess those clauses in which the first block is false.
Furthermore, we guess a true block in each such clause. Now we know a true
block for each clause: it is either the first block or the block we have guessed.
Let F ′ be the formula made up of these m true blocks. Obviously, F ′ is in
k-CNF. Therefore we can use a k-SAT algorithm to find A.

This dichotomy suggests that P is a recursive procedure that invokes a sub-
routine S for processing Case 2. If the subroutine does not return a satisfying
assignment, P simplifies the input formula (Case 1) and recursively invokes itself
on the simplified formula. Both P and S use k and d as parameters.

Clearly, the success probability of P depends on values of the parameters k
and d. What values of k and d maximize the success probability? We show that
if we take k ≈ log(m/n) + O(log log(m)) and d ≈ n/ log3 m then we obtain the
following lower bound on the success probability:

2
−n

(
1− 1

ln(m
n )+O(ln ln m)

)
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In Sect. 2 we describe the procedure P and the subroutine S. In Sect. 3 we
define our algorithm for SAT and sketch a proof of bound (1) on its running
time (see [5] for the full proof).

2 Procedure P and Subroutine S
2.1 Notation

We deal with Boolean formulas in conjunctive normal form (CNF). By a variable
we mean a Boolean variable that takes truth values t (true) or f (false). A
literal is a variable x or its negation ¬x. If l is a literal then ¬l denotes the
complement literal, i.e. if l is x then ¬l denotes ¬x, and if l is ¬x then ¬l
denotes x. Similarly, if v denotes one of the truth values t or f, we write ¬v to
denote the complement truth value. A clause C is a sequence of literals such
that C contains no complement literals. A formula F is a set of clauses; n and
m denote, respectively, the number of variables and the number of clauses in F .
If each clause in F contains at most k literals, we say that F is a k-CNF formula.

An assignment to variables x1, . . . , xn is a mapping from {x1, . . . , xn} to
{t, f}. This mapping is extended to literals: each literal ¬xi is mapped to the
truth value complement to the value assigned to xi. We say that a clause C is
satisfied by an assignment A (or, C is true under A) if A assigns t to at least
one literal in C. Otherwise, we say that C is falsified by A (or, C is false under
A). The formula F is satisfied by A if every clause in F is satisfied by A. In this
case, A is called a satisfying assignment for F .

Let F be a formula and l1, . . . , ls be literals such that their variables occur
in F . We write F [l1 = f, . . . , ls = f] to denote the formula obtained from F by
assigning the value f to all of l1, . . . , ls. This formula is obtained from F as follows:
the clauses that contain any literal from ¬l1, . . . ,¬ls are deleted from F , and the
literals l1, . . . , ls are deleted from the other clauses. Note that F [l1 = f, . . . , ls = f]
may contain the empty clause or may be the empty formula.

Let A and A′ be two assignments that differ only in the values assigned to a
literal l. Then we say that A′ is obtained from A by flipping the value of l.

By SAT we mean the following computational problem: Given a formula F
in CNF, decide whether F is satisfiable. The k-SAT problem is the restricted
version of SAT that allows only clauses consisting of at most k literals.

We write log x to denote log2 x.

2.2 Description of S
Both procedures S and P use the parameters k and d; their values will be
determined in the next section.

Suppose that an input formula F has a satisfying assignment such that F
has only “few” (< d) clauses in which the first block is false under this assign-
ment. Then the subroutine S finds such an assignment (with some probability
estimated in Sect. 3). The subroutine takes two steps:
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1. Reduction of F to a k-CNF formula F ′ such that any satisfying assignment
to F ′ satisfies F .

2. Use of a k-SAT algorithm to find a satisfying assignment to F ′.

At the first step, S guesses all “bad” clauses for some satisfying assignment A,
i.e. clauses in which the first block is false under A. More exactly, the subroutine
guesses a (possibly) larger set of clauses: a set {B1, . . . , Bd−1} such that all “bad”
clauses are contained in this set. For each clause Bi, the subroutine guesses a
true block in Bi. Thus, the subroutine gets a true block for each clause in F –
the guessed true blocks for B1, . . . , Bd−1 and the first blocks for the other clauses
in F . These true blocks make up F ′. It is obvious that A satisfies F ′.

To test satisfiability of k-CNF formulas at the second step, S uses a ran-
domized polynomial-time algorithm that finds a satisfying assignment with an
exponentially small probability. We choose Schöning’s algorithm [10] to perform
this testing (we could choose any algorithm that has at least the same suc-
cess probability, for example the algorithm [7] based on the satisfiability coding
lemma). More exactly, we use “one random walk” of Schöning’s algorithm, which
has the success probability at least (2− 2/k)−n up to a constant [11].

Note that if d = 1, i.e. there is no “bad” clause, then S simply finds a
satisfying assignment to the k-CNF formula made up of the m first blocks.
Also note that the smaller d, the higher the probability of guessing a formula
consisting of true blocks.

Subroutine S

Input: Formula F with m clauses over n variables, integers k and d.
Output: Satisfying assignment or “no”.

1. Reduce F to a k-CNF formula F ′ as follows:
(a) Choose d− 1 clauses B1, . . . , Bd−1 in F at random.

Comment: Guess a set that contains all “bad” clauses.
(b) For each Bi, choose a block in Bi at random and replace Bi by the chosen

block.
Comment: Guess a true block in each Bi and replace Bi by this true
block.

(c) Replace each clause not belonging to {B1, . . . , Bd−1} by its first block.
Comment: The first block in each “good” clause is assumed to be true.

2. Test satisfiability of F ′ using one random walk of length 3n (see [10] for
details):
(a) Choose an initial assignment a uniformly at random;
(b) Repeat 3n times:

i. If F ′ is satisfied by the assignment a then return a and stop;
ii. Pick any clause C in F ′ such that C is falsified by a. Choose a literal

l in C uniformly at random. Modify a by flipping the value of l.
(c) Return “no”.
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2.3 Description of P
The procedure first calls Subroutine S. The result of S depends on which case
of the dichotomy holds.

1. For every satisfying assignment A (if any), the input formula F has “many”
(≥ d) clauses in which the first block is false under A. Then the subroutine
never finds A.

2. For a satisfying assignment A, the input formula F has “few” (< d) clauses
in which the first block is false. Then the subroutine returns a satisfying
assignment with its success probability.

The “no” answer from S is treated as Case 1 of the dichotomy. Therefore, the
procedure P simplifies F and recursively invokes itself on the simplified formula.
To simplify F , the procedure chooses a clause C at random from the “long”
clauses in F , i.e. the clauses that have more than one block. Then P assigns
f to all literals in the first block of C and reduces F to F [l1 = f, . . . , lk = f].
Why can we restrict the choice to “long” clauses? Because if the input formula
is satisfiable then all one-block clauses must be true.

Procedure P
Input: Formula F with m clauses over n variables, integers k and d.
Output: Satisfying assignment or “no”.

1. Invoke S on F , k, and d.
Comment: If there are less than d “bad” clauses, the subroutine returns a
satisfying assignment (with its success probability) and stops.

2. Choose clause C at random from those clauses in F that have more than
one block.
Comment: We guess a “long” clause in which the first block is false.

3. Simplify F by assigning f to all literals of the first block in C. Namely, if the
first block of C consists of l1, . . . , lk, reduce F to F [l1 = f, . . . , lk = f].
Comment: We simplify F by eliminating the guessed variables.

4. Recursively invoke P on F [l1 = f, . . . , lk = f].
5. Return “no”.

Note that Schuler’s algorithm [12] can be viewed as a special case of P: take
d = 1, k = log(2m), and use a different method for testing k-CNF formulas at
step 2 in S (the algorithm based on the satisfiability coding lemma [8] instead
of Schöning’s algorithm).

3 Main Result

Given an input formula F and some values of k and d, Procedure P finds a fixed
satisfying assignment A or returns “no”. What is the probability of finding A?
We prove the following lower bound on the success probability of P:(√

m

3e

)
(emn)−(d−1) 2−n(1− log e

k ) (2)
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where n and m are respectively the number of variables and the number of
clauses in F . The proof is more or less straightforward, but technical. We omit
it here due to space limitation, see [5] for the full proof.

What values of k and d maximize bound (2) for given n and m? The analysis
in [5] shows that for n and m such that 10 ≤ n < em ≤ 2

3
√

n/2, the maximum is
attained when k and d are chosen as follows:

k0 =

⌈
log

(
em
n

)
+ 3 log log(em)

1 + log e
log3(em)

⌉
d0 =

⌈
n

log3(em)

⌉
(3)

Using these values of the parameters, we define our main algorithm as a rep-
etition of P. The number r of repetitions is taken so that the success probability
of P is amplified to a constant probability. Namely, we substitute k0 and d0 in
lower bound (2) and take the inverse:

r =
⌈(

3en√
m

)
2n

(
1− log e

k0+2

)⌉
(4)

Algorithm A
Input: Formula F in CNF with m clauses over n variables.
Output: Satisfying assignment or “no”.

1. Compute k0 and d0 as in (3) and r as in (4).
2. Repeat the following r times:

(a) Run P(F, k0, d0);
(b) If a satisfying assignment is found, return it and stop.

3. Return “no”.

Theorem 1. Algorithm A runs in time

O(n3m) 2n
(
1− log e

k0+2

)
For any satisfiable input formula such that 10 ≤ n < em ≤ 2

3
√

n/2, Algorithm A
finds a satisfying assignment with probability greater than 1/2.

Proof (see [5] for details). To prove the first claim, we need to estimate the
running time of P. The procedure recursively invokes itself at most �n/k0� times.
Each call scans the input formula and eliminates at most k0 variables. Therefore,
the procedure performs O(n) scans. Algorithm A repeats P at most r times,
which gives the bound in the claim.

The success probability of A is at least 1 − (1 − q(n,m))r where q(n,m) is
the result of substituting k0 and d0 in lower bound (2), i.e. q(n,m) is a lower
bound on the success probability of P for n, m, k0, and d0. Then the second
claim follows from the inequality (1− x)r ≤ e−xr. ��
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Remark 1. Note that we can write the bound in Theorem 1 as

O(n3m) 2
n

(
1− 1

ln(m
n )+O(ln ln m)

)
.

Remark 2. Our algorithm can be viewed as a generalization of Schuler’s algo-
rithm [12]. The latter is derandomized with the same upper bound on the running
time [4]. It would be natural to try to apply the same method of derandomization
to our algorithm. However, the direct application gives a deterministic algorithm
with a much worse upper bound. Is it possible to derandomize Algorithm A with
the same or a slightly worse upper bound?
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Abstract. Current algorithms for bounded model checking (BMC) use SAT 
methods for checking satisfiability of Boolean formulas. These BMC methods 
suffer from a potential memory explosion problem. Methods based on the valid-
ity of Quantified Boolean Formulas (QBF) allow an exponentially more suc-
cinct representation of the checked formulas, but have not been widely used, 
because of the lack of an efficient decision procedure for QBF. We evaluate the 
usage of QBF in BMC, using general-purpose SAT and QBF solvers. We also 
present a special-purpose decision procedure for QBF used in BMC, and com-
pare our technique with the methods using general-purpose SAT and QBF 
solvers on real-life industrial benchmarks. Our procedure performs much better 
for BMC than the general-purpose QBF solvers, without incurring the space 
overhead of propositional SAT. 

1   Introduction1 

Model checking is a technique for the verification of the correctness of a finite-state 
system with respect to a desired behavior. The system is traditionally modeled as a la-
beled state-transition graph, and the behavior is specified by a temporal logic formula. 
Early implementations, based on explicit-state model checking, suffered from the 
state explosion problem. The introduction of symbolic model checking with binary 
decision diagrams (BDDs) and other recently developed methods, such as Bounded 
Model Checking (BMC), succeeded in partially overcoming this problem and enabled 
industrial applications of model checking for real-life systems, mostly in the hardware 
design industry. However, all these methods still suffer from the potential memory 
explosion problem on modern test cases. In this work we evaluate the application of 
Quantified Boolean Formulas (QBF) in BMC of safety properties in attempt to avoid 
the memory explosion problem. We also present a special-purpose purpose QBF deci-
sion procedure for a QBF encoding of BMC problems. 

Assume a system M=(S, I, TR), where S is the set of states, I is the characteristic 
function of the set of the initial states, and TR is the transition relation. Let F be a 
characteristic function of the “bad” states violating the property being checked. As in 
classical BMC, the fact that a “bad” state Zk is reachable from an initial state Z0 in ex-
actly k steps may be formulated by “unrolling” the transition relation k times: 
                                                           
1 Due to space constraints references have been omitted in this text. 
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The validity of this formula may be proved or disproved by applying a SAT decision 
procedure on its propositional part. Noticeably, the number of copies of the transition 
relation TR in this formula is the same as the number of steps being checked. When 
iteratively increasing the bound k, each successive iteration checks reachability of the 
final states in one more step than the previous iteration. Thus, for a complete check, 
the SAT procedure must be invoked on formulas containing an exponential number of 
copies of the transition relation.  

To partially overcome the potential memory explosion, the following QBF formu-
lation of the bounded reachability problem can be used: 

0 1 1 0

1

1

0

( , ) ,..., : ( ) ( )

, : ( ) ( ) ( , ).

k k k k

i i

k

i

R Z Z Z Z I Z F Z

U V U Z V Z TR U V

−

+

−

=

= ∃ ∧ ∧

∀ ↔ ∧ ↔ →∨  (2) 

The formula (2) contains only one copy of the transition relation. Increasing the 
bound, thus, would mean an addition of a new intermediate state and a term of the 
form (U↔Zi)∧(V↔Zi+1). Hence, the formula increase from iteration to iteration does 
not depend on the size of the transition relation, which is usually the biggest formula 
in the specification of the model. 

2   jSAT Decision Procedure 

An experimental evaluation of general-purpose QBF solvers on formulas of form (2), 
presented in section 3, found them very inefficient, as they failed to solve practically 
any of the formulas in our test bench. This fact motivated the development of a spe-
cial-purpose decision procedure, called jSAT, for formulas of this form. 

jSAT holds in memory the encoding variables representing the states Z0, Z1, …, Zk, 
U and V, but only holds the following propositional formula: 

0( ) ( , ) ( ).kI Z TR U V F Z∧ ∧  (3) 

The states Zi (0 i k) represent a path; the states U and V represent two neighboring 
states in that path. Instead of explicitly storing the fact that U and V represent a pair of 
neighboring states, as done in (2) with assistance of the terms of the form 
(U↔Zi)∧(V↔Zi+1), our algorithm implicitly assumes this information.  

jSAT is based on the classic DPLL algorithm widely used in the current state-of-
the-art SAT and QBF solvers. Intuitively, jSAT algorithm can be seen as a depth-first 
search in the state graph of the system from the initial states to the final ones. The al-
gorithm starts by associating U with Z0 and V with Z1; thus the formula (3) becomes 
semantically equivalent to: 

0 0 1( ) ( , ) ( ).kI Z TR Z Z F Z∧ ∧  (4) 
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jSAT() { 

    InitializeCurrentAndNextStates(); 

    while (true) { 

        if (! SelectDecisionVariable()) { 

            if (AllStatesDecided()) return true; 

            if (! AdvanceCurrentState()) return false; 

        } 

        while (! BCP()) { 

            if (! ResolveConflict()) return false; 

        } 

    } 

} 

Fig. 1. Pseudo-code of jSAT decision procedure 

The states Z0 and Z1 are then chosen by finding an assignment to their encoding vari-
ables, if possible, so that Z0 is an initial state and Z1 is its successor. As soon as they 
are chosen, the algorithm makes Z1 to be the current state and Z2 to be the next one: U 
becomes an alias to Z1, and V becomes an alias to Z2. The algorithm proceeds in this 
fashion until all states are successfully chosen, or until it discovers that such a choice 
is impossible.  

The pseudo-code of the algorithm is shown on Fig. 1. The algorithm first initializes 
the states U and V to be associated with Z0 and Z1, respectively. The procedure Se-
lectDecisionVariable() selects a still unassigned variable out of the encoding variables 
of the current state or, if all the encoding variables of the current state are assigned, 
from those of the next state. We restrict the decision strategy to selecting decision 
variables in the order of the states in the path: encoding variables of the state Z0 are 
selected first, then the variables of Z1, then the variables of Z2, and so on. Such a re-
striction causes the algorithm to implement a depth-first search of the state graph and 
to “visit” only the states actually reachable from the initial states. The order of the se-
lection of the encoding variables within one state is not important, and heuristics simi-
lar to the ones used in SAT/QBF solvers can be used. 

SelectDecisionVariable() returns true if the decision is made successfully. Boolean 
Constraint Propagation is then performed by the procedure BCP(), which returns false 
in case of a conflict. If a conflict is produced, ResolveConflict() attempts to analyze it 
and backtrack to a previous decision level. In case the conflict cannot be resolved the 
algorithm terminates and the given formula is reported invalid. 

SelectDecisionVariable() returns false whenever all the encoding variables of the 
current and the next states have been decided. If at this point all the states have been 
decided, as determined by the call to AllStatesDecided(), then a path has been found 
from an initial state to a final one, and the algorithm terminates, reporting the given 
formula is valid. Otherwise, if undecided states remain, AdvanceCurrentState() 
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ResolveConflict() { 

    nBacktrackingLevel = AnalyzeConflict(); 

    if (nBacktrackingLevel < 0) return false; 

    nFirstUndecidedPathState = Backtrack(nBacktrackingLevel); 

    if (! RetractCurrentAndNextStates(nFirstUndecidedState)) 

        return false; 

    return true; 

} 

Fig. 2. Pseudo-code of jSAT decision procedure 

advances U and V to the next pair of states by associating U with whatever was previ-
ously associated with V, and associating V with the next state in the path. During this 
operation new relations between the encoding variables become apparent. Thus, for 
example, when U and V are moved from the pair of states (Z0, Z1) to the next pair (Z1, 
Z2), the relations between the encoding variables of Z1 and Z2 become explicit in 
TR(U, V). Since the newly discovered information may contradict some of the already 
made decisions, conflicts may arise during the adjustment operations. The procedure 
AdvanceCurrentState() returns false in case a conflict occurred that could not be re-
solved; in this case the algorithm terminates and the given formula is invalid. 

Fig. 2 shows the pseudo-code of ResolveConflict() procedure. The call to Ana-
lyzeConflict() checks whether the conflict is resolvable, and if yes, produces a con-
flict clause and returns the decision level to which to backtrack. Then, by the call to 
Backtrack(), the algorithm undoes the assignments made on the decision levels higher 
than the level to which the algorithm should backtrack. Backtrack() returns the earli-
est state among all the states, which does not have all its encoding variables assigned 
after the backtracking. If this earliest state is the one currently associated with U (i.e. 
is the current state) or an earlier one, U and V are retracted by RetractCurren-
tAndNextStates(), so that V is associated with the earliest undecided state in the path. 
This retraction implements the retreating step of the depth-first search in the state 
graph, so that the search is directed into another part of the graph.  Noticeably, as with 
the operation of advancement of the current and the next states, the retraction may 
also produce conflicts, because the relations that were not explicit in the formula be-
come explicit. RetractCurrentAndNextStates() returns false in case an irresolvable 
conflict occurred during the operation. 

An important aspect of our algorithm follows from the fact that U and V represent 
different states at different points of time. It is therefore generally incorrect to produce 
learned conflict clauses that involve the encoding variables of U or V, or any artificial 
variable resulting from the translation of TR(U, V) to CNF, as they will become use-
less as soon as U and V are adjusted to represent another pair of states. Therefore, the 
learned clauses must be formulated in terms of the encoding variables of Zi. Our con-
flict analysis technique achieves this by using only decision variables in the learned 
clauses, somewhat similar to Last UIP learning scheme described in. 
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3   Experimental Results 

We have implemented jSAT algorithm to measure its applicability to the problem of 
BMC. We used a bounded model checker to generate formulas of the forms (1), (2) 
and (3). The formulas of form (1) were generated in DIMACS format and could be 
fed into many available SAT solvers. The formulas of forms (2) were generated in 
QDIMACS format and could be fed into the available QBF solvers. The formulas of 
form (3) were generated in a slightly customized DIMACS format, which adds the 
specification of the encoding variables to the formula description; our implementation 
of jSAT reads this modified DIMACS format. 

Table 1. Number of instances solved by each solver per test case. There is a total of 18 
instances in each test case, corresponding to BMC problems with bounds 3 to 20. SAT and 
UNSAT instances are shown separately. '-' sign specifies that there are no instances with the 
specific result for the corresponding test case 

SAT UNSAT SAT UNSAT SAT UNSAT
test08 10 - 16 - 18 - 18

test12 11 18 - 18 - 18 -

test10 12 - 18 - 18 - 18

test03 39 18 - 18 - 18 -

test06 160 - 1 - 12 - 18

test09 160 18 - 18 - 18 -

test05 199 - 0 - 18 - 18

test11 220 14 4 14 4 14 4

test04 626 0 1 4 2 13 2

test13 662 18 - 18 - 18 -

test02 914 - 0 - 13 - 18

test07 1055 0 - 11 - 17 -

test01 2013 18 - 5 - 11 -

104 40 106 85 127 96

# vars

Total (out of 234)

jSat Base zChaff

144 191 223  

We used a set of thirteen proprietary Intel® model checking test cases of different 
sizes to compare the run-time and memory consumption of the different BMC meth-
ods. For each test case we generated formulas of all kinds for the bounds in range 
from 3 to 20, resulting in the total amount of 234 formulas of each kind. Some of the 
formulas of form (3) were publicly disclosed and participated in the QBF solver 
evaluation during SAT2004 conference. We used a dual Intel® Xeon™ 2.8 GHz 
Linux RH7.1 workstation with 4GB of memory for the experiments, and set a 600 
second time out and 1 GB memory limits on all solvers. 

We first used QuBE state-of-the-art QBF solver to solve formulas of form (2) for 
all the test cases and to compare its run-time to the run-time of SAT solvers on the 
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corresponding instances of form (1). We discovered that QuBE was able to solve only 
a few of the 234 formulas within the set time limits.  This fact served as our motiva-
tion for the development of jSAT. We expected that jSAT, as a special-purpose deci-
sion procedure, would demonstrate memory consumption as low as the general-
purpose QBF solvers, but a better run-time. We did not expect that jSAT run-time 
would be as good as that of the SAT solvers on the corresponding instances. 

