

Lecture Notes in Computer Science 3543
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Lea Kutvonen Nancy Alonistioti (Eds.)

Distributed
Applications and
Interoperable Systems

5th IFIP WG 6.1 International Conference, DAIS 2005
Athens, Greece, June 15-17, 2005
Proceedings

13

Volume Editors

Lea Kutvonen
University of Helsinki
Department of Computer Science
P.O. Box 68, Gustaf Hällströmin katu 2b, 00014 Helsinki, Finland
E-mail: Lea.Kutvonen@cs.Helsinki.FI

Nancy Alonistioti
University of Athens
Department of Informatics and Telecommunications
157 84 Panepistimiopolis, Ilissia, Athens, Greece
E-mail: nancy@di.uoa.gr

Library of Congress Control Number: 2005926896

CR Subject Classification (1998): D.2, C.2.4, I.2.11, D.4, H.4

ISSN 0302-9743
ISBN-10 3-540-26262-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26262-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© IFIP International Federation for Information Processing, Hofstrasse 3, A-2361 Laxenburg, Austria 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11498094 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of the IFIP WG 6.1 International Working
Conference on Distributed Applications and Interoperable Systems V held in
Athens, Greece, on June 15–17, 2005.

The conference program presented the state of the art in research concerning
distributed and interoperable systems. The emergence of 4th-generation com-
munication systems, the evolution of Internet technologies, the convergence of
telecom and datacom, wireless and fixed communication systems and applica-
tions pave the path for ubiquitous service and application provision. Innovative
solutions are required for the development, implementation and operation of
distributed applications in complex IT environments full of diversity and het-
erogeneity. Today, the emerging wide spectrum of distributed systems – ranging
from ambient intelligence to global computing scenarios – lacks systematic ap-
plication development support. Following the evolution of the field, DAIS 2005
focuses on models, technologies and platforms for interoperable, scalable and
adaptable distributed applications within all kinds of computing environments.

The papers presented at DAIS 2005 cover methodological aspects of building
and architecting distributed and interoperable services, interoperability tech-
nologies, context- and location-based applications, configurability of communi-
cation services, performance issues, data-integration issues, and Web services. In
comparison to earlier events, the submissions showed increased interest towards
methodological aspects and large-scale system interoperability.

These proceedings contain 16 regular and 5 short papers, which were se-
lected in a careful, international reviewing process. The DAIS 2005 conference
was sponsored by IFIP (International Federation for Information Processing)
and it was the fifth conference in the DAIS series of events organized by IFIP
Working Group 6.1. The previous conferences in this series took place in Cot-
tbus, Germany (1997), Helsinki, Finland (1999), Krakow, Poland (2001), and
Paris, France (2003). In Paris, DAIS was organized for the first time in conjunc-
tion with the FMOODS conference (Formal Methods and Open Object-Based
Distributed Systems), and that practice was followed in Athens as well.

The conference program was complemented with joint invited talks with the
FMOODS audience. Prof. Gordon Blair (Lancaster University) discussed Mid-
dleware and the Divergent Grid, while Prof. Rocco de Nicola (University of Flo-
rence) addressed Programming and Reasoning on Global Computers with Evolv-
ing Topologies. Prof. Andreas Reuter (European Media Laboratory GmbH) shed
light on the area of Application Integration with Emphasis on Orchestration and
Consistency.

Finally, we would like to take this opportunity to thank the numerous people
whose work made this conference possible. We wish to thank the University of
Athens for hosting the event, and Prof. Lazaros Merakos for acting as a general

VI Preface

chair of the joint DAIS and FMOODS event. Costas Polychronopoulos provided
the Web services for us. Prof. Hartmut König took care of the publicity for the
event. The Steering Committee with Profs. Guy Leduc, Hartmut König, Kurt
Geihs, and Elie Najm extended their helping hand on many essential occasions.

It is the good technical papers that make a conference. Especially we thank
the submitters and reviewers for their contributions towards an interesting con-
ference.

June 2005 Nancy Alonistioti and Lea Kutvonen

Conference Committees

Chairs

Steering Committee Guy Leduc, University of Liège, Belgium; chair 2004
Elie Najm, ENST, Paris, France; chair 2005
Hartmut König, BTU Cottbus, Germany
Kurt Geihs, University of Kassel, Germany
Lea Kutvonen, University of Helsinki,

Finland member in 2005
General Chair Lazaros Merakos, University of Athens, Greece
Program Co-chairs Nancy Alonistioti, University of Athens, Greece

Lea Kutvonen, University of Helsinki, Finland
Publicity Chair Hartmut König, BTU Cottbus, Germany
Organizing Chair Costas Polychronopoulos, University of Athens,

Greece

Program Committee

M. Ahamed, Georgia Tech, USA
M. Anagnostou, National Technical University of Athens, Greece
S. Baker, IONA, Ireland
Y. Berbers, Katholieke Universiteit Leuven, Belgium
A. Beugnard, ENST-Bretagne, France
D. Bourse, Motorola Labs, France
I. Demeure, ENST, France
F. Eliassen, University of Oslo, Norway
K. Geihs, University of Kassel, Germany
S. Gessler, NEC Europe, Germany
D. Hagimont, INRIA, France
S. Hallsteinsen, Sintef, Norway
P. Honeyman, University of Michigan, USA
J. Indulska, University of Queensland, Australia
E. Jul, DIKU, Denmark
A. Kaloxylos, University of the Peloponnese, Greece
V. Karamcheti, New York University, USA
H. König, BTU Cottbus, Germany
H. Krumm, University of Dortmund, Germany
W. Lamersdorf, University of Hamburg, Germany
C. Linnhoff-Popien, University of Munich, Germany
P. Merle, INRIA, France
E. Najm, ENST, France

;

VIII Organization

G. Papadopoulos, University of Cyprus, Cyprus
K. Raymond, DSTC, Australia
D. Schmidt, University of California, USA
W. Schreiner, Johannes Kepler University Linz, Austria
T. Senivongse, Chulalongkorn University, Thailand
J.-B. Stefani, INRIA, France
M. Virvou, University of Piraeus, Greece
D. Zeghlache, INT, France
K. Zielinski, UMM Krakow, Poland

External Referees

T. Alanko, University of Helsinki, Finland
T. Niklander, University of Helsinki, Finland
S. Pan-ngum, Chulalongkorn University, Thailand
C. Phongphanphanee, Chulalongkorn University, Thailand
S. Srinutapong, Microsoft, Thailand
Y. Teng-amnuay, Chulalongkorn University, Thailand
K. Raatikainen, University of Helsinki, Finland
S. Ruohomaa, University of Helsinki, Finland
T. Ruokolainen, University of Helsinki, Finland

Table of Contents

Towards Real-Time Middleware for Applications of Vehicular Ad Hoc
Networks

René Meier, Barbara Hughes, Raymond Cunningham,
Vinny Cahill . 1

Adaptive Context Management Using a Component-Based Approach
Davy Preuveneers, Yolande Berbers . 14

Customised Billing for Location-Based Services
Maria Koutsopoulou, Spyridon Panagiotakis, Athanas ia Alonistioti,
Alexandros Kaloxylos . 27

Interoperability Architectures

Loosely-Coupled Integration of CSCW Systems
Roberta L. Gomes, Guillermo J. Hoyos Rivera,
Jean Pierre Courtiat . 38

Interoperability and eServices
Aphrodite Tsalgatidou, Eleni Koutrouli . 50

Model-Driven Self-management of Legacy Applications
Markus Debusmann, Markus Schmid, Reinhold Kroeger 56

Methodological Aspects

Model-Driven Methodology for Building QoS-Optimised Web Service
Compositions

Roy Grønmo, Michael C. Jaeger . 68

How to Implement Software Connectors? A Reusable, Abstract,
Adaptable Connector

Selma Matougui, Antoine Beugnard . 83

Designing Self-adaptive Multimedia Applications Through Hierarchical
Reconfiguration

Oussama Layaida, Daniel Hagimont . 95

Transformation Composition Modelling Framework
Jon Oldevik . 108

s

X Table of Contents

Service Discovery

Proximity-Based Service Discovery in Mobile Ad Hoc Networks
René Meier, Vinny Cahill, Andronikos Nedos, Siobhán Clarke 115

Enriching UDDI Information Model with an Integrated Service Profile
Natenapa Sriharee, Twittie Senivongse . 130

Configurable Communication

Building a Configurable Publish/Subscribe Notification Service
Cristian Fiorentino, Mariano Cilia, Ludger Fiege,
Alejandro Buchmann . 136

Protocol Reconfiguration Using Component-Based Design
Fotis Foukalas, Yiorgos Ntarladimas, Aristotelis Glentis,
Zachos Boufidis . 148

A Secure and Efficient Communication Resume Protocol for Secure
Wireless Networks

Kihong Kim, Jinkeun Hong, Jongin Lim . 157

Interoperability Architectures II

An Architecture for Collaborative Scenarios Applying a ommon
BPMN-Repository

Thomas Theling, Jörg Zwicker, Peter Loos,
Dominik Vanderhaeghen . 169

A Flexible and Modular Framework for Implementing Infrastructures
for Global Computing

Lorenzo Bettini, Rocco De Nicola, Daniele Falassi, Marc Lacoste,
Michele Loreti . 181

An Architecture for Implementing Application Interoperation with
Heterogeneous Systems

George Hatzisymeon, Nikos Houssos, Dimitris Andreadis,
Vasilis Samoladas . 194

Performance and Optimization

Optimizing the Access to Read-Only Data in Grid Computing
Alek Opitz, Hartmut Koenig . 206

C

Table of Contents XI

Using Data Item Relationships to Adaptively Select Data for
Synchronization

Oskari Koskimies . 220

A Client/Intercept Based System for Optimizing Wireless Access to
Web Services

Irene Kilanioti, Georgia Sotiropoulou, Stathes Hadjiefthymiades 226

Author Index . 235

L. Kutvonen and N. Alonistioti (Eds.): DAIS 2005, LNCS 3543, pp. 1 – 13, 2005.
© IFIP International Federation for Information Processing 2005

Towards Real-Time Middleware for Applications of
Vehicular Ad Hoc Networks

René Meier, Barbara Hughes, Raymond Cunningham, and Vinny Cahill

Distributed Systems Group, Department of Computer Science,
Trinity College Dublin, Ireland

{rene.meier, barbara.hughes, raymond.cunningham,
vinny.cahill}@cs.tcd.ie

Abstract. Applications of inter-vehicle and vehicle-to-roadside communication
that make use of vehicular ad hoc networks (VANETs) will often require
reliable communication that provides guaranteed real-time message
propagation. This paper describes an event-based middleware, called RT-
STEAM, designed to meet these requirements. Unlike other event systems, RT-
STEAM does not rely on a centralized event broker or look-up service while
still supporting event channels providing hard real-time event delivery. RT-
STEAM event filtering can be based on subject, content and/or proximity.
Proximity filters define geographical areas within which events are delivered.
To guarantee real-time communication, we exploit proximity-based event
propagation to guarantee real-time constraints within the defined proximities
only. The proximity within which real-time guarantees are available is adapted
to maintain time bounds while allowing changes to membership and topology
as is typical of VANETs. This Space-Elastic Model of real-time communication
is the first to directly address adaptation in the space domain to guarantee real-
time constraints.

1 Introduction

Many Ad hoc wireless networks comprise sets of mobile nodes connected by wireless
links that form arbitrary wireless network topologies without the use of any
centralized access point or infrastructure. Ad hoc wireless networks are inherently
self-creating, self-organizing and self-administering [1].

While most research in ad hoc networks has assumed a random waypoint mobility
model in a network of a particular shape, e.g., rectangular, [2], the specific patterns of
vehicle movement make inter-vehicle and vehicle-to-roadside networks distinctive. In
particular, the potential for high speeds and the limited dimensionality afforded by a
confined roadway, differentiates vehicular ad hoc networks (VANETs) from other ad
hoc networks.

By enabling inter-vehicle and vehicle-to-roadside communication a broad range of
applications in the areas of cooperative driver assistance and mobile information
systems are being developed. One of the more sophisticated applications for inter-
vehicle communication is the platooning of vehicles [3]. For example, the lead

2 R. Meier et al.

vehicle in such an application may broadcast sensor information to coordinate
movement and potentially reduce the consumption of fuel.

A possible application of vehicle-to-roadside communication is in next generation
urban traffic control (UTC) systems. A vehicle (or set of vehicles) approaching a
junction could inform a traffic light controller at the junction of its pending arrival.
The traffic light controller could then change the traffic light sequence to allow the
approaching vehicle to pass through the junction without stopping. When a number of
vehicles are approaching the junction, and if the traffic light controller is informed of
the presence of the approaching vehicles, then the controller could optimize the traffic
flow across the junction. This time constrained communication between vehicles and
traffic light controllers should continue reliably during peak times when a large
number of vehicles approach the junction from a number of different directions. The
potential for contention increases as the number of vehicles communicating with the
controller increases.

Both the vehicle platooning and UTC applications require a communication
paradigm that supports dynamic changes to the topology of the underlying wireless
network, for example to accommodate vehicles joining and leaving a platoon, as well
as delivery guarantees for time-critical messages. In the UTC application scenario
described above, the traffic light controller needs to be informed of the presence of
the approaching vehicle in sufficient time to allow it to change the flow of traffic
across the junction.

This paper describes an event-based middleware, called RT-STEAM, designed for
ad hoc networks. Unlike other event systems, RT-STEAM does not rely on
centralized services while still supporting event channels providing hard real-time
event delivery.

RT-STEAM is based on an implicit event model [4] and has been designed for
mobile applications and wireless ad hoc networks. RT-STEAM differs from other
event services in that it does not rely on the presence of any centralized components,
such as event brokers or look-up services, and supports distributed techniques for
identifying and delivering events of interest based on location. RT-STEAM supports
decentralised approaches for discovering peers, for routing events using a distributed
naming scheme, and for event filtering based on combining multiple filters. Filters
may be applied to the subject and the content of events, and may be used to define
geographical areas within which events are valid. Such proximity-based filtering
represents a natural way to filter events of interest in mobile applications.

RT-STEAM provides a programming model based on the concept of event
channels. A number of event channel classes with different temporal and reliability
attributes are available to integrate real-time support into the event channel model.
Depending on the guarantees available from the underlying network, the proximity
characteristically associated with an event channel may require adaptation to maintain
the required real-time guarantees while allowing changes to membership and
topology as is typical of VANETs. This Space-Elastic model is the first to directly
address adaptation in the space domain to maintain real-time guarantees.

An underlying assumption of the Space-Elastic model is that a real-time
application in a VANET can specify and interpret specified bounds in space (the
proximity) where real-time guarantees are critical. This assumption relates to the
observations in [3], that the relevance of data to a specific geographical area is one of

 Towards Real-Time Middleware for Applications of Vehicular Ad Hoc Networks 3

the key features of an inter-vehicle network and that mission-critical (e.g., emergency
braking notification), and non-critical (e.g., weather reports), communication
competes for the limited available resources. Thus, Space-Elastic applications must be
space-aware, i.e., operate correctly in a dynamic proximity, and information-sensitive,
i.e., aware of the criticality of different sources of information (event channels). In the
vehicle platooning scenario, the proximity where real-time communication is critical
may bound the platoon and, for example, vehicles within the vicinity of the platoon,
moving in the same direction. In the UTC scenario described, the critical proximity
may be the minimum area within which the controller has sufficient time to change
the flow of traffic following communication with an approaching vehicle.

The reminder of this paper is structured as follows: Section 2 introduces RT-
STEAM’s programming model and architecture. Section 3 presents our Space-Elastic
Model of real-time communication and describes its approach to exploiting
proximity-based event propagation for maintaining time bounds. Section 4 outlines
RT-STEAM’s communication architecture. Finally, section 5 concludes this paper
and outlines our future work.

2 RT-STEAM

The design of the RT-STEAM architecture is motivated by the hypothesis that there
are applications in which mobile components are more likely to interact once they are
in close proximity. For example, a vehicle is interested in receiving emergency
braking notifications from other vehicles only when these vehicles are within close
proximity. Similarly, traffic light controllers are only interested in arrival notifications
from vehicles that are located within a certain range of their own locations. This
means that the closer event consumers are located to a producer the more likely they
are to be interested in the events that it produces. Significantly, this implies that
events are relevant within a certain geographical area surrounding a producer.

Event Types, Proximities, and Channels. RT-STEAM implements an implicit event
model [4] that allows event producers to publish events of a specific event type and
consumers to subscribe to events of particular event types. Producers may publish
events of several event types and consumers may subscribe to one or more event
types.

To facilitate the kind of location-aware application described above, RT-STEAM
supports a programming model that allows producers to bound the area within which
their events are relevant and to define Quality of Service (QoS) attributes describing
the real-time constraints of these events. Such a combination of event type,
geographical area and QoS is called an event channel. Producers announce event
channels, i.e., they announce the type of event they intend to raise together with the
geographical area, called the proximity, within which events of this type are to be
disseminated with the required QoS constraints. Thus, an event channel
announcement bounds event propagation to a defined proximity where required QoS
constraints are guaranteed. Events are delivered to consumers only if they reside
within a proximity where the QoS constraints for the event type are satisfied.

Producers may define proximities independently of their physical transmission
range with an underlying group communication system routing event messages from

4 R. Meier et al.

producer to consumer using a multi-hop protocol. Proximities may be of arbitrary
shape and may be defined as nested and overlapping areas. Nesting allows a large
proximity to contain a smaller proximity subdividing the large area. Fig. 1 depicts two
overlapping proximities of different shape and illustrates that multiple consuming and
producing entities may reside inside a proximity. These proximities have been
associated with events of type A and type B as well as QoS A and QoS B respectively.
Consequently, consumers handling these event types receive events if they reside
inside the appropriate proximity. An example of overlapping proximities might
include a vehicle disseminating an emergency braking notification within the vicinity
of a traffic light controller that is also receiving arrival notifications from approaching
vehicles.

Supporting Mobility. RT-STEAM
has been designed to support
applications in which application
components can be either stationary or
mobile and interact based on their
geographical location. This implies
that the RT-STEAM middleware as
well as the entities hosted by a
particular machine are aware of their
geographical location at any given
time. RT-STEAM includes a location
service that uses sensor data to
compute the current geographical
location of its host machine and
entities. To suit outdoor applications,
for example, in the traffic management domain, RT-STEAM exploits a version of the
location service that uses a GPS satellite receiver to provide latitude and longitude
coordinates.

In addition to supporting stationary and mobile entities RT-STEAM allows
proximities to be either stationary or mobile. A stationary proximity is attached to a
fixed point in space whereas a mobile proximity is mapped to a moving position
represented by the location of a specific mobile producer. Hence, a mobile proximity
moves with the location of the producer to which it has been attached. This implies
that mobile consumers and producers may be moving within a mobile proximity. For
example, a group of platooning vehicles might interact using a proximity that has
been defined by the leading vehicle. Such a proximity might be attached to the
position of the leader moving with its location.

Subscribing to Event Types. Consumers must subscribe to event types in order to
have the middleware deliver subsequent events to them when located inside any
proximity where events of this type are raised, until they unsubscribe. A consumer
may move from one proximity to another without re-issuing a subscription when
entering the new proximity. Thus, subscriptions are persistent and will be applied
transparently by the middleware every time a subscriber enters a new proximity. This
implies that a subscription to a specific event type applies to all proximities handling

CX

PX Producer generating events of type X

Consumer interested in events of type X

CA,B

CA

CB

CA,B

PA

PX

CA,B

PB

CA,B

CX

Proximity 1

(event type A, QoS A)
Proximity 2

(event type B, QoS B)
PX

CB

Event channel 1

Event channel 2

Fig. 1. Disseminating events using event types,
proximities and event channels

 Towards Real-Time Middleware for Applications of Vehicular Ad Hoc Networks 5

these events even though the subscriber may only receive a subset of these events at
any time. A single subscription may result in events of a particular event type raised
by different producers in multiple proximities and with different QoS being delivered
over time. Hence, the set of events received by a subscriber at a certain time depends
on its movements as well as on the movements of producers and proximities.

Defining Event Channels. Applications define event channels to specify the
functional and non-functional attributes of the events they intend to disseminate. A
RT-STEAM event channel is defined by a subject and a set of attributes, i.e., its event
type, as well as of a proximity description and QoS constraints representing its non-
functional attributes. The subject defines the name of a specific event type and the
content defines the names and types of a set of associated parameters. RT-STEAM
event instances are defined in a similar manner by specifying a subject and content
parameter values. Producers and consumers must use a common vocabulary defined
by the application to agree on the name of an event type. An event type and an event
instance that have the same subject must have an identical content structure, i.e., the
set of parameter names and types must be consistent. As described in more detail
below, distributed event filters may be applied to the subject, content, and proximity
attribute of an event.

Applying Event Notification Filters. RT-STEAM supports three different classes of
event filter, namely subject filters, content filters, and proximity filters. These filters
may be combined and a particular event is only delivered to a consumer if all filters
match. Subject filters match the subject of events allowing a consumer to specify the
event type in which it is interested. Content filters contain a filter expression that can
be matched against the values of an event’s parameters. Content filters are specified
using filter expressions describing the constraints of a specific consumer. These filter
expressions may contain equality, magnitude and range operators as well as ordering
relations. They may include variable, consumer local information. Proximity filters
are location filters that define the geographic scope within which events are relevant
and correspond to the proximity attribute associated with an event type.

Locating Proximities. Instead of requiring a naming service to locate entities that
wish to interact, RT-STEAM provides a discovery service that uses beacons to
discover proximities. Once a proximity has been discovered, the associated events
will be delivered to subscribers that are located inside the proximity. This service is
also responsible for mapping discovered proximities to subscriptions and to the
underlying proximity-based communication groups [5]. Hence, it causes the
middleware to join a proximity-based multicast group of interest, i.e., for which it has
either a subscription or an announcement, once the host machine is within the
associated proximity-bound and to leave the proximity group upon departure from the
area.

RT-STEAM’s Distributed Naming Scheme. There are two essential issues that need
to be addressed when mapping announcements and subscriptions to proximity groups.
Firstly, a naming scheme for uniquely identifying groups is required and secondly, a
means for consumers and producers to obtain the correct group identifiers needs to be
provided. These issues are traditionally addressed by employing approaches based
either on statically generating a fixed number of unique and well-known group

6 R. Meier et al.

identifiers or on using a (centralized) lookup service for generating and retrieving
group identifiers. However, neither of these approaches suffices for applications that
use VANETs due to their dynamic nature and their inherently distributed
infrastructure.

The RT-STEAM event model exploits a decentralized naming scheme in which
identifiers representing groups can be computed from event channel descriptions.
Each combination of event type, proximity, and QoS is considered to be unique
throughout a system assuming that there is no justification for applications to define
multiple identical event channels. A textual description of a subject, proximity, and
QoS triple is used as input to a hashing algorithm to dynamically generate hash keys
that represent identifiers using local rather than global knowledge. Upon discovery of
a proximity and the associated event type and QoS, consumers compute the
corresponding group identifier if the subject is of interest. This naming scheme allows
consumers to subsequently use these identifiers to join groups in which relevant
events are disseminated. Moreover, it allows consumers that are not interested in
certain events to avoid joining irrelevant groups and consequently, from receiving
unwanted events even though they might reside inside the proximity associated with a
group.

3 The Space-Elastic Model

The Hard real-time event communication in a highly dynamic VANET is challenging.
We scope the problem by exploiting the proximity filters defined by RT-STEAM to
reduce the area of a VANET where real-time communication is required to within the
defined proximity bounds only. However, the dynamics of a VANET also impacts the
real-time guarantees available within the proximity bound. For example, in the
vehicle platooning scenario, movement through city environments, with increased
obstacles such as tall buildings, may impact the ability to guarantee real-time
communication within the entire proximity defined. In this case, we dynamically
adapt the proximity bound to maintain the required real-time guarantees. This
dynamic proximity, or space-elastic, adaptation is at the core of our Space-Elastic
model.

Challenges to Real-Time Communication. Prior to introducing the Space-Elastic
model we present an overview of the challenges to hard real-time communication in a
dynamic VANET. The challenges to MANETs discussed in [6], e.g., dynamic
connectivity, unpredictable latency and limited resource availability are exacerbated
in VANETs, for the following reasons.

Limited Communication Duration. In [2], an analytical investigation of topological
dynamics based on classical vehicular traffic theory [7], presents valuable information
about the relationship between velocity and communication duration. It is shown that
in the case of oncoming traffic, and a high average velocity of 130km/h the
probability of maintaining connectivity for a communication duration of less than 30s
is less than 0.1. Furthermore, as investigated in [3], the transmission range of the
radio system significantly influences these duration figures, and that for radio systems
supporting a distance less than 500m, the communication duration must be reduced to
below 10s. The highly dynamic communication duration expected in a high velocity

 Towards Real-Time Middleware for Applications of Vehicular Ad Hoc Networks 7

VANET, directly impacts, and must be reflected, in the design of medium-access and
routing protocols.

Diverse Range of Information. Combining safety, e.g. emergency braking
notification, with comfort, e.g. traffic jam notification, in VANETs, leads to a
diversity of information criticality and thus required communication guarantees. This
diversity influences resource allocation and routing, e.g., prioritized bandwidth usage
for emergency notification, and must be reflected in policies available to the
middleware protocols.

Impact of Traffic Density on Multi-Hop Connectivity. Both the vehicle platooning
and UTC scenarios may require multi-hop connectivity to coordinate driver
assistance. As shown in [3], traffic dynamics, in terms of the velocity of vehicles and
the density of traffic, impacts the maximum number of hops available for information
exchange. For example, 5 hop communication is available with a probability of more
than 90% only if the radio system supports at least a range of 1km, and the traffic
volume is high. In low-density traffic volumes, with the same radio support, the
probability of achieving 5 hops falls significantly to below 20%. To reduce the impact
of limited multi-hop connectivity on real-time communication, we investigate
dynamically adapting the geographical area within which real-time guarantees are
available, and thus within which route discovery is necessary. This is an example of
space-elastic adaptation which we discuss in the following sections.

Limitations of Time-Elastic Adaptation. Given the challenges outlined, achieving
hard real-time guarantees in a VANET is potentially impossible without restricting
the characteristics of the real-time applications, the environment or both. Traditional
hard real-time systems have restricted the application, for example, by assuming a
known upper bound on the number of participants or assuming known connectivity to
intermediate components [8, 9]. These static assumptions are not applicable in a
dynamic environment.

The Timely Computing Base (TCB) [10], addresses the problem of achieving
synchrony in dynamic environments with uncertain timeliness. In [10], Veríssimo and
Casimiro introduce the idea that the probability of achieving real-time communication
in dynamic environments changes over time. This observation motivated the
specification of the time-elastic class of applications [11]. Time-elastic applications
are the subset of real-time applications where it is more beneficial to execute in a
degraded mode (e.g., extended time latencies), than to stop, or more critically, have
unexpected failures due to a change in the assumed coverage. Inter-vehicle and
vehicle-to-roadside applications that require hard real-time guarantees are not time-
elastic. Thus the TCB model and time-elastic classification are not applicable. To
achieve hard real-time communication in a dynamic VANET, we look instead at the
proximity, or space, within which the guarantees are required.

Space-Elastic Adaptation. The timeliness properties of hard real-time applications
are invariant. Adapting the terminology of [10], hard real-time applications require
guarantees that P(within T from t(e)) = 1, i.e., the probability that a time-dependent
execution will complete within (a time interval) T from (start time) t(e), is guaranteed
for all timeliness properties. A model of real-time communication must observe this
definition of timeliness properties.

8 R. Meier et al.

In the Space-Elastic model, we look at the space, or proximity, within which real-
time properties are required, which is related to the observation in [3], that one of the
key features in an inter-vehicle network is the relevance of data to a particular
geographical area. For example, in emergency braking notification, the critical
proximity where real-time guarantees are required, is within a bound geographical
area of the braking vehicle. Beyond this proximity, a “safe distance” exists, e.g.,
determined by the speed limitations of the road and standard braking distances of
vehicles [12], where the notification is not critical and real-time guarantees do not
apply. The Space-Elastic Model exploits this rationale to guarantee real-time
constraints within specific proximity-bounds only.

Guaranteed hard real-time communication within a specified proximity only,
requires a reduction in the scope of the timeliness property specified previously.
Assuming space(E, size) is a function that bounds a geographical space of a defined
size in relation to entity E, (a mobile or stationary node in a VANET), the timeliness
property becomes P(within T from t(e) over space (E, size) only) = 1.

In Fig. 2, the circle represents the proximity-bound for real-time guarantees. The
entity, E in this case, may represent a traffic light, in the UTC example, or a mobile
vehicle, where the proximity-bound is associated with, and moves with, the vehicle
and represents the critical proximity for real-time communication with this vehicle.

The Space-Elastic model
assumes that real-time
applications are space-aware.
In addition, given the
potential for increased
network topology dynamics,
the limited communication
duration, and influence of
traffic density on multi-hop
route discovery, a further
assumption of the Space-
Elastic model is that defined
proximity bounds are
adaptable, e.g., reducing the
size, or changing the shape, to guarantee desired real-time communication, regardless
of the dynamics of the VANET within the proximity. Thus, Space-elastic real-time
applications must tolerate dynamic proximity-bound adaptation. For example in the
UTC example, an emergency vehicle (e.g., an ambulance) moving towards a traffic
light may have a desired proximity within which real-time communication with the
roadside is guaranteed. However, given the challenges to communication in VANETs
previously discussed, real-time communication within the desired proximity may not
be possible, and a reduced proximity, representing the minimum geographical area,
within the desired proximity, where real-time communication is currently achievable,
is available only. In this case, it is assumed that the space-elastic application knows
the minimum proximity where real-time guarantees are critical and adaptation
between the maximum (desired) and minimum (critical) proximity is tolerated.
Failure to guarantee real-time communication in the critical proximity is a real-time

E

Area within proximity bound

Mobile nodes move in/out of

proximity

Timeliness property: Within T from

t(e) over this space only

Nodes within the desired

proximity

Nodes outside proximity-

bounds

Fig. 2. Timeliness properties within a proximity-bound
only

 Towards Real-Time Middleware for Applications of Vehicular Ad Hoc Networks 9

failure, the consequences of which and the actions to arise are determined by the
characteristics of the real-time class. For example, failure to guarantee hard real-time
properties in the critical region is a critical failure, and transition to a fail-safe or fail-
operational [13] state may be possible.

Fig. 3 illustrates proximity adaptation, in this case motivated by route failures in
the desired proximity rendering real-time communication no longer possible. In this
example, real-time guarantees are available in the area highlighted as the adapted
proximity-bound only.

For a space-elastic application to benefit from proximity adaptation the behavior of
the space-elastic application must also be adaptable. For example, in vehicle
platooning, a desired proximity for inter-vehicle real-time communication for vehicle
coordination, may span driving lanes used by vehicles moving in the opposite
direction, e.g. for oncoming accident notification [14], to the platoon. In this case,
although the desired proximity may contribute rich context about traffic conditions to
the platoon, the critical proximity for real-time inter-vehicle communication, bounds
the platoon and vehicles within a vicinity of the platoon, e.g. determined by the speed
of the platoon, driving in the same direction only. Thus, proximity (or space)
adaptation to encompass the critical proximity only is advantageous. In addition,
given the reduction in the proximity where real-time guarantees are achievable, the
platoon may adapt behavior accordingly, e.g., reducing speed, until such a time when
real-time communication within the original desired proximity is achievable.

Space-elastic (Sε) real-
time applications are
defined as follows: Given
an application A,

 represented by a set of
properties PA, A belongs
to the space-elastic class

 iff none of the duration
properties (T) derived

 from any property P of A,
 require an invariant space.

∀A ∈ Sε, ∀P∈ PA: space(A, T) is not invariant

In practical terms, space-elastic applications (A) are those that can accept a
bounded proximity (space(A, T)) within which specific real-time application
properties (T) are guaranteed. Space-elastic applications must be able to execute
correctly in an adaptable proximity or space.

Finally, it is interesting to investigate the role of space-elastic adaptation in a
partitioned VANET, i.e., where a subset of nodes (a stationary or mobile participant
in a VANET), are no longer contactable i.e., within one-hop or multi-hop connectivity
range, for example, due to buildings in a city environment. A partitioned VANET
adversely impacts real-time communication, e.g. established routes may no longer be
available, new routes may not be discovered due to inaccessible (partitioned) nodes
and resources previously reserved for real-time communication, may no longer be

P
1

X Route failures

X

X

Desired proximity no longer within

coverage due to route failures

Adapted proximity bound, real-time

guarantees in this proximity only

Routes no longer available

Routes with real-time guarantees

Fig. 3. Adaptive space-elasticity

10 R. Meier et al.

available. Furthermore, real-time communication spanning the desired proximity may
no longer be possible. Using the space-elastic model, the proximity where real-time
properties are guaranteed is adapted to reflect the partition. Real-time communication
is guaranteed in a reduced local proximity (at a minimum the critical proximity) only,
until such time as a merge occurs with other proximities in the desired proximity.

Fig. 4 (a) illustrates the desired proximity for real-time communication, by an
entity, represented by E. Initially real-time event communication is guaranteed within
the desired proximity. Fig. 4 (b) represents the network topology after an interval, T,
where, for example, vehicle movement has caused the VANET, and thus the desired
proximity, to partition. The desired proximity has been adapted (Proximityb), to the
area where real-time guarantees are available only. Also illustrated, is the scenario
where other local proximities (i.e., Proximityc), possibly with different real-time
constraints, co-exist within the original desired proximity bounds.

A space-elastic real-
time application

 specifies both desired
and critical proximity-
bounds coupled with

 associated real-time
 guarantees, by combin

ing RT-STEAM
 proximity filters with
 associated event
 channels, yielding real-

time event-based
communication in a
defined proximity-bound only. To achieve real-time guarantees, the communication
architecture used by RT-STEAM combines a proactive, mobility-aware routing and
resource reservation protocol, at the network layer, with a predictable time-bounded
medium-access control protocol. We outline this communication architecture in the
following section.

4 Real-Time Communication Architecture

We have completed an implementation and evaluation of RT-STEAM, including
proximity-bounds specification, distributed naming etc. for non real-time channels
[15] In this section, we present our work in progress on medium-access control and
routing protocols to extend our implementation to include real-time channels.

Our medium access control protocol, TBMAC [16] provides, with high probability,
time bounded access to the wireless medium to mobile hosts in a multi-hop ad hoc
network. The TBMAC protocol is based on time division multiple access with
dynamic but predictable slot allocation. TBMAC uses a lightweight atomic multicast
protocol to achieve distributed agreement on slot allocation.

E

Proximtya

Proximtyb

(a) (b)

Proximtyc

E

Fig. 4. Dynamic proximity adaptation in a partitioned network

 Towards Real-Time Middleware for Applications of Vehicular Ad Hoc Networks 11

To reduce the probability of contention between mobile hosts, the geographical
area occupied by the mobile hosts is statically divided into a number of cells in a
similar approach to [17]. Each cell is allocated a particular radio channel to use. Each
mobile host is required to know its location (using GPS) and from this which cell it is
in and what radio channel to use to communicate with other mobile hosts in the cell.

In a similar way to the IEEE 802.11 standard, the TBMAC protocol divides access
to the wireless medium within a cell into two distinct time periods:

• Contention Free Period (CFP)
• Contention Period (CP)

Both the CFP and the CP are divided into a set of slots. A CFP followed by a CP
constitute a round of the TBMAC protocol. Dividing access to the medium into these
two well-known time periods requires the clocks of all the mobile hosts in the
network to be synchronized (e.g., each host using a GPS receiver [18]). Once a
mobile host has been allocated a CFP slot, it has predictable access to the wireless
medium until it leaves the cell or fails. Mobile hosts that do not have allocated CFP
slots contend with each other to request CFP slots to be allocated to them in the CP.

The motivation for our routing protocol is to combine proactive routing with
mobility-awareness in order to reduce the unpredictability of a dynamic VANET. Our
routing and resource reservation protocol (PMRR) attempts to discover and maintain
real-time constrained routes within a proximity-bound, e.g., as specified by the Space-
Elastic Model. Given the observations in [2], that in “normal” traffic scenarios, the
probability of a stable topology varies between 90 and ~100%, and that the topology
remains absolutely stable for up to 60s in cases of lower densities and lower relative
velocities, our use of proactive routing and resource reservation to guarantee critical
communication, appears justified in a VANET.

PMRR executes in two phases. The

route discovery phase attempts to
proactively discover real-time
constrained routes and reserve
resources within a defined proximity,
providing timely failure notification if
routes or resources are not available.
The route maintenance phase uses
mobility and link quality prediction
[19] to assist in proactive route
maintenance decisions, e.g., route
repair prior to a route break
occurring.

The PMRR maintains one-hop neighbor routing information in routing tables at
each hop, e.g., similar to AODV [17], to reduce routing overhead. Furthermore, the
routing tables store all alternative routes (i.e., those routes where real-time constraints
are guaranteed) from a node, i.e., either the originator or an intermediate node, thus
reducing route maintenance latency. Similar to the work of Chen et al. [18], the
PMRR utilizes selective probing. However, what is distinctive in this case is that
traditional shortest path metrics are substituted by required real-time guarantees.

E

Alternative

routes available

Dynamic movement of nodes

in/out of the proximity

Fig. 5. Proactive route discovery and maintenance

12 R. Meier et al.

Fig. 5 illustrates the discovery of proactive routes for real-time communication with
E, within a defined proximity-bound. E initially transmits in their allocated slot in the
current cell. Using inter-cell slot allocation [16], the transmission is forwarded to
neighbouring cells satisfying required real-time constraints only. This process
continues for all cells in the proximity-bound, or until a cell is reached where the real-
time constraints are no longer guaranteed, e.g., an empty cell.

Depending on the dynamics of the environment within the proximity and the
space-elasticity of the application, proximity adaptation may be performed if real-time
guarantees cannot be maintained within the entire proximity.

5 Conclusions

We have proposed our middleware for providing real-time communication in
VANETs. An implementation and evaluation of our non real-time event-based
middleware has been performed. We are currently implementing with the intent of
evaluating our real-time middleware. We have currently developed a simulation of
TBMAC, a distributed clock synchronisation protocol and a real-time driver for
wireless communication using 802.11b.

Acknowledgements. The work described in this paper was partly supported by the
Irish Higher Education Authority's Programme for Research in Third Level
Institutions cycle 0 (1998-2001) and by the FET Programme of the Commission of
the European Union under research contract IST-2000-26031 (CORTEX).

References

[1] S. Chakrabarti and A. Mishra, "QoS Issues in Ad Hoc Wireless Networks," IEEE
Communications Magazine, vol. 39, pp. 142-148, 2001.

[2] M. Rudack, M. Meincke, and M. Lott, "On the Dynamics of Ad Hoc Networks for Inter
Vehicle Communications (IVC)," in Proceedings of the International Conference on
Wireless Networks (ICWN02). Las Vegas, USA, 2002.

[3] H. Hartenstein, B. Bochow, A. Ebner, M. Lott, M. Radimirsch, and D. Vollmer,
"Position-Aware Ad Hoc Wireless Networks for Inter-Vehicle Communications: The
Fleetnet Project," in Proceedings of the 2nd ACM International Symposium on Mobile Ad
Hoc Networking & Computing (MobiHoc). Long Beach, CA, USA, 2001, pp. 259-262.

[4] R. Meier and V. Cahill, "Taxonomy of Distributed Event-Based Programming Systems,"
in Proceedings of the International Workshop on Distributed Event-Based Systems
(ICDCS/DEBS'02). Vienna, Austria: IEEE Computer Society, 2002, pp. 585-588.

[5] M. O. Killijian, R. Cunningham, R. Meier, L. Mazare, and V. Cahill, "Towards Group
Communication for Mobile Participants," in Proceedings of ACM Workshop on
Principles of Mobile Computing (POMC'2001). Newport, Rhode Island, USA, 2001, pp.
75-82.

[6] B. Hughes and V. Cahill, "Towards Real-time Event-based Communication in Mobile Ad
Hoc Wireless Networks," in Proceedings of 2nd International Workshop on Real-Time
LANS in the Internet Age 2003 (ECRTS/RTLIA03). Porto, Portugal, 2003, pp. 77-80.

[7] W. Leutzbach, "Introduction to the Theory of Traffic Flow," Springer-Verlag, 1988.

 Towards Real-Time Middleware for Applications of Vehicular Ad Hoc Networks 13

[8] J. Kaiser and M. Mock, "Implementing the Real-Time Publisher/Subscriber Model on the
Controller Area Network (CAN)," in Proceedings of the 2nd International Symposium on
Object-oriented Real-time distributed Computing (ISORC99). Saint-Malo, France, 1999,
pp. 172-181.

[9] Object Management Group, CORBAservices: Common Object Services Specification -
Event Service Specification: Object Management Group, 1995.

[10] P. Verissimo and A. Casimiro, "The Timely Computing Base Model and Architecture,"
IEEE Transactions on Computers - Special Issue on Asynchronous Real-Time Systems,
vol. 51, pp. 916-930, 2002.

[11] A. Casimiro and P. Verissimo, "Using the Timely Computing Base for Dependable QoS
Adaptation," in Proceedings of the 20th IEEE Symposium on Reliable Distributed
Systems. New Orleans, USA, 2001, pp. 208-217.

[12] U.S. Department of Transportation, "Amendment for Brake Performance," in Motor
Carrier Safety Improvement Act 1999, Federal Motor Carrier Safety Association
(FMCSA), 2002.

[13] H. Kopetz and P. Verissimo, Real-time and Dependability Concepts, 2nd ed: ACM-Press,
Addision-Wesley, 1993.

[14] L. Briesemeister and G. Hommel, "Role-based Multicast in Highly Mobile but Sparsely
Connected Ad Hoc Networks," in Proceedings of Mobihoc 2000. Boston, USA, 2000.

[15] R. Meier and V. Cahill, "Exploiting Proximity in Event-Based Middleware for
Collaborative Mobile Applications," in Proceedings of the 4th IFIP International
Conference on Distributed Applications and Interoperable Systems (DAIS'03), LNCS
2893. Paris, France: Springer-Verlag, 2003, pp. 285-296.

[16] R. Cunningham and V. Cahill, "Time Bounded Medium Access Control for Ad Hoc
Networks," in Proceedings of the Second ACM International Workshop on Principles of
Mobile Computing (POMC'02). Toulouse, France: ACM Press, 2002, pp. 1-8.

[17] C. E. Perkins, E. M. Belding-Royer, and S. R. Das, "Ad Hoc On-Demand Distance
Vector (AODV) Routing," IETF Internet Draft June 2002.

[18] S. Chen and K. Nahrstedt, "Distributed Quaility-of-Service Routing in High-Speed
Networks Based on Selective Probing," in Proceedings of the 23rd Conference on Local
Computer Networks (LCN98). Boston, USA: IEEE Computer Society, 1998.

[19] G. Gaertner and V. Cahill, "Understanding Link Quality in 802.11 Mobile Ad Hoc
Networks," IEEE Internet Computing, vol. 8, pp. 55-60, 2004.

Adaptive Context Management Using a
Component-Based Approach

Davy Preuveneers and Yolande Berbers

Department of Computer Science, K.U. Leuven Celestijnenlaan 200A,
B-3001 Leuven, Belgium

{davy.preuveneers, yolande.berbers}@cs.kuleuven.ac.be
http://www.cs.kuleuven.ac.be

Abstract. Context-awareness has become a necessity for adaptable in-
telligent applications and services. It is crucial for ubiquitous and per-
vasive computing because the context of a user or device serves as the
source of information to adapt services. In this paper, we propose a
modular context management system that is able to collect, transform,
reason on and use context information to adapt services. By employing
a component-based approach, we enable our infrastructure not only to
support context-aware adaptation of services, but also to support adap-
tation of the context management system itself at deployment time and
at runtime. This self-adaptation is based upon the service requirements
and the current context of the device, such as the current resource usage
or other devices in the neighborhood, resulting in an adaptive context
management system for improved quality of service.

1 Introduction

Context-awareness [1] is considered to be the key challenge for making mobile
devices aware of the situation of their users and their environment. This research
area focuses on the management of context information in pervasive computing
environments [2] where people are surrounded by and interacting with many
unobtrusive networked devices. These devices offer personalized assistance by
adapting their applications’ intended functionalities to the current context of the
user and the device. This context information includes current location and time,
users’ activities and preferences, devices’ capabilities, and any information that
may characterize user-service interactions. Context representation has evolved
from simple key-value pairs [3] to more complex ontology models [4, 5, 6, 7] to
provide semantical uniformity and universal interchangeability.

The context management system is the heart of a context-aware architecture
and processes instantiations of this context model. It is responsible for informa-
tion retrieval and dissemination, structured storage of context, transformation
of and reasoning on information, and the decision process to initiate certain ac-
tions. The current trend towards context-aware architectures is explained by the
growing need for applications and services that are more sensitive to user require-
ments but less dependent on user attention. Hence, a critical success factor of a
context-aware architecture in a mobile and ubiquitous computing environment
is the support available to adapt services to a broad range of hardware, such

L. Kutvonen and N. Alon stioti (Eds.): DAIS 2005, LNCS 3543, pp. 14–26, 2005.
c© IFIP International Federation for Information Processing 2005

i

Adaptive Context Management Using a Component-Based Approach 15

as PDAs, mobile phones and smartphones. The underlying context management
system must support flexibility as well. Otherwise, the context management sys-
tem can consume all resources and reduce the quality of service to the user.
For this reason, we have used components as modular building blocks for the
design and deployment of the adaptable services and for the underlying context
management system.

A component-based development approach [8] is an ideal software engineer-
ing methodology for having flexible adaptation capabilities within applications
to optimize resource usage and to adapt to changing working conditions. Advan-
tages of using components include the possibility of live updating with better
suited components [9], negotiating and enforcing resource contracts [10], dis-
tributing the execution and relocating component-based applications [11].

In section 2 we give a general overview of adaptation in our context-aware
architecture. In section 3 we describe how our context management system fits
within a component-based service-oriented platform. In section 4 we discuss our
component-based implementation and support for self-adaptation. The modu-
lar composition manages the retrieval and dissemination of, the storage of, the
reasoning on and the transformation of context information. In section 5 we
evaluate our system and discuss future work. Section 6 provides an overview of
related work. We end with conclusions in section 7.

2 Adaptation in a Context-Aware Architecture

Both the services and the context management system are subject to adaptation
triggered by a changing context, as discussed in the following subsections.

2.1 Service Adaptation

First of all, service adaptation before deployment of a service ensures that the
service is tailored to the capabilities of the device [12]. Secondly, service adapta-
tion can also be activated during the execution of a service. By way of example,
consider a video conferencing service that adapts to a reduced network band-
width by lowering the video frame rate or by disabling video altogether. Our
context management system initiates both deployment time and runtime adap-
tations by providing all the necessary information to activate the adaptations.
Each service specifies constraints that define working conditions that guarantee
proper execution of (a subset of) the provided functions of the service. These
constraints are encapsulated by triggers. A context change causing certain con-
straints to be violated will then trigger the runtime adaptation of the service. A
brief overview of the component-based service model is given in section 3.

2.2 Context Management Self-adaptation

Our context management system itself is also subject to adaptation. Specific
components of the context management system can be eliminated if they are of
no use to any service. For example, a due shortage of storage capacity triggers
the context management to delete irrelevant context information to increase

16 D. Preuveneers and Y. Berbers

allocation space. If context-aware service adaptation only depends on the current
value of local sensors, then the context storage can be eliminated altogether.

To not overcomplicate the self-adaptation of our context management system,
the adaptation is only triggered by changes in resources and service requirements.
This information is usually readily available and requires no intensive processing.

3 Context-Awareness Within a Component-Based
Service Platform

A context-aware service platform requires the interaction between a context man-
aging infrastructure and the services which offer personalized assistance through
context-based adaptation. In this section we briefly introduce our component-
based services and their interaction with the context management system.

In several computer science domains a service refers to a computational en-
tity that offers a particular functionality to a possibly networked environment.
Context-aware services in mobile computing also require support for user person-
alization, deployment on embedded systems, user mobility and service relocation.
To accomplish this, we apply a component-based development methodology. A
general overview of our component-based service is shown in Figure 1.

Components [8] provide the functional building blocks of a service and use
Component Ports as communication gateways to other components. Connectors
serve as the message channel between these ports. Contracts [10] define restric-
tions or requirements on two or more components or ports. They are used, for
example, to limit or guarantee memory and network bandwidth availability or
to define timing constraints in order to guarantee a certain quality of service.
The Context Control Block is responsible for managing the context information.
This Context Control Block is largely shared by all services on the same de-
vice to eliminate the need for duplication for all services. Only components with
a service-specific function cannot be shared, such as those processing service-

Fig. 1. Building blocks of a component-based service

Adaptive Context Management Using a Component-Based Approach 17

specific required accuracy of information. The Context Control Block which is
the focus of the rest of this paper is discussed in section 4.

A service is a wrapper around these entities with Service Ports as message
gateway proxies to internal Component Ports and three management interfaces:
the Service Information Interface to provide static semantic and syntactic infor-
mation about a service during service discovery, the Service Control Interface to
manage the launching, the relocating, the stopping and the uninstalling of a ser-
vice, and the Context Interface for the service-specific context interchange and
interaction with the Context Control Block, i.e. the context management system.
As shown in section 4, the Context Control Block in itself is also composed of
several subcomponents, each with a specific function.

4 Context Management

Retrieving and using context information require a uniform and interchange-
able context representation. In the Context Toolkit [3], context is modeled as
a set of key-value pairs. The more structured approaches for modeling context
that have been proposed in the past use RDF [13], UAProf and CC/PP [14], and
CSCP [15]. Ontologies, which allow the definition of more complex context mod-
els, have been used in several context modeling approaches [4, 5, 6]. For use in
our context management system, we have designed a context ontology [7] based
on the concepts of User, Platform, Service and Environment. This ontology is
specifically targeted at context-driven adaptation of mobile services [16].

In the following subsections we discuss how an adaptable component-based
context infrastructure, i.e. the Context Control Block as previously mentioned in
section 3, is able to manage context information. Apart from managing context,
the strength of our component-based approach relies on the fact that components
with similar function but different runtime requirements can adapt the behavior
of the context management system. The following subsections treat respectively
a general overview of the context management system, context retrieval, context
storage and context manipulation. Where applicable, they discuss how alter-
native and optional components can adapt the context management system to
better suite the needs of the context-aware services.

4.1 General Overview of the Context Management System

The job of context management is performed by the Context Control Block.
It consists of three components, each with a specific duty: Context Retrieval,
Context Storage and Context Manipulation. See Figure 2 for a general overview.

4.2 Context Retrieval

This component gathers information from sensors or other providers on the
system itself or in the neighborhood. Several issues with respect to the source of
information and accuracy are discussed in the following subsections.

18 D. Preuveneers and Y. Berbers

Fig. 2. Overview of the Context Control Block component

Sources of Information. We distinguish the following information providers:
Sensors: Information can be acquired by sensors attached to the device [17].
This low-level information is prone to measurement errors and can require trans-
formation into conceptually richer information before being usable.
User profiling: Another source of information is acquired through user pro-
filing. Based upon a history of previous user actions and input, a general profile
with user preferences can be determined. It is clear that this kind of information
is error prone and subject to change.
Third parties: Information can also be exchanged with other parties in the
neighborhood. This information can be raw sensor data or be derived by com-
bining all kinds of information.

Properties of Information. The value of information is determined not only
by the information itself, but also by several information properties.
Accuracy: With sensors as information providers, it is easy to determine the
real value of sensed data, as the granularity of measurement and accuracy is usu-
ally provided by the manufacturer of the equipment. This is not guaranteed for
user profiled information. By combining information, small errors can propagate
through the derivation chain and result in unusable information.
Reliability: Trust is important when a device is using information provided
by third parties. Well-known devices have already had many occasions to prove
their information to be accurate, whereas unknown devices have not had such an
opportunity. Trust in other devices is managed by comparing all answers which
influences trust in a positive or negative way. Note that this is no guarantee
against hostile or malicious information providers.
Age: Information, which proved to be valuable before, can now be too old to
be useful. Therefore, information is labeled with a time stamp defining its age.
If the measuring or deriving of information takes too long, we can fall back on
a previous value, but only if that information is not too old.

Adaptive Context Management Using a Component-Based Approach 19

Component-Based Information Retrieval Modeling. An overview of all
components involved in context retrieval is given in Figure 3. We have several
components acting as information providers: Sensors, a User Profile and Third
Parties. The Information Requester is the initiator of all information requests.
In general, it monitors information that triggers service adaptations, such as
changes in current network bandwidth. It sends these requests to the Relevance
Filter, which forwards them to the information providers. Another function of
the Relevance Filter component is to filter out unwanted information which
has been pushed into the context management system by third parties. When
several sources provide similar information in response to a request, the Accuracy
Comparator selects the ‘most reliable and accurate information’ and forwards it
back to the Information Requester. In Figure 3, a Clock also periodically sends
a time signal and pushes this information to a Timer component. The Timer
uses this information to enable configurable periodic signals. The Information
Requester can then send a request to the Timer to be periodically notified to
allow interval-based information monitoring.

Fig. 3. Overview of the Context Retrieval component

Support for Adaptation. Depending on the processing capabilities of the de-
vice, components can be reduced in complexity or even eliminated. For example,
instead of comparing and selecting on accuracy and reliability, we can replace the
Accuracy Comparator by another component that only retains the first answer
in a set of responses, with a possible reduction in accuracy of context informa-
tion as a result. In the event a service only relies on the sensors of the device as
information providers, then the Relevance Filter and Accuracy Comparator in
Figure 3 can be completely removed, which means that the sensors are connected
directly to the Information Requester.

20 D. Preuveneers and Y. Berbers

4.3 Context Storing

A context repository ensures persistency of context information. It should save
only up-to-date and relevant information in a way that queries and information
updates can be handled efficiently without losing the semantics of the data.

Context Representation. Context representation involves two aspects: the
information itself, for example ‘Age=23’, and how it relates to other concepts,
for example a person. The first aspect can be represented by a set of key-value
attributes. The second determines the semantic meaning of this information.

Our context management system stores context as an expandable knowledge
base of ontologies for semantic modeling of concepts and as a fact container
with key-value pairs providing instantiations of these concepts. Using a separate
attribute container simplifies querying the instantiations.

History of Context Information. For monitoring services it is useful to not
only save the most recent value of a certain attribute, but to retain previously
received values as well. In this way, the history of information can be exploited,
for example by calculating the distance traveled by tracking the current location.
This is implemented by including a time stamp with each key-value attribute.

Managing Outdated and Redundant Information. As storage capacity is
limited, not all information can be retained. The oldest information is purged
first, but the duration of relevance is not the same for all concepts. Therefore,
we provide for each concept a lifetime during which it is still of value. If the
information is older than the given lifetime, it is garbage collected.

Redundancy is a more complicated problem of information overhead. Should
information be removed after it has been used to derive new information or
should it be retained for later use? Our solution stores for each fact the latest
occasion of when and how often it has been used. Rarely used and old information
are the first candidates for removal. However, storing extra properties about facts
requires storage space as well, and thus the advantages have to be thoroughly
considered before implementing the removal of old or redundant data.

Component-Based Context Repository Modeling. The component-based
repository is implemented as two different container components. See Figure 4 for

Fig. 4. Overview of the Context Storage component

Adaptive Context Management Using a Component-Based Approach 21

used to enable and disable history preservation and usage tracking. When low
on storage capacity, another signal is used to trigger the garbage collection of
old facts. If one of the supplemental ontologies (i.e. not our base ontology [7],
which serves as a common ground), is no longer referred to by a key-value pair,
then it can be removed from the Ontology Container as well. An instantiation
of the Fact Container is given in Table 1. Properties with respect to accuracy
and reliability of information have been omitted for legibility reasons. In this
fact table, the measurement of the current bandwidth usage is specified to be
valid for at most 30 seconds, after which it is removed from the fact table.

Support for Adaptation. Storage can be unnecessary or outsourced to a de-
vice with more storage capacity. In the latter case, information requests have to
be sent to a third party by using the Context Interface of a service. There is no
requirement that all components have to execute on the same device.

4.4 Context Manipulation

This part transforms and reasons on context information to provide suitable
information for initiating the context-aware service adaptation.

Context Transformation. Context transformation changes the way certain
information is represented. For example, a temperature expressed in ◦C can be
transformed into ◦F using simple mathematical transformation rules. Classifi-
cation is another kind of transformation, where accuracy of information is given
up for the sake of more meaningful information. For example, the geographical
location specification in Table 1 using longitude and latitude coordinates can be
replaced by the nearest major city, in this case Brussels, resulting in a better
human understanding of the location. Classification is more complex compared
to the mathematical equivalences as it requires extra information defining the
categories and a general distance function to select the category that fits best.

Context Reasoning. Context reasoning derives new information based on ex-
isting facts and derivation rules. Whereas context transformation changes the
way a concept is expressed, context reasoning combines derivation rules and
facts into other facts which were only available implicitly. For example, a calen-

an overview. The Information Requester sends new facts to the Fact Container,
which holds instances of concepts from context ontologies. Two switches are

Table 1. Example of an instantiation of the Fact Container

ID Attribute Value Concept ID Time Stamp Last Used Usage Count

1 Name John ID74358 07:53am 11:52am 7

2 Age 53 ID69230 07:54am 10:16am 2

3 Location 50◦52’ N ID38031 02:37pm 02:37pm 119

4◦22’ E

4 Bandwidth 1112 kbps ID16789 02:38pm 02:41pm 37

5 *LIFETIME* 30 sec ID16789 - - -

22 D. Preuveneers and Y. Berbers

dar service with information on events combined with the current time allows
to predict the current location of a person. Initially, we investigated Racer and
Jess as reasoning tools, but due to technical integration issues we chose for the
Jena 2 Ontology and Reasoning subsystem [18] for context manipulation.

Context-Based Decision Making and Adaptation. The decision making
on service adaptation may require manipulation of context information. The
adaptation is initiated by several triggers that fire due to a change in context.
The necessary information is delivered by the context repository, or it is deduced
after several transformation and reasoning steps.

Component-Based Context Manipulation. A general overview of the con-
text manipulation is given in Figure 5. The Context Transformation component
and the Context Reasoning component are able to derive new facts by combining
information from the Fact Container and the Ontology Container. These new
facts are stored again in the Fact Container. The Resource Monitor is respon-
sible for enabling garbage collection on the Fact Container when running low
on storage capacity. The Context Dissemination component is responsible for
providing the necessary information to the triggers (not shown in the figure)
that activate service adaptation. If certain necessary context information is not
present or cannot be derived, then the Context Dissemination component is also
able to send a request to third parties using the Context Interface. For exam-
ple, by providing name and address information as possible inputs, the Context
Dissemination component can send an information request to a Yellow Pages
service that is able to provide mobile phone contact information.

Support for Adaptation. The elimination of unnecessary transformation and
reasoning components results in increased storage space as the transformation
rules are no longer required. If, however, context transformation or reasoning is

Fig. 5. Overview of the Context Manipulation component

Adaptive Context Management Using a Component-Based Approach 23

required but is too resource intensive on the current device, then the necessary
facts, ontologies and reasoning can be delegated to a more powerful device.

5 Evaluation, Current Status and Future Work

The component-based management system has been implemented to a large ex-
tent (user profiling is not yet supported) on top of Draco [19], an extensible run-
time system for components in Java designed to be run on advanced embedded
devices. The base system supports extensions for component distribution [11],
live updates [9], contract monitoring and resource management [10] and provides
a unique test platform for validating the proposed concepts in a pervasive and
ubiquitous computing context.

Several information providers, the storage components, and the transforma-
tion components are operational. A test case showed that the advantage of re-
gaining storage space by eliminating old information is minimal, as the resource
requirements for the libraries responsible for reasoning on OWL ontologies are
much higher than the storage capacity needed for small scale services (> fac-
tor 100). A small overview of the memory usage for the deployment of several
components just before their activation is given in Table 2. It demonstrates how
much memory can be saved when certain components are eliminated.

Table 2. Memory requirements for deploying a specific component

Component Type Memory

Weather Sensor 6264 bytes
Clock Sensor 7024 bytes
Relevance Filter Retrieval 11232 bytes
Fact Container Storage 23484 bytes
Context Transformation Manipulation 123766 bytes
Context Reasoning Manipulation 1080944 bytes

Future work will focus on the modeling of resource requirements for context
transformations and context derivations. This is useful if a user has a preference
for receiving a rough but quick response, or for receiving a more accurate answer
for which he is willing to wait a bit longer. This work will result in a better
validation of the component-based context management system, because in the
current system it is difficult to define an optimal deployment without having even
a rough estimate of the processing time for all context management activities.

6 Related Work

Research on context-awareness has already been focusing on service adaptations
in the past. The CoBrA architecture [20] is a context broker that uses ontologies
and maintains a shared model of context on behalf of a community of agents,
services, and devices in a certain environment. It also provides privacy protection

24 D. Preuveneers and Y. Berbers

for the users in the space by enforcing the policy rules that these users define. The
difference between this and our system is that CoBrA manages the context for
all computing entities in a certain environment, instead of each device managing
its own context. The advantage of our approach is that it provides better support
for mobility in ubiquitous and pervasive computing environments.

Efstratiou et al. [21] also propose a service platform with support for context-
aware service adaptation. The authors describe the architectural requirements
for adaptation control and coordination for mobile applications. In our paper,
we have not only shown how services can be adapted, but also how the driving
force behind adaptation, i.e. the context management system, can be adapted
to different working conditions, including support for distributed execution.

The M3 architecture [22] is an open component-based architecture for per-
vasive systems that supports context management and adaptation, and includes
a coordination language to coordinate system events. The context manager uses
RDF to describe devices and user context. The context manager of M3 does not
support context-based self-adaptation.

7 Conclusions

This paper presents a component-based approach for managing context informa-
tion. The novel contribution is that the management system itself can be adapted
to a device’s capabilities or service requirements by enabling or disabling certain
components or specific properties of certain components.

A further advantage is that these components do not necessarily have to
execute on the same device. In the event of excessive storage or processing power
demands, the context management system can be distributed, if necessary by
relocating components to other devices.

Future work will focus on the modeling of resource requirements for the trans-
formation and reasoning components, so that processing time can be estimated
and an optimal deployment of context operations can be achieved to further
increase the quality of service of our context management system.

