

Lecture Notes in Computer Science 3547
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Frank Bomarius Seija Komi-Sirviö (Eds.)

Product Focused
Software Process
Improvement

6th International Conference, PROFES 2005
Oulu, Finland, June 13-15, 2005
Proceedings

13

Volume Editors

Frank Bomarius
Fraunhofer Institute for Experimental Software Engineering
Sauerwiesen 6, 67661 Kaiserslautern, Germany
E-mail: frank.bomarius@iese.fraunhofer.de

Seija Komi-Sirviö
VTT Electronics
P.O. Box 1100, 90571 Oulu, Finland
E-mail: seija.komi-sirvio@vtt.fi

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2, K.6, K.4.2, J.1

ISSN 0302-9743
ISBN-10 3-540-26200-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26200-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11497455 06/3142 5 4 3 2 1 0

Preface

On behalf of the PROFES Organizing Committee we are proud to present to
you the proceedings of the 6th International Conference on Product Focused
Software Process Improvement (PROFES 2005), held in Oulu, Finland.

Since 1999, PROFES has established itself as one of the recognized interna-
tional software process improvement conferences.

The purpose of the conference is to bring to light the most recent findings and
results in the area and to stimulate discussion between researchers, experienced
professionals, and technology providers. The large number of participants coming
from industry confirms that the conference provides a variety of up-to-date top-
ics and tackles industry problems. The main theme of PROFES is professional
software process improvement (SPI) motivated by product and service quality
needs. SPI is facilitated by software process assessment, software measurement,
process modeling, and technology transfer. It has become a practical tool for
quality software engineering and management. The conference addresses both
the solutions found in practice and the relevant research results from academia.
This is reflected in the 42 full papers, which are – as in the years before – a
well-balanced mix of academic papers as well as industrial experience reports.

The business of developing new applications like mobile and Internet services
or enhancing the functionality of a variety of products using embedded software is
rapidly growing, maturing and meeting the harsh business realities. The accepted
papers focusing on wireless and the Internet are grouped into a special “mobile
and wireless” session.

We wish to thank VTT Electronics, the University of Oulu including Infotech,
and Fraunhofer IESE for supporting the conference. We are also grateful to the
authors for high-quality papers, the Program Committee for their hard work in
reviewing the papers, the Organizing Committee for making the event possible,
and all the numerous supporters who helped in organizing this conference.

Last, but not least, many thanks to Patrick Leibbrand at Fraunhofer IESE
for copyediting this volume, Kari Liukkunen and his team at the University of
Oulu for developing the PROFES 2005 Web pages, and Gaby Klein at IESE for
helping in the organization of this conference.

April 2005 Frank Bomarius
Seija Komi-Sirviö

Markku Oivo

Conference Organization

General Chair

Markku Oivo, University of Oulu (Finland)

Organizing Chair

Kari Liukkunen, University of Oulu (Finland)

Program Co-chairs

Frank Bomarius, Fraunhofer IESE (Germany)
Seija Komi-Sirviö, VTT Electronics (Finland)

Tutorials Chair

Marek Leszak, Lucent Technologies Bell Labs (Germany)

Workshops and Panels Chair

Jyrki Kontio, University of Helsinki (Finland)

Industry Chair

Rini van Solingen, Logica CMG (The Netherlands)

Doctoral Symposium Co-chair

Juhani Iivari, University of Oulu (Finland)
Reidar Conradi, NTNU (Norway)

PR Chair

Pasi Kuvaja, University of Oulu (Finland)

VIII Organization

Publicity Chairs

Europe: Petra Steffens, Fraunhofer IESE (Germany)
USA: Ioana Rus, Fraunhofer Center - Maryland (USA)
Japan: Kenichi Matumoto, NAIST (Japan)
Korea: Ho-Won Jung, Korea University (Korea)
Finland: Tua Huomo, VTT Electronics (Finland)
Scandinavia: Tore Dyb̊a, Chief Scientist, SINTEF (Norway)

Table of Contents

Keynote Addresses

Competitive Product Engineering: 10 Powerful Principles for
Winning Product Leadership, Through Advanced Systems
Engineering, Compared to 10 Failure Paths Still Popular in Current
Culture

Tom Gilb . 1

From Products and Solutions to End-User Experiences
Ari Virtanen . 2

Systems and Software Process Improvement

What Formal Models Cannot Show Us: People Issues During the
Prototyping Process

Steve Counsell, Keith Phalp, Emilia Mendes, Stella Geddes 3

Process Improvement Solution for Co-design in Radio Base Station
DSP SW

Virpi Taipale, Jorma Taramaa . 16

A Framework for Classification of Change Approches Based on a
Comparison of Process Improvement Models

Otto Vinter . 29

Systems and Software Quality

A Qua itative Methodology for Tailoring SPE Activities in Embedded
Platform Development

Enrico Johansson, Josef Nedstam, Fredrik Wartenberg,
Martin Höst . 39

An Empirical Study on Off-the-Shelf Component Usage in Industrial
Projects

Jingyue Li, Reidar Conradi, Odd Petter N. Slyngstad,
Christian Bunse, Umair Khan, Marco Torchiano, Maurizio Morisio . . 54

A Rendezvous of Content Adaptable Service and Product Line Modeling
Seo Jeong Lee, Soo Dong Kim . 69

l

X Table of Contents

A Framework for Linking Projects and Project Management Methods
Tony Dale, Neville Churcher, Warwick Irwin . 84

Software Defect Analysis of a Multi-release Telecommunications System
Marek Leszak . 98

Performance Rather han Capability Problems. Insights from
Assessments of Usability Engineering Processes

Timo Jokela . 115

Mobile and Wireless Applications

Using the MOWAHS Characterisation Framework for Development of
Mobile Work Applications

Alf Inge Wang, Carl-Fredrik Sørensen, Heri Ramampiaro,
Hien Nam Le, Reidar Conradi, Mads Nyg̊ard . 128

Design Patterns and Organisational Memory in Mobile Application
Development

Riikka Ahlgren, Jouni Markkula . 143

Specifying Pattern for Mobile Application Domain Using General
Architectural Components

Oleksiy Mazhelis, Jouni Markkula, Markus Jakobsson 157

Requirements Engineering and Usability

A Meta-model for Requirements Engineering in System Family Context
for Software Process Improvement Using CMMI

Rodrigo Cerón, Juan C. Dueñas, Enrique Serrano, Rafael Capilla 173

Functional and Non-functional Requirements Specification for
Enterprise Application

Renuka Sindhgatta, Srinivas Thonse . 189

Framework for Integrating Usability Practices into the Software Process
Xavier Ferre, Natalia Juristo, Ana M. Moreno . 202

Industrial Experiences

Using Evolutionary Project Management (Evo) to Create Faster, More
Userfriendly and More Productive Software. Experience Report from
FIRM AS, a Norwegian Software Company

Trond Johansen . 216

t

s

s

Table of Contents XI

Comprehensive Documentation Made Agile – Experiments with
RaPiD7 in Philips

Ko Dooms, Roope Kylmäkoski . 224

A Case Study: Coordination Practices in Global Software Development
Darja Šmite . 234

A Study of a Mentoring Program for Knowledge Transfer in a Small
Software Consultancy Company

Finn Olav Bjørnson, Torgeir Dingsøyr . 245

Impacts of Software Deployment in the Coffee Agribusiness of Brazil
Claudio T. Bornstein, Lucia Silva Kubrusly,
André Luiz Zambalde, Ana Regina Rocha . 257

Case Study: Software Product Integration Practices
Stig Larsson, Ivica Crnkovic . 272

Process Analysis

Improving the Express Process Appraisal Method
F McCaffery, D McFall, F.G Wilkie 286

Relation Analysis Among Patterns on Software Development Process
Hironori Washizaki, Atsuto Kubo, Atushiro Takasu,
Yoshiaki Fukazawa . 299

Process Modeling

Tailoring RUP to a Defined Project Type: A Case Study
Geir K. Hanssen, Hans Westerheim, Finn Olav Bjørnson 314

Acquisition of a Project-Specific Process
Olga Jaufman, Jürgen Münch . 328

SPI Methods and Tools

Understanding the Importance of Roles in Architecture-Related Process
Improvement - A Case Study

Per Jönsson, Claes Wohlin . 343

Improved Control of Automotive Software Suppliers
Martin Ivarsson, Fredrik Pettersson, Peter Öhman 358

ergal onald eorge

XII Table of Contents

Enterprise-Oriented Software Development Environments to Support
Software Products and Processes Quality Improvement

Mariano Montoni, Gleison Santos, Karina Villela,
Ana Regina Rocha, Guilherme H. Travassos, Sávio Figueiredo,
Sômulo Mafra, Adriano Albuquerque, Paula Mian 370

Experimental Software Engineering

Evaluation of Three Methods to Predict Project Success: A Case Study
Claes Wohlin, Anneliese Amschler Andrews . 385

Mega Software Engineering
Katsuro Inoue, Pankaj K. Garg, Hajimu Iida, Kenichi Matsumoto,
Koji Torii . 399

Software Development and Experimentation in an Academic
Environment: The Gaudi Experience

Ralph-Johan Back, Luka Milovanov, Ivan Porres 414

Validation and Verification

Issues in Software Inspection Pr c es
Sami Kollanus . 429

Risk-Based Trade-Off Between Verification and Validation – An
Industry-Motivated Study

Kennet Henningsson, Claes Wohlin . 443

Investigating the Impact of Active Guidance on Design Inspection
Dietmar Winkler, Stefan Biffl, Bettina Thurnher 458

Agile Methods

An XP Experiment with Students – Setup and Problems
Thomas Flohr, Thorsten Schneider . 474

Views from an Organization on How Agile Development Affects Its
Collaboration with a Software Development Team

Harald Svensson, Martin Höst . 487

Adapting PROFES for Use in an Agile Process: An Industry Experience
Report

Andreas Jedlitschka, Dirk Hamann, Thomas Göhlert,
Astrid Schröder . 502

a tic

Table of Contents XIII

Agile Hour: Teaching XP Skills to Students and IT Professionals
Daniel Lübke, Kurt Schneider . 517

Measurement

Measuring Similarity of Large Software Systems Based on Source Code
Correspondence

Tetsuo Yamamoto, Makoto Matsushita, Toshihiro Kamiya,
Katsuro Inoue . 530

Tool Support for Personal Software Process
Jouni Lappalainen . 545

An Experience Factory to Improve Software Development Effort
Estimates

Ricardo Kosloski, Káthia Marçal de Oliveira . 560

An Instrument for Measuring the Maturity of Requirements Engineering
Process

Mahmood Niazi . 574

Author Index . 587

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, p. 1, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Competitive Product Engineering: 10 Powerful Principles
for Winning Product Leadership, Through Advanced
Systems Engineering, Compared to 10 Failure Paths

Still Popular in Current Culture

Tom Gilb

www.gilb.com

Many companies have to outwit their competitors, in order to survive. The great
Finnish company Nokia, one of our clients, is a good example. To engineer a product,
especially one with software in it, that works well, and is delivered on time, is an
usual feat in itself. Most all software developers fail miserably at this simple task,
with 50% total project failure being the international norm, and another 40% partial
failure reported.

So, to be the best, and to beat the quality and price levels of multinational
competitors is even more difficult, than merely delivering a low bug product on time.
But some of you have to do that. I will present 10 principles that will help you
compete, and 10 failure paths that will destroy your competitiveness.

Here is a taste of those ideas:

10 Competitive Principles

• Stakeholder focus
• Stakeholder value focus
• Value delivery first
• Learn rapidly
• Delivery frequently
• Deliver early
• Hit the ground running
• Quantify valued qualities
• Control value to cost ratios
• Rapid reprioritization

10 Failure Paths

• Focus on feature and function
• Let marketing and sales decide
• Adopt a bureaucratic development

process like CMMI or RUP
• Allow yourself to be design driven
• Allow 100 major defects per page

on specs to development
• Assume a tool will help
• Fail to quantify critical quality

requirements
• Assume that code can be reused in

next generation
• Assume the solution is in the latest

silver bullets (patterns anyone)
• Fail to specify risks, dependencies,

constraints, issues

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, p. 2, 2005.
© Springer-Verlag Berlin Heidelberg 2005

From Products and Solutions to End-User Experiences

Ari Virtanen

NOKIA Corporation

The traditional way to meet a market demand is to develop a product and sell it to the
customers. In some cases all the requirements cannot be addressed with a single
product, but a larger system with multiple products is needed. Further, a lot of
tailoring takes places to convert these products and systems into solutions that are
supposed to meet customer requirements exactly. All of these approaches have been
widely used for a long time in mobile communications, and as a result we are
surrounded by large amount of products and solutions. But this technology explosion
has not necessarily resulted in better customer satisfaction.

Thanks to the rapid spread of mobile devices and new services enabled by network
technologies, it is increasingly difficult to differentiate just by improving products.
The value for the end-user is more and more in personalized experiences that are
created based on a customer’s need, preferences and location. Rather than building
generic solutions, companies need to think how to provide customers with unique
value they are willing to pay for.

All this has many implications on how solutions and services are developed.
Typically a good co-operation between many companies is needed to deliver a
seamless end-user experience. These industry ecosystems and value networks are
already established in many areas and their importance is growing as we speak. To
play this game a company must have openness in product, system and solution
architectures and capability for networked product creation. Delivering a superior end-
user experience will be the differentiator between successful companies and the rest.

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 3 – 15, 2005.
© Springer-Verlag Berlin Heidelberg 2005

What Formal Models Cannot Show Us:
People Issues During the Prototyping Process

Steve Counsell1, Keith Phalp2, Emilia Mendes3, and Stella Geddes4

1 Department of Information Systems and Computing, Brunel University,
Uxbridge, Middlesex, UK

steve.counsell@brunel.ac.uk
2 Empirical Software Engineering Group, University of Bournemouth, Dorset, UK

khalp@bournemouth.ac.uk
3 Department of Computer Science, University of Auckland, New Zealand

emilia@cs.auckland.ac.nz
4 School of Crystallography, Birkbeck, University of London

 s.geddes@mail.cryst.bbk.ac.uk

Abstract. Modelling a process using techniques such as Role Activity Dia-
grams (RADs) [13] can illustrate a large amount of useful information about the
process under study. What they cannot show as easily however, are the informal
practices during that process. In this paper, we analyse the prototyping process
as part of an IS development strategy across five companies. Interview text
from project managers, prototypers and other development staff across the five
companies was analysed. Interestingly, results point to several key recurring is-
sues amongst staff. These include non-adherence to any prototyping guidelines
or standards, sketchy change request procedures, concern over time and cost
deadlines and the importance attached to developer experience during the over-
all process. The notion of prototyping as a simple and easily managed develop-
ment strategy does not hold. Our analysis provides complementary qualitative
data about the opinions of prototyping to inform business process re-
engineering of those formal RADs.

1 Introduction

A commonly cited reason for systems being delivered late and over budget is inade-
quate requirements elicitation due to poor communication between developers and
users. Prototyping, as an information systems discipline, provides an opportunity for
free and unhindered interaction between developers and users in an attempt to over-
come this problem [2, 4]. The prototyping process itself can be modelled formally
using a technique such as Role Activity Diagrams (RADs) [13, 9] where actions and
interactions between the different prototyping staff in the form of roles can be shown
by lines joining, and internal to, the set of roles. What techniques such as RADs can-
not show however, are the different concerns encountered during the process, some of
which may influence the effectiveness of that very process.

In this paper, we focus on those issues found in the prototyping process of five
companies, all of which used prototyping as part of their IS development strategy.

4 S. Counsell et al.

Interview text with twenty different members (in ten interviews) of the prototyping
team across the five companies was analysed using principles of grounded theory [7]
and the key issues extracted. A number of centrally recurring issues emerged from our
analysis, in particular those related to change requests, standards and quality issues,
developer experience and perception of the user by the prototoyper.

Our analysis provides an insight into the less tangible reasons why prototyping
may not deliver the benefits it promises. It also allows reflection on the formal RADs
with a view to the possibility of business process re-engineering; it may also inform
the manner in which future prototyping projects can be viewed and finally, it high-
lights the importance of carrying out qualitative analysis of textual documents using
theoretical techniques such as grounded theory. As part of our analysis, we refer back
to the prototyping RADs of each of the five companies studied and assess whether the
informal data we collected can inform the prototyping process in that company (ex-
pressed using RADs).

The paper is arranged as follows. In Section 2, we describe the motivation for the re-
search and related work. In Section 3 we describe the format of the interview text, the
companies studied and the grounded theory approach adopted for text analysis. In Sec-
tion 4 we look at the extracted information and comment on the themes running through
the text. We then discuss some of the issues that arise as a result of our analysis (Section
5) and finally draw some conclusions and point to future work (Section 6).

2 Motivation and Related Work

The motivation for the work described in this study stems from a number of sources.
Firstly, the prototyping process is widely promoted for the benefits it may provide; captur-
ing user requirements accurately and pro-actively involving the user is bound to provide
advantages, in theory at least. Yet very little literature has been published on some of the
key human issues (i.e., qualitative issues) that may arise during this process [1]. Such
issues could have a profound effect on how prototyping is perceived and carried out.

Secondly, it is our belief that the majority of problems in the IS world stem from
the process of IS development (we view the end product as merely a function of that
process - getting the process right must be a priority). In particular, those problems
related to the subtle influences during development. Using notation such as RADs
does not allow for these subtle influences to be modelled. Extraction of the informal
aspects during the prototyping process thus complements the knowledge already in-
corporated into RADs. We also believe that whatever the type of information system,
whether web-based or more traditional in nature, problems of an informal nature will
always occur and that they therefore need to be documented.

A third motivation arises from a previous study using the same data [6]. A person-
ality test carried out on prototyping development staff (including some of the staff
used herein) concluded that prototypers tended to be extrovert in nature, while project
managers tended to be less extrovert. Analysis of some of the problems during the
prototyping process may give us further insight into these personalities and an indica-
tion of the motivation of the different staff involved.

What Formal Models Cannot Show Us: People Issues During the Prototyping Process 5

In terms of related work on RADs themselves, research by [15] used a coupling met-
ric based on interaction and role behaviour to establish traits in prototyping roles. It was
found that the level of coupling in a RAD was highly correlated to the size of the proto-
typing team and the number of participants. In [14], metrics were applied to the same set
of roles used for the analysis herein. Results showed the project manager tended to exert
control over the prototyper far more in large companies than in small. On the other
hand, in small companies, the project manager tended to interact with the end-user far
more frequently, perhaps reflecting the lack of formality found in small companies.

A number of other previous studies have investigated the prototyping process per
se. Lichter et al. [11] describe a study of five industrial software projects. Results of
the study emphasised the importance of involving the user in the development proc-
ess. Finally, a point and counter-point argument about prototyping and a weighing up
of its pros and cons was presented in [16]. Finally, we remark that to our knowledge,
no literature on the informal problems arising during the prototyping process has been
published so far.

3 Study Format

3.1 Interview Details

The interviews on which our analysis rests were carried out over a period of two years
by a single investigator. Often, a return visit was made to the same interviewee/s to
clarify and check certain points. A set of questions was prepared by the investigator
prior to each meeting according to a meeting template containing details such as:
interview date, duration of meeting, meeting agenda, location and a reference number
for future analysis. On several occasions, more than one member of staff was inter-
viewed at the same time (where appropriate, we make this clear). The questions asked
were directed primarily towards establishing features of the prototyping process (for
later analysis and modelling via RADs) and all interviews were made anonymous.
The chief motivation of the interviews was to extract information for modelling
RADs, rather than as we are doing in this paper namely, investigating the informal
aspects of prototyping. An example RAD illustrating some of its common features
(external interactions between roles and internal role actions) can be found in Appen-
dix B. However, we feel an understanding of what a RAD is and what it represents,
informs our understanding of the informal aspects of the prototyping process.

Table 1 gives a sample of some of the typical questions asked by the investigator
during interviews. As would be expected, the majority of the questions were geared
towards construction of the corresponding RAD of the prototyping process. On the
other hand, a number of questions probed the informal aspects of the process and in
the table these questions have been asterisked. For example, differences between
prototyping and the traditional approach to development give useful insight into the
prototyping process, but cannot be shown on a RAD. Equally, the final question in
the table about standards cannot be represented on a RAD. It was responses to this
type of question that were used as a basis for our analysis in this paper.

6 S. Counsell et al.

Table 1. Sample of questions asked during the ten interviews

What are the distinct roles involved in a typical prototyping project?

What do you need to do before the prototyper can start to build the proto-
types?

How are initial requirements gathered?
Do any change requests come to you from the prototyper, user group or end
user?

What and who is involved in the decision making process?
Who is involved in the final sign off?
Could you please briefly tell me more about your prototyping practice? And
first of all, how your prototyping team is made up?

What if any are the differences compared with traditional development? *
Do you have any controls over quality?
What are the sizes of project you’re involved in and how much effort is de-
voted to prototype building?

*

Do you think it’s important to have some company wide methods and stan-
dards?

*

We note that in all five companies, the focus of the prototyping process was to pro-
duce evolvable prototypes, i.e., prototypes that eventually become the end product.
This is distinct from throwaway prototypes, where the prototype is discarded after the
prototyping team have finished their work. Furthermore, for clarity we make no dis-
tinction between ‘customer’ and ‘user’ in this paper and view the two roles as identi-
cal. There are subtle differences in certain cases, but of minor relevance to this paper.

Table 2 shows the job title of the subjects interviewed, the company and depart-
ment to which they belonged, together with the duration of the meeting and the num-
ber of participants. For later reference, and where appropriate, we have categorised
interviews carried out in the same company by giving each a serial number, e.g., three
interviews were carried out in Company A: A(1), A(2) and A(3).

In terms of company type, Company A was a company developing information
systems for airlines, e.g., ticketing and reservation systems. Company B represented a
team of in-house IT staff for a bank, developing typical banking applications; Com-
pany C was a small software house developing general information systems and
Company D an IT group developing telecommunication systems; finally, Company E
was a University Computer Centre developing in-house academic-based administra-
tive applications.

In most cases, a project manager is also involved in the prototyping process and
this has been indicated as such in the table. For example, in Company A, the Project
Manager was also a prototyper, i.e., was involved in the development of the proto-
type. In our grounded theory analysis, it was sometimes the case that an interview
provided no useful reflection on recurring themes; in later analysis (Tables 3 - 5),
omission of a company from a table therefore reflects this fact. In the next section, we
describe some of the principles of grounded theory.

What Formal Models Cannot Show Us: People Issues During the Prototyping Process 7

Table 2. Interview details from the five companies

3.2 Grounded Theory

Grounded theory (GT) [7] was used as the mechanism for analysing the interview text
because it offered a means by which a corpus of data (including interview data) could
be analysed in a rigorous way and the inter-relationships in that data uncovered. Ac-
cording to [7], theories are developed through observation; scrutiny of text as we have
done, falls into this category. The idea behind GT is to read and re-read text in order
to reveal inter-relationships and categories. The motivation for analysing the prototyp-
ing interview text was to extract issues that prototyping staff identified as common to
their prototyping experiences. GT itself has been used in a number of situations to
analyse qualitative interview text. It has also been applied to the analysis of organisa-
tional behaviour [12] as well as the use of ICASE tools in organisations [10]. Analysis
of the interview text in the case of our research followed a series of four steps in ac-
cordance with GT principles. These were as follows:

1. Coding: each sentence in the interview text was examined. The questions:
‘What is going on here?’ and ‘What is the situation?’ were repeatedly asked.
For the purposes of the analysis herein, each sentence in the ten interviews
would be either identification of an ‘issue’ or ‘concern’ and allocated to the
relevant category. We are not interested in any other information, since it is
embodied in the prototyping RADs for each company. Coding is thus a proc-
ess of filtering the text. A question that was also asked during this step was: ‘Is
this information inappropriate for modelling using a RAD?’ If true, then it was
of use to us in our analysis.

2. Memoing: A memo is a note to yourself about an issue or concern that you are
interested in. In other words, any point made by one of the interviewees which
fell into one of the categories could be used to pursue the analysis. This step
should be completed in parallel with the coding stage. The memoing stage thus

Id. Job Title/s Dur. Part.
A(1) Project Manager (was prototyper as well) 60 mins. 1

A(2) Project Manager 90 mins. 1
A(3) 4 Project Managers, (3 of whom were proto-

typers also)
120 mins. 4

B Project Manager 60 mins. 1
C(1) Design Manager 90 mins. 2
C(2) Design Manager 45 mins. 1
D(1) Project Manager 60 mins. 1
D(2) Prototyper, Sales Manager 90 mins. 2
D(3) Technical Director, Sales Manager, Project

Manager (also a prototyper) and 3 protoypers
120 mins. 6

E Project Manager 45 mins. 1

8 S. Counsell et al.

allows a certain amount of reflection and interpretation of the interview text as
it is being read.

3. Sorting: a certain amount of analysis and arrangement of the collected data is
then necessary.

4. Writing-up: the results of the analysis are written-up in a coherent way and
conclusions drawn.

In the next section, we describe the results of our analysis of the interview text, point-
ing to specific recurring issues and areas of concern.

4 Text Analysis

Analysis of the text using GT principles identified seventy-two occasions where an
issue reflecting a qualitative opinion was expressed by an interviewee/s. Analysis
using GT principles revealed three key informal areas from the text:

1. Change request control: a key feature of prototyping (we would assume).
2. Quality and standards: since the prototypes are evolvable, we would expect

some quality issues and standards to be in place.
3. Experience, skill and prototyper perception of the user. We would expect the

user to be nurtured carefully by the prototyper and be involved significantly at
the same time.

4.1 Patterns in Change Requests

Table 3 summarises the pattern in change requests and control therein across the five
companies; it contrasts the formal responses to the interviewer’s questions and the
informal response to the same questions. The latter cannot be modelled on a RAD.
The first column gives the interviewee Id. The data in the second column is the re-
sponse to the following interviewer questions: ‘Who handles change requests when
they arise?’ The information from this question can be modelled easily on a RAD.

On the other hand, Table 3 (third column) shows the informal responses received
to the questions: ‘How about change request control?’ and ‘Are there any procedures
or guidelines for managers, developers and customer/user?’ The responses in this
column were extracted from the latter two questions.

Clearly, only company B had any sort of formal guidelines for change control, yet
even in this company, large changes were resisted due to cost implications. In com-
pany E, no information was available on the second question and is marked as such.
Interestingly, in company D the prototyping team were reluctant to make changes to
the prototype whether those changes were small or large. In company D, interview
D(2) revealed the view of users as constantly changing their mind, suggesting that
prototyping staff dislike constant requests for changes. This would seem to contradict
the argument that the whole point of prototyping is to allow frequent change and
interaction with the user. One explanation may be that because the prototypes are
evolvable and hence produced under time pressure, there is less willingness on behalf
of the prototyper to accommodate constant requests for changes by the user.

What Formal Models Cannot Show Us: People Issues During the Prototyping Process 9

Table 3. Patterns in change request controls across the five companies

In terms of change request patterns, the results thus support those found in an ear-
lier study of RADs from the same companies [6], where it was noticeable how little in
the way of iteration between the user and prototyper was found for any of the RADs
studied. In other words, the change request process plays a minor role at best in four
of the five companies studied.

The general result of sketchy change control again goes against the underlying prin-
ciple of prototyping of facilitating quick and easy changes to the prototype through
interaction with the user. On the other hand, an explanation for this trend may be that it
merely reflects the informal nature of the prototyping process in those companies. A key
motivation for the research in this paper is to show that some features of the process
cannot be modelled, yet may be fundamental to its success. Inclusion of change control
(or lack of it) is one case of a feature about which more information, other than that
missing from the RAD, may inform future prototyping projects.

4.2 Patterns in Quality and Standards

Table 4 (see Appendix A) investigates the role that adherence to quality and standards
play in the prototyping process. In common with the data in column 3 of Table 3, we
summarise informal answers to the questions: ‘Do you think it’s important to have

Id. RAD (formal) Informal
A(1) Change requests normally come from the

user representative or the end-users.
No specific guidelines.

A(2) Change decisions made by developers in
consultation with the users.

No formal decision proc-
ess. Quality of work pro-
duced unknown.

A(3) Changes to the prototype made independ-
ently of user.

No specific guidelines.

B Committee of systems manager, user man-
ager and auditor make change decisions.

Committee decides on
small changes. Large
changes resisted because
of cost implications.

C(2) Change requests fed back to systems de-
sign group. Negotiation with user used for
large changes.

No specific guidelines for
the prototyping phase.

D(1) Change requests come from the customer. No specific guidelines
D(2) Manager makes decision on functional

changes. Costs agreed for any changes.
No specific guidelines.
Customer’s tend to change
mind constantly. Funda-
mental changes are treated
as a new project.

D(3) Identical to D(2) Identical to D(2)
E Change requests come from design man-

ager, group leader or customer.
No information provided.

10 S. Counsell et al.

standards?’, ‘Any quality checks at all?’ and finally, ‘What about the method com-
pared with conventional development’. We note that because the prototypes are ev-
olvable prototypes and will be used by formal development teams later on, we would
expect certain quality guidelines (in common with the broader development process
overall) to be adhered to.

The general trend identified from Table 4 is that surprisingly, standards are rarely
used except for perhaps in larger projects where they were identified as potentially
useful, yet still unused. It is interesting that in many cases, just as for change control,
there is a general lack of awareness of, and certain scepticism for, the value of stan-
dards. In a number of cases, the fact that prototyping is part of the overall develop-
ment process was seen as an excuse to avoid using any standards or carrying out any
quality checks. The ‘quick and dirty’ approach seems to be common for small pro-
jects at least. Only in Company E are any standards adopted in common with com-
pany wide procedures.

One theme which comes across strongly in the reason stated for not having standards
is the role that experience of the prototypers plays and, connected to that, the time re-
strictions which prototypers are placed under. Standards and quality issues seem to be
viewed as a time-consuming process which detract from the creative abilities of the
developer and thus from the real purpose of prototyping (i.e., to be innovative without
the burden of control). This is expressed well by interviewee A(2), who criticises the
‘tick box’ approach to prototyping as something which is not considered useful.

4.3 Patterns in Experience, Skills and User Perception

Table 5 examines the role that factors such as the skills and experience of the proto-
typer play in the overall process. It also gives some indication of how the user is per-
ceived by the prototyping staff.

From Table 5, it would seem that firstly, users prefer to keep things simple during
interaction with the prototyper; there is evidence that they (users) also change their
mind frequently (supporting data from Table 3). While this is to be expected during
prototyping, the general sense is that this causes irritation amongst the majority of
prototypers. At least two references in the interview text suggest ‘concealing’ the
prototype from the user so that they have no opportunity to change their mind or make
change requests (Company A and Company C). The fact that prototyping staff find
this feature of users annoying may well reflect the time constraints on the prototyper
for production of a quick prototype. In the authors’ opinion, this would be counter-
productive and is contrary to the way that prototyping should be carried out. A rea-
sonable amount of time should be allocated to building the prototype, free from ex-
treme time burdens.

It is also interesting that from Table 5 we get the impression that intuition was
identified as an important characteristic of a prototyper. In a previous study [5], a
personality test revealed 7 out of 12 prototypers were found to rely heavily on their
personal characteristics of intuition and extrovert nature.

Another feature evident from Table 5 is that the level of experience of the pro-
toyper is of paramount importance when nurturing trust and communication with the
user/customer, making sure user expectations are realistic and prioritising the features
which users want to talk about and see. Experience also seems to be the key factor in

What Formal Models Cannot Show Us: People Issues During the Prototyping Process 11

Table 5. Experience, skills and perceptions of the user by prototyping staff

the choice of staff for a particular project, with the view that more experienced mem-
bers of staff are allocated to the larger projects, but yet still have a duty to help less
experienced members of the team. Again, there is a strong sense that pressure to pro-
duce prototypes channels the best prototypers to the largest projects. In the next sec-
tion, we discuss some of the issues raised by our analysis.

5 Discussion

In terms of discussion points, we have to consider a number of threats to the validity
of the study described. Firstly, the interview text has been assumed to reflect accu-
rately the prototyping as it existed in each company. We have to accept that the inter-

Id. Experience and skills Perceptions of the user
A(1) Prototyping staff are able to talk

business language with the user,
rather than just technical IT lan-
guage. Prototyping staff have very
good intuition, and generally know
what they’re doing.

What works for the customer is
most important. Using formal
models such as RADs with the
user don’t work.

A(2) Building up a good user relationship
and trust is important.

No information available.

A(3) Effort invested is not always appre-
ciated by the customer. Quick, vis-
ual effects are usually the most
effective, while long-winded time-
consuming features don’t generally
impress the user.

Customers get annoyed if re-
quirements elicitation is too
focused, but this can backfire if
too laissez faire approach is
adopted, leading to a system the
user didn’t ask for.

B Junior members of the prototyping
team need support from senior
members of the team in terms of
business knowledge, languages and
tools used etc.

Getting the user requirements
right is a question of talking to
the users, not drawing formal
models which only creates de-
sign conflicts.

C(2) Prototyping staff have to use their
judgement to tell users what is real-
istic and what isn’t, whether func-
tionally or due to time pressure.
Trust in prototyper by project man-
agers is important.

Users too often have unrealistic
expectations.

D(2) Experience of the prototyper dic-
tates the allocation to projects of the
prototypers.

Customers change their mind all
the time and under restricted
time and cost constraints, this
makes life difficult.

D(3) Experience is used to avoid having
to employ standards.

No information available.

12 S. Counsell et al.

viewees may have lied and/or withheld information about the true situation in the
company. In defence of this threat, the investigator did return to clarify points with
interviewees which they had not been clear about and certain cross-checking would
have been inevitable (especially with multiple interviews in the same company). A
related threat is that in interviews where more than one member of prototyping staff
were involved, junior members of staff may have felt under pressure to say what they
felt was the ‘appropriate’ answer rather than the ‘real’ answer. In defence of this
threat, the commonality of results (including the single person interviews) across the
five companies suggests that this was not a widespread or common feature.

One threat which is not so easy to defend is the possibility that the lack of change
control and standards may actually be more effective in terms of productivity of the
prototyping team (than if they did exist). In other words, the prototyping process works
because these features are absent. The impression gained is that for small
projects this is true. For larger projects however, there is evidence that standards and
controls are necessary.

A further but related threat to the validity of the conclusions is that for the data in
this paper, we have no way of deciding whether or not use of stringent change control
procedures and/or adoption of standards and quality checks would necessarily bring
any benefits to the prototyping process. In defence of this threat, it was noted that in
several instances, it was acknowledged that some form of standards would be useful.
There was also an ‘intention’ by at least two companies (A and D) to introduce
standards in the very near future.

Interestingly, the use of software tools does not figure prominently in the interview
text which we have studied. Only on two occasions were the significance of develop-
ment tools mentioned. A recent survey of tools used for web development showed
relatively simple tools such as Visio and Dreamweaver to be the most commonly used
tools [8] by developers. We suggest that one reason why this may be true (and sup-
ported by the interview text) is that tools are less of a concern during prototyping
simply because the user wants to see something simple, yet effective; in addition,
gathering requirements effectively may well be compromised by use of an overly
complicated software tool. In the following section, we describe some conclusions
and point to some future work.

6 Conclusions and Future Work

In this paper, we have described a study in which the informal aspects of the prototyp-
ing process have been investigated. Interview text from ten interviews with twenty
members of staff was analysed and using Grounded Theory principles, three recurring
themes emerged. Firstly, only one of the five companies studied had any formal
change control mechanism in place. Secondly, adherence to standards and quality
checks were also found to be largely missing across all companies. Finally, experi-
ence seemed to play a key part in allocation of staff to projects and in reducing time
and cost pressures; finally, the perception of the user is of someone who constantly
changes their mind and is not as positive as we would have expected. The results of
the study are surprising for the lack of interest in a framework for prototyping and the
strong belief that intuition, experience and enthusiasm are what really counts in proto-
typing – we accept that these features are important, but need to be supplemented with
appropriate procedures. It may well be that prototyping is best done without any con-

What Formal Models Cannot Show Us: People Issues During the Prototyping Process 13

trols whatsoever and giving the prototyper complete freedom is the way to achieve
proper prototyping, however. In terms of future work, we intend to investigate how
the corresponding RADs could be modified in some way to accommodate the features
we have uncovered herein. We also intend assessing the impact of making such
changes, from a performance point of view, using appropriate metrics.

Acknowledgements

The authors gratefully acknowledge the help of Dr. Liguang Cheng for use of the
interview material in this paper [3].

References

1. J. Brooks, People are our most important product, In E. Gibbs and R. Fairley, ed., Software
Engineering Education. Springer-Verlag, 1987.

2. D. Card, The RAD fad: is timing really everything? IEEE Software, pages 19-22, Jan.
1995.

3. L. Chen, An Empirical Investigation into Management and Control of Software Prototyp-
ing, PhD. dissertation, Department of Computing, University of Bournemouth, 1997.

4. G. Coleman and R. Verbruggen. A quality software process for rapid application develop-
ment, Software Quality Journal, 7(2):107-122, 1998.

5. S. Counsell, K. Phalp and E. Mendes. The ‘P’ in Prototyping is for Personality. Proceed-
ings of International Conference on Software Systems Engineering and its Applications,
Paris, France, December 2004.

6. S. Counsell, K. Phalp and E. Mendes. The vagaries of the prototyping process: an empiri-
cal study of the industrial prototyping process, submitted to: International Conference on
Process Assessment and Improvement, SPICE 05, Klagenfurt, Austria, April 2005.

7. B. Glaser and A. Strauss. The Discovery of Grounded Theory. Strategies for Qualitative
Research. Aldine Publishers, 1967.

8. GUUUI survey. Results from a survey of web prototyping tools usage. The Interaction De-
signer’s Coffee Break. Issue 3, July 2002. available from: www.guuui.com/
issues 01 03_02.

9. C. Handy, On roles and Interactions. Understanding Organisations, Penguin.
10. C. Knapp. An investigation into the organisational and technological factors that contrib-

ute to the successful implementation of CASE technology. Doctoral Dissertation, City
University, New York, 1995.

11. H. Lichter, M. Schneider-Hufschmidt and H Zullighoven. Prototyping in industrial soft-
ware projects: Bridging the gap between theory and practice. IEEE Transactions on Soft-
ware Engineering, 20(11):825-832, 1994.

12. P. Martin and B. Turner. Grounded Theory and Organisational Research. Journal of ap-
plied Behavioural Science. 22(2), pages 141-157.

13. M. Ould. Business Processes: Modelling and Analysis for Re-engineering and Improve-
ment, Wiley, 1995.

14. K. Phalp and S. Counsell, Coupling Trends in Industrial Prototyping Roles: an Empirical
Investigation, The Software Quality Journal, Vol. 9, Issue 4, pages 223-240, 2002.

15. K. Phalp and M. Shepperd, Quantitative analysis of static models of processes, Journal of
Systems and Software, 52 (2000), pages 105-112.

16. J. Reilly. Does RAD live up to the hype? IEEE Software, pages 24-26, Jan. 1995.

14 S. Counsell et al.

Appendix A

Table 4. Standards and relationship with conventional development

Id. Standards and/or Quality Conventional Development
A(1) No point in ‘ticking boxes’; would be

counter-productive.
No information available

A(2) Any standards would unduly affect
ability to respond. Prototyping has to
be an energising force rather than an
imposition.

Conforming to in-house devel-
opment and improvement pro-
gramme seen as an imposition.
Time and cost limitations much
more stringent than in conven-
tional development. Getting user
requirements right is far more
important than doing a nice de-
sign.

A(3) No quality standards. Prototyping for
small projects use ‘quick and dirty’
approach. Proper analysis and design
for larger projects is probably more
usual.

No information available.

B Standards used according to the size
of the project. No quality checks.

Converntional development
much more rigorous. Users tend
to blame prototypers for inade-
quacies in prototype. No excuse
for missing functionality during
conventional development.

C(2) Standard procedures used, but not
rigorously. A quality group guides
and enforces standards, but prototyp-
ing staff broadly unaware of stan-
dards.

Prototyping seen as part of the
conventional development proc-
ess and fits in within that frame-
work. This justifies lack of stan-
dards in prototyping.

D(2) No standards or quality checks. Prototyping seen as part of the
overall development process.
Justifies lack of standards in
prototyping.

D(3) No quality checks. Justified because
projects tend to be quite small. Rec-
ognition of need when projects start
becoming larger. Rely on experience
for getting projects finished on time.
Quality checks are also difficult to
implement.

No information available.

E Company wide standards used give
flexibility and a practical system de-
velopment framework to work within.

No information available.

What Formal Models Cannot Show Us: People Issues During the Prototyping Process 15

Appendix B

Example Role Activity Diagram (RAD) – three roles

 Prototyper Project Manager End-user

sign off a req. spec.

 agree costings

agree and sign-off product (multi-way interaction)

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 16–28, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Process Improvement Solution for Co-design in Radio
Base Station DSP SW

Virpi Taipale and Jorma Taramaa

Nokia Networks, P.O.Box 319, FIN-90651 Oulu, Finland
{Virpi.Taipale, Jorma.Taramaa}@nokia.com

Abstract. Process improvement studies have tended to focus on one technology
area at a time, and on process improvement frameworks, like CMMI
(Capability Maturity Model Integration), and measurements from the top-down
point of view. In addition, the management has been the trigger force of process
improvement activities. Much less interest at process level has been shown in
cross-technological issues, such as co-design, and on the bottom-up approach.
In this paper, we point out the importance of the defined co-design activities
and the synchronisation of software and hardware processes. Hardware and
software designers are the best experts in this difficult co-design process area
and thus the development staff involvement together with a bottom-up approach
is a respectable alternative to improving processes and practices along with
traditional SPI (Software Process Improvement) frameworks. The study is
based on empirical studies carried out in Nokia Networks base station unit
ASIC (Application-Specific Integrated Circuit) development and DSP (Digital
Signal Processing) software development teams. The bottom-up approach was
used to study the processes and the CMMI was used in analysing the findings
and linking them to different process areas. We found that, despite the software
and hardware, the processes themselves are quite well defined, the deficiencies
are related to the invisibility of co-design activities. The technical experience
and view was found to be relevant in improving the processes related to the
interfaces between two technologies, like hardware and software. Traditional
SPI and other process areas improvement work concern themselves typically
with their own technology area only, and the process deficiencies close to other
technology areas might be blurred. The paper also presents new process
improvements for the software and hardware co-work area.

1 Introduction

Tough competition in the telecommunication business pressures companies to shorten
their time-to-market, widen their product portfolio as well as improve their product
quality and performance. These aspects force companies to critically study working
practices and put effort into upgrading processes.

3G (third generation) standards require complex algorithmic calculations for voice
and data channels. The major share of the required processing occurs in the baseband
portion of the 3G-channel card, as well as the terminal as the radio base station part

 Process Improvement Solution for Co-design in Radio Base Station DSP SW 17

[2]. A baseband typically consists of HW accelerators, i.e. Application-Specific
Integrated Circuits (ASIC), and DSP (Digital Signal Processing) software producing
the signal processing capacity for a baseband. A radio base station, as an embedded
system, provides a complex challenge for the product development process.
Concurrent specification, design and verification work of hardware and software can
be viewed as co-design. As signal-processing requirements grow, the role of
hardware-software co-design becomes increasingly important in system design [12].

From the development process point of view, hardware and software development
typically follows its own process flows and co-work in the interface area of two
technologies strongly relies on personal contacts not supported by the processes.
Several studies present software process improvement (SPI) frameworks and
experiments using those in product development. [9], [6] Process improvement is then
the elimination of differences between an existing process and a standard baseline.
The top-down approach compares an organisation’s process with some generally
accepted standard process [19].

This paper reveals the experiences of processes in the co-design area in base station
development of Nokia Networks and suggests improvements for these process areas.
The study is based on empirical studies performed with DSP software and ASIC
teams on the basis of their own needs to improve working practices. In the context of
empirical software engineering, the study consists of a qualitative part and a literature
part. [5] The selected starting point for the process improvement is a bottom-up
approach. The bottom-up approach assumes that the organisation must first
understand its process, products, characteristics and goals before it can improve its
processes [19]. Collecting information is performed via interviews, questionnaires and
projects’ documentation reading, forming the qualitative part of the empirical study.
The other aspect to the study is to compare the findings to the process literature. The
focus in the literature survey is the CMMI (Capability Maturity Model Integration)
literature, as CMMI is generally used in Nokia Networks process improvement
projects [14].

The text of this study consists of five parts. In the following section, we introduce
the factors influencing base station development and the profile of a base station
product compared to other network elements. Section three focuses on the
improvement frame, how the problem was studied. The findings of the studies and the
suggested process improvements are presented in sections four and five. Section 6
contains the conclusion along with recommended tasks to be undertaken in future
studies.

2 Base Station Development

Standardisation has a strong role in the mobile network business. In a 3GPP (3rd
Generation Partnership Project) standardisation commission, competitors and
customers, network suppliers together with operators, define the most useful, value-
adding new features to be implemented into UMTS (Universal Mobile
Telecommunications System) network. [20] Layer 1 fulfils the standard requirements

18 V. Taipale and J. Taramaa

via software (SW) and hardware (HW) partitioning thus comprising a fundamental
part through the network in the development race. [2]

Different network elements have different profiles within a range of three
attributes: life cycle, frequency of new product launches and product volume (Fig. 1).
New mobile phones, mass volume consumer products, are launched very regularly for
different user groups. The utilisation time of a phone has become quite short
compared to other network elements due to the low price of new phone models and
new fancy features, which appeal to phone customers. Network elements, like
switches and network controllers, are small volume infrastructures, the functionality
of which mostly grows in software releases. From the software point of view, the
vertical axis represents the need for reusable software components. The horizontal
axis on the other hand can be interpreted as growing software maintenance work. The
profile of a base station can be regarded as an intermediate form of the mobile phones
and other network elements, since base stations and mobile phones include the radio
interface part of a wireless network and, on the other hand, the base station is a
network element. Compared to the mobile terminal life cycle, the base station life
cycle can be expected to be relatively long, from 5 years to as long as 20 years. Other
network elements have typically even longer expected life cycle. Base station
production volumes are not that massive as in the mobile phone business, but much
bigger than in the case of other network elements, since the mobile network serving
area is based on a covering area of base station cells. The new base station platforms

Life-cycle / years

Mobile
phones

Other
network
elements

Base stations
New

platform
launch

frequency
circle size
reflects the

product
volumes

Fig. 1. Network element profiles in terms of product volumes, platform launch frequency, life-
cycle

 Process Improvement Solution for Co-design in Radio Base Station DSP SW 19

are launched fairly often as technology development enables new cost and size
effective solutions. It is important to consider these different characteristics of
network elements when new platforms and standardised Layer 1 features are
developed and HW-SW partitioning is defined.

Base station layer 1, i.e. physical layer functionalities, are typically provided by the
combination of DSP SW and HW accelerators implemented by baseband. [2]
Contrary to many other embedded systems, in digital signal processing, the hardware
components that are controlled by software are not simple or passive (such as fans or
temperature gauges), but elements that perform complicated mathematical tasks [17].
An expectation and a requirement for a new base station development is that the
platform should be a long-term solution, which can adjust to the new feature
requirements defined by the standardisation commission. The long-lasting nature of
products demand that companies put effort into evaluating and defining their practices
and processes in order to succeed and stay in the network business. The HW-SW
partition should be optimal in such a way that new functionalities can be added on top
of the base station platform years after product launch in SW releases. Moreover, the
partition should be such that the software is easy to adapt to a new platform.

The base station development practices at Nokia Networks are described in the
base station product family process. The process has its own sub-process flows for
software and hardware, as well as for system development. Each sub-process
describes its work phases, deliverables and milestones. At Nokia Networks,
organisational process improvement activities have mostly been based on assessment-
based software process improvement (SPI) practices like SW-CMM (Capability
Maturity Model for Software) and nowadays also CMMI and, on the other hand, on
using measurements, like the GQM method (Goal/Question/Metric), in indicating and
fine-tuning process improvement needs and activities [16], [18]. All of these
approaches are so called top-down SPI practices. A management commitment is
essential in all process improvement activities to succeed, but the management has so
far also been the trigger to start assessment or measurement projects. Typically, the
separate internal or external process team has surveyed the program or project
practices via interviewing project personnel with defined questions or measuring the
project’s data. SPI activities have started based on the process team’s statement of
improvement areas.

3 Improvement Frame

Traditionally, software process improvement studies have largely concentrated on
different frameworks, such as generic baseline models (e.g. CMM, CMMI, and
ISO15504), SPI models (e.g. IDEAL, Initiating, Diagnosing, Establishing, Acting &
Learning, and PDCA, Plan-Do-Check-Act), as well as the Quality Improvement
Paradigm (QIP) [10], [15], [7], [1]. The organisation’s process is compared to these
generally accepted standard processes and the process improvement is then the
elimination of the differences between an existing process and a standard one. Nokia
Networks software process improvement work has widely been based on SW-CMM

20 V. Taipale and J. Taramaa

and recently on CMMI maturity models. [14] The newer bottom-up approach to
process improvement is to utilise the experience of the organisation.

In this study, the bottom-up approach is used to study ASIC and DSP software
processes and their interfaces, and the CMMI is the approach used to analyse and
communicate the results.

3.1 Bottom-Up Approach

The bottom-up approach, as well as others, assumes that process change must be
driven by an organisation’s goals, characteristics, product attributes, and experiences.
Moreover, the underlying principle is that all software is not the same. [19] Every
product, project and software technology brings its own requirements to the software
process. In this context, we highlight that the best knowledge of an organisation’s
characteristics is among the technical development staff. The involvement of the
development teams or human factors is naturally taken into account, as the originators
of the study were technical teams. Literature also emphasises the importance of
developers’ involvement in process improvement [4], [8], [11].

The bottom-up approach assumes that every development organisation must first
completely understand its processes, products, software characteristics, and goals
before it can select a set of changes meant to improve its processes. Thus, the best
experience of base station baseband and its processes is by the designers who develop
the base station DSP software and hardware accelerators, ASIC’s. In the context of
two technology areas interface, the bottom-up approach utilises the feedback from
both software and ASIC designers, not limiting the scope into one process only and
not ignoring the improvement needs in the challenging interface area.

3.2 CMMI Continuous Model

CMMI was developed to sort out the problem of using multiple CMMs. CMMI
combines three capability maturity models: the SW-CMM, the Systems Engineering
Capability Model (SECM) and the Integrated Product Development CMM (IPD-
CMM). There are two different representations of CMMI: the staged model and the
continuous model. This chapter introduces the main principles of the CMMI method
from the continuous representation point of view. Continuous representation offers a
more flexible approach to process improvement than the staged model, and thus it is
also widely used in Nokia Networks process improvement projects.

The CMMI continuous model allows the organisation to focus on specific Process
Areas (PA’s) to improve the performance of those areas. The process areas are
grouped into four main categories, namely Process Management, Project
Management, Engineering and Support (Fig. 2.). [13]

Each process area can be evaluated separately and reach its own capability level. A
capability level tells about the organisation’s ability to perform, control and improve
its performance in a process area. The six capability levels are: Level 0: Incomplete
Level 1: Performed Level 2: Managed Level 3: Defined Level 4: Quantitatively
Managed Level 5: Optimizing. The capability level for a process area consists of
related specific and generic goals. Each goal, specific or generic, consists of practices

 Process Improvement Solution for Co-design in Radio Base Station DSP SW 21

Process Management

Organisational Process Focus (OPF)
Organisational Process Definition (OPD)

Organisational Training (OT)
Organisational Process Performance (OPP)

Organisational Innovation and Deployment (OID)

Support

Configuration Management (CM)
Process and Product Quality Assurance (PPQA)

Measurement and Analysis (MA)
Decision Analysis and Resolution (DAR)

Organistional Environment for Integration (OEI)
Causal Analysis and Resolution (CAR)

Project Management

Project Planning (PP)
Project Monitoring and Control (PMC)

Supplier Agreement Management (SAM)
Integrated Project Management (IPM)

Risk Management (RSKM)
Integrated Teaming (IT)

Integrated Supplier Management (ISM)
Quantitative Project Management (QPM)

Engineering

Requirements Management (REQM)
Requirements Development (RD)

Technical Solution (TS)
Product Integration (PI)

Verification (VER)
Validation (VAL)

Fig. 2. CMMI Process Areas

Requirements Management (REQM)
SG1 - Manage Requirements

Requirements Development (RD)
SG1 - Develop Customer Requirements
SG2 - Develop Product Requirements

SG3 - Analyse and Validate Requirements

Technical Solution (TS)
SG1 - Select Product-Component solutions

SG2 - Develop the Design
SG3 - Implement the Product Design

Validation (VAL)
SG1 - Prepare for Validation

SG2 - Validate Product or Product Components

Verification (VER)
SG1 - Prepare for Verification
SG2 - Perform Peer Reviews

SG3 - Verify Selected Work Products

Product Integration (PI)
SG1 - Prepare for Product Integration
SG2 - Ensure Interface Compatibility

SG3 - Assemble Product Components and
Deliver the Product

GG1 - Achieve Specific Goals
GG2 - Institutionalize a Managed Process
GG3 - Institutionalize a Defined Process

GG4 - Institutionalize a Quantitatively Managed Process
GG5 - Institutionalize an Optimizing Process

Fig. 3. Specific and generic goals of Engineering Process Areas

that give more detailed information on activities considered as important in achieving
the goal at different capability levels. By satisfying the specific and generic goals of a

22 V. Taipale and J. Taramaa

process area at a particular capability level, the organisation benefits from process
improvement. [3], [13]

The base station baseband development processes are related to CMMI engineering
process areas, because engineering processes indicate the specialities of baseband
development creating the basis of other main processes such as process management,
project management and support. Engineering process areas cover the development
and maintenance activities that are shared across engineering disciplines, (e.g.
systems, software, hardware, mechanical engineering) (Fig. 2.). With this integration
of different technical disciplines, the engineering process areas support the product-
oriented process improvement strategy. The focus of this study is to improve the
processes related to a baseband ‘product’. The specific and generic goals related to
engineering process areas are presented in Figure 3. The generic goals are generic to
multiple process areas, and in the engineering category to all process areas. [3], [13]

4 Empirical Studies

This report is based on two empirical studies carried out during autumn 2003 in
Nokia’s base station development. In the context of Empirical Software Engineering,
the study focuses on a qualitative part in the study phase and, on the other hand, on a
literature survey part in analysing the results against the CMMI [5]. One study
concentrated on ASIC design and another on DSP software development. Thereby
ASIC design, in this study, represents the hardware design part and DSP SW
development, the software design part in the HW-SW co-design concept. The goal
was to discover the current status of both ASIC and DSP working practices and the
process area limitations. Another goal was to capture the tacit knowledge about the
processes that resides with co-workers. This chapter summarises the findings of the
two studies from the HW-SW co-design point of view and links those findings to
CMMI engineering process area goals.

4.1 DSP Questionnaire

The DSP software working practices were inspected via a free-form questionnaire
study sent to base station DSP software designers at four different sites. Thirty
questionnaire answers were received, mostly from experienced designers. The
designers’ experience in SW development varied from 2.5 to 20 years; the average
being 7 years.

The questionnaire study concentrated on DSP SW special characteristics and
commonalities with other base station software development and on possible holes
and potential improvements in the software process from the designers’ point of view.
Roughly 20 questions related to the SW process area and only those fall within the
scope of this study. The questions were open and there was room for new ideas. A
few examples of the questions: “What drives your DSP SW implementation work?”,
“What DSP SW specific parts are there in your software process?”, “What should be
improved in your process descriptions?”.

 Process Improvement Solution for Co-design in Radio Base Station DSP SW 23

4.2 ASIC Study

The ASIC study was carried out for 27 ASIC projects that were active during 1998 to
2003; it was performed by Nokia’s own personnel. The study consists of two phases –
a project documentation study phase and a project key person interview phase. Only
the SW-HW co-design and –verification related findings are discussed in this report.
The documentation study phase was conducted by studying the projects’
documentation. The interview part consisted of closed questions related to project
schedules, etc., and open questions related to lessons learned from ASIC development
phases. An example of interview questions: “Describe the co-operation with the SW
team, good/bad experiences”.

4.3 Findings

The literature survey focused on CMMI literature. The literature survey was
conducted after the qualitative part in order to see whether the problems mentioned in
the studies were also mentioned in CMMI literature and to map the findings into the
CMMI concept. Using CMMI concepts, to communicate the results within Nokia
Networks organisation, as it is strongly committed to CMMI in process improvement,
was found to be relevant.

As a whole, the designers were quite satisfied with the current processes; this study
highlights the limitations discovered. Both of the studies indicated similar limitations
in processes, only from different viewpoints. The key findings from the studies and
the concerning CMMI process area goals are listed in tables 1 and 2.

Table 1. Findings of the ASIC process and their links to the CMMI process areas specific and
generic goals

ASIC Finding PA & Goal
No software resources available in co-design phase, work
is done by ASIC designers only.

TS-GG2

Software design has to be started earlier, parallel with
ASIC design.

TS-GG2

ASIC-SW project schedules poorly aligned, synchronising
of deliverables is important.

TS-GG2

Test software for sample testing comes late. TS-GG2,
VER-GG2

All of the findings of ASIC study are related to process area Technical Solution
generic goal 2. The deficiencies in processes lie in planning the process, providing
resources, assigning responsibility and identifying and involving relevant
stakeholders. One finding can also be seen to belong to the Verification process area.

Correspondingly, the DSP software questionnaire enlightened the following
limitations.

24 V. Taipale and J. Taramaa

Table 2. Findings of the DSP SW process and their links to the CMMI process areas specific
and generic goals

DSP Finding PA & Goal
Software participation in HW-SW co-design phase
needed.

TS-GG2

HW competence needed for product integration and bug
fixing after the ASIC project ends.

TS-GG2

Informal requirements for HW test software. RD-SG2,
REQM-SG1

There’s no process description for co-verification. VER-GG2

A few findings from the DSP study also indicated limitations in Technical Solution
process area generic goal 2. In fact, those findings are identical to those experienced
by ASIC designers. The one finding proves weaknesses in requirement process areas.
The lack of co-verification process refers directly to verification process area generic
goal of institutionalising a managed process.

The characteristics of these findings are timing and responsibility. The results show
that software and ASIC design process flows and their milestones and deliverables are
not as well aligned as they could be. There are unaccounted discontinuities in the
development work and software and ASIC designers are not aware of each other’s
working practices. Also, some confusion lies in the participation and responsibilities
of co-work activities: co-design and co-verification. Some co-work tasks are invisible
in other process flows and thus the work has not been planned properly, causing
delays in a project. The current view to these HW-SW co-design processes is
described in figure 4. The system design process supports the base station system
level design work. After the base station system is specified, the detailed baseband
system design work is started. The ASIC project development work starts earlier than
software projects. Usually, software designers are still involved in the earlier project

System Design

ASIC Design

Software Design

Program Plan
ready

Program
Proposal ready

Ready for
verification

Ready for
ramp-up

Fig. 4. Current process model

 Process Improvement Solution for Co-design in Radio Base Station DSP SW 25

integration work. Thus, the baseband co-design activities fall into the ASIC project’s
responsibility. On the other hand, software designers raised in the study, the
importance of hardware competence in the product integration phase, while ASIC
designers have already moved on to a new project.

The co-work in projects seemed to be based on personal contacts, not enough
support by the processes. Currently, the software and ASIC design processes are too
separate from each other. Both processes define their own activities without enough
connections (i.e. checkpoints, milestones, deliverables) to each other. Also, the
activities where co-work would be beneficial, are not clearly stated in processes.

5 Improvement Solution

As a result of this empirical study, some changes were proposed for the software and
ASIC design processes. The alignment of these processes were found to be essential
both at the start and end phases. The baseband co-design activity was proposed
separately from ASIC and software processes, to the system design process. The
hardware-software co-design is a multi-technology task, and thus it requires several
competences, meaning system, hardware and software competences. In the new
process model, the actual ASIC and software work starts at the same time after both
the base station and the baseband system level requirements and architectures have
been defined (Fig. 5.). By aligning the work of these two technology areas, the
availability of both competences is assured in the product integration phase.

To improve the co-work and visibility between ASIC design and software projects,
some checkpoints and checklist items were added to the milestones. These items
concern issues like checking resource availability in co-work activities described only
in one process flow, the documents needed from another project as an input, and the
documents delivered as an output to the other project.

Co-verification
System Design

ASIC Design

Software Design

Program Plan
ready

Program
Proposal ready

Ready for
verification

Ready for
ramp-up

HW-SW Co-
design

Fig. 5. The new process model

26 V. Taipale and J. Taramaa

The findings related to co-verification were corrected with the new task of co-
verification. The co-verification task is described in a new process flow as both the
software and the ASIC design projects’ responsibility. The task comprises
requirement definitions for the test software, software implementation, the co-
verification and the reporting sub-tasks. The software project provides the test
software according to the requirements defined by the ASIC design project. The
effective verification task is carried out as a co-operation between the two projects.

6 Conclusions

This study presents the experiences of Nokia Networks baseband development ASIC
and software processes and introduces an improvement solution for these processes.
The co-design processes were studied with a bottom-up approach and the results were
analysed within the framework of the CMMI continuous model. The most essential
findings of the co-design processes were related to time schedule synchronisation and
co-work of hardware and software projects. The multi-technology competence and
hardware-software projects’ co-work was found to be essential in both early co-design
and later co-verification activities, and the process flows must support this kind of co-
operative activities. Moreover, to improve the projects efficiency and timing, tight
connections between the ASIC design and hardware related software development
should also be visible at the process level. These connections can be ensured with the
added milestone checklists of needed input/output deliverables from/to other process
flows. The result, a new, improved operations model of processes is a supporting tool
for the management for better project planning, task alignment and easier follow-up,
as well as for designers for planning their own work better. The new process also
encourages software and hardware designers to co-work with each other and supports
them to widen their work scope into new technology areas.

The bottom-up approach, together with CMMI, was considered as a respectable
alternative for process improvement in a challenging hardware-software co-design
area. The bottom-up approach was found to be successful in finding the concrete
weaknesses of the co-design processes. In particular, in improving the processes
related to the interface between two technologies, like hardware and software, the
technical experience and view was found to be essential. Once the weak points were
discovered, CMMI, as a commonly used framework in Nokia Networks, was a good
tool for interpreting, analysing and communicating the process findings.

This kind of process improvement is not a one-time performance project, rather it
is continuous work. As the cost efficiency has become a major factor in the wireless
systems business, more software-oriented solutions need to be considered. Moreover,
ASIC technology has faced serious competitors in the form of alternative technologies
like FPGA, reconfigurable HW and customised IC. Not only are the changing
technologies and new HW-SW architectures exerting pressure on processes, but new
kinds of working methods are also adding pressure to continuous process work. Not
all hardware and software development will be done internally in the future. The
software development trend is towards integrating commercial software components

 Process Improvement Solution for Co-design in Radio Base Station DSP SW 27

into own systems. Furthermore, customised IC (integrated circuit) development is the
joint development of a system developer and a vendor. The co-design and verification
processes are playing increasingly bigger roles in the future as these new technologies
and working methods are adopted.

Acknowledgements

The authors would like to thank Nokia Networks’ experts for providing their input to
this paper.

References

1. Basili, V., R., Caldiera, G., Rombach, H., D.: Experience Factory Encyclopaedia of
Software Engineering. John Wiley & Sons. (1994) 469-476

2. Blyler, J.: Will Baseband Technology Slow Base-Station Evolution? Wireless Systems
Design. Vol. 7, Issue 7, Jul./Aug. (2002) 19-21

3. Chrissis, M., B., Konrad, M., Shrum, S.: CMMI®: Guidelines for Process Integration and
Product Improvement. Pearson Education, Inc. (2003)

4. Conradi, R., Fuggetta, A.: Improving Software Process Improvement. IEEE Software, Vol.
19, Issue 4, Jul./Aug. (2002) 92-99

5. Conradi, R., Wang, A., I.(eds.): "Empirical methods and Studies in Software Engineering -
Experiences from ESERNET". Lecture Notes in Computer Science LNCS 2765, Springer
Verlag, Berlin Germany (2003) 7-23

6. Debou, C., Kuntzmann-Combelles, A.: Linking Software Process Improvement to
Business Strategies: Experiences from Industry. Software Process: improvement and
practice, Vol. 5, Issue 1 (2000) 55-64

7. Deming W., E.: Out of Crises: Quality, Productivity and Competitive Position. MIT
Center for Advanced Engineering Study, Cambridge, MA (1986)

8. Hall, T., Rainer, A., Baddoo, N.: Implementing Software Process Improvement: An
Empirical Study. Software Process Improvement and Practice, Vol. 7, Issue 1 (2002) 3-15

9. Harter, D., Krishnan, M., S., Slaughter, S., A.: Effects of Process Maturity on Quality,
Cycle Time, and Effort in Software Product Development. Management Science, Vol. 46,
Issue 4, Apr. (2000) 451-466

10. ISO/IEC 15504-7: Information Technology – Software Process Assessment – Part 7:
Guide for use in process improvement. (1998)

11. Jakobsen, A., B.: Bottom-up Process Improvement Tricks. IEEE Software, Vol. 15, Issue
1, Jan./Feb. (1998) 64-68

12. Kostic, Z., Seetharaman, S.: Digital Signal Processors in Cellular Radio Communications.
IEEE Commiunications Magazine, Vol. 35, Issue 12, Dec. (1997) 22-35

13. Kulpa, M., K., Johnson, K., A.: Interpreting the CMMI®: A Process Improvement
Approach. Auerbach Publications, A CRC Press Company (2003)

14. Leinonen, T-P.: SW Engineering under Tight Economic Constrains. Proceedings of 4th
Int’l Conf., PROFES 2002, Springer-Verlag, Berlin Heidelberg New York (2002)

15. McFeeley, B.: IDEALSM: A User’s Guide for Software Process Improvement. Pittsburgh,
Pennsylvania 15213: CMU/SEI-96-HB-001 (1996)

28 V. Taipale and J. Taramaa

16. Paulk, M., C., Weber, C., V., Curtis, B., Chrissis, M., B.: The Capability Maturity Model
for Software, Guidelines for Improving the Software Process. Addison-Wesley Publishing
Company (1994)

17. Ronkainen, J., Taramaa, J., Savuoja, A.: Characteristics of Process Improvement of
Hardware-Related SW. Proceedings of 4th Int’l Conf., PROFES 2002, Springer-Verlag,
Berlin Heidelberg New York (2002) 247-257

18. van Solingen, R., Berghout, E.: The Goal/Question/Metric Method: a practical guide for
quality improvement of software development. McGraw-Hill International (UK) Limited
(1999)

19. Thomas, M., McGarry, F.: Top-Down vs. Bottom-Up Process Improvement. IEEE
Software, Vol. 11, Issue 4, Jul. (1994) 12-13

20. Toskala, A.: Background and Standardisation of WCDMA. In: Holma, H., Toskala, A.
(eds.): WCDMA for UMTS, Radio Access For Third Generation Mobile Communication.
John Wiley & Sons Ltd (2000) 41-52

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 29–38, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Framework for Classification of Change Approaches
Based on a Comparison of Process Improvement Models

Otto Vinter

DELTA, IT Processes,
DK-2970 Hørsholm, Denmark

otv@delta.dk

Abstract. In this paper we describe a framework for classifying possible
change approaches according to the stage(s) in the life-cycle where the ap-
proach is most applicable. The life-cycle model of the framework is based on an
analysis of a number of existing life-cycle models for change from three differ-
ent domains. The focus of this framework is on the individual improvement
project and the palette of available approaches to its project manager.

1 Introduction

The Danish Talent@IT project (www.talent-it.dk) [18] studies change approaches
used by companies in order to define a model for successful improvements. We want
to find the applicability of these change approaches and how the applicability is re-
lated to a company’s ability to perform successful changes.

Studies by Somers & Nelson [15] and Kinnula [8] have shown that different
change approaches should be applied depending on where in the life-cycle the change
project is. E.g. Somers & Nelson [15] have shown that “management commitment” is
important in the beginning and conclusion of the life-cycle of the change project, and
of less importance in the middle part. And that “dedicated resources” are only impor-
tant during the actual development of the changes.

Consequently, when we should recommend a project manager which change ap-
proach to use, a classification according to the life-cycle stage of a change project
seems both relevant and promising. It is also evident that there are change approaches,
which extend across all of the life-cycle stages. Such issues are commonly referred to
as life-cycle independent or continuous issues. These issues are currently not included
in our framework for classification.

For a classification of change approaches by life-cycle stage we need a life-cycle
model which extends over the entire life of a change from the original inception of the
idea for the change until the stage where new ideas for change emerge based on the
experiences and learning obtained from the project.

Selecting an existing life-cycle model for our classification framework would of
course be the most natural. However, as we will show in this paper, some of the well-
known models focus primarily on the earlier stages of a change project, while others
put little emphasis on these and concentrate on the later stages. A combination of

30 O. Vinter

existing life-cycle models into one comprehensive life-cycle model would seem to
solve our problem.

Based on such a combined life-cycle model we will be able to classify all possible
change approaches by the stage(s) where they will be most useful for a manager of a
change project.

2 Life-Cycle Models for Change Projects

The life-cycle models we have studied and compared cover a number of change do-
mains all characterized by having IT as an important enabler. For further analysis we
have selected from each domain two life-cycle models which seem representative
(e.g. extensively documented and referred to by others). The change domains we have
selected life-cycle models from for our comparison are:

− Software Process Improvement (SPI) – section 3
− New Technology Implementation – section 4
− Business Process Reengineering (BPR) – section 5

All change models divide the execution of the project into a number of phases or
stages. The number of stages and the activities performed in each stage seem to vary
quite a bit. However, a closer look at the models shows an agreement on what should
take place during a change project. The differences are mainly in which stage it
should take place and what emphasis the model places on the issue. Our comparison
of the life-cycle stages of the models can be found in section 6.

Based on our comparison of life-cycles we have then constructed a combined
model (section 7) by extracting the most representative stages and distribute the ac-
tivities from the models on those stages.

We shall use this combined model as the framework for classification of change
approaches on the Talent@IT project.

Finally, by means of a few examples we shall demonstrate how the framework can
be applied (section 8). However, to fully populate this framework with known change
approaches from industry and literature remains part of our future work on the Tal-
ent@IT project.

3 Life-Cycle Models in “Software Process Improvement (SPI)”

Systematic efforts to improve software processes originated in 1986 when the Soft-
ware Engineering Institute at Carnegie Mellon University (SEI) was formed by the
US military with the purpose of creating a model to assess potential software system
suppliers.

The SPI domain contains many life-cycle models. A comprehensive study of life-
cycle models in this domain can be found in Kinnula [7]. Two of the most well-
known SPI models are closely connected to maturity assessment frameworks: CMM
[12] and SPICE [4]. The work on the Talent@IT project is heavily influenced by
these assessment frameworks. We have therefore decided to analyze the SPI models
related to CMM and SPICE:

 A Framework for Classification of Change Approaches 31

− IDEAL 1.0 [10]
− ISO 15504-7 (SPICE) [5]

IDEAL is the most well known model for SPI. The model originates from the Soft-
ware Engineering Institute (SEI). The model is the proposed model for how to per-
form improvements of software processes in the CMM assessment framework. The
model has been developed by SEI and later successfully applied on a number of ac-
tual industry cases.

IDEAL 1.0 [10] is the original and best documented version of the model. A num-
ber of not too detailed descriptions exist of an updated version 1.1 [13]. Apart from
calling the last phase “Learning” in stead of “Leveraging” there doesn’t seem to be
much change in either phases or their content.

ISO 15504-7 [5] is part of the international standardization effort based on the SPICE
assessment initiative [4] and is the proposed model for how to perform improvements
of software processes in this framework. It builds on and extends the IDEAL model.
However, as far as we know the model is a theoretical model and has not been tested
in actual industry cases.

4 Life-Cycle Models in “New IT Technology Implementation”

Implementation of new IT technology is a domain which is normally seen as closely
related to the SPI domain. However, the focus of change in this domain is not the
improvement of processes per se but to improve the competitiveness of a company
through implementation of new IT technology and accompanying processes.

There seems to be no common agreement on how to implement new IT technol-
ogy. The domain is typically characterized by the use of no model for the implemen-
tation. However, two prominent models exist and were therefore selected for our
analysis of models in this domain:

− INTRo [14]
− Cooper & Zmud [1]

INTRo [14] is the result of the continuing efforts of the Software Engineering Insti-
tute (SEI) in the SPI domain, which have lead to the definition of a model for imple-
mentation of new (IT) technology in a company. The model is directly focused on
implementation of (customized) standard software products (COTS). The acronym
INTRo stands for: IDEALSM-Based New Technology Rollout, which shows its close
connection to the SEI model for software process improvement.

SEI has made the model generally available via their home page
(www.sei.cmu.edu/intro/overview) and has created a “community of practice” around
its use, where companies can exchange their experiences with the model. Until now
the model has been tested by more than 50 organizations, primarily US-based.

Cooper & Zmud [1] have developed another well-known model for implementation
of IT solutions in an organization. The model is descriptive, based on a study of how
the implementation of (customized) standard IT solutions for the support of business
processes should take place in practice.

32 O. Vinter

They evaluated the model on the implementation of IT solutions for Material Re-
quirements Planning (MRP). Other evaluations of the model have been performed by
Somers & Nelson [15] [16] on the implementation of IT solutions for Enterprise Re-
source Planning (ERP).

5 Life-Cycle Models in “Business Process Reengineering (BPR)”

Business Process Reengineering (BPR) is the third change domain we have studied.
BPR is designed for comprehensive organizational changes aimed at improving the
competitiveness of a company, in which changed IT processes and technology im-
plementations are a supporting element.

The concept of BPR was initially coined by Hammer [3]. To him, improving an
organization’s processes cannot take place as a series of adjustments, only through a
complete redesign of the processes (revolution instead of evolution). He talks about
establishing a “clean slate”. This attitude has been adopted by subsequent authors in
the field. Davenport [2] e.g. states that you should design completely new processes
(process innovation) not only improve (reengineer) existing processes.

BPR has been successfully applied in a number of well-known cases. However, it
is also reported that the rate of failure of BPR projects is even higher than for SPI
projects (70% according to Malhotra [9]).

BPR is a domain characterized by an abundance of models. It seems as if every
consulting company has developed its own proprietary model. Furthermore the life-
cycles of the different models do not even seem to have a common basic structure.
There seems, however, to be two strands among BPR models on the market: one
which claims that BPR projects are only performed once in an organization, and one
which believes in repetitive cycles of improvement. Stoica et al. [17] give an over-
view of a number of publicly available BPR models.

The Talent@IT project believes in continuous improvement. Therefore both of the
models we have analyzed belong to the strand of BPR models which have life-cycles
that include a stage for continuous improvement. The BPR models we have analyzed
are two relatively recent ones, which according to the authors are based on a combina-
tion of earlier models:

− Muthu et al. [11]
− Kettinger & Teng [6]

Muthu et al. [11] have developed a BPR model combined from five well-known
BPR models. They do not, however, explain how their model is related to these other
models, and since the models have quite different focus it is unclear how they have
arrived at their model. The model itself, however, is very well documented in a de-
tailed set of IDEF diagrams. It is not clear whether the model has been evaluated in
practice by companies.

Kettinger & Teng [6] have developed one of the most recent models in the BPR
domain. The model is based on an analysis of 25 BPR models, both academic and
commercial. From these they have developed a combined life-cycle model. They have
subsequently checked the model through interviews in three companies that had com-

 A Framework for Classification of Change Approaches 33

pleted BPR projects. It is not clear to which extent the model has been evaluated in
practice by other companies.

6 Comparison of the Models’ Life-Cycle Stages

We have based our comparison of the above models on the available detailed activity
descriptions. We have aligned the different stages in order to achieve the best possible
match of the activities across the models. The comparison of the models’ life-cycle
stages can be found in Fig. 1.

In Fig. 1 we have added our proposed combined life-cycle model as the rightmost
column. This model will be described in more detail in section 7. The combined life-
cycle model will be used for our classification of change approaches.

The comparison of activities prescribed by the models has shown that the content
(e.g. activities) in some life-cycle stages seems to be very much the same, even
though the models use a different name for these stages. In these cases we have
aligned the stages of the models to the same row in Fig. 1.

We have also found that some models have reserved a separate stage for some ac-
tivities, where other models have included these activities in another stage. This
means that the models have a different number of stages even in cases where the
overall content may be more or less the same.

We have marked with an “*” in Fig. 1 those cases where one model has included
some of its activities in another stage, where another model has described these in a
separate stage. Thus a blank cell in the figure indicates that a model does not mention
the type of activity which one of the other models does.

The comparison of the models’ life-cycle dependent activities clearly shows that
improvements take place at two levels in an organization:

− strategic/organizational level
− execution/project level

The SPI models try to describe both of these levels in one common stage model, be-
cause they emphasize the importance of continuous improvements. The BPR and IT
technology implementation models on the other hand are aimed at one specific im-
provement action e.g. focus specifically on the execution/project level, even though
both of theses domains have great strategic and organizational implications.

Some models regard planning and staffing of the improvement project as so impor-
tant that they have devoted a separate stage for these (ISO 15504-7, INTRo, and Ket-
tinger & Teng), other models include this in another stage (IDEAL), and some models
don’t mention it specifically (Cooper & Zmud and Muthu et al.).

It is evident from Fig. 1 that the model by Cooper & Zmud is very detailed in the
later stages of an improvement project where the improved process and product is
deployed and used as part of the normal work of the organization. In this area the
BPR models seem especially weak (in particular the models we have not selected for
analysis). It seems as if BPR models are more interested in planning the implementa-
tion than executing the plans. The SPI models mention rollout and use, but do not
make an effort in describing how. They assume that this happens as a natural conse-
quence of the improvement project.

34 O. Vinter

Software Process
Improvement Models

New IT Technology
Implementation Models

Business Process
Reengineering Models

Combined
Model

IDEAL 1.0 ISO 15504-
7 INTRo Cooper &

Zmud
Muthu et
al.

Kettinger
& Teng Talent@IT

Initiating Examine * Initiation
Prepare for
Reengineering

Strategy
Linkage

Initiation

* Initiate
Project
Initiation &
Planning

Change
Planning

*

Diagnosing Assess
Problem /
Domain
Analysis

Map &
Analyze As-Is
Process

Process
Problems

Diagnosis

Establishing Analyze

Technology /
Based
Solution
Definition

Adoption
Design To-Be
Processes

Social &
Technical Re-
Design

Analysis

Acting Implement
Technology
Customization
& Testing

Adaptation
Implement
Reengineered
Processes

* Development

Whole-
Product
Design

* *

* Breakthrough * Evaluation

* * Rollout Acceptance *
Process Re-
Generation

Rollout

Leveraging Confirm *
Improve
Continuously

Continuous
Improvement

*

* Sustain Routinization Routinization

 Infusion Infusion

* Monitor * * * *

Fig. 1. Comparison of the Models’ Life-cycle Stages . A “*” means that similar activities are
included in another stage

Cooper & Zmud is the only model which devotes a separate stage (Infusion) for the
exploitation of the new technology in new ways following its implementation and use.
On the other hand, the Cooper & Zmud model seems very weak in the earlier stages
of an improvement project. E.g. the Diagnosis/Assessment/Analysis of the organiza-
tion’s current state before a new IT solution is implemented is confined to the selec-
tion (Adoption) of the proper IT product and vendor. Similarly the Cooper & Zmud
model sees no need for stages for evaluation or whether the goals have been achieved
or not.

INTRo is the only model that defines a separate stage for those issues that are con-
cerned with complementing the development and test activities of the IT technology,
e.g. the design of a comprehensive solution (Whole-Product Design). The stage
is executed in parallel with the adaptation of the technology, and it seems that
the other models see these activities simply as part of the normal development activi-
ties. Cooper & Zmud, however, mention these activities as part of their model’s
Adaptation stage. Seemingly the model by Kettinger & Teng mentions such activities
in their dual part stage: Social & Technical Re-Design. However, the activities here
are aimed at designing new processes and technologies – not about creating holism in
the design.

 A Framework for Classification of Change Approaches 35

The ISO 15504-7 model defines as the only model a separate stage (Monitor) for
measuring and monitoring an improvement project although the description clearly
states that this is an on-going activity across the stages and therefore should have been
described as a life-cycle independent (continuous) activity.

7 A Life-Cycle Model for Classification of Change Approaches

Based on the above comparison of the selected models, we propose the following
combined model as our framework for classification of change approaches.

In the combined model we have extracted all essential activities from the above mod-
els and put them into a combined model. By essential we mean activities which should
provoke and inspire us in our search for change approaches to populate the framework.

The life-cycle stages of this combined model can be found in Fig. 2, and also as the
rightmost column in Fig. 1 for direct comparison with the other models. The detailed
activities in each stage are too extensive to be included in this paper. They are de-
scribed in an internal Talent@IT document, which can be received through personal
contact with the author.

The combined model consists of eight stages. We have not described any repetitions
(continuation cycles) in the model in Fig. 2, but it is evident that individual improve-
ment initiatives should be part of a more extensive plan (strategy) for change in the
organization. Some of the stages in our combined model are clearly executed by dedi-
cated project teams, while the line organization clearly is responsible for other stages.

Currently, we have tried to limit our combined model to cover the execu-
tion/project level of a change initiative, because we see a clear need for helping and
supporting project managers choosing the best change approaches for his/her project.
A framework for classification of change approaches for the strategic/organizational
level is of course also important, but we see this as following a quite different life-
cycle more closely connected to the maturity of the organization. We have postponed
the elaboration of this framework until later in the Talent@IT project.

Our experience with studying successful improvements at the execution/project
level has shown us how important it is to secure that the new processes/products are
adopted and used on a normal basis by the organization. We have therefore chosen to
emphasize the activities in the later stages e.g. primarily adopting the later stages of
the model by Cooper & Zmud. However, in the earlier stages of a general change
initiative, where there is a need for more detailed diagnosis and development activi-
ties than for an implementation/customization initiative, we have chosen to follow the
stages of the other models.

We have also chosen to follow the INTRo model and describe piloting activities
and trial implementations in a separate stage (Evaluation). Other models (IDEAL and
Muthu et al.) mention the importance of these but include them as part of their regular
design and development activities. Our experience, however, is that these activities
normally involve persons and organizational units outside the project team, and some-
times even a change in responsibility for the work. This clearly represents a source for
problems in the execution of the change project. Consequently we see a need to define
special change approaches for this part of the work to secure the success of the im-
provement project.

36 O. Vinter

Initiation

Diagnosis

Analysis

Development

Evaluation

Rollout

Routinization

Infusion

Fig. 2. The Combined Life-cycle Model in Talent@IT

Conversely we have chosen not to separate planning and staffing of the improve-
ment project in a separate stage, which half of the models do (ISO 15504-7, INTRo,
and Kettinger & Teng). We find, along with the IDEAL model, that this should take
place in the same life-cycle stages where critical decisions about the future progress
of the project takes place (Initiation and Analysis respectively).

In general our choice of number of life-cycle stages and their contents has been
based on our wish to have as many distinct stages as possible, because it would make
the classification of change approaches easier. However, we do not want more stages
than actually needed for classification of change approaches. We have performed a
pilot classification of changes approaches used in practice, where we wanted to be
able to identify at least three different change approaches for each of our stages, be-
fore the stage was included in our model.

8 Application of the Framework for Classification of Change
Approaches

In Fig. 3 we give a few examples of how the proposed framework can be used to
classify change approaches according to the stage in the life-cycle where they are
applicable to the manager of an improvement project. Currently we are in the process
of expanding these examples into a comprehensive set of change approaches as one of
the results of the Talent@IT project.

In the classification of change approaches so far, we have found it difficult to find
names and descriptions for change approaches, which do not implicate that some

 A Framework for Classification of Change Approaches 37

approaches are right/better or wrong/poorer. Whether a change approach is right de-
pends completely on the nature of the organization, its current practices, and change
goals. There are no universally right or wrong change approaches.

9 Conclusion and Future Work

We have analyzed important life-cycle models from three different change domains
and combined their activities into a comprehensive framework which we shall use for
classification of change approaches. We have found that this framework should be
based on eight life-cycle stages.

Our next step will be to populate our combined model with known change ap-
proaches taken from actual industrial cases both from our own experience, the experi-
ence of the Talent@IT industrial partners, and actual cases found in the literature.

Other modeling work on the Talent@IT project studies which factors are critical to
the success of process improvement. This modeling work has lead to an assessment
model, which measures the ability of an organization to perform successful changes.
Based on this assessment of improvement abilities we hope to be able to use the popu-
lated classification framework to select which set of change approaches to recom-
mend the organization.

Life-cycle Stage Change
Approach Description

Initiation “Top-down” Dictated by management. Management scopes the
project without further discussion: This is what we want.

 “Bottom-up”
The need for the change is identified by employees/users
who want to drive the project: This is what we need.

Diagnosis Formal
assessment

BOOTSTRAP, CMM, CMMI, SPICE etc.

Problem
diagnosis

Study of problem reports, project records etc.

Analysis “To-be” analysis Definition of new processes

 Prevention
analysis

Evaluation of preventive actions

Development Tool-driven The tool determines the processes/product

 User-driven Solution developed by the users of the processes/product

Evaluation Piloting
A pilot project uses the processes/product to evaluate the
results

 Limited use Part of the organization or processes are put in use to
evaluate the results

Rollout Start-up
workshops

Workshops are held for selected persons/groups when
they should start using the processes/product

 Hot-line Expert assistance is provided during initial use

Routinization
Organizational
maintenance

Support and updates handled by a designated
organizational unit

 Outsourced
maintenance

Support and updates handled by an external partner e.g.
tool vendor

Infusion Experience
exchange

Learning new ways through use by others

 Organizational
learning

Collection, consolidation, and dissemination of
experience

Fig. 3. Examples of classification of change approaches

38 O. Vinter

References

1. Cooper, R. B., Zmud, R. W.: Information Technology Implementation Research: A Tech-
nological Diffusion Approach. Management Science, Vol. 36 No. 2, (1990), 123-139

2. Davenport, T. H.: Process Innovation: Re-engineering Work through Information Tech-
nology. Harvard Business School Press (1993)

3. Hammer M.: Reengineering Work: Don’t Automate, Obliterate. Harvard Business Review,
July-August (1990), 104-112

4. International Organization for Standardization: Information Technology – Software proc-
ess assessment – Part 1: Concepts and introductory guide. ISO/IEC TR 15504-1:1998(E)
(1998)

5. International Organization for Standardization: Information Technology – Software proc-
ess assessment – Part 7: Guide for use in process improvement. ISO/IEC TR 15504-
7:1998(E) (1998)

6. Kettinger, W. J., Teng, J. T .C.: Conducting Business Process Change: Recommendations
from a Study of 25 Leading Approaches. Process Think: Winning perspectives for Busi-
ness Change in the Information Age, Grover & Kettinger (eds.), Idea Group Publishing,
(2000)

7. Kinnula, A.: Software Process Engineering Systems: Models and Industry Cases. Oulu
University Press, (2001). URL: http://herkules.oulu.fi/isbn9514265084/

8. Kinnula, A., Kinnula, M.: Comparing SPI Activity Cycles to SPI Program Models in Mul-
tisite Environment. Proceedings of the PROFES’04 Conference, (2004)

9. Malhotra, Y.: Business Process Redesign: An Overview. IEEE Engineering Management
Review, Vol. 26 No. 3, (1998)

10. McFeely, R.: IDEAL: A User’s Guide for Software Process Improvement. CMU/SEI-96-
HB-001, (1996)

11. Muthu, S., Whitman, L., Cheragi, S. H.: Business Process Reengineering: A Consolidated
Methodology. Proceedings of the 4th Annual International Conference on Industrial Engi-
neering Theory, Applications and Practice (1999)

12. Paulk, M.C., Weber, C., Curtis, B., Chrissis, M.B.: The Capability Maturity Model: Guide-
lines for Improving the Software Process. Addison-Wesley, Reading, Mass (1995)

13. Software Engineering Institute: The IDEALSM Model: A Practical Guide for Improvement.
(1997), URL: http://www.sei.cmu.edu/ideal/ideal.bridge.html

14. Software Engineering Institute: Improving Technology Adaptation Using INTRo. (2003),
URL: http://www.sei.cmu.edu/intro/documents/users-guide.doc

15. Somers, T.M., Nelson, K.: The Impact of Critical Success Factors across the Stages of En-
terprise Resource Planning Implementations. Proceedings of the 34th Hawaii International
Conference on System Sciences, (2001)

16. Somers, T.M., Nelson, K.: A taxonomy of players and activities across the ERP project life
cycle. Information & Management 41, Elsevier, (2004)

17. Stoica M., Chawat, N., Shin, N.: An Investigation of the Methodologies of Business Proc-
ess Reengineering. Proceedings of the ISECON 2003 Conference, EDSIG (2003)

18. Vinter, O., Pries-Heje, J. (eds.): På vej mod at blive bedre til at blive bedre – Talent@IT
projektet. DELTA Report D-266, Hørsholm, Denmark, (2004)

A Qualitative Methodology for Tailoring SPE
Activities in Embedded Platform Development

Enrico Johansson1, Josef Nedstam1, Fredrik Wartenberg2, and Martin Höst1

1 Department of Communication Systems Lund University, Lund, Sweden
{enrico.johansson, josef.nedstam, martin.host}@telecom.lth.se

2 Ericsson AB, Göteborg, Sweden
fredrik.wartenberg@ericsson.com

Abstract. For real time embedded systems software performance is one
of the most important quality attributes. Controlling and predicting the
software performance in software is associated with a number of chal-
lenges. One of the challenges is to tailor the established and rather gen-
eral performance activities to the needs and available opportunities of
a specific organization. This study presents a qualitative methodology
for tailoring process activities to a specific organization. The proposed
methodology is used in case study performed in a large company that
develops embedded platforms. A number of suggestions for modification
and addition of process activities has been brought forward as a result
of the study. The result can further be summarized as SPE in embed-
ded platform development holds more opportunities for reuse, but also
requires more focus on external stakeholders, continual training and co-
ordination between projects.

1 Introduction

Software performance (i.e. response times, latency, throughput and workload) is
in focus during the development and evolution of a variety of product categories.
Examples of products are websites, network nodes, handheld devices, transaction
systems, etc [1, 5, 15, 17, 21].