Fig. 3. Number of instances solved by each solver vs. the CPU time consumed 

Our implementation is based on an existing solver2 (base solver), which is reported 
to have slightly slower performance than zChaff. To perform a fair analysis we chose 
to compare our algorithm to that base solver, but also provide a comparison to zChaff 
II, as one of the best-known state-of-the-art solvers. 

Table 1 shows the sizes of the test cases in terms of the state variables in the model, 
and the number of formulas each of the solvers successfully coped with (QuBE has been 
omitted in this table for brevity). The numbers of solved SAT and UNSAT instances are 
shown separately. (We use the terms “SAT” and “UNSAT” in case of jSAT for consis-
tency, even though jSAT solves a QBF. SAT result in this case means that the instance 
was proved valid; UNSAT means it was proved invalid.) Interestingly, jSAT’s results 
are especially close to those of the base solver on SAT instances, where jSAT managed 
to solve 104 versus 106 instances solved by the base solver. 

On UNSAT instances, the distance between jSAT and the base solver is much 
more significant. Fig. 3 graphically shows the run-time performance of the solvers. 
The x-axis shows the number of instances solved, and y-axis shows the time taken to 
solve a particular instance; the curve is obtained by sorting the run-times in an as-
cending order. It is evident that jSAT significantly outperformed the general-purpose 
QBF solver QuBE. It still did not achieve the same run-times as the SAT solvers, 
though in the biggest test case test01 (see Table 1) it managed to solve in seconds all 
the instances, which required a much longer time for the other solvers. Also it is no-

                                                           
2 Y. Feldman, N. Dershowitz, Z. Hanna. “Parallel Multithreaded Satisfiability Solver: Design 

and Implementation”. Workshop on Parallel and Distributed Model Checking (PDMC), 2004. 
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ticeable that on most of the instances that jSAT succeeded to solve the run-time 
achieved by jSAT is similar to that of the SAT solvers. However, jSAT performance 
degrades much faster than that of the SAT solvers when coming to the more complex 
instances: the slope of the performance curve of jSAT is much higher than that of the 
other solvers. 

jSAT
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Fig. 4. Memory consumption of each solver on the instances generated for the test case test13 

Fig. 4 graphically shows the memory consumed by jSAT, the base solver and 
zChaff when solving instances generated from the test case test13, which is the largest 
test case fully solved by all the three tools. The x-axis shows the BMC bound, and the 
y-axis shows the memory consumed when solving the corresponding instance. The 
run-time of jSAT on these instances varied from 1 to 3 seconds; the run-time of 
zChaff 1 to 6 seconds; and the run-time of the base solver from 3 to 146 seconds. As 
expected, the graph indicates that jSAT memory consumption practically does not de-
pend on the BMC bound being solved, while for SAT-based BMC approaches the 
memory consumption is proportional to the bound. The same behavior has been ob-
served on the other test cases, including those that jSAT fails to complete. 

4   Conclusions 

We have presented an evaluation of the usage of QBF in BMC, comparing a classical 
SAT-based BMC method to one using a QBF encoding of the problem, which avoids 
the memory explosion problem because it does not require the “unrolling” of the transi-
tion relation. We found that modern state-of-the-art general-purpose QBF solvers are 
still unable to handle the real-life instances of BMC problems in an efficient manner. 

As the main contribution of our work, we presented a special-purpose QBF deci-
sion procedure for the solution of QBF instances encoding BMC problems in form 
(2). A performance evaluation of our algorithm shows that it achieves the expected 
memory savings, and succeeds to solve significantly more instances than a general-
purpose QBF solver. Still, jSAT does not achieve run-times as short as the state-of-
the-art SAT solvers on the corresponding SAT instances of the same problems, even 
though on some benchmarks it shows similar, and sometimes better, run-times. 
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Abstract. This paper presents a new technique to derive an initial static
variable ordering for efficient SAT search. Our approach not only exploits
variable activity and connectivity information simultaneously, but it also
analyzes how tightly the variables are related to each other. For this pur-
pose, a new metric is proposed - the degree of correlation among pairs of
variables. Variable activity and correlation information is modeled (im-
plicitly) as a weighted graph. A topological analysis of this graph gener-
ates an order for SAT search. Also, the effect of decision-assignments on
clause-variable dependencies is taken into account during this analysis.
An algorithm called ACCORD (ACtivity - CORrelation - ORDering) is
proposed for this purpose. Using efficient implementations of the above,
experiments are conducted over a wide range of benchmarks. The results
demonstrate that: (i) the variable order generated by our approach signif-
icantly improves the performance of SAT solvers; (ii) time to derive this
order is a fraction of the overall solving time. As a result, our approach
delivers faster performance as compared to contemporary approaches.

1 Introduction

An important aspect of CNF-SAT is to derive an ordering of variables to guide
the search. The order in which variables (and correspondingly, constraints) are
resolved significantly impacts the performance of SAT search procedures. Vari-
able activity and clause connectivity are often considered as qualitative and
quantitative metrics to model clause-variable dependencies. Activity of a vari-
able (or literal) is defined as the number of its occurrence among all the clauses
of a given SAT problem [1]. Most conventional SAT solvers [2] [3] [4] employ
variable/literal-activity based branching heuristics to resolve the constraints.

Connectivity of constraints has also been used as a heuristic approach to
derive variable orderings for SAT search. Loosely speaking, two clauses are
said to be ”connected” if one or more variables are common to their support.
Clause connectivity can be modeled by representing CNF-SAT constraints as
(hyper-) graphs and, subsequently, analyzing the graph’s topological structure.
Tree decomposition techniques have been proposed in literature [5] [6] for analyz-
ing connectivity of constraints in constraint satisfaction programs (CSP). Such
techniques identify decompositions with minimum tree-width, thus enabling
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a partitioning of the overall problem into a chain of connected constraints. Re-
cently, such approaches have also found application in those problems that can
be modeled as DPLL-based CNF-SAT search [6] [7]. Various approaches operate
on such partitioned tree structures by deriving an order in which the partitioned
set of constraints are resolved [6] [7] [8] [9] [10] [7] [11] [10]. Recently, Durairaj
et. al. [12] proposed hypergraph bi-partitioning based constraint decomposition
scheme (HGPART) that employs both variable activity and clause connectivity
simultaneously to derive a variable order.

The above connectivity/tree-decomposition/partitioning-based methods that
guide SAT diagnosis have one or more of the following limitations: (i) they
suffer from large compute times to search the variable order [5] [9] [6]; (ii) the
quality of the variable order does not consistently improve the performance of
SAT solvers [9] [11]; (iii) there is no direct control over the decomposition [12].
Another limitation of these techniques is that while they do analyze variable
activity, clause connectivity or both, however, they do not analyze how tightly
the variables are connected to each other. As a result, tightly connected, hard
problems may not realize the run-time improvements.

To overcome the above limitations , this paper presents a new approach to de-
rive an initial static ordering for SAT search by rigorously analyzing constraint-
variable dependencies. Moreover, we analyze the effect of decision-assignments
on the variable order and exploit this effect to further improve the order. Exper-
imental results demonstrate that our approach is faster and more robust than
the contemporary variable ordering techniques, and it improves the performance
of SAT solvers (in many cases by orders of magnitude).

2 ACCORD: Activity-Correlation Based Ordering

It is our desire to derive a variable order for SAT search by analyzing clause-
variable relationships. The importance of branching on high activity variables is
well understood [1]. Analyzing the connectivity of constraints is also important
for constraint resolution. Contemporary techniques address both of the above
issues. However, ‘how tightly are the variables related?’ - this feature too should
not be overlooked. For this purpose, we propose a metric that measures how
tightly the variables are connected/related. We define this metric as follows:

Definition 2.1. Two variables xi and xj are said to be correlated if they ap-
pear together (as literals) in one or more clauses. The number of clauses in
which the pair of variables (xi, xj) appear together is termed as their degree of
correlation.

In our approach, the constraint-variable relationship of a given CNF-SAT
problem is modeled as a weighted graph. The variables (as opposed to literals)
form the vertices, while edges denote the correlation/connectivity between them.
Associated with each variable is its activity, which is modeled as an integer value
within the node. The edge weights represent the degree of correlation between
the variables/vertices. For example, if two variables xi, xj appear together in n
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Fig. 1. An example CNF and its Weighted Graph - Edge weights denote the degree of
correlation between the variables (vertices). Variable activity depicted within the node

clauses, then the weight of the edge eij connecting them is n. An ordering of the
nodes (variable order) can be performed by analyzing the graph’s topology. We
now describe our approach by means of an example corresponding to the CNF-
SAT problem shown in Fig. 1(a). Its corresponding weighted graph is depicted
in Fig. 1(b).

We begin the search by first selecting the highest active variable, i.e. the
node that has the highest internal weight. The variable is marked and the node is
added to a set called supernode. The variable is also stored in a list (var ord list).
The SAT tool should branch on this variable first. It can be observed from the
graph (weight within the nodes) that the activity of variables {e, u, g, v} is the
highest (= 5). We select one of these variables (randomly or lexicographically)
as the initial branching variable. Let us select the variable u, shown in Fig. 1(b)
as “First Selection.” The variable u becomes the supernode. Now we need to
identify the set of variables connected to this supernode u. Note that, when
the solver branches on this variable u, it will assign u = 1. This is because the
activity of its positive literal is greater than that of negative. Hence, all the
clauses corresponding to the literal u will be satisfied due to this assignment.
In order to exploit this behaviour, our algorithm determines connectivity only
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from the clauses in which literal ū appears. For this purpose, the incident edges
on the node u are split into two edges corresponding to the literals and their
correlation as shown in Fig. 1(c). The dotted edge corresponds to the negative
literal (ū). All the nodes that share at least one edge with the supernode (ū) are
identified. The nodes {g, c, a, b} are connected to the literal ū, as shown in Fig.
1(c). One of these variables {g, c, a, b} is to be selected as the next branching
variable. We consider the degree of correlation, modeled as edge weights, as the
metric to identify this variable. The nodes that share an edge with the supernode
are sorted in decreasing order of the sum of their degrees of correlation with the
nodes in the supernode. In our example, the variables {g, a, b, c} have the same
degree of correlation with node u, which is equal to 1. In order to break this
tie, we further distinguish these variables according to their activity. Since the
activity of variable g is higher than that of variables {a, b, c}, g is selected as
the next branching variable. This is shown in Fig. 1(c) as “Second Selection.”
Moreover, the node g is added to the current supernode set; supernode = {u, g}.
The variable order derived so far is var ord list = {u, g}.

Algorithm 1. Pseudo code for ACCORD
1: INPUT = CNF Clauses and Variable-Clause Database ;
2: /* For each variable xi, the Variable-Clause database contains a list of clauses in

which xi appears */
3: OUTPUT = Variable order for SAT search ;
4: activity list = Array containing activity of each variable ;
5: var order list = Initialize variable order according to activity ;
6: connectivity list = Initialize to zero for all variables ;
7: for (i=0; i != number of variables; i++) do
8: /* Implicitly, supernode = {var order list[0], . . . , var order list[i]} */
9: next var = var order list[i] ;

10: correlation list = find variables connected to least active literal of next var using
Variable-Clause database ;

11: for all var ∈ correlation list do
12: connectivity list[var]++ ; /* Compute correlation */
13: end for
14: adjust variable order(var ∈ correlation list) ;
15: /* Linear sort is used to update the variable order corresponding to both con-

nectivity list as well as activity list */
16: /* Here, {var order list[0], . . . , var order list[i]} is the current variable order*/
17: end for
18: return(var order list) ;

As the next step, those variables are identified that share an edge with the
supernode in the set of unresolved clauses. The activity of the literal ḡ is greater
than the literal g. Hence, only those clauses in which g appears are considered, as
they are unsatisfied. These variables are {v, e, c, a, b} as shown in Fig.1(d) with
highlighted incident edge. Consider the nodes {v, e, a, b}. They share only one
edge with the supernode with weights (correlation) = 1. On the other hand, node
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c has two edges incident on the supernode. Therefore, the correlation modeled
by both edges should be accounted for. This is computed as the sum of the
degrees of correlation between c and the supernode {g, u} = 1+1 = 2. Since this
sum is the highest for c, it is selected as the next branching variable. This is
shown in Fig. 1(d) as third selection. The supernode set and the var ord list are
correspondingly updated. The above procedure is repeated until all the nodes
are ordered and included with in the supernode. The final derived variable order
is {u, g, c, v, e, a, b, w, d}.

Our approach is inspired from the Prim’s Minimum Spanning Tree (MST)
algorithm [13]. We have named it the ACCORD (ACtivity COrrelation
ORDering) algorithm. The Pseudo code for the ACCORD algorithm is pre-
sented in Algorithm 1. The Variable-Clause database, mentioned in lines 1-2, is
implemented using the array of arrays data-structure available within contem-
porary SAT solvers [2] [14]. The algorithm analyzes the clause-variable database,
and for each variable, it computes its correlated variables. Using the activity and
correlation measures, the variable ordering is computed. The time complexity of
ACCORD can be derived as O(V · (V ·C +V 2)), where V represents the number
of variables and C represents the number of clauses.

3 Experimental Results and Analysis

The ACCORD algorithm has been programmed within the zCHAFF [2] solver
using its native data-structures. The algorithm analyzes the constraint-variable
relationships of the given CNF-SAT problem and derive a variable order for SAT
search. Using this as the initial order, the SAT tool (zCHAFF) performs a search
for the solutions. On encountering conflicts, we allow the solver to add conflict-
induced clauses and proceed with its book-keeping and (non-chronological) back-
tracking procedures. In other words, ACCORD provide only an initial static
ordering. zCHAFF’s VSIDS heuristic updates this order dynamically, when con-
flict clauses are added. Hence, our approach is not a replacement for VSIDS; it
is to be used in conjunction with it. Using this setup, we have conducted experi-
ments over a large set of benchmarks that include: i) Microprocessor verification
benchmarks [15]; and ii) some of the hard instances specifically created for the
SAT competition (all three categories - industrial, handmade and random). We
conducted our experiments on a Linux workstation with a 2.6GHz Pentium-IV
processor and 512MB RAM.

Table 1 presents some results that compares the quality of the variable order
derived by ACCORD with those of zCHAFF (latest version developed in 2004)
and hypergraph partitioning (HGPart) based order [12]. For a fair comparison,
zCHAFF is used as the base SAT solver for all experiments - just the variable
orders are different. As compared to zCHAFF and HGPart, the variable order
generated by ACCORD results in a orders of magnitude speedup in SAT solving.
Particularly for more difficult problems, our approach significantly outperforms
the other two.
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Table 1. Run-time Comparison of ACCORD with zCHAFF and HGPART

zCHAFF HGPart + zCHAFF ACCORD + zCHAFF

Bench- Vars/ Solve Var. Solve Total Var. Solve Total
mark Clauses (sec) Time(s)Time(s) Time(s) Time(s)Time(s)Time(s)

3bitadd 31 8432/21K 68.88 3.023 0.55 3.573 0.09 4.1 4.19

3bitadd 32 8704/32K 7.43 3.417 0.67 4.087 0.1 0.02 0.12

clus-2020-1 1200/4800 >1000 1.421 >1000 – 0.01 666.32 666.33

clus-2020-2 1200/4800 688.19 1.81 9.12 10.93 0.04 37.17 37.21

clus-1010-3 1200/4919 >1000 1.701 704.66 706.361 0.01 700.85 700.86

color-10-3 300/6475 129.57 0.375 19.01 19.385 0 25.05 25.05

conn-939 576/6864 135.54 1.196 28.96 30.156 0 0.42 0.42

conn-945 596/7157 581.56 1.145 >1000 – 0.01 98.02 98.03

mm-1x10 1120/7220 654.16 1.057 >1000 – 0.01 237.48 237.49

qwh-35 1597/11K 39.73 1.869 84.59 86.459 0.03 5.58 5.61

unif-r4-2 500/2000 >1000 0.447 >1000 – 0 198.47 198.47

unif-r4-5 500/2000 884.04 0.491 91.88 92.371 0 129.79 129.79

unif-r4-7 500/2000 >1000 0.451 582.53 582.981 0 151.25 151.25

unif-r4-9 500/2000 >1000 0.493 711.65 712.143 0 141.95 141.95

ferry10 2958/21K 3.54 3.549 0.73 4.279 0.04 0.07 0.11

ferry12 4222/32K 238.5 8.189 134.78 142.969 0.09 66.51 66.6

icos-stretch 45/352 102.99 0.199 93.84 94.039 0 78.56 78.56

marg33-ch 41/272 247.73 0.071 142.53 142.601 0 20.01 20.01

marg33add8 41/224 3.44 0.074 1.36 1.434 0 1.29 1.29

marg35 61/280 >1000 0.085 >1000 – 0 289.17 289.17

mm-2x2-50 60/32000 39.8 3.815 31.37 35.185 0.05 24.9 24.95

mm-2x3-66 1698/49K 17.32 4.386 16.48 20.866 0.08 13.55 13.63

urqh1c3x3 41/204 284.48 0.078 8.92 8.998 0 57.96 57.96

urqh2x4 42/336 302.79 0.077 71.07 71.147 0 26.53 26.53

urqh2x5 53/432 >1000 0.117 >1000 – 0 612.96 612.96

urqh1c3x4 58/476 >1000 0.143 196.78 196.923 0 320.62 320.62

rotmul 5980/35K 174.7 5.888 153.26 159.148 0.28 159.53 159.81

9dlx-iq1 25K/261K 504.47 68.83 443.79 512.62 15.69 381.09 396.78

Table 2 depicts some results for the microprocessor pipeline verification bench-
marks. These experiments were conducted using both 2003 and 2004 versions of
the zCHAFF SAT solver. For both experiments, the same variable order derived
by ACCORD is used. Note that, using the ACCORD’s order, zCHAFF-2003 tool
is able to improve the performance significantly. zCHAFF-2004 follows upon its
earlier versions by implementing the efficient conflict analysis procedures pro-
posed by [3]. As a result for these benchmarks, the order generated by ACCORD
gets significantly modified due to the conflict clause resolution [3] and hence, the
impact of ACCORD is minimal.
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Table 2. Run-time Comparison of ACCORD with zCHAFF’03 and zCHAFF’04

zCHAFF ACCORD+ zCHAFF ACCORD+
2003 zCHAFF’03 2004 zCHAFF’04

Bench- Vars/ Solve Var. Solve Total Solve Solve Total
mark Clauses (sec) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

4pipe 5K/80K 129 0.56 56.1 56.66 8.02 11.96 12.52

5pipe 9K/195K 196.53 2.36 54.46 56.82 18.34 16.59 18.95

4pipe k 5K/79K 208.81 0.6 40.85 41.45 8.34 14.53 15.13

5pipe k 9K/189K 871.79 2.25 388.32 390.57 40.75 31.29 33.54

4pipe q0 5K/69K 66.71 0.48 73.86 74.34 6.37 8.59 9.07

5pipe q0 10K/154K 649.9 1.53 214.89 216.42 25.21 26.46 27.99

6pipe 16K/394K >2000 6.53 827.06 833.59 132.82 144.72 151.25

6pipe k 15K/408K 105.52 8.76 141.45 150.21 71.49 57.64 66.4

6pipe q0 17K/315K 104.48 4.88 82.44 87.32 43.37 46.65 51.53

7pipe q0 26K/536K >2000 12.45 1523.16 1535.61 284.97 265.3 277.75

4 Conclusions and Future Work

This paper has advocated the need to analyze constraint-variable relationships to
derive an ordering of variables to guide SAT diagnosis. To analyze the tightness
of the connectivity between variables, we have proposed the degree of correlation
as a qualitative and quantitative metric. Our technique models the constraint
variable dependencies on a weighted graph and analyzes the graph’s topological
structure to derive the order. Our approach is fast, robust, scalable and can
handle a large set of variables and constraints. The variable order derived by
our procedure improves the performance of the solver by one or more orders of
magnitude. As part of future work, we are exploring a dynamic variable order
update strategy to be employed when conflict clauses are added to the database.
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Abstract. We present an improvement to the Hypre preprocessing al-
gorithm that was suggested by Bacchus and Winter in SAT 2003 [1].
Given the power of modern SAT solvers, Hypre is currently one of the
only cost-effective preprocessors, at least when combined with some mod-
ern SAT solvers and on certain classes of problems. Our algorithm, al-
though it produces less information than Hypre, is much more efficient.
Experiments on a large set of industrial Benchmark sets from previ-
ous SAT competitions show that HyperBinFast is always faster than
Hypre (sometimes an order of magnitude faster on some of the bigger
CNF formulas), and achieves faster total run times, including the SAT
solver’s time. The experiments also show that HyperBinFast is cost-
effective when combined with three state-of-the-art SAT solvers.

1 Introduction

Given the power of modern SAT solvers, most CNF preprocessing algorithms are
mostly not cost-effective time-wise. Since these solvers are so effective in focusing
on the important information in a given CNF, it is particularly challenging to
find the right balance between the amount of effort invested in preprocessing
and the quality of information gained, in order to positively impact the overall
solving time.

The best currently available preprocessor that we are aware of is Hypre in
[1], which is cost-effective when combined with some of the modern SAT solvers,
although it fails to be so with very large CNF files. We present a new prepro-
cessing algorithm HyperBinFast for CNF formulas which is an improvement
of the Hypre algorithm. Our algorithm makes the preprocessing of CNF for-
mulas cost-effective time-wise by relaxing the optimality constraints presented
in the original algorithm. Experiments show that giving up optimality generally
improves the overall solving time (preprocessing + SAT). Another advantage of
HyperBinFast is that it is implemented as an anytime algorithm that can be
stopped either according to a predetermined timeout or according to a heuristic
function that decides when to stop it by measuring its progress. Due to limit
of space we refer the interested reader to the full version of this article [2] for a
more detailed description of this heuristic, as well as more experimental results,
comparison to previous work and a detailed comparison to Hypre.
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2 Definitions and Motivation

Definition 1 (Binary Implications graph). Given a CNF formula ϕ with a
set of binary clauses B, a Binary Implications Graph is a directed graph G(V,E)
such that v ∈ V if and only if v is a literal in ϕ, and e = (u, v) is an edge if and
only if B contains a clause (u, v).

A Binary Implications Graph allows us to follow implications through binary
clauses. Note that for each binary clause (u, v), both (u, v) and (v, u) are edges
in this graph. Thus, the total number of edges in the initial (before further
processing) graph is twice the size of B. This is what we refer to as the symmetry
of Binary Implications Graphs. Binary Implication Graphs are Static and are
not related to the standard implication graphs that describe the progress of Unit
Propagation (UP - also known as BCP).