References

1. Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-
awareness. In: Workshop on The What, Who, Where, When, and How of Context-
Awareness, Conference on Human Factors in Computer Systems (CHI2000). (2001)

2. Satyanarayanan, M.: Pervasive computing: Vision and challenges. IEEE Personal
Communications (2001) 10–17

3. Dey, A.K., Salber, D., Abowd, G.D.: A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human-Computer
Interaction (HCI) Journal 16 (2001) 97–166

4. Strang. T., et al.: CoOL: A Context Ontology Language to enable Contextual
Interoperability. In Stefani, J.B., Dameure, I., Hagimont, D., eds.: LNCS 2893:
Proceedings of 4th IFIP WG 6.1 International Conference on Distributed Appli-
cations and Interoperable Systems (DAIS2003). Volume 2893 of Lecture Notes in
Computer Science (LNCS)., Paris/France, Springer Verlag (2003) 236–247

Adaptive Context Management Using a Component-Based Approach 25

5. Gu, T., et al.: An ontology-based context model in intelligent environments. In
Proceedings of Communication Networks and Distributed Systems Modeling and
Simulation Conference, San Diego, California, USA (2004)

6. Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing
environments. Special Issue on Ontologies for Distributed Systems, Knowledge
Engineering Review (2003)

7. Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx,
T., Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K.: Towards an extensible
context ontology for Ambient Intelligence. In: Proceedings of the Second European
Symposium on Ambient Intelligence, Springer (2004)

8. Urting, D., Van Baelen, S., Holvoet, T., Berbers, Y.: Embedded software develop-
ment: Components and contracts. In: Proceedings of the IASTED International
Conference Parallel and Distributed Computing and Systems. (2001) 685–690

9. Vandewoude, Y., Berbers, Y.: Run-time evolution for embedded component-
oriented systems. In Werner, B., ed.: Proceedings of the International Conference
on Software Maintenance, Canada, IEEE Computer Society (2002) 242–245

10. Wils, A., Gorinsek, J., Van Baelen, S., Berbers, Y., De Vlaminck, K.: Flexible
Component Contracts for Local Resource Awareness. In Bryce, C., Czajkowski,
G., eds.: ECOOP 2003 Workshop on resource aware computing. (2003)

11. Rigole, P., Berbers, Y., Holvoet, T.: Mobile adaptive tasks guided by resource con-
tracts. In: the 2nd Workshop on Middleware for Pervasive and Ad-Hoc Computing,
Toronto, Ontario, Canada (2004) 117–120

12. Wagelaar, D.: Context-driven model refinement. In: Proceedings of the MDAFA
2004 workshop, Linköping, Sweden (2004)

13. Korpipää, P., et al.: Managing context information in mobile devices. IEEE Per-
vasive Computing, Mobile and Ubiquitous Systems 2 (2003) 42–51

14. Indulska, J., et al.: Experiences in using cc/pp in context-aware systems. In
Stefani, J.B., Dameure, I., Hagimont, D., eds.: LNCS 2893: Proceedings of 4th IFIP
WG 6.1 International Conference on Distributed Applications and Interoperable
Systems (DAIS2003). Volume 2893 of Lecture Notes in Computer Science (LNCS).,
Paris/France, Springer Verlag (2003) 224–235

15. Buchholz, S., Hamann, T., Hubsch, G.: Comprehensive structured context pro-
files (cscp): Design and experiences. In: Proceedings of the Second IEEE Annual
Conference on Pervasive Computing and Communications Workshops. (2004)

16. DistriNet (K.U.Leuven), EDM (LUC), ELIS-PARIS (UGent), PROG (VUB)
and SSEL (VUB): CoDAMoS: Context Driven Adaptation of Mobile Ser-
vices. (http://www.cs.kuleuven.ac.be/cwis/research/distrinet/projects/
CoDAMoS/)

17. Senart, A., Bouroche, M., Biegel, G., Cahill, V.: Component-based middleware
architecture for sentient computing. In: Workshop on Component-oriented ap-
proaches to Context-aware computing, ECOOP ’04, Oslo, Norway (2004)

18. HP Labs: Jena 2 - A Semantic Web Framework. http://www.hpl.hp.com/semweb/
jena2.htm (2004)

19. Vandewoude, Y., Rigole, P., Urting, D., Berbers, Y.: Draco : An adaptive runtime
environment for components. Technical Report CW372, Department of Computer
Science, Katholieke Universiteit Leuven, Belgium (2003)

20. Chen, H.: An intelligent broker architecture for context-aware systems.
http://cobra.umbc.edu/ (2003)

26 D. Preuveneers and Y. Berbers

21. Efstratiou, C., Cheverst, K., Davies, N., Friday, A.: An architecture for the effective
support of adaptive context-aware applications. In: Proceedings of 2nd Interna-
tional Conference in Mobile Data Management (MDM‘01). Volume Lecture Notes
in Computer Science Volume 1987., Hong Kong, Springer (2001) 15–26

22. Indulska, J., Loke, S., Rakotonirainy, A., Witana, V., Zaslavsky, A.: An open
architecture for pervasive systems. In: Proceedings of the Third IFIP TC6/WG6.1
International Working Conference on Distributed Applications and Interoperable
Systems, Kluwer (2001) 175–187

L. Kutvonen and N. Alonistioti (Eds.): DAIS 2005, LNCS 3543, pp. 27 – 37, 2005.
© IFIP International Federation for Information Processing 2005

Customised Billing for Location-Based Services

Maria Koutsopoulou1, Spyridon Panagiotakis1, Athanassia Alonistioti1,
and Alexandros Kaloxylos2

1 Communication Networks Laboratory,
Department of Informatics and Telecommunications,

University of Athens,
Panepistimioupolis, 157 84 Athens, Greece

{mkoutsop, spanag, nancy}@di.uoa.gr
2 Department of Telecommunications Science and Technology,

University of Peloponnesus
22 100 Tripoli, Greece
kaloxyl@uop.gr

http://cnl.di.uoa.gr/cnluk/cnlindex.php

Abstract. As the new communications era aims to provide mobile users with
advanced and customised services, it becomes apparent that the requirement for
intelligent charging and customised billing of service access emerges bravely.
In that scope, the enrichment of mobile services with attributes related to user
profiles, context, location, presence and other elements providing customiza-
tion, affects also the charging process. In particular, the charging and billing for
service access have to be more flexible and personalised, so that especial, cu-
tomised billing for new location-based services and applications is enabled.

Hence, charging information related to the user profile and preferences as well
as the user location will also have to be encountered at the billing process. This
paper presents an integrated architecture, which allows flexible charging and
customised billing for the usage of location-based services.

1 Introduction

The emergency services offered by mobile network operators since 1998, was the first
kind of location-based services. The cell-wide positioning information provided by
that networks was not accurate, since the size of cells varies notably depending on
location area due to differences in terrain and population density. Nowadays that the
mature of positioning technologies enables the detection of persons and objects with
much greater accuracy, mobile users start carrying their terminal devices (i.e. cellular
phones, PDAs and laptops) not only for emergencies but basically for work and enter-
tainment purposes. Hence, the user location detection is mainly used anymore for the
provision of location-based information, guidance, and entertainment services.

Unlike applications that constitute transformation of applications originally deve-
oped for personal computers accessing the World Wide Web, to the constraints of

mobile devices, location-based services take full advantage of the mobile device's
portability. In that sense, location-based services may change the way consumers

s

l

28 M. Koutsopoulou et al.

come to depend on their mobile equipment, since mobile users can get highly loca-
tion-specific, real-time information at the precise moment they are making a decision.
For example, a driver can be alerted to alternative traffic routes on a turn-by-turn
basis, a traveler can be informed of the nearest hotel at night in an unknown city, etc.
In practice, mobile network operators, service and content providers, equipment ven-
dors, handset manufacturers and software developers need to co-operate to bring
efficient location-based services in the daily life of mobile consumers. The provision
of advanced location-based services is a big opportunity for all business players in-
volved to increase their revenues. Therefore, charging and billing for location-based
services are crucial issues that should be addressed.

The charging criteria for location-based services seem to be different from the ones
traditionally used in mobile networks such as measuring the connection time or data
volume. Definitely, the time- or volume-based charging can of course still be used for
the transport part of provided location-based services. However, the charging infor-
mation related to the usage of location-based services concerns mainly the added
value of such a service and content and is additional information to the transport level
information. The introduction of location-based services in service provisioning opens
up a large variety of new pricing models that can apply. It should be mentioned here,
that apart mobile users the location-based service providers could also constitute po-
tential charged parties. For example, push initiators can be charged for the services
they offer.

This paper addresses the charging issues related to location-based services and in-
troduces an integrated architecture that allows flexible charging and customised bill-
ing for advanced location-based services usage. In particular, next section introduces
location-based services, and Section 3 discusses some charging issues related to loca-
tion-based services. Section 4 describes the proposed integrated charging architecture,
while an indicative example of its functionality is given in Section 5 and finally, Sec-
tion 6 concludes the paper.

2 Typical Categories of Location-Based Services

The term “Location-based services” refers to services offered to mobile users in
which the user location information is used in order to add value to the service as a
whole. Currently the most common location-based services include “Yellow Pages”
and “Point of Interest” that allow users to find the nearest hotel, pharmacy or cinema
based on their current location. Other common location-based services provide navi-
gation and traffic conditions information. Typical location-based services can be
distinguished in five categories [1]:

• Traffic coordination and Management
Such services identify traffic jams and taking into account the current loca-
tion of subscribers inform the subscribers driving around. Alternatively, they
can determine the fastest route between two positions at the moment, esti-
mate the total travel time, or provide alternative routes for the remaining
travel.

 Customised Billing for Location-Based Services 29

• Location-aware advertising and general content delivery
Whenever a subscriber indicates to the service that he is in “shopping-
mode”, he receives sales information (e.g. discounts) based on his current lo-
cation. Location information is used along with his shopping preferences in-
cluded in an associated shopping profile so that better advertising service is
provided (e.g., the user receives only advertisements related to his prefe-
ences).

• Integrated tourist services
Such services may include from advertisement of the available options for
numerous tourist services and guided tours, to accommodation information,
transportation, cultural events and museum guides.

• Safety-related services
It is possible to monitor tourists or workers traveling in dangerous terrain and
guide them to desired destinations along safe paths.

• Location-based games and entertainment
Examples of such services are the treasure hunting, and the location-based
ICQ service.

3 Charging Issues Related to Location-Based Services

Much effort have been put by the 3G Partnership Program (3GPP) [2] and the Open
Mobile Alliance (OMA) [3] in standardizing location-based services. The 3GPP
mainly focuses on the development and promotion of common and ubiquitous solu-
tions for Location Services, which should be network independent. In particular,
3GPP has specified the stage 2 of the LoCation Services (LCS) feature in UMTS and
GSM [4], which provides the mechanisms to support mobile location services for
operators, subscribers and third party service providers. This service description [4]
covers the LCS system functional model for the whole system, the LCS system archi-
tecture, state descriptions, message flows, etc., along with the operations performed
by the LCS Server. The LCS Server is considered to be a software and/or hardware
entity offering LCS capabilities. It accepts services requests and sends back responses
to the received requests. The LCS server consists of LCS components (e.g., the
GMLC), which are distributed to one or more PLMN and/or service providers [4].

On the other hand, the OMA continues the technical activities originated in the
Location Interoperability Forum (LIF) [5] for the specification of the Mobile Location
Protocol (MLP) [6]. The MLP is an application-level protocol for obtaining the posi-
tion of mobile stations (mobile phones, wireless personal digital assistants, etc.) inde-
pendent of underlying network technology. The MLP serves as the interface between
a Location Server and a location-based service/application, acting as LCS client. Pos-
sible realization of such a Location Server is the 3GPP GMLC [4], which act as the
front-end of the LCS Server defined in GSM and UMTS by 3GPP. In the most sce-
narios an LCS client initiates the dialogue by sending a query to the Location Server
and the server responds to the query. The OMA MLP specification [6] defines the
core set of operations that a Location Server should be able to perform.

Till now the LCS Server incorporated in the mobile operator’s infrastructure pro-
vides charging information related to the LCS features usage. The charging informa-

r

30 M. Koutsopoulou et al.

tion collected by the mobile operator is used only to charge LCS Clients for receiving
information about the user location. In addition, 3GPP [7, 8] and researchers [9] have
thoroughly studied an advanced location-based service providing subscribers with
customised billing, the location-based charging. More specifically, the location-based
charging is a flexible model that takes into account location information provided by
the LCS Server of the network operator to provide subscribers with a customised
charging scheme depending on its location or geographic zone. To elaborate, specifi-
cally, this service could apply reduced rates to those areas most often frequented by
the subscriber by taking into consideration the subscriber's daily route and life style.
For example, a “home” zone may be defined around a user’s home, work or travel
corridor. Additionally, different rates may be applied in different zones based on the
time of day or week. Location-based Charging should analyze location information to
compare against “home” zones established for the subscriber. The service would
notify the subscriber of its relative location to the established “home” zones, indica-
ing either "in" or "out" of zone, along with the associated tariffing and pricing

policies.
The existing approaches in charging and location-based services attempt to cover

different needs. Definitely, the “charging of location-based services” is something
different from the “location-based charging” and the charging of the LCS Client for
receiving information on the location of users. In order to enable customized charging
and billing for location-based services, some unresolved charging issues remain.

Firstly, additional charging information in forms of Charging Data Record (CDR)
is required [7]. The following additional information should be included:

• Type of the location-based service
• Identity of the location-based service
• Required location information accuracy
• Time stamps
• Type of user equipment

Additionally, the CDR should indicate the charged party, i.e. normally the calling
party. Alternatively, it is possible the application of reverse charging or the charged
party not to be involved in the chargeable event (e.g. a company). It should be possi-
ble for multiple leg calls (e.g. forwarded, conference or roamed) each party to be
charged as if each leg was separately initiated. In any case the charged party should
be provided with charging information accurately, and in time, so that is informed
about expected call charges. Finally, the location-based service usage should be re-
corded on event, call or session basis [10]. This brings additional requirements for the
management of the charging process.

Hence, the need for a solution that will manage all aspects related to the charging
process for location-based services emerges. In that context, we propose the introduc-
tion of an integrated charging architecture that caters for all players involved in loca-
tion-based services provision, manages all aspects related to the measurement and
recording of location-based service usage, and enables customised billing for such
services. Next section elaborates on the proposed architecture.

t

 Customised Billing for Location-Based Services 31

4 Integrated Charging Architecture

The proposed charging architecture, which is already prototyped in SDL (Specifica-
tion and description Language) and illustrated in Fig. 1, is ambitiously regarded that
will cover the aforementioned unresolved charging issues.

Mobile Operator
Infrastructure

Extended OSA
OSA-like

Reconfigurability
SCF

CAB GatewayOpen
Network
Services

Open
Network
Services

U
S
E
R

CAB Service

Reconfigu-
ration
Manager

Charging
Function

Accounting
Function

Billing
Function

CAB SCF

Configuration
Messages

Charging
Information

BillPricing
Policies

Existing Feature

New FeatureNew Feature

Service Domain

Content Provider

Value Added
Service Provider

Location-based
Service Provider

Fig. 1. Integrated charging architecture for customised billing

Definitely, the provision of location-based services enriches the traditional busi-
ness players comprising the mobile service provisioning chain (i.e. network operators,
service providers, content providers) with new ones (i.e. location-based service pro-
viders, location information brokers, location information interpreters, etc.). All pla-
ers, old and new, should be able to participate in the control and cost sharing of the

provided services. To bypass a complicated charging architecture, a layer-based
charging approach can be adopted. According to this approach the charging architec-
ture should be structured in three layers: transport, service and content. The manage-
ment and processing of the relevant information should be made separately for each
layer. Furthermore, different charging models should be possible to apply on each
charging layer. The additional information required for customised billing of location-
based services can be provided either by the mobile operator or by the respective
provider. Finally, the location-based service provider is responsible to define the
charged party and the applied pricing policy for service usage.

y

32 M. Koutsopoulou et al.

The introduced architecture supports the layer-based charging approach and en -
bles all business players involved to submit their charging records on-line, to define
the pricing policies dynamically, and to apportion their revenues automatically.

The charging information produced by the mobile network operator components
and the third party service provider infrastructure is collected by a discrete service
providing advanced charging mechanisms, flexible pricing and customised billing.
The Charging, Accounting and Billing (CAB) service can be either under the adminis-
trative domain of one of the involved parties (i.e. mobile operator, value added ser-
vice provider, location-based service provider, etc.), or it belongs to an independent
third trusted party (e.g. charging/payment provider) that has the responsibility and
authorization for the overall charging procedure.

The use of open APIs among players belonging to different administrative domains
is regarded as the necessary mean that will enable the configuration of network enti-
ties for the collection of all required information. For example, the standardized OSA
interfaces [11] enabling independent players to retrieve the user location information
from the underlying mobile operator infrastructure via the respective OSA SCF [12]
could be used. Furthermore, the introduction and provision of a set of open APIs for
the support and management of charging related reconfiguration actions (e.g., for
pricing policies updates) and the deployment of advanced charging services is
essential.

The CAB service depicted in Fig. 2 comprises the following functional entities:

Block CAB_SERVICE

CAB_SCF

Reconfiguration_Manager

Billing Charging Accounting

ENV_CABSE

OSA_CABSE OSA_CABSE OSA_CABSE

env_cabscf

(CABSCF2ENV)

(ENV2CABSCF)

asm_rm

(CABSCF2RM)

(RM2CABSCF)

osa_rm

(RM2OSA)

(OSA2RM)

rm_bill

(RM2BILL)

(BILL2RM)

osa_bill

(BILL2OSA)

(OSA2BILL)

rm_charg

(RM2CHARG)

(CHARG2RM)

charg_bill

(CHARG2BILL) (BILL2CHARG)

charg_acc

(CHARG2ACC)(ACC2CHARG)

osa_charg

(CHARG2OSA)

(OSA2CHARG)

rm_acc

(RM2ACC)

(ACC2RM)

cabscf_acc

(CABSCF2ACC)

(ACC2CABSCF)

cabscf_charg

(CABSCF2CHARG)

(CHARG2CABSCF)

cabscf_bill

(CABSCF2BILL)

(BILL2CABSCF)

Fig. 2. Internal modules of the CAB service

a

 Customised Billing for Location-Based Services 33

• The CAB Service Capability Feature (SCF) is the functionality offered by
the CAB service that is accessible via the proposed open APIs. It enables au-
thorized business players to register new services to the CAB service, to re-
fine the parameters of a registered service, to define pricing policies dynami-
cally, and to submit charging records. Additionally, it provides authorized
entities with advanced charging services such as location-based charging, on-
line charging indication, current balance of user bill and on-line provision of
statistical information. The CAB SCF incorporates the well-defined Cha-

ing SCF for content charging [13].
• The Charging module receives and processes charging information from the

network elements via the CABG and the usage data and content charges
from authorized independent providers via the CAB SCF. Based on the ap-
plied layer-based model, the charging information and usage data are corre-
lated and processed. After this step transport, service, and content records are
generated.

• The Billing module applies the pricing policies to the transport and service
records in order to calculate the charges. The applied pricing policy depends
on user, service or session characteristics and can be different from layer to
layer. In addition, the billing process includes the content charges and pro-
duces a bill requiring payment.

• The Accounting module is an automatic procedure for sharing of charges and
revenues between involved business entities.

• The Reconfiguration Manager module includes intelligent mechanisms for
identifying the particular high-level requirements of the business players and
mapping them to appropriate reconfiguration actions on the underlying net-
work infrastructure. Specifically, in case of service registration it configures
the underlying network elements to monitor the related IP flows and produce
usage records according to the applied metering policy. Then, based on the
specific pricing policy it configures the billing and accounting modules ac-
cordingly. Furthermore, it supports the dynamic modification of the services
parameters and the applied pricing policies reconfiguring the aforementioned
modules appropriately. Finally, it configures the charging module to generate
charging sensitive alerts when the charging information meets some condi-
tions, so that it provides the authorized and subscribed entities with specific
event notifications (e.g. modification of tariffs).

In order to have a single logical interface between the network elements related to
charging and the CAB service for the charging records transmission, we introduce a
charging accounting and billing gateway (CABG). This executes a first correlation of
the collected chargeable events and transfers them to the CAB service. The entities
that collect and process the charging information concerning the usage of network
resources (i.e. CGF and AAA) and the services’ consumption (i.e. CCF and MDs)
support different protocols and interfaces. The CABG receives the charging records
using the respective protocols over the existing interfaces, correlates the records re-
lated to a specific chargeable event and transmits them using an open standard API to
the CAB service.

rg

34 M. Koutsopoulou et al.

In the case of roaming users, the accounting module is responsible for apportioning
charges between the home environment, the serving network, and the user, and then
calculating the portion that is due to each operator. The transport records concerning a
roaming user are forwarded to its home network operator using the transferred ac-
count procedure (TAP) and a specific TAP format. The transfer of TAP records be-
tween the visited and the home mobile networks may be performed directly, or via a
clearinghouse. Clearing-houses are independent business players responsible for TAP
records creation, tariffing, and re-tariffing.

5 Customised Billing for Location-Based Services

In this section we present a part of the functionality of the proposed architecture with
the execution of an indicative example scenario. This example, deals with the cha-

ing, billing and accounting process during the execution of a location-based service
offered by an independent VAS provider. Specifically, the user accesses a service,
which identifies traffic jams and taking into account the user’s current location pro-
vides him with alternative routes. For such services the user has to pay for the trans-
port, service and content part, while the VAS provider is charged for the LCS features
usage. Furthermore, the user requests to be informed about the charging status of the
executing location-based service. Moreover, the VAS provider submits to the CAB
his own charging information for the provided contents with added value.

Fig. 3 presents the Message Sequence Chart (MSC) for this scenario. For the shake
of simplicity, the MSC does not contain the messages exchanged between the user,
the VAS provider and the Location Broker, the messages exchanged between the
underlying network components and the CABG, as well as the acknowledgement
messages.

More specifically, at first each authorized entity should create a session with the
CAB service in order to use the services offered by the CAB SCF
(CREATE_CAB_SERVICE_SESSION). Following the successful creation of the
session, the user requests to be informed the applicable charges
(ON_LINE_CHARGING_ INDICATION) providing the user identity and the charge
unit that defines when a notification should be sent to the user.

The reconfiguration manager receives the request (through the CAB SCF) and con-
figures the billing module to notify it when a certain limit is reached
(CHARGE_EVENT_NOTIFICATION). During the execution of the service the
CABG sends the charging information (CHARGING_ RECORD), collected by the
underlying network elements, to the charging module. The charging module corre-
lates the collected charging information and generates a TRANSPORT_RECORD
and a SERVICE_ RECORD that are sent to the billing module.

In parallel, the VAS provider retrieves the user’s location from the Location Bro-
ker; this has as result the Location Broker to send its service charges (CHARGING
RECORD) to the charging module (through the CAB SCF). This information is pro-
essed and transmitted to the billing module (SERVICE_RECORD) in order the VAS

provider to be charged for the LCS features usage and the accounting module

rg

c

 Customised Billing for Location-Based Services 35

Fig. 3. CAB’s functionality example

(APPORTION_ REVENUE) in order to calculate the revenues of the Location Broker
(these interactions are presented in grey in Fig. 3).

Additionally, the VAS provider sends its content charges
(DIRECT_CREDIT_AMOUNT), through the OSA/Parlay charging interface pro-
vided by the CAB service, to the charging module (through the CAB SCF) as well.
The charging module correlates this information with the one sent by the operator and
notifies appropriately the billing module (CONTENT_RECORD).

The billing module processes then the received information applying the appropri-
ate pricing models and calculates the transport, service and content charges that con-
cern the location-based service usage. In case that a certain limit (the charge unit) is

ACCOUNTINGACCOUNTINGBILLINGBILLINGCHARGINGCHARGINGCAB SCFCAB SCFCABGCABG
VAS

PROVIDER
VAS

PROVIDER
USERUSER

ON_LINE_CHARGING_INDICATIONON_LINE_CHARGING_INDICATION

CHARGING_RECORDCHARGING_RECORD

ON_LINE_CHARGING_INDICATIONON_LINE_CHARGING_INDICATION

CHARGING_RECORDCHARGING_RECORD

TRANSPORT_RECORDTRANSPORT_RECORD

SERVICE_RECORDSERVICE_RECORD

CONTENT_RECORDCONTENT_RECORD

APPORTION_REVENUEAPPORTION_REVENUE

CHARGE_EVENT_NOTIFICATIONCHARGE_EVENT_NOTIFICATION

DIRECT_CREDIT_AMOUNTDIRECT_CREDIT_AMOUNT

DIRECT_CREDIT_AMOUNTDIRECT_CREDIT_AMOUNT

REPORT_CHARGE_EVENT_NOTIFICATIONREPORT_CHARGE_EVENT_NOTIFICATION

RECONFIGU-
RATION

MANAGER

RECONFIGU-
RATION

MANAGER

REPORT_ ON_LINE_CHARGING_INDICATIONREPORT_ ON_LINE_CHARGING_INDICATION

REPORT_ ON_LINE_CHARGING_INDICATIONREPORT_ ON_LINE_CHARGING_INDICATION

CREATE_CAB_SERVICE_SESSIONCREATE_CAB_SERVICE_SESSION

CREATE_CHARGING_SESSIONCREATE_CHARGING_SESSION

LOCATION
BROKER

LOCATION
BROKER

CREATE_CHARGING_SESSIONCREATE_CHARGING_SESSION

SERVICE_RECORDSERVICE_RECORD

CHARGING_RECORDCHARGING_RECORD

CHARGING_RECORDCHARGING_RECORD

CHARGING_RECORDCHARGING_RECORD

CHARGING_RECORDCHARGING_RECORD

APPORTION_REVENUEAPPORTION_REVENUE

36 M. Koutsopoulou et al.

overcame, the billing module informs the reconfiguration manager about
(REPORT_CHARGE_EVENT_ NOTIFICATION) and following the requesting user
is notified (REPORT_ON_LINE_CHARGING_ INDICATION). In parallel, the
charging module provides the accounting system with the required information (trans-
port, service and content charges) to apportion the revenues between the players
(APPORTION_ REVENUE).

 6 Conclusion

By summarizing, this paper addresses the main unresolved charging issues for loca-
tion-based services and introduces an integrated architecture, which allows flexible
charging and customised billing for advanced location-based services usage. The
proposed CAB service supports one-stop billing schemes for the end users as well as
the separation of charging events based on content, service, and transport usage in-
formation. Moreover, it enables the automatic apportioning of incomes among the
players. Finally, the CAB service allows flexible charging and customised billing for
advanced location-based services usage.

Acknowledgment

Work presented in this paper has been performed in the framework of the project
LIAISON (IST-511766, web site http://liaison.newapplication.it/), which is partly
funded by the European Community. The Authors would like to acknowledge the
contributions of their colleagues. The content of this paper expresses solely the opi-
ion of the authors.

References

1. C. S. Jensen, A. Friis-Christensen, T. B. Pedersen, D. Pfoser, S. Saltenis, and N. Tryfona
“Location-based services -A database perspective” In Proceedings of the 8th Scandinavian
Research Conference on Geographical Information Science (ScanGIS2001), 2001

2. Third Generation Partnership Project (3GPP). http://www.3gpp.org
3. Open Mobile Alliance (OMA). http://www.openmobilealliance.org
4. 3rd Generation Partnership Project (3GPP) TS 23.271: “Functional stage 2 description of

LCS”, version 6.7.0, 2004-09
5. Location Interoperability Forum (LIF), http://www.locationforum.org/
6. Open Mobile Alliance (OMA) OMA-LIF-MLP-V3_1-20040316-C: “Mobile Location

Protocol (MLP)”, Candidate Version 3.1, 16 Mar 2004
7. 3GPP TS 22.071, 3rd Generation Partnership Project; Technical Specification Group Ser-

vices and System Aspects; Location Services (LCS); Service description; Stage 1
8. 3GPP TS 22.115: 3rd Generation Partnership Project; Technical Specification Group Ser-

vices and System Aspects; Service aspects; Charging and Billing
9. S. Panagiotakis, M. Koutsopoulou, A. Alonistioti, A. Kaloxylos, “Generic Framework for

the Provision of Efficient Location-based Charging over Future Mobile Communication
Networks”, PIMRC, Lisbon, Portugal, September 2002

n

 Customised Billing for Location-Based Services 37

10. Open Mobile Alliance, “WAP Billing Framework”, OMA-WBF-v1_0, http://www.open
mobilealliance.org/

11. 3GPP TS 29.198-1, 3rd Generation Partnership Project; Technical Specification Group
Core Network; Open Service Access (OSA); Application Programming Interface (API);
Part 1: Overview

12. 3GPP TS 29.198-6 version 5.4.0, 3rd Generation Partnership Project; Technical Specifica-
tion Group Core Network; Open Service Access (OSA); Application Programming Inter-
face (API); Part 6: Mobility

13. 3GPP TS 29.198-12 version 5.4.0, 3rd Generation Partnership Project; Technical Specifi-
cation Group Core Network; Open Service Access (OSA); Application Programming In-
terface (API); Part 12: Charging

L. Kutvonen and N. Alonistioti (Eds.): DAIS 2005, LNCS 3543, pp. 38 – 49, 2005.
© IFIP International Federation for Information Processing 2005

Loosely-Coupled Integration of CSCW Systems

Roberta L. Gomes∗, Guillermo J. Hoyos Rivera∗∗, and Jean Pierre Courtiat

LAAS-CNRS,
7, Avenue du Colonel Roche, 31077 Toulouse Cedex 4, France

{rgomes, ghoyos, courtiat}@laas.fr

Abstract. As collaboration activities usually involve several people with differ-
ent group tasks and needs, they are rarely supported by a single CSCW technol-
ogy. Then different types of collaborative applications are usually applied in
order to support group work. But in spite of being used to accomplish a com-
mon collaboration task, these applications are executed independently without
getting any advantage of each other. The integration of such applications would
allow them to dynamically interoperate, combining their different functional-
ities in a controlled way. In order to achieve integration, we propose LEICA1, a
loosely-coupled integration environment which allows collaborative applica-
tions to interact without loosing their autonomy. LEICA relies on Web services
technology, event notification system, and collaboration policies for controlling
the interactions between integrated applications.

1 Introduction

The increasing communication demands of geographically dispersed organizations
combined with the technological advances in networking have given rise to the devel-
opment of a great number of CSCW (Computer Supported Cooperative Work) sys-
tems. These systems aim to provide suitable forms of cooperation within a group of
users to perform collaborative activities.

As collaboration activities usually involve several people, with different group
tasks and needs, they are rarely supported by a single technology. Thus some CSCW
systems try to combine different functionalities in order to support collaboration into
a single environment. The main weakness of this approach is the challenge behind the
anticipation of all the requirements of cooperative situations. This way a CSCW sys-
tem is hardly suitable and sufficient for every collaborative activity.

As a result, current collaborative environments consist of a range of applications,
working side by side but independently, without really getting advantage of each
other. Allowing the integration of these applications could bring significant benefits
to users. An integrated collaboration environment would allow the different function-
alities of existing applications to be dynamically combined and controlled (enhancing

∗ Researcher supported by a scholarship from CNPq, Brazil.
∗∗ Researcher supported by scholarship 70360 CONACyT/PROMEP, Mexico.
1 This research is partially supported by the European IST project Lab@Future.

 Loosely-Coupled Integration of CSCW Systems 39

flexibility and tailoring possibilities).
In order to achieve the integration of existing CSCW systems avoiding dealing with

their low-level features, we propose LEICA, a "Loosely-coupled Environment for In-
tegrating Collaborative Applications". Relying on Web services technology [1] and an
event notification system (supporting the publish/subscribe paradigm [2]) different
collaborative applications can interoperate by exchanging information within the con-
text of a global SuperSession. The loosely-coupled approach proposed by LEICA
overcomes two problems usually related to integration environments: (i) it does not
require a true semantic integration of collaborative applications, (ii) once integrated to
the environment, collaborative applications keep their autonomy.

The definition of collaboration policies controls the interactions among integrated
applications, i.e. how the collaboration activity supported by one application will be
affected by information received from other applications. In practice, these applica-
tions interact through the notification of events which may lead to performing specific
action(s) in some of these applications.

The interaction degree among integrated applications depends obviously on the na-
ture of the events they are able to exchange, and actions they are able to perform.
Three main cases may be considered when integrating applications: a) open source
applications, b) API-based applications, and c) applications without any API. Integra-
tion of open source applications can achieve the tightest interaction degree, since any
internal event/action can be exported/performed; it might however imply great devel-
opment efforts. Integration of API-based applications is straightforward, and interac-
tion is limited to the provided API. Applications providing no API are constrained to
interact only through application start and stop actions. LEICA's integration approach
has been mainly driven by the second case (b). We believe that developers are cer-
tainly interested in creating specific and performable collaboration tools that can be
used either stand-alone or integrated with other applications (through a flexible API),
thus being able to get a great share of the market. This is for instance the case of
Skype™ [3], a successful example of communication tool that has recently released
its API.

The paper is structured as follows. Section 2 presents related work regarding the
integration of existing CSCW systems. Section 3 overviews the general integration
approach proposed by LEICA. Section 4 describes how a SuperSession is configured
and explains how to specify collaboration policies. Section 5 presents the LEICA's ar-
chitecture and how to integrate applications in practice. Section 6 draws some conclu-
sions and presents directions of future work.

2 Related Work

In [4], Dewan addresses basic issues in interoperating heterogeneous CSCW systems
that concurrently manipulate the same artifacts. However, it does not regard the inter-
operation of CSCW systems that, despite being involved in the same collaborative
tasks, do not deal with the same artifacts (e.g. videoconference and shared white-
board).

In [5] authors propose an integrative framework based on a three-level model: on-

40 R.L. Gomes, G.J.H. Rivera, and J.P. Courtiat

tological, coordination and user interface. An internal knowledge of the collaborative
application is needed so that its functionalities can be mapped into the three-level
model in order to achieve integration. Accordingly, the integration of third party ap-
plications becomes a complex (even impossible) task.

 In [6] authors present the CVW, a prototype collaborative computing environment
defining a place-based system for integrating document and meeting-centric tools.
Basic freeware collaborative applications have already been integrated, and new,
special-purpose tools can be integrated, but the integration process is not straightfor-
ward – tools must be designed against a place-based API.

Systems like AREA [7] and NESSIE [8] have tried to propose a loosely-coupled in-
tegration for supporting cross-application awareness. Like LEICA, these systems are
based on the exchange of activity relevant events. However these environments just
aim to provide users with a common awareness of the whole collaboration activity.
They do not provide any means for defining how an application should react when
events are notified by other applications.

Another proposal also based on a loosely-coupled approach is presented in [9].
The authors define a framework where Web services are used to wrap collaborative
applications in order to integrate them. Since they leverage open Internet standards,
Web services overcome the interoperability issues usually associated with more gen-
eral integration solutions like CORBA [10], DCOM [11] and EJB [12]. Besides, they
are simpler to design, develop, maintain and use. Web services based integration is
quite flexible, as it is built on a loose coupling between applications.

One of the drawbacks related to the Web services wrapping approach (in particular
to the use of SOAP [13]) is that it represents an additional tier causing some overhead
in processing exchanged messages [14,15]. Besides, depending on the architecture of
the existing collaborative applications, the complete wrapping of these applications as
Web services may imply great development efforts or even applications redesign.

Therefore, unlike the approach employed in [9], and following the recommenda-
tions of [14] and [15], we decided to use Web services for coarse-grained operations
only. Thus, LEICA applies Web services as an initial mechanism for (i) registering
newly integrated applications, (ii) setting and (iii) starting up collaborative sessions.
Then, a different infrastructure is used to implement the event notification system in
charge of interconnecting the collaborative applications during the execution of an in-
tegrated collaborative session. An overview of the proposed integration approach is
presented in the following section.

3 General Integration Approach

The integration of a collaborative application to LEICA is achieved by attaching a
Wrapper to this application2. This Wrapper comprises a Web services interface allow-
ing the collaborative application to register itself with LEICA3 as an integrated appli-

2 Wrappers are attached to servers of client/server and multi-server applications, and to the

peers of peer-to-peer (P2P) applications.
3 Except for P2P applications, which use a P2P Proxy in order to register themselves.

 Loosely-Coupled Integration of CSCW Systems 41

cation. Through its Web services ports, the integrated application can interact with the
Session Configuration Service (fig. 1).

Session

Configuration

Service

SuperSession
Configuration E

vent N
otification S

ystem

Web Services
Interface

Collaboration

Polici
es

Wrapper

Collaborative

Application

Master Server

Wrapper

Collaborative

Application

Server

Integrated

Applications

Integrated

Applications

P2P

Collaborative

Application
P2P

Proxy Wrapper

Fig. 1. LEICA general integration framework

The Session Configuration Service is a Web service used for (i) configuring new
global SuperSessions and (ii) starting up SuperSessions. A SuperSession is an inte-
grated collaborative session holding the whole collaboration activity. Within the con-
text of a global SuperSession, different specificSessions can exist. A specificSession is
then a conventional collaborative session defined within the context of one collabora-
tive application (e.g. a videoconference session, a whiteboard session, etc.).

During the SuperSession configuration process, the Session Configuration Service
dynamically contacts each integrated collaborative application in order to request: (i)
which specific data is required to create specificSessions for this respective applica-
tion (e.g. a videoconference tool might need an IP multicast address); and (ii) which
kind of events it can notify, and action requests it can receive. This second informa-
tion will be used during the collaboration policies definition process.

Collaboration policies are a set of rules following a condition/action model. These
rules define how collaborative applications might react when events coming from
other collaborative applications are notified. In other words, collaboration policies are
the mechanism allowing to determine how an application should react when receiving
information (events) notified by other applications.

Once a SuperSession has been configured, the Session Configuration Service can
finally start it. To do so, firstly it contacts each integrated collaborative application
requesting them to create the specificSessions defined in this SuperSession. Then,
these collaborative applications are interconnected through an event notification ser-
vice (as previously explained, from this point Web services are not used anymore).

As collaboration activities progress, collaborative applications exchange event noti-
fications in a peer-to-peer fashion. Meanwhile, Wrappers are in charge of managing
the collaboration policies. When the Wrapper of a collaborative application receives
event notifications, it verifies if the notified events enable any policy rule concerning
this collaborative application. If so, the Wrapper sends action requests to the respec-

42 R.L. Gomes, G.J.H. Rivera, and J.P. Courtiat

tive application. Note that LEICA is not intended to support low-level physical events
(e.g. mouse click/scrolling) or high frequency synchronization events (e.g. current po-
sition of moving objects). It aims to support activity relevant events that carry some
semantics.

In the next section we detail the SuperSession configuration process, explaining
how to specify the collaboration policies of a SuperSession.

4 SuperSession Configuration

In order to create a SuperSession, a two steps configuration process is carried out: (i)
Session Management configuration and (ii) Collaboration Policies configuration.

4.1 Session Management Configuration

In the first configuration step, all data necessary to define the main elements of a Su-
perSession are provided. Two groups of information have to be specified:

• General Session Management information (GSMinfo). It carries management in-
formation such as scheduling, membership and general user roles.

• Integrated Applications information (IAinfo). It defines the list of integrated ap-
plications to be used during this SuperSession. For each collaborative application,
a list of specificSessions is defined, where specific data required by this applica-
tion for creating sessions is provided (e.g. a videoconference application will be
provided with an IP multicast address).

4.2 Collaboration Policies Configuration

The second step of the SuperSession configuration process deals with the specifica-
tion of collaboration policies. As briefly described in section 3, these policies are re-
sponsible for linking the collaboration activities supported by different specificSes-
sions in the context of the global SuperSession. This is carried out through a set of
policy rules, basically allowing the association of n event notifications to the execu-
tion of m actions (under certain conditions).

In order to specify the policy rules, a collaboration policies editor might be used.
Policy rules are then created through the composition of GUI components, called pol-
icy widgets. Once the collaboration policies are created, the respective XML data is
generated which is appended to the SuperSession configuration file. The rules' seman-
tics associated with the XML syntax has been defined using the RT-Lotos formal de-
scription technique [16]. This semantics is implemented by a sub-module of the
Wrapper.

Figure 2 illustrates the policy widgets used to create policy rules. These widgets can
be connected through their connection points. The basic composition rules are: (i) pol-
icy rules are read from left to right; (ii) only widgets without any connection point on
their left can appear on the left end of a policy rule; (iii) only widgets without any
connection point on their right can appear on the right end of a policy rule.

 Loosely-Coupled Integration of CSCW Systems 43

Type

Event
Parameters

Event Predicate

From

Latest Earliest

Type

Action
Parameters

To

Action

connection points

Fig. 2. Policy widgets

The Event widget represents an event notification. Each Event is associated with a
collaborative application (field "From") and has a type (field "Type"). In the "Event
Parameters" area it is possible to define matching patterns (filters) for parameters'
values. The Action widget represents an action execution request. Each Action is as-
sociated with a collaborative application (field "To") and has a type (field "Type"). In
the "Action Parameters" area, all the required parameters for this action type are
specified. Note that all event and action types (and their parameters) are well-known
since they are provided by each integrated application.

Figure 3 shows a simple collaboration policy rule associating directly one action
with one event. This policy rule is enabled when the specified event is notified. It
specifies that: if the application "CA1" notifies an Event of type "T1" with parameter
"a:M*" (a string starting by "M"), then an action request of type "T2" must be sent to
application "CA2". The '%' character is a reference operator, indicating that the Ac-
tion's parameters "d" and "y" have their values copied from the Event's parameters "b"
and "c".

Type: T1
a:M*
b:
c:

From: CA1

Type: T2

To: CA2

d:%1.b
y:%1.c

1

Fig. 3. A simple collaboration policy rule

A Predicate widget allows the association of conditions to enable policy rules. A
Predicate can appear alone or attached to every policy widget but an Action. It con-
tains a predicate that is specified in Java™ language syntax. Predicates can impose
time constraints, as well as conditions based on the current SuperSession state. When
a Predicate is attached to an Event (or to a Latest) it can also reference the parameters
of the respective Event (or the parameters of the Events connected to the Latest).

The Earliest and Latest widgets allow the composition of different Events for the
specification of a policy rule. When Events are grouped through an Earliest, the pol-
icy rule is enabled when one of the specified Events is notified. When Events are
grouped through a Latest, the policy rule is enabled after all events have been noti-
fied.

Figure 4 shows two examples of policy rules using Latest and Earliest widgets. In
the left example, the policy rule is enabled when both specified events are notified

44 R.L. Gomes, G.J.H. Rivera, and J.P. Courtiat

(for the first one, the attached Predicate must be evaluated to true). Then the Predi-
cate associated with the Latest widget is also evaluated. If it is true, then the two
specified action requests are sent. In the right example, there is an Event and a Predi-
cate grouped through an Earliest. Policy rules like this one aim at waiting the fulfill-
ment of certain conditions to be enabled (e.g. regarding the SuperSession state); how-
ever if a particular event is notified before this condition is satisfied, then the policy
rule is also enabled.

Type: T1

From: CA1

Type: T3

To: CA3

Type: T4

To: CA4

Type: T1

From: CA2

a:M*
c:

n:

y:%1.a

x:%2.n

1

2

Type: T1

From: CA1

a:M*
c:

1

Fig. 4. Policy rules using Latest and Earliest

An upcoming problem is related to the fact of having more than one Event in the
same policy rule. Thus, an automatic sequence number is attributed to each Event in
order to be used as identifier while referencing event parameters. Another constraint
related to event parameters referencing appears when Events are grouped through an
Earliest. As it defines a non-deterministic behavior (there is no way of knowing
which of the Events will enable the policy rule) parameters from Events of different
types grouped through an Earliest can not be referenced by a Predicate attached to
this Earliest.

As illustrated in figure 5, different Earliest and Latest widgets can be combined in
order to create compound rules.

Type: T1

From: CA1

Type: T2

From: CA2

Type: T2

To: CA2

Type: T2

To: CA3

a:M*
b:>10
c:

n:
t:

Type: T1

From: CA1

a:N*
c:
m:

x: %3.m

y: %3.c

1

2

3

Type: T3

To: CA2

n: %3.c

Fig. 5. A compound collaboration policy rule

 Loosely-Coupled Integration of CSCW Systems 45

5 LEICA's Architecture

Following the integration framework presented in section 3, we describe here the
LEICA's architecture and different implementation aspects of a prototype currently
under development. Java™ has been chosen as underlying technology for implemen-
tation. To precisely describe each architecture component, let us consider the five
necessary steps to achieve the execution of a SuperSession.

5.1 Integrating a Collaborative Application

CSCW systems may present different distribution architectures, varying from central-
ized to replicated architectures. Centralized architectures are usually implemented ac-
cording to the client/server or multi-server approaches. Replicated architectures are
mainly implemented following the P2P approach. These three different approaches
are considered to determine how to integrate collaborative applications to LEICA.

When integrating client/server or multi-server collaborative applications, a Server
Wrapper must be added to the servers. In the case of a P2P collaborative application,
a P2P Wrapper is used. As shown in figure 6, the difference between these two Wrap-
pers deals with the Web services interface, not present in the second case. Since P2P
applications are usually dynamically executed in the users' hosts when they get con-
nected, they cannot be permanently available as Web services. To overcome this
problem, a P2P Proxy is used.

Connector

W
S

In
te

rf
a

c
e

Session
Manager

E
v

e
n

t
N

o
tific

a
tio

n

In
te

rfa
c

e

Session
Manager

E
v

e
n

t
N

o
tific

a
tio

n

In
te

rfa
c

e

P2P Wrapper

P
2

P
 P

ro
x
y

In
te

rf
a

c
e

Application Interface

Connector

Application Interface

Server Wrapper

Fig. 6. The LEICA Wrappers

The Wrapper is a Java component to be tied to the collaborative application
through an Application Interface. This last is an abstract class to be extended in order
to implement the communication interface with the collaborative application itself 4.
Through this interface the collaborative application notifies the Wrapper of "what is
happening" inside its collaboration context (i.e. make event notifications), and re-
ceives all specificSessions set up and action requests.

The Session Manager implements the core functionalities of the Wrapper. It is in
charge of (i) receiving and handling specificSession configuration data; (ii) managing
the collaboration policies as it receives event notifications; and (iii) sending event no-
tifications to other collaborative applications.

4 JNI (Java™ Native Interface) is used for integrating non Java based collaborative applica-

tions.

46 R.L. Gomes, G.J.H. Rivera, and J.P. Courtiat

5.2 Registering a Newly Integrated Application

To register with LEICA, as illustrated in figure 7, the Wrapper publishes its services
in a Private UDDI Registry [17]. In multi-server applications, a Master Server is des-
ignated to register the application. In P2P applications, registering is made through
the P2P Proxy.

P2P

Wrapper

Private

UDDI

Registry

P2P

Collaborative

Application

Client/Server

Applications

Client/Server

Applications

Multi-Server

Applications

Multi-Server

Applications

P2P

Applications

P2P

Applications

publish

pu
bli

sh

pu
bl

is
h

registryP2P

Proxy

Collaborative

Application

Server

Server

Wrapper

Collaborative

Application

Server

Server

Wrapper

Collaborative

Application

Master Server

Server

Wrapper

Server

Wrapper

Collaborative

Application

Server

Fig. 7. Registering collaborative applications to LEICA

For implementing the UDDI Registry, we use jUDDI [18], a Java implementation
that complies with UDDI 2.0. Wrapper's WS Interface and the P2P Proxy use
UDDI4J [19] (Java API for UDDI interaction) to interact with the UDDI Registry.

5.3 Creating SuperSessions

Figure 8 schematizes the necessary steps for creating a new SuperSession.

Private

UDDI

Registry

P2P

Proxy

Collaborative

Application

Server

Server

Wrapper

Collaborative

Application

Server

Server

Wrapper

Collaborative

Application

Master Server

MServer

Wrapper

Session

Configuration

Service

Web

Browser

P
o

rt
a

l

Sessions
Directory

2

4

3

1 Multi-Server

Applications

Multi-Server

Applications

Client/Server

Applications

Client/Server

Applications

P2P ApplicationsP2P Applications
Server

Wrapper

Collaborative

Application

Serverfin
d

HTTP SOAP

SOAP

SOAPS
O

A
P

Fig. 8. Configuration of new SuperSessions

1. A Web portal is used to access the Session Configuration Service and start the
creation process.

2. The Session Configuration Service accesses the Private UDDI Registry to find out
which are the integrated collaborative applications.

3. The Session Configuration Service contacts integrated applications to get informa-
tion about which specific data are needed for configuring specificSessions, and
which kind of events it can notify and action requests it can treat. Based on this in-
formation, GSMinfo, IAinfo and collaboration policies can be defined.

4. The SuperSession configuration file is finally generated and stored.

To implement all these Web services interactions, we use Apache Jakarta Tomcat
5.0 and Apache SOAP 2.3.1.

 Loosely-Coupled Integration of CSCW Systems 47

5.4 Running SuperSessions

Figure 9 illustrates how a SuperSession is started.

1. A Web portal is used to start a SuperSession.
2. The SuperSession configuration file is retrieved and parsed. The collaborative ap-

plications to be used in this SuperSession are identified.
3. The Session Configuration Service contacts integrated applications to set up

specificSessions and to send them the collaboration policies of this SuperSession.
4. The Server Wrappers of each collaborative application are interconnected through

the Event Notification System. From this point, Web services are not used anymore.

Web

Browser

P
o

rt
a

l

1

Collaborative

Application

Server

Server

Wrapper

Collaborative

Application

Server

Server

Wrapper

Collaborative

Application

Master Server

Server

WrapperServer

Wrapper

Collaborative

Application

Server

Collab. Application ACollab. Application A

Server

Wrapper

Collaborative

Application

Server

Collab.
Application B

Collab.
Application B

Collab.
Application C

Collab.
Application C

Event Notification System

SOAPHTTP

SOAP

SOAP

S
O

A
P

4

3

Session

Configuration

Service

Sessions
Directory

2

Fig. 9. Starting up a SuperSession

In order to implement the event notification system keeping the loosely-coupled
nature of LEICA, the publish/subscribe paradigm [2] has been chosen. Pub-
lish/subscribe interaction scheme is well-adapted to loosely-coupled environments. In
general, subscribers register their interest in patterns of events and then asynchro-
nously receive events matching these patterns, regardless of the events' publishers.

Each Wrapper analyses the collaboration policies in order to discover: which type
of events it needs to publish, and which type of events it needs to subscribe to. A
Wrapper just needs to publish Events that could enable policy rules, and subscribe to
Events that could enable a policy rule defining Actions to its associated application.

In order to implement the publish/subscribe paradigm for notifying events, we use
Scribe [20], a Java based large-scale, peer-to-peer, topic-based publish/subscribe in-
frastructure. Scribe also provides efficient application level multicast.

5.5 Connecting to a SuperSession

In order to connect to a SuperSession, a LClient application is executed. Figure 10
shows how the connection of a new user is treated.

1. The LClient contacts the Session Configuration Service and it receives the
GSMinfo, IAinfo and collaboration policies defined to the chosen SuperSession.

2. The LClient plays the role of a local launch point for P2P and client applications.
As it needs to execute the collaboration policies in order to know when P2P/client
applications must be launched, it joins the event notification system to receive
event notifications.

48 R.L. Gomes, G.J.H. Rivera, and J.P. Courtiat

3. Suppose that, initially, this user is to be connected just to two specificSessions,
concerning the collaborative applications "B" and "D". Then, the LClient runs the
client application "B" and the P2P application "D".

4. The Wrapper of the P2P application "D" connects to the event notification system
and executes the same publishing/subscribing process described in the previous
subsection.

Session

Configuration

Service

Sessions
Directory

4

1

Collaborative

Application

Server

Server

Wrapper

Collaborative

Application

Server

Server

Wrapper

Collaborative

Application

Master Server

Server

Wrapper
Server

Wrapper

Collaborative

Application

Server

Collab. Application ACollab. Application A

Server

Wrapper

Collaborative

Application

Server

Collab.
Application B

Collab.
Application B

Collab.
Application C

Collab.
Application C

2

Event Notification System

User host

LClient

P2P

Wrapper

P2P

Collaborative

Application

Collab. Application DCollab. Application D

3

Collaborative

Application

Client

Collab.
Application B

Collab.
Application B

SOAP

Fig. 10. User connection to a SuperSession

LClient is a Java application using Apache SOAP 2.3 to contact the Session Con-
figuration System, and Scribe's classes to connect to the event notification system.

6 Conclusions and Future Work

This paper has presented LEICA, a loosely-coupled environment for integrating col-
laborative applications. Existing collaborative applications can be loosely integrated
using Web Services as integration technology. In the context of a SuperSession, a
global collaboration activity is supported where different integrated applications are
used in a parallel and coordinated way. Based on the specification of collaboration
policies, LEICA defines applications' behavior in response to event notifications.

The current prototype implementation confirms the fact that open source collabora-
tive applications achieve richer interaction levels since we have all the needed flexi-
bility for binding Wrappers to applications. However, as new software applications
are increasingly coming out of the box with API specifications (sometimes based on
Web services), their integration tends to be straightforward.

Regarding Web services, an important effort has been deployed in order to propose
solutions for optimizing the transmission and/or wire format of SOAP messages. In
this perspective, the current event notification system of the LEICA could also be-
come a Web services-based system without the performance problem actually inher-
ent to SOAP.

Concerning the definition of collaboration policies, no verification of policies' con-
sistency conciseness has yet been performed. Possible solutions based on the use of
formal techniques description to guarantee policies' consistency will be studied in a
near future.

 Loosely-Coupled Integration of CSCW Systems 49

References

1. Web Services Activity (2005): http://www.w3.org/2002/ws/
2. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.-M.: The many faces of

publish/subscribe. ACM Computing Surveys, Vol.35. ACM press (2003) 114-131
3. Skype website. http://www.skype.com/
4. Dewan, P.,: An experiment in interoperating heterogeneous collaborative systems. 6th

European Conference on Computer Supported Cooperative Work, Copenhagen, Denmark.
Kluwer Academic Publishers (1999)

5. Iqbal, R., James, A., Gatward, R.: A practical solution to the integration of collaborative
applications in academic environment. 5th International Workshop on Collaborative Edit-
ing Systems, hosted by the ECSCW'03, Helsinki, Finland (2003)

6. Spellman, P. J., Mosier, J. N., Deus, L. M., Carlson, J. A.: Collaborative virtual
workspace. International ACM SIGGROUP Conference of Supporting Group Work. ACM
Press, Phoenix (1997) 197-203

7. Fuchs, L.: AREA: a cross-application notification service for groupware. 6th European
Conference on Computer Supported Cooperative Work, Copenhagen, Denmark. Kluwer
Academic Publishers (1999)

8. Prinz, W.: NESSIE: an awareness environment for cooperative settings. 6th European
Conference on Computer Supported Cooperative Work, Copenhagen, Denmark. Kluwer
Academic Publishers (1999)

9. Fox, G. et al.,: A Web services framework for collaboration and videoconferencing.
Workshop on Advanced Collaborative Environments, Seattle, Washington (2003)

10. Orfali, R., Harkey, D.: Client/server programming with Java and CORBA. Wiley,
NewYork (1998)

11. Distributed Component Object Model (DCOM) (2005): http://www.microsoft.com
12. Roman, E., Ambler S.W.: Jewell T Mastering Enterprise, JavaBeans. Wiley, NewYork

(2001)
13. W3C (2004): Simple Object Access Protocol (SOAP). http://www.w3.org/TR/soap
14. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services (chapter 5). In: Web

Services – Concepts, Architectures and Applications, Springer-Verlag (2004)
15. Chiu, K., Govindaraju, M. Bramley, R.: Investigating the limits of SOAP performance for

scientific computing. 11th IEEE International Symposium on High Performance Distrib-
uted Computing. IEEE press (2002)

16. Courtiat, J.P., Santos, C.A.S, Lohr, C., Benaceur, O.: Experience with RT-LOTOS,a tem-
poral extension of the LOTOS formal description technique. Computer Communications,
Vol.23, Num.12, July (2000) 1104-1123

17. W3C (2005): Universal Description, Discovery, and Integration (UDDI)
http://www.uddi.org.

18. Apache (2005): jUDDI webpage. http://ws.apache.org/juddi/
19. IBM (2005): UDDI4J webpage. http://www.uddi4j.org/
20. Castro, M., Druschel, P., Kermarrec, A.-M., Rowstron, A.: Scribe: A large-scale and

decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas in
Communications (JSAC), Vol. 20, Num. 8. IEEE press (2002)

L. Kutvonen and N. Alonistioti (Eds.): DAIS 2005, LNCS 3543, pp. 50 – 55, 2005.
© IFIP International Federation for Information Processing 2005

Interoperability and eServices

Aphrodite Tsalgatidou and Eleni Koutrouli

Department of Informatics & Telecommunications,
National & Kapodistrian University of Athens, Greece

{atsalga, ekou}@di.uoa.gr

Abstract. eServices are the building blocks for loosely-coupled, distributed
applications based on the Service Oriented Architecture (SOA) principles. One
of the major benefits they offer is interoperability both between components of
service oriented systems and between different systems. Still, the variety and
diversity of implementations and interpretations of SOA and the vast amount of
emerging standards hinder interoperability. This paper examines
interoperability requirements and related issues in the three major eServices
categories: Web, Grid and P2P services. Our aim is to provide the basis for a
roadmap towards improving interoperability of eServices.

1 Introduction

Service Oriented Architectures (SOA) emerged as an evolutionary step from Object
and Component based approaches, with the promise to support the loose coupling of
system parts and to provide agility, flexibility and cost savings via reusability,
interoperability and efficiency. However, the lack of agreement on what constitutes a
SOA and the vast amount of emerging standards makes it difficult to understand and
utilize the potentials of eServices technologies. In this context, interoperability, which
is one of the basic characteristics and benefits of SOA, needs to be further explored in
order to find out the open issues and best practices.

In this paper we present the interoperability requirements and related issues in the
eService area, considering interoperability both in terms of intra- and inter- paradigm
integration. Our goal is to pinpoint the challenges and provide a roadmap of best
practices for interoperability. Thus, in section 2 we describe the model of SOA and
the three major trends in eServices, i.e. Web, P2P and Grid services with a focus on
the standardization efforts. In section 3 we provide the interoperability issues for each
eService area and present synergies and integration efforts, whereas in section 4 we
give our concluding remarks which are summarized in a table that provides a general
interoperability overview for the three areas of eServices.

2 The eService Model

According to W3C, a Service Oriented Architecture (SOA) specifies a set of
components whose interfaces can be described, published, discovered and invoked
over a network. eServices are the building blocks of SOA and are mainly instantiated
by Web Services (WS), Grid and P2P Services which are briefly described below.

 Interoperability and eServices 51

Web Services are self-contained, modular applications, accessible via the Web, that
provide a set of functionalities to businesses or individuals. We are currently
witnessing the rapid development and maturation of a stack of interrelated standards
that are defining the WS infrastructure along with a great number of development
tools that support the WS development. The key standards for describing, advertising,
discovering and binding WS are WSDL, UDDI and SOAP. Besides, there are ongoing
standardization efforts in WS composition, orchestration, choreography, security and
management (e.g. BPEL4WS, ebXML, WS-Security, etc.). The current Web Services
Protocol Stack, along with details regarding the standardization of the various WS
protocols can be found in [10].

The term Grid refers to a system that is concerned with the integration,
virtualization, and management of services and resources in distributed,
heterogeneous environments. The Open Grid Services Architecture (OGSA) [4] is a
significant effort by the Global Grid Forum towards the standardization of protocols
and interfaces which integrates Grid and WSs. OGSA was initially materialized by
the Open Grid Services Infrastructure (OGSI) [14], and more recently by the Web
Services Resource Framework (WSRF) proposal [22]. Currently the efforts of the
major industry players are targeted to the support of the Globus toolkit [5].

The term “Peer-to-Peer” (P2P) refers to a class of systems and applications that
takes advantage of resources – storage, cycles, content, human presence – available at
the edges of the Internet. Standards for P2P technologies have not yet been
established. Efforts for defining specifications are made by the P2P Working Group,
whereas two standardization initiatives are Jabber [8] and JXTA [9].

3 Interoperability Concerns

In the eServices domain we view interoperability as the ability of systems,
applications and services, to communicate, exchange data and files, work together or
operate on behalf of one another. In this section we analyze the specific
interoperability issues in the areas of Web, Grid and P2P services (intra-paradigm
interoperability) and present synergies between different kinds of eServices (inter-
paradigm interoperability).

Web Services Interoperability. WS promise universal interoperability and
integration by establishing commonly agreed protocols for mutually understanding
what a service offers and for delivering this functionality in an implementation
independent way. Interoperability of legacy applications is also enabled facilitating a
seamless integration between heterogeneous systems. Furthermore, new services can
be created and dynamically published and discovered without disrupting the existing
environment. Thus, WS technology provides a means of interoperating between
different software applications, running on a variety of platforms and/or frameworks.

The issue of WS interoperability is addressed at a conceptual level by the W3C´s
Web Services Architecture (WSA) [23], which identifies the global elements of the
global WS network required to ensure interoperability between WS. The various WS
standards and enabling technologies address technical level interoperability. The
common standards for WS description, publication and invocation (WSDL, UDDI,
SOAP) have effectively become de facto standards, and, thus, support basic

52 A. Tsalgatidou and E. Koutrouli

interoperability. However, there is a need for enhanced interoperability in all WS
operations. Web Services description should include not only functional
characteristics of WSs, but also common semantic information that will enable the
meaningful interoperation between different WSs. Semantic description is not
supported by current WS description standards (e.g. WSDL, whereas ebXML
addresses some semantic issues) although some standardized ontology languages,
such as OWL [15] and OWL-S [16], can be used for providing WS description
semantics. WS management also requires common management semantics, in relation
to management policies and capabilities, to be understood by the requester and
provider entities [23]. Furthermore, the wide range of protocols that have been
proposed for WS security, reliability and composition hinder interoperability.

Enhancing interoperability between different implementations of WS technologies
is the goal of the Web Services Interoperability (WS-I) organization [24], that defines
how existing, stable and widely accepted WS standards should be used. Developers
should use implementations of standards that have proven interoperability (examples
are the WSDL/UDDI/SOAP initiative and integration of SOAP into ebXML), and
also keep up with the advancement of standards.

Grid Services Interoperability. Grid services interoperability can be viewed along
two different dimensions: between distributed resources in a Grid application, and
between different Grid applications.

Interoperability between different distributed resources in a Grid application is a
main goal of the various Grid projects despite the different infrastructures they use
and the different aspects on which they focus. The OGSA/OGSI and WSRF models
provide a framework for Service Oriented Grids aiming at supporting interoperability
of distributed services and resources. Grid middleware implementations based on
these models provide services and promote interoperability by allowing interoperation
of Grid components independently of the operating system and network topology.

Significant effort has also been channelled towards enabling interoperability
between different Grid applications. There is a number of approaches that include the
definition of a minimal set of Grid services which enable the interoperation of
different Grid applications, the integration of different Grid infrastructures, the
common Grid resources description [6] and the Semantic Grid [18] which aims at
providing interoperability across time as well as space for reuse of services,
information, and knowledge.

P2P Services Interoperability. P2P services interoperability, similarly to Grid
Services, can be viewed either as: interoperability between different peers in a P2P
network, or between different P2P applications.

Interoperability between different peers needs advanced interoperability
techniques, since the various heterogeneous nodes of a P2P network need to
communicate, exchange content and aggregate their diverse resources, such as
computing power or storage space. Most P2P systems use proprietary
implementations and protocols for the peers interoperation and functionality.
Enhanced interoperability between heterogeneous peers is supported by semantic
routing which is recently addressed by researchers, e.g. in Edutella [3].

Interoperability between different P2P applications has not been addressed by early
P2P applications, which set up closed peer networks, accessible only to them,

 Interoperability and eServices 53

whereas, currently, only a few P2P systems can interoperate, such as Magi with
JXTA. Efforts towards improved interoperability are made by the P2P Working
Group. Early attempts on interoperability include Jabber and Groove which are
mainly extensible attempts, and not fully interoperable systems. A common
infrastructure that will contain the core services of a P2P application could be a more
appropriate approach which is mainly addressed by JXTA and Microsoft's .Net [11].

Inter-paradigm Interoperability. Integration of heterogeneous eServices allows the
exploitation of the specific characteristics and benefits of each eServices type by the
other eServices, leading to more flexible, efficient and interoperable service-oriented
systems. In the following we present synergies between Web, Grid and P2P services
and the ways they promote inter-paradigm interoperability in the eServices area.

As already discussed, Grid and WS technologies are in a convergence process, led
by the OGSA/OGSI and WSRF proposals. Grid developers can thus exploit the
experience of the WS community and concentrate on building the higher-level
services that are specific to the Grid application domain. There is a need, however, for
WS specifications that could safely be used for building interoperable Web Service
Grids, and for this reason a WS specification profile WS-I+ has been proposed in [1].
Another proposal on how Grid applications could be built using existing WS
specifications is found in [17].

Recently we are also witnessing a strong movement towards WS and P2P services
working in conjunction. Synergies between WS and P2P services include: WS
discovery using a P2P-based approach [2], peer discovery in P2P systems using WS
as registries, WS interconnection in heterogeneous networks [19], search engines,
such as Google, based on P2P and WS, and JXTA projects that incorporate WS.

The techniques that the P2P and Grid models use to handle some of the main issues
of distributing computing are discussed in [21] in order to find a common foundation
that could alleviate the complexities of each other and fulfill the need for secure,
scalable and decentralized collaboration. Another approach to combining aspects of
Grid and P2P computing is found in the proposal for a new architecture stack for
Grids presented in [13].

The confluence of Web, P2P and Grid services provides the foundation for a
common model allowing applications to scale from proximity ad hoc networks to
worldwide-scale distributed systems. Some approaches and research projects have
started to appear towards supporting this convergence and reusability of the three
categories of eServices by providing appropriate models and platforms [12][20].

4 Concluding Summary

In this paper we investigated the interoperability potentials and challenges of WS,
P2P and Grid services which are the building blocks of SOA and are known as
eServices. Our observations are summarized in Table 1 that offers an overview of the
interoperability requirements and existing and possible solutions. We believe that the
work presented in this paper can be the basis for a roadmap towards improving
interoperability in the eServices area which is one of the main benefits of Service
Oriented development.

54 A. Tsalgatidou and E. Koutrouli

Table 1. Interoperability approaches and requirements for eServices

 Web
services

P2P services Grid services

Common
Architecture

Web Services
Architecture
(W3C)

Proposed architecture:
JXTA

OGSA

Standards for
basic activities
(description,
publishing,
invocation)

WSDL / UDDI /
SOAP initiative,
ebXML

Standardization efforts:
JXTA, Jabber for instant
messaging systems,
P2Pwg

OGSA/OGSI and
WSRF models, no
standardised Grid
middleware
implementations

Standards for
value added
activities (e.g.
composition,
management,
security)

Many
standardization
efforts
(BPEL4WS,
WS-security)
but a few mature
standards

No standards

OGSA security
architectural
components, no
standardised
implementations S

ta
n

da
rd

iz
at

io
n

 E
ff

or
ts

Semantics
support for
basic and
value-added
activities

Partially
addressed (e.g.
ebXML)

New approaches:
Semantic routing (e.g.
RDF-based routing
algorithms)

Partially addressed

Approaches to
intra-paradigm
interoperability

WS-I and WS-
I+ profiles,
integration of
different
standards (e.g.
SOAP &
ebXML)

Most different P2P
systems do not
interoperate, exceptions:
Jabber with other IM
systems, Magi with JXTA,
different JXTA -built
systems

Need for
interoperability
between different
infrastructures,
Grids middleware
services enable
interoperation
independently of
network and OS

O
th

er
 a

p
p

ro
ac

h
es

Integration
Efforts for
heterogeneous
eServices

• P2P based WS discovery
• Peer discovery in P2P systems using WS as registries
• Search engines built using WS and P2P technology
• WS Grids based on specific WS standards (WS-I+ profile)
• Grid architecture based on P2P principles
• Convergence of eServices for unified service discovery

Acknowledgement

This work has been partially supported by the IST Network of Excellence INTEROP
[7]. The authors would like to thank the INTEROP researchers George
Athanasopoulos and Vangelis Floros for their contribution in earlier drafts of this
paper.