A number of software process activities have been proposed to help an organi-
zation with software performance engineering (SPE). Typical performance issues
can include identifying performance bottlenecks, giving guidelines for functional
partitioning, and help selecting the best alternatives of a number of design pro-
posals. A normal challenge in introducing such process activities is to tailor the
established and rather general performance activities to the needs and opportu-
nities of the specific organization.

A product platform is per definition the basis of a variety of product versions.
Each product version should be constructed with a low effort, compared to de-
veloping the complete platform [4, 13]. An embedded [10] platform is a specific
type of product platform where a computer is built into the product platform
and is not seen by the user as being a computer. Most real-time systems [3] are
embedded products.

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 39–53, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

40 E. Johansson et al.

For embedded platforms, specific possibilities and needs are present and
should be considered in a process to support software performance work. Embed-
ded platforms often have high-priority requirements on low cost. When this is the
case, it is not possible to solve performance problems by, for example, increas-
ing the hardware performance. A very long lead-time to change the hardware
platform would be required, and it would also be expensive. During the devel-
opment of an embedded platform, consideration of both the software design and
hardware design must be taken. The design of the hardware architecture must
be dimensioned based on the needs of the software applications that in many
cases are yet to be implemented.

This study presents a qualitative methodology that can be used to tailor
process activities to a specific organization. In the methodology, a conceptual
framework containing software performance activities and software process ac-
tivities is mapped to the needs and possibilities of the development within a case
company. The case company develops real-time embedded platforms where soft-
ware performance is one of the most important quality attributes of the product.
The following research questions are investigated:

1. What restrictions or opportunities for a software performance engineering
process are imposed by an embedded platform?

2. Does the presented methodology provide valuable input when tailoring an
SPE process?

The paper is structured as follows. Section 2 introduces the qualitative
methodology used, in Section 3 the methodology is applied to a specific company
and in Section 4 the conclusions are presented.

2 Method

The research is carried out using a qualitative methodology [12, 20] designed to
reveal which behaviors and perceptions that drive the studied organization to-
wards a specific goal. This implies that the results of qualitative research are of
a descriptive nature. Qualitative research is particularly useful for determining
what is important to individuals and why it is important. In this context, qual-
itative research provides a process from which key research issues are identified
and questions formulated by discovering what really matters to the organizations
and why they matter.

The general method for qualitative studies [11, 14, 16] shown in Figure 1 is
modified for tailoring software process activities to a particular area and com-
pany. One modification is the addition of the actual tailoring activity where
new, changed and the deletion of activities can be proposed based on the pat-
tern found. Also, a conceptual framework is introduced to set up the dimensions
used during the pattern finding. The conceptual framework includes general pro-
cess activities, development phases and stakeholders. These three different parts
are initially populated by established and general knowledge of the particular
process that is to be tailored. Performing an archive analysis in the studied

A Qualitative Methodology for Tailoring SPE Activities 41

Data collection Data reduction Pattern finding

Creating dimensions

Critical review

Fig. 1. A general model for qualitative research presented by [11]

company is done to find additional stakeholders and development phases which
should be added to the initial conceptual framework.

2.1 Data Collection

Interviews were performed with 16 selected members of the personnel from the
case organization. The duration of each interview was approximately one hour.
During the interviews, open questions were asked, related to software perfor-
mance engineering. The subject’s own reflections on needed activities for soft-
ware performance were also collected. The sampling of subjects was based on
availability, knowledge and experience in a way that resulted in as broad a spec-
trum of knowledge as possible related to the work in the organization. The
context of the interview was the upgrade of an existing platform, by addition of
new functionality. The purpose of the interviews was two-fold: one purpose was
to find general needs in the process related to software performance activities;
another was to investigate the possibility of different activities to promote the
software performance work. The interviews were carried out as open ended in or-
der to catch the needs and possibilities of a software performance methodology,
without excluding issues that the researcher did not foresee. Furthermore, since
all participants are from the same company and project it is believed that the
discourse in the interviews is equal for all interviews. The following open-ended
questions have been used as a starting point for the interviews.

1. In what phases do development projects need performance information about
the system, or part of the system?

2. For what part of the system is it most important to get performance esti-
mates and how accurate do the estimates need to be?

2.2 Creating Dimension

There exist as described above an established process for software performance
engineering [21]. The workflow and individual activities are not described in this
paper due to limitations in space but an overview of the workflow is given in
Figure 2. These SPE activities are included in the conceptual framework in order
to capture knowledge about general SPE activities. The SPE process presented

42 E. Johansson et al.

Assess
performance

risk

Identify
critical use

cases

Select key
performance

scenarios

Establish
performance

objectives

Construct
performance

models

Add software
resource

requirements

Add
hardware
resource

requirements

Evaluate
performance

models

Revise
performance

objectives

Modify
product
concept

Verify and
validate

modedels

Modify/Create
scenarios

Fig. 2. The SPE workflow presented by [21]

by [21] is willingly made general, with no mapping of each activity in process
phases and stakeholders. For the conceptual framework to be useful in the re-
search context, it must be complemented with a list of potential stakeholders
and applicable development phases. From [4, 7, 8, 18, 23, 25] a number of suc-
cess factors for a process tailored for embedded platform development are given.
Stakeholders in terms of development units must at least contain hardware devel-
opment, software development, and product management. The phases performed
during the development and evolution of a software platform is not believed to
be specialized for that purpose. Therefore, rather general process phases related
to the evolution of a platform are chosen to be part of the conceptual framework.

A conceptual framework that includes process activities, stakeholders and
development phases involved is proposed as a starting point for the research.
The initial framework includes the following parts:

1. Process Activities: Those included in the SPE workflow in Figure 2.
2. Process Stakeholders: Hardware Development, Software Development,

Product Management.
3. Development Phases: System Feasibility Study, System Design, Module

Design, System Integration.

The applicability and refinement of the conceptual framework is carried out by
going through documentation produced for the development and upgrade of the
platform, with the objective to search for data related to software performance.
Such data is for example used to parameterize the performance models, compare
design alternatives, and when setting the requirements of the platform. The
intention is that the documentation should show the available information flow
used in the process of upgrading a platform.

A Qualitative Methodology for Tailoring SPE Activities 43

2.3 Data Reduction

The interview transcripts are reduced to a number keywords and comments as
a result of the the data reduction activity. A further coding is done be grouping
the keywords into process categories determined by SPICE [22]. The qualitative
data is grouped into five process categories defined in part 2 of the standard;
Customer-Supplier, Engineering, Project, Support and Organization.

2.4 Pattern Finding

The objective is to construct a visualization of the material from the data col-
lections relations the conceptual framework. The visualization is carried out
by relating the material collected in to a triplet consisting of an SPE activ-
ity, a project phase and a stakeholder. This activity is presented in two
matrixes.

2.5 Critical Reviews

During all parts of the qualitative methodology (i.e. data collection, data re-
duction, creating dimensions and pattern finding) critical reviews are made by
the researchers and employees at EMP. In the presented research the data col-
lection was performed and reviewed by three researchers, and contained both
a document analysis and open-ended interviews [11, 14, 16]. Data reduction and
critical review was performed on the transcript from the document analysis and
from the interviews. During the document analysis the researcher carried out
the data reduction and the reviewing. The interviewees performed the critical
review for the open-ended interviews; they read the transcripts in search for
erroneous citations and omissions. Both the pattern finding and tailoring was
done independently by two researchers and reviewed by a third researcher at
the case company. It has been an iterative processes, where both the activities
and the reviews where performed until all participants could agree upon the
result.

3 Case Study

The case study was performed at Ericsson Mobile Platforms AB (EMP). EMP
offers complete embedded platforms to manufacturers of mobile phones and other
wireless devices. The technology covers 3G [9] and older mobile phone systems.
Results from the different parts of the presented qualitative methodology is
presented in the following subsections. In the last subsection proposals for new
activities are presented.

3.1 Creating Dimensions

The activity resulted in an overview of currently available SPE data and a map-
ping of stakeholders and data to the different phases of the development process.
Two stakeholders that were not listed in the initial conceptual framework were

44 E. Johansson et al.

found to play a role in the SPE work. These two stakeholders, the project man-
agement and the customer or buyer of the platform, are in the further analysis
added to the stakeholder list in the conceptual framework.

3.2 Data Collection and Reduction

The following keywords and comments are the result after the data collection
and reduction of the interview material.

Customer-Supplier

1. Usage specification: Platform customers demand a performance specifica-
tion of the system and its services early in the process in order to develop
interfaces for the applications on top of the platform.

2. Prioritizing use-cases: Late requirement changes can be solved by a product
management organization by prioritizing the use-cases that are the basis
for the requirements specifications. Such use-case analysis gives information
of which parallel use cases are possible, providing a more complete picture
of the system requirements. In addition, room for performance flexibility
must be included in the use-case analysis. The flexibility is set in terms of
the maximum execution times and response times that can be tolerated by
the use- cases. In addition, the different variation of the use case should be
included; as for example, what different multimedia codecs are needed. In
this way, developers can focus on prioritized requirements, and it is easier to
remove functionality that overruns the performance budget.

3. Rough performance indications: Product management needs to get a feeling
for what is possible or not, in terms of parallel use cases and new function-
ality. Indications are required to understand the scope of the performance
requirements of a new product portfolio. Early performance estimations can
be used as such indicators. There is in this case not a strong demand of ac-
curacy on the performance estimations; even rough performance estimations
are acceptable for this purpose. In addition, in critical changes regarding
available processing power or memory there must be an immediate perfor-
mance feedback to performance stakeholders. The feedback might initially
be rough indications, which can be used for decisions on whether or not
perform a more thorough impact analysis.

Engineering

4. Feedback: There is a need to give feedback on the estimation from the anal-
ysis phase. This can be done through performance measurements in the sub-
sequent phases. Making updates to documents that contain such estimates
risks taking significant lead-time, which to some degree hinders continuous
updates of estimates and metrics. The solution is to see the estimates as
changing over time and not ”a fixed truth”, and validation of the estimates
is necessary to promote organizational learning.

A Qualitative Methodology for Tailoring SPE Activities 45

5. Static worst-case estimations: Using static worst-case memory estimation
can be satisfactory when analyzing sequential tasks. The demands of se-
quential tasks can often be considered linearly, which is however not true
when several processes are running at the same time, where the worst-case
scenario is rare and order of magnitudes more resource-consuming than ordi-
nary operation. It might therefore be hard to interpret the result in parallel,
non-deterministic processing environment.

6. Define performance metric: There is generally a need for common defini-
tion and understanding of software performance metrics, as in the case
of instructions-per-second versus cycles-per-second metrics. Such metrics
should be defined with the customers’ and users’ perception of performance
in mind.

7. Hardware requirements: The hardware developing unit needs to know the
performance requirements in terms of memory sizes and processing power
early enough to be able to deliver hardware in time for internal integration of
the platform. These prerequisites have intricate implications on estimates,
metrics collection, and any performance prediction models that are to be
introduced into an organization.

8. Hardware/software partitioning: The hardware project needs requirements
on CPU and memory load and possible hardware accelerators. The require-
ments on hardware accelerators stems from the hardware and software trade-
offs made. All these requirements are needed before the software project
reaches the implementation part.

9. Measurements: When a project reaches the design and implementation phase,
it becomes possible to make measurements on the actual performance and
validate the performance model. In this phase the performance can be tracked
on module level and be compared with the predictions of the model. The
system performance due to interaction between functionality originating in
different sub-projects will be validated in the integration phase.

10. Algorithms: The performance analysis of new functionality can be done on
algorithm level with regards to CPU processing performance requirements,
and static worst-case memory demands can be estimated. There is however,
a big step from algorithm-level estimates of new functionality, to the system-
level metrics collected from previous platforms. The interviewees therefore
sought for models that could use performance estimates of the hardware and
hardware related software, and produce estimates of the dynamic system
behavior. The modules that are performance bottlenecks are often commonly
known, and they should set the level of granularity in the model (i.e. the
model should use the same granularity).

11. Interaction between software processes: It is difficult to intuitively make
software performance estimates of software that interacts and is dependent of
the scheduling and synchronization of other software real-time processes. One
of the reasons is because of its many possible states and non-deterministic
use-cases.

46 E. Johansson et al.

12. Validated: In order to make a model both useful and trustworthy, the result
must be validated when the project reaches implementation.

13. Forecast and outcome: If the software needs in terms of memory size and
CPU are greater than the estimates, the specified functionality will not fit
into the platform. On the other hand, if the outcome is less than the es-
timates, the platform will be more expensive than necessary, in terms of
hardware costs. The performance estimates therefore need to have a high
level of accuracy since they are related to both the specifications and to the
outcome.

14. Accuracy needed: There is not one value defining the needed accuracy of
the estimates for each different phase. What can be stated is that the need
for accuracy is increased for each phase the nearer the project is the system
integration. However, when deciding the requirements of hardware, the soft-
ware development units should reach an optimistic accuracy of 10-30% in
their performance estimates in the pre-study phase.

15. Optimization: Most software in embedded platforms is optimized for the
specific hardware it is running on, which means that even hardware en-
hancements might degrade performance if new optimizations are not done.
To move functionality from one processor type to another requires further
optimizations. It is also dangerous to take performance metrics from a pre-
vious product for granted, as these implementations can often be optimized
further.

16. Software architecture: Technological solutions to performance issues do not
only involve hardware improvements. The software architecture also has im-
pact on performance. An architectural change to simplify performance esti-
mation can for example be to limit the number of modules and simultaneous
processes considered.

17. Ability to understand: In order to make a model both useful and trustworthy,
the assumptions behind the model must be visible.

Project

18. Knowledge and education: Software developers need to know about the hard-
ware they are running on, understand performance aspects, and understand
the different types of memory that are available. They also need to know
how the compilers and operating systems treat the code they write. There is
also a difference between a simulated environment and the actual hardware;
things that work in the simulator might not work on hardware. Apart from
training, an organization should give credit to expert developers in order to
promote performance-related development competency.

19. Iterative platform development: An iterative development process can be
used to get hold of early systems performance estimates. After each itera-
tion the implemented software system can be measured. On the other hand,
there are also problems related to such a process, at least when it comes
to iterative specifications. Sometimes not all of the specified functionality
fits in the performance constraints, so the performance requirements on the

A Qualitative Methodology for Tailoring SPE Activities 47

software often have to be renegotiated anyhow towards the later stages of
projects.

20. Hardware/Software co-design: In a platform development scenario, hard-
ware developers are typically ahead of software developers. A characteristic
overlap is created between projects, where hardware developers start a new
project before software developers have finalized theirs, making it not so
obvious how to transfer resources and experiences from project to project.
Software developers therefore can have a shortage of time to carry out per-
formance estimate analysis in the beginning of projects, while the hardware
developers do not have the complete set of prerequisites at hand, when start-
ing their analysis and specification activities.

Support. None of the keywords could be grouped in this category.

Organization

21. Project focused organizations: In order to reuse metrics between two devel-
opment projects coordination is needed from the management in charge of
the overall product and development quality in the company. A character-
istic scenario where this prerequisite is not fulfilled is in the project-focused
organization (where the project controls all resources). In such cases, the
return on investment of the methodology used must be visible in the actual
project budget. Therefore, it is difficult to make improvements in methods
and processes that overlap two projects. An example is the collection of data
in previously developed projects to be used in future projects.

3.3 Pattern Finding

Each of the keywords (1-21) was during the pattering finding mapped to the
conceptual framework. Table 1 visualizes the keywords in relation to SPE ac-
tivities and project phases. Each row in the matrix represents SPE activities
and for keywords that do not fit into an activity there is an activity depicted
as ”Other activity”. In cases where the keywords only partially adheres to the
activity the keyword is denoted with a star (*). The development phases have
been coded as following: SFS (System Feasibility Study), SD (System Design),
MDI (Module Design and Implementation, SI (System Integration). Table 2
visualizes the SPE activities relation to the stakeholders. In order to further
clarify the stakeholder’s role an additional coding is used, besides the one to
keywords. Each stakeholder is coded as an initiator of an activity, executor of
an activity or a receiver of the result from an activity. For each pair of SPE
activity and stakeholder more than one of the codes I (Initiator), E (Executer)
or R (Receiver) can be appropriate. The following codes has been used to denote
the development phases: SwD (Software Development), HwD (Hardware Devel-
opment), PrM (Product Management), ProjM (Project Management and UBPI
(Users and Buyer of the Platform).

48 E. Johansson et al.

Table 1. Keywords mapped contra SPE process activities

SFS SD MDI SI

Assess performance risk 2, 3

Identify critical use cases 2, 3

Select key performance scenarios 2, 3

Establish performance objectives 7

Construct performance model(s) 1, 5, 6, 1, 5, 6, 1, 5, 6,

10, 11 10, 11 10, 11

Add software resource requirements 6, 16

Add computer resource requirements 1, 8, 7

Evaluate performance model(s) 17 17 17

Modify and Create scenarios 2 2 2

Modify product concept 7, 8, 15* 7, 8, 15* 7 , 8, 13,

15*

Revise performance objectives

Verify and validate models 4, 9, 14 4, 9, 14 4, 9, 14 4, 9, 12,

14

Other activity 18, 19, 18, 19, 13, 18, 19, 18, 19,

20, 21 20, 21 20, 21 20, 21

3.4 Proposal for New Activities

From table 1 a number of observations can be made. For example, an observation
is that there is a number of new activities that are mapped to keywords that
cannot be related to any of the SPE activities set up by the conceptual frame-
work, and are placed in the ”Other activity” row. Another observation that can
be made is which activities and project phases that are mapped to one or more
keywords are candidates, in which phase most of the activities are performed.

1. The row ’Other activity’ contains keywords 18, 19, 20, 21 for all phases and
13 for the ’Module Design and Implementation’ phase. Since the keywords
do not fit into the conceptual framework and are present in all phases, it
implies that they should generate new SPE activities.

2. Most of the activities are involved in the early phases.
3. Keywords in the row ’Construct performance model(s)’ and ’Evaluate per-

formance model(s)’ is in focus in three phases.
4. The row ’Verify and validate models’ contains a number of keywords (4, 9, 14)

that are present during all phases.

A Qualitative Methodology for Tailoring SPE Activities 49

Table 2. SPE process activities contra stakeholders

SwD HwD PrM ProjM UBPl

Assess performance risk E E R I I

Identify critical use cases E,R E,R I I

Select key performance scenarios E,R E,R I I

Establish performance objectives E E I

Construct performance model(s) I,E,R

Add software resource requirements E,R R I

Add hardware resource requirements R E,R I

Evaluate performance model(s) I,E,R

Modify and Create scenarios R R I,E I

Modify product concept E,R I I

Revise performance objectives E,R E,R I

Verify and validate models I,E,R

Similarly, a number of observations can be made from table 2. In this case,
an observation that can be made is which role the stakeholders play in different
activities. The activities proposed should be updated to conform to responsibility
and mandate given to each stakeholder compared to what is needed to bring the
activity into accomplishment.

5. In the column HwD (Hardware Development) there are nearly as much ex-
ecution of activities (coded as Executor) as in the SwD (Software Develop-
ment) column. This implies that the department that develops the hardware
part of the platform is significantly involved in the SPE work.

6. In the column UBPI (User and Buyer) there are many initiations of activities
(coded as Initiator). This implies that buyers and users of the platform
initiate performance activities.

The general observation is that the collected data is in line with the general and
established SPE literature. There are nevertheless a few observations that can
be made for the specialized case of an SPE approach of the development and
evolution of an embedded software platform. When using a platform develop-
ment there is the possibility to learn through the maintenance and evolution
of the different versions (observation 3). This is not too different from the ob-
jectives of the experience factory [2]. In the case presented, the motivation and
the possibility are given by the nature of platform development, where new ver-
sions are constructed from the same platform. Therefore, the same performance
model can be reused and further validated and evaluated through every version.
However, when the platform itself is updated by changing hardware the reuse

50 E. Johansson et al.

is less straightforward than when updates are made to build variations of the
platforms (i.e. versions of the platform). Another observation is that the vali-
dation and evaluation of the model is done throughout the whole evolution and
maintenance cycle (observation 4). There are two reasons motivating this obser-
vation, one is that an ongoing validation and verification will give the project
staff enough confidence in the result of the models. The second reason is of
course that the model itself can be improved. A further observation is that the
evaluation and validation of the model is very much coupled to each other, be-
cause the same model is reused in the analysis phase of the next version of the
product or platform. Observation 6 shows that the performance activities largely
have external driving forces, from buyers (consumers) or project managers. The
reason could be that when developing many versions there is a continuous discus-
sion of the performance requirements of the platform. In addition, buyers of the
platforms are concerned with the performance of the platform since they need
to build applications on top of the platforms. They therefore need to set their
own performance objectives, scenarios and requirements. They perform the same
activities as mentioned in the conceptual framework, regarding the embedded
platform as the hardware resource. In addition, project managers and buyers do
not demand a high level of accuracy concerning the performance estimations.
Even accuracy levels that are usable only as indications are valuable for the
platform development. The value is present as long as the estimates can be used
for strategic decisions about the project or the product.

4 Conclusions

The organization under study carries out several large and related projects,
while the SPE workflow in Figure 2 is focused on single projects. Mapping the
two together therefore implies that the first three activities of Figure 2 are car-
ried out before the projects are initiated. They are carried out as a part of
long-term product management, and in feasibility studies ahead of projects.
The fourth activity, establish performance objectives, is then used to medi-
ate long-term objectives with project objectives when a project is initiated.
It is also used to concretize performance objectives defined in the previous
phases, and therefore involves iterations where customers, product manage-
ment and project management define specific performance criteria for a certain
project.

The keywords that are not possible to map to the conceptual framework
(observation 1) are candidates to elicit new activities needed for platform
development. A number of observations can be made concerning these key-
words (13, 18, 19, 20, 21). When dealing with embedded platforms and hard-
ware/software co-design with tight real-time constraints it is important to con-
tinuously train the software personnel about the performance implication of new
hardware and hardware related software. Competence in this field will also facil-
itate the performance modeling (keyword 18 and observation 2) when a change
of hardware in the platform is performed.

A Qualitative Methodology for Tailoring SPE Activities 51

Another observation is that in hardware/software co-design there is a need
for performance estimates in practice before the general feasibility study phase
is started within the software project (keywords, 19, 20, 21 and observation 2).
Observation 5 further emphasizes this. The reason why all these activities fall
out of the conceptual framework is that the SPE workflow used in the framework
does not take into consideration aspects of the organization or the product de-
velopment process used. An SPE workflow cannot be introduced and used with
only the activities proposed. There are other activities found in this study that
must be included in an overall SPE effort. Promoting knowledge and education
about SPE aspects of the system developed is one of the activities that should
be added. However, it is not enough to include a training course at the start
of the project, the activity must be ongoing and bridge over different product
lifecycles and projects. A solution could be, for this kind of product, to have a
specific organization to carry out performance modeling and estimations that is
not tied to the different projects. The final observation concerns the optimiza-
tion (keyword 15), which is similar to modifying the product concept, however in
this case the concept is not changed but optimized for the original concept. The
initial conceptual framework seems to include many of the needs required from
an organization that develops software for an embedded platform. However the
analysis of the collected data shows that new activities must be added, together
with new stakeholders compared to the ones present in the initial conceptual
framework.

The goal of qualitative research is looking for principles and understanding
behind actions performed under specific circumstances. The same goals appear
when wanting to improve by tailoring it to the need and possibilities of a specific
company. Therefore it was rather appealing to marry a qualitative methodology
with a software process improvement initiative. Software performance is still a
troublesome quality attribute to control and predict in the software industry
despite of many suggested approaches. This is especially true for software prod-
ucts with limited hardware resources. An example of a software product with
limited resource is an embedded product platform. Therefore the case study is
performed on such a product.

The result of this paper presents an updated qualitative methodology for
software process tailoring and contributes also to the understanding of software
performance engineering during the maintenance and evolution of an embedded
software platform. The company considered the results as both valuable and
relevant, showing that the methodology presented gives highly valuable input
for tailoring a SPE processes. A number of observation and suggestions related
to an established and general SPE process has been brought forward. They can
be summarized as that SPE in embedded platform development holds more op-
portunities for reuse, but also requires more focus on external stakeholders and
a continual training and SPE effort rather than confined to individual projects,
as suggested by current SPE models. These are believed to be some of the key
success factors of and SPE process for the development and evolution of an
embedded software platform. It is also believed that it is possible to compile a

52 E. Johansson et al.

tailored workflow based in the explanations and information about the interac-
tion between development phases, stakeholders and process activities.

To strengthen the generalizability of this the results, further studies on other
companies have to be made. It is e.g. likely that different companies will have
different roles responsible for performance issues.

Acknowledgment

The authors would like to thank all the participants from Ericsson Mobile Plat-
form AB. This work was partly funded by the Swedish Agency for Innovation
Systems, project number P23918-2A.

References

1. S. Balsamo, P. Inverardi, C. Mangano, ”An approach to performance evaluation of
software architectures”, Proceedings of the 1st International Workshop on Software
and performance (WOSP), Santa Fe, New Mexico, United States, 1998.

2. V. Basili, G. Caldiera, F. McGarry, R. Pajerski, G. Page, S. Waligora, ”The Soft-
ware Engineering Laboratory-an Operational Software Experience Factory”, Pro-
ceedings of the 14th International Conference on Software Engineering, Melbourne,
Australia, 1992.

3. A. Burns, A. Wellings, Real-Time Systems and Programming Languages. Addison-
Wesley, 3rd edition, 2001.

4. P. Clements, L. Northrop, Software Product Lines: Practices and Patterns,
Addison-Wesley, 2001.

5. G. De Micheli, R. Gupta, ”Hardware/software co-design”, Proceeding of IEEE, Vol.
85, No. 3, pp. 349-365, March 1997.

6. E. Gelenbe (editor), System Performance Evaluation: Methodologies and Applica-
tions, CRC Press, 1999.

7. M.Höst, E. Johansson, ”Performance Prediction Based on Knowledge of Prior
Product Versions”, Accepted at 9th European Conference on Software Mainte-
nance and Reengineering (CMSR), Manchester, UK, 2005.

8. E. Johansson, F.Wartenberg, ”Proposal and Evaluation for Organising and Using
Available Data for Software Performance Estimations in Embedded Platform De-
velopment”, 10th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), Toronto, Canada, 2004.

9. J. Korhonen, Introduction to 3G Mobile Communications, Artech House Mobile
Communications Series, 2nd edition, 2003.

10. J. Labrosse, MicroC/OS-II: the Real-Time Kernel, CMP Books, 2nd edition, 2002.
11. A. Lantz, Intervjuteknik Interview method in Swedish, Studentlitteratur, Lund,

1993.
12. M. Polo, M. Piattini, F. Ruiz, Using a qualitative research method for building

a software maintenance methodology, Software: Practice and Experience, Vol. 32,
No. 13, pp. 1239-1260, 2002.

13. M.H. Meyer, A.P. Lehnerd, The Power of Product Platforms: Building Value
and Cost Leadership, Free Press, New York, 1997.

14. M. Miles, A. Huberman, Qualitative Data Analysis, Sage, California, 1994.

A Qualitative Methodology for Tailoring SPE Activities 53

15. P.J.B, King, Computer and Communication System Performance Modelling,
Prentice-Hall, Hemel Hempstead, 1990.

16. C. Robson, Real World Research: a resource for Social Scientists and Practitioner
Researchers, Blackwell, 1993.

17. J.A. Rolia, K.C. Sevcik, ”The Method of Layers”, IEEE Transactions on Software
Engineering, Vol. 21, No. 8, pp. 689-700, 1995.

18. J.T. Russell, M.F. Jacome, ”Architecture-level performance evaluation of
component-based embedded systems”, 40th conference on Design automation
(DAC), Anaheim, CA, USA, 2003.

19. A. Schmietendorf, E. Dimitrov, R. R. Dumke, ”An approach to performance evalu-
ation of software architectures”, Proceedings of the 1st International Workshop on
Software and performance (WOSP), Santa Fe, New Mexico, United States, 1998.

20. C.B. Seaman, ”Qualitative methods in empirical studies of software engineering”,
IEEE Transactions on Software Engineering, Vol. 25, No. 4, pp. 557-572, 1999.

21. C. Smith, L.G. Williams, Performance Solutions, Addison Wesley, 2002.
22. ISO/IEC TR 15504:1998(E), ”Information Technology - Software Process Assess-

ment”, Parts 1-9, Type 2 Technical Report, 1998.
23. K. Suzuki, A. Sangiovanni-Vincentelli, ”Efficient software performance estimation

methods for hardware/software codesign”, 33rd annual conference on Design au-
tomation (DAC), Las Vegas, Nevada, US, 1996.

24. E. Zimran, D. Butchart, ”Performance Engineering Throughout the Product Life
Cycle”, Proceedings of Computers in Design, Manufacturing, and Production
(CompEuro), pp. 344-349, 1993.

25. W.H. Wolf, Hardware-Software Co-Design of Embedded Systems, Proceedings of
the IEEE, Vol. 82, No. 7, pp 967-989, July 1994.

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 54 – 68, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Empirical Study on Off-the-Shelf Component Usage
in Industrial Projects

Jingyue Li1, Reidar Conradi1,2, Odd Petter N. Slyngstad1, Christian Bunse3,
Umair Khan3, Marco Torchiano4, and Maurizio Morisio4

1 Department of Computer and Information Science,
Norwegian University of Science and Technology (NTNU),

NO-7491 Trondheim, Norway
{jingyue, conradi, oslyngst}@idi.ntnu.no

2 Simula Research Laboratory, P.O.BOX 134, NO-1325 Lysaker, Norway
3 Fraunhofer IESE, Sauerwiesen 6, D- 67661 Kaiserslautern, Germany
{Christian.Bunse, khan}@iese.fraunhofer.de

4 Dip. Automatica e Informatica, Politecnico di Torino,
Corso Duca degli Abruzzi, 24, I-10129 Torino, Italy

{maurizio.morisio, marco.torchiano}@polito.it

Abstract. Using OTS (Off-The-Shelf) components in software projects has be-
come increasing popular in the IT industry. After project managers opt for OTS
components, they can decide to use COTS (Commercial-Off-The-Shelf) compo-
nents or OSS (Open Source Software) components instead of building these
themselves. This paper describes an empirical study on why project decision-
makers use COTS components instead of OSS components, or vice versa. The
study was performed in form of an international survey on motivation and risks of
using OTS components, conducted in Norway, Italy and Germany. We have cur-
rently gathered data on 71 projects using only COTS components and 39 projects
using only OSS components, and 5 using both COTS and OSS components. Re-
sults show that both COTS and OSS components were used in small, medium and
large software houses and IT consulting companies. The overall software system
also covers several application domains. Both COTS and OSS were expected to
contribute to shorter time-to-market, less development effort and the application
of newest technology. However, COTS users believe that COTS component
should have good quality, technical support, and will follow the market trend.
OSS users care more about the free ownership and openness of the source code.
Projects using COTS components had more difficulties in estimating selection ef-
fort, following customer requirement changes, and controlling the component’s
negative effect on system security. On the other hand, OSS user had more diffi-
culties in getting the support reputation of OSS component providers.

1 Introduction

Due to market requirements concerning cost and time-to-market, software developers
are searching for new technologies to improve their projects with respect to these
qualities. Software components promise to have a positive impact on software reuse,
resulting in time and cost efficient development. Therefore, software developers are

 An Empirical Study on Off-the-Shelf Component Usage in Industrial Projects 55

using an increasing amount of COTS (Commercial-Off-The-Shelf) and OSS (Open
Source Software) components in their projects. Although both COTS and OSS com-
ponent are claimed to save development effort, they are still very different. COTS
components are owned by commercial vendors, and their users normally do not have
access to the source code of these components. On the other hand, OSS components
are provided by open source communities. Thus, they offer full control on the source
code [15].

When planning a new software project, project decision makers need to decide
whether they should buy a COTS component, or acquire an OSS component if it was
decided to use OTS components. To make such a decision, it is important to investi-
gate previous projects using such components and summarize the relevant decision-
making processes and project results.

The study presented in this paper has investigated 71 finished software projects us-
ing only COTS components and 39 projects using only OSS components. It compared
the COTS components with the OSS components in three dimensions: (1) Who is us-
ing OTS components, (2) Why project members decide to use them, and (3) What
were the results of using them.

The remainder of this paper is organized as follows: Section two presents some
previous studies on benefits and risks of using OTS components. Section three de-
scribes the research design applied. Section four presents the collected data, whereby
the discussion of results is given in section five. Finally, conclusions and future re-
search are presented in section six.

2 Previous Studies on OTS Component

COTS components promise faster time-to-market and increased productivity of soft-
ware projects [1]. At the same time, COTS software introduces many risks, such as
unknown quality of the COTS components, which can be harmful for the final prod-
uct, or economic instability of the COTS vendor who may terminate maintenance sup-
port [2]. Furthermore, the use of OSS in industrial products is growing rapidly. The
basic idea behind open source is very simple: When programmers can read, redis-
tribute, and modify the source code for a piece of software, the software evolves.
People improve it, people adapt it, and people fix bugs. And this can happen at a
speed that, if one is used to the slow pace of conventional software development,
seems astonishing [15].

OSS has many proposed advantages [3]: OSS is usually freely available for public
download. The collaborative, parallel efforts of globally distributed developers allow
much OSS to be developed more quickly than conventional software. Many OSS
products are recognized for high reliability, efficiency, and robustness. Despite its
wide appeal, OSS software faces a number of serious challenges and constraints. The
popularity of OSS increases the risk that so-called net-negative-producing program-
mers will become involved. Many software tasks, such as documentation, testing, and
field support are lacking in OSS projects. If developers produce or sell a product,
which integrates OSS as source code, they may need the licensor’s permission. Oth-
erwise, the licensor might claim for damages or force them to end the product’s fur-
ther development, delivery and sale [4]. Furthermore, many common perceptions
about OSS need further empirical clarification. For example, there is still no empirical

56 J. Li et al.

evidence that OSS fosters faster system growth [10]. There is also no strong evidence
that OSS is more modular than closed source software [10].

Some previous studies have investigated the process of using COTS components in
software development, such as COTS component selection [5] and COTS-based de-
velopment processes [6]. Other studies have investigated how to use OSS software in
product development [4], such as mission-critical development [11] and information
system infrastructure development [12]. Although these studies present recommenda-
tions on how to integrate COTS or OSS component into the final product, few studies
have investigated a higher level question: Why should I use COTS component instead
of OSS components, or vice versa?

3 Research Design

This study is the second phase of a systematic study on process improvement and risk
management in OTS based development. We started from a pre-study focused on
COTS components, which was performed in the form of structured interviews of 16
COTS projects in Norwegian IT companies [9]. This study presented in this paper ex-
tended the pre-study in two dimensions. First, it included OSS components because
they represent an alternative to COTS components. Second, this study included sam-
ples from Norway, Italy and Germany. In addition, the sample was selected randomly
instead of on convenience as in the pre-study.

3.1 Research Questions

To investigate the motivation of using OTS components, we first want to know who is
using OTS components. Therefore, the first research question is:

RQ1: What are the commonalities and differences in profiles on projects using
COTS components vs. those using OSS components?

After we know who is using OTS components, we want to know why they decided
to use OTS components. Thus, the second research question is:

RQ2: What are the commonalities and differences in the motivation of projects us-
ing COTS components vs. those using OSS components?

After we know who and why, we need to know the possible problems of using
OTS components. We intended to investigate whether the current motivation and ex-
pectations of using OTS components are proper or not. Therefore, the third research
question is:

RQ3: What are the commonalities and differences in possible risks (problems) of
projects using COTS components vs. those using OSS components?

3.2 Research Method

In this study, we used a questionnaire to collect data, organized in six sections:

1. Background questions to collect information on the company, and respon-
dents.

2. Background information concerning projects, such as development environ-
ment, application domain, and non-functional requirements emphasis.

 An Empirical Study on Off-the-Shelf Component Usage in Industrial Projects 57

3. The motivation of using OTS components.
4. The specific motivation of using COTS or OSS components.
5. Information relevant to process improvement and risk management in OTS

component-based development.
6. Detailed information about one specific OTS component used in the actual

project.

3.3 Concepts Used in This Study

Concepts used in this study are listed in the first page of the questionnaire, for
example:

− Component: Software components are program units of independent produc-
tion, acquisition, and deployment that can be composed into a functioning sys-
tem. We limit ourselves to components that have been explicitly decided either
to be built from scratch or to be acquired externally as an OTS-component. That
is, to components that are not shipped with the operating system, not provided
by the development environment, and not included in any pre-existing platform.

− OTS component is provided (by a so-called provider) from a COTS vendor or
the OSS community. The components may come with certain obligations, e.g.
payment or licensing terms. An OTS component is not controllable, in terms of
provided features and their evolution and is mainly used as closed source, i.e. no
source code is usually modified.

3.4 Data Collection

Sample Selection. The unit of this study is a completed software development
project. The projects were selected based on two criteria:

− The project should use one or more OTS components
− The project should be a finished project, possibly with maintenance, and possibly

with several releases.
We used random selection to gather representative samples in three European

countries:
− In Norway, we gathered a company list from the Norwegian Census Bureau (SSB)

[7]. We included mostly companies which were registered as IT companies. Based
on the number of employees, we selected the 115 largest IT companies (100 big-
gest IT companies plus 15 IT departments in the largest 3 companies in 5 other
sectors), 150 medium-sized software companies (20-99 employees), and 100
small-sized companies (5-19 employees) as the original contacting list.

− In Italy, we first got 43580 software companies from the yellow pages in the phone
book. We then randomly selected companies from these. For these randomly se-
lected companies, we read their web-site to ensure they are software companies or
not. 196 companies were finally clarified as software companies, and were used as
the original contact list.

− In Germany, we selected companies from a list coming from an organization com-
paring to the Norwegian Census Bureau. We then used the existing IESE customer
database to get contact information of relevant IT/Software companies, in line with
the Norwegian selection.

58 J. Li et al.

Data collection procedure. The final questionnaire was first designed and pre-tested
in English. It was then translated into the native language of the actual country and
published on the SESE web tool at Simula Research Lab [8]. Possible respondents
were first contacted by telephone. If they had suitable OTS-based projects and would
like to join our study, a username and password was sent to them, so that they could
log into the web tool to fill in the questionnaire (they can also use a paper version).
The average time to fill in the questionnaire is between 20 to 30 minutes.

3.5 Data Analysis

According to the focus of the different research questions, we used different data
analysis methods:

− For RQ1, we analyzed the distribution of the variables.
− For RQ2, we want to see both the commonalities and differences of variables. To

compare differences, we first used box-plots to show the median and distribution
of the variable. We then compared the mean difference of variables. S.S. Stevens
classified “permissible” statistical procedures [18] according to four main scales:
nominal, ordinal, interval and ratio scale [19]. For the ordinal scales, the permissi-
ble statistics included median, percentiles, and ordinal correlations. Mean and
standard deviations are allowed for interval and ratio scales. In our study, although
the scale of our data is Likert scales, we also compared the mean value of different
variable to see if they are significant different. A number of reasons account for
this analysis: First, Spector [20] showed that people tend to treat categories in
Likert scales as equidistant, regardless of the specific categories employed. Sec-
ond, using parametric tests for scales that are not strictly interval does not lead, ex-
cept in extreme cases, to wrong statistical decisions [21]. Third, D.J.Hand con-
cluded that restrictions on statistical operations arising from scale type are more
important in model fitting and hypothesis testing contexts that in model generation
or hypothesis generation contexts. In the latter, in principle, at least, anything is
legitimate in the initial search for potentially interesting relationship [22]. Al-
though we used a t-test to compare the mean difference, the intention of this study
is still model generation and hypothesis generation. We therefore believe that it is
permissible to treat Likert-scales items as leading to interval scales measurements
that can be analyzed with parametric statistics.

− For RQ3, we used the same analysis method as in RQ2.

4 Research Results

Although the data collection is still on-going in Germany and Italy, we have gathered
results from 115 projects (47 from Norway, 25 from Italy, and 43 from Germany). In
these 115 projects, 71 used only COTS components, 39 used only OSS components,
and five used both COTS and OSS components. In this study, we discarded the pro-
jects using both COTS components and OSS component, because they will confound
the results and cover only 4% of the total projects.

Most respondents of the 110 projects, which used either COTS components or OSS
components, have a solid IT background. More than 89% of them are IT managers,
project managers, or software architects. More than 88% of them have more than 2

 An Empirical Study on Off-the-Shelf Component Usage in Industrial Projects 59

year experiences with OTS-based development. All of them have at least a bachelor
degree in informatics, computer science, or telematics.

4.1 Answers to RQ1 – Who Is Using OTS Components

To answer RQ1, we designed two sub-questions:

− RQ1.1: What are the commonalities and differences in profiles of the companies
and projects using COTS components vs. using OSS components?

− RQ1.2: What are the commonalities and differences in emphasis in projects using
COTS component vs. using OSS components?

Results are coming from projects in several domains, as showed in Figure 1. The
distribution of company size and the companies’ main business area are shown in Fig-
ure 2 and Figure 3.

Fig. 1. Distribution of the application domain of the final system

Fig. 2. Distribution of company size

For RQ1.2, we listed some possible characteristics of the actual system:

− Time-to-market
− Effort (cost)

60 J. Li et al.

Fig. 3. Distribution of companies’ main business areas

− Reliability
− Security
− Performance
− Maintainability
− New functionality (first launch in the market)
− Improved functionality (over competitors)

Respondents were asked to answer “don’t agree at all”, “hardly agree”, “agree
somewhat”, “agree mostly”, “strongly agree”, or “don’t know”. We assign an ordinal
number from 1 to 5 to the above alternatives (5 means strongly agree). The results are
shown in Figure 4.

Fig. 4. The emphasis on characteristics of the system

To compare differences in the characteristics of the system, we compared the mean
values of each characteristic in systems using COTS vs. systems using OSS. The re-
sults show that there is no significant difference. Answers to RQ1 are summarized in
Table 1.

 An Empirical Study on Off-the-Shelf Component Usage in Industrial Projects 61

Table 1. Answers to research question RQ1

Research
question

Commonalities (COTS and OSS) Differences
(COTS vs. OSS)

RQ 1.1 Both are being used in systems of several ap-
plication domains (see Figure 1).

No difference

RQ1.1 Both are being used in small, medium, and
large IT companies (see Figure 2)

No difference

RQ 1.1 Software house and IT consulting companies
are the main users (see Figure 3)

No difference

RQ 1.2 Both systems emphasis on time-to-market,
reliability, and performance (see Figure 4)

No difference

4.2 Answers to RQ2 – Why Was It Decided to Use OTS Components?

To answer RQ2, we designed three sub-questions:

− RQ2.1: What were the differences of users’ general expectations on COTS com-
ponents vs. OSS components?

− RQ2.2: What were the specific motivations of using COTS components?
− RQ2.3: What were the specific motivations of using OSS components?

For RQ2.1, we gathered some common expectations of using OTS components
from our pre-study [9] and from literature reviews [1][3]:

− Shorter time-to-market
− Less development effort/cost
− Less maintenance effort/cost
− Larger market share
− Compliance with industrial standards
− Keeping up with the newest technology
− Better system reliability
− Better system security
− Better system performance

We used the same format and measurement as RQ1.2. The results are shown in
Figure 5.

We used SPSS 11.0 to compare the mean values of each motivation of using COTS
vs. using OSS. The results show that there is no significant difference.

For RQ2.2, we gathered some specific motivations of using COTS components:

− Reduce risk of bad quality, because components were paid for
− Reduce risk of poor security, because source code was closed/unavailable
− Provider could give adequate technical support
− Provider may provide give components following market trends
− It was decided by customer
− Political reasons (company policy, licensing conditions)

The results of RQ2.2 are shown in Figure 6.

62 J. Li et al.

Fig. 5. The general expectations of using OTS components

Fig. 6. Specific motivation of using COTS components

For RQ2.3, we gathered some specific motivations of using OSS components:

− Reduce risk of provider going out of business
− Reduce risk of provider changing market strategies
− Reduce risk of selected components evolving into an unwanted direction
− Component can be acquired for free
− Source code is available and can easily be changed
− It was decided by the customer
− Political reasons (company policy, licensing conditions)

The results of RQ2.3 are shown in Figure 7.

 An Empirical Study on Off-the-Shelf Component Usage in Industrial Projects 63

Fig. 7. Specific motivations of using OSS components

Answers to research question RQ2 are summarized in Table 2.

Table 2. Answers to research question RQ2

Research
question

Commonalities (COTS and OSS) Differences (COTS vs. OSS)

RQ 2.1 Both COTS and OSS users expect
that the components can contribute
to shorter time-to-market, less de-
velopment effort, less maintenance
effort, and newest technology (see
Figure 5)

No difference

RQ2.2 COTS users believe that paid software will give good quality and
will follow market trends. They also believe that the COTS vendor
will provide good technical support (see Figure 6).

RQ 2.3 The main motivations of using OSS are that code could be acquired
for free, source code is available, and to avoid the possible vendor
support risk (see Figure 7).

4.3 Answers to RQ3 – What Were the Results of Using OTS Components

To answer RQ3, we formulized 15 possible risks (as showed in Table 3) on OTS-
based development.

We asked respondents to fill in whether these problems had actually happened in
the investigated project or not. We used the same measurement as RQ1.2. The results
are shown in Figure 8.

64 J. Li et al.

Table 3. Possible risks in OTS based development

Phase ID Possible risks
R1 The project was delivered long after schedule [13].
R2 Effort to select OTS components was not satisfacto-

rily estimated [14].

Project plan
phase

R3 Effort to integrate OTS components was not satisfac-
torily estimated [13].

R4 Requirement were changed a lot [14].
R5 OTS components could not be sufficiently adapted to

changing requirements [14].

Requirements
Phase

R6 It is not possible to (re)negotiate requirements with
the customer, if OTS components could not satisfy all
requirements [9].

R7 OTS components negatively affected system reliabil-
ity [4,16].

R8 OTS components negatively affected system security
[4, 15, 16].

R9 OTS components negatively affected system per-
formance [16].

Component
integration
phase

R10 OTS components were not satisfactorily compatible
with the production environment when the system
was deployed [16].

R11 It was difficult to identify whether defects were inside
or outside the OTS components [14].

R12 It was difficult to plan system maintenance, e.g. be-
cause different OTS components had asynchronous
release cycles [13].

System mainte-
nance and evo-
lution

R13 It was difficult to update the system with the last OTS
component version [13].

R14 Provider did not provide enough technical support/
training [4, 13].

Provider rela-
tionship man-
agement R15 Information on the reputation and technical support

ability of provider were inadequate [4, 13].

To compare differences, we compared the mean values of each risk in projects us-
ing COTS vs. projects using OSS. The significant results (P-value < 0.05) are shown
in the following Table 4.

Answers to research question RQ3 are summarized in Table 5.

Table 4. The mean differences of three risks between COTS projects and OSS projects (Inde-
pendent Samples T-Test without considering equal variances)

Risk Mean Difference(COTS - OSS) Significance (2-tailed)
R2 0.54 0.033
R5 0.39 0.027
R8 0.50 0.014
R15 -0.56 0.033

 An Empirical Study on Off-the-Shelf Component Usage in Industrial Projects 65

Fig. 8. Existing Problems in projects using COTS components vs. projects using OSS compo-
nents

Table 5. Answers to research question RQ3

Research
question

Commonalities
(COTS and OSS)

Differences (COTS vs. OSS)

RQ 3 Common risk is that it
is difficult to estimate
the integration effort
and to identify
whether the defects are
inside the component
or outside.

COTS users had a higher risk on estimat-
ing the selection effort, following re-
quirement changes, and controlling
COTS components’ negative effect on
security.
OSS users had a higher risk on getting
the information of providers’ support
reputation.

5 Discussion

5.1 Comparison with Related Work

By analyzing all activities normally performed when integrating OTS components,
Giacomo, P. D. concluded that the OSS component is not completely different from
the COTS component [24]. Our results show that both COTS and OSS components
were used in projects and companies with similar profiles. Software houses and IT
consulting companies were their main users.

COTS and OSS components promise shorter time-to-market and increased produc-
tivity [1]. Some previous studies claim that OTS components are generally more reli-
able than in-house built components, because they have been used by different users
in different environments. Our results confirm that both COTS and OSS components
were used in projects with emphases on time-to-market, reliability, and performance.
In addition, the key motivations of using OTS components were to save development
time and effort, and to get newest technology.

66 J. Li et al.

A COTS component generally is a black-box and is provided by the commercial
vendor. Our results show that COTS users believe that the paid component should
have good quality and good technical support. However, our results show that they
were not more satisfied in reliability and performance of the components than OSS
users. On the other hand, COTS users had more difficulties in controlling the compo-
nents’ negative security effects than OSS users. Some previous studies have argued
that OSS software is more secure than COTS because its code can be reviewed by a
huge number of coders. Our results give further support on this conclusion. In addi-
tion, our data shows that COTS users had more difficulties in estimating the selection
effort and following requirement changes than OSS users. The possible reason is that
COTS users cannot access the source code of the components. It is therefore difficult
for them to review the source code and perform necessary changes when necessary.

OSS components are generally provided by an open source community with source
code. Our results show that the main motivation of using OSS components is the open
and possible free code, which can be changed if necessary. Although OSS user did
not have commercial support contract with OSS component providers, they were not
less satisfied on the technical support than COTS users. However, we need to explain
this fact carefully. The reason might be that OSS users would like to read and change
the code themselves, instead of asking for help, as we found in the key motivations of
using OSS.

Holck J. et al. concluded that a major barrier on using OSS in industrial project is
the customer’s uncertainty and unfamiliarity with OSS vendor relationship [23]. Our
data showed that OSS users were less satisfied on knowing OSS provider’s technical
support reputation. How to establish credible and mutually acceptable combinations
of OSS delivery and procurement models therefore needs future research.

5.2 Possible Treats to Validity

Construct validity. In this study, most variables and alternatives are taken directly, or
with little modification, from existing literature. The questionnaire was pre-tested us-
ing a paper version by 10 internal experts and 8 industrial respondents. About 15%
questions have been revised based on pre-test results.

Internal validity. We have promised respondents in this study a final report and a
seminar to share experience. The respondents were persons who want to share their
experience and want to learn from others. In general, we think that the respondents
have answered truthfully.

Conclusion validity. This study is still on-going. More data will be collected from
Germany and Italy. A slightly larger sample will be gathered to give more significant
statistical support on the conclusions of this study.

External validity. We used different random selection strategies to select samples in
different countries. It is because the limited availability of the necessary information.
In Italy, the information of the official organization as a national “Census Bureau” in
Norway and Germany is not available. The samples had to be selected from “yellow
pages”. The method problems by performing such a survey in three countries will be
elaborated in a future paper. Another possible limitation is that our study focused on
fine-grained OTS components. Conclusions may be different in projects using com-

 An Empirical Study on Off-the-Shelf Component Usage in Industrial Projects 67

plex and large OTS products, such as ERP, Content management systems, and web
service in general.

6 Conclusion and Future Work

This paper has presented preliminary results of a state-of-the practice survey on OTS-
based development in industrial projects. The results of this study have answered
three questions:

− RQ1: Who is using OTS components?
Both COTS and OSS components were used in projects with similar profiles.

There is also no difference on the profiles of companies using COTS or OSS compo-
nents.

− RQ2: Why was it decided to use OTS components?
The main motivation of using either COTS or OSS component was to get shorter

time-to-market, less development effort, and to get newest technology. COTS users
have bigger trust in the COTS quality and COTS vendor support ability. Possible free
source code is the key motivation of OSS users. OSS users prefer to have access the
source code so that they can revise it when necessary.

− RQ3: What are the possible problems of using OTS components?
It was more difficult for COTS component users to follow requirement changes

than OSS users. It is also more difficult for COTS users to estimate the selection ef-
fort and to control COTS components’ negative effect on system security. OSS users
were more uncertain on OSS provider support reputation than COTS users.

Results of this study have shown state-of-the-practice data. The next step is to do a
follow up qualitative study to investigate the cause-effects of the conclusions of this
study. We have held a seminar at OSLO in Feb. 2005 and preliminary investigated
possible cause-effects of our results with participants of this study and other industrial
colleagues. The next step is to do a larger qualitative study with personal interviews to
further study these cause-effect assumptions.

Acknowledgements

This study was partially funded by the INCO (INcremental COmponent based devel-
opment) project [17]. We thank the colleagues in these projects, and all the partici-
pants in the survey.

References

1. Voas, J.: COTS Software – the Economical Choice?. IEEE Software, 15(2):16-19,
March/April 1998.

2. Voas, J.: The challenges of Using COTS Software in Component-Based Development.
IEEE Computer, 31(6): 44-45, June 1998.

3. Fitzgerald, B.: A Critical Look at Open Source. IEEE Computer, 37(7):92-94, July 2004.

68 J. Li et al.

4. Ruffin, M. and Ebert, C.: Using Open Source Software in Product Development: A Primer.
IEEE Software, 21(1):82-86, January/February 2004.

5. Brownsword, L., Oberndorf, T., and Sledge, C.: Developing New Processes for COTS-
Based Systems. IEEE Software, 17(4):48-55, July/August 2000.

6. Lawlis, P. K., Mark, K. E., Thomas, D. A., and Courtheyn, T.: A Formal Process for
Evaluating COTS Software Products. IEEE Computer, 34(5):58-63, May 2001.

7. SSB (Norwegian Census Bureau) (2004): http://www.ssb.no
8. SESE web tool (2004): http://sese.simula.no
9. Li, J., Bjørnson, F. O., Conradi, R., and Kampenes, V. B.: An Empirical Study of Varia-

tions in COTS-based Software Development Processes in Norwegian IT Industry. Proc. of
the 10th IEEE International Metrics Symposium, Chicago, USA, September, 2004, IEEE
CS Press (2004) 72-83.

10. Paulson, J.W., Succi, G. and Eberlein, A.: An empirical study of open-source and closed-
source software products. IEEE Transactions on Software Engineering, 30(4):246-256,
April 2004.

11. Norris, J. S.:Missioin-Critical Development with Open Source Software”, IEEE Software,
21(1):42-49, January/February 2004.

12. Fitzgerald, B. and Kenny, T.: Developing an Information Systems Infrastructure with
Open Source Software. IEEE Software, 21(1):50-55, January/February 2004.

13. Rose, L. C.: Risk Management of COTS based System development. Cechich, A., Piattini,
M., Vallecillo, A. (Eds.): Component-Based Software Quality - Methods and Techniques.
LNCS Vol. 2693. Springer-Verlag, Berlin Heidelberg New York (2003) 352-373.

14. Boehm, B. W., Port, D., Yang, Y., and Bhuta, J.: Not All CBS Are Created Equally
COTS-intensive Project Types. Proc. of the 2nd International Conference on COTS-Based
Software Systems. Ottawa, Canada, February, 2003, LNCS Vol. 2580. Springer-Verlag,
Berlin Heidelberg New York (2003) 36-50.

15. Open Source Initiative (2004): http://www.opensource.org/index.php
16. Padmal Vitharana: Risks and Challenges of Component-Based Software Development.

Communications of the ACM, 46(8):67-72, August 2003.
17. INCO project description, 2000, http://www.ifi.uio.no/~isu/INCO
18. Stevens, S.S: Mathematics, Measurement, and Psychophysics. In S.S.Stevens (Ed.) Hand-

book of Experimental Psychology (1951), New York: Wiley.
19. Stevens, S.S: On the Theory of Scales of Measurement, Vol. 103. Science (1946) 677-680.
20. Spector, P.: Ratings of Equal and Unequal Response Choice Intervals. Journal of Social

Psychology (1980), Vol. 112:115-119.
21. Velleman, P. F. and Wilkinson L.: Nominal, Ordinal, Interval, and Ratio Typologies Are

Misleading. Journal of the American Statistician, 47(1):65-72, February 1993.
22. Hand, D.J.: Statistics and Theory of Measurement. Journal of the Royal Statistical Society:

Series A (Statistics in Society), 159(3): 445-492, 1996.
23. Holck J., Larsen, M. H., and Pedersen, M. K.: Managerial and Technical Barriers to the

Adoption of Open Source Software. Proc. of the 4th International Conference on COTS-
Based Software Systems. Bilbo, Spain, February, 2005, LNCS Vol. 3412. Springer-
Verlag, Berlin Heidelberg New York (2005) 289-300.

24. Giacomo, P. D.: COTS and Open Source Software Components: Are They Really Differ-
ent on the Battlefield? Proc. of the 4th International Conference on COTS-Based Software
Systems. Bilbo, Spain, February, 2005, Vol. 3412. Springer-Verlag, Berlin Heidelberg
New York (2005) 301-310.

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 69–83, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Rendezvous of Content Adaptable Service and Product
Line Modeling∗

Seo Jeong Lee1 and Soo Dong Kim2

1 Division of Information Technology Engineering, Korea Maritime University
1 Dongsam-Dong, Yeongdo-Gu, Busan, Korea 606-791

sjlee815@ssu.ac.kr
2 Department of Computer Science, Soongsil University,
1-1 Sangdo-Dong, Dongjak-Ku, Seoul, Korea 156-743

sdkim@comp.ssu.ac.kr

Abstract. Content adaptable applications are often used in ubiquitous
computing environment, and it aims to service the adaptable contents to users.
In this environment, the services are dynamically selected and provided, the
contexts are changed frequently. Then, the application services are to be
modeled to derive the adaptable service effectively and to reuse the model.
Modeling with software features and product line concepts may support for
making service decision strategy. In this paper, we propose a service decision
modeling technique for content adaptable applications in ubiquitous
environment. It consists of defining variation points and their variants, finding
out the dependencies between them, and then building the variant selection
strategies. These can accomplish to define the decision model based on content
adaptable service, and the definition templates help the reuse more effective.

1 Introduction

In the age of ubiquitous computing, computing devices and information are
everywhere and user has multiple ways of accessing and exploiting them. So, the
developers must consider relevant features which are for context awareness, location
awareness, self adaptation and decision capability.

In such environments, a device can vary from a workstation, to a mobile phone, a
PDA or any other limited terminal. Moreover these devices are likely to be
heterogeneous, requiring special considerations in terms of their physical resources
and computing power. The problem in these environments is to deliver a content
understandable service by the end user.

To respond efficiently to the heterogeneity of the environment, multimedia systems
must dispose of advantage mechanisms that allow adapting services according to
users' interests and capabilities. These mechanisms must be capable to negotiate the
best document variant if it exists but also to negotiate the best adaptation to apply on
the original document in order to meet the client requirements. In this context, a good

∗ "This work was supported by Korea Research Foundation Grant. (KRF-2004-005-D00172)".

70 S.J. Lee and S.D. Kim

description of: the user (its preferences and the used device capabilities), the server
(its content and adaptation capabilities) and the network play a major role to make the
final delivered service well adapted to the end user.

The content adaptability is another important issue for this environment. This can
serve an adaptable content on the fly so that the application has to the strategies to
decide the appropriate service. These services have to be predefined and modeled. If
well defined and modeled, they can be reused for another application which has same
objective or same concern. And to support the reuse issue, it has to be modeled more
systematic. The reuse of service means the reuse of service decision strategy. As a
result, the service decision model is needed. The issue of how to specify the service is
becoming interesting theme recently.

Michalis Anastasopoulos took his effort to illustrate how pervasive computing
applications can benefit from a software product line approach and especially from
the PuLSETM (Product Line Software Engineering) method, which was developed at
the Fraunhofer Institute for Experimental Software Engineering (IESE) [1].

Besides, by adopting an architecture-based approach, [2] provides reusable
infrastructure together with mechanisms for specializing that infrastructure to the needs
of specific systems. Some researchers suggest frameworks that facilitate the
development and deployment of web services aware, respectively [3] [4]. So far, the
attention of web service is now being directed as how to resolve the context awareness
not how to define the strategy and reuse. They suggest reasonable concepts or
architecture even though the modeling techniques or processes are not embodied yet.

The product line engineering concept is introduced to practice a dependable low-
risk high-payoff practice that combines the necessary business and technical
approaches to achieve success [5]. Variation point and variant are the core concept of
product line. In [6], the authors took their effort for describing the taxonomy of
variability dependencies and the types of variability dependencies. This concept can
be useful for establish the decision process of web based application.

In this research, we suggest the process model of service decision for content
adaptable application. This model is using product line concept such as variation
points, variants and dependency.

Section 2 describes the related works, section 3 introduces our suggestion, section
4 shows the framework to support proposed model and section 5 assesses our
challenges and contributions.

2 Related Works

2.1 Variability of Pervasive Computing with PuLSE

IESE(Institut Experimentelles Software Engineering) illustrates how pervasive
computing applications can benefit from a software product line approach and
especially from PuLSE (Product Line Software Engineering) method. It discusses the
variability in pervasive computing [1].

This is based on that Human-centric character of pervasive software development
requires dealing with ever-increasing variability at different stages of the software life

 A Rendezvous of Content Adaptable Service and Product Line Modeling 71

cycle and ultimately at run-time [7]. And, then it works to customize a pervasive
software application means customizing the other four fundamental forces of
pervasive computing as envisioned by Michael Dertouzos [8]: Natural interaction,
automation, individualized information access and collaboration. The variability in
these areas is no doubt significant as shown exemplarily in the table 1.

Table 1. Pervasive Computing Variability

Capability Variability
Natural

Interaction
� Language
� Accessibility features

Automation � Levels of automation
� Information Models
� Semantics
� Network quality

Individualized
Information Access

� User Profile
� User Interest
� User Location
� User Device/Platform

Collaboration � Synchronous collaboration
� Asynchronous collaboration
� People to People collaboration
� People to Machine collaboration
� Machine to Machine collaboration

This research illustrates merely the variability and how to use PuLSETM, not how
to handle explicitly yet. When transformations occur between a Platform-Independent
Model (PIM) and a Platform-Specific Model (PSM), the synchronization is performed
for data mobility. This idea is to be valuable for resolving variability.

2.2 Dependency Decision Model

Binding a variation point involves establishing a relationship between the variation
point and the selected variant. This relationship may imply certain dependencies
(constraints), e.g., a system generally requires that specific variation points are bound to
have a working, minimal system. There can be many different types of dependencies
and pinpointing them requires a more formal way to describe variability [6].

The following nomenclature aims for describing variability in system-independent
terms, i.e., independent from a particular system, method or organization:

 The set of all variation points: V P = {vpa, vpb, vpc, . . .}
 The set of variants for vpx: vpx = {vx1, vx2, vx3, . . .}
 The power set (the set of subsets) of all variants:

 V = {{va1, va2, va3, . . .}, {vb1, vb2, vb3, . . .}, {vc1, vc2, vc3, . . .}, . . .}

 A relationship between vpx and vxn, i.e., vpx binds vxn: (vpx, vxn)

72 S.J. Lee and S.D. Kim

The dependencies between variation points and variants can be expressed in the
form of conditional expressions:

 if vpx is bound then vpy should be bound: if vpx then vpy
 if vpx is bound then vpy should bind vyn: if vpx then (vpy, vyn)
 if vpx binds vxn then vpy should be bound: if (vpx, vxn) then vpy
 if vpx binds vxn then vpy should bind vym: if (vpx, vxn) then (vpy, vym)
 if vpx binds vxn then vpy should not bind vym : if (vpx, vxn) then not (vpy, vym).

Then the taxonomy shows sixteen different subtypes of variability in table 2.

Table 2. The taxanomy of variability

These sixteen subtypes may explain why dependencies often exhibit different kinds
of behavior while appearing similar in the first instance. The constraints imposed by
each type have been explored in various areas of research, e.g., the configuration
management community, however implicit specification may bother adopting to
realize.

3 Content Adaptable Service Decision Modeling

This paper tries to the rendezvous of content adaptable service and product line
modeling. To do so, we found the coincident point of them. Figure 1 shows them,
where the bi-directional arrows mean the coincidence between two parts. If a service
is to be the product of this system, the critical point for service, like ‘bandwidth’, is to
be a variation point and its value is one of variants, and then the ‘network’ is to be a
functional feature.

 A Rendezvous of Content Adaptable Service and Product Line Modeling 73

Fig. 1. The Content Adaptable Service Decision Process

This chapter suggests a process model for content adaptable service. As in figure 4, the
process consists of 5 activities, and each activity is further defined in subsequent sections.

3.1 Define System Architecture

The first activity is ‘Define System Architecture’. The content adaptable system
architecture has useful handling mechanisms for efficient exchange of request and
data between different mobile devices. Therefore, the architecture has to support the
properties of web application, pervasive computing.

Web applications are most often used in a request/response interactive way. The
message is service-oriented. So, web application architecture should identify who or
which component is responsible for:

 providing service
 request service
 description where service providers publish their service descriptions
 description where service requestors find services and how to binding

Then, the web applications contain the following functions for their services [9].

 Service Registration
 Service Discovery
 Service Interface
 Definition Repository
 Publication
 Service Binding
 Authentication
 Authorization
 Functions
 Load balancing support
 Fault-tolerance support

For pervasive applications, the inadequacy of existing distributed systems raises
the question of how to structure system support since the following requirements: [10]

Define System Architecture

Define the Variation Points and Variants

Define the Dependency between Variation
Points

Define the Dependency between variants

Define the strategy of negotiation

74 S.J. Lee and S.D. Kim

 Requirement 1: Embrace contextual change
 Requirement 2: Encourage ad hoc composition
 Requirement 3: Recognize sharing as the default

The services which directly address the requirements are needed to design. So, the
system designer has take into account relevant concerns [11] which are integrated
functional considerations above mentioned.

Table 3 is the template to specify the concerns of content adaptable system
architecture, which embraces the web application and pervasive computing.

If the architecture has the way to resolve the concern, If exist, who resolve it may
be written down by the resolving component(s) such as behavioral elements or
service. If not, how to resolve may be written down by the way of resolving.

Table 3. Architecture Definition Concerns

Concern If exist,
who resolves it?

If not,
how to
resolve?

Handling Request
input
authorization
request verification

Registration new Service
Creating Service

find strategy
retrieve service

Binding at run time
Publishing Service

Providing Application Specific functions

Adapting Contextual change

Conventional network architecture concerns
load balancing
fault tolerance
authentication

3.2 Define Variation Points and Variants

The context in ubiquitous computing consists of the profile of network, device,
service, user and so on [12]. They are presenting current or changeable context and
then used for service decision which is context aware and content adaptable. Let’s get
a scenario. “If the bandwidth is lower than 2.4GHz, service is not available.” In this
case, ‘bandwidth’ is the critical point for service and the value of bandwidth means
the margin of service.

In this paper, we consider network status, device status, service commitment, avail
data status and user bias as functional features, though there are potentially additional
functional features. Network status contains the information of the physical
transmission ability. Device status represents which device type, how much memory
is remained, how fast the processor, and so on. Service commitment describes that

 A Rendezvous of Content Adaptable Service and Product Line Modeling 75

any user can take any service in some location. Avail data status describes the
hardware requirement and data properties. And, users can specify their own
preference on user bias.

The functional feature is composed of some variation points, but not limited:

 Network status = (protocol, bandwidth, latency)
 Device status=(device_type,available_memory, processor_speed, color_depth)
 Service commitment=(user_id, location, device_type)
 Avail data status=(data_type, scaled_depth , memory_request, bandwidth_

request, latency_tolerance, speed_request, [language| color_depth])
 User bias=(language, response_time, text_bias, image_bias, video_bias,

location)

Using set notation, these can be represented as:

N ={ni | 1<=i<=j}, n represents the variation point of network status
D ={di | 1<=i<=k}, m represents the variation point of device status
S ={si | 1<=i<=l}, s represents the variation point of service commitment
A ={ai | 1<=i<=m}, a represents the variation point of avail data status
U ={ui | 1<=i<=n}, u represents the variation point of user bias

The graphic notation is often used to set up or understand the model easier. Figure
2 represents the notations for dependency. Notations for feature, variation point and
variant are from COVAMOF [13], and compose_of_vp, depends_on_vp and
depends_on_variant are introduced in this paper newly. And then Figure 3 shows that
the feature model is composed of several variation points and can be extended.

Fig. 2. Notations for Representing Dependency

Fig. 3. Features and Variation Points

variant
feature

depends_on
_vp

depends_on
_variant

variation
point(vp)

compose_of
_vp

A

a1 a2 am …

N

n1 n2 nj …

D

d1 d1 dk
…

U

u1 u2 un
…

S

s1 s2 sl …

76 S.J. Lee and S.D. Kim

To present the variant, it has to be identified which type the variant is, such as
character, string, integer, float, or user defined object type; and whether it is one
element of a set or a value in some range. This paper differentiates them from each
other.

Table 4 is the template which can reveal the properties as mentioned. Each feature
has several variation points and their variant type. Table 4 (a) has five columns of the
feature, variation point, data_type, value_property and depends_on_vp. The
depends_on_vp is written down with which variant affect to decide current variation
point. This will be filled in section 3.3.

Table 4(a). Template for Variation Point and Variant

feature variation point(vp) data_type value_property depends_on_vp

Table 4 (b) can represent all variants of each variation point which is described in
table 4 (a). It consists of variation point, variant and depends_on_variant. The
depends_on_variant is written down with which variant affect to decide current
variant. This will be filled in section 3.4.

Table 4(b). Template for Looking-up Variants

variation point variant depends_on_variant

3.3 Define the Dependency Between Variation Points

This section is to define the dependency between variation points. The dependency
means a relation that a variation point effects to decide another variation points.

Figure 4 is an example of define the dependency between variation points. Here,

“n1 depends_on_vp() s1” means that decision of n1 is dependent to decision of s1 .

Type_Property

character
string,
integer
float
….
user-defined object type

Value_Property
 one_of

in_the_range upper_limit
lower_limit

Variant
Property

 A Rendezvous of Content Adaptable Service and Product Line Modeling 77

Fig. 4. Dependency between Variation Points

There are guidelines to define as following:

 A variation point can depends on () one or more variation point(s).

 n1 s1 and n1 s2 is possible.

 One or more variation point(s) can depends on () one variation point.

 n1 s1 and n2 s1 is possible.

 Some variation points may not depends on () any variation point.
 No dependency

 It is not allowed that a variation point depends on () itself.

 n1 n1 is not possible.

This dependency information can be used to fill up depends_on_vp of feature N in
table 4 (a).

3.4 Define the Dependency Between Variants

In some cases, a specific variant may affect to decide another variant, so it can fix
other variant’s value or exclude other variant. It is called the dependency between
variants [6]. This section introduces to define it.

The dependency between variants is a relation that a variation point effects to
decide another variation points. Figure 5 is an example of define the dependency

between variants. Here, “n1.1 depends_on_variant () s1.1” means that decision of
n1.1 is dependent to decision of s1.1.

There are guidelines to define as following and table 6 shows the subpart of filling
up depends_on_variant based on figure 5.

S

s1 s2 sl …

N

n1 n2 nj
…

D

d1 d2 dk
…

78 S.J. Lee and S.D. Kim

Fig. 5. The Dependency between Variants

 All variation points are composed of one more variants
 If no variant, it supports not variability.
 All variants have their own data_type and value_properties.
 Described in section 3.3
 If dependency between 2 variation points, at least one variant in a variation

point should depends_on_variant () one variant in the other variation
point.

 For example, if n1 s1 then at least, n1.x s1.y should be.

 A variant can depends_on_variant () one more variation point(s).

 n1.2 s2.1 and n1.2 s2.2 is possible.

 Two more variant can depends_on_variant () one variant.

 n1.1 s1.1 and n2.1 s1.1 is possible.

 Some variants may not depends_on_variant () any variant.
 No dependency

 It is not allowed that a variant depends on_variant () itself.

 n1.1 n1.1 is not possible.

This dependency information can be used to fill up depends_on_variant of feature
N in table 4 (b).

3.5 Define the Strategy of Negotiation

The dependency between variations represents just whether one variation point affects
to another variation point. It is similar to variants. To service the content adaptable,
the decision to select content has to be performed, called negotiation [12].

s1

s2

…

n1

n1.1 n1.2

n1.x s2.1 s2.2

s2.z

s1.1

…
…

s1.y s1.2

 A Rendezvous of Content Adaptable Service and Product Line Modeling 79

The strategy of negotiation is dependent on domain, service and application, so in
this section, we introduce the basic guidelines for successful definition.

 Every depends on () should be defined by one more strategies

 Every depends on_variant () should be defined by one more strategies
 The decision value of strategy should be one_of or in_the_range_of variants

value

These can be potentially additional.

3.6 Select Adequate Algorithm and Module

The last activity is to select adequate algorithms, which is self adaptable. And then,
adequate module for that algorithm is selected. It can be not merely imported existing,
but also implement newly. In both cases, these modules may imply common
properties such as:

 to freeze hardware environment in the moment
 to capture current context and required context
 to find out adequate content service
 to send the service to client device

For example, [14] suggests a QoS-based selection algorithm that find the best
sequence of adaptation services which can maximize users’ satisfaction with the
delivered content. And, [15] describes a context modeling approach with context
modeling language (CML) and suggests a programming library to support automatic
development.

4 Case Study

In order to realize the proposed process in section 3, we propose a problem statement
and follow activities.

Problem statement: Executive Information System (EIS) in motion

EIS in motion provides executives with a powerful, yet simple tool that allows them to
view and analyze key factors and performance trends in the areas of sales, purchasing,
production, and finance. It is developed for all main mobile platforms, such as
Windows CE, J2ME, Symbian and Palm. The wireless communication plays with
using both WLAN and Bluetooth.

Otherwise, EIS in motion has the properties to provide the content-adaptable service
so that executives can be serviced continuously in spite of hardware context change
from laptop to PDA.

Activity 1. Define System Architecture
To support the content adaptable service, system architecture may be composed of
Presentation layer, Service layer, Data layer and Communication layer. Presentation
layer consists of device adapter, network adapter and content publisher. Service layer

80 S.J. Lee and S.D. Kim

consists of strategy adopter, content finder and service binder. Communication layer
is made up of protocol manager and platform manager.

Fig. 6. System Architecture for EIS in motion

Composite elements of each layer can be tailored and customized.

Activity 2 and 3. Define variation points and their dependency
Table 8 shows an example of the variation points and their zero or more

depends_on_vp s.

Table 8. Template for Variation Point and Variant

Feature variation point(vp) data_type value_property Depends_on_vp

Network
(N)

Bandwidth(n1)
Network_type(n2)

real
string

in_the_range_of
one_of

Device
(D)

resolution(d1)
Available_memory(d2)

object_type
real

one_of
in_the_range_of

User bias
(U)

Vedeo_bias(u1)
Response_time(u2)

 object type
 real

 one_of
 in_the_range_of

 n2, d1, d2
 n1, n2

Activity 2 and 4. Define the dependency between variants
Table 9 is a part of an example of the depends_on_variant with which variant

affect to decide current variant.

Activity 5. Define the strategy of negotiation
Define the strategies of negotiation for all dependency which is described in table8

and table 9. For example,

 S1. Vedeo_bias(u1) of User bias(U) is to be less than Available_memory(d2).

Activity 6. Select adequate algorithms and modules

 A Rendezvous of Content Adaptable Service and Product Line Modeling 81

Table 9. Template for Looking-up Variants

variation point Variant(s) Depends_on_variant

Bandwidth(n1)
Network_type(n2)

(real value)
T1(n2.1)
Bluetooth(n2.2)
LAN(n2.3)

- (none)
-
-
-

resolution(d1)

Available_memory(d2)

Mobile1(d1.1)
Laptop1(d1.2)
(real value)

-
-
-

Image_bias(u1)

Response_time(u2)

Vbias1(u1.1)
Vbias1(u1.2)
(real value)

d1.1

d1.2

-

As specified in section 3.6, it is the realization activity for finding or building
algorithms to make the service realizable.

5 Assessment

Recently, the ubiquitous and pervasive computing is becoming comprehensive. On
various devices and network circumstance, the content adaptable service is to be a
critical issue.

Perceiving context, adopting appropriate strategy and initiating contents are key
processes to make that service. To do these, we have to consider which context factor
affects to select content or decide a strategy and whether any relation is found
between the factors. If a model can describe them systemically, it would be able to
reuse not only model itself but also framework and their components.

This model is to resolve it with product line concepts such as variation point,
variant and dependency. This section assesses the contributions of our research.

5.1 Adapting Product Line Concept to Ubiquitous Environment

The product line engineering and dependency is useful for adjusting variability of a
product family. The content adaptable service is deciding appropriate one among all
available services. This model inoculates these two concepts.

And the templates are useful for represent the dependencies between variation
points or variants, instead of describing just with XML or graph. The more
complicated the dependency, the more effective the templates in this paper as a tool of
expression

5.2 Systematic Decision Strategy

As a result of inoculating product line concept and content adaptable service
modeling, we can define factors and properties for deciding service with product line
concepts, such as variation points, variant and the dependencies between them. As
using them, defining decision strategy would be more complete. And, the guidelines
to define them help this model more systematic.

82 S.J. Lee and S.D. Kim

5.3 Reuse Decision Model

This decision model specifies the process from defining architecture concern to
defining strategies in detail. So, it can be reused when working upon different
requirement in terms of system concern, variation points, variants, dependencies or
even though deciding strategies.

6 Conclusion

Context awareness is an important issue in ubiquitous computing. We proposed a
service decision modeling method for content adaptable service. It is based on product
line concepts such as variation point, variant and dependency. The process consists of
defining system architecture, defining variation points and variants, defining the
dependency between variation points, defining the dependency between variants, and
defining the strategy of negotiation.

We also introduced a specific modeling method for content adaptable service and it
can bring about defining decision strategy systematically. The concept of product line
helps to specify the model systematically. Otherwise, it can be reused when working
upon different requirements. And the more complicated the dependency, the more
effective the templates in this paper as a tool of expression.

References

1. Michalis Anastasopoulos, “Software Product Lines for Pervasive Computing,” IESE-
Report No. 044.04/E version 1.0, IESE, April 2004.

2. Robert Grimm, Tom Anderson, Brian Bershad, and David Wetherall, “A System
Architecture for Pervasive Computing,” Proceedings of the 9th ACM SIGOPS European
Workshop, pages 177-182, September 2000.

3. Tayeb Lemlouma and Nabil Layaïda, “Context-Aware Adaptation for Mobile Devices,”
Proceedings of International Conference on Mobile Data Management (MDM), IEEE,
January 2004.

4. Markus Keidl and Alfons Kemper, “Towards Context-Aware Adaptable Web Services,”
Proceedings of World Wide Web (WWW’04), ACM, pages 55-65, 2004.

5. Paul Clements and Linda Northrop, Software Product Lines, Practices and Patterns,
Addison-Wesley, 2002.

6. Michel Jaring and Jan Bosch, “Variability Dependencies in Product Family Engineering,”
Product Family Engineering(PFE) 2003, pages 81-97, 2003.

7. http://oxygen.lcs.mit.edu/Overview.html, Homepage of the MIT Project Oxygen
8. Dertouzos, Michael L. The Unfinished Revolution: How to Make Technology Work for

Us-Instead of the Other Way Around, HarperCollins Publishers, October 2002.
9. G. Di Caprio, C. Moiso, “Parlay Web Services Architecture Comparison,” EXP online,

Vol. 3, Num. 4, December 2003.

10. Robert Grimm et. al, “System Support for Pervasive Applications,” ACM transactions on
Computer Systems, Vol.22, No.4, pages 421-486, November 2004.

 A Rendezvous of Content Adaptable Service and Product Line Modeling 83

11. David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl and Peter
Steenkiste, “Rainbow: Architecture-based Self-Adaptation with Reusable Infrastructure,”
Computer, IEEE, pages 46-54, April 2004.

12. Girma Berhe, Lionel Brunie and Jean-Marc Pierson, “Modeling Service-Based Multimedia
Content Adaptation in Pervasive Computing,” Proceedings of ACM International
Conference on Computing Frontiers (CF’04), ACM, April 2004.

13. Marco Sinnema, Sybren Deelstra, Jos Nijhuis and Jan Bosch, “COVAMOF: A Framework
for Modeling Variability in Software Product Families,” The Third Software Product Line
Conference (SPLC), LNCS 3154, pages 197-213, 2004.

14. 14.K. El-Khatib, G. v. Bochmann, and A. El Saddik, “A QoS-Based Framework for
Distributed Content Adaptation”, First IEEE International Conference on Quality of
Service in Heterogeneous Wired/Wireless Networks, Oct. 2004.

15. Ted McFadden and Karen Henricksen, “Automating Contextaware Application
Development,” 2004 International Conference on Cyberworlds, Nov. 2004

A Framework for Linking Projects and Project
Management Methods

Tony Dale, Neville Churcher, and Warwick Irwin

Software Engineering and Visualisation Group,
Computer Science and Software Engineering Department,

University of Canterbury
{Tony.Dale, Neville.Churcher, Warwick.Irwin}@canterbury.ac.nz
http://www.cosc.canterbury.ac.nz/research/RG/svg/index.html

Abstract. Software development processes such as the Waterfall pro-
cess and Extreme Programming are project management methods
(PMMs) which are well known and widely used. However, conventional
project management (PM) lacks the process concepts expressed in PMMs,
and the connection between PMMs and PM is not much explored in the
literature.

We present data models for PM and PMM, in a framework that can
articulate the PM–to–PMM relationship, illustrating with simple exam-
ples. A java/XML implementation of this framework can create and then
revise a “PMM–aware” project, conforming to a specified PMM. In terms
of the framework, we describe a simple project data visualization and
associated method that can be used to synthesize a PMM for a project
instance that was initially created without reference to any PMM.

Keywords: Project management, software engineering, project manage-
ment methods, project processes, data modelling, XML, visualization.

1 Introduction

Conventional PM attempts to manage tasks and resources as closely as possible
to a predefined, static plan.

However, a project plan doesn’t indicate how its particular tasks or resources
were created, except perhaps for a textual description. This is because the PM
domain has no concept of why a task or resource appears in the plan. PMMs
have this descriptive power because they use process concepts to formalise the
specialist knowledge which any real project requires; when creating or changing.
a project plan. Applying PMMs and process concepts to conventional PM creates
a fundamental problem: PMMs dynamically change projects, but conventional
PM is static, and has difficulty tolerating change.

It is possible to create data models for both PM and PMMs, and to link
these models together in a unified framework. This framework has the power
to express complicated PMM ideas but is simple and logical to apply to PM
data: project tasks and resources have PMM concepts added to them as simple

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 84–97, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Framework for Linking Projects and Project Management Methods 85

attributes, for example. This strategy makes it possible to move backwards and
forwards between the PM and PMM domains, so that a project can be created
and changed according to a PMM, yet viewed with existing PM software tools.

The motivation for creating this framework is to provide a bridge between
the process–dominated world of PMMs and the plan–dominated world of PM.
We hope to encourage the more widespread use of process concepts and PMMs
in conventional PM, and to augment PMMs with the project history and context
available using conventional PM tools.

The rest of the paper is set out as follows: Section 2 introduces concepts of
conventional project management (PM) as it is widely practised, and introduces
a data model for PM software tools. We show in Sect. 3 how the specialist knowl-
edge that all projects make use of can be formalized as a Project Management
Method (PMM), and create a data model for describing PMMs in Sect. 4. In
Sect. 5 we create a framework for linking the PM and PMM data models, and
using this framework Sect. 6 illustrates how a PMM is applied to produce a
project instance. Section 7 uses the framework to create a simple visualization
and a heuristic method to derive a PMM from raw project data, and illustrates
a scenario for applying process improvement to the derived PMM. Section 8
concludes our discussion.

2 Background

Large–scale project management has been practised for centuries, to the extent
that Burbridge [1] says

one hallmark of civilization is the ability to engage in group activities for
the execution of major projects, be they tombs and temples or manned
flights into space.

A crucial change has been, from the 19th century onwards, the increasing im-
portance of time and cost in project management. Projects must be completed
on time and within budget, according to comprehensive project plans, for rea-
sons such as increasing company profitability or reducing expenditure of public
funds. Unfortunately, the failure rate of projects in certain fields such as Soft-
ware Engineering is very high, with the Standish Group reporting in 2001 that
only 28% of IT projects completed on time and within budget [2], although this
is an increase from the 16% of 1994 [3]. There is thus a motivation to provide
more powerful tools for project management.

Conventional project management is encapsulated in the following five steps,
as exemplified by Lewis [4]:

1. define the problem
2. plan the project
3. execute the plan
4. monitor and control progress against the plan
5. close the project.

86 T. Dale, N. Churcher, and W. Irwin

Fig. 1. A conceptual data model of conventional PM data: a project is made up of
Tasks, Resources and Allocations of tasks to resources

These steps provide a simple framework for creating and executing projects
using a static, unchanging plan. Such a plan can be produced from a template
that has been predefined for a particular goal. For example: Microsoft Project [5]
provides a template for software development. Carefully filling in this template
will result in a project plan for developing software that looks quite plausible.
However, there is no indication whether the project is a sure–fire success or
doomed from the start, and nothing to tell us what to do if the actual progress
begins to deviate from the plan. This is not a problem specific to Microsoft
Project: the problem is with the domain of conventional PM in which this soft-
ware tool works. Conventional PM lacks the capability to say why the tasks
and resources in the Microsoft Project templates are there, except with textual
descriptions. We cannot say what created the templates, or compare them. This
lack of descriptive ability is one of several reasons that change in a project plan
is regarded as a bad thing by conventional PM, and uncontrolled change in a
project is identified as a major cause of many software project disasters [6][7][8].

Once a project is started, conventional Project Management is concerned
with monitoring the progress of a project using various well–known methods to
measure and report on the project, such as the Critical Path method, Gantt
charts, Network charts and Earned Value Analysis. These are all methods aimed
at keeping the progress of a project as close as possible to a static, pre–defined
plan.

Project Management software such as Microsoft Project and Planner [9] sup-
port the management and measurement of conventional PM, and provide tem-
plates for project plans. PM software tends to be variations on a theme, so that
Gray [10] writes of PM software tools: “Differences among [PM] software in the
last decade have centered on improving ‘friendliness’ and output that is clear
and easy to understand.”

Each tool has its own data format, but there are common features so that, for
example: Microsoft Project and Planner can exchange data using XML. Analysis

A Framework for Linking Projects and Project Management Methods 87

Fig. 2. A conventional PM view of a project: the free software tool Planner is illus-
trating project data, as modelled in Fig. 1, with a Gantt [13] chart

of the facilities and data models used for a number of project tools, including
Microsoft Project, the freeware tools Planner and PyGantt [11] and the public
XML schema PMXML [12] shows that their data models reflect and record tasks,
resources and allocations of resources to tasks. This data model is summarized
in a conceptual way in Fig. 1. Figure 2 instantiates this data model, and shows
a typical view of a project presented by conventional PM tools.

3 Project Management Methods (PMMs)

Any real project occurs in a specialist domain of some kind, whether it is bridge
construction, software engineering or a company restructuring. A real project
therefore requires specialist knowledge to inform the planning and implementa-
tion process. For example: estimating the time a particular task will take requires
specialist knowledge of the work involved in the task.

Conventional PM has little to say about how to use this specialist knowledge
in a project: conventional PM methods for representing and applying specialist
project knowledge stop at the the use of predefined project templates, and the
advice Lewis offers for task estimating is that you will get better at it as you
do more of it. Often, specialist knowledge is applied to a project in an informal
way, using whatever skills a project manager may bring to bear.

Specialist project knowledge can be formally described and applied using a
Project Management Method (PMM). A PMM is a notation for turning special-

88 T. Dale, N. Churcher, and W. Irwin

ist knowledge into a “project recipe”: a list of steps and requirements to follow in
order to achieve a project goal in a particular area, such as software engineering.

A simple way to describe PMMs is to write them down in English as a
series of steps. As an example, here is a high–level description of the “Build and
Fix” method for writing programs. Schach [14] describes this simple method as
suitable for small programs.

1. The customer and the programmer initiate the project, and then
2. Iterate the following sequence of steps until the customer accepts the pro-

gram:
(a) The customer specifies the program to the programmer
(b) The programmer writes the program with a computer
(c) The programmer and the customer test the program with a computer

A process description or PMM like the one listed above provides a means of
decomposition of a large task (the project goal) into sub–tasks, along and an
indication of resource requirements. For example: if we apply the above PMM
to the goal of creating a “Hello World” program, we initially create this project
instance:

Step 1: Initiate the “Hello World” project. Requires a Customer
Step 2(a): Specify the “Hello World” program. Requires a Customer and a

Programmer
Step 2(b): Write the “Hello World” program. Requires a Programmer and a

computer
Step 2(c): Test the “Hello World” program. Requires a Customer, a Program-

mer and a computer

At this point, we have reached the task of testing the program,Step 2(c), and
we use the result of this test to decide whether to repeat step 2: suppose that the
customer is dissatisfied with the program. We then have to start step 2 again,
so that the project instance might become:

Step 1: Initiate the “Hello World” project. Requires a Customer
Step 2(a): Specify the “Hello World” program. Requires a Customer and a

Programmer
Step 2(b): Write the “Hello World” program. Requires a Programmer and a

computer
Step 2(c): Test the “Hello World” program. Requires a Customer, a Program-

mer and a computer
Step 2(a): Specify the “Hello World” program. Requires a Customer and a

Programmer
Step 2(b): Write the “Hello World” program. Requires a Programmer and a

computer
Step 2(c): Test the “Hello World” program. Requires a Customer, a Program-

mer and a computer

A Framework for Linking Projects and Project Management Methods 89

If, after the second iteration of the PMM, our customer is satisfied with the
program, the loop terminates, the PMM finishes and we are left with the above
project instance.

We can see that a PMM specifies the production of a project instance or,
conversely, a project instance may represent the “footprints” produced by the
operation of a PMM when it is applied to a particular goal. When a PMM is
applied, PMM steps are translated to project tasks and resource requirements
are translated into project resources and allocations of resources to tasks.

If we were to apply conventional PM to the production of the “Hello World”
program then we would produce a project plan which lacks any PMM informa-
tion:

Project start: May 11, 2004, 10am.
Task 1: Initiate the “Hello World” project. Requires a Customer
Task 2: Specify the “Hello World” program. Requires a Customer and a Pro-

grammer
Task 3: Implement the “Hello World” program. Requires a Programmer and a

computer
Task 4: Test the “Hello World” program. Requires a Customer, a Programmer

and a computer

In this case, we are in a quandary if the acceptance test of task 4 fails: the
plan does not admit this possibility. Perhaps a “Change the program as needed”
task could have been included in the original plan after task 4, but that might
not be enough—a complete reimplementation might be required, for instance.
Changes like this are a problem characteristic of conventional PM: extra tasks,
resources and allocations are almost always inserted into a real project, but the
only coping strategy of conventional PM is to try to minimize change.