Definition 2 (Binary Transitive Closure of a literal). Given a literal v, a
set of literals denoted by BTC(v) is the Binary Transitive Closure of v if it con-
tains exactly those literals that are implied by v through the Binary Implications
Graph.

Definition 3 (Failed literal). A literal v is called a Failed Literal if setting
its value to TRUE and applying UP causes a conflict.

Definition 4 (Propagation closure of a literal). Given a non-failed literal
u, a set of literals denoted by UP (u) is the Propagation closure of u if it contains
exactly those literals that are implied through UP by u in the given CNF (not
only the binary clauses).

It is easy to see that BTC(v) ⊆ UP (v) for every literal v, because UP (v) is not
restricted to what can be inferred from binary clauses. Note that v ∈ UP (u)
implies that u → v and hence v → u, but it is not necessarily the case that
u ∈ UP (v), due to the limitations of UP. For example, in the set of clauses
(x∨y), (x∨z), (y∨z∨w), it holds that x→ w and hence w → x, but UP detects
only the first direction. It disregards w → x because w does not invoke any unit
clause. Hence, UP lacks the symmetry of Binary Implications Graphs.

3 The HyperBinFast Algorithm

Algorithm HyperBinFast iterates over all root nodes in the Binary Implica-
tions Graph (roots(v) denotes the set of all ancestor roots of v in such a graph).
It has two main stages. In the first stage (lines 4 - 5) it iteratively finds equal
literals (by detecting SCCs and unifying their vertices to a single ‘represent-
ing literal’), propagates unit clauses, and simplifies the clauses in the formula.
Simplification in this context corresponds to substituting literals by their rep-
resentative literal in all clauses (not only binary), removing literals that are
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HyperBinFast
1: Mark all root vertices as weak;
2: while there are weak roots, unit clauses, or binary cycles do
3: while there are unit clauses or binary cycles do
4: Detect all SCCs and collapse each one of them to a single node;
5: Propagate all unit clauses and simplify all clauses accordingly;
6: For each new binary clause (u, v) mark as weak roots(u) and roots(v);
7: Choose a weak root node v;
8: FailedLiteral =FastVisit (v);
9: Undo assignments caused by BinaryWalk and clear nQueue;

10: if FailedLiteral �= undefined then
11: Add unit clause (FailedLiteral);
12: Mark v as strong;

FastVisit (Literal v)
1: res ← BinaryWalk (v, NULL);
2: if res �= undefined then
3: return res
4: while !nQueue.empty() do
5: Literal p ← nQueue.pop front();
6: for each n-ary clause ∈ watched(p) do � n > 2
7: if clause is conflict then
8: Literal fUIP ← FindUIP (clause);
9: return fUIP ;

10: else if clause is unit then
11: Literal toLit ← undefined literal from clause.
12: Literal fromLit ← FindUIP (clause \ {toLit});
13: Add clause (fromLit, toLit)
14: Mark roots(toLit) ∪ roots(fromLit) as weak
15: res ← BinaryWalk (toLit, (fromLit, toLit));
16: if res �= undefined then
17: return res
18: return undefined;

BinaryWalk (Literal t, Antec clause C)
1: if value(t)=True then
2: return undefined;
3: if value(t)=False then
4: return t;
5: value(t) ← TRUE;
6: antecedent(var(t)) ← C;
7: Put t on assignment stack;
8: Put t into nQueue;
9: for each binary clause (t, u) do

10: res ← BinaryWalk (u, (t, u));
11: if res �= undefined then
12: return res;
13: return undefined;

FindUIP (Literal set S)
1: mark all variables in S;
2: count ← |S|;
3: while count > 1 do
4: v ← latest marked variable in the

assignment stack
5: unmark v; count −−;
6: Let (u, L) be antecedent clause of

v, s.t. var(L) = v.
7: if var(u) not marked then
8: mark var(u); count + +;
9: res ← last marked literal in assign-

ment stack.
10: unmark var(res);
11: return res;
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evaluated to false and removing satisfied clauses. The simplification may result
in shortening of some n-ary clauses to binary clauses, which change the Binary
Implications Graph. In line 6 we perform a restricted version of what Hypre
does in such cases: while Hypre marks as weak (i.e. nodes that should still be
processed) all ancestor nodes, HyperBinFast only marks root ancestor nodes.
Further, while Hypre invokes this process every time an n-ary clause is being
shortened, HyperBinFast only does so for clauses that become binary. The
reduced overhead due to these changes is clear. In the second stage (line 8), we
invoke FastVisit for some weak root node, a procedure that we will describe
next. FastVisit can change the graph as well, so HyperBinFast iterates until
convergence.

Computing the Binary Transitive Closure. Before describing FastVisit,
we concentrate on the auxiliary function BinaryWalk, which FastVisit calls
several times. The goal of BinaryWalk is to mark all literals that are in BTC(v)
or return a failed literal, which can be either v itself or some descendant of v.
It also updates a queue, called nQueue with those literals in BTC(v) for future
processing by FastVisit. BinaryWalk performs DFS from a given literal on
the Binary Implications Graph. In each recursive-call, if t is already set to false
(i.e. t is already set to true in the current call to FastVisit), it means that
there is a path in the binary implication graph from t to t, and hence t is a failed
literal. This is a direct consequence of the following lemma:

Lemma 1. In a DFS-traversal on a Binary Implications Graph from a literal u
that marks all nodes it visits, if when visiting a node t another node t is already
marked, and this is the first time such a ‘collision’ is detected, then t

∗→ t.

When BinaryWalk detects such a failed literal it returns t all the way out (due
to lines 11-12) and back to FastVisit and then to HyperBinFast.

The other case is when t does not have a value yet. In this case BinaryWalk
sets it to true and places it in nQueue, which is a queue of literals to be
propagated later on by FastVisit. It also places t in the (global) assignment
stack, and stores for var(t) its antecedent clause (the clause that led to this
assignment), both for later use in FindUIP.

From Binary Transitive Closure to Propagation Closure. We now de-
scribe FastVisit. Recall that FastVisit is invoked for each root node in the
Binary Implications Graph. FastVisit combines Unit Propagation with Binary
Learning based on single assignments, i.e. learning of new clauses by propagating
a single decision at a time. It relies on the simple observation that if u ∈ UP (v)
then v → u. It is too costly to add an edge for every such pair v, u, because this
corresponds to at least computing the transitive closure [1]. Since our stated
goal is to form a binary graph in which UP (v) = BTC(v) for each root node,
it is enough to focus on a vertex u only if u ∈ UP (v) but u �∈ BTC(v). Fur-
ther, given such a vertex u, although adding the edge v → u achieves this goal,
we rather find a vertex w, a descendant of v that also implies u, in the spirit of
the First Unique-Implication-Point (UIP) scheme. The FindUIP function called
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by FastVisit can in fact be seen as a variation of the standard algorithm for
finding first UIPs [4]: unlike the standard usage of such a function in analyzing
conflicts, here there are no decision levels and the clauses are binary. On the
other hand it can receive as input an arbitrary set of assigned literals, and not
just a conflict clause.

In line 4 FastVisit starts to process the literals in nQueue. For each literal p
in this queue, it checks all the n-ary clauses (n > 2) watched by p. As usual, each
such clause can be of interest if it is either conflicting or unit. If it is conflicting,
then FastVisit calls FindUIP, which returns the first UIP causing this conflict.
This UIP is a failed literal and is returned to HyperBinFast, which adds its
negation as a unit clause in line 11. If the processed clause is a unit clause,
the unassigned literal, denoted by toLit, is a literal implied by v that is not
in BTC(v) (otherwise it would be marked as true in BinaryWalk). In other
words, toLit ∈ UP (v) and toLit �∈ BTC(v), which is exactly what we are looking
for. At this point we can add a clause (v, toLit) but rather we call FindUIP,
which returns a first UIP denoted by fromLit. The clause (fromLit, toLit)
is stronger than (v, toLit) because the former also adds the information that
tolit → fromlit. Note that this is an unusual use of this function, because
clause is not conflicting. Because the addition of this clause changes the Binary
Implications Graph, we need to mark as weak all the ancestor nodes of fromLit
and of toLit, and to continue with BinaryWalk from toLit. This in effect
continues to compute BTC(v) with the added clause.

4 Experiments, Conclusions and Future Research

Table 1 shows experiments on an Intel 2.5Ghz computer with 1GB memory
running Linux. The benchmark set is comprised of 165 industrial instances used
in various SAT competitions. The number in brackets for each benchmark set
denotes the number of instances. The global timeout for each instance was set to
3000 seconds. The timeout for HyperBinFast was set to 300 seconds, and for
Hypre was set to 3000 seconds (Hypre is not implemented as anytime, and only
full preprocessing is allowed). The timeout for the SAT solver was dynamically
reduced to 3000 minus the time spent during preprocessing. All times in the
table include preprocessing time when relevant. We count each failure as 3000
seconds as well. We used our experimental solver HaifaSat which participates in
the SAT05 competition and Siege v1 [3]. The full version of this article includes
also a detailed comparison to zChaff 2004. Briefly, zChaff’s total run-time is
212,508 sec. (56 fails) and with HyperBinFast it is 179,997 (44 fails).

The table shows that: 1) HyperBinFast helps each of the tested solvers to
solve more instances in the given time bound on average 2) When the instance
is solvable without HyperBinFast, still HyperBinFast typically reduces the
overall run time 3) Whenever HyperBinFast does not help, its overhead in
time is relatively small 4) It is very rare that an instance can be solved without
HyperBinFast but cannot be solved with HyperBinFast. 5) On average, the
total gain in time is about 20-25% relative to the pure configuration. 6) Some-
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Table 1. Run-times (in seconds) and failures (denoted by ‘F’) for various SAT solvers
with and without HyperBinFast. Times which are smaller by 10% than in competing
configurations with the same SAT solver are bolded. Failures denoted by * are partially
caused by bugs in the SAT solver

SAT solver → HaifaSat Siege v1

Preprocessor → — H-B-Fast Hypre — H-B-Fast Hypre

Time F Time F Time F Time F Time F Time F

01 rule(20) 19,172 2 7,379 0 10,758 1 20,730 4 11,408 1 5,318 0

11 rule 2(20) 22,975 6 7,491 0 21,247 0 29,303 8 17,733 2 20,178 1

22 rule(20) 27,597 8 22,226 5 16,825 2 31,839 10 29,044 9 17,510 3

bmc2(6) 1,262 0 81 0 163 0 3,335 1 85 0 156 0

CheckerI-C(4) 682 0 902 0 989 0 4,114 0 3,541 0 2,492 0

comb(3) 4,131 1 4,171 1 4,056 1 5,679 1 6,027 1 4,439 1

f2clk(3) 4,059 1 4,060 1 3,448 1 6,105 2 6,063 2 5,078 1

fifo8(4) 1,833 0 554 0 1,756 0 5,555 1 2,420 0 1,159 0

fvp2(22) 1,995 0 2,117 0 3,288 0 1,860 0 2,009 0 2,431 0

hanoi(5) 131 0 285 0 119 0 357 0 1,231 0 802 0

hanoi03(4) 427 0 533 0 979 0 6,026 2 6,028 2 6,014 2

IBM02(9) 3,876 0 5,070 0 11,072 3 10,442 4 7,881 0 12,653 3

ip(4) 203 0 172 0 365 0 630 0 548 0 349 0

pipe03(3) 1,339 0 1,266 0 1,809 0 2,006 0 1,275 0 1,822 0

pipe-sat-1-1(10) 3,310 0 5,147 0 27,130 10 2,445 0 5,249 0 30,029 10

sat02(9) 17,330 4 14,797 4 16,669 4 24,182 7 18,843 5 17,662 4

vis-bmc(8) 13,768 3 10,717 2 10,139 2 10,449 2 6,989 1 5,715 0

vliw unsat 2.0(8) 19,425 5 19,862 6 20,421 6 16,983 6 17,891 6 20,375 6

w08(3) 2,681 0 1,421 0 2,899 0 4,387 1 1,711 0 2,726 0

Total(165) 146,194 30 108,251 19 154,132 30 186,426 49 145,978 29 156,910 31

times HyperBinFast is weaker than Hypre (it does not simplify the formula
enough), so the SAT solver fails on the corresponding instance but succeeds after
applying Hypre. 7) With HaifaSat, Hypre is not cost-effective, neither in the
total number of failures or the total run time, while HyperBinFast reduces
HaifaSat’s failures by 35% and reduces its total solving time by 25%.

Preprocessing Vs. SAT : For the above benchmark, it took HaifaSat 97,909 sec-
onds after HyperBinFast and only 54,567 seconds after Hypre, which indi-
cates that indeed the quality of the CNF generated by Hypre is better, as
expected. But these numbers may mislead because, recall, the timeouts for the
two preprocessors are different, which, in turn, is because HyperBinFast is an
anytime algorithm. In Table 2 we list several benchmarks for which both pre-
processors terminated before their respective timeouts, together with the time
it took the preprocessor and then HaifaSat to solve them. Therefore, this ta-
ble shows performance of HyperBinFast comparing to Hypre without taking
into consideration the anytime aspect. To the extent that these instances are
representative, it can be seen that typically the SAT solving time is longer after
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Table 2. Few representative single instances for which both Hypre and HyperBin-
Fast terminated before their respective (different) timeouts. The SAT times refer to
HaifaSat’s solving time. It can be seen that typically the solving time is longer after
HyperBinFast, but together with the SAT solver time it is more cost effective than
Hypre

Benchmark: Hypre SAT HyperBinFast SAT

01 rule.k95.cnf 377 1679 4 1504
11 rule2.k70.cnf 1387 47 71 285
22 rule.k70.cnf 671 251 51 1410
fifo8 400.cnf 164 1226 12 309
7pipe.cnf 651 258 147 416
ip50.cnf 109 82 6 79
w08 14.cnf 1231 5 267 298

Total: 4590 3548 558 4301

HyperBinFast, but together with the SAT solver time it is more cost effective
than Hypre.

Conclusions and future research. Our preprocessor HyperBinFast is a
compromise between the original Hypre and a pure SAT solver: it tries to
benefit from the preprocessing when possible while reducing the overhead when
it is not effective. With HyperBinFast, preprocessing is generally cost-effective
when combined with modern SAT solvers, as is evident from our experiments
with 165 industrial CNF instances from previous SAT competitions. We pointed
to two directions for future research: develop more efficient dynamic strategies for
determining the amount of time spent for preprocessing, and make preprocessing
decide on the set of variables from which it begins its traversal of the Binary
Implications Graph (and not just choose all the root nodes as we do now). This
concept can be generalized to preprocessing in general: while SAT solvers focus
on the semantics of the formula, that is, they attempt to find the ‘important’
variables, preprocessors focus on the syntactical characteristics of the formula,
and are therefore much more sensitive to its size. Hence, attempting to build a
semantic preprocessor seems like a worthwhile direction to pursue next.
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Abstract. Currently best known upper bounds for many NP-hard prob-
lems are obtained by using divide-and-conquer (splitting) algorithms.
Roughly speaking, there are two ways of splitting algorithm improve-
ment: a more involved case analysis and an introduction of a new simpli-
fication rule. It is clear that case analysis can be executed by computer,
so it was considered as a machine task. Recently, several programs for
automated case analysis were implemented. However, designing a new
simplification rule is usually considered as a human task. In this paper
we show that designing simplification rules can also be automated. We
present several new (previously unknown) automatically generated sim-
plification rules for the SAT and MAXSAT problems. The new approach
allows not only to generate simplification rules, but also to find good
splittings. To illustrate our technique we present a new algorithm for
(n, 3)-MAXSAT that uses both splittings and simplification rules based
on our approach and has worst-case running time O(1.2721NL), where N
is the number of variables and L is the length of an input formula. This
bound improves the previously known bound O(1.3248NL) of Bansal and
Raman.

1 Introduction

The splitting method (i.e., estimating the complexity of divide-and-conquer algo-
rithms by recurrent inequalities) is a powerful tool for proving upper bounds for
NP-hard problems. Currently best known upper bounds for many NP-hard prob-
lems are obtained by using exactly this method (SAT [7], MAXSAT [3], XSAT
[2], MAX-CUT [4], Vertex Cover [6]). Formally, a splitting algorithm splits an
input instance of a problem into several simpler instances further simplified by
certain simplification rules, such that by finding the solution for all of them one
can construct the solution for the initial instance in polynomial time.
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In general, there are two ways of splitting algorithm improvement: a more
involved case analysis and an introduction of a new simplification rule . Re-
cently, several programs for automated case analysis were implemented ([6], [5],
[8]). In this paper we present a procedure for generating simplification rules for
the SAT and MAXSAT problems. Our approach is based on defining a partial
ordering on assignments to variables of a formula and allows not only to gener-
ate simplification rules, but also to find good splittings. By using this approach
we construct a new algorithm for (n, 3)-MAXSAT with worst-case running time
O(1.2721NL). The automated proof of the running time of this algorithm is
available at http://logic.pdmi.ras.ru/∼kulikov.

Motivation. We have already mentioned that one of the two main ways of split-
ting algorithm improvement is an introduction of a new simplification rule to
it. This fact already motivates the need for designing new simplification rules.
Also sometimes a new simplification rule does not allow to prove a better upper
bound on the running time of a splitting algorithm, but it allows to significantly
reduce the case analysis included in this algorithm. In general, a new simplifi-
cation rule for, say, the SAT problem can improve the running time of a certain
SAT solver, not necessarily based on the splitting method.

2 General Setting

2.1 The SAT and MAXSAT Problems

The SAT problem is: given a formula in CNF, check whether this formula is
satisfiable, i.e., whether there exists an assignment of Boolean values to all vari-
ables of the formula that makes it True. For example, the formula (xy)(x̄) is
obviously satisfiable, while the formula (xy)(x̄)(xȳ) is not. In the MAXSAT
problem one is asked to find a maximal possible number of simultaneously sat-
isfied clauses of a given formula. For example, this number is equal to 3 for the
formula (xy)(x̄ȳ)(x̄y)(xȳ).

Both SAT and MAXSAT are very well-known NP-hard problems, that have
been attacked by scientists from all over the world for a long time. The currently
best known upper bounds for SAT are O(1.238823K) and O(1.073997L) [7],
and for MAXSAT are O(1.341294K) [3], O(1.105729L) [1], where K denotes
the number of clauses in the input formula, L denotes the length of the input
formula. Note that there are no known upper bounds of the form O(cN ), where
c < 2 is a constant and N is the number of variables in the input formula, for
these problems.

2.2 Simplification Rules

Throughout this paper we consider only simplification rules for SAT and
MAXSAT. In case of SAT by an optimal assignment we mean an assignment to
all variables of a formula that satisfies this formula, in case of MAXSAT we say
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that an assignment is optimal if this assignment satisfies the maximal possible
number of clauses of a formula. Note that in case of MAXSAT any CNF formula
has an optimal assignment, while in case of SAT only satisfiable formulas have
such an assignment.

We say that a simplification rule is applicable to a formula F if it can replace
F by another formula F ′ in polynomial time such that both following conditions
hold:

1. the complexity of F ′ is smaller than the complexity of F ;
2. by constructing an optimal assignment for F ′ one can construct an optimal

assignment for F in polynomial time.

2.3 Class of Formulas

Let C be a clause consisting of literals l1, l2, . . . , lk. We define a clause with
unfixed length as a set of clauses that contains all these literals and probably
some more literals and denote it by (l1l2 . . . lk . . .). We call the literals l1, l2, . . . , lk
the basis of this clause. For example, (l . . .) is the set of all clauses containing
the literal l. In the following we use the word “clause” to refer both to clauses
in its standard definition and to clauses with unfixed length.

Similarly we define a class of formulas. Let C ′
1, . . . , C

′
k be clauses (some of

them may have unfixed lengths). Then a class of formulas is the set of formulas
represented as F = {C1, . . . , Cm}, such that the following conditions hold:

1. m ≥ k,
2. for 1 ≤ i ≤ k, C ′

i ⊆ Ci (as sets of literals), if C ′
i is a clause with unfixed

length, and Ci = C ′
i otherwise,

3. for 1 ≤ i ≤ k, k + 1 ≤ j ≤ m, Cj does not contain any variable from the
basis of C ′

i.

We denote this set by C ′
1, . . . , C

′
k . . . and call the clauses C ′

1, . . . , C
′
k the basis

of this class of formulas. We define two functions CorSet and CorClause (for
corresponding set and corresponding clause) based on this definition:

CorSet(F,F) = {C1, . . . , Ck} ,

CorClause(C ′
i, F,F) = Ci .

The notion of class of formulas allows to explain the fact that a formula
contains occurrences of certain literals. For example, to show that a formula F
contains a (3, 2)-literal one can write the following:

F ∈ (x . . .)(x . . .)(x . . .)(x̄ . . .)(x̄ . . .) . . . .

However, if we want to express the fact that F contains two (1, 1)-literals that
occur together in a clause, we have to write the following:

F ∈ (xy . . .)(x̄ . . .)(ȳ . . .) . . . or F ∈ (xy . . .)(x̄ȳ . . .) . . . .
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For a formula F and a subset S of its variables we define CorClass(F, S) as
a class of formulas resulting from F by replacing all its variables that are not in
S by “. . . ”. Clearly, F ∈ CorClass(F, S). For example,

CorClass((xyz)(x̄)(ȳzu)(ūx)(z̄), {z, u}) = (z . . .)(zu . . .)(ū . . .)(z̄) . . . .

Note that in most situations we can work with a class of formulas in the same
way as with a CNF formula. For example, if we eliminate from the basis of a
class of formulas all clauses that contain a literal x and all occurrences of the
literal x̄ from the other clauses, we obtain the class of formulas resulting from
all formulas of the initial class by setting the value of x to True. Also it is easy
to see that if after assigning a Boolean value to a variable of a class of formulas
or applying a (considered in this paper) simplification rule to it, its complexity
measure decreases by Δ, then the complexity measure of each formula of this
class decreases at least by Δ.

For a class of formulas F and a clause C we define a class of formulas F+{C}
as a class resulting from F by adding the clause C to its basis. Similarly we define
a clause with unfixed length C + {l}, where C is a clause with unfixed length
and l is a literal.

We say that a simplification rule is applicable to a class of formulas, if this
rule is applicable to every formula of this class. For example, each formula of
the class (x)(xȳ . . .)(y . . .) . . . contains a pure literal (i.e., a literal that does not
occur negated in a formula).

3 New Simplification Rules

In this section we present several new simplification rules for the SAT and
MAXSAT problems.