 Interoperability and eServices 55

References

1. Atkinson, M., DeRoure, D., Dunlop, A., Fox, G., Web Service Grids: An Evolutionary
Approach, UK e-Science Technical Report (2004)

2. Banaei-Kashani, F., Ching-Chien Chen, C., Shahabi, C., WSPDS: Web Services Peer-to-
peer Discovery Service, Proc. of International Symposium on Web Services and
Applications (2004)

3. Edutella project, http://edutella.jxta.org
4. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An Open Grid

Services Architecture for Distributed Systems Integration, Globus Project (2002)
5. Foster, I., Kesselman, C.: The Globus Toolkit, In Ian Foster and Carl Kesselman, editors,

The Grid: Blueprint for a New Computing Infrastructure (1999), 259-278
6. Grid Interoperability Project, http://www.grid-interoperability.org
7. INTEROP Network of Excellence http://interop-noe.org/INTEROP/
8. Jabber (2002), http://www.jabber.org/
9. JXTA, http://www.jxta.org/

10. Lawrence, W., The Web Services Protocol Stack (2005), http://roadmap.cbdiforum.com/
reports/protocols/

11. Microsoft .NET, http://www.microsoft.com/services/net/default.asp
12. Milenkovic, M., Robinson, S., Knauerhase, R., Barkai, D., Garg, S., Tewari, V., Anderson,

T., Bowman, M., Intel, Toward Internet Distributed Computing, published at Computer
Society (IEEE), (2003), Vol. 36, No. 5, 38-46

13. Next Generation Grid 2nd Group report (2004), http://www.cordis.lu/ist/grids
14. OGSI, http://www-unix.globus.org/toolkit/draft-ggf-ogsi-gridservice-33_2003-06-27.pdf
15. OWL Overview, W3C Recommendation (2004), http://www.w3.org/TR/owl-features/
16. OWL-S 1.0 Release, http://www.daml.org/services/owl-s/1.1/
17. Parastatidis, S., Webber, J., Watson, P., Rischbeck, WS-GAF: A Framework for Building

Grid Applications Using Web Services, Journal of Concurrency and Computation: Practice
and Experience (2005), 391-417

18. Roure, D., Jennings, N., Shadbolt, N., The Semantic Grid: Past, Present and Future, to
appear in IEEE Proceedings March 2005

19. Schattkowsky, T., Loeser, C., Müller, W., Peer-To-Peer Technology for Interconnecting
Web Services in Heterogeneous Networks, Proc. of 18th International Conference on
Advanced Information Networking and Applications (2004)

20. SODIUM project, http://www.atc.gr/sodium
21. Talia, D., Trunfio, P.: Toward a Synergy Between P2P and Grids, published in IEEE

Internet Computing, July 2003, 94-96
22. The WS-Resource Framework (WSRF), http://www.globus.org/wsrf/
23. Web Services Architecture, http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
24. Web Services Interoperability Organization, http://www.ws-i.org/

Model-Driven Self-management
of Legacy Applications

Markus Debusmann, Markus Schmid, and Reinhold Kroeger

Fachhochschule Wiesbaden - University of Applied Sciences,
Department of Computer Science, Distributed Systems Lab,

Kurt-Schumacher-Ring 18, 65197 Wiesbaden, Germany
{debusmann, schmid, kroeger}@informatik.fh-wiesbaden.de

Abstract. Increasing complexity of todays applications and services leads to the
emerging trend of self-managing systems. Legacy applications often offer inter-
faces for manual management and very rarely do provide self-management fea-
tures. Therefore it is very important to reuse existing management interfaces for
achieving self-manageability.

This paper presents our model-driven self-management approach of legacy
applications. We introduce a framework for model-driven service level manage-
ment which transforms abstract SLAs defined in UML into concrete SLA de-
scriptions and deploys them for management. These SLAs are used to define the
goals for our self-management agent which is responsible for providing feedback
control. Its management knowledge is transformed from UML models using also
a model-driven approach.

1 Introduction

The ongoing economic pressure on enterprises increases the need for outsourcing and
purchasing services from external service providers. Service Level Agreements (SLAs)
[1, 2] represent agreed upon contracts between service providers and service customers.
SLAs are an important element within the outsourcing business and define Quality of
Service (QoS) parameters of the provided service. Typically, these SLA parameters are
related to performance and availability, e.g., the mean value for the response time of ser-
vice functions. Service Level Objectives (SLOs) define reference values (e.g. thresholds
and value sets) for SLA parameters. In order to detect violations, the SLA parameters
have to be monitored and compared to the SLOs at runtime.

Over the past years, the complexity of distributed applications has significantly in-
creased, accompanied by a rapid change of emerging middleware technologies, such
as CORBA [3], J2EE [4], and Web Services [5]. These frequent technology changes
as well as the overall complexity significantly complicate the management of today’s
distributed applications. Therefore self-managing functionality of applications is be-
coming more and more crucial. As a consequence, IBM started its Autonomic Com-
puting Initiative [6] in 2001 whose goal is to develop self-managing systems covering
one or more of the following aspects: self-configuration, self-optimisation, self-healing,
and self-protection [7]. IBM’s competitor HP also introduced a self-managing approach
called Adaptive Enterprise [8].

L. Kutvonen and N. Alon stioti (Eds.): DAIS 2005, LNCS 3543, pp. 56–67, 2005.
c© IFIP International Federation for Information Processing 2005

i

Model-Driven Self-management of Legacy Applications 57

The development of self-managing systems is a very complex task since such a
system has to incorporate the knowledge that is usually hidden in the brains of human
administrators. This leads to a number of critical research questions, like:

– How can management knowledge be formally represented in an effective way?
– How does a self-managing system handle situations that were not foreseen during

the systems design?
– How can the design of self-managing systems be supported?

In the area of software development, the Model Driven Architecture (MDA) repre-
sents an approach for effectively designing complex systems as abstract models, which,
ideally, are then automatically transformed into application code.

We claim that the principles of the MDA can tremendously benefit the development
of self-managing systems. In this paper, we concentrate on achieving self-manageability
for traditionally managed legacy systems. This is very important, since enterprises made
large investments in existing software systems which are not easily replaceable. Usually
legacy applications offer a set of interfaces for their manual management which should
also be used for self-management. In addition, a lot of experience on managing existing
applications has been gained during their operation. Our approach has the following
advantages:

– existing management interfaces are reused, i.e., the application being managed does
not need to be modified,

– existing management know-how is leveraged by formalisation.

Within our approach, the use of MDA for obtaining self-management for legacy
applications is twofold:

1. We propose the definition of abstract SLA patterns, that can then be transformed
and bound to concrete management platforms. These SLA patterns provide the ba-
sis for setting up a management platform for monitoring SLA compliance, and for
configuring a self-management agent for carrying out corrective actions on the sys-
tem under management based on the compliance information.

2. The knowledge base of a self-management agent can be set up by using a model
driven approach, i.e., abstract management knowledge is transformed into concrete
management directives by using appropriate model transformations.

The MDA-based management approach provides the necessary level of abstrac-
tion needed for dynamic on-demand services in large-scale heterogeneous environ-
ments. Furthermore, the proposed abstract SLA templates provide added value by being
reusable and long-lasting.

The remainder of this paper is structured as follows: section 2 presents the founda-
tions of the Model Driven Architecture and the extension mechanisms of the Unified
Modeling Language, while section 3 presents our architecture for model-driven self-
management in detail. After this, section 4 presents the application of the implemented
prototype in a sample e-business scenario. The paper concludes with a summary and an
outlook of our future work in section 5.

58 M. Debusmann, M. Schmid, and R. Kroeger

2 Model Driven Architecture and UML

The design and implementation of modern software systems is complex and costly due
to rapid and continuous technology changes. These require tremendous efforts in appli-
cation integration, as well as support for developing adaptive and open applications that
can keep track with the steady technological progress. The Model Driven Architecture
(MDA) [9], defined by the Object Management Group (OMG), aims at solving integra-
tion and development problems. It defines a model-based methodology which separates
the application problem domain from the technological specifics of the underlying com-
puting infrastructure [10].

The MDA distinguishes between three models: the Platform-Independent Model
(PIM), the Platform-Specific Model (PSM), and the Platform-Specific Code (PSC). The
models can be converted into each other by a process called model transformation.
Typically, an MDA tool (or a chain of tools) supports the definition and transformation
of these models.

The PIM is the core ingredient of the MDA. It specifies a system independent of any
platform-specific technology that is later used to implement the system. The PIM fo-
cuses on the business functionality and behaviour including the relationships between
the components involved. MDA’s vision is the specification of computationally com-
plete PIMs. Ideally, all development is carried out at the modelling level, and these
models can be exploited for testing and verification purposes.

The PSM is obtained by transforming the PIM for a given target platform, e.g.,
CORBA, J2EE, or Web Services. The goal is to capture as much of the platform know-
how as possible in the PIM-PSM transformation and to generate as much of the PSM
as possible automatically. Thus, the developer can concentrate on the application logic
in the PIM and is relieved from the complexities of platform-specific code.

The last step is the generation of the (platform-specific) code from the PSM. Ide-
ally, a MDA tool generates all necessary application code (and associated files) for the
chosen programming language and deployment platform.

For the specification of PIM and PSM, the MDA proposes the Unified Modeling
Language (UML) [11] which is also an OMG standard. UML supports various meta-
level mechanisms to extend its specification elements: stereotypes, tagged values, and
constraints. A profile represents a set of extension elements and is used for adapting
UML to the needs of certain problem domains. For the exchange of UML models, e.g.
between UML tools, the OMG has defined an XML-based interchange format called
XML Metadata Interchange (XMI) [12].

3 Architecture for Model-Driven Self-management

This section introduces our architecture for model-driven self-management. Section 3.1
gives an introductory overview while section 3.2 discusses the model-driven service
level management in detail. After this, section 3.3 describes the structure of our self-
management agent and the set up of its knowledge base, using a model-driven
approach.

Model-Driven Self-management of Legacy Applications 59

3.1 Overview

Figure 1 depicts a high-level view upon our architecture for model-driven self-manage-
ment. The architecture comprises two subsystems:

– the SLM system for deploying and monitoring SLAs, and
– the self-management agent for accomplishing corrective actions.

A prerequisite for an effective self-management is the formal and unambiguous
specification of management objectives. This is the task of a service level agreement
which specifies all management-relevant SLA parameters of the system under manage-
ment and the SLOs, the self-management system is trying to fulfil. The service level
management (SLM) system is responsible for observing the conformance level of an
SLA. Therefore, SLAs are being deployed by the SLA deployment system and then
monitored by the SLA monitoring system. The system retrieves raw data and metrics
from the system under management and computes the management-relevant parameters
which are then compared to the defined SLOs.

Fig. 1. Overview of the general architecture

In order to achieve self-manageability the self-management agent has to decide
whether an adaptation of the system under management is required or not. Its deci-
sions are based on metrics directly retrieved from the system under management and on
metrics and events retrieved from the SLM system. These events may signal that a cer-
tain SLO is about to be violated and thus a proactive corrective action may be required.
For issuing feedback control the self-management agent uses existing management in-
terfaces of the system under management.

The following two sections discuss the SLM system and the self-management agent
in more detail.

3.2 Model-Driven Service Level Management

This section describes the concept of the model-driven management of service level
agreements realised within the SLM system. The deployment of an SLA is a prerequi-
site for this.

The central idea of our approach is to apply the principles of the Model Driven
Architecture to the problem domain of Service Level Management. Therefore, we need

60 M. Debusmann, M. Schmid, and R. Kroeger

to define the meaning of the different MDA models (PIM, PSM, and PSC) for the area of
SLM first. In our approach, the PIM represents an SLA pattern which defines an abstract
SLA which can be bound to various appropriate configurations and environments. Thus,
an SLA pattern only contains the types and their relations to various other component
types and an abstract description how SLA parameters are derived.

In the next step, an SLA pattern ("the PIM") is transformed into a concrete SLA
("the PSM"), which we call SLA instance, by binding the pattern to concrete configura-
tion information. This includes the binding of the abstract component types to concrete
component instances as well as the identification of a concrete management framework,
that is used for managing the SLA (e.g. WBEM/CIM). An SLA instance contains all in-
formation necessary for configuring the management infrastructure for the given SLA.

The third step is the actual deployment of the SLA instance ("the PSC"). The result
of this step is the actual configuration of the management infrastructure enabling it to
autonomously manage the conformance of the SLA.

Figure 2 depicts the overall architecture for the model-driven deployment of SLAs.

Fig. 2. Architecture for model-driven deployment of SLAs

Defining an SLA Pattern. The starting point for Service Level Management is the
signing of a legal contract (SLA) between a service customer and a service provider. In
our approach, the formalisation of the contract is done in UML by an administrator us-
ing a UML tool and an appropriate UML profile tailored for SLA definition (for details
see [13]). The result of the formalisation is the SLA pattern which is stored in the SLA
repository for further use. An SLA pattern specifies the relations and dependencies of
service types in an abstract manner. For example, a service type for providing HTML

Model-Driven Self-management of Legacy Applications 61

content might depend on a web server, a web container, a database, some machines
hosting the components, and network connections between them. The virtue of the ap-
proach is that for a certain type of service a pattern has to be defined only once and can
then be re-used and instantiated multiple times.

Generating an SLA Instance. For actually managing an SLA, a corresponding SLA
pattern is retrieved from the SLA repository and bound to a concrete configuration. This
is a rather complex task, because all real instances of the types identified in the SLA
pattern have to be known. The necessary information is usually retrieved from a config-
uration repository which contains all relevant information concerning the dependencies
between services and components. The transformation of the SLA pattern into an SLA
instance is performed by the binding service (see figure 2). As explained above, such
an SLA instance is constructed for a certain SLM system.

Deploying an SLA Instance. The final MDA step is the generation of platform-specific
code. For Service Level Management this corresponds to the physical deployment of the
SLA instance generated in the previous phase.

The SLA instance is passed to an SLA deployment service (see figure 2) which is
specific for the target SLM system. The SLA deployment service configures the ser-
vices of the SLM system that are responsible for managing the SLA conformance.
For example, when using WSLA [14] as SLM system, the WSLA deployment ser-
vice will configure WSLA’s measurement service and condition evaluation service.
After configuration, these services are set up to autonomously manage the deployed
SLA.

Prototype Implementation. The SLA UML profile has been defined using the UML
modelling tool Kase [15]. An example of an SLA pattern modelled using UML can be
found in [13]. The models are exported as XMI [12] documents and further processed
using the Xalan-J engine (http://xml.apache.org/) and an XSLT [16] style-sheet. The re-
sult of this simplification process is an SLA pattern represented in XML and containing
only the information that is necessary for representing the SLA.

For instantiating SLA patterns we developed a Java GUI. We used the Java Architec-
ture for XML Binding (JAXB, http://java.sun.com/xml/jaxb/) framework for efficiently
implementing the access to the XML-represented SLA pattern. The GUI uses a set of
plugins for different target platforms to generate the SLA instances. After choosing an
SLA template and the desired target platform, the plugin prompts the administrator for
the information which is necessary to bind the pattern. The generated instance is then
handed over to the platform-specific deployment service for installation. Currently, the
SLA patterns are simply read from the file system. In the future, the SLA repository
will be implemented as a Web Service.

3.3 Model-Driven Generation of Management Knowledge

We will now describe the model-driven generation of management knowledge which is
subsequently used by the self-management agent.

62 M. Debusmann, M. Schmid, and R. Kroeger

Fig. 3. Architecture for model-driven configuration of the Self-Management Agent

Figure 3 depicts the architecture for the model-driven configuration of the self-
management agent which is tightly interrelated with the architecture for the model-
driven deployment of SLAs described in the previous section.

Structure of the Self-management Agent. Internally, the self-management agent con-
sists of four major building blocks. Details on the architecture of the self-management
agent are provided in [17]. Adaptors and converters are responsible for retrieving met-
rics and receiving events. They are also responsible for converting this data into the
internal messaging format. The task of the internal messaging subsystem is the deliv-
ery of all internal information and events. The knowledge interpreter in combination
with the management knowledge is the ’brain’ of the self-management agent. The man-
agement knowledge is evaluated on regular intervals and on the occurrence of certain
events. Necessary corrective actions are carried out by application-specific actors which
realise the feedback control. In a simple scenario actors could be implemented by oper-
ating system commands for killing and restarting processes. Actors could also provide
a generic interface to interact with a certain class of legacy applications, e.g. an SNMP
interface to communicate with SNMP-enabled applications.

Currently, we assume that the person modelling the management knowledge knows
or anticipates the correlation between the system metrics and its control variables. Since
we focus on achieving self-manageability for legacy applications the necessary knowl-

Model-Driven Self-management of Legacy Applications 63

edge should exist. For new applications partial knowledge can be already gained in the
development process. This knowledge is then being gradually completed.

Prototype Implementation. The self-management agent was implemented on AIX
and Linux, using C++. The two main design goals for the agent are modularity and
high availability. All functionality of the self-management agent (the adaptors & con-
verters, the knowledge interpreter, and the actors) are implemented as shared libraries
which can be dynamically loaded into the agent at runtime. The core of the agent is the
module manager which provides a framework for concurrent communication between
the modules.

For achieving high availability the self-management agent is realised as a self-
checking process pair. The agent continuously self-diagnoses its modules in order to
ensure proper operation. In order to be able to manage a wide range of applications the
self-management agent supports a large number of adaptors and converters as well as
actors. At the moment, we support SNMP including traps, log analysis, shell scripting,
CORBA, WBEM/CIM, and Web Services.

Currently, the self-management agent only supports a simple policy language (de-
fined as an XML schema) for describing the management knowledge, but the architec-
ture is open to support other paradigms, such as finite state machines or neural networks.

Modeling Management Knowledge. Similar to the abstract nature of the SLA pat-
terns, the management knowledge of the self-management agent is described in an ab-
stract manner, called knowledge patterns. As a starting point, we use UML state-charts
and UML activity diagrams in conjunction with an UML modelling tool and an appro-
priate profile for describing the knowledge patterns. After modelling, these patterns are
stored in a knowledge repository for further use.

For instantiating management knowledge appropriate knowledge patterns have to
be retrieved from the knowledge repository. In a first step, the patterns (the "PIM") are
transformed by the representation transformer into a desired knowledge representation.
From our point of view there are certain limitations related to possible target formats
of knowledge. We expect to be able to successfully transform our knowledge patterns
into policy languages, logical expressions or certain finite state machine models. For
different representation formats, such as AI rules, an alternative modelling approach is
required.

The result of the transformation process are knowledge templates (the "PSM") which
still represent abstract knowledge but already for a target representation format. Finally,
the knowledge generator generates concrete management knowledge (the "PSC"). The
generator instantiates the knowledge templates using the information contained in the
SLA instance generated by the SLM system (see section 3.2). Possibly, additional con-
figuration information retrieved from a repository has to be included as well. The gener-
ated management knowledge is necessarily application-specific, but may in large parts
be similar for certain application types, e.g. Web Servers. It is interpreted by the self-
management agent for deciding whether feedback into the system under management
is required and which (application-specific) actors are to be invoked in this case.

64 M. Debusmann, M. Schmid, and R. Kroeger

3.4 Related Approaches

[18] describes an approach which successfully utilises MDA for modelling QoS aspects
when designing distributed applications.

IBM carries out significant research work on self-management, but the design of
the controllers presented is highly application-specific: [19] describes the application
of control theory to a DB/2 DBMS, [20] shows ways to optimise queueing in a Lo-
tus Notes server. In principle, such complex controller-approaches could complement
our architecture, however a possible interaction with SLAs and generated management
knowledge requires further analysis.

4 Sample Application Scenario

The prototype has been evaluated in our e-business application infrastructure which rep-
resents the system under management (see figure 4). This infrastructure consists of the
Squid Web proxy on the client side and the Apache Web server, the Tomcat Web con-
tainer, the JBoss application server, the ORBacus CORBA platformand the relational
database MySQLon the server side. Our environment is fully instrumented using the
OpenGroup Application Response Measurement (ARM) API [21] for determining the
response and processing times of individual components within our e-business environ-
ment.

The collected performance measurement data is used by the SLM system for vali-
dating SLOs (see [22] for details). In our sample scenario we defined SLOs concerning
response time and availability. The actual response times are monitored by the SLM
system. In case a response time SLO is violated an appropriate event is sent to the
self-management agent in order to trigger a corrective action. The self-management
agent tries to fulfil the response time goals by starting additional JBoss instances within
a cluster. The EJB client within Tomcat uses the JBoss SmartProxy mechanism for
achieving load balancing. If the response times decreases below a certain limit, the self-

Fig. 4. Managing an e-business environment

Model-Driven Self-management of Legacy Applications 65

Fig. 5. Knowledge pattern for managing JBoss instances

management agent again gradually removes JBoss instances from the cluster in order
to save resources.

The availability of the components is observed by the self-management agent itself
via its adaptors and converters. In case a component crashes it is restarted automatically
by the self-management agent.

Figure 5 depicts the knowledge pattern for managing the number of JBoss instances.
The pattern is modelled as a state machine consisting of three states. The automaton ini-
tially starts in the Operating state and remains there as long as the response time re-
quirements are satisfied. If the response time rises above a certain limit
(enter_critical) and the maximum number of parallel JBoss instances has not
been reached, a new instance is started and the state machine enters the Heavy_load
state. As long as the response time remains above enter_critical the automaton
continues to start new instances until the maximum number is reached. If the response
time increases further and the maximum number of instances is already running, the
state machine sends the event_overload notification and enters the Overload
state. The notification indicates that additional intervention is required by a superior
self-management agent or by a human administrator. If the response time drops again
below leave_critical, the state machine will send an event_no_overload
notification and will switch back to the Heavy_load state. If the response time drops
further below leave_critical, the automaton will remove instances in order to
save resources and will reenter the Operating state. If the response time falls below
low_load, the state machine will continue removing instances.

Elements starting with $ represent placeholders that are replaced by the knowledge
generator during the transformation process when creating the management knowledge.
As can be seen, the presented knowledge pattern is not limited to managing JBoss in-
stances but can be reused for response time management of any component type where
multiple instances reduce the resulting response time.

5 Conclusions and Future Work

The constantly increasing complexity of distributed applications and services requires
a higher degree of self-management in order to efficiently fulfil rising quality require-

66 M. Debusmann, M. Schmid, and R. Kroeger

ments. Traditionally, most applications solely provide interfaces for manual manage-
ment. In this paper, we propose an approach for achieving self-manageability of legacy
applications by leveraging their existing management interfaces. Our approach uses
principles of the Model Driven Architecture for obtaining self-management. The over-
all architecture consists of two basic subsystems: the SLM system for deploying and
monitoring SLAs and the self-management agent for realising feedback control.

For effectively deploying SLAs in order to monitor them with an SLM system we
propose a model-driven approach. SLAs are modelled in an abstract manner using UML
and are called SLA patterns. They can be reused by binding them to various appropriate
configurations. A bound SLA pattern is referred to as SLA instance which contains
all necessary information for monitoring the SLA. After the deployment of the SLA
instance the SLA is automatically monitored. The SLA determines the reference values
that should be satisfied by the self-management.

The self-management agent is responsible for achieving conformance with the de-
ployed SLAs. The modular agent consists of adaptors & converters for retrieving met-
rics and events, an internal messaging system, a knowledge interpreter for the self-
management algorithms, and actors for realising feedback control.

The management knowledge is transformed using the model-driven approach as
well. First of all, abstract knowledge patterns are modelled as UML state-charts and
activity diagrams using an UML tool plus an appropriate UML extension. The knowl-
edge patterns can then be transformed into knowledge templates that represent a desired
target representation of the knowledge patterns. Finally, the knowledge templates are in-
stantiated using SLA instances and additional configuration information. The generated
management knowledge represents the self-management algorithms that are executed
by the knowledge interpreter.

We successfully implemented the model-driven approach for SLA deployment and
monitoring and the self-management agent. The implementation of model-driven gen-
eration of the management knowledge is ongoing work. Our future work will concen-
trate on completing the implementation and gaining experience in different modelling
formats for knowledge patterns and their transformation into various target formats in
order to realise different types of feedback algorithms.

References

1. Lewis, L.: Managing Business and Service Networks. Kluwer Academic Publishers (2001)
2. Sturm, R., Morris, W., Jander, M.: Foundations of Service Level Management. SAMS

Publishing (2000)
3. Object Management Group: Common Object Request Broker Architecture: Core Specifica-

tion. (2004) Version 3.0.3 - Editorial changes, OMG document formal/04-03-01.
4. Sun Microsystems, Inc.: Java 2 Platform Enterprise Edition Specification, v1.4. (2003) Final

Release, http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf.
5. World Wide Web Consortium: Web Services Architecture. (2004) W3C Working Group

Note, http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.
6. Horn, P.: Autonomic Computing — IBM’s Perspective on the State of Information Technol-

ogy. IBM Corporation. (2001) http://www.research.ibm.com/autonomic/.
7. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer Maga-

zine (2003) 41–50

Model-Driven Self-management of Legacy Applications 67

8. Hewlett-Packard: Building an adaptive enterprise — Linking business and IT. (2003)
http://h30046.www3.hp.com/solutions/utilitydata.html.

9. Object Management Group: Model Driven Architecture (MDA). (2001) OMG document
ormsc/2001-07-01.

10. Object Management Group: Model Driven Architecture (MDA). (2001) document number:
ormsc/2001-07-01.

11. Object Management Group: OMG Unified Modeling Language Specification. (2003) Ver-
sion 1.5, OMG document formal/03-03-01.

12. Object Management Group: XML Metadata Interchange (XMI) Specification. (2003) Ver-
sion 2.0, OMG document formal/03-05-02.

13. Debusmann, M., Geihs, K., Kroeger, R.: Unifying Service Level Management using an
MDA-based Approach. In Boutaba, R., Kim, S.B., eds.: Proceedings of the 9th International
IFIP/IEEE Network Operations and Management Symposium (NOMS 2004), IEEE (2004)
801–814 Seoul, South Korea.

14. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. Journal of Network and Systems Management, Special Issue
on "E-Business Management" 11 (2003)

15. Weis, T.: Kase UML Tool. (2003) QCCS Project, http://www.qccs.org/KaseTool.shtml.
16. World Wide Web Consortium: XSL Transformations (XSLT). (1999) Version 1.0.
17. Debusmann, M., Kroeger, R.: Widening Traditional Management Platforms for Managing

CORBA Applications. In Zieliński, K., Geihs, K., Laurentowski, A., eds.: Proceedings of the
3rd IFIP WG 6.1 International Working Conference on Distributed Applications and Interop-
erable Systems (DAIS’2001), IFIP, Kluwer Academic Publishers (2001) 245–256 Krakow,
Poland.

18. Weis, T., Ulbrich, A., Geihs, K.: Modellierung und Zusicherung nicht-funktionaler Eigen-
schaften bei Entwurf, Implementierung und zur Laufzeit verteilter Anwendungen. In Irm-
scher, K., Faehnrich, K.P., eds.: Kommunikation in Verteilten Systemen (KiVS), GI/ITG,
Springer (2003) 119–130 (in German).

19. Diao, Y., Eskesen, F., Froehlich, S., Hellerstein, J.L., Spainhower, L.F., Surendra, M.:
Generic Online Optimization of Multiple configuration Parameters With Application to a
Database Server. In: Proceedings of the fourteenth IFIP/IEEE Workshop on Distributed sys-
tems: Operations and Management (DSOM 2003). (2003)

20. Parekh, S., Gandhi, N., Hellerstein, J., Tilbury, D., Jayram, T., Bigus, J.: Using Control
Theory to Achieve Service Level Objectives In Performance Management. In: Proceedings
of the Seventh International Symposium on Integrated Network Management (IM). (2001)

21. The Open Group: Systems Management: Application Response Measurement (ARM).
(1998) Open Group Technical Standard, Document Number: C807.

22. Debusmann, M., Schmid, M., Schmidt, M., Kroeger, R.: Unified Service Level Monitoring
using CIM. (2003) EDOC 2003, Brisbane, Australia.

Model-Driven Methodology for Building QoS-Optimised
Web Service Compositions

Roy Grønmo1 and Michael C. Jaeger2

1 SINTEF ICT, P.O.Box 124 Blindern N-0314 Oslo, Norway
Roy.gronmo@sintef.no

2 TU Berlin, FG FLP SEK FR6-10, Franklinstrasse 28/29 D-10587 Berlin, Germany
mcj@cs.tu-berlin.de

Abstract. As the number of available Web services increases there is a growing
demand to realise complex business processes by combining and reusing avail-
able basic Web services. For each of the needed basic Web services there may
be many candidate services available from different vendors and with different
Quality of Service (QoS) values. This paper proposes a model-driven method-
ology for building new Web service compositions that are QoS-optimised. We
investigate if UML is suitable for modelling the QoS aspects and we explain how
transformations can be used to automate most parts of the methodology. Some of
these transformations are already implemented in previous work.

As part of the methodology we present a control flow pattern approach that
optimises the QoS values of the composition given user-defined requirements
and preferences. The pattern approach is compared towards the local and global
approaches identified by other authors. Experiments are carried out within our
simulation tool that simulates the selection of services and aggregation of QoS
in a given composition. The test results are used to identify recommendations of
when to use the different approaches based on measurements of computation time
of the optimisation component and achieved QoS values for the new composition.
The methodology is explained by relating it to a gas dispersion emergency case.

1 Introduction

A growing number of Web services are implemented and made available internally in
an enterprise or externally for other users to consume. Such Web services can be reused
and composed together in order to realise larger and more complex business processes.
We define Web services to be services available by using Internet protocols such as
HTTP and XML-based data formats for their description and invocation. A Web ser-
vice composition is a description of how basic Web services can interoperate in order to
accomplish a larger task. There is not yet any de-facto standard for defining Web service
compositions although there are several evolving proposals (BPEL4WS [3] etc). All of
these composition languages, as well as the other adopted Web service specifications
(SOAP, WSDL) use low-level XML code as the representation language. We propose to
use a model-driven methodology that provides a relation between the XML specifica-
tions and graphical, higher-level models using the Unified Modelling Language (UML).
This improves the development and maintenance of new Web services.

L. Kutvonen and N. Alon stioti (Eds.): DAIS 2005, LNCS 3543, pp. 68–82, 2005.
c© IFIP International Federation for Information Processing 2005

i

Model-Driven Methodology for Building QoS-Optimised Web Service Compositions 69

In a composition there are many sub-tasks that need to be solved by calls to existing
services. There may be many alternative services that can accomplish the same task,
but with different QoS offerings such as price and data quality. This means that a se-
lection among these services must be taken. For the automatic selection of services and
computation of overall QoS values, we introduce a control-flow pattern approach. Two
main hypotheses are elaborated in the paper:

• The forthcoming UML Profile for modelling QoS from the Object Management
Group (OMG) [9] can be used to capture the necessary QoS aspects in UML for
Web service composition.

• The pattern approach to QoS-optimisation achieves improved overall QoS values
of the composition and/or improved computation time compared to previously pub-
lished approaches.

Both hypotheses are evaluated against a gas dispersion emergency case. The modelling
constructs of OMG’s UML profile is applied to this case to see if they are suitable
and cover all the aspects relevant in this case. The pattern approach and the alternative
approaches are simulated by a tool that compares the achieved overall QoS values of
the whole composition and the computation time of the algorithms. The tests use the
fixed composition of the gas dispersion case and randomly generated candidate services
for each task in the composition with randomly assigned QoS values.

This paper is organised as follows. Section 2 provides an overview of the method-
ology. Sections 3 to 6 go through the four methodology steps in detail as applied to the
gas dispersion case. Section 7 discusses assumptions and potential shortcomings in our
current methodology. Section 8 describes a simulation tool that is used to compare our
optimisation approach with two other approaches. Section 8 presents related work and
section 9 summarises with conclusions and by identifying future work.

2 Methodology

This section describes a methodology for designing and implementing QoS-optimised
Web service compositions. The methodology is model-driven using UML as the mod-
elling language. We propose to define and implement fully automated transformations
whenever applicable. The main focus in our methodology is to choose the most ap-
propriate web services based on their QoS offerings. Therefore QoS offered values
need to be retrieved somehow by the service requester. Since there is no standard-
ised way to do this, we shortly explain three alternative ways such information may be
retrieved:

<operation name="getWind" offersQoS="QoSOfferedURL">

<input message="tns:getWind"/>

<output message="tns:getWindResponse"/>

</operation>

QoSOffered : URL

WSDLOperation QoS-OfferedoffersQoS

0..1 QoSOffered : URL

Fig. 1. Extending WSDL to provide QoS information

70 R. Grønmo and M.C. Jaeger

• Extending WSDL with a reference to offered QoS (Figure 1). This enables each
WSDL operation to be associated with a QoS offerings document which may be
updated regularly by the service provider if the values change.

• The service requester negotiates a QoS contract with the service providers. Signed
bilateral contracts define the QoS offerings that the service provider is obliged to
deliver. The negotiation process may be automatic or manual.

• Asking QoS testing services. A QoS testing service will calculate QoS offered val-
ues by running test scenarios against the services, or it may gather information
based on reports from other consumers of a service.

Especially with the first and last of these alternatives it will be a question of reliabil-
ity of the retrieved QoS values. It is outside the scope of this paper to further investigate
these alternatives. In the remainder of this paper we assume that the QoS values may
be retrieved and be relied upon, and that the WSDL extension mechanism is used. Ser-
vices without retrievable QoS values must be ignored as candidate services. Note that
the QoS requirements will refer to a set of QoS characteristics, and QoS values for the
same characteristics need to be specified in the offered QoS of the candidate service.

The methodology has four steps (Figure 2); In step 1 the user designs a composite
Web service with a set of QoS requirements; In step 2 an optimisation service is used
to select the best suited candidate services for the composition; In step 3 the model is
finalised with details of chosen services and computed QoS values for the composition;
In step 4 the model is exported into specifications that are used to implement, deploy
and publish the composite Web service with its offered QoS values.

We will explain the methodology by applying it to a concrete example. The gas
dispersion emergency case of the ACE-GIS project [13] has been extended with QoS
aspects. The case is about how to handle an emergency situation caused by an explo-
sion in a chemical factory, with subsequent leakage of poisonous gas. In order to make
efficient evacuation plans, the crisis management needs a forecast of the gas plume

Fig. 2. Methodology

Model-Driven Methodology for Building QoS-Optimised Web Service Compositions 71

dispersion. Hence a Web service needs to be designed which calculates the gas plume
and displays it on a map. We introduce some QoS values for the different services in
the case, but these are only provided as examples and are not grounded by any actual
measurements.

3 Step 1: Modelling the Composition with QoS Requirements

This section shows how UML can be used to model QoS requirements within a Web
service composition. The QoS modelling builds upon OMG’s forthcoming UML profile
for QoS modelling [9].

Modelling the Interface and Behaviour. The first step is the interface modelling which
identifies the new operations of the new composite Web service. For the gas dispersion
example we wished to develop a Web service with one operation: CreateGasDisper-
sionMap(plantID: string, emissionRate: float): base64Binary. By calling this op-
eration with a plant identifier and an emission rate of the gas dispersion, the result will
be an image map displaying the expected gas dispersion after a given time period on
a background area map. For the identified operation we need to model the behaviour.
This can be achieved by using UML activity models that capture the control flow and
data flow aspects. Figure 3 shows a simplified activity model of the control flow for
the CreateGasDispersion operation. First we get the location of the plant with gas
leakage, and then the nearest airport is located since this is required by the Get Wind
service1. In parallel a gas dispersion plume is calculated and a background map is re-
treived. Finally, a map with the gas dispersion plume overlaid on the background map
is created.

Modelling QoS Characteristics. The QoS concepts need to be precisely defined and
used by all the parties involved. The OMG profile uses QoS characteristics to define
collections of QoS concepts with precise semantic meaning. Each QoS characteristic
contains a set of QoS dimensions with a name and allowed value domain. A QoS di-
mension also has a direction which is defined as either increasing or decreasing, where
increasing means that higher values are preferred. The QoS characteristics for the gas
dispersion case are shown in Figure 4. A price is either given as monthly subscription
or per call, and the currency is Euro. Execution time is measured in seconds and only
with respect to worst case. A user rating specifies the user satisfaction on a scale from
1 to 10 where higher values are preferred. The encryption level ranges from 1 to 4
where higher values are preferred. These levels should be further detailed in order to be
precisely defined.

Modelling QoS Requirements. When the QoS characteristics are defined, they can be
used to model the QoS requirements. A QoS requirement identifies restrictions on a
service with respect to the value domain of specific QoS characteristics. These require-
ments need to be fulfilled in order to achieve a successful binding to a service. The

1 In the gas dispersion case, no Web service was found to provide a wind estimate for an arbitrary
location. However, a Get Wind service taking an airport location as input, was found.

72 R. Grønmo and M.C. Jaeger

requirements may apply to a single service within the composition or to the service
composition as a whole.

We propose to extend the OMG profile with QoS interests, which is the set of QoS
characteristics that are desirable to be optimised. The QoS interests follows the same
notational principles as the other parts of the OMG profile, such as the requirements
modelling. A possible strategy is to implicitly include all of the QoS characteristics,
referred by QoS requirements, as part of the interests set. In many cases this may not
be desirable since optimization deals with trade-offs. Any additional characteristic that
one tries to optimise may worsen the optimisation of the other characteristics. We in-
stead recommend explicitly modelling all of the characteristics to be optimised within
the interests set. The result may then be that characteristics specified only in the require-
ments set and not in the interests set will not be optimised any further beyond fulfilling
the requirements upper and lower bounds. Furthermore we propose that the different
characteristics in the interests set are weighted to indicate the relative importance of the
interest.

Figure 3 shows the composition of the gas dispersion case with QoS requirements.
The QoS requirements in the example (top left note) apply to the composition as a
whole, since they are not attached to any the individual services (this is our notational
convention). The requirements state that the required price per invocation must be at
most 50 Euros and the execution time must never exceed 20 seconds. In addition we
specify QoS interests (lower left note) indicating which QoS characteristics we want
optimised. Each of these interests has assigned a weight between 0 and 1, where 1
indicates highest importance. The QoS characteristics used are already defined by a
separate UML package as shown in Figure 4.

Model with Candidate Services. When searching for services we have ideally discov-
ered candidate services for all the different tasks in our composition model. If not, two
possible actions must be taken. Either the composition must be changed or the missing
service must be implemented by ourselves. Each Web service is defined syntactically
by the de-facto standard WSDL. Updating the composition model with the candidate
services can be supported by reverse transformations from WSDL to UML [5]. We also

Fig. 3. Modelling QoS Requirements Fig. 4. Modelling QoS Characteristics

Model-Driven Methodology for Building QoS-Optimised Web Service Compositions 73

CandidateService

wsdlOperation : String
wsdlPortType : String
wsdlService : String

wsdlFile : URL

ActivityModel
Identifies a unique
WSDL operation

QoS-Offered

QoSOffered : URLAction offersQoS

0..1

canBeRealizedBy

0..*

-actions 1..*

Fig. 5. Metamodel for Candidate Services

need to attach these candidate services to its belonging task. The metamodel for attaching
candidate services to the tasks are given in Figure 5. Each task can be realised by many
candidate services. A candidate service is defined by a WSDL operation. Note that one
WSDL file may provide several operations. The four attributes wsdlFile, wsdlOpera-
tion, wsdlPortType and wsdlService will together give a unique reference to the WSDL
operation. The WSDL operation refers to a document describing its offered QoS.

The modelling of candidates in UML can be handled by letting each action have a
tagged value, CandidateServices, which defines the URL of an XML file with a list of
the candidate WSDL operations that can perform the task. Since there may be many
candidate services for a task, this list structure is more technically feasible to capture
in an XML file than in the UML model itself. The production of such an XML file can
preferably be supported by a tool. The composition model with candidate services are
sent to the QoS-optimisation algorithm discussed in the next section. The outcome of
applying the algorithm will be one selected service for each task in the composition.

4 Step 2: QoS-Optimised Selection

In order to select candidates for tasks in a composition based on QoS requirements, a
method is necessary to determine the QoS of a composition depending of the offered
QoS of potential candidates. In a preceding paper we have introduced a set of seven
structural elements – called composition patterns – to model a composition [7]. The
composition patterns were derived from a set of workflow patterns, which have been
introduced by van der Aalst et al. [12]. Workflow patterns form a set of functional
and structural requirements for workflow management systems. We have chosen the
workflow patterns as the foundation for the composition patterns because existing flow
languages for the composition of Web services are based on a similar approach like
modelling languages for workflows. Van der Aalst has also shown that the workflow
patterns apply to existing composition languages [11]. The patterns are basic sequential
and parallel arrangements of tasks and thus can be seen as the atomic elements of a
composition:

Sequence of service executions. A sequence can be ordered or in arbitrary order. For
the aggregation model, the order of the service executions is not relevant.

Loop. The execution of a service or a composition of services is repeated for a certain
amount of times.

XOR split followed by a XOR join. From a parallel arrangement only one task is star-
ted. Thus, the synchronising operation only waits for the started task.

AND split followed by an AND join. From a parallel arrangement all tasks are started,
and all tasks are needed to finish for synchronisation.

74 R. Grønmo and M.C. Jaeger

Get Plant Location

Get Nearest Airport

Get Wind

Calculate Gas

Dispersion Plume

Create Background

Map

Create Gas
Dispersion Map

Get Plant Location

Get Nearest Airport

Get Wind

Aggregated Task

Create Gas
Dispersion Map

Aggregated Task

Fig. 6. Example of Collapsing the Graph for Aggregation

AND split followed by a m-out-of-n join. From a parallel arrangement all tasks are
started, but less than all tasks are needed to finish for synchronisation.

OR split followed by OR join. In a parallel arrangement some of the available tasks
are started and all of the started tasks are needed to finish for synchronisation.

OR split followed by a m-out-of-n join. In a parallel arrangement some of the avail-
able tasks are started but only a subset needed to finish for synchronisation.

The composition patterns anticipate that the described flow can be represented using
directed graphs that specify the order in which activities are executed. For this example
this means that the XMI output, representing the UML model, is transformed into an
internal graph representation that consists of the pattern elements. Then for aggregation,
we propose to stepwise collapse the graph into a single node by alternately aggregating
the sub-patterns starting with sub-patterns that do not contain any further sub-patterns.
For the example shown in Figure 6, it means that two aggregation steps are performed:
first the parallel arrangement and then the sequence containing the aggregated result
from the parallel arrangement is aggregated. This results in a single QoS statement for
each of the different QoS characteristics. In summary, this approach enables us to view
the aggregation in a pattern perspective, i.e., not the whole composition is relevant at
once for the aggregation process, but rather only the local composition patterns, which
are accordingly differentiated into sequential and parallel service executions. To cover
the OR splits, an aggregation model must know which paths are taken into account for
this split. To determine the aggregation of the QoS values, all combinations of possible
splits must be taken into account.

Worst case execution time. For the sequential patterns the execution times are added,
in the parallel cases the largest value is relevant for giving an estimation about the
possible worst case.

Price. For the aggregation of the price in parallel arrangements, every started task is
relevant. For parallel split cases, the maximum price possible is relevant.

User rating. The user rating can be aggregated by two approaches. Calculating the
mean of the given values within an element performs the aggregation of the rating.

Encryption. The encryption case is very straightforward and considers that for a com-
position the chosen candidate that is offering the weakest encryption is relevant for
the whole composition.

Model-Driven Methodology for Building QoS-Optimised Web Service Compositions 75

To apply the introduced aggregation rules and the aggregation scheme using the
pattern-perspective approach some assumptions must remain valid, which we will dis-
cuss in section 7. With pattern-wise aggregation a method is available to calculate the
QoS of the whole composition or its parts. Now, this method can be applied in a se-
lection process that needs to evaluate the resulting QoS for different combinations of
assigning candidates to tasks.

Pattern-wise Selection. In the selection process, for each task an available candidate
is assigned. The simplest approach, called local-based, is to select a candidate by com-
paring the QoS among all candidates for a particular task and chose the candidate that
provides the best QoS. This selection algorithm shows a greedy behaviour. However, the
QoS for a composition can be increased if an algorithm would perform the selection by
considering the QoS of candidates for other tasks as well: consider our setup in the gas
dispersion example. In this example, the parallel execution of the two tasks Calculate
Gas Dispersion Plume and Create Background Map is given. Let the optimisa-
tion goal be to find the quickest execution while trying to keep the lowest price. Also,
choosing a quicker service is usually more costly. For the case that even the quickest
candidate for the left task executes longer than any of the candidates for the right task,
the optimal assignment for the right task is the cheapest service, regardless how long its
execution would take. Due to its nature, this kind of optimisation cannot be performed
with a local-based approach.

To address this particular case, our selection algorithm evaluates the candidate ser-
vices by evaluating the possible assignments within each pattern by performing the
following steps:

1. In the graph of composition patterns, the algorithm walks by a recursive approach
into the structure and identifies pattern elements that do not contain any sub-patterns.
In the example this would be the element with the parallel arrangement.

2. For all tasks within this element, all combinations of candidate assignments are
evaluated. For each combination the QoS is aggregated using the pattern-based
aggregation and the combination that delivers the best overall QoS is chosen.

To evaluate the combinations among the elements the algorithm compares the QoS
of either candidates or aggregated patterns by calculating a ratio between two sets of
services. For this the Simple Additive Weighting (SAW) can be applied, which was in-
troduced in the context of Multiple Criteria Decision Making (MCDM) [6]. By this
approach for each QoS value a weight is applied and then a score is calculated for each
candidate. The score is determined by firstly normalising the values among the candi-
dates to compare. Let syx be a single value with x denoting the index of the candidate
Web service and y denoting a particular QoS category, then the normalised value nyx

and the score for each candidate x named cx are:

nyx =

⎧⎨
⎩

maxy(syx)−syx

maxy(syx)−miny(syx) for increasing categories

syx−miny(syx)
maxy(syx)−miny(syx) for decreasing categories

cx =
1
p

p∑
y=1

wynyx

The weight wy is applied to the categories by the user’s preference and the value p
represents the number of used QoS categories. The sum of all weights must be equal

76 R. Grønmo and M.C. Jaeger

to 1. The result of this procedure is a score by which the overall QoS of a candidate can
be compared with the overall QoS of another.

The outcome of this phase is an assignment of exactly one service for each task in
the composition and the resulting aggregated QoS statement that can be applied to the
composition. Technically the result can be presented in one file for the QoS offered of
the aggregation and one file that identifies the WSDL-operations assigned to identifiers
of each task.

5 Step 3: Composition with Selected Services and Offered QoS

The composition model will be updated to show the selected services for each task
including the individual offered QoS values of each service and the aggregated offered
QoS for the composition as a whole. Figure 7 shows such an updated model for the
gas dispersion case with imaginary offered QoS values. The production of this UML
model is preferably supported by automatic reverse engineering in a transformation
tool that takes the produced files from step 2 as input. The list of selected services will
be assigned to its respective tasks and the details identifying the WSDL operation to
execute is provided in the model as UML tagged values. To simplify the figure we have
not shown these WSDL details, only the name of the provider of the service.

The offered QoS values are taken from the QoS offered documents assumed to ac-
company each WSDL operation. In UML we propose to specify the offered QoS values
in a note attached to each task where the corresponding WSDL operation is chosen. The
UML has also an unattached offered QoS note that by our convention indicates that it
applies to the composition as a whole. The way of specifying the offered QoS value
in the note follows the current draft OMG profile for QoS, while attaching them to the
tasks and the activity model as a whole is a new way of applying the OMG profile. The
current version of the OMG profile mentions only QoS offered for software compo-
nents, classes or interfaces. The offered QoS values indicate the promised QoS for the
individual services and the new Web service composition.

Get Plant Location

Get Nearest Airport

Get Wind

Calculate Gas

Dispersion Plume

Create Background

Map

Create Gas
Dispersion Map

<<QoSOffered>>

{context Price: perCall = 12}

{context ExecutionTime:

 worstCase = 16}

{context UserRating: r = 4.7}

{context EncryptionLevel:

 level = 1}

<<QoSOffered>>

{context Price: perCall = 0}

{context ExecutionTime:

 worstCase = 0.2}

{context UserRating: rating = 6}

{context EncryptionLevel:

 level = 2}

<<QoSOffered>>

{context Price: perCall = 1}

{context ExecutionTime:

 worstCase = 1.8}

{context UserRating: rating = 5}

{context EncryptionLevel:

 level = 3}

<<QoSOffered>>

{context Price: perCall = 5}

{context ExecutionTime:

 worstCase = 8}

{context UserRating: rating = 6}

{context EncryptionLevel:

 level = 4}

<<QoSOffered>>

{context Price: perCall = 6}

{context ExecutionTime:

 worstCase = 5}

{context UserRating: rating = 3}

{context EncryptionLevel:

 level = 4}

<<QoSOffered>>

{context Price: perCall = 0}

{context ExecutionTime:

 worstCase = 1}

{context UserRating: rating = 6}

{context EncryptionLevel:

 level = 1}

<<QoSOffered>>

{context Price: perCall = 0}

{context ExecutionTime:

 worstCase = 5}

{context UserRating: rating = 2}

{context EncryptionLevel:

 level = 1}

Fig. 7. Composition Model with Actual QoS Values

Model-Driven Methodology for Building QoS-Optimised Web Service Compositions 77

6 Step 4: Exporting the Model

The final Web service composition model with QoS offered is a basis for code genera-
tion to WSDL [5], execution specification (e.g. BPEL) [3] and a QoS XML document.
Finally the Web service composition is deployed and published as WSDL with accom-
panying offered QoS values for the service composition as a whole. The WSDL of the
gas dispersion case consists of one operation CreateGasDispersionMap() with a refer-
ence to the QoS values. The QoS values in the XML file are equivalent to those in the
model of Figure 7. The offered price per call is 12 Euro, the worst case execution time
is 16 seconds, the user rating is 4.7, and the encryption level is 1.

7 Discussion

The Web service composition methodology is an iterative and continuously evolving
process since the available services and their QoS values may change at any time.
New services will come along, other services will have improved or worsened QoS, yet
other services will no longer be available. In order to guarantee the offered QoS for
the whole composition one needs to negotiate and agree on contracts between the party
offering the composite service and each individual service party. When the composite
service party is notified of a change to one of its sub-contractor’s services, all the steps
in the methodology of this paper should be reapplied as a new iteration.

To ensure that new, possibly QoS improving services are utilised, the methodology
steps should be reapplied at a regular basis. The first step in the methodology is the
only one that requires human intervention. This step can also be fully automated in
the future, but this will require a lot of unsolved infrastructure support with respect
to semantic properties and standardised use of semantic ontologies. Our methodology
assumes that the WSDL operations have references to a document describing the offered
QoS values. It is natural to add a language to capture this information to the family of
Web service specifications such as WSDL, SOAP and BPEL4WS. It is also natural that
this language has an XML notation, as this is true for the existing other Web service
specifications. Although there is a need for a new XML specification for capturing
QoS information, the concepts have already been well investigated in previous research
efforts. The forthcoming OMG profile for QoS will hopefully become a successfully
adopted standard for capturing QoS information in UML.

This work is founded by long-term research and practical experience. We therefore
propose to define a transformation between this specification and an XML language
with the same concepts and terminology, so that mainly the notation is different. Im-
plementation of such a transformation is needed in order to fully automate some of the
steps in our methodology. It is outside the scope of this paper to define the transforma-
tion.

Pattern-wise Selection vs. Local and Global Selection. A simulation tool has been
realised, which benchmarks the pattern selection. Besides a local-greedy and the pattern
selection, a third algorithm has also been implemented, which evaluates all possible
assignments for all tasks within the composition. This selection, which is using a global
perspective, always finds the best assignment considering the whole composition. But

78 R. Grønmo and M.C. Jaeger

it scales exponentially with a growing number of tasks and candidates. The pattern
selection can be seen as a specialisation of the global selection. The benefit is that it
identifies the potential of QoS optimisation as explained in the example scenario. The
algorithm performing a pattern-wise selection scales exponentially only with a growing
number of candidates and tasks within a pattern element. Thus it will execute faster
than a true global-based approach, if a composition consists of more than one pattern
element. The simulation tool has been realised in Java, J2SE 1.4. To ensure the optimal
performance, the tool uses primitive data types and their arrays when performing the
following steps:

1. Generation of the example structure based on the gas dispersion case.
2. Generation of candidates each with random QoS values for each task.
3. Performing each of the three selection methods each on the same composition with

the same set of candidates.

The implementation of the tool, the random generation of the candidates and their QoS
involve a large number of issues, which cannot be discussed in detail in this paper due
to limited space. However, we would like to mention the following two main points:

• The simulation environment generates random QoS values for a given number of
candidate services; however, for each task an optimal QoS is randomly set first and
the values for the referring candidates are within zero and 100 percent worse com-
pared to it. This ensures that generated QoS values remain in the same magnitude.

• For each setup with a particular number of candidates the simulation has been re-
peated for 25 times with different candidates. The results shown are the average
over 25 repetitions for one setup.

Figure 8 shows a comparison of the resulting QoS by using the three different selec-
tion algorithms. The two upper lines show the ratio, how much better the QoS resulting
from a global and pattern selection is compared to a local selection which is set to 1.
The lower line shows how the global approach compares to the pattern approach. Fig-
ure 9 shows the computation times for the given setup. From these two Figures we can
notice that the pattern approach shows that the increase of gained QoS compared to
local selection is almost as large as with using the global selection. The computation
time increases significantly when using pattern and global selection with an increasing

Fig. 8. QoS Ratio for Selection Methods Fig. 9. Duration for Selection Methods

Model-Driven Methodology for Building QoS-Optimised Web Service Compositions 79

number of candidate services. The local selection does not show a noticeable increase
in computation time even with a relatively large number of candidates.

Comparing the absolute results, the global selection takes significantly longer than
the pattern: e.g. looking at results for the setup with 60 candidate services, the pattern
selection computes in about 13 seconds, while the global takes about 35 seconds. Also,
for 90 candidate services the global selection takes about 2.5 times longer.

8 Related Work

The related work of QoS can be sorted in three categories: QoS modelling in UML, QoS
Methodologies and QoS-optimisation approaches. In this section each of these fields is
presented separately.

QoS Modelling in UML. OMG is in the process of finalising a standard UML profile
for modelling QoS [9]. This UML profile defines a way to specify the QoS ontology
with QoS characteristics such as we have used in Figure 4. It also has ways to ex-
press requirements with QoS requirements, which we have followed in Figure 3. The
attachment of these QoS requirements to activities and activity models is an extension
introduced in this report. Furthermore the concept of QoS interests is new in this report.
Salazar-Zárate and Botella [10] have also proposed a way to use UML to capture similar
concepts as OMG. NF-attributes correspond to QoS characteristics, NF-requirements
correspond to QoS requirements, and NF-behaviour corresponds to QoS offered. In ad-
dition to OMG, they propose to use OCL expressions in a new class compartment to ex-
press constraints and inter-dependencies between the QoS model elements. Frølund and
Koistinen defines an extension to UML called QML which is an alternative to OMG’s
forthcoming UML profile. QML also allows for definitions of QoS characteristics, QoS
requirements and QoS offered (although with different terminology). QoS requirements
can be associated with interfaces that are used by a requester, while QoS offered can
be associated with interfaces that are implemented by a provider. OMG’s UML pro-
file uses stereotyped notes, while QML uses dashed rectangular boxes to define the
QoS requirements and QoS offered. Our approach is more fine-grained by allowing
to visually associate QoS requirements and QoS offered with an individual operation
represented by a UML activity, while this is handled by textual scoping information in
OMG’s UML profile and QML. QML does not define a similar construction to our QoS
interest.

QoS Methodologies. We have not addressed the reliability problem that advertised
QoS values may not be accurate or up to date. Other work has addressed this issue
basically in two ways. The first way is explained by Liu et. al [15] who suggest to use
active monitoring and consumers feedback to ensure more correct QoS values of the
provided services. The other way is to make a signed contract between the consumer
and the service provider that ensures a certain QoS level. Contract negotiations and
specifications are covered by Frølund and Koistinen in their QML [4]. Wang et al. [14]
also deal with contract negotiation and argues that a mediating manager is needed to
ensure the promised QoS of many concurrent clients. The execution time of a service
may for instance depend on the number of concurrent clients. A mediating manager

80 R. Grønmo and M.C. Jaeger

could handle admission control and resource management in order to ensure that the
contracted clients get their entitled QoS, while others are blocked.

QoS-Optimisation Approaches. In our approach we have presented first the aggrega-
tion of QoS values and then the selection mechanism for choosing candidate services.
This procedure is also found when looking at the evolution of related research. The
foundation for the QoS aggregation in compositions can be seen by the work of Car-
doso about calculating the QoS for workflows [2]. In his work he has identified different
QoS characteristics and defined calculation rules. Because our composition patterns are
based on the workflow patterns, we can also support structures like the two OR-split
patterns along with the m-out-of-n-join constructs. As a consequence the composition
patterns can be easier applied to applications, which are derived from the workflow
patterns by van der Aalst et al. [12]. Different authors have also discussed in various
articles ([8], [1] or [16]), which QoS characteristics might be considered in composi-
tions of Web services. Their contributions has been considered when determining the
relevant QoS criteria for our methodology. If needed, the chosen QoS criteria can be
easily extended with additional QoS criteria without affecting our methodology itself.
For the selection of candidates, Zeng et al. have already identified a local and a global
selection [16]. To address the problem that a global selection has unfeasible effort, they
have introduced an Integer Programming (IP) solution to compute the optimal assign-
ment of services, which reduces significantly the computation time according to their
tests. We plan to test the IP-approach with our simulation tool to deliver a statement on
how well it compares to pattern selection.

9 Conclusions and Future Work

We have introduced a UML model-driven methodology for designing and deploying
Web service compositions, which uses a QoS-aware selection process for assigning
Web service candidates to the tasks of a composition. OMG’s forthcoming UML profile
for modelling QoS can be used to capture most of the relevant QoS aspects in the
different steps of our methodology, although we have proposed to extend it with the
ability to specify QoS optimisation interests. Most of the steps in the methodology can
be automated by existing or to-be-defined transformations.

We have also discussed different approaches for service selection and compared
their characteristics. From our results we can see that different approaches for service
selections would fit into different usage scenarios. The global approach optimises by
taking all the different execution paths into consideration. It always performs the best
QoS-optimised values but takes the longest time to compute. Thus it is not the best
choice for run-time selection of services in time-critical applications or with complex
compositions involving many tasks and candidate services. The local approach opti-
mises each single task only, without considering the composition structure. It will al-
ways have the shortest computation time and has showed the lowest QoS-optimised
values. The pattern approach optimises by taking the control flow patterns into con-
sideration and results in almost the same QoS like the global selection while taking a
shorter computation time. The summary is that all of the three approaches may be the
best choice for a given usage scenario. With more simulation and testing it is possible

Model-Driven Methodology for Building QoS-Optimised Web Service Compositions 81

to establish a run-time choice framework assuming all the three algorithms are avail-
able. It is important to consider if the selection process is carried out in run-time or
design-time, and especially the users execution time requirement.

In summary we think that a model-driven methodology is the foundation for a tool-
supported composition environment and thus along with the support for QoS the neces-
sary contribution for designing compositions in industry applications. For future work
we will adapt additional modelling methods besides the UML activity models for de-
signing compositions. A planned enhancement for the selection of Web services is to
add the support for semantic description of services as a selection criterion. This pro-
vides the opportunity for automated discovery of candidate services as well as creation
of the semantic descriptions for the new composition. Another future extension of our
approach is to investigate how we can deal with QoS offerings of services that are dy-
namic with respect to the the number simultaneous clients and dynamic with respect to
the input parameter contents.

Acknowledgments

The work of Roy Grønmo is partially funded by the European IST-FP6-004559 project
SODIUM (Service Oriented Development In a Unified framework). We would also like
to thank Gero Muehl, Gerhard Koehler and Jan Øyvind Aagedal for their valuable input.

References

1. Benatallaah, Dumas, Fauvet, Rahbi, and Sheng. Towards Patterns of Web Services Compo-
sition. In Patterns and Skeletons for Parallel and Distributed Computing. Springer Verlag,
2002.

2. J. Cardoso. Quality of Service and Semantic Composition of Workflows. PhD thesis, Depart-
ment of Computer Science, University of Georgia, Athens, GA (USA), 2002.

3. Satish Tatte (Editor). Business Process Execution Language for Web Services Ver-
sion 1.1. Technical report, BEA Systems, IBM Corp., Microsoft Corp., http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/, February 2005.

4. Svend Frølund and Jari Koistinen. Quality of Service Specification in Distributed Object
Systems Design. In Distributed Systems Engineering Journal, 1998.

5. R. Grønmo, D. Skogan, I. Solheim, and J. Oldevik. Model-Driven Web Service Devel-
opment. In International Journal of Web Services Research (JWSR), vol. 1(4), October-
December 2004.

6. Ching-Lai Hwang and K. Paul Yoon. Multiple Attribute Decision Making: Methods and
Applications. In Lecture Notes in Economics and Mathematical Systems, Vol. 186. Springer
Berlin, 1981.

7. M. C. Jaeger, G. Rojec-Goldman, and G. Muehl. QoS Aggregation for Web Service Com-
position using Workflow Patterns. In Proceedings of the 8th International IEEE Enterprise
Distributed Object Computing Conference (EDOC), Monterey, California, September 2004.

8. D. A. Menasce. Qos issues in web services. In IEEE Internet Computing, vol. 6(6), pages
72–75, November-December 2002.

9. OMG. UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms, August 2003.

82 R. Grønmo and M.C. Jaeger

10. G. Salazar-Zrate and P. Botella. Use of UML for modeling non-functional aspects. In Pro-
ceedings of the 13th International Conference Software and Systems Engineering and their
Applications, Paris, France, December 2000.

11. W. M. P. v. d. Aalst. Don’t go with the flow: Web Services composition standards exposed.
In IEEE Intelligent Systems, vol. 18(1), pages 72–76, 2003.

12. W. M. P. v. d. Aalst, A. H. M. t. Hofstede, B. Kiepuszewski, and A. Barros. Workflow
Patterns. In BETA Working Paper Series, WP 47 2000.

13. I. Walsh, P. McCarthy, and J. Shields. e-Emergency Pilot Demonstrator, e-blana, Deliverable
IST-2001-37724 ACE-GIS D1.2b, November 2003.

14. G. Wang, A. Chen, C. Wang, C. Fung, and S. Uczekaj. Integrated Quality of Service (QoS)
Management in Service-Oriented Enterprise Architectures. In Proceedings of the 8th In-
ternational IEEE Enterprise Distributed Object Computing Conference (EDOC), Monterey,
California, September 2004.

15. A. H. H. Ngu Y. Liu and L. Zeng. QoS Computation and Policing in Dynamic Web Service
Selection. In Proceedings of the Thirteenth International World Wide Web Conference, New
York, USA, May 2004.

16. L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalgnanam, and H. Chang. QoS-Aware
Middleware for Web Services Composition. In IEEE Transactions on Software Engineering,
vol. 30(5), pages 311–327, May 2004.

How to Implement Software Connectors?
A Reusable, Abstract and Adaptable Connector

Selma Matougui and Antoine Beugnard

ENST-Bretagne, Technopôle Brest-Iroise,
CS 83 818, 29 238 Brest, France

{selma.matougui, antoine.beugnard}@enst-bretagne.fr

Abstract. In recent software developments, applications are made up of
a collection of reusable software entities (components) and mechanisms
that permit their interaction (connectors). These latter mechanisms have
many forms. On the one hand, industrial approaches use simple connec-
tors that are mainly point-to-point connections. On the other hand, aca-
demic approaches, like Architecture Description Languages (ADL), rec-
ognize complex connectors as first class design entities. However, these
concepts are restricted to the architectural level since they have almost
no implementation. The current application developments use simple
connectors, and high level specifications are under exploited.

In this article, we propose a means to fill the gap between connec-
tor specification and implementation. For a better reuse of design effort,
and to avoid using only simple connectors when realizing applications,
we propose to define connectors as complex communication and coordi-
nation abstractions and to implement them as a family of generators.
We illustrate the development and use of such generators through a full
example.

1 Introduction

As software systems become more complex, applications are being constructed
from reusable, interconnected software components and connectors. For a long
time, components have been considered as the fundamental building blocks of
software systems. Although there is still no universal definition of components,
there is a kind of consensus about what a component is: it offers and requires
services, and performs some computation. The interconnection mechanisms, or
connectors, play a deterministic role in establishing the global system properties
but their level of understandability is still far from the level reached by com-
ponents, as argued in [1]. The goal of this paper is to propose a better way to
implement abstract connectors.

In the remainder of this article, section 2 analyses the problem and depicts
what is wrong with current understanding of interconnection mechanisms. Next,
section 3 details our proposal where we define what a connector is and explain
its life cycle. Then, section 4 illustrates the way to implement and use such
connectors with a load balancing connector. After that, we make relationships
with other work in section 5, and finally we conclude in section 6.