Because conventional PM lacks the formal concepts to deal with project
change, software tools for conventional PM don’t support change very well: re-
ports can be produced to indicate the degree of variance from the original plan,
but the plan is not supposed to change. The result is that changes to a conven-
tional project often happen in an uncontrolled way. The PMM–driven project
at least specifies what changes should be made to the project instance, and why.
The disadvantage of the PMM–driven project is that the lack of a static plan
precludes a fixed–cost quote for a project, for instance. Iterative PMMs such
as XP [15] can work around this limitation, by guaranteeing to deliver a work-
ing system no matter when the project is halted (eg: by budget limitations).
However, in this case the project deliverables are not fixed in advance.

4 Modelling PMMs

We examined a number of Software Engineering PMMs including the Water-
fall process [16] and Extreme Programming, and workflow languages such as
BPML [17]. Although some PMMs were essentially sequential and others es-
sentially iterative, we found that the three constructs identified by Boehm and

90 T. Dale, N. Churcher, and W. Irwin

Jacopini [18]: sequence, selection and repetition, could describe the flow of con-
trol in all PMMs. We also used a container step, the UnSequencedStep, for
parallel activities, to synchronizes parallel flows of control. We can see in our
example PMM of Sect. 3 that these constructs are sufficient to describe the flow
of control of the Build–and–Fix PMM: The main control structure of this PMM
is repetition (step 2) that generates a series of implement/test sequences (steps
2(a)–2(c)) in the resulting project instance.

The control structures of a PMM constitute the fundamental difference with
conventional PM: the result is that PMM steps may be repeated, or not used at
all, whereas every task in a conventional PM project plan is expected to be ac-
tioned exactly once. The concepts of control flow, that create and change project
instances, are not represented in conventional project management techniques,
as supported by common PM software tools.

To describe PMMs and allow their programmatic representation, we have
used the concepts above to design the conceptual data model in the upper left
quadrant of Fig. 3 (a). By describing PMMs in this way, a number of advantages
accrue: we can describe PMMs, and compare them. We can apply PMMs in
a repeatable way, and we can describe the relationship between PMMs and
project instances. This model relates in a straightforward way to existing process
modelling architectures. For example, the development process architecture of
SUKITS [19] consists of a process instance level that is described by a process
definition level, similar to Fig. 3 (a). We can instantiate the PMM data model
in many different ways; using XML [20], Java classes, etc. For example, we can
create an XML representation of the “Build and Fix” method of Sect. 3, shown
abbreviated in the lower left quadrant of Fig. 3 (a). More complicated PMMs
such as Extreme Programming can also be represented with this PMM data
model.

5 The PM/PMM Framework

We have formulated conceptual data models for PM (Fig. 1) and PMM (Fig. 3
(a)). The example of Fig. 2 illustrates how the PM data model is instantiated:
Tasks, Resources and Allocations are recorded to create a Project. The lower
left quadrant of Fig. 3 (a) instantiates the PMM data model to record the “Build
and Fix” PMM description.

We now tie these two data models together to form a unified framework,
as shown in Fig. 3: The PMM data model (a) is related to the conventional
Project data model (b) by the mappings applied--to--goal, describes and
role. To record these mappings to relate as “PMM–aware” project data, we
have added the following attributes to the PM model of Fig. 1, to create an
augmented PM model, shown in Fig. 3 (b): The Task class gains a stepID
attribute, the Project class gains a PMM attribute and the Resource class gains
a resourceTypeID attribute.

Because our framework relates PMMs to PM, we can make use of the com-
plementary strengths of both areas. Conventional PM can provide a useful “big

A Framework for Linking Projects and Project Management Methods 91

Fig. 3. UML diagram showing the PMM/PM framework, with instances. A feature of
the PMM and PM data models is the Composite design pattern [21], that provides a
tree–structured decomposition of objects, useful for XML representation

92 T. Dale, N. Churcher, and W. Irwin

picture” view of a project, because PM tools provide the context of a project
history, and a (projected) project future. PMMs do not intrinsically provide such
a project context, but if the current state of a PMM can be viewed in the con-
text of the project history, as a Gantt chart makes possible, for instance, then
much more context is available than in a solely process–oriented view. Using our
framework, this “big picture” view of a project is available with conventional PM
tools, whilst still making use of PMM concepts. The connection from PMMs to
conventional PM makes it possible to use PMMs for attempts to predict the
future course of a project, and for scenario comparisons. Since predicting the
future is what conventional PM attempts to do when planning a project, the use
of a PMM to produce the project plan at least provides some systematic basis
for the predictions. For example: the use of different PMMs could be compared,
when applied to the same goal.

The framework also provides new methods for improving project processes:
if we change a PMM project instance, say: by reversing the order of two tasks,
then the project instance no longer fits the PMM that produced it. One way of
reconciling the changes might be to change the order of the associated steps in
the PMM. In this way we could use conventional PM tools to alter PMMs and
tailor them for more specific applications.

6 Implementing the Framework

A Java/XML implementation [22] was written to test the framework of Fig. 3.
The program manipulates two Java DOM [23] trees: The first DOM tree rep-
resents the PMM being instantiated. The XML Schema [24] that describes this
DOM tree is a straightforward implementation of Fig. 3 (a). The second DOM
tree records the tasks, resources and allocations produced by the PMM instance.
The XML schema for this DOM tree is that of the freeware Planner [9] program.
Similar to other PM software tools, the planner schema allows for custom prop-
erties to be added to projects, tasks and resources, and so these were used to
record, for example: the PMM used for the project (the PMM attribute added to
the Project class) and which PMM step was associated with each project task
(the stepID attribute added to the Task class).

The mappings described in Sect. 5 were implemented in Java code as follows:

applied-to-goal. When a PMM is applied to a goal, these attributes are set
in the Project instance:
start date defaults to the current time, but may be changed with ordinary

PM tools without impacting on the PMM process.
project goal is set to the goal required to be accomplished.
PMM is set to the PMM name used for the project.

describes. The steps of a PMM describe the tasks produced in the project in-
stance. The kind of task produced depends on the kind of PMM step that
describes it: a PMM SimpleStep produces a SimpleTask in the project in-
stance: they contain a task name, start time and duration. Any kind of

A Framework for Linking Projects and Project Management Methods 93

CompositeStep, such as a RepeatStep, produces a SummaryTask in the
project. Summary tasks, are tasks aggregated from other tasks or summary
tasks, and are a common notation in projects. Summary tasks can be “rolled
up” to hide the tasks they contain, so only the summary task is displayed
by a software tool, for instance. Summary tasks derive their temporal in-
formation (eg: start time and duration) from the tasks they contain. In our
framework, we make use of these features of summary tasks, so that PMM
control step instantiation can be recorded in the project instance in such a
way that no spurious temporal information is added to the project, and the
hierarchical structure of the project data recorded reflects the structure of
the PMM that produced the instance.
Attributes in the SimpleTask and SummaryTask instances are set as follows:
task name is set from the PMM Step name.
start date is set to the start time of the project, plus the the sum of the

task durations up to this point.
duration defaults to one day, but may be changed with ordinary PM tools

without impacting on the PMM process.
stepID is set from the PMM StepID.
Our PMM model uses five kinds of CompositeSteps which are mapped to
SummaryTasks in the following ways:
RepeatStep The PMM steps contained in a RepeatStep are instantiated

as project tasks contained in a summary step, which is a predecessor
of a ControlStep, also mapped to a project task. Continuation of the
loop depends on whether the ControlStep task succeeded or failed: if
the task succeeded, no further actions are taken. If the task failed then
another group of project tasks and associated control step is created,
and so on.

WhileStep This step works similarly to the RepeatStep, except that the
ControlStep is instantiated first, and success or failure of that task
determines whether to instantiate the steps contained in the WhileStep.

SelectionStep The ControlStep in a SelectionStep is instantiated as a
project task that determines one and only one of the steps contained in
the SelectionStep to be instantiated.

SequencedStep The PMM SequencedStep has the seqKind attribute to
describe the kind of step sequence it contains: finish–to–start, finish–to–
finish, start–to–finish, start–to–start (FS/FF/SF/SS). When a
SequencedStep is instantiated, the steps it contains will be instantiated
as a corresponding sequence of tasks with a predecessor relation, set
to specify the kind of sequence (FS/FF/SF/SS).

UnSequencedStep The PMM steps contained in an UnSequencedStep are
instantiated in the project instance within a summary step, with no
predecessor information set.

role. The PMM describes what kind of resources are required with the
ResourceType instance. When a new resource is created in the project in-
stance, the resourceName attribute of this instance is mapped to the name
attribute of the resource. When a PMM Step has a particular requirement,

94 T. Dale, N. Churcher, and W. Irwin

the project instance is searched for resources having the same name (ie: the
resource name is used as it’s classification). If such a resource does not al-
ready exist then it is created in the project instance. The association of task
to resource is then recorded in the taskID and resourceID attributes of an
Allocation instance in the project.

At any time, the Java program can serialize the project DOM tree and write it
out to a file, so that the “big picture” view of a PMM–driven project, described in
Sect. 5, is available when the project instance is viewed with the Planner software
tool. For viewing the project state in this way, it is convenient to serialize and
then later re–instantiate an active PMM process, ie; to “pick up where you left
off” with the PMM. To do this, a custom property, Step-Nesting, is used at
serialization time to record in the project instance the state of the PMM process,
along with the project data.

7 Synthesizing a PMM Using a Visualization and
Heuristic

The java program of Sect. 6 allows us to instantiate a PMM to produce a project
instance. However, examining a project instance that has been created without
reference to a PMM in an attempt to synthesize a PMM which “fits” the project
is difficult, because a potentially infinite number of PMMs might have created
a particular project instance. A visualization may assist a human to deduce a
PMM by examining project data, and using some heuristic method. Using the
framework, we can create such a visualization, as follows:

1. Classify and group (using summary tasks) the project tasks and resources
according to some scheme, so that we decorate the project instance with
PMM “Kind of step” and “Kind of resource” data.

2. Decide whether particular groups of tasks are the result of sequence, selection
or repetition control constructs.

3. Construct a PMM with steps reflecting these control constructs.
4. Add resource roles to the PMM steps that reflect the resource use in the

project instance.

A simple visualization is to use the custom fields of the Planner program to
record the “Kind of step” data mentioned above. Not only do the fields record
the data, but the arrangement of the data in the Planner task and resource views
makes patterns in the data obvious.

As an example: consider the project of Fig. 2. If we classify and group the
tasks and resources of the project according to made–up classifications of “create
page”, “revise page” and “get feedback” for project tasks, then Planner will
present the task view of Fig. 4.

There are obvious patterns in the task classifications of Fig. 4: the “create
page” and “revise page” tasks are grouped together, and each group is followed
by a “get feedback” task. From this, we could guess control structures such as:

A Framework for Linking Projects and Project Management Methods 95

Fig. 4. The task view of Planner, showing the task groupings and classifications with
which we decorated the project instance

– While there are course web pages left to work on, work on the web pages.
– Change the course web pages until the academic representative is satisfied.
– If a course web page doesn’t exist for a course, then create it, otherwise, edit

the existing page.

Finally, we could synthesise the control structures into a “Change Course
Web Pages” PMM like this:

– Iterate the following steps until the academic representative is satisfied with
the course web pages:
• While there are course web pages left to work on:

∗ If a course web page doesn’t exist for a course, then the web master
creates it, otherwise, they edit the existing page.

Having created a PMM, we can compare it to other PMMs and attempt
to improve it. For example: a well–known strategy in IT projects is to run a
pilot phase to elicit early feedback from the client. If we were to assume that
the changes to the course web pages were all of a similar nature, then changing
just one page and obtaining feedback for that page might reduce or remove the
second round of web page changes we can see in the project instance of Fig. 2.
The resultant PMM would be as follows:

96 T. Dale, N. Churcher, and W. Irwin

1. The web master edits an existing web page to illustrate the kind of changes
envisaged, and then

2. The web master obtains feedback from the academic representative about
the changes, and then

3. The web master alters the scheme for changing the web pages, as appropriate,
then

4. Iterate the following steps until the academic representative is satisfied with
the course web pages:
– While there are course web pages left to work on:

• If a course web page doesn’t exist for a course, then the web master
creates it, otherwise, they edit the existing page.

8 Conclusions

Conventional PM promotes a static project plan, where all dimensions of the
project; (tasks, resources and allocations), are frozen at the beginning of the
project. This plan may be made up in some ad hoc way or produced from a tem-
plate. The project is managed to follow the plan as closely as possible, because
conventional PM has difficulty in coping with change in a project. However,
both the formulation and management of a real project need specialist knowl-
edge from the domain in which the project operates, to describe what tasks and
resources are required to accomplish a goal and also to control the progress of
the project.

PMMs formalize this specialist knowledge and form a reactive system that
constrains the course of a project, according to the current state of the project.
This is a more powerful and expressive concept than conventional PM, however,
it results in a project that constantly changes it’s composition. For example:
the operation of selection construct in a PMM results in one task being selected
from several possibilities, and this is something that does not normally happen
in conventional PM. PMMs such as XP have workarounds for this characteristic.

We have used data modelling to create a framework that relates PMMs to
conventional PM. A simple Java program was described which implemented the
framework and could create a “PMM–aware” project, given a PMM description
and project goal.

The framework can also assist with producing visualizations of project data
that could be used to synthesise PMMs to fit “non–PMM–aware” project in-
stances. A simple visualization and PMM-creation heuristic was given as an ex-
ample, and examination of the PMM so created revealed possible improvements
to it.

Future work will centre around implementations of the framework with a
variety of process description languages, the investigation of larger and more
realistic applications of the PMM–based project generator, and the production
of more visualizations of project data to, for example: compare and evaluate
PMMs.

A Framework for Linking Projects and Project Management Methods 97

References

1. Burbridge, R.N.G.: Introduction. In Burbridge, R.N.G., ed.: Perspectives on
Project Management. IEE Management of Technology Series 7. IEE, London
(1988) xv–xxv

2. Standish: Extreme Chaos. In: http://www.standishgroup.com, The Standish
Group (2001)

3. Standish: The Chaos Chronicles. In: http://www.standishgroup.com, The Stan-
dish Group (1994)

4. Lewis, J.: Fundamentals of Project Management. AMACOM, New York (1995)
5. Microsoft: Microsoft Project 2003. In: http://www.microsoft.com/, Microsoft

Corporation (2003)
6. Flowers, S.: Software Failure, Management Failure: Amazing Stories and Caution-

ary Tales. Wiley, Chichester; New York (1996)
7. Collins, T., Bicknell, D.: Crash, Ten Easy Ways to Avoid a Computer Disaster.

Simon and Schuster (1997)
8. Small, D.F.: Ministerial Inquiry into INCIS. In: http://www.justice.govt.nz/

pubs/reports/2000/incis_rpt/index.html, Wellington, NZ Justice Department
(2000)

9. Hult, R., Hallendal, M., del Castillo, A.: Planner, a Project Management Applica-
tion for the Gnome Desktop. http://www.imendio.org/projects/planner/ (2004)

10. Gray, C.F., Larson, E.W., eds.: Project Management, The Managerial Process.
McGraw–Hill, New York (2000)

11. Fayolle, A., Scheller, M., Roberts, J.: PyGantt, a Gantt Chart Generation Tool. In:
http://www.logilab.org/pygantt, Logiclab http://www.logilab.org/ (2000–3)

12. PMXML: Project Management XML Schema. In: http://

www.projectoffice.com/xml/, Pacific Edge Software (2000)
13. Gantt, H.L.: Organizing for Work. George Allen & Unwin Ltd, London, UK (1919)
14. Schach, S.R., ed.: Object–Oriented and Classical Software Engineering. McGraw–

Hill, New York (2002)
15. Beck, K.: Extreme Programming Explained: Embrace Change. 6th edn. XP series.

Addison-Wesley (2000)
16. Royce, W.W.: Managing the Development of Large Software Systems: Concepts

and Techniques. In: IEEE WESTCON, Los Angeles (1970) 1–9
17. BPML: Business Process Markup Language. In: http://www.bpmi.org/, BPMI

Initiative (2000)
18. Boehm, C., Jacopini, G.: Flow Diagrams, Turing Machines and Languages with

only Two Formation Rules. Communications of the ACM (1966) 366–371
19. Westfechtel, B.: Models and Tools for Managing Development Processes. Volume

1646 of Lecture Notes in Computer Science. Springer, Berlin, London (1999)
20. XML: Extensible Markup Language: XML. In: http://www.w3.org/xml. (1998)
21. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object–Oriented Software. Addison–Wesley, Reading, Massachusetts
(1995)

22. Dale, T.: TPMM and PM/PMM framework. In: http://www.cosc.canterbury.
ac.nz/tony.dale/msc/index.html. (2005)

23. DOM: Document Object Model Level 3 Core Specification. In: http://

www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/, The W3C Consortium
(2004)

24. XSD: XML Schema Definition. In: http://www.w3.org/2001/XMLSchema/, The
W3C Consortium (2001)

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 98–114, 2005.
© Springer-Verlag Berlin Heidelberg 2005

 Software Defect Analysis of a Multi-release
Telecommunications System

Marek Leszak

Lucent Technologies Bell Labs
Lucent Technologies Network Systems GmbH, Optical Networking Group,

Thurn-und-Taxis-Str. 10, 90411 Nuernberg, Germany
Phone: +49 (0) 911 5263382
mleszak@lucent.com

Abstract. This paper provides a study of several process metrics of an indus-
trial large-scale embedded software system, the Lucent product Lambda-
Unite™ MSS. This product is an evolutionary hardware/software system for
the metropolitan and wide-area transmission and switching market. An
analysis of defect data is performed, including and comparing all major (i.e.
feature) releases till end of 2004. Several defect metrics on file-level are
defined and analyzed, as basis for a defect prediction model. Main analysis
results include the following. Faults and code size per file show only a
weak correlation. Portion of faulty files per release tend to decrease across
releases. Size and error-proneness in previous release alone is not a good
predictor of a file’s faults per release. Customer-found defects are strongly
correlated with pre-delivery defects found per subsystem. These results are
being compared to a recent similar study of fault distributions; the differences
are significant.

Keywords: Case study, software process metrics, defect prediction, error-
proneness, defect density.

1 Introduction

Measurement and evaluation of product and process characteristics is a critical
activity throughout the entire software development, evolution, and maintenance
lifecycle. It is fundamental to determine whether the software products we develop
have the desired functional and non-functional properties; it is fundamental to
determine whether we have achieved the desired quality, cost, and schedule attributes
in our development projects.

The subject of our empirical study is LambdaUnite™ MSS [1] -a multi-release,
large embedded hardware/software system which is still in evolution. For further
details of this product see the related previous study [2]. Lifespan of this product
reaches from its first commercial release in 2001, and subsequent feature release
approx. every 6 month. Up to now (end of 2004) 11 releases have been or are being

 Software Defect Analysis of a Multi-release Telecommunications System 99

delivered to various telecom service providers worldwide. As basis for our case study,
we take the change evolution over these 11 releases.

Our development approach can be shortly characterized as follows. R&D processes
applied for the LambdaUnite product are defined, applied in all releases, and quality
con trolled. The product lifecycle is divided into several phases, reaching from system
requirements & architecture, (software and hardware) design & development,
software (and hardware) integration, system test, general availability (GA), to
maintenance. The software part consists of software source and build files, and of
architecture and design documentation - the latter being out-of-scope for this study.
Roughly 85% of the sources are written in C++ and C; a smaller portion using shell
script, tcl/tk, and perl. Source files mostly represent C++ classes and associated
header files. Some principles from which we could profit for our study, to obtain
consistent and complete raw data:

• all changes to software files are guarded by identified and managed
Modification Requests (MRs) in the central change management database,
adapted from ClearDDTS™ (from IBM-Rational)

• all software files are version controlled in ClearCase™ (from IBM-Rational)
• links between MRs and touched files are stored automatically during check-out

and check-in
• various descriptive attributes per file and per MR are kept and integrity-

controlled by a dedicated change management team, the change control board
• all this data is consistently available, in one environment, for all product

releases

Goals of This Study
The underlying objective for the investigation in this paper is to obtain insight into
software changes, esp. into error-proneness, to get quantitative decision input for
better focusing quality improvement activities. Decision making input is provided
mainly for

• prioritization of software and system testing, and assigning resources to
corrective maintenance

• hints for re-design and refactoring of error-prone software parts

To support these objectives, our investigation is driven by following goals:

G1. Predict number of defect MRs (observed defects), overall and distribution per
software subsystem

G2. Predict error-proneness, by studying defect distributions both on file level and on
subsystem level

In order to achieve stronger focus on the defect model and analysis of concrete meas-
urements, several correlations between defects and other metrics are studied.

G3. Predict number of post-release defects per product release, by studying
correlation with e.g. pre-release defects

100 M. Leszak

G4. Complexity of file changes associated with an MR, experimenting with source file
size, file age, defect density per file and release, as performed by Ostrand and
Weyuker for some systems at AT&T [12,13,14].

Can the goodness of their estimation model be confirmed in our case study? In our
trial to replicate their study, we succeeded to extract all the raw data their studies are
based upon. Looking on the evaluation results, we could confirm some of their
results; other results differ significantly. We intend to continue with subsequent
studies, see outlook in chapter 6:

• utilize AT&T’s defect prediction model
• we have at our disposal more attributes of MRs, faults, and files available that

we could evaluate with this single case study

2 Related Work and a Taxonomy of Defect Prediction Models

We attempt to provide a taxonomy of typical industrial goals for measuring and
analyzing defect metrics, by surveying some recent case studies
[3,4,5,10,11,12,13,14,18]. The taxonomy in [18] is classifying various models more
generally to assess software quality. Our taxonomy is based on a software defect
model, both with respect to a classification of the defect metric goals (e.g. analyze
error-proneness; estimate amount of defect Modification Requests (MRs) found) and
with respect to concrete properties / attributes in the MR model of complex industrial
software systems.

The class of software systems to which our survey should be applicable,
encompasses evolutionary, multi-release systems that incorporate incremental
changes - both for new features and fixes to defects detected in previous releases. In
addition, we would like to restrict our survey on software systems. Their complexity
leads to a decomposition into several subsystems, so that one dedicated software team
is in charge of developing a certain subsystem. However, except of our own work
[2,6,7,8,9,20], we have not found any other case studies studying defect distribution
over subsystems. We like to encourage other companies and researchers to consider
this topic in their future work. A recent motivation for subsystem-based evaluations is
the need for higher software productivity, by exploring deployment of agile
development methods to large-scale development in a team-based, subsystem-based,
and evolutionary product development.

We claim the mentioned case studies can be classified into (at least1) the following
three categories C1, C2, C3, based on the industrial business goals they support. We
describe the typical analysis techniques applied for each category, and some practical
constraints (i.e. occurring in real, large-scale projects) that often preclude a
straightforward replication of the associated published case studies.

C1: Predict error-proneness, to optimize test management, e.g. to better prioritize test
case execution.

1 Compare to [18] for another taxonomy with a wider scope.

 Software Defect Analysis of a Multi-release Telecommunications System 101

Technique: study distribution of defects in (software source) files. Provide prediction
for future releases, based on historic data of previous releases.

Typical defect metrics: defect distribution by lifecycle phase detected, by severity;
defect density (using code-based size measurements per file); file size, and file age.
There are numerous studies published in the last 20 years. However, only a few of
those have studied defect histories across multiple releases. Some recent work
includes [3,12,13,14] using defect distribution across files. Our own previous work on
error-proneness has been using complexity measures (esp. cyclomatic number) and
compliance to the organizational software process [8,9].

Constraints on case study replication: Other studies have not used file clusters
into subsystems, thus precluding insights on software team level. (This issue may
be irrelevant for organizations that follow a completely unconstrained file
ownership model.) Further, the relationship of observed defects (called MRs in our
organization) to affected (i.e. changed) files may differ. Another issue which may
prevent replicability of case studies: how is generated code and test code handled,
should it be ignored for the study? Looking on the various parameters of a code size
counting model [19] still no agreed and consistently applied parameter setting seem
to exists. See chapter 3 for a description of our size measurement and change
model.

C2: Predict defect rates, i.e. their distribution over time, to achieve better resource
planning for subsequent releases. See e.g. [4,10,11].

Technique: Find a 'best-fit' distribution function for the shape of defects found;
calibrate the function's parameters, extrapolate defect amount from release histories.
Constraints on case study replication: Although the studies mentioned provide very
valuable results, they restrict their scope to post-release defects, and to the distribution
of defects related to their creation date. Following extensions would be beneficial in
an industrial setting: study distribution of pre-release defects in addition, and explore
also the defect fix (i.e. correction) rate. We are not aware of any published studies
which would cover such extensions.

C3: Propose which defect prevention technique is most effective, based on defect data
and their relation to other process metrics.

Technique: Study change behavior in software files and relate it to defects found;
study root-causes for defects observed, etc. Studies and typical defect metrics: [16]
predicts rework effort, [6,8] analyzes root-caus-es for defects, based on an extended
Orthogonal Defect Classification scheme, and proposes effective defect prevention
techniques.

Overall, our impression of the amount of published studies for defect analysis and
prediction of large, multi-release industrial software systems is that rather few such
studies has been performed (or, at least, published). We assume that some other
projects may not have the data needed for such studies, or their process may not be
that much consistent or detailed. An experience we made during our empirical

102 M. Leszak

research: Even if all raw data is available, it is not trivial and very time consuming, to
extract and analyze the data, esp. over several large product releases.

3 Model of Software Changes

3.1 Terminology and Basic Data Attributes

MR Modification Request, the basic change unit for software
and other work products throughout the R&D lifecycle

defect MR MR used to correct any fault in specification, design, or
implementation. For each problem detected, a new MR is
issued, called eMR in this study. (Other kinds of MRs for
e.g. feature enhancements are not considered in our study.)

software MR MR used to update any software files. (Other kindsof MRs,
for changes of documents, hardware, and tools are not con-
sidered in our study.)

eMR ‘error related’ MR, an observed defect on system
level. In our study, we consider software eMRs only.

sMR a sub-MR (’spawn’) of an eMR, as basic change request for
an affected subsystem. An eMR can have one or more sMRs
associated. Only if all associated sMRs of a eMR are solved
correctly, the associated error is considered as being fixed

working sMR an sMR which is actually used to change files

fixed-by sMR an sMR which is not used for file changes directly, but is
linked to a working sMR

defect general term, used for any fault or error

fault a single change (i.e. version update) of a file, caused by one
or more sMRs. If an observed defect (as eMR) affects n sub-
systems and for each subsystem S

i
 (i=1,2...,n) m

i
 files need

to be modified then this is counted as sum(m
i
) (i=1,2...,n)

faults. (Similar counting conventions have also been applied
in the related case studies [3,13].)

system for this study, corresponds to a LambdaUnite ’network ele-
ment’. Consists of one or more (software and hardware)
subsystems

(software) subsystem a unit of team planning and tracking, configuration and
change management, unit testing, and feature integration.
Consists of a collection of functionally related components,
which altogether form an architectural unit. Components
consists of one or more files.

 Software Defect Analysis of a Multi-release Telecommunications System 103

file software source or build file, belonging to exactly one
subsystem. Source files are usually related to C++ classes.
For the goals of counting files related to product-effort only,
we exclude 1) non-C/C++ code 2) all generated software
files, 3) files which do not appear in any official load build
of a product release,, i.e. ’dead code’, 4) test code, and 5)
COTS software included in our product2. There is a tight
link between source files in the Configuration Management
environment and the MR system: a new version can only be
produced using an MR; the link to the associated assigned
MR is kept as file attribute.

NCSL Non-Commentary Source Lines (empty lines and comment
lines are not counted)

CNCSL changed/added NCSL (used as relative code size measure
between product releases. Deleted lines are not considered)

File Data Attributes
For each ’product effort related’ software file (i.e. excluding files in any of the 5 cate-
gories in the file definition above), following data are extracted for our study:

• path (incl. filename), used as primary key for the file records analyzed. Note
that the path determines the unique subsystem the file is part of

• first release the file has been created
• if the file was changed in any release, then for each release:
• no. of software-found faults (i.e. the amount of defect sMRs which changed this

file in release R, such that the phase-detected attribute of these sMR is set to
’software found’)

• no. of systemtest-found faults
• no. of customer-found faults
• absolute code size, counted in [NCSL]
• relative code size, i.e. added and changed lines during development of a release

R, counted in [CNCSL]

MR Data Attributes
We consider software defect sMRs which have been accepted for changing software
files. Following MR attributes have been extracted for this study; those not yet used
for analysis are marked with an asterisk ’*’:

• * severity, ranging from 1 (highest) to 4 (lowest), is a measure of the potential
customer impact of the change. Severity 1 and 2 MRs are ‚customer visible' i.e.
indicate a potential system failure. (Our previous study [2] indicated that most
MR related measurements are quite insensitive to MR severity.)

2 See [19] for numerous other possibilities to count lines of code.

104 M. Leszak

• * creation date. This is the basis to study MR evolution over time. (To study de-
fect correction, attributes like resolution date and approval date would be
needed in addition.)

• target release. This is the release of the product in which the corresponding
software change is intended to, or already has been included

• subsystem. This is the part of the software which has really been changed
• phase detected, ranging from ’software-found’ over ’systemtest-found’ to ’cus-

tomer-found’. The first value is an abstraction for any lifecycle phase prior to
system test, the third value includes MRs observed by the customer service
organization during e.g. field testing and acceptance testing

• * number of check-in events. This indicates the number of faults, one in each
distinct file touched, during carrying out bug fixes with this sMR. I.e. each sMR
adds at most one fault per affected file. Note that faults caused ’indirectly’ by
fixed-by sMRs are counted as well. (See [2] for our previous evaluation of what
could be considered as measure of change complexity.)

3.2 The MR Workflow Model

As outlined in figure 1, the workflow of defect related changes is at follows. There
are three sources of defects observed for a software load of a certain product release
R. Defects found in deployed communication networks or field tests are forwarded
to the responsible development organization, in case the defect is systematic, i.e.
caused by erroneous implementation. Pre-delivery defects, be it found by system
testing or earlier stages, together with post-delivery defects, are assessed by a
product’s change control board. Each such defect is represented as MR in our
change management system, called eMR which indicates that we are in the problem
domain. An MR wrongly reported as defect gets ’killed’ (false positive). MRs not
caused by the system’s software part (e.g. caused by hardware or by interfacing
other systems) are excluded from our consideration. Suppose for an eMR created
for release R, the change control board checks if this eMR shall be fixed in the
currently active release R’ in development, R’ R. If an eMR is decided not to be
solved in R’, it is also not counted for R’, but appears then as MR for a subsequent
target release, R’’ > R’. If the software eMR is decided to be fixed in R’ then it is
assigned to the team owning the affected subsystem to be changed. In case of
several affected subsystems, one sMR is created for each such subsystem. An engi-
neer within the subsystem team can update (only) existing files of S, or can create
new files. He can also bundle several assigned defect MRs into one, use one
’working’ MR for file check-outs / check-ins, and link his other related MRs to the
’working’ MR as so-called ’fixed-by’ MRs. For each file, both working and fixed-
by MRs are counted as separate faults.

Looking backward, each fault is traceable to a unique set of sMR’s (one working
MR plus zero or more fixed-by MRs, leading to an n:m mapping between sMRs and
files). Each sMR is traceable back to a unique eMR.

 Software Defect Analysis of a Multi-release Telecommunications System 105

4 Basic Measurements

INPUT Metrics
For each product release of the LambdaUnite™ MSS product line:

• software defect MRs, related to subsystems
• files per release, plus associated faults and overall, new and changed NCSL
• features, related to subsystems contributing to implementation of the feature

(Feature data has not been evaluated in this study, see [2] for some results.)

Basic Quantities
• 11 feature releases
• 10,100 software defects (sMRs) and 32,400 faults over all releases
• mean ratio eMRs : sMRs is 1.4, fairly stable over all releases
• ratio of sMRs found in lifecycle stage 'software development’ (early pre-

release)', 'system test’ (late pre-release), 'post-release’ (customer found) is
55.3% : 43.0% : 1.7%, measured over all releases

Fig. 1. MR workflow model for Release R and subsequent releases R’, R’’

customer-
found

systemtest-
found

software-
found

Incoming errors on
load for release R

defect MR b,
SW error ’Eb’

Not caused/
fixed by SW

Not design
relevant

False positive:
’Kill’ MR

Known bug for R’
to be fixed in R’’, R’’ > R’

Accepted to fix
in release R’
(R’ ≥ R)

sMRs per affected
subsystem S1, S2, ...

S1
working MR

S2
working MR

... . . .

. . .

Source
files per
subsystem

faultfaulteMRsMR

eMReMR

S1
fixed-by sMR2

sMR1

sMR2

sMR3

defect MR a,
SW error ’Ea’

...

106 M. Leszak

• ratio of faults for the same three lifecycle stages is 65.0% : 34.3% : 0.6%
• 11,500 software source files, 4,500 of which have been faulty, distributed over

31 subsystems
• size of 1.2 Million non-commentary source lines, written mostly in C++. This

excludes COTS software parts, test code, and generated code. In the previous
study [20] we have included these parts, yielding 4.5 M-NCSL

• 700 features, over all releases

Table 1 depicts the basic feature, defect, fault, and size quantities.
Features are identified and specified by Product Management for each new

planned product release. Note that features can have very different complexity, i.e. are
not very useful as effort and size estimation units. Nevertheless, a strong correlation
of features vs. defect MRs per subsystem has been observed for our product [2].

Files are counted acc. the conventions in section 3.1. The portion of faulty files in a
release R (i.e. number of files with at least one fault in the respective release) tends to
decline if the product matures, a good prerequisite for defect prediction. 61.0% of all
files overall are never changed (zero faults in all releases) - a remarkable and
surprising observation. (Not shown in table 1: the portion of accumulated faulty files
for R, i.e. occurring in any release <= R, is fairly constant from 39.5% to 42.8%.)

Table 1. Quantities of features, files, sMRs, faults, code sizes

R
el

ea
se

ne

w
fe

at
ur

es

fil

es

sM

R
s

fa

ul
ts

%
 e

ar
ly

fa
ul

ts

%
 fa

ul
ty

 fi
le

s

si
ze

 a
bs

.
[K

-N
C

SL
]

 si
ze

 r
el

.
[K

-C
N

C
SL

]

D
D

 [s
M

R
s /

 K
-N

C
SL

]

1 241 6125 2541 7501 80.2 25.3 512 n/a 4.96

2 61 6436 882 3666 63.2 13.1 557 34 1.58

3 115 7122 1371 4901 54.9 18.0 679 63 2.02

4 51 7891 1255 3139 53.1 1.2 790 75 1.59

5 7 7908 127 178 43.3 1.1 659 15 0.19

6 57 8413 1017 3069 58.6 13.3 860 97 1.18

7 23 9656 592 1593 62.0 7.2 947 29 0.63

8 94 10144 519 1758 59.4 7.7 1122 52 0.46

9 11 10235 405 865 47.9 4.0 1044 89 0.39

10 27 10825 751 3324 64.4 6.9 1313 63 0.57

11 65 11466 629 2379 79.7 5.4 1262 29 0.50

 Software Defect Analysis of a Multi-release Telecommunications System 107

sMRs and code sizes vary largely across releases, due to the still very actively ongoing
feature development. “Early” sMRs indicate those which are software-found. The per-
centage is an indication of effectiveness since it is much cheaper to fix faults early.
Note that this portion cannot be increased arbitrarily, just by adding resources, due to
the nature of embedded systems, i.e. certain features require a complete system and its
interaction with its environment to be tested adequately; often not achievable during
software unit and integration testing.

Measurement of defect density (denoted ‘DD’ in table 1) is discussed in
section 5.1.

5 The Analysis - Towards a Defect Prediction Model

A file-level prediction of number of faults per file for a release R, just by considering
fault distribution and other file characteristics from previous releases 1,2,...,R-1 has
been achieved in the recent AT&T study, based on multivariate analysis [13] of
several file attributes. Before we try to replicate their study, we have analyzed some
aspects of fault distribution between subsequent releases (R,R-1) for R=2,...,11. This
analysis intends to gain confidence whether it is worthwhile to undertake the more
sophisticated and time-consuming multi-factor analysis.

A simple correlation analysis of R-1 faults vs. R faults does not reveal such a
simple relationship, as can be seen in the last two columns of table 2. Correlation tend
to decrease for more mature releases. Therefore, we focus onto another hypothesis:

Fault-proneness is inherited across releases, i.e. a file which has been faulty in a
previous release R-1, will also be faulty in release R.

For the sake of investigating in this hypothesis, we partition the number of files of
each release R=2,...,11 into four parts:

P1(R) portion of files in R which are faulty AND have been faulty in R-1
P2(R) portion of files in R which are not faulty AND have not been faulty in R-1
P3(R) portion of files in R which are faulty AND have not been faulty in R-1
P4(R) portion of files in R which are not faulty AND have been faulty in R-1

Obviously, the higher the portion of P1(R)+P2(R) of all files of a release R, the
better the hypothesis is fulfilled. On the other hand, files belonging to P3(R) and
P4(R) correspond to the somehow negative case for which the inheritance hypothesis
is not supported. Columns 2-5 of table 2 depict the results for releases R=2,..,11. The
negative cases per release range from 37% to 18%, with a trend to decrease in mature
releases. Still we consider this a very encouraging result - taking into account that
only files being faulty at all (i.e. in at least one release) are analyzed here, and that
around 60% of all files have never been faulty up to now.

Fortunately, our data is not detracted by a high amount of new files per release
which would be some ’noise’ to derive a good defect prediction model from historic
file data: For new files, such a model is not applicable, reducing the model’s
predictive power. Looking e.g. on the last 3 releases in table 2, there has been less
than 5% of new files a quantity which probably contributed to the ’0, >0’ case to a

108 M. Leszak

Table 2. Relation of fault quantities per faulty file, for release R=2,3,..,11 vs. predecessor
release R-1

Pearman correlation Release
R

P1
(R)

P2
(R)

P3 (R) P4 (R) %
new
files
in R

#faults in
release R
vs. R-1

#faults in
release R vs.
all cumulated
faults until
R-1

2 12.2 58.8 6.5 22.4 7.6 0.64 0.93

3 9.9 62.5 18.7 8.9 15.2 0.50 0.84

4 10.9 57.3 14.1 17.6 11.1 0.44 0.76

5 1.4 74.4 0.6 23.7 0.3 0.24 0.64

6 1.4 74.4 23.7 0.6 7.0 0.23 0.24

7 7.0 66.3 8.6 18.0 7.8 0.43 0.57

8 5.6 72.6 11.8 10.0 6.1 0.40 0.40

9 3.9 77.3 5.2 13.5 1.6 0.35 0.37

10 3.8 77.9 12.9 5.3 4.4 0.18 0.39

11 4.6 74.1 9.1 12.2 2.6 0.20 0.42

Fig. 2. Distribution of no. of faulty files fixed in R11 vs. faults in release R11

large extent. Also in the AT&T studies [12,13], the amount of new files decreased in
mature releases, making it more feasible as basis for a prediction model.

Figure 2 demonstrates a rather skewed distribution of faults vs. faulty files for
release R11. 90% of all faults fixed in R11 (2153 out of 2379 faults) reside in 63% of

 Software Defect Analysis of a Multi-release Telecommunications System 109

all faulty files in R11 (388 out of 614 files) and in 5.4% of all files overall (614 of
11466 files). The characteristic of this distribution cannot be explained by the related
code size of the faulty files, since we did not find any significant correlation here, see
next section. So reasons for this phenomenon still need to be explored.

5.1 Analysis of Defect Density

Numerous authors has studied defect density (DD) measures and their correlation
with other metrics. There are well-known problems with this metric in general

• based on measurement theory, Zuse observed several issues with using DD, the
most obvious for industrial practice being the paradox of ’non-scaleability’ [17]
if certain properties of the relation of defects vs. code size do not hold

• usage of DD for comparison of different projects or even organizations is ques-
tionable since this metric is highly process-dependent

• number of defects depends e.g. on in which lifecycle phase defect recording
starts, if defects are distinguished from enhancements, etc.

• amount of lines on code depends on the algorithm to count lines, and there is
no unique standard and agreement on the counting rules

As probably new issue, our impression is that the impact of using a multi-release
project history adds a third category of issues related to DD.

Most authors who have studied DD in industrial projects, see e.g. [3] and [12],
have defined DD for a release R, as ratio of defect MRs over the absolute number of
lines of code. Since this size contains also all the code written in releases 1, 2, ..., R-1
this definition assumes an equal distribution of defects over code - a hypothesis which
seems to contradict ’common sense’ in industry. We would rather assume a skewed
distribution acc. the Pareto rule, i.e. defects in release R affect 80% new code in R vs.
20% changed code of R-1. Rationale: before delivery, old code is very likely much
better tested than new code.

We have considered to take the ratio of defects found in R over the amount of new/
changed code in R, as ’relative’ DD metric. In the right-most three columns of table 1,
the values for absolute/relative code size and defect densities per release are depicted.
Absolute DD tend to decrease over releases - assuming a skewed defect distribution in
old vs. new code this is expected and has also been observed in the related AT&T stud-
ies [12,13]. But this measure cannot be seen as adequate to be interpreted as a quality
metric for a certain release -one cannot infer that a more mature product has higher
quality simply because the DD measurements are decreasing. Rather, the relative DD
measure seems to be adequate for this intuitive interpretation.

However, we have found no evidence at all for the following hypothesis which is
based on the two components of any DD metric, i.e. on size and on faults:

Absolute and relative code size are a good predictor of faults in a release R
For both kinds of code sizes, this hypothesis can be rejected: Correlations for most

LambdaUnite releases are in the order of [0.05,0.20]3, whereas in the AT&T studies this
was a very good predictor. See table 3 for possible interpretations of these differences.

3 The correlation of 0.2 can be slightly improved if we partition all files into groups of similar

sizes, but is still not higher than 0.4.

110 M. Leszak

5.2 Analysis of Post-release Defects

Acc. figure 1, a certain portion of defects after delivery, be it found by customers or our
field service, are ’design relevant’ and appear then as defects for R&D to fix. The por-
tion of these defects is 1.7% per release, compared to the sum of software-found and
systemtest-found defects. For the LambdaUnite system, we have falsified in previous
studies on subsystem level that post-release defects are a good predictor for pre-release
defects of the same subsystem. In the current study, we observed that pre-release faults
and post-release sMRs are well correlated with coefficient 0.74, see also figure 3. This
is surprising since most other studies did not observe such a strong relationship. As with
other similar measurements, still causal models are missing which could explain those
differences. Some interpretation has been provided by our software architects: Subsys-
tems with high amount of customer-found sMRs (>=9) are either ’platform subsystems’
(i.e. are more frequently affected by defects found) or contain rather new features - this
would explain the higher number of customer complaints. Subsystems with high
amount of faults (>= 3000 over all releases) are all part of the software platform - most
likely , the same argument on defect propagation applies as well.

As reported in the previous study [20] with 10 releases only, the hypothesis:

The amount of systems delivered to customers for a release R is a good predictor for
the amount of post-release defects reported for R

has been only weakly supported by a Pearman correlation coefficient of 0.58. See [20]
for a detailed discussion.

As an essential conclusion, we apparently found some driving factors for the
amount of post-release defects, in order to drive improvements towards higher quality
perceived in the field. Further analyses are necessary to validate our results and
achieve causal models.

Fig. 3. Customer-found sMRs vs.faults per subsystem, cumulated over all releases

 Software Defect Analysis of a Multi-release Telecommunications System 111

6 Summary and Outlook

Our file-level defect analysis provides important input towards

1) predicting error-proneness of files,
2) re-designing error-prone files or components,
3) deciding how to prioritize testcases on software level and system level, and
4) better planning of maintenance efforts.

Meanwhile our software organization decided to include our analysis inputs into
their project management activities.

The analysis of our data shows several similarities, as well as substantial
differences, tothe studies performed at AT&T. Table 3 outlines details and provides
interpretations.Although the root causes (i.e. main driving factors) for such
differences are unknown,we assume that the differing application domains encounter
for part of the differences which are discussed in table 3. Further, many of the new
features in our system affects existing files to some extent, while in an information
system new functionality can often be added largely decoupled from existing files, as
observed in [13] “new files frequently represent new features”. We assume that in our
application domain, the degree of cohe- sion between files in different subsystems is
higher than in other domains. (For the current study, no architectural information
about file and inter-subsystem dependencies has been used - this could be the starting
point for another interesting study.)

Looking on table 1, the ratio sMRs to faults ranges up to 5.5 per release, indicating
a high ’change complexity’ since this can be interpreted as mean number of files
affected by an sMR, i.e. a defect on subsystem level.

One lesson we have learned during our study is that no single factor alone, like file
age, absolute/relative code size, or defects in previous releases can be taken as
adequate predictor for error-proneness. As next step, we therefore intend to pursue a
multivariate statistical analysis like reported in [13].

Several refinements of the current study are in discussion:

• Analysis refined onto subsystem-level would support test prioritization and
refactoring for each software development team.

• Analysis of MRs and faults by development stage would lead to improvements
in finding more defects earlier, leading to higher productivity.

• The amount of features as possible predictor for the number of pre-release de-
fects, per product release and subsystem. In the previous analysis [2], there was
a very high correlation (0.7- 0.8) observed between features affecting a certain
subsystem, and the number of defects found for this subsystem. It is interesting
to explore whether this very useful evidence can be (re-)validated for
subsequent releases of our product.

• Enhancing our defect analysis by architectural information, e.g. by the amount
of import/export relationships per file and between subsystems, could possibly
be valuable in explaining skewed defect distributions, towards a causal model
for defect distribution in large software systems.

112 M. Leszak

Table 3. Comparison of our study to AT&T’s study [12,13]

Criterion AT&T study Our study

Application domain information system
(software only)

embedded system

Project characteristics multi-release evolutionary development

System size medium - 500 K-LOC high - 1.2 M-NCSL

Size of our system ranges up to 4.5 M-NCSL, depending on metric definition

Software change identification, if
caused by a defect

needs empirical esti-
mation or interview

reliable data, based
on consistent process

In our study, each MR is clearly classified as being a defect or an enhancement.
The classification is built into our MR model, and its correctness is ensured by the
project’s change control board. Thus, we could easily sort out all changes related to
new functionality or enhancements. In other related publications, we saw additional
effort to derive this classification in context of the study, while it has been missing
in the MR and file data.

Fault distribution of files per
(mature) release

skewed - 90% faults
in 6% of all files

skewed - 90% faults
in 3.6% of all files

Faulty file portion decreases per
release

yes yes

In our study, portion of files containing any faults in a certain release tend to
decrease (25% to 5%), although accumulated portion of files of all previous
releases and the current one remains roughly constant (40%) across releases

Fault-proneness depends highly
on file size

yes no

In our study, file size in LOC or NCSL has not been an appropriate predictor for
defects. We observed correlations, between defects and absolute/relative code
sizes, not higher than 0.2. A similar result has been reported by Fenton's and
Ohlson’s case study [3]. Our previous study [2] on the first three releases of the
same product showed high correlation for release 1 (0.80) and low correlation for
releases 2, 3 (0.16), but this has been performed on subsystem level, whereas our
current study is on file-level and therefore not comparable directly.

Portion of defects found prior to
system test

80% 55% defects 65%
associated faults

 Software Defect Analysis of a Multi-release Telecommunications System 113

Criterion AT&T study Our study

In our embedded system, such a high portion may be very hard to achieve. AT&T
has analyzed an accounting system where no hardware/software integration is
needed - a step which makes earlier defect detection very costly: the amount of
early found MRs (prior to system test) cannot be raised arbitrarily in an embedded
domain for which host and target environment differs.

Amount of post-release defects 1% 1.7%

Acknowledgments. This work has been carried out with the excellent assistance of
Gerd Moessler who provided the basic non-trivial measurements on files, faults, and
MRs out of our change management and configuration management system.

References

[1] Lucent Technologies: LambdaUnite™ MultiService Switch (MSS) product description.
Online at http://www.lucent.com/solutions/core_optical.html

[2] M. Leszak, W. Brunck, and G. Moessler: Analysis of Software Defects in a Large Evolu-
tionary Telecommunication System. 12th Int. Workshop on Software Measurement
(IWSM), Magdeburg, Germany. Shaker Publ. (2002)

[3] N.E. Fenton and N. Ohlson: Quantitative Analysis of Faults and Failures in a Complex
Software System. IEEE Trans. on SW Engineering, 26 8(Aug. 2000), 797-814

[4] P. Hartman: Utility of Popular Software Defect Models. Proc. IEEE Reliability and Main-
tainability Symposium (2002)

[5] A. Gana, S.T. Huang: Statistical Modeling Applied to Managing Global 5ESS-2000
Switch Software Development. Bell Labs Techn. Journal (Winter 1997) 144-153

[6] M. Leszak, D.E. Perry and D. Stoll. A Case Study in Root Cause Defect Analysis. IEEE
International Conference on Software Engineering (ICSE-22), Limerick/Ireland (June
2000)

[7] M. Leszak: Practical Product and Process Measurement - Lessons Learned from 6 Years
of Experience. DASMA Software Metrik Kongress (MetriKon 2001), Dortmund,
Germany (Oct. 2001)

[8] M. Leszak, D.E. Perry, and D. Stoll. Classification and Evaluation of Defects in a Project
Retrospective. Journal of Systems and Software 61/3, Elsevier Publ. Company (June
2002) 173-187

[9] D. Stoll, M. Leszak and T. Heck: Measuring Process and Product Characteristics of Soft-
ware Components - A Case Study. 3rd Conf. on Quality Engineering in Software
Technology (Conquest), Nuernberg, Germany (Sept. 1999)

[10] Li, P.L., Shaw, M., and Herbsleb, J.D.: Selecting a Defect Prediction Model for Mainte-
nance Resource Planning and Software Insurance. Position paper for the Fifth Workshop
on Economics-Driven Software Research (EDSER-5), affiliated with the 25th
International Conference on Software Engineering (2003). Online at http://www-
2.cs.cmu.edu/%7ECompose/li%2Bedser5.pdf

[11] Li, P., Shaw, M., Herbsleb J., Ray, B., & Santhanam, P. Empirical Evaluation of Defect
Projection Models for Widely-deployed Production Software Systems. ACM Symposium
on the Foundations of Software Engineering (2004)

114 M. Leszak

[12] T.J. Ostrand and E.J Weyuker: The distribution of faults in a large industrial software
system. ACM SIGSOFT Int. Symp. on Software Testing and Analysis (2002)

[13] T.J. Ostrand, E.J. Weyuker and R.M. Bell: Where the bugs are. ACM SIGSOFT Int.
Symp. on Software Testing and Analysis (2004)

[14] T.J. Ostrand and E.J Weyuker: A Tool for Mining Defect-Tracking Systems to Predict
Fault-Prone Files. Proc. MSR 2004: International Workshop on Mining Software Reposi-
tories, affiliated with the 26th International Conference on Software Engineering (2004)
Online at http://msr.uwaterloo.ca/papers/Ostrand.pdf

[15] G. Denaro, M. Pezzè: Software evaluation: An empirical evaluation of fault-proneness
models. IEEE 24th Int. Conference On Software Engineering (2002)

[16] A. Mockus, D.M. Weiss, P. Zhang: Understanding and predicting effort in software proj-
ects. IEEE 25th Int. Conference on Software Engineering. Portland, Oregon (May 2003)

[17] H. Zuse: Lecture on Defect-Density. Online at
http://irb.cs.tu-berlin.de/~zuse/metrics/lecture02.html

[18] J. Tian: Quality-Evaluation Models and Measurements. IEEE Software 21(3) (May/June
2004) 84-91

[19] R.E. Park: Software Size Measurement: A Framework for Counting Source Statements.
Tech. Report CMU/SEI-92-TR- 20. SEI, Carnegie Mellon Univ., Pittsburgh (1992)

[20] M. Leszak: The Versatility of Software Defect Prediction Models (or why it’s so hard to
replicate related Case Studies). 14th Int. Workshop on SW Measurement (IWSM/
Metrikon). Berlin, Shaker Publ. (Nov. 2004)

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 115 – 127, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Performance Rather than Capability Problems.
Insights from Assessments of Usability Engineering

Processes

Timo Jokela

P.O. Box 3000, 90014 Oulu University, Finland
timo.jokela@oulu.fi

Abstract. Improving the performance and effectiveness of usability engineering
in software and product development in companies is perceived as a true chal-
lenge by many usability professionals. Findings from interviews and observa-
tions in eleven assessments of usability engineering processes indicate that us-
ability engineering include typically problems such as poor impact of usability
activities in product designs; limited skills and knowledge on usability among
the designers and management; unawareness on various activities of usability
engineering life-cycle; inappropriately used usability methods; even political
games around usability. On the other hand, issues such as project and configu-
ration management, and process performance measures are not the key prob-
lems of usability. It is concluded other kinds of methods but standard process
assessment should be considered for revealing the problems of usability engi-
neering. The problems identified in the assessment should be clearly communi-
cated to the management, but for developers an assessment should aim for a
constructive training occasion on usability.

1 Introduction

Usability has been recognized as one of the important quality characteristics of soft-
ware systems and products. Usable systems are easy to learn, efficient to use, not
error-prone, and satisfactory in use [1]. Usability brings many benefits such as "in-
creased productivity, enhanced quality of work, improved user satisfaction, reductions
in support and training costs and improved user satisfaction" [2].

Usability is defined in ISO 9241-11 [3] as follows: “The extent to which a product
can be used by specified users to achieve specified goals with effectiveness, effi-
ciency and satisfaction in a specified context of use”. This definition emphasizes how
the usability of a product relates to its context of use. The definition is largely used in
the HCI community. For example, it is used as a reference for usability in the Com-
mon Industry Format (CIF) for usability testing [4].

To guide the development of usable products and software systems, usability engi-
neering approaches and methodologies have been proposed. The standard ISO 13407
[2] is a widely used general reference of usability engineering, and is an important
reference also in this study. ISO 13407 identifies four principles of usability engineer-
ing: user involvement, iterative design, multi-disciplinary teamwork, and appropriate

116 T. Jokela

allocation of functions between users and the system. The standard further identifies
four main activities of usability engineering, illustrated in Fig. 1. These activities
represent a general overview of a user-centered development process: analyzing users
and the context of use, determining user-driven requirements, producing designs and
evaluating the usability of the designs.

understand &
specify the context

of use

specify the user &
organizational
requirements

evaluate designs
against

requirements

produce
design

solutions

identify need of
human-centred design

Fig. 1. The four usability engineering processes of ISO 13407

Many products or systems with usability problems reveal that the position of usability
engineering is not effective in many organizations. Thus the improvement of the posi-
tion of usability engineering has been widely recognized as a challenge in practice
and in the literature: [5], [6], [7], [8], [9], and [10]. The integration of usability engi-
neering and software engineering has also been a topic of a number of recent work-
shops, e.g. [11] and [12]. The problem has been persistent over the years. Even the
recent issue of ACM Interactions – the ‘flagship’ magazine of the HCI community -
addresses the topic [13].

A logical first step in the process of making organizational improvements is to
carry out a current state analysis of the development practices of a company. Follow-
ing the capability maturity model trend in software engineering, several usability
capability maturity (UCM) models1 have been presented from the early 1990s. The
first UCM models are Trillium [14] by Bell Canada (a general assessment model
including a specific part for usability engineering), Usability Leadership Maturity
Model, UMML, [15] by IBM, HumanWare Process Assessment, HPA, [16] by Phil-
ips, and User Centred Design Maturity, UCDM, [17] by the Loughborough Univer-
sity. In the late 1990s, Usability Maturity Model: Processes, UMM-P, [18] - which
follows the format of software process assessment (ISO 15504) - and Usability Ma-
turity Model: Human-Centredness Scale; UMM-HCS [19] were developed in a Euro-

1 Other terms, such as usability maturity model, UMM, are also used in literature.

 Performance Rather than Capability Problems 117

pean research project INUSE. Later, a technical report ISO TR 18529 [20] was pro-
duced from the basis of UMM-P. The latest developments are ISO 18152 [21] – a
more detailed version of ISO TR 18529 -, DATech [22] in Germany, SDOS [23] in
Japan, and KESSU [24] in Finland. A more detailed overview of the various UCM
models will be shortly published [25].

The literature on assessments of usability engineering mainly focuses on presenting
the different individual assessment models [26]. Empirical research results on assess-
ments are not widely reported. IBM reports that they conducted a large number of
assessments [27] but they do not report any experiences or other research findings
from the assessments. Bevan and Earthy [28] report the experiences from a European
TRUMP project where they used the ISO TR 18529 model in two organizations. They
carried out an assessment in the beginning and in the end of the project, and found
that improvements in usability engineering had taken place in both organizations.
They conclude that ISO TR 18529-based assessments are generally useful (“the re-
sults were judged to be highly beneficial”) but they also identified some challenges
(the customer had an “initial difficulty in understanding the assessment model”).

The purpose of this paper is to report about organizational problems of usability
engineering, based on findings from eleven assessments of usability engineering.
Although process assessment was our basic procedure, we interviewed and observed
more widely various organizational issues related to the position of usability. A gen-
eral finding from the interviews and observations was that many of the true problems
in usability engineering were not in the scope of process assessment. We also report
the implications of these findings to the practice and research on UCM models.

There is a recent and growing interest in UCM models. The recent developments in
Germany [22] and Japan [23] and the initiative of the Usability Roundtable [29] in the
USA indicate and support this interest and popularity. In this article, empirical experi-
ence of conducting assessments is presented, about which there is very little literature
to date. This is of relevance for practitioners and researchers alike. The lessons learnt
and the implications from the assessment should be useful for practitioners who either
wish to conduct an assessment themselves, or wish to have an assessment conducted.
From the research perspective, developments in UCM models can take place only
when one has a good understanding of the relevant issues around practical assess-
ments. Thus, this research provides a platform for further research into UCM models.

2 Research Method

The main context of the assessments was two national research projects2 in Finland
between 1997 and 2003. The main objective of the assessments was to provide a basis
for improvement actions in usability engineering in the companies – i.e. the assess-
ments were not performed primarily for the reason of conducting research into UCM
assessments. All the eleven assessments – apart from the last one - were conducted in
companies on real development projects; and even the last one – where an experimen-
tal project of a research organization was examined [30] – had aims for improvement
action in the long run.

2 Called KÄYPRO, KESSU.

118 T. Jokela

The main source of data arose from the assessment interviews and observations of
the assessors gathered in the different assessment cases, and in different situations
within the assessments. We also gathered feedback: how other stakeholders – i.e. the
development staff, management, and usability specialists of the organizations – per-
ceived the assessments during and after the different types of interventions (briefings,
interviews, workshops and result reporting sessions). Feedback from the companies
was gathered by questionnaires, interviews and email. The details of how the data was
gathered varied from case to case.

In all cases, we used theme interviews; i.e. we let the interviewees quite freely tell
about what they found important from their projects. The number of researchers var-
ied from seven to one. After various assessment sessions, the assessment team gath-
ered together to explore and discuss their findings. We took additional feedback from
our contact persons (usability specialists) in the companies by email and in project
meetings.

3 Overview of the Case Studies

Eleven usability capability assessments in different development organizations were
carried out. The first two assessments took place in 1997. The third assessment took
place two and a half years later, in spring 2000, when a new national research project
was set up in Finland. Further assessments followed so that the eleventh one was
conducted in autumn 2003. In the first assessments (#1 - #4), we used very much the
same UCM model as Bevan & Earthy, i.e. the different versions of the UMM-P
model. Later (assessments #5 - #11), we used the KESSU3 model developed by our-
selves; in order to overcome some interpretation problems that we met with UMM-P
and to fit better our specific assessment contexts.

The companies involved in the assessments were different sizes: they included
R&D or project groups in Nokia, SME companies and VTT. Although the companies
were very different in size (Nokia vs. SMEs), the sizes of the organizational units
assessed were not so different. The size of the groups or projects assessed varied be-
tween 10 and approximately 100 people. All the companies operate in international
markets. The applications were different, and included mobile consumer products,
transportation management devices and software, web based software, customer
documentation, electro-mechanics and software of telecommunication network ele-
ments and mobile wireless services. In some organizations, the assessment was car-
ried out twice.

The background in usability engineering in the organizations varied. One organiza-
tion had had a usability lab from the late 80s, while in another organization the first
usability person had joined the company not long before the assessment was carried
out. There was some variation in the usability engineering methodologies the compa-
nies used. Contextual Design [32] was used in two organizations, while the usability
engineering book by Hackos & Redish [33] was used as the main reference in another
organization. Some of the organizations did not refer to any specific main usability
engineering methodology.

3 For details: see [31], [25].

 Performance Rather than Capability Problems 119

Developing a new
model…

...try and improve…

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Trial 6

Trial 7

Trial 8

Trial 9

Trial 10

The UCD
reference

model

Success

Interpret the
standard model

(“process
assessment”)

Nature of the
challenge

A pre-version of
UMM-P

A refined version of
UMM-P

A refined version of
UMM-P

A refined version of
UMM-P

A refined version of
UMM-P

The first version of
KESSU

The first version of
KESSU

The second version
of KESSU

The second version
of KESSU

The second version
of KESSU

The third version of
KESSU

Trial 11

The second version
of KESSU

- complicated model
- did not reveal the customer’s
problems

+ less complicated
+ customer satisfied
- the performance of UCD not
examined in detail

+ appropriate focus
(performance of UCD)
- interpretation problems
- difficult to understand for
customer

- interpretation problems
- customer not satified (too low
ratings, difficulties in
understanding)

+ model more clear to
assessors and customer
- follow-up actions not very
concrete

+ quick and effective
+ model clear
+ customer satisfied

+ model clear
+ clear follow-up actions
+ some found useful
- others did not like very much

interrupted

interrupted

+ a ‘straight forward’ assessment
- ‘too good’ results

+ a ‘straight forward’ assessment
+ customer satisfied

Fig. 2. Overview of the trials

The author - with usability experience from the early 90s and with formal training
in process assessment - was the lead assessor or member in the assessment team in all
assessments. There were several researchers as assistant assessors. Some assessors
participated in most of these assessments, while some people attended only one as-
sessment. All of the researchers had at least the basic knowledge of usability and
usability engineering, and received training on process assessment. The members of
the assessment teams came from the Oulu University (at least one representative in all
cases), Helsinki University of Technology (cases #2, #4), Lloyds Register (case #1),
TeamWare (case #1), and Nokia Research Center (case #2).

120 T. Jokela

The main characteristics of the different cases are summarized in Fig. 2. Two main
UCM models were used. Different versions of the UMM-P model – i.e. a standard
process assessment model - were used in trials #1 - #4. A new assessment model
(‘KESSU’) was created for trial #5 and further developed in the subsequent assess-
ments, up to assessment #11. More detailed reports on the assessments can be found
from other publications: [34], [26], [35], [30], and [31].

4 Problems of Usability Engineering

Based on the findings from the eleven assessments through interviews, observations
and questionnaires, we could identify a number of problems of usability engineering
in development organizations.

In the following, we discuss such problems. One should, however, understand that
even if we focus on the problems in this paper, there were also many positive find-
ings. Many companies and organizations that we assessed performed remarkably well
at least in some areas of usability engineering.

4.1 Missing or nly Partial Usability Engineering Activities

In many cases, some usability engineering activities (processes) had been totally or
partially missing from development projects. For example, we could not identify the
existence of usability requirement process (ref. Fig. 1) at all in many cases. In some
cases, even the ‘basic’ process of usability engineering, i.e. the identification of dif-
ferent users, had not been carried out at all. User and task analysis (‘context of use’,
Fig. 1) had been carried out in most cases but only partially.

 An exception was the qualitative usability evaluation process which had been car-
ried out in most projects at least to some extent. This can be explained by the fact that
usability evaluation methods such as usability testing and heuristic evaluation are the
most traditional and best known usability engineering methods.

4.2 Results of Usability Activities ot Considered

Another phenomenon that clearly was characteristic in some organizations was the
poor impact of the results of usability engineering activities in the product – or system
- designs.

In one case, for example, usability evaluations had shown clear, even severe usabil-
ity problems in a new user interface concept. Still, this user interface concept had
been chosen in the final product, even if usability evaluations had shown that there
had been better alternatives available.

4.3 Quality Problems

In some cases, the usability activities had clearly been carried out in an unprofessional
way. There had been, for example, problems in the procedures of usability tests. The
basic procedure of usability tests is observing users when they carry out predefined,
realistic tasks. In some cases, however, users had been shown user interface designs,

O

N

 Performance Rather than Capability Problems 121

and asked opinions of the designs. In another case, the user tasks for usability tests
had not been realistic and did not form a coherent story.

An extreme case had been one where usability evaluations had been carried out in
an ad-hoc manner by persons without any training on usability - the only basis was
seemingly that these persons had interest on usability and had earlier seen usability
test conducted.

4.4 Knowledge and Skills Problems

Knowledge and skills problems appeared in two levels: among persons involved n
practical usability work and among other staff, including designers, marketing and
management.

Some of the persons working on usability issues had not had any training and had
no theoretical knowledge on usability. They had started their usability career from
other background, such as marketing software engineering, and taken their position as
a usability practitioner based on their interest rather than education. Some of them had
really missed a sound theoretical basis.

The knowledge problems had been, not surprisingly, even more severe among
other staff: designers and management. In one case, ‘usability’ had earlier been re-
garded as a competitive factor of the company even if there had been no usability
professionals in the company at all. Usability had been used as a term by many, with-
out any understanding of its essential contents. For example, to some persons usabil-
ity was a synonym for a big display or visually appealing designs.

The misconceptions on the principles and activities of usability engineering had
been remarkable as well. ‘Friendly user tests’ had been regarded as sufficient for
assuring usability. In an extreme case, the opinion of a manager - a person without
usability background – had been regarded as the truth of usability.

4.5 Efficiency Problems

In one case, a lot of resources had been invested into a large comparative usability
testing tour carried out internationally. The purpose of the tests had been to select the
best one from several user interface concepts for future products. However, the results
of the tests had produced only marginally useful results. The reason had been that the
tests had been carried out with early prototypes of the user interface concepts. The
results of the tests, comparative evaluations, had not been useful at all, due to the
qualitative problems of the prototypes. – A positive aspect had been that the tests had
revealed the qualitative problems. However, it had been possible to identify these
kinds of problems with remarkable fewer efforts.

4.6 Low Organizational Positions

Typically, the usability practitioners had been young people, recently recruited. In
practice, their organizational position in the projects was often similar with the role of
‘normal’ designers. If a company does not have prior experience on usability engi-
neering, this kind of setting is quite demanding for a usability practitioner While suc-
cessful usability engineering requires new activities in a development process as well

122 T. Jokela

as new awareness and attitudes among designers and other staff, the task of a usability
practitioner is often just too demanding.

4.7 Organizational Conflicts

In some cases, project management had had a fear that usability activities had delayed
the project schedule. In other cases, the user interface software designers had per-
ceived the usability practitioners as being in the role of ‘police’ (usability evaluations
are about finding problems in user interface designs). In some cases, the marketing
people had perceived that usability practitioners had stepped on their toes: they had
not seen a difference between users and customers.

In a number of cases, these kinds of frictions had led to personal level conflicts be-
tween usability practitioners and other individuals of a development project. In one
case, for example, a usability practitioner reported that she ‘hated’ the software de-
velopment manager.

4.8 Ethical Misconducts

This was not a common phenomenon but an interesting one. In one case, a person
without any education or experience in usability had taken the role of ‘the usability
guru’ of the company. For example, the senior management of the company had later
advised the usability professionals of the company to ask this person’s advice in
‘complicated usability matters’.

In the case discussed earlier, usability evaluations had shown clear, even severe us-
ability problems in a new user interface design but still design had been chosen in the
final product. Later, it was revealed that this design had been justified by this person
to the senior management through claiming that the design is ‘usability driven’. In
other words, the term ‘usability’ – which had a positive image in the company - had
been purposefully used to justify unusable solutions.

4.9 Frustration

As a consequence of the things mentioned above, many usability practitioners were
frustrated in their position. This phenomenon is naturally related to the problems
mentioned above: poor impact and ethical misconducts. A clear indication of this is
the fact that in some cases the usability practitioners hoped that the assessments
would give bad results.

5 Implications to the Assessments of Usability Engineering

We have identified several types of problems that may be true problems of usability
engineering. But what do these findings imply to the assessments of usability engi-
neering?

In the following, we discuss the implications first from the viewpoint of the as-
sessment model, and then from the viewpoint of conducting assessments.

 Performance Rather than Capability Problems 123

5.1 Implications to the Assessment Model

One natural implication of the findings is that one should use an assessment model
such that reveals the specific problems of usability engineering. A clear conclusion
from the assessments is that examination of process management issues – the scope of
standard process assessment - is not interesting and relevant for the usability practi-
tioners, at least in the types of cases that we had. Instead, an assessment should focus
on the performance rather than capability of usability engineering activities. With
performance we do not only mean the extent to which usability engineering activities
are carried out but also the quality of the activities and the impact of the results of the
activities to the design decisions.

To meet these objectives, we modified the traditional process assessment model for
the last assessment cases, and ended up with the KESSU model. The key difference of
the KESSU model compared with ISO 15504 is in the style of process definitions, and
a set of performance attributes for rating the assessment results. The processes are
defined through outcomes (vs. base practices) - the outcomes define what a process
should produce. The performance of processes is determined based on three perform-
ance attributes: the extent, quality, and integration of the outcomes. A four-grade
scale4 (none, partially, largely, fully) is used to rate the extent to which an outcome is
produced, as well as the quality and integration of the outcome (for details, see [24]).

This kind of assessment model made possible for us to examine not only whether
processes are carried out (extent) but also reveal potential quality and impact (integra-
tion) problems of usability engineering, Thereby the KESSU model could be used to
reveal many of the organizational problems discussed above, although the basic focus
of the assessment is processes.

5.2 Implications to Carrying ut Assessments

An assessment is always an organizational intervention with organizational conse-
quences. Ideally, assessments could just be a neutral way of determining the status of
usability engineering in a development organization. However, during an assessment,
the assessors are in touch with the organization in several ways. Assessors discuss
with staff, interview them and present briefings and the results. In other words, an
assessment is always an organizational intervention. In our cases, we clearly could see
that assessments had some impact on the people and the organization – positive or
negative (or both).

An assessment should be carried out so that it truly supports the improvement of
the position and performance of usability engineering. We found that in our cases, the
usability practitioners had different purposes the assessment (reported more detailed
in [31]).

(1) In some cases the aim of the usability practitioners was to use the assessment as
an asset to communicate towards management about the organizational problems of
usability engineering. This setting is appropriate when the purpose of the assessment
is to open the eyes of the management to the organizational problems of usability
engineering. This is typically the situation when there are organizational or ethical

4 The scale is adopted from process assessment (used in rating the achievement of base prac-

tices).

O

124 T. Jokela

misconducts or misunderstandings about usability. In this kind of setting, the assess-
ment results should clearly point out the organizational problems of usability. If the
KESSU model is used, the specifically the performance attributes quality and integra-
tion can be used to pinpoint the organizational problems.

(2) In other cases, the target customer of the assessment was the development staff.
The aim should be to make the developers understand the essentials of usability and
usability engineering. When an assessment of this kind of situation is considered, the
goal should be that the overall perception of the assessment is positive among people.
The goal is to improve the position of usability through increasing buy-in for usability
and understanding what exactly is needed for designing usability.

In these kinds of cases, it is not very important to find out the exact status of us-
ability engineering in the organization. Rather, an assessment is a success when it can
be a constructive training occasion on usability and usability engineering. Our finding
was that the exact assessment results - the ratings of the current status of usability
engineering - are not that critical.

6 Discussion

Improving the performance and effectiveness of usability engineering in software and
product development in companies is perceived as a true challenge by many usability
professionals. Findings from interviews and observations in eleven assessments of
usability engineering processes show that typical problems of usability engineering
include poor impact of usability activities in product designs; limited skills and
knowledge on usability among the designers and management; unawareness on vari-
ous activities of usability engineering life-cycle; inappropriately used usability meth-
ods; even political games around usability. On the other hand, issues such as project
and configuration management, and process performance measures are not the key
problems of usability. It is concluded other kinds of methods but standard process
assessment should be considered for revealing the problems of usability engineering.
Further, the target customer of the assessment has an impact on how an assessment
should be conducted. The problems identified in the assessment should be clearly
communicated to the management, but for developers an assessment should aim for a
constructive training occasion on usability

6.1 Limitations of the Research

Our findings are based on eleven cases in Finland. This is naturally only a limited set
of companies. However, presentations by other usability practitioners in conferences,
articles in magazines and journals, professional email discussion groups and personal
communication with other usability practitioners indicate that the kinds of problems
found in this study are not that rare – even if there surely are differences in the details
of the problems in different organizations.

A specific feature in the assessments – and in our research generally – is the view-
point of a usability person (vs. e.g. one of management). The background and driver
of this research are the problems perceived by the usability practitioners, as discussed
in the beginning of the paper. Most of our assessments were initiated by usability

 Performance Rather than Capability Problems 125

practitioners rather that management. Thereby, the setting is different from the one of
typical software process assessments.

Our assessment approach, the KESSU model, should not be understood as ‘the’
model for assessing usability engineering processes. It has evolved case by case.
Overall, it is probable that it will be further developed, even remarkably.

Our research does not provide a solid answer whether ‘awakening the manage-
ment’ type of assessments would really be useful. Clearly, usability practitioners
wanted to make ‘management to understand’ but we do not have any empirical evi-
dence of a successful assessment in this category. The effectiveness of an assessment
is probably dependent on the specific situation in the organization. The organizational
problems may be so entrenched that even pinpointing the organizational problems
might lead to no significant changes.

One limitation of this research is that we were not able to systematically follow up
whether training designers through assessments really had impacts. On the other hand,
it is not easy to isolate the role of assessment in the success or failure of the improve-
ment actions that follow. The success of improvement depends on many factors: the
resources that the organization can assign to improvement efforts; the ability and
interest of the usability specialists to change, etc; how the staff generally feels to-
wards usability; the support of management; etc.

6.2 Further Research Topics

A follow-up study could be a survey research on the problems of usability in the com-
panies. The study reported in this paper is of qualitative nature. As said, many sources
of information indicate that these problems would be quite general. However, quanti-
tative research is required to validate this.

The usability assessment model has a very critical role in assessments. It represents
more or less the truth of usability engineering in the organization to be assessed. This
raises a question: what exactly is the ideal usability engineering reference model? The
existing UCM models have differences in how they define ‘ideal usability engineer-
ing’. The assessment cases of our research led to the development of another model
(KESSU). Research into understanding the fundamental contents of usability engi-
neering would be most relevant.

Overall, any assessment should be approached as a research action. The assessment
model should be challenged. It should be understood that no assessment model repre-
sents an absolute truth. One should be critical of any assessment approach and learn
from the experience.

References

1. Nielsen, J., Usability Engineering. 1993, San Diego: Academic Press, Inc. 358.
2. ISO/IEC, 13407 Human-Centred Design Processes for Interactive Systems. 1999: ISO/IEC

13407: 1999 (E).
3. ISO/IEC, 9241-11 Ergonomic requirements for office work with visual display terminals

(VDT)s - Part 11 Guidance on usability. 1998: ISO/IEC 9241-11: 1998 (E).
4. ANSI, Common Industry Format for Usability Test Reports.. 2001: NCITS 354-2001.

126 T. Jokela

5. Axtell, C.M., P.E. Waterson, and C.W. Clegg, Problems integrating user participation into
software development. International Journal of Human-Computer Studies, 1997(47).

6. Wilson, S., M. Bekker, P. Johnson, and H. Johnson. Helping and Hindering User Involve-
ment. InInvolvement - A Tale of Everyday Design. in Proceedings of CHI '97. 1997: ACM
Press.

7. Bloomer, S. and S. Wolf. Successful Strategies for Selling Usability into Organizations. in
CHI 99. 1999. Pittsburgh, USA.

8. Rosenbaum, S., J. Rohn, J. Humburg, S. Bloomer, K. Dye, J. Nielsen, D. Rinehart, and D.
Wixon. What Makes Strategic Usability Fail? Lessons Learned from the Field. A panel. in
CHI 99 Extended Abstracts. 1999. Pittsburgh, USA: ACM, New York.

9. Anderson, R., Organisational Limits to HCI. Conversations with Don Norman and Janice
Rohn. Interactions, 2000. 7(2): p. 36-60.

10. Rosenbaum, S., J.A. Rohn, and J. Humburg. A Toolkit for Strategic Usability: Results
from Workshops, Panels, and Surveys. in CHI 2000 Conference Proceedings. 2000. The
Hague: ACM, New York.

11. John, B.E., L. Bass, R. Kazman, and E. Chen. Identifying Gaps between HCI, Software
Engi-neering and Design, and Boundary Objects to Bridge Them. in CHI 2004. 2004.

12. Harning, M.B. and J. Vanderdonckt. Closing the Gaps: Software Engineering and Human-
Computer Interaction. Workshop. in Ninth IFIP TC13 International Conference on Hu-
man-Computer Interaction (INTERACT 2003). 2003. Zürich, Switzerland.

13. Henderson, A., The Innovation Pipeline. Design Collaborations between Research and De-
vel-opment. ACM interactions, 2005. 12(1).

14. Coallier, F., R. McKenzie, J. Wilson, and J. Hatz, Trillium Model for Telecom Product
Devel-opment & Support Process Capability, Release 3.0. Internet edition. 1994, Bell
Canada.

15. Flanagan, G.A., Usability Leadership Maturity Model (Self-assessment Version). Deliv-
ered in a Special Interest Group session, in CHI '95: Human Factors in Computing Sys-
tems, I. Katz, et al., Editors. 1995: Denver, USA.

16. Taylor, B., A. Gupta, W. Hefley, I. McLelland, and T. Van Gelderen. HumanWare Process
Improvement - institutionalising the principles of user-centred design. In Tutorial PM14 H
Hu-man-centred processes and their impact. in Human-Computer Interaction Conference
on People and Computers XIII. 1998. Sheffield Hallam University.

17. Eason, K. and S.D. Harker, User Centred Design Maturity. Internal working document.
1997, Department of Human Sciences, Loughborough University: Loughborough.

18. Earthy, J., Usability Maturity Model: Processes. INUSE/D5.1.4(p), EC INUSE (IE 2016)
final deliverable (version 0.2). 1997, Lloyd's Register: London.

19. Earthy, J., Usability Maturity Model: Human Centredness Scale. INUSE Project deliver-
able D5.1.4(s). Version 1.2.. 1998, Lloyd's Register of Shipping: London.

20. ISO/IEC, 18529 Human-centred Lifecycle Process Descriptions. 2000: ISO/IEC TR
18529: 2000 (E).

21. ISO/IEC, 18152 A specification for the process assessment of human-system issues. 2003:
ISO/PAS 18152: 2003.

22. DATech, DATech-Prüfbaustein. Usability-Engineering-Prozess, Version 1.2. 2002,
Deutsche Akkreditierungsstelle Technik e.V.: Frankfurt/Main. p. 70.

23. Kurosu, M., M. Ito, Y. Horibe, and N. Hirasawa. Diagnosis of Human-Centeredness of the
Design Process by the SDOS. in Proceedings of UPA 2000, Usability Professionals Asso-
ciation. 2000. Asheville, North Carolina.

24. Jokela, T., The KESSU Usability Design Process Model. Version 2.1. 2004, Oulu Univer-
sity. p. 22.

 Performance Rather than Capability Problems 127

25. Jokela, T., M. Siponen, N. Hirasawa, and J. Earthy, A Survey of Usability Capability Ma-
turity Models: Implications for Practice and Research. Behaviour & Information Technol-
ogy. Ac-cepted, 2005.

26. Jokela, T., Assessment of user-centred design processes as a basis for improvement action.
An experimental study in industrial settings. Acta Universitatis Ouluensis, ed. J. Jokisaari.
2001, Oulu: Oulu University Press. 168.

27. Flanaghan, G.A., Usability Management Maturity, Part 1 Self Assessment - How Do You
Stack Up? SIGCHI Bulletin, 1996(28 (4), October 1996).

28. Bevan, N. and J. Earthy. Usability process improvement and maturity assessment. in IHM-
HCI 2001. 2001. Lille, France: Cépaduès-Editions, Toulouse.

29. Ease. of Use Roundtable, Why the PC Industry Must Improve New Technology's Quality
and Ease of Use, http://www.eouroundtable.com/. 2004.

30. Jokela, T. and P. Abrahamsson. Usability Assessment of an Extreme Programming Pro-
ject: Close Co-Operation with the Customer Does Not Equal to Good Usability. in Profes
2004. 2004. Kansai Science City, Japan: Springer.

31. Jokela, T., Evaluating the user-centredness of development organisations: conclusions and
implications from empirical usability capability maturity assessments. Interacting with
Com-puters, 2004. 16(6): p. 1095-1132.

32. Beyer, H. and K. Holtzblatt, Contextual Design: Defining Customer-Centered Systems.
1998, San Francisco: Morgan Kaufmann Publishers. 472.

33. Hackos, J.T. and J.C. Redish, User and Task Analysis for Interface Design. 1998: Wiley
Com-puter Publishing.

34. Kuutti, K., T. Jokela, M. Nieminen, and P. Jokela. Assessing human-centred design proc-
esses in product development by using the INUSE maturity model. in Proceedings of the
7th IFAC/IFIP/IFORS/IEA Symposium on Analysis, Design and Evaluation of Man-
Machine Sys-tems -- MMS'98. 1998. Kyoto, Japan: IFAC.

35. Jokela, T., N. Iivari, M. Nieminen, and K. Nevakivi. Developing A Usability Capability
Assess-ment Approach through Experiments in Industrial Settings. in Joint Proceedings of
HCI 2001 and IHM 2001. 2001: Springer, London.

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 128 – 142, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using the MOWAHS Characterisation Framework for
Development of Mobile Work Applications

Alf Inge Wang, Carl-Fredrik Sørensen, Heri Ramampiaro,
Hien Nam Le, Reidar Conradi, and Mads Nygård

Dept. of Computer and Information Science, Norwegian University of Science
and Technology (NTNU), NO-7491 Trondheim, Norway

{alfw, carlfrs, heri, hiennam, conradi, mads}@idi.ntnu.no

Abstract. This paper describes an evaluation of a characterisation framework to
analyse mobile work scenarios in order to make corresponding software
systems. The framework identifies complexity issues to be taken into account
when implementing a system. The framework can also be used to elicit
requirements from a scenario. Three research questions are investigated in this
evaluation: 1) Can the framework be used to identify relevant challenges in the
final system? 2) Can the framework be used to identify functional requirements
for the final system? and 3) Can the framework be used to identify non-
functional requirements for the final system? The evaluation was performed
using the framework to analyse and implement an IT-support scenario. The
paper also describes a web-tool for this framework that makes the
characterisation process simpler. The tool introduces consistency rules to ensure
stricter characterisation of the scenarios.

1 Introduction

The explosive development the last decade in mobile computing has changed the way
we communicate, learn, entertain and work. Mobile phones and PDAs have become
necessary tools to make life easier through functionality such as SMS, calendars,
WAP-browsers etc. As mobile devices have become more powerful, it is now
possible to create software systems for mobile workers that can improve the work
processes. Such systems typically consist of various mobile clients connected to a
server. They provide the mobile worker with necessary information and opportunity
for filling in forms and reports on various locations. Development of mobile systems
is different from development of distributed systems. When designing a mobile
system, we have to overcome challenges in wireless communication, physical
mobility, and portability [1]. Thus, it is important that these issues are examined
carefully when considering the system requirements. In this paper, we review a
framework that is used to identify challenges and possible requirements related to
system development for mobile work. By mobile work, we consider work where the
worker must move physically to some location to carry out his task. The goal of this
framework is to identify the parts that are most complex and probably would be
hardest to implement in a mobile support system. The framework has previously been
used successfully to analyse mobile scenarios (like mobile journalist, mobile

 Using the MOWAHS Characterisation Framework 129

researcher, mLearning [6]) to compare their characteristics. Although we found this
analysis useful, it did not imply that the framework is adequate for developing
software to support mobile work. The framework it self has been published before,
and the contribution of this paper is the m tool used to apply the framework on
scenarios, consistency rules to improve the quality of the characterisation, and most
important an evaluation of the framework. In this evaluation, we want to investigate
three research questions:

• RQ1: Can the framework identify relevant challenges related to the development
of mobile support systems for mobile work?

• RQ2: Can the framework introduce new functional requirements related to the
development of mobile support systems for mobile work?

• RQ3: Can the framework introduce new non-functional requirements related to the
development of mobile support systems for mobile work?

The first question investigates whether the framework does what it is supposed to do
i.e. to identify complexity in a system. The next two questions investigate whether
new functional and/or non-functional requirements can be derived from using the
framework. To answer the questions, we used the framework to analyse mobile
scenarios when developing a system for mobile work.

The rest of the paper is organised as follows: Section 2 describes the
characterisation framework, Section 3 describes how the framework was applied on
the IT-support scenario. Section 4 describes the results of the evaluation, Section 5
relates this paper to similar work, and Section 6 concludes the paper.

2 The Characterisation Framework

The MOWAHS characterisation framework is a tool for analysing mobile work
scenarios to create a mobile computing system supporting these scenarios. Such a
system will typically be a process support system tailored for supporting mobile
professions, and consists of one or more servers and some mobile clients (laptops,
PDAs, mobile phones etc.). The framework can be used in at least two ways: Firstly,
it can be used as a check-list of issues you should consider when making computer
support for mobile work. Secondly, the framework can be used to perform a more
careful examination of the requirements for making a system to support mobile
scenarios. This examination will produce requirement indicators to identify complex
parts of the system, type of client device, type of network, services needed etc. To use
our framework, a mobile scenario must be described as a set of tasks. A task is here
similar to a use case in design of software systems. To apply our framework to a
mobile scenario, we use the following steps:

1. Select the mobile scenario and identify the different roles/actors
2. For each role identify tasks
3. For each task:

a) Write a task description using a task description template
b) Assign task priority (1-5, where 5 is most important)

130 A.I. Wang et al.

c) Characterise the task using the framework (see Table 1).
d) Calculate the requirement indicators for the task

4. Derive system requirements and priorities from the characteristics and indicators.

Table 1. The MOWAHS Characterisation Framework for Mobile Work

Characteristics Possible values Description
General
G1. Decomposable
G2. Part of sequence
G3. Pre-planned
G4. Data synchronisation
G5. Data exchange rate

(1 No, 3 Uncertain, 5 Yes)
(1 No, 3 Uncertain, 5 Yes)
(1 Planned, 3 Partial, 5 Ad-hoc)
(1 Never, 3 After end, 5 Duration)
(1 Never, 3 Once, 5 Many)

Composed of sub-tasks?
Order dependencies with other tasks?
To what degree planned in beforehand?
When update data with other tasks?
How often will the task exchange data with
other tasks within its lifetime?

Information
I1. Information contents
I2. Information streaming
I3. Freshness of data required

I4. Freshness of data produced

I5. Data transmission

(1 Text, 3 Graphics, 5 Multimedia)
(1 NA, 3 Discrete, 5 Continuous)
(1 NA, 2 Day, 3 Hour, 4 Min, 5 Real-time)

(1 NA, 2 Day, 3 Hour, 4 Min, 5 Real-time)

(1 NA, 2 Slow, 3 Medium, 4 Fast, 5 Very fast)

Complexity of info required/produced?
Does the task require streaming of data?
How fresh must data received from a server
be to execute the task?
How fresh must data received by a server and
produced by the task be?
What is the expected transmission speed
required to execute the task?

Location
L1. Location dependent
L2. Require services at location
L3. Produce services at location
L4. Location report
L5. Route constraints

(1 No, 3 Partial, 5 Yes)
(1 No, 3 Partial, 5 Yes)
(1 No, 3 Partial, 5 Yes)
(1 No, 3 Partial, 5 Yes)
(1 No, 3 Partial, 5 Yes)

Must be executed at a specific location?
Require electronic services at the location?
Produce electronic services at the location?
Must report its current location to a server?
Must follow a specific route when moving?

Time
T1. Event-triggered
T2. Time constraint
T3. Temporal coordination
T4. Task resumption

T5. Task lifetime

(1 No, 3 Partial, 5 Yes)
(1 No, 3 Partial, 5 Yes)
(1 No, 3 Partial, 5 Yes)
(1 No, 3 Partial, 5 Yes)

(1 Sec, 2 Min, 3 Hours, 4 Days, 5 Weeks)

Is the task triggered by an event?
Must it be executed at a specific time?
Must it be timed with other tasks?
Can it be halted for later to be resumed from
where it left off without a restart?
What is the expected lifetime?

To measure the different characteristics in the framework, we use an ordinal
(Lichert) scale (1-5). High values indicate more complexity in terms of system
requirements, while low values indicate lower complexity. Many of the characteristics
do not use the full scale, but use the values 1, 3 and 5 to get a uniform representation
of extreme values. We are aware that it is mathematically incorrect to calculate
average value of the ordinal scale, but we have found it useful to do so. We define the
importance of a task by assigning a weight on a scale 1-5 (from very low to very
high).

2.1 Requirement Indicators

From the scores on the twenty characteristics in our framework (see G1-G5, I1-I5,
L1-L5 and T1-T5 in Table 1), we can compute indicators that can help us analyse the
mobile scenario and help us prioritise and extract non-functional and functional
requirements. The requirement indicators we have identified for our framework are
(the first four are simple aggregates and the six following are combined aggregates):

General Task Indicator (GTI) is an average of G1-G5. A high GTI score indicates
that the underlying process and transaction infrastructure (e.g. workflow system) must
be advanced.

 Using the MOWAHS Characterisation Framework 131

Information Complexity Indicator (ICI) is an average of I1-I5. A high ICI score
indicates that the end-system must cope with complex information presentation,
management and transmission. The ICI can also be used to select the appropriate
hardware and software to be used as a mobile client and server.