Usually to prove the correctness of a simplification rule that assigns the value
True to a literal x one proves that every optimal assignment that contains the
literal x̄ can be reconstructed into an optimal assignment that contains the literal
x. For example, if x is a pure literal of a formula F then any assignment A � x̄
satisfies not more clauses than the assignment A\{x̄} ∪ {x}. This discussion
motivates the following definition.

Definition 1. Let A1 and A2 be assignments to all known variables of a class of
formulas F . We say that A1 is stronger than A2 w.r.t. F and write A1 �F A2,
if for each formula F ∈ F and for each assignment B to all variables of F the
following condition holds: if A2 ⊂ B, then B satisfies not more clauses of F than
B\A2 ∪A1.

For example, in case of MAXSAT problem if F1 = (x . . .)(x . . .) . . ., then
{x} �F1 {x̄} (due to the pure literal rule), and if F2 = (xy . . .)(x̄)(xȳ . . .)(x̄)
(y . . .)(x . . .) . . ., then {x̄} �F2 {x} (due to the almost dominating unit clause
rule). The given definition is very easy and natural. However, in general, it is
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not clear how to check whether one of the given assignments is stronger than
the other. Below we show that such a check is possible.

Definition 2. Let C be a clause and A be an assignment. We define the function
mark(C,A) as follows:

mark(C,A) =

{ “ + ”, if C contains at least one literal from A;
“− ”, if C has fixed length and for each literal x ∈ C, x̄ ∈ A;
“?”, otherwise.

For example, mark((xyz . . .), {y}) = “ + ”, mark((xȳ), {x̄, y}) = “ − ”,
mark((xȳ), {x̄, z}) = “?”, mark((xȳ . . .), {x̄, y}) = “?”. Informally, mark(C,A)
just tell us whether clauses of C are satisfied by extensions of A.

Theorem 1. Let A1, A2 be assignments to all variables of a class of formulas
F and let

p1 = |{C ∈ F | mark(C,A1) = “ + ”}| ,

p2 = |{C ∈ F | mark(C,A2) = “ + ”}| ,

q = |{C ∈ F | mark(C,A2) = “?”,mark(C,A1) �= “?”}| .

Then, A1 �F A2 iff p1 ≥ p2 + q.

Let us show how this theorem allows to generate simplification rules. We
start with giving several examples. Suppose F ∈ F = (xy)(xȳ)(x̄y)(x̄ȳ . . .) . . ..
In such a case we can replace F by F [x̄, ȳ], since {x̄, ȳ} �F {x, y}, {x̄, y}, {x, ȳ}.
The assignment {x̄, ȳ} satisfies at least three clauses from CorSet(F,F), while
any other assignment to variables x and y satisfies at most three of these clauses.

Consider a slightly more complicated example. Let F = (xy . . .)(x . . .)(x̄ȳ . . .)
(ȳ) . . ., then {x̄, y} �F {x̄, ȳ} and {x, ȳ} �F {x, y}. It means that for any formula
F ∈ F , if there exists an optimal assignment for F , then there exists an optimal
assignment B, such that either {x̄, y} ⊂ B or {x, ȳ} ⊂ B. Thus, we can replace
F by F [y = x̄].

In both given examples we construct a majority set of assignments to all
variables of a class of formulas. Below we formally define this notion.

Definition 3. Let F be a class of formulas, M0 be the set of all possible as-
signments to all variables of F . We say that M ⊂ M0 is a majority set for F
and write M = MajorSet(F), if for any assignment A0 ∈ M0 there exists an
assignment A ∈M , such that A �F A0.

It is easy to see that a majority set is not unique and that, in particular,
M0 (from the definition) is a majority set for F . However, we are interested in
majority sets of small size. We use a greedy algorithm for construction of such
majority sets, its code is given in Fig. 1.

Now we are ready to present the new simplification rule that unifies many
known simplification rules that modify an input formula by assigning a value
to a literal. It is illustrated in Fig. 2. It is easy to see that the running time
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Procedure MSC

Input: A class of formulas F .
Output: A majority set for F .
Method.

1. let M0 = 0
2. let M be the set of all possible assignments to all variables of F
3. in case of SAT: remove from M all assignments A, such that mark(C, A) = “ − ”

for some clause C ∈ F
4. while M �= 0

(a) let A0 be an assignment of M such that |{A ∈ M |A0 �F A}| is maximal
(b) M0 = M0 ∪ {A0}
(c) M = M\{A ∈ M |A0 �F A}

5. return M0

Fig. 1. The greedy algorithm for majority set construction

Procedure GSR(integer c)

Input: A CNF formula F .
Output: A simplified CNF formula F .
Method.
for each subset S of variables of F , such that |S| ≤ c

1. let F = CorClass(F, S)
2. let M = MajorSet(F)
3. if there is a literal x, such that it occurs in every assignment from M , then return

F [x]
4. if there are literals x and y, such that for any assignment A ∈ M , either {x, y} ⊂ A

or {x̄, ȳ} ⊂ A, then return F [x = y]

Fig. 2. The general simplification rule

of this rule is O(L), the correctness is trivial. We call this rule an automated
procedure for generating simplification rules, as one can add this procedure with
any constant parameter into an algorithm. Clearly, if GSR(c1) can simplify a
formula, then GSR(c2) can simplify this formula too, for c1 < c2.

Below we give several new simplification rules, that are particular cases of
GSR.

New simplification rules for MAXSAT:

1. if F ∈ F = (x)(x̄y . . .)(x̄ȳ . . .)(x̄ȳ . . .)(ȳ . . .)(ȳ . . .) . . ., then replace F by F [x]
(since {{x, y}, {x, ȳ}} = MajorSet(F))

2. if F ∈ F = (xyz . . .)(x̄z . . .)(x̄z . . .)(y . . .)(ȳz̄ . . .)(z . . .) . . ., then replace F
by F [x = y] (since {{x̄, y, z̄}, {x, ȳ, z}, {x, y, z}} = MajorSet(F))
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3. if F ∈ F = (x)(x̄yz . . .)(x̄t̄ . . .)(x̄t̄ . . .)(yt . . .)(ȳt̄ . . .)(ȳ . . .)(zt̄ . . .)(z̄ . . .)
(z̄ . . .) . . ., then replace F by F [x] (since {{x, ȳ, t̄}, {x, y, t̄}, {x, ȳ, t}} =
MajorSet(F))

New simplification rules for SAT:

1. if F ∈ F = (xy)(x̄ . . .)(ȳ . . .)(x̄y . . .)(ȳ . . .) . . ., then replace F by F [x = ȳ]
(since {{x, ȳ}, {x̄, y}} = MajorSet(F))

2. if F ∈ F = (xy . . .)(xz . . .)(x̄z̄ . . .)(x̄z̄ . . .)(x̄z̄ . . .)(y . . .)(y . . .)(ȳz . . .)(ȳ . . .)
(z̄ . . .) . . ., then replace F by F [x = z̄] (since {{x, ȳ, z̄}, {x, y, z̄}, {x, ȳ, z̄}} =
MajorSet(F))

Actually our technique allows to find not only simplifications, but also good
splittings. The main idea is that for any formula F ∈ F the splitting F [A1],
F [A2], . . . , F [Ak] is correct, where {A1, A2, . . . , Ak} = MajorSet(F).
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Abstract. This paper describes and compares features and techniques modern 
SAT solvers utilize to maximize performance. Here we focus on: Implication 
Queue Sorting (IQS) combined with Early Conflict Detection Based BCP 
(ECDB); and a modified decision heuristic based on the combination of Vari-
able State Independent Decaying Sum (VSIDS), Berkmin, and Siege’s Variable 
Move to Front (VMTF). These features were implemented and compared within 
the framework of the MIRA SAT solver. The efficient implementation and 
analysis of these features are presented and the speedup and robustness each 
feature provides is demonstrated. Finally, with everything enabled (ECDB with 
IQS and advanced decision heuristics), MIRA was able to consistently outper-
form zChaff and even Forklift on the benchmarks provided, solving 37 out of 
111 industrial benchmarks compared to zChaff’s 21 and Forklift’s 28. 

1   Introduction 

SAT solvers have advanced considerably since the days of the original Davis-Putnam 
(DP) algorithm [5,6]. While the underlying algorithm has not changed, improvements 
in its implementation have made it practical. SAT solvers are now commonly used in 
industrial fields such as EDA. Such features as Early Conflict Detection BCP (ECDB) 
[4], Conflict Analysis [7], watched literals [1,21], advanced decision heuristics, and 
others are what have made SAT solvers practical. Now, while these techniques are 
powerful, they must all be used together in unison, increasing the complexity of mod-
ern SAT solvers. This paper tries to clarify and explain many of the features found in 
modern SAT solvers while including features only found in our MIRA solver such as 
the novel Implication Queue Sorting (IQS). 

The next section focuses on IQS followed by a section on ECDB. Section 4 will dis-
cuss the novel hybrid decision heuristic used in MIRA and how random restarts can be 
used. Section 5 covers conflict analysis and conflict clause database management. After 
presenting the parts of a solver, a comparison of MIRA and other solvers on Industrial 
and Handmade benchmarks are given. Lastly, this paper assumes the reader has a good 
understanding of the inner workings of a SAT solver and it therefore will not present an 
overview of current SAT solvers. An overview can be found in [16]. 
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2   Implication Queue Sorting and the Start of ECDB 

Before discussing IQS and ECDB directly, it is important to understand some of the 
reasons for using it. The idea behind ECDB is to find good conflicts while reducing 
the work the BCP procedure must do in order to find them. However, in most solvers 
the BCP procedure checks many clauses that will rarely or never lead to a conflict. 
This is inefficient and slows down the solver.  

Normally, the BCP starts by checking all clauses that contain the current decision 
variable as a watched literal. As it checks these clauses, it will normally find many 
implications that it will add to the implication queue. When it is done checking the 
current decision variable it will move on and check the first implication in the impli-
cation queue. The problem with this method is that the BCP procedure will check 
many implications that are unrelated to the current search space. So, to try and reduce 
the number of implications the BCP must process, MIRA introduces Implication 
Queue Sorting (IQS). Simply put, the BCP procedure in MIRA uses a heuristic to 
select which implications to check first from the implication queue. This is in contrast 
to other solvers which process the implication queue in chronological order. This 
results in a significant speedup. 

However, to realize this speedup, IQS must be implemented efficiently as it is an 
operation that is performed frequently. Implications are added and removed from the 
queue often, the queue can grow quite large (100’s of implications), and is reset after 
every conflict. In MIRA, a reverse VSIDS algorithm is used when selecting the impli-
cation to check next. Instead of taking the literal with highest score, MIRA selects the 
literal whose complement has the highest score (using the same VSIDS counters as 
the decision heuristic). The idea is that as soon as the BCP starts, the solver is now 
trying to find a conflict, not solve the problem. 

Queue Number Value  Array Location 
   0 1 … m 

4 Score >3  Counter Impl. 0 … Impl. n 
3 Score = 3  Counter Impl. 0 … Impl. n 
2 Score = 2  Counter Impl. 0 …  
1 Score = 1  Counter Impl. 0 … Impl. n 
0 Score = 0  Counter Impl. 0 … Impl. n 

Fig. 1. MIRA’s Implication Queue 

MIRA uses five separate queues to efficiently implement this heuristic as shown 
above. Implications are added to each queue depending on their score. If an implica-
tion has a score of 2, it is inserted into queue 2. The counter variable is then incre-
mented to keep track of the number of implications in that queue. This is true for 
scores 0 to 3. If the score is higher, it is put into queue 4. Using this queue system, it 
is easy to insert (only one comparison is needed), reset (reset the length of each queue 
to 0), or select. Selecting from the queues is simple, as the solver takes a literal from 
the highest nonempty queue. For queues 0 to 3 it can pick any literal, however, if it 
chooses queue 4, the solver must search the entire queue for the best choice. 

The aforementioned queue system was developed after observing MIRA on multi-
ple benchmarks. About 90% of the implications added to MIRA’s implication queue 
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have a score of 0. This is significant, because it means that 90% of the implications 
checked by the BCP procedure have not created or participated in a conflict recently. 
Note, in MIRA the VSIDS counters are even incremented when a variable is looked at 
when creating the implication graph. So, if the implication queue contains 100 literals, 
90 of them will probably have nothing to do with the current search space. The re-
maining 10 nonzero score literals are more interesting, and the solver searches these 
implications first. Queues 1-3 normally take care of approximately 8-9% of the impli-
cations, leaving only 0.5-2% of the literals, which are put into the 4th queue. The 4th 
queue must be searched in a linear manner. Also, when using full ECDB, there is no 
need for an implication queue for literals with a score of zero as these implications are 
already in the decision stack and can be checked in chronological order. 

An implication queue can contain multiple conflicts, some more helpful than oth-
ers. Certain solvers [8] search for multiple conflicts, recording one or multiple con-
flict clauses. Since MIRA checks implications that are more relevant to the current 
search space first (relevant as their scores are higher), it should in theory find conflicts 
that are more related to the current search space. Also, by choosing the implication 
this way, we are trying to unsatisfy clauses. This helps the BCP procedure find more 
unit clauses, causing the implication queue to grow faster, aiding ECDB while also 
giving the IQS algorithm more literals to choose from. 

The overhead required to implement IQS is quite low. Using the data structure 
above, literals can be added in constant time. After a conflict, the queues can also be 
reset in constant time by just resetting the length counter. Approximately 98% of the 
implications can be added, searched for, and removed in constant time. It is only with 
the small last group that a linear search must be performed. During testing, this 
method only searched 1.46 implications on average to decide which literal should be 
checked by the BCP. This equates to approximately zero overhead, and all functions 
relating to IQS require only 1% of the computation time (Gprof) which is an insig-
nificant increase when compared to a solver without IQS, as they still need to add and 
remove literals from an implication queue. 

3   MIRA and Early Conflict Detection BCP 

To try and reduce the work of the BCP, MIRA introduced ECDB. Certain parts of 
ECDB have been implemented in other solvers, but MIRA was the first with a com-
prehensive implementation. MIRA still uses many of the ideas that zChaff introduced 
relating to fast BCP and watched literal lists. Building on the ideas from zChaff, 
MIRA introduced a smarter BCP that detects conflicts sooner by utilizing more of the 
information available to it when it evaluates a clause, thereby reducing the total num-
ber of evaluated clauses. The first part of ECDB was IQS and was described above. 
The following section will give a quick overview of ECDB. 

3.1   Full ECDB 

The ECDB procedure is still similar to zChaff when it traverses the watched literal list 
of the current decision variable. However, as discussed above, MIRA does not go 
chronologically through the implication queue like zChaff does, using IQS instead. 
Full ECDB also tries to utilize all the information in the implication queue. It does 
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this by using the implication queue during the entire process when evaluating a 
clause: choosing a new second watched literal; finding conflicts; or new implications. 
By not ignoring the implication queue during the evaluation of each clause as zChaff 
does, the BCP procedure can make better decisions when changing watched literals. 
MIRA will not replace a watched literal with a literal that is falsely defined in the 
implication queue. This then avoids a re-evaluation of the clause in the near future. 
Also, in the same manner, the implication queue can aid in the evaluation of a clause 
detecting unit clauses earlier. This, with the help of IQS, increases the growth rate of 
the implication queue further aiding the ECDB procedure. This all leads to Full 
ECDB’s ability to detect conflicts sooner.  Details of the implementation and analysis 
of this ECDB procedure without IQS is discussed in [4]. 

3.2   Other BCP Features 

MIRA’s ECDB procedure contains other optimizations. It has a regular ECDB proce-
dure for handling all clauses except single literal clauses. MIRA assigns the literals in 
these type of clauses to decision level 0 and then restarts. This simplifies the regular 
ECDB procedure as it can assume every clause has at least 2 literals. 

MIRA also contains a second BCP for handling binary clauses that are contained in 
the original problem. This is done because a Binary BCP procedure consists only of 
arrays of implications that are forced by a certain decision. These arrays can be proc-
essed very fast and efficiently. The Binary BCP is also run first before the regular 
BCP in order to populate the decision stack with short forcing clauses. This should in 
theory aid the creation of shorter conflict clauses. This type of optimization is also 
done in other solvers (e.g. jerusat [12], zChaff 2004 [8]). 

4   Decision Heuristic and Restarts 

The next area where MIRA differs from zChaff is related to decision making. MIRA 
contains 2 decision strategies, but 3 different heuristics. This is normal as many 
solvers use multiple decision strategies to improve performance [8,14,15,16]. MIRA’s 
first decision strategy is a combination of VSIDS [1] and Berkmin [2]. When VSIDS 
returns a decision with a score of 0, the Berkmin algorithm is used. This is opposite to 
zChaff as we observed that a large number of decisions made by VSIDS have a score 
of 0, especially if the counters are reduced frequently. Decisions made with variables 
with a score of zero are not that helpful. The second decision strategy MIRA uses is 
VMTF [3]. In MIRA, to further increase the robustness of this strategy, literals that 
are part of the conflict analysis but do not appear in a conflict clause are moved up in 
the list by a constant amount, and not to the top like conflict clause literals. MIRA 
switches decision strategies every few restarts, normally making thousands of deci-
sions before switching decision strategies. 

5   Conflict Analysis and Clause Deletion 

The conflict analysis algorithm that is used in MIRA is implemented differently than 
that of zChaff’s in order to handle MIRA’s implication queue, but the results for a 
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give implication graph are the same. Both algorithms generate conflict clauses based 
on the first UIP. The first UIP conflict analysis is well explained in [18]. For a more 
in-depth look at MIRA’s conflict resolution procedure refer to [4]. 

While a conflict resolution procedure is an essential part of any modern SAT 
solver, if left unchecked, the clauses it produces will eventually overwhelm the BCP 
procedure. MIRA uses a clause aging method which is similar to Berkmin. 

6   Results and Comparisons 

MIRA_V2 was written in C++ and compared against zChaff version 2004.11.15. This 
comparison was run on an AMD Opteron 2GHz with 4GB of RAM. Benchmarks 
were selected from the SAT 2004 competition [17]. As there is no source or executa-
ble available for Forklift [20], its results were taken directly from the SAT 2004 com-
petition. The machine used there was an Intel 2.4GHz Pentium 4. 

First, Table 1 starts with the more interesting Industrial benchmarks followed by 
Handmade benchmarks. In the Industrial category MIRA significantly beats zChaff 
and is more robust and consistent when relating to shuffling. Forklift’s performance is 
slightly better, matching MIRA’s performance in 5 categories with the same number 
of problems solved. On problem sets where Forklift tied MIRA on problems solved it 
was normally slightly faster time wise. However, when it comes to total Industrial 
problems solved, Forklift is slower. Note again that Forklift was run on a different 
machine. However, our machine and the Intel machine should produce similar results. 
As for Handmade benchmarks, MIRA does better than either of the other two solvers, 
losing to Forklift only once. 

Table 2 then shows a feature comparison of MIRA. The benchmarks used for this 
table are the Industrial benchmarks from Table 1. The results of this table were made 
by disabling one feature from MIRA at a time to see the impact each feature has on 
performance. The first column is the reference MIRA version with everything enabled 
solving 37 problems. The next column is with only random restarts disabled and eve-
rything else enabled. As can be seen, random restarts help significantly. The No IQS 
column is MIRA without IQS, and only without it. Next, with the Binary BCP dis-
abled all clauses are processed with the normal BCP procedure slowing things down. 
The last two columns compare the two decision strategies. When only VSIDS or 
VMTF is enabled, there are no second decision strategies or implication queue strate-
gies, only the default VSIDS or VMTF is used. First, MIRA’s performance using only 
VSIDS is very similar to that of zChaff with respect to the number of problems 
solved. MIRA’s performance with VMTF is very similar to that of Forklift. The point 
of this table is to show that without all the features enabled, it is very hard to solve 
over 30 instances. To solve the hard instances, all features must be enabled. 

7   Conclusion 

This paper presented advanced techniques used in current SAT solvers. It showcased 
novel ideas developed that allowed MIRA to achieve the performance and robustness 
that it does. The ideas presented here when used in unison can allow a SAT solver to 
achieve significant speedup. This was clearly shown in Section 7 when comparing 



442 M.D.T. Lewis, T. Schubert, and B.W. Becker 

 

MIRA to other modern solvers. Lastly, this paper was written to try and lower the 
barrier to entry for new solvers by explaining what current solvers do, hopefully al-
lowing more solvers to be more competitive, and thereby advancing the entire field. 
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Table 1. MIRA vs zChaff 

zChaff 15.11.2004 MIRA_V2 ForkLift  
Industrial 

 
# of 
In-

stances 

# 
Solved 

Time # 
Solved 

Time # 
Solved 

Time 

Hoonsang 
/vis-bmc 

8 3 3534,62 3 3614,92 3 3295,98 

./shuffling-1 8 3 3461,61 3 3563,82 3 3228,91 

./shuffling-2 8 2 3861,59 3 3612,49 2 3764,52 
Vangelder 
/cnf-color 

12 1 6600,50 4 5255,62 3 5406,83 

./shuffling-1 12 1 6600,08 4 5055,02 2 6005,58 

./shuffling-2 12 1 6600,21 4 5324,48 3 5770,96 
Velev 
/pipe-sat-1-1 

12 3 4596,59 6 3371,43 3 4368,47 

./shuffling-1 12 4 4570,03 4 4533,03 4 4460,95 

./shuffling-2 12 3 5098,19 4 4629,25 4 4430,39 
Simon03/sat02bis-
shuffling-1 

10 0 6000,00 1 5489,85 0 6000,00 

Schuppan03/l2s-
shuffling-2 

11 0 6600,00 1 6367,17 1 6398,40 

        
Subtotal 111 21 57523,42 37 50817,08 28 53730,99 
        
Handmade        
Anton/l3k3 9 9 202,36 9 144,28 9 160,57 
Anton/l4k4 9 3 3838,81 4 3844,03 2 4662,42 
Connamacher 
/connm-d0.00 

9 2 4687,35 2 4712,75 1 4817,25 

Connamacher 
/connm-d0.04 

9 6 1859,29 6 1812,55 6 1851,12 

Gom16/bqwh 8 0 4800,00 1 4408,05 0 4800,00 
Kexu/frb-0.8 12 0 7200,00 2 6377,02 3 6359,62 
        
Subtotal 56 20 22587,81 24 21298,68 21 22650,98 
        
Total 167 41 80111,23 61 72115,76 49 76381,97 

Table 2. MIRA Feature Comparison 

 MIRA_V2 No 
Restarts 

No IQS No 
BinBCP 

Only 
VSIDS 

Only 
VMTF 

Problems 
Solved 

37 28 31 30 22 29 
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Abstract. This paper describes a novel Field Programmable Gate Ar-
ray (FPGA) logic synthesis technique which determines if a logic function
can be implemented in a given programmable circuit and describes how
this problem can be formalized and solved using Quantified Boolean Sat-
isfiability. This technique is general enough to be applied to any type of
logic function and programmable circuit; thus, it has many applications
to FPGAs. The applications demonstrated in this paper include FPGA
technology mapping and resynthesis where their results show significant
FPGA performance improvements.