L. Kutvonen and N. Alon stioti (Eds.): DAIS 2005, LNCS 3543, pp. 83–94, 2005.
c© IFIP International Federation for Information Processing 2005

i

84 S. Matougui and A. Beugnard

2 Motivation

Industrial component approaches like CCM [2] and EJB [3], do not refer the no-
tion of connector. Interaction mechanisms are low level. They refer to a limited
set of simple communication abstractions among which we can cite the syn-
chronous communication embodied as Remote Procedure Calls (RPC). These
interaction mechanisms are the most used in current application developments
and several implementations exist like CORBA, RMI, and SOAP. Their main
functionality is to transport data and synchronize the interacting components.
They are not able to make any decisions for coordinating components. The lack
of abstraction implies realizing a complex communication with a sophisticated
combination of simple interactions included in the functional components. De-
velopers are constrained to construct and construct again the complex commu-
nications over these platforms and applications, anytime they need to use them,
in spite of the fact they reuse them. The effort of realizing a complex commu-
nication is not well exploited. For a better quality of software and separation of
responsibilities, however, we would like to be able to include in connectors more
communication and coordination functionalities than only those of transporting
data [4, 5].

In academic approaches like Architecture Description Languages (ADL [6]),
the interaction mechanisms have been recognized as first-class design entities in
software architectures and are defined as connectors [7]. We identify 3 kinds of
ADL that express connectors differently. The first type defines a set of connectors
implemented as simple ones, like Unicon [8]. They almost meet the interaction
mechanisms of industrial approaches. The second type defines connectors that
model complex interactions between components like Wright [9]. Unfortunately,
these connectors are reduced to specification descriptions and have no imple-
mentation. These specifications are under-utilized and current developments al-
ways refer to simple connectors. The third type defines complex connectors, like
Rapide [10], but provide a fixed set of connectors types designed as components
that have explicit interfaces. Hence, to interact with these connectors, the func-
tional components explicitly call the services offered by the connector. If the
connector were changed for one reason or another, the component would use the
new interfaces of the new connector. Thus, we often need to use adaptors be-
tween the components and the connectors if their interfaces do not meet. These
various definitions of connectors indicate how poorly they are understood. We
are far from a consensus about what a connector is.

Hence, there is not a standard way to represent connectors. When comparing
industrial and academic approaches we notice that industry uses simple con-
nectors because they are implemented and available. Unfortunately, complex
communications are always constructed (and constructed again) over existing
platforms and are mixed with components. This makes applications hard to
maintain and limits component and connector reuse and evolution. In academic
approaches, some ADL define complex communication abstractions, but they
do not offer a standard way to design and implement connectors. They either
specify complex connectors without offering means to implement them, specify

How to Implement Software Connectors? 85

and implement simple ones [6], or implement them as components, but this last
solution lacks adaptability. Almost all languages claim to make interactions as
connectors but without meaning the same thing all the time.

Regarding this discussion, we support the need to model and specify complex
interactions as autonomous entities in software architecture just as many other
works have done. Nevertheless, the question to ask is how to implement these
connectors in order to offer and preserve the abstraction and to ensure an au-
tomated adaptation. Existing approaches offer ad hoc and predefined answers.
In this article, we propose a global vision of what is a connector and propose to
implement it as a family of generators in order to ensure both abstraction (of
connectors) and adaptation (to components). In this way, we offer a better and
easy configuration or reconfiguration of applications, component and connector
reuse, and a better exploitation of design effort.

3 Connectors: Definition and Life Cycle

A connector is a reification of an interaction, a communication or a coordi-
nation system. At an abstract level, it exists to serve the communication and
coordination needs of unspecified interacting components. Later in the life cy-
cle, it describes all the interactions between special components by relying on
the own interface specifications of these components. It also offers application-
independent interaction mechanisms like security and reliability, for instance.
Three points distinguish a connector from a component:

– It is an autonomous entity at design level but neither deployable nor compil-
able (it does not exist in conventional programming languages). The connec-
tor is an architectural entity. It must be connected in order to be deployed.

– It does not specify offered or required services but patterns of services. Hence,
the interfaces are abstract and generic. They become more concrete later in
the life cycle, on assembly with the components. This is done by adopting
the interfaces type of the interacting components.

– In order to distinguish services grouped in interfaces of component ports,
the word plug is introduced to name the description of connector ends. A
plug is typed with a name and can have a multiplicity.

We distinguish four stages in the life cycle of a complex connector, summa-
rized in table 1 and illustrated in figures 1 and 2. The connector evolves in time
and, for each stage, we give it a different name and a particular graphical rep-
resentation with abstract parts (dotted lines) and concrete parts (solid lines).
Connectors are represented by an ellipse, in order to differentiate them from
components, and plugs are represented by circles1 around the ellipse.

1 In opposition with components representation as boxes-and-lines [11], where compo-
nents are boxes and their defined interfaces are squares. We illustrate our complex
connectors by an ellipse in order to differentiate them from the simple ones that are
represented by lines.

86 S. Matougui and A. Beugnard

Table 1. Vocabulary by level of abstraction and refinement

Level Architecture Implementation
(abstract) (concrete)

Off-the-shelf Connector Generators

Assembled Connection Binding components

In its most abstract state, figure 1 (a), this entity is called a connector.
The sole concrete parts that are defined are the properties that have to be
ensured and the number of interacting components able to be connected (number
of different plugs). They are in fact the sole invariants that exist during the
whole life cycle. The abstract parts to be specified later are the protocols of
the underlying platforms on which the connector will be implemented, and the
interfaces of the interacting components (both in gray in figure 1 (a)).

a) Connector b) Generator

Fig. 1. The connector alone : (a) abstract, (b) implemented

An isolated connector is concretized as a family of off-the-shelf generators.
These generators are in charge of the implementation of the connector abstrac-
tion over different communication protocols or platforms. The plugs are still
abstract, the interacting components are not specified yet. When activating the
generators, the plugs are destined to be transformed into proxies towards which
the effective communication will take place. Figure 1 (b) shows the transforma-
tion of the internal part of the connector into a concrete entity.

At an abstract level, it is possible to use the connector in a software archi-
tecture. The connector is linked to other components, and form the connection.
At this stage, the generic interfaces of the connector (plugs) become concrete
and adopt the applicative interfaces (APIs) of the interacting components. In
figure 2 (a), the plugs (circles) are concrete because their type is specified, they
form the connection interfaces. Hence, we connect the components without wor-
rying about the underlying platform.

The most concrete form of the connector is represented in figure 2 (b). Both
the protocol and the actual interfaces are known. The generator, that was de-

a) Connection b) Binding component

Fig. 2. The connector assembled : (a) abstract, (b) implemented

How to Implement Software Connectors? 87

veloped for the chosen protocol, can use these actual connection interfaces. It
generates the proxies that represent the realization of a communication or coor-
dination property for the connected components’ requirements (APIs) over the
underlying system. We refer to this entity as the binding component2.

From an application developer’s point of view, the software architecture def-
inition involves selecting components and connectors off-the-shelf, assembling
(i.e. establishing connections), and generating the application onto the target
system with the appropriate generators.

From a connector developer’s point of view, defining a connector involves
the specification of the abstract communication properties (load-balancing, for
instance), and the development of the generators that use the interface defini-
tion of connected entities (IDL, for instance) over a target system (TCP/IP, for
instance). As we can see, a family of generators could be developed for a single
abstract connector.

An example of an existing generator, as defined in this section, is the CORBA
generator as an instance of the RPC connector. The properties it ensures are
distribution, language interoperability, and a RPC semantics. It can rely on
several communication protocols like TCP/IP or other low level protocols. The
proxies it generates are the stub and the skeleton.

Hence, we use this definition and life cycle of what a connector is to implement
or realize complex communication abstractions. Indeed, to ensure properties like
authentification, data compression, consensus, cryptography, or load balancing,
current developments mix them with the application code. By dedicating one
connector to realizing such non functional properties thanks to the generation
process, we offer the possibility to provide separation of concerns transparently
to the application and independently of the platforms.

In the following we will demonstrate the whole process of a connector speci-
fication, implementation and use through a load-balancing connector.

4 Load Balancing Connector

In this section we illustrate, throughout an example, the whole connector life
cycle and the benefits of using our approach. We begin by presenting briefly
the main features of the chosen complex interaction property that the connector
holds: load balancing. Then, we detail the description of the connector and the
different steps it goes through. Finally, we show an implementation of the load
balancing connector. Actually, the aim of this section is to show the feasibility
of our proposal and the advantages of such a software engineering approach.

4.1 Load Balancing Connector Features

Some applications, like e-commerce systems and online stock trading systems,
concurrently service many clients transmitting a large, often bursty, number of

2 It is a refinement of the binding object defined in Open Distributed Processing
(ODP) [12].

88 S. Matougui and A. Beugnard

requests. In order to improve the overall system responsiveness, an effective way
to deal with this great demand is to increase the number of servers — replicas
offering the same service — and to apply a load balancing technique. Load bal-
ancing mechanisms distribute client workload equitably among back-end servers
by indicating which server will execute each client’s request. These mechanisms
may follow either a non-adaptive or an adaptive policy. Non-adaptive policies do
not take the servers’ workload into account. The round robin is such a policy.
Adaptive policies, however, take the servers’ workload into consideration. The
policy of the least loaded server is an example. Many load metrics can be used;
the CPU’s idle cycles or the number of requests, for instance. In the following
example, we assume a distributed application where a client needs a defined
service offered by a server. As a client needs to send a huge number of requests,
these requests would be balanced among n replicas of servers following a special
load balancing policy.

Performing load balancing at an OS [13] or a network [14] level does not allow
to use application metrics or control the load balancing policy without modifying
the application itself. Hence, we propose to achieve load balancing mechanisms
at a high level (eg. application level) but transparently to the clients’ and the
servers’ codes. We reify connection abstractions as an independent entity. For
instance, we consider load balancing as a complex interaction that involves many
participants and is achieved with different protocols and policies. This abstrac-
tion is the connector. The property it ensures is load balancing and its number
of plugs is two. Indeed, the connector distributes incoming requests of one kind
of component (clients) to one kind of another component (servers). These plugs
are of multiplicity n because the connector is able to make interacting several
(same) clients with several (same) servers. The service offered and required is
the same both side, but is unknown a priori. This service is not known when the
load balancing connector is developed.

4.2 Load Balancing Connector Life Cycle Description

The load balancing connector is designed and implemented as set of code genera-
tors. A generator is in charge of producing the code that allows to ensure the load
balancing mechanisms on a target platform or system. The different generators
differ according to different criteria. They can differ in relation to target plat-
form or policy differences. For example, if we are in a distributed environment,
the generators could be built over different available platforms that allow remote
communications like CORBA or RMI. Differentiating the generators from a pol-
icy point of view gives birth to as many generator implementations as existing
policies. By combining these criteria, we obtain several generator variants for
one connector. Hence, we can have a load balancing generator with the round
robin policy on the CORBA platform or on the RMI platform. These off-the-
shelf generators are intended for ensuring load balancing mechanisms on different
platforms for initially unspecified components. So, at this stage, the plugs are
still generic, they wait to be associated with components’ interface descriptions
that are used by generators for the effective code generation.

How to Implement Software Connectors? 89

Client

Server 1

Server 2

Server N

(b)

..
.

PxC

PxS
1

PxS2

PxS
N

Client

Server 1

Server 2

Server N

(a)

..
.

Load
Balancing

+ RMI

glue

Fig. 3. Complex communication with load balancing connector. (a) connection, (b)
binding component

The load balancing connector is assembled with the components of the ap-
plication: the client and the servers. Figure 3 (a) represents the result of this
assembly: the connection. Henceforth, connector plugs know who is interacting,
so they take form and adopt the interacting components interfaces. The plug
at client’s side will embody the services offered by the servers. The client deals
with the plug as if there was only one server (as a shared proxy). The plug at
the server’s side will embody the services needed from one client. The server is
not concerned by managing the different clients that require the service. This
process of transforming plugs into complementary interfaces of the interacting
components maintains the original functionality of the application; that is the
client needs a service from the server. Therefore, the load balancing abstraction
is ensured without taking into consideration what is offered or not by a target
platform. At this stage, the connection interfaces are specified. They can be pro-
vided for one or several generators that are responsible for resolving platform
details. These connection interfaces differ from one application to another, as
the component services they have adopted differ.

Once the connection established, the resulting connection interfaces are given
as parameters to a chosen off-the-shelf generator3 that activates the generation
process of the binding component. Both the plugs and the underlying platform
are now well known. The generation process can transform the connection in-
terfaces, mapped on the generator plugs, into dedicated proxies. Figure 3 (b)
highlights these generated proxies that represent the realization of the load bal-
ancing property for the client and the server interfaces over the chosen under-
lying platform, for example RMI. If the selected generator is built over RMI,
the generated proxies include both load balancing and distribution mechanisms.
Therefore, the proxy (PxC), at client side, is in charge of converting data and
deciding which server will serve the client’s requests according to the policy. The
proxies (PxSi), at server side, are in charge of converting data, managing client
requests, and reporting server workload in the case of an adaptive policy. For
one connection we obtain different binding components by applying different
generators.

The load balancing connector represents a new communication abstraction. It
is realized as a family of generators. Each generator is designed and implemented,

3 The generator choice can be done to meet the components’ platform for example.

90 S. Matougui and A. Beugnard

once for all, for generating complex and repetitive details over a platform. The
load balancing connector is assembled each time with components that need to
balance load. These components may use different services. As connector’s plugs
are generic, they fit to any interacting component interfaces. Once the gener-
ators selected and the plugs associated with its missing interfaces, the binding
component can be generated.

This approach ensures both the separation of concerns and the separation of
the abstraction and the implementation. The communication and coordination
concerns are separated from the functional concerns of the applications. The
client and the servers have no extra code; they are entirely dedicated to their
functional properties. Hence, this approach offers the means to discharge the
application from cumbersome code. Applications become more understandable,
easier to maintain and to make evolve. The ”know-how” of the abstraction imple-
mentation is built up into generators that can be reused any time a new connec-
tion takes place. So, it is clearer to application developers. They no longer need
to worry about the implementation of connectors. This allows them to change or
add a policy without affecting the application, and even use the client without
any load balancing connector. They are not concerned with planning the use of
load balancing when designing components.

This plug/connector approach is different from the classical role/connector
approach. In the latter, the client has to play the role defined by the connector.
This implies, most of the time, that the client is adapted to the interfaces of the
connection. However, in the plug/connector approach, the client does not need
to add extra code to be adapted to the needs of the interaction, it is the plug
that adopts the clients needs. The client required service is provided to the client
improved by the load balancing and distribution details, that are superfluous for
the application.

4.3 Load Balancing Connector Implementation

We have specified the load balancing connector and realized the associated gener-
ators. In order to evaluate the whole connector life cycle, we have implemented
the load balancing connector in the open source project Jonathan [15]. This
framework basically offers a CORBA and RMI-like generators for the RPC con-
nector. We have developed generators to realize the load balancing connector
with 2 variant strategies: round-robin and least loaded sever over Jeremie, the
RMI personality of Jonathan. In the following, we briefly explain the implemen-
tations of the load balancing generators and their use. All the details can be
found in[16].

The first implementation is for the round robin policy. For this non-adaptive
strategy, monitoring the servers’ workload is not necessary. We have realized the
generator as an extension of the JRMICompiler, the standard RMI generator of
Jeremie. This new generator, called JRMICompilerLB, has been implemented to
ensure both load balancing and distributed properties. It generates the classical
proxies that hold the code for converting data to be sent through the network. In
addition, JRMICompilerLB augments these proxies with the code of the round

How to Implement Software Connectors? 91

robin policy. The standard JRMIRegistry of Jeremie, that holds the different
remote server references, has also been modified to JRMIRegistryLB.

In our client/server application, the client uses the following interface which
is implemented by the N servers put at the client’s disposal to balance load.
public interface ApplicationInterface{

public int operation(); // the server’s service

}

At assembly time, when an architect assembles the off-the-shelf components
and the load balancing connector, the abstract plugs of the load balancing con-
nector adopt this ApplicationInterface in order to apply the semantics of the
communication to it. Hence the connection interfaces become concrete. Since
these connection interfaces are known, they are provided as parameters to the
generator in order to generate the appropriate proxies. The following command
line is used:

> JRMICompilerLB ApplicationInterface

Once the proxies generated, they are deployed with their attached compo-
nents. So when the client calls the server’s operations, the proxy intercepts them
locally. The proxy always performs its initial functionality of converting data,
but in addition, has the responsibility for coordinating the back-end servers by
applying the round robin policy. It forwards every request to the next replica
in the group of servers registered in the JRMIRegistryLB. This is done by re-
placing the current remote reference of the (PxC) proxy (see figure 3) at each
request by the delivered reference from the JRMIRegistry. Hence, at run time,
the client sends a request locally to the sole proxy in its possession; the proxy
embodies the server’s service but does not perform it; it forwards the request to
the selected server according to the appropriate policy.

In the second implemented load balancing connector, the generator generates
code to ensure the the least loaded server policy. In this adaptive policy, clients’
requests are sent to the servers according to their load. The policy has been imple-
mented in a specific publish/subscribe component. The generated proxies (PxSi),
at the server side, publish the load they are in charge of monitoring. The servers
are not aware of this load monitoring. The publish/subscribe component chooses
the least loaded server that will serve the request. All subscribing clients’ proxies
are informed with this new reference and use it when a service request is made.
We choose to implement this generator as an extension of JRMICompilerLB gene-
trator with the option -lbAdaptive. The publish/subscribe component, the proxies
and the JRMIRegistryLB, therefore, make up the binding component.

We have evaluated performances of the new generator with the round robin
policy over a network of 32 machines with 1 to 8 servers and 1 to 22 clients4.

4 One machine was reserved for a registry and another one for controlling the bench-
mark.

92 S. Matougui and A. Beugnard

The results obtained from a latency test showed no overhead due to reference
switchings and demonstrated a good scalability. For example, the time needed
to serve the 22 clients with one server using the load balancing connector was
1.85 ms, and the time needed to serve the same 22 clients with 8 servers was
0.75 ms. All the results can be consulted in [16].

It is worth noticing that Jonathan’s previous generator can still be used
to implement point-to-point RMI connections. So, introducing load balancing,
or changing the load balancing strategy, requires a simple proxy regeneration
from the same interface description. This approach helps to easily reconfigure
the application and change the policies only by changing the connector and
regenerating the proxies.

5 Related Work

There are very few works related to the generation of connector implementation.
In [17], Garlan and Spitznagel define operators to create new complex connec-

tors by composing simple ones. As we have seen in section 4.3, in our approach we
can build complex connectors from simple ones (extension of RMI). We can also
build them from a combination of a component with a generator (using a publish
subscribe component [16]). Their approach is simple to implement, because they
reuse existing connectors without any modification. However, this involves sev-
eral intermediate steps because of the combination of several connectors. Thanks
to the generation process, our approach enables us to change some interaction
mechanisms that are not appropriate to the interaction requirement. Moreover,
Garlan and Spitznagel’s implementation passes directly from the specification to
the binding component step through the connection—according to our life cycle.
Their approach does not have off-the-shelf generators for different technologies,
so they have to make the same transformations whenever a composition has to
be created over a different platform. We argue that the two approaches are com-
plementary. Owing to the fact that our approach is more complex to realize, we
believe it to be more efficient, since the transformations they propose could be
automated with the development of generators.

The work on ArchJava [18] also uses a kind of generator for connectors. It is
more focussed on implementing a connector on a Java/ArchJava platform and
uses dedicated classes to implement the connectors. These specific classes could
be seen as our generators. Our work is an attempt to offer a better conceptual-
ization frame in order to generalize the use and implementation of connectors.

6 Conclusion

Software architecture is playing a more and more important role in software
engineering. It is well recognized that architecture is of crucial importance in all
nonfunctional properties of software applications. We have shown in this paper
that, despite their importance, some key concepts such as connectors are still ill-

How to Implement Software Connectors? 93

defined. We have proposed a new vocabulary in order to help software architects
and designers to better conceptualize architectures.

Connectors have adaptable implicit interfaces that provide communication
properties transparently to the application. For instance, changing a consensus
connector for a load-balancing one requires a new proxy generation that does
not require any modification at the application level but does have a strong
impact on the nonfunctional properties of the whole system. From a software
development life cycle, we have introduced a clear vocabulary in order to distin-
guish all the connector stages. A connector is an abstract software object whose
intention is to implement a communication property. This abstraction may have
several implementations, called generators, depending on design choices and on
the target platform. When abstractly used in an architecture in order to link
components, we call it a connection. Finally, the deployed and executable stage
is called a binding component.

We believe that this conceptualization suggests to developers to design new
kinds of generators, as we have illustrated with a load balancing connector,
instead of always reusing the same ”old-good-one”. We believe that accumulating
connector development experience through developing generators is the right
way to use and reuse connectors. It ensures abstraction through the generation
process, and adaptability thanks to plugs.

Finally, we believe there are two ways of producing reusable software parts:
usual off-the-shelf components, that can be directly integrated in a software
architecture, and off-the-shelf generators, that are used indirectly to generate
the adaptable binding components that link application components together.

References

1. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software connec-
tors. In: the 22nd International Conference on Software Engineering (ICSE 2000).
(2000) 178–187

2. OMG: CORBA Component Model RFP (1997) http://www.omg.org/docs/

orbos/ 97-05-22.pdf.

3. Inc, S.M.: (Enterprise java beans technology) http://java.sun.com/products/

ejb/.

4. Shaw, M.: Procedure calls are the assembly language of software interconnection:
Connectors deserve first-class status. Technical Report CS-94-107, Carnegie Mellon
University, School of Computer Science (1994)

5. Ducasse, S., Richner, T.: Executable connectors: Towards reusable design elements.
In Verlag, S., ed.: ESEC/FSE’97 (European Software Engineering Conference).
Volume 1301 of LNCS (Lectures Notes in Computer Science). (1997) 483 – 500

6. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languges. In: IEEE Transaction on Software Engi-
neering. (2000) 70–93

7. Show, M.: Procedure calls are the assembly language of system interconnection:
Connectors deserve first-class status. In: Workshop on Studies of Software Design.
(1993)

94 S. Matougui and A. Beugnard

8. Shaw, M., DeLine, R., Zelesnik, G.: Abstractions and implementations for ar-
chitectural connections. In: Third Int’l Conf. Configurable Distributed Systems.
(1996)

9. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.
Software Eng. and Methodology 6 (1997) 213–249

10. Luckham, D., Kenney, J., Augustin, L., Vera, J., Bryan, D., Mann, W.: Specifica-
tion and analysis of system architecture using rapide. IEEE Trans. Software Eng.
21 (1995) 336–355

11. Abowd, G.D., Allen, R., Garlan, D.: Using style to understand descriptions of
software architectures. ACM Software Engineering Notes 18 (1993) 9–20

12. Putman, J.: Architecting with RM-ODP. Prentice Hall (2001)
13. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed systems: Concepts and

design (2001)
14. Inc., C.S.: High availability web services (2000) http://www.cisco.com/warp/

public/cc/so/neso/ibso/ibm/s390/mnibm wp.htm.
15. Middleware, O.O.S.: (Jonathan: an Open Distributed Objects Platform) http://

jonathan.objectweb.org/.
16. Sanchez, F.J.I., Matougui, S., Beugnard, A.: Conception et implémentation de

connecteurs logiciels : Une expérimentation pour le calcul de performance sur une
application de répartition de charge. Technical report, ENST-Bretagne, Brest,
France (2004)

17. Spitznagel, B., Garlan, D.: A compositional approach for constructing connectors.
In: The Working IEEE/IFIP Conference on Software Architecture (WICSA’01).
(2001) 148–157

18. Aldrich, J., Sazawal, V., Chambers, C., Notkin, D.: Language support for connector
abstractions. In: European Conference on Object-Oriented Programming (ECOOP
’03), Darmstadt, Germany (2003)

L. Kutvonen and N. Alonistioti (Eds.): DAIS 2005, LNCS 3543, pp. 95 – 107, 2005.
© IFIP International Federation for Information Processing 2005

Designing Self-adaptive Multimedia Applications
Through Hierarchical Reconfiguration

Oussama Layaida and Daniel Hagimont

SARDES Project, INRIA Rhône-Alpes
First.last@inria.fr

Abstract. Distributed multimedia applications are very sensitive to resource
variations. An attractive way for dealing with dynamic resource variations
consists in making applications adaptive, and even self-adaptive. The objective
is to grant applications the ability to observe themselves and their environment,
to detect significant changes and to adjust their behavior accordingly. This issue
has been the subject of several works; however the proposed solutions lack
flexibility and a high-level support that eases the development of adaptive
applications. This paper presents PLASMA, a component-based framework for
building multimedia applications. PLASMA relies on a hierarchical
composition and reconfiguration model which provides the expected support.
The experimental evaluation shows that adaptation can be achieved with a very
low overhead, while significantly improving QoS of multimedia applications as
well as resource usage on mobile equipments.

1 Introduction

Recent advances in mobile equipments and wireless networking have led to the
emergence of a wide range of peripherals such as, Personal Digital Assistant (PDA),
hand-held computers, Smart Phones, eBooks, etc. The Internet infrastructure became,
like never before, heterogeneous and dynamic. System and network resources such as
network bandwidth, CPU load or battery life time are characterized by unpredictable
variations making difficult to guarantee the correct execution of multimedia
applications.

The most attractive approach to deal with this issue consists in making these
applications self-adaptive, that is, grant them the ability to observe themselves and
their environment, to detect significant changes and adapt their own behavior in QoS-
specific ways. A well recognized approach to achieve it is the use of component-
based technologies [1]. The common idea consists in implementing multimedia-
related functions in separate components. Various multimedia services can then be
built by selecting and assembling the appropriate ones within the same application.
Likewise, adaptation is achieved by means of high-level component reconfigurations
such as: adjusting component properties, stopping/starting a subset of components,
removing/inserting components or modifying their assembly. Complex operations can
be made-up of combination of those basic operations, performed in an appropriate
order.

96 O. Layaida and D. Hagimont

This article describes PLASMA, a component-based framework for the
development of self-adaptive multimedia applications. PLASMA relies on an
advanced component model [2], whose main features are: recursive composition and
hierarchical reconfiguration management. This allows to model reconfiguration in a
generic way thus addressing arbitrary applications and adaptation policies. The
remainder of the article is organized as follows: Next section presents a classification
of related works. Section 3 introduces our design choices and the PLASMA
architecture. Section 4 presents an application use case and a performance evaluation
of PLASMA. Finally, section 5 concludes this paper and presents perspectives.

2 Related Work

As previously mentioned, adaptivity is tightly linked with component-based
technologies. Work around multimedia applications has led to several component-
based frameworks such as DirectShow (Microsoft) [6] JMF (Sun) [13] and PREMO
(ISO) [7], easing the development of multimedia applications. Following this vein,
the advantages of component-based technologies have motivated several research
works in order to bring adaptivity to multimedia applications [3, 15, 14] but very few
of them considering run-time reconfiguration. This feature has been addressed with
different approaches:

• Static Reconfiguration Policies: A first approach to reconfiguration uses static
reconfiguration policies to deal with specific resource variations. VIC [17] is a
well-known example of such applications. Although it is not component-based, it
uses the RTCP [10] feedback mechanism and a loss-based congestion control
algorithm [11] that adapts media streams to the available bandwidth.
Reconfiguration operations consist in tuning key encoding properties (quality
factor, frame rate, etc.) in order to adjust the transmission rate appropriately.
Nevertheless, the use of static reconfigurations is too restrictive as they have to be
anticipated at development-time.

• Component-Based Frameworks with Reconfiguration Capabilities: Some
component-based frameworks grant application developers with enhanced
reconfiguration capabilities. The Toolkit for Open Adaptive Streaming Technology
(TOAST) [8] investigates the use of open implementation and reflection to ease the
development of adaptation strategies. However, it remains to the responsibility of
the application developer to deal with resource and application monitoring,
reconfiguration decisions and their implementation, which is a pretty heavy task.

• Component-Embedded Reconfiguration Policies: To fill this gap, some works
propose to integrate reconfiguration features in the functional components
themselves. In Microsoft DirectShow [6] for example, processing components
(called filters) exchange in-stream QoS messages traveling in the opposite
direction of the data flow. Using this mechanism a component may indicate to its
predecessors that data is being produced too rapidly (a flood) or too slowly (a
famine), which decrease (or increase) their data processing rate in response. Such
mechanism can be easily extended to support a larger scope of QoS control, as

 Designing Self-adaptive Multimedia Applications 97

proposed in [5, 19]. However, the limitation of this approach is that
reconfigurations only occur in the scope of each component rather than in that of
the application. Although it is possible to change the behavior of a given
component, it is not possible to perform a component replacement.

• Separate Reconfiguration Manager: By opposition to the previous approach,
some works have proposed that all reconfiguration features be integrated in
separate managers. Instead of sending QoS messages through components, they are
delivered to a reconfiguration manager, which performs reconfiguration operations.
This approach is applied in the DaCapo++ [12] communication framework, in the
2KQ framework [16] for resource management and in CANS (Composable
Adaptive Network Services) [9] and APC (Automatic Path Creation Service) [18]
to design adaptive media transcoding gateways. The main limitation of this
approach is that such a manager is tightly-coupled with the targeted application,
and especially its architecture. Any modification of the application architecture
requires an update of the manager's implementation1.

3 Component Architecture

The previous section has shown the limitation of previous approaches in addressing
requirements mentioned before. This limitation resides in the use of flat component
models. Indeed, the integration of reconfiguration at the component level limits
reconfiguration capabilities. At the other hand, making it separated from the
application requires strong assumptions on its structure. Hence, a new component
model becomes necessary with the goal of addressing a large scope, or better, all
possible adaptation algorithms within arbitrary component assemblies. This section
describes how this requirement is addressed in PLASMA.

Fig. 1. Overall architecture design

1 Or it should be explicitely managed in the manager’s implementation.

98 O. Layaida and D. Hagimont

3.1 Design Choices

As depicted in Figure 1, the architecture of PLASMA is composed of: a description
layer providing tools for the description of applications and their adaptation policies,
and an execution layer for the composition and the execution of applications.

• Using a Dynamic ADL: An application is described using a dynamic ADL
(Architecture Description Language). It offers constructs for the description of the
application architecture as well as its adaptation policy in terms of observations,
detection of relevant changes and processing of reconfiguration operations. All
these operations are modeled within the language in a generic way so that it is
possible to describe every possible application and its adaptation policies.
Descriptions can be written by developers as configuration files or automatically
generated by applications requesting specific multimedia services. The framework
provides tools to translate a given description into the appropriate component
assembly in the execution level. A detailed example of the ADL language is
presented in section 4.

• Recursive Composition: The construction of applications is facilitated by a
recursive component model. An application is divided into several parts, called
composite components, which are in turn defined with sub-components. The model
allows arbitrary number of levels; the lowest includes primitive components
encapsulating functional code. This model is based on the Fractal composition
framework [2].

• Hierarchical Reconfiguration Management: Reconfiguration policies can be
defined at any level of the component hierarchy. Each component has its own
reconfiguration manager responsible for reconfiguring its content. In a primitive
component, this manager acts on its functional code, for instance by modifying
parameters. In a composite component, it applies reconfiguration on its sub-
components, transparently to higher levels. This model allows dividing
reconfiguration responsibilities into several hierarchical managers, each dealing
with a specific part of the application.

• Composable Adaptation Policies: Adaptation operations require mainly: the
observation of application and resource states, the detection of relevant changes
and activation of reconfiguration operations. These functions are implemented in
PLASMA as separate and reusable components that can be used to compose every
possible adaptation policy.

3.2 Component Architecture

The PLASMA component architecture encompasses three kinds of components:
Media, Monitoring and Reconfiguration components. The following subsections
detail the role of each of them.

3.2.1 Media Components
Media components represent the computational units used for the composition of the
multimedia applications. An application is decoupled into three hierarchical levels,
each providing a specific functionality:

 Designing Self-adaptive Multimedia Applications 99

• Media Primitive (MP) components are the lowest-level processing entities. They
implement basic multimedia-related functions such as MPEG decoding, H.261
encoding, UDP transmission, etc.

• Media Composite (MC) components are composite components which represent
higher-level functions such as: Decoding, Network Transmission, etc. Each media
composite deals with a group of MPs and is responsible for their creation,
configuration and reconfiguration, transparently to its outside. In Figure 2, an
InputStream composite is composed of three Media Primitives in the case of an
RTP input stream: an RTP receiver, a Demultiplexer (Demux) to separate multiple
streams and a Depacketizer to reconstitute media data. On the other hand, an HTTP
input stream requires one primitive component: HTTP-Receiver.

• The Media-Session (MS) component is a composite which encapsulates MCs. The
Media-Session represents an application configuration and exposes all control
features that can be made upon it (i.e. VCR-like operations: start, pause, stop,
forward, etc.).

Fig. 2. Examples of Components and Bindings

The advantage of this hierarchy is that it groups primitive components
implementing a similar multimedia function under the control of the same composite.
This allows the integration of common configuration and reconfiguration operations
in the enclosing component independently from the application structure. The
combination of various composites constitutes all possible configuration and
reconfiguration operations that can be operated on the application. Notice that other
levels can be easily added to the component architecture in order to define new
composition semantics.

The composition of an application is performed by binding the different
components in a flow graph. Both Media composites and Media Primitives participate
in this process. Each media primitive exposes one or more stream interfaces used to
receive/deliver data from/to other components. A stream interface is typed by the
media type of the produced/consumed stream, which is expressed with media-related
properties such as MIME type, encoding format and data-specific properties
(resolution, colors, etc.). Thus, the success of a binding between two primitive
components is governed by the media-type compatibility between the bound
interfaces. That is, a binding will fail if there are mismatches between media types of
two components. PLASMA provides a binding algorithm which avoids such failures
using two kinds of bindings:

100 O. Layaida and D. Hagimont

• Primitive bindings bind two components agreeing the same media type. This
means that media data is streamed directly from input streams to output streams by
using method calls between stream interfaces.

• Composite bindings are special composite components which mediate between
components handling different media types. Their role is mainly to overcome
media type mismatches between MPs. These bindings are made-up of a set of MPs
implementing fine-grain media conversions. Figure 3 shows an example of a
composite binding between a Decoder and an Encoder composite. The Decoder
provides video data in YUV, while the Encoder accepts only RGB. Moreover, as
this later uses H.261 encoding, it only accepts video data in specific resolutions
such as QCIF (176*144). The composite binding creates two primitive sub-
components: a Resizer to transform the video resolution into QCIF and a YUV-2-
RGB to convert data format from YUV to RGB.

Fig. 3. Examples of component bindings

3.2.2 Probes
Probes define observation points in charge of gathering performance information on
both application and system resources. The information is not processed by probes,
but only made available to other components wishing access to it. However, they may
produce data at different scales and units and thus apply conversions. PLASMA
provides two kinds of Probes:

1. QoS Probes: Some components are expected to maintain information reflecting
QoS values. For example, an RTP Sender component continuously measures
packet loss rate, transmission rate, etc. QoS Probes interact with those components
to collect QoS information and make it available for other components.

2. Resource Probes: They act as separate monitors for gathering resource states such
as CPU load, memory consumption, remaining battery life-time, etc.

3.2.3 Sensors
Sensors are used to trigger events likely to activate reconfiguration operations. We
distinguish two kinds of Sensors:

1. QoS and Resource Sensors: They are generic components associated with QoS and
Resource Probes. Their role is to inspect the evolution of observed parameters and
to notify relevant changes. The behavior of such Sensors is quite simple: it consists
in comparing the observed values with agreed-upon thresholds in order to detect
changes in the observed entities. When a change occurs, the Sensor feeds back a
corresponding event to the appropriate components.

 Designing Self-adaptive Multimedia Applications 101

2. External-Event Sensors: They are in charge of monitoring external events requiring
a specific implementation. As an example, a Sensor may implement a conferencing
manager listening for new connections and notifying the arrival of new
participants. A second example would be a Sensor associated with the graphical
user interface that sends relevant events.

Fig. 4. Examples of reconfigurations

3.2.4 Actuators
Reconfiguration actuators are primitive components responsible for the execution of
reconfiguration actions. Actuators react to events by performing required operations
on the appropriate components. Each reconfiguration action on a component is
performed through its attribute control interface (i.e. by modifying one of the
component’s attributes). This means that the Actuator has a generic behavior
whatever the targeted components. It belongs to the component implementation to
decide how to interpretate modifications of its attribute values. We distinguish three
kinds of reconfiguration:

• Functional Reconfigurations: The most basic form of reconfiguration consists in
changing the functional attributes of a primitive component belonging to the
application. Reconfigurations may target key attributes in order to tune the
produced media stream. As illustrated in Figure 4, the Decoder composite may
delegate/forward modification of one of its attributes (e.g. 'quality') to its MPEG-
Video Decoder sub-component, which performs the effective operation (and
change the quality of the produced stream). Although such operations only affect
media primitives, their impact on the media type agreed during initial bindings of
this component defines two cases:
1. In a first case, the targeted attribute does not affect the media type and therefore,

this operation does not interrupt the execution of the application.
2. In a second case, the targeted attribute affects the media type (e.g. a

modification of the video resolution attributes or the representation format).
This operation may require unbinding and re-binding the involved components
according to rules explained in section 3.2.1.

• Structural Reconfigurations: This second form of reconfiguration concerns the
modification of a composite's structure, being built-up of a set of sub-components.
For instance, a modification of attribute 'encoding-format' of composite Decoder

102 O. Layaida and D. Hagimont

leads to replace the MPEG-Video decoder with an appropriate one (H.261 Decoder
in Figure 4). In general, this operation involves several steps illustrated in Figure 5:
− The Activation step includes the detection of changes (Probes/Sensors) and the

decision of the execution of reconfiguration operations (Actuators).
− The Pre-reconfiguration step encompasses all tasks that can be performed

without application interruption, among them: creating new components and
setting their initial attributes. Stopping the application may be delayed in order
to reduce the application black-out time.

− The Blackout step represents the period during which the application is stopped.
This is necessary to unbind, remove and/or insert, and bind components.

− The Post-reconfiguration step encompasses all tasks that can be made after
application restart, among them: deletion of old components and resetting of key
attributes.

• Policy Reconfigurations: In the third form, reconfiguration actions target
reconfiguration components themselves. Some of such reconfigurations are quite
similar to functional reconfiguration and involve the modification of key properties
of Probes, Sensors and Actuators. Examples consist in changing probing periods,
tuning observation thresholds, modifying operations and operand values of
reconfiguration actions, etc. Other reconfigurations may target the execution of
these components by invalidating reconfiguration actions or activating/deactivating
sensors.

Fig. 5. Execution sequence of structural reconfiguration

4 Use Case: Mobile Multimedia Applications

PLASMA has been entirely implemented in C++ under Microsoft Windows 2000
using the Microsoft .Net 2003 development platform. Multimedia processing and
networking functions are based on the Microsoft DirectShow toolbox. Several
application scenarios have been successfully released, among them the SPIDER
application, a media transcoding gateway for mobile devices.

 Designing Self-adaptive Multimedia Applications 103

4.1 SPIDER Architecture

The SPIDER architecture assumes several multimedia sources made available in the
network, providing content in various data encoding formats and transmission
protocols. Mobile users equipped with PDAs may access these sources; however they
are limited to HTTP-based streaming and support exclusively MPEG-1 streams. The
role of SPIDER gateways is to mediate between clients and servers by performing
appropriate data conversions. A SPIDER node grants access to any multimedia source
available in the network by means of data transcoding, transformation, protocol
conversion, etc. Media streams are receiver-driven, i.e. client applications precise
their media preferences (resolution, colors, bit-rate, etc.) as well as adaptation policies
to adapt media streams when required.

A typical application scenario is as follows: the client application starts streaming
video from a TV broadcast server (originally encoded in H.261 and transmitted using
RTP). It requests a transcoding process which converts video content to MPEG with a
resolution at 320x240. Knowing that potential increase of the transmission rate may
overload its CPU and cause poor QoS (the gateway uses a Variable Bit-Rate
encoding), it requests an adaptation policy which decreases the video resolution by
5 % whenever the transmission rate exceeds 512 Kbps. This adaptation algorithm is
evaluated periodically (every 10 seconds in our experiment) in order to observe the
behavior of the client application during different stages.

<TaskFlow id="Server" location="oxygene.inria.fr">
 <Task name="Input-Stream" id="C">
 <Attributes signature="InputAttributeController">
 <Attribute name="src" value="rtp://ozone.inria.fr:5000"/>
 </Attributes>
 <Binding id="b1" client="this" server="E" />
 </Task>

 <Task name="Video-Encoder" id="E">
 <Attributes signature="EncoderAttributeController">
 <Attribute name="format" value="32" />
 <Attribute name="resolution" value="320x240" unit="pixels" />
 </Attributes>
 <Binding id="b4" client="this" server="D"/>
 </Task>
 ...
 <Task name="Output-Stream" id="O">
 ...
 </Task>
 <Observation id="ob1" type="Resource" resource="id(O)@datarate">
 <event id="evt1" operator="exceeds" value="512" unit="kbps"/>
 <event id="evt2" .../>
 </Observation>
 <Action-set id="set1" condition="evt1">
 <Action operation="decrease" target="id(E)@resolution" operand="5"/>
 </Action-set>
 ….
</TaskFlow>

Fig. 6. A Dynamic ADL Description

104 O. Layaida and D. Hagimont

Such information is conveyed from a client device to a SPIDER node as an ADL
description sent using traditional session protocols. In our implementation, ADL
descriptions are embedded within HTTP requests. Relying on PLASMA, each
SPIDER node translates the ADL description into the suited multimedia adaptation
service. Figure 6 shows the ADL description corresponding to the previous scenario.

The application architecture consists of a set of Tasks expressing high-level
multimedia functions implemented by media composites. Each of them has a
collection of attributes that precise its functional properties and its relationships with
other Tasks (i.e. media bindings). It results in a task-graph representing the data
processing sequence. In our scenario, the application is composed of four Tasks: an
Input-Stream, a Video-Decoder a Video-Encoder and an Output-Stream. It receives
an original RTP stream (see src attribute), decodes its content, encodes the result in
MPEG-1, and transmits the result using TCP.

Reconfiguration policies are expressed in terms of Observations and Action-sets.
Observations represent Probes and can be related to Task attributes or to resources
(QoS or Resource Probes). Each observation defines one or more events reflecting
violations of thresholds associated with observed parameters (i.e. Sensors). Here, a
observation is associated with the data rate of the Output stream. Action-sets define
one or more actions manipulating attribute values (target attribute).

4.2 Performance Evaluation

In our scenario, we used as SPIDER gateway a PC running Windows 2000, equipped
with a 2 GHz Pentium 4 processor, 256 MB of Memory and 100 MB/s LAN. On the
client side, we used a Compaq IPaq PDA equipped with a XScale Processor at 400
MHz, 64 MB of memory and 11 MB/s 802.11b WLAN. The performance evaluation
concerns the cost of reconfiguration operations and their impact on performance of
client device.

4.2.1 Performance of Structural Reconfiguration
The first reconfiguration occurrence requires a structural reconfiguration which adds a
Video-Resizer component. The whole reconfiguration time is about 36 ms (milli-
seconds). The major part is devoted to the pre-reconfiguration step with 24 ms,
required for the instantiation of the new component. The blackout time is about
11 ms, spent in order to insert the Resizer component. Post-reconfiguration operations
take about 200 s (micro-seconds). We deduce from these results that performing the
pre-reconfiguration step before stopping the application significantly minimizes the
cost of structural reconfiguration, in our case by 68 % assuming that a naive
implementation would have required application be stopped during the whole time.

Subsequent reconfiguration operations on video resolution are only functional
reconfigurations on the Resizer components. As these reconfigurations affect the
output media type (the resolution), it requires re-binding (unbind, property
modification and rebind) of components that are placed after the Resizer component
in the processing graph. Setting component attributes takes 67 s. The blackout time
is 331 s, where 244 s are necessary to re-bind components. Despite this short
blackout, the whole reconfiguration time is low and does not introduce a significant
overhead (i.e. about 398 s).

 Designing Self-adaptive Multimedia Applications 105

4.2.2 Impact on QoS and Resource Usage
In order to evaluate the impact of reconfiguration on the QoS and resource usage on
the client device, we measured the rate of video display (in frames/seconds) observed
by the application and the CPU. Figure 7 reports results. Vertical dotted lines mark
the occurrences of reconfigurations, detected as a change in the video resolution. In
the first time segment, video is displayed at less than 10 fps due to a CPU usage at
100 %. This is due to the fact that application receives a large amount of data and in
addition, it must resize video frames in order to fit its display limitations. This
operation requires additional processing causing the application to drop frames in
response to CPU overload. The first reconfiguration reduces the video resolution to
304x228 and therefore, increases the frame rate to 17 fps. However, the CPU load is
kept at 100 % as the transmission rate remains high. Finally, the resolution is reduced
to 273x205, resulting in a frame rate at 25 fps and a CPU load at 70 %. These results
show on one hand that reconfigurations don’t have a negative impact since the
reconfiguration blackout time is almost transparent to the client application. On the
other hand, they significantly improve QoS and resource usage on the client.

Fig. 7. Impact of reconfiguration on QoS and resource usage

106 O. Layaida and D. Hagimont

5 Conclusion

This paper has presented PLASMA, a component-based framework for building self-
adaptive multimedia applications. To reach this goal, PLASMA relies on an advanced
component model whose main feature is the recursive composition of applications.
Relying on this feature, a hierarchical reconfiguration management is introduced at
different levels of hierarchy. This allows releasing a large scope of reconfiguration
independently from the application structure and thus, it offers a flexible approach to
adaptation. Our experimental study has shown that component-based adaptation as in
PLASMA provides a good trade-off between flexibility and performance. Indeed, it
does not introduce a high overhead and can significantly improve QoS and resource
usage of multimedia applications.

References

1. G. Blair, L. Blair, V. Issarny, P. Tuma, A. Zarras. The Role of Software Architecture in
Constraining Adaptation in Component-based Middleware Platforms. Middleware
Conference, April 2000.

2. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma and J-B. Stefani. An Open Component
Model and its Support in Java. International Symposium on Component-based Software
Engineering, May 2004.

3. A.P. Black, and al. Infopipes: an Abstraction for Multimedia Streaming. In Multimedia
Systems. Special issue on Multimedia Middleware, 2002.

4. E. Cecchet, H. Elmeleegy, O. Layaïda and V. Quéma. Implementing Probes for J2EE
Cluster Monitoring. In OOPSLA Workshop on Component and Middleware Proformance,
Vancouver, October 2004.

5. L.S. Cline, J. Du, B. Keany, K. Lakshman, C.Maciocco, D.M. Putzolu. DirectShow RTP
Support for Adaptivity in Networked Multimedia Applications. IEEE International
Conference on Multimedia Computing and Systems, 1998.

6. Microsoft: DirectShow Architecture. http://msdn.microsoft.com/directx 2002.
7. D. Duke and I. Herman. A Standard for Mulimtedia Middleware. ACM International

Conference on Multimedia. 1998.
8. T. Fitzpatrick and al. Design and Application of TOAST: An Adaptive Distributed

Multimedia Middleware. International Workshop on Interactive Distributed Multimedia
Systems, 2001.

9. X. Fu and al. CANS: Composable, adaptive network services infrastructure, USITS 2001.
10. H. Schulzrinne and al. RTP: A Transport Protocol for Real-Time Applications, 2003.
11. D. Sisalem and H. Schulzrinne. The loss-delay based adjustment algorithm: A TCP-

friendly adaptation scheme. Proc of NOSSDAV '98, July 1998.
12. B. Stiller, C. Class, M. Waldvogel, G. Caronni, and D. Bauer, A Flexible Middleware for

Multimedia Communication: Design, Implementation, and Experience," IEEE Journal on
Selected Areas in Communications, September 1999.

13. Sun: Java Media Framework API Guide. http://java.sun.com/products/javamedia/jmf/
2002.

14. L.A. Rowe, Streaming Media Middleware is more than Streaming Media. International
Workshop on Multimedia Middleware, October 2001.

 Designing Self-adaptive Multimedia Applications 107

15. M. Lohse, M. Repplinger, P. Slusallek, An Open Middleware Architecture for Network-
Integrated Multimedia, Joint IDMS/PROMS workhop 2002.

16. K. Nahrstedt, D. Wichadakul, and D. Xu. Distributed QoS Compilation and Runtime
Instantiation. IEEE/IFIP International Workshop on QoS 2000.

17. S. McCanne and V. Jacobson. VIC: A flexible framework for packet video. ACM
Multimedia Conference, 1995.

18. Z. Morley and al. Network Support for Mobile Multimedia using a Self-adaptive
Distributed Proxy, NOSSDAV-2001.

19. D.G.Waddington and G.Coulson, A Distributed Multimedia Component Architecture, 1st
International Workshop on Enterprise Distributed Object Computing, October 1997.

20. D. Wichadakul, X. Gu, K. Nahrstedt, A Programming Framework for Quality-Aware
Ubiquitous Multimedia Applications, ACM Multimedia 2002.

L. Kutvonen and N. Alonistioti (Eds.): DAIS 2005, LNCS 3543, pp. 108 – 114, 2005.
© IFIP International Federation for Information Processing 2005

Transformation Composition Modelling Framework

Jon Oldevik

SINTEF Information and Communication Technology,
Forskningsveien 1, 0373 OSLO, Norway
jon.oldevik at sintef.no

http://www.sintef.no

Abstract. When applying transformation technologies in an enterprise, there
will be a need for supporting compositions of different kinds of transformations
to support a development process. An example is a chain of transformations that
supports a process of going from requirements to use cases, from use cases to a
PIM architecture model, further to a platform specific model and finally imple-
mentation code. Some transformation steps may also involve human interven-
tion, e.g. in a refinement of the PSM model, or a detailing of the use case
model. This work in progress paper investigates how the atomic transformation
viewpoint can be enhanced with support for transformation compositions, to
support model driven enterprise process needs. This is done by introducing a
modelling framework for composed transformations, based on a hierarchy of
transformation types, some of which represent simple atomic transformations,
others that represent complex transformations.

1 Introduction

Model transformation is an essential ingredient in model-driven development. In
order to support the automation of system development, standards for transformation
is emerging in the model-driven development community, driven by the Object Man-
agement Group (OMG). The forthcoming transformation standards such as the OMG
MOF Query/View/Transformation (QVT)[1] is a good baseline for leveraging the
model driven processes of enterprises. When applied in real use, needs will emerge to
support the development scenarios in an enterprise, which is often complex and in-
volves a set of integrated modelling, transformation, and validation tasks. An example
development process, involving specification of requirements, use cases, architecture
models, platform specific models and generation of code, will potentially involve a
number of automated or manual transformation tasks, as well as analysis tasks such as
model consistency checks.

This paper investigates how to support compositions of transformations that pro-
vide the needs that might occur in a model driven development scenario using UML 2
modelling techniques.

2 Transformation Composition Modelling Strategy

The transformation composition modelling strategy aims to support the construction
of complex transformations that uses other atomic transformations. Assumedly, for a

 Transformation Composition Modelling Framework 109

given enterprise, there will exist a number of defined transformations, which do sim-
ple or complicated transformation from a single domain to another.

These transformations might be combined to support parts of, or a complete, de-
velopment process for the enterprise. The basis for the transformation modelling
strategy is a number of transformation types which allows transformations to be com-
bined. A transformation can involve for example a model to model transformation
using QVT (or other transformation technology), a model refinement, which is done
manually, and model to text transformations.

Doing a transformation in itself might not always be sufficient. A transformation
imposes relationships that should be maintained and checked. Changes to models
might require transformations to be reapplied. Resulting models might need to be
check for consistency and validity. These kinds of analysis activities may also be part
of a broader transformation framework.

2.1 Transformation Types

The heart of the transformation framework is the transformation types, which define
transformation types with different natures. A GenericTransformation represents the
common aspects of all types of transformation (Figure 1).

Fig. 1. Generic Transformation Structure

A GenericTransformation defines the overall structure and behaviour of all trans-
formations. It is associated with a set of source and target metamodels. It has a trans-
formation metamodel and a transformation model. During runtime, it consumes input
(which may be a model) and produces output (which also may be a model).

The input and output provided by a GenericTransformation can be of different
kind. They may be models, in case of a model to model transformation. Each of them
may also be some kind of text (e.g. code), in case of a model to text or text to model
transformation.

110 J. Oldevik

Fig. 2. Execution structure of a GenericTransformation

The GenericTransformation is specialised into different types of transformations,
each of which has a special purpose. The framework is open for additional extensions
that provide tailored transformation types (Figure 3).

Fig. 3. Transformation Types Hierarchy

The transformation hierarchy defines the following specialisations:

- ModelTransformation, which represents automatic transformations involving
models either as source or target or both.

- Model2ModelTransformation, which represents a transformation where involving
models as both source and target of the transformation. It may include several
source or target models.

- SimpleModel2ModelTransformation, which is a special case of Model2Model
Transformation, represents model transformations with only one source and one
target model.

- Model2TextTransformation, which represents a transformation from a set of
source models to text output.

- Text2ModelTransformation, which represents a transformation from a text to a set
of models.

 Transformation Composition Modelling Framework 111

- ManualTransformation, which represents transformations that involves human
intervention (i.e. not supported by transformation tools), e.g. manual refinement of
a model.

- UserGuidedTransformation, a special kind of manual transformation which is
guided by user advice (input), but is executed by a tool.

- ComplexTransformation, which represents more complex transformations (Figure 4)

Fig. 4. Complex Transformation Types

The ComplexTransformation represents transformations that involve several simpler
(atomic) transformation tasks. Two types of complex transformations are identified:

- ParallellTransformation, which represents transformations where the referenced
transformations can/must be executed in parallel. A parallel transformation refer-
ences two or more transformations, which are part of the parallel semantics.

- SequentialTransformation, which represents transformations where the referenced
transformations must be executed in sequence. A sequential transformation refer-
ences one or more transformation, which are part of the sequential semantics.

The goal of the ComplexTransformation types is to be able to construct useful
composite transformations, which basically invokes already existing, well-defined
transformations.

2.2 Building Composite Transformations

The composition of transformations requires that there already exists some reusable
transformations to compose from. An assumption is taken that a library of existing
transformation is readily available. These are described in terms of simple UML 2
activities, which consume input and produces output. The transformations are repre-
sented as activity nodes, with input objects (models and metamodels) and output
models. Object Flows are used to model the flow of models and metamodels used by
the transformation. Activity Parameters denote the consumed and produced input by a
transformation.

112 J. Oldevik

Figure 5 depicts two transformations; a model to model transformation, going from
a Use Case model to a Platform Independent Model (PIM); a manual transformation,
refining a PIM model. The transformation themselves are not detailed. They are refer-
ences, and can be e.g. a QVT specification.

Figure 6 depicts an example of a composition. It is a SequentialTransformation,
which contains references to the transformations defined in Figure 5, plus an addi-
tional PIM2PSM transformation, and a parallel transformation containing two text
transformations. Each of the referenced transformations may themselves be more
composites, thus allowing for arbitrary complexity of transformations.

Fig. 5. Use Cases to Platform Independent Architecture Model (PIM)

Fig. 6. Composite Transformation – Use Case through Text

The process of executing a complex transformation is basically an orchestration task,
i.e. making sure that each transformation is executed in its rightful order. In addition,
transformation processes may require different kinds of analysis to be done as part of
the process. Analysis tasks are also a necessary part of model-driven development
chains. Thus, specific tasks handling various pre-defined or tailored analysis of mod-
els or text, should have its place in a modelling and transformation framework. This
includes aspects such as model conformance, model completeness, traceability, vali-
dation, and other analysis tasks relevant for the models or text artefacts consumed or
produced. This could be incorporated at a modelling level to support a more holistic
model-driven approach.

 Transformation Composition Modelling Framework 113

2.3 Relationship with QVT

The forthcoming QVT language [1] can be used to specify complex transformations
in its lexical notation. It also supports composition of transformations through various
reuse mechanisms, such as extension or black-box reuse of transformation libraries.

Given a set of basic transformations that stands on their own, it is possible to create
a composite transformation, e.g. through the access mechanism of QVT.

transformation UC2PSM (in ucm : UseCaseMM, out psm: PSM):
access transformation UC2PIM (in ucm : UceCaseMM, out pim : PIM);
access transformation PIM2PSM (in pim : PIM, out psm: PSM);
main () {
 var pimResult := UC2PIM(ucm).transform();
 psm := PIM2PSm(pimResult).transform();
}

Combined with control constructs (like conditional branches), structured transforma-
tion compositions can be created. The graphical QVT syntax might be used for simi-
lar constructions, although the current graphical notation is tuned towards specifying
relations between the concepts of a single transformation. A UML2-oriented approach
with composite activities (or even composite structures) can leverage specification of
higher-order transformations.

3 Related Work

In [2], a framework for composition of transformation is proposed, which defines a
pattern for composite transformation and a lexical language for defining composites,
which handles configuration (execution ordering) of transformation components. This
framework does not propose any UML 2 coupling or relate to QVT. In [3], the side
transformation pattern is introduced to provide a means of describing combinations of
reusable transformations with particular focus of coping with application-specific
metamodel incompatibilities. The approach uses the graphical UMLX notation, re-
sembling the graphical QVT notation. Within web service orchestration, choreogra-
phy and composition [4], a lot relevant of work and technology exist that is pertinent
for describing reusable compositions of transformations, such as the Business Process
Modelling Notation (BPMN), the Business Process Execution Language (BPEL).

4 Summary and Conclusion

This work in progress paper has described ongoing work in the ModelWare project
(IST Project 511731)*, concerning how to handle complex structures of transforma-
tions, using a model-based approach for composition of atomic transformations. The
continuation of the work will focus on elaborating the modelling framework and sup-
port it with tools which are integrated with standards like QVT.

* MODELWARE is a project co-funded by the European Commission under the "Information

Society Technologies" Sixth Framework Programme (2002-2006). Information included in
this document reflects only the author’s views. The European Community is not liable for any
use that may be made of the information contained herein.

114 J. Oldevik

References

1. QVT-Merge Group, Revised submission for MOF 2.0 Query/Views/Transformations RFP
version 2.0, OMG document id ad/2005-03-02, http://www.omg.org/cgi-
bin/apps/doc?ad/05-03-02.pdf

2. Raphaël Marvie, A Transformation Composition Framework for Model Driven Engineer-
ing, LIFL 2004n10, November 2004

3. Willink, Harris, 2004, The Side Transformation Pattern, paper at the Software Evolution
through Transformations (SETra) 2004

4. Peltz C., Web Service Orchestration and Choreography, Web Service Journal Feature,
July 2003

L. Kutvonen and N. Alonistioti (Eds.): DAIS 2005, LNCS 3543, pp. 115 – 129, 2005.
© IFIP International Federation for Information Processing 2005

Proximity-Based Service Discovery in Mobile Ad Hoc
Networks

René Meier, Vinny Cahill, Andronikos Nedos, and Siobhán Clarke

Distributed Systems Group, Department of Computer Science,
Trinity College Dublin, Ireland

{rene.meier, vinny.cahill, andronikos.nedos,
siobhan.clarke}@cs.tcd.ie

Abstract. Existing approaches to service discovery have been developed
primarily for environments with a fixed network backbone and typically rely on
centralized components being accessible to potential service clients at any given
time. The characteristic lack of a designated service infrastructure in
combination with the highly dynamic nature of the underlying network
topology renders such discovery mechanisms unsuitable for mobile ad hoc
environments. This paper presents an approach to the discovery of ad hoc
services that exploits the fact that the relevance of such services is often limited
to specific geographical scopes. Service providers define the areas (proximities)
in which their services are available. Clients register interest in specific services
and are subsequently informed whenever they enter a proximity within which
these services are available. Since ad hoc services can be stationary or may be
moving with the location of their mobile providers our approach supports
discovery of services with fixed locations as well as of those that migrate with
their providers. Our approach has been implemented as a push-based proximity
discovery service and its evaluation demonstrates that it is well suited for highly
dynamic networks as it maintains neither routes nor overlay network topologies.

1 Introduction

Many mobile applications can be characterized as collaborative in the sense that
mobile nodes use the wireless network to interact with other mobile nodes that have
come together at some common location. Collaborative nodes typically come together
in some area, establish associations with other collaborative nodes dynamically, and
make use of common services already available in that locality or provided by
members of the group. The members of such a group may migrate together, like a
fleet of vehicles or the participants in a guided tour. Although these applications may
use infrastructure networks, they will often use ad hoc networks since they are
immediately deployable in arbitrary environments and support communication
without the need for a separate infrastructure. This collaborative style of application
may be useful in the ubiquitous [1] and sentient computing [2] domain allowing
loosely-coupled, highly-mobile components to communicate and collaborate in a
spontaneous manner.

116 R. Meier et al.

Entities that comprise this style of application are inherently mobile and may move
together and apart over time. Service providers and service clients characteristically
come together at a certain location, use services, and later come together at a different
location to use other services. Hence, providers require a means to advertise their
services and clients need be able to locate services of interest depending on their
current location.

Existing approaches to service discovery [3-5] have been developed primarily for
environments with a fixed network backbone and typically rely on centralized
components being accessible to potential service users at any given time. The
characteristic lack of a designated service infrastructure in combination with the
highly dynamic nature of the underlying network topology renders such discovery
mechanisms unsuitable for ad hoc environments. This paper presents a decentralized
mechanism for the discovery of services in ad hoc environments that exploits the fact
that the relevance of such services is typically limited to specific geographical scopes.
Example services from the traffic management domain might include an accident
warning service provided by a crashed car to approaching vehicles and a warning
service provided by an ambulance rushing to an accident site to inform nearby
vehicles to yield the right of way. Providers define the geographical scopes, called
proximities, in which their services are available. Our Proximity Discovery Service
(PDS) allows such providers to advertise their services in proximities, thereby
bounding advertisements to the areas in which the services are relevant. Interested
clients are informed whenever they enter a proximity where these services are
available. The PDS therefore enables clients to dynamically discover available
services (and their proximities). Clients subsequently use the discovered information
to establish logical connections to the associated providers. The connections between
the entities residing in a particular proximity are then used by providers to deliver
their services hence, allowing clients to use them at the specific location where they
are valid. This concept of proximity-based service discovery enables collaborating
entities to come together at a certain location and to spontaneously discover the
services available at that location.

Clients must register interest in specific services with the PDS in order to be
informed whenever they enter a proximity where these services are available. Such
clients may move from one proximity to another without re-registering their interest.
Thus, registrations are persistent and will be applied transparently whenever a client
enters a new proximity. This implies that a registration to a specific service type
applies to all proximities in which these services are provided even though the client
may only use a subset of these services at any time. A single registration may result in
a service by different providers in multiple proximities being discovered. For
example, a client representing a vehicle that registers interest in an accident warning
service will be informed whenever it enters the proximity of such a service.

Services can be stationary or may be moving with the location of their mobile
providers. A stationary service is attached to a fixed point in space whereas a mobile
service is mapped to a moving position represented by the location of its mobile
provider. Hence, a mobile service moves with the location of the provider to which it
has been attached. An example of such a mobile service might include an information
service provided by an entity representing an ambulance on a call. This implies that
proximities may be moving with their service. The PDS therefore supports discovery

 Proximity-Based Service Discovery in Mobile Ad Hoc Networks 117

of services (and proximities) with a fixed location as well as of those that migrate with
their providers.

The PDS has been implemented as part of an event-based middleware for wireless
ad hoc environments [6] where it is used for the discovery of relevant event
producers. However, the discovery paradigm of the PDS can be used as a means for
locating arbitrary services. The evaluation of the PDS demonstrates that using
proximity to bound multicast-based service discovery is well suited for highly
dynamic networks as it limits the complexity of the underlying dynamic network
topology without introducing overhead for maintaining discovery routes and overlay
network structures.

The reminder of this paper is structured as follows: Section 2 surveys related work.
Section 3 presents our architecture for discovering services in mobile environments
and describes how this architecture maps to the underlying ad hoc network. Section 4
outlines our evaluation of the PDS. Finally, section 5 concludes this paper by
summarizing our work.

2 Related Work

The concept of service discovery is well established in distributed systems [7], since
networked entities need to locate available remote resources in order to use them.
Work on service discovery in mobile ad hoc networks focuses on using decentralized
architectures to overcome the limitations of traditional discovery mechanisms, such as
SLP [3], Jini [4], and UPnP [5], that rely on fixed infrastructure. Research in service
discovery architectures for such mobile environments can be classified into lower-
layer service discovery protocols [8-11] and higher-layer service platforms [12-14].

Service discovery protocols place emphasis on efficiency and distributed
infrastructure while service platforms focus on providing a middleware layer that
enables applications to use a service oriented programming model. The PDS bridges
this gap by providing a programming model for service discovery based on location
while exploiting a proximity-based multicast protocol that limits the complexity of the
underlying ad hoc network topology without introducing overhead for maintaining
routes and overlay network structures.