Location Complexity Indicator (LCI) is an average of L1-L5. A high LCI score can
indicate that the end-system must be location-aware, include Geographic Information
System (GIS) functionality, and use a mobile client suitable for mobility in terms of
weight, size, battery power etc.

Time Complexity Indicator (TCI) is an average of T1-T5. A high TCI score
indicates that time management and coordination of tasks, and advanced transaction
support might be necessary. In addition, the TCI also indicates the level of
performance and availability required.

Network Connectivity Indicator (NCI) is an average of G3, G4, G5, L4, and T1 and
indicates the level of connectivity between the mobile client and the server. It
determines the required networking capabilities of the mobile client. Further, it
indicates non-functional requirements for the system such as reliability and latency.

Network Speed Indicator (NSI) is an average of I3-I5. A high NSI score means that
the transmission speed and quality of service must be high between the mobile client
and supporting servers. The NSI also indicates what wireless network technology can
be used for the end-system.

Energy Consumption Indicator (ECI) is an average of I5, L1, L2, L3, and T5. A
high ECI score means that it is likely that the mobile client device can complete the
task will consume much energy.

Transaction Support Indicator (TSI) is an average of G3, G4, G5, T1, T4, and T5.
TSI describes the need for flexible/advanced transactional support. A high TSI score
indicates that the transactional support must go beyond ACID transactions.

Mobility Indicator (MI) is an average L4 and L5, and indicates how much mobility
is involved. The MI is useful for determining the complexity of the environment the
mobile client will operate in, e.g. variation in wireless networks. A high MI will affect
the choice of equipment (device) and tools necessary to accomplish the task.

Task Complexity (TC) is an average of all characteristics of a task and indicates the
complexity of one task. The TC is useful for finding the most complex task that
should have the most attention in a further examination.

3 The Framework Applied to Develop a Mobile Application

In this section, we describe how we applied the framework to implement a system for
supporting mobile IT-support.

3.1 The Mobile IT-Support Scenario

In 2002, we investigated ways of improving the software used by our IT-support
department to manage incoming requests from users, assigning these requests to

132 A.I. Wang et al.

appropriate personnel and following up these requests. The IT-support department
used a system called the Request, Users, and Sys-admin To-do Ticket System (RUST)
[7]. RUST is web-based, mainly used to manage requests from users by putting the
requests in queues, assigning user requests to IT-personnel, tracking status of requests
etc. A big problem with this system was that the IT-support staff did not update the
status of tasks in the system when completing the task. This caused the number of
user requests in RUST to grow uncontrolled, and it was impossible to know the actual
status of user requests. We therefore proposed to extend the RUST system with
mobility support, to make it possible for the IT-support staff to use mobile clients at
work. This would make it possible to bring important information about the tasks to
the labs or offices of concern, write a short report of how the task was solved, and
change the state of the task as “resolved” when completed. To extend the RUST
system, we started to create a scenario that described the mobile tasks. We first
identified the roles involved: Support manager, Support desk and Support engineers.
We found that only the support engineers had to move around to do their job. We then
identified the mobile tasks for the support engineer role:

Task 1. Install new PCs (Support engineers): Install new hardware and software.
Priority: High (4).

Task 2. Upgrade such PCs (Support engineers): Upgrade existing computers with
new hardware and/or software. Priority: Low (2).

Task 3. Assist users (Support engineers): Help users to solve computer problems
(like malfunctioning mouse, keyboard, software etc.). Priority: Very high (5).

3.2 Characterisation of the Scenario

The scenario was characterised using a web-based tool called m. Initially, we started
to use a simple spreadsheet to characterise mobile scenarios using our framework.
However, inexperienced users of the framework found it difficult to know what
numbers to choose for the different characteristics. To make this easier, we decided to
make a web-based system that could guide the user through the framework by
providing useful information for every step of the process, and warn the user when he
tried to enter inconsistent values for related characteristics. We created seven
consistency rules used by the tool:

Rule 1: I3 ≥ 4 (I4 4 I5 4 If the freshness of data required or produced by a
task is within seconds, the data transmission must be fast.

Rule 2: L4 = 5 (L5 = 5 L1 = 5 If the task must follow a specific route or if it
must report its location, the task is location dependent.

Rule 3: T3 = 5 G2 = 5 If a task must be coordinated with other tasks in respect
to time, the task is then part of a sequence.

Rule 4: I2 = 5 G5 = 5 If a task requires streaming, it will require exchanging
data many times with another task (the server).

Rule 5: G3 = 5 T1 = 5 If a task is ad-hoc, then it is event-triggered.
Rule 6: G2=5 (L5=5 (T2 = 5 G3 = 1 If a task has time constraints or is part of

a sequence, or has route constraints, it must be planned in advance.
Rule 7: T4 = 5 T5 2 If a task can halt and later resume from where it left off,

it must have a lifetime that can at least be measured in minutes.

 Using the MOWAHS Characterisation Framework 133

The m tool can be used to analyse any scenario as long as the process described in
Section 2 is followed. The tool allows redefining our existing framework by adding,
changing and removing characteristics, but also by creating new frameworks for
analysing other properties than mobility. In addition, the consistency rules can be
added, changed or removed. We found it necessary for the tool to support evolution,
since we have revised the framework three times up till now. These changes have
been both editing characteristics and editing consistency rules.

When using the tool, the user is guided through all the necessary steps to carry out
a proper characterisation. The process can be divided into two main parts:

Part 1: Defining the Scenario. First, the user is asked to create a scenario by giving
it a name and a short description. The scenario description is then extended by adding
all the roles that are involved in the scenario (see Fig. 1a).

Fig. 1. Defining a scenario in the m tool

The next step is then to describe all the tasks that should be a part of the scenario
along with selecting the responsible roles for each task (see Fig. 1b). A task is
described by a name, description, responsible role, and pre- and post condition related
to location, resources and other tasks. It is up to the user to decide the level of detail
in task descriptions, but name and responsible role are mandatory.

Part 2: Characterising the Scenario. The characterisation is performed by giving
scores to the twenty characteristics in the framework as shown in Fig. 2. The user
interface for the characterisation consists of three main parts: The upper left area,
where the user applies drop-down menus to select score for every characteristic; the
right area, where the current task is described with is attributes; and the down left
area, where the user is warned about violations of consistency rules.

The user can choose to ignore these rules or change his/her characteristics to
comply with the rules. In the following section, we present the results of applying the
m tool on the IT-support scenario.

3.3 Results of the Characterisation

The results from applying the MOWAHS characterisation framework to the IT-
support scenario are shown in Table 2. To improve the quality of the characterisation,
the scenario was characterised independently by three people before the results were
compared. The three results were consistent only with small variations. Compared
with previous characterisation, we see that the consistency rules and the tool have
improved the precision of the framework.

134 A.I. Wang et al.

Fig. 2. Characterising a scenario using the m tool

Table 2. Scores from the IT-support scenario

Requirement Indicator T1:
Install PCs

T2:
Upgrade PCs

T3:
Assist users

General Task Indicator (GTI) 2,2 2,6 3,4

Information Complexity Indicator (ICI) 2,4 3,4 3,4

Location Complexity Indicator (LCI) 2,6 2,6 3,4

Time Complexity Indicator (TCI) 3,0 3,0 4,0

Network Connectivity Indicator (NCI) 2,2 2,2 5,0

Network Speed Indicator (NSI) 2,0 3,7 3,7

Energy Consumption Indicator (ECI) 2,5 2,5 3,3

Transaction Support Indicator (TSI) 2,3 2,3 4,5

Mobility Indicator (MI) 3,0 3,0 3,0

Task Complexity (TC) 2,6 2,9 3,6

We can see from task complexity (TC) scores in the table that Task 3 is the most
complex of the three tasks. We can also see that Task 3 has the same or higher values
on all indicators than the other two tasks. Task 3 has also the highest priority and we
will concentrate the analysis on this task, as it will most likely cause the main

 Using the MOWAHS Characterisation Framework 135

challenges in the system. If we first consider the GTI, ICI, and LCI, we can see that
they all have the value 3,4. This means that they are all above average complexity. A
more thorough analysis shows that Task 3 requires workflow/process support
enabling dynamic and unpredicted behaviour, like defining new activities on the spot
and redefining parts of the process during enactment. Further, it is necessary to enable
synchronisation of data between enacted activities.

An analysis of ICI shows that the mobile client should be updated frequently to
notify changes to others using the system. Also the mobile device should be able to
display graphics, but a full-fledged multimedia device is not necessary.

A further analysis of the LCI shows that Task 3 is location-dependent, as it might
utilise and produce services at the location, and that the location should be reported.
This indicates that the system should provide some kind of location-awareness.

The TCI score is 4,0 which indicates that system should allow scheduling of tasks
and that the process model should have a time attribute as a part of the task
description.

The NCI indicator is 5,0, and indicates that the mobile client must be continuously
available (online) to support the system engineer. This means also that the system can
only be used effectively within the actual range of a wireless network. If we consider
the NSI with the value 3,7, the network speed should be between medium (UMTS)
and high (IEEE 802.11b). This will also put limitations on the kind of hardware we
can use in the final system.

The ECI for Task 3 is 3,3. It indicates that the mobile client to support the task will
consume about half of maximum power. If the ECI has been very high, it could have
indicated that the mobile client might need to recharge between every task and could
not perform several tasks without access to electric power.

The TSI for Task 3 is 4,5. It indicates that such a system is likely to require a
transaction support beyond standard ACID and that strict locking cannot be used. This
also means that we need some mechanism/infrastructure to warn users and enable
negotiation between users that try to access and modify the same data.

Finally, the MI has a value of 3,0. It shows that Task 3 has average mobility, and
this indicates that the mobile client device should be rather small and light. In
addition, since mobility is involved, the mobile client device should also survive a fall
down on the floor or likewise. Further, this will also mean that the user interface of
the system has to adapt to a small screen, and a full-size keyboard cannot be used.

3.4 Requirements Found by the Framework

The following requirements were found by using the framework (the indicator the
requirement is extracted from is given in parenthesis):

Functional requirements for the system:
• RS1: Must provide a workflow infrastructure to enable management of

updates/changes of tasks during enactment (GTI).
• RS2: Must enable data exchange between tasks during enactment, e.g. between two

mobile clients (GTI).
• RS3: Should provide location-aware services to the user (LCI).

136 A.I. Wang et al.

• RS4: Must enable tasks to be related to time and support for executing tasks at a
specific time (TCI).

• RS5: Must offer a transaction support beyond standard ACID-properties (more
flexible) (TSI).

• RS6: Must provide infrastructure for handling conflicts between users accessing
the same data (TSI).

• RS7: Must provide user interfaces adjusted for the small mobile device that only
show the necessary information and widgets (ICI, LCI and MI).

• RS8: Must allow buffering of necessary information on the client in case of
network disconnection (ICI, LCI and MI).

Non-functional requirements for the mobile client device:
• RM1: Must be able to display some graphics, but full multi-media capability is not

necessary (ICI).
• RM2: Should have a built-in network interface for IEEE 802.11b or better (NCI

and NSI).
• RM3: Must have a battery that can last several hours even if the wireless network

is used continuously
• (LCI, MI, NCI, and ECI).
• RM4: Must be small, light, and endure falling down to the floor (LCI and MI).

Non-functional requirements for the infrastructure:
• RI1: Must have full coverage of a wireless network in the areas the system will be

used in (NCI and NSI).
• RI2: Must have a wireless network capacity of IEEE 802,11b or faster (NCI and

NSI).
• RI3: Must provide a way of detecting the position of mobile clients to enable

location-aware services (LCI).

3.5 Development of a Mobile IT-Support System

Our first idea of developing a system for mobile IT-support was to extend the existing
RUST system [7]. However, we found that the architecture of RUST was not easy to
extend and also had poor performance because all data was stored in various text files
and not in a database. Since our IT-department was familiar with the RUST system,
we wanted to provide roughly the same user interface and functionality as the existing
system. In addition, we wanted to expand the system with mobility functionality
based on the requirements found in Section 3.4.

3.5.1 The Mobile IT-Support System
From the requirements given in Section 3.3, we started to investigate how these could
be integrated in the design of the system.

Firstly, we found that the original process model of RUST had to be extended to
relate location and time to a task. In addition, we had to add a location model that
could relate rooms, buildings and campuses to a location. We ended up with a
hierarchical location model that can identify object position based on room, section,

 Using the MOWAHS Characterisation Framework 137

floor, building, and campus. The model describes every level in a distance matrix,
enabling us to determine the distance between two locations.

Secondly, we started to look at what kind of location-aware services we should
provide to the user. For the support manager role, we found it useful to be able to
``sort'' tasks according to their location. Thus, we could assign all tasks that are
geographically close to the same support engineer to improve work efficiency. We
wanted to track the locations of the engineers using the system, to automatically
assign new incoming tasks in the same area. For a support engineer, we wanted to
provide a service for sorting the assigned tasks according to proximity. The mobile
client should automatically show relevant tasks for an engineer in a specific area. This
would, e.g., make it possible for a support engineer to go to a PC-lab and get a list of
all the tasks related to this lab on the mobile client.

Thirdly, we found that an advanced transaction model was required for the system.
Support engineers share information on pre-assigned, on-going and completed tasks.
In addition, they share data concerning their experiences and knowledge about
previously performed tasks. To be able to do this, a knowledge base storing such
information had to be provided. Maintaining consistency and durability is important
ensuring that all involved parts can have access to the correct information at any time.
However, since sharing is emphasised, an engineer should be allowed to see what
another engineer is doing. To enable this, transaction isolation could be relaxed.
Further, as a task may last a long period of time, it is important to allow engineers to
save parts of their on-going tasks. It could happen that tasks must be terminated due
to some failures or other situations. When tasks are aborted we also have to be able to
allow them undo only parts of their tasks rather than aborting all. This calls for a
relaxed atomicity. To summarise, ACID transactional support would be too rigid for
this kind of application; instead, we have to allow relaxed atomicity and isolation, but
at the same time preserve consistency and durability. A transactional framework
proposed in [5] can be used to achieve this. Unfortunately, we did not have a finished
implementation of a transactional framework that could be used, so we had to leave
out this part in the final system.

3.5.2 The Mobile Client and the Infrastructure
From our characterisation, we found that the mobile device used as a client in the
system should be small and have an interface to a wireless network with high
bandwidth. All the buildings the IT-support is responsible for have full coverage of an
IEEE 802,11b wireless network (WLAN). This means that the mobile clients used in
the system can either be laptop PCs or PDAs with WLAN capabilities. In addition,
the whole campus has full coverage of a GSM wireless network allowing the use of
mobile phones as client devices. The main problem of using mobile phones is the
slow GSM network and the cumbersome input device. We found that the PDA would
fit best as a mobile client, because of network capabilities and size. However, as most
of the staff of the IT-department owns a mobile phone we wanted to provide a client
for such devices as well. Our system ended up with support for three kinds of devices:
Portable and stationary PCs using standard web-browsers; WLAN-enabled PDAs
using limited web-browsers; and mobile phones using WAP browsers.

As these devices have very different characteristics, we did not offer all the
system's services to all devices. For instance, the assignment and management of

138 A.I. Wang et al.

tasks is only possible in the client for PCs. On mobile phones, it is only possible to
look through the relevant tasks and change status of these tasks. The functionality of
the system is not tailored for each type of client, but the PDA and mobile phone
provides a subset of the available functionality. The user interface, however, is
tailored for the three kinds of clients. The mobile phone is supported through a
WAP/WML interface, while a HTML interface is provided for the PDA and the PC.
The HTML for the PDA is adjusted for small screens and does not include frames.
Fig. 3 shows how the system looks at a portable PC (a), a mobile phone (b), and a
PDA (c).

Fig. 3. Screenshots from the system for Mobile IT-support

One problem of our system was to localise the mobile clients. We planned to use
the base-stations in the WLAN network for positioning, but could not it was not
supported in the network. We solved this problem by letting the user explicitly report
his position through a user-interface.

4 Results of the Evaluation

In the spring of 2003, we completed the implementation of the prototype we called
MObile Nagging Geek Organiser (MONGO) [9]. The MONGO system had all the
functionality of RUST, had support for mobile clients and had mobility support
through location-awareness. Two students working for about one year carried out the
work. From the early beginning of the project until the project was finished, we made
a note about how the usage of the framework affected the development of the system.
This was done to be able to answer the research questions we wanted to investigate.

 Using the MOWAHS Characterisation Framework 139

The first research question (RQ1) asked whether the framework could identify
relevant challenges. From the findings in Section 3.3, the main challenges
(requirement indicators with highest value) identified were an unpredictable and
dynamic process, complex timing of tasks, users updating/accessing the same data,
high level of required network connectivity, and high-speed network. The three first
challenges are functional challenges, while the two last are infrastructure challenges.
For the latter, we discovered that this was not really a challenge for deploying the
system as we had the infrastructure in place. It is perhaps wrong to say that high
scores on network connectivity and network speed introduce complexity in the
system. However, if the infrastructure in our campus area had not been in place, it
would be quite expensive and time consuming to install such networks. For the
former three functional challenges, we found these problems too complex to
implement ourselves. One solution would be to acquire an advanced workflow system
that handles dynamic processes, scheduling, and advanced transactions. The
conclusion is that the framework indeed identified relevant challenges from the
scenario, even if we did not overcome the challenges in the final implementation.

The second research question (RQ2) asked whether the framework could be
used to identify new functional requirements. In Section 3.4, eight functional
requirements (RS1-RS8) identified by using the framework are listed. Some of these
requirements are related to the main challenges described in the previous paragraph
(RS1, RS4, RS5, and RS6) and was not implemented in the final system. The rest of
the functional requirements were implemented in the system. When designing and
implementing the system, all the functional requirements were relevant and important
to the system. However, could we have come up with this list without using the
framework? The requirements that we already had identified before using the
framework were RS1, RS2, RS4 and RS7. Analysing the scenario using the
framework discovered the rest of the requirements. It is not only the computed
numbers of indicators that lead to the new requirements, but the characterisation itself
forced the designers of the system to consider various aspects. To conclude, we found
that the framework is a useful tool for identifying new functional requirements.

The third research question (RQ3) asked whether the framework could be used
to identify new non-functional requirements. In Section 3.4, seven non-functional
requirements are listed (RM1-RM4 and (RI1-RI3). The non-functional requirements
that we identified were relevant to the final system, but were not very useful. Most of
these requirements must be tested with respect to response times and system
performance before knowing for sure that the correct equipment and infrastructure is
used. However, when we tested the system on a GSM phone and a WLAN PDA, we
discovered that the network speed indicated by the framework was correct. To
conclude, we found the framework only partly useful for identifying new non-
functional requirement. This was mainly because the framework could not give any
quantifiable non-functional requirements that could formally be checked.

5 Related Work

We are not aware of any other similar characterisation framework for mobile work.
We will therefore in this section outline research that is related to characterisation of
mobile scenarios.

140 A.I. Wang et al.

Maccari [2] presents an example of requirement engineering challenges in the
mobile telephones industry due to the complexity of mobile phone architecture and
performance. In addition, requirement engineering for mobile telephones has to cope
with many issues such as protocols and technology standards. Also, the limitation of
wireless devices, such as network connectivity and network speed, implies important
challenges that developers have to deal with. The author argues that requirement
engineering is a collaborative task.

Zimmerman [10] suggests the "MOBILE" framework to determine when mobile
computing technology should be used to solve challenges related to mobility. This
framework focuses on the current technology and software development trends in
mobile computing. Further, common related scenarios are discussed, including news
reporting and hotel operations. The framework provides a useful overview of
necessary support needed for specific mobile environments. However, the framework
does not provide any guidelines for how to develop or design systems for mobile
support.

Satyanarayanan [8] identifies four constraints of mobile computing concerned with
limited resources, physical security (e.g. theft), and communication and durability
issues. Another approach is proposed by Forman and Zahorjan [1] who examine three
basic features of mobile computing including wireless communication, mobility and
portability. These two approaches provide different ways of addressing mobility
issues. The former focuses on connectivity issues, while the latter deals with Quality
of Service (QoS), such as network bandwidth and device durability.

Rakotonirainy [4] discusses current and future technologies (e.g. CORBA and
mobile IP), adaptable to mobile computing environments. For this, he presents a
scenario revealing the limitations of the current technology. Although characteristics
of mobile work can be derived from this approach, he does not provide a
comprehensive framework for characterising mobile work environments.

The related work above mainly focuses on the technical aspects of mobile
computing. Our framework investigates mobile computing from another point of view
by focusing on the mobile scenario to be supported and identification of the various
system complexities introduced by the scenarios. In addition, our framework focuses
on software support for mobile work and identifies issues that are not directly related
to mobility like process and transaction infrastructure.

6 Conclusions

In this paper we have presented an evaluation of a characterisation framework that
can be applied to mobile work scenarios in order to create a software system to
support such scenarios. The evaluation shows that the framework is useful for
identifying challenges and functional requirements when developing systems that
should provide support for mobile work. We discovered that the framework was not
so useful for identifying non-functional requirements. The framework was found
useful for analysing the mobility aspects of a scenario to be implemented as a system.
The characterisation process is useful in itself by systematically focusing on the
various aspects of mobile scenarios. Further, the computed requirement indicators
will produce a profile of the characteristics of the scenario. The indicators help the

 Using the MOWAHS Characterisation Framework 141

designer of a system to identify the complex parts of the mobile system that could
lead to decisions on buying COTS components that must be integrated in the system.
The framework can also help improve the planning and resource usage in later phases
of the project by outlining the hard parts.

From our experiences of using the MOWAHS characterisation framework as a tool
to develop systems to support mobile work, we have found the framework useful. The
system that was developed using the framework (MONGO) has been tested in actual
usage with people from our IT-support department. From these tests, the users have
given positive feedback on the mobile features of the system. The main complaints
from the users were related to the lacking support for a more flexible process
enactment (refining the process on-the-fly) and more advanced management of data
updates (transaction management). Both these issues were identified by the
framework, but were not implemented in the final system. The support engineers
testing the system said that the most useful feature of the MONGO system was that
they could bring the system along when working away from the office. This would
make it easier to update the state of tasks in the system at the spot and write
resolutions at problems at hand that could be reused later. The future will bring many
possibilities in providing computer support for mobile work, and believe that our
framework can help in developing such systems.

Acknowledgement

This paper is a result of work in a project called MObile Work Across Heterogeneous
Systems (MOWAHS) [3]. The MOWAHS project is sponsored by the Norwegian
Research Council's IT2010 program. We would like to thank Øystein Hoftun and Per
Terje Aune for their contribution in implementing the MONGO system.

References

1. G.H. Forman and J. Zahorjan. The Challenges of Mobile Computing. Computer, 27(4):38-
47, April 1994.

2. A. Maccari. The Challenges of Requirements Engineering in Mobile Telephones Industry.
In 10th International Conference and Workshop on Database and Expert Systems
Applications (DEXA '99). Springer Verlag, 1999. LNCS 1677.

3. MOWAHS. MObile Work Across Heterogeneous Systems. Web: http://www.mowahs.com,
2004.

4. A. Rakotonirainy. Trends and Future of Mobile Computing. In Proc. of the 10th IEEE
International Workshop on Database and Expert Systems Applications, pages 136-140,
Florence, Italy, 1-3 September 1999. IEEE CS.

5. H. Ramampiaro and M. Nygård. CAGISTrans: Providing adaptable transactional support
for cooperative work - An Extended Treatment. Information Technology & Management
(ITM) Journal, 5(1-2):23-64, 2004.

6. H. Ramampiaro, A. I. Wang, C.-F. Sørensen, H.N. Le, and M. Nygård. Requirement
Indicators Derived from a Mobile Characterisation Framework. In Proc. of the IASTED
International Conference on Applied Informatics (AI'2003), Innsbruck, Austria, 10-13
February 2003. 8 pp.

142 A.I. Wang et al.

7. C. Ruefenacht. The RUST Mail System. In The 10th annual LISA Conference, Chicago,
Illinois, USA, September 29 - October 5 1996.

8. M. Satyanarayanan. Fundamental Challenges in Mobile Computing. In Fifteenth Annual
ACM Symposium on Principles of Distributed Computing, pages 1-7, Philadelphia,
Pennsylvania, United States, May 23-26 1996. ACM Press.

9. C.-F. Sørensen, A.I. Wang, and Ø. Hoftun. Experience Paper: Migration of a Web-based
System to a Mobile Work Environment. In IASTED International Conference on Applied
Informatics (AI'2003), pages 1033-1038, Innsbruck, Austria, February 10-13 2003.

10. J.B. Zimmerman. Mobile Computing: Characteristics, Business Benefits, and the Mobile
Framework. Technical Report INSS 690 CC, University of Maryland European Division,
April 2nd 1999.

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 143 – 156, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Design Patterns and Organisational Memory in
Mobile Application Development

Riikka Ahlgren and Jouni Markkula

University of Jyväskylä,
Information Technology Research Institute

P.O. Box 35, FIN-40014 University of Jyväskylä, Finland
{ahlgren, markkula}@titu.jyu.fi

Abstract. Mobile application development is a challenging task for the soft-
ware companies due to complicated technological and business environments.
Patterns have been recognised to be a valuable tool in software development,
for they allow design experiences and solutions to be documented systemati-
cally and facilitate the communication of design issues. Patterns can be seen as
a part of organisational memory, a means to preserve the design knowledge and
enable its reuse in later products and projects. In this paper we study how the
design patterns can support organisational memory in mobile application de-
sign. We present the utilisation of patterns as a dynamic process and analyse
their relationship and suitability to the process of organisational memory. As a
result, we present a framework, which can be used for supporting and evalua-
tion of patterns as a means for storing organisational memory in software
companies.

1 Introduction

Mobile application development is rather new business area that presents a challeng-
ing environment for the software companies. Applications need to be developed rap-
idly and flexible adaptation to new technologies is required. Plans and design solu-
tions need to be changed frequently. New technologies emerge constantly and they
are inherently complex. Adaptation to the changes of technology and to the evolve-
ment of business requires innovativeness from the software designers. Since innova-
tion is based on creation of new knowledge, but also on efficient use of existing
knowledge [1], the skills of the designers and their experience about past design solu-
tions are highly valuable.

If design expertise is not shared, the work process is both ineffective and ineffi-
cient, as the needed knowledge is not available for all and the communication takes a
lot of time. Loss of key personnel makes the process also fragile [2]. To enable the
knowledge sharing, it is essential to make the knowledge explicit [1]. Explicit knowl-
edge facilitates individual learning, which in turn is a prerequisite of organisational
learning [1]. Organisational learning is needed to allow the organisational memory to
accumulate, and further, organisational memory is needed to support the retention,
maintenance and retrieval of learned knowledge [3].

144 R. Ahlgren and J. Markkula

Design patterns are recognised to be a tool to learn, document and to share experi-
mental design knowledge [4, 5], that is an essential part of software company’s organ-
isational knowledge. Although the pattern origins lay in building architecture, they are
successfully applied in software development [5]. Patterns enable reuse of good de-
sign solutions in an effective manner, facilitate communication and are a tool to
document the software code [5]. Patterns are essential development aid particularly in
mobile application development, as the business and the technologies evolve rapidly,
and this requires the tools to evolve as well.

In our study we develop a framework, where design patterns’ use is seen as a dy-
namic process, which includes design pattern acquisition, retention, maintenance and
retrieval. Our research is focused on how this dynamic process fits to the processes of
organisational memory in the context of mobile application design. We analyse pat-
tern features and attributes and the support they provide to pattern users in different
processes of organisational memory. As a result we form a framework, which brings
the theories of organisational memory and design patterns closer to each other, thus
enabling the organisational memory research to be applied in later pattern studies.

Our focus lies in mobile application development, where the need of rapid devel-
opment, together with high quality requirements, is combined. However, the idea of
using organisational memory theories in applying design patterns can be applied in
other software development as well, when the need of agile tools and high quality are
both emphasized.

This paper is organised as follows. We start by describing the environment where
the design patterns are needed, namely the mobile application development. Next, the
concept of organisational memory is defined and the four processes of it are presented
in more detail. The fourth section concentrates on describing the contents of design
knowledge in the context of mobile application development. After that, design pat-
terns are presented as a way to communicate the design information. Fifth section
concentrates on analysing and comparing the dynamics of design patterns’ use to the
processes of organisational memory. As a result we present the developed framework.
Sixth section draws conclusions of the paper.

2 Mobile Application Development Environment

Mobile application development takes place in development projects, where experts
of different domains form an effective team. The fields of expertise may vary even
greatly inside one team and communication problems may occur [6]. Typically, one
project may last from few months to several years. The team members may change
from one project to another, and even during a project.

The application development is affected by the constantly changing mobile busi-
ness environment, which is formed by a number of players, who together form a value
network [7]. Players’ effective cooperation requires that the companies have a com-
mon view to the mobile business, even though they all have their own business strate-
gies and visions to follow [8]. Typical in this environment is multi-site development,
where one product feature is added to several products. The products can be devel-
oped in different projects and by different partners, which are situated in different lo-
cations. [9]

 Design Patterns and Organisational Memory in Mobile Application Development 145

In addition to the complicated business environment, also the technological envi-
ronment can be characterized as highly complex. The following factors contribute to
this technological complexity:

• The heterogeneity of mobile devices. An application is often required to operate on
a variety of mobile devices, which are built on different platforms and have hetero-
geneous capabilities. [10]

• The heterogeneity of connectivity modes. Different mobile devices may use distinct
network access methods (e.g. GSM, CDMA, WLAN), as well as different network
protocols [11].

• Constant evolution of the technological environment. In addition to the heterogene-
ity, the technological environment is also evolving rapidly [12].

• Constraints of mobile devices. The contemporary mobile devices have a number of
limitations including small displays, small and multifunctional keypads, limited
computational power, limited memory, short battery life, etc. [11].

Taken together, multi-sited development environment, rapidly developing tech-
nologies and the complicated business environment make mobile software compa-
nies’ operating environment extremely challenging. Remaining competent in the
business requires first of all skilled employees and efficient and agile software devel-
opment. To be adaptive and productive in any business field requires knowledge how
to avoid the costly errors. Since there are no years old tradition or experience on mo-
bile application development, learning from ongoing development projects and crea-
tion and exploitation of organisational memory is truly essential.

3 Organisational Memory

The mobile industry is a challenging, busy and complex working environment where
agility and rapid software development are necessities. However, in order to survive
in the competition, the software companies cannot rely on ad-hoc solutions. The com-
panies need to systematically monitor and collect information about their successes
and failures, and develop their processes, methods and expertises, which support their
long term efficiency. The companies should learn from the past and constantly im-
prove as an effective organisation.

The concept and theories of organisational memory are closely associated to organ-
isational learning. For organisational learning to occur, learning agent’s discoveries,
inventions and evaluations must be imbedded in organisational memory [13].

Organisational memory is a form of collective memory, which can be seen as com-
posed of individual minds that share their information through the exchange of sym-
bols [3]. Organisational memory can be defined as stored information from organisa-
tion’s history that can be brought to bear on present decisions [14]. The contents of
the organisational memory include artefacts, relationships, rules and procedures that
carry the organisational knowledge [3]. Planned management of organisational mem-
ory can have significant effects on company operations.

In organisational memory the human component is essential, for much of the
memories are carried by people in their minds. Knowledge and experience accumu-
late over time and developing expertise can take many years. Social networks and in-

146 R. Ahlgren and J. Markkula

teractions are major means to collect and distribute the knowledge. When the experts
leave the company or reorganisations are carried out, organisational memory is often
strongly affected. Understanding the forms and processes of organisational memory
can significantly support retention and utilisation of organisational knowledge in the
company. Efficient utilisation of that knowledge can lead to higher level of organisa-
tional effectiveness, which can result in competitive advantages. [3]

The development of organisational memory can be seen as a continuing dynamic
process involving the different aspects of the organisational knowledge. Organisa-
tional knowledge is mostly carried by individual people and it is not necessarily ex-
plicit. Making organisational knowledge explicit, communicable and integrated can
increase organisational effectiveness. Turning implicit, tacit knowledge into explicit
knowledge is essential for allowing the organisational memory to develop and accu-
mulate. Nonaka [1] has presented a theory of this dynamic organisational knowledge
creation. He sees it as continuous dialogue between tacit and explicit knowledge. Ex-
plicit knowledge refers to knowledge that is transmittable in a formal, systematic lan-
guage. Tacit knowledge in turn, has a personal quality, which makes it difficult to
formalize and communicate. It often includes individual mental models, know-how
and skills that apply only in certain context.

In order to ensure the development of organisational memory, the processes of or-
ganisational memory are needed to facilitate acquisition, collection and storing of the
organisational knowledge, as well as making the knowledge available for other people
at other times and other places. Furthermore, the other individuals need to acquire the
organisational knowledge and expertise through learning. Organisational learning is
built on individual learning; learning individuals are a necessary requirement for
learning organisation. [13]

3.1 Organisational Memory Process

As mentioned earlier, the overall development of organisational memory and learning
of organisation can be seen as an evolving dynamic process. In that process, certain
phases, or sub-processes, can be specified. In the review on concepts of organisational
memory, Stein [3] identifies the following processes, which define the organisational
memory: acquisition, retention, maintenance and retrieval. These processes are illus-
trated in figure 1 below.

Fig. 1. The processes of organisational memory

The first process is acquisition of knowledge. It includes all the ways with which a
new knowledge can be introduced to the organisation. In the studies of organisational
memory, the focus has mostly been on learning. However, the knowledge can be ac-
quired for example as a human capital through recruiting or acquisition of different
types of records. [3]

 Design Patterns and Organisational Memory in Mobile Application Development 147

Second process of organisational memory is knowledge retention, which is often
seen as most important part of organisational memory. The major categories of
knowledge retention means, which can work on individual and organisational level,
are schemas, scripts and systems. Schemas are individual cognitive structures that
help to organise and process information and they are hierarchically arranged. Com-
mon, shared schemas are called cognitive maps and they include for example norms
and efficient working habits. Scripts describe the sequencing of events in familiar
situations. Scripts include for example roles and their typical tasks, routines and ritu-
als. Systems, in turn, are a set of inter-related elements which are interconnected ei-
ther directly or indirectly. These are for example formal organisational structures,
such as reporting channels, or informal networks between organisational actors. Also
different kinds of records (files, databases etc.), distributed information systems and
artificial intelligence systems can be used to facilitate retention of organisational
memory related to the organisational activities. [3]

Third process, knowledge maintenance, ensures that the knowledge and expertise
of an organisation are accessible to organisation’s members, even after a longer time
period [3]. Knowledge gaps may be caused by destruction of files or databases or by
personnel turnover. Reorganising of teams or breaking down other social structures
may as well lead to holes in the expertise.

Last process, knowledge retrieval, is needed to support decision making and prob-
lem solving. To make the retrieval successful, the ability to search, locate and decode
the information is needed. An important factor is also the costs of locating the infor-
mation compared to re-inventing the solution from scratch. [3]

The processes are used as a means to exploit the various contents of the organisa-
tional memory. In mobile software company, information on past solutions is a cen-
tral content of organisational memory.

3.2 Design Information as a Part of the Organisational Memory of Mobile
Software Company

In general, organisational memory can include all the various aspects related and rele-
vant to the operation of an organisation. The richness of these different aspects be-
comes evident when studying the organisational memory theories. However, we con-
centrate here to design information. Design information is the most significant
business asset for a mobile software company, and it has a specific role when seen
from the organisational memory point of view.

In a mobile software company, business knowledge, technical skills and design
knowledge are central knowledge to have and to exploit [9, 2]. Design knowledge
combines the business visions and the technical solutions into a purposeful entity,
adding value to a single solution by giving it a context and purpose. Failure to manage
design knowledge can result in low-quality designs, late and costly error detection,
late deliveries and personnel frustration [2]. Design information as such is informa-
tion about different design solutions and their applications. It becomes design knowl-
edge, when an individual learns the information and understands the intentions and
aims of the information as well (see for example [1]).

The significance of design information and good design solutions of software ar-
chitecture can be enlightened from the perspective of software quality. In any soft-

148 R. Ahlgren and J. Markkula

ware development, a number of quality goals need to be achieved [15], which is espe-
cially important in the highly complex mobile application development. Among the
qualities to be achieved, the groups of business qualities, development-oriented quali-
ties, and customer-related qualities can be identified.

The business quality goals encompass qualities related to costs and schedules, as
well as qualities dealing with marketing considerations. The attributes are for example
time to market, costs of development and targeted market. The group of development-
related qualities includes such qualities of the system being designed, which are not
discernable at runtime. These qualities reflect how flexible and maintainable the de-
signed software is. Modifiability, portability and testability among others, belong to
this group. Business and development-related qualities are to be achieved simultane-
ously with customer-related qualities. These qualities are discernable at runtime and
include, for example, performance, security, reliability and functionality [15].

Many of the quality attributes depend on the architectural design. For example,
availability is achieved by replicating critical processing elements and connections in
the architecture. In turn, business qualities often affect the architecture; when given
development time is limited, the architecture should more intensively reuse existing
components. During design, the quality requirements appear in design trade-offs,
where designers need to decide upon particular structural or behavioural aspects of
the system [16].

The significance of collection and storing of the design information in mobile
software company’s organisational memory becomes evident considering the chal-
lenging business environment. Extensive need of design re-use is typical for mobile
software development [9]. Since the development time is limited and technologies
are complicated, it is faster and more reliable to use known and tested solutions,
rather than trying to solve similar problems every time in a different way. In addition
to transferring design information in time, from past to present, also spatial transfer is
often needed. Multi-site development is common in mobile software development [9]
and there might be going on parallel development of the same application for different
platforms.

4 Patterns as a Way to Present Design Information

Learning from past designs corresponds to the theories of organisational memory, as
the core of organisational memory evolves over time from decisions that has been
made and from problems that has been solved [14]. During the last decade, the soft-
ware community has adopted patterns as a means to collect, store and distribute de-
sign information and knowledge about successful, tested solutions.

The origins of patterns lay in building architecture, when in 1970’s Christopher
Alexander with his colleagues introduced architectural patterns as a tool for designing
houses and other architectural entities [17]. In 1995 the concept of patterns was
brought to software development and the term “Design Pattern” was introduced [5].
After that, the interest to patterns has grown and patterns have been extended to new
application areas, for example to distributed systems, resource management and en-
terprise architectures [18, 19, 20].

 Design Patterns and Organisational Memory in Mobile Application Development 149

Patterns are common, and typically well known, solutions to recurring problems.
Experts have solutions to many recurring design problems and patterns build on the
collective experience of skilled designers and software engineers. Patterns capture
proven solutions in an easily-available structured form and build a common vocabu-
lary for communication. Programmers, designers, and software architects can use
patterns to improve their understanding of architectural issues and their communi-
cation about them. Thus, patterns can serve as a software analysis and description
tool, as well as means for learning, teaching, communication and complexity han-
dling. [4].

An advantage of patterns, compared to general design guidelines, which are mainly
descriptive in nature, is their structural composition [21]. In this structure, the lessons
learned during the design are stored in a usable way. The structure of patterns, that re-
veals pattern consequences and implementation trade-offs, can also be used to keep
track of design alternatives, including the ones that were not approved for implement-
ing [22]. This data can be exploited when strategic decisions are made in future itera-
tions, for example in the maintenance phase, or in future projects.

Interrelated patterns are organised into pattern catalogues, which further forms pat-
tern systems and pattern languages. A pattern language covers all aspects of certain
context and the patterns build on each other and generate a system [22]. Pattern lan-
guages will not remain static, but evolve [22]. As also knowledge evolves due to in-
troduction of new technologies and dying of old ones, new patterns emerge and exist-
ing patterns die. The descriptions of patterns evolve as well, in order to remain useful.
The nature of patterns as a developing system supports also modification of the pat-
terns and pattern systems. They can be adapted and adjusted to specific needs and for
particular community or organisation.

4.1 Mobile Patterns

The specific interests of a mobile software company are related to mobile patterns.
Mobile patterns are patterns that cover problem areas that are commonly present in
mobile application designs. The mobile patterns are not only applicable for mobile
designs, but for other software designs as well. However, they are good candidates for
new mobile application designs, since they often occur particularly in mobile applica-
tion context.

Some mobile design patterns are presented in [19], including Synchronisation pat-
tern and Remote Proxy pattern. Synchronisation pattern presented in figure 2 solves
the problem of identical data stored in different locations going out of sync. The solu-
tion is a sync engine, which is implemented in both mobile terminal and stationary
host. The sync engines communicate through sync interfaces and keep track of modi-
fications applied to local data, exchange modifications with corresponding databases
and detect conflicts and realise a conflict resolution strategy.

Remote Proxy pattern illustrated in figure 3 provides a solution to the limited
computational resources and network bandwidth by using a proxy between the ter-
minal and the network. The proxy connects to the actual service provider and per-
forms the requested tasks, processes the results and sends them back to the mobile
device. [19].

150 R. Ahlgren and J. Markkula

Fig.2. The communication in the synchronisation pattern [19]

Fig. 3. Remote proxy pattern (Adopted from [19])

Also other mobile design patterns for various problem areas exist. The problem ar-
eas are for example portability [23], interactive content development [24], distribution
[19, 25], resource management [20] and point-to-point communications [26]. Some
patterns are platform dependent (e.g. J2ME), and some patterns are specific to certain
mobile programming language (e.g. Symbian patterns) [27, 24].

The drawbacks of domain specific patterns are revealed when using the patterns
as a means of communication. If a pattern is treated as a specific to one domain
only, the experts of other domains are not familiar with it and the idea of patterns as
abstractions of specific problems and solutions is lost. Agerbo and Corncils de-
scribe similar case in programming language context. The advantage of common
vocabulary is lost in communication between programmers, if the patterns are held
as language specific [28]. Similar problem can be confronted when using domain
specific patterns.

In project environment people change rather often, and if the company does pro-
jects for several domains, also the domain area may change. This poses a new chal-
lenge for the design patterns’ use, for if the patterns are strictly domain specific, the
developers need to learn a new set of patterns every time they are assigned to new
tasks on a new domain. Thus, the advantages and disadvantages of domain specific
patterns vary according to the definition of domain, and a decent level of abstractness
needs to be preserved to maintain the pattern generality that is needed for example in
learning the patterns.

 Design Patterns and Organisational Memory in Mobile Application Development 151

5 Patterns and Organisational Memory

As discussed earlier, the knowledge about design solutions used and developed within
a software company is a form of organisational knowledge, which has a high value for
the company. This knowledge should be collected and stored in an explicit form. Pat-
terns provide a means for this; to capture and express the knowledge of proven solu-
tions. In that respect, patterns and pattern systems can be used as a means to collect
and store the essential information as a part of the software company’s organisational
memory.

Traditionally patterns are seen as collective property. Pattern systems are devel-
oped and shared within the software community openly and publicly. Following this
scope, companies can utilise general knowledge pool and adopt it to their own pur-
poses. However, pattern approach can be adjusted also to company scope, and this is
the view applied here. Narrowing the scope to the specific company’s interests en-
ables the theories of organisational memory to become closer and thus applicable.

Use of patterns can make the tacit knowledge explicit, communicative and inte-
grated into everyday design tasks. Particularly in-house patterns can store a great deal
of the experimental design knowledge. Patterns provide a template for the experts to
express their design expertise in the terms that others can understand. Without any
template, it is hard to decide which particular detail or entity in the skills is essential,
and which sides of the issue should be described and in what way.

Particularly in the context of mobile application development, aid in communica-
tion and in learning is needed, for the project based organisation makes learning ex-
tremely difficult. Projects may last several years and experts whom to ask or to learn
from may not be present in all project phases. The long time scale is problematic also
when thinking about learning by doing, for there is no support for learning, if the
tasks are repeated only once or twice in every few years. Also, limits of time and
weaknesses in organisational support prevent the organisational routines to conserve
[29], making the hectic mobile application development rather challenging environ-
ment to create and exploit organisational knowledge.

Patterns have several characteristics and features which support patterns’ use as a
dynamic part of organisational memory. Pattern acquisition is facilitated by the tem-
plate that the patterns provide for expressing the design information. When solving
new design problems, abstract conceptualization is supported by the design pattern
structure, thus enabling the designer to become aware of the different sides of the
problem. This further encourages writing down the design knowledge and thus en-
ables it to be preserved. Written format of patterns and explicit pattern name enable
the learner to get hold on the contents of a pattern, thus facilitating the knowledge ac-
quisition.

In pattern retention the names of patterns may act as scripts providing a memory
rule or reference, which helps the designers to remember the previously used solu-
tions. The structure of patterns facilitates the user to grasp the core of the design solu-
tion and the forces that lie behind it.

Akgün, Lynn and Reilly have studied the learning of new product development
team and suggest that ordering the new information as clusters may facilitate the in-
ternalizing and sense making [30]. Concerning the design information, the structure of

152 R. Ahlgren and J. Markkula

patterns, and especially their explicit made relations with each other, can be used
when forming these knowledge clusters.

Pattern chunks provide an interconnected structure of patterns, which may act as
schemas offering mental categorisation of design problems and their solutions. Often
the correct design solution uses several patterns and their combinations, for the prob-
lems, for which the help is looked, are most likely rather complicated ones and more
than one pattern is needed to solve them [22].

Categorising of patterns and pattern chunks, together with making their relations
explicit, is essential to enable the patterns to be used in later times, for use situation of
a particular pattern is best interpreted if there are enough cues to the context. Thus,
pattern classifications are essential in facilitating the choice of a correct pattern.

Maintenance of design knowledge is supported by having the patterns in written,
explicit form. Particularly pattern catalogues facilitate the access to design knowl-
edge, by providing an organised collection of proven solutions. Though, keeping the
pattern catalogues up to date may be problematic, particularly in fast evolving mobile
application development. Other problems related to pattern repositories are merely
political, thus training and other support from management is essential [31].

In pattern retrieval the patterns’ explicit relations, decently organised pattern cata-
logue and the formal structure of a single pattern may facilitate the design knowledge
retrieval. Since some parts of the organisational memory are more available for the re-
trieval than others, the accessibility that the patterns offer is highly valuable in mak-
ing the strategic design decisions.

The interpretation of the knowledge is also essential [3]. Relevant information can
only be interpreted in the context of the background information. Patterns include the
context in their structure and presentation format, and this further facilitates the inter-
pretations needed in knowledge retrieval.

Organisational memory processes affect the magnitude, distribution, location and
form of the organisational knowledge [3], which implicates that the organisational
structures, practices and tools are shaped as well. Also design patterns’ use can be
seen as a dynamic process illustrated in figure 4, which have phases of acquisition, re-
tention, maintenance and retrieval of design patterns.

The dynamics of design patterns’ use affects the organisational structures, practices
and tools, and vice versa the organisation has effects on the use of design patterns.
The structure of the organisation is essential for allowing the design knowledge to ac-
cumulate and further to enable effective organisational learning [32]. In mobile appli-
cation development projects, where people change rather often, this learning is en-
dangered. Also the long time-scale of projects hinders the learning, as presented
above.

Organisational practices include the formal and informal habits of work and com-
munication. Regular meetings of organisations veterans for example, is a practice that
can either promote or complicate the design pattern adoption, for often these veterans
act as a opinion leaders [31]. Tools, such as information systems, can also greatly af-
fect and be affected by the processes of design patterns’ use, as any technical solution
to usage of any new technology (e.g. [2, 31]).

Design pattern acquisition is affected mostly by the organisational practices.
Organisations values are reflected in the working habits and the informal behaviour
of employers. For example, the practical organisation of employers into teams and

 Design Patterns and Organisational Memory in Mobile Application Development 153

Fig. 4. The framework on the dynamics of design patterns

working groups, as well as whether knowledge sharing and teaching others is appreci-
ated in the organisational culture, makes a difference on how the design patterns can
be acquired. Also quality requirements and general working atmosphere, for example,
if productivity and efficiency means being constantly in the hurry, can hinder the de-
sign pattern acquisition, and also their retention.

Design pattern retention must be supported also by the tools that are used. Grasping
the complicated patterns requires a possibility to modify the presentation format in an
understandable format, and tools can be either facilitators or aggravators of this task.

In addition to the pattern retention, tools are central also in design pattern mainte-
nance and retrieval. Making sure that patterns are accessible requires some kind of da-
tabase or other arrangement that enables the knowledge to be saved and mined when
needed. How the different features of the tools support these activities is a key issue
in putting the design patterns in the ballpark.

Organisational structures are as well needed to support the design pattern mainte-
nance. As discussed in section 3, social structures are essential in maintaining the or-
ganisational knowledge, but also in allowing it to be retrieved.

6 Conclusions

In this paper we presented the problem of successful use of previous design knowl-
edge in mobile application design. The challenges in the rapidly evolving mobile
business are plenty, thus making it important to restore and use good and tested de-
sign solutions and successful organisational memories. Patterns are an important tool
particularly in mobile application development, for the rapidly evolving technological
and business environment requires the development tools to evolve as well.

154 R. Ahlgren and J. Markkula

To avoid collecting and restoring knowledge which may become obsolete too soon
and to ensure the knowledge relevancy in later design projects, the abstraction level of
re-used knowledge should be high enough. Thus, the more specific the patterns are, the
narrower is their area of reuse and the sooner they might become old-fashioned. This
highlights the need of understanding also the forces and rationale behind the solutions.

Organisational memory was defined as stored information from organisation’s his-
tory that can be brought to bear on present decisions. The means used in memory
processes are knowledge acquisition, retention, maintenance and retrieval.

The suitability of design patterns in the different processes of organisational mem-
ory was evaluated to show the benefits and drawbacks of our approach. We concen-
trate in using the patterns as a tool to document, preserve and exploit particularly de-
sign knowledge in mobile application development. In addition to the formality and
the structure, also the pattern catalogues and continuous evolvement of design pat-
terns was seen as key features that most facilitate the different processes of organisa-
tional memory. Our view of patterns as a continuously evolving process is consistent
with the previous study of [31] and presentation of [33].

In our study we developed a framework illustrated in figure 4, where design pat-
terns’ use is seen as a dynamic process, which affects the organisational structures,
practices and tools, and vice versa the organisation has effects on the design patterns’
use. The phases are similar to the processes of organisational memory, namely design
pattern acquisition, retention, maintenance and retrieval. Particular pattern features
supporting these processes were discussed in section 5.

The aim of the framework is to bring the theories of organisational memory closer
to the design patterns’ theory, and thus enable the design pattern studies and usage to
exploit the findings of organisational memory literature. Seeing design patterns’ use
as an evolving process enables the pattern usage to become closer to everyday work
in software companies and thus facilitates the pattern adoption in small steps.

In future the framework can be used as a tool in empirical evaluations of design
patterns and their suitability as organisational memories. Another open research issue
is the technological solutions and their features that support design patterns in becom-
ing a part of organisational memory.

Acknowledgments

The research work presented in this paper was done in MODPA research project
[http://www.titu.jyu.fi/modpa] at the Information Technology Research Institute,
University of Jyväskylä. MODPA project was financially supported by the National
Technology Agency of Finland (TEKES) and industrial partners Nokia, Yomi Soft-
ware, SESCA Technologies and Tieturi.

References

1. Nonaka, I., A Dynamic Theory of Organizational Knowledge Creation, Organization sci-
ence, 5 (1994).

2. Terveen, L. G., Selfridge, P. G.,Long, M. D., From "Folklore" to "Living Design Mem-
ory", SIGCHI conference on Human factors in computing systems, ACM Press, Amster-
dam, Netherlands, (1993).

 Design Patterns and Organisational Memory in Mobile Application Development 155

3. Stein, E. W., Organizational Memory: Review of Concepts and Recommendations for
Management, International Journal of Information Management, 15 (1995), pp. 17-32.

4. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,Stal, M., Pattern-oriented soft-
ware architecture - A system of patterns, John Wiley & Sons ltd., Chicester, West Sussex,
England, (1996).

5. Gamma, E., Helm, R., Johnson, R.,Vlissides, J., Design Patterns: Elements of reusable ob-
ject oriented software, Addison-Wesley, Boston, USA, (1995).

6. Galbraith, J. R., Competing with Flexible Lateral Organisations, Addison-Wesley, USA,
(1994).

7. Chen, G., Wireless Location based Services, Technologies, Applications and Management,
(2002).

8. Kar, E. v. d., Maitland, C. F., Montalvo, U. W. d.,Bouwman, H., Design guidelines for
mobile information and entertainment services: based on the Radio538 ringtunes i-mode
service case study, 5th international conference on Electronic commerce, Pittsburgh, Penn-
sylvania, USA., (2003).

9. Ketola, P., Integrating Usability with Concurrent Engineering in Mobile Phone Develop-
ment, Department of Computer and Information Sciences, University of Tampere, Tam-
pere, (2002).

10. Rupnik, R.,Krisper, M., The Role of Mobile Applications in Information Systems, The
Second International Conference on Mobile Business, Austrian Computer Society, Vienna,
Austria, (2003).

11. Siau, K.,Shen, Z., Mobile communications and mobile services, International Journal of
Mobile Communications, 1 (2003), pp. 3-14.

12. Nokia, Mobile Internet Technical Architecture - Visions and Implementations, Edita Pub-
lishing Inc. IT Press, (2002).

13. Argyris, C.,Schön, D., Organizational Learning: A Theory of Action Perspective, Addison-
Wesley, (1978).

14. Walsh, J. P.,Ungson, G. R., Organizational memory, Academy of management review, 16
(1991).

15. Bass, L., Clements, P.,Kazman, R., Software Architecture in Practice, Addison-Wesley,
United States, (1999).

16. Gross, D.,Yu, E., From Non-Functional Requirements to Design through Patterns, Re-
quirements Engineering, 6 (2001).

17. Alexander, C., Ishikawa, S., Silverstein, M., Jakobson, M., Fiksdahl-King, I.,Angel, S., A
Pattern Language. (Volume 2). Oxford University press, New York, (1977).

18. Fowler, M., Patterns of enterprise application architecture, Addison-Wesley, Boston,
Mass.; London, (2003).

19. Roth, J., Patterns of mobile interaction, Personal and Ubiquitous Computing, 6 (2002).
20. Noble, J.,Weir, C., Small Memory Software: Patterns for Systems with Limited Memory,

Addison-Wesley Professional, (2000).
21. Granlund, Å., Lafrenière, D.,Carr, D. A., A Pattern supported approach to the user inter-

face design process, 9th International Conference on Human Computer Interaction, New
Orleans, (2001).

22. Coplien, J., Software Patterns, SIGS Books & Multimedia, New York, (2000).
23. Tasker, M., Professional Symbian programming: Mobile solutions on the EPOC platform,

Wrox Press, Inc., (2000).
24. Hui, B., Big designs for small devices, http://www.javaworld.com/javaworld/jw-12-

2002/jw-1213-j2medesign.html, (2002).

156 R. Ahlgren and J. Markkula

25. Yuan, M., Developing Web-service-driven, smart mobile applications, O'Reilly Media,
Inc. Available from www.ondotnet.com/pub/a/dotnet/ 2004/02/23/ mobilewebserviceapps.
html, (2004).

26. Guidi-Polanco, F., Cubillos F., C., Menga, G.,Penha, S., Patterns for point-to-point com-
munications, Dip. Automatica e Inormatica, Politecnico di Torino, Italy, VikingPLoP
2003, http://plop.dk/vikingplop/2003/Patterns/guidi.pdf, (2003).

27. Allin, J., Dixon, J., Forrest, J., Heath, M., Richardson, T.,Shackman, M., Professional
Symbian Programming. Mobile Solutions on the EPOC platform., Wrox Press Ltd., USA,
(2000).

28. Agerbo, E.,Cornils, A., How to preserve the benefits of Design Patterns, 13th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applica-
tions, Portland, Oregon, USA, (1998).

29. Lewitt, B.,March, J. G., Organizational learning, Annual Review of Sociology, 3 (1988).
30. Akgün, A. E., Lynn, G. S.,Reilly, R., Multi-dimensionality of learning in new product de-

velopment teams, European Journal of Innovation Management, 5 (2002).
31. Manns, M. L., An investigation into factors affecting the adoption and diffusion of soft-

ware patterns in industry, De Montfort University, United Kingdom, Leicester, (2002).
32. Galbraith, J. R., Designing the innovating organization, in K. Starkey, ed., How organiza-

tions learn, International Thomson Business Press, London, UK, (1996), pp. 156-181.
33. Alexander, C., The Timeless Way of Building, Oxford University Press, New York,

(1979).

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 157 – 172, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Specifying Patterns for Mobile Application Domain Using
General Architectural Components

Oleksiy Mazhelis1, Jouni Markkula1, and Markus Jakobsson2

1 University of Jyväskylä,
Information Technology Research Institute,

P.O. Box35, FIN-40014 University of Jyväskylä, Finland
{mazhelis, markkula}@titu.jyu.fi

2
 Ab SESCA Technologies Oy,

P.O. Box77, FIN-68601, Jakobstad, Finland
markus.jakobsson@sesca.com

Abstract. Software companies adopt patterns as a means to improve architec-
ture and design practices. During recent years, the application of patterns has
extended from general software applications to specific problem domains. In a
new domain, suitable patterns fitting to the essential design problems in the new
context need to be identified. In this paper, we introduce a general architectural
model of mobile applications, which can be used to identify and organise essen-
tial patterns in mobile-application design process. This model is employed to
construct a high-level architecture of a particular application. For each compo-
nent of the architecture, the model may suggest candidate patterns that can be
used for elaborating the component. Subsequently, the results of the design
process are used iteratively to further develop the architectural model. The pre-
sented model is verified and tested by employing it to address the design prob-
lem of supporting multiple user interfaces in a real mobile application product.

1 Introduction

Mobile technology domain is a challenging environment for software design. The
complexity and peculiarities of the environment as well as fast development of the
technologies beget design problems which are not present in traditional application
environments. This, in turn, often necessitates design solutions differing from those
commonly applied in other conditions. These solutions should take into account the
specifics of mobile terminals, such as limited battery power and small screen size, and
the limitations of wireless networks, such as restricted bandwidth and availability.
Furthermore, the applications should be future-proof, i.e. remain up-to-date in the
quickly evolving technology, and they need to be implemented and ported quickly to
new technologies and platforms. Thus, mobile applications need to possess specific
qualities including, in addition to required functionality, the qualities of modifiability,
reliability, efficiency, etc. These qualities are largely achieved by architectural means
[1], and therefore, careful architectural design is important.

Patterns have been introduced and adopted by the software community to support
systematic design of architectural solutions with the desired qualities. A number of

158 O. Mazhelis, J. Markkula, and M. Jakobsson

design patterns and pattern systems have been elicited during last decade. A pattern in
software engineering has been defined by [2] as a description of communicating ob-
jects and classes that are customized to solve a general design problem in a particular
context. Patterns should present a solution to a problem in a context, and their essen-
tial elements include [2]: the pattern name; the description of the design problem and
its context; the solution describing elements, their responsibilities and collaborations;
and the consequences of applying the patterns, e.g. the benefits and trade-offs. Pat-
terns range in their abstraction level, varying from abstract architectural styles to de-
sign patterns and low-level programming idioms [3]. They can be divided into general
(or domain-independent) patterns [2, 3] and domain-oriented patterns tailored to spe-
cific areas of applications and/or to specific development tools or platforms [4, 5].

Patterns are typically collected in pattern catalogues. The patterns in catalogues are
organised according to certain characteristics, and relationships between them are de-
scribed. To be useful, the catalogues should contain only a restricted number of pat-
terns which reflect the most commonly encountered design problems, in general or in
a specific domain1. Among domain-independent pattern catalogues, one of most well-
known is the famous GoF catalogue presented in [2]. An example of a domain-
specific catalogue is the Core J2EE Pattern Catalog2 [4], where many of the patterns
useful in designing enterprise applications with J2EE are collected.

As noted above, the mobile environment represents a technology domain which
has its peculiarities strongly affecting the design solutions. In solving a design prob-
lem with patterns, these peculiarities should be taken into account in order to identify
suitable patterns. Namely, the patterns fitting to the current design problem and
matching the context of current application need to be selected [2]. While rich collec-
tions of patterns are already available through different sources, their applicability in
mobile domain needs to be evaluated by the designer, as the consequences of patterns
(and possibly, other characteristics as well) may have different significance in the
context of mobile applications. Some domain-independent and domain-specific pat-
terns available in pattern catalogues might appear inappropriate in this context or re-
quire modification. On the other hand, some patterns address the problems often en-
countered in designing mobile applications, and, hence, are highly valuable in the
mobile domain.

The patterns applicable in the mobile domain can be divided into i) the patterns
specific to (or particularly useful in) the mobile domain, and ii) the patterns from
other domains or domain-independent patterns that can be also used in the mobile
domain. Examples of mobile-domain specific patterns are the Synchronization and the
Remote Proxy patterns [6] as well as the Symbian two-phase construction and the
cleanup stack idioms [7]. The patterns from other domains directly applicable in the
mobile domain can be exemplified by Model-View-Controller (MVC) [7] or by the
Remote façade pattern [8, 5].

Thus, the use of patterns promoting the development of flexible and reusable archi-
tectural and design solutions is vital for mobile software companies, and identifying
essential and appropriate patterns for mobile technology domain is an important issue
for mobile software architects. These patterns could be seen as forming a catalogue of

1 By domain, we refer to a particular set of constraints applied to the platforms, problems, etc.
2 Available e.g. at http://corej2eepatterns.com/Patterns2ndEd/index.htm

 Specifying Patterns for Mobile Application Domain 159

core patterns for mobile domain, by analogy with core J2EE patterns mentioned
above. In this paper, we present an approach, which is applied in the MODPA re-
search project, and which is aimed at organising and identifying suitable collection of
patterns.

To facilitate the pattern identification process, we propose the use of a general ar-
chitectural model providing a hierarchically organized collection of base components,
whereon a mobile application or service may be built. In the process of designing a
particular application, these components are employed to construct a high-level archi-
tecture of this application. The components of this high-level architecture are then re-
fined using design patterns. For each of its components, the proposed model may sug-
gest the related patterns, out of which the most appropriate patterns may be selected
by the designer and used in the refinement process. Subsequently, the results of the
design process are used to update the model (both the components and the relation-
ships between them and related patterns), i.e. the model evolves with each iteration of
its use in the design. The model aims to be of practical use for both industrial and
academic environments. In mobile software companies, the model may be employed
as a skeleton for selecting and cataloguing appropriate patterns and refining a core ar-
chitecture for their software products. From an academic viewpoint, the model may
be seen as a tool assisting in pattern evaluation in the context of mobile domain.

Within the MODPA project, we are planning to implement a mapping between the
model’s components and the patterns most useful in the mobile domain. The mapping
may be further refined within a developing organization by prioritising the design
problems which the organization encounters, and by mapping these problems to the
patterns (either publicly-available patterns or proprietary patterns elicited within or-
ganization) being applied in the design.

In the following section, we describe the place and the role the proposed model plays
in the design process. A more detailed description of the model is provided in Section 4.
In Section 5, using a case application, the model and its use in the development process
is empirically tested. Finally, conclusions to the paper are given in Section 6.

2 Using General Architectural Model to Support Utilisation of
Patterns

Below, we consider how the development of good architectural solutions and identifi-
cation of appropriate patterns can be supported by using a general architectural model.

When following a top-down approach in the process of system design, we proceed
from requirements analysis through high-level design to detailed design and imple-
mentation. According to [9], the design process in this case includes five activities:
partitioning requirements, identification of subsystems, assignment of requirements to
subsystems, specification of subsystems’ functionality, and definition of subsystems’
interfaces. This process can be seen as consisting of two stages [10]. At the first stage
(conceptual architecture design phase), the components of the system, which are
needed to satisfy the stated requirements, are identified (this corresponds to three first
activities above). At the second stage (concrete architecture design phase), these com-
ponents are refined and interactions between the components are specified using de-
sign patterns.

160 O. Mazhelis, J. Markkula, and M. Jakobsson

Both stages may be supported by a general architectural model, which provides a
hierarchically organized collection of base components and suggests candidate pat-
terns to refine them (Figure 1). In particular, at the first stage, where the conceptual
architecture is designed in terms of high-level components, the general model may
support the design process by suggesting the potential high-level system components.
Ideally, if the general model is comprehensive and well designed, the conceptual ar-
chitecture of a particular system may be produced from the general model by exclud-
ing irrelevant components and relationships. Following the pattern approach, the
components in the general model are organized according to one or several architec-
tural patterns, which present known good solutions for the structure of an architecture
[3]. As a result, these architectural patterns are likely to be preserved in the design of
architectures based on this model. At the second stage, the general model may suggest
the design patterns relevant in the refinement of high-level components.

Fig. 1. Supporting design process with a general architectural model

Afterwards, the knowledge obtained during the design can be used to refine (update)
the model, both the model components and the mapping between components and pat-
terns. This can be seen as an iterative process: as a product is being designed and de-
veloped within an organization, the obtained knowledge and experience can be used to
update the components and their relationships (e.g. replace outdated components with
new ones or add new ones) and to update the mapping (e.g. by modifying the descrip-
tions of patterns, or by modifying the links between patterns and problems).

In the following section, the description of the general architectural model is
provided.

3 General Model of Mobile System Architecture

As described above, a general model may be used to facilitate the identification of
relevant design patterns. A tentative general architectural model, wherein the generic

 Specifying Patterns for Mobile Application Domain 161

elements of mobile applications or mobile systems are united, was developed for the
present purpose. The model was built based on the Nokia’s MITA layered element
model [11], OMA’s OSE architecture [12], and Parley’s OSA architecture [13]. In
Figure 2, the general structure and components of the produced model are shown.

Fig. 2. An outline of the tentative general architecture model and its components

The model follows the layered approach described in the Layers architectural pat-
tern [3]. Each layer is comprised of a number of components with approximately the
same level of abstraction. A component represents a software or hardware unit that
performs some functions at runtime. In general, the components of a layer use the
functionality provided by the lower level as well as the functionality provided within
the same layer. A component may as well serve as a re-transmitter of the lower-level
functionality to higher levels.

The model includes the Application, the Mobile Internet, and the Platform layers
introduced in Mobile Internet Technical Architecture (MITA) layered element model
[11]. The Platform layer contains core OS components, hardware components along
with related drivers, and network drivers corresponding to various access technolo-
gies. At the Mobile Internet layer, three groups of components are designated accord-
ing to [11]. The first group consists of the SDK libraries enabling e.g. the use of OS
functionality for the applications. The second group of components provides the ap-
plication and user interface (UI) support; it includes supporting components for the
user interface, for application inter-working, and the components allowing applica-
tions to manage their data sources. The third group of components, in turn, is respon-
sible for satisfying the connectivity requirements of an application; it implements a
set of the Internet protocols.

The Application layer includes a User Interface part, an Application Logic part,
and a number of enablers. The User Interface implements the presentation logic of

162 O. Mazhelis, J. Markkula, and M. Jakobsson

the application such as displaying the information and the handling of user requests,
and Application Logic, also referred to as domain logic [5], represents the set of
operations, which, in aggregate, form the core of the service provided by the
application.

Enablers can be defined as technology building blocks intended for use in the de-
velopment, deployment or operation of a Service [14]. Various enablers are de-
scribed in MITA [15] and a number of enablers are being standardised by Open Mo-
bile Alliance3 (OMA). Examples of enablers are browsing, messaging, or location
interface. Implementation of enablers may involve the cooperation of multiple dis-
tributed sub-components, and hence may require network connection. Messaging, for
example, involves the use of a specific server responsible for storing and re-
transmitting a message between the sender and the recipient. The use of an enabler
as a single component in an architecture increases the abstraction level of this archi-
tecture, and, by encapsulating underlying complexity, makes the architecture more
understandable.

The components of the Mobile Internet layer, in turn, represent building blocks for
the enablers. From the viewpoint of enablers, many of these components implement
functions that can be reused by multiple enablers, providing common capabilities
upon which other capabilities are built, and are therefore called as common capabili-
ties [14]. In the model, the common capabilities are the higher-level components
within the Mobile Internet layer.

According to the principles of layered architecture introduced above, a component
may request the functionality of the lower-level components, or the components
within the same layer. However, some components invalidate this principle as they
are requested by (and may request) the components of different layers. Such compo-
nents correspond to basic mechanisms enabling the use of other components, and are
referred to in the model as common functions [13]. Security services could be consid-
ered as an example of common functions. Different layers may require data encryp-
tion for confidentiality provision.

Due to space constraints, the description of the components illustrated in Figure 2 is
omitted in the paper. The collection of components in the model is not considered as
complete; instead, it is to be extended and refined by analysing the feedback obtained
during the application of the model in the design of mobile applications or services.

As mentioned above, wherever possible, the model should suggest the relevant de-
sign patterns for refinement of its components. For this, a mapping needs to be estab-
lished between the model’s components and a collection of patterns applicable in the
mobile domain. In addition to suggesting potentially suitable patterns, the model
should provide additional information, which would help the designer to evaluate the
pattern applicability to a particular problem in hand. This additional information may
include examples of successful or unsuccessful use, consequences, platform or pro-
gramming-language related constraints, and other information reflecting the credibil-
ity that could be assigned to the patterns as well as their relevance to the design prob-
lems encountered in the organisation.

3 http://www.openmobilealliance.org

 Specifying Patterns for Mobile Application Domain 163

4 Developing Mobile Applications Using General Architectural
Model and Design Patterns

The model (Section 3) and its use in software development process (Section 2) have
been tested with a case of a real software product. The case application was SESCA
Reservation system (SE-RE) developed by SESCA Technologies [16] and the work
was carried out in co-operation with the company. The testing involved two objec-
tives. First, the sufficiency of the model’s components was tested by using the model
to create the high-level architecture for the case product. Second, with the aid of the
case, the use of the model in the course of the system design process was tested. This
case reflects a single iteration of the use of the model, wherein the model is applied to
produce a high-level architectural design, to refine the components and wherein the
results of the design are used to update the model’s components and the mapping be-
tween the components and patterns.

In the development of the case system, the attention was paid only to one part of
the system, which is related to the generation and support of Multiple User Interfaces
(MUI). The problem of supporting MUI is frequently encountered in the design of
applications and services in mobile, and multi-channel, environment [17, 18, 19], and
therefore related patterns are of high importance within the mobile technology do-
main.

4.1 SE-RE System and Its Development

SESCA Reservation system SE-RE represents an online resource-reservation system.
Using SE-RE, company resources such as persons, laptops or meeting rooms can be
reserved for a specific period of time [16]. SE-RE is accessible through multiple web
UIs, e.g., XHTML UI for desktop browsers as well as smaller XHTML or HTML
based UIs for mobile browsers. Screenshots of these UIs are presented in Figure 3.
SE-RE is provided as an ASP service; therefore, the system must be able to serve
hundreds of users simultaneously.

The main functionality in SE-RE consists of creating, viewing, updating, and delet-
ing reservations. SE-RE also includes other desktop UI related features, such as help
pages and administration of users, resources and companies. This additional function-
ality is not considered in this paper.

The main page in SE-RE is the calendar page, where the user is presented with the
reservation table for the requested resource and week. In the desktop UI, empty slots
in the calendar are links to a reservation page for that slot. The filled slots are reserva-
tions and contain links to further information about the reservation. The reservation
page includes fields for entering subject, requestor name, date, starting and ending
time for the reservation, and also allows modification or deletion of existing reserva-
tions. The mobile UI has no links in the empty spots, instead the reservation form is
included at the bottom of the page. This is to minimize page size and count and to
minimize the number of links in the UI.

In the earlier version of SE-RE, separate UIs had been designed for each type of
platform. Furthermore, specific versions of the UI had to be maintained even for some
devices, because of the device-dependent browsers versions affecting, for example,
the interpretation of HTML format.

164 O. Mazhelis, J. Markkula, and M. Jakobsson

Fig. 3. Screenshot of the desktop UI and a mobile UI in SE-RE

This limitation needed to be addressed during the development of a new version of
the system aimed at improving the system maintainability. In it, a single-source presen-
tation architecture was aimed at reducing the maintenance overhead of the SE-RE appli-
cation. The description of the UI should not be dependent on the end device; instead, a
general UI should be able to adapt to the end devices at run-time. At the same time, effi-
ciency should not suffer on the expense of better maintainability. For the new version of
the system, the following requirements and quality attributes were stipulated [16]:
• Adaptability. The user interface should adapt to the capabilities of the mobile termi-

nals and to the roles of the users. Different platforms require different sets of content
and different style. Before the adaptation, terminal capabilities have to be recognised.

• Efficiency. The efficiency is characterised by the response time and by the re-
source utilisation. The response time consists of the server request-processing time
and the data transmission time. For desktop browsers, where the data transmission
time is short, long delays are not tolerated, and therefore the required processing
time is shorter. Meanwhile, on mobile-terminals, where the transmission time is in-
evitably longer due to relatively slow GSM or GRPS transfer rates, a longer proc-
essing time is not so noticeable. The server-side processing time was required to be
< 200ms for desktop UIs and < 1000ms for mobile UIs. In order to be efficient, the
system should have good performance quality [1].

• Changeability. The multiple interfaces supported by the system should be easy to
change. For this, the specification of the content, the specification of user interface,
and the specification of the presentation (defining the outlook of the UI and the
content) should be done independently. Also, the content and UI must be described
in one place for all platforms. This requirement corresponds to the modifiability

 Specifying Patterns for Mobile Application Domain 165

quality attribute [1]; specifically, the system architecture should support easy
modification of the user interfaces.

• Design robustness. This feature encompasses the need for the stability of the presen-
tation and the need for the analyzability of the architecture. The stability of presenta-
tion implies the absence of the unexpected effects in the representation due to
changes in the UI or content specifications and is closely related to the modifiability
quality attribute [1]. The analyzability refers to the easiness of identifying the archi-
tecture parts that require modification. To achieve the stability and analyzability re-
quirements, the architecture should be modular and not over-complicated.

• Ease of development. This feature could be mapped to the buildability quality at-
tribute [1]. In order to avoid long development time, the development should not
be overly complex. Because of this quality attribute, the length of the UI descrip-
tions must be restricted, while enabling sufficient control over the resulting UI.

4.2 Application of the General Architectural Model

Following the approach introduced in Section 2, we applied the general architectural
model, presented in Section 3, to the SE-RE system. The SE-RE system was decom-
posed into the high-level components based on the general architectural model. The
decomposition was carried out by adapting and specialising the model through the ex-
clusion of irrelevant components. The remaining high-level components included in
SE-RE are shown in Figure 4 below.

«system»
SE-RE

«subsystem»
SE-RE::Security

+MakeReservation()
+DeleteReservation()
+etc()

SE-RE::Application logic
«subsystem»

SE-RE::UI
+GetResource()
+GetReservation()
+etc()

SE-RE::Data mngt

+SendRequest()
+GetResponse()

WebBrowserSupport

+GetRequest()
+SendResponse()

WebServer

+Compile&ExecuteJSP()
+ExecuteServlet()

-JSPEngine
-ServletEngine

WebServerExtention

Fig. 4. High-level components of SE-RE system

The UI subsystem implements user-system interaction. It is responsible for sensing
the user input, for reacting to the user input information by requesting specific system
services, and for displaying the system response information to the user.

The Application logic component implements the core services of the SE-RE system,
i.e. access to and modification of the reservations-related information. The Application
logic component requires the use of one or several databases; access to and management
of these databases is facilitated by the data management (Data mngt) component.

The SE-RE system is distributed between a server and a terminal. The user inter-
acts with the system through a Web-page interface on the terminal. The processing of
user requests is performed on the server side. The WebBrowserSupport component
and the WebServer component enable the communication between the terminal and
the server parts. The WebServer delegates part of the processing to the extension
(WebServerExtention) component, whose responsibilities include, for example, the
compilation of JSP files and execution of servlets.

166 O. Mazhelis, J. Markkula, and M. Jakobsson

The security subsystem is aimed at preventing unauthorized access to the resources
of SE-RE. For this, authentication and access control services are implemented.

For the purposes of the case study, we focus our attention only on the UI subsys-
tem. The decomposition of this subsystem into lower-level components is presented
in Figure 5.

«subsystem»
UI

+GetInput()
+DisplayText()
+DisplayGraphics()

UISupport

+KeyPressed()

UISupport:: Input

+DisplayText()
+DisplayGraphics()

UISupport::Output

+DetermineTerminalCapabilities()
+DispatchRequest()

UI::Controller

+Selection&Composition()
+Transformation()

UI::UIAdaptation

TerminalCapabilities

+SelectComponents()
+AssembleComponents()

UIAdaptation::Selection&Composition

+Transform()

Tansformation

UI::UIDescription

Fig. 5. Components of UI subsystem

The low-level functionality responsible for sensing and pre-processing of user input,
as well as for displaying the system output information on the screen of user device is
implemented by the Input and Output components, respectively. The UISupport, in turn,
represents a façade that provides an interface to the lower-level functionality.

The Controller handles the user input information. It determines the service re-
quested by the user, and dispatches the request to an appropriate Application logic
component (method). Dispatching may take into account user roles and the capabili-
ties of the user terminal.

After the system completes the processing needed for the provision of the re-
quested service, the result of the processing are presented to the user. The process of
generating the presentation can be divided into the selection and combination of the
presentation elements and their subsequent transformation according to the capabili-
ties of particular terminal. The selection and transformation are performed by the Se-
lection&Composition and Transformation components, respectively. The UIAdapta-
tion component serves as a façade for them.

The TerminalCapabilities enabler is included in the model. Using the description of
the device capabilities provided by the TerminalCapabilities component, the UIAdap-
tation component adjusts the content to be rendered to the user. The adjustment may
involve the modification of UI elements (e.g., for mobile terminals, a table may be

 Specifying Patterns for Mobile Application Domain 167

substituted with a list element), as well as the modification of the information pre-
sented (e.g., long names may be cut, or the resolution of images may be reduced).

4.3 Identification of Design Problems and Specifying Solutions Using Patterns

The lower-level model of the UI subsystem, presented in Figure 5, was used to locate
the design problems requiring appropriate solutions. In this case, three design problems,
discussed below, were identified. Available design patterns were applied, in order to
specify the solutions satisfying the system requirements described in Section 4.1. The
components which are inspected in detail are the components in the UIAdaptation
subsystem: UIDescription, Selection&Composition and Transformation.

Platform-Independent UI Description
The UIDescription component in Figure 5 is responsible for offering a description of
the UI. For easy modifiability, the description of the UI needs to be made platform-
independent. In order to improve maintainability, the repetition of code should be
minimal in such description.

XHTML was chosen as the UI description language for SE-RE. The pages gener-
ated by the server can be sent to desktop clients for Cascade Style Sheets (CSS) adap-
tation without any transformations, thereby decreasing response times for desktop us-
ers and, more importantly, drastically decreasing the server load. As XHTML MP has
been adopted by the mobile industry, XHTML content description is becoming the
standard in all web browsers, both desktop and mobile, which eliminates the need to
produce content in different formats for different devices [11].

Improving code maintainability through the avoidance of code duplication and the
reuse of modular UI components is described in the Composite View pattern [4]. The
Composite View pattern, in turn, is based on the Composite design pattern [2], which
suggests decomposing a complex object into a hierarchy of components, in which all
the constituting components would be treated in a similar manner.

In Figure 6, a class diagram of Composite View design pattern is shown. In
Composite View, components of different hierarchy levels are treated equally, and
therefore, a component does not need to know whether it is a root component (root
CompositeView), a middle-level component (non-root CompositeView), or a
leaf-level component (SimpleView). The layout of UI components is defined in a
separate module (Template). The uniformity of components in the hierarchy allows
a component to be reused a number of times in different places in the composition.
In the context of SE-RE, this reusability is employed for component reuse in several
compositions rather than within a same composition. For SE-RE, the Composite
View offers better maintainability through the elimination of duplication and the
separation of layout definitions, and it offers better efficiency by limiting transfor-
mations.

In order to make the identification of the Composite View pattern easier for the de-
signer, a reference to this pattern needs to be included in the UIDescription compo-
nent (Figure 5) of the model.

168 O. Mazhelis, J. Markkula, and M. Jakobsson

Client View

SimpleView CompositeView

dispatches ViewManager

Template

1

1..*
uses

-manages

1..*

-uses

1

defines layout

-contains
1..*

Fig. 6. Composite View design pattern

Platform-Dependent Selection of UI Components
Different platforms require different UI elements due to different formats, types and
sizes of terminals. For instance, the control elements for managing the resources
should be available for a user with administrative rights at a desktop interface, while
they should be hidden in the UI at a mobile terminal. Transformations can be used to
remove information from the general UI, but this has performance drawbacks. There-
fore, in the SE-RE system, the UI components are selected separately for each plat-
form; the components being selected are described in the UI definitions [16]. For each
platform, a separate root definition is created, wherein the specific UI components of
this platform are specified.

The mechanism for choosing an appropriate root definition (Composite View) for a
particular platform is implemented using Abstract Factory design pattern [16] illus-
trated in Figure 7. The selection of this pattern is justified by its usefulness for con-
figuring a system with one of multiple families of products [2]. In case of SE-RE, the
role of products is played by the definitions of UI in the form of Composite Views,
one of which is to be selected.

Client

+CreateProduct() : AbstractProduct

AbstractFactory AbstractProduct

+CreateProduct()

ConcreteFactory

+Product()

ConcreteProductproduces

«uses» «uses»

Fig. 7. Abstract Factory design pattern

The Abstract Factory pattern “provides an interface for creating families of related
or dependent objects without specifying their concrete classes” [2]. In the context of
the SE-RE system, the role of AbstractFactory is to provide an abstract interface to re-

 Specifying Patterns for Mobile Application Domain 169

trieve a composite UI definition by its name, independently of the factory implemen-
tation. As a result, the fact that there exist multiple UIs is hidden from the rest of the
application. This is especially useful for the UIController component, as it can dis-
patch requests from different user agent in the exact same way and leave the respon-
sibility of producing platform dependent responses to the Selection&Composition
component. Therefore, a reference to this pattern needs to be included in the Selec-
tion&Composition and UIController components of the model.

Adaptation of the UI Components
The UI elements should be adjusted to the peculiarities of a particular terminal. As the
Selection&Composition component composes the appropriate UI data, the adjust-
ments deal only with formatting issues. The Transformation component in Figure 5
implements this functionality.

A straightforward solution would be to implement separate transformations for
each web-page used in the application and for each supported type of termi-
nal/browser. Such transformation can be implemented e.g. using Transform View pat-
tern [5]. This, however, would result in a large repetition of code, as the same trans-
formations would need to be specified for multiple pages, and similar transformations
may be needed for different terminals/browsers. In order to avoid code repetition, the
process of transformation may be decomposed into several operations applied conse-
quently, so that the same transformational operations could be applied/reused for dif-
ferent pages or for different terminals/browsers.

In order to be reusable and easy to add and remove, the components implementing
transformational operations should be i) independent of each other and ii) loosely
coupled with the other components of the system. The Intercepting Filter pattern in-
troduced in [4] addresses these issues by implementing pluggable self-contained pre-
and post-processing filters.

The FilterManager intercepts the requests and/or responses, which are sent be-
tween the Client and the Target, and invokes the chain of filters to perform their tasks.
In fact, the FilterManager wraps the functionality of the target with additional func-
tionality (implemented by Filters), and thus follows the Decorator pattern [2].

In the SE-RE system, a chain of four filters are employed to implement the neces-
sary transformations; the last two filters are application-independent and therefore
may be reused in other applications:

1. The first filter is transforming the components according to the constraints of a par-
ticular group of terminals.

2. The second filter is responsible for adding predefined style (in a form of style tags)
to the UI components.

3. The role of the third filter is to implement workarounds required for adapting the
UI components to the limitations or misbehaviour of particular versions of brows-
ers and/or other software components at the terminal.

4. The final fourth filter implements the transformations, which adapt the UI to the
markup language understood by the browser.

With the aim to improve the efficiency (performance) of the system, the definition
of the interface is implemented in the design of SE-RE so that no transformations
would be required for the desktop UI. This is motivated by the observation that re-

170 O. Mazhelis, J. Markkula, and M. Jakobsson

quests from desktop clients constitute the vast majority of issued request, and skip-
ping the transformation phase saves a lot of resources on the server. Thus, the UI in
the SE-RE system follows the graceful degradation approach [19], where the UI is de-
signed for the platform with the richest capabilities, and is subsequently simplified
(degraded) to meet the constraints of platforms with inferior capabilities.

4.4 Results and Discussion

Owing to the use of patterns, the development of SE-RE has resulted in a system that
meets the specified requirements. The wanted qualities of the system, as described in
section 4.1, have been achieved mainly by architectural means. The high performance
(efficiency) measured as system response time was improved due to i) the UI compo-
nent selection and ii) the adoption of the graceful degradation approach, allowing the
response time for desktop PCs to be minimised at the expense of longer response
times for mobile terminals. The modifiability (changeability, design robustness) of
user interface was achieved by i) splitting the responsibilities among the architectural
components (separation between content and presentation and the use of separate
transformation filters), and ii) by avoiding the repetition of the UI code, thanks to the
use of a hierarchy of UI component definitions, and to the inclusion of reusable trans-
formation filters. Separation of responsibilities/concerns also reduces the risk of un-
expected effects caused by modifications.

Patterns played a significant role in specifying the architectural solutions with de-
sired qualities. The Composite View design pattern (based on the Composite) was
used in the specification of UI components in order to reduce code repetition. The se-
lection of the appropriate UI components was implemented using Abstract Factory
design pattern. In turn, the Intercepting Filter pattern (based on Pipes and Filters ar-
chitectural pattern and Decorator design pattern) was used to implement platform-
tailored transformations of UI components.

The SE-RE case showed that by applying the patterns to a particular design solu-
tion, the general architectural model can be refined and updated iteratively. Namely, it
was shown that the mapping between model’s components and suitable patterns can
be enriched with new links. For instance, assuming that the UIDescription and Selec-
tion&Composition components do not contain the links to the Composite View and
Abstract Factory patterns, the appropriate links should be added to these components.
In a similar vein, the Transformation component of the model should be supple-
mented with the link to the Intercepting Filter pattern. If these links are already pre-
sent in the model, the description of the patterns may still need to be modified. For
example, the frequency of use characteristics may be updated, the code examples sec-
tion may be enriched with new examples, etc. Similarly, the collection of components
included in the model may need to be updated taking into account the results of the
design process.

With iterations, the content of the model should be gradually tailored to the needs
of the particular developing organization using it, i.e. the components and patterns
used in the organisation will be reflected in the model. Such a tailored model can be
seen as a form of organisational memory, whereby the knowledge can be transferred
from past to present, and retention of which is important for sustaining the competi-
tiveness and competence of the organisation [20].

 Specifying Patterns for Mobile Application Domain 171

5 Conclusions

In order to enable fast development and efficient maintenance of high-quality applica-
tions and services, crucial in the rapidly evolving mobile domain, carefully thought
and tested architectural designs are important. The knowledge of past successful solu-
tions in the forms of architectural and design patterns can be employed in order to ac-
celerate the emergence of architectural solutions meeting the stated requirements.

The tentative general architectural model has been proposed in the paper as a
means to support the identification of patterns suitable in a particular context. The aim
of this model is to suggest the high-level architectural components and the patterns
that can be used to refine these components. The general model can be, for example,
applied within a company developing certain types of mobile applications. When it is
used generatively, the model can be updated and/or extended iteratively by analyzing
and incorporating the feedback obtained in the process of designing applications. This
process refines and further develops the general architecture and the incorporated de-
sign solutions, which can be used as a reliable basis for building new applications or
services. On the example of online reservation system, it was illustrated how the
model can be employed in the architectural design, and how the results of the design
activities can be utilized to refine the model.

Further work will include the evaluation of available patterns and pattern systems
with respect to their suitability in the context of mobile applications and services. For
this, the relevance of the problems addressed by patterns for the mobile domain need
to be evaluated. For example, problems can be ranked according to their importance
using the opinions of experts involved in the development of mobile applications and
services. Then, for the patterns addressing important problems, the consequences of
their use need to be analyzed taking into account the specificity and limitations of the
mobile domain. The results of the evaluation will be employed to refine mapping be-
tween patterns and components in the proposed general model.

Acknowledgement

This research work presented in this paper was done in MODPA research project
[http://www.titu.jyu.fi/modpa] at the Information Technology Research Institute,
University of Jyväskylä. MODPA project was financially supported by the National
Technology Agency of Finland (TEKES) and industrial partners Nokia, Yomi Soft-
ware, SESCA Technologies and Tieturi.

References

[1] Bass, L., Clements, P. and Kazman, R., Software Architecture in Practice, Addison-
Wesley, United States, (1999).

[2] Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design patterns: elements of reus-
able object-oriented software, Addison-Wesley, Boston, Mass., (1995).

[3] Buschmann, F., Meunier, R., Rohnert, H., Sommerland, P. and Stal, M., Pattern-oriented
Software Architecture. A System of Patterns, John Wiley & Sons, (1996).

172 O. Mazhelis, J. Markkula, and M. Jakobsson

[4] Alur, D., Crupi, J. and Malks, D., Core J2EE Patterns: Best Practices and Design Strate-
gies, Prentice Hall / Sun Microsystems Press, (2001).

[5] Fowler, M., Patterns of enterprise application architecture, Addison-Wesley, Boston,
Mass.; London, (2003).

[6] Roth, J., Patterns of Mobile Interaction, Personal and Ubiquitous Computing, 2002
(2002), pp. 282-289.

[7] Tasker, M., Professional Symbian programming: Mobile solutions on the EPOC plat-
form, Wrox Press, Inc., (2000).

[8] Yuan, M., Developing Web-service-driven, smart mobile applications, O'Reilly Media,
Inc. Available from http://www.ondotnet.com/pub/a/dotnet/2004/02/23/
mobilewebserviceapps.html, (2004).

[9] Sommerville, I., Software engineering, Harlow: Addison-Wesley, (1998).
[10] Matinlassi, M., Niemelä, E. and Dobrica, L., Quality-driven architecture design and

quality analysis method. A revolutionary initiation approach to a product line architec-
ture, VTT Publications, Finland, (2002).

[11] Nokia, Mobile Internet Technical Architecture - Visions and Implementations, Edita Pub-
lishing Inc. IT Press, (2002).