1 Introduction

FPGAs are integrated circuits characterized by two distinct features: program-
mable logic blocks and programmable interconnect structures. An example of a
programmable logic block (PLB) is shown in Fig. 1. The logic block is composed
of a 4-input lookup table (4-LUT) that is capable of implementing any arbitrary
Boolean function of 4 variables.

In general, many modern PLBs are based on the k-input lookup table (k-
LUT) which contains 2k SRAM bits. Although the k-input LUT is very flexible,
it is usually beneficial to add dedicated non-programmable logic to the PLB

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

Configuration IN

Configuration OUT

16:1 D Q

R
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A

D

B
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Reset

Clock

SRAM BIT
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Fig. 1. A basic FPGA PLB
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such as adders and XOR/AND-gates [1]. These features increase the number of
functions that can be implemented by a PLB without the power, speed, and
area costs associated with programmable logic. However, because this reduces the
flexibility of the PLB, optimal mapping of functions to these non-programmable
components is difficult.

The cost of implementing a circuit in an FPGA is directly proportional to the
number of PLBs required to implement the functionality of the circuit. FPGAs
are sold in a number of pre-fabricated sizes. Decreasing the number of PLBs
may allow a circuit to be realized in a smaller FPGA.

The technology mapping step of the FPGA CAD flow takes a gate-level
representation of a circuit and produces a netlist of PLBs which implements
the same functionality as the gate-level description. Technology mapping has
a significant impact on the number of PLBs required to realize a particular
circuit. In this paper we will show how methods based on Quantified Boolean
Satisfiability solve this problem.

The goal technology mapping step is to reduce area, delay, or a combination
thereof in the PLB network that is produced. The process of technology mapping
is often treated as a covering problem. This is illustrated in Fig. 2 which shows
a possible covering using 4-LUTs. The process illustrated in Fig. 2 is much

a b c d e

f g

a b c d e

f g

a b c d e

f g

LUT LUT

(a) (b) (c)

x x

Fig. 2. (a) The initial netlist. (b) Possible covering. (c) The mapping produced

more difficult for general PLBs since not every cone can be implemented in a
PLB. Thus, a legality check must be done to discard illegal cones found in the
covering. We pose this problem as a Quantified Boolean Formula (QBF) which
can be solved using Quantified Boolean Satisfiability (QSAT).

2 Formalizing FPGA Technology Mapping

Assuming that a programmable circuit can be represented as a Boolean function
Gcircuit = G(x1..xn, L1..Lm, z1..zo) where xi, Lj , zk, Gcircuit represent the input
signals, configuration bits, intermediate circuit signals, and output function of
the circuit respectively, the problem of function mapping into programmable
logic can represented formally as a QBF as follows.
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∃L1...Lm∀x1...xn∃z1...zo(Gcircuit ≡ Ffunction) (1)

A satisfying assignment to Equ. 1 implies that Ffunction can be realized in the
programmable circuit. A detailed explanation of this can be found in [7, Ch.2].

In order to derive Equ. 1, the proposition (Gcircuit ≡ Ffunction) must be
represented as a CNF Boolean formula. This can be done using a well known
derivation technique that converts logic circuits into a characteristic function in
CNF [6]. This CNF formula describes all valid inputs, output, configuration bits,
and internal signal vectors for the configurable circuit. For example, consider
Fig. 3. It shows the basic CNF formula for an AND gate.

A
Z

B

F1(A, B, Z) = (A + Z) · (B + Z) · (A + B + Z) (2)

Fig. 3. AND gate CNF formulae

Equ. 2 will be satisfied if and only if the variables representing each input,
output, and internal wires hold a feasible logic representation. For the single
AND gate, this includes all input and output combinations that are consistent
with the AND function (e.g. (A = 0, B = X,Z = 0), (A = X,B = 0, Z = 0) or
(A = 1, B = 1, Z = 1).

The previous conversion technique for the AND structure can be extended to
much larger circuits such as PLBs. This creates a characteristic function, Ψ ,
dependent on variables x1, ..., xn, L1, ..., Lm, z1, ..., zo, and G which represent
the inputs, programmable bits, intermediate wires, and output of the circuit
respectively. The proposition (Gcircuit ≡ Ffunction) can be formed using Ψ by
substituting all instances of the output variable G in Ψ with the expression
representing Ffunction. As an optional step, the quantifiers in Equ. 1 can be
removed to form a SAT problem [7, Ch.2]. This, however, is only practical for
a small number of input variables (x1...xn) but often is faster in solving the
original QBF.

3 Quantified SAT FPGA Applications

3.1 Application 1: General Technology Mapping

Our first application of QSAT is technology mapping. We developed an algo-
rithm called SATMAP1 that is based upon IMap [8, Ch.4], an iterative k-LUT

1 The quantifiers in the QBF were removed so SAT could be used to solve the cone
problem. This turned out faster than using naive QSAT.
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technology mapping algorithm. For a detailed description of IMap please refer
to [8, Ch.4]. The key difference between SATMAP and IMap is how SATMAP
generates cones. IMap only dealt with k-LUTs, hence all cones with k-inputs or
less (k-feasible cone) were legal; however, SATMAP is a PLB technology map-
per, thus not all k-feasible cones are legal. After a set of all k-feasible cones is
generated, in contrast to IMap, SATMAP adds a QBF based legality check to
every cone where cones that cannot fit into the PLB structure are discarded.

3.2 Application 2: Area-Driven Resynthesis for k-LUTs

When resynthesizing a LUT network for area, one must attempt to reduce the
number of LUTs in the network yet maintain the original functionality. The
more LUTs that can be removed, the farther the original circuit was from the
optimal mapping. Removing LUTs can be achieved by resynthesizing smaller
subcircuits and applying this in a sliding window fashion over the larger circuit.
These subcircuits form a cone, therefore by resynthesizing several cones, this will
reduce the LUT count of the overall LUT network. This is simply a logic fitting
problem where a logic function is extracted from a cone consisting of X k-input
LUTs and then is checked if it can fit into a programmable structure containing
less than X k-input LUTs. This can be solved using our QSAT technique.

To illustrate this process, consider Fig. 4. The original cone 4a consists of
three 2-LUTs which implements a three input function. Since only three inputs
enter the cone, it may be possible to resynthesize 4a into 4b to save one LUT.

2-LUT

2-LUT

2-LUT

2-LUT2-LUT

(a) Original Cone (b) Resynthesized Cone

Fig. 4. Resynthesis of three-input cone of logic

To determine if resynthesis from 4a to 4b is possible, 4b is converted into a
QBF and the function extracted from 4a is tested using QSAT to see if it fits
into 4b. If the expression is satisfiable, resynthesis can occur.

4 Results

4.1 Technology Mapping to Apex20k PLB

The results of SATMAP for PLB technology mapping are shown here. The
PLB of choice was the 5-input Altera Apex20k PLB which consists of a 4-LUT
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4-LUT

Apex 20K PLB

4-LUT

Fig. 5. Two Apex20k PLBs with routing constraints shown

feeding into a 2-input AND gate. A simplified view, shown in Fig. 5, is used in
our experiments. Although a simplified PLB was used, routing constraints were
maintained. These constraints required the PLB AND-input to come from an
adjacent PLB as illustrated in Fig. 5.

Tab. 4.1 shows the total depth and area costs for the largest 20 MCNC
benchmark circuits. The results clearly show that SATMAP 2 is an effective
tool for technology mapping to PLBs as it outperforms any 4-LUT technology
mapper. For depth the unit delay model is used and for area cost each 4-LUT
is given a cost of 1. Area cost uses the assumption that the area of an AND gate
is insignificant compared to the area of a 4-LUT. The upper table show results
when depth was the primary optimizing goal and the lower table show results
when area was the primary optimizing goal. The Ratio is the Total ratio when
compared against SATMAP for each respective goal.

Table 1. Comparing SATMAP to IMap, FlowMap-r3, and ZMap with k = 4

Depth Orientated k = 4
SATMAP IMap FlowMap-r0 ZMap
Area Depth Area Depth Area Depth Area Depth

Total 35073 203 37856 206 42219 204 39043 203
Ratio 1.000 1.000 1.079 1.015 1.204 1.005 1.113 1.000

Area Orientated k = 4
SATMAP IMap FlowMap-r3 ZMap
Area Depth Area Depth Area Depth Area Depth

Total 33364 298 34859 307 35950 243 35883 295
Ratio 1.000 1.000 1.045 1.030 1.078 0.815 1.076 0.990

4.2 Resynthesis Results

For the resynthesis application, we performed resynthesis on circuits produced by
the ZMap techmapper — one of the best publically available FPGA area-driven

2 The applications presented in this paper were incorporated with the Berkeley MVSIS
project [3].
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techmappers developed by J. Cong et al. at UCLA [4]. Given a set of circuits,
we used ZMap to technology map these circuits to 4-LUTs. After some post
processing done by RASP [4] to further improve area, we ran our resynthesizer
on these LUT networks.

The number of resynthesis structures is countless; however, considering that
the runtime of QSAT is exponential to the number of resynthesis structure in-
puts, for practical purposes, our work dealt with cones of fanin size 10 or less.
Since we decided to remove quantifiers in our QBF, resynthesis checking was
done using the Chaff SAT solver developed by M. W. Moskewicz et al. [9].

Benchmark Circuits. In our first set of resynthesis experiments, we focused
on a set of circuits taken from the MCNC and ITC’99 benchmark suites ([11],[5]).
These circuits were optimized using SIS [10] and RASP, technology mapped with
ZMap, and resynthesized with our work. The optimization in SIS is particularly
important since the structure of the gate-level netlist can have a significant im-
pact on the mapped area. The left hand table in Tab. 4.2 shows the results.
The ZMap column indicates the number of 4-LUTs the circuit was technol-
ogy mapped to. The Resynth column indicates the number of 4-LUTs after our
resynthesis.

Building Block Circuits. In our second set of resynthesis experiments, we
focused on common digital circuit logic blocks. We started from Verilog code,
synthesized it using VIS [2], then optimized and techmapped the circuits as in
the benchmark circuit section.

The right hand table in Tab. 4.2 shows our results, where we achieve a re-
duction as large as 67% and an average reduction of 26%. Since these logic
blocks are common in digital circuits, heuristics can be used to identify them
and technology map them to our optimized circuits.

Table 2. Resynthesis results for benchmark circuits and common logic blocks

Circuit Resynth ZMap Ratio

clma 4792 5014 0.95
b15 1 4112 4291 0.95
b15 1 opt 3772 3879 0.97
s38584.1 3454 3771 0.91
s38417 3444 3586 0.96
b14 2902 3072 0.94
frisc 2571 2624 0.98
pdc 1875 1928 0.97
misex3 1156 1184 0.98
seq 1162 1182 0.98
alu4 1103 1129 0.98
ex5p 968 993 0.97
i10 764 789 0.97

Total 32075 33442 0.96

Building Block Resynth ZMap Ratio

4:1 MUX 2 3 0.67
16:1 MUX 21 29 0.72
32-Bit Priority Encoder 59 74 0.80
4-Bit Barrel Shifter 8 12 0.67
16-Bit Barrel Shifter 32 48 0.67
6-Bit Set Reset Checker 2 3 0.67
2-Bit Sum Compare Const 2 6 0.33
2-Bit Sum Compare 2 3 0.67
6-Bit Priority Checker 3 6 0.50
8-Bit Bus Multiplexor 16 24 0.67

Total 188 253 0.74
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5 Conclusion and Future Work

In this work, we have shown a practical application of Quantified Boolean Sat-
isfiability to the problem of cost reduction of FPGA-based circuit realizations.
First we presented a generic technology mapping that is capable of mapping
a circuit description to any arbitrary logic block. This allows for the study of
architectural features that can be used to reduce the number of PLBs required
to implement a circuit. In particular, we have shown that the use of an extra
dedicated AND-gate can lead to significant area reductions in many cases; Sec-
ond, we presented a method to reduce the number of k-input LUTs required to
implement subcircuits for LUT-based FPGA architectures. We have shown area
reductions of up to 67% in some cases using these techniques. This technique
can be used to find other optimal configurations for small digital circuits which
can be used in a step after technology mapping to replace logic blocks with their
optimal configuration.
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Abstract. The utilization of cutting planes is a key technique in Integer
Linear Programming (ILP). However, cutting planes have seldom been
applied in Pseudo-Boolean Optimization (PBO) algorithms derived from
the Davis-Logemann-Loveland (DLL) procedure for Propositional Satis-
fiability (SAT). This paper proposes the utilization of cutting planes
in a DLL-style PBO algorithm, which incorporates the most effective
techniques for PBO. We propose the utilization of cutting planes both
during preprocessing and during the search process. Moreover, we also
establish conditions that enable clause learning and non-chronological
backtracking in the presence of conflicts involving constraints generated
by cutting plane techniques. The experimental results, obtained on a
large number of classes of instances, indicate that the integration of cut-
ting planes with backtrack search is an extremely effective technique for
PBO.

1 Introduction

In this paper we address algorithms for Pseudo-Boolean Optimization (PBO)
and focus on exploiting effectively the information provided by the cost func-
tion. Our objective is to use this information for pruning the search space.
Hence, we propose to augment SAT-based PBO algorithms with bounding ca-
pability, associated with information obtained from the Pseudo-Boolean (PB)
constraints and from the cost function1. Moreover, we propose to extend a SAT-
based PBO algorithm with lower bounding, that uses linear programming relax-
ation for compute lower bounds [2], and integrate the identification of cutting
planes in this algorithm. We also establish conditions for learning new con-
straints from conflicts associated with cutting planes. Furthermore, we show
that these new constraints can be used for performing non-chronological back-
tracking. Experimental results, obtained on representative problem instances,
illustrate the effectiveness of integrating cutting planes in SAT-based algorithms
for PBO.

1 An extended version of this paper is available in [1].

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 451–458, 2005.
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2 Preliminaries

An instance P of the Pseudo-Boolean Optimization problem can be defined as
follows:

minimize
∑

j∈N

cj · xj

subject to
∑

j∈N

aij lj ≥ bi,

xj ∈ {0, 1}, aij , bi ∈ N+
0 , i ∈M

N = {1, . . . , n},M = {1, . . . , m}

(1)

where cj is a non-negative integer cost associated with variable xj , j ∈ N and
aij denote the coefficients of the literals lj in the set of m linear constraints.

Every pseudo-boolean formulation can be rewritten such that all coefficients
aij and right-hand side bi be non-negative. In a given constraint, if all aij co-
efficients have the same value k, then it is called a cardinality constraint, since
it only requires that �bi/k� literals be true. A pseudo-boolean constraint where
any literal set to true is enough to satisfy the constraint, can be interpreted as a
propositional clause. This occurs when the value of all aij coefficients are greater
than or equal to bi. If every constraint can be interpreted as a propositional
clause then P is an instance of the binate covering problem (BCP). Covering
formulations have been the subject of thorough research work [3].

Notice that a linear pseudo-boolean optimization problem can also be viewed
as a special case of linear integer programming problem. The linear integer pro-
gramming formulation for the constraints can be obtained if we replace literals
x̄j by 1 − xj . Throughout the paper we refer extensively to backtrack search
algorithms. In addition, the PB inference techniques of [4] are assumed.

3 Pseudo-Boolean Optimization Algorithms

Given that PBO is a restriction of generic ILP, all algorithms proposed in the past
for ILP can also be used for PBO. Among these, complete approaches include
branch-and-bound with linear programming relaxations [5], cutting planes [6],
branch-and-cut [7], and branch-and-bound [3]. Besides algorithms for generic
ILP, algorithms specific to PBO have also been proposed. These include SAT-
based algorithms [4, 8, 9], branch-and-bound algorithms [3] and SAT-based al-
gorithms with lower bounding [2]. A survey of these algorithms is available, for
example, in [1]. In the reminder of this section we address the utilization of linear
programming relaxations.

Linear programming relaxations (LPR) have long been used as a lower bound
estimation procedure in branch-and-bound algorithms for solving integer pro-
gramming problems [5, 7, 10]. It is also often the case that the LPR bound is
tighter than the one obtained through other lower bounding procedures [2, 11].
The general formulation of the LPR for a pseudo-boolean problem instance is
obtained from (1) as follows:
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minimize zlpr = cx
subject to Ax ≥ b, 0 ≤ x ≤ 1 (2)

where vector c defines the non-negative integer cost associated with every deci-
sion variable in vector x. Entries of matrix A define the constraint coefficients
and vector b the right-hand side of every constraint. It is well-known that the
solution of (2) is a lower bound on the solution of (1) [5].

4 Cutting Planes

Integer Linear Programming algorithms use linear programming relaxations (as
formulated in (2)) for estimating lower bounds on the value of the cost function.
However, linear programming relaxations have other applications, including the
identification of cutting planes.

The work on cutting planes can be traced to Gomory [6]. Gomory introduced
a cutting plane technique that derives new linear inequalities in order to exclude
some non-integer solutions from (2). However, the new linear inequalities are
valid for the original integer linear program and so can be safely added to the
original problem. Moreover, solving (2) with the added inequalities may yield a
tighter lower bound estimate.

Since Gomory’s original work, a large number of cutting plane techniques
have been proposed [5, 10, 12]. This section addresses Gomory fractional cuts
and clique cuts, which are integrated in a SAT-based PBO solver.

In simplex-based solutions for solving the LPR from (2), the simplex method
adds a set S of slack variables such that each constraint can be formulated as:∑

j∈N

aijxj − si = bi si ≥ 0 (3)

This formulation is called the slack formulation and it is used to create the
original simplex tableau [5].

If the solution x∗ of the LPR is integral, then x∗ provides the optimal solution
to the original problem. Otherwise, choose a basic2 variable xj such that its value
on the LPR solution is not integral. Since xj is a basic variable, after the pivot
operations performed by the simplex algorithm on (3), there is a row in the
simplex tableau of the form,

xj +
∑
i∈P

αixi +
∑
i∈Q

βisi = x∗
j (4)

where P and Q are the sets of indexes of non-basic variables (problem variables
and slack variables, respectively). In [6], Gomory proves that the inequality,∑

i∈P

f(αi)xi +
∑
i∈Q

f(βi)si ≥ f(x∗
j ) (5)

2 See for example [5] for a definition of basic and non-basic variables.
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where f(y) = y−�y�, is violated by the solution of the LPR, but satisfied by all
non-negative integer solutions to (4). Hence, it is also satisfied by all solutions to
the original problem as formulated in (1) and can be added to the LPR. Solving
the LPR with the new restriction (known as a Gomory fractional cut) will yield
a tighter lower bound estimate on the value of the PBO instance. Observe that
several methods for strengthening the original Gomory fractional cuts have been
proposed [13, 14, 15], but are beyond the scope of this work.

Notice that we can use (3) to replaces each slack variable in (5) so that the
constraint only contain variables from the original PBO problem. Afterwards, if
we apply the rounding operation on the non integer coefficients we obtain a new
pseudo-boolean constraint valid for the original PBO instance as defined in (1),
since the rounding operation will only weaken the constraint.

Like the Gomory fractional cuts, clique cuts [5, 10] also provide a method
that adds new inequalities in order to cut non-integral solutions from the LPR,
hence improving the tightness of lower bound estimates.

In general, we can build a conflict graph in order to represent all incompati-
ble assignments for a pseudo-boolean formula. In the conflict graph, each node
represents an assignment to a problem variable and each edge between two nodes
represents an assignment incompatibility. For each clique C in the conflict graph
we can add a new constraint of the form

∑
i∈C li ≤ 1, where li is the literal at

node i of clique C. One should note that we are interested in finding all maxi-
mum cliques in the conflict graph, but it is well-known that that the problem of
finding a maximum clique in an undirected graph is NP-Hard [5]. As a result, a
heuristic greedy procedure is often used.

5 Cutting Planes in SAT-Based PBO

In a modern SAT-based algorithm, a conflict analysis procedure is carried out
whenever a conflict arises [16]. Therefore, if the generated cutting plane is in-
volved in the conflict analysis process, it must be able to determine its logical
dependencies in order to backtrack to a valid node of the search tree. This sec-
tion proposes conditions for associating dependencies with computed cutting
planes, thus enabling clause learning and non-chronological backtracking from
constraints inferred with cutting plane techniques.

The most straightforward solution, for safely determining a set of dependen-
cies for the Gomory fractional cuts generated during the search process, is to
declare that these cuts depend on all decision assignments made from the root
node to the current node. This solution associates with each cutting plane all
decisions in the search tree, thus forcing chronological backtracking and ensuring
completeness. In this case, we can determine a set of literals ωcut that defines the
set of dependencies for the generated cut. When one of literals in ωcut is set to 1,
the cut will no longer be active (i.e. the associated constraint will be satisfied).
Therefore, the generated cut would depend on all decision assignments and, for
all decision variables xj assigned from the root node to the current node, we
would have x̄j ∈ ωcut if xj = 1 or xj ∈ ωcut if xj = 0.
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In order for the generated cut to be safely added to the set of pseudo-boolean
constraints, we must add all literals lj ∈ ωcut to the cut. The coefficient of
each added literal lj must be large enough to satisfy the constraint whenever
lj = 1. Although this approach guarantees the completeness of the algorithm, if
a conflict occurs involving the generated cuts at a node N of the search tree, the
search cannot backtrack to a node higher than N .

Another technique would be to associate dependencies with cuts following
the ideas proposed in [2] for LPR. Since each cut is derived from the outcome
of solving the LPR formulation, then we can associate with each cut the same
dependencies we associate with lower bound conflicts. However, one should note
that the tableau constraint (4), from which the Gomory fractional cut is inferred,
depends on the pivot operations performed while solving the LPR. As a result,
the tableau constraint (4) contains the slack variables assigned value 0 from the
constraints from which it depends.