Research in the area of discovery protocols has produced encouraging results with
some protocols exploiting location to achieve distributed discovery, while others rely
on the formation of a virtual backbone of nodes which can subsequently act as service
brokers. Protocols that use location for service discovery include the Grid Location
Service [10] and the Distributed Location Management [9] protocol. Despite
primarily being protocols that enable the distributed lookup of any node's location, in
the context of service discovery, location can be considered as just another service.
The use of location in such protocols offers nodes a kind of “topological awareness”
and aids the distributed execution of their respective algorithms. The PDS differs in
its use of location, as the above protocols require stricter assumptions such as
knowledge of a geographic grid that must be shared by all operating nodes. The PDS
has no such requirement and uses location as a constrain to enhance scalability and
relevancy.

Protocols like [11] and [8] provide a fully distributed service discovery mechanism
based on using selected mobile nodes that form a virtual backbone. The nodes in the

118 R. Meier et al.

backbone subsequently act as service brokers, permitting service registration and thus,
facilitate service discovery. Such protocols have proved to perform well under
simulation compared to broker-less service discovery mechanisms that use multicast
or anycast. However, they require specialized backbone formation and
communication protocols which, coupled with the cost incurred by maintaining the
virtual backbone, can result in reduced performance under different mobility
scenarios. In contrast, the PDS requires no maintenance phase other than maintaining
the multicast tree and increases efficiency by limiting packet forwarding to the
proximity area.

Konark [14], GSD [13], and DEAPspace [12] provide service discovery platforms.
Konark is a service discovery mechanism that is based on a hierarchical classification
of services. Its architecture supports both push and pull style discovery, but is limited
to locally scoped multicast. In comparison, the PDS hides the complexity of the
underlying communication system by providing an asynchronous advertise/discover
programming model to the application layer that is also independent of the structure
of service representation. This has the extra benefit of allowing the PDS to work with
multiple service representations. GSD uses caching and semantic matching of services
to efficiently discover services in a distributed manner. GSD uses a predefined
ontology to group similar services and forwards service requests efficiently by
exploiting this grouping. The PDS uses a more sophisticated forwarding mechanism
that relies on the notion of proximity rather than hop count. DEAPspace has been
designed for pervasive environments and shares the same discovery paradigm as the
PDS, namely push based discovery, but has a more narrower scope than the PDS as it
is directed towards personal area networks. It was designed for small devices and
provides energy efficient mechanisms for message dissemination. However, there are
no clear guidelines as to how applications interact with DEAPspace. The PDS on the
other hand, supports a concise application programming interface and its use of
proximity implies support for single-hop and multi-hop ad hoc networks.

3 The Architecture for Service Discovery

The design of the architecture for service discovery is motivated by the hypothesis
that there are services that are more likely to be used by clients once they are in close
proximity. This means that the closer clients are located to a provider the more likely
they are to be interested in the services that it offers. Significantly, this implies that
services are relevant within a certain geographical area surrounding a provider.

The architecture is inherently distributed in order to support ad hoc environments.
As shown in Fig. 1, the middleware that includes the PDS is exclusively collocated
with application components and depends neither on centralized or intermediate
components nor on the presence of a designated infrastructure. Every mobile device
hosting the middleware therefore offers identical capabilities to its application without
accessing remote components. Applications may connect a variable number of
providers and clients to the middleware on each mobile device, thereby allowing
individual devices to offer and to use one or more services. Each of these entities
regulates its use of the PDS by exploiting the concepts of advertisement and
registration. Providers advertise the proximities in which their services are available.

 Proximity-Based Service Discovery in Mobile Ad Hoc Networks 119

Clients register interest in specific services in order to be informed whenever they
enter a proximity where these services are available until they un-register. The PDS
augments these well-known and widely-used concepts in order to support scoped
service discovery and ultimately mobility. The proximity information announced by
providers is exploited primarily to establish communication relationships between
mobile entities while registrations are used locally to map client interests to the
currently available services.

The PDS has been designed to discover services for entities that can be either
stationary or mobile. This implies that the PDS as well as the entities hosted by a
particular mobile device are aware of their geographical location at any given time.
The middleware therefore includes a Location Service (LS) that uses sensor data to
compute the current geographical location of its host device and entities. To suit
outdoor applications, for example in the traffic management domain, the middleware
exploits a version of the LS that uses a GPS satellite receiver to provide latitude and
longitude coordinates.

Application

C

P Provider

Client

Mobile Device A

PDS LS

P C P

Application

S

S

Mobile Device B

Ad Hoc

Network

Sensor

Inform C

P
D
S

Register

Un-Register

P
D
S

Advertise

P

Un-Advertise

PDS LS

C C P

S

Middleware

Fig. 1. Discovery service architecture

3.1 Stationary and Mobile Services

The PDS supports both stationary and mobile entities and consequently must be able
to handle stationary and mobile services and their proximities. The proximity
definition below shows that this notion of proximity is defined firstly by the covered
area, which is described as a geometric shape with associated dimensions and a
reference point that is relative to this shape, and secondly by a naval location. The
reference point of a stationary proximity is attached to a naval represented by a fixed
point in space whereas the reference point of a mobile proximity is mapped to a
moving naval, which is characteristically represented by the location of a specific
mobile provider. Hence, a mobile proximity moves with the location of the provider
to which it has been attached. For example, a group of vehicles heading in the same
direction may cooperate to form a platoon in order to reduce their consumption of
fuel. These vehicles might use a mobile service provided by the leading vehicle. The
proximity of such a service might be attached to a naval represented by the position of
the leader thereby moving with its location. Proximities may be of arbitrary shape and
may be defined as nested and overlapping areas. Nesting allows a large proximity to
contain a smaller proximity subdividing the large area.

Proximity = [Area (Shape, Dimensions, Reference Point), Naval]

120 R. Meier et al.

3.2 Identifying Services

There are two essential issues that need to be addressed when discovering services.
Firstly, an addressing scheme for uniquely identifying services is required and
secondly, a means for clients to obtain the correct identifiers needs to be provided. An
approach to addressing these issues, based on statically generating a fixed number of
unique and well-known identifiers, has been described by Orvalho et al. [15]. Another
approach might involve using a centralized lookup service for generating and
retrieving identifiers. However, neither of these approaches suffices for applications
that accommodate a dynamically changing number of services and depend on an
inherently distributed architecture.

The PDS exploits a decentralized addressing scheme based on a Distributed Hash
Table (DHT) in which identifiers representing services can be computed from
discovered service descriptions. Each combination of service name and proximity
(shape dimensions, reference point, and naval location) is considered to be unique
throughout a system assuming that there is no justification for providers to define
multiple identical service name and proximity pairs for different services. A textual
description of such a pair is used as stimulus for a hashing algorithm to dynamically
generate hash keys that represent identifiers using node local rather than global
knowledge. Clients compute the corresponding identifier upon discovery of a service
and subsequently use these identifiers to connect to services.

This distributed addressing scheme replaces the kind of centralized approach
traditionally used for identifying services of interest and therefore represents a key
enabling mechanism for the inherently distributed architecture of the PDS. It enables
mobile devices to recognize services of interest and to locally compute identifiers
from serialized service descriptions.

Computing Service Identifiers. The
PDS uses a hashing algorithm that
generates 24 bit service identifiers from
variable length character strings. The
implemented algorithm is based on a
combination of a hash function for such
stimuli proposed by [16] with the use of
a hash function multiplier [17] in order
to reduce the chance of collisions.
Fig. 2 depicts the structure of the
character strings that describe services
with rectangular and circular proximities. Such strings comprise the service name and
the particulars of the associated proximity. Proximities are described by the
dimensions and reference points of their shapes and by the coordinates that specify
the location of their navals. Note that the proximity of a mobile service always
describes its initial naval location since its actual naval location might change over
time therefore enabling clients to generate consistent identifiers.

Collisions. Depending on a number of factors, including the quality of the hash
function and the ratio of stimuli to potential identifiers, this approach might lead to
colliding identifiers. Such collisions occur when two distinct stimuli x and y generate

Proximity Service Name

Shape Naval (lat, lng) Type

Dimension (x, y) Reference (x, y) Rectangle

Radius (r) Reference (x, y) Circle

Fig. 2. Computing service identifiers

 Proximity-Based Service Discovery in Mobile Ad Hoc Networks 121

the same identifier. In other words, there exist stimulus pairs, such that x ! y, for
which h(x) = h(y). Collisions may result in different services using the same
identifiers. This does not affect a system provided that such services are used in
different geographical scopes, i.e., that their proximities do not overlap. Overlapping
proximities with colliding identifiers can lead to unwanted service messages being
received by certain mobile devices. Such devices can be prevented from delivering
unwanted service messages to their clients by a run-time type checking mechanism.
Such a mechanism can detect and eventually discard these service messages. Hence,
colliding identifiers may lead to additional use of communication and computational
resources, but will not cause delivery of unwanted service messages and are in any
case unlikely due to geographical separation.

3.3 Discovering Services

The PDS runs on every physical machine that hosts service users regardless of
whether these local entities act either as providers or as clients, or indeed as both. The
PDS uses beacons to periodically advertise relevant services (and the associated
proximities) on behalf of providers. The discovery service advertises the service name
and proximity pairs that have been defined by providers within the scope of a
proximity. This implies that the location at which these advertisements are
disseminated can change when the device hosting a PDS migrates and that the set of
adjacent devices is likely to change as well. Moreover, this also implies that other
stationary or mobile devices may need to forward advertisements for them to reach
the boundaries of the proximity.

advertise(serviceName sn, proximity p)
un-advertise(serviceName sn, proximity p)
register(serviceName sn, discoveryHandler dh)
un-register(serviceName sn, discoveryHandler dh)

discoveryHandler {
 inform(serviceName sn, proximity p, status s) {
 serviceIdentifier = h(sn + p.toString())
 //use discovered service
 ...
 }
}

Fig. 3. The application programming interface of the PDS

Using the Discovery Services. Fig. 3 outlines the application programming interface
supported by the PDS. These interface functions reflect the fact that the PDS is based
on an implicit discovery model as they refer neither to explicit entities nor to
designated components of any kind. Instead, the functions for advertising (un-
advertising) and registering (un-registering) interest refer to a service name.

Providers and clients must use a common vocabulary defined by the application to
agree on the name of a service. Such a serviceName typically describes a service
type rather than referring to a service provided by a particular provider. This allows
clients to discover services based on their availability (at a location) regardless of the
specifics of their providers.

122 R. Meier et al.

The PDS application programming interface also illustrates how providers
advertise service proximities and how clients specify discovery handlers. Clients
implement discovery handlers and subsequently register them. The PDS uses these
handlers to inform clients of services that either have become available or have
expired. Clients use serviceName and proximity pairs to generate service
identifiers and, depending on the service status, commence or discontinue using
the service. This approach enables clients to potentially register a specific discovery
handler whenever they express their interest. Depending on their requirements, clients
may therefore provide either a discovery handler for an individual service or for a set
of services.

The Discovery Mechanism. The PDS allows its providers to advertise and its clients
to discover relevant services according to the following discovery mechanism:

1. Initially, a proximity discovery service recognizes the services advertised by its
local providers.

2. A proximity discovery service maintains a list describing all services that are
relevant at its current location. A specific service description is discarded when the
hosting mobile device leaves the proximity associated with this service description.

3. A proximity discovery service periodically broadcasts messages describing the
services advertised by its local providers within the proximity of the advertised
service relative to its current location. The broadcast period is application specific
and hence, can be configured for each individual proximity discovery service.

4. A proximity discovery service receiving an advertisement adds a service
description to its own list if it is currently located inside the associated proximity.

5. A proximity discovery service maintains a list describing the interests registered by
its local clients.

6. Clients are informed whenever a service of interest is added to or discarded from
the list of relevant services.

Fig. 4 illustrates the components
of our approach to maintaining
lists representing relevant services
and services of interest
respectively. The proximity
discovery mechanism essentially
comprises two algorithms, one for
disseminating (locally-defined)
service advertisements and another
for handling (remotely-defined)
service advertisements upon
receiving them. Both algorithms
operate on the relevant services list
of a particular mobile device and
collaborate in order to maintain the relevant locally and remotely specified services.
Hence, relevant services lists are maintained according to geographical relevance and
are independent of the set of issued registrations.

(6) Inform

(4) Discover

(3) Broadcast Ad
Hoc
NW

Mobile Device

(2) Relevant Services List

Local:
sn + p
sn + p

match

PDS

P
(1) Advertise

C

Remote:

sn + p

(5) Registered Services List

sn + dh
sn + dh

sn + dh

Register

Fig. 4. The discovery mechanism

 Proximity-Based Service Discovery in Mobile Ad Hoc Networks 123

Advertising Services. The algorithm for broadcasting and to a certain extent
maintaining service descriptions on a particular mobile device periodically traces
through all service descriptions stored in a relevant services list in order to advertise
the services that have been defined by local providers and to verify the geographical
validity of service proximities. Hence, the algorithm essentially identifies stationary
and mobile services with proximities that are relevant at the actual location of the
mobile device and periodically advertises those locally-specified services.

Stationary services remain in a list as long as their scope includes the current
location regardless of whether they have been specified locally or remotely. A service
is removed from the list once the device has left the associated proximity. Removing a
relevant service may lead to a change to the set of services available to local clients.
Clients that have registered with such a service are informed of its cancellation.
However, their interest, expressed by a related registration, remains in the registered
services list.

The dynamic aspect of mobile services causes some variation in the means by
which they are maintained and advertised. Mobile services specified by local
providers always (by definition) include the actual location of the mobile device and
migrate together with the device. Consequently, the migration of a mobile device does
not cause mobile services to expire. These services can therefore be advertised
without verifying their validity. In addition to enabling remote devices to discover
mobile services, these advertisements provide a means for disseminating location
updates describing the migration of mobile services. The naval of the proximity of
every mobile service is therefore updated with the latest device location prior to being
advertised. The validity of remotely-specified mobile services is verified when
updates on their latest locations are received. This prevents validity checks using
cached and therefore potentially obsolete (due to migration) location information.

Locating Services. The algorithm for handling received service descriptions adds
newly discovered services to the relevant services list of any mobile device residing
inside the proximity while known services, whose proximities no longer include the
device's location, are removed from the list. Clients with a corresponding registration
are informed of newly discovered services as well as of cancelled services. Other
service descriptions comprise information that is either irrelevant at the current
location or already known and are therefore discarded.

Remotely-specified services are handled similarly regardless of whether they
describe stationary or mobile services. Both stationary and mobile services that are no
longer relevant at the current location are removed from the repository. Mobile
services are removed based on their latest naval location while being identified
according to their initial naval location. This enables the PDS to identify mobile
services even though their actual naval location changes.

3.4 Supporting Ad Hoc Networks

The PDS implements a location-based routing protocol that exploits proximity to
control multicast-based flooding of the underlying ad hoc network [18]. This
approach uses a well-known multicast group to provide a means for disseminating
service descriptions in a one to many manner within the boundaries defined by a

124 R. Meier et al.

proximity without introducing extra overhead for maintaining routing information.
Such routing information characteristically needs to be updated more frequently with
increasing speed of mobile devices and thus, approaches that attempt to maintain
routing information are less suited for applications comprising highly-mobile
entities [19].

Providers may define proximities for their services independently of the physical
transmission range of their wireless transmitters with the underlying communication
system routing messages from provider to client using a multi-hop protocol. Nodes
residing within the boundaries of a proximity forward and deliver these messages
while nodes located outside a proximity discard them without forwarding.

The concept of proximity provides an application level abstraction for bounding
the message dissemination scope. However, proximities can also be exploited in order
to optimize the delivery of specific messages. The PDS uses a provider's geographical
location and radio transmission range in conjunction with the proximity of its services
to determine whether to use single-hop or multi-hop messages. The PDS therefore
supports both single-hop and multi-hop dissemination and typically uses cost efficient
single-hop messages for advertising services in proximities that are likely to be
covered by a provider's wireless transmission range and employs multi-hop messages
only when transmitting advertisements beyond this range.

4 Experimental Results

This section evaluates the proximity-based approach to the discovery of ad hoc
services that is proposed in this paper. The main objective of the experiments is to
assess the cost of service discovery and more specifically, to assess how exploiting
proximity limits advertisement forwarding without the need for control messages. The
experimental results demonstrate that discovery cost for stationary services are
comparable to those for mobile services and that cost neither depends on the speed of
clients nor on the speed of the service provider. This evaluation therefore
demonstrates that using proximity to bound multicast-based service discovery is well
suited for highly dynamic networks as it limits the complexity of the underlying
dynamic network topology without introducing overhead for maintaining discovery
routes and overlay network structures.

The primary measurement of interest is an abstract quantity we refer to as cost. We
assign a relative cost to the dissemination of a single advertisement. Cost describes
the number of messages required when propagating an advertisement from a provider
to the clients residing within its radio transmission reach and the forwarding of this
message to clients beyond this range. Hence, cost depends on the number of clients
residing within a particular proximity and provides a qualitative indication of the
bandwidth required for discovering a service. For example, the cost of a provider
disseminating an advertisement to three clients, each of which forwards the message
that describes the service once, is described as 4; one message sent by the provider
and 3 messages forwarded by the clients. This allows us to measure cost
independently of the actual frequency of an advertisement while varying a number of
application parameters. These parameters include the migration speed of the entities,

 Proximity-Based Service Discovery in Mobile Ad Hoc Networks 125

the range of the proximity within which services are advertised, and the number of
clients.

All evaluation experiments have been conducted by implementing the selected
scenarios as prototypical service applications. Each of the providers and clients that
comprise these applications is represented by an independent PDS instance and
interacts with other entities using a real ad hoc network. The entities and their PDS
instances are hosted by a number of notebook computers running the Microsoft
Windows XP operating system on a 1GHz Intel Pentium III processor. Each machine
is equipped with a Lucent Orinoco Gold WiFi PCMCIA card with a channel capacity
of 11 Mbit/s providing the ad hoc network connection for inter entity communication.
One or more entities may reside on a notebook computer. Entity locations and
mobility are simulated throughout these experiments using the location service of
their respective PDS instances while the hosting notebook computers were placed
within ad hoc communication reach of each other. The radio transmission range TR for
each machine was simulated to be TR = 200 meters. This ensures that an entity
discards all communication messages received from entities located beyond TR, even
though the distance between the physical locations of their host machines is less than
TR. Multiple runs were conducted for each experiment and the data collected was
averaged over those runs.

4.1 The Application Scenarios

We have selected two application scenarios from the traffic management domain for
this evaluation. ScenarioA models a broken down car providing a stationary
accident warning service to vehicles within its vicinity. This scenario is set on a two
way road with a provider acting as the broken down car advertising its service to
clients representing the vehicles. These vehicles are randomly distributed on the lanes
of the road. ScenarioB models an ambulance providing a mobile warning service to
nearby vehicles for them to yield the right of way. This scenario is set similarly to the
previous scenario on a two way road and comprises an ambulance advertising its
service to a number of randomly distributed clients representing vehicles. Both
scenarios include a circular shaped proximity with a central reference point that is
mapped to the location of the respective provider and involve a road section of 1400
meters with the provider being located at the center of the section. All clients move on
this road section and their number defines the saturation of the area.

4.2 Results and Analysis

Fig. 5 (A) shows the discovery cost as a function of proximity range PR. The
respective proximities define the set of clients residing inside the area of interest that
discover the service. These ranges have been selected to include services with
proximities in which all clients can be reached using a single-hop radio transmission
PR ! TR) as well as those that require multi-hop routing (PR > TR). The largest
proximity covers the whole scenario area enabling all clients on the road section to
discover the service. The results essentially demonstrate how proximities bound
service discovery cost by bounding the number of clients that forward a certain

126 R. Meier et al.

advertisement. They show a significant difference when comparing discovery cost
within the single-hop reach to the cost beyond this range.

Beyond the single-hop range, all
results show similar tendencies of
increasing cost with expanding
proximities and rising saturations as
every client residing inside a certain
proximity forwards advertisements.
This illustrates that exploiting
proximity enables the PDS to
transparently select the appropriate
protocol when disseminating
advertisements. The PDS uses its
cost efficient single-hop protocol for
advertising services with proximities
that are covered by the provider's TR
and employs the multi-hop version
only when transmitting
advertisements beyond TR. Other
discovery service platforms typically
use either a single-hop protocol with
propagation range limitations or a
more expensive multi-hop protocol
for both short and long range
discovery. However, Fig. 5 (A) most
significantly illustrates that the
results recorded for ScenarioA and
ScenarioB are virtually identical
demonstrating that, given a similar
configuration, the discovery cost for
stationary services are comparable to
those of mobile services.

Fig. 5 (B) depicts the service
discovery costs recorded for
ScenarioA and ScenarioB
respectively as a function of
migration speed. These results show
the effect of migration speed and
thus, of a dynamically changing
network topology that reflects entity
movements, on discovery cost.
Similar results were recorded for
ScenarioA where mobile clients
discover a stationary service and for
ScenarioB in which a mobile service provided by an ambulance moving along the
road is being discovered by stationary clients representing stopped vehicles. These
results essentially show that the cost is low within single-hop reach and increases with

0

50

100

150

200

250

0 100 200 300 400 500 600 700
Proximity Range [m]

D
is

co
ve

ry
[C

os
t /

 A
dv

er
tis

em
en

t]

0

50

100

150

200

250

0 100 200 300 400 500 600 700
Proximity Range [m]

D
is

co
ve

ry
[C

os
t /

 A
dv

er
tis

em
en

t]

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80
Client Speed [Miles / Hour]

D
is

co
ve

ry
[C

os
t /

 A
dv

er
tis

em
en

t]

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80
Provider Speed [Miles / Hour]

D
is

co
ve

ry
[C

os
t /

 A
dv

er
tis

em
en

t]

(A) ScenarioA

(A) ScenarioB

(B) ScenarioA

(B) ScenarioB

Fig. 5. (A) Discovery cost as a function of
proximity range for saturations of 60, 120, 180, and
240 from bottom to top. (B) Discovery cost as a
function of migration speed for proximities with T

R

= 200, 400, and 600 meters from bottom to top and
for a saturation of 120

 Proximity-Based Service Discovery in Mobile Ad Hoc Networks 127

service proximities expanding beyond single-hop range. Significantly, the results
recorded for ScenarioA and ScenarioB demonstrate that service discovery cost
does neither depend on the speed of clients nor on the speed of the provider. This is
due to the fact that the PDS exploits proximities to control multicast-based flooding
and consequently does not introduce extra overhead for maintaining routing
information that needs to be updated more frequently with increasing relative
migration speed. The study of flooding-based multicast protocols for ad hoc networks
presented by Lee et al. [19] presents similar conclusions and hence, argues that
neither the number of transmitted messages nor the associated delivery ratio is a
function of the relative speed of the interacting entities.

5 Summary and Conclusions

This paper presented a decentralized approach to discovery of services in ad hoc
environments. The approach supports discovery of services that are stationary as well
as those that move with the location of their mobile providers and exploits the fact
that the relevance of such services is often limited to specific geographical scopes.
Providers and clients of this style of service characteristically come together at a
certain location, use a service, and later come together at a different location to use
another service. Providers define the geographical scopes, called proximities, in
which their services are available. Our Proximity Discovery Service allows such
providers to advertise their services in proximities, thereby bounding advertisements
to the areas in which the services are relevant. Clients are informed whenever they
enter a proximity where these services are available. The Proximity Discovery
Service therefore enables clients to dynamically discover available services. Clients
subsequently use the discovered information to establish logical connections to the
associated providers. The connections between the entities residing in a particular
proximity are then used by providers to deliver their services thereby allowing clients
to use them at the specific location where they are valid.

This concept of proximity-based service discovery overcomes the characteristic
lack of a designated service infrastructure in ad hoc environments and is well suited
for highly dynamic network topologies. The architecture of the Proximity Discovery
Service is inherently distributed as it depends neither on centralized nor on
intermediate components. A decentralized addressing scheme represents a key
enabling mechanism to this inherently distributed architecture allowing mobile
devices to recognize services of interest and to locally compute identifiers from
service descriptions. The evaluation of the Proximity Discovery Service demonstrated
that exploiting proximity to bound multicast-based service discovery limits the
complexity of the underlying dynamic network topology without introducing
overhead for maintaining discovery routes and overlay network structures. Such
information typically needs to be updated more frequently with increasing migration
speed of providers and clients causing the use of communication and computational
resources to increase with the frequency of network topology changes. The evaluation
also illustrated that exploiting proximity enables the Proximity Discovery Service to
transparently select the appropriate protocol when disseminating advertisements.

128 R. Meier et al.

Acknowledgements. The work described in this paper was partly supported by the
Irish Higher Education Authority's Programme for Research in Third Level
Institutions cycle 0 (1998-2001) and by the FET Programme of the Commission of
the European Union under research contract IST-2000-26031 (CORTEX).

References

[1] M. Weiser, "Ubiquitous Computing," IEEE Hot Topics, vol. 26, pp. 71-72, 1993.
[2] P. Verissimo, V. Cahill, A. Casimiro, K. Cheverst, A. Friday, and J. Kaiser, "CORTEX:

Towards Supporting Autonomous and Cooperating Sentient Entities," in Proceedings of
the European Wireless Conference. Florence, Italy, 2002, pp. 595-601.

[3] E. Guttman, C. Perkins, J.Veizades, and M.Day, "Service Location Protocol, Version 2,"
IETF, 1999.

[4] K. Arnold, R. Scheifler, J. Waldo, B. O'Sullivan, A. Wollrath, B. O'Sullivan, and A.
Wollrath, Jini Specification: Addison-Wesley Longman Publishing Co., Inc., 1999.

[5] Microsoft Corporation, "Universal Plug and Play: Background," 1999.
[6] R. Meier and V. Cahill, "Exploiting Proximity in Event-Based Middleware for

Collaborative Mobile Applications," in Proceedings of the 4th IFIP International
Conference on Distributed Applications and Interoperable Systems (DAIS'03), LNCS
2893. Paris, France: Springer-Verlag, 2003, pp. 285-296.

[7] S. J. Mullender and P. M. B. Vitanyi, "Distributed Match-Making for Processes in
Computer Networks (preliminary version)," in Proceedings of the 4th Annual ACM
Symposium on Principles of Distributed Computing. Minaki, Ontario, Canada: ACM
Press, 1985, pp. 261-271.

[8] Z. J. Haas and B. Liang, "Ad-Hoc Mobility Management with Randomized Database
Groups," in Proceedings of the IEEE International Conference on Communications (ICC
1999): IEEE Computer Society, 1999, pp. 1756-1762.

[9] Y. Xue, B. Li, and K. Nahrstedt, "A Scalable Location Management Scheme in Mobile
Ad-Hoc Networks," in Proceedings of the 26th Annual IEEE Conference on Local
Computer Networks: IEEE Computer Society, 2001, pp. 102-112.

[10] J. Li, J. Jannotti, D. S. J. D. Couto, D. R. Karger, and R. Morris, "A Scalable Location
Service for Geographic Ad Hoc Routing," in Proceedings of the 6th Annual International
Conference on Mobile Computing and Networking. oston, Massachusetts, USA: ACM
Press, 2000, pp. 120-130.

[11] U. C. Kozat and L. Tassiulas, "Network Layer Support for Service Discovery in Mobile
Ad Hoc Networks," in Proceedings of IEEE INFOCOM, vol. 23: IEEE Computer Society,
2003, pp. 1965-1975.

[12] R. Hermann, D. Husemann, M. Moser, M. Nidd, C. Rohner, and A. Schade, "DEAPspace:
Transient Ad-Hoc Networking of Pervasive Devices," in Proceedings of the 1st ACM
International Symposium on Mobile Ad Hoc Networking & Computing. Boston,
Massachusetts, USA: IEEE Press, 2000, pp. 133-134.

[13] D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha, "GSD: A Novel Group Based Service
Discovery Protocol for MANETS," in Proceedings of the 4th IEEE Conference on Mobile
and Wireless Communications Networks (MWCN 2002). Stockholm, Sweden: IEEE Press,
2002.

[14] S. Helal, N. Desai, V. Verma, and C. Lee, "Konark -- A Service Discovery and Delivery
Protocol for Ad-hoc Networks," in Proceedings of the 3rd IEEE Conference on Wireless
Communication Networks (WCNC). New Orleans, USA: IEEE Press, 2002.

 Proximity-Based Service Discovery in Mobile Ad Hoc Networks 129

[15] J. Orvalho, L. Figueiredo, and F. Boavida, "Evaluating Light-weight Reliable Multicast
Protocol Extensions to the CORBA Event Service," in Proceedings of the 3rd
International Enterprise Distributed Object Computing Conference (EDOC'99).
Mannheim, Germany, 1999.

[16] B. Preiss, Data Structures and Algorithms with Object-Oriented Design Patterns in C++:
John Wiley & Sons, Inc., 1999.

[17] P. S. Wang, C++ with Object-Oriented Programming: PWS Publishing Company, 1994.
[18] R. Meier, "Event-Based Middleware for Collaborative Ad Hoc Applications," Department

of Computer Science, University of Dublin, Trinity College, Ireland, Ph.D. Thesis
September 2003.

[19] S.-J. Lee, W. Su, J. Hsu, M. Gerla, and R. Bagrodia, "A Performance Comparison Study
of Ad Hoc Wireless Multicast Protocols," in Proceedings of IEEE INFOCOM 2000. Tel
Aviv, Israel, 2000.

L. Kutvonen and N. Alonistioti (Eds.): DAIS 2005, LNCS 3543, pp. 130 – 135, 2005.
© IFIP International Federation for Information Processing 2005

Enriching UDDI Information Model with an Integrated
Service Profile

Natenapa Sriharee and Twittie Senivongse

Department of Computer Engineering, Chulalongkorn University,
Phyathai Road, Pathumwan, Bangkok 10330 Thailand

natenapa.s@student.chula.ac.th, twittie.s@chula.ac.th

Abstract. Service discovery is one key aspect in the enabling technologies for
service-oriented systems including Web Services. Growing attention has been
paid to the content of business and service descriptions to allow services to be
discovered more flexibly and accurately. This paper presents an information
model called an integrated service profile that covers aspects of Web Services,
i.e. attribute-based profile and specification-based profiles. Attribute-based
profile contains attributes that are described more easily with some values,
while specification-based profiles represent attributes whose values are com-
plex and then should be described as specifications. The specifications could
describe Web Services in terms of their semantic structure, behaviour and rules,
and composition. The paper proposes to represent these specifications by an
ontology language, and hence they can be used further to discover Web Ser-
vices semantically.

1 Introduction

The diversity of the format and content of service descriptions within a service-
oriented environment has been problematic for service consumers when looking for
available services. Standard UDDI registry for Web Services [1] attempts to stan-
dardise business and service descriptions through a set of business and service attrib-
utes. However, the attribute set is coarse and gives only preliminary information
about the service providers and the offered Web Services. Generally a search is by
matching of the name or category of Business Entities, Business Services, or tModels
against the values specified in the query, such as “ I want to find service providers in
the electronics appliance category”. The search will return some information and the
rest is left to the service consumer to browse the Web pages of those companies to
make a selection. The search does not yet support a query that is also based on se-
mantic or behavioural information such as “I want to find an online electronics shop
that sells desktop computers and is awarded Best Electronics Appliance Vendor from
the Ministry of Commerce. The store should accept Amex credit card and deliver the
computer that I have bought to my place (in Bangkok)”.

It is assumed that service providers will do their best to please service consumers,
and will try to advertise useful information as much as they can to facilitate the con-
sumers as well as to get themselves discovered easily. Our work then started with the

 Enriching UDDI Information Model with an Integrated Service Profile 131

question “What should be in a service description to allow service consumers to query
more conveniently and flexibly?” We started to survey on the service descriptions
and their contents, and the result is an integrated service profile. This profile covers
aspects of Web Services, i.e. attribute-based profile and specification-based profiles.
Attribute-based profile contains attributes that are described more easily with some
values, while specification-based profiles are associated with the attributes whose
values are complex and then should be described as specifications. The specifications
describe Web Services in terms of their semantic structure, behaviour and rules, and
composition. This paper discusses the integrated service profile and reports some
results of our study on defining and using the integrated profile.

Section 2 presents the attribute-based profile which is the result of the survey on
the contents of service descriptions and Section 3 presents the specification-based
profiles. Section 4 discusses the usage of the integrated service profile and some
related work. The paper is concluded in Section 5.

2 Attribute-Based Profile: Survey on Web Services Descriptions

A survey was conducted to find in what way the description of a Web Service could
be enriched. We gained some result from Web Services brokerage sites (such as
www.capescience.com, www.webserviceoftheday.com, www.salcentral.com, www.
xmethods.com), and we additionally looked further at the advertisements of software
components on the Internet and at the literature on software components since soft-
ware components and Web Services have similar characteristics (although there are
different points) [2]. Considering both functional and psychological needs [3], the
result of the survey is summarised in Fig. 1. (See [4] for details of the survey.) Most
of the attributes here are optional, meaning that it is recommended to declare when
applicable. The attributes that are shaded are not currently supported by standard
UDDI but they can be imported by using specialised tModels that store the attribute
values. Those that are not shaded are already supported by various parts of UDDI
information model.

Most attributes in the attribute-based profile have values that are meaningful to
service consumers (e.g. attribute Award) but those in the specification part of the
profile represent more complex information that is hard to describe as attribute values.
Therefore, each of these specification-based attributes may instead refer to (the URL
of) the corresponding specification-based profile. We are interested in representing
such profiles in a way that will enable a better service discovery, so we focus on on-
tology-based specifications (e.g. in OWL) for semantics-based discovery.

3 Specification-Based Profiles

Specification-based profiles will be derived from three upper ontologies (Fig. 2). The
structural upper ontology, adapted from [5], represents semantic or knowledge struc-
ture of a Web Service. The behavioural upper ontology, corresponding to part of
OWL-S service profile [6], represents service behaviour. The rule upper ontology
represents a business rules policy or constraints that are put on the service behaviour.

132 N. Sriharee and T. Senivongse

Fig. 1. Attribute-based profile

is-a

is-a

ha
s..

.

has...

is-a

ha
s..

.

Fig. 2. Upper ontologies for specification-based profiles

From the upper ontologies, domain experts can derive corresponding domain-
specific ontologies in order for the service providers to further derive their own pro-
files. Fig. 3(1) shows part of the structural ontology of the electronics appliance do-
main that is derived from the structural upper ontology. A service provider named
PowerBuy then derives from this structural ontology to create its own structural pro-
file in Fig. 3(2). Similarly, PowerBuy follows the behavioural ontology of the

 Enriching UDDI Information Model with an Integrated Service Profile 133

Fig. 3. Structural specification (1) Part of structural ontology for electronics appliance domain
(2) Part of structural profile of PowerBuyEshop service

electronics appliance domain in Fig. 4(1) to define its own behavioural profile (Fig.
4(2)). Note that PowerBuy has a condition ValidShippingLocation associated with its
conditional effect – ProductDelivered. This means the product will be delivered only
to some valid locations. Suppose that in this behavioural profile, ValidShippingLoca-
tion is defined as an equivalent class to the class ServiceShippingLocation which is in
the rule ontology for the electronics appliance domain (Fig. 5(1)), PowerBuy can then
create a rule profile for ServiceShippingLocation (Fig. 5(2)). The rule profile here
refers to an associated rule definition, written in ABLE rule language (Fig. 5(3)). The
rule definition says that the valid delivery locations are Bangkok and Rachaburi only.

Fig. 4. Behavioural specification (1) Behavioural ontology for electronics appliance domain (2)
Behavioural profile of PowerBuyEshop service

134 N. Sriharee and T. Senivongse

Fig. 5. Rule specification (1) Rule ontology of electronics appliance domain (2) Rule profile of
PowerBuyEshop service (3) Rule definition in ABLE rule language

4 Discussion

With the integrated service profile, a service consumer can submit a semantic query
such as the one mentioned in Section 1. The attribute-based profiles of the providers
will be searched to find ones that are in the electronics appliance domain and have
received the Best Electronics Appliance Vendor award. Then the structural profiles
of such providers will be checked if they sell desktop computers, and their behav-
ioural profiles are checked if they accepts Amex card and have a delivery service. The
qualified candidates will have their rule profiles checked further to see if they can
make a delivery to the consumer’s address. By representing the semantics of Web
Service with an ontology language, the query can also benefit from ontology reason-
ing. For example, the providers who advertise that they sell a PC would match this
query for a desktop shop, or if they advertise their effect as ProductDeliveredWithDe-
liveryCharge, they would also match the query for ProductDelivered effect. Details
of the matching algorithm and the discovery architecture that supports this integrated
service profiles and query can be found in [7].

Research work that attempts to enhance Web Services discovery mostly intro-
duces semantics for service descriptions and focuses on only one aspect of the seman-
tics. For example, UDDI version 4 is trying to incorporate an ontology-based taxon-
omy for the standard categories of Business Entity and Business Service [8]. This
effort will allow UDDI to also return businesses or services of a specialised or gener-
alised category. The work in [5] focuses on the knowledge about the service and
corresponds to the use of our structural profile. The work in [9][10] focuses on
searching by service behaviour and corresponds to the use of our behavioural profile,
but they do not consider using precondition and effect as the query constraints
whereas we do. We consider our integrated service profile closest to OWL-S effort
(especially the OWL-S Service Profile) in that a building block for rich semantic
service descriptions is developed. The behavioural profile may overlap with a part of
OWL-S Service Profile but it is enhanced by the use of the rule profile. Also, our

 Enriching UDDI Information Model with an Integrated Service Profile 135

attribute-based profile is more extensive than the attributes in OWL-S Service Profile
as it is a compilation from an empirical survey.

5 Conclusion

The proposed integrated service profile is in accordance with the Service-Oriented
Model part of the Web Services Architecture [11] in which a Web Service is mod-
elled to have information about the provider, the syntax and semantics of the service,
choreography of the tasks within the service, and a business policy. It allows service
consumers to compose more complex and comprehensive queries.

We are in the process of completing the prototype of the discovery framework that
integrates with the standard UDDI. We are researching on how to determine the de-
gree of matching and will continue to explore discovery by composition specification.

References

1. uddi.org: UDDI: Universal Description, Discovery and Integration of Web Services
(online). http://www.uddi.org

2. Yang, J.: Web Service Componentization. Communications of the ACM Vol. 46 No. 10.
October (2003) 35-40

3. O’Sullivan, et al.: What’s in a Service? Towards Accurate Description of Non-Functional
Service Properties. Distributed and Parallel Databases Vol. 12 (2002) 117-133

4. Teppaboot, C.: Attribute-Based Description Model for Distributed Services. Master The-
sis, Dept. of Computer Engineering, Chulalongkorn University (2004)

5. Trastour, D. et al.: A Semantic Web Approach to Service Description for Matchmaking of
Services. In: Proceedings of the International Semantic Web Working Symposium
(SWWS’01) (2001)

6. Martin, D. et al.: Bringing Semantics to Web Services: The OWL-S Approach. In: Pro-
ceedings of 1st International Workshop on Semantic Web Services and Web Process Com-
position (SWSWPC 2004), July (2004)

7. Sriharee, N.: Towards Semantic Discovery of Web Services Using an Integrated Service
Profile. Tech. Report, Dept. of Computer Engineering, Chulalongkorn University (2005)

8. Paolucci, M., Sycara, K.: UDDI Spec TC V4 Proposal Semantic Search (online). (2004).
http://www.oasis-open.org/committees/uddi-spec/doc/req/uddi-spec-tc-req029-
semanticsearch-20040308.doc

9. Paolucci, M. et al.: Semantic Matching of Web Services Capabilities. Proceedings of the
1st International Semantic Web Conference (ISWC 2002), Sardinia (Italy), Lecture Notes
in Computer Science, Vol. 2342. Springer Verlag (2002)

10. Sivashanmugan, K., Verma, K., Sheth, A., Miller, J.: Adding Semantics to Web Services
Standards. Proceedings of the International Conference on Web Services (2003)

11. W3C: Web Services Architecture (online). (2004). http://www.w3.org/TR/2004/NOTE-
ws-arch-20040211/

Building a Configurable Publish/Subscribe
Notification Service

C. Fiorentino�, M. Cilia��, L. Fiege, and A. Buchmann

Databases and Distributed Systems Group, Dept. of Computer Science
Technische Universität Darmstadt, Darmstadt, Germany

@dvs1.informatik.tu-darmstadt.de

cfiorent@exa.unicen.edu.ar

Abstract. The convergence of technologies and information-driven ap-
plications require a middleware that supports data streams. This middle-
ware needs to interpret, aggregate, filter and analyze streams of messages
usually in a distributed environment. Publish/Subscribe middleware ba-
sically deals with some of these issues, but it is typically monolithic and
includes only a subset of features. A problem arises when users want to
find a middleware that completely fulfills their application requirements.
Based on our experience, we propose a framework that allows the con-
figuration/adaptation of a Pub/Sub solution based on a reusable and
extensible set of components.

1 Introduction

New applications and the convergence of technologies, ranging from sensor net-
works to ubiquitous computing and from autonomic systems to event-driven
supply chain management, require middleware platforms that support the han-
dling of streams of data. In these cases, the underlying infrastructure needs to
deal with the dissemination of data in a distributed environment from where it
is produced to the destinations where consumers are located. Streaming data
needs to be interpreted, aggregated, filtered, analyzed, reacted to and eventually
disposed of. Publish/Subscribe (Pub/Sub) middleware basically deals with this
problem.

Pub/Sub is founded on the principle that producers simply make information
available and consumers place a standing request for information by issuing sub-
scriptions. The pub/sub notification service (NS) is then responsible for making
information flow from a producer (publisher) to one or more interested consumers
(subscribers). Such a notification service provides asynchronous communication,
it naturally decouples producers and consumers, makes them anonymous to each
other, and allows a dynamic number of publishers and subscribers.

� Faculty of Sciences, UNICEN, Tandil, Argentina
�� Also Faculty of Sciences, UNICEN, Tandil, Argentina

L. Kutvonen and N. Alon stioti (Eds.): DAIS 2005, LNCS 3543, pp. 136–147, 2005.
c© IFIP International Federation for Information Processing 2005

<lastname>

i

Building a Configurable Publish/Subscribe Notification Service 137

As you can imagine, there are commercial products (WebSphereMQ (formerly
MQ-Series), TIB-Rendezvous, or pure JMS) that deal with some of these issues.
In academia there are several projects that focus on one or the other issue
of interest, like efficient dissemination, addressing models, message correlation,
mobility, scalability, fault-tolerance, access control, data integration, security,
privacy protection, transactions, caching, etc.

But specific requirements of a given application may need a combination of
some of the previously mentioned aspects. For instance, a news ticker appli-
cation basically requires topic-oriented addressing, efficient data dissemination
and scalability, but does not include transaction support. On the other side,
supply-chain management based on the AutoID Infrastructure requires content-
based addressing, transactions, security, fault-tolerance, data integration and
scalability, while other aspects like access control or caching are optional. Today
no product does offer all features. Moreover, these products are often hardly
extendible so that missing features cannot be added to fulfill all application
requirements.

Based on our own experience in building notification services [16, 26, 25] and
specific features for them [5, 10, 11, 4, 1, 3] and the experience of others [20, 21, 22,
23, 14, 7, 27], we develop a framework for building pub/sub notification services.
It facilitates the combination of required features in a notification service, and as
a result the middleware is ‘shaped’ towards application requirements. This offers
us a testbed where different ideas can be experimented and proven together with
other approaches.

In Section 2 we present the basic idea behind pub/sub notification services
including an overview of related projects in this area, and we also include re-
lated work on service-based infrastructures. Section 3 enumerates the system
requirements and sketches our proposal. In Section 4 we present our main de-
sign decisions including architecture, interfaces, and pre-defined components.
Section 5 briefly describes the deployment strategy together with the runtime
environment. Section 6 presents our conclusions and future work.

2 Background and Related Work

In a notification service there are different participants: applications, which basi-
cally produce and/or consume messages, and brokers, which help to disseminate
messages across the network between producers and consumers. Each broker
maintains a routing table that determines in which directions a message needs
to be forwarded. This table needs to be maintained up-to-date with respect to
active consumers and their subscriptions. We basically distinguish three types
of brokers: local brokers constitute the clients’ access point to the middleware
and they are usually part of the communication library loaded into the clients.
A local broker is connected to at most one border broker. Border brokers form
the boundary of the distributed communication middleware and maintain con-
nections to local brokers. Inner brokers are connected to other inner or border
brokers and do not maintain any connections to the applications.

138 C. Fiorentino et al.

In recent years, academia and industry have concentrated on publish/subscribe
mechanisms because they offer loosely coupled exchange of asynchronous notifi-
cations, facilitating extensibility and flexibility. These approaches have evolved
from restricted channels to more flexible subscription mechanisms. For instance,
subject-based addressing [17] define a uniform name space for messages and
their destinations. Here, to every message a subject is attached in order to find
matchings with subscriptions, also expressed with subjects.

To improve expressiveness of the subscription model the content-based ap-
proach was proposed where predicates on the content of a notification can be
used for subscriptions. This approach is more flexible but requires a more com-
plex infrastructure [2]. Many projects in this category (like Rebeca, Siena, JEDI,
Gryphon) concentrate on scalability issues in wide-area networks and on efficient
algorithms and techniques for matching and routing notifications to reduce net-
work traffic [18, 15, 8]. Most of these approaches use simple Boolean expressions
as subscription patterns and assume homogeneous name spaces.

More recently a new generation of publish/subscribe systems built on top of
an overlay network has emerged. These systems mostly pursue wide-area scala-
bility based on a topic-oriented addressing model. This is the case of Scribe [23]
which is implemented on top of Pastry [22]. The mapping of topics onto multicast
groups is done by simply hashing the topic name. Hermes [20] uses a similar ap-
proach but tries to get around the limitations of topic-based publish/subscribe by
implementing a so-called “type and attribute based” publish/subscribe model.
It extends the expressiveness of subscriptions and aims to allow multiple inher-
itance in event types. A content-based addressing on top of a dynamic peer-to-
peer network was proposed in [26, 25] where the efficient routing of notifications
takes advantage of the topology graph underneath. This work combines the high
expressiveness of content-based subscriptions and the scalability and fault toler-
ance of a peer-to-peer system.

Most of the projects mentioned above are monolithic and they provide a static
set of features. Few of them are in some sense extensible while the extensions
are hard to develop. What is needed is the possibility to easily combine features
in order to completely fulfill application requirements. This can be achieved if
pub/sub notification services are built based on extensible set of components
that rely on an appropriate architecture/infrastructure. The main requirements
of such an infrastructure include: components’ life-cycle management, remote
and easy deployment, configurability, manageability, and monitoring capabilities.
Component containers founded on the principles of inversion of control [13] fulfill
some of these requirements.

Pico-Container is a small, light weight container but it does not provide com-
ponents’ management nor runtime configuration. DustDevil (a limited container
implemented in Bamboo) is also light weight and has a nice desired communica-
tion structure but does not cover most of the previously mentioned requirements.
JMX (Java Management eXtension) [24] is a little complex to use and heavy
weight (not specially suited for small devices). OSGi (Open Services Gateway
Initiative) [19] offers a container and management environment for managing

Building a Configurable Publish/Subscribe Notification Service 139

service life-cycle. Services are bundles, JAR files, which contain classes and a
configuration file. OSGi has a small footprint and is compliant with the J2ME
specification. OSGi itself is built as configurable set services.

3 A Pub/Sub Notification Service Framework

3.1 System Requirements

Based on our own experience on building notification services [16, 26, 25, 5, 10, 11,
4, 1, 3] and the experience of others [20, 21, 22, 23, 14, 7, 27] we shortly enumerate
here the main requirements that, from our perspective, need to be included in
the resulting system.

As in every framework, reusability is an issue. Here, in particular, we want
to reuse a predefined set of specific functionality, like serlialization of mes-
sages, routing algorithms, or topology-related strategies. But also extensibility
in the sense of adding new features plays a fundamental role since optimiza-
tions and new routing strategies appear frequently. As notification services are
usually distributed in a network of brokers, easy and remote deployment is a
key factor. Moreover, in such a distributed NS manageability and monitoring
capabilities are required in order to tune parameters or replace components if
needed.

In most cases the user wants the resulting NS to be efficient and scalable.
The possibility to allow the user to find a trade-off between these two factors
is desired. Additionally, the possibility to build an adaptable NS where load-
or fault-related adaptations can be managed. In many cases, the underlying
infrastructure needs to run diverse and concurrent notification services just to
fulfill the requirements of diverse applications, resulting on a unreasonable use
of resources. This leads to an approach where the rational use of resources needs
to be taken into account.

3.2 Proposed Approach

We want to provide a framework to build pub/sub notification services according
to applications’ requirements, selecting from a set of predefined NS character-
istics like the underlying NS topology, routing strategies, message serialization
and also defining other features like how to deal with failures, caching, secu-
rity or access control. The resulting NS must be easily deployable. According to
this, our goal is to offer an environment that supports the development of the
application in question in the following three steps which are also sketched in
Figure 1.

1. Based on the application requirements, the set of functions and mechanisms
are selected from a pre-established component framework. These components
can be simply extended by following clearly established interfaces. Selected
components plus some Quality of Service (QoS) decisions are introduced
through a configuration tool. After a generate operation, the desired building
blocks are ready for the next phase.

Services
QoS

User

Framework

(2)

NS Deployment

(1)

NS specification

(3)

NS ManagementNS

NSNS

elementary building blocks
resulting NS

NS

deployment
tool

Fig. 1. Our Approach

2. The resulting NS is deployed by means of a deployment tool.
3. After the NS is deployed on the desired nodes, they can be monitored allow-

ing calibration and tuning of the whole service where QoS parameters can
be influenced.

4 Design Decisions

We have first analyzed and identified possible interactions among elementary
building blocks of functionality based on a study that considered the projects
mentioned in the related-work section [12]. We then grouped those blocks, what
we call here components, according to their functionality and interaction pat-

Routing Layer

Topology Layer

Network Layer

Broker Layer

M
an

ag
em

en
t

Application Layer

Fig. 2. High-level Architecture

140 C. Fiorentino et al.

Building a Configurable Publish/Subscribe Notification Service 141

terns. This analysis led us to a layering architecture. Figure 2 shows an overview
of the architecture.

Based on the analyzed interaction patterns, we have defined the interfaces
between layers. The communication among layers and components can be syn-
chronous or asynchronous. Messages can be passed between layers as events by
using the corresponding layer interface.

As it was mentioned before, a pub/sub NS relies on a distributed network of
nodes that cooperate. The way this network is modelled has an enormous im-
pact on the design of the infrastructure. For this reason, we assume an Overlay
network which can be seen as the most generic case, where main characteris-
tics of P2P (like self-organization and healing, robustness, load balancing, and
scalability) are considered. Nevertheless, the static tree approach can still be
modelled as a restricted overlay that does not offer such characteristics, since
the nodes are simply static. Founded on [6] and our own experience we have
defined a common overlay interface that condenses the kernel functionality of
different overlay networks.

From the runtime perspective we focus our approach on a ‘distributed’ run-
time environment that serves as a container for the resulting NS. This environ-
ment should support remote deployment and management, and also monitoring
capabilities on the running NS.

The functionality to manage the whole system is orthogonal to the main stack
of layers.

4.1 Interfaces

The design of a common set of interfaces between layers was crucial. They make
possible to add and change functionality in every layer with minimal impact (if
any) on others components.

Because of the nature of the system we are building (which is basically mes-
sage passing), we can not restrict to synchronous interactions. Consequently, we
provide two different kinds of interfaces1. Within the asynchronous interfaces we
apply an event interaction. These interfaces are divided between pair-of-layers
messages (also distinguishing between upwards and downwards) and connection-
related messages. Figure 3 sketches the asynchronous interactions that may hap-
pen between layers.

Synchronous interfaces define a direct communication between layers and
components. They are basically defined with the purpose to get or set state of
components (in the same or neighbor layers), and also to get/set configuration
parameters by the management functionality.

4.2 Components’ Overview

In this section the responsibility of every layer is presented accompanied with a
description of possible components at each corresponding layer.

1 Due to space reasons we cannot present the complete definition of all interfaces.

142 C. Fiorentino et al.

U
pd

at
e

(N
i)

D
el

iv
er

(R
m

)

Fo
rw

ar
d(

R
m

)

newEvent(ev)

N
ew

E
ve

nt
(e

v)

U
pd

at
e(

N
i)

Update(Ni)

R
ec

ei
ve

(T
m

)

read()

R
ou

te
In

it(
R

m
,k

)

R
ou

te
C

on
t(

R
m

,k
)

write()

B
rC

on
nR

eq
(B

r,
D

)

B
rC

on
nt

R
es

(c
on

)

B
rC

on
nC

on
f (

co
n)

B
rC

on
nI

nd
(B

r)

Topology

Network

Routing

Broker

Se
nd

(T
m

,D
)

Update(Ni)

(u
n)

ad
v(

ad
v)

N
od

eC
on

nR
es

(N
i)

N
od

eC
on

nI
nd

(N
i)

E
rr

or
(e

rr
)

errorDet()

N
od

eC
on

nR
eq

(N
i)

N
od

eC
on

nI
C

on
f(

N
i)

U
pd

at
e(

N
i)

(u
n)

su
b(

su
b)

no
tif

(e
v)

(u
n)

su
b(

su
b)

pu
b(

ev
)

cr
ea

te
/d

el
pu

b(
pu

bT
yp

e)

cr
ea

te
/d

el
su

b(
su

bT
yp

e)

no
tif

(e
v)

(un)adv(adv)

-Tm: Topology message
-Rm: Routing message
-Bm: BrokerMessage
-K: Key of destination
-D: Destination address
-Ni: Node info

: event

: routine

: shot event

Application

Fig. 3. Interfaces

Network Layer: Since this layer is at the bottom of the stack, its responsibility
is oriented to the mediation with the physical network. On one side, messages
coming from the topology layer need to be serialized and transmitted to a specific
network address by using a determined protocol. On the other side, incoming
messages from the protocol-side need to be de-serialized and passed to the upper
layer. In this layer, different components can be used in order to apply diverse
serialization or compression approaches and even different protocols.

Topology Layer: The main responsibility of this layer is to maintain the status
information of the overlay up-to-date considering, for instance, dynamic changes
like node joins and leaves, or errors. These situations must generate management
events that need to be handled accordingly. Possible components within this layer
are:

– DHT: is a specific kind of overlay network (bases on Distributed Hash Ta-
bles) that provides self-stability (dealing with failures and dynamic changes
on the participant nodes), high scalability, good distributed object location
in wide-area peer-to-peer applications, like Pastry and Bamboo.

– Static tree: is the simplest case of overlay networks. It is conformed as a
static set of nodes, with fixed network physical addresses.

– Channels: may be defined as a dynamic set of paths, through which mes-
sages are transmitted. They can be thought as shortcuts within the network
(reaching more directly different destinations). This improves performance
and organization. This component can be combined with other components
within the same layer.

Building a Configurable Publish/Subscribe Notification Service 143

Routing Layer: This layer performs the main message routing decisions. Ac-
cording to the addressing model, it must decide where to transmit specific events.
Here, subscriptions, publications and advertisings are differentiated to decide
when to change routing tables and transmit messages. The Routing Layer ba-
sically maintains message destinations according to the available subscription
information. The destinations types may vary with respect to the selected ser-
vice, for example they may be specific node addresses or just DHT keys. Within
this layer, diverse components applying different routing strategies can be used,
like the ones mentioned below:

– Traditional (Rebeca) routing algorithms [16], like Flooding, Simple Routing,
Identity Routing, Covering, or Merging.

– P2P routing algorithms, like Bit Zipper, or the P2P approach presented in
[11].

– The Ants approach [14], where the routing strategy is based on real ant
behavior. This was simply traduced to a message routing algorithm that
first floods the broker network, and then fills routing tables (according to
some probabilities) to better route messages.

– The use of Scopes [9] which is an interesting routing strategy based on a
selection criteria to restrict/group the set of message destinations.

Broker Layer: This broker basically offers the Pub/Sub functionality to the
application layer. Additionally, it handles client and broker connections and
message filtering. In general most events like subscriptions and notification reach
this layer to be treated. Nevertheless, not all messages reach this layer due to

Fig. 4. Layers and components

144 C. Fiorentino et al.

shortcuts in the lower layers Event correlation filters are handled at this layer.
As mentioned before, brokers are classified on a) inner brokers, that manage
the connections to other brokers and can apply correlation filters to the flow of
messages b) border brokers, that handles connections with clients (which may
offer, for instance, a store and forward functionality) and c) local broker, that
basically manages the pub/sub interactions between the border broker and the
client.

Application Layer: This layer is the one that includes application’s logic re-
lated to NS usage. It accesses the NS by calling the pub/sub interface always
on the broker layer. There may be at least two typical cases where this layer
is used. The first one is in the case of P2P applications where the application
is also a peer that runs broker functionality (see Figure 4). The other case is
characterized by applications acting as a pure end consumer and/or producer of
messages. They are not in charge of routing messages since they delegate this
task to the corresponding border broker. In this particular case, the topology
and routing layers are empty.

4.3 Services

Combining components from different layers is not trivial and there are obvi-
ously combinations that are inadequate. Dependencies among components are
also represented within the framework. The combination of components crossing
all layers is called here a service. Different services (or NS instances) can run
concurrently within a single runtime environment. Moreover, and with the pur-
pose of better using resources, a single component in a layer may serve various
services within the same runtime environment.

In Figure 4 two services that bundle different components across layers is
presented. ServiceA represents the BitZipper approach [25] relying on P2P in-
frastructure by using a UDP network connection component. On the other hand,
ServiceB is characterized by a Rebeca routing strategy [16] relying on a tree
topology combined with the use of channels and a traditional TCP network
connection.

5 Deployment and Runtime

As can be clearly seen from the interfaces (Figure 3), they basically model three
main roles within NS participants. The upward flow of data (left-side of the
figure) basically represents consumers of messages, since messages are injected
from the network layer and they leave the stack at the top (application layer).
The downward flow (right-side of the figure) characterizes producers of messages
since the flow begins at the top of the stack (application layer) and leaves it at
the bottom. The third case basically combines the previous two cases and it is
characterized by participants that act as brokers within the NS network. This is
clearly visible in the figure by the upward flow (up to the broker layer) and the

.

Building a Configurable Publish/Subscribe Notification Service 145

downward flow (up to the network layer) forming an inverted U. The picture also
shows possible shortcuts within this flow representing routing optimizations. It
must be noticed that NS participants can play just one of these roles or simply
all roles simultaneously.

The identification of these flows within the layered architecture leads us to
apply another idea for deployment purposes. We adopted a solution that is based
on subscribing to components (instead of subscribing to certain messages) that
offer certain features. This ends up with a pipeline of components, defining a
straight communication between layers.

According to the specified service, a sequence of components can be built
which basically represents the previously mentioned flow of messages. Depending
on the roles established for participants, different sequences can be built for that
purposes. At deployment-time, we build then pipelines of components (with
limited control flow just to skip some of them if necessary) that basically process
messages. This pipeline is ready to be deployed on a runtime environment.

We have selected OSGi as the runtime platform for our implementation. It
offer most of our required functionalities: components life cycle management and
remote configuration and deployment, it is light weight and easy to use.

Installing a whole NS is simple by relying on the OSGi platform. We obtain
the desired NS as a file that contains all necessary components (in the form of
service bundles). With this, the deployment of the NS can be performed (locally
or remotely). After deployment, any component can be started and monitored.
The system supports dynamic updates of new installed functionalities, gaining
flexibility and runtime configurability.

6 Conclusions

We have presented in this paper a framework that allows system engineers to
bundle components to satisfy a set of notification service requirements. The lay-
ered architecture of building blocks helps to understand, organize, and build no-
tification service. This bundle is then deployed in our runtime environment that
controls component life-cycle and offers monitoring capabilities that allow tun-
ing and adaptation of the resulting NS. The presented solution covers pub/sub
NSs that range from a light weight single purpose static NS to multi-broker, dy-
namic, remotely manageable NS. The decision of relying on an abstract overlay
network simplifies the unification of different topology approaches.

Our solution for building pub/sub NSs can be used as a testbed for improve-
ments on routing algorithms and other ongoing research projects. By having
reusable components at hand, it is easy to pick the functionality you require for
your experiments and also for probing these ideas under diverse NS constella-
tions.

We have not (fully) automated the process of searching and selecting compo-
nents from a repository. This is part of our ongoing work. Another pending task
is a performance analysis comparing native pub/sub notification services like Re-
beca, Hermes or BitZipper with their implementation based on our framework.

s

146 C. Fiorentino et al.

References

1. Jose Antollini, Mario Antollini, Pablo Guerrero, and Mariano Cilia. Extending
rebeca to support Concept-Based addressing. In In Proceedings of the Argentinean
Symposium on Information Systems (ASIS’04), Cordoba, Argentina, September
2004.

2. A. Carzaniga, D. R. Rosenblum, and A. L. Wolf. Challenges for Distributed
Event Services: Scalability vs. Expressiveness. In Engineering Distributed Objects
(EDO’99), Los Angeles, CA, May 1999.

3. M. Cilia, C. Bornhövd, and A. Buchmann. CREAM: An Infrastructure for Dis-
tributed, Heterogeneous Event-based Applications. volume 2172 of LNCS, Italy,
November 2003. Springer.

4. Mariano Cilia, Mario Antollini, Christof Bornhvd, and Alejandro Buchmann. Deal-
ing with heterogeneous data in pub/sub systems: The Concept-Based approach.
In International Workshop on Distributed Event-Based Systems (DEBS’04), Edin-
burgh, Scotland, May 2004.

5. Mariano Cilia, Ludger Fiege, Christian Haul, Andreas Zeidler, and Alejandro Buch-
mann. Looking into the past: Enhancing mobile publish/subscribe middleware. In
Proceedings of the 2nd International Workshop on Distributed Event-Based Sys-
tems (DEBS’03), San Diego, California, June 2003. ACM Press.

6. Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion Stoica. To-
wards a common api for structured peer-to-peer overlays. In Proceedings of the
2nd International Workshop on Peer-to-Peer Systems (IPTPS03), Berkeley, CA,
February 2003.

7. Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. The Many Faces of Publish/Subscribe. ACM Computing Surveys, 35(2):114–
131, 2003.

8. F. Fabret, F. Llirbat, J. Pereira, A. Jacobsen, K. Ross, and D. Shasha. Filtering
Algorithms and Implementation for Very Fast Publish/Subscribe. pages 115–126,
2001.

9. L. Fiege, M. Mezini, G. Mühl, and A.P. Buchmann. Engineering Event-Based
Systems with Scopes. In Proc. of ECOOP’02, volume 2374 of LNCS, 2002.

10. Ludger Fiege, Felix C. Grtner, Oliver Kasten, and Andreas Zeidler. Supporting mo-
bility in Content-Based publish/subscribe middleware. In ACM/IFIP/USENIX In-
ternational Middleware Conference (Middleware 2003), pages 103–122, June 2003.

11. Ludger Fiege, Andreas Zeidler, Alejandro Buchmann, Roger Kilian-Kehr, and Gero
Mhl. Security aspects in publish/subscribe systems. In Third Intl. Workshop on
Distributed Event-based Systems (DEBS’04), May 2004.

12. Cristian Fiorentino. Building a configurable notification service (under prepara-
tion). Master’s thesis, Faculty of Sciences, UNICEN, Tandil, Argentina, April
2005.

13. Martin Fowler. Inversion of control containers and the dependency injection pat-
tern. http://martinfowler.com/articles/injection.html, January 2004.

14. M. Gunes, U. Sorges, and I. Bouazzi. Ara – the ant-colony based routing algorithm
for manets, 2002.

15. G. Mühl, L. Fiege, and A.P. Buchmann. Filter Similarities in Content-Based Pub-
lish/Subscribe Systems. In Proc. of ARCS, volume 2299 of LNCS, 2002.

16. Gero Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis,
Darmstadt University of Technology, Germany, September 2002.

Building a Configurable Publish/Subscribe Notification Service 147

17. B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Information Bus – An Architecture
for Extensible Distributed Systems. In Proceedings of the 14th Symposium on
Operating Systems Principles (SIGOPS), pages 58–68, USA, December 1993.

18. Lukasz Opyrchal, Mark Astley, Joshua Auerbach, Guruduth Banavar, Robert
Strom, and Daniel Sturman. Exploiting IP Multicast in Content-based Publish-
Subscribe Systems. volume 1795 of LNCS, pages 185–207. Springer, 2000.

19. OSGi Alliance. The OSGi Service Platform. Technical report, July 2002.
20. Peter Pietzuch and Jean Bacon. Hermes: A distributed event-based middleware

architecture. In J. Bacon, L. Fiege, R. Guerraoui, A. Jacobsen, and G. Mühl,
editors, In Proceedings of the 1st International Workshop on Distributed Event-
Based Systems (DEBS’02), July 2002.

21. Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling churn
in a DHT. In Proceedings of the 2004 USENIX Annual Technical Conference
(USENIX ’04), Boston, Massachusetts, June 2004.

22. Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. Lecture Notes in Computer
Science, 2218, 2001.

23. Antony I. T. Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Dr-
uschel. SCRIBE: The design of a large-scale event notification infrastructure. In
Networked Group Communication, pages 30–43, 2001.