[12] OMA, OMA Service Environment, Draft Version 1.0, Open Mobile Alliance, (2004).
[13] OMA, Inventory of Architectures and Services V1.0, Draft Version 1.0, Open Mobile Al-

liance, (2004).
[14] OMA, Dictionary for OMA Specifications V1.0.1, Open Mobile Alliance, (2004).
[15] Nokia, Mobile Internet Technical Architecture - Solutions and Tools, Edita Publishing

Inc. IT Press, (2002).
[16] Jakobsson, M., User interface adaptation in dynamic web applications for mobile de-

vices, Helsinki University of Technology, Department of Computer Science and Engi-
neering, (2004).

[17] Vandervelpen, C. and Coninx, K., Towards model-based design support for distributed
user interfaces, NordiCHI '04: Proceedings of the third Nordic conference on Human-
computer interaction, ACM Press, Tampere, Finland, (2004).

[18] Eisenstein, J., Vanderdonckt, J. and Puerta, A., Applying model-based techniques to the
development of UIs for mobile computers, IUI '01: Proceedings of the 6th international
conference on Intelligent user interfaces, ACM Press, Santa Fe, New Mexico, United
States, (2001).

[19] Florins, M. and Vanderdonckt, J., Graceful degradation of user interfaces as a design
method for multiplatform systems, in J. Vanderdonckt, N. J. Nunes and C. Rich, eds.,
Proceedings of the 9th international conference on Intelligent user interface, ACM Press,
Funchal, Madeira, Portugal, (2004), pp. 140--147.

[20] Stein, E. W., Organizational Memory: Review of Concepts and Recommendations for
Management, International Journal of Information Management, 15 (1995), pp. 17-32.

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 173 – 188, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Meta-model for Requirements Engineering in System
Family Context for Software Process Improvement

Using CMMI

Rodrigo Cerón1,*, Juan C. Dueñas1,*, Enrique Serrano1, and Rafael Capilla2

1 Department of Engineering of Telematic Systems,
Universidad Politécnica de Madrid,

ETSI Telecomunicación, Ciudad Universitaria, s/n, E-28040 Madrid, Spain
{ceron, serrano, jcduenas}@dit.upm.es

http://www.dit.upm.es/
2 Department of Informatics and Telematics,
Universidad Rey Juan Carlos, Madrid, Spain

Rafael.Capilla@urjc.es

Abstract. Software industries are pursuing the development of software
intensive systems with a greater degree of re-use, reduction of costs, and shorter
time to market. One of the successful approaches taken is based on the
development of sets of similar systems where development efforts are shared.
This approach is known as System Families. This article discusses an important
issue in system family engineering activities: requirements modelling in system
family context. The requirements must contain both the common and variable
parts. Also, functional and non-functional aspects have to be considered in
system family approach. Besides, an organization framework must be taken into
account for requirements management. Some meta-models for these issues in
system family are proposed and discussed. Based on the proposed model, a
process for requirements management and development according to CMMI
practices has been created.

1 Introduction

For many years, software industries have been trying to achieve the development of
software intensive systems with a greater degree of re-use, cost reduction, and shorter
of time to market. System Families (SF) are considered to be one of the most
successful approaches to carrying it out. It focuses on the reduction in the time to
market and development costs through the provision of a set of elements that are
common to a number of systems. An SF is therefore a set of systems that share a
significant part of the development effort; since they share many elements. It is

* Rodrigo Cerón is a visiting professor from Universidad del Cauca, Colombia. Rodrigo Cerón

is sponsored by COLCIENCIAS - Colombia. The work carried out by Juan C. Dueñas has
been partially undertaken as part of the CAFE and FAMILIES projects (Eureka 2023, ITEA
ip00004, ip02009), partially supported by the Spanish company Telvent and by the Spanish
Ministry of Science and Technology, under reference TIC2002-10373-E, TIC2002-12426-E

174 R. Cerón et al.

sensible to think that the concepts behind them are also common1. The main goal of
this article is to present one approach to the requirements modelling and management
in system families. In addition, Capability Maturity Model Integration (CMMISM) is
taken as a base for improvement of software process.

The basic work behind the results presented here has been carried out within the
CAFÉ [1] and FAMILIES projects. The CAFÉ reference framework (CRF) provides
a guide to classifying the activities and models related to SF development. It is based
on the model used in the ESAPS project; in addition, it is enhanced [1]. In summary,
CRF can be divided into two main parts CAFÉ Process Reference Model (CAFÉ –
PRM) and CAFÉ Assets Reference Model (CAFÉ - ARM). In Fig. 1 CAFÉ-PRM is
shown. The objective of this model is to represent major activities and methods
operating on the core assets, to allow the mapping of the contribution/tools against a
common reference. In the upper part we found Application Engineering, its main
purpose is to obtain products based on assets. In the lower part we found Domain
Engineering, its main purpose is to develop the assets of the SF. And, in the middle
part, we found those elements that support both Application and Domain Engineering.
Our research work is aimed at solving problems in the transition from Domain
Analysis to Application Analysis and the reverse.

Fig. 1. CAFÉ Process Reference Model

The rest of the paper is organized as follows. In the next section, we present a
general review of the most important related work. In addition, we outline the current
issues that we found throughout all the most important work in this arena. In section
3, we present the paper of the requirements with respect to SF engineering
organizations. In section 4, we show the present our requirements meta-model and its
connection with CMMI. In section 5, we present our requirements development and
management process, its support by means of our developed tool and a short outline
of a project assessed by it. Finally, in section 6, we conclude with some remarks and
future research.

1 Some authors do distinguish between “product line”, “product family” and “system family”.

We will use them interchangeably.

 A Meta-model for Requirements Engineering in System Family Context 175

2 Related Work

One of the main activities in our research work is conceptual modelling for system
families. There are several unrelated works in this area for example: [2-7], in
consequence, we have identified the need of a shared set of common concepts. Even
more, in our analysis of the requirements management models, we have found that no
single model covers in full extent the current needs of system family engineering
(SFE). Thus, the work presented in this document takes as inputs the published meta-
models provided, among others, by:

− ALCATEL-SPLIT (Alcatel Software Product Line Integrated Technology) [8];
whose key issue in the management of product line requirements is the capability
to distinguish if a certain requirement is optional, alternative or parameterized for a
certain product [4].

− The Helsinki University of Technology HUT model [9] provides a different view
of goals, features and constraints. Its meta-model also focuses on the creation of
hierarchies and ordering requirements for priority.

− Siemens model for requirements modelling and traceability [10] allows the
division of the set of requirements into shared, discriminated (optional, single-
adapter, multiple-adapter, required-adapter and excluding-adapter).

− Telelogic DOORS® model for requirements engineering [11] allows marking
requirements as common to the whole product family, specific of a single product
or parameterised (which would define a different product for each parameter value
chosen).

Our attempt is to cover the specific needs in SFE regarding requirements
management and development. A view of these needs has been provided by SEI [2],
referring to the number of requirements in a system family (higher than for a single
product), the number of stakeholders involved, also higher; the risks imposed by
wrong requisites affecting the whole family; and the differentiation between common
and specific requirements.

In our work, we also try to explore the relationships between requirements
engineering activities and the BAPO (Business, Architecture, Process and
Organization) model [12]. It is currently being developed in the FAMILIES project
and it proposes a conceptual framework for the analysis of complex technology
phenomena, where those four dimensions are explicitly addressed. In the rest of the
article, we describe a meta-model that supports requirements management, and where
some of the concepts appearing in the Business and Organization are included.

Thus, the management of the SF reference requirements is supported by the
capability to represent the information into a single model, containing both the
common and variable requirements in it. The same can be said about system family
architecture (that common to the set of systems in the same system family [2]), and
system family implementation (both vertical and horizontal components and
component infrastructure [2]); thus, providing the capability to get a single model of
the requirements of the system family is a primary focus to handle the full process
efficiently. In addition, CMMI guidelines helped us with the definition of what the
requirements meta-model have to contain.

176 R. Cerón et al.

From the revision of the actual tools and research papers, we found several key
specific issues that must be considered when performing requirements development
and management in a system family. These problems can be seen as follows.

− Traceability: the system family approach extends the complexity of the
development by adding the variable-common dimension in each of the assets in the
system family. In this way, we need an automatic support. We will use it to obtain
special information, i.e.: navigation, traceability and calculation of coverage
matrixes. Therefore, this support is more complex than in traditional system
engineering.

− The separation of common and specific requirements can be further elaborated into
several aspects: the explicit representation of the variability in requirements,
including the basic relations [13], as well as other more detailed variability options.

− Binding, variability derivation or selection of the system specific requirements is
the other side of the requirements management for system families. When a system
or application engineering cycle is executed, requirements from the system family
repository must be selected, adapted or modified.

− Decisions and conflicts management: keeping the set of requirements that are
common for the system family is not enough for its efficient management; also, the
requirements that are specific of a certain system must be kept in the common
base. Thus, contradictory requirements (for different systems in the family) may
coexist and the decision making process must reflect the conflicts that can appear
while in the development. In any case, the decisions that lead to the requirements
for a system must be recorded and justified.

− Reuse and evolution of requirements: keeping a central database with the
requirements for the system family is desirable. Obtaining the system specific
requirements is a must. However, the system family cannot be maintained alive if
there is no capability for a requirement that appears in several systems to become a
common requirement for the system family.

To improve the quality of the whole software development process involving
system family development we have also taken into account the guidelines related to
requirement engineering practices, exposed in the CMMI [14]. A detailed full
requirements development and management process covering SFE has been
elaborated according to those CMMI practices. It could be seen as a step by step
guide and it is based on our requirements meta-model. This process has been defined
according to the Software Process Engineering Metamodel (SPEM) specification
[15]. We have also developed a tool that fully supports such requirements
development and management process.

In general, we found that the requirements development and management
processes heavily rely on a set of conceptual models for all the entities and
relationships that are handled in them. For this reason, we define a set of well defined
meta-model. In this way the process definition are eased. In conclusion, the quality
and completeness of the meta-models limit the set of potential activities that can be
done; moreover, the tool implementation is eased by the definition of it.

 A Meta-model for Requirements Engineering in System Family Context 177

3 The Context for Requirements in SFE

The system family can be described by several models and relations between them
(See Fig. 2). Models give a way of communication for the people into the
organization. SF environment contains requirement, architectural, design and test
models. Basically, the requirement models deal with the functional and non-
functional definitions for the systems in the family. The architectural models describe
high-level design definitions of the systems in the family. The design models show
the different components that the architectural models describe. Moreover, the test
models contain the tests the system family must satisfy. In fact, there are two different
kinds of test: common to the whole system family and specific of a single system.
This test reutilisation shortens the test creation phase.

SF
Environment

Requirements
Model

Architectural
Model

Test ModelDesign
Model

Traceability

Decisions

Conflicts

Fig. 2. System Family and some of its assets

In addition to the traditional models, we can see traceability, decisions and
conflicts packages in Fig. 2. As CMMI states, full traceability relationships among
models are mandatory. This is shown by the traceability package in Fig. 2. In fact,
trace mechanisms are important to perform change management activities and to
understand the overall system. Higher abstraction level requirements can be traced to
the detailed requirements that refine them and even to the artefacts that implement
them. Decisions and conflicts among elements are part of the system family, being
related to the models too. Using traceability relationships it is possible to find out
which conflicts affect a specific requirement and which decisions were proposed to
solve such conflicts. Decisions and conflicts must be solved in order to obtain
systems. Decisions will solve some of the variability issues [16]. The later the
variability issues are solved the more flexible the system family is. In this way, we
can state that there are requirements, architectural, design and test decisions. Conflicts
must be solved in order to obtain coherent systems, and they depend on the multiple

178 R. Cerón et al.

possibilities of solution inside a system family; different alternatives would lead to
different conflicts, but there should be at least one solution for each conflict.

System Mission

System

1..*1..*

fulfills

System Family Missionis part of

Environmentinhabits

influences

System Family
1..n 11..n

belongs to

1..*1..*

influences

inhabits

Stakeholder
1..n1..n

has

Organizational Framework

1..n1..n

belongs to

1..n1..n

belongs to

1

Fig. 3. System Family Environment package

A detailed view of the SF environment package is shown in Fig. 3. This package is
related to the different models as shown in Fig. 2. System, System Mission and
Environment are related following the general ideas of the standard IEEE 1471-2000
[17], in a similar way System Family, System Family Mission and Environment too.
The system family must fulfil at least one mission, and in a similar way, the system
must fulfil at least one mission. Additionally, the system belongs to the system family
and in this sense; it should be understood as a mean to facilitate system development.
The System Family and its systems inhabits in its defined environment. However, the
first one is influenced by the environment in an indirect way. In addition, it belongs to
an organizational framework and its development is justified only in this context. In this
way, the organizational framework is related with the O dimension of the BAPO model.
Stakeholders belongs to an organizational framework, and work in the development of
the system family as a whole. In this way, we can state that system family has one or
more stakeholders. They are the link between B and O of the BAPO model.

Internal Trazability
Mechanisms

Management
Environment

Documentation
Requirements
Management

Requirements

Fig. 4. Requirement models

A detailed view of “Requirements Model” package is shown in Fig. 4. As can be
seen in the figure, this is itself composed of five packages. First, “Documentation”

 A Meta-model for Requirements Engineering in System Family Context 179

package contains the classes used to generate glossaries. Additionally, they help us in
requirements management and development practices as is in CMMI. Second, the
“Management Environment” package contains elements needed to organize SF. In fact,
they help us in requirements management practices as is in CMMI. Third, “Internal
Traceability Mechanism” package contains elements related with horizontal traceability.
Therefore, they help us in maintain bidirectional traceability between requirements as is
in CMMI. Fourth, “Requirement Management” package is responsible for managing
and controlling requirements and their links with systems and SF. Therefore, it helps us
in configuration management practices for requirements as is in CMMI. Finally, the
“Requirement” package provides the means to define requirements, their types and their
relationships; therefore, it contains all those necessary characteristics that requirements
must fulfil. The partition of the requirements model in these packages is based in the
CMMI and all the related work studied.

In section 4, a detailed view of these five packages will be provided in order to
clarify the proposed meta-model.

4 Requirements Meta-model

One of the aims desirable in SFE is having a common vocabulary that eases
communication among the different members of an organization. This is the main
reason for the existence of the “Documentation” package as shown in Fig. 5(a).
Stakeholders involved in the SF will create entries in a glossary, in order to have a
common vocabulary to unify the language used to define the requirements [18]. This
will also establish and share common non-ambiguous domain knowledge. The
elements in this package help us in obtain understanding to Requirements as stated in
CMMI specific practices.

Actor

System Family
(from Requirements Management)

Stakeholder

Organizational Framework

1..*

1..*

1..*

1..*

belongs to

1..n1..n

belongs to

1..n

1

1..n

1

belongs to

Glossary
(from Documentation)

0..n

1

0..n

1

belongs to

Glossary

Term
Relationship

Synonym
REQUIREMENT
(from Requirements)

Term
1..*

1..*

1..*

1..*

belongs to

0..*

0..*

0..*

0..*

0..*

1..*

0..*

1..*
appears in

Use Case
(from Internal Trazability Mechanisms)

0..*

0..*

0..*

0..*

appears in

Stakeholder
(from Management Environment)

1..* 0..*1..* 0..*

defines

(a) Documentation (b) Management Environment

Actor

System Family
(from Requirements Management)

Stakeholder

Organizational Framework

1..*

1..*

1..*

1..*

belongs to

1..n1..n

belongs to

1..n

1

1..n

1

belongs to

Glossary
(from Documentation)

0..n

1

0..n

1

belongs to

Glossary

Term
Relationship

Synonym
REQUIREMENT
(from Requirements)

Term
1..*

1..*

1..*

1..*

belongs to

0..*

0..*

0..*

0..*

0..*

1..*

0..*

1..*
appears in

Use Case
(from Internal Trazability Mechanisms)

0..*

0..*

0..*

0..*

appears in

Stakeholder
(from Management Environment)

1..* 0..*1..* 0..*

defines

(a) Documentation (b) Management Environment

Fig. 5. Documentation and Management Environment Packages

Obviously, the glossaries will lie under the umbrella of an organizational
framework, described in the “Management Environment” package. An organization
will possibly be in charge of several system families, among which these glossaries
can be shared (see Fig. 5(b)). The elements in this package help us in obtain
commitment to Requirements as stated in CMMI specific practices.

A traceability mechanism will be necessary to manage the complexity associated to
the development process inside a system family. This is the main purpose of the

180 R. Cerón et al.

“Internal traceability mechanism” package (see Fig. 6). High abstraction level goals
(related to functional aspects) and “softgoals” (related to quality aspects) will be the
first approach to elicit the requirements, in direct relationship with CMMI. This is how
business level objectives are expressed. Then, functional requirements will be defined
by means of use cases. Such use cases will help discovering new features. Decisions in
the development process will possibly derive in conflicts. These conflicts will have an
impact on the use cases previously built. Relationships among conflicts, decisions and
use cases will be kept in this package (see Fig. 6). Requirements can also be traced to
the artefacts, which describe or implement them. The elements in this package also
help us in maintain bidirectional traceability of Requirements as stated in CMMI
specific practices. Additionally Decision and Conflict help in identifying
inconsistencies between Project Work and Requirements as is in CMMI practices.

Requirements Family
(from Requirements Management)

Actor
(from Management Environment)Conflict

(from Conflicts)

Softgoal
(from Requirements)

Decision
(from Decisions)

Goal
(from Requirements)

Atomic Functional Requirement
(from Requirements)

Feature
(from Requirements)

1..*1..*1..*1..*
refined by

1..*1..*

refined by
Use Case

Relationship

Inclusion Extension
Artifact

(from Requirements)

Use Case

0..n 0..n0..n 0..n

0..*

1

0..*

1

belongs to takes part in

0..*

0..*

0..*

0..*

affects to

0..* 0..*0..* 0..*

specifies qualitatively

0..*

0..*

0..*

0..*affects to

1..*

1..*

1..*

1..*
specifies operationally

0..*

1..*

0..*

1..*identifies
0..*

0..*

0..*

0..*

Fig. 6. Internal traceability mechanism package

The stakeholders are responsible for providing requirements, and these can be
common to all systems or specific to a subset of systems in the family. In the process
of derivation from the SF domain to the specific system, stakeholders will take
decisions. Specific requirements for a system will be obtained by means of decisions
taken by the stakeholders. Within this process, conflicts might appear and they should
be solved again by the stakeholders before going on. These relationships are kept in
the “Requirement management” package as shown in Fig. 7. The elements in this
package help us in various aspects in relation with the CMMI. By one side, they help
us in establish a Definition of Required Functionality. By other side, they help in
manage requirements changes. In addition, they help us in allocating product-
component requirements.

SF manages a huge amount of requirements. Taxonomy will be indispensable in
order to organise and effectively manage them [19]. Taking as resources [20], [21]
and [22], we have built a classification of the requirements. As a first criterion,
requirements can be classified as functional or non-functional (see Fig. 8). Functional
requirements can be classified again into other three categories: goal, feature and
atomic. The elements of the more abstract categories are composed of elements from
the more specific categories. Goals help defining new use cases while such use cases
identify new features. Those features are user visible functional requirements that
refine goals. A feature is later refined by atomic functional requirements. Non-

 A Meta-model for Requirements Engineering in System Family Context 181

functional requirements are initially discovered according to the defined softgoals.
Then the discovered non-functional requirements have to be specified in terms of
ISO-9126 (its definition can be found there [22]). Non-functional requirements can
have parameterised quantitative values. This is another SFE variability mechanism as
each parameter value could lead to a different final system.

Stakeholder Relationship

Party Moderator

Artifact
(from Requirements)

Requirement Decision
(from Decisions)

Requirement Conflict
(from Conflicts)

1..*

0..*

1..*

0..*

affects to

System
1..* 1..n1..* 1..naffects to

Stakeholder
(from Management Environment)

2..*

0..*

2..*

0..*

author of
1..*

0..*

1..*

0..*

takes part in

REQUIREMENT
(from Requirements)

0..*

0..*

0..*

0..*

takes part in

1..*

0..*

1..*

0..*

author of

0..*0..n 0..*0..n

0..*

0..*

0..*

0..*
affects to

1..* 1..n1..* 1..n
is on

System Family

1..n

1

1..n

1

belongs to
Requirements Family

1..*

1

1..*

1

belongs to

1

1

1

1

belongs to

Fig. 7. Requirement management package

Requirements reuse in SFE is another objective of our requirements meta-model.
Only requirement groups can be reused if there is enough domain knowledge
available as to assure that higher-level requirements will be satisfied. Consequently,
features may be reused while atomic requirements cannot be reused. When creating a
new system, the selected reusable features have to be checked to confirm that the
chosen feature set is valid. This is known as a constraint satisfaction problem [23].

Relationships among requirements have to be taken into account for reusing and
maintainability purposes in SFE (see Fig. 9). Several kinds of relationships considered
in the meta-model are the following: generalization, coexistence, refining and
revision. Requirements can also be defined as common to the whole system family or
specific of a particular system, in order to provide other requirements reuse and SFE
variability mechanisms.

Each requirement should be characterised by a set of features: priority, cost,
importance, state and future stability. In addition, requirement related risks are
considered along the full development process (see Fig. 9). This information is a first
approach to support project management practices as shown in the CMMI. In
addition, such information would be useful to automate conflict resolution, decision
process and evolution of the system family. The elements in this package help us in
develop customer and product requirements as stated in CMMI specific practices. In
addition, they help us in analyze requirements.

182 R. Cerón et al.

Test Class
(from Test Model)

Artifact

REQUIREMENT

1

1..n

1

1..n

tests
0..*

0..n

0..*

0..n

Functional Requirement

Goal Feature
1..*

refined by
Atomic Functional

Requirement1..*1..*

refined by

Non Functional Requirement

ISO Non Functional RequirementSoftgoal 1..*1..*
identifies

These Non Functional
Requirements will be
classified according to the
ISO 9126 standard.

PortabilityAdaptability

Instalability

Conformance Replaceability

Maintainability

Testability

Stability (Modification Tolerance)

Changeability

Analyzability

Efficiency

Resource
Behaviour

Time
Behaviour

Usability

Learnability

Operability

Understandability

Reliability

Maturity

Fault Tolerance

Recoverability

Functionality

Suitability

Accurateness

Interoperability

Compliance

Security

Fig. 8. Requirement package (1)

Requirement
Relationship

Risk

REQUIREMENT

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

exposed to

Requirement Property
0..5

1

0..5

1

belongs to

Priority

Importance State Future Stability

Cost

Specialization

Generalization

implies

Exclusion

Refining

Coexistence

Mandatory

Alternative

Revision

Fig. 9. Requirement package (2)

5 Requirements Development and Management Process

The CMMI guidelines for software process improvement are declared as being neither
processes nor process descriptions see [14] page 1. Our aim was to develop a step by
step requirements development and management process based on CMMI. This new
process would serve as a complete guide for requirements engineering based on our
requirements meta-model. To express our process model in a normalised non-
ambiguous way the SPEM specification [15] was used. Therefore, our process model

 A Meta-model for Requirements Engineering in System Family Context 183

is more specific than the principles exposed in CMMI. However, it still has enough
generality as to be useful for different organisations, and environments.

Requirements
Elicitation

<<Phase>>
Requirements

Analysis

<<Phase>>
Requirements
Specification

<<Phase>>
Requirements

Verification

<<Phase>>
Requirements

Validation

<<Phase>>

Requirements
Management

<<Discipline>>

Fig. 10. Phases of the requirements development process

Identify User's
Main Participants

<<Activity>>

Obtain Domain
Knowledge

<<Work Definition>>

[insufficient past domain knowledge]

Domain
Information

<<Work Product>>

Review Domain
Information

<<Activity>>

Main
Participants List

<<Work Product>>

Identify Developer's
Main Participants

<<Activity>>

Requirement Providers
Selection Criteria

<<Document>>

[else]

Fig. 11. A partial view of the requirements elicitation phase

Our process covers the requirements discipline of the full software development
process. It can also be applied to system engineering projects. Moreover, it takes into
account the relationship between requirements definition, architectural implem-
entation and some detailed design aspects.

184 R. Cerón et al.

The defined process is a sequence of activities that distinguish the roles and
responsibilities of the customer and the requirements engineer. We specified the
following traditional requirements development phases (see Fig. 10): elicitation
(discovering of user needs), analysis (refining of requirements and constraints),
specification (documenting requirements clearly and accurately), verification
(checking that the requirements are consistent, complete and correct) and validation
(checking that the requirements meet user needs and expectations). Requirements
management activities (version controlling and change management) are defined as a
discipline common to every one of those phases. The CMMI practices follows the
same phases described. For example, in Fig. 11 we can see a partial view of the
sequence of activities for the requirements elicitation phase.

We have also considered the sequential evolution through CMMI levels. At CMMI
maturity level 3 the requirements development activities have reached their maximum
evolution. Our model covers the evolution from level 1 to 3, clearly distinguishing
which activities belong to each level. This way allows progressive and feasible
evolution, and avoids level skipping.

Other generic process management practices that are beyond the scope of
requirements engineering are only partially taken into account. Nevertheless, the
requirements conceptual model covers some basic project management aspects such
as cost and time estimation and risk management.

Fig. 12. ENAGER tool

 A Meta-model for Requirements Engineering in System Family Context 185

CMMI does not provide any system family specific practices [24]. In spite of this,
our process takes into account some proven system family practices also considered
on our requirements meta-model. Some of these practices are determining possible
variation points and identifying requirements and test classes common to the whole
system family.

We have also developed an integrated requirements tool based on our SFE
requirements meta-model that fully supports this requirements process. This tool,
called Environment for Requirements Analysis and Management (ENAGER),
provides functionality to define every requirements meta-model element, such as
glossaries, participants, systems, requirements, use cases, conflicts, decisions, test
classes, artefacts, etc. A screen caption is shown in Fig. 12. This window is divided
into four areas. In the upper left window, we can see a tree for the framework
containing the system family. In the upper right window, we can see a specification
for a selected element in the tree. In the bottom left window, we can see some task for
the requirements. Finally, in the bottom right window, we can see a table view of the
requirements. Our meta-model is very complete and in consequence, the construction
of the tool was not very difficult.

Using this tool, traceability relationships can be established between meta-model
elements. Among other supported traceability relationships, ENAGER allows tracing
requirements to their containing systems, implementing artefacts, original use cases,
test classes, refining requirements and other related requirements. ENAGER supports
automated traceability matrix generation too. The tool also provides other
requirements management functionalities, such as version controlling.

ENAGER uses a central data repository, which can be accessed remotely via web.
As mentioned in [25], these web based tools ease communication among different
stakeholders and increase the overall process performance.

Using ENAGER, we identify the common and variable requirements of an open
project. The project is in the field of customer applications related with home systems
and automotive. By means of ENAGER, we can study traceability characteristics,
relation between common and variable requirements, glossaries, decisions and
conflicts in the system family of this project.

6 Conclusions and Future Work

We have performed this work trying to cope with the industrial requirements for
methods, tools and mechanisms for SFE. In this domain, models are organized
accordingly to organizational needs. The paper gives a partial answer for the
requirements modelling context. Further research must be done to solve it completely.
In any case, the meta-model presented here covers several of the specific needs of the
system family engineering as regards requirements management and the traceability
to other systems-models (we have used UML [26] for the meta-model and for the
experiments performed so far and the SPEM profile [15] for the proposed process) in
the development.

While CMMI best practices are an abstract guideline, our CMMI based
requirements management and development process proposed is a step by step

186 R. Cerón et al.

procedure. In addition, besides CMMI does not define specific practices for system
family engineering, our process takes into account some system family related
activities [24].

Back to the specific issues in requirements management for system families, the
meta-model allows:

− The full navigation and traceability matrixes generation for internal traces, despite
the complexity of requirements in the system family. Experiments performed with
tool support for more than forty kinds of traceability matrixes (for example, with
Functional Requirement, matrixes for Use case, Requirement decision,
Stakeholder, Requirement conflict, Requirement family, System, Non functional
requirement, Term). The usage of a web navigation schema helps in keeping the
complexity under control.

− The basic relations between requirements are covered (exclusion, coexistence,
mandatory, alternative), as well as relations during evolution (revision), hierarchies
(generalisation, specialization) of requirements are also supported.

− The concept of system in the system family appears in this model as a set of
requirements. Being these requirements related, the meta-model allows for the
calculation of “coherent” systems, containing sets of non-conflicting requirements.
As well, the progress in development of a certain system can be represented by the
growing set of requirements covered.

− Decisions are represented explicitly. It is possible to navigate from each
requirement to the decisions related, and the decisions related to each system.
Conflicts are also expressed, so its reasons and stakeholders related can be
identified and solved.

− The differentiation between common and specific requirements is not statically
wired (although it appears as an attribute); instead, as there is navigational
capability from-to systems and each requirement, it is possible to know in a certain
point in time how many of the systems in the system family are related with one
requirement.

A tool implementing the meta-model presented in the paper has been developed.
The models give the primary foundations to build the tool. The approach presented
here is very promising because requirement reuse could be used in System Family
context. In addition, a SPEM [15] model for using that tool following our CMMI
based process has been defined.

With respect to the meta-model described in the paper and their application in the
development cycle, let us remind that we are focusing on the system family
engineering activities described by the CAFÉ reference framework, and very
especially in the derivation of system requirements from system family requirements.

Support for traceability among common parts in domain analysis, architecture and
implementation is still a problem, which is still more acute for the variable elements.
Variable attributes in each of these fields should be identified, and links among
variants at these three levels would allow for a higher reuse degree in the family.

 A Meta-model for Requirements Engineering in System Family Context 187

References

1. van der Linden, F.: Software Product Families in Europe: The Esaps & Café Projects.
IEEE Software, Vol. 10 No. 4. IEEE Computer Society, Los Alamitos, CA (2002) 41-49

2. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison
Wesley, Boston (2002)

3. El Kaim, W.: Managing Variability in the LCAT SPLIT/Daisy Model. In: Gacek C.,
Jourdan J., Coriat M. (eds.): Product Line Architecture Workshop, First Software Product
Line Conference (2000) 21-31

4. Salicki, S., Farcet, N.: Expression and Usage of the Variability in the Software Product
Lines. In: van der Linden (ed.): Proceedings of 4th international workshop on Software
Product-Family Engineering PFE-4, LNCS 2290. Springer, Berlin (2001) 304-318

5. Griss, M.: Implementing Product-Line features by Composing Component Aspects. In:
Donohoe P. (ed.): Software Product Lines: Experience and Research Directions:
Proceedings of First International Software Product Line Conference. The Kluwer
International Series in Engineering and Computer Science, Volume 576. Kluwer Academic
Publishers (2000) 271-288

6. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse, Architecture, Process and
Organization for Business Success. ACM Press, Addison-Wesley, New York (1997)

7. van der Linden, F. (ed.): Development and Evolution of Software Architectures for
Product Families. Proceedings International Workshop IW-SAPF-3, Las Palmas de Gran
Canaria, Spain. Lecture Notes in Computer Science, 1951. Springer, Berlin (2000)

8. El Kaim, W., Cherki, S., Josset, P., Paris, F., Ollagon, J. C.: Applied technology for
designing a PL architecture of a pilot training system. In: Knauber, P., Succi, G. (eds.):
Software Product Lines: Economics, Architectures, and Implications, Workshop #15 at
22nd International Conference on Software Engineering, Limerick, Ireland. IESE-Report
No. 070.00/E. Fraunhofer IESE, Sauerwiesen (2000) 55-64

9. Kuusela, J., Savolainen J.: Requirements Engineering for Product Lines. In: Proceeding of
the 2000 International Conference on Software Engineering, ACM-IEEE, New York, NY
(2000) 60-68

10. Luttikhuizen P. (ed.): Requirements Modelling and Traceability. ESAPS, WP3, Derivation
of Products and Evolution of System Families WP3-0106-01 Technical Report, (2001)

11. Dueñas, J., Monzón, A: Experience-based Approach to Requirements Reuse in Product
Families with DOORS®. In: Dueñas, J., Schimd, K. (eds): Proceedings of International
Workshop on Requirements Reuse in System Family Engineering, Eight International
Conference on Software Reuse, Universidad Politécnica de Madrid, Madrid, Spain (2004)
38-43.

12. van der Linden, F., Bosch, J., Kamsties, E., Känsälä, K., Obbink, H.: Software Product
Family Evaluation. In: Nord, R.: Software Product Lines. Proceedings Third International
Conference SPLC 2004, Boston, MA. Lecture Notes in Computer Science, 3154. Springer,
Berlin Heidelberg (2004) 110-129

13. Keepence, B., Mannion, M.: Using Patterns to Model Variability in Product Families.
IEEE Software, Vol. 16 No. 4. IEEE Computer Society, Los Alamitos, CA (1999) 102-108

14. CMMI Product Team: Capability Maturity Model Integration (CMMISM) Version 1.1:
CMMISM for Systems Engineering and Software Engineering (CMMI-SE/SW, V1.1),
Staged Representation Technical Report CMU/SEI-2002-TR-002. Carnegie Mellon
University, Software Engineering Institute, Pittsburgh, PA (2002)

15. OMG: Software Process Engineering Metamodel Specification. Version 1.0. Object
Management Group, Needham, MA (2002)

188 R. Cerón et al.

16. Alonso, A., León, G., Dueñas, J.C., de la Puente, J.A.: Framework for Documenting
Design Decisions in Product Families Development. In: Proceedings of the Third IEEE
International Conference on Engineering of Complex Computer Systems. IEEE Computer
Society, Los Alamitos, CA (1997) 206-211

17. IEEE-SA Standards Board: IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems. IEEE std 1471, 2000. Institute of Electrical and Electronics
Engineers, New York, NY (2000)

18. IEEE Standards Board: IEEE Recommended Practice for Software Requirements
Specifications. IEEE std 830, 1993. Institute of Electrical and Electronics Engineers, New
York, NY (1993)

19. Thayer, R., Dorfman, M.: Software Requirements Engineering. 2nd edn. IEEE Computer
Society Press, Washington (1997)

20. IEEE-SA Standards Board: IEEE Guide for Developing System Requirements
Specifications. IEEE std 1233, 1998. Institute of Electrical and Electronics Engineers, New
York, NY (1998)

21. González-Baixauli, B. Laguna, M., Crespo, Y: Product Line Requirements based on Goals,
Features and Use cases. In: Dueñas, J., Schimd, K. (eds): Proceedings of International
Workshop on Requirements Reuse in System Family Engineering, Eight International
Conference on Software Reuse, Universidad Politécnica de Madrid, Madrid, Spain (2004)
4-7

22. ISO/IEC: Software engineering -- Product quality -- Part 1: Quality model. ISO/IEC 9126-
1:2001. International Organization for Standardization, Geneve, (2001)

23. Benavidez, D., Ruiz-Cortés, A., Corchuelo, R., and Martín-Díaz, O: SPL Needs an
Automatic Holistic Model for Software Reasoning with feature models. In: Dueñas, J.,
Schimd, K. (eds): Proceedings of International Workshop on Requirements Reuse in
System Family Engineering, Eight International Conference on Software Reuse,
Universidad Politécnica de Madrid, Madrid, Spain (2004) 27-32

24. Jones, L., Soule, A.: Software Process Improvement and Product Line Practice: CMMI and
the Framework for Software Product Line Practice, Technical Note CMU/SEI-2002-TN-
012. Carnegie Mellon University, Software Engineering Institute, Pittsburgh, PA (2002)

25. Day, L.: Requirements Re-Use in the IT Business Process WEB Implementation Product
Family. In: Dueñas, J., Schimd, K. (eds): Proceedings of International Workshop on
Requirements Reuse in System Family Engineering, Eight International Conference on
Software Reuse, Universidad Politécnica de Madrid, Madrid, Spain (2004) 44-48

26. OMG: OMG Unified Modeling Language Specification. Version 1.5. Object Management
Group, Needham, MA (2003)

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 189 – 201, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Functional and Non-functional Requirements
Specification for Enterprise Applications

Renuka Sindhgatta and Srinivas Thonse

Infosys Technologies Limited,
Bangalore, India, Phone 91- 80-5117 3908

{renuka_sr, srinit}@infosys.com
http://www.infosys.com

Abstract. Comprehensive and accurate software requirements capture is essen-
tial for successful development of software systems. Enterprise applications
have an additional challenge of eliciting requirements that need to be well un-
derstood by i) the business users of the system having extensive domain knowl-
edge ii) application developers having extensive system implementation and
development knowledge. Current tools vary from providing textual descriptions
to formal semantic languages for specifying requirements. The business users
are unable to actively participate in the analysis, as formal and textual specifica-
tions represent two extreme ends of requirements elicitation. Ambiguity or lack
of understanding often poses a challenge on validation and verification of sys-
tem requirements specification. The paper presents a Use case Specification
Framework that brings structure to requirements specification while retaining
its simplicity. The framework enables business users to understand and verify
functional requirements and two critical non functional requirements – per-
formance and usability.

1 Introduction

Use cases form a standard mechanism of capturing software system requirements.
Use cases of an enterprise application are documented using UML Use case diagrams.
Use case diagrams are further detailed to include scenarios of system user interaction,
and conditions for execution. Documenting use cases has been detailed in [1, 2]. Nar-
rative Text has been recommended in [3] to ensure simplicity and active participation
of all the stakeholders. However, in practice simplicity and natural language causes
ambiguity and multiple interpretations. Verification of use cases by the stakeholders
is a challenge leading to several change requests raised through the later stages of
system development. This results in additional development effort and causes de-
ployment delays.

Enterprises comprise of applications that automate a set of business processes.
Hence, use of business process models to derive use cases for these applications is
recommended and practiced. Business processes are elicited using process maps or
workflows. BPMN (Business Process Modeling Notation) [4], an outcome of the
standards body - Business Process Management Initiative (BPMI), is one such work-

190 R. Sindhgatta and S. Thonse

flow language used by enterprises for documenting their processes. BPMN is the
graphical notation for representing business process and most of its notations cater to
the business users who are comfortable with flow charts representing process flows.
The paper proposes a Use case Specification Framework that uses of BPMN to repre-
sent details of the system requirements or to document use cases. The framework
aims at enabling business users to understand and verify the functionality of the sys-
tem in a specification they are most familiar with.

UML [5] proposes use of sequence or activity diagrams to document use cases.
However, activity diagrams provide an illustration of what happens in a workflow and
have notations that are a subset of business process workflow notations. Hence, the
paper proposes a framework which helps in eliciting use cases by incorporating Busi-
ness Process Modeling to document the scenarios of use cases. The major contribu-
tion of this framework is

• Detail use case scenarios using process flow notations that enables business
users to understand and verify the application functionality

• Capture additional inputs along with the process flow to enable capture of non
functional requirements vis-à-vis usability and performance requirements.

The rest of the paper is organized as follows: Section 2 briefly reviews the existing
techniques. Section 3 details the principles used for specifying functional and non-
functional requirements using Use case Specification Framework. Section 4 con-
cludes the paper with contributions and future research possible.

2 Related Work

Researchers and practitioners have spent significant effort to improve the clarity of
use cases. Use case specification using formal semantics like Abstract State Machine
Language (AsML) [6] enables verification and analysis of the use case scenarios or
flow of events. Similar is the advantage of representing the use case using Finite state
machines and State Charts as described in [7, 8]. Finite state machines (FSM) are
helpful in detecting missing events and integration issues. Use case maps [9] are used
in describing the use case scenarios using abstract application components. They are
used to realize the use cases during the analysis and design phase of the application
development where the application components are identified.

All the above techniques are useful to the software development team during
analysis, after use cases that have been documented, verified and commonly under-
stood by business users and the development team. UML proposes use of activity
diagrams or sequence diagrams to details the use cases. While these diagrams handle
most of the scenario representations, it has been observed that BPMN is more suitable
of representing complex scenarios like Inclusive OR of two parallel operations, loop-
ing of operations. Hence, we propose the use of business workflow and BPMN to
detail the use case. The advantage of using BPMN is

• Business users are familiar with business process and workflow models.
• BPMN has notations to describe complex scenarios – Parallel splits and joins

Loops and events.

Functional and Non-functional Requirements Specification for Enterprise Applications 191

With the Use of BPMN, Use case Specification Framework aims at strengthening
description of use case scenarios to provide a common understanding to all the stake-
holders.

3 Use Case Specification Framework

Experience shows that eliciting use cases of any application that is fairly complex
poses the challenge of describing and verifying large number of use cases. In addi-
tion, focused application centric view causes oversight of some of the critical appli-
cation scenarios and integration scenarios with external application. Description of
identified use cases results in voluminous documents. When given to the application
stakeholders for verification, it rarely results in any critical changes due to the diffi-
culty involved in reviewing and understanding the textual descriptions. However,
application requirements, typically, undergo several changes after the initial applica-
tion release. This observation has led us to believe the need to bring structure and
simplicity in identifying and specifying use cases. The following sections describe
the steps involved in specifying the use cases and the related non-functional re-
quirements using the Use Case Specification Framework. The framework consists of
three steps.

3.1 Identify Use Cases from Business Process Models

Classical use-case identification techniques require analysts to enquire business users
about the needs of the proposed system. These needs form candidate use-cases. De-
scribing business processes and analyzing how the processes should be automated has
been found to be a good approach for identifying use-cases. This approach has been
recommended by Martin Fowler [10] for applications where workflow dominates the
functional execution. Business processes are defined as sequences of activities under-
taken by roles and systems to realize business goals. Activities in business process
models that need to be performed by the system are identified as candidates for use-
cases. The mechanism of arriving at use cases from the activities in the business proc-
ess workflow has been described in [11].

Many notations are available to represent business process models. Business users
and management consultants have conventionally used Process Maps [12]. UML
specification recommends use of activity diagrams to define a business process. The
framework uses BPMN for depicting business process flows as these notations have
been derived from flow chart and workflows conventionally used by business users.
Table 1 shows some of the most common notations used to describe business process
flows.

The paper uses a sample process flow to describe the framework. The applica-
tion to be realized is a Lab management system of a pharmaceutical enterprise that
conducts medical tests on samples for various customers and provides reports on
the samples. A snapshot of business process described using BPMN is shown in
figure 1.

192 R. Sindhgatta and S. Thonse

Table 1. Notations use for use case scenario description

Description Notation Descrip-
tion

Notation

Event – is a
trigger or an
impact that
effects the flow

AND split
or join
where it is
required to
divide or
join to
parallel
paths.

Task is an
atomic activity
done by the user
or system

Exclusive
OR is used
when the
flow is to
be re-
stricted to
one of the
two alter-
natives

Normal flow is
the sequence
flow that origi-
nates from the
start event and
continues
through the
tasks

Inclusive
OR is used
when one
or more
paths can
be taken
simultane-
ously

Group is a
grouping of
activities for
documentation
purpose only

 Task
Looping
indicates if
a task in
performed
more than
once

The sample business process describes the initiation of a project after a proposal is
won by the Marketing Team. The Marketing team updates the Marketing System
(MAR Proposal system). The Marketing System interfaces with the Lab Management
System and Creates a Project. The Project Manager is notified about the new project.
The Project Manager then activates the projects, assigns team members, verifies
availability of assets, and configures a study (referring to a set of tests that need to be
done in the lab) in parallel. The process continues further.

There are two types of activities in the given business process. First, activity per-
formed by other systems on Lab Management System – Create Project and Notify
Project Manager. Second, activity performed by users on the Lab Management Sys-
tem – Activate Project, Defined Project Mile Stones, etc. While the Business Process
consists of activities done on all systems that automated the process, the use cases for
the system to be developed can be obtained by identifying all activities where the

Start

End

Exception

Functional and Non-functional Requirements Specification for Enterprise Applications 193

system under consideration is used. For example, the Project Manager checks the
availability of assets in the Asset Management System. However, this activity would
not form the part of use cases identified for Lab Management System.

Fig. 1. A snap shot of Business Process Model for Project Initiation

For the given business process, the identified use cases of the Lab Management Sys-
tem are shown in figure 2.

Activate Project

Configure Study
For project

Define Project
Team

Define Project
Milestones

Project Manager
(Biologist)

Lab Management System

Create Project &
Notify Project Mgr MAR Proposal

System
Activate Project

Configure Study
For project

Define Project
Team

Define Project
Milestones

Project Manager
(Biologist)

Lab Management System

Create Project &
Notify Project Mgr MAR Proposal

System

Fig. 2. Use cases derived from Business Process Model for Project Initiation

194 R. Sindhgatta and S. Thonse

3.2 Describe Use Case Flow of Events with Task-Flow Models

After the use cases are identified, the use case flow of events has to be documented.
The flow of events typically, represents a workflow in enterprise applications. The
flow consists of sequence of events or tasks that are performed by the actor and the
system, the granularity of the tasks being finer than that of business process activity.
Hence, use of the process workflow notations to describe use case flow of events is
feasible. Use of workflow notation adds structure and clarity to the specification. The
representation of use case flow of events or tasks using BPM notations is called Task
Flow in the Specification Framework.

A use case of the Lab Management system has been described in figure 3 using
natural language. The Lab Management system consists of a study conducted on sam-
ples. The study is conducted by running a set of medical tests. The use case relates to
a biologist configuring the set of tests that need to be carried out on the samples for a
given study.

Fig. 3. Textual description of Use flow of events for Use Case - Configure Study

As the use case flow of events depicts the user and system interaction, there is a con-
stant transfer of the control between the user and the system. For example, entering a
form with user details is a task performed by the user and can be classified as an

Actor : Biologist
Pre-Condition: Authenticated team member logs in to configure the study
Post-Condition : A Study is configured with the required tests
Primary Scenario
1. The user adds the tests that need to be conducted on the samples of the study by

selecting one or both of the following options provided to him
• Add test from a base test list
• Import tests from existing studies

2. Based on the options chosen, all operations pertaining to the chosen options are
executed.

Add tests from Base Test List
3. The System displays the list of Test Panels (groups of tests) that have been defined

in the base set previously
4. The User selects a complete Test Panel or a single test from the Test Panel and adds

to the study. (Go to Step 8)
Add Tests from the Existing Studies
5. The system displays the list of studies
6. The user selects the study and a Test Panel or Test that needs to be imported to the

current study.
7. The user modifies the imported tests to make it relevant for the existing study. (Go to

Step 8)

8. The user may specify an alias to the test that is relevant to the lab or the client for

whom the study is conducted.
9. The user saves the tests for the study.

Alternate Scenario
6.1 In case a test existing in previous study is inactive, the system flags an error and

the import fails.

Functional and Non-functional Requirements Specification for Enterprise Applications 195

interactive task. The system validating user details can be classified as a system
task. The inputs aspects that need to be captured for understanding these tasks vary.
Hence, the task notation of BPMN is extended to classify and depict interactive and
system task as shown in Table 2

Table 2. Extended notation to classify system and interactive tasks

Task Type Notation
Interactive Task - A task where the user is

involved in interacting with the system

System Task - A task where the system per-

forms the task without any human intervention

Task classification enables identification of system and user responsibilities for exe-
cuting a scenario. Figure 4 shows the use case flow of events for the Configure Study
use case using a task flow. The use BPMN helps in depicting the Inclusive OR sce-
nario where one or both paths can be followed. The exception can be easily identified
using the exception event notation. This graphical representation using task flow
provides for a standard interpretation of use case flow of events.

Fig. 4. Task flow for the Use case Configure Study

 Classification of actions into user and system actions has been discussed in [13] for
use case analysis. The use of this approach however has not been described in detail.
The Use case Specification framework uses task classification for capturing different
specifications that also help in eliciting the non-function requirements.

The meta-model of the framework and their relationship is shown in figure 5. A
use case comprises of one or more task flows. Each of the multiple task flow depicts
main flow of events, alternate flow of events or exception flow of events. A task flow

User selects the
study to be
configured

Retrieve Test
Panels from

Base Set

Select Test Panels or
Test from the base set

and add to Study

Add a Test from Base List

Retrieve list
of existing

studies

Select a study
and the Test

panel or Test to
be imported

Add Test from Existing Study

Test with
INACTIVE Status

flags error

Modify the
imported test for
the given study

Specify alias to
make it relevant

for study

Save Study with
the tests

User selects the
study to be
configured

Retrieve Test
Panels from

Base Set

Select Test Panels or
Test from the base set

and add to Study

Add a Test from Base List

Retrieve list
of existing

studies

Select a study
and the Test

panel or Test to
be imported

Add Test from Existing Study

Test with
INACTIVE Status

flags error

Modify the
imported test for
the given study

Specify alias to
make it relevant

for study

Save Study with
the tests

196 R. Sindhgatta and S. Thonse

consists of one of more tasks performed in a sequential or parallel manner. An Inter-
active task is associated with a screen or set of screens through which the user inter-
acts. It contains screen validation rules that specify validity of inputs entered by a
user. A system task is associated with domain entities being created, updated, vali-
dated, processed, etc by the system task. Business rules relevant for processing or
validating the entities are associated to the system task. The rule description is
framework independent and hence the rules can be defined in plain English or in
formal rule language.

Fig. 5. Concepts and relations in the Use Case Specification Framework

3.2.1 Advanced Use Case Documentation Using Task Flows
Advanced documentation of use cases requires representing extend and include
relationship. An extend relationship shows the augmentation of additional
functionality of added use case to the base use case for certain conditions. The
attributes that a use case metamodel captures for the extends relationship are i)
Extension Point ii) Condition for extension to take place. An include relationship
shows the use cases that is added to the base use case. The point where the use case is
included is captured. These basic attributes are captured in the textual flow of events
while describing a use case. Activity diagrams do not typically depict extension points
when used for describing use cases.

Documenting include and an extend relationship using a task flow is shown in
figure 6. The extention point is the task at which the decision is made. The condition
for extension is shown using a condition gateway. For an incude use case, the task
when the use case is included is depicted in a task flow. Advanced documentation
using a task flow provides clarity by depicting tasks where a use cases are included or
extended.

Use Case

TaskFlow

1..n

Task

1..n1..n

1..n

Entity

System Task

Business Rule
Screen

Interactive Task

ScreenValidation
Rule

1...n 1...n

1...n

Functional and Non-functional Requirements Specification for Enterprise Applications 197

Fig. 6. Task Flow to depicting <<include>> and <<extend>>

3.3 Describe Non-functional Requirements with Task-Flow Model

In practice, the requirements phase of enterprise application development includes
understanding the functional and non-functional requirements. IEEE-Std 830 defines
13 non functional requirements. For enterprise application the critical non functional
requirements are Reliability, Performance, Security, and Usability. Usability and
Performance are one of most evident non-functional parameters of the system. A user
is immediately able to decide if the system is causing functional inefficiencies due to
bad design of the user interface. Similar is the impact of poor performance on the
users’ efficiency or productivity in using the application. The Use Case Specification
Framework enhances the Task flows for capturing performance and usability re-
quirements and maps these non-functional requirements along with the use cases.

Usability in an application is primarily decided by the ease information exchange
to or from the user and application. The framework enables capture of system usabil-
ity by associating screens with each interactive task in the task flow. Hence, each
interactive task is associated with a screen. A screen comprises of the layout of the
information that would be entered by or displayed to the user. For each actor of the
use case, user personas are captured. User persona consists of the preferences of the
user. The persona descriptions can cover role details and demographic profile infor-
mation: general description including things such as preferred working hours, loca-
tion, age, and so on. The details capture here helps in designing the screens.

The usability of a use case can be verified by navigating through all the screens as-
sociated to the interactive tasks in the task flow. A set of navigated screens is called a
screen flow. A task flow can further have multiple screen flows due to decisions gate-
ways involved. For example a login screen could lead to the home page or an error
display page depending on the validity of the details entered. Figure 7 shows the de-
tails of the concepts that enable usability requirements capture.

Find
Study

Configure
Study

Find
Study

<<include>>

Configure Study

Configure
Study

Add Test for
Diabetes

<<extend>>

Configure Study

If age >50

Add Test for
Diabetes

User selects the
study to be
configured

Retrieve Test
Panels from

Base Set

Select Test Panels or
Test from the base set

and add to Study

Add a Test from Base List

Retrieve list
of existing

studies

Select a study
and the Test

panel or Test to
be imported

Add Test from Existing Study

Test with
INACTIVE Status

flags error

Modify the
imported test for
the given study

Specify alias to
make it relevant

for study

Save Study with
the tests

User selects the
study to be
configured

Retrieve Test
Panels from

Base Set

Select Test Panels or
Test from the base set

and add to Study

Add a Test from Base List

Retrieve list
of existing

studies

Select a study
and the Test

panel or Test to
be imported

Add Test from Existing Study

Test with
INACTIVE Status

flags error

Modify the
imported test for
the given study

Specify alias to
make it relevant

for study

Save Study with
the tests

User selects the
study to be
configured

Retrieve Test
Panels from

Base Set

Select Test Panels or
Test from the base set

and add to Study

Add a Test from Base List

Retrieve list
of existing

studies

Select a study
and the Test

panel or Test to
be imported

Add Test from Existing Study

Test with
INACTIVE Status

flags error

Modify the
imported test for
the given study

Specify alias to
make it relevant

for study

Save Study with
the tests

User selects the
study to be
configured

Retrieve Test
Panels from

Base Set

Select Test Panels or
Test from the base set

and add to Study

Add a Test from Base List

Retrieve list
of existing

studies

Select a study
and the Test

panel or Test to
be imported

Add Test from Existing Study

Test with
INACTIVE Status

flags error

Modify the
imported test for
the given study

Specify alias to
make it relevant

for study

Save Study with
the tests

Find
Study

Configure
Study

Find
Study

<<include>>

Configure Study

Configure
Study

Add Test for
Diabetes

<<extend>>

Configure Study

If age >50

Add Test for
Diabetes

User selects the
study to be
configured

Retrieve Test
Panels from

Base Set

Select Test Panels or
Test from the base set

and add to Study

Add a Test from Base List

Retrieve list
of existing

studies

Select a study
and the Test

panel or Test to
be imported

Add Test from Existing Study

Test with
INACTIVE Status

flags error

Modify the
imported test for
the given study

Specify alias to
make it relevant

for study

Save Study with
the tests

User selects the
study to be
configured

Retrieve Test
Panels from

Base Set

Select Test Panels or
Test from the base set

and add to Study

Add a Test from Base List

Retrieve list
of existing

studies

Select a study
and the Test

panel or Test to
be imported

Add Test from Existing Study

Test with
INACTIVE Status

flags error

Modify the
imported test for
the given study

Specify alias to
make it relevant

for study

Save Study with
the tests

User selects the
study to be
configured

Retrieve Test
Panels from

Base Set

Select Test Panels or
Test from the base set

and add to Study

Add a Test from Base List

Retrieve list
of existing

studies

Select a study
and the Test

panel or Test to
be imported

Add Test from Existing Study

Test with
INACTIVE Status

flags error

Modify the
imported test for
the given study

Specify alias to
make it relevant

for study

Save Study with
the tests

User selects the
study to be
configured

Retrieve Test
Panels from

Base Set

Select Test Panels or
Test from the base set

and add to Study

Add a Test from Base List

Retrieve list
of existing

studies

Select a study
and the Test

panel or Test to
be imported

Add Test from Existing Study

Test with
INACTIVE Status

flags error

Modify the
imported test for
the given study

Specify alias to
make it relevant

for study

Save Study with
the tests

198 R. Sindhgatta and S. Thonse

TaskFlow

ScreenFlow

InteractiveTask

Screen

1

-

1..*

1

1..*

1

-1

-

1

-

1..*

Fig. 7. Concepts used for capturing usability

A task flow has one or more screen flows. A screen is associated to a task. A cen-
tral repository of screens would enable re-use of screen across multiple use cases and
task flows. Figure 8 shows the tool that allows for designing and linking screens to
form a screen flow. In the tool, the StudySelect screen is associated to the interactive
task “User Selects the Study to be configured”. To create a screen flow, the StudySe-
lect screen is linked to any one of the screens associated to the interactive tasks in the
task flow. Linking the screens of the task flow facilitates usability verification by
simulating the screen flow.

Fig. 8. Defining Screens for Interactive tasks and Linking with other screens

Functional and Non-functional Requirements Specification for Enterprise Applications 199

The ease of elicitation and verification provides for active participation from the op-
erational users in the use case elicitation.

-responseTime : int

TaskFlow

-responseTime : int
-thinkTime : int

InteractiveTask
-responseTime : int

SystemTask

-responseTime : int

Task

-requestArrivalRate : float

UseCase
11..*

1

-1..*

Fig. 9. Attributes for capturing the performance requirements

Performance requirements include the workload of the application in terms of rate
of requests of service, number of users of the application and the response time expected
from the system. . The attributes captured for performance is shown in figure 9.

The expected response time or service time is captured for each task in the task
flow. The rate at which a use case is requested is captured for each use case. The sum
of response times of all the tasks in the task flow provides for the response time of a
use case executing a certain task flow. The think time represents the minimum
amount of time the user spends in entering or reading information on the screen. The
think time is captured for each interactive task.

Fig. 10. Use case task flow capturing usability and performance attributes

User selects the
study to be
configured

Retrieve Test
Panels from

Base Set

Select Test Panels or
Test from the base set

and add to Study

Add a Test from Base List

Retrieve list
of existing

studies

Select a study
and the Test

panel or Test to
be imported

Add Test from Existing Study

Test with
INACTIVE Status

flags error

Modify the
imported test for
the given study

Specify alias to
make it relevant

for study

Save Study with
the tests

Screen = studySelect.screen
Response Time = 2sec
Think Time = 1sec

Use Case
Total # of Users = 30
Request ArrivalRate = 10/hr

Response Time = 5sec

Response Time = 3sec

Response Time = 1sec

Response Time = 5sec

Screen = selectTests.screen
Response Time = 3sec
Think Time = 2sec

Screen = setAlias.screen
Response Time = 2sec
Think Time = 1sec

Screen = selectStudynTest.screen
Response Time = 3sec
Think Time = 2sec

Screen = modifyTest.screen
Response Time = 2sec
Think Time = 1sec

User selects the
study to be
configured

Retrieve Test
Panels from

Base Set

Select Test Panels or
Test from the base set

and add to Study

Add a Test from Base List

Retrieve list
of existing

studies

Select a study
and the Test

panel or Test to
be imported

Add Test from Existing Study

Test with
INACTIVE Status

flags error

Modify the
imported test for
the given study

Specify alias to
make it relevant

for study

Save Study with
the tests

Screen = studySelect.screen
Response Time = 2sec
Think Time = 1sec

Use Case
Total # of Users = 30
Request ArrivalRate = 10/hr

Response Time = 5sec

Response Time = 3sec

Response Time = 1sec

Response Time = 5sec

Screen = selectTests.screen
Response Time = 3sec
Think Time = 2sec

Screen = setAlias.screen
Response Time = 2sec
Think Time = 1sec

Screen = selectStudynTest.screen
Response Time = 3sec
Think Time = 2sec

Screen = modifyTest.screen
Response Time = 2sec
Think Time = 1sec

200 R. Sindhgatta and S. Thonse

Figure 10 illustrates the example use case depicting the functional flow of events
using the task flow along with the usability and performance attributes captured for
the tasks. By capturing the requirements for every use case with the Use case Specifi-
cation Framework, a comprehensive view of the functional and non-functional re-
quirements of the system can be obtained.

4 Contributions and Future Works

This paper gives an overview of the specifying use cases using task flows. The speci-
fication framework aims at providing formal yet easily understandable descriptions by
adopting workflow notation to document use cases. Use of notations and concepts
which the stakeholders are most familiar provides for accurate requirements. The
framework enhances use case elicitation by bringing in new concepts. These are as
follows.

1. Provides task flows using Business Process Workflow Notations to define use
case flow of events or scenarios.
2. Enhances the task notation to provide classification of tasks. The interactive
and system tasks help in representing all the system and user interactions for a
given scenario.
3. Provides for extensions that facilitates capture of non-functional requirements.

It has been observed that active participation from the business or end users is very
important during requirements capture. In practice, there are situations where the
users fail to comprehend the final application functionality and usage during the re-
quirements capturing stage and complain of several missing aspects of the domain
during testing phase of the development life cycle. The framework aims at solving
these issues by providing a structure while retaining the involvement and understand-
ing of the application users. However, the current framework does not incorporate
verification of the use cases for soundness which formal representations provide. By
providing a mechanism of translating the task flow diagrams to formal representations
like Finite State Machine, the verification of use case for soundness and completeness
can be achieved. This will be the future direction of the Use case Specification
Framework.

References

1. Geri Schneider, Jason P. Winters, Applying Use Cases, 2nd Edition, Addison-Wesley, New
Jersey (2001)

2. Alistair Cockburn, Writing Effective Use cases, 1st Edition, Addison-Wesley, New Jersey,
(2000)

3. I. Jacobson, The Use Case Construct in Object-Oriented Software Engineering, In John M.
Carroll (ed.), ‘Scenario-Based Design: Envisioning Work and Technology in System De-
velopment’, John Wiley and Sons, pp 309-336. 1995.

4. Business Process Modeling Notation (BPMN) Version 1.0. BPMI.org. May 2004.
5. OMG Unified Modeling Language Specification Version 1.5, Object Management Group

Inc. March 2003

Functional and Non-functional Requirements Specification for Enterprise Applications 201

6. Mike Barnett, Wolfgang Grieskamp, Wolfram Schulte, Nikolai Tillmann, Margus Veanes.:
Validating Use Cases using AsmL Third International Conference on Quality Software,
Dallas 2003 238–246

7. P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, and C. Chen, Formal Approach to
Scenario Analysis, IEEE Software, pp. 33-41, Mar. 1994

8. Woo Jin Lee et.al , Integration and Analysis of Use Cases Using Modular Petri Nets in Re-
quirements Engineering, IEEE Transactions on Software Engineering , Vol 24, December
1998.

9. D. Amyot and G. Mussbacher, On the Extension of UML with Use Case Maps Concepts.
<<UML>>2000, 3rd Int. Conf. on the Unified Modeling Language, UK, Oct 2000.

10. Martin Fowler, Kendall Scott. UML Distilled Applying the Standard Object Modeling
Language, Addison Wesley, 1997.

11. R.M. Dijkman, and S.M.M. Joosten. An Algorithm to Derive Use Cases from Business
Processes. Proceedings of the 6th IASTED International Conference on Software Engi-
neering and Applications (SEA), ACTA Press, Anaheim, CA, USA, pp. 679-684, 2002.

12. Geary A Rummler, Alan P Brache. How to manage the White Space on the Organization
Chart.2nd Edition, Jossey-Bass Inc, 1995.

13. Bjorn Rengell, Kristofer Kimbler, Anders Wesslen. Improving the Use Case Driven Ap-
proach to Requirements Engineering. Proceedings of the Second IEEE International Sym-
posium on Requirements Engineering. pp 40-47, Mar 1995.

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 202 – 215, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Framework for Integrating Usability Practices into the
Software Process

Xavier Ferre, Natalia Juristo, and Ana M. Moreno

Universidad Politecnica de Madrid
Campus de Montegancedo

28660 - Boadilla del Monte (Madrid), Spain
{xavier, natalia, ammoreno}@fi.upm.es

http://www.ls.fi.upm.es/udis/

Abstract. Software development organizations wanting to introduce usability
practices into their defined software process have to undertake laborious efforts
for that purpose, since, for the time being, there exists a lack of reference model
or framework which indicates where and how in the software process usability
needs to be considered. They also have to overcome the important differences
between HCI (Human-Computer Interaction) and SE (Software Engineering) in
terminology and approach to process definition. We offer developers who have
the objective of integrating usability practices into their software process, a
framework that characterizes 35 selected HCI techniques in relation to six
relevant criteria from a SE viewpoint, and organizes them according to the kind
of activities in the development process where they may be applied, and to the
best moment of application in an iterative life cycle. The only requirement for
the existing software process is to be based on an iterative approach.

1 Introduction

Usability has been present in software quality attribute decompositions since the late
70s [1], but it has been recently that it has begun to appear as a highly relevant
attribute for customer-perceived software quality. For managers, for example,
usability is a major decision factor, particularly for selecting a product [2]. Emerging
fields like web development have contributed to this increased impact of usability into
software development. According to Donahue, having a competitive edge in usability
is crucial for e-commerce sites [3]. But not only web development is concerned by
usability, it is relevant for any interactive software system with human users.

The HCI field has been pursuing the development of usable software products for a
long time. HCI offers a large number of techniques which may be applied for the aim
of producing usable software. They are widely applied in development projects where
usability is the main (or only) quality attribute taken care of. But the application of
HCI techniques is decoupled from the overall software development process.

This state of things is changing. Recently, software developers are becoming aware
of the importance of usability issues [4]. A clear sign of the importance that usability
issues and their integration with the rest of development activities is gaining, lies in
the newly created Usability Process in the first amendment to the ISO/IEC Standard

 Framework for Integrating Usability Practices into the Software Process 203

12207 for Software Life Cycle Processes [5]. The first activity in the Usability
Process deals with specifying how user-centered activities fit into the whole system
lifecycle process, and to select usability methods and techniques. In this way,
usability practices integration into software the process is no more an area of interest
for some specialists, but an endeavor that matters for the SE software process area.

In despite of that, software development organizations wanting to properly manage
the usability level of their software products, still face a real challenge when dealing
with the integration of HCI techniques into their defined software development
process [6]. Current SE practice does not correctly address usability issues throughout
development. Developers sometimes wrongly consider usability as being just related
to the design of the visual elements of the GUI, and therefore it is dealt with late in
the development. On the contrary, a proper user-centered development (the HCI
approach to software construction) deals with usability issues all over development.
In particular, observing users and checking that their needs and likings are considered
early in the process is crucial for the production of usable software. On top of that,
usability integration into the process is hindered by the differences in terminology and
development philosophies between HCI and SE [2] [7]. HCI literature does not offer
to organizations that follow a strong SE approach a ready-to-use manual for HCI
technique application in a SE development process. Some HCI techniques are not
allocated to particular activities in the process, and the activities terminology varies
between HCI authors [8]. As a result, the effort of interpreting HCI literature from a
SE perspective presents an added difficulty to the task of usability practices
integration.

Our approach is to offer software developers a selection of HCI techniques which
are more appropriate to be incorporated into a defined software process. The HCI
techniques are integrated into a framework organized according to the kind of SE
activities and to the moment in an iterative development where their application
yields a higher usability improvement. The characterization of HCI techniques is
based on a SE perspective, in order to use a terminology which is familiar to
developers. The framework aims to be a flexible enough tool so that a particular
process model is not required for its application. The only requirement for the existing
development process is to be based on iterative refinement, since it is necessary
characteristic of any user-centered development effort. Our general approach to HCI
integration into SE development processes is discussed in [9], along with a review of
other existing proposals to the integration issue.

The framework is aimed to software development organizations with a strong SE
background, which have identified the importance of usability and want to enhance
their software process with HCI techniques and activities. The selection of HCI
techniques for inclusion in the framework responds to these organizations needs. For
example, it favors techniques which require less training for a software engineer, and
techniques that yield a higher improvement in the usability of the product compared
to the application effort.

The research presented in this work has been carried out as part of the project
STATUS, financed by the European Commission (IST - 2001 - 32298). Two software
development companies were partners in the project consortium, and they participated

204 X. Ferre, N. Juristo, and A.M. Moreno

in the definition and refinement of the framework presented here. They provided us
with input about real industrial needs regarding usability practices integration into the
software process.

 For the definition of the framework it has been necessary to perform a study on
HCI activities and techniques in the first place, and to carry out a selection of
techniques for the framework. This study is summarized in section 2. Once selected,
techniques have been assigned to SE activities in section 3, so that developers know
which kind of existing activities some techniques correspond to, and which additional
activities need to be added to the process for properly handling usability. We have
also performed a study on the conditions to be met by a software process to be
considered for usability practices integration. Additionally, as there are some
indications in the HCI literature about the best moment of application for a certain
number of techniques, as detailed in section 4, we have considered as well the
moment of application of the selected HCI techniques in an iterative development.
The results are packaged for developers in a framework that offers three views, and
section 5 details the usage of the framework. Section 6 describes the conclusions
reached. Finally, the framework in its view by development activities is included as
an appendix.

2 Selection of HCI Techniques

Whereas one of the goals of SE has been to formalize the process to make software
development systematic and disciplined, HCI does not take a similar formalized view
of the development. HCI concerns include, on top of software systems, their
interaction with the user and with the social environment where system-user
interaction takes place. The complexity of these issues has led HCI to focus on certain
development issues, and to consider some issues with less detail than SE. That is the
case with process issues. Each author in the HCI field has a particular view of the
development in terms of what activities should be undertaken to produce a usable
software product, and techniques for this purpose are not always described associated
to a particular activity. Therefore, it has been necessary for our purpose of usability
practices integration into the software process, not only to survey HCI literature for
proposed activities and techniques, but also an effort to clarify some activities with
different names, different activities with similar names and an assignment of
techniques to activities. In this way, we have been able to get well-established
practices redefined into concepts closer to SE that allow relating them with the
software process. The survey on HCI activities and the classification of the identified
95 HCI techniques into such activities is detailed in [7].

The number of techniques identified in HCI literature (95) is too large for a
developer to consider when aiming usability practices integration into the
development process, so we have performed a selection of the techniques that, for one
reason or another, seem to be more appropriate for the integration purpose. In order to
evaluate the appropriateness, we have characterized the HCI techniques according to
the following criteria:

 Framework for Integrating Usability Practices into the Software Process 205

• User Participation: One of the basic points of a user-centered approach is the
active involvement of the future system users. Some usability techniques are
specifically designed to encourage this involvement. Since the goal of this work
is to facilitate the use of usability practices during development, and user
involvement is one of the main and critic of these practices, techniques that
specially support user involvement in development will be preferred for
integration into the software process.

• Training Needs: This criterion refers to how much training average software
engineers would need to be able to apply the technique with any chance of
success. Techniques which require less training will be less costly to adopt for
organizations with little previous HCI experience.

• General Applicability: This criterion reflects the scope of the technique, that is,
how applicable it is to a wide range of software development projects. Some
HCI techniques, for example, are aimed to studying expert user performance in
optimal conditions of usage, which only a fraction of software systems may
consider the most relevant usability attribute (for instance, a pilot cockpit
system). Since we are aiming to cover a big variety of development projects, we
will select first wide-ranging techniques.

• Proximity to SE: This criterion reflects whether the principles on which the
technique is based match the principles and approaches usually present in SE.
Techniques with a high value in this criterion will be less difficult to introduce
in an organization with a strong SE background.

• Usability Improvement/Effort Ratio: This criterion refers to how much the
use of the technique can improve the usability of the final product compared to
the effort involved in its application. As resources are usually scarce in many
software development projects, we believe that cost/benefit information can be
very useful for technique selection.

• Representativeness: This criterion reflects how commonly the technique is
applied in the field of HCI. As an indicator of this criterion, we are going to use
the number of consulted authors who recommend the technique. We will favor
in technique selection the ones that reach a higher consensus.

The values for these six criteria have been assigned to each HCI technique based
on a SE perspective, aiming to ease the integration by reducing the number of
techniques for consideration. The complete characterization is detailed in [10].

As the goal is to select techniques, we have summarized the combined value of
each criterion in an additional summary criterion called Total Rating. This criterion
can adopt the following values:

• Very useful: Techniques that are especially useful for our purpose because their
usability improvement/effort ratio is high, they do not require a lot of training,
they are within the medium to high applicability range, and they are either very
close to SE or are techniques that are commonly applied in the HCI field.

• Useful: Whereas the techniques that meet the above conditions are the best for
the aim we pursue, other techniques may also be useful because they either have
a high usability improvement/effort ratio (which is considered useful just by
itself), or it is medium but they have besides either a medium to high
applicability or they encourage user participation.

206 X. Ferre, N. Juristo, and A.M. Moreno

• Not very useful: Techniques that do not meet the requirements for belonging to
either of the above categories have been labeled as not very useful in the total
rating. Although they may be useful for some development projects, we do not
think that this is enough to merit the effort of integrating them into the software
process. Notice that the goal of this work is not the inclusion of the whole HCI
field into the development, so not all the existent techniques should be selected.

The proposed framework is not designed as a solution that has to be adopted as a
whole, because it will include a range of techniques that could be useful in some
cases. Additionally, one goal we aim to is to keep the complexity of the framework
within reason, in order to enhance comprehensibility and applicability from the
viewpoint of SE. Accordingly, we have decided to select both techniques whose total
rating is “very useful” and techniques for which the total rating is “useful”, as the
resulting set of techniques (35) achieves the above goals. The characterization of the
selected techniques is detailed in the framework view presented in the appendix.

3 Mapping of HCI Techniques to Software Process Activities

The main purpose of this work, apart from offering a set of selected HCI techniques,
is to characterize them according to software process terminology from the SE field,
so they can be naturally integrated into the software process. With this aim, we have
first studied the correspondence between HCI activities and SE activities, to identify
which kind of activities in the software process will include HCI techniques, and then
we have mapped the individual selected techniques to such kind of activities in the
software process.

3.1 Software Process Activities Affected by Usability

When approaching HCI activities we identify that there are two types of activities
with regard to SE: The ones that share objectives and, therefore, should be integrated,
and the ones that deal with issues that are not commonly dealt with in SE processes.
When mapping HCI activities to their respective SE ones, IEEE Standard 1074-1997
[11] activity group names have been used for describing high-level process activities
grouping. Nevertheless, this work aims to be useful for any organization with a
defined software process, regardless of the particular approach taken for developing
software life cycle processes. Therefore, we have not adhered to a particular software
process standard, because our recommendations regarding usability practices
integration into the software process do not require the organization compliance with
any standard. For this reason, we have used generally accepted SE terminology for the
classification of software process activities, instead of using activity names from a
specific software process standard. The mapping between HCI and SE activities is
represented in Figure 1.

The greatest degree of similarity in objectives lies in requirements activities, since
they overlap with the concerns in HCI about specifying the context of use, analyzing
users and their tasks, specifying usability requirements, developing a product concept,
producing low-fidelity prototypes, and validating them with representative users. As a
result, existing requirements-related activities of the software process may be
enhanced by the introduction of HCI techniques and approach.

 Framework for Integrating Usability Practices into the Software Process 207

Requirements Elicitation and Analysis
- User Analysis
- Task Analysis
- Develop Product Concept
- Prototyping

Usability Evaluation
- Expert Evaluation
- Usability Testing
-Follow-Up Studies of
Installed Systems

Interaction Design

Requirements

Design

Evaluation

Legend Software process needs to
be enhanced with these
usability activities

Development activities
which need to be modified
for usability reasons

HCI Activities
Software process needs to
be enhanced with these
usability activities

Development activities
which need to be modified
for usability reasons

HCI Activities

Specification
of the Context of Use

User Analysis

Task Analysis

Specification
of the Context of Use

User Analysis

Task Analysis

Usability
Specifications

Usability
Evaluation

- Expert Evaluation
- Usability Testing
- Follow-Up

Studies of
Installed Systems

Usability
Evaluation

- Expert Evaluation
- Usability Testing
- Follow-Up

Studies of
Installed Systems

Requirements SpecificationRequirements Validation

Develop
Product Concept

Prototyping

Interaction
Design

Rest of
Activity
Groups

Fig. 1. Mapping of HCI Activities to SE Activities in the Software Process

Other HCI activities, not related to SE requirements activities, do not have a direct
coincidence of objectives with existing SE activities, so they have to be added to the
existing development process for it to produce usable software. These new kinds of
activities are Interaction Design and Usability Evaluation.

Interaction Design is concerned with the definition of the interaction environments
and their behavior, including the coordination of the user-system interaction. It also
includes the design of the visual elements making up the GUI (Graphical User
Interface) and their behavior, when the user interface is graphical. Interaction Design
gathers a kind of activities with a certain degree of independence from activities in the
Design activity group, but it is related to the sort of tasks carried out in such activities.
Therefore, we have considered that Interaction Design belongs to the Design activity
group, but with its own place inside it.

Usability Evaluation includes all the activities that aim to evaluate the usability of
the product being developed. Consequently, they can fit in the Evaluation activity
group. Nevertheless, they are quite independent from other activities in the group
because usability practices for evaluation differ to a great extent from SE evaluation

208 X. Ferre, N. Juristo, and A.M. Moreno

practices. Therefore, we have gathered all kinds of usability evaluation practices in
Usability Evaluation, and placed this kind of activities inside the Evaluation activity
group. The typical HCI decomposition of Usability Evaluation considers three types
of activities: Expert Evaluation, Usability Testing, and Follow-Up Studies of Installed
Systems.

3.2 Assignment of HCI Techniques to Activities

The previous mapping between HCI and SE activities represents the main basis for
assignment of HCI techniques to kinds of activities into the software process. But, due
to the above mentioned lack of formality in process issues in the HCI field, not every
HCI technique is clearly assigned to an HCI activity, and terminology varies between
authors, so the mapping between HCI and SE activities is not enough for the
assignment of HCI techniques to activities. Therefore, in addition to the mapping
between activities, we have considered the particularities of each technique, as
described in the HCI literature, for its assignment to a specific kind of activity.
Between all the activities in a software process, we have just considered the ones
affected by usability, as seen in the previous section.

For existing activities in development that need to be modified with the inclusion
of HCI techniques, we have kept SE terminology. Nevertheless, for Requirements
Elicitation and Analysis activities we have identified 15 HCI techniques that can be
applied when performing such activities. The large number of HCI selected
techniques assigned to Requirements Elicitation and Analysis activities is due to the
great importance attached in the HCI field to observing the users, analyzing their
characteristics and tasks, and developing the right product concept. Since 15 is quite a
high number of techniques to present in a single set, we have decided to structure
them according to the HCI activity into which they are applied in HCI methods (for
techniques which are actually assigned to an activity). In this way, we aim to improve
communication between usability specialists and developers in the critical activities
of Requirements Elicitation and Analysis. They are the kind of activities which
require a greater degree of integration of current SE practices with HCI ones, and,
therefore, they present a greater need of communication inside joint SE-HCI teams.

The final results of the framework detailed in the appendix show the resulting
organization of techniques according to the kind of development activities where they
apply. A more thorough discussion of the reasons for assigning each technique to a
particular kind of activity, along with a more detailed description of the mapping
between HCI and SE activities, can be found in [10].

4 Embedding HCI Techniques in an Iterative Life Cycle

We have studied the HCI literature to identify the characteristics that software
development should have for it to be considered user-centered. [12], [13], [14], [15],
and [16] agree on considering iterative development as a must for a user-centered
development approach. The complexity of the human side in human-computer
interaction makes it almost impossible to create a correct design at the first go.
Cognitive, sociological, educational, physical and emotional issues may play an

 Framework for Integrating Usability Practices into the Software Process 209

important role in any user-system interaction, and an iterative approach is the most
sensible way to deal with these issues.

The other three characteristics that are mentioned by several sources are: active
user involvement; a proper understanding of user and task requirements; and
multidisciplinary knowledge. The three conditions can be met by introducing HCI
practices into the software process. They may contribute with knowledge from other
disciplines, they may also offer participatory ways for software developers to
integrate users into the design process, and they may enhance requirements activities
with specific usability aspects as well. On the contrary, the first condition (that is, to
be based on an iterative approach), is an intrinsic characteristic of the process, and it
will be the only requirement for a defined software process to be a candidate for
usability practices integration through the proposed framework.
There are indications in the HCI literature on when in development time each
technique yields the most useful results for improving the usability of the final
product. In particular, HCI literature favors an early application of certain HCI
techniques, while others yield useful when a working system is installed in the user
organization.

An iterative life cycle is made up of cycles, but not all the cycles are the same.
Each cycle implies working in different kinds of activities, and the relative effort and
emphasis change over time [17]. During the first development cycles, a greater effort
is dedicated to activities related to problem delimitation and to establishing the
solution outline, while, as development advances, design and implementation
activities gain more weight. Therefore, different stages can be defined in an iterative
life cycle.

On top of the assignment of HCI techniques to activities, we consider necessary to
offer developers a guide about the more appropriate moments in development time for
the application of each HCI technique. We aim to transmit this kind of information
present in HCI literature to developers. Since each organization has its own
terminology for phases and milestones, we have established a generic representation
of moments in iterative development time, which condenses the most important stages
for HCI technique characterization. We have considered the following three stages:
Initial Cycles, Central Cycles and Evolution Cycles. Development time is roughly
divided into these three stages by the following two milestones:

• Product Concept Established: In any iterative process, the early cycles are
given over to the points identified as being the riskiest, and one of the biggest
risks as far as usability is concerned is not having in mind the right product
concept, the one that fits the user experience and expectations. Some HCI
techniques focus on the production and/or evaluation of early tentative designs
and, therefore, they are especially well suited for application in the Initial
Cycles, which account for the cycles before the product concept has been
established. Central Cycles begin once this milestone has been reached.

• Some Part of the System Installed and Working: Some usability evaluation
techniques cannot be applied unless a version of the software system under
development has been installed at the end user’s workplace. Evolution cycles
begin once this milestone has been reached.

210 X. Ferre, N. Juristo, and A.M. Moreno

Figure 2 shows this division of development time in stages. Developers need to
match this generic representation to the terminology used in their organization, in
order to interpret our proposed framework. We have graded every selected HCI
technique according to their suitability for each stage described in the consulted
literature, with one of the following values: Especially well-matched (meaning that
the technique will be of utmost usefulness when applied in the development stage in
question); Neutral (the technique is applicable in this stage, although this stage does
not stand out as being any better matched than other development times); and Not
usual (it is not the more appropriate stage for this technique application and there are
other more appropriate techniques).

Time

Initial Cycles

cycle n...cycle 1 cycle 2 cycle m...cycle n+1 cycle n+2 cycle m...cycle n+1 cycle n+2 cycle j...cycle m + 1 cycle m + 2

Central Cycles Evolution Cycles

Milestone: Product
Concept Established

Milestone: Part of the System
Installed and Working

Beginning
of Development

System Retirement
and Replacement

Fig. 2. Division of Iterative Cycles into Stages

The framework view detailed in the appendix includes the characterization of
selected HCI techniques according to moments in an iterative life cycle. A detailed
discussion of the reasons for grading each HCI technique with respect to their
suitability to each development stage can be found in [10].

5 Integrating Usability Practices into the Software Process: A
Framework

We have packed into a framework the characterization of HCI techniques detailed in
previous sections. The framework allows developers to take decisions about the
specific HCI techniques to include into their software process in order to improve the
usability of the developed software product. It condenses all the information
developers need to apply the solution we are proposing.

In order to ease the usage of the framework by its potential users, we offer
developers three views:

• View by HCI Techniques: This view is organized by the name of the selected
HCI techniques. It yields useful when developers already know about a
particular HCI technique they have heard about, or whose usability benefits they
have been convinced of. Accessing the framework through this view offers the
possibility of knowing the characterization of a particular HCI technique.

 Framework for Integrating Usability Practices into the Software Process 211

• View by Development Activities: When developers are trying to find
appropriate HCI techniques for activities in their process they access the
framework through this view. In order to use the framework with this purpose,
developers need to translate the generic activities in the framework to the
specific activity names considered in their organization. Then, between the set
of techniques suggested for each kind of activity, they may select those ones
that better fit their particular objectives.

• View by Moments of Application: An organization of the selected HCI
techniques according to stages in the development life cycle is offered to
developers through this framework view. For example, an organization may
have identified that they need to pay more attention to usability in the earlier
stages of development, and wants to know which HCI techniques are more
suitable for application at this stage. In order to use the framework through this
view, developers need to fit the generic representation of stages in an iterative
cycle used in the framework to the phases or stages considered in their
organization.

The three views offered in the framework are not exclusive. They may be used
independently, but the expected usage of the framework is by means of an
information search that combines several views. For the task of integrating usability
practices into the software process, developers may switch between views for
reaching the kind of information they are dealing with at each moment. For example,
when dealing with the introduction of HCI practices into a particular activity, the
developer will make use of the view by activities, by matching his or her organization
activity name with the corresponding kind of activity in the framework. Between the
techniques proposed for such kind of activity, the developer will choose one or more
techniques, considering both the criteria characterization and the information about
the better moment of application of each technique. Then, the developer may change
to the view by moments of application, to know about the techniques which are bound
to be applied at the same moment in development time as the techniques selected.
Finally, the developer may switch to the view by HCI techniques to look up a
technique which he has already placed in the process, because he or she wants to
remember the training needs of the technique, in order to know if some members of
the development team will need to attend a lengthy usability training course.

We consider that these different views of the framework offer a flexible tool for
easing the usability integration endeavor. In order to provide some more guidance to
the user of the framework, techniques labeled as "Very useful" are highlighted in
every view by presenting them as the first ones in each category. These techniques are
suggested to the user as the best generic choice. Nevertheless, the developer may take
into account the specific constraints of the organization or the project at hand, and,
considering the characterization criteria for the techniques, he or she may choose a set
of techniques which fit better his or her needs. The framework is not conceived as a
tool for automatic generation of a custom process add-in, but as a tool for supporting
the developer in the difficult task of integrating HCI practices into the software
process. For this purpose, it condenses some knowledge about the HCI field in a way
understandable by developers with a SE background.

212 X. Ferre, N. Juristo, and A.M. Moreno

Knowing where to plug HCI techniques and activities into the existing process
does not automatically make software engineers capable of integrating HCI practices
into their day-to-day work. We offer in the framework a basic reference for each HCI
technique where developers may turn to if they need more detailed information on the
application of the technique, but the application of the framework needs to be
supplemented by appropriate usability training for developers. A basic catalogue of
HCI techniques, with their main references and a training plan, can be found in [18].

The Appendix details the framework in its view by development activities.

6 Conclusions and Future Directions

Usability practices integration into the software process is a difficult issue due to the
existing breach between SE and HCI. Both fields have a different approach to
development, different terminology, and different view of process issues. HCI
literature is not very helpful for the integration aim, since the information about
techniques is not presented in terms a software engineer can easily understand.

We have presented a framework for usability practices integration into the software
process that defines which kind of development activities are affected by usability,
and characterizes HCI techniques according to such activities and according to the
moments in an iterative cycle where their application yields more useful.
Additionally, it characterizes each HCI technique according to six criteria which may
be of interest to developers in the usability integration endeavor.

The framework has been applied by STATUS partners after a 24 hours (one week)
usability course, with good results: Integration of usability has improved requirements
understanding, and the usability level of software products developed has increased
substantially (including user satisfaction). As a global valuation, developers consider
that the effort employed in the application of HCI techniques pays off, considering the
results obtained. They were previously unaware of the possible relationship of
usability with their development practices, and they do know now where to look for
HCI techniques to apply. They are also more aware of the criticality of usability in
software development.

We have released a prototype of a web-based tool for easing the application of the
framework [19]. With the release of the framework in the web, we expect to refine it
with the feedback received from developers and usability specialists who may use it
for their particular needs.

References

1. McCall, J.A., Richards, P.K., and Walters, G.F.: Factors in Software Quality. vol. 1, 2, and
3, AD/A-049-014/015/055, National Tech. Information Service (1977)

2. Seffah, A., Metzker, E.: The Obstacles and Myths of Usability and Software Engineering.
Communications of the ACM, Vol. 47, no. 12 (December 2004) 71-76

3. Donahue, G.M..: Usability and the Bottom Line. IEEE Software, Vol. 18, no. 1
(January/February 2001) 31-37

 Framework for Integrating Usability Practices into the Software Process 213

4. Juristo, N., Windl, H., Constantine, L.: Introducing Usability. Guest Editor's Introduction.
IEEE Software Special Issue on Usability Engineering, Vol. 18, no. 1 (January/February
2001) 20-21

5. ISO/IEC. International Standard: Information Technology. Software Life Cycle Processes.
Amendment 1. ISO/IEC Standard 12207:1995/Amd.1:2002. ISO, Geneva, Switzerland
(2002)

6. Ferre, X., Juristo, N., Windl, H., Constantine, L.: Usability Basics for Software
Developers. IEEE Software, Vol. 18, no. 1 (January/February 2001) 20-29

7. Ferre, X., Juristo, N., Moreno, A.M.: Improving Software Engineering Practice with HCI
Aspects. Software Engineering Research and Applications - Lecture Notes in Computer
Science. Vol 3026, Springer (2004) 349-363

8. Ferre X., Juristo, N., Moreno. A.M.: Deliverable D.5.1. Selection of the Software Process
and the Usability Techniques for Consideration. STATUS Project (2002)
http://www.ls.fi.upm.es/status/results/deliverables.html

9. Ferre, X., Juristo, N., Moreno, A.M.: Integration of HCI Practices into Software
Engineering Development Processes: Pending Issues. In: Ghaoui, C. (ed.): Encyclopedia
of Human Computer Interaction. Idea Group Reference (2005)

10. Ferre, X., Juristo, N., Moreno, A.M.: Deliverable D.6.6 Final Results on the Integrated
Software Process. STATUS Project (2004)
http://www.ls.fi.upm.es/status/results/deliverables.html

11. IEEE: IEEE Std 1074-1997. IEEE Standard 1074 for Developing Software Life Cycle
Processes. IEEE, New York (NY), USA (1998)

12. ISO: International Standard: Human-Centered Design Processes for Interactive Systems,
ISO Standard 13407: 1999. ISO, Geneva, Switzerland (1999)

13. Constantine, L. L., and Lockwood, L. A. D.: Software for Use: A Practical Guide to the
Models and Methods of Usage-Centered Design. Addison-Wesley, New York (NY), USA
(1999)

14. Shneiderman. B.: Designing the User Interface: Strategies for Effective Human-Computer
Interaction. Addison-Wesley, Reading (MA), USA (1998)

15. Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., Carey. T.: Human-Computer
Interaction. Addison Wesley, Harlow, England (1994)

16. Hix, D., and Hartson, H.R.: Developing User Interfaces: Ensuring Usability Through
Product and Process. John Wiley and Sons, New York (NY), USA (1993)

17. Larman, C.: Agile and Iterative Development. A Manager's Guide. Addison-Wesley,
Boston (MA), USA (2004)

18. Ferre, X,. Juristo, N. and Moreno A..M.: Deliverable D.5.2. Specification of the Software
Process with Integrated Usability Techniques. STATUS Project (2002)
http://www.ls.fi.upm.es/status/results/deliverables.html

19. Ferre, X. Web-Based Framework for Integrating Usability Practices into the Software
Process (2005) http://www.ls.fi.upm.es/udis/miembros/xavier/usabilityframework/

Appendix: Framework View by Development Activities

Table 1 shows the development activities view of the proposed framework.