Let S be the set of constraints with slack variables assigned value 0 in the
tableau constraint (4). If the literals assigned value 0 in these constraints were to
have a different value, the tableau constraint might not be inferred in the LPR.
Therefore, we can consider the assignments to those literals as the responsible
for inferring the cut and we can define ωcut as:

ωcut = {l : l = 0 ∧ l ∈ ωi ∧ ωi ∈ S} (6)

Notice that the generated cut might not depend on all decision assignments.
Hence, if a conflict occurs involving generated cuts at node N with its depen-
dences determined as in (6), it is possible to backtrack to a node higher than N
in the search tree, i.e. a non-chronological backtrack step. Moreover, the gener-
ated cuts can also be used in different parts of the search tree, in addition to the
subtree with root at the node N .

6 Results

In order to empirically evaluate the techniques described in the paper, we ran
our solver (bsolo) on representative sets of PBO instances [17, 18, 19]. Besides
bsolo, we also ran PBS [8], Galena [4] and the commercial MILP solver CPLEX
(version 7.5). The CPU times presented are from a AMD Athlon processor at
1.9 GHz and the time limit for each instance was set to one hour. If the time
limit was reached, we provide an indication of which was the best upper bound
value found when the search was stopped. Additional results and details on the
experimental procedure can be found at [1].

The experimental results are shown in Table 1. For bsolo we present results for
four different configurations: without using cutting planes, using only fractional
Gomory cuts during the search, using clique cuts and Gomory fractional cuts
only during preprocessing, and using all cuts both during preprocessing and
during the search. For all bsolo configurations, the lower bound estimates were
obtained with linear programming relaxations.
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Table 1. Experimental Results

bsolo
Benchmark sol. pbs galena cplex no cuts Gomory pre proc. all cuts

[17] 9symml 4517 ub6453 ub6986 1.63 328.97 41.39 716.56 225.62
C432 4822 ub6577 ub8070 3.34 ub4822 343.33 1253.60 208.52
cmb 1053 ub1490 ub1476 0.03 0.25 0.23 0.12 0.10
my adder 4561 ub6271 ub5548 2.29 14.94 6.54 10.15 5.07

[18] 9sym.b 5 1718.98 0.26 0.14 0.89 0.68 0.73 0.72
alu4.b – ub121 ub53 ub50 ub50 ub50 ub51 ub50
apex4.a 776 ub2282 ub845 3.92 ub776 810.22 ub776 2404.60
clip.b 15 ub30 1.68 0.36 9.65 1.15 4.14 5.54
e64.b – ub99 ub53 ub49 ub50 ub49 ub50 ub49
jac3 15 ub48 0.71 0.09 3.11 2.93 9.67 6.21
rot.b 115 ub745 ub142 71.56 ub117 ub117 ub118 ub118
sao2.b 25 ub39 132.91 0.50 11.3 5.46 9.34 18.99

[19] aim100-1 6-y1-2 100 0.01 0.01 373.42 0.04 0.04 0.19 0.19
aim100-3 4-y1-4 100 0.01 – 108.79 2.73 2.76 0.30 0.31
aim200-1 6-y1-3 200 0.01 – – 0.11 0.11 0.49 0.51
aim200-6 0-y1-2 200 0.01 0.03 ub200 140.18 119.81 0.81 0.84
ii8a2 139 ub150 ub144 63.77 ub141 ub141 1931.50 ub139
ii8b1 191 ub272 ub213 7.11 2285.50 ub232 860.37 ub193
ii8c1 302 ub405 ub399 2719.59 ub416 ub413 ub320 ub321
ii8d1 – ub515 ub432 ub351 ub470 ub470 ub359 ub401
jnh1 92 0.01 0.20 39.56 42.81 324.99 35.84 158.63
jnh7 89 0.02 0.04 7.42 20.55 9.80 1.91 3.04
ssa7552-159 1327 ub1327 ub1327 ub1327 ub1327 ub1327 ub1327 1212.50
ssa7552-160 1359 ub1359 ub1359 ub1359 ub1359 ub1359 ub1359 1369.60

Among the SAT-based PBO algorithms, bsolo is by far the most effective
algorithm, for the instances in this paper and for the instances in [2]. In fact,
bsolo without the utilization of cutting planes is already significantly more ef-
fective than the other SAT-based algorithms. The utilization of cutting planes
further improves the results of bsolo, making it more robust than the com-
mercial ILP solver cplex. Observe that the worst results for cplex occur for
instances of the minimum-size prime implicant problem. These instances are
derived from CNF formulas, where SAT-based techniques are particularly
relevant.

7 Conclusions

The paper describes the integration of cutting plane techniques in SAT-based al-
gorithms for Pseudo-Boolean Optimization and outlines conditions for perform-
ing constraint learning and non-chronological backtracking based on previously
inferred cutting planes. These conditions provide novel mechanisms for extending
the most effective SAT techniques to PBO. Experimental results clearly indicate
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that the utilization of cutting plane techniques can be extremely effective in
PBO. Moreover, the results are also clear in demonstrating that lower bounding
techniques are essential for hard instances of PBO. The experimental results for
the most well-known PBO solvers that do not integrate lower bounding tech-
niques, clearly demonstrate that lower bounding is essential for representative
instances of pseudo-boolean optimization.
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Abstract. We propose a new benchmark set consisting of problems gen-
erated during the construction of classification theorems for quasigroups.
It extends and generalises the domain of quasigroup existence problems,
to which SAT solvers have been applied successfully in the past, to a rich
class of benchmarks of varying difficulty.

1 Introduction

Classification of mathematical structures is a challenging task in mathematical
research. A first step in producing algebraic classification theorems is to de-
termine for which sizes certain algebras exist. Automated support for solving
such existence problems has been remarkably successful in the past. In partic-
ular, model generators [4, 8] and satisfiability (SAT) solvers [15, 14] have been
successfully applied to show the existence or non-existence of quasigroups with
particular associated properties. The study and discovery of quasigroups with
certain properties is interesting also outside of pure mathematics, because the
underlying structure of quasigroups is similar to that found in many real-world
applications [6, 7]. While quasigroup existence problems present a challenging
task for SAT solvers their use as a benchmark set is restricted as, firstly, the
number of problems that can be tackled realistically by existing systems is rela-
tively small and, secondly, the structure of the problems is relatively similar.

In [3] we have extended quasigroup existence problems to the more general
classification problem: How can different isomorphism classes of quasigroups of
a given cardinality be described by their algebraic properties? The reasoning
problems that need to be solved when answering this question are generally of
propositional nature and can effectively be transformed into SAT problems [9].

In this paper, we present a uniform view of the classification problems as
generalised quasigroup existence problems and suggest them as a new set of
benchmarks from an algebraic domain for the testing and development of SAT
solvers. The classification process can be seen as generator for this new bench-
mark set containing problems of varying structure and complexity (Sec. 2).
We describe some of the characteristics of the problems with respect to their
encoding in propositional logic (Sec. 3) and present a non-trivial example to
give an impression of the mathematics behind the domain (Sec. 4).

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 459–466, 2005.
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2 Quasigroup Classification Problems

In [3] we have presented a bootstrapping algorithm to automatically generate
classification theorems in finite algebra. To guarantee correctness of the classi-
fication a number of theorems has to be shown. Each theorem is essentially an
existence problem and can be tackled by SAT solvers. We can therefore view the
overall bootstrapping algorithm as a generator of our benchmark set.

The general existence problem in finite algebra is the question whether for
some cardinality n an algebra exists that satisfies a given set of axioms A. A
considerable amount of research in automated reasoning has been devoted to
solving some existence problems for the particular domain of quasigroups. A
quasigroup is a non-empty set Q together with a binary operation ◦ that satisfies
the property ∀a, b ∈ Q (∃x ∈ Q x ◦ a = b) ∧ (∃y ∈ Q a ◦ y = b). This property
is often called Latin Square property and has the effect that every element of Q
appears exactly once in every row and every column of the multiplication table
of ◦. One existence problem for quasigroups is, for instance, to ask whether a
quasigroup of a given cardinality n exists for which the operation ◦ also satisfies
the QG4-property ∀x, y ∈ Q (x ◦ (x ◦ y)) ◦ y = x. SAT solvers could show, for
example, that a QG4-quasigroup of cardinality n = 14 exists [15].

A classification problem in finite algebra for a given cardinality n and a set
of axioms A is the question: How many different algebras exist that satisfy A
and how can they be described? By “different” we mean here that the alge-
bras are not isomorphic to each other; thus the classification problem is actually
concerned with the detection and the axiomatic description of all isomorphism
classes of algebras satisfying the axioms A. In [3] we tackle this problem em-
ploying a bootstrapping algorithm. It automatically constructs a decision tree
by successively identifying non-isomorphic structures and their discriminating
properties until all possible isomorphism classes are generated and for each iso-
morphism class a representant (i.e., an algebra that is element of the isomor-
phism class) is found. A property P acts as a discriminant for any two algebras
A and B iff P (A) and ¬P (B) means that A and B are not isomorphic. An iso-
morphism class can be uniquely described by its associated discriminants that
form a classifying property, that is a property that holds for every algebra in the
isomorphism class, but does not hold for any algebra outside the isomorphism
class.

For example, Fig. 1 contains the decision tree for the classification prob-
lem of order 3 quasigroups together with the representants for each of the 5
isomorphism classes, where representant Ai belongs to the node i in the tree.
The edges of the decision tree are labelled with discriminants and each node in
the tree is associated with a describing property, which is the conjunction of all
discriminants along the path from the root to the node. The nodes associated
with isomorphism classes are the leaf nodes marked with a double circle. The
classifying property of an isomorphism class is the describing property of the
associated node. For instance, the isomorphism class represented by node 6 has
the classifying property of P1 ∧ ¬P2 ∧ P3 ∧ P4. If during the construction of the
decision tree a node is reached for which no representant exists that satisfies the
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1 P1 ≡ ∃b b ◦ b = b
P2 ≡ ∀b b ◦ b = b
P3 ≡ ∃b ∀c b ◦ c �= c
P4 ≡ ∃b ∀c c ◦ b �= c2 3

4 5

6 7 8 9

¬P1 P1

P2 ¬P2

P3 ∧ P4

P3 ∧ ¬P4

¬P3 ∧ P4 ¬P3 ∧ ¬P4

A2 a b c

a b a c
b a c b
c c b a

A4 a b c

a a c b
b c b a
c b a c

A6 a b c

a a b c
b b c a
c c a b

A7 a b c

a a b c
b c a b
c b c a

A8 a b c

a a c b
b b a c
c c b a

Fig. 1. Decision tree and isomorphism class representants for order 3 quasigroups

describing property of the node, then this node is a dead-end in the tree. Node
9 in the tree in Fig. 1 is an example of such a node.

To verify the correctness of the classification the properties of the decision
tree have to be proved. Thereby, the most difficult problem is to show that
actually a leaf node is reached, i.e., that a node either represents an isomorphism
class or that it is a dead-end. In the latter case we show that no algebra of
cardinality n satisfies the describing property of the node (we call this the Dead-
End Theorem), which is obviously an existence problem. In the former case we
have to show that all algebras of cardinality n that satisfy the describing property
of the node are isomorphic (Isoclass Theorem). This is also an existence problem,
since it states that there does not exist an algebra A that satisfies the describing
property and is not in the isomorphism class.

Although the isoclass theorems are essentially second order, they can be ex-
pressed as propositional logic problems by enumerating all possible isomorphism
functions for structures of cardinality n. The näıve approach, considering all n!
possible isomorphisms, can be improved upon by first proving a lemma that
states that all algebras with cardinality n satisfying a property P share a gener-
ating system1. Since generating systems are invariant under isomorphism (i.e.,
if algebra A has a generating system and algebra B is isomorphic to A, then
B has also such a generating system) it is a necessary prerequisite that this
lemma holds for the isomorphism-class theorem to hold. We call this lemma the
generating-system lemma. If it can be shown, then the number of isomorphisms
for the isoclass theorem can often be drastically reduced to only the possible
mappings of the generators. The generating-system lemma is again an existence
problem stating that there does not exist an algebra A that satisfies classifying
property P , but does not exhibit a certain generating system.

1 A structure A with binary operation ◦ is said to be generated by a set of elements
{a1, . . . , am} ⊆ A if every element of A can be expressed as a combination – usually
called a factorisation or word – of the ai under the operation ◦. We call a set of
generators together with the corresponding factorisations a generating system.
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3 The Benchmark Set and Its Characteristics

The problem set consists of a collection of generating-system lemmas, isoclass
theorems, and dead-end theorems for quasigroups of cardinality 6, 7, and 8. The
problems have been generated from decision trees for the classification of

– non-idempotent quasigroups of cardinality 6 with a simplified version of the
QG3 property: ∃a ∀b (b ◦ a) ◦ (a ◦ b) = b,

– quasigroups 7 with the QG9 property: ∀a, b, x, y a ◦ b = x ∧ x ◦ b = y →
y ◦ b = a,

– quasigroups 8 with a simplified version of QG9: ∀a, b, x a◦b = x→ x◦b = a.

The current set contains roughly 1000 problems and has been submitted in the
DIMACS format as a benchmark set to the SAT05 system competition. The set
comprises both satisfiable and unsatisfiable problems. This has essentially two
reasons: Firstly, during the construction of the decision tree, generating-system
and isoclass theorems are only shown for leaf nodes associated with isomorphism
classes. If the tree has been constructed correctly these theorems hold and the
corresponding SAT problems are unsatisfiable. However, for the benchmark set
we also conjecture generating-system lemmas and isoclass theorems for branch-
ing nodes, with respect to the describing properties of that node. For a branching
node, however, either one or both of the conjectures can not hold, which leads
to satisfiable problems. Secondly, the decision trees for the quasigroups 7 and 8
problems are so far only partially constructed and therefore the status of some
of the resulting SAT problems is not yet known.

Our encoding follows Zhang’s approach [13], where a boolean variable corre-
sponds to an equation of the form x◦y = z or x = y, where x, y, z are instantiated
with the n elements of the algebra of cardinality n. Hence, to encode all possi-
ble equations n3 + n2 boolean variables are necessary, such that the number of
boolean variables increases wrt. the cardinality n (see [9] for details).

Since the discriminant properties can be arbitrarily complex and nested it
turns out that a näıve clause normalisation approach suffers in our domain from
a combinatorial explosion of the number and the length of the resulting clauses.
Hence, we adopted clause normalisation techniques from [11] that aim to cre-
ate small clause normal forms. The basic technique is the introduction of addi-
tional boolean variables to suitably break formulas. This avoids combinatorial
explosion and restricts the size of the resulting clauses but extends the problem
formalisation by additional boolean variables. Our clause normalisation breaks
formulas when the resulting clauses become larger than 3·n. The introduction of
additional boolean variables to break the formulas, however, can result in final
clauses that are slightly larger than 3·n. The optimal clause normalisation for
our problems is still subject to testing.

The difficulty of propositional satisfiability problems can generally be char-
acterised both by the number of boolean variables as well as by the number
and sizes of the formulas or clauses involved. In our domain, both the num-
ber of variables and clauses increase for larger cardinalities n and for nodes
deeper in the decision tree. To illustrate this consider the figures characterising
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Table 1. Characteristic numbers of quasigroup generating-system lemma problems

Cardinality depth of node #variables #clauses #max clause size

5 1 150 2055 5
5 23 352 4531 9
6 1 257 5925 6
6 7 405 6975 8
7 1 2401 20594 7
7 8 4044 24907 12
8 1 576 53212 7
8 8 12671 110508 28

generating-system lemmas of quasigroup classification problems with cardinality
5–8 in Table 1.

We have applied the SAT solvers zChaff [10], DPLLT [5], CVClite [2] and the
first-order theorem prover Spass [12] to different formalisations of our benchmark
problems (see [9] for details). These experiments reveal that on average the diffi-
culty of the problems does indeed increase with increasing numbers of variables
and clauses. However, they also show that there is a high variance in the time
needed by the systems to solve problems of roughly the same size. While some
problems could be solved very quickly, other problems with a similar number
of variables and clauses would take very long to solve or could not be solved at
all. In fact, the complexity of the clauses for a problem in our domain depends
mainly on the form of the describing property P , which is a conjunction of dis-
criminant properties (see Sec. 2). In general, P is more complex the deeper the
corresponding node is in the tree. However, the complexity of the discriminants
of which P is composed can differ (see the example in the next section) and
the difficulty they pose to SAT solvers can vary. For instance, the discriminant
∀b b ◦ b = b simplifies the problem at hand as opposed to a property like the
quasigroup property itself, which makes the problem generally more difficult.

For similar reasons isoclass theorems are generally considerably less dif-
ficult than dead-end theorems and generating-system lemmas. The usage of
the generating-system lemma as axiom in the isoclass theorem drastically re-
duces the complexity of this theorem, since the generating-system lemma results
in unit clauses restricting the search. And our experiments indeed established
the fact that the generating-system lemmas are the hardest problems of our
domain.

4 An Example Problem

To give an impression of the mathematical quality of the problems in our bench-
mark set we present a non-trivial example from our domain. For the classification
of quasigroups of order 7 with the QG9 property our algorithm computes an iso-
morphism class described by the representant A below together with a classifying
property consisting of the conjunction of the following 11 properties:
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A e1 e2 e3 e4 e5 e6 e7

e1 e4 e1 e5 e7 e6 e2 e3

e2 e1 e6 e3 e4 e5 e7 e2

e3 e7 e4 e6 e2 e1 e3 e5

e4 e2 e7 e1 e3 e4 e5 e6

e5 e3 e2 e4 e5 e7 e6 e1

e6 e6 e5 e2 e1 e3 e4 e7

e7 e5 e3 e7 e6 e2 e1 e4

1. ∀b b ◦ b �= b
2. ∃b ∀c b ◦ c �= c
3. ∃b, c b ◦ c = b ∧ c ◦ b = b
4. ∀b ∃c, d c ◦ d = b ∧ d ◦ c �= b
5. ∃b ∀c (c ◦ b) ◦ c �= b
6. ∃b ∀c b ◦ (b ◦ c) �= c
7. ∀b ∃c b ◦ (b ◦ c) �= c
8. (∃b ∀c (b ◦ c) ◦ (b ◦ c) �= c)∧

(∀b, c b ◦ b �= c ∨ c ◦ c �= b)
9. ∃b, c b ◦ b = c ∧ b ◦ c = b

10. ∃b ∀c (b ◦ c) ◦ b �= c
11. ∃b ∀c c ◦ (c ◦ b) �= b ∨ b ◦ c = c ◦ b

For the representant A the algorithm computes a generating system, whose
set of generators consists of e7 only and the factorisations are:

e1 = ((e7 ◦ e7) ◦ (e7 ◦ e7)) ◦ (((e7 ◦ e7) ◦ (e7 ◦ e7)) ◦ e7) e4 = e7 ◦ e7

e2 = (e7 ◦ (e7 ◦ e7)) ◦ ((e7 ◦ e7) ◦ (e7 ◦ e7)) e5 = ((e7 ◦ e7) ◦ (e7 ◦ e7)) ◦ e7

e3 = (e7 ◦ e7) ◦ (e7 ◦ e7) e6 = e7 ◦ (e7 ◦ e7)

The generating-system lemma for this isomorphism class states that all algebras
of order 7 that satisfy the given classifying property exhibit a generating system
of the above form, i.e., they exhibit exactly this generating system or a generat-
ing system resulting from the permutation of the elements e1, e2, e3, e4, e5, e6, e7.
This results in 7! concrete possible generating systems, which have to be encoded
in propositional logic. The final SAT problem then consists of 972 boolean vari-
ables and 13573 clauses with a maximal clause length of 13 literals.

If the generating-system lemma is shown successfully, the corresponding iso-
class theorem can be stated as: All algebras of order 7 that satisfy the given
classifying property and have a generating system of the above form are iso-
morphic to A. The possible isomorphisms that need to be considered are now
restricted to the set of generators. Since we only have one generator, there are
7 possible isomorphisms, which can be further restricted by discarding those
mappings that would violate the homomorphism property (see [9] for details).
For the problem at hand it turns out that there is exactly one possible isomor-
phism on the generating system that needs to be instantiated into the isoclass
theorem. The concrete SAT problem then consists of 1122 boolean variables and
8662 clauses with a maximum clause length of 14 literals.

Although the pure numbers of variables and clauses might suggest that the
isoclass theorem and the generating-system lemma are approximately of the same
complexity, the actual complexity is hidden in the generating-system lemma
(see discussion in previous section). And indeed when applying zChaff to the
problems it proves the isoclass theorem in 0.1 seconds but needs 19154.9 seconds
to show the generating-system lemma. The other systems we employed in our
experiments exhibited the same drastic difference in performance.
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5 Conclusions

We have presented the domain of classification problems for quasigroups and
suggest it as a new set of benchmarks for satisfiability solving. We believe that
using these problems for the development and testing of SAT solvers can be of
mutual benefit: On the one hand, the SAT community will gain a large testbed
of problems of varying difficulty and structure. On the other hand stronger and
better SAT solvers can aid in the derivation of new mathematical classification
results. While we have concentrated on quasigroups for the submitted bench-
mark set, our classification algorithm has already been applied to other algebraic
structures, such as monoids and semi-groups, which might also be exploitable in
the future.

The experience we have gained so far suggests that the successful applica-
tion of SAT solvers in our domain relies on an effective clause normalisation
and a suitable formalisation of properties. Indeed, in our experiments different
formalisations of properties (e.g., the quasigroup property) had also a consider-
able impact on the difficulty of the resulting SAT problems. However, it is not
yet clear how, in general, properties of our domain can be best reformulated or
encoded to enhance the performance of a SAT solver. Further experiments with
large numbers of properties should give us more insights into these questions.
These might also prove beneficial for other, possibly non-mathematical domains.
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Explaining the causes of infeasibility of Boolean formulas has practical applications in
numerous fields: electronic design, formal verification, and artificial intelligence. In
design applications, for example, a large Boolean function is formed such that a feasi-
ble design is obtained when the function is satisfiable, and design infeasibility is indi-
cated when the function is unsatisfiable. An example of this is the routing of signal
wires in an FPGA. We are usually interested in a “minimal” explanation of infeasibil-
ity that excludes irrelevant information. For Boolean formulas in conjunctive normal
form (CNF), the notion of minimality is defined as follows. Consider an unsatisfiable
CNF formula . An unsatisfiable subformula (a US) of  is a minimal-unsatisfiable
subformula (MUS) if it becomes satisfiable whenever any of its clauses is removed.
Algorithms for finding MUSes are presented in [1, 2, 7]. 

Since an unsatisfiable formula might have many MUSes, specific ones might be of
greater value based on the application. For example, in verification applications the
quality of refinement affects the number of iterations in the abstraction-refinement
flow. While a US represents a set of spurious behaviors, an MUS represents a larger set
of spurious behaviors. Thus, an MUS in general, and a smallest cardinality MUS
(SMUS) in particular, tend to be more effective in reducing the number of refinement
steps. Lynce et al. [4] presented an algorithm that computes an SMUS by implicitly
searching all USes of a formula. 