24. Sun Microsystems. Java Management Extensions. White paper, 1999.
25. Wesley W. Terpstra, Stefan Behnel, Ludger Fiege, Jussi Kangasharju, and Alejan-

dro Buchmann. Bit zipper Rendezvous—Optimal data placement for general P2P
queries. In EDBT 04 Workshop on Peer-to-Peer Computing & DataBases, 2004.

26. Wesley W. Terpstra, Stefan Behnel, Ludger Fiege, Andreas Zeidler, and Alejan-
dro P. Buchmann. A Peer-to-Peer approach to Content-Based publish/subscribe.
In In Proceedings of the 2nd International Workshop on Distributed Event-Based
Systems (DEBS’03), June 2003.

27. Matt Welsh, David E. Culler, and Eric A. Brewer. SEDA: An architecture for
well-conditioned, scalable internet services. In Symposium on Operating Systems
Principles, pages 230–243, 2001.

L. Kutvonen and N. Alonistioti (Eds.): DAIS 2005, LNCS 3543, pp. 148 – 156, 2005.
© IFIP International Federation for Information Processing 2005

Protocol Reconfiguration Using Component-Based
Design

Fotis Foukalas, Yiorgos Ntarladimas, Aristotelis Glentis, and Zachos Boufidis

Communications Network Laboratory,
Department of Informatics and Telecommunications,

University of Athens, Ilisia Campus 157 84,
Athens, Greece

{foukalas, yiorgos, arisg, boufidis}@di.uoa.gr
http://cnl.di.uoa.gr

Abstract. Previous modular protocol design and implementation allow a flexi-
ble configuration and reconfiguration of protocol layers or full protocol stacks.
However, in our days, software engineering technologies introduce new meth-
ods for designing and specifying modular software. Such a technology is the
component-based software technology. Using those techniques, a software sys-
tem could be modular. This paper proposed a reconfigurable protocol design
and specification approach as well as a protocol reconfiguration manage-
ment/runtime model based on protocol components that represent distinct pro-
tocol functions, which in previous works have been designed and specified as
modules. The following content could be considered as a suggestion for a UML
profile for protocol components and protocol reconfiguration.

1 Introduction

This document is an attempt to introduce a UML profile for protocol components and
how protocol reconfiguration can be achieved using component-based software de-
sign methods. The objective of this paper is the definition of the protocol component
data model and the protocol component management model for reconfiguration pur-
poses. The protocol component data model is the preclusive step that defines the
stereotypes for modeling, specifying and implementing protocols as components. It is
obvious that a protocol reconfiguration presupposes a reconfigurable way to design
and specify communication protocols. Considering components as modular unit ver-
sus modules, we avoid the probability that a component will not include its manifesta-
tion in order to be replaced within its environment. The new component definition
and specification, defined in UML 2.0, permits the component concept to be used to
describe component designs or implementations, without losing the ability to describe
deployment information [4].

In addition, the component-based design is one of the key enabling technologies for
designing reconfigurable software. This design method supports the compositional
adaptation approach of software systems that can be modified dynamically in terms of
its structure and behavior [7]. The compositional adaptation of a software system is

 Protocol Reconfiguration Using Component-Based Design 149

not just enabled for tuning software variables, like the parameter adaptation approach,
but in contrast, enables the dynamic recomposition of the software during execution,
for example to switch software components in and out of memory, or to add new
behavior to deployed systems. Component-based design supports two types of com-
position the static composition and the dynamic composition. The second composition
method is relied on late binding programming technique, which enables coupling of
compatible components at runtime. It may be remarked that the dynamic composition
is the only way in which a software engineer can add, remove or reconfigure compo-
nents at runtime, although this method’s flexibility can be constrained in order to
ensure the system’s integrity across adaptation.

The intention of this paper is to introduce the concept of protocol components and
their reconfiguration that depend on the components and composite structures pack-
ages as well as the state machines package from infrastructure and superstructure
specification of UML 2.0 [4][5]. In this direction, some steps for the component-
based protocol design and specification have been identified [8]. Moreover, compo-
nents for the physical and data link layer have been introduced by OMG for radio
communications [9]. Related works also have introduced modular approaches for the
design and implementation of protocol functions [1][10]. Moreover, an architecture
that allows dividing protocol function into components using component-based soft-
ware engineering and particularly the EJB Component Model has been addressed
[11]. Considering the above-mentioned works and also the UML 2.0 specification, we
are introducing the UML extension for protocol design and specification as well as
reconfiguration management using the component classifier. A component-based
design approach is the way to achieve a dynamic reconfiguration of communication
protocols.

The rest of this document is organized as follows: In Section 2, we introduce the
protocol component concept and definition and also a case study for implementing a
protocol function as protocol component. Section 3 describes the protocol reconfigu-
ration management model introducing the protocol component reconfiguration con-
cept and also a user model for a MOF layer 0 protocol reconfiguration management
model. In this section also is introduced the protocol manager as the entity for man-
aging the protocol reconfiguration process. Section 4 discusses the protocol stack
issues and how a stack can be constructed using protocol components and what are
the requirements for a protocol stack reconfiguration. In addition, some future per-
spectives of our work are addressed. The last section of this paper is devoted to sum-
mary and conclusions.

2 Protocol Functions as Components

2.1 Protocol Component Definition

The idea for mapping protocol functions into modular software units has already
introduced [1][3][10]. Protocol functions have already recognized as much as possible
generic like the flow control, error control, segmentation/reassembly that represent

150 F. Foukalas et al.

well-known protocol functions. However, these generic protocol functions consist of
more concrete protocol functions. For instance, error control protocol function con-
sists of error correction, error detection and retransmission protocol functions as well
as flow control consists of window-based and rate-based protocol functions [2].
Moreover, using different protocol mechanisms can specify protocol functions. Proto-
col mechanisms are like traditional protocol specifications: they have a unique name
and they define the rules governing data transfer from one service user to its peer and
handling of payload and control information [1]. On the other hand, in UML 2.0 the
component concept has been clarified to be more definite and meaningful throughout
the development life cycle. The UML 2.0 specification defines the component as a
modular part of a system that encapsulates its contents and whose manifestation is
replaceable within its environment [4][5]. Considering all the above features of com-
munication protocols as well as the capabilities of component to be modulated, we
have designed the following diagram (Fig. 1) that defines the protocol component
concept.

Component
(from Components)

ConnectableElement
(from InternalStructures)

ProtocolComponent

ProtocolFunction

ProtocolMechanism

* 1

+communicationRole

*

{subsets role}

1

1

*

+type 1

*

Fig. 1. Protocol Component definition

It has been recognized that a protocol mechanism consists of a sending and a re-
ceiving part, e.g., segmentation and reassembly, or the sending and receiving part of
automatic repeat request (ARQ) [1]. ProtocolMechanism references protocol compo-
nents, which can represent two definite roles the sender and/or receiver that instances
play in this protocol mechanism. Therefore, the ProtocolComponent has a communi-
cation role in a protocol mechanism. Each ProtocolComponent represents the sender
or the receiver role in a communication protocol mechanism. A protocol component
can implement only one protocol mechanism and a protocol mechanism can be im-
plemented by different protocol components. An example of protocol mechanism and
protocol component association is given in the following paragraph.

Moreover, each protocol mechanism specifies only one protocol function and on
the other hand each protocol function could be specified by several protocol mecha-
nisms. The type association role defines the type of protocol function that the protocol
mechanism specifies. Regarding the parents of ProtocolComponent, have been se-
lected the Component from Components package and the ConnectableElement from
InternalStructures package [4]. The parent Component indicates a protocol compo-

 Protocol Reconfiguration Using Component-Based Design 151

nent as a kind of component since we have already envisioned a protocol component
as a software unit that can be replaced within its environment. The parent Connect-
ableElement expresses a protocol component as a kind of connectable element that
can be communicated with another instance through a network connection or some-
thing more simple as a pointer in case that the protocol component connects with
another protocol component in the same node to form a protocol component stack.
The following subsection gives an example of protocol mechanism specification us-
ing the extension in UML 2.0 for protocol components.

2.2 Protocol Component: A Case Study

In Fig.1 is illustrated the protocol components data model. The protocol components
data model defines the basic stereotypes needed for the protocol design and specifica-
tion using component-based software engineering methods and their associations with
UML 2.0. In case that a protocol engineer needs to design and specify a protocol
using protocol components, a question will be raised. What is the granularity of pro-
tocol functions and protocol mechanisms? It has been already recognized that the
finer the granularity of protocol functions, the higher the number of different configu-
rations and the higher the flexibility [1]. For instance, using a final granular approach
could be specified an error detection protocol function that is a fine granular form of
error control protocol function. In sequence, the error detection protocol function can
be specified by a feedback error control mechanism, which finally can be imple-
mented by a protocol component instance [2]. An example of the protocol component
model for the fine granular protocol function error detection is depicted in the

fdbackECfdbackEC

fdbackEC_SfdbackEC_S

fdbackEC_RfdbackEC_R

FeedbackErrorControlFeedbackErrorControl

sendersender receiverreceiver
«ProtocolComponent»

fdbackECfdbackEC

fdbackEC_SfdbackEC_S

fdbackEC_RfdbackEC_R

FeedbackErrorControlFeedbackErrorControl

sendersender receiverreceiver
«ProtocolComponent»

ErrorDetection
<<ProtocolFunction>>

fdback_EC_S
<<ProtocolComponent>>

FeedbackErrorControl
<<ProtocolMech anism >>

1

*

+errorDetection1

*

specifies

1

+sender

1

 a) b)

Fig. 2. a) Protocol Component Model for the error detection protocol function, - b) Protocol
Mechanism Collaboration Diagram

ing figure (Fig. 2a). However, for a full specification of protocol mechanism a
follow -

152 F. Foukalas et al.

collaboration diagram is needed in order to depict the communication role of the pro-
tocol component. The Fig. 2b depicts the collaboration diagram of error detection
protocol mechanism and the roles of the protocol component instances. It is useful to
denote that a protocol component could be developed implementing both the sending
and receiving part [1]. In our case the fdback_EC_S protocol component implements
only the sending part.

3 Protocol Components Management Model

3.1 Protocol Reconfiguration Management/Runtime Model

Protocol reconfiguration has been defined as the replacement of a component by an-
other component that implements the same protocol mechanism [1]. According to
3GPP definition, reconfiguration is the rearrangement of the parts, hardware and/or
software that make up the 3G network [15]. From the software engineering side, dy-
namic reconfiguration means the ability of code to be introduced at runtime [7]. Con-
sidering all the above definitions we define the dynamic reconfiguration as the proc-
ess of the replacement/rearrangement of system parts which indeed must be per-
formed at runtime. Taking into account this definition we are introducing the follow-
ing diagram (Fig. 3) that represents the protocol reconfiguration management/runtime
model. The management model is an active runtime entity that is dealing with (man-
aging) data. The base data has been introduced in the previous section.

ProtocolComponent

ProtocolComponentState ProtocolHeader

ProtocolComponentContext
1*

+reconfiguration

1*

1

1

+currentState
1

1

1

1

+protocolContext1

1

ReconfigurableProtocolComponent ProtocolManager*

1

+reconfiguredProtocolComponent

* +protocolMngr
1

ProtocolStateMachine
(f rom Proto col State Machi nes)

Fig. 3. Protocol Reconfiguration Management/Runtime Model

The context of the protocol component has been defined as the runtime entity that
is going to be forwarded to the new component. The ProtocolComponentContext
constitutes the reconfiguration of the ProtocolComponent. The association between

 Protocol Reconfiguration Using Component-Based Design 153

the protocol component context and the component itself is 1:n since a protocol com-
ponent context can be forwarded in numerous protocol components that implement
the same protocol mechanism. The protocol component context is composed by pro-
tocol control information, actually, the header of the particular protocol data unit and
the current state of the protocol component that is running. The ProtocolComponent-
State is a kind of ProtocolStateMachine of StateMachines package [4]. Furthermore,
in order to provide the ability for a protocol reconfiguration in a protocol software
environment, we have introduced the interface ReconfigurableProtocolComponent,
which provides all these operation for reconfiguration management. Through this
interface a ProtocolManager can manage the reconfiguration process.

An example of protocol reconfiguration management user model, according to
MOF layers, using the protocol components stereotypes and the protocol reconfigura-
tion management model could be the following diagram (Fig. 4). This is based on
dynamic protocol configuration and reconfiguration concept that has been introduced
in document [1]. The Ifdback_EC_S is the unified interface of the protocol component
provided for reconfiguration purposes. The operations of this interface enable to get
and set the protocol context in order to reconfigure the protocol. There is also an init
operation for the initialization of the protocol component with the appropriate proto-
col component context. Moreover, the interface for reconfiguration provides an opera-
tion for retrieving protocol component statistics for example the number of detected
errors in a receiving CRC module. This last operation is provided for monitoring
purposes and not for the realization of protocol component performance. At the mo-
ment, we are not going into details for protocol manager capabilities to select protocol
components. Nevertheless, the following text encompasses a brief list of protocol
manager capabilities in order to support the reconfiguration process.

fdback_EC_S
<<ProtocolComponent>>

Ifdback_EC_S

init(pContext : ProtocolComponentContext, pComponent : ProtocolComponent) : ProtocolComponent
get_context() : ProtocolComponentContext
set_context(pComponent : ProtocolComponent) : void
statistics(pComponent : ProtocolComponent) : void

<<ReconfigurableProtocolComponent>>

protocolMngr
<<ProtocolManager>>

+errorDetection

Fig. 4. Reconfigurable Protocol Component

3.2 The Protocol Manager

The need for introducing the protocol manager has been raised since an entity for the
following management procedures is necessary:

154 F. Foukalas et al.

- A protocol manager must provide an efficient runtime environment for pro-
tocol configuration and reconfiguration.

- A protocol manager must link, initialize, and release protocol components,
synchronize parallel components, and forward packets within stack of proto-
col components.

- A protocol manager must monitor the properties of protocol components
- A protocol manager must be enabled to realize protocol performance in or-

der to decide the substitution between protocol components implemented the
same protocol mechanism.

- A protocol manager must be enabled to map the requirements for protocol
stack reconfiguration in the appropriate protocol selection and composition

However, the above-mentioned functionality is not an exhaustive list of protocol
manager functionality. In addition, the protocol manager is envisioned as the entity
that provides the time and storage management of the needs of a protocol component
instance. The protocol manager will be also the entity that can parse the protocol
component graph of a particular protocol stack. In the following section, we are dis-
cussing the requirements for a protocol component composition and selection and
what they represent for a protocol reconfiguration.

4 Discussion

4.1 Requirements for Protocol Stack Reconfiguration

In most cases, the need for a reconfiguration process, in a modular software system, is
being satisfied according to application requirements. In our case, a modular software
system is the protocol stack of reconfigurable equipment [13]. A protocol stack recon-
figuration has been considered as a reconfiguration process, which reconfigures a
protocol or the stack as a whole, according to application requirements. The protocol
stack is considered as protocol component graph that is composed by protocol com-
ponents. Each protocol component implements a specific protocol mechanism re-
quired for the satisfaction of application requirements [1]. Application requirements
represent the required QoS needed for running the appropriate application. The QoS
requirements have to be mapped into protocol components properties for the selection
of protocol components. The result of this mapping should be a reconfigured protocol
stack providing the satisfaction of the application requirements.

However, a protocol stack reconfiguration requirements can be also surfaced from
the properties offered by lower layers. For instance, a mobile device’s protocol stack
must be reconfigured in order to operate in a different radio technology. In such a case,
the terminal can change its radio interface that includes properties. These properties
represent the offered QoS and express the radio interface requirements. Some of the
required radio-specific characteristics has already identified and indeed specified [12].

Therefore, considering the above mentioned reconfiguration scenarios we have rec-
ognized two dimension requirements; requirements that represent the required and
offered QoS respectively (Fig.5).

 Protocol Reconfiguration Using Component-Based Design 155

R ad io Interface R eq uirem ents
{offered Q oS }

A pp lic atio n R equ irem en ts
{req uired Q o S}

S t ru c tu re d Cla s s i f ier
(fro m In te rn a lS truc tu re s)

R ad io Interface R eq uirem ents
{offered Q oS }

A pp lic atio n R equ irem en ts
{req uired Q o S}

S t ru c tu re d Cla s s i f ier
(fro m In te rn a lS truc tu re s)

Fig. 5. Requirements for Protocol Stack reconfiguration

Using the definitions of several OMG’s specification for components, we can de-
fine the requirement and property for protocol reconfiguration management. Re-
quirement is the desired feature requested by component implementation [6]. Property
represents a set of protocol component instances that are owned by a containing clas-
sifier instance [4]. In our case the containing classifier is the protocol stack that con-
tains protocol components. The parent of protocol stack has been considered the
structured classifier from the InternalStructures subpackage since the structured clas-
sifier provides the mechanisms for specifying structures of interconnected elements
that are created within an instance of a containing classifier. Those interconnected
elements are the protocol components that constitute the protocol stack as well as play
the role of the protocol function that protocol components implement and a protocol
mechanism specifies.

4.2 Future Work

In the previous subsection, we have envisioned and defined the protocol stack concept
composed by protocol components. In this direction, we are considering the protocol
component selection and composition according to radio interface and/or application
requirements. The selection of the appropriate components according to requirements
is enrolled in reconfigurable computing area. The requirements have to be mapped to
the corresponding properties that encompass the criteria for the selection of protocol
components in order a reconfiguration procedure takes place. We are working on this
area and our future work will encompass the selection of protocol components ac-
cording to radio interface requirements.

5 Summary – Conclusions

Many of the modular approaches for protocol software systems have been introduced
the concept of module for protocol design, specification and implementation. How-
ever, the concept of software module does not include the deployment information.

156 F. Foukalas et al.

Including deployment information a software system can be dynamically recomposed,
installed and updated. All these procedures have been considered as the reconfigura-
tion procedures of reconfigurable equipments [13]. We are envisioning a reconfigur-
able protocol stack that can be dynamically recomposed, installed and updated and for
this reason we have introduced the protocol component concept.

References

1. Thomas Peter Plagemann “A Framework for Dynamic Protocol Configuration”, PhD The-
sis, Swiss Federal Institute of Technology Zurich, 1994.

2. Gerald J. Holzmann, “Design and Validation of Computer Protocols”, Bell Laboratories,
Prentice Hall, 1991.

3. L. Berlemann, A. Cassaigne, B. Walke, “Modular Link Layer Functions of a Generic Pro-
tocol Stack for Future Wireless Networks”, to appear in Proc. of Software Defined Radio-
Technical Conference, Phoenix USA, November 2004.

4. Object Management Group. UML 2.0 Superstructure Specification: Final Adopted
Specification. http://www.omg.org/docs/ptc /03-08-02.pdf (August 2003).

5. Object Management Group. UML 2.0 Infrastructure Specification: Final Adopted
Specification. http://www.omg.org/docs/ptc /03-09-15.pdf (December 2003).

6. Object Management Group. “Deployment and Configuration of Component-based Dis-
tributed Applications”: Working Draft, http://www.omg.org/docs/ptc /04-05-15.pdf, 2002-
2003.

7. Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, Betty H.C. Cheng , “Composing
Adaptive Software”, Computer, v.37 n.7, p56-64, July 2004.

8. A. Alonistioti, F. Foukalas, N. Houssos, “Reconfigurability management issues for the
support of flexible service provision and reconfigurable protocols”, Software Defined Ra-
dio Forum Technical Conference 2003 (SDR 2003), November 17-19, 2003, Orlando,
Florida.

9. Object Management Group. “PIM and PSM for Software Radio Components”: Final
Adopted Specification , dtc/04-05-04.

10. C. Tschudin, “Flexible Protocol Stacks”, Proc.ACM SIGCOMM ’91, Zurich, Switcher-
land, 1991, pp. 197-204.

11. Matthias Jung and Ernst W. Biersack, “A Component-Based Architecture for Software
Communication Systems”, In Proceedings of IEEE ECBS, pages 36--44, Edinburgh, Scot-
land, April 2000.

12. Beyer, D.A.; Lewis, M.G., “A Packet Radio API”, Page(s): 1261-1265 vol.3.
13. “End-to-End Reconfigurability”, IP IST Project , http://e2r.motlabs.com/
14. Object Management Group. “CORBA Components ”: Working Draft, ptc/02-08-03, Sep-

tember 2002.
15. 3GPP TS 32600, “Telecommunication Management; Configuration Management (CM);

Concept and high-level requirements;(Release 6)”.

A Secure and Efficient Communication Resume
Protocol for Secure Wireless Networks

Kihong Kim1, Jinkeun Hong2, and Jongin Lim3

1 National Security Research Institute,
161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, South Korea

hong0612@etri.re.kr
2 Division of Information and Communication, Cheonan University,

115 Anse-dong, Cheonan-si, Chungnam, 330-740, South Korea
jkhong@cheonan.ac.kr

3 Graduate School of Information Security, Korea University,
1, 5-Ka, Anam-dong, Sungbuk-ku, Seoul, 136-701, South Korea

jilim@korea.ac.kr

Abstract. There are important performance issues in secure wireless
networks, such as mobility, power, bandwidth, and bit error rate (BER),
that must be considered when designing a communication resume proto-
col. The efficiency of a secure session resume for a fast resume of secure
communication is a key point in secure connection development. In this
paper, a fast secure communication resume protocol using the initial-
ization vector (IV) count for a secure wireless network is presented and
evaluated against the efficiency of conventional resume protocols. Our
proposed secure session resume protocol is found to achieve better per-
formance, in terms of transmission traffic, consumed time, and BER,
than conventional resume protocols with the same security capabilities.

1 Introduction

The wireless transport layer security (WTLS) provides privacy, authentication,
and integrity in wireless application protocol (WAP) [1]. As the use of secure
wireless networks becomes more widespread, the necessity of security for these
networks is of increasing importance. However, in order to solve security issues in
secure wireless networks, the efficiency of security services must be taken into ac-
count. From the point of view of wireless environmental characteristics, research
on optimizing the security considerations of WTLS, such as low bandwidth, lim-
ited consumed power energy and memory processing capacity, and cryptography
restrictions, has been presented [2] [3] [4] [5]. Secure session exchange key proto-
col and security in wireless communications have been researched by Mohamad
Badra and Ahmed Serhrouchni [6], and by Mohammad Ghulam Rahman and
Hideki Imai [7]. Hea Suk Jo and Hee Yong Youn [8] examined a synchroniza-
tion protocol for authentication in wireless LANs, while Min Shiang Hwang et
al. [9] proposed an enhanced authentication key exchange protocol. However, in
terms of efficiency, the performance considerations for secure wireless networks,

L. Kutvonen and N. Alon stioti (Eds.): DAIS 2005, LNCS 3543, pp. 157–168, 2005.
c© IFIP International Federation for Information Processing 2005

i

158 K. Kim, J. Hong, and J. Lim

such as mobility, power, bandwidth, and BER, are very important. Of particular
importance for a secure connection point is the efficiency of the secure session
resume for the fast resume of secure communication.

In this paper, a protocol for fast secure session resume using IV count in
secure wireless networks is presented and its performance is evaluated against
that of conventional resume protocols. Results shows that the proposed proto-
col achieves better performance in terms of transmission traffic, consumed time,
and BER than conventional resume protocols with the same security capabil-
ities. Of particular note is that the proposed protocol reduces consumed time
by up to 60.6 %, compared with conventional protocols in a wireless network
environment.

The remainder of this paper is organized as follows. In the next section,
detailed descriptions of the conventional full handshaking and session resume
protocol are given. In section 3, the proposed secure session resume protocol
is illustrated. Some performance considerations are presented in section 4, and
concluding remarks are provided in section 5.

2 Conventional Key Handshaking Protocol in WTLS

The WTLS protocol determines the session key handshaking mechanism for
secure services and transactions in secure wireless networks, and consists of the
following phases: the handshaking phase, the change cipher spec phase, and
the record protocol phase (RP) [3] [4] [5]. In the handshaking phase, all the
key techniques and security parameters, such as protocol version, cryptographic
algorithms, and the method of authentication, are established between the client
and the server. After the key handshaking phase is complete, the change cipher
spec phase is initiated. The change cipher spec phase handles the changing of
the cipher. Through the change cipher spec phase, both the client and the server
send the finished message, which is protected by a RP data unit that is applied by
the negotiated security suites [6] [7]. The RP phase is a layered protocol phase
that accepts raw data to be transmitted from the upper layer protocols. RP
compresses and encrypts the data to ensure data integrity and authentication. It
is also responsible for decrypting and decompressing data it receives and verifying
that it has not been altered. In terms of secure wireless networks, WTLS requires
fewer cryptographic computations, fewer resources, and less processing time than
the secure sockets layer (SSL) protocol [1] [3].

Secure communication necessitates the encryption of communication chan-
nels. To achieve this, a key handshaking protocol allows two or more users to
share a key or an IV. A conventional key handshaking protocol is illustrated
in Fig. 1. The client sends a client hello message that includes information
such as the version, session ID, acceptable cipher suites, and client random.
When the server receives the client hello message, it responds with a hello
message to the client and it also sends its certificate, key exchange, certificate
request, and server hello done message. After receiving the server hello done
message, the client responds by authenticating itself and sending its certificate.

A Secure and Efficient Communication Resume Protocol 159

1. Client Hello = {Version, SessionID, Cipher Suite, Random, Etc}

2. Server Hello = {Version, SessionID, Cipher Suite, Random, Etc}

3. Server Certificate

4. Server Key Exchange

5. Client Certificate Request

6. Server Hello Done

7. Client Certificate

8. Client Key Exchange = EKUS[Premaster Secret]

9. Certificate Verity

10. Change Cipher Spec / Finished

11. Change Cipher Spec / Finished

Propose Acceptable Cipher Suites

Choose Cipher Suite and
Prepare Key Exchange Parameters

Acquire Client Public Key
Verify Parameters, and

Prepare Own Key Exchange
and Verification Parameters

Acquire Server Public Key(KUS)

Generate Master Secret
Generate Key Block

Generate MAC Keys,
Session Keys, IVs Generate Master Secret

Generate Key Block
Generate MAC Keys,

Session Keys, IVs

Client Server

12. Secure Communication

Fig. 1. Full handshaking process in WTLS protocol

Then, the client generates the premaster secret and sends its encryption data
EKUS [Premaster Secret] encrypted with the server’s public key to the server.
The premaster secret is used to generate a master secret that is shared between
the client and the server.

The client then generates the master secret using the premaster secret, client
random, and server random. It also generates a sufficiently long key block using
the master secret, client random, and server random [1]. The generated key block
is hashed into a sequence of secure bytes, which are assigned to the message
authentication code (MAC) keys, session keys, and IVs. This is represented as
follows in Eq. (1) and Eq. (2).

Master Secret = Pseudo Random Function(Premaster Secret, (1)
′′Master Secret′′, Client Random + Server Random)

Key Block = Pseudo Random Function(Master Secret, (2)
′′Key Expansion′′, Client Random + Server Random)

The client sends a change cipher spec message and proceeds directly to the
finished message in order to verify that the key exchange and authentication
process were successful. The server also generates MAC secrets, session keys,
and IVs using the key block. Then it sends the finished message to the client.
Finally, secure communication over the secure connection is established using
session keys and IVs.

160 K. Kim, J. Hong, and J. Lim

2.1 Protocol for Secure Session Resume Using Premaster Secret

After completion of the conventional full handshaking protocol shown in Fig. 1,
a secure communication between client and server is established. However, data
frame loss occurs because of bit slips, channel loss, reflection, and diffraction in
the communication channel. If a data frame is lost, the output of the decryp-
tor will be unintelligible for the receiver and a session resume will be required.
The aim of the session resume is to ensure that the encryptor and decryptor
have the same internal state at a certain time. An internal state different from
all previous sessions has to be chosen to prevent the reuse of session keys or
IVs [10] [11] [12].

To overcome the problems caused by these data frame losses, resume pro-
tocols for secure communication have been suggested. Such protocols can be
achieved by one of two methods: 1) premaster secret regeneration and retrans-
mission, which results in a new master secret and new key block, or 2) random
regeneration and retransmission, in which random is only used to change the
key block in each secure session resume.

Fig. 2 shows a protocol for a secure session resume using premaster secret
regeneration and retransmission. In this protocol, a new premaster secret is gen-
erated and sent in each session resume, and thus it results in the generation of a
new master secret and new key block. Therefore, new session keys and new IVs
are generated for every session resume. However, since a new premaster secret
is generated and sent in each secure communication resume, this method has
disadvantages such as a large computation load, time delay (including channel
delay), and BER. This protocol is executed as follows. First, secure communi-
cation between the client and server is performed for time Δt, and then data

3. Client Key Exchange = EKUS[Premaster Secret]

4. Change Cipher Spec / Finished

5. Change Cipher Spec / Finished

Regenerate Master Secret
Regenerate Key Block

Regenerate Master Secret
Regenerate Key Block

Client Server

1. Secure Communication

Regenerate Premaster Secret

.

.

.

.

Data Frame Loss

tΔ

2. Request Premaster Secret for Session Resume

6. Secure Communication Restart

dΔ

Fig. 2. Conventional protocol for secure session resume using premaster secret

A Secure and Efficient Communication Resume Protocol 161

frame loss occurs. After the server realizes the data frame loss, it requests a new
premaster secret for session resume. The client generates a new premaster secret
and sends EKUS [Premaster Secret]. The client then generates a new master
secret using the new premaster secret and the original random cached in the
initial hello message stage, and generates a new key block using the new master
secret and original random. Thus, the result is the generation of new session
keys and new IVs.

New Master Secret = Pseudo Random Function(New Premaster (3)
Secret, ′′Master Secret′′, Original Client Random +
Original Server Random)

New Key Block = Pseudo Random Function(New Master Secret, (4)
′′Key Expansion′′, Original Client Random +
Original Server Random)

The client then sends the finished message to the server. The server generates
a new master secret and a new key block, and then also sends the finished
message to the client. After the session resume time Δd shown in Fig. 2, secure
communication is reinitiated.

2.2 Protocol for Secure Session Resume Using Random Value

On the other hand, the protocol for a secure communication resume using ran-
dom regeneration and retransmission is shown in Fig. 3. In this protocol, a new
random is generated and sent in each secure session resume, which results in
the generation of a new key block in each session resume. As with premaster se-
cret regeneration and retransmission, this protocol also suffers from time delay,
including channel delay, and a large BER.

Secure communication is performed for time Δt, and then data frame loss
occurs. After realizing the data frame loss, the server requests a new random
for session resume. The client generates a new random and includes it in a hello
message. After the server receives the hello message from the client, it sends
its own hello message that includes its new random. The server also generates
a new key block using the new random and cached original master secret, and
then generates new session keys and new IVs. This means that a resumed session
will use the same master secret as the previous one. Note that, although the
same master secret is used, new random values are exchanged in the secure
communication resume. These new randoms are taken into account in the new
key block generation, which means that each secure connection starts up with
different key materials: new session keys and new IVs.

New Key Block = Pseudo Random Function(Original Master (5)
Secret, ′′Key Expansion′′, New Client Random +
New Server Random)

162 K. Kim, J. Hong, and J. Lim

5. Change Cipher Spec / Finished

Regenerate Key Block

Regenerate Key Block

Client Server

1. Secure Communication
.
.
.
.

Data Frame Loss

tΔ

2. Request Premaster Secret for Session Resume

7. Secure Communication Restart

dΔ

3. Client Hello = {Version, SessionID, Cipher Suite, Random, Etc}

4. Server Hello = {Version, SessionID, Cipher Suite, Random, Etc}

6. Change Cipher Spec / Finished

Regenerate Random

Regenerate Random

Fig. 3. Conventional protocol for secure session resume using random value

Finally, the server sends the finished message to the client. The server gener-
ates a new key block, resulting in new session keys and new IVs, and then it also
sends the finished message to the client. After session resume time Δd shown in
Fig. 3, secure communication is reinitiated.

3 Proposed Secure Communication Resume Protocol
Using IV Count

3.1 Protocol for Proposed Secure Session Resume Using IV Count

To overcome the problems inherent in conventional secure communication re-
sume protocols and to reinitiate secure communication much faster than they
allow, we propose a new, efficient, and secure communication resume protocol
that uses an IV count value.

Fig. 4 shows the proposed secure communication resume protocol, in which
a count value of IV is sent to generate the new IVs in each secure session. After
realizing the data frame loss, the server requests a new count value of IV for
session resume. The client sends a new count value IV and generates new IVs
using the count value. That is, the count value is used to generate new message
protection materials, which means that each secure connection starts up with
different IVs. Therefore, a resumed session will use the same session keys as the
previous session. Note that, although the same session keys are used, new IVs
are used in the secure communication resume. The client sends the change cipher
spec and finished message to the server. The server generates new IVs using the
received count value, and then sends the change cipher spec and finished message

A Secure and Efficient Communication Resume Protocol 163

3. IV Count Value = EKUS[Count Value of IV]

4. Change Cipher Spec / Finished

5. Change Cipher Spec / Finished

Regenerate IV

Regenerate IV

Client Server

1. Secure Communication

Generate Count Value of IV

.

.

.

.

Data Frame Loss

tΔ

2. Request Count Value of IV for Session Resume

6. Secure Communication Restart

dΔ

Fig. 4. Proposed protocol for secure session resume using IV count

to the client. The client and server finally have the new IVs after session resume
time Δd as shown in Fig. 4 and as represented in Eq. (6).

α = α0 + ν, 1 ≤ ν ≤ 2IV Size − 1 (6)

Here, α is the value of IV in each session and α0 represents the value of the
original IV. ν is a count value in each session resume and is increased by a value
of one for every session resume.

3.2 Security Analysis

Security problems regarding attacks against the WAP WTLS were surveyed by
Markku Juhani Saarinen [5], and it has been found that many of the changes
that were made by the WAP Forum have led to increased security problems [1].
In this paper, to determine the key refresh period for secure session resume,
the key refresh concept, which is referred by the WAP forum, was used and
the condition of low bound was derived to avoid collisions from the birthday
paradox [13].

An internal state different from all previous sessions has to be chosen, to
prevent the reuse of session keys or IVs. If two n bit ciphertexts, Ci and Cj , are
arbitrarily chosen from ciphertext block C = (C1, C2, . . . , CM), and provided
that the input plaintext P = (P1, P2, . . . , PM) in the cipher block chaining
(CBC) mode [13] are equal, the following Eq. (7) is given.

Ci = EK(Pi ⊕ Ci−1) = EK(Pj ⊕ Cj−1) = Cj (7)
Pi ⊕ Ci−1 = Pj ⊕ Cj−1, Pi ⊕ Pj = Ci−1 ⊕ Cj−1

164 K. Kim, J. Hong, and J. Lim

Also, if the two ciphertexts, Ci and Cj , in cipher feed back (CFB) mode [13]
are equal and if the two key stream blocks, Oi and Oj , in output feed back
(OFB) mode [13] are also equal, these are represented as follows in Eq. (8).

EK(Ci) = Pi+1 ⊕ Ci+1 = Pj+1 ⊕ Cj+1 = EK(Cj) (8)
Pi+1 ⊕ Pj+1 = Ci+1 ⊕ Cj+1

Oi = EK(Oi−1) = Pi ⊕ Ci = Pj ⊕ Cj = EK(Oj−1) = Oj

Pi ⊕ Pj = Ci ⊕ Cj

In other words, we acquire the information of plaintexts from the known cipher-
texts. Therefore, the new keys are calculated and updated after a proper period
to overcome the problematic plaintexts information issue. This key refresh period
is computed using the birthday paradox. The number of pairs generated with
ciphertext block C = (C1, C2, . . . , CM) is M(M − 1)/2, and the probability of
at least one coincidence is shown in Eq. (9).

P = 1 −
(

1 − 1
2n

)M(M−1)
2

= 1 −
(

1 − 1
2n

)−2n×M(M−1)
2n+1

(9)

≈ 1 − e
M(M−1)

2n+1 ≈ M(M − 1)
2n+1

where n bit is the block size used in the block cipher. If M is about 2n/2, then
at least one coincidence is found. By the birthday paradox, for strong collision
resistance and a well-designed block cipher function with n bit input block size,
it must hold that finding any pair (x, y) � f(x) = f(y), takes 2n/2 trials. In the
birthday bound, this means that even a perfect n bit block cipher function will
start to exhibit collisions when the number of inputs nears the birthday bound
2n/2. Then, if coincidence exists, the problem of the plaintexts information issue
occurs. Consequently, a new key is generated and updated before encrypting the
2n/4 input plaintext blocks. For example, in the case of DES, the maximum key
refresh period is 216(264/4) plaintext blocks.

TKey Refresh = 2n/4 (10)

Table 1. Result of collision probability and input/output block size

Block Size (n) Number of Input Block (M) Probability (P)

28 1.77 × 10−15

64 bits 216(264/4, key refresh period) 1.16 × 10−10

232 4.99 × 10−1

216 6.31 × 10−30

128 bits 232(2128/4, key kefresh keriod) 2.71 × 10−20

264 4.99 × 10−1

A Secure and Efficient Communication Resume Protocol 165

Table 1 shows the relation of collision probability and block size in the bound
of the birthday paradox.

On the other hand, IV resets after 2IV Size. The probability of IV reset within
the 2n/4 key refresh period is as small as the IV size is large, while the probability
of its reset is as large as the IV size is small. For instance, if an IV size is 8
bytes, it resets after 264. This means that 8 bytes IV do not reset within the
216 key refresh period, namely, 264/4 input plaintext blocks in 64 bits block size.
Therefore, if data frame loss occurs within the key refresh period, and if then a
secure session resume is required, we have only to generate and update a new IV
for every session resume instead of a new key generation. In addition, we have
only to generate and update new keys at the time of key refreshing.

4 Performance Consideration

In this paper, to prove the efficiency of the proposed protocol, we compared
and analyzed the transmission message size and the consumed time for session
resume of our proposed protocol with conventional protocols. The performance
of the proposed session resume protocol has also been evaluated in terms of BER.

Table 2 shows a comparison of the transmission procedure and message sizes
according to each protocol for secure session resume: CLT is the client, SVR is
the server, the Change Cipher Spec/Finished message is CCS/F, V is WTLS
version, and SID is session ID, R is random, and SI is a security association such
as key exchange suit, cipher suit, compression method, etc.

As shown in Table 2, in the premaster secret protocol, the transmission mes-
sages consist of the premaster secret, client change cipher spec/finished message,
and server change cipher spec/finished message. The transmission size of these
messages is about 46 bytes. In the case of random protocol, the transmission
messages are about 86 bytes in size and are composed of the client hello mes-

Table 2. Comparison of Δd and transmission message size according to each protocol

Protocol for Resume Steps Δd Transmission Message Size

Premaster Secret 20 bytes

Premaster Secret 3 CLT CCS/F 13 bytes

SVR CCS/F 13 bytes

[V, R, SID, SI] CLT Hello 30 bytes

Random 4 [V, R, SID, SI] SVR Hello 30 bytes

CLT CCS/F 13 bytes

SVR CCS/F 13 bytes

IV Count Value 8 bytes

Proposed 3 CLT CCS/F 13 bytes

SVR CCS/F 13 bytes

166 K. Kim, J. Hong, and J. Lim

Table 3. Consumed time to reopen secure session

Protocol for Resume 2G at 100bps 2G at 9.6Kbps 3G at 14.4Kbps 3G at 384Kbps

T1 3.7 sec 38 ms 25 ms 1 ms

Premaster Secret TC1 7.4 sec 76 ms 51 ms 2 ms

TC3 22.1 sec 230 ms 153 ms 5 ms

T1 6.9 sec 70 ms 47 ms 1.7 ms

Random TC1 13.7 sec 140 ms 95 ms 3.5 ms

TC3 41.3 sec 430 ms 280 ms 10.7 ms

T1 2.7 sec 28 ms 18 ms 0.7 ms

Proposed TC1 5.4 sec 56 ms 30 ms 1 ms

TC3 16.3 sec 170 ms 113 ms 4.2 ms

sage, server hello message, client change cipher spec/finished message, and server
change cipher spec/finished message. However, in the proposed protocol, the
transmission messages are composed only of the count value of IV, client change
cipher spec/finished message, and server change cipher spec/finished message
and their size is about 34 bytes. This Table shows that our proposed session
resume protocol allows the establishment of secure sessions in an economic way,
as it has fewer transmission message flows and smaller sizes than either the pre-
master secret or the random protocol. This can be particularly advantageous in
wireless networks where the radio bandwidth is bottlenecked.

To evaluate the efficiency of secure session resume protocol, the consume
time needed for each protocol must also be considered. The results of the con-
sumed time for session resume are shown in Table 3. For 2G and 3G in a bearer
service environment, each protocol is serviced by 100bps (9.6Kbps), i.e., a min-
imum(maximum) bandwidth environment of 2G, and 14.4Kbps (384Kbps), i.e.,
a minimum(maximum) bandwidth environment of 3G. Here, T1 are the trans-
mission bits at each 1 iteration, TC1 are the transmission bits at each 1 iteration
with 50 % redundancy channel coding, and TC3 are the transmission bits at 3
iterations with 50 % redundancy channel coding.

In the TC1 environment, 2G at 100bps, if the protocol used for session resume
is the premaster secret protocol, the consumed time for session resume is about
7.4 sec. In the case of random protocol, the consumed time is even higher about
13.7 sec. In the proposed protocol, however, the consumed time is only about
5.4 sec, proving that this protocol provides a faster secure session resume than
the other resume protocols.

Table 4 shows results of BER in 3G according to the number of session
resumes using the consumed time in Table 3. When computing the BER for
1 session resume number per hour in the TC1 environment, the BERs in each
protocol are provided: 5.03 × 10−7 in premaster secret protocol, 9.72 × 10−7 in
random protocol, and 2.78×10−7 in the proposed protocol. This means that the
proposed protocol reduces BER by over 45 % when compared with the premaster
secret protocol, and by about 72 % when compared with the random protocol.

A Secure and Efficient Communication Resume Protocol 167

Table 4. BER according to the number of session resumes (per hour)

Protocol for Resume �1 �2 �4 �6 �8

T1 2.78 × 10−7 5.56 × 10−7 1.11 × 10−6 1.67 × 10−6 2.22 × 10−6

Premaster Secret TC1 5.03 × 10−7 1.11 × 10−6 2.22 × 10−6 3.33 × 10−6 4.44 × 10−6

TC3 1.26 × 10−6 2.78 × 10−6 5.55 × 10−6 8.33 × 10−6 1.11 × 10−5

T1 4.72 × 10−7 9.44 × 10−7 1.89 × 10−6 2.83 × 10−6 3.78 × 10−6

Random TC1 9.72 × 10−7 1.94 × 10−6 3.89 × 10−6 5.83 × 10−6 7.78 × 10−6

TC3 2.97 × 10−6 5.94 × 10−6 1.19 × 10−5 1.78 × 10−5 2.38 × 10−5

T1 1.94 × 10−7 3.89 × 10−7 7.78 × 10−7 1.16 × 10−6 1.56 × 10−6

Proposed TC1 2.78 × 10−7 5.56 × 10−7 1.11 × 10−6 1.67 × 10−6 2.22 × 10−6

TC3 1.17 × 10−6 2.33 × 10−6 4.67 × 10−6 7.00 × 10−6 9.33 × 10−6

We can also see that BERs increases as the number of session resumes increases,
and also that when the proposed protocol is used, the BERs are small than when
the premaster secret or random protocol is used.

Fig. 5 shows a BER at the T1 environment shown in Table 4, demonstrating
that the BERs from the proposed protocol are smaller than those from the
premaster secret and random protocols.

0.00E+00

2.00E-06

4.00E-06

6.00E-06

8.00E-06

1.00E-05

1.20E-05

1.40E-05

1.60E-05

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of session resume

B
E

R

Premaster Secret Protocol Random Protocol Proposed Protocol

Fig. 5. BER at T1 environment in 384Kbps according to the number of session resumes

5 Conclusion

Most security research in secure wireless networks is focused on secured rout-
ing and transmitting in the network. However, because of the security issues in
secure wireless networks, we suggest that the efficiency of security services is
also an important issue. In this paper, a fast and secure communication resume
protocol using IV count for wireless networks is presented and evaluated against

168 K. Kim, J. Hong, and J. Lim

the efficiency of conventional resume protocols. During the secure session resume
phases, we manage to reduce transferring traffic and thus also reduce the band-
width on wireless networks. Moreover, our enhanced proposed protocol is able to
reduce the consumed time or cryptographic load and the computations in order
to reopen secure sessions quickly.

Therefore, this proposed secure session resume protocol provides a fast re-
sume of secure communications, while having the same security capabilities as
other protocols and reducing the transferring traffic, consumed time, and BER
in a WTLS protocol environment. In particular, this protocol reduces consumed
time by up to 60.6 % when compared with conventional protocols.

References

1. WAP Forum. Wireless Transport Layer Security Spec. http://www.wapforum.org.
2. Sami Jormalainen, Jouni Laine. Security in the WTLS.

http://www.tml.hut.fi/Opinnot/Tik-110.501/1999/papers/wtls.htm.
3. Ramesh Karri, Piyush Mishra. Optimizing the Energy Consumed by Secure Wire-

less Sessions-WTLS Case Study. Mobile Networks and Applications, No. 8, Kluwer
Academic Publishers, 2003.

4. Philip Mikal. WTLS : The Good and Bad of WAP Security. http://www.advisor.
com/Articles.nsf/aid/MIKAP001, 2001.

5. Markku-Juhani Saarinen. Attacks against the WAP WTLS Protocol. http://www.
freeprotocols.org/harm0fWap/wtls.pdf, 1999.

6. Mohmad Badra et al.. A New Secure Session Exchange Key Protocol for Wireless
Communication. IEEE International Symposium on Personal, Indoor and Mobile
Radio Communication, 2003.

7. Mohammad Ghulam Rahman, Hideki Imai. Security in Wireless Communications.
Wireless Personal Communications, No. 22, Kluwer Academic Publishers, 2002.

8. Hea Suk Jo, Hee Young Youn. A New Synchronization Protocol for Authentication
in Wireless LAN Environment. ICCSA’04, LNCS publishers, 2002.

9. Min Shiang Hwang et al.. On the Security of an Enhanced Authentication Key
Exchange Protocol. AINA’04, LNCS publishers, 2004.

10. Joan Daemen, Rene Govaerts, Joos Vandewalle. Resynchronization Weakness in
Synchronous Stream Ciphers. Pre-proceeding of EUROCRYPT’93, 1993.

11. Randall K. Nichols, Panos C. Lekks. Wireless Security - Models, Threats, and
Solutions. McGraw-Hill Telecom, 2002.

12. Amoroso E. Fundamentals of Computer Security Technology. PTR Prentice Hall,
Englewood Cliffs, New Jersey, 1993.

13. Bruce Schneier. Applied Cryptography, 2nd ed, John Wiley and Sons Inc., 1996.

L. Kutvonen and N. Alonistioti (Eds.): DAIS 2005, LNCS 3543, pp. 169 – 180, 2005.
© IFIP International Federation for Information Processing 2005

An Architecture for Collaborative Scenarios Applying a
Common BPMN-Repository

Thomas Theling1, Jörg Zwicker1, Peter Loos1, and Dominik Vanderhaeghen2

1 Johannes-Gutenberg University Mainz, Information Systems and Management,
55099 Mainz, Germany

{Theling, Zwicker, Loos}@isym.bwl.uni-mainz.de
http://www.isym.bwl.uni-mainz.de

2 Institute for Information Systems at the German Research Center
for Artificial Intelligence (DFKI), 66123 Saarbruecken, Germany

vanderhaeghen@iwi.uni-sb.de
http://www.iwi.uni-sb.de/

Abstract. Collaborative business scenarios require a flexible integration of en-
terprises. To manage inter-organizational business processes, existing concepts
for business process management (BPM) need to be adopted and extended. This
paper presents a conceptual architecture for cross-enterprise processes’ plan-
ning, implementation, and controlling. Core component of the architecture is a
distributed repository managing all required data and information, which espe-
cially obtains a process-oriented view on collaboration networks. Cross-
organizational processes need close coordination among networking partners.
This is achieved through the integration of business process models. Thus we
further propose a procedure model of an XML-based model transformation,
which reduces complexity of the modeling-task and enables model integration
on a conceptual level.

1 Collaborative Business Process Management Field of Research

Innovation pressure arises in interaction relations like supply chains and in networks
with complementary core competence partners. Thus the concept of borderless enter-
prises [1] has been discussed for years and the collaborative production of goods and
services has been established. The opening of organizational borders is no longer
regarded as a necessary evil, but rather as a chance with strategic importance. There-
fore inter-organizational applications and the transfer of business process manage-
ment aims into collaborative IT systems are considered.

An architecture for managing cooperative and collaborative business processes re-
quires functions which support all phases of collaborations [2]. Existing architecture
concepts are discussed e. g. by Gronau, Scheer, van der Aalst, or Wild et al. [3-6].
They stress various single aspects and tasks within collaborations. Workflow-
functionalities [7] for the IT-supported execution of processes was developed, while
EAI-functionalities [8] ensure data integration and process integration. Business proc-
ess management methods were steadily developed and enhanced. Web Service tech-
nologies [9] are proposed to facilitate process management based on application com-
ponents. Service-oriented Architectures (SOA) [10] are established for composing a
process-oriented, flexible and reactive information system architecture.

170 T. Theling et al.

To exchange data between architecture components, data and especially business
process models have to be stored in unique data formats. Transformation of models is
addressed in the field of software development with the use of approaches like the
model-driven architecture (MDA) [11]. Furthermore existing business process knowl-
edge should be reused in collaborations. Notation-specific XML representations like
the Event-driven Process Chain Markup Language (EPML) [12] focus on business
process model transformations. Techniques as Extensible Stylesheet Language Trans-
formations (XSLT) [13], support the automated transformation of XML-based models
between different, heterogeneous formats in general. Our approach designs a frame-
work for the transformation into a collaboration-wide business process description
format.

This contribution depicts the concept of an Architecture for Collaborative Scenar-
ios and to exemplify a procedure model enabling syntactic business process model
interoperability. The paper unfolds as follows: After this introduction, we address the
Architecture for Collaborative Scenarios in the following chapter. Our approach con-
siders organizational aspects and assimilates existing concepts of workflow manage-
ment and BPM frameworks [4, 5, 7]. Further on, to fulfill the aforementioned re-
quirement of a collaboration-wide unique syntax of business process models BPMN is
suggested in chapter 3 for storaging of these models within the introduced architec-
ture. For solving the problem of heterogeneity in business process modeling, a ge-
neric, adaptable procedure model to gain syntactic model interoperability is developed
– showing the steps for the transformation in a collaboration-wide BPMN syntax.
Thus, we provide the preparing methods for the integration of process models in col-
laborations in a holistic approach. Finally, conclusions of our approach are discussed.
Also, we point to some further research directions.

2 Architecture for Dynamic Collaborative Scenarios

Dealing with collaborations and information systems, the term dynamic concerns the
change of people, the change of technologies and the change of processes [14]. Fur-
ther dynamic aspects are e. g. the time lag between IT-investments and IT-payoffs
[15]. Main requirement resulting from dynamic factors is flexibility. In order to re-
configure or to resolve a collaboration, to integrate a new partner into collaborations
or to plan new collaborative strategies, indicators have to be defined and depicted.
Further on, changing processes require an ad-hoc-execution and adaption of business
processes and structures. This implies a flexible integration of various operational IT
systems.

Further demands for an integrative architecture are e.g. graphical, multi-
perspective modeling while supporting different modeling methods, integrated col-
laboration management and controlling, integrated process execution based upon the
stored business process models, and a concept for integration of new network part-
ners. At the same time existing solutions have to be considered and assimilated.

Based on these requirements the Architecture for Collaborative Scenarios has been
developed (cf. figure 1). Basic information for the process execution is visualized in
business process models, output models, and organization models. These are created
by modeling tools and stored in a distributed repository. Depending on process- and

 An Architecture for Collaborative Scenarios Applying a Common BPMN-Repository 171

Pr
es

en
ta

tio
n

an
d

In
fo

rm
at

io
n

Se
rv

ic
es

Fig. 1. Architecture for Collaborative Scenarios

organization models the virtual service platform executes processes and integrates
different operational systems of the collaboration partners. A life-cycle-model [2]
serves as a manual for the process-oriented establishment, the process integration, and
operation of collaborations towards a common production of goods and services. The
following sections describe the components and characteristics of the architecture.

172 T. Theling et al.

2.1 Distributed Repository

The architecture is realized upon a physical distributed repository managing all
data. It enables business process management, common work on the underlying mod-
els, and cross-enterprise process execution. Individual knowledge of each partner is
stored within decentralized parts of the repository. A logical centralization of the
repository represents the knowledge of the overall network.

The repository contains following data categories: Reference data resp. Meta data
provides a basis for the design of process models and organizational models: Refer-
ence models support the construction of individual models and improve the design of
specific organizational structures and processes of the enterprise network [16, 17].
Ontologies unify differing vocabulary of concepts and meanings regarding contents
and model semantics [18]. Ontologies are conceptual systems of a domain, which
obtain knowledge transfer between applications and users. Within the architecture,
ontologies integrate different language formats of applications. For the design of
models they establish a common conceptual understanding. Roles are parts of the
security concept of the architecture and define templates, which describe requirements
on persons within the network. A role bundles access rights on resources and can be
assigned to several persons.

Following the distinction of primary and secondary functions in a value chain [19],
also the used data can be distinguished into primary and secondary data. Primary data
support the business process execution and are related with the output of a collabora-
tion: Output data describes results of collaborative business processes [4] and is re-
quired as input for creating process data and organizational data. Process data de-
scribe process models of the value-added network. In order to keep business secrets,
these models are distinguished into local and global models. Local processes are intra-
organizational processes of particular network enterprises, which belong to functions,
roles and resources within the enterprises, though they have interfaces to the enter-
prise-external processes and resources. Global processes form the process structure of
the overall network by aggregating the local processes at corresponding interfaces.
Organizational data describe organization structures of the value-added network and
can be distinguished into global and local structure models. Global structure models
represent enterprises’ relationships in the value-added network, whereas local models
represent intra-organizational structures. Business and case data are, on the one hand,
task-oriented resource data of the value-added network, which pass through the proc-
esses and will be processed to stand-alone products [7], e. g. documents or technical
drawings. On the other hand, business data describe the task and network itself, e. g.
data about partner enterprises or cooperation structure. In a dynamic collaboration
these data can continually change.

Secondary data support process management and controlling: Historical data and
runtime data collect defined execution data and possible exceptions due to process
execution [20]. Historical data are about former processes and can be used to optimize
processes of an actual network. Runtime data provides information about the current
processes of the value-added network. Both the historical data and the runtime data
support collaboration management and controlling (CMC). Finally, identities are
basic elements for access control on data of the repository. They are digital features of
individuals used for their identification at information systems.

 An Architecture for Collaborative Scenarios Applying a Common BPMN-Repository 173

2.2 Decentralized Tools for Accessing the Repository

Output Description is realized by distributed available tools for designing output
data. Depending on the output, different enterprises with individual processes are
brought together to determine the output. The output description is also used for op-
erational tasks like cost calculation, requests for quotation or accounting.

Process and Structure Design (modeling of the value-added net) is realized by
tools for modeling and graphical visualization of processes and organization struc-
tures. Global models are stored in an abstract level and are centrally available, while
local models are more detailed and only available for corresponding organizations.
This can be realized either by decentralized storage of these models or by assigning
roles and access rights. The created models are stored in the repository. Reference
models can be imported from the repository into the modeling tools. Furthermore,
ontologies enable consistent semantic modeling.

Collaboration Management and Controlling (CMC) is distinguished into Build-
time-CMC and Run-time-CMC. Referring to a Collaborative Business Process Man-
agement Lifecycle [2], Build-time-CMC includes several steps of collaboration estab-
lishment, while Run-time-CMC encompasses collaboration execution. Following the
distinction into a procedural and an organizational view of collaborations, the meth-
ods of CMC are divided into process-oriented and organization-oriented tasks.

Organizational tasks of Build-time-CMC are for example portfolio analysis, due
diligence or boundary management for collaboration-, enterprise- and department-
borders. Concerning collaborative processes, a unique project controlling has to be
defined. This contains monetary methods like cost planning, revenue planning, budg-
eting and calculation as well as planning of collaboration-wide processes. For a pre-
evaluation of procedural and organizational behavior of the collaboration we suggest
a Petrinet-based simulation . Herewith all process models and organizational models
can be validated and verified. The simulation can also estimate lead-times, costs and
capacity utilizations, and it can deliver useful data to optimize processes and organ-
izational structures a priori.

An important organizational task of Run-time-CMC is the steering of the collabora-
tion partners’ behavior. Used methods are e. g. collaboration-intern transfer prices or
a repertory-grid-based soft-fact analysis to identify cultural weaknesses of individual
enterprises concerning their cultural fit with the collaboration. Process oriented Run-
time-CMC-tasks are e. g. integrated progress controls, which include process monitor-
ing, capacity control or performance measurement [4]. Concerning CMC in general,
the repository can consist of collaboration-internal data as well as external data. The
CMC-results can on the one hand be used to optimize the collaborative processes. On
the other hand the results are used as a knowledge-base for the modeling of succeed-
ing collaborations.

2.3 Process Execution

A Virtual Service Platform enables process execution and integrates different appli-
cations of the collaboration partners. Therefore process data and organizational mod-
els of the repository are used. By using local adapters, operational systems interact
with each other without implementing a central coordinating instance. Corresponding

174 T. Theling et al.

applications are quested using the location service. The repository service reads rele-
vant process parts and further data like business- or output data. Execution services
use these process definitions to execute processes using application services provided
by distributed operational systems. Hereby integration services convert different data
formats. If necessary, integration services access ontologies. When the process execu-
tion in an adapter is ended, the next adapter is triggered to start the next process part.
Therefore interface services arrange the interaction between the adapters.

Dynamic process changes can be realized by using a predefined concept for han-
dling different disturbance types. This is stored within the repository and is triggered
e. g. by an event-handler within CMC. Based on information stored in runtime data,
responsible adapters and persons are determined. Finally, several possible ad-hoc-
solutions are enabled, like defining an additional process or reconfigure the current
process. The amended process can be continued within the adapter.

As a technical realization of the adapters, web service technologies are suitable [9].
Services are available by using Web Service Description Language (WSDL). Web
services can interact with Simple Object Access Protocol (SOAP), based on internet
protocols like Hypertext Transfer Protocol (HTTP) [21]. Business Process Execution
Language for Web Services (BPEL4WS or BPEL) allows to define and execute web
service-based workflows within the execution service [22], while Web Services Chore-
ography Description Language (WS-CDL) defines collaboration between adapters [23].

A further part used for process execution is the user interface. A user in this case
is a person or an organizational unit which fulfils functions and processes within the
collaboration. Two different types of users can be distinguished. On the one hand they
use presentation services as well as information services to get access to the reposi-
tory (e. g. technical drawings, process definitions or visualizations of other data). On
the other hand they use “traditional” user interfaces of operational systems to fulfill
their tasks.

All data and models are stored in repository-wide unique data formats. By using
converters different software can be integrated, although it does not support these
standards. In particular data formats of process models and organization models have
to fulfill several requirements: on the one hand different modeling tools with different
modeling languages can be used. On the other hand inter- and intra-organizational
models may use different modeling languages. A uni-directional transformation of
models not supporting the common process model format will be described in the
following section.

3 Transformation of Business Process Models into BPMN

The presented architecture establishes the general framework towards the manage-
ment and execution of collaborative scenarios. From a conceptual point of view, busi-
ness processes have proven to be ideal design items in conjunction with the use of
graphical methods and tools [24]. Using heterogeneous process notations within col-
laborative networks, the need for a central process notation standard emerges to re-
duce communication and transformation complexity. In the architecture (cf. chapter
2) these aspects are especially relevant to the process and structure design of networks
with modeling tools and their connection to the distributed repository. While the

 An Architecture for Collaborative Scenarios Applying a Common BPMN-Repository 175

architecture abstracts from model heterogeneity, the modeling notations, used in the
collaboration, may differ from each other. The following solution presents an adapt-
able approach for transforming enterprise-specific process models into a collabora-
tion-wide notation standard. The Business Process Modeling Notation (BPMN) speci-
fication developed by the Business Process Management Initiative (BPMI) provides
an appropriate, standardized notation for representing business processes on a concep-
tual, near-business level [25].

Following, the Event-driven Process Chain (EPC) is chosen as an exemplary proc-
ess notation for enterprise-specific process models. Other heterogeneous process
notations which are applied in collaboration networks may be transformed in the same
way as the EPC models in the example. The suggested procedure model for trans-
forming process models into BPMN can be applied to a unidirectional, horizontal
mapping of modeling notations. Underlying models ought to describe things at the
same conceptual level to permit a horizontal integration. However, the existence of
appropriate XML-representations of the involved notations is essential due to the need
of formal process representations. This enables automatic interpretation and transfor-
mation by the modeling tools. We aim at a smooth transformation process with minor
human interaction.

3.1 Meta Model Mapping

Achieving a collaboration-wide agreement on the meta-models of each of the proc-
ess-modeling methods used by the partners, forms the first step towards the model
transformation. Meta-models are documented for a majority of notations, but are often
altered or enhanced by company-specific definitions. The meta-model for the com-
mon repository process format has to be defined - due to its creative nature - manually
by modeling experts of all partners. Furthermore a common meta-model for modeling
methods (e. g. EPC) should be defined in a unique way to ease later transformation
and to disregard enterprise-specific adjustments. Thus, the resulting meta-models help
to harmonize the vocabulary of the notation constructs (cf. step two) and are a prereq-
uisite for extracting mapping rules, which is done by defining corresponding process
objects (cf. step three).

Second, the usage of terms has to be unified in order to reach a certain degree of
semantic interoperability – by implementing semantic comparability and correctness –
and to achieve a high model quality. This is realized by using ontologies within the
repository of the presented architecture (cf. chapter 2).

The third step comprises the meta-model mapping as the conceptual transforma-
tion specification, realized by the design of object relations between the meta-model
of the process notation for the repository and meta-models of process notations used
in modeling tools. Therefore elements of one notation are related manually to corre-
sponding elements of another notation. Future transformation rules can be extracted
from these relations.

Table 1 presents an extract of the mapping of EPC to BPMN. Non-ambiguous, bi-
directional relations are visualized with double-headed arrows, ambiguous, unidirec-
tional ones use simple arrows. If exception rules are necessary for the mapping be-
cause of, e.g. the lack of syntactical and semantical unambiguousness, arrows are put
in brackets.

176 T. Theling et al.

Table 1. Object mapping between EPC and BPMN

EPC
uni- / bidirectional

mapping
BPMN

Function !" Activity
Aggregated Function !" SubProcess

Basic Function !" Task
Event ! (") Start Event
Event ! (") Intermediate Event

...

3.2 Model Transformation

Process models, which have to be stored within the repository, are exported in a
fourth step of the procedure model to a standardized exchange format – in this ex-
ample from EPC to the Event-driven Process Chain Markup Language (EPML) [12].
The following code shows a part of the resulting, formal EPML-representation of the
process, which is later transformed via meta-model mapping into BPMN.

Example of a formal EPML-representation

<?xml version="1.0" encoding="UTF-8"?>
...
<definition>
...
</definition>
<directory name="Root">
<epc epcId="1" name="business_process">
 <event id="1">
 <name>start_event</name>
 <description>start_event</description>
 <graphics>...</graphics>
 </event>
 <arc id ="2" defRef="1" from="1"
 to="3"/>
 <function id="3">
 <name>function_one</name>
 <description>function_one</description>
 <graphics>...</graphics>
 </function>
 ...
</epc>
</directory>
</epml:epml>

To export models via XML, also tool-specific interface languages as – for instance –
ARIS Markup Language (AML) may be applied, but the complexity of the transfor-
mation process rises within networks with the use of proprietary formats. Thus, stan-
dardized instruments should be applied to achieve a simple and effective model trans-
formation.

 An Architecture for Collaborative Scenarios Applying a Common BPMN-Repository 177

After the export, the mapping between two XML-methods is executed in a fifth
step. Based on the rules predefined in step three, the XML-model (EPML) is trans-
formed into another XML-based process markup-language as – for instance – Petri
Net Markup Language (PNML) for Petri Nets or Business Process Modeling Lan-
guage (BPML) for BPMN. In our example, the BPML is used as the target format
[26].

As an example for the underlying analysis of transformation execution, the task
sequence has to be extracted from the EPML-document by the analysis of relations
between events (<event/>), arc relations (<arc/>) and functions (<func-
tion/>) and has to be transformed into the corresponding BPML-code. The se-
quence of EPML functions is transformed to the sequential <bpml:sequence>-
form with the EPC starting event triggering the BPML sequence. Further correspond-
ing objects, whose mapping was defined in step three, are converted into the new
format. The definitions of exceptions and ambiguousness have to be considered
within the XML-transformation. The results of the transformation are shown in the
following code.

Transformation Result

<bpml:process name="business_process">
 <bpml:documentation>
 …
 </bpml:documentation>
 <bpml:sequence>
 <bpml:event activity="function_one"
 name="start_event"/>
 <bpml:action name="function_one"
 operation="request"/>
 <bpml:action name="function_two"/>
 <bpml:action name="function_three"/>
 ...
 </bpml:sequence>
</bpml:process>

With the use of XML-data formats to exchange process model data, an eXtendable
Stylesheet Language Transformations (XSLT) script, which transforms XML-
documents from one format into another, can be implemented.