214 X. Ferre, N. Juristo, and A.M. Moreno

Table 1. Framework for Usability Integration into the Software Process: View by Activity

Stages
Kind of
Activity

Technique UP TN GA PSE UIE Re
p IC CC EC

Basic
Refer-
ence

Card Sorting Y L H M H 3 N N N Robert-
son, 01

Competitive
Analysis

N M H M H 1 SW N N Nielsen,
93

Affinity Diagrams Y L H M H 1 SW NU NU Beyer, 98

Contextual
Inquiry

Y H M M H 3 SW NU NU Beyer, 98

JEM (Joint
Essential

Modeling)
Y M M H M 1 N N N Constan-

tine, 99

Requirements
Elicitation and
Analysis (Reqs.)

Ethnographical
Observation

N H M M M 2 SW NU NU Preece, 94

Personas N M M M H 3 SW NU NU Cooper,
03

Structured User
Role Model

N L M H M 1 SW N N Constan-
tine, 99

User

Analysis
1

User Profiles N H H H H 5 SW N N Mayhew,
99

Essential Use
Cases

N M H H H 1 N N N Constan-
tine, 99

Task Scenarios Y M M M H 1 N N N Mayhew,
99 Task

Analysis
1
 HTA

(Hierarchical
Task Analysis)

N M M H M 1 SW NU NU Preece, 94

Scenarios and
storyboards

Y M M L H 3 SW NU NU Carroll,
97a

Develop
Product

Concept
1

Visual
Brainstorming

Y L H L H 1 SW NU NU Preece, 94

Prototyping
1
 Paper Prototyping Y L H H H 3 SW N N Mayhew,

99
Requirements
Specification
(Reqs.)

Usability
Specifications

N M M M H 4 N N N Hix, 93

Inspections N M H M H 4 N N N Nielsen,
94

Heuristic
Evaluation

N H H L H 6 N N N
Nielsen,

93
Collaborative
Inspections

Y M M M M 1 SW N N
Constant
ine, 99

Cognitive
Walkthrough

N H M M M 4 N N N
Carroll,

97b

Requirements
Validation
(Reqs.)

Pluralistic
Walkthrough

Y L M M M 4 SW N N Bias, 94

Menu-Selection
Trees

N L M H H 1 N N N
Shnei-

derman,
98

Interaction
Design (Design)

Interface State
Transition
Diagrams

N L H H M 2 N N N Hix, 93

1 These are not kinds of SE activities, but HCI activities included in this view to offer the

framework user a structured vision of the 15 HCI techniques which may be applied in
Requirements Elicitation and Analysis activities

 Framework for Integrating Usability Practices into the Software Process 215

Stages
Kind of
Activity

Technique UP TN GA PSE UIE Re
p IC CC EC

Basic
Refer-
ence

Product Style
Guide

N H M M M 1 NU SW N
Mayhew,

99

Navigation Maps N M H H M 1 N N N
Constan-
tine, 99

Interface Content
Model

N M H M M 1 N SW N
Constan-
tine, 99

Impact Analysis N M M H M 3 NU N N Hix, 93
Design Organizing Help

by Use Cases
N M M H M 1 N N N

Constan-
tine, 99

Inspections N M H M H 4 N N N
Nielsen,

94

Heuristic
Evaluation

N H H L H 6 N N N
Nielsen,

93
Collaborative
Inspections

Y M M M M 1 SW N N
Constan-
tine, 99

Cognitive
Walkthrough

N H M M M 4 N N N
Carroll,

97b

Expert
Evalua-
tion

Pluralistic
Walkthrough

Y L M M M 4 SW N N Bias, 94

Thinking Aloud Y M H L H 5 NU N N
Nielsen,

93
Post-Test

Information
Y M H M H 1 NU N N

Constan-
tine, 99

Performance
Measurement

Y M M M M 3 NU N N
Dumas,

99

Usabili
ty
Testing

Laboratory
Usability Testing

Y M M M M 4 NU N N Hix, 93

User Feedback Y L H H H 3 NU NU SW
Nielsen,

93
Questionnaires,
Interviews and

Surveys
Y M H M M 3 NU N SW

Mayhew,
99

Usabil-
ity
Evalua-
tion (
Evalua-
tion)

Follow-
Up
Studies
of
Installed
Systems Logging Actual

Use
N H M H M 5 NU N SW

Shnei-
derman,

98

In order to use this view of the framework, a developer must look for the kind of
activity he or she is interested in, and choose one or more of the proposed HCI
techniques, according to the characteristics the organization values most (UP: User
Participation, TN: Training Needs, GA: General Applicability, PSE: Proximity to SE,
UIE: Usability Improvement/Effort Ratio, Rep: Representativeness), and to the stage
where their application in intended (IC: Initial Cycles, CC: Central Cycles, EC:
Evolution Cycles). Techniques labeled as "Very useful" are represented on a white
background, while techniques labeled as "Useful" are represented on a gray
background. The values for technique characterization are represented as follows: Y:
Yes, N: No, H: High, M: Medium, L: Low. The values for development stage
suitability are as follows: SW: Specially Well-matched, N: Neutral, NU: Not Usual.

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 216 – 223, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using Evolutionary Project Management (Evo) to Create
Faster, More Userfriendly and More Productive
Software. Experience Report from FIRM AS, a

Norwegian Software Company

Trond Johansen

Head of Project Management, FIRM AS
Grindbakken 40, 0764 Oslo

Trond.Johansen@firmglobal.com

1 About the Company

FIRM was established in 1996, and has 70 employees in 4 offices (Oslo, London,
New York and San Francisco). FIRM delivers one software product: Confirmit.
Confirmit is a web-based application which enables organizations to gather, analyze
and report key business information across a broad range of commercial applications.
Confirmit can be applied to any information-gathering scenario, but its three main
data sources are: Customer Feedback, Market Feedback and Employee Feedback.

The FIRM R&D department consist of about 20 people, including a Quality
Assurance department of 3 people. These people are mainly involved in product
development of Confirmit, but we also do custom development for clients who fund
new modules of the software.

2 Development Background and History

In the very beginning, when FIRM only had a couple of clients, our development was
very ad-hoc and customer driven. We didn’t follow a formal development process.
The software was updated nearly on a daily basis based on client feedback. You can
say that we had one of the important elements in Evo: Deliver stakeholder value fast.

This ad-hoc development resulted in nice features for the few dedicated clients we
had, but it also resulted in a lot of defects, long stressful nights, and little control.

As our client base grew, we felt a need to introduce more-formal processes in order
to increase our quality standards. Larger clients started to ask questions regarding our
development processes.

We formalised the development process according to a waterfall model, and started
climbing the CMM ladder. The reason for choosing the waterfall model was that it
was the only development process we knew about.

After a few years with the waterfall model, we experienced aspects of the model
that we didn’t like:

− Risk mitigation was postponed until late stages.
− Document-based verification postponed until late stages.

 Evolutionary Project Management (Evo) 217

− Attempts to stipulate unstable requirements too early: change of requirements is
perceived as a bad thing in waterfall.

− Operational problems discovered too late in the process (Acceptance testing)
− Lengthy modification cycles, and much rework.
− Most important; the requirements were nearly purely focused on functionality, not

on quality attributes.
− Our experiences is backed up by statistics

− In a study of failure factors on 1027 IT projects in the UK, scope management
related to waterfall practices was cited to be the largest problems in 82% of the
projects. Only 13 % of the projects didn’t fail. (Thomas, M.2001. “IT project
Sink or Swim,” British Computer Society Review)

− A large study showed that 45 % of requirements in early specifications were
never used (Johnson, J. 2002. Keynote speech, XP 2002, Sardinia, Italy).

3 The Shift of Focus: From Waterfall to Evolutionary
Development

Peter Myklebust, FIRM CTO, and I heard Tom Gilb speak about evolutionary project
management (Evo) at a software conference autumn 2003. We had just released a new
version of our software that contained a lot of new nice features, but it had limitations
with respect to usability, productivity and performance (e.g. throughput and response
time). We found the ideas very interesting, and Tom and Kai Gilb offered to give a
more detailed introduction to the concept. They spent one day in our offices, giving a
very compressed introduction to Evo. We saw that Evo attacked many of the flaws in
our wa-terfall process; most importantly the high focus on quality attributes that we
felt could have been better in our latest release.

We decided to do an Evo pilot with a development phase of 3 months. We decided
to do a literature study ourselves and then use Evo as best as we could for the next
release (Confirmit 8.5), without further Evo courses.

3.1 FIRM’s Interpretation of Evo: Basis for the 3 Month Trial Period

Evo is in short: Quickly evolving towards stakeholder values & product qualities,
while learning through early feedback. The beauty lies with the simplicity of the
method, combined with advanced methods of measurement and control.

After the one day crash course with Tom and Kai Gilb and a literature study
(“Competitive Engineer-ing” by Tom Gilb and other material on the subject), our
overall understanding of Evo was this:

− Find stakeholders (End users, super-users, support, sales, IT Operations etc)
− Define the stakeholders’ real needs, and the related product qualities
− Identify past/status of product qualities and your required goal level (how much

you want to im-prove).
− Identify possible solutions for meeting your goals
− Develop a step-by-step plan for delivering improvements via the identified

solutions, with respect to Stakeholder Values & product quality goals:

218 T. Johansen

− And most importantly:
− Deliveries of measurable stakeholder-valued results every week (every Evo cycle)
− Measure weekly: are we measurably moving towards our goals?

3.2 Working with Requirements the Evo Way

With Evo, our requirements process changed. Previously we focused mostly on
function requirements, and not on quality requirements. It is the quality requirements
that really separate us from our competi-tors. E.g. spell checker in MS Word, why
was this a killer application? There was no new functionality; authors of documents
have been able to spell check with paper dictionaries for ages. The real differ-ence
was superior product qualities: speed of spell checking and usability.

We tried to define our requirements according to a basic standard [1]

− Clear & Unambiguous
− Testable
− Measurable
− No Solutions (Designs)
− Stakeholder Focus

Example taken from our requirements in Confirmit 8.5:

Usability.Productivity
Scale: Time in minutes to set up a typical specified Market Research-report (MR)
Past: 65 min, Tolerable: 35 min, Goal: 25 min (end result was 20 min)
Meter: (how to measure if we are moving towards our goal): Candidates with
knowledge of MR-specific reporting features performed a set of predefined steps to
produce a standard MR Report. (The standard MR report was designed by Mark
Phillips, an MR specialist at our London office).

The focus is here on the day-to-day operations of our MR users, not a list of
features that they might or might not like. We know that increased efficiency, which
leads to more profit, will please them.

After one week we had defined nearly all the top level quality and performance
requirements for the next version of Confirmit; and we were ready to start on our first
Evo step. We decided that one Evo step should last one week; because of practical
reasons, even though we violate the general Evo pol-icy of not spending more than
about 2 % of project schedule in each step. The rationale behind the 2% rule is not to
spend more time than you can afford to loose. After one week, you’ll find out whether
you are on the right track (by getting feedback from stakeholders).

3.3 Find Solutions That Takes You Closer to Your Goals

For every quality requirement we looked for possible Solutions (Design Ideas).

E.g. for Quality Requirement: Usability.Productivity we identified the following
Solutions: (identified by their name, not their description here as they are very
domain-specific for market research)

 Evolutionary Project Management (Evo) 219

Development
Team

Users (PMT,
Pros, Doc

writer, other)

CTO (Sys Arch,
Process Mgr)

QA
(Configuration

Manager & Test
Manager)

Friday PM: Send
Version N
detail plan to
CTO + prior to
Project Mgmt
meeting

 PM: Attend
Project Mgmt
meeting:
12.00-15.00

 Developers:
Focus on
genereal
maintenance
work,
documentation.

 Approve/reject
design & Step
N

 Attend Project
Mgmt meeting:
12-15

 Run final
build and
create setup
for Version
N-1.

 Install setup
on test
servers
(external
and
internal)

 Perform
initial crash
test and
then release
Version N-1

Monday

 Develop test
code & code
for Version N

 Use
Version
N-1

 Follow up
CI

 Review test
plans, tests

Tuesday Develop Test
Code & Code
for Version N

 Meet with
users to
Discuss Action
Taken
Regarding
Feedback
From Version
N-1

 Meet
with
develope
rs to give
Feedbac
k and
Discuss
Action
Taken
from
previous
actions

 System
Architect to
review code and
test code

 Follow up
CI

 Review test
plans, tests

Wednesday Develop test
code & code
for Version N

 Review test
plans, tests

 Follow up
CI

Thursday Complete Test
Code & Code
for Version N

 Complete GUI
tests for
Version N-2

 Review test
plans, tests

 Follow up
CI

Fig. 1. FIRM Evo week

− Solution.Recoding
− Solution.MRTotals
− Solution.Categorizations

220 T. Johansen

− Solution.TripleS
− ..and many more

We evaluated all these, and specified in more detail those we believed would add the
most value for the least effort. (take us closer to the goal level). This evaluation was
based on 2-3 senior developers’ “gut-feeling”.

3.4 Working Evolutionary, the FIRM Evo Week

We organized the week in a special way.
On Friday we plan deliverables for version N, at the same time as we build and

deploy version N-1 on the test server. Monday to Thursday is dedicated to design,
code and test. During the week, the pro-ject collects feedback from stakeholders,
based on the previous Evo step/week.

3.5 Evolutionary Project Planning

We collected the most promising Solutions and included them in an Evo plan
(expressed by using an Impact Estimation Table: IET. See example below). The
solutions were evaluated with respect to value for clients versus cost of
implementation: choosing the ones with the highest value first. Note that value can
sometimes be defined as removing risks by implementing technically challenging
Solu-tions early.

The IET is our tool for controlling the qualities, and delivering improvements to
real stakeholders: or as close as we can get to them. (E.g. support people, using the
system daily, acting as clients).

Example: IET for MR Project – Confirmit 8.5, Solution: Recoding

Description: Make it possible to recode variable on the fly from Reportal. Estimated
effort: 4 days

Fig. 2. Example of Impact Estimation Table, MR project in Confirmit 8.5 development

 Evolutionary Project Management (Evo) 221

4 Impacts on Our Product, Experiences and Conclusions

4.1 The Method’s Impact on Confirmit Product Qualities

Firm is one of eleven industry partners in a Norwegian Software Process
Improvement program – SPIKE (http://www.abelia-innovasjon.no/spike/). The
program is a joint effort involving Norwegian software industry and academia
investigating software engineering topics trough empirical studies of industrial
practices. Researchers from SINTEF are evaluating the introduction and effects of
Evo at Firm. This work is still in progress but preliminary results indicates that the
introduction of Evo at Firm has a positive influence on product quality and process
control. The impact described in this paper is based on internal usability test,
productivity tests, performance tests carried out at Microsoft Windows ISV laboratory
in Redmond USA, and direct customer feedback. Only highlights of the im-pacts are
listed here. No negative impacts are hidden.

Table 1. Improvements to product qualities

Description of requirement/work task Past Goal Status

Usability.Productivity: Time for the system to
generate a survey

7200
sec

94 sec 15 sec

Usability.Productivity: Time to set up a typical
specified Market Research-report (MR)

65 min 25 min 20 min

Usability.Productivity: Time to grant a set of End-
users access to a Report set and distribute report
login info.

80 min 2 min 5 min

Usability.Intuitiveness: The time in minutes it takes
a medium experienced programmer to define a
complete and correct data transfer definition with
Confirmit Web Services without any user
documentation or any other aid

15 min 4,5 min 5 min

Performance.Runtime.Concurrency: Maximum
number of simultaneous respondents executing a
survey with a click rate of 20 sec and an response
time<500 ms, given a defined [Survey-Complexity]
and a defined [Server Configuration, Typical]

250
users

1000 6000

These leaps in product qualities would not have been achieved without Evo. We
have received many pleasant emails regarding these quality improvements from our
customers:
“I just wanted to let you know how appreciative we are of the new “entire report”
export functionality you recently incorporated into the Reportal. It produces a
fantastic looking report, and the table of contents is a wonderful feature. It is also a
HUGE time saver.”

222 T. Johansen

4.2 Feedback from Developers and Project Managers Within FIRM R&D

Evo has resulted in increased motivation and enthusiasm amongst developers because
it opens up for empowered creativity. EVO and Continuous Integration is a vehicle
for innovation and inspiration. The developers get their work out on test servers, and
receive feedback. Every week.
Even though they embraced the method there are parts of Evo they found difficult to
understand and execute at first:
− Defining good requirements can be hard.
− It was hard to find meters (ways of measuring numeric qualities) which were

practical to use, and at the same time measure real product qualities.
− Sometimes it takes more than a week to deliver something of value to the client.
− Testing was sometimes postponed in order to start next step, some of these test

deferments were not then in fact done in later testing.

4.3 Lessons Learned with Respect to the Method

Some of the lessons we learned after the trial period are:

− We will have increased focus on feedback from clients. We will select the ones that
are willing to dedicate time to us. Internal stakeholders can give valuable feedback,
but some customer interac-tion is necessary.

− Demonstrate new functionality with screen recording software or early test plans.
This makes it easier for internal and external stakeholders to do early testing

− Tighter integration between Evo and the test process is necessary
− “Be humble in your promises, but overwhelming in your delivery

4.4 Conclusions

The method’s positive impact on Confirmit product qualities has convinced us that
Evo is a better suited development process than our former waterfall process, and we
will continue to use Evo in the future.

What surprised us the most was the method’s power of focusing on delivering
value for clients versus cost of implementation. Evo enables you to re-prioritize the
next development-steps based on the weekly feedback, what seemed important at the
start of the project may be replaced by other solutions based on gained knowledge
from previous steps.

The method has high focus on measurable product qualities, and defining these
clearly and testable requires training and maturity. It is important to believe that
everything can be measured and to seek guidance if it seems impossible.

One pre-requisite related to the method for using Evo is an open architecture.
Another pre-requisite is management support for changing the work process, and

this is important in any software process improvement initiative.
The concept of Continuous Integration (CI)/daily builds was valuable with respect

to deliver new ver-sion of the software every week.
Overall, the whole organization has embraced Evo. The release of Confirmit 8.5

showed some of Evo’s great potential, and we will work hard to utilize it to the full in
the future.

 Evolutionary Project Management (Evo) 223

Literature

[1] Tom Gilb, “Competitive Engineering: A Handbook for Systems and Software Engineering
Management Using Planguage”, Elsevier, to be published End 2004- Beginning 2005.
Manuscript, until publication, at www.gilb.com (free).

[2] Kai Gilb, “Evolutionary Project Management & Product Development, Evo, how
successful people manage projects”. Unfinished book manuscript for project planning to
be found on www.gilb.com)

[3] Craig Larman, “Agile and Iterative Development, a Manager’s Guide”

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 224–233, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Comprehensive Documentation Made
Agile – Experiments with RaPiD7 in Philips

Ko Dooms1 and Roope Kylmäkoski2

1 Philips, Building SFJ-3, Glaslaan 2, 5616 LW Eindhoven, The Netherlands
ko.dooms@philips.com

2 Nokia, Hatanpäänvaltatie 30, 33101 Tampere, Finland
roope.kylmakoski@nokia.com

Abstract. This paper addresses the almost never-ending headache the role of
documentation has given for software projects. Working software has been
given recently a focus over comprehensive documentation, yet the required
documents should be authored. This paper “revisits” the approach developed by
Nokia improving the documentation work without scarifying the quantity or
quality of documentation. The method is called RaPiD7. The cases presented
are from Philips Digital Systems Laboratory. This paper elaborates the method
by providing insights to applying RaPiD7 in practice, explains the encouraging
results of the experiments and gives tips for practitioners of the method by
explaining the lessons learned in Philips.

1 Introduction

In recent years agile methods (see for example [3]) have been the focus of discussion
in the area of software engineering. Agile methods seem to be a response to the
heavily prescriptive processes (see for example [5]) that dominated the field in the
early 1990s. Agile methods focus more on the human aspects of software engineering
than these so-called prescriptive processes, and place human interaction over tools
and processes [1]. Agile methods also state that documentation is often a heavy and
unneeded form of communication.

In [4] another method for documentation work is presented that combines to a
certain extent the good sides of both directions, in other words, from prescriptive
processes and from agile methodologies. The method addresses the challenge of
creating understanding, sharing understanding and storing the created understanding
in software projects. These challenges are addressed by a stronger focus on planned
human interaction and early joint decision-making by the project development team.
In practice, this method is about planning the needed human interaction and decision-
making as part of project planning in the form of facilitated workshops, and then
subsequently carrying out this plan. The method is called RaPiD7 (Rapid production
of documentation – 7 steps), and it has been developed by Nokia during 2000-2001.

Similar methods to RaPiD7 exist (see for example [2], [7], [6] and [8]), therefore
the intention of this paper is not to provide a totally new or unique approach for

 Comprehensive Documentation Made Agile – Experiments with RaPiD7 in Philips 225

software engineering. Consequently, this paper is not comparing the different
methods, but is rather a lessons-learned paper providing insights on a particular case
with a selected collaborative method for software related documentation and design.
A similar method to RaPiD7 called JAD [6] has existed since the 1970s and recently
agile methods have been addressing the same field especially by a method called
Agile Modeling [2]. However, it does not appear that any of these methods, be it JAD,
AM or RaPiD7, have gained the industry de-facto status they should have. We believe
that methods like RaPiD7 should be an integral part of almost any software process.
Thus we also see publishing the usage results as paramount. There have been too few
concrete steps taken on ensuring effective human interaction in the field of software
engineering. Teamwork has often been encouraged, but the real support has been
missing.

Early results from the use of RaPiD7 have already been presented in [4]. Work is
still continuing inside Nokia, with more results to be published. RaPiD7 use has now
spread outside Nokia too. First trials of the method outside Nokia were carried out in
Philips during April 2004. This paper explains this case in detail, giving concrete
suggestions how the method can be applied (something that was not presented in [4])
with some encouraging results similar to what has been published by Nokia before.
Furthermore, the analysis of the applicability of the method in another environment
besides Nokia is briefly discussed, too.

This paper first briefly explains RaPiD7 and the baseline status in Philips. Then the
actual cases from Philips are presented with details about the planning and
implementation phase. The results from the cases are presented and analyzed. Finally
conclusions are drawn from the cases and from the whole paper.

2 RaPiD7 in Philips – A Case Study

2.1 Brief Introduction to RaPiD7

In RaPiD7, creating understanding for the specifications is mostly done jointly,
information sharing is done continuously early on and document writing is done as far
as possible jointly, too. Furthermore, the quality assurance is built into the way of
working. In practice, all this is carried out in the form of facilitated workshops. The
approach is presented briefly in Fig. 1.

Furthermore, RaPiD7 provides a three-layer structure. First the project layer
describes how human interaction and joint decision-making is planned for software
projects. In practice this means identifying the cases for applying RaPiD7. The case
layer describes how the selected cases such as documents are to be created in
consecutive workshops, and the workshop layer describes how the actual work is
carried out in form of facilitated workshops.

RaPiD7 workshops comprise from seven steps. The steps aim at providing
information on how to organize efficient workshops in software projects. The steps of
RaPiD7 are shown in Fig. 2.

226 K. Dooms and R. Kylmäkoski

Process described

Workshop 1 Inspection phase

Inspection phase

Inspection phase

Phase starts Phase ends/new phase starts

Document A

Document B

Document C

Person A,B,C…

Workshop 2 Workshop 3

Workshop 1 Workshop 2

Workshop 1 Workshop 2

Fig. 1. RaPiD7 approach in brief

1.Preparation1.Preparation

1.Preparation

Invitation

2. Kick-Off

3. Gathering ideas

4. Analysing ideas

5. Detailed design

6. Decisions

7. Closing

Fig. 2. Steps of RaPiD7 [4]

The workshops are planned in detail (1. preparation), then initiated properly (2.
kick-off) and different ideas are gathered (3. idea gathering). Problem solving (4.
analysis) and decision-making (6. decisions making) techniques are used in the
workshops. The decisions are written down to a desired level (5. detailed design) and
workshop results are verified and next steps are agreed on (7. closing). RaPiD7
workshops typically produce documents that can be finalized after the workshops in a
few hours. Although the workshops play the role of an inspection as well, a short
inspection is typical for the documents produced with RaPiD7.

2.2 Background

We, at Philips Applied Technologies, translate innovative product ideas from research
into real product implementations, such as flat TV’s and DVD recorders. During the

 Comprehensive Documentation Made Agile – Experiments with RaPiD7 in Philips 227

creation of these products we have to write an extensive amount of project
documentation. This documentation is required to create a common understanding of
what has to be developed, what the proper system architectures are, and provide
details on the design for development. Furthermore when a product reaches the
maintenance phase the maintainers of the product have to use the documentation to
solve problems in the product or extend the products with new features. Philips
Applied Technologies is a CMM level 3 organization, which means projects should
be created in a repeatable and defined way. To achieve this, an efficient
documentation process should be in place.

To achieve this we first looked into challenges and common mistakes in the
writing of project documentation. These are listed in Table 1.

Table 1. Challenges and common mistakes in writing project documentation

Challenges Common mistakes
Readability by the customer (for example
product management and business owners)

Unnecessary documentation
produced by inexperienced
project people

Being able to cover everything that is
required in the document e.g.:
What is essential and what isn’t
Are the captured items actually describing
what the stakeholders of the documentation
need
Where do we get the right input

How to keep/make it consistent with other
documents or project deliverables, for
example code or test scripts
Achieving common understanding of the
decisions written down

Too little documentation written
by experienced project people
Experienced people can either be
too busy with other tasks or see
some aspects as too obvious to be
written down

We, at Philips Applied Technologies, have been looking for ways to improve our
way of working and to address the mentioned challenges. When we first heard of
RaPiD7, the method developed by Nokia, we were attracted by its structured
workshop approach used in the creation of project documentation. Including
workshops as part of the way of working was not new to us, but using a structured
approach where the document at hand is really written inside the workshop was. We
decided to get more out of the workshops by integrating them better into our daily
way of working and add more structure to the workshops. In addition, we were
intrigued by the possibility of finalizing the required documentation almost
completely in the workshops. Furthermore, we also see inside Philips Applied
Technologies an increasing number of requests from our customers to “do more with
less”. There are high pressures especially in:

228 K. Dooms and R. Kylmäkoski

• Shortening the time to market
• Reacting faster to changes of the product specification during development
• Spend less Non Recurring Engineering money

Due to these requirements, the introduction of a more agile approach for our
software process is needed and we see that RaPiD7 can play a role in this. At the
same time we need to maintain our CMM level. However, this should not be an issue
with RaPiD7, as Nokia is also using RaPiD7 in parts of their organization that are
concerned with CMM level too. No negative consequences on the achieved CMM
level have been noticed; on the contrary an improved effect on the KPA review
process was the case, due the intensive collaboration and reviews in the RaPiD7
workshops.

The most important expected benefits from working in a more agile way and from
RaPiD7 in specific are:

• More interaction expected between the project stakeholders: Philips Applied
Technologies project members, customer representatives and third parties if
involved

• Focus on writing only the essential documentation
• Create a common understanding, share knowledge better
• Create more focus, which should result in quicker results
• Respond better to changes

As these were exactly the benefits we were looking for we started to prepare
ourselves for the trials with RaPiD7.

2.3 Preparing for the Case

In preparation for the introduction of RaPiD7 in Philips Applied Technologies, we
(two Philips Applied Technologies employees) first followed a two-day in-house
training course at Nokia. During the training we used this method in the creation of
several documents such as:

• Requirements for a mobile application
• Most important “use cases” for this application
• High level architecture
• Interface description of the building blocks
• Estimates for the development of the application

The eight trainees all played a specific role such as project manager, product manager,
architect and so on. In addition, we were confronted with practicing the facilitator
role, which was seen as very important for the success of the workshop. We were
surprised that in only a two-day workshop (where most people were not familiar with
each other and were still learning the method) we got both usable output and quality
of the deliverables as mentioned above.

After the training our thoughts about the usability of the method in Philips Applied
Technologies were positive. However, to avoid initial high costs we experimented in

 Comprehensive Documentation Made Agile – Experiments with RaPiD7 in Philips 229

one of the software groups within Philips Applied Technologies. The following
describes the first trial case in more detail.

2.4 The Case

2.4.1 The Baseline Status
Most of the employees in Philips Applied Technologies have a personal objective each
year to write one or more so called “white cards”. White cards are the starting point for
intellectual property patents. Before RaPiD7 was used, a year ago, a group of 10
people had the idea to brainstorm together to generate new ideas for white cards. The
group used one afternoon and first visited the room of the future in our Philips research
laboratory to stimulate the flow of ideas for brainstorming. After this visit they did a
brainstorm session and discussed the generated ideas. The end result of the afternoon
was an Excel-sheet with around 20 ideas written down. A single line described the
idea. Furthermore each member of the group was assigned one idea to expand it into a
white card after further investigation about the usefulness of the idea. After one year a
few (3-4) ideas were converted into white cards and the Excel-file was passed as “a hot
potato” between the 10 people until the process came to completion.

The promise of RaPiD7 to really finish some documentation work inside the
workshop by collective decision and communication was the reason we wanted to try
out a similar session with the help of this agile method.

2.4.2 The Planning Phase
As a first step we planned a one-hour preparation meeting (step 1) together with the
project leader and the team leader of the project team (in total 11 people) selected to
generate white cards on the specific technology they were working on. During this
preparation we went through the whole process (steps 2 to 7) and estimated time for
the steps and assigned roles. Furthermore we decided upon techniques to be used and
the materials we needed.

The most important outputs of the preparation were:

• The goal set by the manager of the group was: “Generation of a number of
white cards related to the technology that the group was working on”.

• The target set was:”3 to 4 detailed and submitted white cards, plus several
ideas ready for next workshop”.

• The project leader should present a short presentation to set the scene: known
technology and trends of the subject.

• The team leader should present one patent (granted) in this field as an
example (5 minutes needed).

• A detailed agenda (describing 4 hours of work) with all the steps and
methods to be used was made.

• The list of needed material was as follows:
o Enough laptops connected to the network
o Post-it notes
o A room
o Invitations for the workshop and copies of the agenda

230 K. Dooms and R. Kylmäkoski

We found that the preparation of the above-mentioned subjects and the following of
the process resulted in high and promising expectations for the workshop itself.

2.4.3 The Workshop
The workshop attendees were the manager of the department (who played the
facilitator role), the project leader (who played the secretary role), the team leader and
the team itself containing an architect and 7 software developers.

During the kick-off (step 2) the manager explained the goals and target of the
workshop. A one-slide introduction was then given about RaPiD7 (explaining the
steps). This was followed by two other short presentations about stimulating creativity
(as already described above in the planning phase).

We then continued with gathering ideas (step 3). During this step, each person
received a pen, an empty A3 sheet of paper and some post-it notes. The task was to
think quietly, write a new idea on the note and then place the sticker on the A3 sheet.
The sheet would then be passed to your neighbor and the process repeated. The idea
was to stimulate further ideas on the same theme. This process continued for 25
minutes and after that each of the 76 stickers was placed on the white board. We then
continued by clustering the ideas on the white board. After a further 10 minutes the
facilitator took the lead and asked the contributors to clarify their ideas if necessary.
We finished with 7 clusters of related ideas. The group was divided into three sub
teams and each team picked a cluster that they liked to work on further. The
remaining four clusters were saved by the scribe for later investigation (possible input
for next workshop). After these two steps the team took a well-deserved break.

Each of the three sub-teams began with analysing ideas (step 4) of the cluster they
picked. They asked for clarification when necessary and removed duplicates; they
also wrote a one-line description of the ideas that were left. The final result was that
two teams ended up with two ideas and one team with nine. Although the teams had
different numbers of ideas to work on, the work seemed equally divided because the
nine ideas were more easily to refine then the others.

Next step was detailing (step 5) the one–liners into a full description (text plus
drawings). In this step, laptops were used so that the text was immediately written
down in the right format. During this writing process an automatic review process
took place. The fact that a single PC was used meant that review comments could
immediately be taken into account. The team finished with a decision (step 6) on each
produced white card and the result was submitted online. Each team member’s
personal opinion was taken into account. This way the work was completed in 4
hours, and the workshop finished on time. During the closing session (step 7) the
team with nine ideas made an appointment (next day) to finish and submit the last
white cards.

Looking back on the workshop the most important team remarks were:

• Surprised at the number of generated white cards. The target was to have 3-4
white cards, but the workshop finished with 13.

• The focus of the team and energy used was high during the whole workshop
• Good help with the structure (agenda) of the meeting
• Clear what was expected
• Very satisfied feeling at the end result

 Comprehensive Documentation Made Agile – Experiments with RaPiD7 in Philips 231

This was our first exposure to using RaPiD7 in the authoring of documentation within
Philips Applied Technologies. We saw that the workshop provided a productive and
very interactive way of working.

2.4.4 The Results
Although in the above case we did not produce any project documentation such as an
architectural document or a design document, we could still draw important
conclusions from this experiment. We could assume that if the method was successful
in the creation of white cards it might also be successful in the creation of more
technical project documentation later. This could be proven in another case.

Conclusions of this first RaPiD7 trial within Philips Applied Technologies:

• Compared to the white card generation workshop of one year ago, we
accomplished much more output using the RaPiD7 method. In the initial trial
only one-liners were described and no white cards were submitted. In the
RaPiD7 case most of the work was done inside the workshop

• Almost no “homework” was required after the workshop, which gave people
a satisfied feeling

• Proper preparation is essential to success
• RaPiD7 seems usable for generating documents needed in Philips Applied

Technologies
• The decision was made to deploy the method further

Successes often flourish, and the same happened in this case. The team members
talked to other software people in the department that liked to copy the workshop
approach for white cards. The manager networked with a manager from another
Philips division and explained to him the results and method used. So far we have
heard of 4 successful copies of the white card creation workshop with similar results.

2.4.5 A Step Further – Another Case
The next step was to invite the project team to develop a part of their technical
documentation using the RaPiD7 method. A training/workshop session of two days
was organized.

The workshop was held at Philips Applied Technologies premises with support
from Nokia. The goal was to write an architectural document (describing the
functionality of the system to be build, the major subsystems and their interfaces) and
two detailed design documents of important components of the system. A template for
both types of documentation was available. Normally this kind of documentation
takes 40-100 hours to finish (write, review and rework). During this workshop we
managed to come up with the most important parts of the documents, but not the full
document. Finalizing the documents can be done in follow-up workshops or by the
author himself. The most important conclusions of this workshop are listed in Table 2.

If we study the pros in the table above we can conclude that using the RaPiD7
method we see some pretty results on the documentation process. Namely:
Documents will be small, consist of the essential information, are reviewed and
delivered quickly.

232 K. Dooms and R. Kylmäkoski

Table 2. Pros and challenges of RaPiD7 as seen by the workshop attendees

Pros of the method Challenges of the method
Resulting documents are small in size,
only the essential documentation is
recorded and therefore easier to
maintain

Trained and capable facilitators are
needed

Results are written down in reviewed
documentation

Risks if planning of workshop is not
done properly are:
Decisions are made too quickly
Conclusions are drawn too quickly
resulting in sloppy documents

Lots of collaboration and interaction
took place, which stimulates
discussions, common understanding
and knowledge sharing of the problem
at hand

Problem how to handle different
knowledge levels of participants

Detecting of important issues (any
kind) early in the process

Mismatch with quality system
templates, these are not workshop
friendly

Fast results when writing documents Workshop teams should be formed
carefully, only real stakeholders
should be selected

2.4.6 Suggestions, Conclusions and the Future
After the above-described workshops were completed we at Philips Applied
Technologies drew up some tips for the further introduction and deployment in our
lab. These are listed in Table 3.

Table 3. General workshop and deployment tips for RaPiD7

General tips from the team Deployment Tips from the team
Clearly define the goals of the
workshop

1 hour RaPiD7 training for every
employee should be enough, then
practice in projects

Consider to have longer (30 minutes)
breaks for:
Looking up things
Thinking silently
Check things with others

Select cases carefully
To maximize success of deployment
choose a case which is not too difficult

Use the seven steps liberal (combine
were needed)

Setup/organize training/coaching for
facilitators at department level

The use of templates is helpful Consider how to create a balanced
workshop team?

Try to use (parts of) the method in all
types of meeting

Consider how to arrange facilitator
assignment

 Comprehensive Documentation Made Agile – Experiments with RaPiD7 in Philips 233

In conclusion, Philips Applied Technologies in conjunction with the SPI steering
group decided to proceed with the introduction of the RaPiD7 method. A further
deployment plan will be made. We expect to introduce it using a bottom-up approach
by selecting newly created project-teams and then deploying the method within these
teams. As with the white card examples success should spread itself. At the same time
we will support from top-down, an action to make the design templates more
workshop-friendly.

3 Conclusions

The results found were only from a few cases of using RaPiD7 in Philips.
Nevertheless, the presented workshops have been mostly successful and detailed
descriptions of the way the workshops have been organized are presented.
Furthermore, the results are a step forward from the baseline situation in Philips for
the mentioned cases. We have created more interaction between the project
stakeholders within the few cases and we have been able to focus on writing only the
essential documentation. Common understanding has improved and reaching the
results has been faster. However, there are definitely more steps we can take within
Philips with RaPiD7. This approach needs to be integrated into the general way of
working rather than just having ad-hoc workshops occasionally. The work towards
this approach is in progress. This is the way to systematically reach the expected
benefits we set for the improved way of working.

On the other hand, when the results are compared to the results Nokia has
published, we can present similar results from our individual cases already now. In
addition, this paper provides a concrete and pragmatic view on organizing RaPiD7
workshops and thus provides part of the missing guidance on using RaPiD7. The
results give us the confident feeling that, in fact, RaPiD7 can be applied in other
environments not typical to Nokia. Naturally, the results cannot be generalized either
by providing a single example outside Nokia. Nevertheless, the results emphasize the
need for methods like RaPiD7 in overall.

References

1. Agile manifesto in web, http://agilemanifesto.org/, last visited in December 2004
2. Ambler Scott, Agile Modeling, John Wiley & Sons, Inc., 2002
3. Cockburn Alistair, Agile Software Development, Addison-Wesley, 2002
4. Kylmäkoski Roope, Efficient Authoring of Software Documentation Using RaPiD7, 25th

International Conference on Software Engineering - Proceedings, IEEE, 2003
5. Sommerville Ian, Software Engineering, Addison-Wesley, 1996
6. Wood Jane, Silver Denise, Joint Application Development, John Wiley & Sons Inc., 1999
7. Coughlan Jane, Macredie Robert D., Effective Communication in Requirements Elicitation:

A comparison of Methodologies, Springer-Verlag London Limited, 2002
8. Gottesdiener Ellen, Requirements by Collaboration: Workshops for Defining Needs,

Addison-Wesley, 2002

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 234 – 244, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Case Study: Coordination Practices in
Global Software Development

Darja Šmite

Riga Information Technology Institute,
Kuldigas iela 45b, LV-1083, Riga, Latvia

Darja.Smite@riti.lv

Abstract. Global Software Development (GSD) is a new challenge for software
developers to reach mobility in resources, obtain extra knowledge, speed time-
to-market and increase operational efficiency. However, the new trend is
followed by specific risks and needs a deeper analysis for successful risk
overcoming. This paper gives an insight into a research on GSD project
performance improvement in one of the biggest software development
companies in Latvia. Project management and coordination in distributed
environment is a great challenge, though being not very widely explored. In this
paper the author emphasizes the necessity of research in this area and provides
an overview of coordination practices used in the organization chosen for the
case study.

1 Introduction

The question explored in this paper is related to global software development (GSD)
project coordination. To start with the term GSD has to be explained.

GSD is also known as a type of outsourcing relations. Campbell R. Harvey's
Hypertextual Finance Glossary defines outsourcing as purchasing a significant
percentage of intermediate components from outside suppliers [6]. There are various
forms of outsourcing, e.g. business process outsourcing (BPO), application
outsourcing or application service provider (ASP) outsourcing, hardware outsourcing,
data centre outsourcing, selective or full software development outsourcing.

The area of author’s research is devoted to selective and full software development
outsourcing also known as global software development. In particular, the author
examines relations between geographically distributed End Customer, a Mediating
Partner and the Developer aiming to produce software (See Fig. 1).

Fig. 1. The Model of Global Software Development Explored by the Author

 A Case Study: Coordination Practices in Global Software Development 235

A review of related literature on the field of global software development shows
that the topic of performance is poorly explored, especially from the supplier’s point
of view. Most of the related research is devoted to questions as decision making –
whether to outsource or not ([9], [18], [21]), relationship risk management ([1], [3],
[4], [8], [17]), contractual problems and advices ([2], [5], [9]), success factors, that
will help to survive starting outsourcing relationship ([10], [12], [13], [15], [17]), and
case studies from the field ([7], [13], [14], [16]).

Working on the research, the author explores an organization chosen as a case
study. This organization competes in the global market as a software development
supplier, in other words – developer. The lack of research that would answer the
question “How to perform software development in distributed environment?” makes
practitioners act intuitively and precludes the prognosticated success of global
projects. Therefore, the main objectives for the research are as follows: To build a
framework for global projects, which would contain guidelines, practices and tools
for effective performance in distributed environment.

The paper is organized as follows. The following section describes the research
structure and methodology, and gives an insight to the case study. Then GSD
coordination practices are presented. The practices are followed by a discussion
section. And the paper is concluded by a brief summary and an overview of further
work.

2 Research Overview

2.1 Research Structure

The analysis of GSD coordination practices described in this paper is a part of a larger
research, which aims to develop a framework for GSD projects, containing guidelines
for global project management, software engineering methods adapted for global
specifics, best practice knowledge base and project management tools for better
performance in distributed environment [19].

The current results of the research, in particular GSD project coordination
practices, are the output from the previous steps of the research – global project
questionnaire and experienced project manager interviewing. These practices are
further used as an input for GSD knowledge base and examination in ongoing
projects.

2.2 Research Methodology

The overall research approach for the research is active methodology – “learning by
doing”, which aims to deepen the understanding of GSD projects and learn how to
improve them [11]. According to this methodology the author performs cycles:
Observe Plan Implement Evaluate Improve Observe …. In this case,
the author is Observing global projects Indicating risks Planning preventive
actions and developing guidelines Implementing the guidelines in the ongoing
projects Evaluating the results, identifying areas for further improvement [20].

236 D. Šmite

The author examines GSD projects by means of a case study. The GSD risks and
practices have been explored carrying out global project questionnaire and the
interviews with experienced project managers from the organization used for the case
study. The questionnaire served as a preliminary step of the research aiming to deepen
the understanding of GSD project performance and risks; and gathered information on
19 global projects [17]. The interviews with experienced project managers used the
output of the questionnaire and addressed issues on GSD practices for performance
improvement. The author conducted 13 interviews with 9 project managers. The
interviews were held by means of semi-structured interviewing and open questions.

The interviewing uncovered a set of defined practices, which can be divided into
two main groups – communication practices and coordination practices.
Unfortunately, due to shortness of this paper the author addresses only coordination
practices here. The practices related to communication issues are described in a
related paper [20].

2.2 Case Description

The author performs her research in a company used for the case study, given a
pseudonym XYZ. XYZ is one of the biggest software development company in
Latvia. It is an ISO certified company with approximately 350 employees in total. The
company is participating in global software development projects with partners from
Western and Eastern Europe, and Scandinavia since early 90s [20].

Recently, XYZ became a part of a large international software development
enterprise. Accordingly, the necessity to improve GSD project performance has
increased. Even though XYZ follows a certified quality system, it doesn’t provide
particular regulations and practices taking into account global specifics. Following the
results of audit observations and project measurements, the author concludes that the
global risks make difference in project performance and have to be addressed notably.

2.3 GSD Project Knowledge Base

The interviews with experienced GSD project managers from XYZ resulted in a set of
practices for further examination in ongoing projects. For efficient GSD practice
implementation the author developed a Knowledge Base. XYZ project managers
repeatedly pointed out a lack of knowledge share between project managers in the
same organization. Therefore, implementing the GSD Knowledge Base, the author
prescribes it will serve as a framework for accumulating XYZ best practices, tools
and templates for better performance.

The Knowledge Base provides the users several functions as follows:

− Experience generalization;
− New issue proposal;
− Quality document templates addressing global specifics;
− Discussions;
− Notifications;
− Wide searching opportunities.

 A Case Study: Coordination Practices in Global Software Development 237

All the practices in the Knowledge Base are recorded using risk based analysis,
describing threats, vulnerabilities, resulting risks, frequency and impact [20]. So far,
the practices address such issues as communication between the remote participants,
the role of trust, project starting guidelines, advisable organizational structures, GSD
risk management issues and checklists, process distribution and personnel allocation
practices.

Currently, the Knowledge Base is accessible by experienced GSD project
managers who participated at the preliminary survey and interviewing. The further
steps of the research prescribe gathering feedback from project managers; enlarge the
content of the Knowledge Base and assess the current practices considering the
following factors:

− Threat frequency of occurrence;
− Possible impact on project results;
− Additional preventive actions for risk mitigation.

Considering the risk that knowledge bases are rarely used by the practitioners,
author plans to integrate it into the Risk Management process. The further steps of the
research will aim to use GSD Knowledge Base practices and related information in
the process of risk management in global projects as shown in Fig. 2.

Fig. 2. GSD Knowledge Base information usage in the process of Risk Management

Using Knowledge Base practices during the Risk Management process will
provide practice sharing and continues information accumulation at first hand.

238 D. Šmite

3 Coordination Practices Addressing Global Project Specifics

In this chapter you will find an overview of the key practices and risks which deal
with coordination of global projects.

Practice #1: Organizational Changes. Engagement in cooperation between the
remote partners brings changes in both organizations. The processes which were held
in-house before need different level of management by the partner’s organization.
Nevertheless, four of nine project managers independently reported that customer
organizations are never willing to change. This causes risks related to both
communication and coordination issues.

First of all, complex organizational structures and many problem escalation levels
cause time delays in problem solution (Project Organizational Structures are
discussed in the author’s related paper [20]).

Secondly, remote supplier involvement in software development needs a new
approach in software engineering. This means that distance brings differences in
relations between the partners developing software. Questions which have been
discussed next door now require powerful infrastructure for intercommunication.
Besides, risk factors as language skills, cultural differences, terminology differences,
etc. need to be taken into account. All these risks influence various processes as the
degree of detailed elaboration for requirement specification, complicated planning
and work amount evaluation, the level of management and control over project
progress, etc.

Lastly, the partners have to build shared goals for successful cooperation. The
partners need an approach for sharing responsibility for project results and activities.
According to Jae-Nam Lee, partnership between the clients and the service providers
is considered as a key predictor of outsourcing success [14]. This will make the
parties work more effectively on improving mutual relationship.

Practice #2: Joint Repository. Outsourcing some of software development functions
to a remote developer is always a matter of trust. Therefore, process transparency is
given an important role in global projects. Gaining control over developer’s activities
can be achieved by developing a joint repository. The following functions provided
by a joint repository can be used for global project management improvement:

− Access from the developer’s and the partner’s sides;
− Project documentation repository (project scope, calendar plans, risk overview,

meeting minutes and carried decisions, etc.);
− Document approval;
− Reports on project progress;
− Work tasks and time recording;
− Problem tracking.

Joint repository provides effective configuration management, reducing
misunderstandings related to different document version usage by the parties. It also
provides a tool for better progress control for the remote partner. Reporting on work
task completion provides timely risk identification.

 A Case Study: Coordination Practices in Global Software Development 239

Practice #3: Work Breakdown. A very important issue addressing software
development in global projects is work breakdown. The smaller steps you make, the
better you can control them. It is also important to gain an agreement between the
developer and the partner on each requirement and each divided task. The work
breakdown will further provide an opportunity to manage progress and risks related to
task completion on time.

Practice #4: Process Breakdown. Process breakdown between the remote
participants defines responsibility share and the way of further collaboration. The
common process breakdown reported by XYZ project managers is shown on Fig. 3.

Fig. 3. Usual project process breakdown by XYZ and its partners

The interviews with project managers have shown that there are several approaches
used by different partners in process breakdown. There are variations in planning
activities allocation. Some partners strictly establish the deadlines and person-day
evaluation. In other projects the developer is responsible for work amount evaluations
and planning activities. In some cases projects are held under partner’s management.
In other cases the developer is responsible for overall project management.

Considering the gathered practices and experienced risks, the author proposes the
following model of cooperation (See Fig.4).

The proposed process breakdown for global projects emphasizes the necessity of
shared planning and coordination activities and regular on-site project meetings.
Personal contact during the meetings and joint work on project coordination provides
effective resource utilization and minimizes risks related to complications in project
management brought by distance between the partner and the developer. It will also
provide the distributed teams with the feeling of togetherness and deepen trust
between the participants.

An XYZ project manager reported, “Since we established joined meetings once in
2-3 months, we got rid of many misunderstandings related to task prioritization and
goal achievement. Besides, we gained a deeper trust from the partner”.

240 D. Šmite

Fig. 4. Proposed project process breakdown

Another recommendation from the proposed project breakdown addresses
Requirement Analysis process share (described in Practice #5 below).

Practice #5: System Requirement Analysis. Project managers point out that remote
partners from different countries have different traditions for requirement analysis.
Latvian software industry is used to detailed system requirement specifications which
are clear and complete. Nevertheless XYZ partners from different countries offer low
degree of detailed elaboration. Unfortunately, the distance brings difficulties in
solving the problems and misunderstandings.

Therefore, project managers advise to perform joint on-site requirement analysis
involving both the customer and developer parties. XYZ project managers’ report
that there it is useful to send at least one or two systems analysts to the remote
partner’s side in order to participate in requirement analysis. Usually, the developer
analysts are given a second role in this process without a chance to meet and
communicate with the end customer. Nevertheless, it provides a opportunity to
prepare the specification according to developer’s needs. After the analysts come
back one of them usually leads the development project. The development team
receives the knowledge about the project scope and tasks from first hand, reducing
the risk of misunderstandings.

 A Case Study: Coordination Practices in Global Software Development 241

Practice #6: Terminology. Project managers from XYZ reported on frequent
misunderstandings interpreting the requirements in the beginning of the project. These
problems are sometimes caused by local language peculiarities, sometimes by lack of
language skills in particular business field by the developer organization. As a result
this causes delays in time for task confirmation.

Therefore, it is useful to create a special terminology dictionary aiming to agree
upon the used terms for the entire project. This dictionary can be used by different
developer representatives (analysis, developers, testers, documentation writers, etc.)
in different project activities (designing, coding, testing, documenting, etc.). This also
precludes the risk of loosing knowledge in case of loosing the analysts involved in the
project.

Practice #7: Product Quality. Low personnel costs are not the only uppermost factor
for developing countries to compete in software development market. Low
productivity or product quality is often the reasons for searching another software
development service provider.

Answering this risk, the process of software testing has to be adequately addressed
by the developer. Although, system testing is usually performed by the partner, the
developer is responsible for proper debugging, unit testing and integration tests before
any delivery.

Practice #8: Process Quality. Process quality is as important as product quality. In
many causes, project and process management is as mature as it is required by the
partner’s side. Although XYZ quality guidelines prescribe following quality
procedures, process quality is often viewed as an issue for cutting costs. But how does
it influence cooperation between the partner and the remote developer?

If the partner’s quality processes are not defined and managed according to quality
procedures, then by providing a minimum the developer can receive partner’s
appreciation and satisfaction – what is asked is done. But if the partner has a quality
system, they wish to count on an appropriate service level. In this case, the developer
can adopt the partner’s procedures or use its own.

However, despite partner’s maturity level, providing high quality configuration
management, systems analysis, design and testing documentation, problem tracking,
requirement traceability, planning and reporting on project results increases trust in
the developer activities and competence.

One project manager reported, “Our partner doesn’t follow defined quality
processes. Therefore, many activities as e.g. requirement specification and problem
tracking are complicated. We came with our initiative to participate in systems
analysis by drawing process diagrams and established a problem tracking database.
This resulted partner’s respect and trust in our competence and desire to cooperate
as a unified team”.

4 Discussion

The major question which seeks for the answer is “If the GSD projects can be
coordinated as in-house software development projects?” To start with, the author
offers to look though different risks which are brought by the global appearance.

242 D. Šmite

Such issues as distance, cultural and organizational differences between the
partners involved in software development mark out the factors that make the global
and in-house projects different (see Table 1) and additional risks, that are not relevant
for in-house projects (see Table 2).

Table 1. The differences between global and in-house projects brought by global appearance

Global Projects In-house Projects
Lack of personal contact Next door closeness
Communication via electronic means or
phone

Personal communication, as well as
electronic and phone communication

N remote teams need N local managers One team = one manager
Possible time zone differences No time zone differences

The list of differences could be extended with such factors as lack of common
goals, lack of trust, different contractual relations, project documentation kept in
different places at each participant’s side, misunderstandings on cultural ground,
different approaches in software development methodology, low language skills and
other factors. Nevertheless, all these risks can be possibly minimized. There are
practices for better global project sourcing, infrastructure improvement, language
skills problem overcoming, agreement on software development methodology and
sharing goals for mutual cooperation, etc.

In its turn the factors given in the Table 1 are brought by distance and can’t be
avoided. These factors influence coordination and communication throughout the
project and make global projects distinctive from the in-house projects. So, how
practitioners will address these factors?

The author emphasizes the necessity of guidelines addressing the following areas:

− New practices for work amount evaluation, taking into account differences brought
by the distance and several team management;

− High level infrastructure establishment for better communication between the
participants;

− New coordination practices taking into account lack of personal contact, several
team involvement, time zone differences and other risks, which are brought by
global appearance.

5 Conclusions and Further Research

Summarizing the discussion the following conclusions can me made:

− The factors brought by global appearance make GSD projects different from in-
house software development projects. Addressing these factors the new approaches
for project coordination should be established.

− Global projects vary depending on the situation. XYZ is participating in many
projects with different customers/partners from various countries. In some cases

 A Case Study: Coordination Practices in Global Software Development 243

the practices used for project coordination can be shared between the projects. But
there are also practices which are applicable only for particular situations (e.g.
there are projects with and without time zone differences). Therefore, there is a
necessity in classifying the global projects and characterizing the situations for
practice usage.

− Analyzing the information gathered from the interviews the author concludes that
experience is not being shared in the organization. Practices put in the Knowledge
Base forms the ground for knowledge share between the projects. This will also
help to accumulate more practices according to the appropriate situations for their
usage.

− As the current quality regulations are not extended for managing global specifics,
the guidelines for better performance in GSD projects have to be developed and
implemented.

The practices presented in this paper are only a part of possible solutions to the
problems faced in global project coordination. The author plans to continue her
research by interviewing more project managers, accumulating the practices in GSD
Knowledge Base, participating as a consultant in new global projects in order to test
the practices and receive a feedback for further improvement.

Acknowledgement

The author appreciates many valuable discussions with professor Juris Borzovs and
professor Uldis Sukovskis, as well as the research input received from the
experienced project managers.

This research is partly supported by the Latvian Council of Science project Nr.
02.2002 “Latvian Informatics Production Unit Support Program in the Area of
Engineering, Computer Networks and Signal Processing” and European Social
Foundation.

References

1. Aubert, B.A.; Dussault, S.; Patry, H.; Rivard, S. Managing the Risk of IT Outsourcing.
CIRANO Working Papers, Montreal, June 1998

2. Aubert, B.A.; Houde, J.F.; Patry, H. and Rivard, S. Characteristics of IT Outsourcing
Contracts. Proceedings of the 36th Hawaii International Conference on System Sciences,
HICSS’03

3. Aubert, B.A.; Patry, H.; Rivard, S. and Smith, H. IT Outsourcing Risk Management at
British Petroleum. Proceedings of the 34th Hawaii International Conference on System
Sciences, 2001

4. Bahli, B.; Rivard, S. A Validation of Measures Associated with the Risk Factors in
Information Technology Outsourcing. Proceedings of the 36th Hawaii International
Conference on System Sciences, HICSS’03

5. Bodker, K., Is Development in an Outsourcing Context – Revisiting the IS Outsourcing
Bandwagon.

244 D. Šmite

6. Campbell R. Harvey's Hypertextual Finance Glossary, 2004, http://www.duke.edu/
~charvey/Classes/wpg/bfgloso.htm (03.01.2005)

7. Carmel, E.; Agarwal, R. Tactical Approaches for Alleviating Distance in Global Software
Development. IEEE Software, March/April 2001

8. Clemons, E.K.; Hitt, L.M. and Snir, E.M. A Risk Analysis Framework for IT Outsourcing.
Draft, 2000

9. Department of Information Resources, Austin, Texas. Outsourcing Strategies: Guidelines
for Evaluating Internal and External Resources for Major Information Technology
Projects. June, 1998

10. Grover, V.; Cheon, M.J.; and Teng, J.T.C. The Effect of Service Quality and Partnership
on the Outsourcing of Information Systems Functions. Journal of Management
Information System, 12 (4), 1996, pp.89-116

11. Jarvinen P; On Research Methods. Opinpajan Kirja, Tampere, Finland, 2001
12. Lacity, M. Lessons in Global Information Technology Sourcing. IEEE Computer, August

2002, pp.26-33
13. Lacity, M.C.; Willcocks, L.O.; and Feeny, D.F. IT Outsourcing: Maximize Flexibility and

Control. Harvard Business Review, May-June 1995, pp.84-93
14. Lee, J.N.; Huynh, M.Q.; Kwok, C.W. and Pi S.M. The Evolution of Outsourcing

Research: What is the Next Issue?. Proceeding of the 33rd Hawaii International
Conference on Systems Sciences, Maui in Hawaii, January 2000, pp.1-10.

15. Light, M. Matlus, R. Berg, T. Strategic Analysis Report Application Development
Contracting: Lifeline or Noose? R-14-38791, 28 September 2001

16. Loh, L. and Venkatraman, N. An Empirical Study of Information Technology
Outsourcing: Benefits, Risks, and Performance Implications. Proceeding of the 16th
International Conference on Information Systems, Amsterdam, the Netherlands, December
10-13, 1995, pp. 277-288.

17. Report of Latvian Ministry of Economics, June 2002
18. Roy, V.; Aubert, B.A. A Resource Based View of the Information Systems Sourcing

Mode. CIRANO Working Papers, Montreal, October 1999
19. Smite, D.; Global Software Development Project Management – Distance Overcoming.

Software Process Improvement, The Proceedings of the 11th European Conference,
EuroSPI, Trondheim, Norway, 2004

20. Smite D.; Sukovskis U. A Case Study: Coordination Practices in Global Software
Development. Submitted to SPICE Conference, 2004.

21. Willcocks, L.; Fitzgerald, G. Guide to Outsourcing Information Technology. Business
Intelligence, 1994

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 245–256, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Study of a Mentoring Program for Knowledge
Transfer in a Small Software Consultancy Company

Finn Olav Bjørnson1 and Torgeir Dingsøyr2

1 Department of Computer and Information Science,
Norwegian University of Science and Technology,

NO-7491 Trondheim, Norway
bjornson@idi.ntnu.no

2 SINTEF Information and Communication Technology,
NO-7465 Trondheim, Norway

Torgeir.Dingsoyr@sintef.no

Abstract. Mentor programs are important mechanisms that serve functions
such as career development as well as knowledge transfer. Many see mentor
programs as an efficient, inexpensive, flexible and tailored way of transferring
technical knowledge from experts to less experienced employees. We have
investigated how a mentor program works in a small software consultancy
company, and propose that the learning effect of the program could be
improved by introducing methods to increase the employees level of reflection.

1 Introduction

Small software consultancy companies have to leverage their position in the market to
stay ahead of their competitors. In order to survive, the solutions provided by their
consultants have to be of such quality that makes their customers return to the
company when they need assistance with a new project, and the solutions should
ensure a good reputation for the company that attracts new customers.

To ensure high quality in the systems developed, companies are dependent on a
good software development process. The main parts of this process can be planned
out in advance and used collectively in a firm in order to ensure quality, but in every
project you will probably run into situations where it is important to be able to
improvise in order to keep the project on tracks. This is especially true for small
software intensive companies in turbulent environments [1]. In these situations
experience play a major role in coping with the different challenges.

Experienced developers recognize many different problems and often know the
appropriate solutions straight away. For new developers however, this is often not the
case. Also if the company is dependent on remaining agile and changing their process
in accordance with the demands of their customers, the experienced developers may
loose their ability to see the best solution. In these circumstances a company has to
have a good strategy to manage their collective knowledge.

Wickert and Herschel [2] examine various challenges that small businesses face
when implementing knowledge management [3] efforts. Small businesses often do

246 F.O. Bjørnson and T. Dingsøyr

not have the time and resources that larger companies have to implement large
knowledge management efforts, yet they are more vulnerable to knowledge erosion
through leaving of key employees. In such an environment it becomes vital to share
knowledge to prevent knowledge erosion and staying up-to-date. One suggested
solution is mentoring programs which can have an effect in leveraging personal
knowledge and sharing knowledge between projects. Such programs can often be
more effective than training and written documentation [4].

In this paper we describe an ongoing research project to improve the mentor
program in a small consultancy company. The main purpose of the mentor program in
this company is knowledge transfer, particularly concerning the software
development process and project management. We have focused on how the mentor
program supports learning, and changes that could increase the learning effect of the
program.

The organization of the paper is as follows: First, we present theory on mentor
programs and learning as a part of mentoring. Then, we present the research approach
used in this work. We present a small software company where we have conducted a
study on a mentoring program, present findings and results from initial interviews,
and our work with improving the program. Finally, we conclude and present future
work.

2 Mentoring Programs and Learning

In this section, we present work from management theory on what a mentor program
is, how mentor programs can be designed, and how learning can take place in mentor
programs.

Kram [5] suggests that existing theory predicts that effective mentoring should be
associated with positive career and job attitudes. In a literature review, Ragins et.al
[6] show that empirical studies supports this proposition. They also present results
from a survey that indicate that persons in dissatisfying or marginally satisfying
mentor relationship express the same or worse attitudes than people not involved in a
mentor relationship at all. One of their conclusions is that it is clear that good
mentoring may lead to positive outcomes, but bad mentoring may be destructive and
in some cases worse than no mentoring at all.

2.1 What Is a Mentor and Protégé?

According to Kram [5], mentors are generally defined as “individuals with advanced
experience and knowledge who are committed to providing upwards mobility and
career support to their protégé”. A protégé literally means “a person under the
patronage, protection, or care of someone interested in his career or welfare” [7]. This
is usually a younger employee who lacks experience in one or more fields.

2.2 Formal and Informal Mentoring Programs

According to a literature review of mentoring by Ragins et.al. [6], comparisons of
non-mentored and mentored individuals yield the consistent result that individuals

A Study of a Mentoring Program for Knowledge Transfer 247

with informal mentors report greater career satisfaction, career commitment and
career mobility than individuals without mentors. Many organizations have attempted
to replicate the benefits of informal mentoring by developing formal mentor
programs. Yet formal and informal mentoring relationships vary on a number of
dimensions:

Informal mentor relationships often arise through a mutual developmental need,
and often spring from mutual identification. The mentor may view the protégé as a
younger version of themself and the protégé may view the mentor as a role model.
This mutual identification contributes to a closeness and intimacy of the mentor
program which is often cited in mentoring literature [5]. An informal mentor program
is often unstructured and the participants meet as often and as long as is desired. Such
an informal mentor relationship usually lasts between three and six years. The
purpose of informal mentoring relationships is often the achievement of long term
career goals for the protégé.

In contrast, formal mentoring relationships usually springs from a third party
assigning the mentor and protégé to the relationship. This may lead to people entering
into these relationships not because of mutual need but to meet organizational
standards. Meetings in a formal mentoring relationship is often sporadic or specified
in a contract at the start of the program, and their duration is often from six months to
one year, much shorter than informal relationships. Because of this short time span,
the purpose of formal mentoring is often the achievement of short term career goals.

2.3 Mentoring as a Mechanism for Learning

We adopt the definition of learning from [7] “to gain knowledge or understanding of
or skill in by study, instruction, or experience.”
Kram and Hall claim that mentor activities are “prime and untapped resources in
creating the learning organization” [8]. Allen and Eby [9] claim that mentors as well
as protégés should benefit from a mentoring program including learning about “new
technologies” and receiving updates on issues at other levels of the organization. But
they also report that there is still a need to empirically examine these issues.

If we look into the literature on work-based learning, we find much work on the
use of public reflection for learning [10]. Reflective practice can briefly be described
as thinking about thinking, which is something that should happen in a mentor
relationship during discussions.

ConsequenceActions

Expectation

Governing
values

Single-Loop Learning

Double-Loop Learning

Error

Fig. 1. Single and double loop learning

248 F.O. Bjørnson and T. Dingsøyr

In theory on learning, Argyris and Schön distinguish between what they call single
and double-loop learning in organizations [11]. Single-loop learning implies a better
understanding of how to change (or “tune), say a process, to remove an error from a
product. It is a (single) feedback-loop from observed effects to making some changes
(refinements) that influence the effects, see figure 1.

Double loop learning, on the other hand, is when you understand the factors that
influence the effects, and the nature of this influence, which is called the “governing
values”. This could be to understand why a process is usable, that is: Which premises
must be satisfied for it to be worthwhile. To make changes based on this type of
understanding will be more thorough.

In work-based learning, a mentor program is called a “developmental relationship”
[12] where participants typically create learning agendas and action plans. The
protégé receives feedback from the mentor, and it is likely easier for the protégé to be
confident with the mentor than people representing formal line authority. Raelin [12]
report that monthly or twice-monthly meetings between mentors and protégés are
common. It is typical to start with an assessment of current practice for example
through a 360 degree assessment. During the mentor program, good mentors
“emphasizes the need for ongoing reflection and inquiry”. When the protégé uses new
knowledge in practice they will reflect on the application introspectively and with
their mentor. An advice in mentor meetings is that the mentor asks open-ended
questions, which might begin with “tell me a little more about your thinking behind
that” [12]. This type of discussion can lead to discussion about governing values that
lead to decisions, and thus move the learning from single-loop to double-loop.

3 Research Approach: Studying a Mentor Program in a Small
Software Company

This research was carried out in a small software consultancy company, which
currently employs 50 people, 30 at their main office and 20 at a branch office, located
in a different city. Their main source of income comes from three different activities:
hiring out developers for pure software development, developing complete solutions
for customers and renting out senior personnel as strategic advisors in project
management. They have concentrated their customer profile to the domains of
healthcare, energy, trade and industry.

One of the main internal goals for this company is to "improve internal knowledge
management through revised work processes and internal training of employees in
new processes". Through our common involvement in a software process
improvement research project, we agreed to take a closer look at their mentor
program.

We used action research as our research approach because the company was
interested in improving practice. Avison et. Al [13] describe action research as
"unique in the way it associates research and practice. Research informs practice and
practice informs research synergistically. Action research combines theory and
practice (and researchers and practitioners) through change and reflection in an
immediate problematic situation within a mutually acceptable ethical framework."

A Study of a Mentoring Program for Knowledge Transfer 249

We have used an approach in five phases, which are iterated [14]: diagnosing,
action planning, action taking, evaluating and specifying learning. This report sums
up our work from the initial diagnosing-phase to the action-taking-phase, and details
the findings and experiences we have made so far.

For the initial diagnosing phase, we used semi structured interviews. We
interviewed six employees, two had acted as mentors, two had been protégés and two
had never been involved in the mentor program. The interviews were carried out
using an interview guide. All of the interviews were taped using a dictaphone and
were subsequently transcribed and sent back to the interviewees for approval and
clarification. The material was coded and analyzed using the constant comparison
method [15] and the NVivo tool1.

For the action-planning phase we started with a literature survey of research and
management literature concerning mentoring. This was summarized in an internal
note to the company. We then held a meeting to discuss the findings from the
literature and how they compared to the findings in our interviews.

We are currently in the action-taking phase. We have conducted a workshop with
several employees where the goal was to arrive at a new and improved mentoring
approach based on the interviews and the research literature. The document detailing
the official mentor program has been rewritten to reflect the findings in our research
and the outcome of the workshop.

We are currently awaiting projects where the new mentor program can be tried out
in practice. When new projects are launched, the researchers will have regular contact
with the mentor and protégé and based on interviews with the participants we will
evaluate the new approach, and discuss common learning points.

4 Mentoring in a Small Software Company

When we started our research on the mentor program, we got access to documentation
that described the existing program. Two 1,5 page internal company memos described
the mentoring program, one for the competency area of Rational Unified Process and
the Unified Modeling Language, and one for Project management.

When interviewing employees about the mentor program, we discovered several
adopted mentor schemes, we were able to gauge the employees’ attitude towards the
program, and got several suggestions for improvement.

4.1 The Existing Official Mentor Program

The purpose of the mentor program was to “spread knowledge and experience to
everybody in the company”, by “providing knowledge to projects and persons”, “offer
resources and champions [to projects]”, and “offer practical experience in addition to
theoretical knowledge”. The mentor program should:

• Make RUP/UML and project management knowledge available for both projects
and individuals

• Offer resource persons and initiators

1 A tool from QSR International: http://www.qsrinternational.com.

250 F.O. Bjørnson and T. Dingsøyr

• Offer practical experience in addition to theoretical knowledge
• Offer “controllers” who ensures correct use of RUP/UML/project frameworks in

projects
• Offer the consultants “expert support”
• Increase the motivation of employees to use RUP/UML/project frameworks

The mentors were supported by project funds, and it was the project manager’s
responsibility to decide on the type and degree of effort of mentoring. The line
management then assigned a mentor based on the requirements from the project
manager. For large projects, it was written that “a mentor typically should use 1-2
days a week” to solve problems in the design phase. In smaller projects, the effort
could typically be two days in the start-up phase, and then 2-4 hours a week
thereafter.

4.2 Different Mentor Schemes

Even though we had been sent to investigate how the current official mentor program
worked, we quickly discovered that the program was not that well known: "I know
very little about the formal mentoring program", "I do not know of it and do not
 know what it entails. So if we have this program we have not gotten any information
about it".

In addition to the official mentor program, we discovered several unofficial
mentoring schemes that had been adopted. The one that most people mentioned was
that the entire company functioned as a large network where there was no problem
dropping by your colleagues for help: "We have this kind of informal [mentoring] -
the company functions as a large network. If you are working with a project and run
into problems, there are always people who have worked with this problem before,
and you can use them for support!" This unofficial mentor scheme seemed to be
mostly related to technical problems, but there was some degree of design and
analysis problems being passed around too. In contrast, the official mentor program
was mostly related to the software development process and project management.

The most important factor to keeping the informal mentoring scheme alive seemed
to be various social initiatives in the company: “I think the most important thing, what
works best, is gatherings and such. Where you get away from the office. You talk, and
get to know people and what they are doing. A lot of our colleagues are out [at
customer sites] and you do not have much contact with them. So it’s a good place to
catch up on what they are doing. So after these gatherings its more easy to know
where to go to get information that is important to you.”

Another scheme adopted, was that when they staffed new projects, they always
tried to put at least one experienced employee on the project who could act as a kind
of mentor to the others. "Whenever we get a new project and have to staff it - Then it
is important that we put someone with experience there, one who has done similar
projects before – that way it becomes a kind of mentoring."

In addition we discovered a program designed for new employees where they got a
“sponsor” the first month after they were employed. The sponsor was responsible for
showing them around and introducing them to the company. In that way it was kind
of an introduction to the unofficial mentor scheme. “It is mostly routines. How things

A Study of a Mentoring Program for Knowledge Transfer 251

are done here. Practical info to get you started – but we do have a greeting round,
where you meet everyone and they tell you about what they are doing. In that regards
it could be seen as an introduction to it [informal mentoring]”

We also discovered that they already had a formal approach to mentoring, which
they used when they hired out consultants as mentors, but this degree of formalism
was seldom used in-house. "When we are in the market and hire out consultants. Then
it is clear that, ok this is mentoring, and that makes it a lot more formal. We try to do
it in-house too, but it is much more formalized when we offer it in the market!"

4.3 Attitudes to the Mentor Program

Even though the official mentoring scheme was little known in the company everyone
we interviewed was invariably positive to having such a program. However the
comments varied with the degree of involvement in the program.

The people who had not used the mentoring program commented that it would be
nice to have access to such a program: “I see it as a great advantage if we could do it
that way”, “concerning process, we have a lot of knowledge in the company about
that, it should be easy to create programs where the experts can help out in different
situations.”

The people who had used the mentor program also commented on the importance
of having the mentor program and on the positive effect of having a mentor to talk to
about different solutions to a problem: “It was quite nice to have someone you could
turn to and consult about different approaches to a problem.”, “mentoring is
absolutely positive. It is important that we have this program.“

The people who had functioned as mentors were also positive to the program but
their comments were more concerned with the benefits of the program: “It improves
our level of competence … we get to discuss our profession, because it is a lonely role
[project manager], especially when we are hired out and are at the site of a customer.
… The internal communication improves”, “It acts as a kind of quality control … it
helps us deliver a better product to our customers”, “I think it makes people feel safe,
safe in that they are not alone in their jobs. You create a transfer of competence and
you create a relation between the two that can be used later on.”

4.4 Possible Improvements to the Mentor Program

During the interviews, the employees were also asked for suggestions on what could
be done to improve the mentor program. Again the response varied according to level
of involvement.

Those who had not been involved in the mentor program so far saw the need for
more formalization on the routines of getting a mentor. “We should have a checkpoint
in the start-up routines of a project. You do not necessarily have to use a mentor, but
you should at least make a conscious choice!” That being said they were also
concerned that it should not be too formalized. Another concern was how protégés
were viewed in the organization, that it should not be considered a sign of weakness
to ask for a mentor. They were also concerned for the people acting as mentors. They
felt that a mentor should be prepared to accept the job voluntarily.

252 F.O. Bjørnson and T. Dingsøyr

The employees who had used the mentor program were also concerned with the
degree of formalization surrounding the program. “I do not think the program is
formalized enough. It is up to the individual to ask for it. And then – it becomes a
limitation on who asks for it and who does not.” Among the other things they
mentioned was that the program was not marketed enough and they felt the need for a
more concrete framework and guidelines concerning the program.

One employee who had acted as mentor saw the need for more formalization in
that a lot of potential interesting information and experience was lost in the current
program “It has potential for improvement in that we could try to make it more
formalized. Then it would be easier to collect the experience resulting from the
different instances … So it can benefit more than just the two…”

Another mentor mentioned that the interest in a mentor was greatest at the start-up
of a project, and then the contact gradually dwindled as the project progressed. He felt
that this could be explained by the fact that those who received the mentors help felt
more and more confident as time went by, but on the other hand it could also be a bad
thing since he felt that it was usually once the projects were well under way that the
real problems emerged that experience could help a lot to relieve.

During the interviews we also got the impression that the learning in the mentor
program consisted mostly of practical help, or as we saw it single looped learning.
There was not a lot of discussion and reflection taking place in the program. “It was
mostly assistance with practical things, to get us started. To get started with the right
procedures. Get the accounting going, how to keep track of income and so on.”

4.5 Main Conclusion from the Interviews

After analyzing the interviews, we presented the results for the company to get
feedback and to see if they had any comments. Our main conclusion was that most of
the learning in the mentoring program that took place seemed to be single looped, and
that the company could benefit from trying a double looped approach. There seemed
to be confusion about what the mentoring role should contain. What was the
difference between mentoring, sponsoring and quality assurance work? There was
also disagreement on how formalized the mentoring program should be and what
areas it should cover.

5 Improving the Mentor Program

To improve the mentor program, we held a workshop with the people responsible for
the program in which we revised the program based on input from the interviews and
research literature. The workshop had the following agenda: short presentation of the
results from the interviews, a brainstorm on what the main elements of the mentoring
program should be, discussion concerning what separated the mentoring program
from quality assurance and the sponsor program, and finally how the mentoring
program should be facilitated in order to maximize learning. Before the workshop all
participants got a copy of the main findings from the interviews and a short memo on
mentoring based on findings in the research literature.

A Study of a Mentoring Program for Knowledge Transfer 253

5.1 Important Elements of the New Mentor Program

The first brainstorm session consisted of the company’s representatives writing down
what they thought important about the mentoring program on yellow stickers and then
grouping them together on a whiteboard. This resulted in eight groups of elements
that should be considered important in the new mentor program:

• Mutual trust and confidence was stressed as important in order for the program to
work, no one should feel threatened by the new program.

• The communication between the participants should be discussion-based in order
to better facilitate learning. The mentor should act as a discussion partner and ease
learning, not provide direct answers.

• There should be a certain amount of time set aside for mentoring and regular
meetings should be scheduled in order to keep regular contact

• Mentoring should be available both on project management and on more technical
subjects.

• There should be mutual feedback between mentor and protégé and the mentor
should be proactive and not just wait for questions from the protégé.

• The mentor should be funded by project budgets if the projects were large,
otherwise he could be supported by the company directly. Not all projects should
necessarily have a mentor, but all projects should have the option of using one.

• Mentoring should be initiated both from project management and by whoever felt
the need, it should not necessarily be narrowed to one on one consultations.

• Finally the need for all participants to be constructive was stressed.

5.2 A Clear Separation of Roles

The second part of the workshop was to determine where the separation between
mentoring, quality assurance and the sponsor program was. They decided on the
following separation of concepts:

A quality assurance employee makes sure that all the formal bits are done right. He
usually appears later in the project. In small projects the project manager is
responsible for this role, in larger projects they can create their own quality assurance
role. The quality assurance is a check that the individual has done a good job. This
was consistent with their old view on the quality assurance role, the news here was
that a mentor should not have the responsibility of this role even though a lot of
mentors had done so in the past.

A sponsor is responsible to introducing new employees to the company’s routines
and provides a social contact point. They do not have regular meetings and are not
responsible for questions concerning the profession. A sponsor is only provided for
new employees for the first month in the company. This was also consistent with their
old definition. From our findings in the interviews we also suggested that this role
should be conscious on helping the new employee get familiar with the unofficial
mentoring scheme.

A mentor makes sure that the project is carried out professionally by providing
expertise and advice. The need for mentors was usually greater in the start of a
project. The mentor provides the individual with the help to perform a good job.

254 F.O. Bjørnson and T. Dingsøyr

Furthermore it was decided that the official mentor program should be split into three
parts:

• Non-formal mentoring: As we discovered in the interviews, this was already
taking place and the environment was supportive of such a scheme. It functioned
in an ad-hoc manner and it was decided that this should continue to function
since it was obvious that it was working well. To further support this kind of
mentoring it was suggested to invest in social initiatives to keep and improve this
environment.

• Formal mentoring should continue more or less as it had functioned, but with few
modifications. Basically the important elements defined above were taken into
consideration. It should be project based, could potentially be one mentor who
would work with several protégés, and be more discussion based.

• They also introduced a new type of mentoring, the trainee program. This was a
new role in the company, and much more practical oriented than the previous
mentor program. The idea was to introduce employees to new domains (business,
technical or management) by allowing employee to follow seniors out to
customers and letting them participating in customer meetings and project
activities. In practice everyone could go into a trainee role to learn a new domain
or a new role like project manager or learning how to handle customer
relationships.

5.3 How to Improve Learning in the Mentor Program

The final discussion in the workshop was around the problem: How can we improve
learning in the mentoring program. This resulted in seven main elements that could be
considered by the mentors in the company:

• The mentors should to a large degree post open questions in order to make the
protégés think for themselves.

• Confidence and trust between the participants was considered important in order to
facilitate learning, this would to some degree be dependent on personal chemistry,
but could also be facilitated by patience on both accounts, the ability to pick up
signals, the ability of protégés to dare to ask ”stupid questions”.

• A mentor leading a group of protégés could also be considered; the more people
the more discussions.

• The mentor should mainly explain and advise by giving examples of how thing had
previously been done.

• A good mentor should allocate time, discuss their expectations and provide good
feedback.

• A good protégé should realize their needs; this could be facilitated by better
information from the company.

• It was also considered important to learning to have a clear definition of roles.

The main discussion points of the workshop was written into the memo describing
mentoring in the company, which was extended from one and a half pages to three
pages.

A Study of a Mentoring Program for Knowledge Transfer 255

6 Conclusion and Future Work

We have investigated a mentor program in a small software consulting company in
order to identify issues that could be improved. We found many different mentor
schemes to be in place in the company, found arguments in favor and against a more
formal approach to mentoring in the company. We found most of the learning that
took place to be single looped. In order to increase the learning effect, we discussed
how we could introduce more reflective practice into the mentoring program, and
identified some efforts that were taken into a revised mentoring program. We also
made a clearer separation of roles, and suggested that mentoring should have a greater
availability in the company.

We believe that the new mentoring program will provide better support for double
loop learning through increased reflection. The amount of reflection should increase
when the mentors pose more open questions during meetings. Also, organizing
mentoring in a group of protégés should lead to more discussion, which should also
lead to more reflection on current work practices.

The new mentoring program has been introduced through a meeting with all
employees, and now that the work of restructuring the mentor program is done, we
switch to an observer role. We will follow mentor and protégé pairs in new projects
and evaluate the changes brought on by redefining the mentor program. By
performing the same interviews again on people using the new mentor program, and
by observing how the new program runs over time, we hope to be able to ascertain
how successful the knowledge initiative have been for the company, and how it
influences their software development process.

Acknowledgement

This work was conducted as a part of the Software Process Improvement through
Knowledge and Experience (SPIKE) research project, supported by the Research
Council of Norway through grant 156701/220. We are very grateful to our contact
persons in the software consulting company for providing stimulating discussions and
help with organizing the work.

References

1. T. Dybå, "Improvisation in Small Software Organizations", IEEE Software, no. 5, vol. 17,
pp.82-87, 2000.

2. A. Wickert and R. Herschel, “Knowledge management issues for smaller businesses",
Journal of Knowledge Management, no. 4, vol. 5, pp. 329-337, 2001.

3. M. Lindvall and I. Rus, “Knowledge Management in Software Engineering”, IEEE
Software, no. 3, vol. 19, pp. 26-38, 2002.

4. F. J. Armour and M. Gupta, “Mentoring for Success”, IEEE IT Pro, no. May - June, pp.
64-66, 1999.

5. K. E. Kram, Mentoring at work: Developmental relationships in organizational life.
Glenview, IL: Scott Foresman, 1985, ISBN: 081916755X.

256 F.O. Bjørnson and T. Dingsøyr

6. B. R. Ragins, J. L. Cotton, and J. S. Miller, “Marginal Mentoring: The Effects of Type of
Mentor, Quality of Relationship, and Program Design on Work and Career Attitudes”,
Academy of Management Journal, no. 6, vol. 43, pp. 1177-1194, 2000.

7. Webster's, Encyclopedic Unabridged Dictionary of the English Language. New York:
Gramercy Books, 1989.

8. K. E. Kram and D. T. Hall, “Mentoring as an antidote to stress during corporate trauma”,
Human Resource Management, vol. 28, pp. 493-510, 1989.

9. T. D. Allen and L. T. Eby, “Relationship Effectiveness for Mentors: Factors Associated
with Learning and Quality”, Journal of Management, no. 4, vol. 29, pp. 469-486, 2003.

10. J. A. Raelin, “Public Reflection as the Basis of Learning”, Management Learning, no. 1,
vol. 32, pp. 11-30, 2001.

11. C. Argyris and D. A. Schön, Organizational Learning II: Theory, Method and Practise:
Addison Wesley, 1996.

12. J. A. Raelin, Work-based learning. Upper Saddle River, NJ: Prentice Hall, 2000.
13. D. Avison, F. Lau, M. Myers, and P. A. Nielsen, “Action Research”, Communications of

the ACM, no. 1, vol. 42, pp. 94-97, 1999.
14. G. Susman and R. Evered, “An assessment of the scientific merits of action research”,

Administrative Science Quarterly, no. 4, vol. 23, pp. 582-603, 1978.
15. M.B. Miles and A.M. Huberman, Qualitative Data Analysis: An expanded sourcebook,

second ed. SAGE publications, 1994.

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 257–271, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Impacts of Software Deployment in the Coffee
Agribusiness of Brazil

Claudio T. Bornstein1, Lucia Silva Kubrusly2,
André Luiz Zambalde3, and Ana Regina Rocha1

1 COPPE/Sistemas, Federal University of Rio de Janeiro,
Caixa Postal 68511 – CEP 21941-972 - Rio de Janeiro – Brazil

Phone: +55-21-25628699 Fax: +55-21-25628676
{ctbornst, darocha}@cos.ufrj.br

2 Instituto de Economia,
Federal University of Rio de Janeiro,

Rio de Janeiro - Brazil
luciak@alternex.com.br

3 Federal University of Lavras,
Lavras, MG - Brazil
zamba@ufla.br

Abstract. The process of software deployment into an organization is a
complex process that encompasses various aspects. Studies on the impact of
software systems deployment in the customer’s environment in the medium and
long terms are hardly found, specially when the deployment of the software
product and the introduction of data processing into the organization happen at
the same time. Nevertheless the client's perception goes beyond the specific
moment at which the software was installed. User’s and customer’s satisfaction
can only be evaluated in the long term taking into account the satisfaction with
the product use and with its impact on business. This paper describes an
empirical study of the introduction of data processing into the coffee
agribusiness in Brazil. The paper uses cluster analysis to group 0-1 variables.
Theses variables describe the impacts of data processing on the coffee
agribusiness in the state of Minas Gerais, one of the main Brazilian coffee
producers. Influences on employment, employee and enterprise structure are
examined. Some commonly used procedures as well as main changes at
corporation and individual level are detected.

1 Introduction

The introduction of data processing into an organization together with software
deployment is a complex process that encompasses various aspects. In the latest years
an interest has arisen for research related to the software deployment in organizations.
However, the interest is many times restricted to technical aspects or aspects related
to infrastructure as we can see in [1] [2] [3]. Few papers cover the evaluation of
customer’s satisfaction like [4] [5] [6] [7]. Studies on the impacts of the introduction
of data processing and software deployment in the medium and long terms are hardly
found. However, customer’s perception of a software, following [4], goes beyond the

258 C.T. Bornstein et al.

specific moment at which the software was installed and the problems occurred.
Customer’s satisfaction which is one of the main elements of software validation and
a important measure of success when introducing data processing in a organization,
can only be evaluated in the long term. User’s and customer’s satisfaction with the
product has to be evaluated and its impact on business has to be considered [8] [6] [9].

Nowadays, the use of information technology is compelling. However, in general,
the introduction of data processing into organizations is a long, hard and not much
studied process [10]. In this paper we study the impacts of the introduction of data
processing into the coffee agribusiness in Brazil, examining the results of the first
software deployments in a group of companies in this area..

The coffee worldwide agribusiness chain moves various billions of dollars every
year. According to Love [11] world coffee exports in 1998/1999 reached US$11
billion, off 10% from 1997/1998, after rising to US$ 14 billion in 1996/1997. Brazil is
the world’s largest coffee producer [11]. In accordance with the results mentioned in
[11], Brazil accounted for 33%, 24% and 27% of the world’s coffee crop
corresponding respectively to the three periods above. More recent data confirms this
figures. Brazil’s contribution in the world global production from 1999/2000 to
2001/2002 rises from 23% to 28% [12].

Coffee production is, therefore, responsible for a significant amount of Brazilian
exports, for the creation of millions of jobs and for setting down labor in the rural
zones. It occupies an important position in the Brazilian economy. Estimates indicate
that the coffee industry is responsible for the employment of 4 million people in
production and 10 million people, if we take other segments into account [13].

After 1990, with the discontinuance of the International Coffee Agreement, which
regulated the prices all over the world, the Brazilian Government called off the
subsidy to the coffee agribusiness, submitting the organizations to market rules. As a
consequence, investments in data processing slowly begun. According to the Science
and Technology Ministry [14], today 9% of Brazilian software companies develop
products for the agribusiness sector.

This paper examines the social and economic consequences of software
deployment and the use of data processing in the Brazilian coffee industry. The state
of Minas Gerais was chosen because it concentrates 50% of the Brazilian coffee
production. The research began in 1990 based on information obtained from a
questionnaire answered by 10 coffee producers, 21 cooperatives, 34 roasting and
grinding companies and 2 producers of soluble coffee.

Section 2 considers some general aspects of software engineering and the impacts
of software development on organizations. Section 3 describes the methodology used
in the research, mentioning the main points covered by the questionnaire and giving
details of the use of cluster analysis. Section 4 mentions the main variables and the
results obtained using this technique and section 5 presents the conclusions.

2 Impacts of Software Deployment at Organizational Level

Software Engineering describes processes, methods, techniques and procedures that
lead to the development of high quality software. Much has been written and said

 Impacts of Software Deployment in the Coffee Agribusiness of Brazil 259

about what is necessary to achieve these results [15][16][17]. However, there is little
literature that considers and discusses the level of success obtained by introducing
software products and data processing in general into organizations engaged in
specific domains like agribusiness [5][6]. As mentioned by these authors, it is even
hard to define the exact meaning of the term success.

Software products have supported advances in various areas, including
agribusiness. However, basic questions do not always receive the necessary attention.
The evaluation of customer’s satisfaction is many times dealt without the necessary
care. The quality of the product is often focused from the developers’ perspective,
without considering the customer’s or user’s point of view properly [9]. The ISO
9001:2000 international standard recognizes this necessity and emphasizes the
existence of formal procedures to evaluate customer’s satisfaction [18].

Another important aspect to be considered is the evaluation of the product's impact
within the business environment for which it has been developed. We usually evaluate
products and services taking into account only their technical quality. Rarely the
scope is wide enough to include also a business perspective [19]. Although it is
important to evaluate features like functionality, trustworthiness and usability [20], it
is also necessary to evaluate if the results increased competitiveness and working
capacity, leading to higher profits.

Hillam, Edwards & Young [6] present different definitions of success and failure
for software applications. They point out two case studies: In the first case study
success was associated to the return on investment and in the second to the user’s
satisfaction.

The relation between technology and organization happens both at the structural
and human level. The structural level includes: impacts on the formal and the power
structure, impacts on the competitiveness and the company's image as well as
economic and financial impacts [21].

Main impacts of software deployment and data processing on the formal structure
are fusion, creation or elimination of departments and reduction in the hierarchical
levels. Many of these impacts lead to new forms of management [22]. Technology
can impact the power structure by affecting the distribution of responsibilities. It can
destabilize the hierarchy and the current power configuration of the enterprise.
Impacts on competitiveness are related, basically, to two aspects: productivity and
profitability [23][24]. Data processing may also improve the image of the company. It
is frequently associated with the ideas of innovation and modernity. This is especially
true for developing countries.