In this paper, we tackle the problem of finding an SMUS by a branch-and-bound
algorithm that utilizes iterative MAXSAT solutions to generate lower and upper bounds
on the size of the SMUS, and branch on specific subformulas to find it. The paper is
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from DIMACS and DaimlerChrysler Automotive Product Configuration benchmarks
are presented in Section 4.

Consider an unsatisfiable formula . A US  of  is an MUS if
removing every clause results in a formula that is satisfiable.  is an SMUS if it is an
MUS and for all other MUSes  of , . We denote the set of MUSes of  by

. The MAX-SAT problem finds a satisfiable subformula  of  with the
maximum number of clauses; we call  a MAX-SAT solution of . We solve
MAX-SAT by reducing it to an integer optimization problem as follows. We define a
set of  new Boolean clause selector variables , and construct a
new formula . The MAX-SAT solution is
obtained by maximizing the objective  subject to the clauses of .
Consider the Boolean formula:

 (1)

We call   the  clause of .  has three MUSes that are illustrated
with a Venn diagram in Figure 1. MUS1 is an SMUS. There are several possible
MAX-SAT solutions for . Two of them are , and . 

A simple approach to compute an SMUS of a formula is to generate all MUSes and
then select the smallest MUS. This approach is hindered by the fact that the number of
MUSes of a formula can be exponential in the number of its variables. To solve this
problem efficiently, we present a branch-and-bound algorithm to compute the SMUS. 
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2   Preliminaries 
 

3   Computing a Smallest MUS 
 

Fig. 1. The formula ∏ of (1) and its MUSes 

3, we present our algorithm for finding the SMUS. Results on unsatisfiable formulas
organized as follows. In Section 2, we review basic definitions and notations. In Section
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a possible solution. Thus, every MUS must contain one of these clauses. In the third
iteration, we have the following optimization problem: Maximize  subject to

 which has the solution .
After adding the constraints ,  and , the optimization problem be-

comes UNSAT because of the MUS . The aggregated set of claus-
es from MAX-SAT solutions is . At this point,
we can conclude that any MUS contains at least 3 clauses since: 

(2)

Thus, the number of iterations of MAX-SAT is a lower bound (LB) on the number of
clauses of the SMUS of . 

To obtain an upper bound on the size of the SMUS, we can generate all the MUSes
of the subformula . The upper bound on the size of the SMUS is the size of the
smallest MUS found in . For our example  has a single MUS of size 5,
and consequently the upper bound is 5. 

Given  and the initial LB and UB, if LB is equal to UB, then an MUS
whose size is UB is an SMUS for . If this is not the case, we search the remaining
MUSes of  (the ones not in ) for an MUS (if any) whose size is smaller than
UB. We achieve this by recursively branching on specific subformulas of , and
bounding the search using LB and UB. The subformulas we branch on are 
where  and  is the set of all MAX-SAT solutions of . Each of the sub-
formulas in this recursion returns its SMUS if it is smaller than the one currently found
in  (and consequently ’s UB is updated). Otherwise, an empty set is returned. For
the running example, all MAX-SAT solutions of  are: , , ,

 and . Thus, five recursive calls are made on the subformulas ,
, , , and .

To understand why this approach efficiently searches the space of
, we have to address the following questions. Why will
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3.2   Branch-and-Bound 

 

We utilize iterative MAX-SAT solutions to get a lower bound on the size of the SMUS.
Let us consider  in (1) and its extended  with selector variables. We have seen that
one possible MAX-SAT solution is . From this, and the properties of MAX-
SAT, we can conclude that every MUS of  contains  or  (or both), and conse-
quently contains at least one clause. To improve this lower bound, we repeat the above
process by finding another MAX-SAT solution that contains clauses other than  and

. This can be achieved by adding the constraints  and  to the MAX-SAT
optimization problem to get: Maximize  subject to .  is

ϕ ϕ '
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 (3)

We can continue the iterations of MAX-SAT on the formula  starting with
the set . In other words, the initial optimization problem for

α ϕ w3{ }–   α is MUS⊆∀ w7 w4 w1, ,{ } α w7 w4, w5,{ } α⊆ …∨ ∨ ∨⊆→

        w6 w7 w8, ,{ } α⊆

Algorithm 1 FindSMUS
FindSMUS( )

smus = FindSMUSRec( , , 0, );
if(smus == ) print “NO MUS. Formula is Satisfiable”;
else print smus;

FindSMUSRec(set , set pMaxSat, int pLB, int pUB)
if(IsSat( )) return ;
(comp,numIter,cMaxSat)=IterateMaxSat( ,pMaxSat,pUB-pLB);
if(!comp) return ;
cLB = pLB + numIter;

;
(muses, allMaxSats) = FindAllMuses( );
cMUS = Smallest(muses);
cUB = cMUS.size();
smallestTillNow = (cUB < pUB)? cUB: pUB;
set smallestMUS = (cUB < pUB)? cMUS: ;
if(smallestTillNow<=cLB+1) return smallestMUS;
foreach (ms in allMaxSats)

;
;

recMUS=FindSMUSRec( , ,cLB, smallestTillNow);
if(recMUS!= )

smallestTillNow = recMus.size();
smallestMUS = recMUS;
if(smallestTillNow == cLB + 1) return smallestMUS;

return smallestMUS;

ϕ
ϕ φ ϕ size()⋅

φ

ϕ
ϕ φ

ϕ
φ

ϕmaxsat cMaxSat + pMaxSat=
ϕmaxsat

φ

ϕnew ϕ ms–=
maxsatrec ϕmaxsat ms–=
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Fig. 2. The algorithm for finding an SMUS 

bound and MAX-SAT solution to compute its own lower bound? Finally, why is this an
efficient solution? The first question addresses completeness, and its answer is omitted
due to space limitations. We address the last two questions in what follows.

We use parent lower bound (pLB) and parent upper bound (pUB) to designate the
upper and lower bounds of the parent formula, and current upper bound (cUB) and cur-
rent lower bound (cLB) to designate the upper and lower bounds of a subformula

. To understand how to compute ’s cLB, let us consider the subformula
. It is easy to verify that  includes all MUSes of  except

the ones that contain . Since , then MUSes of
 satisfy (2), and pLB (that of ) holds for . In fact, since all the

MUSes of  do not contain , they have to satisfy a stricter version of (2):
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branching on all the specified subformulas “implicitly” search every MUS in
? How does a child subformula use its parent’s lowerMuses ϕ( ) Muses ϕmaxsat( )–
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point, the optimization problem is unsatisfiable; consequently cLB = 4. Next, we gen-
erate all MUSes of the current MAX-SAT solution: . We get
the MUS: . Since the size of this MUS is equal to cLB, we have
found the smallest MUS in . Since this MUS is smaller than cUB for , we
update cUB to reflect the smallest MUS we have up to this point. The recursive calls
on the remaining subformula can proceed with pLB = 3 and pUB = 4. No smaller MUS
is found in these formulas. Thus the smallest MUS for  is . 

An additional optimization can be applied to enhance the above algorithm. Consid-
er  again. From (2), we know that each MUS contains at least 3 clauses. If there is an
MUS that contains exactly three clauses then it must be in . Since we did not
find an MUS of size 3 in  then we know that the SMUS of  has size at least
cLB + 1. Using this observation, and after returning from the branch of the subformula

, and updating cUB of  to 4, we conclude that we have found the SMUS
since cUB = cLB + 1.

The pseudo code for algorithm that follows from the above description is illustrated
in Figure 2. FindMusRec() is the recursive procedure for finding the SMUS. It takes as
arguments the formula , the parent’s MAX-SAT clauses pMaxSat, the parent lower
bound pLB, and the parent upper bound pUB. If  is satisfiable, it contains no MUS
and the empty set is returned. Otherwise, the procedure calls IterateMaxSat() using the
arguments , pMaxSat, and pUB-pLB. IterateMaxSat() returns three values. The
Boolean variable comp is set to 0 if the optimization problem remains satisfiable after
running pUB-pLB iterations, and is set to 1 otherwise. If comp is set to 1, numIter is the
number of iterations, and is cMaxSat is the set current MAX-SAT clauses. If comp is 0
then the formula does not contain an MUS smaller than cUB and the empty set is re-
turned. Otherwise, cLB is set to pLB + numIter, and all the MUSes and MAX-SAT so-
lutions of  are computed. If the smallest of these MUSes is equal to cLB or cLB
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mula. Thus, cLB for  is 6, and consequently, the smallest MUS in 
has at least 6 clauses. In fact,  has a single MUS of size 6. As a result,

 does not contain an MUS smaller than the best we have till now (5 clauses). 
The above conclusion can be reached with fewer computations by noting that numIter
must be at most pUB - pLB. If the optimization problem remains satisfiable after pUB

-

 pLB iterations, the current subformula does not contain an MUS smaller than pUB
and the search is bound. 

Let us consider the next recursive call on the subformula  and the MAX-
SAT solution . We know that pLB and pUB are 3 and 5 respectively.
The optimization problem is: Maximize  subject to 

.  is a solution. At this

ϕ w3{ }– ϕ w3{ }–
ϕ w3{ }–

ϕ w3{ }–

ϕ w6{ }–
ϕmaxsat w6{ }–

y1 … y5 y7 … y11+ + + + +
ϕ′ y6¬ x4¬ x5¬∨ ∨( ){ }–( ) y3( ) y7( ) y4( ) y1( ) y5( ) y8( ) w2{ }

for  is four. The next solutions are  and  (at this point, the opti-
mization problem is unsatisfiable). Following the above reasoning, we have cLB =
pLB + numIter where numIter is the number of MAX-SAT iterations in the subfor-
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 is: Maximize  subject to
. A possible solution for this

problem is . By combining this with (3), we know that the current lower bound
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+ 1, it is returned as the sMUS for . If this is not the case, we branch on all MAX-SAT
solutions of  in a depth-first manner. After each branch terminates, we update
the smallest MUS of  and designate it as an SMUS if its size is equal to cLB + 1. After
all recursive calls end, the SMUS is returned. 

4 Experimental Results

To experimentally evaluate the effectiveness of our algorithm, we implemented it in
C++ and used Satzoo [6] to solve MAX-SAT problems. For generating all MUSes we
use the algorithms in [3]. All experiments were conducted on a 2 GHz Pentium 4
machine having 1 GB of RAM and running the Linux operating system.

Table 1 lists the results for representative aim benchmarks from the DIMACS set.
The number of clauses of the SMUS range between 10% and 40% of the total number
of clauses. The short run time is due to the fact that the total number of MUSes in these
formulas is very small.

Table 2 presents the results for representative unsatisfiable formulas from the
DaimlerChrysler Automotive Product Configuration Benchmarks [5]. To our knowl-
edge, there exists no previous work that shows the sizes of the SMUSes for these bench-
marks. The last column reports the number of MUSes obtained by running the algo-
rithm in [3]. In some cases, the algorithm does not terminate and consequently either no

ϕ
ϕmaxsat

ϕ

Table 1  Results on Representative Aim Benchmarks

Benchmark Variables Clauses SMUS Size Time (sec)
aim-50-1_6-no-2 50 80 32 0.08
aim-50-2_0-no-1 50 100 22 0.01
aim-100-1_6-no-1 100 160 47 0.14
aim-100-2_0-no-2 100 200 39 0.1
aim-200-1_6-no-1 200 320 55 0.36
aim-200-2_0-no-1 200 400 53 0.3

information or a lower bound on the number of MUSes is provided. The total number
of MUSes for these formulas ranges from 1 to more than a million. The size of the
SMUS ranges from 0.1% to 5.5% (the average size is 1%) of the size of its formula. This
shows that the SMUSes for these formulas are very small. Even in the cases where the
number of MUSes is extremely large, our algorithm was able to efficiently find the
SMUS. This shows the effectiveness of the implicit search utilized by the branch-and-
bound process. For C202_FS_SZ_84, C202_FW_SZ_103, C210_FW_SZ_90, and
C210_FW_SZ_91 the number of MUSes in  was very large. To limit the run
time, a cut-off of 500 seconds was used when generating all MUSes. The size column
for these benchmarks has the format n1:n2 where n1 is the LB and n2 is the smallest
MUS found before time-out. The difference between the best MUS found in the time
limit and the lower bound for these formulas is 6, 8, 6, and 14 respectively. Thus, even

ϕmaxat

.
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Benchmark Variables Clauses SMUS Size Time (sec) # MUSes
C168_FW_SZ_107 1583 5939 47 546.54 NA
C168_FW_SZ_41 1583 4727 26 257.39 NA
C168_FW_SZ_66 1583 4751 16 18.84 NA
C168_FW_UT_2463 1804 6756 35 350.41 NA
C168_FW_UT_2469 1804 6767 32 831.46 NA
C168_FW_UT_714 1804 6754 9 14.49 NA
C168_FW_UT_851 1804 6758 8 59.91 102
C170_FR_RZ_32 1528 4067 227 121.33 32768
C170_FR_SZ_58 1528 4083 46 15.329 >16140
C170_FR_SZ_92 1528 4195 131 15.12 1
C170_FR_SZ_96 1528 4068 53 322.76 >172032
C202_FS_RZ_44 1556 5399 18 131.04 >79336
C202_FS_SZ_104 1556 5405 24 4.99 >1109330
C202_FS_SZ_121 1556 5387 22 2.5 4
C202_FS_SZ_122 1556 5385 33 3.84 1
C202_FS_SZ_74 1556 5561 150 36.43 NA
C202_FS_SZ_84 1556 5479 213:219 3878.3 NA
C202_FS_SZ_97 1556 5452 28 62.13 >63936
C202_FW_RZ_57 1561 7434 213 58.34 1
C202_FW_SZ_100 1561 7484 23 173.97 NA
C202_FW_SZ_103 1561 9024 147:155 8606.1 NA
C202_FW_SZ_123 1561 7437 36 14.74 4
C202_FW_SZ_61 1561 7490 18 163.84 NA
C202_FW_SZ_77 1561 7611 156 37.16 NA
C202_FW_SZ_98 1561 7438 7 58.16 NA
C208_FA_RZ_43 1516 4254 8 76.88 >9542
C208_FA_SZ_120 1516 4247 34 3.8 2
C208_FA_SZ_87 1516 4255 18 15.10 12884
C208_FA_UT_3254 1805 6153 40 95.27 17408
C208_FA_UT_3255 1805 6156 40 94.59 52736
C210_FS_RZ_23 1608 4911 31 266.30 NA
C210_FS_RZ_38 1607 4900 25 261.92 >188688
C210_FS_RZ_40 1607 4891 140 36.24 15
C210_FS_SZ_103 1607 4915 45 386.38 NA
C210_FS_SZ_107 1607 4902 15 25.29 NA
C210_FS_SZ_123 1607 5062 176 1401.97 >972463
C210_FS_SZ_78 1607 5071 170 56.72 NA
C210_FW_RZ_57 1628 6390 25 355.00 >129272
C210_FW_RZ_59 1628 6381 140 56.69 15
C210_FW_SZ_106 1628 6405 49 789.58 NA
C210_FW_SZ_111 1628 6393 15 35.17 NA
C210_FW_SZ_128 1628 6401 22 151.33 NA
C210_FW_SZ_90 1628 6977 271:277 6404.18 NA
C210_FW_SZ_91 1628 6709 267:281 6329.91 NA
C220_FV_RZ_12 1530 4017 11 50.58 >56872
C220_FV_RZ_13 1530 4014 10 33.35 6772
C220_FV_RZ_14 1530 4013 11 33.89 80
C220_FV_SZ_46 1530 4014 17 78.44 >5160
C220_FV_SZ_65 1530 4014 23 18.85 >84943

Table 2. Results on DaimlerChrysler Benchmarks 

generating an MUS whose size is close to the lower bound. We can see a large run time
for these formulas. Most of this run time was spent computing .ϕmaxsat 
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when the number of MUSes is very large, our algorithm provides useful information by



Understanding the causes of infeasibility of Boolean formulas is of interest in various
theoretical and practical areas of computer science. Minimal unsatisfiable subformulas
provide useful explanations of infeasibility. We have presented an algorithm to find an
SMUS of a Boolean formula: an MUS with the least number of clauses. The algorithm
utilizes the relation between MAX-SAT and MUSes to construct lower and upper
bounds on the size of the SMUS. These bounds are the basis for a branch-and-bound
procedure that finds the SMUS by recursively branching on specific subformulas. We
have presented novel experimental results on two benchmark suites. 

This work was funded in part by the National Science Foundation under ITR grant
number No. 0205288. 

5   Conclusions 
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Abstract. An important heuristic in local search algorithms for Satis-
fiability is focusing, i.e. restricting the selection of flipped variables to
those appearing in presently unsatisfied clauses. We consider the be-
haviour on large randomly generated 3-SAT instances of two focused
solution methods: WalkSAT and Focused Metropolis Search. The algo-
rithms turn out to have qualitatively quite similar behaviour. Both are
sensitive to the proper choice of their “noise” and “temperature” param-
eters, but with appropriately chosen values, both achieve solution times
that scale linearly in the number of variables even for clauses-to-variables
ratios α > 4.2. This is much closer to the satisfiability transition thresh-
old αc ≈ 4.267 than has generally been assumed possible for local search
algorithms.

1 Introduction

It was observed in [10] that random 3-SAT instances change from being gener-
ically satisfiable to being generically unsatisfiable when the clauses-to-variables
ratio α = M/N exceeds a critical threshold αc. Current numerical and analytical
estimates [3] suggest that this satisfiability threshold is located approximately at
αc ≈ 4.267. It was also suggested in [10] that the satisfiability of random 3-SAT
formulas is hardest to decide in the region close to αc.

The space of solutions to 3-SAT instances slightly below αc develops struc-
ture: at α ≈ 3.92 the solutions become “clustered” [3], with solutions belong-
ing to the same cluster being geometrically close to each other. Such clusters
may possess extensive “backbones”: sets of variables whose values are fixed
across the cluster, while the values of others can be varied subject to some
constraints.

Good results have recently been reported on finding satisfying assignments
to large random formulas at α � αc using the survey propagation method [3],
which iterates a guess about the state of each variable, in the course of fixing
an ever larger proportion of the variables to their “best guess” values. In this
paper we argue that also simple local search methods, i.e. algorithms that try to

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 475–481, 2005.
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find a solution by flipping the value of one variable at a time, can achieve com-
parable performance levels. (There is also some evidence [7] that local search
methods may be more robust than survey propagation on structured SAT in-
stances.)

When the variables to be flipped are chosen only from the unsatisfied clauses,
a local search algorithm is called focusing. A well-known focused method for 3-
SAT is WalkSAT [17], which interleaves random variable flips among greedy ones
according to a given “noise” probability p. We shall contrast WalkSAT with a
focused variant of the standard Metropolis dynamics [9], which we call in this
setting Focused Metropolis Search (FMS).

We demonstrate that both WalkSAT and FMS work in the “critical” region
up to α > 4.2, given appropriate parameter choices. For instance, the solution
times achieved by FMS are found to be linear in N within a parameter window
ηmin ≤ η ≤ ηmax, where η is essentially the Metropolis temperature. Within
this window, the median and other quantiles of the solution time per variable
approach a constant value as N increases. For too large η the algorithm be-
comes “entropic”, while for too small η it is too greedy, leading to freezing of
degrees of freedom. For increasing α, the optimal η = ηopt(α) increases and the
linearity window gets narrower. Based on these characteristics, we postulate a
phase diagram for FMS, with two phase boundaries resulting from too little or
too much greed in the choice of η.

An extended version of this paper, available as a technical report [16], contains
some further experiments covering also the so called Focused Record-to-Record
Travel (FRRT) algorithm [4, 15], and a discussion about how whitening [12]
relates to the dynamics of focused local search.

2 Local Search for Satisfiability

It is natural to view the satisfiability problem as a combinatorial optimisa-
tion task, where the goal for a given formula F is to minimise the “energy”
function E = EF (s) = the number of unsatisfied clauses in formula F under
truth assignment s. The successful WalkSAT algorithm [17] combines the tech-
nique of focusing, discussed earlier by Papadimitriou [11] in the context of a
purely stochastic Random Walk algorithm, with interleaved greedy and random
steps.

Several studies on the efficiency of different variants of WalkSAT have been
published (e.g. [5, 6, 8, 13, 20]). Recently, Barthel et al. [2] performed systematic
numerical experiments with Papadimitriou’s original Random Walk method at
N = 50, 000, α = 2.0 . . . 4.0. They also explained a transition in the dynamics
of this algorithm at αdyn ≈ 2.7, observed earlier also in [14]. When α < αdyn,
satisfying assignments are generically found in time that is linear in the num-
ber of variables, whereas when α > αdyn exponential time is required. (Similar
results were obtained by Semerjian and Monasson in [18], though with smaller
experiments (N = 500).) At α > αdyn the search equilibrates at a nonzero
energy level, and only escapes to a ground state through a large enough ran-
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Fig. 1. Normalised solution times for WalkSAT at α = 3.8 . . . 4.3, N = 105

dom fluctuation. A rate-equation analysis of the method [2] yields an approx-
imation αdyn ≈ 2.71.1 See also [19] for further analyses of the Random Walk
method.

WalkSAT is more powerful than the simple Random Walk, because in it
focusing is accompanied by other heuristics. It is known that the behaviour
of WalkSAT is quite sensitive to the choice of the noise parameter p, and
that the optimal choice of p depends on the particulars of the problem at
hand and the variant of WalkSAT used [6, 5, 8, 20]. Concerning the ideal be-
haviour of the algorithm on random 3-SAT instances, Parkes [13] experimented
with a noise value p = 0.3 and concluded that the algorithm works in lin-
ear time at least up to α = 3.8. In other sources [5, 6, 20] it has been es-
timated that close to the satisfiability transition the optimal noise setting is
p ≈ 0.55.

Nevertheless, it has been conjectured (e.g. in [3]) that no local search algo-
rithm can work in linear time beyond the clustering transition at α ≈ 3.92. In
a series of recent experiments, however, Aurell et al. [1] concluded that with a
proper choice of parameters, the median solution time of WalkSAT remains lin-
ear in N up to at least α = 4.15, the onset of “1-RSB symmetry breaking”. Our
experiments indicate that the median time in fact remains linear even beyond
that, in line with the results presented in [15].