For the sixth and final step towards saving processes in the standardized BPMN
format, the resulting XML-model (BPML) is transferred to the repository. Process
data is now stored in a BPMN-compliant format. The information can be – for in-
stance – exchanged between networking partners in a unified way with reasonable
efforts towards communication complexity. The collaboration is executed on a com-
mon denominator for the conceptual description of business processes within collabo-
rative scenarios.

4 Conclusions and Further Research

Based on the requirements for IT based support of collaboration networks an architec-
ture for cross-enterprise business processes is given. Moreover, the prerequisites for
the unique storage of Business Process Models are described with a generic procedure

178 T. Theling et al.

model for business process model transformations. The presented transformation
concept provides an approach to

• solve the problem of heterogeneity in business process modeling by presenting a
procedure model to gain syntactic model interoperability.

• consider current research efforts towards XML-based representations of business
process models, as – for instance – it is done with EPML and BPML.

• take care of forward-looking standardization approaches, as they were presented by
the BPMN – and consider at the same time well-known, established modeling tech-
niques as the EPC to decrease investment risk for enterprises by merging “new”
with established models.

• describe business model integration efforts on a conceptual level to get an open
reference solution, independent of any fixed connection to certain methods. The
approach may be adapted to other modeling notations, such as Petri-Nets or Activ-
ity Diagrams as far as a corresponding XML-representation is available and trans-
formation makes sense in a syntactical and semantical way.

The approach does not claim completeness in terms of semantic integration and syn-
tactic mapping covered due to the lack of an adequate formal XML-representation of
BPMN and further essential research. It focuses rather on a general procedure model
that shows how transformation in a unidirectional way can be conducted in order to
facilitate the exchange of process models in heterogeneous environments. The scope
of human interaction is minimized because it is only essential to those preleminary
steps which can’t be formalized like the agreements on the meta-model (cf. first step)
or the mapping of meta-models (cf. third step). The model transformation itself may
be executed smoothly with appropriate IT solutions (modelling tools, parser etc.).
Furthermore, problems as, ambiguity or other textual model defects may be avoided,
which leads to a significant reduction in complexity and enables a more efficient
planning- and design-task concerning BPM.

Further research is to enhance XML-based representations of standardized model-
ing notations. Thus, related representation and transformation approaches as, for in-
stance, XML Metadata Interchange [12] have to be analyzed to improve the presented
solution. Also the development of supporting tools, which ease the task of exchanging
process models between different enterprises, i.e. to automate all possible mapping
tasks by adequate rule-based systems is to be enforced. Furthermore, the vertical
integration of process information through transformation and mapping of business
concepts into IT-interpretable, formal process specifications is another field for fur-
ther research. This comprises on the one hand a network-wide controlling for tracing
processes over several interaction tiers. On the other hand reference models should be
designed to facilitate the establishment of cooperation. At the same time a generic
connection to infrastructures built on the augmented Service Oriented Architecture
paradigm should be created. The presented approach and further research questions
are discussed within the background of the research project ArKoS, raised by the
German Ministry of Education and Research.

 An Architecture for Collaborative Scenarios Applying a Common BPMN-Repository 179

References

[1] Picot, A., Reichwald, R., Wigand, R. T.: Information, Organization and Management:
Expanding Markets and Corporate Boundaries. John Wiley & Sons, New York (1999)

[2] Adam, O., Hofer, A., Zang, S.: Cross-enterprise Process Orchestration - Framework for
Collaborative Process Automation. In: Proc. 1st International Workshop on Computer
Supported Activity Coordination, CSAC 2004, In conjunction with ICEIS 2004 (2004)
185-197

[3] Gronau, N.: Collaborative Engineering Communities - Architecture and Integration Ap-
proaches. In: Proc. of the 2003 Information Resources Management Association Interna-
tional Conference (2003) 792-795

[4] Scheer, A.-W.: ARIS, Business Process Frameworks. 3 edn. Springer-Verlag (1999)
[5] van der Aalst, W. M. P.: Making Work Flow: On the Application of Petri Nets to Busi-

ness Process Management. In: Proc. Applications and Theory of Petri Nets 2002: Proc. of
23rd International Conference, ICATPN 2002 (2002) 1-22

[6] Wild, R. H., Griggs, K. A., Li, E. Y.: A Web Portal/Simulation Architecture to Support
Collaborative Policy and Planning Decision Making. In: Proc. Ninth Americas Confer-
ence on Information Systems (2003) 2400-2411

[7] Hollingsworth, D. The Workflow Reference Model. Workflow Management Coalition
[Online]. Available: http://www.wfmc.org/standards/docs/tc003v11.pdf

[8] Linthicum, D. S.: Enterprise Application Integration. 4 edn. Addison-Wesley, Boston et
al. (2003)

[9] Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services - Concepts, Architectures
and Applications. Springer, Berlin et al. (2004)

[10] Pallos, M. S.: Service-Oriented Architecture: A Primer. EAIJournal 2001 (2001) 32-35
[11] Object Management Group. OMG Model Driven Architecture.[Online]. Available:

http://www.omg.org/mda/
[12] Mendling, J., Nüttgens, M.: Exchanging EPC Business Process Models with EPML. In:

Proc. 1st GI Workshop "XML4BPM - XML Interchange Formats for Business Process
Management" at Modellierung 2004 (2004)

[13] W3C. XSL Transformations (XSLT). W3C [Online]. Available: http://www.w3.org/TR/
xslt

[14] Kanungo, S.: Using Systems Dynamics to Operationalize Process Theory in Information
Systems Research. In: Proc. Twenty-Fourth International Conference on Information Sys-
tems (2003) 450-463

[15] Dedrick, J., Gurbaxani, V., Kraemer, K. L.: Information Technology and Economic Per-
formance: A Critical Review of the Empirical Evidence. ACM Computing Surveys 35
(2003) 1-28

[16] Mertins, K., Bernus, P.: Reference models. In: P. Bernus, K. Mertins, and G. Schmidt,
(eds.): Handbook on Architectures of Information Systems. Springer (1998)

[17] Fettke, P., Loos, P.: Classification of reference models - a methodology and its applica-
tion. Information Systems and e-Business Management 1 (2003) 35-53

[18] Kishore, R., Sharman, R., Ramesh, R.: Computational Ontologies and Information Sys-
tems: I. Foundations. CAIS - Communications of the AIS 14 (2004) 158-183

[19] Porter, M. E.: Competitive Advantage - Creating and Sustaining Superior Performance.
The Free Press, New York (1985)

[20] Neumann, S., Probst, C., Wernsmann, C.: Kontinuierliches Prozessmanagement. In: J.
Becker, M. Kugeler, and M. Rosemann, (eds.): Prozessmanagement - Ein Leitfaden zur
prozessorientierten Organisationsgestaltung. Springer-Verlag (2003) 309-335

180 T. Theling et al.

[21] Blake, M. B.: Coordinating Multiple agents for worklow-oriented process orchestration.
ISeB - Information Systems and e-Business Management 1 (2003) 387-404

[22] Shapiro, R.: A Comparison of XPDL, BPML and BPEL4WS. ebPML.org, (2002)
[23] W3C: Web Services Choreography Description Language Version 1.0. W3C,, W3C

Working Draft (2004)
[24] Champy, J.: X-Engineering the corporation : reinvent your business in the digital age.

Hodder & Stoughton, London (2002)
[25] Owen, M., Raj, J.: BPMN and Business Process Management. (2003)
[26] Arkin, A.: Business Process Modeling Language. BPMI.org, (2002)

A Flexible and Modular Framework for Implementing
Infrastructures for Global Computing�

Lorenzo Bettini1, Rocco De Nicola1, Daniele Falassi1,
Marc Lacoste2, and Michele Loreti1

1 Dipartimento di Sistemi e Informatica, Università di Firenze

2 Distributed Systems Architecture Department, France Telecom R& D

Abstract. We present a Java software framework for building infrastructures to
support the development of applications for systems where mobility and network
awareness are key issues. The framework is particularly useful to develop
run-time support for languages oriented towards global computing. It enables
platform designers to customize communication protocols and network architec-
tures and guarantees transparency of name management and code mobility in
distributed environments. The key features are illustrated by means of a couple
of simple case studies.

1 Introduction

Technological advances of both computers and telecommunication networks, and de-
velopment of more efficient communication protocols are leading to an ever increasing
integration of computing systems and to diffusion of “Global Computers” [9]. These
are massive networked and dynamically reconfigurable infrastructures interconnecting
heterogeneous, autonomous and mobile components, that can operate on the basis of
incomplete information.

Global Computers are thus fostering a new style of distributed programming that
has to take into account variable guarantees for communication, cooperation, resource
usage, security policies and mechanisms, and in particular code mobility [10, 24].
They have stimulated the proposal of new theories, computational paradigms, linguistic
mechanisms and implementation techniques for the design, realization, deployment and
management of global computational environments and applications.

We have thus witnessed the birth of many calculi and kernel languages (see, e.g., [7]
and the references therein) intended to support global computing programming and to
provide tools for formal reasoning over the modelled systems. Many implementations
of these formalisms have been proposed, and very often the language used for
implementation is Java because it provides many useful features for building network
applications with mobile code. However, these Java mechanisms still require a big
programming effort, and so they can be thought of as “low-level” mechanisms. Because

� This work was funded by EU Global Computing initiative, project MIKADO IST-2001-32222.

L. Kutvonen and N. Alon stioti (Eds.): DAIS 2005, LNCS 3543, pp. 181–193, 2005.
c© IFIP International Federation for Information Processing 2005

i

182 L. Bettini et al.

of this, many existing Java-based distributed systems (see, e.g., [1, 4, 8, 19, 22, 23] and
the references therein) tend to re-implement from scratch many components that are
typical and recurrent in distributed and mobile applications.

To support the implementation of languages for global computing, we have been
working on a generic framework called IMC (Implementing Mobile Calculi) that can
be used as a kind of middleware for the implementation of different distributed mobile
systems. Such a framework aims at providing the necessary tools for implementing
new language run-time systems directly derived from calculi for mobility. The basic
idea and motivation of this framework is that the implementer of a new language would
need concentrating on the parts that are really specific of his system, while relying on
the framework for the recurrent standard mechanisms. The development of prototype
implementations should then be quicker and the programmers should be relieved from
dealing with low-level details. The proposed framework aims at providing all the
required functionalities and abstractions for arbitrary components to communicate and
move in a distributed setting.

IMC provides concrete implementations for the standard and most used func-
tionalities that should fit most Java mobile framework requirements (e.g., Java byte-
code mobility and standard network communication mechanisms). A user of IMC
can customize parts of the framework by providing its own implementations for
the interfaces used in the package. In this respect, the IMC framework can be
straightforwardly used if no specific advanced feature is needed. The framework is
however open to customizations if these are required by specific mobility systems.
Customization of the framework can be achieved seamlessly by taking advantage
of design patterns such as factory method, abstract factory, template method and
strategy [14] that are used throughout the packages.

The framework was designed to achieve both transparency and adaptability. For
instance, for code mobility, the framework provides all the basic functionalities for mak-
ing code mobility transparent to the programmer: all issues related to code marshalling
and code dispatch are handled automatically by the classes of the framework. Its
components are designed to deal with object marshalling, code migration, and dynamic
loading of code. The framework can also be adapted to deal with many network
topologies (flat, hierarchical, peer-to-peer networks, etc.) and with message dispatching
and forwarding. Furthermore, the implementer can build his own communication
protocols by specializing the protocol base classes provided by the framework. Thus,
the developer will only have to implement the parts that are relevant to the system
he wants to build: typically, he will develop the communication protocol which best
matches application-specific requirements. Connections and network topology are dealt
with directly from within the framework. However, the developer may access the
current state of his application with listeners to events that the classes of the framework
generate.

The main intent of the IMC framework is not to be “yet another” distributed
mobile system. It should rather be seen at a meta-level, as a framework/toolbox for
building “yet another” distributed mobile system. A primordial version of the IMC
framework was initiated within the MIKADO project [6]. The version we present here

A Flexible and Modular Framework for Implementing Infrastructures 183

is completely re-designed and re-implemented to improve usability and to provide many
additional features.

2 Overview of the IMC Framework

We now sketch the main functionalities and interfaces of the framework. For the sake
of simplicity, we will not detail all the method signatures, e.g., we will not show the
exceptions.

2.1 Communication Protocols

When implementing a distributed system, one of the system-specific issues is the
choice of the communication protocol, which may range from high-level protocols such
as Java RMI, well integrated with the Java Virtual Machine environment and taking
advantage of the architectural independence provided by Java, to protocols closer to
hardware resources such as TCP/IP. Marshalling strategies may range from dedicated
byte-code structures to Java serialization. A generic communication framework [12, 13,
15, 18, 21] should be minimal, and allow to introduce support for new protocols with
little effort, without need to re-implement a new communications library. Thus, IMC
provides tools to define customized protocol stacks, which are viewed as a flexible
composition of micro-protocols. The IMC design, inspired from the x-kernel [17]
communication framework, allows to define bindings with various semantics, and to
combine them in flexible ways. Thus, IMC enables to achieve adaptable forms of
communication transparency, which are needed when implementing an infrastructure
for global computing.

In IMC, a network protocol like, e.g., TCP, UDP, or GIOP is viewed as an
aggregation of protocol states: a high-level communication protocol can indeed be
described as a state automaton. The programmer implements a protocol state by
extending the abstract class and by providing the implementation
for the method , which returns the identifier of the next state to execute. The

class aggregates the protocol states and provides the template method [14]
that will execute each state at a time, starting from the first protocol state up to

the final one. Thus, the programmer must simply provide the implementation of each
state, put them in the correct order in a protocol instance, and then start the protocol.

public class Protocol {
public void start() { /∗ executes the states ∗/ }

}

public abstract class ProtocolState {
public abstract String enter();

}

The protocol states abstract away specific communication layers. This enables re-
using of a protocol implementation independently from the underlying communication
means: the same protocol can then be executed on a TCP socket, on UDP packets or
even on streams attached to a file (e.g., to simulate a protocol execution). This abstrac-
tion is implemented by specialized streams: (to write) and
(to read). These streams provide high-level and encoding-independent representations
of messages that are about to be sent or received, i.e., they are basically an extension of
standard and Java streams, with the addition of means to send

184 L. Bettini et al.

and receive migrating code (explained later) and serialize and deserialize objects. The
interface of is the following (the interface of contains the
corresponding write instead of read methods):

public interface UnMarshaller extends DataInput, Closeable, MigratingCodeHandler {
public Object readReference();
public MigratingCode readMigratingCode();
public MigratingPacket readMigratingPacket();

}

The data in these streams can be “pre-processed” by some customized protocol
layers that remove some information from the input and add some information to
the output: typically this information are protocol-specific headers removed from the
input and added to the output. A protocol layer is an abstract representation of a
communication channel which uses a given protocol. It lets messages be sent and
received through the communication channel it stands for using that protocol. The base
class deals with these functionalities, and can be specialized by the
programmer to provide his own protocol layer.

These layers are then composed into a object that ensures the
order of preprocessing passing through all the layers in the stack. For instance, the
programmer can add a layer that removes a sequence number from an incoming packet
and adds the incremented sequence number into an outgoing packet. The framework
also provides functionalities to easily implement tunnels, so that it can be possible, e.g.,
to implement a tunneling layer to tunnel an existing protocol into HTTP (see Section 3).

Before reading something from a stack, a protocol state must obtain an
instance from the stack by calling the method : this allows

the stack layers to retrieve their own headers. In the same way, before starting to write
information to the network, the state must obtain a instance from the
stack by calling the method , so that the stack layers can add their own headers
into the output. When the state has finished to write, it must notify the stack by calling
the method , passing the marshaller instance it had used to write the information,
in order to flush the output buffer.

The methods , and rely on methods , and
, respectively, of the class , that will be called in the right order

so to implement the stack of layers. The subclasses of can provide
their own implementations for these methods.

public class ProtocolLayer {
public UnMarshaller doUp(UnMarshaller um){ ... /∗ implementation of the programmer ∗/ ... }
public Marshaller doPrepare(Marshaller m) { ... /∗ implementation of the programmer ∗/ ... }
public void doDown(Marshaller m) { ... /∗ implementation of the programmer ∗/ ... }

}

The returned by the lower layer in the stack is passed to the imple-
mentation method ; thus, a layer can use the passed to retrieve
its own header and pass the to the next layer, or it can create a new

to pass to the next layer. The latter scenario is typical of tunneling
layers (as briefly shown in Section 3). Similarly, the returned by the lower
layer is passed to . Typically, the first and

A Flexible and Modular Framework for Implementing Infrastructures 185

objects will be created by the lowest layer, e.g., in case of a TCP socket, it will be a
stream attached to the socket itself, while, in case of UDP packets, it will be a buffered
stream attached to the datagram contents. Low layers for TCP and UDP are already
provided by the framework.

2.2 Code Mobility

This part of the framework provides the basic functionalities for making code mobility
transparent to the programmer. It deals with object marshalling, code migration, and
dynamic loading of code. An object will be sent along with the byte-code of its class,
and with the byte-code of all the classes of the objects it uses (i.e., all the byte-code
it needs for execution). Obviously, only the code of user-defined classes must be sent,
as other code (e.g., Java class libraries and the classes of the IMC packages) must be
common to every application. This guarantees that classes belonging to Java standard
class libraries are not loaded from other sources (especially, the network); this would
be very dangerous, since, in general, such classes have many more access privileges
with respect to other classes. The framework also allows the programmer to manually
exclude other classes (or entire packages) from mobility.

The framework defines the empty interface that must be imple-
mented by the classes representing a code that has to be exchanged among distributed
sites. This code is intended to be transmitted in a , stored in the
shape of a array. How a object is stored in and retrieved from a

is taken care of by the following two interfaces:

public interface MigratingCodeMarshaller {
public MigratingPacket marshal(MigratingCode code);

}

public interface MigratingCodeUnMarshaller {
public MigratingCode unmarshal(MigratingPacket p);

}

Starting from these interfaces, the framework provides concrete classes that au-
tomatically deal with migration of Java objects together with their byte-code, and
transparently deserialize such objects by dynamically loading their transmitted byte-
code. In particular, the framework provides the base class ,
implementing the above mentioned interface, , that provides all the
procedures for collecting the Java classes that the migrating object has to bring to the
remote site:

public class JavaMigratingCode extends Thread implements MigratingCode {
public JavaMigratingPacket make_packet() {...}

}

The method will be used directly by the other classes of the framework
or, possibly, directly by the programmer, to build a packet containing the serialized
(marshalled) version of the object that has to migrate together with all its needed byte-
code. Thus, this method will actually take care of all the code collection operations.
The names of user defined classes can be retrieved by means of class introspection

186 L. Bettini et al.

(Java Reflection API). Just before dispatching a process to a remote site, a recursive
procedure is called for collecting all classes that are used by the process when declaring:
data members, objects returned by or passed to a method/constructor, exceptions thrown
by methods, inner classes, the interfaces implemented by its class, the base class of its
class. Once these class names are collected, their byte code is gathered and packed along
with the object in a object (a subclass of
storing the byte-code of all the classes used by the migrating object, besides the
serialized object itself).

Finally, two classes, implementing the above mentioned interfaces
and , will take care of actually

marshalling and unmarshalling a containing a migrating
object and its code. In particular, the former will basically rely on the method

of , while the latter will rely on a customized class
loader provided by the framework (a) to load the classes stored in
the and then on Java serialization to actually deserialize the
migrating code contained in the packet.

The method of the , shown in Section 2.1,
will rely on an a to retrieve a migrating object and the
corresponding method in will rely on a to
send a migrating object, so that all the code mobility issues will be dealt with internally
by the framework. Even in this case, the programmer can provide his own implementa-
tions of and so that the
framework will transparently adapt to the customized code mobility. For further details
and examples concerning this part of the framework we refer the reader to [2].

2.3 Node Topology

The framework already provides some implemented protocols to deal with sessions.
The concept of session is logical, since it can then rely on a physical connection (e.g.,
TCP sockets) or on a connectionless communication layer (e.g., UDP packets). In the
latter case, a keep-alive mechanism can be implemented. A instance
will keep track of all the connections.

This can be used to implement several network topology structures: a flat network
where only one server manages connections and all the clients are at the same level; a
hierarchical network where a client can be in turn a server and where the structure of
the network can be a tree or, in general, an acyclic graph of nodes; or, a peer-to-peer
network.

A participant to a network is an instance of the class contained in the
framework. A node is also a container of running processes that can be thought of as
the computational units. The framework provides all the means for a process to access
the resources contained in a node and to migrate to other nodes. Thus, a developer of
a distributed and mobile code system has all the means to start to implement its own
infrastructure or the run-time system for a mobile code language.

A process is a subclass of the class that implements the
base class (this allows to easily migrate a process to a

A Flexible and Modular Framework for Implementing Infrastructures 187

remote site), and can be added to a node for execution with the method
of the class .

A has the following interface:

public abstract class NodeProcess extends JavaMigratingCode {
public abstract void execute();
public final void run() { // framework initialization operations; then call execute() }

}

Thus, a node keeps track of all the processes that are currently in execution. A
concurrent process is started by calling on the thread; the final
implementation of will initialize the process structure (not detailed here) and then
invoke that must be provided by the programmer.

A different kind of process, called node coordinator, is allowed to execute privileged
actions, such as establishing a session, accepting connections from other nodes, closing
a session, etc. Standard processes are not given these privileges, and this allows to
separate processes that deal with node configurations from standard programs executing
on nodes. For these processes a specialized class is provided called .

The programmer can provide its implementation of the concept of
to address in a unique way a node in the net (e.g., the standard IP address:port
representation). If there is a session with a node, then a location is mapped by the
session manager into a protocol stack. Thus a process can retrieve a stack to run its own
protocols with a remote node.

The framework also provides means to “manipulate” a protocol: it permits extending
a protocol automaton by adding new states and extending the protocol stack by inserting
new layers. With respect to the manipulation of the protocol automaton, it is possible to
add a new starting state and a new final state, so that the original protocol is embedded
in an extended protocol. When a new start and a new end state are added to an existing
protocol, the framework will also take care of re-naming the previous start and end

State a

State b

State d

State c

START END

remove header

Layer y

Layer x

State a

State b

State d

State c

START1 END1

State Start
Session

START

State End
Session

END

Layer y

Layer x

P
r
o
t
o
c
o
l

S
t
a
c
k

Layer TCP

add header

Fig. 1. The original protocol (left) and the new protocol extended with a new start and end state
and the TCP layer (right)

188 L. Bettini et al.

state and update all the references to the original start and end state with the re-named
version. This will guarantee that the original protocol will transparently work as before
internally, while from the outside, the new start state will be executed before the original
start state and the new end state will be executed after the original end state.

The manipulation of a protocol is used internally by the classes of the framework,
for instance in session management. The class provides a method to
establish a session and a method to accept a session. These methods, apart from
the connection details (e.g., host and port) also take a protocol instance as a parameter.
These methods will take care of establishing (accepting, resp.) a physical connection,
add a starting session protocol state as the new start state and a ending session state as
the end state to the passed protocol. They also take care of setting the low layer in the
protocol stack (e.g., TCP socket or UDP datagrams). Then, the protocol can be started.
This manipulation is depicted in Figure 1.

2.4 Naming and Binding

The framework also supports logical name management, inspired by the JONATHAN

ORB [12], which provides very flexible primitives to implement the concepts defined
in the CORBA naming service [20]. This part of the framework aims to define a uniform
manner to designate and interconnect the set of objects involved in the communication
paths between computational nodes.

In IMC, an identifier is a generic notion of name that uniquely designates an object
in a given naming context. Identifier semantics are naming context-specific: distributed,
persistent, etc. A naming context provides name creation and management facilities. It
guarantees that each of the names it controls designates some object unambiguously. It
generally maps a name to an object or entity designated by that name, or can also map
names to other contexts, if the resolution of names needs to be refined. Finally, a binder
is a a special kind of naming context that, for a given managed name, is able to create
an access path, also called binding, towards the object designated by that name.

These definitions offer a generic and uniform view of bindings, and clearly separate
object identification from object access: in a given naming context , a new name
for an object is obtained by the invocation. Chains of identifiers
can then be created by exporting that name to other naming contexts. Moreover, the
creation of an access path to object designated by identifier is performed by the

invocation which returns a ready-to-use surrogate to communicate with .
These abstractions are reflected in the following Java interfaces:

public interface Identifier {
public NamingContext getContext();
public Object bind();
public Object resolve();

}

public interface NamingContext {
public Identifier export(Object obj);

}

The interface represents the generic notion of identifier described above.
It contains a reference to its naming context, and bears the fundamental operation
to set up a binding between two (possibly remote) objects. The interface, using the

method, also permits returning the next element in a chain of identifiers, where

A Flexible and Modular Framework for Implementing Infrastructures 189

each identifier was obtained as the result of exporting the next one to some naming
context.

An object implementing the interface stands for the most generic
notion of a naming context which manages names of type . The interface
includes the operation to create a new name in a given context – which can,
if used repeatedly, create chains of identifiers of arbitrary length. Other methods, not
represented here, deal with identifier transmission over the network, using encoding-
independent representations, namely involving the and
interfaces already described.

This export-bind pattern is closely related to the communication part of IMC: a
object can be viewed as a binder which exports (i.e., builds an access path

to) a communication end-point, a designated through a specific type
of identifier, namely a protocol layer identifier. Typically, the operation will
be called by a server object to advertise its presence on the network. This will be
translated into a call to the method of a object, to accept incoming
network connections. The operation will be called by a client-side object to bind
to the interface designated by a given identifier. This will be translated into a call to the

method of the object, to establish the communication path to the remote
server-side object.

3 Some Examples

In this section we will present some simple examples that show how the framework
can be used to program a customized protocol. We will not show all the details of the
code, but we concentrate on how the single objects developed by the programmer can
be composed together and used from within the framework itself.

First of all, in Listing 1 we show a protocol layer that removes a sequence number
from the input stream and writes the incremented sequence number in the output stream.
Thus, when a protocol state starts reading, this layer will remove this header and when a
state starts writing this layer will add the incremented sequence number. We can create
our protocol stack with this layer:

ProtocolStack mystack = new ProtocolStack();
mystack.insertLayer(new IncrementProtocolLayer());

public class IncrementProtocolLayer extends ProtocolLayer {
private int sequence;
protected UnMarshaller doUp(UnMarshaller um) {

sequence = um.readInt(); return um;
}
protected Marshaller doPrepare(Marshaller m) {

m.writeInt(sequence + 1); return m;
}

}

Listing 1: A protocol layer that deals with sequence numbers

190 L. Bettini et al.

public class EchoProtocolState extends ProtocolState {
public String enter() {

UnMarshaller um = up(); // start reading
String line = um.readStringLine();
Marshaller m = prepare(); // stop reading, start writing
m.writeStringLine(line);
down(m); // finish writing
return ;

}
}

Listing 2: An echo protocol state

We can now implement our own protocol; for simplicity it will consist of only
one state, that does nothing but read a line and send it back (an echo server); after
that the protocol ends. In order to implement such a state, we only need to extend the

base class and provide the implementation for the method and
return the state as the next state in the protocol (Listing 2). We can then create our
protocol instance, set the protocol stack, and add the start state:

Protocol myprotocol = new Protocol();
myprotocol.setStack(mystack);
myprotocol.setState(, new EchoProtocolState());

The protocol is now built, but no communication layer has been set yet. In order to
do so, we can use the class functionalities:

Node mynode = new Node();
mynode.accept(9999, myprotocol);
myprotocol.start();

These instructions wait for an incoming connection on port 9999, update the protocol
with a starting connection state and a final disconnection state, and update the protocol
stack with the low communication layer. At this point, the protocol can start on the
established physical connection.

As we suggested in Section 2, the framework provides a specialized protocol layer
base class, , that permits implementing a tunneling layer, for
enveloping a protocol inside another one. A typical example is that of an http tunnel
that wraps a protocol in HTTP requests and responses. Notice that a tunnel layer does
not simply remove a header when reading and add a header when writing: typically it
will need to read an entire message, strip the tunneling protocol information, and pass
the wrapped information to the upper layer; in the same way, it will need to intercept
the information written by the upper layer and wrap it into a message according to
the tunneling protocol. For this reason the framework provides this specialized base
class with the features to implement these more complex functionalities. In particular,

provides two piped stream pairs to allow the tunnel layer to
communicate with the tunneled layer: the field is piped with the
field (i.e., anything written into can be read
from). Thus, the tunnel layer can implement the as follows:

A Flexible and Modular Framework for Implementing Infrastructures 191

public class HTTPTunnelLayer extends TunnelProtocolLayer {
protected UnMarshaller doUp(UnMarshaller um) {
String data = strip(readHTTPRequest(um));
tunneledMarshaller.writeStringLine(data);
return newUnMarshaller;

}
}

Similarly the implementation of will return to the tunneled layer a piped
and will read the data written by the tunneled layer from

the other end of the pipe, envelop the data in the tunnel protocol structure and pass
everything to the lower layer by using the originally returned by the lower
layer’s method.

Since a tunneling layer is still a layer, it can be inserted smoothly in an existing
protocol stack:

ProtocolStack mystack = new ProtocolStack();
mystack.insertLayer(new IncrementProtocolLayer());
mystack.insertLayer(new HTTPTunnelLayer());

Let us stress that the insertion of the tunnel layer did not require any change to the
existing protocol states and layers.

4 Conclusions

We have presented a Java software framework for building infrastructures to support
the development of applications over global computers where mobility and network
awareness are key issues. The framework enables platform designers to customize
communication protocols and network architectures and is particularly useful to
develop run-time supports for languages oriented towards global computing.

The components have been designed after a close analysis of proposed models
for mobile computing [3, 7]. We have tried to single out the most recurrent notions
of network aware programming and packed them together, to permit developers to
concentrate on the really specific of their system, while relying on the framework for the
recurrent standard mechanisms (node topology, communication and mobility of code).

The main aim of the framework is speeding up the development of prototype
implementations and relieving programmers from low level details. Of course, if
applications require a specific functionality that is not in the framework (e.g., a
customized communication protocol built on top of TCP/IP, or a more sophisticated
mobile code management), programmers can customize the part relative to these
mechanisms. The presented framework will be shortly released as open source software.

It has been pointed out that our design has some similarities with .Net Remoting,
which provides an abstract approach to interprocess communication and separates the
“remotable” object from a specific client or server application domain and from a
specific mechanism of communication. A closer look at the relationships between the
two approaches is definitely on demand. These relations are now under investigation.

In the near future, we will also use the framework for implementing Dπ [16] and for
re-engineering KLAVA [5], the run time support for KLAIM [11] and for implementing

192 L. Bettini et al.

richer languages for global computing. But, we plan also to extend the IMC components
to deal with security issues.

Acknowledgments. We are grateful to all people involved in the MIKADO project,
in particular, we would like to thank L. Lopes and V. Vasconcelos that contributed to
the initial design of IMC.

References

1. A. Acharya, M. Ranganathan, and J. Saltz. Sumatra: A Language for Resource-aware Mobile
Programs. In Vitek and Tschudin [25], pages 111–130.

2. L. Bettini. A Java Package for Transparent Code Mobility. In Proc. FIDJI, LNCS 3409,
pages 112–122. Springer, 2004.

3. L. Bettini, M. Boreale, R. De Nicola, M. Lacoste, and V. Vasconcelos. Analysis of
Distribution Structures: State of the Art. MIKADO Project Deliverable D3.1.1, 2002.

4. L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese. Interactive Mobile Agents in X-KLAIM.
In Proc. WETICE, pages 110–115. IEEE, 1998.

5. L. Bettini, R. De Nicola, and R. Pugliese. KLAVA: a Java Package for Distributed and Mobile
Applications. Software - Practice and Experience, 32(14):1365–1394, 2002.

6. L. Bettini, D. Falassi, R. D. Nicola, M. Lacoste, L. Lopes, M. Loreti, L. Oliveira, H. Paulino,
and V. Vasconcelos. Language Experiments v1: Simple Calculi as Programming Language.
MIKADO Project Deliverable D3.2.1, 2004.

7. G. Boudol, I. Castellani, F. Germain, and M. Lacoste. Models of Distribution and Mobility:
State of the Art. MIKADO Project Deliverable D1.1.1, 2002.

8. G. Cabri, L. Leonardi, and F. Zambonelli. Reactive Tuple Spaces for Mobile Agent
Coordination. In K. Rothermel and F. Hohl, editors, Proc. 2nd Int. Workshop on Mobile
Agents, LNCS 1477, pages 237–248. Springer, 1998.

9. L. Cardelli. Abstractions for Mobile Computation. In J. Vitek and C. Jensen, editors, Secure
Internet Programming: Security Issues for Mobile and Distributed Objects, LNCS 1603,
pages 51–94. Springer-Verlag, 1999.

10. G. Cugola, C. Ghezzi, G. Picco, and G. Vigna. Analyzing Mobile Code Languages. In Vitek
and Tschudin [25].

11. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: a Kernel Language for Agents Interaction
and Mobility. IEEE Transactions on Software Engineering, 24(5):315–330, 1998.

12. B. Dumant, F. Horn, F. Dang Tran, and J.-B. Stefani. Jonathan: an Open Distributed
Processing Environment in Java. In Proc. MIDDLEWARE, 1998.

13. ExoLab Group. The OpenORB project, 2002. .
14. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.
15. R. Hayton, A. Herbert, and D. Donaldson. Flexinet: a Flexible Component Oriented

Middleware System. In Proc. ACM SIGOPS European Workshop, 1998.
16. M. Hennessy and J. Riely. Resource Access Control in Systems of Mobile Agents. In

U. Nestmann and B. C. Pierce, editors, HLCL ’98, volume 16.3, pages 3–17. Elsevier, 1998.
17. N. Huntchinson and L. Peterson. The x-kernel: an Architecture for Implementing Network

Protocols. IEEE Transactions on Software Engineering, 17(1):64–76, 1991.
18. R. Klefstad, D. Schmidt, and C. O’Ryan. The Design of a Real-time CORBA ORB using

Real-time Java. In Proc. ISORC, 2002.
19. D. Lange and M. Oshima. Programming and Deploying Java Mobile Agents with Aglets.

Addison-Wesley, 1998.

A Flexible and Modular Framework for Implementing Infrastructures 193

20. Object Management Group. Naming Service Specification, version 1.3 edition, 2004.
Available at .

21. C. O’Ryan, F. Kuhns, D. Schmidt, O. Othman, and J. Parsons. The Design and
Performance of a Pluggable Protocols Framework for Real-time Distributed Object
Computing Middleware. In Proc. MIDDLEWARE, 2000.

22. H. Peine and T. Stolpmann. The Architecture of the Ara Platform for Mobile Agents. In
Proc. MA, LNCS 1219, pages 50–61. Springer, 1997.

23. G. Picco, A. Murphy, and G.-C. Roman. LIME: Linda Meets Mobility. In D. Garlan, editor,
Proc. ICSE, pages 368–377. ACM Press, 1999.

24. T. Thorn. Programming Languages for Mobile Code. ACM Computing Surveys, 29(3):213–
239, 1997. Also Technical Report 1083, University of Rennes IRISA.

25. J. Vitek and C. Tschudin, editors. Mobile Object Systems - Towards the Programmable
Internet, LNCS 1222. Springer, 1997.

L. Kutvonen and N. Alonistioti (Eds.): DAIS 2005, LNCS 3543, pp. 194 – 205, 2005.
© IFIP International Federation for Information Processing 2005

An Architecture for Implementing Application
Interoperation with Heterogeneous Systems

George Hatzisymeon1, Nikos Houssos2, Dimitris Andreadis3,
and Vasilis Samoladas1

1 Tech. U. of Crete
{george, vsam}@softnet.tuc.gr

2 Communication Networks Laboratory, University of Athens
 nhoussos@di.uoa.gr

3 JBoss Europe
 dimitris@jboss.org

Abstract. We are concerned with the issues faced by software developers with
a certain family of distributed applications; those that connect to and
interoperate with a heterogeneous infrastructure, i.e., a large heterogeneous
collection of external systems (databases, embedded devices, network
equipment, internet servers etc.) using different communication protocols. This
product family includes applications such as e-commerce systems, network
management applications and Grid-based collaborations. For such applications,
implementing the interoperation logic is both challenging and expensive. We
discuss the major concerns that contribute to the problem, such as transaction
support, security and management, as well as integration with workflow or
component frameworks. We propose an architecture and related development
methodology, based on generative programming, to reduce implementation
complexity, allow for rapid application development, ease deployment and
manageability.

1 Introduction

In recent years, there is an increasing tendency for automation of complicated
distributed processes whose realisation has previously included a significant degree of
human intervention. Of particular interest to us are those activities that involve
multiple administrative domains, depend on heterogeneous infrastructures and are
subject to frequent change. Relevant examples can be found in diverse fields like
Business-to-Consumer (B2C) and Business-to-Business (B2B) e-commerce, service
management and provisioning in wired and wireless networks, Grid-based
collaborations and computer-aided manufacturing, to name but a few. One of the most
challenging aspects of automation is the seamless cooperation of the application logic
with a variety of external systems, such as enterprise applications (e.g., ERP, CRM,
Billing), databases, Internet/Intranet servers (e.g., web, email, FTP), and embedded
devices (network equipment, sensors, instruments etc.) The development of modules

 An Architecture for Implementing Application Interoperation 195

that interoperate with such systems is tedious and time-consuming, since a lot of
effort needs to be put on implementing the required communication/access protocols
and data transformations.

The aforementioned developer responsibilities are facilitated by tools that enable
the programmer to work at a relatively higher level of abstraction, ranging from
simple libraries (e.g., email, FTP or SNMP clients) to powerful middleware (e.g.,
CORBA, JDBC). However, even with the utilisation of such tools, the task remains
challenging, for at least three reasons. First, programmers still need to be aware of a
variety of different APIs and technologies, which are irrelevant to the actual task to be
implemented. Second, the integration of the external systems into the application
frequently requires support for advanced features; dynamic pluggability, transactional
execution (when it is possible to undo actions), concurrency control, manageability
and configurability. Third, to make external systems available to application logic,
they must be made accessible via specialized interfaces: as workflow activities
(nodes), web services, component objects, and so forth. This is achieved via suitable
wrappers that can be tedious to compose and maintain by hand.

The present contribution aims to provide a framework for realising interaction with
heterogeneous infrastructures that minimises the effort required for the development
of the interaction logic. In particular, it defines a component architecture and related
mechanisms that provide the following capabilities:

- Rapid development of “one-of-a-kind” components to interoperate with external
systems, based on generative programming techniques [10] utilizing an active
library [25] of access mechanisms (e.g., telnet, FTP, HTTP, JDBC, SNMP).

- On-the-fly deployment and integration of components with the underlying
transaction, management and security infrastructures of the application.

- Access to interoperation components from different types of business logic
implementations (e.g., workflows, web/grid services) through generatively created
wrappers.

To develop our framework, we were guided by the identification of a product
family, or domain (in the sense of [10, 11]), namely that of applications which
interoperate with a large, or frequently changing, collection of heterogeneous systems.
In this domain, development and maintenance costs of interoperation are comparable,
or even dominate, development and maintenance costs of application logic. Our
contribution includes a refinement of the semantic content of access
mechanisms/protocols (domain analysis, in software reuse parlance) and a proposed
domain architecture. To validate our approach, an operational prototype has been
developed, making use of commercial component frameworks (JBoss [3, 4]) and
software engineering tools (Eclipse platform [6], Velocity generator [5]). The
prototype has been successfully employed to provide application interoperation with
relational databases, network elements and Internet servers.

The rest of the current document is organized as follows: Section 2 presents related
work. Section 3 provides an overview of the proposed architecture and elaborates on
vital mechanisms such as the task of integrating into an application atomic functional
elements and techniques for their template-based, rapid development through

196 G. Hatzisymeon et al.

predefined adaptors. Section 4 discusses the main choices and trade-offs involved in
the design of our solution. The last section of the paper is devoted to summary/
conclusions and identification of important elements for further work.

2 Related Work

Our work addresses interoperability issues of distributed applications composed by a
possibly dynamic, heterogeneous collection of external systems. Such issues have
been addressed before in fundamental work in distributed systems, especially in the
area of middleware. The bulk of the work can be cast into two broad approaches: (a)
general-purpose, low-level mechanisms, such as basic middleware, and (b)
application-specific, high-level techniques.

The first approach, which is typified by traditional middleware (RPC, CORBA,
RMI, etc.) has been broadly studied. The general direction of the work is to abstract
IPC and networking facilities into a high-level application framework. Recent
progress in this area has broadened applicability in challenging cases, such as real-
time and embedded applications [13, 16]. Composition of communication protocols
has also been studied, notably in the BAST system [15] and in [23, 26]. These
techniques are very broadly applicable, but focus on the communication task, and
have not been integrated with the higher-level aspects of application frameworks,
such as transaction, security and management. The recent introduction of Web
Services has advocated a new style of loose integration of autonomous systems, the
so-called Service-Oriented Architecture. The platform is currently being augmented
with additional conventions related to high-level application aspects (e.g. transactions
[8] and resources [12]). It has also been adopted as the standard paradigm for the
development of the Grid [13].

The second approach in system interoperability took an application-oriented view
of the problem, where the goal was to integrate external systems as close to the
application logic as possible. The most notable advances have been in the area of
information system integration. The introduction of widely used wrapper technologies
(ODBC, JDBC etc.) allowed uniform access to multiple external systems using high-
level languages (such as SQL). This has enabled technologies such as mediator-based
information system integration [24] over heterogeneous environments, and object-
relational mapping technologies (e.g. Enterprise JavaBeans).

What is needed today is the convergence of the two approaches outlined above:
general-purpose, high-level system interoperation mechanisms. Ambitious software
engineering efforts (notably OMG’s Model Driven Architecture [20]) are underway to
combine current techniques. At the same time, an array of component-based
application frameworks are being developed for web (JSP), client-server applications
(J2EE), web and grid services (e.g. Globus [13]), mobile agents (e.g. Cougaar [16]),
peer-to-peer systems (e.g. PROST [21]), bringing forward new generations of large-
scale distributed systems. In each of these frameworks there is need for high-level
interoperability with external systems, integrated with fundamental transactional,
security and management mechanisms. Existing technologies to these directions do
exist (e.g. the J2EE Connection Architecture [2]), but they are still little more than
hooks into the platform functionality.

 An Architecture for Implementing Application Interoperation 197

3 Architecture

In this section we present our framework in considerable detail. First, we focus on the
overall system architecture, introducing fundamental concepts and design. Next,
emphasis shifts to application lifetime cycle and the issues thereof.

3.1 Overall Architecture

Access to external systems is accomplished through actions, a semantically high-level
interface, whose purpose is to isolate application logic from communication and other
access concerns as much as possible. Actions have a signature; they accept and return
typed arguments, and raise exceptions. Actions must coordinate via concurrency
control and transactions. They must implement access control, and perhaps obey other
security-related constraints. They must be manageable and discoverable. Finally, they
must be accessible in a variety of ways: through workflows, embedded script
languages, components (e.g., servlets, EJBs), as exported services, and so forth.

Fig. 1. Making external systems (grey boxes on the bottom) available to application logic (grey
boxes on the top): The overall architecture

Based on these concerns we suggest a 3-tier architecture to address the problem.
The bottom tier encapsulates external system access specifics: communication
channels, protocol implementations, session authorization/login, fault tolerance etc.

198 G. Hatzisymeon et al.

The middle tier’s purpose is to integrate with the application framework in use (e.g.,
J2EE, .NET) and provide synchronized and transactional access to the bottom tier.
Finally, the top tier implements different interfaces to the lower tiers (workflows,
embedded scripting, web service/CORBA/servlet calls, session EJBs etc.). Our
proposed architecture along these lines is depicted in Fig. 1.

Adaptors. The logic for application connectivity to external systems is embedded
within adaptors. An adaptor is a component, which encapsulates the necessary
connection state and logic to one or more external systems. Adaptors possess two
distinct interfaces. The first is a transactional, high-level interface, consisting of
actions. This interface is accessed by application logic through the facets (the top
layer), and integrates with the underlying application framework, i.e., transaction
processing, concurrency control and authorization. The second is a non-transactional,
low-level interface, which is only available to the Adaptor Monitor (the middle layer).
This interface is used to perform management operations on the adaptor (e.g.,
resource and connection management and monitoring, security, auditing, on-line
configuration and lifecycle management).

Adaptors can relate to external systems or services in a variety of ways. For
example, an adaptor may encapsulate a telnet session to a remote Unix host, a TCP/IP
multicast group, a Kerberos-authenticated database session, an SNMP-managed
device, etc. As a general principle, adaptors are protocol-oriented; they derive from
protocol templates, specialized and refined appropriately to comply with application
requirements.

Actions. Actions correspond to operations on external systems. Each action is
contained within a specific adaptor. Actions are stateless components whose
invocations are atomic with respect to application transactions; thus it is desirable that
they map to atomic operations on the external system. Each action is specified by a
pair of procedures, the first procedure implementing the operation, and the second,
which is optional, reversing the operation. These two procedures correspond to the
well-known DO-UNDO transactional protocol [16].

In contrast to adaptors, which relate closely to the external system, actions relate to
the application logic. Consider for example an adaptor encapsulating a telnet session
to a Unix host. The adaptor is responsible for communication-level properties, such as
IP address and port, session authentication (login/password exchange), configuration
of the conversational exchange (e.g., recognising the session’s command prompt), etc.
Actions related to this particular adaptor are totally application-specific. For example,
if the purpose of connecting to this Unix host is to perform user management on it,
sample actions for this adaptor would include adduser, deluser, chgpass,
and chgshell. The developer would be responsible for implementing these
actions (and their reversals) as required by the host, e.g., compose the command line
necessary to add/delete a user, and parse the command output. The adaptor will only
provide a protocol-specific API (e.g., in our example, an execute function,
accepting a command line and returning a stream of the command output).

Adaptor Monitor. Actions are invoked only via the Adaptor Monitor. This module
constitutes the middle layer of our architecture and is responsible for application-wide
adaptor integration. Primarily, it is a Transaction Processing monitor [16] for action
invocations (hence its name). It logs the information needed to reverse the sequence

 An Architecture for Implementing Application Interoperation 199

of actions of an aborted transaction. This mechanism integrates closely to the
application framework.

Concurrency control for action invocations is supported in cooperation with the TP
monitor, by two locking mechanisms: (a) synchronization locking, ensuring mutual
exclusion among concurrent action invocations from multiple threads, and (b)
Consistency locking, where transactions can explicitly obtain long-term locks on
specific actions, that will preclude other transactions from invoking them until the
locks are released. This mechanism can be used to implement transaction scheduling
policies, such as serialization [16].

The Adaptor Monitor offers directory services over the deployed adaptors and
actions. Apart from name-based discovery it also provides metadata services for
adaptors and actions, both in human-readable form (e.g., to be used by interactive
management tools), and API-based (i.e., reflection descriptors of adaptor and action
interfaces). Another responsibility of the Adaptor Monitor is adaptor lifecycle
management: The adaptor interface includes four mandatory operations: init,
start, stop and destroy. Typically, these are automatically invoked upon
particular management operations (e.g., adaptor (re-)deployment, system exit/start).
During lifecycle operations, the Adaptor Monitor takes into account global
sequencing constraints for setting up adaptors. The relevant information is provided at
adaptor design time.

Facets. Facets are responsible for application-wide action integration. The Adaptor
Monitor has a standard interface for all adaptor and action-related operations, which
may not be convenient to call directly from application logic. Some useful types of
facets include:

- Workflow facets. Make actions available as activities (workflow nodes) to a
workflow engine executing in the application.

- Services facets. Actions/sets of actions become available as Web Services,
CORBA or RMI objects etc. to the application and its clients.

- Script facets. Actions become available to application-embedded script languages
(e.g., Visual Basic, Python).

- Unit testing facets. Interfacing to the testing and debugging tools.
- Servlets, Java Beans, and other types of application logic components.

Facets are generated automatically from adaptor specifications, using specialized
tools for each facet type.

3.2 Implementing Adaptors

Adaptors can be very complex components. Their implementation is in most cases
based on the knowledge of a specific protocol/domain/language. To avoid
development of every new adaptor from scratch, we employ a generative approach
that allows for rapid, simplified implementation. Our approach is based on the
development of an active library [25] of protocols, i.e., a collection of protocol
implementation templates, which encapsulate most of the required connection
knowledge, and can be customized and refined through a graphical tool.

200 G. Hatzisymeon et al.

Protocol TemplateN

Adaptor Class
Macro Templates

Generation Information
Protocol Template3

Adaptor Class
Macro Templates

Generation Information
Protocol Template2

Adaptor Class
Macro Templates

Generation Information
Protocol Template1

Class
Macro Templates

Generation Information

Adaptor Descriptor

Adaptor Designer
Adaptor Generator Facet Generator

Facet
Template1

Concrete Adaptor1

External System
Protocol Library

Concrete Facet3
Concrete Facet2

Concrete Facet1

Adaptor Monitor

AdaptorX AdaptorY

FacetsX FacetsY

Protocol TemplateN

Adaptor Class
Macro Templates

Generation Information

Protocol TemplateN

Adaptor Class
Macro Templates

Generation Information
Protocol Template3

Adaptor Class
Macro Templates

Generation Information

Protocol Template3

Adaptor Class
Macro Templates

Generation Information
Protocol Template2

Adaptor Class
Macro Templates

Generation Information

Protocol Template2

Adaptor Class
Macro Templates

Generation Information
Protocol Template1

Class
Macro Templates

Generation Information

Protocol Template1

Class
Macro Templates

Generation Information

Adaptor Descriptor

Adaptor DesignerAdaptor Designer
Adaptor Generator Facet Generator

Facet
Template1

Concrete Adaptor1

External System
Protocol Library

Concrete Facet3
Concrete Facet2

Concrete Facet1

Adaptor Monitor

AdaptorX AdaptorY

FacetsX FacetsY

Fig. 2. Adaptor and facet development process

Our adaptor development process is depicted in Fig. 2. The first stage is adaptor
design, and is performed graphically using the Adaptor Designer. It comprises of
three steps: (a) selection of a protocol template, (b) customization of connection,
deployment, lifecycle, authentication and auditing aspects, and (c) implementation of
the actions required by the application, which includes, for each action, definition of
its signature, implementation of the DO-UNDO logic, locking specification and
documentation. The result of this process is an (XML-encoded) Adaptor Descriptor,
which is used to drive code generation.

Each protocol template comprises a number of class macro-templates, which
contain templatised source code to be fed into the generator, as well as the Generator
Information (GI), an XML descriptor of the protocol template. The GI is used to
customize the Adaptor Designer to the specific needs of the protocol at hand. It
contains a variety of information:

- Protocol information, such as name, API exposed by the protocol implementation
and deployment information (e.g., dependencies on external software libraries)

- Adaptor properties: typed attributes exposed to the adaptor API. These can be the
mandatory attributes that maintain the state of the adaptor or additional
information required to configure protocol-related operation (connection, resource
and lifecycle management, authentication etc.)

- Action types: To simplify implementation of actions, each adaptor can support a
number of action types. Each action type is specified by a name, a collection of
class macro-templates and human-readable documentation of the contract to be
supported by action implementations. The contract of an action type consists of

 An Architecture for Implementing Application Interoperation 201

mandatory in-out arguments and guidelines that act as a reference for coding an
action’s DO-UNDO procedures, and per action action-type. Action types can
provide utilities assisting the most common types of interaction processing
(text/XML/URL parsers, data transformers, macro expanders, etc.)

The output of Adaptor Designer is an Adaptor Descriptor (AD), an XML
document holding the specification of a concrete adaptor. It provides code generators
with a variety of information that they utilise to parameterise the instantiation of code
macro-templates. An AD contains data for both the protocol (mostly copied from the
GI) and the adaptor. The main part of adaptor information is a list of adaptor
properties. These correspond to the attributes defined in the GI, with concrete values
provided by the developer. Optionally, additional properties can be specified during
adaptor design. Properties can be used on action method implementations, or can be
part of the non-transactional adaptor interface.

Important elements of the AD are the action specifications. Each action
specification contains action type, name, action signature, a human-readable
documentation of the action interface and semantics, implementations for the DO-
UNDO procedures, specification of locking behavior, and deployment information
(e.g., dependency on external libraries). An AD also encapsulates additional XML
metadata that is associated with the adaptor and individual actions, whose semantics
are opaque to the framework. This metadata can be accessed both during facet
generation, and at runtime through the Adaptor Monitor.

The last step in adaptor implementation is automated by a code generation tool,
which receives the Adaptor Descriptor, and uses the code macro-templates of the
protocol template to produce source code, deployment metadata, scripts etc. Facets
are also generatively produced by the facet generator, based on the adaptor
descriptor and a list of appropriate class macro-templates, drawn from the active
library.

3.3 Prototype Implementation

For an initial implementation of our platform we chose the Java 2 Enterprise Edition
platform (J2EE) and the JBoss application server. JBoss provides robust pluggable
implementations of Java Management eXtensions (JMX) [1] and the Java Connector
Architecture (JCA) [2]. Adaptors are implemented as standard JMX MBeans,
providing an interface accessible through JMX.

We have used the Velocity generator [5] to implement both the Adaptor Generator
and the Facet Generator. Velocity provides an intuitive macro language that adds only
marginal complexity to the coding of protocol templates. The Adaptor Designer is
currently a stand-alone Java application, although we plan to implement a new
version inside the Eclipse IDE.

We have implemented a moderate library of protocols, including most Internet
services (telnet, FTP, http, SMTP, SNMP), as well as three facet types: an Enterprise
Java Bean (EJB) facet, where actions are available to EJBs as methods, a Web
Service facet, where actions are exposed as Web Services by JBoss, and a jBPM
workflow facet, where actions are available as workflow activities.

202 G. Hatzisymeon et al.

4 Discussion

The present section provides a discussion on the architecture proposed in this paper.
First, we consider its applicability in two different domains: telecommunications
service provisioning and grid-based applications. Then, we elaborate on important
choices and trade-offs that we faced in the course of the system design.

4.1 Application Areas

Service Provisioning. The proposed architecture is particularly suited for service
provisioning applications, in the general area of telecommunications Operation
Support Systems (OSS). The goal of service provisioning is to automate the
provisioning of telecommunication services across different technology domains
(traditional land line phone service, internet access, mobile access, etc.) [9]. Some of
the major challenges of service provisioning addressed the proposed architecture are
as follows:

- Heterogeneity: Providers offer services over a variety of telecommunication
equipment and technologies. A typical provisioning scenario may involve
interaction with a dozen different devices or management systems.

- Consistency: Activation failures are common in complex systems and they can
easily result to wasting valuable network resources if a multi-step activation
scenario fails at some intermediate point. Transactional interactions with network
devices eliminate the error-prone practice of coding rollback logic by hand.

- Constant change. Every so often, the marketing department will come up with yet
another bundle of services sold as a package, at which point the activation flow
will need to be adapted or extended. Our architecture matches those requirements
because it allows rapid, easy introduction of new actions, or alteration of old ones.

Grid Computing. Grids [13] constitute virtual computation platforms, promising to
make available unparalleled levels of computing, storage and communication
resources to scientific, engineering and business applications. To fulfil this promise,
Grid technology must be able to harness the resources contributed by the participants
of a virtual organization. These resources form a heterogeneous infrastructure, the
Grid fabric, which must be made accessible to Grid development and application
frameworks through a uniform interface, the Grid middleware. Grid-related research
has been concerned with the grid middleware and higher-level components: resource
management, brokering, semantic discovery, etc. There is relatively little work on
integrating fabric resources to grid middleware. In real Grids this is done in ad-hoc
ways, with significant cost. Our proposed architecture can reduce this cost, by
exposing the Grid fabric to the Grid middleware through adaptors. Thus we can
benefit in several ways. Access to resources, applications and datasets, can
automatically integrate with transactional, concurrency, semantic/metadata and
security mechanisms of the Grid middleware. Semantic issues are of particular
interest; brokering and planning performed by Grid middleware depends on a
semantic representation of the grid fabric stored in metadata repositories. Suitable
facets can be used to easily populate these repositories with minimum effort.

 An Architecture for Implementing Application Interoperation 203

4.2 Design Choices and Trade-Offs

A principal goal of our solution is achieving separation of concerns with regard to
development of interoperation logic. This is accomplished through the
complementary contribution of three types of actors:

- Framework developer: implements functionality common to all adaptors as well
as the development tools (e.g., generators, facet templates), as outlined in this
paper. Once the framework is available there is little need for subsequent
modifications.

- Connectivity experts: develop specific protocol templates. The implementation of
these templates is tedious and requires extensive knowledge of communication
and access protocols (e.g., SMTP, FTP, TELNET, JDBC). It is expected that new
protocol templates are continuously needed, albeit with moderate frequency.

- Application domain experts: responsible for the application-specific intelligence,
i.e., instantiation of adaptors and implementation of actions. This task is normally
the easiest and less costly in terms of effort and time. Actions are constantly
updated/added to the system, possibly at a high frequency.

The above distinction of roles enables new pieces of connectivity logic to be easily
added to an application, so that interoperation requirements are rapidly satisfied.

An important design choice is the dual interface exported by the adaptors, as
elaborated in section 3.1. Actions comprise the high-level portion of the adaptor
interface, supporting features like transactions, concurrency and authorisation. The
rest of the interface is too low-level for the application logic to be aware of; it is
available only to the Adaptor Monitor and pertains to management functions. Features
like transactionality and concurrency are not supported for these operations; this
would considerably complicate matters without any significant benefit. There is
ample precedent justifying our choice, e.g., in database systems, where the Data
Manipulation Language is transactional, while the Data Definition Language is not.

The ultimate objective of the framework is to enable application logic to invoke
actions. An action encompasses only the logic that needs to be executed at the
external resource; it does not care how the connectivity is obtained. Furthermore,
actions are atomic; they do not encapsulate any further nested actions that can be
handled as distinct functions from a transactional point of view. Thus, they need not
maintain any state information. Support for transactional behavior is optional. Actions
are therefore extremely lightweight components; the simpler among them may consist
of only a few lines of code. This leads to minimal effort and time required from the
part of the action developer, as well as minimal overhead for the execution of actions.
In case of non-reversible actions, the overhead is even smaller, since no invocation
history need be preserved.

In designing the transaction support for the Adaptor Monitor, we chose to select
DO-UNDO semantics, instead of the more powerful DO-UNDO-REDO semantics.
Thus, it will be difficult to implement advanced buffering/caching/coalescing
behaviour at the action level. This choice limits performance in a few cases; for
example, an object-relational mapping of an external database may be less efficient.
On the other hand, we gain in simplicity: for most external systems, the meaning of

204 G. Hatzisymeon et al.

REDO is not obvious. A related concern concerns our choice of locking semantics.
We chose not to constrain the user to a specific protocol (an obvious choice would
have been two-phase locking) but instead allow application logic to control locking
explicitly. If more constrained behaviour is desirable for some adaptors, it can in
principle be supported by special facets.

A concern we faced during the design of the overall architecture is the management
of events that originate from the underlying infrastructure and are of interest to the
application. Relevant issues have been the subjects of extensive research efforts in
areas related to distributed systems [27, 28]. The approach adopted by our framework
so far does not include an explicit mechanism for event propagation towards the
application. However, this can be achieved through polling at the application logic
level.

5 Summary – Future Work

In this paper, we presented an architecture for application interoperation with
heterogeneous infrastructures. Our contributions pertain to applications which have
extensive and frequently changing requirements for connection to external resources.
Our architecture promotes separation of concerns in the development of
interconnection functionality, with a bias in the direction of reducing the burden on
the developer of application logic.

With regard to future work, our top priorities include: (a) incorporating event
management into the framework, (b) utilisation of the framework in Grid applications
based on the Globus platform, and (c) investigation of the architecture
implementation on platforms other than J2EE, such as the Cougaar agent framework.

References

1. Java Management Extensions White Paper: Dynamic Management for the Service Age.
http://java.sun.com/products/JavaManagement, 1999.

2. J2EE Connector Architecture Specification, Version 1.5, Nov. 2003.
3. JBoss Open Source Application Server, http://www.jboss.org.
4. M Fleury, F Reverbel, The JBoss Extensible Server, International Middleware Conference

(Middleware 2003), Brazil, June 2003.
5. Velocity Template Engine, http://jakarta.apache.org/velocity.
6. Eclipse Integrated Development Environment, http:// www.eclipse.org.
7. A. Beugnard, Communication Services as Components for Telecommunication

Applications, In Proc. Objects and Patterns in Telecom Workshop (in ECOOP’00), 2000.
8. L. F. Cabrera, G. Copeland, M. Fwingold et al. Web Services Atomic Transaction (WS-

AtomicTransaction), Nov 2004.
9. A. Clemm, F. Shen and V. Lee, Generic Provisioning of Heterogeneous Services—a Close

Encounter with Service Profiles. Computer Networks 43 (2003), 43-57.
10. K. Czarnecki and U. W. Eisenecker, Components and Generative Programming. In Proc.

7th European Software Eng. Conf., 1998.

 An Architecture for Implementing Application Interoperation 205

11. A. Egyed, N. Mehta and N. Medvidovic, Software Connectors and Refinement in Family
Architectures. In Proc. 3rd Int’l W. on Development and Evolution of Software
Architectures for Product Families, LNCS 1951, 96-105, 2000.

12. I. Foster, J. Frey, S. Graham et al. Modelling Stateful Resources with Web Services.
Preliminary whitepaper version 1.1, 3/5/2004.

13. I. Foster, C. Kesselman, J. Nick, S. Tuecke. Grid Services for Distributed System
Integration. Computer, 35(6), 2002.

14. A. Gokhale and D. C. Schmidt, Techniques for Optimizing CORBA Middleware for
Distributed Embedded Systems. In Proc. of INFOCOM '99, 1999.

15. B. Garbinato and R. Guerraoui, Flexible Protocol Composition in Bast, In Proc. Int’l Conf.
on Distributed Computing Systems (ICDCS), 1998.

16. J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques. 1993, Morgan
Kaufmann Pub.

17. A. Helsinger, A. Thome and T. Wright. Cougaar: A Scalable, Distributed Muti-Agent
Architecture. In Proc. IEEE Conf. on Systems, Man and Cybernetics (SMC), 2004.

18. A. Krishna, D. C. Schmidt and R. Klefstad, Enhancing Real-Time CORBA via Real-Time
Java. In Proc. 24th IEEE Int’l Conf. on Distributed Computing Systems (ICDCS), 2004.

19. N. Mehta, N. Medvidovic and S. Phadke, Towards a Taxonomy of Software Connectors.
In Proc. Int’l Conf. on Software Engineering, 178-187, 2000.

20. J. Miller and J. Mukerji (Eds.), Model Driven Architecture (MDA).
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01, 2001.

21. M. Portmann, S. Ardon, P. Senac, A. Seneviratne, PROST: A Programmable Structured
Peer-to-peer Overlay Network, In Proc. IEEE Int’l Conf. on Peer-to-peer Computing
(P2P), 2004.

22. Y. Smaragdakis and D. Batory, Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs. Software Engineering and
Methodology 11(2), 215-255, 2002.

23. B. Spitznagel and D. Garlan, A Compositional Approach for Constructing Connectors. In
Proc. Working IEEE/IFIP Conf. on Software Architecture (WISCA), 2001.

24. S. Thakkar, C. A. Knoblock and J. L. Ambite, A View Integration Approach to Dynamic
Composition of Web Services. In Proc. ICAPS Workshop on Planning for Web Services.
2003.

25. T. L. Veldhuizen and D. Gannon. Active libraries: Rethinking the roles of compilers and
libraries. In Proc. SIAM Workshop on Object Oriented Methods for Inter-operable
Scientific and Engineering Computing (OO'98), 1998.

26. D. M. Yellin and R. E. Strom, Interfaces, Protocols and the Semi-Automatic Construction
of Software Adaptors. In Proc. Object-Oriented Programming, Systems, Languages and
Architectures (OOPSLA), 176-190, 1994.

27. R. Meier, Taxonomy of Distributed Event-Based Programming Systems, 1st Int’l
Workshop on Event-Based Systems (DEBS 2002), July 2002, Vienna, Austria.

28. P. Th. Eugster et al., The Many Faces of Publish/Subscribe, ACM Computing Surveys,
Vol. 35, Issue 2, June 2003.

L. Kutvonen and N. Alonistioti (Eds.): DAIS 2005, LNCS 3543, pp. 206 – 219, 2005.
© IFIP International Federation for Information Processing 2005

Optimizing the Access to Read-Only Data in Grid
Computing

Alek Opitz and Hartmut Koenig

Computer Science Department,
Brandenburg University of Technology Cottbus,

Germany
{ao, koenig}@informatik.tu-cottbus.de

Abstract. A fundamental problem of grid computing is the communication
overhead. One reason of this overhead is the access to remotely stored data. Ca-
ching read-only data is a possible alleviation of the problem. In case of grid
computing caching can be optimized by using allocation schemes considering
the contents of the caches. Possible ways to achieve such an allocation in a grid
are the topic of this paper. The paper proposes to use allocation schemes prefer-
ring resources with the required data in their caches. In doing so the hit rate of
the caches will be increased and as a consequence the average response time of
the jobs and the network load will be reduced. Two new possible allocation
approaches are discussed and compared with classical allocation schemes. The
performance and the costs of the schemes (when applied to large grids) are
evaluated using a simulation environment.