However, all this is only possible if the staff gains control of the whole process
learning to master software systems and data processing properly. Impacts can be
negative if there is no easy way of accessing the services, if people do not trust the
results, if there is no competence in its execution or if the experts who develop the
software are not conscious of the customer’s needs. Finally, a cost-benefit analysis is
necessary to check if there will or not be an adequate return on the investment. Of
course, it is not always easy to measure the benefits of data processing accurately
[25][21][18].

260 C.T. Bornstein et al.

The only human impacts which will be considered here are those related to the
individual and his job, i.e., to the employment and the employee [26][27]. As for the
individual, the main impacts which will be examined are: changes in the content and
the nature of tasks, increase or decrease in the levels of qualification, changes in the
working pressures and working rhythm, increase or decrease in the levels of
participation and changes in the level of individual interaction and control [28]. The
impact of software systems on the content and nature of tasks can be viewed from two
sides. On the one side, it generates positive impacts, reducing the routine and the
number of monotonous tasks and making it possible to the users to spend their time
on more complex and more challenging tasks, demanding greater responsibility.
However, it can also have negative impacts disregarding accumulated skills and
depriving jobs of some of its richness [29]. With respect to the users’ qualification,
the introduction of software systems on the one side stimulates the process of
apprehension of new knowledge and creativity so as to face unexpected problems
[30]. However, on the other side, it may decrease the level of qualification because
activities may be performed automatically [31]. Data processing can trivialize work,
lead to a decrease of the value of experience, reduce motivation, status and self-
esteem. As for working pressure and rhythm, some authors point out to an increase in
the quantity and quality of work while others state that data processing leads to more
stress and higher levels of pressure [32] [33]. Finally, some authors consider that the
working environment can loose some of its attractiveness due to the decrease of the
importance of personal relations [34] [35] [36].

Finally, it is necessary to consider the impacts on employment and jobs. Without
any doubt software systems saves manpower. Organizations which do not follow the
trend towards automation tend to loose competitiveness and go out of business
[31][37][38]. On the other side, new jobs (systems analysts, software and hardware
engineers or technicians, computer maintenance specialists, etc) may also be
generated in the computer sector.

3 Methodology

3.1 Data Analysis

Interviews were made with the staff using a questionnaire as a basis. The complete
questionnaire used in interviews with the staff covers six basic areas. The areas were
subdivided into several sub-areas.

(i) Company's basic profile: kind of administration (family-run, entrepreneurial or
professional management or cooperative) and size (volume of coffee processed
by the company); number of employees and level of education, percentage of the
employees working with data processing; number of associates in the case of
cooperatives; number of branches in the case of bigger companies.

(ii) Use of data processing (general): number of years data processing is been used;
history and reasons for the introduction of data processing in the company;
connection modes between equipment and data bases and main communication
services used (connections to branches, stock market and internet, bank access).

 Impacts of Software Deployment in the Coffee Agribusiness of Brazil 261

(iii) Description of the hardware used by the company; adopted strategies for
hardware maintenance.

(iv) Description of the main software used by the company; adopted strategies for
software development/purchase (off-the-shelf vs. custom software for example);
computer languages and data bases used; adopted strategies for software
maintenance.

(v) Impacts of data processing on the organizational level of the enterprise: impacts
on the formal and the power structure (centralization tendencies/power
concentration; conflicts and disputes), impacts on competitiveness (productivity
and profitability), impacts on the company's image; economic and financial
impacts.

(vi) Impacts on the individual and jobs: changes in the content and nature of tasks;
increase and decrease in the levels of qualification; changes in the working
pressure and working rhythm; increase or decrease in the levels of participation;
changes in the level of individual interaction and control; impacts on
employment policies (hiring, firing or reallocating staff).

Data collection was performed through interviews. As a criterion to select coffee
bean producers, we used the export activity. All coffee bean exporters of the state of
Minas Gerais were included in the study. There was no need to select cooperatives
and soluble coffee producers because, by their nature, these are big enterprises and
there were only few establishments of this kind. They were all included in the study.
With respect to the roasting and grinding companies, 34 out of 114 establishments of
the state were selected through a proportional stratified sample. Interviews were made
with at least two members of the staff in charge of the data processing activities.
Often members of the board and the higher management were also included in the
interviews.

This paper covers only aspects related to (v) and (vi). All the issues related to these
two areas were included in the present analysis. Corresponding questions were
redefined as 0-1 (binary) variables (yes = 1 and no = 0). Aspects related to (iii), (iv)
and some points covered by (ii) are very specific and of more technical nature. In
addition, questions related to (i) and (ii) have been excluded because no convincing
link could be made of these questions to the impacts of data processing on the
structural and social level of the company. Some of these issues are covered in [39].
Tables 1 and 2 give a brief idea of the more important aspects related to (i), more
specifically, the kind of management and the size of the firms.

Table 1 gives an account of the kind of administration of the companies. One can
see that the roasting and grinding (roast.& grind.) companies are mostly family-run
enterprises and that the soluble coffee producers have a predominantly professional
management. In the middle are the coffee bean producers with a quite balanced
situation between family/entrepreneurial and professional administration.
Cooperatives are enterprises with a special kind of management.

Table 2 describes the companies according to their size. Establishments were
classified, according to the annual turnover measured in number of 60kg coffee bags,
in big (more than 90000 bags), medium (5000 to 90000 bags) and small (less than
5000 bags). This criterion seems better than monetary values or number of employees

262 C.T. Bornstein et al.

Table 1. Kind of administration of the companies

ADMINISTRATION ORGANIZATION
Professional Cooperative Family/entrepren.

Total

Cooperatives 5 (25%) 15 (75%) 0 (0%) 20 (100%)
Coffee producers 4 (40%) 0 (0%) 6 (60%) 10 (100%)
Sol. coffee prod. 2 (100%) 0 (0%) 0 (0%) 2 (100%)
Roast.& grind. 1 (3,2%) 0 (0%) 30 (96,8%) 31 (100%)
Total 12 (19%) 15 (23,8%) 36 (57,2%) 63 (100%)

due to the fact that the classification applies to companies of very different
technological levels and very distinct cost structures.

Cooperatives are predominantly big companies, soluble coffee producers are
medium/big firms, the coffee bean producers are generally medium size organizations
and the roasting and grinding companies are mostly small enterprises.

Table 2. Distribution of companies according to their size

Size ORGANIZATION
Small Medium Big

Total

Cooperatives 0 (0%) 3 (15%) 17 (85%) 20 (100%)
Coffee producer 2 (20%) 6 (60%) 2 (20%) 10 (100%)
Sol. coffee prod. 0 (0%) 1 (50%) 1 (50%) 2 (100%)
Roast. & grind. 16 (52%) 13 (42%) 2 (6%) 31 (100%)
Total 18 (28%) 23 (36,5%) 22 (35%) 63 (100%)

In the next section, association between variables concerning areas (v) and (vi) will
be examined using cluster analysis of binary variables.

3.2 Cluster Analysis of Binary Variables

Cluster analysis is an exploratory technique of data analysis that tries to identify
similarities between objects or between variables. Lucas [40] defines cluster analysis
in the following way:

Let X be the available data matrix with variables xi1, xi2, xi3, ... for each object i. Let
E = {E1, … En} be the set of elements we wish to group. If we group variables, E is
the set of columns of X. If we group objects, E is the set of lines of X. Cluster
analysis attempts to partition E in subsets so that:

if srisir EEsr,gEgE andand ≠∈∈ are similar. (1)

if srjsir EEji,sr,gEgE andand ≠≠∈∈ are distinct. (2)

 Impacts of Software Deployment in the Coffee Agribusiness of Brazil 263

In order to measure similarities and differences between the elements, a metric,
like, for example, the Euclidean distance, is usually applied. There are several metrics
defined for binary variables. Most of them try to identify the simultaneous occurrence
of zeros or ones (see [41]). Table 3 gives an example where variables V1, V2 and V3
are observed for 6 objects. Looking at these values, one can say that V1 and V2 are
similar and that V3 differs both from V1 and V2. As already mentioned, a metric
which is able to measure differences and similarities between the variables is the
Euclidean distance, which may be calculated in the following way:

d(V1,V2) = 1)00(...)11()10()00(2222 =−++−+−+− . (3)

d(V1,V3) = 2)10(...)01()00()10(2222 =−++−+−+− . (4)

d(V2,V3) = 5)10(...)01()01()10(2222 =−++−+−+− ≅ 2,236 . (5)

Table 3. Variables V1, V2 and V3

V1 V2 V3
0 0 1
0 1 0
1 1 0
1 1 1
0 0 1
0 0 1

The smaller distance between V1 and V2 indicates that this is the pair of variables
with greater similarity. Another way to evaluate similarities is by calculating and
comparing the number of equal or different answers. Table 4 gives the results for the
example above.

Table 4. Number of equal/different answers

 V1= 0 V1= 1 V1 = 0 V1 = 1 V2 = 0 V2 = 1
V2 = 0 a = 3 b = 0 V3 = 0 a = 1 b = 1 V3 = 0 a = 0 b = 2
V2 = 1 c = 1 d = 2 V3 = 1 c = 3 d = 1 V3 = 1 c = 3 d = 1

In table 4 the variables a and d give the number of equal while b and c give the
number of different answers. Some metrics based upon these values consider only
similar answers (diagonal a and d). Other metrics take into account only different
answers (diagonal b and c). A discussion about these metrics can be found in [42]. It
is interesting to remark that (b + c) is the square of the Euclidean distance.

264 C.T. Bornstein et al.

Cluster analysis groups elements in sets so as to get a partition. Different ways of
getting this partition define different methods of cluster analysis. The method that
will be used here belongs to the class of the hierarchical agglomerative methods.
These are iterative procedures that start from a partition of n groups or sets, where n is
the number of elements. i.e., each set or group contains only one element. At every
step the two groups which are closest are joined forming a new group. The clustering
is ended with one single group containing all elements. Thus, starting from n groups
and ending with one group, different partitions or clusters are generated. By carefully
examining the results and looking for the partition which provides the best
interpretation, it is often possible to decide for the best clustering. In this paper the
method of Ward was used. The square of the Euclidian distance was used as a metric.
A presentation of several clustering methods can be found in [43].

4 Definition of Variables and Results from Cluster Analysis

The impacts of data processing on the organizational level of the enterprise were
evaluated by seven variables and the impacts on individuals and jobs were measured
by thirteen variables. The description of the variables follows:

Impacts on the organizational level of the enterprise:
estrfor – impacts on the formal structure.
estrpd 1 – impacts on the power structure: power concentration.
estrpd 2 – impacts on the power structure: conflicts and disputes.
compt 1 – impacts on competitiveness: productivity.
compt 2 – impacts on competitiveness: profitability.
percep – impacts on the company's image.
cstben – cost-benefit analysis

For the first five variables, the yes answer means impacts of data processing on the
formal structure (hierarchical levels and management), power structure and on the
competitiveness of the enterprise. The no answer means that no such impacts were
perceived. The yes/no answers to the percep variable means that data processing
either had or did not have a clear impact on the company's image. And finally, the
yes/no answer to the cstben variable means that a cost-benefit analysis was carried out
to evaluate the effects of data processing.

Impacts on individuals and jobs:
motiva – impacts on employee's motivation.
satisf – employee's satisfaction with software and hardware.
educa – increase in the educational level.
treina – investments in personnel training.
valor – increase in the valuation of the experience and capacity of the employee.
participa – increase in the level of participation of the employee in decisions.
integra – increase in the level of integration between individuals and departments.
controle – increase in the level of control.
aument – increase in working rhythm and pace.
apreen – increase in employee's apprehension due to the use of new technologies.

 Impacts of Software Deployment in the Coffee Agribusiness of Brazil 265

demiss – employee's dismissal.
remane – employee's reallocation.
contrat – employee's recruitment.

The answer yes to the variable motiva means that with the introduction of data
processing there was an increase in motivation, i.e., tasks became more motivating.
The answer yes to satisf means that employees and management were content with
programs and equipment, i.e. they worked properly. As for the educa variable the
same answer means that with the introduction of data processing there was an
increase in the required educational level. For treina, valor and participa the answer
yes means respectively the occurrence of investments in personnel training, a better
valuation of the employee's capacity and experience and that the employees
participated in the decisions concerning the adoption and use of data processing. The
same answer to the integra, controle, aument and apreen variables means respectively
that data processing provided greater integration between employees and departments,
increased the level of control over the employees, increased the working rhythm and
pace, i.e. increased the working intensity and resulted in a higher level of
apprehension among the employees. Finally, the answer yes to demiss, remane and
contrat means respectively that, due to the introduction of data processing, employees
were sacked, reallocated to other jobs and/or new personnel had to be recruited.

The next sections present the results of the cluster analysis. Section 4.1 presents the
results concerning the impacts on the organizational level of the enterprise. Section
4.2 presents the results concerning the impacts on individuals and jobs. Finally,
section 4.3 presents a general analysis where variables were selected from each of the
two sets mentioned above in an attempt of associating questions addressed in both
sets. The results were obtained with the SPSS version 11.0.

4.1 Impacts on the Organizational Level of the Enterprise

Table 5 gives the number of yes among a total amount of 58 answers for each variable
of this group. This is an additional information which should help in a better
understanding of the results.

Table 5. Number of positive answers from a total amount of 58 answers

Variable Positive answers Variable Positive answers
Estrfor 13

 compt2 27

Estrpd1 51 percep 25
Estrpd2 13 cstben 3
Compt1 28

Figure 1 gives the results of the cluster analysis for the first set of variables. We
can see that the clustering of compt1 and compt2 shows that productivity and
profitability are strongly connected. Power concentration (estrpd1) is an almost
consensus variable (see table 5) that is not much related to the other variables. The

266 C.T. Bornstein et al.

connection of percep with the competitiveness variables is weak. It is better to
consider it apart. The association between cstben, estrpd2 and estrfor is probably due
to the fact that all three variables represent rare events, i.e., they received few positive
answers. As a matter of fact, few companies carried out a cost-benefit analysis and
determining the impacts of data processing on the formal structure of the enterprise as
well as on conflicts and disputes is a complex and sensitive matter which people are
often reluctant to comment.

0 50 100

compt1

compt2
percep
estrpd1
cstben
estrpd2
estrfor

distance
0 50 100

compt1

compt2
percep
estrpd1
cstben
estrpd2
estrfor

0 50 100

compt1

compt2
percep
estrpd1
cstben
estrpd2
estrfor

distance

Fig. 1. Results of the cluster analysis for the first set of variables

4.2 Impacts on Individuals and Jobs

Again, first we present (table 6) the number of positive answers among a total of 58
answers for each variable.

Table 6. Number of positive answers from a total amount of 58 answers

Variable Positive answers Variable Positive answers
Motiva 32

 controle 54

Satisf 36 aument 21
Educa 20 apreen 46
Treina 13 demiss 9
Valor 42 remane 19
Participa 6 contrat 10
Integra 25

Figure 2 discloses two major groups. The first comprises the controle, apreen,
motiva, valor, satisf variables with predominately positive answers (see Table 6). The
second major group contains the participa, demiss, contrat variables where negative
answers strongly predominate and the aument, treina, remane, educa, integra
variables with a more balanced number of positive and negative answers.

The increase in the level of control as well as the increase in the employee's
apprehension, both variables belonging to the first group, are almost consensus
variables. From the employee's point of view they may perhaps represent the negative
side of the adoption of new technologies. On the other hand, the higher employee's

 Impacts of Software Deployment in the Coffee Agribusiness of Brazil 267

motivation (motiva) and satisfaction (satisf) is associated with a higher rating of the
experience and the capacity of the employee (valor). These variables may represent
the positive side of the adoption of new technologies showing that if experience and
capacity are prized, the result is an increase in motivation and satisfaction.

0 100 200

controle
apreen
motiva

valor
satisf
partic
demiss
contract
aument
treina
remane
educa
integra

distance
0 100 200

controle
apreen
motiva

valor
satisf
partic
demiss
contract
aument
treina
remane
educa
integra

0 100 2000 100 200

controle
apreen
motiva

valor
satisf
partic
demiss
contract
aument
treina
remane
educa
integra

distance

Fig. 2. Results of the cluster analysis for the second set of variables

Looking at the second major group we can disclose a very homogeneous subgroup
composed of participa, demiss and contrat. With the help of table 6, we can conclude
that neither there was much participation of the employees in the decision process
concerning data processing nor did new technologies lead to much firing and hiring of
employees. With respect to the last two variables one has to consider that the research
was done in a predominantly rural environment. Due to lack of skilled labor, the
reallocation of human resources is more frequent than the dismissal or recruitment of
employees. The cluster of the treina, remane and educa variables may be better
understood if we consider that establishments that have a policy of training and
reallocating of personnel tend to give a higher value to the educational level of the
employees. The integration between individuals and departments does not present
strong association with the other variables. However, it is interesting to notice that the
connection between integration and reallocation variables seems to indicate that
companies that practice reallocation of personnel achieve a higher level of integration
between individuals and departments. On the other hand, the (rather weak) association
between the aument, demiss and contrat variables may point to a certain connection
of the working rhythm and a hiring/firing policy. Both may be perceived as an
increase in tension and stress.

4.3 General Analysis: Selected Variables

As already mentioned, this section presents results of the cluster analysis for a set of
variables selected from the first two groups. The purpose here is to examine issues

268 C.T. Bornstein et al.

that may affect both 4.1 and 4.2., i.e., cover both sets of variables. Several runs with
different variables chosen from each group were done. The best result, i.e. the best
interpretation, was obtained choosing one variable for each of the main clusters
disclosed in the previous analysis. We assume that this variable represents the group.
Almost consensus variables, i.e., variables with a great majority of affirmative or
negative answers, were excluded from the study because no relevant interpretation for
the association of this kind of variables could be found.

For the first two sets of variables detected in section 4.1 (see figure 1) the variables
compt2 (impacts on competitiveness: profitability) and estrfor (impacts on the formal
structure) were chosen. In order to represent each of the three main groups set up in
4.2 (see figure 2) the variables motiva (impacts on employee's motivation), aument
(increase in working rhythm) and educa (increase in the educational level) were
selected respectively. The results of the cluster analysis are shown in figure 3.

0 20 50

estrfor
educa

motiva
compt2
aument

distance0 20 50

estrfor
educa

motiva
compt2
aument

0 20 50

estrfor
educa

motiva
compt2
aument

distance

Fig. 3. Results of the cluster for a selected set of variables

The first set consisting of variables estfor and educa admits the following
explanation. Companies where data processing affected the formal structure are
generally companies concerned with the educational level of staff, carrying out, as
seen in 4.2, a training program and a reallocation policy. The second set consisting of
variables compt2 and aument leads to an almost obvious association between
competitiveness/profitability and an increase in the working rhythm. In this analysis
the employee's motivation could not be strongly associated to any of the other
variables.

5 Conclusion

There is not much literature discussing broadly the successes obtained by introducing
data processing into organizations and sectors through software products deployment.
In this paper we study the impacts of the introduction of data processing in the coffee
agribusiness in Brazil.

The results may admit the conclusion that although the power concentration is an
almost general result of data processing, only part of the companies increased
competitiveness. It is interesting to notice that a cost-benefit analysis, which could
have delivered a more precise measure for the increase of competitiveness, is

 Impacts of Software Deployment in the Coffee Agribusiness of Brazil 269

generally not done. With respect to the impacts on the individuals and jobs there is an
increase in the level of control and apprehension.

Finally, the attempt to associate the impacts on the organizational level of the
enterprise with the impacts on individuals and jobs pointed to two important aspects.
First, companies where data processing affected the formal structure are generally
concerned with the educational level of staff, carrying out a training and a reallocation
program. These are companies with some level of internal flexibility and internal
dynamics and they achieve a higher level of integration among their employees. The
second important aspect was to show that higher competitiveness is associated with
an increase in the working rhythm and this, in its turn, is associated with a
recruitment/dismissal policy as seen in section 4.2.

With respect to the statistical methodology, the cluster analysis of binary variables
was able to associate variables pointing out to important relations between them. The
utilization of frequency tables played an important role in the interpretation of results.

Although the focus was on the coffee agribusiness in Brazil we believe that some
of its conclusions may be extended to other areas and other contexts with similar
characteristics. The results may indicate possible impacts of software deployment and
data processing on areas of the agribusiness sector where information technology is
still in its coming.

References

1. Coupaye,T., Estublier,J.: Foundations of Enterprise Software Deployment, Fourth
European Software Maintenance and Reengineering Conference, 2000

2. Turcan,E.; Shahumehri,N.; Graham,R.L.: Intelligent Software Delivery Using P2P,
Second International Conference on Peer-to-Peer Computing (P2P’02), 1-8, 2002

3. Hall,R.S.; Heimbigner,D.; Wolf, A.L.: A Cooperative Approach to Support Software
Deployment Using the Software Dock, International Conference on Software Engineering,
174-183, 1999

4. Pratt,W.M. Experiences in the Application of Customer-Based Metrics in Improving
Software Service Quality, International Conference on Communications, 1991

5. Hellens, L.A.V.: Application Software Packages for Small Companies: Implementation
Success and Supplier Strategy, Twenty-Fourth Annual Hawaii International Conference on
Systems Sciences, volume iv, 446-457, 1991

6. Hillam,C.E.; Edwards,H.M.,; Young,C.L.: Successful Software Applications: Can They
Be Evaluated?, The 24th Annual International Computer Software and Applications
Conference, COMPSAC 2000, 528-534, 2000

7. Russel,B. Delivery Excellence: a Practical Program for Continuous Improvement, IT Pro,
2003

8. Dean,J.; Haynes,S.; Hersh,G.; Schmidt,G.; Stoffeth,T.: Transition Engineering, IEEE
Industry Application Conference, IAS 96, volume 4, 2557-2562, 1996

9. Kan, S.H. Metrics and Models in Software Quality Engineering, 2nd Edition, Addison-
Wesley, 2003

10. Boag, C.: Affordable IT, Manufacturing Engineer, 280-281, 2002
11. Love, J.: Coffee Exporters Counting on Improved Earnings in 1999/2000, Agricultural

Outlook, Economic Research Service,USDA 6-8, 1999

270 C.T. Bornstein et al.

12. Lewin,B.; Giovannucci,D.; Varangis,P.: Coffee Markets-New Paradigms in Global Supply
and Demand, Agriculture and Rural Development Paper 3, ARD, The World Bank, 2004

13. Farina, M.M.Q.; Saes, M. S. M.: Agribusiness do Café no Brasil. São Paulo: Editora
Milkbizz, 1999.

14. MCT/SEPIN, Qualidade e Produtividade no Setor de Software Brasileiro, Ministério de
Ciência e Tecnologia/Secretaria de Política de Informática, 2002

15. ISO/IEC – Information Technology - Software Lifecycle Processes, ISO/IEC 12207,
Geneva, Switzerland, 1995

16. Mutafelija,B.; Stromberg,H.: Systematic Process Improvement Using ISO 9001:2000 and
CMMI, Artech House, Norwood, MA, USA, 2003

17. Chrissis,M; Konrad,M.; Shrum,S.: CMMI – Guidelines for Process Integration and
Product Improvement, Addison-Wesley, USA, 2003

18. ISO/IEC – Quality Management Systems – Requirements, ISO 9001:2000, Geneva,
Switzerland, 2000

19. Pfleeger, S.L. Software Engineering: theory and practice, Prentice-Hall, , NJ, 2nd Edition,
2001

20. ISO/IEC – Software Engineering – Product Quality – Part 1: Quality model, ISO/IEC
9126-1, Geneva, Switzerland, 2001

21. Remenyi, D.; Money, A.; Sherwood-Smith, M.; Irani, Z.: Effective measurement and
management of IT costs and benefits. 2nd edition. Butterworth-Heinemann, 2000.

22. Crowston, K.; Malone, T. W.: Information technology and work organization. In: Allen, T.
J.; Morton, M. S. S.; Information technology and the corporation of the 1990s, Chapter 11.
Oxford: Oxford University Press, 1994.

23. Brynjolfsson, E.; Hitt, L.: Beyond the productivity paradox: computers are the catalyst for
bigger changes. Communications of the ACM., 41(8), 49-55, 1998.

24. Streeter,D.H.; Sonka,S.T.; Hudson,M.A.: Information technology, coordination, and
competitiveness in the food and agribusiness sector. American Journal of Agricultural
Economics, v. 73, no. 5, 1465-1471, 1991

25. Strassmann, P.: Information Productivity: assessing information management costs of U.S.
Corporations. Information Economics Press, 1999

26. OCDE - Is there a new economy? Paris: OCDE, 2000.
27. Shapiro, R.: Digital economy. Washington, DC: Departament of Commerce, 2000.
28. Nardi, B.; O´Day, V.: Information ecologies: using technology with heart. Cambridge,

MIT Press, 1999
29. Meirelles,F.S.: Informática nas empresas: perfil, indicadores, gastos e investimentos. In:

Ruben, G.; Wainer, J.; Dwyer, T.; Informática, organizações e sociedade no Brasil. São
Paulo: Editora Cortez, 2003.

30. Coriat,B.; Zarifian,P.: Automatization: filieres d´emploi et recomposition des categories de
main-d´oeuvre, Paris, Travel, 1985

31. Soete, L.; Weel, B. T;. Computers and employment: the truth about e-skills. EIB Papers,
V. 6, No. 1, 133-150, 2001 http://www.eib.org/efs/papers.htm acesso em 21/11/2003.

32. Iachan,R.: O impacto da automação de escritórios nas empresas brasileiras: um estudo
prático, M.Sc. Dissertation, Puc-Rio, 1990

33. Rebecchi, E. : O sujeito frente à inovação tecnológica, IBASE - Automação e Trabalho,
1990

34. Shostak,A.B.; Mitchell,D.J.B. (editors): The Cyberunion Handbook: Transforming Labor
Through Computer Technology (Issues in Work and Human Resources). New York:
M.E.Sharpe, 2002.

 Impacts of Software Deployment in the Coffee Agribusiness of Brazil 271

35. Giuliano,V.: The mechanization of office work. Scientific American, v 247, n 3, 33-52,
1982

36. Mawshowitz, R. : The conquest of will: information processing in human affairs,
Massachusetts, Addison-Wesley, 1976

37. Heap, N.; Thomas, G. E.; Mason, R.; Mackay, H.: Information technology and society.
London: Sage Publications Ltd., Open University, 1995.

38. Fehlaber, A.: Impactos da Informatização nas relações de trabalho: o caso de Pernambuco,
ENANPAD XVIII, v4, 257-271, Salvador, Bahia, 1994

39. Bornstein, C.T.; Kubrusly, L.S. and Zambalde, A.L.; "Análise de Algumas Variáveis
Qualitativas na Agroindústria do Café" (Analysis of some qualitative variables in the
coffee agribusiness), Annals of the XXXIII Brasilian Symposium on Operations Research,
Campos de Jordão, SP, BR, p.5-11, november 2001.

40. Lucas, L.C.S.: Análise de Grupamento, Separata da Revista Brasileira de Estatística, n.
172, 1982

41. Johnson, R.A.; Wichern, D.W. – Applied Multivariate Statistical Analysis – Prentice-Hall,
Inc., New Jersey, 1992

42. Anderberg, M.R.: Cluster Analysis for Application - Academic Press, New York, 1973
43. Everitt, B.: Cluster Analysis – Social Science Research Council, London, UK., 1974

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 272–285, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Case Study: Software Product Integration Practices

Stig Larsson1 and Ivica Crnkovic2

1 ABB AB, Corporate Research, Västerås, Sweden
2 Mälardalen University, Department of Computer Engineering, Västerås, Sweden

{stig.larsson, ivica.crnkovic}@mdh.se

Abstract. Organizations often encounter problems in the Product Integration
process. The difficulties include finding errors at integration related to
mismatch between the different components and problems in other parts of the
system than the one that was changed. The question is if these problems can be
decreased if the awareness of the integration process is increased in other
activities. To get better understanding of this problem we have analyzed the
integration process in two product development organizations. One of the
organizations has two different groups with slightly different integration
routines while the other is basing the development on well defined components.
The obstacles found in product integration are highlighted and related to best
practices as described in the interim standard EIA-731.1. Our conclusion from
this study is that the current descriptions for best practices in product
integration are available in standards and models, but are insufficiently used
and can be supported by technology to be accepted and utilized by the product
developers.

1 Introduction

Through investigations of many development organizations developing products with
software as an important part, we have seen that the product integration is one of the
processes where many of the problems in product development become visible. The
origin of the problems is often in other processes performed early in the development
cycle. These problems can be reduced through an increased understanding of the
needs from an integration standpoint. Today, not enough care is taken to ensure that
the system requirements are considered when components and parts developed.
Proper preparation, understanding and performance of the product integration are
believed to resolve part of this problem.

Integration of products that include software is described in several standards and
collections of best practices. These best practices are collected from different
companies and organization and include areas that are considered to be of good use
for the development organizations in different application areas. There is however a
lack of independent research which shows whether the practices described in these
collections give the intended result when implemented in different organizations; a
systematic validation of the practices is needed.

 Case Study: Software Product Integration Practices 273

There are different perspectives from which the use of descriptions found in
standards and models can be investigated and different questions to be answered. The
first question is how it can be determined that the processes described in the standards
and models are suitable for different types of development and the use of different life
cycle models; are the generic principles of the descriptions valid for all types of
product development? Another question is if an organization may run into problems
even if the principles and descriptions are followed in a proper way. Are there ways to
fulfill the principles described but not achieve the intended results? A third question is
how to determine if the reason for an organization having problems is the fact that the
principles are described as the prescribed working method, but are still not followed.
Our approach to these different perspectives is to look at the performance of the
process in the investigated organizations and compare the activities with the ones
prescribed in the standards and models regardless of the development model used. We
also look at the problems in the organizations and analyze these with respect to the
practices that are not followed by the organization.

We claim that we by investigating a number of organizations and the practices in
use can obtain support for the practices described in standards and models or
determine a need for revisions of the standards and models. This leads to the
following research questions for this paper: (i) How well can the practices described
in a specific standard be expected to reduce problems encountered in the integration
of products? and (ii) What deficiencies or incompleteness can we observe in the
proposed practice?

We have in this paper selected to use the interim standard EIA-731.1 [1] as the
reference model. The rational for this is that the interim standard model has been used
as one of the inputs to CMMI [2], and is specifically intended to be used for internal
process improvement, not for qualification of suppliers. In addition to this, the
development of this interim standard has been carried out in cooperation between a
number of national and international organizations such as EIA[3] and INCOSE [4]
involving a large number of organizations and companies with substantial experience
in software and system product development.

Our proposition in this paper is that the problems encountered in the investigated
units relate to the lack of execution of practices that are described in the interim
standard. We also propose that successful execution of the product integration can be
mapped to specific implementation of practices described in the interim standard.

This case study is a continuation of the work described in [5], where a different
case has been compared to CMMI. The purpose of this paper is to investigate one
additional source for best practices, compare it to current industrial problems and to
establish if there are connections between the problems and the lack of execution of
proposed activities.

The remainder of the paper is organized as follows. Section two describes general
structure of the interim standard EIA-731.1 as well as the main characteristics of the
integration processes of a development process. In section three, the case study design
is described with explanations about the data collection method, the analysis method
and the threats of validity of the study. Section four includes a description of the
findings from the case study. Section five analyzes how the findings relate to best
practices. Finally section six contains the conclusion and proposed future work and is
followed by the references list.

274 S. Larsson and I. Crnkovic

2 Product Integration in EIA-731.1

The interim standard EIA-731.1 describes a number of focus areas useful for
organizations developing products and systems. The focus areas described are
organized in three categories; technical, management and environment. For each
focus area, a number of themes describe the suggested activities. All themes include a
description, typical work products and specific practices for the focus area. For some
of the focus areas there are comments that normally contain clarifications or
suggested implementation details. In addition to the specific practices, there are a
number of generic practices applicable for all specific practices with the different
focus areas. The generic practices include tasks such as planning of the activities to
perform the process, monitoring and checking that the activities performed are
according to plan and the execution of corrective measures when these are identified
and needed.

Systems Engineering

Technical Category

Management Category

Environment Categorý

Four Focus Areas

Eight Focus Areas

(Totally Seven Focus Areas)

Integrate System

Integration Strategy

Interface Coordination

System Element Integration

Integration Preparation

Three Specific Practices

Systems Engineering

Technical Category

Management Category

Environment Categorý

Four Focus Areas

Eight Focus Areas

(Totally Seven Focus Areas)

Integrate System

Integration Strategy

Interface Coordination

System Element Integration

Integration Preparation

Three Specific Practices

Fig. 1. Structure of EIA-731.1

 Case Study: Software Product Integration Practices 275

The interim standard includes a possibility to determine the capability level of an
organization in a specific area. This is based on the observation that organizations
typically take observable distinct steps in the effort to improve the performance. In
EIA-731.1 these levels are intended to be used as means to help the organization in
the planning and implementation of the improvement efforts. Six different capability
levels have been defined. Level 0 indicates that the specific practices are not
performed. Level 1 indicates that the specific practices on level one are performed.
For level 2 to 5 both the specific and generic practices on these levels are performed.
Note that no effort has in this study been made to determine the capability level of the
organizations investigated as the target is to understand if the specific practices for
product integration give the intended result.

The rest of this section summarizes the product integration process as it is
described in EIA-731.1. The standard prescribes a set of specific practices that are
considered to be essential for accomplishing the purpose of the focus area designated
Integrate System (Focus Area 1.5).

The purpose of the Integrate System focus area is to ensure that the product and
system works as a whole based on the components that have been integrated.
Interfaces between components and functions that extend over many components in
the system are in the center of attention. It is also noted that the integration activities
should start early and are typically iteratively performed.

Four themes have been identified for the focus area. An Integration Strategy (1) is
considered to be the basis for the integration process. This theme includes the
development of a strategy that contains an integration sequence and a plan for the
integration tests to be performed. The Interface Coordination (2) is the second theme
and includes handling of the requirements on the interfaces as well as specifications
and detailed descriptions. As a third theme, the Integration Preparation (3) describes
how components are received for integration and the checking that the components
are in accordance with the strategy and interface documentation. The final theme is
the actual integration: System Element Integration (4). The components are integrated
according to the plan and the inter-operations between the components are checked. It
should be noted that the actual verification is described in a different focus area in the
interim standard EIA-731.1, FA 1.6 – Verify System.

The different specific practices on capability level 1, 2 and 3 for all themes can be
found in Table 4. The descriptions in the interim standard are short and need to be
interpreted with the description of the theme as a basis. Some guidance can be found
in EIA-731.2 [6] that describes an appraisal method for EAI-731.1. However, the
sample questions in this guide are also on a high level and require substantial
expertise to be used.

3 Case Study Design

The case study was performed on three different product development groups in two
different organizations. As the development methods are different in all three groups,
the case study has been designed as a multiple-case holistic study as described by

276 S. Larsson and I. Crnkovic

Yin [7]. The units of analysis are the processes for integration as perceived by
members of the development groups in the three different cases. The focus of the
study was on processes used at the time for the investigation, not described in quality
systems or handbooks and not on processes that were under development.

3.1 Research Method

The interviews made with members of the development groups are the main sources
of data in this investigation. Additional information was obtained from descriptions
and examples of how the integration was planned and performed. For each case at
least two persons were interviewed. The selection of subjects for the interview was
based on two criteria. The first was that for each organization, both a manager and a
developer should be interviewed. The second criterion was that the subjects should
have extensive experience spanning over several years from the development in the
investigated group.

The interviews were performed as open-ended discussions and all interviews were
made by the same researcher. The researcher was guided by a discussion guide to
ensure that different aspects of product integration were covered in the discussion.
The guide was developed by two researchers and included questions related to three
different areas; organization, implementation, and effectiveness of the product
integration. The questions included in the discussion guide were not taken from the
standard, but were designed to give an understanding of the used processes
independent from descriptions in standards and models. During the interviews, the
guide was used to ensure that the interesting topics were covered, and the specific
questions asked were depending on how much information was obtained through the
explanations from the interviewees. The use of open-ended questions allowed the
researcher to follow up interesting statements that lead to more information and a
deeper understanding of the used process. Each interview was between one and two
hours. The documentation from the data collection consists of notes taken during the
interviews complemented with information from the written documentation.

The data collected can be divided into two types. The first type was descriptions of
how the integration process was performed for each case and what activities were
carried out. The second was descriptions of the problems that the units perceived in
the integration process.

3.2 Analysis Method

After the interview sessions, the data collected was analyzed in several ways. This
was done as a separate activity and without the involvement of the development
organizations. For each case in the case study, the activities captured during the data
collection were compared and mapped to the practices described in EIA-731.1. The
result from the mapping showed if the development in the different cases were
performed in accordance with the interim standard. As a second step, the problems
identified were mapped to the specific practices in EIA-731.1 that are intended to
ensure that the problems should not occur. Finally, the relations between activities
performed and the problems were investigated. This resulted in Table 4 that indicates

 Case Study: Software Product Integration Practices 277

the relation between practices from EIA-731.1, activities performed and identified
problems. A second phase of the analysis was to propose how the practices in EIA-
731.1 should possibly solve the encountered problems. The results from this analysis
in found in Table 5. The analysis was made by one researcher and reviewed by two
other researchers.

3.3 Validity

Four types of validity threats are of interest for case studies [7]. In this section, we
discuss these and the preventive measures to reduce them. Construct validity relates to
the data collected and how this data represent the investigated phenomenon. Internal
validity concerns the connection between the observed behavior and the proposed
explanation for this behavior. The possibilities to generalize the results from a study
are dealt with through looking at the external validity. Finally, the reliability covers
the possibilities to reach the same conclusions if the study was repeated by another
researcher.

The construct validity is dealt with through multiple sources for the data through
more than one interview for each case. Additional interviews with other stakeholders
as well as additional document investigations would have increased the construct
validity. However, this would have required more intrusive investigations and would
limit the availability to the organizations. The design of the discussion guide was
based on available standards and methods and involved more than one researcher to
ensure that the questions to be discussed were relevant. The researchers experience in
software product development provided a basis for relevant discussions under the
interview sessions.

The internal validity was secured in three ways. First, the connection between the
behavior and the interim standard was done in several steps to avoid predetermined
connections. Secondly, rival explanations have been listed and examined to exclude
other causes to the findings. Finally, the analysis of the data and the connection to
the interim standard has been reviewed by two additional researchers to avoid
personal bias.

The external validity is dealt with through the use and description of three cases in
two different application domains and through the use of several different standards
and methods when defining the investigation area.

The reliability of the study has been secured through the description of the
procedure used in the study and the documentation of the discussion guide.

4 Case Descriptions

Two product development organizations have been investigated, both developing
systems for monitoring and control of different types of networks, but in different
application domains. The systems operate in industrial settings with real-time
requirements as well as high demands on availability and reliability. One of the units
is developing products for two different environments. This has lead to the use of
different processes and in this study they are treated as two cases resulting in a total of

278 S. Larsson and I. Crnkovic

three cases. For each case the following sections contain a brief description of the
product and the product development process. The descriptions also include the
problems that were identified and described in the interviews. The problems are
presented in tables where each problem is labeled with a P, the case number and a
reference character.

4.1 Case One

The product in case one is a stand-alone product that is connected to a real-time data
collection system. The development is done in one group with less than 20 developers
and follows a clearly defined process. The product development of a specific release
is based on a definition of the product that contains what should be included in each
release. The first step in the development is the implementation of requirements on
the functions for the release. Based on this, the unit and system verifications to be
performed are defined. Development of the functions is done in units called
components. The Rational Unified Process is used, and a document list defines the
development process. The planning is made so the development is done in
increments. The unit verification is performed by software developers. The strategy is
that tests should not be done by the developer producing the software. The unit tests
are often done through automatic testing. Specifications and protocols from the tests
are reviewed by peers and system integrators. The tests are performed in the
developer’s environment and consist of basic tests. Functional tests are performed
before the system tests.

The product integration is not defined as a separate process, but the product is
integrated by the developers before the system verification. Before a component is
checked in, it should be included in a system build to ensure proper quality. Delivery
to the system test is done of the whole system. The test protocols and error reports
from the unit verifications are reviewed with the system integrator before the system
test. The system tests are performed by a core of system testers and temporary
additional personnel. This strategy builds on well defined and detailed tests. The tests
are focusing on functions and performance and are performed on different hardware
combinations. This includes different variants of the product and different versions of
the operating system. The test period takes approximately 12 weeks, with new
versions of the assembled components received to system test every week. Although
the development builds on increments, no integration plan is used for the product. The
integration plan used is one for the whole system where this product is included.
Typical time for the development of a release is less than one year.

The three most serious problems were captured for case one as described in
Table 1. The routines are mainly followed, but due to tight deadlines, shortcuts may
be taken. Sometimes uncontrolled changes are introduced in the software. This is
typically done when a part of the system is changed due to an existing error that is
uncritical and not planned to be corrected. Due to the dependencies in the system,
new errors may appear in parts that have not been changed. Also other connections
between components that are not explicit generate this problem.

 Case Study: Software Product Integration Practices 279

Table 1. Problems captured for case one

Label

Problem description

P1-A Functions are not always fully tested when delivered for integration.
This leads to problems in the build process or in integration and system
tests

P1-B Errors are corrected that should not be. This results in new errors with
higher influence on functionality and performance

P1-C Errors appear in other components which have not been changed

4.2 Case Two

The second case is a product that includes software close to the hardware. The
development group is small and follows a common development process. This
process includes rules for what should be checked and tested before a component is
integrated. The tests include running the application in simulators and target systems
before the integration. A specification for what should be ready before start of
functional and system test are available. The architect is responsible for
implementation decisions. The target system includes a complex hardware solution
with the application divided on two target systems. Typical time for the development
of a release is 1.5 year. This includes the full development cycle from defining the
requirements to system testing.

Most of the problems appear because of the incapability and version mismatch of
the test system, the final product and the test and final hardware platform (Table 2).
Efforts are now made to go towards incremental development, and to increase the
formalism in the testing. The tests will be made in three stages with basic tests
performed by the designer, functional tests performed by a specific functional tester
and system tests with delivery protocol.

Table 2. Problem captured for case two

Label

Problem description

P2-A Problems appear as a consequence that tests for the components are not
run in the same environment as the test system. Different versions of
hardware and test platform are used.

4.3 Case Three

The development organization in this case is responsible for the design of a user
interface that acts as a client to a database server. The organization is small, around 15
developers.

The current architecture has been recently improved. The old version of the
system suffered from problems with many common include files. Through global

280 S. Larsson and I. Crnkovic

variables and similar solutions permitted by the selected technology, unintended
side-effects made debugging and error correction tedious. Different attempts to
reduce the problems within the available technology lead to the insight that a design
that was built on isolation of interfaces should be beneficial. The solution was to
start building a new system. Included in this decision was a strategy to design
interfaces carefully and to use technologies that permitted isolated components to
be used.

The system is built up of components that primarily implements different parts of
the user interface. Each component handles the communication with the server. This
design was used to allow the development of services that are independent and
dedicated for each component. The component framework defines the required
interface for each component and provides a number of services, such as capturing of
key strokes. The technology used permits the developers to easily isolate problems
and to minimize the uncontrolled interference and dependencies between the
components.

The development is organized with frequent builds and continuous integration of
new functions. The integration is handled by the integration responsible. However,
the checks before the inclusion of new functions are done by the developers. There
are no specific routines in place for handling the interfaces. Changes are in practice
always checked by the system architect.

The new system design has reduced the implementation time for a function with
2/3. The turn-around time for a system release has been reduced from six months to
between one and three months. At the same time, a need for maintaining the base
platform has emerged. Also, some of the technical solutions have been questioned and
may increase the need for maintenance (Table 3).

Table 3. Problem captured for case three

Label Problem description

P3-A Scattered architecture on the server side as a result of the decision to
handle communication in each component

5 Collected Data and Analysis Results

In these three cases we found may similarities: size of the development groups,
similar concerns, requirements of the products, similar product life cycle. What we
have seen are the differences in the development processes and in used technologies
and approaches. Our intention is to analyze what are the sources of the main problems
and if they could have cause in deviation or absence of the activities pointed out in the
best practices.

This section contains two parts. The first includes a table containing the analyzed
data from the case study, while the second lists the problems found in the cases with a
suggested implementation of the practices that could improve the performance.

 Case Study: Software Product Integration Practices 281

5.1 Analyzed Case Study Data

The three steps of the analysis have been summarized and presented in Table 4. The
table includes two parts for each practice. The first two columns show the description
from EIA-731.1 for the specific practices for the focus area Integrate System. The first
number in column one shows what theme the practice belongs to, and the second
number is the capability level (i.e., 1-2 shows that the practice belongs to theme one

Table 4. Specific practices for Integrate System compared to data from case 1, 2 and 3

Specific
Practice

Description Case
1

Case
2

Case
3

1-1 Develop an integration strategy + * + +
1-2 Document the integration strategy as part of an

integration plan
- + -

1-3a Develop the integration plan early in the
program

- + -

1-3b When multiple teams are involved with system
development, establish and follow a formal
procedure for coordinating integration
activities

- - -

2-1a Coordinate interface definition, design, and
changes between affected groups and
individuals throughout the life cycle

- * -

+

2-1b Identify interface requirement baselines - * + +
2-2a Review interface data - - -
2-2b Ensure complete coverage of all interfaces - - -
2-3a Capture all interface designs in a common

interface control format
- - -

2-3b Capture interface design rationale - - - *
2-3c Store interface data in a commonly accessible

repository
- - -

3-1a Verify the receipt of each system element
(component) required to assemble the system
in accordance with the physical architecture

- *

- * +

3-1b Verify that the system element interfaces
comply with the interface documentation prior
to assembly

- * + +

3-2 Coordinate the receipt of system elements for
system integration according to the planned
integration strategy

- + -

4-1a Assemble aggregates of system elements in
accordance with the integration plan

+ + +

4-1b Checkout assembled aggregates of system
elements

+ + +

282 S. Larsson and I. Crnkovic

and is placed on capability level 2). Finally, if two or more practices exist on a
capability level for a theme, these are distinguished by a character. The following
three columns include data from each of the cases. These columns include two things:
(i) an indication for each case if the practice has been observed as performed (+) or
not observed (-), and (ii) if there are indications of problems connected to the practice
(*). The indicated problems are further described and analyzed in section 5.2.

5.2 Analysis of Observed Problems

In each of the cases, problems encountered in the performed product integration
process were captured and discussed. The problems are in Table 5 cross-referenced by

Table 5. Cross-reference between observed problems and relevant specific practices

Label Problem description Relevant specific practices
and
Proposed actions

P1-A Functions are not always fully
tested when delivered for
integration. This leads to
problems in the build process or
in integration and system tests

3-1a
Ensure a handover to a
dedicated integration
responsible

P1-B Errors are corrected that should
not be. This results that new
errors are introduced, with higher
influence on functionality and
performance

1-1
Ensure that the strategy and
decision are followed through a
handover procedure

P1-C Errors appear in other
components than the changed

2-1a, 2-1b, 3-1b
Specify and enforce interface
descriptions for all
dependencies between the
components

P2-A Problems appear as a
consequence that tests for the
components are not run in the
same environment as the test
system. Different versions of
hardware and test platform are
used.

3-1a
Ensure that the proper test
equipment as described in the
integration strategy is made
available to the developers.
Check that proper tests are
performed through a clear
handover to an integration
responsible

P3-A Scattered architecture on the
server side as a result of the
decision to handle
communication in each
component

2-3b
Ensure that the rationale for
design decisions are
documented and communicated

 Case Study: Software Product Integration Practices 283

the researcher to the specific practices for the Integrate System focus area of EIA-
731.1. Each problem has a label composed of a P, the case number and a reference
character as in the tables in section 4. In addition to the description and the reference,
a proposed action based on the specific practice has been included in the table.

Based on the data, we have made two observations regarding the perceived
problem situation. The first is that all the problems for case one and two are related to
capability level 1 specific practices. This may indicate that additional problems may
be observed once all capability level one practices are performed, or it may indicate
that higher capability level practices have less influence on the actual product
integration results. The second observation is that case three had a similar culture for
process adherence as case one, but the developers were forced by the technology to
perform the specific practices.

5.3 Analysis of Propositions

As a summary of the analysis, we conclude that case two is performing the product
integration most in line with the specific practices described in EIA-731.1 It is also
clear that case two and three follow almost all the recommendations from capability
level 1 specific practices. We see that case one has the most problems, and that all
these problems are related to capability level 1 specific practices and we have noticed
that in case three, the technology may help the development team in following the
capability level 1 practices. The results are displayed in Table 6.

Table 6. Summary of analysis

of specific practices performed of total number
of problems found

Capability level 1 Capability level 2 Capability level 3
Case 1 3 /7

5 problems
0/4

No problem
0/5

No problem
Case 2 5/7

1 problem
2/4

No problem
15

No problem
Case 3 7/7

No problem
0/4

No problem
0/5

1 problem

The first of our two propositions was that the problems encountered in the
investigated units relate to the lack of execution of practices that are described in the
interim standard EIA-731.1. In the analysis of the data and the comparison, we
conclude that the problems found can be mapped to specific practices which support
our proposition. We have also observed that it is primarily the inability to perform
capability level 1 specific practices that have lead to observable problems.

The second proposition was that successful execution of the product integration
can be mapped to specific implementation of practices described in the interim
standard. For many of the practices on capability level 2 and 3, no observations have
been made that they were performed, but only one problem has been reported that

284 S. Larsson and I. Crnkovic

could be related to level 2 or 3 practices. Based on this and the observations regarding
capability level 1 practices, an additional proposition has evolved and should be tested
in future studies. This can be formulated as follows: A successful execution of the
product integration can be mapped to specific implementation of practices described
in the interim standard for capability level 1.

5.4 Rival Explanations

The conclusion regarding the propositions above can be challenged and in this section
we examine rival explanations and analyze the possibility that these give better
reasons to the data found in the study.

The first explanation examined is that there is no real connection between the
performance and the specific practices described and that the data match only is
coincidental. We consider this explanation to be unlikely due to two facts. The first is
that the interim standard build on long industrial experience from companies and
organizations from a wide set of areas and applications. The second fact is that the
pattern shown in this study is clear and builds on three cases from two different
organizations.

The second alternative explanation could be that the organizations due to other
factors succeed in the product integration process. However, if there are other factors
involved, these may also help in following the proposed practices. This is also the
situation in case three where the selected technology has imposed a way of working
on the product developers.

6 Conclusions and Future Work

Data regarding the product integration process from two development organizations
have been collected and compared to the requirements described in a standard
description of the product integration process. The problems observed in the case
study have been compared to practices that describe activities that should improve the
performance in the product integration.

We can from the observations conclude that the basic level of practices described
in the interim standard EIA-731.1 includes activities that can help the organizations to
avoid problems which can appear when integrating components to systems. Basic
activities include (i) development and a clear specification of the strategy for the
integration, (ii) keeping well defined interface descriptions up to date throughout the
life cycle, (iii) that the integration of components follow the strategy and (iv) that the
assembly is verified as planned.

We have also observed that there are indications that skilled use of component
technologies as described in [8] facilitates the integration process. The factors
contributing to this support are well described interfaces, the need to test components
before integration and the explicit definition of the environment required by the
components.

Through this investigation, partial answers have been found to our research
questions, but additional research is needed. Future work should include steps to

 Case Study: Software Product Integration Practices 285

strengthen and further investigate the propositions made in this paper. They are (i)
improvement of validation of the results by providing the feedback to the case
participants in a form of discussions of accuracy of collected data and the results at a
common workshop, and (ii) additional case studies in industry. Additional
descriptions of practices in standards and models need to be investigated in relation
to industry practices. There is also a need to analyze the similarities and differences
in the different standards and models. One additional research direction has been
indicated with the purpose to confirm or refute the indications in this paper and in [5]
that component technologies assist in the implementation of successful software
product integration. Of specific interest may the integration problems related to
COTS be.

References

1. EIA/IS-731.1, Systems Engineering Capability Model, Electronic Industries Alliance
(Interim Standard), (01 Aug 2002)

2. Chrissis, M.B., M. Konrad, S. Shrum, CMMI, Addison-Wesley, Boston, MA, (2003).
3. http://www.eia.org/
4. http://www.incose.org/
5. Larsson, S., I. Crnkovic, F. Ekdahl, “On the Expected Synergies between Component Based

Software Engineering and Best Practices in Product Integration”, Euromicro Conference,
France, August 2004, IEEE

6. EIA/IS 731.2, Systems Engineering Capability Model Appraisal Method, Electronic
Industries Alliance (Interim Standard), (01 Aug 2002)

7. Yin R. K., Case Study Research: Design and Methods (3rd edition), ISBN 0-7619-2553-8,
Sage Publications, 2003

8. Szyperski, C. et al, Component Software -- Beyond Object-Oriented Programming, (2nd
edition), ISBN 0-201-74572-0, ACM Press, New York, (2002)

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 286–298, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Improving the Express Process Appraisal Method

F. McCaffery, D. McFall, and F.G. Wilkie

Centre for Software Process Technologies,
Faculty of Engineering, University of Ulster, Newtownabbey

Co-Antrim BT37 0QB, Northern Ireland
{f.mccaffery, d.mcfall, fg.wilkie}@ulster.ac.uk

Abstract. In this paper we firstly describe the appraisal method that was de-
veloped by the Centre for Software Process Technologies (CSPT) to assess
software processes within small to medium sized (SMEs) organisations that
have little or no experience of software process improvement programmes.
We then discuss our experience of developing and using our appraisal method
within six SMEs organisations within Northern Ireland. Next we compare our
assessment method with existing lightweight assessment methods that have
also been used to assess software processes within SMEs software develop-
ment organisations. We then describe new features that we are currently intro-
ducing to improve our software process appraisal method.

1 Introduction

The Centre for Software Process Technologies [1, 2] is a research and knowledge
transfer group funded jointly by the University of Ulster and Invest Northern Ireland,
a Northern Ireland governmental organisation responsible for the economic develop-
ment of this geographical region. The CSPT is tasked with motivating and developing
a culture of software process improvement within the Northern Ireland software in-
dustry.

Within the Northern Ireland software industry the majority of companies are SMEs
organizations. The key characteristics of these SMEs organizations are that they have
little or no experience of adopting Software Process Improvement (SPI) frameworks
and assessment methods. The majority of these companies stated that they considered
SPI frameworks and assessment to be too expensive, too time-consuming, too heavy-
weight and really only applicable to larger organizations [3]. In an attempt to make
SPI more attractive to these SMEs the CSPT decided to adopt the continuous repre-
sentation of the Capability Maturity Model Integrated (CMMI® 1) [4] and to develop a
more light-weight assessment model to assist with SPI within the Northern Ireland
software industry. The continuous representation of the CMMI® provides a more
attractive proposition for SMEs companies than the staged version of the model. Par-

1 ®CMMI is registered in the U.S. Patent and Trademark Office by Carnegie Mellon

University.

 Improving the Express Process Appraisal Method 287

ticularly as most of the software development SMEs organisations within Northern
Ireland have no compelling reason to achieve any particular maturity level rating, but
would rather see the benefits from a software process improvement programme in a
more gradual, progressive manner. Such an approach also enables process areas to be
selected for appraisal that are deemed to be more critical in terms of the company’s
business goals.

As part of the product suite for CMMI®, the Software Engineering Institute has
published the requirements for three categories of method which employ the CMMI®
[5]. Methods developed to comply with these requirements are known as ARC (Ap-
praisal Requirements for CMMI®) class-C, class-B and class-A. The Software Engi-
neering Institute has developed its own class-A compliant method which is called
SCAMPISM. The requirements of class-A methods tend to result in large methods
which require a sizable effort from the appraised organisation both in terms of prepa-
ration for such an appraisal as well as considerable external effort from an appraisal
team. This stems in part from the need to thoroughly investigate and support any
evidence gathered during the appraisal. For much of the Northern Ireland software
industry, class-A methods would not currently be appropriate because the scope of the
appraisal would lead to increased and unsustainable costs. The CSPT approach is to
build up awareness and understanding in the aims and objectives of software process
improvement in a gradual manner by trying to keep the costs associated with such
measures small to begin with, through an approach of limiting the scope of any ap-
praisal. For this reason the CSPT has developed its own appraisal method which com-
plies with the ARC 1.1 requirements for a class-C method. Our method is called Ex-
press Process Appraisal (EPA). As an ARC class-C method, the EPA method does not
provide any form of rating.

In a pilot appraisal programme, the EPA method has been used to appraise six
software development companies in Northern Ireland. The results of all six appraisals
indicate that for most of the process areas, most appraised companies perform at ei-
ther capability level 0 or 1. Details of the results of the six appraisals and the effec-
tiveness of the performance of the EPA method are detailed in another publication
[6]. The EPA method has been developed for assessing software processes with SMEs
organisations however it could also be used for performing initial process assessments
within larger organizations that have not previously embarked upon process assess-
ments, as it will provide such companies with recommendations as to how they may
improve their practices, as well as providing them with a starting point and a pathway
to improvement.

The intention of this paper is to describe the method, our experiences using it,
comparisons with other lightweight process appraisal methods, as well as our plans
and efforts to improve the EPA method.

Section 2 describes the EPA method, while section 3 discusses our experiences
with the method. Section 4 compares the EPA method against other lightweight proc-
ess assessment methods. Section 5 focuses upon our current work to improve the EPA
model and section 6 provides our concluding remarks.

SM SCAMPI is a service mark of Carnegie Mellon University.

288 F. McCaffery, D. McFall, and F.G. Wilkie

2 Express Process Appraisal

The development of the EPA method began in March 2003. Two members of the
CSPT staff initially attended the official ‘Introduction to CMMI®’ course and subse-
quently the ‘Intermediate Concepts of CMMI®’ course, both at the Software Engineer-
ing Institute. One of the CSPT staff also had team member experience on both CMM
and CMMI® appraisal teams led by fully (SEI) qualified Lead Assessors. A team of
five CSPT staff then started developing sets of stock questions from the CMMI®.
These stock questions enable us to ensure adequate coverage of the model during
questioning sessions. Many additional questions are asked as an interview proceeds,
based upon the answers provided to the stock questions.

2.1 Selecting Process Areas

After consulting local software companies one of the main objectives of the EPA
method was to confine the interview session to one working day. Therefore, when
developing the EPA method we decided to include six process areas as this was the
maximum number of process areas that could reasonably be covered within one work-
ing day. We then decided to select the six most appropriate process areas (to software
companies within Northern Ireland) at CMMI® maturity level 2 as the justification for
starting a process improvement exercise with them is already well established in that
they are present at the first level in the model. The following process areas were se-
lected: Requirements Management, Configuration Management, Project Planning,
Project Monitoring & Control, Measurement & Analysis, and Process & Product
Quality Assurance.

2.2 The EPA Appraisal Plan

The EPA method is divided into eight stages and the appraisal team consists of two
CSPT staff members who conduct the appraisal between them.

Stage 1 (Develop Appraisal Schedule) is the preliminary meeting to establish logis-
tics and determine the schedule. This meeting involves 2 CSPT staff and at least one
representative from the company. This meeting lasts approximately one hour. There-
fore 2 person-hours of CSPT time and at least 1 person-hour of company time are
normally required for this stage.

During stage 2 (Conduct Overview Briefing) the lead appraiser provides an over-
view of the method for all those from the appraised organisation who will be involved
in subsequent stages. This session is used to remove any concerns that individuals
may have and to establish codes of conduct and confidentiality. This overview session
involves 2 CSPT staff and on average 7 company staff (the number of company staff
involved depends upon the size of the company). The overview normally lasts 2
hours. Therefore 4 person-hours of CSPT time and 14 person-hours of company time
(based upon an average of 7 staff attending) are normally required for this stage.

Stage 3 (Site Briefing) is used by the appraised organisation to explain elements of
the company structures to the appraisal team. During this stage, the appraisal team
learn a little about the company’s history, the company’s business objectives and

 Improving the Express Process Appraisal Method 289

about the types of ongoing projects, along with the lifecycle stage that each project
has reached. This briefing involves 2 CSPT staff and on average 2 company staff
(once again the number of company personnel involved depends upon the size of the
company). The briefing normally lasts 2 hours. Therefore 4 person-hours of CSPT
time and 4 person-hours of company time (based upon an average of 2 company staff
attending) are normally required for this stage.

Stage 4 (Analyse Key Documents) provides a brief look at some samples of project
and organisational documentation. Five samples of documents are requested: a typical
project plan, a typical project progress report, a typical approved requirements state-
ment, company quality assurance guidelines/manual and finally any documentation
relating to the company policy on configuration management. The ARC class-C
guidelines do not require the EPA method to consider documentation. The EPA
method is required to consider “at least one source of data”. The primary source of
data for the EPA method is through a series of interviews conducted during stage 5.
The brief consideration of some sample documents during stage 4 is additional and
used mainly to craft further questions for stage 5. This stage involves 2 CSPT staff
and usually 1 member of company staff. This stage normally involves the company
member dedicating 1 hour to retrieving the requested documents. The 2 CSPT staff
performing the appraisal then each analyse this data for approximately 3 hours. There-
fore 6 person-hours of CSPT time and 1 person-hour of company time are normally
required for this stage.

The main part of the EPA method is stage 5 (Examine and Document Objective
Evidence). In this stage key staff members from the appraised organisation are inter-
viewed. There are 6 interviews. Each interview is scheduled to last approximately 1
hour. Each interview focuses on one of the 6 process areas. The interviews involve an
appraisal team consisting of 2 CSPT staff and at least one representative from the
company (on average 3 staff are involved) are present for each process area interview.
Therefore 12 person-hours of CSPT time and on average 18 person-hours (based on 3
company personnel being involved) of company time are normally required for this
stage.

Stage 6 (Generate Appraisal Results) and stage 7 (Create Final Report) are very
much a collaborative exercise between the appraisal team members. The final report
consists of a list of strengths, issues and suggested actions for each of the process
areas evaluated. Global observations covering all process areas are also covered.
Stages 6 and stage 7 each involve 2 CSPT appraisal team members collaborating
together for three hours. Therefore a total 12 person-hours of CSPT time is required
for both these stages.

Stage 8 (Presentation of the Findings Report) involves presenting the findings re-
port to the group of people in the appraised organisation who participated in the inter-
views. This presentation involves 2 CSPT staff and on average 7 company staff (this
depends upon the number of the company staff that participated in the appraisal). The
briefing normally lasts 1 hour. Therefore 2 person-hours of CSPT time and 7 person-
hours of company time (based upon an average of 7 staff attending) are normally
required for this stage.

290 F. McCaffery, D. McFall, and F.G. Wilkie

Overall, the EPA method requires approximately 45 person-hours of the appraised
organisation’s time and 42 person-hours of the CSPT appraisal team’s time. We nor-
mally try to complete the entire appraisal process over two elapsed weeks.

3 Experiences Using EPA

To date the EPA method has been used to appraise 6 separate organisations. Two of
these organisations fall into the ‘medium’ category of SMEs, employing between 60-
120 engineers. The other four organisations represent the ‘small’ category, having
between 10-45 software engineering staff.

The six process areas, mentioned earlier were confirmed as applicable to all com-
panies in our sample, prior to the appraisals taking place. On average one hour was
sufficient time to cover each of the process areas and all companies liked the fact that
the on-site assessment could be completed within one day.

The method involved two appraisal team members. During each of the interview
sessions, one of the team led the questioning while the other recorded notes. The
person leading the session had a PC based tool which enabled them to make snap
judgments about the interviewee responses to the questions by judging them on a
discrete set of values – Red (not practiced), Amber (partially practiced), Yellow
(largely practiced) and Green (fully practiced). In this way, the opinions of the ques-
tioner could also be recorded for subsequent review. A screen-shot from the tool is
presented in figure 1.

During stages 6 and 7, both appraisers discussed the findings and the spreadsheets
(within the tool) used to record snap judgments were revised. When both appraisers
were satisfied that the scores corresponding to each of the questions within the tool
were accurate, the tool produced histograms which proved very useful in judging
performance against CMMI® process area goals. The tool also produced histograms
for practices within goals, but these proved less useful as some CMMI® practices
resulted in more questions than others and therefore some practices were subject to
smoothing effects from multiple answers to a greater extent than others. This issue
was not present in the histograms that were produced for the goals as at the goal level,
there were always many answers to be consolidated.

The EPA method is designed as a lightweight assessment model to be used
within organisations that have very little experience of software process improve-
ment. The method relies heavily on information obtained from interviewing com-
pany personnel and performs limited cross-referencing checks (due to the limited
time available for data collection and analysis). As a result, this approach depends
on the willingness of the company to engage in software process improvement. It is
important that the company encourages it’s employees to answer interview ques-
tions in a truthful and helpful manner so that the resultant findings report will pro-
vide an accurate reflection of the company’s strengths and weaknesses within each
of the appraised process areas. The findings report contains a list of recommenda-
tions which each company must prioritise into an action plan based upon their goals
and aspirations.

 Improving the Express Process Appraisal Method 291

Fig. 1. Screen-Shot from the EPA Tool

4 Comparison with Other Lightweight Software Process
Assessment Methods

Process assessment methods generally draw upon one of two process models: (i)
ISO/IEC 15504 [7] and (ii) CMMI® [4]. Using each of these models there have been
many attempts to develop lightweight process assessment methods. For example,
RAPID [8], SPINI [9], FAME [10], TOPS [11], and MARES [12] are all lightweight
models that are based on the ISO/15504/5 reference model. With regard to the
CMMI®, the EPA method is an example of an ARC class-C compliant method.

Anacleto et al. [13] have considered lightweight process assessment methods for
small software companies. In their paper they provide criteria for comparing assess-
ment methods and have compared most of the methods mentioned above. The next
part of this paper will compare the EPA method against the other assessment methods
using criteria from the Anacleto et al. [13] comparison framework. The criteria they
use to compare assessment models are as follows:

292 F. McCaffery, D. McFall, and F.G. Wilkie

1. Low cost;
2. Detailed description of the assessment process;
3. Guidance for process selection;
4. Detailed definition of the assessment model;
5. Support for identification of risks and improvement suggestions;
6. Support for high-level process modeling;
7. Conformity with ISO/IEC 15504;
8. No specific software engineering knowledge required from companies’ representa-

tives;
9. Tool support;
10. Public availability.

4.1 Low Cost

After analysing the results of a survey we performed within the Northern Ireland
software industry [13] we realised that in order to encourage participation (particu-
larly in SMEs) within the local software industry that it was vital to minimise the cost
of performing an appraisal. Therefore the EPA method shares a commonality with the
assessment methods (RAPID, SPINI, TOPS and MARES) compared in Anacleto et
al. [13] in that it is inexpensive. The EPA method requires only approximately 45
person-hours of the appraised organisation’s time (if the organization is small, then
this figure will be even less) and 42 person-hours of the CSPT appraisal team’s time.

4.2 Detailed Description of the Assessment Process

The EPA method as in the cases of SPINI, TOPS and MARES provides a detailed
description of the assessment process.

4.3 Guidance for Process Selection

From the assessment methods compared within Anacleto et al. [13] no evidence was
available to suggest that any of them provide guidance for process selection. Like-
wise, the EPA method does not provide guidance as to what process areas should be
assessed as only six process areas have been defined and all are assessed within the
appraisal. This is similar to the RAPID assessment method as it also pre-defines eight
process areas. However as in the case of the MARES project the EPA method is being
enhanced to provide guidance for process selection. The EPA method will in the fu-
ture still provide a one day on-site assessment within six process areas however any
company wishing to engage in the appraisal will now be provided with twelve defined
process areas from which they may select the six process areas that will form the basis
of the assessment (this will be described further in section 5.2).

4.4 Detailed Definition of the Assessment Model

The EPA method like other assessment methods (RAPID, SPINI, TOPS & MARES)
compared in Anacleto et al. [13] provides a detailed definition of the assessment
model.

 Improving the Express Process Appraisal Method 293

4.5 Support for Identification of Risks and Improvement Suggestions

Most of the assessment methods (SPINI, FAME & TOPS) compared in Anacleto et
al. [13] provide support for the identification of risks and improvement suggestions,
with this feature also being currently developed in the MARES method. The EPA
method also fulfils this criteria. In stage 6 of the EPA method results are generated
with focus being placed on the risk present within each process area to achieving a
particular business goal. In stage 7 the findings report is developed to focus upon
strengths, risks and improvement opportunities within each of the assessed process
areas.

4.6 Support for High-Level Process Modeling

Most of the assessment methods compared in Anacleto et al. [13] are similar to the
EPA method in that they do not provide support for high-level process modeling. In
fact only one of the assessment methods (FAME) provide this feature with another
(MARES) currently developing this feature.

4.7 Conformity with ISO/IEC 15504

All of the assessment methods (RAPID, SPINI, FAME, TOPS & MARES) compared
in Anacleto et al. [13] are conformant with ISO/IEC 15504 whereas the EPA method
is compliant with the ARC 1.1 requirements for a CMMI® class-C method.

4.8 No Specific Software Engineering Knowledge Required from Companies’
Representatives

After performing a survey within the Northern Ireland software industry [3] we real-
ised that in order to encourage participation (particularly in SMEs) within the local
software industry that it was vital to minimise the overhead on the company engaging
in the appraisal. It was therefore important to design an appraisal method that could
be performed within an organisation without the assessment participants from the
company having to firstly undergo a training programme in relation to the assessment
model. Three of the assessment methods (RAPID, SPINI & MARES) compared in
Anacleto et al. [13] also do not require the assessment participants to have specific
knowledge of the assessment model. However the FAME and TOPS assessment
methods require the assessment participants to have specific knowledge of the as-
sessment model.

4.9 Tool Support

Tool support for the assessment methods compared in Anacleto et al. [13] appears to
vary with the SPINI and FAME assessment methods having tools to assist with data
collection, analysis and rating. Tool support is currently being developed for the
MARES method. However, the RAPID and TOPS assessment methods do not include
tool support and therefore depend upon paper forms. The EPA method provides tool
support but also relies upon paper forms so that both assessors may compare data

294 F. McCaffery, D. McFall, and F.G. Wilkie

when preparing the findings report (one assessor uses the tool and the other assessor
captures the interview responses using pen and paper).

4.10 Public Availability

Only two of the assessment methods (TOPS & MARES) compared in Anacleto et al.
[13] are publicly available. The EPA assessment method is not publicly available.

In general the EPA method fulfils most of the criteria outlined by Anacleto et al.
[13] and only failed to satisfy the categories of supporting high-level process model-
ing and making the method available publicly (at present we have no plans to add
either of these features to the EPA method). In terms of comparison with the other
assessment methods the EPA method appears to satisfy as many of the categories
outlined by Anacleto as any of the other assessment methods. However we feel that
the EPA method could be improved and the next section describes improvements that
we are currently implementing.

5 Improving Existing Lightweight Assessment Models

From our initial work with the EPA method and comparing it with other lightweight
assessment methods we have made a number of observations in terms of how to im-
prove these methods. These are as follows:

1. Provide more sophisticated tools
2. Provide greater choice in terms of process areas

This section describes how we are currently incorporating these new features into
the EPA method.

5.1 Provide More Sophisticated Tools

5.1.1 Introducing Speech Recognition Technology
We are currently trying to improve the effectiveness of the EPA method by automat-
ing some of the tasks that are performed by assessment teams through introducing a
speech recognition and parsing system into process assessments. Although the as-
sessment procedure was found to be generally satisfactory, the CSPT assessment team
had some reservations in that the mechanics of the EPA method itself are very basic
and suffer from a number of potential weaknesses:

The assessment team consists of two members. One member leads the interview
within each of the process areas and makes an initial judgment as to whether a ques-
tion relating to a specific CMMI® practice for that process area has been fulfilled:
“Fully”, “Largely”, “Partially” or “Not at all”. The other team member is then respon-
sible for making notes based on the responses to the questions posed within the inter-
view. This presents a number of issues in that some questions invoke lengthy re-
sponses and this creates a problem for the note-taker. Do they try to write-down every
response verbatim, or try to understand a series of responses and then summarise
based upon their understanding. The following issues may arise:

 Improving the Express Process Appraisal Method 295

1. It is difficult for the note-taker to record in full detail the responses given to inter-
view questions during the assessment. The volume of notes is often prohibitive and
with the necessity to use qualified staff during the assessment, the option of using a
person with short-hand skills is impractical.

2. Where the note-taker summarises their understanding of the responses made, it is
possible that some important details go unrecorded. Further, the assessment then
becomes dependent on the note-taker’s proper understanding of the responses
made. Simply taping the responses for later review is not practical given the time
constraints on the assessment deliverables.

To create the findings report the assessment team review the handwritten notes ob-
tained from the process area interviews and search for evidence that can be mapped
against appropriate parts of the CMMI® model. This can be quite a time-consuming
process that involves serially going through each specific practice within the CMMI®
model and scanning the documentation for evidence. As the CMMI® contains a large
number of practices this can be quite a long and tedious task. In an attempt to resolve
these issues, the CSPT is currently engaged in a project to introduce speech recogni-
tion technology into software process assessment interviews. The project is composed
of two phases.

Phase 1: This phase captures speech during the EPA interviews and produces an-
swers to assessment questions in the form of text. This will help resolve the problems
highlighted in issue 1, by removing the need for a note-taker. We are currently inves-
tigating the most appropriate hardware configuration and we are hoping to resolve the
difficulties of distinguishing between speakers where more than one person attempts
to speak at the same time.

Phase 2: This phase enables the output from the previous phase (i.e. the text captured
at EPA interviews) to be parsed for keywords. Then evidence may be categorised and
mapped to appropriate sections of the CMMI® model. This phase will help resolve the
problems highlighted in issue 2, by automatically mapping the responses to the model
based framework.

As no official benchmark is provided, these class C assessments provide an appro-
priate vehicle to use for trialing this technology. Also until we are satisfied with the
performance of the project we will operate a dual system, with speech recognition
technology plus note-taking both being present. Despite the initial overhead of having
to use both capture techniques it is hoped that this will serve three purposes. Firstly, it
will de-risk the assessment in case of technology failure due to the prototype nature of
the system. Secondly, it will enable more thorough information to be captured as the
note-taker’s comments will be re-enforced by the text produced from phase 1 and the
mappings from phase 2, so no evidence should be omitted or misinterpreted. Thirdly,
the dual capture mechanism will enable us to assess how effective the speech recogni-
tion system is in comparison to note-taking. Results and feedback received from this
exercise will also enable us to fine-tune the performance of the project. Finally, when-
ever we are satisfied with the performance of the speech recognition and parsing
system, assessment may then be performed without the need for a note-taker. This

296 F. McCaffery, D. McFall, and F.G. Wilkie

would then mean that such assessments could be performed by one person and there-
fore reduce the expense of the assessment.

This speech recognition and parsing system project could reduce the error-prone
and tedious aspects of the EPA method and therefore improve the effectiveness of
such assessments, whilst reducing some of effort required by the assessment team.

5.1.2 Providing On-line Re-assessment Support
This section describes an on-line tool that is currently being developed within the
CSPT to enable software development organisations to perform a self-assessment of
selected process areas. As a result of an EPA the software development organisation
receives a findings report. The findings report consists of a list of strengths, issues and
suggested actions for each of the assessed process areas. The suggested actions detail
how the company may improve their processes in line with their business goals. It
would then be desirable if periodic appraisals could be performed within selected
process areas to help determine if the capability for each process area has increased
over time by following the improvement suggestions provided by the CSPT assess-
ment team. However, as the Northern Ireland software industry is mainly composed
of SMEs software development companies, it would be costly, both in terms of finan-
cial expense and time for such companies to engage in regular EPAs with the CSPT
assessment team. Therefore as the main purpose of the CSPT is to instill a software
process improvement culture into the Northern Ireland software industry an alterna-
tive solution had to be devised. After considering a number of alternatives it was
decided that the most favourable approach was to develop an assessment tool that
would enable companies to perform periodic “self re-assessment” of their software
processes. We have developed a prototype of the tool that fulfils the following re-
quirements:

1. Companies are assigned unique passwords and are able to access the tool upon
demand;

2. Little preparation is required prior to performing an assessment;
3. The assessment may be performed in an informal manner;
4. The tool is web-based so that it may be easily distributed to many companies;
5. The tool provides full coverage of each process area;
6. A company may only access process areas that they have previously been ap-

praised in by the CSPT assessment team;
7. The questions within each process area are multiple choice and the possible an-

swers are expressed in a manner that does not require an understanding of the
CMMI® model. However, a facility is also provided that enables users to enter a
natural language answer if they feel that none of the options fully equate to their
response. A member of the CSPT assessment team then receives this response and
makes a judgment;

8. It is possible to complete a process area assessment in isolation from other process
areas;

9. Records of each assessment are stored and used to monitor process improvement
over time. This information is also accessible to the CSPT so that empirical soft-
ware process improvement information may be compiled.

 Improving the Express Process Appraisal Method 297

5.2 Provide Greater Choice in Terms of Process Areas

The lightweight assessment models mentioned in this paper provide a very limited set
of process areas from which a company may select process areas that will be assessed.
In fact for most of the assessment methods the process areas are pre-defined and
choice is therefore not provided. From performing the pilot of the EPA method with
six local SMEs we noted that for some companies additional process areas would
have been applicable given the business goals of those companies. We are therefore
currently expanding the EPA method from containing the six process areas of Re-
quirements Management, Configuration Management, Project Planning, Project
Monitoring & Control, Measurement & Analysis and Product & Process Quality
Assurance to provide twelve process areas. The six additional process areas are Risk
Management, Technical Solution, Verification, Validation, Requirements Develop-
ment and Product Integration. A team of 5 CSPT staff have developed sets of stock
questions from the CMMI® for these additional six process areas that may be used
within future EPAs.

In addition to the development of the additional six process areas stage 1 of EPA
method will now also involve advising the company representatives as to how each of
the process areas will assist them in meeting their business goals. Additionally, stages
1 and 3 are being enhanced to assist the company in selecting which of the available
process areas should be assessed in order to provide the most benefit to the company.
If the company decides that it wishes for more than the standard six process areas to
be assessed then the assessment schedule will have to be extended, however our pre-
ferred option is to limit the assessment to six process areas as this enables the inter-
views to be completed within 1 day.

6 Conclusion

In this paper, we described the EPA method for the lightweight assessment of
software processes within small software development companies in conformance
with the ARC 1.1 guidelines for a CMMI® class-C method. We then compared the
EPA method with similar lightweight process assessment methods. Next we high-
lighted how such lightweight process assessment methods may be enhanced. Fi-
nally, we described how we are implementing our improvement suggestions into the
EPA method. Future research will be required to assess to what extent adopting
more sophisticated tools and a greater choice of process areas improves the EPA
method.

Acknowledgements

The Centre for Software Process Technologies at the University of Ulster is supported
by the EU Programme For Peace And Reconciliation in Northern Ireland and The
Border Region Of Ireland (PEACE II).

298 F. McCaffery, D. McFall, and F.G. Wilkie

References

1. The Centre for Software Process Technologies, University of Ulster, www.cspt.ulster.
ac.uk.

2. Wilkie, F.G., McFall, D. and McCaffery, F. “The Centre for Software Process Technolo-
gies: A model for process improvement in geographical regions with small software indus-
tries”, in proceedings of 16th Software Engineering Process Group Conference (2004), 8-
11 March, Orlando, Florida, 5 pages.

3. McFall, D., Wilkie, F.G. McCaffery, F. Lester, N.G. and Sterritt, R. “Software Processes
and Process Improvement in Northern Ireland”, 16th International Conference on Software
& Systems Engineering and their Applications, Paris, France, December 2003, ISSN:
1637-5033, p1-10.

4. “The Capability Maturity Model: Guidelines for Improving the Software Process”, by
Carnegie Mellon University Software Engineering Institute, Addison Wesley Longman,
(1994), ISBN 0-201-54664-7.

5. “Appraisal Requirements for CMMI, Version 1.1 (ARC, V1.1)” by the CMMI Product
Team, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA. Tech-
nical Report CMU/SEI-2001-TR-034, ESC-TR-2001-034, pp1-49, (2001).

6. F.G. Wilkie, D. McFall & F. Mc Caffery, “An Evaluation of CMMI Process Ar-
eas for Small to Medium Sized Software Development Organisations” accepted
for publication in Software Process Improvement and Practice Journal: Issue 10:
2, 2005. Wiley Publishers.

7. ISO/IEC 15504-3:2004 - Information technology - Process assessment - Part 3: Guidance
on performing an assessment

8. Rout, T.P, Tuffley, A, Cahill, B, Hodgen, B. “The RAPID Assessment of Software Proc-
ess Capability”, in Software Process Improvement, ed. R.B. Hunter and R. Thayer, IEEE
Computer Society Press, Los Alamitos, California, 2001.

9. Makinen, T, Varkoi, T, Lepasaar, M. “A Detailed Process Assessment Method for
SMEs’”, EuroSPI 2000.

10. FAME (Fraunhofer Assessment MEthod) –“A Business-Focused Method for Process
Assessment”, Fraunhofer Institute Experimentelles Software Engineering. http://
www.iese.fraunhofer.de/fame

11. Cignoni, GA. “Rapid software process assessment to promote innovation in SME’s.”, Pro-
ceedings of Euromicro 99, Italy, 1999.

12. Anacleto, A, von Wangenheim, CG, Salviano, CF, Savi, R. “A method for Process As-
sessment in small software companies”, 4th International SPICE Conference on Process
Assessment and Improvement, Lisbon, Portugal, pp.69-76 (April 2004).

13. Anacleto, A, von Wangenheim, CG, Salviano, CF, Savi, R. “Experiences gained from ap-
plying ISO/IEC 15504 to small software companies in Brazil”, 4th International SPICE
Conference on Process Assessment and Improvement, Lisbon, Portugal, pp.33-37 (April
2004).

Relation Analysis Among Patterns on Software
Development Process

Hironori Washizaki1, Atsuto Kubo2, Atsuhiro Takasu1,
and Yoshiaki Fukazawa2

1 National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

{washizaki, takasu}@nii.ac.jp
2 Department of Computer Science, Waseda University,

3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
a.kubo@fuka.info.waseda.ac.jp

fukazawa@waseda.jp

Abstract. The activity of the software process improvement can be sup-
ported by reusing various kinds of knowledge on existing successful soft-
ware processes in the form of process patterns. There are several catalogs
of process patterns available on WWW; however, all of relations among
patterns are closed in each pattern catalog. To acquire the cross-cutting
relations over the different process pattern catalogs, we have applied the
technique for the automatic relation analysis among the patterns. Our
technique utilizes existing text processing techniques to extract patterns
from documents and to calculate the strength of pattern relations. As a
result of experimental evaluations, it is found that the system implement-
ing our technique has extracted appropriate cross-cutting relations over
the different process pattern catalogs without information on relations
described in original pattern documents. These cross-cutting relations
will be useful for dealing with larger problems than those dealt with by
individual process patterns.

1 Introduction

In the activity on software process improvement, we use various types of knowl-
edge such as well-known successful organizational structures, successful exist-
ing development processes, and successful techniques for project management.
If we can share and reuse such existing experience-based proven knowledge
(i.e. know-how), we will be able to achieve more efficient software process im-
provement. One of sharing and reusing methods to express such knowledge is
to describe the knowledge used in defining software processes as a software
pattern.

A process pattern is a software pattern that describes a proven and success-
ful approach for developing software[1]. Several catalogs of patterns regarding

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 299–313, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

300 H. Washizaki et al.

software process are available in public on the World Wide Web (WWW) and in
other resources, such as the business process reengineering pattern language[2],
the development process generative pattern language[3, 4], and the process im-
provement patterns[5]. However, all of relations among provided process pat-
terns are closed in each pattern catalog. Therefore, users of available process
patterns can just reuse each process pattern in the context defined in each cat-
alog. In other words, users cannot seamlessly reuse two or more process pat-
terns that belong to the different catalogs. Some researchers have claimed that
cross-cutting pattern relations over the different catalogs are not useful because
the context that each of catalogs assumes might be different[6]; however, there
is no experimental evidence for that claim. Therefore, there might be a use-
ful cross-cutting relation, which is not explicitly described in original pattern
documents.

The relation analysis among process patterns involves determining the rela-
tion among two or more patterns, and obtaining the set of patterns that relates
mutually. The purpose of the analysis is to obtain a combination of patterns. A
combination of patterns can deal with larger problems than individual patterns
can. Moreover, two or more solutions with different constraints might exist for
the same problem. Therefore, a variety of patterns giving a solution to a certain
problem can exist. In this case, the user/developer should select the best pat-
tern according to the constraints. At this time, the user wants to obtain many
patterns that can be applied to the target problem. Therefore, it is important
to analyze the relations among patterns.

There are several approaches for analyzing relations among patterns by hand,
such as [7] [8] [9]. However, conventional approaches have only used the small
number of patterns. There are difficulties in the following activities associated
with the manual analysis (i.e. analyzing by hand).

– Analyzing the relations among a large number of patterns.
– Directly comparing patterns in different pattern forms with each other.
– Directly comparing patterns published in different catalogs with each other.

The relation analysis among a large number of patterns by hand is not realis-
tic. An automatic approach that can be applied to a large number of patterns is
required; however, to the best of our knowledge, there is no approach for auto-
matic relation analysis. Moreover, none of the conventional manual approaches
has been applied to process patterns.

In this paper, we have applied our technique for the automatic pattern re-
lation analysis[10] to several process patterns that are collected manually from
WWW, in order to acquire the cross-cutting relations over the different pro-
cess pattern catalogs. Our analysis technique can treat major pattern forms
and various process patterns belonging to different catalogs, by using a com-
mon pattern model and several text processing techniques (such as stop-word
removal[11], stemming[12], the TF-IDF term weighting method[13], and vector
space model[11]).

Relation Analysis Among Patterns on Software Development Process 301

2 Pattern Documents and Process Patterns

In this section, we introduce several terminologies regarding software patterns,
and explain process patterns.

2.1 Pattern Documents and Their Structures

One software pattern consists of the context, forces, and solution[14]. Context
refers to the situation and problem that appear repeatedly in each phase of
the software development. Forces describe constraints that should be considered
when the pattern is applied. Solution refers to a concrete procedure to solve the
corresponding problem.

The pattern document is the document in which a pattern is described. The
pattern form specifies the kind of information described in the pattern document
and the structure of the pattern document. Table 1 shows two different pattern
forms. The pattern catalog is a set of pattern documents which concerns the
same area and written in the same format. The pattern application is solving the
problem in according to the solution.

Table 1. Well known pattern forms

Pattern form Set of headings
GoF Form [7] fGoF = { Pattern Name, Classification, Also Known As,

Motivation, Applicability, Structure, Particiants, Collabora-
tions, Consequences, Implementation, Sample Code, Known
Uses, Related Pattern }

PoSA Form [14] fPoSA = { Name, Also Known As, Examples, Context, Prob-
lem, Solution, Structure, Dynamics, Consequences, Imple-
mentation, Sample Code, Known Uses, Related Pattern }

In the pattern document, according to the examples of a number of well
known pattern forms, the headings and bodies appear alternately. A section is
a combination of a heading and a body that appears next to the heading. We
denote H as a set of headings, and B as a set of bodies. Then, Section s is
defined as follows:

s = (h, b), h ∈ H, b ∈ B.

For a set S of sections, a pattern document d is defined as follows:

d = {s1, s2, . . . , sn}, s1, s2, . . . , sn ∈ S.

For example, Figure 1 is a pattern document which describes the Command
pattern of the Gang of Four (GoF) ’s design patterns[7]. Figure 2 shows the
same pattern document in HTML. This pattern document contains six sections,
such as Name, Motivation, Applicability, Collaborations, Consequences, and Re-
lated Patterns. The section Related Patterns specifies the related patterns, which
usually belong to the same catalog as that of the target pattern.

302 H. Washizaki et al.

Fig. 1. Example of a software pattern document

Fig. 2. Example of a software pattern in HTML format

This pattern document follows the GoF form. In the pattern document of
Figure 1, the context is described in the section ”Intent”, the force is described
in the section ”Force”, and the solution is described in the section ”Solution”.
Thus, the kind of information described in a given pattern form is determined
by the particular set of headings of that pattern form. Therefore, a pattern form
f containing m headings is defined as follows:

f = {h1, h2, . . . , hm}, h1, h2, . . . , hm ∈ H.

Relation Analysis Among Patterns on Software Development Process 303

2.2 Process Patterns

A process pattern is a software pattern which describes a proven, successful
approach and/or series of actions for developing software[1]. Several catalogs of
process patterns are available in public on WWW and in other resources, such as
the Ambler’s process patterns[1, 15], the business process reengineering pattern
language[2] and the development process generative pattern language[3, 4].

In [3, 4], 43 process and organization structure patterns underlying successful
and highly productive projects describe proven and successful approaches for
organizing and managing people involved with the software process. Organiza-
tional structure patterns and process patterns go hand in hand and should be
used together[1]. These patterns can be used to establish organizational struc-
tures and practices that will improve the prospects for success in a new software
development organization[4].

In [2], 31 business process patterns captured in hyper-productive and adapt-
able companies have been described. These patterns can be used to design a
new order of organization that relies on the infiltration of software applica-
tions and other technologies as an enablers of the core business processes of the
organization[2].

For example, Figure 3 is one of process patterns described in [4]. This pattern,
named Size the Schedule, provide a proven know-how regarding the decision of
schedules. Figure 4 is one of organization structure patterns described in [4].
This pattern, named Conway’s Law, provide a proven know-how regarding the
decision of organization structures.

Regarding the available process pattern catalogs, such as [3, 4, 5, 2, 1, 15], all
of relations among provided process patterns are closed in each catalog. There-

Fig. 3. Example of a process pattern in [4]

304 H. Washizaki et al.

Fig. 4. Example of an organization pattern in [4]

fore, users cannot seamlessly reuse two or more process patterns that belong to
the different catalogs. Moreover, users cannot easily compare process patterns
provided by different catalogs with each other.

3 Automatic Relation Analysis

In this section, we will briefly explain our technique for the automatic relation
analysis among the pattern documents[10].

3.1 Pattern Model

The context obtained by applying a pattern sometimes includes a problem sup-
ported by another pattern[14]. Here, we call the context before the pattern ap-
plication ”starting context”. Similarly, we also call the context after the pattern
application ”resulting context”. Therefore, we assume that a pattern application
is a context transition from a starting context to a resulting context.