Figure 1 illustrates our experiments with WalkSAT2 on randomly gener-
ated formulas of size N = 105, various values of the noise parameter p, and
α = 3.8 . . . 4.22. For each (p, α)-combination, 21 formulas were generated, and
for each of these the algorithm was run until either a satisfying solution was
found or a time limit of 80000 × N flips was exceeded. Figure 1(a) shows the
solution times tsol, measured in number of flips normalised by N , for each
generated formula. Figure 1(b) gives the medians and quartiles of the data

1 Our numerical experiments actually suggest a somewhat lower value, αdyn ≈ 2.67.
2 Version 43, downloaded from http://www.cs.washington.edu/homes/kautz/

walksat/, with its default heuristics.
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Fig. 2. Normalised solution times for WalkSAT with α = 4.10 . . . 4.22, p = 0.50 . . . 0.60

for each value of α. As can be seen from the figures, for value p = 0.45 of
the noise parameter WalkSAT finds satisfying assignments in roughly time lin-
ear in N , with the coefficient of linearity increasing gradually with increas-
ing α, up to approximately α = 4.1 beyond which the distribution of solu-
tion times for the algorithm diverges. For p = 0.55, this linear regime extends
further, up to at least α = 4.18, but for p = 0.65 it seems to end already
before α = 3.9. For the best value of p we have been able to experimentally
determine, p = 0.57, the linear regime seems to extend up to even beyond
α = 4.2.

In order to estimate the value of p for which the linear time regime extends
to largest values of α, we generated test sets consisting of 21 formulas, each
of size N = 105, for α values ranging from 4.10 to 4.22, and for each α for
p values ranging from 0.50 to 0.60. WalkSAT was then run on each resulting
(α, p) test set; the medians and quartiles of the observed solution time distribu-
tions are shown in Figure 2. The data suggest that the asymptotically optimal
value of the noise parameter is p ≈ 0.57. Figure 3 shows the empirical solution
time distributions over 100 runs at α = 4.20 for p = 0.57 and p = 0.55 For
p = 0.57 the quantiles seem to converge to a finite value for increasing N , but
for p = 0.55, the distributions seem to diverge, with median values increasing
with N .
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3 Focused Metropolis Search

From an analytical point of view, the WalkSAT algorithm is rather complicated.
Thus, it is of interest to investigate the behaviour of the simpler algorithm ob-
tained by imposing the focusing heuristic on a basic Metropolis dynamics [9].
We call the resulting algorithm the Focused Metropolis Search (FMS) method.
The algorithm is parameterised by a number η, 0 ≤ η ≤ 1, such that a candidate
variable flip leading to an increase of ΔE > 0 in energy is accepted with proba-
bility ηΔE . Thus in customary Metropolis dynamics terms, η = e−1/T , where T
is the chosen computational temperature. (Note, however, that detailed balance
does not hold with focusing.)

The behaviour of the algorithm is qualitatively quite similar to WalkSAT.
For η = 0.2, the linear time regime seems to extend up to roughly α = 4.06, for
η = 0.3 up to at least α = 4.14; however for η = 0.4 again only up to maybe
α=4.08. To determine the optimal value of the η parameter we again mapped
out systematically the solution time distributions of the FMS algorithm for α
increasing from 4.10 to 4.22 and η ranging from 0.28 to 0.38. The results, shown
in Figure 4, suggest that the optimal value of the parameter is approximately
η = 0.36.
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Using the data for varying η allows one to extract the optimal ηopt(α). The
optimal η increases up to about α = 4.22  αc roughly linearly. The corre-
sponding optimal solution time at ηopt diverges, and our attempts to extract a
maximal value αmax beyond which linearity no longer exists are inconclusive for
lack of data. See Figure 5 for an example of a fit of the kind tsol ∼ (αmax−α)−b.

4 Conclusions

Based on the previous experimental data, we propose in Figure 6 a phase di-
agram for FMS. Note that at η = 1 FMS coincides with the Random Walk
algorithm; hence the first transition point is at α ≈ 2.67. For larger α there
are two phase boundaries in terms of η. ηu separates the linear regime from one
with too much noise, in which the fluctuations degrade algoritm performance.
For η < ηl, greediness leads to dynamical freezing, so that the algorithm no
longer scales linearly in N . Two questions then arise: what is the smallest α at
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Linear phase

Fig. 6. Proposed phase diagram for FMS. Above a dynamical threshold a metastable
state is encountered before a solution is reached. Below a “whitening” threshold a
freezing transition happens before a solution or a metastable or stable state is reached

which ηl(α) starts to deviate from zero; and how close to αc can one push the
linear regime by an appropriate choice of ηopt? The resolution of these issues
will depend on our understanding of local search methods in the presence of the
clustering of solutions. The clustered solutions should have an extensive core of
frozen variables, and therefore be hard to find. Since FMS performs well even
in this case, not all relevant features of the solution space and energy landscape
are presently understood.
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Abstract. CNF Boolean formulas generated from resolution or solution enu-
meration often have much redundancy. Efficient algorithms are needed to sim-
plify and compact such CNF formulas. In this paper, we present a novel algo-
rithm to maintain a subsumption-free CNF clause database by efficiently detect-
ing and removing subsumption as the clauses are being added. We then present 
an algorithm that compact CNF formula further by applying resolutions to make 
it Decremental Resolution Free. Our experimental evaluations show that these 
algorithms are efficient and effective in practice.  

1   Introduction and Previous Works 

Let l(C) denotes the set of literals of a clause C in a CNF Boolean formula. Given 
clauses C1 and C2, if l(C1) ∈ l(C2), then C1 subsumes C2 and C2 is subsumed by C1. A 
subsumed clause is redundant and can be removed from the formula without changing 
the Boolean function it represents. Since redundant clauses consume memory and 
slow down reasoning, it is desirable to make a CNF formula subsumption free by 
detecting and removing subsumed clauses. Modern SAT solvers and QBF solvers 
usually maintains a CNF database, which is modified during the solving process due 
to mechanisms such as learning (e.g. [1] [2]) and resolution and expansion (e.g. 
[3][4]). It is desirable if subsumption removal can be performed on-the-fly. 

When a new clause is added to a formula, existing clauses in the database are 
checked against it to see whether they are subsumed. This check is called backward 
subsumption checking. The new clause is also checked against existing clauses to see 
if it is subsumed by any of them. This check is called forward subsumption checking. 
To keep the clause database subsumption-free, both checks need to be performed.  

Efficient implementation of subsumption removal and, in a broader sense, on-the-
fly CNF simplification, haven’t received enough attention in SAT research. In search 
based solvers, learned clauses can be deleted if necessary. Therefore, memory and run 
time overhead for the subsumed clauses can be kept under control. Recently new SAT 
and QBF algorithms and applications make subsumption removal more relevant. 
Some recent solvers (e.g. Quantor [4]) and preprocessor (e.g. NiVer [5]) are rekin-
dling the use of resolution. SAT based solution enumeration (e.g. [6]), which tries to 
enumerate all the solutions of a SAT instance, is attracting a lot of attention in the 
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EDA community. In both of these cases, newly added clauses cannot be removed if 
they are not redundant. Therefore, subsumed clauses must be detected and removed in 
order to free the memory and increase the capacity of the solver. 

de Kleer [7] proposed to use trie data structure to detect and remove subsumption. 
Chatalic and Simon [8] proposed a subsumption elimination operator and a subsump-
tion-free union operator on formulas represented as Zero-suppressed Binary Decision 
Diagrams (ZBDDs [9]) to make the CNF subsumption free. Both trie and ZBDD 
incur significant overhead for maintaining the clause database. They are not widely 
used in modern solvers. Biere [4] described a signature based backward subsumption 
detection algorithm for flat CNF databases. Each time a clause is added to the data-
base, a signature is computed and checked against existing clauses. Signatures incur 
extra memory overhead. Moreover, In [4] the author did not describe a forward sub-
sumption detection algorithm. In fact, Forward subsumption was detected by periodi-
cally removing all clauses, flushing signatures and adding back the clauses in reverse 
chronological order.  

The problem of subsumption detection and removal in CNF can be regarded as a 
restricted case of 2-level logic simplification. It’s well known that prime and irredun-
dant covers for a Boolean function can be computed using e.g. iterative consensus and 
min-cover algorithms [10]. Some authors (e.g. [11]) attempted to use existing logic 
simplification techniques for CNF simplification. Unfortunately, the algorithms used 
for logic simplification are usually too expensive for CNF formulas, which often 
involve thousands of variables and clauses. Moreover, such techniques cannot be 
applied on-the-fly. In [6], the authors described a technique to perform on-the-fly 
clause compaction and simplification for SAT based solution enumeration and quanti-
fication. The algorithm can only detect possible simplifications between two clauses 
with same number of literals. It does not guarantee the CNF to be subsumption free. 

In this paper, we propose an efficient algorithm for on-the-fly subsumption re-
moval for CNF formulas. We propose an alternative backward subsumption detection 
algorithm that does not incur memory overhead as [4] does. We also propose an effi-
cient forward subsumption detection algorithm inspired by the two-literal-watching 
algorithm of Chaff [12]. Unlike [7] and [8], our algorithms operate on a flat CNF 
clause database. To compact the CNF database even more. We propose an algorithm 
that recursively applies the combination of a slightly modified version of afore men-
tioned algorithms and resolution. The algorithm not only makes the clause database 
subsumption free, but also decremental resolution free. In contrast to [6], our algo-
rithm can detect possible simplification between two clauses that have unequal num-
ber of literals. Moreover, it still maintains the subsumption-freeness of the CNF.  

2   Subsumption Detection and Removal Algorithms 

2.1   Backward Subsumption Detection 

Given a clause C, the backward subsumption detection algorithm finds all clauses 
whose literals are supersets of the literals in C. For each literal l, we keep a list of 
clauses in which this literal occurs, denote as ClauseSet(l). The pseudo code for 
backward subsumption detection is shown in the Algorithm 1. 
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This algorithm can be implemented efficiently. Set intersection has a linear run 
time complexity to the total number of elements in the sets. Therefore, the worst case 
complexity for finding clauses backward subsumed by clause C is linear to the total 
number of clauses in which the literals in C occur. In practice, the literals in a clause 
are sorted in ascending order with regard to the number of clauses they appear in. The 
iteration often ends with just a couple of iterations when S becomes empty.  

The advantage of this algorithm compared with the signature base algorithm in [4] 
is that it does not incur any overhead for storing signatures. Note that the set of 
clauses a literal occurs has to be kept by both methods. In fact, this data structure is 
often maintained by the existing SAT solvers or preprocessors for various other rea-
sons. Therefore, it can be regarded as free.   

BackwardSubsumedBy ( C ) 
{ 
  S = Set of All the Clauses; 
  For each literal l in C { 
    S = S ∩ ClauseSet ( l ); 
    If S is empty then break; 
  } 
  return S; 
} 

Algorithm 1. Backward Subsumption 
Detection 

IsForwardSubsumed ( C ) 
{ 
  for each literal l in C { 
    mark l; 
    for each clause C1 in WCls(l) 
{ 
      l1 = a literal in C1  
           that is not marked; 
      if (no such l1) { 
        unmark all literals in C; 
        return true;    
      } 
      else { 
        remove C1 from WCls (l); 
        put C1 in WCls (l1); 
      } 
    } 
  } 
  unmark all literals in C; 
  return false; 
} 

Algorithm 2. Forward Subsumption 
Detection 

AddClauseAndMaintainDRF ( C ) 
{ 
  sub_cls = clauses that contain subsets  
            of variables in C; 
  d0_sub  = clauses in sub_cls that are  
            distance 0 from C; 
  if (d0_sub is not empty) //C is sub-
sumed 
    return;             
  d1_sub  = clauses in sub_cls that are  
            distance 1 from C; 
  if ( d1_sub is not empty ) { 
    C1 = choose a clause in d1_sub; 
    C0 = resolvant of C and C1; 
    AddClauseAndMaintainDRF ( C0 ); 
    return; 
  } 
  sup_cls = clauses that contain super-
sets  
            of variables in C; 
  d0_sup  = clauses in sup_cls that are 
            distance 0 from C; 
  d1_sup  = clauses in sup_cls that are  
            distance 1 to C; 
  remove all clauses in d0_sup from CNF;  
  if ( d1_sup is not empty ) { 
    for each C1 in d1_sup { 
      remove C1 from CNF; 
      C0 = resolvant of C and C1; 
      AddClauseAndMaintainDRF ( C0 ); 
    } 
    AddClauseAndMaintainDRF ( C ); 
    return; 
  } 
  add clause C to CNF;   
} 

Algorithm 3. Maintaining a DRF Clause  
Database 
 

2.2   Forward Subsumption Detection 

Given a clause C, forward subsumption detection algorithm finds out if any clause in the 
current database consists of a subset of the literals in C. If such a clause exists, then 
clause C is subsumed by it and is redundant. The algorithm for forward subsumption 
detection is based on the fact that if a clause C is a conflicting clause, then all the 
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clauses that subsume it must also be conflicting clauses. Assume we set all literals in C 
to be false. If clause C1 subsumes C, then all literals in C1 must also be false.  

Our algorithm to detect whether such C1 exists is inspired by the 2-literal watching 
algorithm described in [12]. To detect if a clause is conflicting under a set of variable 
assignment, we only need to detect whether it contains at least one literal that is not 
false. We call this algorithm one-literal watching algorithm. Each clause has one 
literal marked as being watched. Each literal l has a list containing the set of clauses 
with watched literals corresponding to it. We denote the list as WCls (l). Given a 
clause C, the algorithm IsForwardSubsumed(C) returns true or false depending on 
whether the clause C is forward subsumed. The complexity of forward subsumption 
detection for a clause C is about the same as applying n variable assignments (i.e. 
implications) on the CNF database for a SAT solver, where n is the number of literals 
in clause C.  

A clause C is forward subsumed if an existing clause in the CNF subsumes C. If C 
is forward subsumed, then it is redundant and should not be added to the database. 
However, even if C is not subsumed, it may still be redundant. A clause is redundant 
if current CNF implies it. It is easy to prove that given Boolean formulas f1 and f2, if 
¬f1 ∧ f2 is false, then f2 implies f1. Subsumption is a specific case of redundancy. We 
can easily devise other methods to detect redundancy. The following algorithms can 
be regarded as strengthened versions of the forward subsumption algorithm described 
previously.  

A simple way to strengthen the forward subsumption detection algorithm is to ap-
ply full Boolean Constraint Propagation (BCP) when setting literals in C to be false. If 
it leads to a conflict, then C is redundant and should not be added to the CNF. Notice 
that in this case C may not be subsumed by any existing clauses. The complexity of 
this strengthened forward subsumption detection algorithm is about the same as ap-
plying n variable branches (i.e. decisions) on the CNF database, where n is the num-
ber of literals in C. It is obviously more costly than simple forward subsumption de-
tection, but potentially more effective.  

We can strengthen the algorithm even more. If after setting all literals in C to false 
and applying BCP do not produce a conflicting clause, we can apply a SAT solver on 
the resulting CNF to see if it is satisfiable. If it is unsatisfiable, then C is redundant 
and should not be added to the CNF. Obviously, the complexity of this version of 
redundancy detection is in the same order of a SAT solving, which can be very ex-
pensive. We can set a time limit on the solver, abort solving when time out, and con-
servatively assume the clause to be irredundant.  

2.3   Maintaining a Subsumption Free CNF Database 

By combining the forward and backward subsumption detection algorithms, we ob-
tain the algorithm for maintaining a subsumption free CNF database. As clause enters 
the database, subsumed clauses are being detected and removed. Our experiments 
show that forward subsumption detection is much cheaper than backward subsump-
tion detection. Therefore, when a clause enters the database, we first call procedure 
IsForwardSubsumed. If the clause is subsumed by existing clauses in the database, 
the clause is discarded and no further check is necessary. Otherwise, BackwardSub-
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sumption is called to check if it subsumes any existing clauses. If so, the subsumed 
clauses are deleted and the new clause is added to the CNF.  

3   Maintaining a Decremental Resolution Free CNF Database 

A subsumption free CNF can often be simplified further by a resolution followed by 
subsumption. Consider clauses (a ∨ b) and (a ∨ ¬b ∨ c). It is easy to observe that by 
resolving these two clauses, the resolvant (a ∨ c) subsumes the second clause, there-
fore, the formula can be simplified as (a ∨ b) ∧ (a ∨ c). We will call a resolution that 
generates a clause that subsumes at least one of its parent clauses a decremental reso-
lution. Formally, we define the distance between two clauses C1 and C2 as the number 
of variables that occur in both C1 and C2 but are in different polarities. Given clauses 
C1 and C2 with distance 1, the resolvant is the clause that contains all literals in C1 and 
C2 except the distance 1 literals. If the set of variables in C1 is a subset of the variables 
in C2, then such a resolution is a decremental resolution because the resolvant sub-
sumes C2. Given a CNF database, if no decremental resolution is possible between 
any pair of clauses, then the CNF is decremental resolution free (DRF). In the follow-
ing, we assume that subsumption-freeness is always maintained. Therefore, when we 
say a CNF is decremental resolution free, we imply that it is also subsumption free.  

Notice that an algorithm that maintains a decremental resolution free database may 
not necessarily generate a more compact representation than the algorithm that main-
tains a subsumption free database due to its greedy nature. Suppose we add three 
clauses (a ∨ ¬d), (a ∨ b ∨ c ∨ d), and (c ∨ d) into the database, in that order. If we 
maintain a subsumption free database, since the second clause is subsumed by the 
third one, we will remove it and obtain a CNF with 2 clauses and 4 literals. On the 
other hand, if we maintain a DRF database, the second clause resolves with the first 
clause resulting in clause (a ∨ b ∨ c), which is not subsumed by the third clause. 
Therefore, the end result is a CNF formula with 3 clauses and 7 literals.  

The algorithm to maintain a DRF CNF is built upon algorithms for subsumption 
detection. In subsumption detection, we need to find clauses that contain subsets (as 
in forward subsumption) or supersets (as in backward subsumption) of the literals in a 
clause C. We can modify both of the algorithms slightly to find clauses that contain 
subsets or supersets of the variables in a clause C. This can be achieved easily. E.g. in 
the backward subsumption algorithm, we keep a list of clauses for each variable in-
stead of each literals as ClauseSet(v). In forward subsumption algorithm, we set 
marks on variables instead of literals. The pseudo code for adding a clause into a DRF 
clause database is shown in Algoirthm 4.  

Algorithm AddClauseAndMaintainDRF adds a clause into a CNF formula if and 
only if it can make sure that there is no possible subsumption or decremental resolu-
tion between the clause to be added and the clauses in current CNF. If subsumption or 
decremental resolution is possible, it eliminates them and then makes a recursive call 
to perform the check against the new CNF. One interesting implementation detail that 
needs to be pointed out is that after d1_sup is calculated, some of the clauses in it 
may be deleted by subsequent recursive calls. Therefore, whenever a clause from 
d1_sup is accessed in the foreach loop, it must be checked to make sure that the 
clause is still valid in current CNF.  
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4   Experimental Results 

In this section, we report some preliminary experimental results to show the feasibil-
ity and effectiveness of our CNF simplification algorithms. Notice that the purpose of 
the experiment is not to demonstrate the usefulness of subsumption removal because 
that is very application specific. Therefore, we are not trying to answer questions like 
“How many clauses can be subsumed”. “Is it worth the effort?”  What we are demon-
strating here is that for the set of algorithms we proposed in the paper that operates 
with little overhead, we can implement them reasonably efficiently for most applica-
tions to use. We are not comparing our algorithm with existing algorithms because 
none of the other algorithms operates under the same setting (i.e. support on-the-fly 
forward and backward subsumption detection on flat CNF databases). 

Table 1. Variable Elimination by Resoulution: No CNF Simplification 

Table 2. Variable Elimination: Applying Subsumption Removal 

Table 3. Variable Elimination: Maintaining DRF 
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For this purpose we need to construct a set of input clauses to feed to the algo-
rithms. The simple application we choose to test the CNF simplification techniques is 
as follows. We randomly choose a subset of the variables in a CNF formula and 
eliminate them one by one using resolution (i.e. Davis Putnam algorithm [3]). We 
randomly choose several well known SAT benchmark instances from formal verifica-
tion, logic planning and random 3-SAT instances. The sizes of the subset to be elimi-
nated are hand picked such that they do not cause blowup and take reasonable amount 
of time to finish. Table 1 shows the statistics of the original CNF formulas and the 
number of variables eliminated for each of the formulas. In Table 1 we also show the 
statistics of the final CNF formulas generated if we do not apply any CNF simplifica-
tion techniques during the variable elimination process.  

Table 2 shows the statistics for the variable elimination when we apply subsump-
tion detection and removal technique described in section 3. Whenever a clause is 
added to the clause database, we check for subsumption and remove the subsumed 
clauses so that the CNF is subsumption free. The columns under “Total Added” are 
the number of clause and literals added to the clause database (i.e. number of clauses 
and literals passed to the routine AddClauseRemoveSubsumption ). Columns under 
“Forward” and “Backward” show the number of clauses and literals removed due to 
forward and backward subsumption, respectively. “Final Result” shows the statistics 
of the final formula obtained. From the result we find that for this application, usually 
more clauses are forward subsumed than backward subsumed.  

Table 3 shows the statistics for applying the DRF algorithm described in Section 3 
in the variable elimination process. Again, under “Total Added” are the clauses and 
literals added to the CNF database, and the “Final Result” columns show the final 
CNF obtained. Compare Table 3 with table 2, we find that by maintaining the CNF to 
be DRF, we usually obtain smaller CNF formulas. Maintaining a CNF to be DRF is 
more expensive than subsumption removal. However, compare the run time under 
“Time” column for all three tables, we find that the performances are acceptable for 
this application because the great reduction in number of clauses offsets the costs for 
simplification.  

5   Conclusions and Future Work 

In this paper we describe an algorithm for subsumption detection and elimination on-
the-fly, and an algorithm that makes a CNF database decremental resolution free. The 
purpose of this work is to automatically compact and simplify CNF formulas derived 
from operations such as resolution and solution enumeration. Such work is important 
because new applications of SAT solvers such as quantification elimination and ab-
straction refinement are performed by either resolution or solution enumeration.  

Many things are unexplored in this paper. Our algorithms are not powerful enough 
to produce prime and irredundant CNF formulas. Traditional methods to generate 
prime and irredundant implicants are too expensive to be practical in this setting. How 
to balance the runtime cost and the quality of the result for on-the-fly CNF simplifica-
tion is a very interesting problem worth much further investigation. 
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