1 Introduction

In recent years strong efforts have been made to use idle computing resources distri-
buted over the Internet. The idea of grid computing was born. It aims at giving users
with compute-intensive applications the possibility to submit their jobs to a grid that
provides the required resources. A fundamental problem of this approach is the access
to the data. The communication overhead makes a lot of jobs unsuitable for grid com-
puting. Therefore it is a quite obvious goal to reduce this communication overhead.

In this paper we focus on optimizing the access to read-only data.1 Such immutable
data play an important role in grid applications ([11], [1]). A typical example is
virtual screening([32]), which is used in the development of drugs for medical treat-
ments. Virtual screening analyzes chemical compounds described in databases. These
databases are not specific for single applications and describe hundreds of thousands
of compounds. Those compounds that do not show any activity against the target
receptor (this is the majority) are excluded. Subsequent drug design phases only con-
sider the remaining compounds. Because the analysis is a computationally complex
task, it is desirable to analyze the compounds in parallel, which makes grid computing

1
 Note that in grid computing the program code is also a kind of read-only data that has to be

transferred to the executing resources.

 Optimizing the Access to Read-Only Data in Grid Computing 207

very reasonable. Other grid applications which access read-only data are, for example,
the rendering of animation movies, where the program code and the model data must
be accessed ([28]), and applications accessing the protein data base([5], [30], [3]).

Since data often do not exclusively belong to a certain application, it is possible
that different jobs access the same data, e.g. the same databases or the same program
libraries. To accelerate the access to the data caches might be useful. Caches exploit
the fact that many files are accessed multiple times. They store the recently used files
in the hope that some of these are required soon again. Usually it cannot be predicted,
whether the data will really be reused. There is only a limited probability. However,
in the case of grid computing this probability can be increased by preferably alloca-
ting the jobs to those resources that already have at least some of the needed data.
Possible ways to achieve such an optimized allocation in a grid are the topic of this
paper. We especially pay attention to the costs of the allocation when considering
large numbers of resources.

The paper is organized as follows. In section 2 we discuss two possible allocation
schemes for this problem. Section 3 describes the simulation environment used for
evaluating the performance of the two schemes. The results of this evaluation are
summarized in Section 4. In Section 5 we give an overview on related work. The
final remarks give an outlook on future work.

2 Optimized Allocation According to Cache Contents

In the following discussion we consider a grid with resources provided, for example,
by enterprises, universities or individuals. We further assume that there is a broker
between the users and the resources which is responsible for allocating appropriate
resources to the jobs. After allocation the jobs are executed and the results are finally
returned to the users. As we focus in this paper on optimizing the access to read-only
data stored elsewhere in the Internet and because we want to keep the model as
simpleas possible, only serial jobs are considered. This is, of course, a simplification,
but as discussed in Section 5, allocation mechanisms for parallel jobs concentrate on
the parallel allocation of machines. This type of optimization is largely orthogonal to
the optimizations discussed in this paper. The scenario is shown in Fig. 1.2

Fig. 1. Assumed scenario

2 Note that the broker is not necessarily involved in the transport of the data. It is possible that

the resources load the data directly from the sources.

broker resources users

jobs (code + data)

results

208 A. Opitz and H. Koenig

In order to allocate resources that have the needed data locally available, we use
directory servers. These servers store information about the locations of the existent
replicates. According to the terminology used in [11] the servers are called RLIs
(replica location indices). They receive their information from local replica catalogs
(LRCs). An LRC belongs to a single place and contains information about the data
that are locally available to the resources at this place.

Since allocation schemes for grid computing are considered, attention has to be
paid to the scalability problem, i.e. the solution must also work efficiently for large
numbers of resources and jobs. For that reason, an infrastructure with several RLIs
seems more appropriate for managing replicates than a single directory server. Ob-
viously there are (at least) two possibilities for portioning the replicate management
data. The first one is to partition the resources and to make each RLI responsible for
such a partition. This possibility is discussed in Section 2.1. An alternative approach
is to partition the data objects and to make each RLI responsible for one partition.
This approach is considered in Section 2.2.

2.1 RLIs with Distinct Sets of Resources

The basic idea of this approach is that the individual RLIs only store information
about distinct subsets of LRCs. Hence a single RLI can only return resources from a
subset of the available resources. In order to avoid this, a hierarchical arrangement of
the RLIs is proposed (see Fig. 2). The search for a resource with a certain data item
starts at the top level RLI. This RLI (and any else) contains only condensed infor-
mation about the locations of the data items, i.e. an RLI knows for each child only the
set of data items that are available at any resource being descendant of this child node.

Thus it is even possible to search for a resource with several needed data items instead
of searching for a resource with a single data item. Obviously in this case the hierar-
chical approach does not guarantee to find the optimal resource, i.e. the resource with
the most of the desired data items. On the other hand, the space requirements per ser-
ver are reduced and the allocation process is made faster.

Fig. 2. Hierarchical selection of resources

RLI

RLI RLI RLI

start of search

LRC LRC LRC

…
RLI RLI RLI

LRC

… …

LRC

 Optimizing the Access to Read-Only Data in Grid Computing 209

Using Bloom Filters. The described hierarchical structure reduces the space require-
ments on the individual servers. An additional reduction seems possible by using a
lossy compression of the information about the replicates. For this purpose, the use of
Bloom filters was proposed ([7], [11]). Bloom filters are able to store information
about the availability of data objects in an efficient way. This is achieved by applying
several hash functions to a single data object. The hash functions are usually inde-
pendent, but they all map onto the same domain, e.g. the range 1...l., i.e. onto a bit
string of length l. When new data objects are stored at a resource, the bits calculated
by the hash functions are set to 1.3 To test the availability of a certain data item the
corresponding bit positions have to be checked. Obviously this can lead to the erro-
neous assumptions about the availability of data items, since the same bits can be set
by other items, too.

Several Top Level RLIs. Since the top level node receives all the queries, the model
depicted in Fig. 2 is neither scalable nor reliable. This problem can be alleviated by
introducing some additional access points. Preferably each resource should be reach-
able from each access point. Several topologies are conceivable, especially topologies
of space division switches ([29]). For our approach, we use a simple model which is
depicted in Fig. 3. Each resource belongs to exactly one of several distinct trees. The
roots of these trees notify all the access points about the available data (and possibly
further information). The result is a topology in which each resource can be reached
from each access point on exactly one path.

Fig. 3. Model with several access points

Using Additional Information. Finally the question arises, whether the allocation of
resources should only depend on the required data objects. Our simulations showed
that this is inefficient, because knowledge about the current load of the resources is
extremely important. Therefore a hierarchical load balancing was added, i.e. the
resources notify the RLIs not only about the available data items but also about their
current load. Thus an RLI can select the appropriate child taking both the load and the
available data items into account.

Costs of the Approach. In order to assess the benefit of the approach, the additional
overhead of the proposed allocation scheme has to be compared with its advantages.

3 To allow the removal of data items, a counter is needed for each bit position. These counters

are only required at in the LRCs, not in the RLIs.

Jobs from grid users

… … … …

Distinct trees

Access points

210 A. Opitz and H. Koenig

Possible advantages are a reduced average response time, a reduced network load, and
a reduced load at the data sources. The additional costs can be divided in:

(1) costs for the notification of the load and available data items at the resources
(1a) number of bytes sent,
(1b) costs at the resources (time busy with sending notifications),
(1c) costs at the directories (time busy with receiving notifications)

(2) costs for selecting suitable resources
(2a) number of bytes sent,
(2b) costs at the directories for selecting the resources.

We now discuss the individual parts of these costs. The simulation results are pre-
sented in Section 4.

Costs for Notifying the Directory. First the messages sent from the resources to the
directory servers are considered. The indication of available data is mapped into
Bloom tables with n bits. The load information is very small, e.g. 4 bytes. Both data
are sent from the children nodes to their fathers. An overhead of h bytes is added to
each message. In our simulations we used a value of h = 50 bytes derived from the
size of the IP-header and additional overheads for other protocols. Different values of
h did not greatly influence the results.

The hosts sending and receiving these messages have only a small computational
overhead for handling these messages. Therefore the busy times are approximated by
the serialization delays, as it can be assumed that NIC and CPU work in parallel.

Costs for Selecting a Resource. To select suitable resources the RLIs must be queried.
A query contains a characterization of the set of the needed read-only data plus an
overhead of h bytes. As the directory servers store only the Bloom tables it is sensible
to send only the hash values of the data objects. The necessary size of the hash values
can be derived from the size of the used Bloom tables. Such a query is sent to an
access point and from there down through the hierarchy. Finally the answer con-
taining the selected resource is returned to the source of the query.

Each queried RLI has to select the most appropriate child. It has to compare the
current load and the Bloom tables of the children. As only the best child node has to
be identified, a linear search through the children is sufficient. Usually there are only
few children, so the selection of the most appropriate child is not very complex.
Therefore the serialization (and deserialization) delays of the messages are equated
with the aggregated costs at the involved RLIs.

2.2 RLIs with Distinct Sets of Data Items

We now consider the second approach in which the servers contain information about
distinct sets of data items. The structure is depicted in Fig. 4. In this solution the
amount of data per RLI can be kept constant by increasing the number of RLIs
proportionally to the number of replicates. Of course there must be an efficient me-
chanism for identifying the RLI which contains the information about a certain data
item. This can be done by means of hash functions, in case of varying sets of RLIs
consistent hash functions ([24]).

 Optimizing the Access to Read-Only Data in Grid Computing 211

Fig. 4. Partitioning of the data sets

Selecting Suitable Resources. A problem of the depicted scenario is that a job might
require several data items. However, a single RLI knows only the locations of data
items from a limited subset. That means, in order to find the optimal resource for a
job with multiple needed data objects it were necessary to query several RLIs for
resources with the needed items. Finally the resource lists returned by the RLIs had to
be unified. Sending and unifying these lists is potentially expensive. Therefore in this
paper we do not follow this approach. Instead we use a mechanism that searches for a
resource with the most important (i.e. biggest) of the needed data items. We regard
this approach as a first step, which delivers a lower bound for the effectiveness of the
method. An examination of possibilities considering several data items is planned for
the future.

Using Additional Information. For the same reasons as in Section 2.1, load balan-
cing is added. A load server is introduced that informs about the load of the available
resources. The resources have to update these data when getting idle or loaded. The
combined approach actually searches for resources that are unloaded and have the
most important data item locally available. If no such resource can be found, any
unloaded resource will be used.

Costs of the Approach. The costs of this approach are analyzed analogously to
Section 2.1.

Costs for Notifying the Information Servers. The information about available data
items is sent from the LRCs to the RLIs. To identify the data items URLs with an
average length of u = 100 bytes are used. Alternatively hash values could be used
what is not considered in this paper. The load information messages are sent to the
load servers. It is sufficient to update the server only when the load changes. As in
Section 2.1 an overhead of h bytes per message is added and the busy times of the
involved hosts are approximated by the serialization delays.

Costs of Selecting Resources. To select a suitable resource a request is sent to the RLI
responsible for the most important (largest) data item. The request contains the item’s
identifier which is assumed to be a URL with an average length of u bytes. The RLI
finds the resources with the required item and sends the list to the load information
service where one of the resources is selected. The response with the selected re-
source is returned to the requesting host. For each message, an overhead of h bytes is
added. Analogously to the other estimations the time for processing the messages is
approximated by the (de)serialization delays.

LRC

RLI RLI RLI

LRC LRC LRC LRC

212 A. Opitz and H. Koenig

Optimization. A simple optimization of this allocation method is to ignore small data
items. For the simulations described below a limit of 1 MB was assumed, i.e. re-
sources with a size below 1 MB are not indicated to RLIs. Consequently, if the largest
read-only data item needed by a job is smaller than 1 MB, any unloaded resource is
selected.

3 Simulation

To assess the benefit of the proposed mechanisms we performed extensive simu-
lations. The underlying model is explained in this section.

3.1 Grid Model

The environment developed for these simulations was kept as simple as possible.
Thus it was possible to simulate even large grids on desktop PCs. The model consists
of a configurable number of computational resources which are modeled as single-
processor machines. As only serial jobs are considered this should be no problem. In
the standard configuration 4096 resources were simulated. It was assumed that they
have all the same properties, e.g. the same speed. Failures in the grid are not consi-
dered. Each machine is connected to the Internet and has its own cache for storing
data. A cache stores each needed (read-only) data object. In case of shortness of space
the least recently used objects will be removed from the cache. As at the beginning of
the simulation the caches are empty, we started the measurements only after simu-
lating the grid for a certain amount of time.

Usually an Internet connection is shared by machines of the same organization.
Thus actually a single connection (with a relatively high data rate) for a set of ma-
chines should be modeled. For simplicity reasons and thus enabling simulations of
large grids such shared connections were not modeled. Instead a separate link with a
lower bandwidth was assumed for each machine. This model rather corresponds to a
grid with privately used PCs than to a grid using the PCs of enterprises. The conse-
quences of this simplification still has to be analyzed what is planned for the future.

Besides the resources there is the infrastructure for distributing the jobs. For sim-
plicity, the machines of this infrastructure are connected to the Internet with the same
low bandwidth as the resources. This might underestimate the available data rate, but
actually this data rate is mainly used for approximating the load of the machines of
the infrastructure (see Section 2.1). An increased network bandwidth does not in-
crease the computational speed of the machines.

3.2 Workload Model

Besides modeling the resources it is at least equally important to model the workload
properly. For this, a special library for generating jobs was developed. The parameters
of a job are the pure execution time and additionally the required read-only data
items. Each item is characterized by the pair (identifier;size). It is assumed that the
needed data items are loaded completely into the cache of the executing resource.

The information for modeling the workload has been taken from several papers
about workloads. The papers belong to the areas of grid computing, parallel machines

 Optimizing the Access to Read-Only Data in Grid Computing 213

and web caching. Because it is not sure that the found properties taken from other
research really applies to the grid computing as discussed, quite a few variations in
the workload have been tested for validating the results (see Section 3).

Inter-Arrival Times. According to [12] and [23] the distribution of inter-arrival
times can be modeled by a hyper-exponential distribution, i.e.:

)1()1()1()(21
11

xx epepxF λλ −− −⋅−+−⋅=

Variations due to daytime as reported, for example, in [9] are ignored. In the simula-
tion the parameter values ! 1 = 0.000204, ! 2 = 0.0038 and p1 = 3.46 % were used
([23]). For scaling the load of the grid the parameters, ! 1 and ! 2 are multiplied by a
factor f. Thus the mean value of the time between two successive job submissions is
reduced by the factor f, whereas the coefficient of variation (CV) stays constant.

Runtimes. Different models exist for the distribution of job runtimes. [23] proposes a
hyper-exponential distribution, [14] and [20] suggest a log-uniform distribution, [12]
and [16] use a Weibull distribution. Fortunately, the models are very similar. In our
simulation a log-uniform distribution was used. Additional tests with the Weibull dis-
tribution were made. The distribution function of a log-uniform distribution can be
expressed by the following formula:

xbaxF ln)(⋅+=

The values of a and b are very similar in [14] und [20], for the simulation the
values a = –0.24 and b = 0.111 were used.

Popularity of Data Items. For the files of the WWW, it has been shown that the
popularity of the individual files follows a Zipf-like distribution ([8], [27], [4]):

1

1

1
and10with)(

−

=
!
!#

%

&
=≤<=

N

i i
"

i

"
iP γγ γ

According to the literature the value of parameter # is somewhere between 0.6 und
0.9, in our simulations # = 0.7 was assumed. Besides parameter # the number of dif-
ferent files is important. For our simulations we selected this number in such a way
that the used data items were accessed on average 3.6 times during the simulation
which is in line with values reported in literature ([18], [27], [10], [22]).

Because it is unclear, whether this Zipf-like popularity distribution can be applied
to files in a grid environment, additional tests with other parameter values and with a
uniform distribution were carried out.

Needed Read-Only Files. To simulate the delays to access read-only files their sizes
must be modeled. The distribution of files sizes is usually not uniform. Instead [15]
proposes a log-uniform distribution:

0with
ln

)(>′!#
%
&

′
′−Φ= σ

σ
μx

xF

214 A. Opitz and H. Koenig

Following the studies presented in [31] the values $’ = 0.01826 and ’ = 8.699
were chosen for the standard configuration. Besides the sizes of single files the
number of files per job is important. As no empirical data was found for this number,
the simulations were conducted with very different ranges of this number. In the stan-
dard configuration a uniform distribution over the interval [1;5] was chosen.

4 Simulation Results

The results of our simulations are presented in Table 1. We simulated five allocation
schemes which are explained below. The second column shows the average load of
the grid resources. Further, the average response time (ART) was measured. This is
the time between the submission of a job and the return of the results. The overhead
of a job is the time waiting in a job queue plus the time for loading the read-only data
from a remote location. It also includes the time for notifying the used allocator. The
overhead and the ART are given in seconds. The column “kbps/resource” indicates
the network load. For conceivability reasons, the aggregated network load is divided
by the number of resources. The rightmost column shows the demands on the in-
frastructure. It gives the number of needed machines and is determined by the total
busy time divided by the whole simulated time. The demands are only estimates and
are quite low for the simulated number of resources and for the used average job
length. But increasing the number of grid resources and decreasing the average job
length increases the demands. Thus the column gives an indication of the relation
among the different allocation schemes.

Table 1. Results of the allocation schemes

Allocation scheme Load ART Overhead kbps/resource Nodes

Random 69.7 % 49037 41134 12.1 0.00000

Round Robin 69.7 % 36415 28495 12.1 0.00000

Load Balancing 69.5 % 8053 137 12.0 0.00074

Resource partitioning
(see sect. 2.1)

69.5 % 8052 137 11.9 0.02005

Data partitioning
(see sect. 2.2)

69.3 % 8026 111 9.6 0.00410

The first three allocation schemes of Table 1 were introduced for comparison. The
first scheme selects the resources randomly, the second one in a round robin fashion.
The third allocation scheme named “Load Balancing” uses a load directory as men-
tioned in section 2.2 to select unloaded resources. The results clearly show the benefit
of taking the resource load into account. For that reason, we use the “Load
Balancing”-allocator as reference for our two allocation schemes which are shown in
the last two rows.

 Optimizing the Access to Read-Only Data in Grid Computing 215

As it can be seen from the table, the approach with RLIs responsible for distinct
partitions of the resources (see section 2.1) cannot achieve the desired optimization
(in relation to the reference allocation scheme). The main reason is the hierarchical
selection of resources, which leads to unfavorable decisions in the process of resource
allocation. In contrast the second approach (with RLIs responsible for distinct par-
titions of the data items, see section 2.2) indeed helps to significantly reduce the over-
head and network load.

Due to limited space we present in Table 1 only the results of the standard configu-
ration (as described in Section 3). However, simulations with various parameters
showed that the relation between the five allocation schemes is largely independent of
the exact values of most parameters, as, for example, the overhead per message or the
size of the grid. The most significant parameters are the network bandwidth and the
sizes of the data items. That means the ratio between the overheads of the individual
approaches remains largely constant. As the reduction of the ART directly relates to
the reduction of the overhead, it is clear that the relative reduction of the ART
depends mainly on the ratio between the overhead and the ART. If this ratio is in-
creased, the relative reduction is also increased. Correspondingly, if the ratio is
decreased, the relative reduction is decreased, too. It is not quite clear, whether the
ratio of our standard configuration is realistic in respect of this point. Therefore
further investigations are needed.

5 Related Work

To the best of our knowledge no papers exist on resource allocation schemes as pro-
posed in this paper. However there are other proposals with at least partially the same
goal, i.e. optimizing the access to data or optimizing the resource allocation. Hence in
this section a brief overview of these proposals is given. First we discuss proposals
related to caching. Thereafter efficient methods for accessing remote data are
reviewed and then we take a look at allocation schemes for parallel systems. Finally
we discuss the applicability of methods used in the area of distributed databases.

In the WWW caching is used extensively to optimize the access to read-only data.
Karger et al., for example, discuss the arrangement of the Web caches [24]. Instead of
using a single hierarchy they propose to use individual hierarchies for different data
objects. The trees have to be derived from the data identifiers by using hash functions.
Because the set of participating caches is variable, a consistent hashing is used for
reducing the costs of adding or removing a cache. Caching may also be applied to
grid computing. In [2] a data grid is described that enables to access the same data
from all over the world. To achieve a better efficiency the data are cached. GASS [6]
is a data movement and access service for wide area computing systems which is
optimized for grid applications. It exploits the fact that strong consistency among
replicates is usually not necessary. Consequently the service uses caching for both
reading and writing of the data.

Caching can increase the probability that a certain data item is locally available. If
it is not locally available, it has to be retrieved from a suitable source. To do this in an

216 A. Opitz and H. Koenig

efficient manner, two things are required [1]: an appropriate protocol for the trans-
mission of the data and an efficient management of the copies (replicates). For the
latter, a directory can be used containing for each data object the locations where it is
stored. As argued in [1] users prefer working with groups of files instead with indivi-
dual files. Therefore directories should contain the locations of data collections
instead of locations of single files. Chervenak et al. also propose the usage of
directory servers [11]. The paper describes a framework for the construction of ser-
vices for localizing replicates. It is rather a classification of possibilities than a tan-
gible concept for such a service.

Besides work focussing on data access there are a lot of papers about scheduling
and resource allocation. A survey of such methods for parallel machines is given in
[19]. The methods concentrate on the allocation of processors for jobs that need
multiple processors at the same time. These methods are mainly orthogonal to the
idea followed up in this paper. The same applies to [33] which proposes an allocation
scheme that groups the processors into pools with fast connections inside the pools.
Thus a parallel job should be preferably allocated to resources from a single pool.
Fewer papers exist on the allocation of machines in the context of grid computing. In
[21] it is emphasized that centralized methods are not suitable and some mechanisms
are compared. An economical approach has been proposed in [17]. The individual
jobs have utility values, the machines have machine values (i.e. costs) and the jobs are
assigned to machines in an auction-like manner. [20] shows that due to the separation
of local and global job queues an efficient global allocator needs regular notifications
about the current state of the resources.

In the context of distributed databases the problem of finding suitable places for
executing jobs arises, too. The approaches usually focus on the execution of the parts
of a request at the place of the data – as far as this is possible. Only the unification is
done on a coordinator ([13]). Such an approach is much more difficult in case of grid
computing. At first general purpose programs cannot be decomposed as simple as
SQL queries. SQL queries have a certain structure that delimits the computational
power, but greatly alleviates the analysis and decomposition. Furthermore the most
important idea of grid computing is the utilization of otherwise idle resources.
However a location having the data locally available does not necessarily possess the
needed computational resources.

6 Conclusions and Future Work

The paper discussed a possibility for optimizing the access to read-only data in case
of grid computing. It presented the idea of increasing the cache hit rate by using allo-
cation schemes regarding the contents of the caches. In order to proof the usefulness
of the idea two possible allocation schemes were presented and evaluated by simu-
lation. The calculation made by the developed simulation environment included also
the costs of the allocation scheme – something that is hardly done in other work on
this topic. It was shown that one of the two allocation schemes (the one with RLIs for
partitions of data items, see section 2.2) indeed helps increasing the hit rate and thus

 Optimizing the Access to Read-Only Data in Grid Computing 217

reduces the overhead as well as the network load. This achievement is especially
remarkable when considering that the simulated allocation scheme has not been opti-
mized, yet. For example, the demands to the infrastructure might be reduced by using
hash values instead of URLs for the data items. Furthermore, considering multiple
data items instead of only the largest one could improve the effectiveness of the allo-
cation scheme. The integration of these optimizations is planned for future work.

Even though we tried to follow the reality by simulating the execution of the jobs,
it is desirable to verify the results in more realistic simulations. Especially failures in
the grid and the heterogeneity should be considered what has not been done in this
paper. As a starting point the results from [25], [26], and [18] could be used which
discuss the generation of realistic grids.

References

1. Bill Allcock, Joe Bester, John Bresnahan, …: „Secure, Efficient Data Transport and
Replica Management for High-Performance Data-Intensive Computing“ , IEEE Mass
Storage Conference, 2001,

2. “Avaki Data Grid 3.0 Conceptual Overview”, Avaki Corporation December 2002,
www.avaki.com

3. Kim Baldridge, Philip E. Bourne: “The new biology and the Grid”, "Grid Computing -
Making the Global Infrastructure a Reality", edited by F. Berman, A. Hey, G. Fox, 2003
John Wiley & Sons

4. Paul Barford, Azer Bestavros, Adam Bradley, Mark Crovella: „Changes in Web Client
Access Patterns. Characteristics and Caching Implications”, World Wide Web, Volume 2,
Issue 1-2, 1999

5. Helen M. Berman, David S. Goodsell, Philip E. Bourne: „Protein Structures: From Famine
to Feast”, AMERICAN SCIENTIST (July-August 2002),
http://www.sdsc.edu/pb/papers/amer_sci.pdf

6. Joseph Bester, Ian Foster, Carl Kesselman, Jean Tedesco, Steven Tuecke: „GASS: A Data
Movement and Access Service for Wide Area Computing Systems”, Sixth Workshop on
I/O in Parallel and Distributed Systems, May 5, 1999

7. Burton H. Bloom: „Space/Time Trade-offs in Hash Coding with Allowable Errors“,
Communications of the ACM, Volume 13, Number 7, July, 1970, pp. 422-426

8. Lee Breslau, Pei Cao, Li Fan, Graham Phillips, Scott Shenker: „Web Caching and Zipf-
like Distributions: Evidence and Implications“, IEEE Infocom '99, pages 126-134, New
York, NY, March, 1999

9. Maria Calzarossa, Giuseppe Serazzi: „A Characterization of the Variation in Time of
Workload Arrival Patterns“, IEEE Transactions on Computers, 34(2): 156-162, 1985

10. Ludmila Cherkasova, Magnus Karlsson: „Dynamics and Evolution of Web Sites: Analysis,
Metrics and Design Issue“, Sixth IEEE Symposium on Computers and Communications
(ISCC'01), p.64, July 03-05, 2001

11. Ann Chervenak, Ewa Deelman, Ian Foster, …: „Giggle: A Framework for Constructing
Scalable Replica Location Services“, IEEE Supercomputing 2002

12. Su-Hui Chiang, Mary K. Vernon: „Characteristics of a Large Shared Memory Production
Workload”, 7th Workshop on Job Scheduling Strategies for Parallel Processing, Cambridge,
MA, June 2001, Lecture Notes in Computer Science, Vol. 2221, Springer-Verlag

218 A. Opitz and H. Koenig

13. Peter Dadam: „Verteilte Datenbanken und Client-/Server-Systeme. Grundlagen, Konzepte
und Realisierungsformen”, Springer-Verlag, Berlin Heidelberg, 1996

14. Allen B. Downey, Dror G. Feitelson: „The Elusive Goal of Workload Characterization“,
Performance Evaluation Review 26(4), pp. 14-29, March 1999,
http://www.cs.huji.ac.il/~feit/pub.html

15. Allen B. Downey: „The structural cause of file size distributions“, Technical Report CSD-
RT25-2000, Wellesley College, 2000, http://allendowney.com/research/filesize/

16. Darin England, Jon B. Weissman: „Costs and Benefits of Load Sharing in the
Computational Grid“, Workshop on Job Scheduling Strategies for Parallel Processing with
Sigmetrics 2004

17. Carsten Ernemann, Volker Hamscher, Ramin Yahyapour: „Economic Scheduling in Grid
Computing“, from: D.G. Feitelson, L. Rudolph, U. Schwiegelshohn (Eds.): „Job Scheduling
Strategies for Parallel Processing“, 8th International Workshop, JSSPP 2002 Edinburgh, Scotland,
UK, July 24, 2002, LNCS 2537, Springer-Verlag

18. Michalis Faloutsos, Petros Faloutsos, Christos Faloutsos: „On Power-Law Relationships of the
Internet Topology“, ACM SIGCOMM, Cambridge, MA, September 1999

19. Dror G. Feitelson, Larry Rudolph: „Job Scheduling in Multiprogrammed Parallel Systems.
Condensed Version”, Research Report RC 19790 (87657), IBM T. J. Watson Research Center,
Oct 1994, Revised version from August 1997, http://www.cs.huji.ac.il/%7Efeit/pub.html

20. Jörn Gehring, Thomas Preiß: „Scheduling a Metacomputer With Uncooperative Sub-schedulers“,
from: „Job Scheduling Strategies for Parallel Processing”, Springer Verlag, Editors: Dror G.
Feitelson and Larry Rudolph, pages 179-201, 1999

21. Volker Hamscher, Uwe Schwiegelshohn, Achim Streit, Ramin Yahyapour: „Evaluation of
Job-Scheduling Strategies for Grid Computing“, 1st IEEE/ACM International Workshop
on Grid Compuing, Springer Verlag, LNCS 1971, Bangalore, India, December 17, 2000

22. Adriana Iamnitchi, Matei Ripeanu: „Myth and Reality: Usage Behavior in a Large Data-
Intensive Physics Project”, SC2002, November 11-16, 2002, Baltimore, Maryland (poster),
GriPhyN TR-2003-4

23. Joefon Jann, Pratap Pattnaik, Hubertus Franke, …: „Modeling of Workload in MPPs”,
from: "Job Scheduling Strategies for Parallel Processing", Springer Verlag, editors: Dror
G. Feitelson and Larry Rudolph, pp. 95-116, 1997

24. David Karger, Eric Lehman, Tom Leighton, …: „Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web”,
Symposium on Theory of Computing, 1997

25. Yang-Suk Kee, Henri Casanova, Andrew Chien: „Realistic Modeling and Synthesis of
Resources for Computational Grids”, ACM Conference on High Performance Computing
and Networking, SC2004, Pittsburgh , Pennsylvania, November 2004

26. Dong Lu, Peter A. Dinda: „Synthesizing Realistic Computational Grids”, ACM/IEEE
Supercomputing 2003 (SC 2003), November, 2003, Phoenix

27. Norifumi Nishikawa, Takafumi Hosokawa, …: „Memory-based architectur for distributed
WWW caching proxy", 7th International Conference on World Wide Web, Brisbane,
Australia, 1998

28. Pixar Animation Studios: „How We Make A Movie. Pixar's Animation Process“,
http://www.pixar.com/howwedoit/index.html, Download: 7.6.2004

29. Martin de Prycker: „Asynchronous Transfer Mode“, Prentice Hall, 1996
30. Volker Strumpen: „Volunteer Computing”, Software - Practice and Experience, Vol. 25(3),

291–304, März 1995

 Optimizing the Access to Read-Only Data in Grid Computing 219

21st IEEE / 12th NASA Goddard Conference on Mass Storage Systems and Technologies,
pages 139–152, College Park, MD, April 2004

32. B. Waszkowycz, T. D. J. Perkins, R. A. Sykes, J. Li: „Large-scale virtual screening for
discovering leads in the postgenomic era“, IBM Systems Journal, Volume 40, Number 2,
2001, ("Deep computing for the life sciences"),
http://www.research.ibm.com/journal/sj/402/waszkowycz.html

33. Songnian Zhou, Timothy Brecht: „Processor Pool-Based Scheduling for Large-Scale
NUMA Multiprocessors”, 1991 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, San Diego, California, USA, 21st-24th
May 1991

31. Feng Wang, Qin Xin, Bo Hong, Scott A. Brandt, Ethan L. Miller, Darell D. E. Long, Tyce
T. McLarty: „Large-scale virtual screening for discovering leads in the postgenomic era“,

L. Kutvonen and N. Alonistioti (Eds.): DAIS 2005, LNCS 3543, pp. 220 – 225, 2005.
© IFIP International Federation for Information Processing 2005

Using Data Item Relationships to Adaptively Select Data
for Synchronization

Oskari Koskimies

Nokia Research Center, Itämerenkatu 11-13, 00180 Helsinki, Finland
oskari.koskimies@nokia.com

Abstract. Though synchronization of email and PIM data to mobile devices has
been a major practical concern for a long time, there has been relatively little
advance in making synchronization work adaptively. We examine in this article
the possibility to adapt synchronization to bandwidth and resource constraints
by only synchronizing the items that are currently relevant to the user, and
present initial results suggesting that item relationships are helpful for
accomplishing this task.

1 Introduction

Adaptive synchronization has been studied at Nokia Research Center in connection
with SyncML [1]. Instead of the traditional approach of protocol and content
optimization, the idea is to intelligently partition the user’s data between terminal and
network, choosing what to synchronize and when so as to maximize efficiency. The
task is complicated by the unreliable nature of wireless connections – if user data
resides in the network, access to it will be slow when network conditions are poor,
and impossible when in disconnected state. It is therefore imperative to ensure that
data important to the user is available locally on the mobile terminal.

Selection of data must take into account usage context. For example, the data
needed on a business trip is usually quite different from that required on a holiday.
Synchronization should also adapt to the network, allowing more data to be
synchronized when network conditions are favorable, and to the terminal, storing
more files locally if there is ample space on the terminal.

2 Related Work

When examining prioritizing synchronization systems, the venerable CODA system,
presented by Kistler and Satyanarayanan e.g. in [2], must of course be mentioned. To
facilitate disconnected operation, the CODA distributed file system attempts to ensure
that critical files are available in the cache. The process utilizes both access history as
well as explicit configuration information provided by the user.

General-purpose email classifiers used to identify spam [3][4] could be applied to
our problem as well. Instead of looking for email similar to known spam, the
classifier would look for email similar to emails known to be important (e.g. by

 Using Data Item Relationships to Adaptively Select Data for Synchronization 221

observing user email reading behavior). The problem with this approach is that the
importance of emails depends on current tasks and may change on a daily basis;
traditional classifiers do not adapt fast enough.

The closest related work is actually related to email prioritization. The main
difference in this case is that when prioritizing email for presentation, you only care
about the unread emails. This is reasonable since the user knows about the already
read emails and can easily view them if desired. In synchronization, however, also
read emails are important, since they may contain information that the user needs
while mobile. For example, an old email about a soon-to-be meeting might contain
instructions for driving to the meeting venue. Examples of static rule systems include
CLUES [5] and Bifrost [6]. CLUES uses information from a user’s work environment
(calendar entries, sent emails, etc.) to extract clues about his short term-interests for
the purpose of prioritizing the messages. The Bifrost system organizes a user’s inbox
into groups (messages related to calendar events, personal messages, etc.), which
enables the user to more easily spot important mails. PRIORITIES [7], on the other
hand, is a learning system which classifies emails according to criticality based on
sender identity and relation to user, number of recipients, textual content, etc.

3 Adaptive Synchronization

Adaptive synchronization provides a way for autonomously determining what are the
most important data items for synchronization in a given context. The algorithm
utilizes application-specific a priori knowledge about data items the user is certainly
going to need (e.g. new mails) and follows relationship paths between data items to
find other data items related to the needed items. The underlying basic assumption is
that if the user needs a certain data item, then he is also likely to need related data
items. The use of relationships is necessary to identify data items that may be quite
old and of little apparent importance by themselves, but are relevant to the user
because they are closely related to other, currently important items.

The idea behind our approach is that relationships between data items describe the
probability that if the user needed the first item, he will also need the second item. For
example, the relationship between an email and an attachment of the email might
have the weight 0.9, signifying that if the user needed the email, with 90% probability
he will also require the attachment. We refer to this weight as the relevance of a
relationship. The utility of an item quantifies the benefit of the item to the user.

An initial set of data items, which are certain to be needed by the user, is assumed
to be known (for example, new mail and today’s calendar entries). Determining the
initial set is application-specific. The expected utility (overall importance) of an item
depends then on both its utility and on the relevance of the relationship path(s) to it
from the initial set, which represents the probability that the user will in fact need the
item. The expected utility of an item can be penalized in the final calculation with the
size of the item, so that large data items are synchronized only if they have very high
expected utility (optimizing “utility per kilobyte”).

222 O. Koskimies

Normal
utility

High
utility

Normal
relevance

High
relevance

M8

C1 C2

M7 M1

M5

M9

M6

M3

M2

Initial
Set

A3

A1

A2

A4

M4

C 1-2: Calendar appointment

M 1-9: Email

A 1-4: Attachment

Low expected utility

(synchronized last)

Medium expected utility

(synchronized second)

High expected utility

(synchronized first)

Low expected utility

(synchronized last)

Medium expected utility

(synchronized second)

High expected utility

(synchronized first)

Result:

Data: Normal
size

Large
size

Fig. 1. Adaptive synchronization example

In Figure 1, an example relationship graph is shown. The figure also shows an
overview of relevancies, utilities, item sizes and calculated expected utilities. Note
that in general, the relationship graph will contain loops. However, as it is our
purpose to explain the general idea, the handling of loops is an unnecessary
complication.

Calendar appointments C1 and C2 in Figure 1 make up the initial set. All
relationship paths are calculated from that set. The email messages M1-M6 are from
people participating in one of the meetings, the sender of M4 participates in both. The
email M5 has high utility because the sender had set the high importance flag on.
Email M7 is an earlier mail from the same sender as M2, similarly for M9 and M6.
Email M8, on the other hand, is an email from both the same thread and sender as
M5. Attachments A1, A2 and A3 belong to emails M2, M4 and M5 respectively, and
attachment A4 belongs to calendar appointment C2. The attachments are much larger
than emails. Attachments A1 and A4 have high utility because they are PowerPoint
files which can be viewed on a mobile terminal relatively efficiently, unlike A2 and
A3 which are MSWord documents. Relationships M2A1, M4A2, M5A3 and C2A4
have high relevance since an attachment is usually highly relevant to the containing
email/appointment. Relationship C1M1 has high relevance because the organizer of
the meeting has sent M1. Relationship M5M8 has high relevance because M8 has
both same sender and thread as M5.

The approach takes context into account in two ways. Firstly, the initial set
contains currently relevant items (e.g. recent mails and appointments), which causes
the algorithm to automatically select items related to the user’s current context.
Secondly, relationship and utility weights can be adjusted based on context. For
example, if the user expects to have low-bandwidth connectivity available
continuously, utility of large items might be increased since small items can be
fetched on-demand using the low-bandwidth connection. Similarly, the age of an item
might affect its utility.

 Using Data Item Relationships to Adaptively Select Data for Synchronization 223

4 Interim Results

To evaluate the correctness of our assumption that being related to another important
item is a good predictor for item importance, we need to have a priori knowledge of
items the user actually requires next. We are implementing a tracker application for
Microsoft Outlook, which enables us to compare the items selected by the algorithm
to the items that were actually required by the user. In the meantime, we have done
some initial tests using a simple HTML form generated from the contents of the
user’s Microsoft Outlook data. The users were asked to assume that they were about
to go on a one-week business trip, and then grade in that context the importance of
each item on a scale from 1 to 5 using the form. The rather laborious form-filling
aspect of the test setup prevented the gathering of a statistically significant set of data;
however, the initial results are already encouraging, and when the Outlook Tracker
application is finished, collection of user data will be much simpler.

With user-provided importance data available, we tested the hypothesis for each
relationship type R and item type A by examining the probability that type A items,
targeted by a type R relationship originating from an important item, were important
only randomly. The probability was calculated using the Hypergeometric distribution.
In testing with two large email sets from two different users, we got the results shown
in Table 1. If the probability P(“importance is random”), denoted as P(rand), is very
small (<0.05), then we can with high confidence say that type R relationships are
indeed good predictors for importance. The entries that signify over 95% confidence

Table 1. Relationship predictive power

Relationship Source item
type

Target item type P (rand)
Dataset1

P (rand)
Dataset2

Previous email by same sender Email Email 0.00046 0.02095

Next email by same sender Email Email 0.00001 0.00578

Last email from same sender Email Email 0.00071 0.10272

Email from organizer Calendar entry Email 0.05029 0.86095

Email from required participant Calendar entry Email 0.02661 0.04725

Contact information for sender Email Contact information 0.00000 0.00000

Contact information for receiver Email Contact information 0.00000 0.00068

Contact information for organizer Calendar entry Contact information 0.00000 0.09370

Contact information for required
participant

Calendar entry Contact information 0.00055 0.00109

224 O. Koskimies

in the predictive power of the relationship are in bold. For the most part, the results
are quite intuitive, but it is surprising that emails from meeting participants are more
likely to be important than emails from the meeting organizer. This is likely because
the organizer usually sends information related to the meeting as updates to the
calendar entry, which are processed by Microsoft Outlook into the original calendar
entry and are thus not visible as independent email entries. Other participants, on the
other hand, have to rely on normal email for issues related to the meeting.

Note that there are no relationships in the above table that would point to calendar
entries. Several such relationships were in fact examined, but none were good
indicators, with even the best one (meeting participant is email sender) having a value
of around 0.38 for dataset 1, i.e. a 38% probability of having no predictor value. We
conclude that while relationships from calendar entries make good predictors, the
same is not true for relationships to calendar entries. In other words, calendar entries
are very good candidates for the initial set.

The selection accuracy of the algorithm was slightly above 90% for the two
datasets; reasonable considering that no machine learning was used, but not yet good
enough for practical use. The percentage of important items was 13% for Dataset 1
and 26% for Dataset 2.

5 Summary and Future Work

We have developed a relationship-based approach for autonomously selecting emails
for synchronization based on their importance. The interim results indicate that
relationships are good predictors for email importance, but the algorithm would need
machine-learning features to perform well enough. We plan to combine the
relationship-based approach with a traditional classifier approach to achieve this.

We are in the process of instrumenting Microsoft Outlook so that it records user
activity such as the order and speed in which emails are read. From this information,
an importance classification will then be extracted and used to more rigorously test
our hypothesis of item importance and to evaluate the performance of the selection
algorithm. The Outlook Tracker will also provide us a method for gathering data from
which the selection algorithm can learn and adapt to user behavior.

References

[1] Open Mobile Alliance: “SyncML Data Synchronization Specifications”, Version 1.1.
Available electronically from http://www.openmobilealliance.org/tech/affiliates/syncml/
syncmlindex.html.

[2] Kistler J. J. and Satyanarayanan M.: “Disconnected Operation in the Coda File System”.
ACM Transactions on Computer Systems, Vol. 10, No. 1, pages 3-25, February 1992.

[3] Graham, P.: “A Plan for Spam”, August 2002. Available electronically from http://www.
paulgraham.com/spam.html

[4] Yerazunis W.: “Sparse Binary Polynomial Hashing and the CRM114 Discriminator”, in
Proceedings of the 2003 Spam Conference, January 2003. Available electronically from
http://spamconference.org/proceedings2003.html.

[5] Marx M. and Schmandt C.: “CLUES: Dynamic Personalized Message Filtering”, in
Proceedings of CSCW `96, pages 113-121, November 1996.

 Using Data Item Relationships to Adaptively Select Data for Synchronization 225

[6] Bälter O. and Sidner C. L.: “Bifrost Inbox Organizer: Giving users control over the
inbox”, in Proceedings of the Second Nordic Conference on Human-computer Interaction,
pages 111-118, October 2002.

[7] Horvitz E., Jacobs A. and Hovel D.: “Attention-Sensitive Alerting”, in Proceedings of the
15th Conference on Uncertainty and Artificial Intelligence, pages 305-313, July 1999.

L. Kutvonen and N. Alonistioti (Eds.): DAIS 2005, LNCS 3543, pp. 226–233, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Client/Intercept Based System for Optimizing Wireless
Access to Web Services

Irene Kilanioti, Georgia Sotiropoulou, and Stathes Hadjiefthymiades

University of Athens, Department of Informatics and Telecommunications,
Panepistimioupolis, Ilissia, Athens 15784, Greece
{grad0553, gsot, shadj}@di.uoa.gr

Abstract. In this paper we discuss the introduction of Web Services in the
wireless/mobile domain. The use of Web Services is gradually expanding into
the mobile internet area where the population of users is rapidly increasing.
Web Services offer standardized ways of creating, publishing, searching and
invoking services and provide a very important platform for the development
of mobile e-commerce. We identify problems related to the use of the verbose
protocols of Web Services (i.e., SOAP/HTTP) over the "expensive" wireless
medium. Our architecture assumes the existence of WS-aware software (client
or provider) in the wireless device. We try to optimize the HTTP/SOAP stream
exchanged over the wireless medium. Our effort is largely based on the IBM
WebExpress design. Our measurements indicate substantial benefits for the
users.

1 Introduction

The extraordinary growth evident in the area of wireless and mobile technologies cre-
ates a dynamic environment that produces diverse wireless technologies and stan-
dards, in contrast to other areas of communications marked by a convergence toward
uniformity. All this activity will bring the reality of the coming decades close to the
vision of "anytime, anywhere" communications.

With the simultaneous exponential growth of the Internet, wireless users are now
seeking Internet capabilities equivalent to those provided by a fixed network. Specifi-
cally, the growth of wireless telecommunications stimulated the interest for the so-
called “nomadic computing”1 [1], which aims to provide users with access to popular
desktop applications, applications specially suited for mobile users and basic commu-
nication services.

Wireless/mobile computing is a very challenging research area also due to the low
data rates usually available. Moreover, wireless connections suffer a high variability
in terms of bandwidth, are significantly less reliable than their wired counterparts,
and, could be interrupted for various reasons (e.g., handovers). Additionally, the cost

1 The emergence of nomadic computing was also facilitated by the rapid proliferation of port-

able computer equipment.

 A Client/Intercept Based System for Optimizing Wireless Access to Web Services 227

for a wireless data connection is increased: the cost per byte transmitted over the
wireless interface is considerably higher than in wired infrastructures. Consequently,
our focus should be centered on the reduction of data volume to be exchanged over
the wireless medium. The efforts should concentrate on the development of a model
able to support multiple types of applications, including current and emerging TCP/IP
applications and terminal emulation.2

During the past years a number of efforts were made to consolidate the WWW
with wireless communications. Notable examples are the MobiScape Project [2] and
IBM WebExpress [3]3. Our work is mostly based on the ideas integrated in the latter
solution4.

In this paper we discuss the design, implementation and performance evaluation of
a mobile computing system that optimizes access to Web Services (WS)5 and yields
substantial benefits for the end-user. To the best of our knowledge there exists no
equivalent client/intercept architecture for wireless WS.

The rest of the paper is structured as follows: In Section 2, we give a brief outline
of WebExpress. In Section 3 we present the proposed architecture and discuss why
WSs are conducive for the integration with an intercepting architecture and how they
can be incorporated in a WebExpress-like system. We emphasize on the adopted ob-
ject-oriented design along with the different roles assigned to the various
classes/components, the functionality of the system, the protocol reduction, and, fi-
nally, the software components used for implementation. In Section 4, we elaborate
on our experimental set-up, the metrics monitored and the collected statistics, and, fi-
nally, the same Section concludes this paper.

2 Prior Work

The use of WS in the wireless domain has been discussed extensively in [6]. The ar-
chitecture scenarios discussed in the referenced paper refer to the operation of the
mobile device either as requestor or as service provider.6

2 The intercept model offers this advantage as it is transparent to both the client and the server,

and therefore, can be employed with any client adaptation and be insensitive to the develop-
ment of a particular client/server or communications technology.

3 A more extensive survey of such systems can be found in [4].
4 Both systems capitalize on the WWW proxy interface and use a similar architecture (also

termed “intercepting technology”). WebExpress proposes an architecture that addresses the
requirements of transaction processing through the adoption of “differencing techniques”.

5 WS are a new breed of web applications following the Service Oriented Architecture (SOA)
framework whose goal is to achieve loose coupling among interactive software agents [5]. A
WS is a SOA with interfaces based on Internet protocols (e.g., HTTP), and messages encoded
in XML (except for binary data attachment).

6 In general, the protocols used in the wired WS world are inappropriate for the wireless me-
dium. Therefore the wireless Internet community is pursuing their optimization. Commercial
players like Microsoft and Sun introduce WS-specific features in their development frame-
works and operating systems. In the recent past, optimized versions of SOAP and XML have
been proposed for the wireless domain.

228 I. Kilanioti, G. Sotiropoulou, and S. Hadjiefthymiades

The basic architectural model of WebExpress consists of the Client Side Intercept
(CSI) running in the end-user mobile device and the Server Side Intercept (SSI) run-
ning in the fixed network.7 WebExpress’s differencing optimization technique is ap-
plied on responses containing dynamic content (e.g., CGI output). Dynamic responses
are not stored in cache but maintained as base objects: A common base object, associ-
ated with the resource, is created in both the CSI and SSI. Subsequent references to
the resource will trigger, at the SSI, the computation of differences between its pre-
sent form and the common base object. Such differences are transmitted over the ra-
dio interface. The CSI reconstitutes the referenced object and delivers it to the
browser.8

3 Proposed Architecture

Description: At the top of the WS message stack is a mechanism for envelope exten-
sions called SOAP headers.9

Fig. 1. Client/Intercept Architecture for WS

WS are the evolution of component-based systems such as DCOM, CORBA, RMI
and EJB, that, also support distributed application logic. WS technology is considered
more advantageous to these systems because it uses HTTP to be firewall friendly and
payload agnostic, employs the more widely adopted XML scheme, uses the pervasive

7 The CSI acts as a local proxy agent. The SSI is responsible for reconstituting a URL com-

patible data request and forwarding it to the designated origin server. On the reverse direc-
tion, the CSI reconstitutes the WWW stream and delivers it to the browser. Both the CSI and
SSI incorporate caching mechanisms.

8 HTML streams representing query responses usually contain a lot of unchanging formatting
information (e.g., graphics, headers and footers). Responses from the same script are usually
differentiated only by alphanumeric information.

9 With SOAP headers, orthogonal extensions such as digital signatures can be associated with
the body of the message contained in the SOAP envelope.

 A Client/Intercept Based System for Optimizing Wireless Access to Web Services 229

Internet concept of URLs to address object identification and offers more than a
promise for interoperability as it exploits the openness of specific Internet technolo-
gies to address many of the interoperability issues of the previous systems.

Due to the above reasons and especially due to the HTTP/SOAP binding and use of
URLs for identification, an optimizing mechanism for access to RPC-oriented10 WS
can be easily implemented with a Client/Intercept based system. In our proposal, there
is an obvious analogy to the Client/Intercept model applied for the WWW. Instead of
simple HTTP, now a SOAP call is packaged as the body of an HTTP request. In that
sense, the differentiating engine is applied on the exchanged message, which is XML-
encoded, and base objects are stored SOAP messages that essentially comprise a re-
sponse for a WS, as depicted in Fig.1. In relation to the work in [6], our scheme can
handle both a mobile device hosted WS client and server.

Object-Oriented Design: In this section we discuss also the object-oriented design of
our implementation along with the functionality of constituent components.11 CSI
Objects Client: (CSI) Establishes the connection with the SSI and the browser, and
initializes all other objects used. For each request received from the browser, it creates
a thread (a ClientThread) to serve that request. ClientThread: Used to serve a specific
request, and terminated as soon as this request is fulfilled. Many instances of this ob-
ject, each of them serving a different request, may exist simultaneously. Demulti-
plexor: Resides on the CSI side and has the responsibility of the demultiplexing of the
packages that arrive from the SSI and are destined to a specific browser. SSI objects
Server: (SSI) One instance of this object is initially created, and is waiting for incom-
ing connections from the CSI. For each incoming request, a new ServerThread is cre-
ated to serve that request. ServerThread: Operating as a thread, this object is used to
serve an incoming request from the CSI. It is generated by the Server object, and all
its instances operate on the original threads of the SSI, and not on copies. We should
stress out that the same applies for the ClientThread objects, which operate on the
original objects of the Client. Common objects BaseObjEntry: Represents an entry
for a base object. These entries are stored in the BaseObjHTable and include informa-
tion such as: the URL for the base object, the filename that holds the data (xml code)
for that base object, the CRC value of the object, and information about the time of
storage and last access of this Base Object. BaseObjHTable: It is a hash table of
BaseObjEntries, being used to store information about a specific base object entry.
The key for the hash function is the URL of the base object. BaseObj: Manipulates
the file system of the differencing subsystem. The files stored in a specific folder, are
the base objects. The BaseObj controls the access to these files and performs a folder
cleanup whenever the total size of files is greater than 80% of the maximum space
specified by the administrator. Files are removed, until the total size of the cache is
less than 60% of the maximum disk allotment.

10 WS should be RPC-oriented, so that they apply to the case in which WebExpress has to deal

with responses containing dynamic content.
11 Since there are many similarities in the functionality of the CSI and the SSI, some of the fol-

lowing objects are used by both components.

230 I. Kilanioti, G. Sotiropoulou, and S. Hadjiefthymiades

Protocol Reduction: Towards the reduce of redundant volume exchanged, the tech-
niques adopted are: Virtual sockets: The system minimizes overhead caused by open-
ing and terminating multiple TCP connections, with the establishment of a single TCP
connection between CSI and SSI used for all HTTP communication (i.e., requests and
responses). The TCP connection is persistent across different transactions and allevi-
ates the deficiency of HTTP’s operation on top of TCP, which has much more nega-
tive effects over a wireless interface. In order to support a multiplexing functionality,
we implemented a virtual sockets mechanism12. On the fixed network side, the virtual
socket is associated with a normal socket on the designated WS provider. Some of the
established virtual sockets are used for conveying commands related to normal socket
calls (e.g., open, close) as a form of in-band signaling. HTTP header reduction: The
! "! # list of the types of documents that a given browser can handle usually remains
constant. Therefore, the CSI allows this header information to flow towards the SSI
only in the first request after the establishment of their connection and does not
transmit it continuously.13

Functionality: Initially14, there is no entry for a specific WS neither in the CSI nor in
the SSI. When the first request comes, the CSI forwards it to the SSI, and the latter
sends it to the WS provider. When SSI receives the response, it stores15 it (and calcu-
lates the Cyclic Redundancy Check or CRC of it, which serves as a unique identifier
for the message), before forwarding it to the CSI.16 In the same way, it is stored at the
CSI before being sent to the browser. At this point, a base object has been stored for
the URL of the requested WS. Each base object is identified by the base URL. Let us

12 In this mechanism, a small header that contains a virtual socket identifier prefixes data sent

for a specific request. At the CSI, the virtual socket identifier is bound to a real socket at the
browser. An actual TCP connection is established concurrently with the “opening” of the
first virtual socket. It closes after a specific period elapses since the last virtual socket was
closed. CSI and SSI are responsible for the role assignment according to the virtual socket.
CSI receives requests from the browser and forwards them to the SSI. For every received re-
quest, the SSI establishes a connection with the respective WS provider and forwards the
request. As soon as it receives the response, it closes the connection with the server, sends
the document to the CSI via the TCP connection, but does not terminate it. CSI forwards the
document to the browser, and closes the connection with the latter.

13 Both CSI and SSI maintain this Accept List as part of the connection status information. For
every request received from the browser, the CSI checks the list, to verify if it is identical
with the stored one, and if so, the list is omitted from the request, but subsequently inserted
by the SSI. In case there is another list in the request, SSI stores the new list.

14 It should be mentioned here, that, in the first place, when the CSI receives an HTTP request,
it checks if it is a request for a WS. The check is conducted in the following way: if the bind-
ing method between SOAP and HTTP is GET, the suffix of the URL is checked. If, on the
other hand, the used method is POST, and consequently, there is a body in the transmitted
message, the CSI soap proxy checks, with the help of JDOM XML parser, if the body of the
received SOAP message (an XML document) is well formed. If this check is successful, it
forwards the message to the SSI and the processing continues. Otherwise, an HTTP error
message is created and the request is not processed any further.

15 The storage takes place on scope of the entire SOAP message transmitted.
16 In the framework of the synchronization schema implemented between the CSI and the SSI.

 A Client/Intercept Based System for Optimizing Wireless Access to Web Services 231

suppose that there comes another request for the same WS. As soon as the request is
intercepted, the CSI proxy checks if it has its URL stored. If a version is found, CSI
forwards the request along with a relevant indication of existence and the CRC value
of that base object. In every case, a message is sent to the SSI and the SSI always
communicates with the WS providers. If there is no base object with the specific CRC
at the SSI, SSI notifies CSI that it has to store it. Otherwise, if the CRC of the CSI
base object is identical to its counterpart at the SSI, the differencing engine is en-
gaged. If the files are not identical (i.e., different CRC values), SSI replaces the exist-
ing base object with the new one and notifies CSI to do the same.17

Implementation Details: As aforementioned, our system was implemented in Java.
We used the Apache Ant and Log4j tools for building management and logging
mechanisms respectively, as well as the JDOM parser for check of XML request syn-
tactical correctness. The graphical user interface (implemented with Java Swing) al-
lows the administrator to define operational parameters, and view the accumulated
statistics along with information concerning base objects. In order to implement the
differencing mechanism, we employed Microsoft XML Diff and Patch, a set of tools
for comparison of two XML documents and application of the changes (patching).18

4 Performance Assessment

The performance of the system was assessed through a series of experiments (1000
WS requests performed per experiment).19 The 40%, 60%, 80% and 100% respec-
tively of full storage capacity of our proxies was exploited. In every case, the LRU al-
gorithm was enforced as soon as the capacity of stored objects became greater than
80% of the current proxy capacity. Additionally, two series of experiments were im-
plemented: one with 10 distinct WS (randomly chosen by the Client) and one with 20
WS. The monitored statistics included, among others, the Local/Total Bytes Read Ra-
tio, that practically indicates the efficiency of the system by denoting the ratio of
bytes that the CSI delivered to the browser against bytes retrieved from the SSI by the
CSI. The accumulated statistics are presented in Table 1 and Table 2.

17 For even more optimization, the differencing stream (i.e., the difference between the base

object stored at the SSI and the answer from the server) is sent to the CSI-instead of the re-
sponse from the origin server-only on the presumption that the size of the resulting stream of
the differencing engine is less than a percentage (70% in our implementation) of the size of
the actual xml document, which would be sent. Otherwise, the retrieved response is directly
forwarded to the CSI. The differencing stream (which is also XML-encoded) is sent to the
CSI. At the CSI, an entity update engine uses the differencing stream along with the stored
base object of the request, in order to patch the new response (at the CSI rebasing takes
place), and ultimately forward it to the browser.

18 XML Diff is based on the Document Object Model (DOM) and detects addition, deletion
and structural changes like the removal of an XML sub-tree. It produces Xml Diff Language
Diffgram, an xml-based concrete and short output language, which can then be used to per-
form a patch operation using the XML Patch.

19 There was no need to perform a large number of requests to “warm up” any cache, so the
above-discussed number of trials has been considered adequate.

232 I. Kilanioti, G. Sotiropoulou, and S. Hadjiefthymiades

Table 1. Experiment results for 10 available WS

Ex-
periment

No.

Base
Object Size

(MB)

Percentage
of Proxy Ca-
pacity Used

Base
Object hits

Total
Bytes Read

(CSI)

Total
Bytes Read

(SSI)

Bytes
Read Ratio

%

1. 25131 40% 231 4906932 6179314 79,409

2. 37696 60% 335 4387517 6477379 67,736

3. 50261 80% 448 3821632 6246173 61,184

4. 62826 100% 580 3356139 6567688 51,101

Table 2. Experiment results for 20 available WS

Experi-
ment No.

Base
Object

Size (MB)

Percentage
of Proxy Ca-
pacity Used

Base
Object hits

Total
Bytes Read

(CSI)

Total
Bytes Read

(SSI)

Bytes
Read Ratio

%

1. 39070 40% 239 4007997 4816465 83,215

2. 58605 60% 355 3651059 4991831 73,141

3. 78140 80% 455 3136082 5172683 60,628

4. 97674 100% 588 2538281 5255106 48,301

It can be observed that the traffic reduction was substantial (approximately 40%),
an effect that was anticipated: the number of bytes read at the CSI was more than 40%
of the bytes read from the SSI. As the number of used proxy capacity increases, so
does the Bytes Read Ratio20 too, since the possibility of hitting an existing base object
increases, and thus there is no need for data exchange.

Having realised a series of experiments with the purpose of evaluating the alleged
benefits from the various optimisation techniques, a series of experiments that dem-
onstrated a considerable improvement in the use of WS resources (with the indicative
example of 40% gain in the volume of information flowing over the wireless interface
between the CSI and the SSI), we conclude that our WS-oriented client/intercept sys-
tem contributes to decreased latency, decreased bandwidth use and other efficiency
benefits.

References

1. T.F.La Porta, et al., “Challenges for Nomadic Computing: Mobility Management and Wire-
less Communications”, ACM Journal of Nomadic Computing, Vol.1 No.1, 1996.

2. C.Baquero et al., “MobiScape: WWW Browsing under Disconnected and Semi-Connected
Operation”, proceedings of the 1st Portuguese WWW National Conference, Braga, Portugal,
July 1995.

20 The ratio of bytes read at the CSI to bytes read from the SSI. It should be noted, however,

that this percentage largely depends on the differencing mechanism incorporated in the sys-
tem.

 A Client/Intercept Based System for Optimizing Wireless Access to Web Services 233

3. B.C.Housel, and D.B.Lindquist, “WebExpress: A system for Optimizing Web Browsing in a
Wireless Environment”, proceedings of ACM/IEEE MobiCom ’96, NY, USA, Oct. 1996.

4. S.Hadjiefthymiades, and L.Merakos, “A Survey of Web Architectures for Wireless Com-
munication Environments”, Journal of Universal Computer Science, Vol.5, No.7, Springer
Verlag, 1999.

5. Thomas Erl, "Service-oriented Architecture: A Field Guide to Integrating XML and Web
Services", Prentice Hall, April 2004.

6. T.Pilioura, A.Tsalgatidou, S.Hadjiefthymiades, “Scenarios of using Web Services in M-
Commerce”, ACM SIGecom Exchanges, Vol. 3, No. 4, January 2003.

Author Index

Alonistioti, 27
Andreadis, Dimitris 194

Berbers, Yolande 14
Bettini, Lorenzo 181
Beugnard, Antoine 83
Boufidis, Zachos 148
Buchmann, Alejandro 136

Cahill, Vinny
Cilia, Mariano 136
Clarke, Siobhán 115
Courtiat, Jean Pierre 38
Cunningham, Raymond 1

De Nicola, Rocco 181
Debusmann, Markus 56

Falassi, Daniele 181
Fiege, Ludger 136
Fiorentino, Cristian 136
Foukalas, Fotis 148

Glentis, Aristotelis 148
Gomes, Roberta L. 38
Gr nmo, Roy 68

Hadjiefthymiades, Stathes 226
Hagimont, Daniel 95
Hatzisymeon, George 194
Hong, Jinkeun 157
Houssos, Nikos 194
Hoyos Rivera, Guillermo J. 38
Hughes, Barbara 1

Jaeger, Michael C. 68

K nig, Hartmut 206

Kaloxylos, Alexandros 27
Kilanioti, Irene 226
Kim, Kihong 157
Koskimies, Oskari 220
Koutrouli, Eleni 50
Koutsopoulou, Maria 27
Kroeger, Reinhold 56

Lacoste, Marc 181
Layaida, Oussama 95
Lim, Jongin 157
Loos, Peter 169
Loreti, Michele 181

Matougui, Selma 83
Meier, René 1, 115

Nedos, Andronikos 115
Ntarladimas, Yiorgos 148

Oldevik, Jon 108
Opitz, Alek 206

Panagiotakis, Spyridon 27
Preuveneers, Davy 14

Samoladas, Vasilis 194
Schmid, Markus 56
Senivongse, Twittie 130
Sotiropoulou, Georgia 226
Sriharee, Natenapa 130

Theling, Thomas 169
Tsalgatidou, Aphrodite 50

Vanderhaeghen, Dominik 169

Zwicker, Jörg 169

Athana ss ia

1, 115

ø

oe

anN cy()

	Frontmatter
	Towards Real-Time Middleware for Applications of Vehicular Ad Hoc Networks
	Adaptive Context Management Using a Component-Based Approach
	Customised Billing for Location-Based Services
	Interoperability Architectures
	Loosely-Coupled Integration of CSCW Systems
	Interoperability and eServices
	Model-Driven Self-management of Legacy Applications

	Methodological Aspects
	Model-Driven Methodology for Building QoS-Optimised Web Service Compositions
	How to Implement Software Connectors? A Reusable, Abstract and Adaptable Connector
	Designing Self-adaptive Multimedia Applications Through Hierarchical Reconfiguration
	Transformation Composition Modelling Framework

	Service Discovery
	Proximity-Based Service Discovery in Mobile Ad Hoc Networks
	Enriching UDDI Information Model with an Integrated Service Profile

	Configurable Communication
	Building a Configurable Publish/Subscribe Notification Service
	Protocol Reconfiguration Using Component-Based Design
	A Secure and Efficient Communication Resume Protocol for Secure Wireless Networks

	Interoperability Architectures II
	An Architecture for Collaborative Scenarios Applying a Common BPMN-Repository
	A Flexible and Modular Framework for Implementing Infrastructures for Global Computing
	An Architecture for Implementing Application Interoperation with Heterogeneous Systems

	Performance and Optimization
	Optimizing the Access to Read-Only Data in Grid Computing
	Using Data Item Relationships to Adaptively Select Data for Synchronization
	A Client/Intercept Based System for Optimizing Wireless Access to Web Services

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