In addition, we include a force in the model because two patterns that dif-
fer only in terms of forces are considered different patterns. For example, the
Adapter Class pattern[7] (shown in Figure 5) and the Adapter Object pattern[7]
(shown in Figure 5) are similar in terms of starting context and resulting context.
The starting contexts are similar in terms of mismatched interfaces (mismatch
between Target.request() and Adaptee.specificReq()), and the resulting
contexts are similar in terms of adaptation of the interface by interface conver-
sion. However, there are the following differences in terms of force.

Relation Analysis Among Patterns on Software Development Process 305

Fig. 5. Structure of Adapter Class pattern

Fig. 6. Structure of Adapter Object pattern

Starting Context Resulting Context

Force

PatternPattern

Fig. 7. Our pattern model

– In the Adapter Class pattern, combination among classes and reusability of
the code increases.

– In the Adapter Object pattern, combination among classes and reusability of
the code decreases.

We model the pattern with a labeled directed graph that illustrates a flow
of the pattern application (Figure 7). The starting node is the starting context,
the terminal node is the resulting context, and the label at the edge indicates
force.

Formally, for a context set C = {c1, c2, . . . , cn}, pattern p is defined as follows:

p = (ci, cj , λk), ci, cj ∈ C, i �= j, λk ∈ Λ.

The graph shown in Figure 8 illustrates a context transition system. We
call this graph ”Pattern Relation Graph” (PRG). A PRG visualizes the related
pattern set. For a context set C, a pattern set P , and a force set Λ, PRG is
defined as follows:

306 H. Washizaki et al.

Fig. 8. Example of PRG extracted from Design Patterns[7]

PRG = (C,P,Λ).

If a node in a PRG is shared in multiple edges, it means that multiple patterns
are sharing the same context. We consider three types of relations between two
patterns as follows:

Starting–Starting: When the starting contexts of two patterns are similar, the
two patterns share the same node as a starting context in the PRG. Thus, they
provide different solutions to the same problem.
Resulting–Resulting: When the resulting contexts of two patterns are similar,
the two patterns share the same node as a resulting context in the PRG. Thus,
they provide similar results for pattern application.
Resulting–Starting: When the resulting context of a certain pattern p1 and
the starting context of another pattern p2 are similar, we can apply p2 after p1.
The node that is the resulting context of p1 and the node that is the starting
context of p2 are mapped to the same node in the PRG.

3.2 Analysis Procedure

Figure 9 shows an overview of the analysis procedure in our technique. Many
pattern documents that exist on the World Wide Web (WWW) are described
using HTML. Therefore, our technique targets pattern documents described with
HTML.

The outline of the proposed analysis procedure is as follows. First, the input
pattern document is analyzed, and sections are extracted from the document
in the HTML Analysis block. Next, the form of the input pattern document
is judged in the Pattern Form Judgment block. Third, the pattern is obtained
from the sections according to the judged pattern form in the Pattern Extrac-
tion block. Finally, the relations between patterns are analyzed in the Relation
Analysis block.

HTML Document Analysis. In the HTML analysis, an HTML analyzer is
used to analyze the structure of the pattern document, and it obtains sections.
In the pattern document described with HTML, headings and bodies are often

Relation Analysis Among Patterns on Software Development Process 307

Fig. 9. Overview of analysis procedure

clearly marked up. Then, the document is automatically analyzed by defining
the tag set corresponding to the markup policy for the document.

– Tags that mark headings up (for example: ,<h2>)
– Tags that mark bodies up (for example:<p>, , <dt>, and <dd>, etc.)

The HTML analyzer is a finite state machine that has three states: empty,
heading, and body. The initial state of the analyzer is empty state. The appear-
ance of a specified HTML tag changes the state of the analyzer. In the heading
state, the analyzer treats an appeared partial document as a heading. Similarly,
in the body state, the analyzer treats an appeared partial document as a body.
In the empty state, the analyzer discards an appeared partial document. By the
above-mentioned procedures, sections (pairs of a heading and a body) can be
extracted from the HTML document.

For example, we specify the <h2> tag for headings and the and <p>
tag for bodies, and input the pattern document of Figure 2. First, the analyzer
discards from the first to the fourth line. Next, the analyzer goes into the heading
state, in the <h2> tag of the fifth line. When the partial document ”Name”
appears, the analyzer treats that as a heading. Then, because the <p> tag
appears in the sixth line, the analyzer goes into the body state. The analyzer
treats the partial document ”Command” as a body, at the <h2> tag in the sixth
line. The analyzer again goes into the heading state, and treats the appeared

308 H. Washizaki et al.

Table 2. Correspondence between sections and patterns

Section Corresponding element of pattern
Pattern Name -

Intention Starting Context
Motivation Starting Context

Applicability Force
Solution -

Consequences Resulting Context
Resulting Context Resulting Context
Related Patterns -

partial document ”Motivation” as a heading. The analyzer goes into the body
state at the <p> tag in the eighth line. The analyzer treats the partial document
of ”Encapsulate a . . .” as a body. Finally, the analyzer obtains six sections.

Pattern form Judgment. Because the extracted sections follow an uncertain
pattern form, it is necessary to judge the pattern form. In our technique, we
design the measurement that expresses the adaptability between the pattern
document and pattern forms.

The pattern form is defined as a set of headings. We define h(d) as a set of
headings of the pattern document d. We define ad(d, f) as the form adaptability
of d for the pattern form f .

ad(f, d) =
f ∩ h(d)
f ∪ h(d)

.

To equate the inflected words such as ”Intent” and ”Intention”, we perform
stemming previously, using the algorithm proposed by Paice [12].

For example, we calculated form adaptability between the Command Pattern
document (Figure 2) and each pattern form of Table 1. We obtained the following
results: ad(dc, fPoSA) = 0.105 and ad(dc, fGoF) = 0.538. Therefore, this pattern
document is most likely to be GoF Form.

Pattern Extraction. The extracted sections are converted into a pattern.
The pattern form specifies the kind of information described in the pattern

document. Therefore, each section is mapped to the element of pattern, or dis-
carded. If the correspondences are defined in each pattern form, the pattern can
be obtained from the sections.

For example, the section ”Consequences” in the GoF form corresponds to
the resulting context, and the section ”Motivation” corresponds to the starting
context. Correspondence is defined in Table 2.

Analysis of the Relation Between Patterns. To analyze the relations
among patterns, we obtain the relations among the partial documents in the
pattern. The technique for document similarity analysis is matured. Therefore,

Relation Analysis Among Patterns on Software Development Process 309

we obtain the relation among patterns using the similarity among the partial
documents of the patterns.

First, partial documents are taken out of two patterns being analyzed accord-
ing to the type of relation. Next, the similarity between two partial documents
is calculated. We consider that similarity indicates the strength of the relation
between two patterns. All of those relations are sorted by the strength of the
relations. We consider that the relations higher than a certain specific rank are
realistic. We call this rank threshold.

The degree of similarity between two partial documents is calculated by using
the vector space model of the weighting by the TF-IDF method [13]. We suppose
P is a set of patterns which contains N patterns. Then, stemming [12] and stop
word removal [11] are applied to the words included in the pattern of P . The
list of the words T is obtained because of processing. Because the pattern is a
combination of three partial documents, the total number of partial documents
is 3N . Let ts(s, t) denote the frequency of the word t∈T in a partial document
s, and df(t) denote the number of partial documents that contain the word t.
At this time, the weighting of the word t in the partial document s is defined as
follows.

w(s, t) = tf(s, t)(log 2
3N

df(t)
+ 1).

Using the word weight, the document vector is designed as

tv(s, T) = (w(s, t1), w(s, t2), ..., w(s, tm)),

where t1, t2, . . . , tn are words in T . Then, we define the similarity between the
partial documents s1 and s2 as follows.

sim(s1, s2) =
tv(s1, T)·tv(s2, T)
tv(s1, T) tv(s2, T)

.

We calculate the similarity of any pair of patterns, and extract the pairs
whose similarity is more than pre-designed threshold as related patterns. Then,
we let the corresponding nodes share the same node. Finally, we obtain a PRG
like that shown in Figure 8.

4 Experiments in Process Patterns

We implemented a system that automatically executes this analysis process, and
performed an experimental evaluation for a number of process pattern documents
belonging to two catalogs.

As evaluation examples, we used 43 process and organization pattern docu-
ments in [16] (same documents in HTML as those in [4]) and 31 business process
pattern documents in [17] (same documents in HTML as those in [2]). By calcu-
lating the strength of the relation among all of combinations of 74 example doc-
uments, we tried to extract cross-cutting relations over the two process pattern

310 H. Washizaki et al.

catalogs. The strongest relation of three types (Starting–Starting, Resulting–
Resulting, and Resulting–Starting) per combination has been assumed as the
representative relation.

For the relations extracted in the experiment, Table 3 shows the strength
of relation and type of the relation for extracted cross-cutting relations. De-
scribed cross-cutting relations are sorted in order from the largest of each re-
lation strength. Regarding the relation type, S − S denotes the pattern p1’s
starting context and the pattern p2’s starting context are similar, R−R denotes
p1’s resulting context and p2’s resulting context are similar, and, R− S denotes
p1’s resulting context and p2’s starting context are similar.

In Table 3, all of cross-cutting relations are not explicitly described in orig-
inal pattern documents; however, we think many of these relations are valid
since both of [16] and [17] deal with enterprise-level organization structures. For
example, the obtained result suggests that the context after Conway’s Law[16]
has been applied is similar to that after Encourage Productive Values has been
applied, although these patterns are different regarding problems that these pat-
terns deal with. This cross-cutting relation is valid because of the following
reasons:

– The application of Encourage Productive Values will change the values of
the target organization from protective to productive. The organizational
productive values include the productivity.

Table 3. Extracted crosscutting relations among process patterns (Top 20)

Rank Pattern p1 Pattern p2 Strength Type
1 Conway’s Law Encourage Productive Values 0.385 R − R
2 Conway’s Law Process Team 0.368 R − S
3 Model Office Aesthetic Pattern 0.317 R − R
4 Promote On Ability Domain Expertise in Roles 0.311 R − R
5 Case Application Application Design is Bounded By Test Design 0.295 R − S
6 Learning Organization Organization Follows Market 0.292 R − S
7 Compensate Results Organization Follows Market 0.292 R − S
8 Enterprise Architecture Mercenary Analyst 0.292 S − S
9 Learning Organization Self Selecting Team 0.291 R − S

10 Compensate Results Self Selecting Team 0.291 R − S
11 Enterprise Architecture Application Design is Bounded By Test Design 0.281 S − S
12 Aesthetic Pattern Encourage Productive Values 0.281 R − R
13 Enterprise Architecture Architect Also Implements 0.255 R − S
14 Conway’s Law Enterprise Architecture 0.239 R − S
15 Business Architect Conway’s Law 0.229 R − S
16 Organization Follows Location Learning Organization 0.227 R − R
17 Organization Follows Location Compensate Results 0.227 R − R
18 Divide and Conquer Vision Statement 0.227 S − S
19 Aesthetic Pattern Promote On Ability 0.227 R − S
20 Minimal Reconciliation Mercenary Analyst 0.227 S − S

Relation Analysis Among Patterns on Software Development Process 311

Fig. 10. PRG extracted from process/organization structure patterns belonging to
different catalogs

– The application of Conway’s Law will improve the target organization’s pro-
ductivity according to architectures of developing products.

Figure 10 shows the obtained PRG, which visualizes a part of results shown
in Table 3. The obtained PRG suggests several useful cross-cutting relations,
which are not explicitly noticed in original pattern documents. For example:

– After Conway’s Law has been applied, each of three patterns (Enterprise
Architecture, Promote On Ability, or Process Team) can be applied continu-
ously. Users of our system can easily compare these three patterns by seeing
forces described in each pattern document, and select one of these patterns.
Such pattern combination deals with larger problems than those dealt with
by individual process patterns.

– Conway’s Law, Aesthetic Pattern, and Encourage Productive Value derive
similar application results.

These cross-cutting relations will be useful for dealing with larger problems
than those dealt with by individual process patterns by reusing two or more
process patterns that belong to the different catalogs. Moreover, users of our
system can easily compare process patterns belonging to different catalogs by
observing the obtained PRG such as Figure 10.

5 Related Work

Ong et al. designed the relations among forces, such as ”Helps”, ”Hurts”[8]. They
attempted to systematize patterns based on the relations between forces. Our
technique can treat those relations automatically.

Borchers modeled a pattern as a list of sections[18]. This is common with
our technique in that we design the pattern as a combination of sections. In

312 H. Washizaki et al.

addition, Acosta and Zambrano are trying to show a concrete pattern set as a
directed graph based on the Borchers’ model [19]. Borchers’ model can carry
precise information. However, we customized the pattern model by discarding a
part of the information in order to obtain the flow of the pattern application.

Zimmer designed three types of relation among the GoF’s design patterns[9].
Specifically, a consecutive application relation and a similar relation were in-
dicated. The GoF’s design patterns are systematized on a basis of the above-
mentioned relation. Our pattern model can treat these relations automatically.

6 Conclusion and Future Work

We have applied the automatic pattern relation analysis to several process pat-
terns to acquire the cross-cutting relations over the different process pattern
catalogs. As a result of experiments, we succeeded in the analysis of the ap-
propriate cross-cutting relations among process patterns without using explicit
information in the pattern document. The system that implements our tech-
nique can suggest the relations that original pattern authors have not noticed.
Using our system, users can seamlessly reuse two or more process patterns that
belong to the different catalogs. Moreover, users can easily compare process pat-
terns provided by different catalogs with each other. Our technique is expected
to contribute the activity of retrieving process patterns. By using the results of
analysis as a process pattern repository, a system of highly accurate retrieval for
process patterns can be developed.

In the future, we have a plan to improve the precision of our system by
applying natural-language processing technology in the future. Moreover, we will
conduct large-scale experiments for evaluating usability of our relation analysis
technique under a real process improvement activity.

References

1. Scott W. Ambler. Process Patterns: Building Large-Scale Systems Using Object
Technology. Cambridge University Press, 1998.

2. Michael Beedle. Pattern Based Reengineering. Object Magazine, January 1997.
3. James O. Coplien. A Development Process Generative Pattern Language. Pattern

Languages of Program Design, Vol. 1, pp. 183–237, Addison-Wesley, 1995.
4. James O. Coplien. A Generative Development Process Pattern Language. In Linda

Rising. The Patterns Handbook: Techniques, Strategies, and Applications, pp. 243-
300, Cambridge University Press, 1998.

5. Brad Appleton. Patterns for Conducting Process Improvement. Proc. 4th Confer-
ence on Pattern Languages of Programs (PLoP’97), 1997.

6. Tiffany Winn and Paul Calder: Is This a Pattern?, IEEE Software, Vol. 19, No. 1,
pp. 59–66, 2002.

7. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

Relation Analysis Among Patterns on Software Development Process 313

8. Han-Yuen Ong, Michael Weiss, and Ivan Araujo. Rewriting a Pattern Language
to Make it More Expressive. Proc. 6th Southwestern Conference on Pattern Lan-
guages of Programs (ChiliPLoP2003), 2003.

9. Walter Zimmer. Relationships between Design Patterns. In Pattern Languages of
Program Design, Vol.1, Addison-Wesley, pp. 345–364, 1995.

10. Atsuto Kubo, Hironori Washizaki, Atsuhiro Takasu, and Yoshiaki Fukazawa. An-
alyzing Relations among Software Patterns based on Document Similarity, Proc.
IEEE International Conference on Information Technology: Coding and Comput-
ing (ITCC2005), 2005 (to appear).

11. Gerard Salton, and Michael J. McGill. Introduction to Modern Information Re-
trival. McGraw-Hill, Inc., 1983.

12. Chris D. Paice. Another Stemmer, SIGIR Forum, Vol. 24, No. 3, pp. 56–61, 1990.
13. G. Salton, and C. S. Yang. On the Specification of Term Values in Automatic

Indexing. Journal of Documenatation, Vol. 29, pp. 351–372, 1973.
14. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael

Stal. Pattern Oriented Software Architecture: A System of Patterns. Wiley, 1998.
15. Scott W. Ambler. More Process Patterns: Delivering Large-Scale Systems Using

Object Technology. Cambridge University Press, 1999.
16. http://www.bell-labs.com/user/cope/Patterns/Process/

17. http://www.easycomp.org/cgi-bin/OrgPatterns?BPRPatternLanguage

18. Jan O. Borchers. A Pattern Approach to Interaction Design. AI & Society Journal
of Human-Centred Systems and Machine Intelligence, Vol. 15, No. 4, pp. 359–376,
2001.

19. Alecia E. Acosta, and Nancy Zambrano. Patterns and Objects for User Interface
Construction. Journal of Object Technology, Vol. 3, No. 3, pp. 75–90, 2004.

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 314–327, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Tailoring RUP to a Defined Project Type: A Case Study

Geir K. Hanssen1, Hans Westerheim1, and Finn Olav Bjørnson2

1 SINTEF ICT, N-7465 Trondheim, Norway
{geir.k.hanssen, hans.westerheim}@sintef.no

2 NTNU, N-7491 Trondheim, Norway
finn.olav.bjornson@idi.ntnu.no

Abstract. The Unified Process is a widely used process framework for software
development. The framework is covering many of the roles, activities and
artifacts needed in a software development project. However, a tailoring of the
framework is necessary to fit specific needs. This tailoring may be
accomplished in various ways. In this paper we describe a concrete attempt to
tailor the Rational Unified Process to a defined project type; a Mainstream
Software Development Project Type. The paper has focus on the process of
creating the tailored Rational Unified Process as well as the resulting Rational
Unified Process. The paper makes some conclusions and has a proposition for
further research.

1 Introduction

The Unified Process [1] and the commercial variant, the Rational Unified Process,
RUP [2] are comprehensive process frameworks for software development projects.
RUP defines a software development project as a set of disciplines, e.g. requirements
handling, implementation etc., running from start to end trough a set of project
phases. A project is performed by a group of actors, each having one or more well
defined roles. Each role participates in one or more activities producing one or more
artifacts. A discipline can run in iterations, that is, repetitions within a phase.
Activities, roles and artifacts are the basic process elements of RUP.

However, RUP is a comprehensive framework, meaning that it is a more or less
complete set of process elements that has to be tailored to each case as no project
needs the complete set of elements.

Jacobson, Booch and Rumbaugh says in [1] p.416:
"It [RUP] is a framework. It has to be tailored to a number of variables: the size of

the system in work, the domain in which that system is to function, the complexity of
the system and the experience, skill or process level of the project organization and its
people." Further on they say: "Actually, to apply it, you need considerable further
information."

So, it is clear that RUP needs to be tailored, downscaled and specialized to the
context of use. Looking at literature there are not many guidelines on doing this [3],
[4], [5] although the need for good practical guidelines and advice definitively is
present.

 Tailoring RUP to a Defined Project Type: A Case Study 315

While discussing adaptation of RUP, it is important to have in mind that RUP is a
methodology suited for some software development projects, not all. Before you
consider using RUP as a basis for your processes you should think of what you really
need and what you really do not need. RUP is designed to support four basic
properties of software projects: use-case based customer dialogue and documentation,
an architecture focus, iterative processes and incremental product development. The
idea of adapting RUP is to make it fit each specific project not loosing these
properties. It is important to keep the integrity of RUP as a framework. So, an adapted
or downscaled variant still defines a project in terms of phases and still describes the
work as a complimentary set of disciplines. However, some disciplines may be
omitted or even added.

The goal of this paper is to provide others considering remodeling and adapting a
process framework in general, and RUP particularly, an insight in how this has been
done in a small software company. Some aspects of the specialization process seems
to have been working well, others not. This paper presents the adaptation process and
also gives an analysis of this process and its result.

The work detailed in this article was carried out as part of a national research
project in process improvement and software quality called SPIKE. SPIKE is short for
Software Process Improvement through Knowledge and Experience. The participants
are SINTEF, NTNU, the University of Oslo and several partners (companies) in the
Norwegian ICT-industry. The industrial partners are interested in improving their
development process, and are seeking concrete processes and methods to help them
deliver high quality software with shorter time to market.

The paper starts with a Theoretical context, giving a brief introduction to
methodologies and frameworks and various strategies of making these fit specific
project needs of process support. It then describes the action research as the Research
method of choice. The rest of the paper is arranged according to the research method
phases; Diagnosing, Action planning, Action taking, Evaluating and Learning.
Finally a Conclusion is given and Further research suggested.

2 Theoretical Context

2.1 Software Development Methodology and Frameworks

The term methodology is defined as "A body of methods, rules, and postulates
employed by a discipline: a particular procedure or set of procedures" by the
Merriam-Webster dictionary [6]. Basically, a methodology describes how someone,
e.g. an organization performs a task, e.g. software development. In a broad sense, a
software development methodology describes aspects such as how to communicate
with customers, sales strategy, how to describe requirements, use of tools, test
practices, documentation, planning, reporting and so on. In our context we talk about
methodologies for running projects with a defined customer having more or less
defined goals initially. Besides describing techniques, roles etc. most methodologies
are based on a set of basic values. Examples are User centric, Architecture centric,
Agile, Risk driven and many more. RUP has four basic values: Use-Case Driven,

316 G.K. Hanssen, H. Westerheim, and F.O. Bjørnson

Architecture-Centric, Iterative and Incremental. These values should be retained
regardless of how RUP as a framework is adapted. A methodology framework is a
comprehensive description of a methodology describing approximately all possible
details of almost all possible processes within the scope of the framework. This means
that a framework is not a description of a specific case; it is a foundation for
adaptation. The challenge is how to adapt it to each case (project) and keep the basic
values and features of the framework.

Fig. 1. Three possible approaches for adaptation

2.2 Adaptation of RUP

The process of adapting RUP can possibly take many forms. IBM Rational, the
provider of RUP has defined the Process Engineering Process (PEP) [5]. This is a
comprehensive adaptation process requiring a fairly big amount of resources (people
and time). This may very well be appropriate for larger companies, but for the small
ones this process may be too expensive.

Adaptation of a framework, such as RUP, can take one of (at least) three
approaches; see Fig. 1. The starting point is a process framework that is general and
complete with respect to tasks, roles and products. In approach A, the framework is
adapted, in one step, for each project, thus representing a heavy job in each case. This
can be justified for large projects where the initial adaptation process itself becomes
only a small part of the total amount of work being done in the project. In approach B,
the organization does an up-front adaptation producing a subset of the framework,
still being a framework, but now tuned to the organizations general characteristics.
This is the intentional process of PEP. In approach C, the organization first identifies
and describes a set of recurring project types. Having knowledge of characteristics
and differences of these types, an adaptation is done for each type.

Process
framwork

(e.g.RUP)

Project
adaptation

Organization
adaptation

Project
adaptation

Project type
adaptation

Project
adaptation

 A

B

 C
Framework

Instance

 Tailoring RUP to a Defined Project Type: A Case Study 317

No matter which approach being used; in the last step, a final adaptation is done to
each case (project). The agility of this final fine tuning increases with respect to the
extent of the up-front adaptation.

This is a general view of methodological adaptation or down-scaling. It applies to
many types of process frameworks, including RUP. Further on, adapting RUP in
practice means to decide on which process elements to keep, remove, alter or add.
These decisions can be based on assumptions, experience, goals and visions. It is the
quality of this underlying knowledge and experience that determines how good these
decisions are.

Running an adaptation process, in general, can be seen as a knowledge
management activity as experience and knowledge, both tacit and explicit, is being
structured, documented and communicated trough the resulting software process
description [7].

3 Research Method

Due to the cooperative nature of this research project with company external
researchers acting partly as consultants and partly as researchers, we decided to adopt
action research as our approach. Avison et.al. [8] describes action research as:
“unique in the way it associates research and practice. … Action research combines
theory and practice through change and reflection in an immediate problematic
situation within a mutually acceptable ethical framework."

Susman and Evered [9] described an approach to action research that is widely
used today. We have adopted elements from this approach in our research project.
The approach requires the establishment of a client-system infrastructure or research
environment. In our case this was already taken care of through the researchers and
company's involvement in the SPIKE research program. The approach further
specifies five identifiable phases, which are iterated: diagnosing, action planning,
action taking, evaluating and specifying learning. This report details some of our
findings and experiences from the initial phases. Our coverage of the evaluating and
learning phases are based on our own observations of the process so far. A more
thorough evaluation will be carried out as the company takes the resulting process
description into use in real projects.

In the diagnosing phase, we used semi structured interviews and workshops with
key employees. We interviewed five employees concerning their general experience
with projects in the company. This gave us the material to do a more focused
interview with five other employees concerning their specific experience with RUP in
the company. In addition to this, several work-meetings were held with the
management of the company where the SPI approach was discussed.

In the action planning phase, the researchers made a literature survey of the field of
adapting RUP. It was decided to identify possible project types run by the company.
This was done during two iterations, the first one a bottom-up approach, the second
one a top-down approach. The top-down approach led to definition of three project
types. In order to adapt the first project type, it was decided that the researchers

318 G.K. Hanssen, H. Westerheim, and F.O. Bjørnson

should facilitate a workshop where key employees were invited to define the adapted
process.

The workshop was carried out as part of the action taking phase. It was carried out
over two days, since it was discovered that we needed more time than originally
planned. At the first day we noted that the lack of a RUP mentor slowed the process
considerably due to a lot of discussion on what was actually meant by the different
concepts. At the second day, one such mentor was present, and the process was much
more fluent. The result from the workshop was a coarse RUP skeleton, which was
given to the company for more refinement. The company has conducted two internal
workshops with its employees to refine the process. In addition they have initiated a
project to put this information on a Wiki web, in order to make the adapted process
available to all employees.

As the project moves into the evaluation phase, the role of the scientists switches to
a more observational role. We plan on following the use of the adapted process for
several development projects. By taking measures along the way we hope to be able
to ascertain how successful the initiative has been for the company in its current
context.

4 Research Context

The company described in this case is today a Norwegian software consultancy
company with 50 employees, located in two different geographic offices. During the
work described in this paper the company was declared bankrupt, and then restarted
with new owners. The first part of the action planning and action taking described in
this paper took place before the bankruptcy. The first attempt to identify project types
was done, using a bottom-up approach. Just before the bankruptcy this approach was
evaluated and the company and the researchers decided that this approach did not
work. The company then had about 70 employees.

When the company was restarted, the researchers continued to the work mainly
together with the other office, but the focus was still the same, and the most actual
people from the company did not change. The company is mainly developing
software systems with heavy back-end logic and often with a web front-end,
typically portals. However, they also develop lighter solutions with most emphasis
on the front-end.

The company acts as an independent software supplier, though there are close
relationships to the biggest customers. Of the 50 employees today, 35 are working as
software developers. Java and J2EE are used as development platform. The domain of
which the company develops software is mainly for the banking and finance sector, as
well as for public sector. The company has run 50 development projects within the
bank and finance sector the last twelve years, and about 30-40 projects within the
public sector the last 15 years.

Four employees are certified RUP-mentors acting as advisors in other SW-
organizations, in addition to this they run training courses in RUP and related
subjects. The company utilizes their high competence in RUP and most projects are

 Tailoring RUP to a Defined Project Type: A Case Study 319

more or less inspired by RUP, however, the company’s management has seen a need
and a possibility to improve their use of RUP.

5 Diagnosing

The decision to initiate a project-type specific adaptation process was made by the
company when SPIKE started.

The diagnosing phase was initiated by a few workshops where an internal software
development process group defined the strategy in cooperation with the authors. With
the past experience in mind they decided to go for a top-down approach, starting out
with the complete RUP set of process elements and then customize this set to a set of
defined project types. This decision was supported by the findings in two rounds of
interviews in the company.

This phase of the work was conducted mainly by three different motivations:

1. The researchers needed more insight into the company, the development
organization of the company, as well as the most recent software
development projects conducted by the company.

2. The company needed to be more conscious about its own use of RUP; these
interviews were means in that respect.

3. The use of RUP in the company needed to be documented as a basis for
further work; this includes the overall use, but also strengths and weaknesses
by the use, in the view of people working in projects in the company.

Interview 1: General Experiences from Project Work
5 employees having various project experiences were interviewed. The roles of these
persons were developer/systems architect, project leader/manager, project leader,
senior developer and developer/architect/DBA.

The intention of this group of interviews was to get a perception of common
problems and challenges in development projects to establish a basis for process
improvement initiatives in the company.

The interviews revealed that the customer dialogue could be better (requirements
handling and project planning). The reuse of templates could be better. It is too much
documentation formalism. Estimates often fail and there is a need of better change
management.

Interview 2: Special Experiences with RUP
Another group of 5 employees was interviewed to get a view of their experience using
RUP. The role of these persons was developer, developer/project leader,
developer/project leader/test leader, project leader/requirements responsible, and
customer contact.

All of the five had some knowledge and experience with RUP, some had
participated on internal courses, and some had read literature. However, none had
thorough knowledge and experience. About the practical use, it seemed that RUP
was used just to a small extent, it depended on the type of project. The reason for this

320 G.K. Hanssen, H. Westerheim, and F.O. Bjørnson

may be superficial knowledge of RUP and that some felt that RUP does not fit their
needs.

These two iterations of interviews gave no clear answer, however they indicate that
RUP and the use of it can be improved. The summary from the interviews was used to
decide to initiate an adaptation process as described in this paper.

6 Action Planning

Projects conducted by the company varied with respect to domain, degree of
experimentation, technology, contract form etc. In addition, most projects were too
small to initiate a project-specific specialization (ref Figure 1, approach A). However,
it seemed that this company usually ran a few similar types of projects. This lead to
the idea to define a set of processes fitting each type of project. The idea is that this
will reduce the need of a costly up-front specialization per project and also avoid an
expensive per-project adaptation. Based on this realization the company decided to try
out approach C in figure 1 in cooperation with the authors. The company would
define a set of project types which covered most of their projects and define a
downscaled RUP to each project type.

To define a set of project types we decided to hold a workshop to identify the
company’s three main project types based on a top down approach. The reason for
selecting the top down approach was the company's previous failure to define project
types based on a bottom up approach. The participants of the workshop consisted of
people from the company with a complimentary and thorough knowledge of the
company's software development projects, some of them were also RUP mentors. It
was also decided that the participants should come up with a classification system to
describe and distinguish the three project types.

Given the three distinct project types, the challenge was how to adapt RUP to each
project type. There seemed to be wide agreement that adapting RUP was necessary,
yet little information was available on how to actually carry out this adaptation
process. What little information was available consisted of rather complex and
expensive methods. Instead of using any of these methods we decided to go for a
simpler and pragmatic approach. It was decided that the researchers should facilitate a
workshop where key employees were invited to define the adapted process. The
structure of the workshop was planned by the researchers based on their experience
and input from the literature, and the participants were selected by the company based
on their experience with different disciplines.

After this workshop the material was left to the company to refine and document
with little input from the researchers.

7 Action Taking

The RUP adaptation itself was separated in four main phases:

A. Defining the project types
B. The definition of the mainstream project type

 Tailoring RUP to a Defined Project Type: A Case Study 321

C. Maturing the downsized RUP
D. The initial documentation of the mainstream project activities

A: Defining the Project Types

We conducted a workshop where five participants from the company, representing a
group with a complimentary and thorough knowledge of software development
projects in general and RUP in special (some of them RUP mentors), were allowed to
define three to four common types of projects. To be able to distinguish and describe
the project types we defined a simple classification system. During a series of
workshops a group representing all project roles identified a set of project capabilities
to be used to describe the project types. A project capability, in this context, is a
feature or a characteristic that is general to all projects but where the size or weight
does vary. We identified 13 characteristics; business critically for the customer,
technology knowledge, access to resources, risk, test environment, size, degree of
reuse, contract form, project team, exposure, customer orientation, system integration
and scope.

The three selected types of projects were Mainstream Projects, Push-button
Projects and Greenfield Projects. Here presented with a few characteristics:

Mainstream projects Push-button projects Greenfield projects
- integration with other

systems are important
- the technology are well

known
- the size are initially

unclear
- the risk is moderate

- the technology is well
known

- low-risk project
- well defined project

size
- often a fixed price

project

- need of extensive
research and innovation

- the size are initially
unclear

- high risk project
- newer fixed price

B: The Definition of the Mainstream Project Type

We selected the mainstream project type since this was the most important type for
the company with respect to earning. The two other project types will be handled
later.

 Originally we envisaged a workshop to define a list of RUP elements necessary
for the different disciplines and phases. The result from this would be a list that
needed some refinement and quality assurance before it could be documented and put
into use in a project. The method we ended up with was not far from this. It consisted
of two days where the focus was defined by RUP elements viewed from the point of
view of either the RUP phases or the RUP disciplines.

On the first day we gathered a group of employees with relevant experience from
mainstream projects, meaning people that have both the theoretical and practical
knowledge of RUP from projects as well as experience relevant to the defined project
type. We tried to ensure that all the disciplines of RUP should be covered by the
experience of the workshop participants. The process of the initial workshop was as
follow:

322 G.K. Hanssen, H. Westerheim, and F.O. Bjørnson

1) The workshop facilitators (the researchers) explained the defined project
type for the group and this was discussed. This was done to establish a
common mindset for the rest of the work.

2) We used a whiteboard with a vertical lane for each RUP-phase (inception –
elaboration – implementation – transition) to document opinions of what was
especially important for each phase (based on practical experience). The
workshop facilitators asked questions such as: What is usually a challenge in
this type of project? What type of methodology support do you need? What
has used to work well? All this to sharpen the focus of what is important for
the project type and how a defined process can support it.

3) The workshop facilitators displayed a list of all RUP process elements
using a video projector. A process element was a defined role, artifact or
activity. The elements were ordered per RUP discipline. Starting at the top
the group made decisions for each element whether to keep, remove or
alter the element. The two previous steps was used as basis for taking
decisions and was referred to during the selection process. However, this
turned out to be a circumstantial process. The group and the workshop
leaders agreed to only focus on artifacts, thus speeding up the process to a
practical level. When an artifact was removed, this implicitly also indicated
how roles and activities should be affected. An example of a artifact that
was decided to be deselected is ‘Capsule’. The RUP documentation
explains that this is an artifact “Used only for the design of real-time or
reactive systems..”, thus not relevant for the Mainstream project type
described and discussed in step 1.

Step 3 was not finished by the end of the first day. One of the main reasons for this
was that there was no RUP mentor present. Subsequently there was a lot of argument
over what the different RUP concepts actually meant, and a lot of the time was spent
searching for information. Another reason was that we initially tried to define
artifacts, roles and activities; this took up a lot of time, thus it was decided to just
focus on artifacts. Since the list was not finished at the end of the day, it was decided
to spend a second day to finish the work. In the second day we only focused on
artifacts and the company provided us with a RUP mentor. This time the process
worked more fluently and we were able to finish the list of adapted RUP elements to
mainstream projects.

C: Maturing the Downsized RUP

Due to the composition of the members of the workshop, some disciplines were better
covered than others. This sparked some discussion in the company on how to proceed.
They found it necessary to involve more people to increase the information on certain
disciplines, and it was decided that to increase the usefulness of the process it was
necessary to run more iterations to gather experience from all the disciplines.

Having compiled the list of process elements the company continued the process
by involving more of the employees. This to incorporate more relevant experiences
and, not at least, to establish a common ownership. The focus turned from
selecting/deselecting process elements at a very low level to focusing on best

 Tailoring RUP to a Defined Project Type: A Case Study 323

practices, in this case meaning to focus on vital project activities. Their next step was
to define critical activities for each phase of RUP. This was done in a separate internal
workshop. For each phase they held a discussion on what the critical activities were.
When they agreed on an activity they found a descriptive name for it and proceeded to
answer two questions: 1) What is accomplished by performing this activity? And 2)
What is the risk of not performing this activity, or not performing it properly?

The name of the activity and the answer to the two questions was written on a
piece of paper and post-it notes and put on a large paper that covered the wall. There
was one such paper for each phase.

D: The Initial Documentation of the Mainstream Project Activities

Having specialized RUP, or any other process for that matter, does not complete the
job. The result must be brought out to the frontline people – the project leaders, the
developers, the architects and so on. They must have the information at their
fingertips in the actual situation of use in a form that makes them want to use it. There
is a variety of practical ways of communication this information, from simple
documents, to simple web-pages, to comprehensive hypertext documentation.
Rational offers an electronic process guide that documents RUP in detail (RUP
Online). This is a knowledge base with a web interface that describes roles, activities
and artifacts (and templates for these – all arranged within the phases and disciplines
of RUP. However, RUP online is comprehensive and may be more confusing than
helpful to project members in need of specific project support. Any documentation of
the process must reflect the modifications resulting from the specialization process.

Instead of using the tools from Rational, the company decided to establish a simple
Wiki-web [10] with just-enough information and functionality to get the message out.
This web does not resemble to the RUP-online documentation which holds a well of
details. This Wiki can be seen as a common electronic whiteboard, where all users
have more or less full access to the information and the rights to update it.. This Wiki
Web is a company internal web-site that in simple terms describes the outcome of the
workshops and the company internal process work. It explains the characteristics of
the project type(s) so that the user can evaluate how well the variant suits the actual
project and can also be used as a checklist to plan the project. The simple process
documentation on the Wiki Web references RUP Online (web link) to lead the user to
helpful descriptions and templates. A Wiki-Web also allows the users to add
information thus being a dynamic process repository. One idea (not yet tested) is to
store project experiences together with the process descriptions to offer later projects
an insight into specific and relevant experience.

The Resulting Process Description

The resulting process documentation, presented trough the Wiki-web, is much simpler
than we initially would think. It is more a guide into RUP than an independent
complete process guide.

The process definition of the Mainstream type of projects is simply a list of critical
activities where each activity is defined by 1) a title stating the purpose of the activity,

324 G.K. Hanssen, H. Westerheim, and F.O. Bjørnson

2) a short description, 3) the context of the activity, 4) reasons for why this is an
important activity for this project type, 5) risks by omitting the activity, 6) a checklist
for completion of the activity and 7) recommended problem solving approach. All
these seven parts are presented on one page.

These activities are arranged with respect to the standard phases of RUP and also
has some links to relevant information in RUP Online, e.g. to templates etc. This
simple description is intentionally on a high level, omitting most of the details of
RUP. The Wiki-web offers this information to all project members via the intranet. A
separate area is created for each project where the project members document their
best practices, templates used, comments to the process. In general, this is an
experience reporting tool that communicates practical experiences for a given project
type to others.

The case company has constituted a process group that continuously updates and
refines the content of the Wiki based on real experiences being reported on the Wiki.

8 Evaluating

The company did from the beginning focus on project types. During the work
described here, two different approaches were tried in order to define different types
of projects. The bottom-up approach was tried first, and then the top-down approach.
The bottom-up approach did not succeed as it became too complex to document a big
amount of project experiences and identify a few common variants of RUP. During
the workshops where this approach was tried, it was clear that the participants felt that
the project types in some ways were defined already, but not given. The company had
an informal definition of project types, not named ones, but with some consensus
among the developers what these types were. In the workshops we tried to keep the
entire focus on the characteristics of the project types, and the participants were not
"allowed" to state types of projects. This approach clearly made the participants
frustrated, and the approach did not bring up any defined project types based on the
defined characteristics.

We did succeed with a top-down approach to defining a set of project types –
starting by loosely naming typical types and then describe typical aspects trough a
workshop. The participants were told to name three project types in the beginning,
and this strict introduction seems to have helped the participants to reflect over what
is really separating the different types of projects there were working on. The three
types were relatively easy to identify and name. During the work these initial types
were kept, and the belief that these were the important types grew. Even though the
initial try with focus on project characteristics did not succeed, this attempt kept the
focus on project characteristics during the whole work described here, and the
participants were more conscious about what is a project type than the case might
have been without the first try. The researchers therefore would like to recommend
trying to keep focus on different aspects and characteristics of software projects.

During the work the focus has been on one type of projects only. The company did
pick the type of project which was most important with respect to earnings and risk

 Tailoring RUP to a Defined Project Type: A Case Study 325

control, and the first attempt to tailor RUP was for this single type only. This focus
seems to have been an important factor when it comes to the ability to tailor RUP.
Having a common, well defined, mindset makes the decisions easier and the result
simpler and more focused.

In this case study, a discussion of which tool to use for the documentation and
deployment of the tailored RUP was postponed to a moment when the discussion
about the content of the tailored RUP was in place. Adapting and documenting RUP
or any other methodological framework is not done solely using a tool. The most
crucial part of such a job is to involve a broad group of people having through
experience with both the framework and – not at least – practical project work. The
work in this case supports this presumption.

Employees in this company have knowledge of RUP above the average of what we
have seen in analogous software development organizations in Norway. The work in
the company shows that it is important to have a tailoring process that must be based
on experience; it can be seen as a knowledge management, and documentation,
process. Despite the company's knowledge of RUP, running such a process has not
been easy and straight forward at all. The strategy has changed during the course of
work based on new insights and achieved results (or lack of such).

9 Learning

Our motivation intentionally was to work together with the case company to adapt the
RUP. We decided to try to keep it as simple and inexpensive as possible. The two
authors that participated actively in the start worked with a small group from the
company, thus reducing the total time spent. We also tried to use RUP as a heavy
foundation by accepting the general characteristics of the method, such as the phases
and the disciplines and go straight to the low-level details; the process elements. But
this did not seem to be the best way. The process did become simpler and simpler as
the work progressed. This helped the involved people keeping focus on what’s most
important; what type of process support is really needed in the projects based on
experience. When starting out we intentionally did not take a standpoint with respect
to how to document and disseminate the resulting process description. We looked into
the suite of tools offered by Rational, but regardless of the rich features in those tools
the company ended up with a very simple form of tool support for documentation and
communication of the result, the Wiki web. In general it seems that the adaptation is
best done as a simple, pragmatic process not as a heavily up-front planned and strictly
managed process. It seems that the good old KISS-strategy once again have proven its
superiority; Keep It Simple Stupid.

Some Specific Experiences from the Tailoring Workshops

Having good knowledge and experience is important to ensure sound decisions on
how to adapt RUP. This however presupposes that such experience is available within
the organization, which was the case in the project that this paper is based on. If the
overall knowledge of RUP is weak the group can be strengthened by hiring a RUP-

326 G.K. Hanssen, H. Westerheim, and F.O. Bjørnson

mentor. The mentor is a certified expert that will be in position to answer questions
and explain details of RUP.

Having a group working through the three steps of the initial workshop should take
about one working day, given that the workshop leaders have prepared the work, the
focus is on artifacts from a discipline point of view, and that there is a RUP mentor
present to explain any uncertainties. To ensure a good result it is vital to include
people with experience from all the disciplines of RUP.

Do not try to gather too much information in one single workshop. Concentrate on
one issue at a time.

It is important to be patient; the outcome of the initial workshops was nothing but
an altered list of RUP process elements. This list has to be matured and quality
assured before it can be documented and put into use in projects.

10 Conclusion

We have presented a simple pragmatic method for adapting the RUP to a specific
project type in a company. The method involves a series of workshops in which the
key success factor seems to have been focus. Focus both through a specific project
type, specific process elements and through phases or disciplines. Another key
success factor is that a workshop consists of persons with the proper experience with
regards to the focus.

The focus on a specific project type seems to have kept the participants on track
throughout the adaptation process. It seems to have eased the process since everyone
had a clear concept of what should be done in that particular project type. However,
the benefits from making a project type adaptation as compared to making a project-
or a company specific adaptation have yet to be evaluated.

The adaptation method has been a success in that the company has come up with a
simple process for their most common project type, which has been made available
for all employees. Whether this process becomes a success will be determined
through further studies of the actual use patterns.

Further Research

Adoption of RUP: Figure 1 shows some possible ways of tailoring RUP at different
levels in a software developing organization. In this case study we have been
following an organization which chose the project type adoption.

It is of interest to also follow more closely organizations selecting an
organizational adoption, or a project adoption. The success and failure criteria in each
case should be compared and analyzed.

Experiences from use of tailored RUP: In this case we did follow the process of
tailoring and partly, documenting, a project type tailored RUP. We cannot say for sure
if the tailoring has been successful until we have empirical results from the use of the
tailored RUP. The next step in the research together with this company will be to
collect experiences from the use of this instance of RUP.

 Tailoring RUP to a Defined Project Type: A Case Study 327

Metrics: What kind of metrics should be applied when we are interested to measure
the process of tailoring RUP in different organizations, and done in different ways?
What kind of metrics should be applied when we try to evaluate the success of the use
of the tailored RUP in different types of projects in different organizations? How to
apply metrics when it comes to measure a software process is still an uncovered
aspect of software process improvement, and we think that an association to a single
process framework, like RUP, may ease the process of defining and validating metrics
for software processes.

References

1. Jacobson, I., G. Booch, and J. Rumbaugh, The Unified Software Development Process, ed.
A.W. Longman. 1999, Reading: Addison Wesley Longman. 463.

2. Krutchen, P., The Rational Unified Process: An Introduction. 2nd ed. 2000: Addison-
Wesley. 298.

3. Bergström, S., Råberg, L., Adopting the Rational Unified Process. 2004, Addison-Wesley.
p. 165-182.

4. Karlsson, F., P.J. Ågerfalk, and A. Hjalmarsson. Method Configuration with Development
Tracks and Generic Project Types. in CAiSE/IFIP8.1 International Workshop in
Evaluation of Modeling Methods in Systems Analysis and Design. 2001. Interlaken,
Switzerland.

5. http://www-1.ibm.com/support/docview.wss?uid=swg21158199
6. http://www.m-w.com/dictionary.htm
7. Nonaka, I., Takeuchi, H., The Knowledge-Creating Company. 1995: Oxford University

Press.
8. Avison, D., Action Research. Communications of the ACM, 1999. 42(1): p. 94-97.
9. Susman, G., Evered, R., An assessment of the scientific merits of action research.

Administrative Science, 1978. 23(4): p. 582-603.
10. http://www.atlassian.com/

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 328–342, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Acquisition of a Project-Specific Process

Olga Jaufman1 and Jürgen Münch2

1 DaimlerChrysler AG, 89081 Ulm, Germany
Olga.Jaufman@daimlerchrysler.com

2 Fraunhofer Institute for Experimental Software Engineering (IESE),
Sauerwiesen 6, 67661 Kaiserslautern, Germany
Juergen.Muench@iese.fraunhofer.de

Abstract. Currently, proposed development processes are often considered too
generic for operational use. This often leads to a misunderstanding of the pro-
ject-specific processes and its refuse. One reason for non-appropriate project-
specific processes is insufficient support for the tailoring of generic processes to
project characteristics and context constraints. To tackle this problem, we pro-
pose a method for the acquisition of a project-specific process. This method
uses a domain-specific process line for top-down process tailoring and supports
bottom-up refinement of the defined generic process based on tracking process
activities. The expected advantage of the method is tailoring efficiency gained
by usage of a process line and higher process adherence gained by bottom-up
adaptation of the process. The work described was conducted in the automotive
domain. This article presents an overview of the so-called Emergent Process
Acquisition method (EPAc) and sketches an initial validation study.

1 Introduction

Nowadays, automotive products are becoming more and more complex. In order to
ensure the quality of safety critical products like vehicles, effective and efficient de-
velopment processes are needed. As projects have different contexts and goals, tailor-
ing methods are needed that allow adapting the generic processes to the project-
specific needs. The tailoring approaches used in practice (e.g., the tailoring approach
proposed by the V model [10]) usually involve checking conditions and removing
objects of the base model. The V model distinguishes between tailoring at the start of
a project and tailoring in the course of the project at defined points in time. One diffi-
culty of such tailoring is the identification of the regression process modification to be
performed. For example, a change of four product artifacts can result in further
changes of 26 process models [12]. Further, more process tailoring often requires not
only the removal of process objects, but also their replacement, or the addition of new
objects. The V model tailoring method does not define how to deal with such kinds of
process modifications.

To tackle the problem, different tailoring approaches are proposed in the literature.
These tailoring approaches can be classified into two types [12]: component-based
approaches and generator approaches. The component-based approaches try to build a

 Acquisition of a Project-Specific Process 329

project-specific process based on the process parts. The generator approaches try to
build a project-specific process by instantiating a typical process architecture. The
advantage of component-based approaches is the ability to support reuse of process
fragments (e.g., processes gained by descriptive process modeling). The main defi-
ciency of component-based approaches is the lack of support for process adaptation
and for guaranteeing consistency. The advantage of generic approaches is their ability
to assure consistency and to reuse process fragments. The disadvantage of the generic
approaches is the lack of support for process fragment reuse.

Our proposed solution to the problem is the Emergent Process Acquisition (EPAc)
method. This method uses a domain-specific process line for top-down tailoring and
refines the tailored process based on the process activities performed in a first process
iteration. In this way, the initial variant of the emergent process is built. An emergent
process is a process that needs to cope with changing goals and context characteris-
tics, which can only be anticipated to a very limited extend before the start of the
project. Therefore, the process itself needs to be highly adaptable, and support for the
adaptation is necessary.

Typical reasons for the need for emergent processes are:

• Changing requirements. The requirements are not completely known at the
start of the project and, in addition, the effects of new or modified require-
ments on the development process cannot be anticipated. Thus, the activities
to be performed can only be detected in the course of the project, too.

• Changes in the project environment. One example for a business environ-
ment change is the establishment of a new business relationship (e.g., a new
international collaboration). One example for a change in the development
environment is a replacement of a validation technique (e.g., a project team
follows a prescriptive process and recognizes that the process is not really ef-
ficient to perform module testing).

The expected advantage of our method is higher process acceptance by project teams,
as the process is based on experience from past projects and feedback from actual
project performance.

The paper is structured as follows: The second section describes the background
information. The third section describes the EPAc method. The fourth section briefly
sketches our experience gained with the usage of the EPAc method. The fifth section
discusses related work and strengths of our EPAc method. Finally, Section 6 gives a
short summary and an outlook on future work.

2 Background Information

A systematical state-of-the-practice analysis performed by DaimlerChrysler [6] re-
sulted in the awareness that the software development processes are too generic for
operational use. The applied tailoring approach [6] does not provide enough support
to project teams. This has two reasons: First, it is difficult for process engineers (who
are usually also playing a role in a development team) to identify the regression proc-
ess modification if the process changes. Second process tailoring often requires not

330 O. Jaufman and J. Münch

only removal of process objects, but also the replacement or addition of new objects.
The applied tailoring method does not define how to deal with such kinds of process
modifications. Thus, a method for acquiring a project-specific process is needed,
which helps project teams to tailor their prescriptive process to their project-specific
needs.

3 Acquisition Method

Our acquisition method consists of two main steps. In the first step, a domain-specific
process line is used for top-down tailoring at the start of a project. The purpose of the
process line is to provide domain knowledge necessary to define a suitable software
development process. The approach on how the process line is built and the schema of
the process line can be found in [8]. After the first development cycle, the top-down
tailored process is refined based on the tracked process data. This two-step tailoring
allows reducing the deficiencies of traditional tailoring methods. The next section
describes the tailoring method in more details.

The acquisition method consists of four main steps (see Figure 1).

Fig. 1. Method for Acquisition of a Project-specific Process

In the first step, initial suitable process variants are selected from the process base
based on the project characteristics. Second, the process line is built for the selected
processes. The notion behind the process line is to capture the commonalities in reus-
able process building blocks and to construct the explicit process variants based on
the process deviations, and by reusing the individual building blocks as applicable. In
the second step, the process designer iteratively selects a process variant from the
process line. Then the selected process variant is adapted to the project by removing

Process

Process variant Process variant .Step 1: Select pro-
cess alternatives & build

process line

Application of the
process during first
prototype development

A

AA
B

C

Activi-
ties per-

Step 4: Reflec-

Step 3: Adaptation
of the selected process

Process
base

Prescriptive process frame
for the first prototype

Step 2: Select
process vari-

Selected process

Prescriptive process
for the first prototype

 Acquisition of a Project-Specific Process 331

unneeded process objects and adding the missing process objects. In this way, the
prescriptive process for the development of the first prototype is built. Finally, the
fourth step involves the elicitation of activities performed during development of the
first prototype and refinement of the prescriptive process based on the tracked process
objects. The following sections describe the four steps in more details.

3.1 Process Selection

The selection of a process variant from the process line consists of three main steps (see
Figure 2). Each step is described by the attributes goal, input, activities, and output.

Fig. 2. Technique for Process Selection

Step 1: Select Process Alternatives and Build Process Line

Goal: The activity is performed in order to find the most suitable process variants
from the process base and built the common core of the processes. In this way, the
process core contains the most important process activities.

Inputs: Process base, project characteristics, the importance of the project characteris-
tics, the number of desired process variants.

Activities:

1. Priorize the project characteristics.
2. Give number of desired process variants.
3. Select the most suitable process variants from the process base.
4. Build process line for selected process variants. The method for building the

process line is described in [8].

Select pro-
cess alter-
natives and
build proc-

ess line

Process
line

Cut
process

line

Select or
build pro-
cesses

Selected
process

Process
base

Find needed
abstraction

level

332 O. Jaufman and J. Münch

The third and fourth activities are supported by a tool.

Output: The process line.

Step 2: Find Needed Abstraction Level

Goal: This step has to be performed in order to find the needed process description
abstraction level for the project team. The idea behind this step is that the fewer experi-
ence the project team members have, the more detailed process description they need.

Input: Process line, where each process variant has an abstraction index.

Activities: Starting from the first abstraction level (i.e., with the domain-specific proc-
esses), the process designer looks at the process core of abstraction level i. If the proc-
ess is too abstract from the designer’s point of view, then the process designer can
navigate through the process line by knowing the semantic of the abstraction index of
the process variants. The tool gives the process variant with the desired abstraction
index. If desired, it is possible to get the parts of the selected process variant with
different abstraction levels. The process designer navigates till he finds the needed
abstraction level or until the process line does not provide any more detailed process
descriptions. If the process designer can find a process with the needed abstraction
level, then a Cut_process_line is built by assigning variants of the process line that
have the selected abstraction level. If no detailed process can be found, then the proc-
ess with the most suitable abstraction level is selected.

Output: The process line, which contains the processes with the needed or most suit-
able abstraction level.

Step 3: Select the Process Interactively

Goal: This step can be performed in order to find the specifics of the provided process
variants and to use them as input for adaptation.

Input: Cut_process_line

Activities: First, if Cut_process_line contains more than one process variant, then the
supporting tool shows the variants of the cut_process_line with explicit marking of
the differences between the process variants with respect to the process core. After the
process designer selects one of the process variants, the tool marks the process as the
selected process. If it is desired to see the difference between the selected variant and
other process variants in the cut process line, the tool shows these. If the process de-
signer would like to select another process variant, the tool provides the possibility to
do this.

Output: The selected process variant.

3.2 Process Adaptation

The process adaptation can be performed in two ways (see Figure 3). If the effort for
the process adaptation is lower than the effort for building a new process variant (i.e.,

 Acquisition of a Project-Specific Process 333

ROI > 1), then the selected process should be adapted, otherwise, a new process
should be built.

Step 1: Adapt Meta Model

Goal: This step is to be performed in order to tailor the process attributes to the pro-
ject context.

Input: Selected process, meta model (which consists of the following process
attributes: process phases, phase pre-conditions, phase post-conditions, delivery time,
maturity of deliverables, activities, activity pre-conditions, activity post-conditions,
priority of the activity, inputs needed to perform the activities, outputs needed to per-
form the activities, the interfaces to support processes, roles performing the activities).

Fig. 3. Technique for Process Adaptation

Activities: The tool shows the process attributes that constitute the meta model and
allows the process designer to delete unnecessary process attributes and add missing
ones.

Output: The process meta model.

Selected
process

Adapt meta
model

Adapt process
objects

yesno

Define meta model

Define process

ROI>1

Build process Adapt process

Meta model

yes

Meta model

 yes
Process for first

prototype
development

 Consistency
check

not oknot ok

334 O. Jaufman and J. Münch

Step 2: Adapt Process Instance

Goal: This step has to be performed in order to tailor the process objects to the project
context.

Input: meta process, selected process, if existent (1) to-do list, which describes the
activities performed by project team members, (2) information about communication
within the team, (3) data dependencies (e.g., between two parameters of a control
device or between two control devices).

Activities: If any data (see (1)-(2)) exists, the tool shows the discrepancy between the
selected process and available data. Based on this discrepancy, the process designer
has the possibility to tailor the process objects by following the standard approach or
the user-defined tailoring.
Standard tailoring process:

1. If the meta model contains the process attribute “milestone”, then
a) remove unnecessary milestones
b) add missing milestones

Output: a process with an adapted milestone
2. If the meta model contains the process attribute “phases”, then the tool itera-

tively shows these phases for each milestone in the milestone set that are to
be performed in order to achieve the milestone. Thus, for each milestone the
process designer can

a) remove unnecessary phases and
b) add missing phases.

3. For residual process attributes (composing the meta model), the unnecessary
objects are removed and missing objects are added in a similar way.

User defined process:
The tool shows the process attributes of the meta model and allows the proc-
ess designer to select a process attribute for modification. For each selected
process attribute, the tool allows the process designer to remove unnecessary
objects and add the necessary objects.

Output: the process for the first prototype development.

Comment: A process object cannot be removed without the approval of the project
manager, if it has the priority “minimal requirement”.

3.2.1 Build Process
The process construction consists of two main steps: define meta model and define
process for the meta model. In the following, these steps are described in more details.

Step 1: Define Meta Model

Goal: This step has to be performed in order to define milestones.

Input: Customer requirements on the product, selected process, if existent, project
plans from past similar projects.

 Acquisition of a Project-Specific Process 335

Activities: The project manager first defines the project goals based on customer re-
quirements. Based on the project goals and similar project plans, the project manager
defines milestones. These include (1) artifacts to be delivered, (2) the time point in the
project for delivering the artifacts, (3) the maturity of the delivered artifact, (4) the
persons responsible for artifact delivery. The milestones are captured by the tool.
Furthermore, the project manager defines the process attributes with respect to which
the project-specific process should be described (e.g., tasks to be performed, priority
of the task).

Output: meta model.

Step 2: Define Process

Goal: This step has to be performed in order to define the objects for the process
attributes of the meta model and the relationships between the objects.

Input: milestones, meta model, if existent (1) to-do list, which describes the activities
performed by project team members (e.g., log list), (2) information about persons
performing the tasks in the to do list, (3) data dependencies.

Activities:
If there is a to-do list, that describes the activities performed by project team mem-
bers to achieve similar milestones in past projects, the quality manager defines ac-
tivities to be performed based on this list. For each activity, the quality manager
creates a task. This is done by selection of the milestone (see previous step), which
describes the context in which the task should be performed. Additionally, for each
task the process attributes defined in the meta model are defined. For example, the
priority of the task, the person responsible for the task execution, the time in which
the task should be performed, can all be defined. Furthermore the tool allows its
users to refine the tasks into sub-tasks, to delegate the tasks to other persons, or to
inform the needed persons. The persons who need to be informed are identified by
the tool based on the dependencies between the data (e.g., between two parameters
of a control device or between two control devices), if such are known. If any infor-
mation is missing, then the needed process attributes have to be defined based on
one’s own implicit experience.

Output: process for the first prototype development.

3.2.2 Check Consistency
Goal: This step has to be performed in order to prove the process stringency. This is
important to ensure the required product quality.

Input: Process for the first prototype development, selected process.

Activities: The project manager checks that each process milestone and activity from
the selected process with the priority “minimal requirement” is available in the proc-
ess for the first prototype development. If a milestone or an activity is missing and is

336 O. Jaufman and J. Münch

needed from the project manager’s point of view, then the tool allows the project
manager to add the missing milestones and activities.

Output: adapted process for the first prototype development.

3.3 Process Reflection

The process reflection consists of two main steps: first, elicitation and analysis of
performed process objects and second, refinement and adaptation of the prescriptive
process. In the following, these two steps are described in more details.

Step 1: Elicit and Analyze Performed Process

Goal: This step has to be performed in order to understand the process actually per-
formed by project team members, and to identify the delta between prescriptive and
performed process.

Input: the process for the first prototype development.

Activities: The InStep tool [4] supporting the coordination between project team
members logs the status of activities performed and the time when the activities are
performed. As output, the tool delivers a text log file. Our converter tool produces a
xml file from the text file. This xml file is used as input for the ProM [1] and InterPol
[9] tools. The ProM tool elicits a model of the performed process. The InterPol tool
performs the delta analysis.

Output: performed process and the delta.

Step 2: Refine Prescriptive Process

Goal: This step has to be performed in order to update the prescriptive process based
on elicited process objects.

Input: the process for the development of the first prototype (=prescriptive process),
performed process, delta between performed and prescriptive process.

Activities: The tool allows the project manager to add the missing process objects to
the prescriptive process and to delete the unnecessary project objects. When deleting
the milestones and activities with the priority “minimal requirements”, the tool asks
the project manager whether he/she really wants to remove the process object with the
priority “minimal requirements”. When deleting a process object with the priority
“minimal requirement”, the tool requires justification of this deletion. Here, an algo-
rithm described in [13] is used for on-the-fly adaptation of the prescriptive process.

Output: refined prescriptive process, which is to be understood as a project specific
process.

4 Validations and Gained Experience

We validated the instantiation method in the context of a initial study. In the follow-
ing, the study definition, design, and the results are briefly described.

 Acquisition of a Project-Specific Process 337

4.1 Study Definition and Planning

In the context of the study, we compared the Emergent Process Acquisition (EPAc)
method with the tailoring method proposed by the V model [10], as the V model is
widely used for system development in practice. The goal of the study was to evaluate
the effect of the EPAc method on the effort to develop a bus control system and on
the quality of the developed system.

The hypotheses in the study were:

1. The effort for developing a system according to the V model is higher or
equal to the effort for developing the system according to the emergent
process designed by using the EPT method.

2. Product quality developed by following the V model is higher or equal to
the product quality developed by following the emergent process designed
by using EPT method.

3. The satisfaction of the project team using the EPAc method is higher than
the satisfaction of the project team following the tailored V model.

4.2 Study Design and Operation

The study was designed as follows:
The factor (i.e., the independent variable) is the development process followed by

students. The treatments (i.e., particular values) of the factor are (1) the process de-
signed by tailoring the V model and (2) the process designed by using the EPT
method.

The main difference between the development following the V model and the
emergent process is the process stringency. The emergent process provides more
flexibility at the start of a project and becomes more stringent during the course of the
project. The tailored V process has the same stringency during the course of the whole
project. So the groups following the emergent process are able to better reflect on
their development experience than the group following the V model, as the emergent
process provides more flexibility at the start of the project than the V tailored process.
Following the design principle of “balancing”, we balanced the number of students in
the groups. Thus, each group consisted of nine students. The students were randomly
assigned to the groups, fulfilling the design principle of “randomizing”. Furthermore,
in order to ensure tcomparability of the study results, the following independent vari-
ables had the same treatments:

• Customer experience: is selected as independent variable, because a cus-
tomer with little experience may state system requirements that are too am-
biguous. To avoid the effect of this variable, the same person stated and
clarified the requirements to all three groups.

• Complexity of developed product: is selected as independent variable, since
the more complex the product, the higher the development effort and the
higher the probability for development faults. To avoid the effect of this
variable, all three groups had to develop the same system for control of bus
doors and lights.

338 O. Jaufman and J. Münch

• Environment dynamism: We simulated the same changes in the development
environment (e.g., new or changed requirements, application of a new tool).
This variable is considered since the frequent changes in the development
environment usually cause additional development effort.

• Tool support: is considered since the tools can affect the development effort.
Thus, all groups use the same tool chain.

• Instrumentation: We provided the same measurement and preparation sup-
port for all students.

The factor treatments are assigned according to the blocking design principle. We
decided that two groups were to follow the emergent process and one group had to
follow the V tailored process. This assignment was meant to help us interpret the
study results with more significance.

Regarding our study design, we selected 28 advanced students from eights/ninth
semesters, taught them the needed foundation in software engineering and tool usage,
and provided them with the needed instrumentation support (e.g., the process line for
the emergent groups, forms for data elicitation). After four weeks of preparation, the
study started. The study duration was 14 weeks. The study consisted of three itera-
tions. During each iteration, a prototype should be incrementally developed. Two so-
called emergent groups (E1 and E2) developed the system following the emergent
process and one group developed it following the tailored V model. In each emergent
group, one student was selected for the role of “emergent coach”. The responsibility
of the emergent coach was to design a project-specific process and to manage the
team. The emergent coaches designed the project-specific process by using the proc-
ess line and by following the EPT method. The two emergent groups followed the
project-specific process designed by their emergent coach.

Each week,

• the groups delivered the artifacts with respect to their project plan and the
completed data collection forms

• they received feedback with respect to the quality of their artifacts
• a meeting between the study supervisors and the students took place. At the

meeting, the students asked questions and provided feedback to the study su-
pervisors.

The collected data was analyzed weekly. Regarding data that seemed to be unreal-
istic, the students were asked directly. Additionally, the summary of the collected data
was reviewed by the students to avoid misunderstandings.

4.3 Results Analysis and Interpretation

In order to decide about the hypotheses, we derived metrics for productivity, product
quality, and project team satisfaction by following the GQM method [15]. In order to
evaluate productivity, we compared the effort spent per activity type (see Table 1).
The first row of the table shows the activity types considered.

 Acquisition of a Project-Specific Process 339

Table 1. Effort during the first iteration

Aktivität EG 1 EG 2 VG EG 1 EG 2 VG EG 1 EG 2 VG EG 1 EG 2 VG EG1 EG2 VG
Communication customer 0 0 0 270 300 270 0 0 0 0 0 30 270 300 300
Communication TG 0 0 600 210 120 0 90 60 60 0 0 30 300 180 600
Requirements specification 0 0 780 120 570 600 0 240 0 0 0 240 120 810 1620
Requirements review 0 0 240 0 90 450 0 0 0 0 0 0 0 90 690
Requirements adaptation 0 0 0 0 30 60 0 0 120 0 0 0 0 30 180

Architecture modeling 0 0 240 270 565 0 0 405 0 180 0 30 450 970 270

Architecture review 0 0 360 0 0 120 0 0 0 0 0 0 90 0 480

Architecture change 0 0 0 0 0 0 0 0 0 420 0 0 420 0 0
New statemate modeling 0 0 0 720 0 0 660 1080 1620 765 810 0 2145 1890 1620

Statemate review 0 0 0 0 0 240 90 180 465 0 225 0 90 315 705
Statemate change 0 0 0 0 0 0 180 500 0 15 0 1200 195 500 1200
Fault removal from statemate 0 0 0 0 0 0 135 0 120 0 0 0 135 0 120
Statemate optimization 0 0 0 0 0 0 90 0 0 0 345 60 90 345 60
Panel development 0 0 0 0 240 0 540 0 0 0 0 0 540 240 0
Panel change 0 0 0 0 0 0 0 135 0 210 0 210 210 135 210
System test 0 0 0 0 0 480 180 60 0 420 530 450 600 590 930
Integration 0 0 0 0 0 0 0 0 0 0 0 330 0 0 330
Total effort 0 0 2220 1590 1915 2220 1965 2660 2385 2010 1910 2580 5475 6485 9405

Total effort10-17.11.2004 17-22.11.2004 23-30.11.2004 01-07.12.2004

The second, third, fourth, and five rows show the effort per week per group (EG1:
emergent group 1, EG2: emergent group 2, V: V group) in minutes. Finally, the sixth
row shows the total (i.e., for the first iteration) effort per activity. The effort distribu-
tion for other iterations looks similar. The table 1 shows that the effort of the V group
is significantly larger than the effort of the emergent groups. In order to be able to
evaluate product quality, we collected both internal and external metrics (see Table 2).

Table 2. Data collected to evaluate product quality during first iteration

Metrics type Metric EG 1 EG 2 VG
Number of activity charts 2 4 5

Number of state charts 8 5 3
Number of states 56 56 59
Number of state transitions 83 96 107
Are the state models
executable

yes yes yes

Non-determinism no no no
Data Dictionary (0-5) 5 5 4, DOOR_X_OPEN undef

Architecture (0-5) 4, the interfaces are well defined,
but the presentation form can be
improved.

5, clear separation between
hardware and software, the
interfaces are well defined and
presented

3, the interfaces are not well
defined

The bus can drive with open
doors
The bus is not driving. If a
button to open the door is
pressed, the control system
does not open the door.
If an accident happens, the bus
does stop and does not open
the doors.

The doors do not have the button
to open the door by passenger.

The button showing that the
door is open takes the status
"off" before the door is closed.

no

Driver light takes the status "on"
before the door is completely
open.

no no

If outside is dark and the driver
light switch has the status "off",
the driver light is on.

no no

3, as many jumps are used

Incorrectly implemented
critical features

Direct
metrics

Clarity (0-5)

Indirect
metrics

no no

Incorrectly implemented
non-critical features

4, as the architecture can be
improved in the way that Chart
EVENT CONTROL can be
removed

4,5; as it would be more clear,
than to remove the parallelism
in charts

340 O. Jaufman and J. Münch

The first row in the table shows the type of the data collected. The second row
shows the collected metric itself, for example, number of uncorrected implemented
features. This number was defined as follows: first, we derived a standard test case set
from the requirements specification. Second, we tested the delivered panels with re-
spect to the set. Third, based on the knowledge about failed test cases, we identified
features not correctly implemented. Furthermore, we separated the wrongly imple-
mented features into critical and non-critical. In the first iteration, 18 different fea-
tures should be implemented. In order to be able to focus on the critical features, we
informed the groups (both emergent and V group) that in the first iteration, we would
evaluate the quality only based on the critical features. Table 2 shows that the number
of critical features incorrectly implemented by V group is larger than this number
implemented by the emergent group. Consequently, the quality of the product imple-
mented by the emergent group is higher that the quality of the product implemented
by the V group.

We assessed project team satisfaction by asking the students participating in the
study about their satisfaction. The students evaluated their satisfaction based on the
scale: high (=2), ok (=1), low (=0). For each group, we built a middle value per satis-
faction aspect. This middle value is shown in Figure 4. The diagram shows that the
satisfaction with the work and with the task fulfillment is the same in the sub-group.

0

0,5

1

1,5

2

2,5

T
ea

m
 w

or
k

in
th

e
su

b-
te

am

T
ea

m
 w

or
k

in
th

e
la

rg
e

te
am

C
om

m
un

ic
at

io
n

ex
te

rn

P
ro

du
ct

iv
ity

 in
th

e
su

b
te

am

P
ro

du
ct

iv
ity

 in
th

e
la

rg
e

te
am

G
ra

d
of

 th
e

ta
sk

 fu
lfi

llm
en

t
in

 th
e

su
b

te
am

G
ra

d
of

 th
e

ta
sk

 fu
lfi

llm
en

t
in

 th
e

la
rg

e

T
ot

al
sa

tis
fa

ct
io

n
w

ith
 th

e

V

EG1

EG2

Fig. 4. Team satisfaction

All other satisfaction aspects are evaluated higher by emergent groups than by the
V group. The results indicate that the EPAc method contributes to a more productive
development of products, higher quality, and higher project team satisfaction.

 Acquisition of a Project-Specific Process 341

5 Related Work

The approaches for acquisition of project-specific processes proposed in the literature
can be divided into two types: top-down and bottom-up approaches. The top-down
approaches can be further separated into three types: rule-based tailoring [13], con-
straint-based selection [16], and parameterized-based approaches. The bottom-up
approaches provided in the literature can be classified in informal [2] and formal
approaches [1].

The EPT method is neither an absolute bottom-up approach nor a top-down ap-
proach. It is an approach that uses top-down tailoring at the start of the project to
reuse knowledge gained in past similar projects, and refines the top-down tailored
process based on the performed tasks. This two-step tailoring approach allows avoid-
ing deficiencies of the bottom-up and top-down approaches.

6 Summary and Future Work

Efficient development of qualitative systems requires suitable project-specific proc-
esses. As projects have different contexts and goals, tailoring methods are needed that
allow adapting the generic processes to the project-specific needs. The tailoring ap-
proaches used in practice (e.g., the tailoring approach proposed by the V model [11])
usually involve checking conditions and removing objects of the base model. One
difficulty of such tailoring is the identification of the regression process modification
to be performed if an object is removed. Furthermore, process tailoring often requires
not only removal of process objects, but also replacement or addition of new objects.
Traditional tailoring methods do not define how to deal with such kinds of process
modifications.

To tackle the problem, we provide the Emergent Process Acquisition (EPAc)
method. This method uses the domain-specific process line for top-down tailoring and
refines the tailored process based on the process activities performed in the first proc-
ess iteration. In this way, the initial variant of the emergent process is built. This pa-
per presented the emergent process acquisition method and the empirical experience
gained with the method in the context of a study. The study shows that the emergent
tailoring method significantly contributes to more efficient development of higher-
quality systems.

One issue for future fwork is the validation of the EPAc method in a real context.

Acknowledgement

The authors would like to thank Alexander Raschke, Matthias Schneiderhan, Ramin
Tavakoli Kolagari, and Frank Houdek for very helpful support during validation. Fur-
thermore, our thanks go to the following people who provided valuable input in several
discussions: Dieter Rombach, Kurt Schneider, Michael Stupperich. The authors would
also like to thank Sonnhild Namingha from the Fraunhofer Institute for Experimental
Software Engineering (IESE) for reviewing the first version of the article.

342 O. Jaufman and J. Münch

References

1. Dustdar, S., Hoffmann, T., van der Aalst, W. Mining of ad-hoc business with TeamLog,
Distributed Systems Group, Technical University of Vienna, 2004.

2. Becker-Kornstaedt, U., Hamann, D., Kempkens, R., Rösch, P., Verlage, M., Webby, R.,
Zettel, J. The SPEARMINT Approach to Software Process Definition and Process Guid-
ance, Workshop on Software Engineering over the Internet at ICSE'98, Kyoto, Japan,
April, 1998

3. Graydon, A. ISO/IEC DTR 15504-2 Part 2: A Reference Model for Processes and Process
Capability, 1998.

4. http://www.microtool.de/instep/en/prod_pm_edition.asp.
5. Humphrey, Watts S. Introduction in the TSP, Addison Wesley, 2000.
6. Jaufman, O., Dold, A., Haeberlein, T., Schlumpberger, C., Stupperich, M. Requirements

for Flexible Software Development Processes within Large and Long Taking Projects,
QUATIC, Porto, 2004.

7. Jaufman, O., Potznewick, S., Suitability of the State of the Art Methods for Interdiscipli-
nary System Development in Automotive Industry, Interdisciplinary Software Engineer-
ing, 2004.

8. Jaufman, O. Process Line Framework for the Domain of Automotive System Develop-
ment, SPICE 2005 Conference, 2005.

9. Kleiner, N. Verbesserungsstrategien für den Workflow-Designprozess, Dissertation,
University of Ulm, 2004.

10. Droschel, W., Wiemers, H. Das V-Modell 97, Der Standard für die Entwicklung von IT-
Systemen mit Anleitung für den Praxiseinsatz, Oldenbourg, 2000 (German).

11. Miers, D. The Workware Evaluation Framework, ENIX Ltd, 1996.
12. Münch, J., Schmitz, M., Verlage, M. Tailoring großer Prozessmodelle auf der Basis von

MVP-L*, 4. Workshop der Fachgruppe 5.1.1 (GI): „Vorgehensmodelle – Einführung,
betrieblicher Einsatz, Werkzeug-Unterstützung und Migration“, Berlin, 1997.

13. Reichert, M. Dynamic Changes in Process Management Systems. Ph.D. Thesis, University
of Ulm, Faculty of Computer Science, July 2000 (in German).

14. Rombach, R. Practical benefits of goal-oriented measurement. In N. Fenton and B. Little-
wood, editors, Software Reliability and Metrics. Elsevier Applied Science, London, 1991.

15. Riddle, W., Schneider, H.: Coping with Process Agility. Tutorial at 2002 Software Engi-
neering Process Group Conference (SEPG2002), Phoenix, Arizona (2002).

16. Wohlin, C., Runeson, P., Höst M., Ohlsson, M., Regnell, B., Wesslen, A. Experimentation
in Software Engineering: An Introduction, Kluwer Academic Publishers, Boston, 2000.

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 343–357, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Understanding the Importance of Roles in
Architecture-Related Process Improvement - A Case

Study

Per Jönsson and Claes Wohlin

School of Engineering, Blekinge Institute of Technology,
PO-Box 520, SE-372 25, Ronneby, Sweden

{per.jonsson, claes.wohlin}@bth.se

Abstract. In response to the increasingly challenging task of developing
software, many companies turn to Software Process Improvement (SPI). One of
many factors that SPI depends on is user (staff) involvement, which is
complicated by the fact that process users may differ in viewpoints and
priorities. In this paper, we present a case study in which we performed a pre-
SPI examination of process users’ viewpoints and priorities with respect to their
roles. The study was conducted by the means of a questionnaire sent out to the
process users. The analysis reveals differences among roles regarding priorities,
in particular for product managers and designers, but not regarding viewpoints.
This indicates that further research should investigate in which situations roles
are likely to differ and in which they are likely to be similar. Moreover, since
we initially expected both viewpoints and priorities to differ, it indicates that it
is important to cover these aspects in SPI, and not only rely on expectations.

1 Introduction

Constraining factors such as time and budget make software development a
challenging task for many organisations – a challenge that is leveraged by the fact that
software plays an increasingly large role in society. In order to handle the challenge
and to turn the software industry into an engineering discipline, it is necessary to put
the processes in focus [27]. The goal of Software Process Improvement (SPI) is to
create an infrastructure that enables effective methods and practices to be
incorporated into the business [1].

The success of SPI depends on a number of factors, one of which is user (staff)
involvement [21]. It has been reported that process users’ attitudes often are
disregarded in quality initiatives, and that putting them in the spotlight when
designing SPI is an important step towards success [1, 10]. To involve process users
and to regard their attitudes can be far from trivial, because process users do neither
necessarily have the same viewpoints, nor the same priorities. This paper presents a
case study in which we examined the viewpoints and priorities of process users at
Ericsson AB, Sweden, to pinpoint differences and similarities among roles. We
selected the role perspective since a number of publications report that role can be a
discriminating factor when it comes to views in SPI [2, 4, 5, 6, 10, 14, 25].

344 P. Jönsson and C. Wohlin

Generic SPI frameworks, such as SEI’s IDEALSM [17], Quality Improvement
Paradigm (QIP) [3], and PROFES [20], all contain two important ingredients: a
characterisation (or assessment, or appraisal) of the current process, and an
improvement plan (or roadmap, or actions). The viewpoints of the process users are
crucial in the characterisation phase, because the more diverse they are, the harder it
becomes to form a baseline. Similarly, the priorities of the process users are crucial in
the planning phase, because the more diverse they are, the harder it becomes to create
a plan that satisfies everyone.

1.1 Background and Research Setting

Ericsson AB, Sweden, is one of the largest suppliers of mobile systems in the world,
and has as customers some of the world’s largest mobile operators. The study was
conducted at one of Ericsson’s offices (hereafter referred to as the company), which at
the time had about 400 employees.

The objective of the study was to prepare improvement of the architecture
documentation process at the company by examining process users’ viewpoints and
priorities with respect to their roles. By doing so, we were able to create an awareness
of the need for and scope of SPI. With “architecture documentation process”, we refer
to the process of documenting the software architecture and keeping the
documentation up-to-date. This is not necessarily an explicitly defined process of its
own, but could, for example, be part of the development process. Our tool for
examining viewpoints and priorities was a questionnaire with quantitative questions
about architecture documentation.

In advance, we expected to see both diverse viewpoints and diverse priorities
among process users regarding the architecture documentation process. The reason
for this was mainly that architecture documentation typically has different
stakeholders, such as project managers, product managers, designers and testers,
most of whom have different needs and knowledge. Both needs and knowledge are
factors that tend to affect how you view things and what you think is important. This
is one of the reasons that software architectures should be designed and documented
using multiple architectural views [5]. Since the organisational role most likely
affects both needs and knowledge, we anticipated differences in both viewpoints and
priorities.

We apply statistical methods to test for differences among roles. For this purpose,
the following statistical hypotheses are evaluated (independently for viewpoints and
priorities):

• Null hypothesis, H0: There are no differences among roles.
• Alternative hypothesis, HA: There is a difference among roles.

This paper is justified by two main reasons. First, it adds to existing research about
similarities and non-similarities among roles, which is necessary to better understand
the impact of roles in various research contexts. Second, it provides an example of
empirical SPI research targeted at industry, with the focus on creating an
understanding of process users’ viewpoints and priorities.

 Understanding the Importance of Roles in Architecture-Related Process Improvement 345

1.2 Architecture-Related Process Improvement

As mentioned, we explored process users’ viewpoints and opinions in order to
prepare for improvement of the architecture documentation process. However, the
questions posed in the questionnaire were more germane to the product (i.e., the
architecture documentation) than to the process (i.e., documenting the architecture).
Our reason for posing questions about the product rather than the process was that
we considered the product to be more tangible to the process users than the process
itself. In other words, we expected that we would get more well-founded answers by
asking about the product. Furthermore, we argue that the quality of the
documentation reflects the quality of the process of documenting it as much as, for
example, the quality of requirements reflects the quality of the process of eliciting,
formulating and managing them.

Since the software architecture of a system is a fundamental building block that has
many stakeholders within the organisation, changes to architecture-related processes
can have great organisational impact, including new workflows, altered mindsets and
changed team structures. This further establishes the need for investigating
differences in viewpoints and priorities among process users.

The paper is structured as follows. Section 2 addresses related work, while Section
3 explains the design of the study as well as how the study was carried out. The
results are presented in Section 4, followed by a statistical analysis in Section 5, a
general discussion in Section 6 and finally conclusions in Section 7.

2 Related Work

For an overview of the Software Process Improvement area, we recommend Zahran’s
book, which covers the topic from a practitioner’s perspective [27]. Zahran discusses
the general challenges of SPI, such as management commitment, buy-in from process
users etc. There are some publications (see below) that discuss differences among
roles in various contexts. In general, they show that there are differences among roles
in some situations, but not in others. It all depends on what you evaluate.

Baddoo and Hall have studied de-motivators in SPI among software practitioners,
in order to understand what hinders SPI success [2]. Dividing the practitioners into
developers, project managers and senior managers, they find both common and
unique de-motivators. They conclude that differences in de-motivators for SPI often
are related to the roles that software practitioners have.

Berander and Wohlin have looked at agreement on SPI issues among traditional
software development roles [4]. Their findings indicate that there is agreement among
roles about communication of processes, but disagreement about, for example,
importance of improvement and urgency of problems.

Conradi and Dybå have investigated how the use of formal routines for transferring
knowledge and experience is perceived by developers and managers [6]. Their results
show that there is a difference between the two groups; developers are more sceptical
to formal routines, while managers take them for granted.

346 P. Jönsson and C. Wohlin

Hall and Wilson have studied views of quality among software practitioners in UK
companies, with focus on two groups - managers and developers [10]. According to
their findings, developers and managers differ in that they have different primary
quality concerns, although the differences are not conflicting.

Karlström et al. present a method for aggregating viewpoints of process users in an
organisation [14]. The essence of the method is to let process users rate factors
believed to affect the SPI goal according to their viewpoints. The authors divide the
process users into two groups, managers and engineers, based on their roles, and
conclude that the groups differ on some factors, but not on all.

In [25], Svahnberg has studied how participants in an architecture assessment form
groups when prioritising quality attributes and assessing architecture candidates.
Svahnberg concludes that the role of the participant is the main influence when
prioritising quality attributes, but not when assessing architecture candidates.

Questionnaires are often used as instruments in Software Process Assessment, for
example the SEI Maturity Questionnaire for CMM-based assessment and the
BOOTSTRAP questionnaire [27]. Klappholz et al. have developed an assessment
tool, ATSE, for assessing attitude towards and knowledge of the development process
[15]. While questionnaires in process assessment commonly measure the
effectiveness of an improvement programme, our questionnaire was rather a part of
the preparations for an upcoming improvement programme. In other words, it was not
a substitute for a process assessment questionnaire.

3 Design

In this section, we outline the design of the study. We describe the contents of the
questionnaire, the sampling and response rate, the technique for treating missing data,
roles in the study and finally threats to the validity of the study.

3.1 Questionnaire Design

In order to assess process users’ viewpoints and priorities, we designed a
questionnaire consisting of six questions collecting data about the current state of the
architecture documentation (the infrastructure questions), and one question about
how to improve the architecture documentation (the improvement question). There
was also a question asking about the process user’s organisational role.

The infrastructure questions, which we believed would yield different results for
different roles, were formulated as follows (words in bold are keywords used for
identifying the questions later):

1. “In your opinion, to what extent does architecture documentation exist?”
2. “How would you, in general, describe the form of the architecture

documentation?”
3. “How would you judge the quality of the documentation?”
4. “In your opinion, to what extent is architecture documentation updated as the

system evolves?”

 Understanding the Importance of Roles in Architecture-Related Process Improvement 347

5. “In your opinion, how well does the architecture documentation match the actual
architecture?”

6. “Imagine being a newly hired employee – how easy would it be to gain insight
into the system using the current architecture documentation?”

For these questions, five point Likert scales (i.e., with five response options for each
question) were used. Such scales are ordinal and are often used for collecting degrees
of agreement [22]. For almost all questions, a low score indicated a negative response
(little, low, seldom), while a high score indicated a positive response (much, high,
often). The scale for the second question was slightly different from the others,
though, in that a low score indicated text-orientation, while a high score indicated
model-orientation.

The improvement question was formulated as follows: “If architecture
documentation was to be improved in some way, what do you think is the most
important purpose it could serve in addition to the present ones?” Five predefined
purposes were given: change impact analysis, risk analysis, cost analysis, driver for
development and system insight. In case these were not satisfactory, the respondent
could choose “other” and suggest a new purpose as the most important one.

3.2 Sampling and Response Rate

The recipients of the questionnaire were selected using systematic sampling [22]. We
obtained a list of all employees from an employee directory, and selected every
second person on the list for the study. The reason for this was that another study was
performed simultaneously and the employees were shared evenly between the studies.

The recipients of the questionnaire were given two weeks to fill it out and return
the answers. The recipients were also allowed to reject the questionnaire if they had
no time available or if they felt that it was not relevant for them. The two-week
deadline seemed reasonable even for people with heavy workload. After one week, a
reminder was sent to those who had not already responded or explicitly rejected the
first distribution.

The population consisted of the 400 persons employed at the company. The
selection of employees described above resulted in a sample of around 200 persons.
While some responses were discarded because they contained invalid answers to
some questions, around a third of the sample, or 65 persons, did give valid responses
to the questionnaire. The other two thirds explicitly rejected the questionnaire, chose
not to respond or were unable to respond before the deadline. Not all 65 respondents
did answer all the questions, however. Because of that, some respondents had to be
discarded, while some could be kept by imputing missing data in their answers, as
described in the next section. As a result, the data presented in this paper are based on
answers from 58 respondents.

In order to verify that the respondents were representative for the population, we
examined the departmental distribution. We could not use the role distribution, since
the roles were known only for the respondents, not the entire population. We saw that
there were only minor differences in departmental distribution between the
respondents and the population, and consequently considered the respondents being

348 P. Jönsson and C. Wohlin

representative for the population. In this context, it should also be noted that the roles
are in many cases closely linked to departments (i.e., testers come from the test
department and so forth). While the respondent drop-out is a threat to the external
validity of the study, as discussed in Section 3.5, we consider the absolute size of the
sample to be satisfactory.

3.3 Treatment of Missing Data

As implied in the previous section, some of the initial respondents did not answer all
the questions discussed in this paper. To be able to keep as many data points as
possible, missing answers for those respondents that had answered at least five of the
seven questions were imputed. The respondents that had answered only four questions
or less were discarded, leaving 40 complete cases and 18 cases to impute. Only the
complete cases were used as basis for the imputation.

The answers were imputed using the hot-deck k-Nearest Neighbour imputation
technique, which imputes values based on the k cases most similar to the target case
[7]. We have, in previous work, found this imputation technique to be suitable for
Likert data [13]. The similarity metric used was the Euclidean distance calculated
only for the infrastructure questions (the improvement question was disregarded
because of its nominal scale). As a replacement for a missing data value, the median
of the k nearest cases was used for the infrastructure questions, while the mode was
used for the improvement question. Based on our previous findings, the value of k
was chosen to 7, which is approximately the square root of the number of complete
cases (k = 6, while closer, would be unsuitable when calculating the median) [13].
In the few cases when the mode was not unique at k = 7, k was increased to 8
instead.

3.4 Roles

The organisational roles of the respondents are rather specific for the company. Thus,
in order to increase the generalisability of the results, and the replicability of the
study, we have mapped the organisational roles to traditional software engineering
roles. We mean that these represent the parts of software development normally
discussed in software engineering literature [24]. To ensure the relevance of the
resulting role list, the mapping was carried out together with a company-appointed
specialist. The resulting roles, with abbreviated form and number of respondents
within parentheses, are:

• Designer (D, 6) - creates system descriptions that the programmer can base the
implementation on [19].

• Programmer (P, 8) - writes code that implements the requirements [19].
• Tester (T, 13) - catches faults that the programmer overlooks [19].
• Functional manager (FM, 5) - responsible for staffing, organizing, and executing

project tasks within their functional areas [18].
• Project manager (PRJ, 8) - plans, directs and integrates the work efforts of

participants to achieve project goals [18].

 Understanding the Importance of Roles in Architecture-Related Process Improvement 349

• Product manager (PRD, 4) - responsible for product related planning activities
[16].

• Architect (A, 11) - makes decisions, coordinates, manages dependencies,
negotiates requirements, recommends technology etc. [8, 11]

• Process group member (PGM, 3) - facilitates the definition, maintenance and
improvement of the software processes used by the organisation [12].

The process group member role is derived from Humphrey’s Software Engineering
Process Group (SEPG) [12]. Persons who work with infrastructure, which is seen as a
kind of process support, are also included in this role. The architect role stems from
an organisational role with responsibility for the system as a whole and its survival in
the product chain. Architecture work is a part of this role, but implementation and
low-level design is not.

3.5 Validity Threats

In this section, the most important threats to the validity of the study are presented
together with measures that have been taken to avoid them.

Construct Validity. Construct validity is concerned with the design of the main study
instrument (i.e., the questionnaire) and that it measures what it is intended to measure
[22]. A threat to construct validity is that not all respondents may have had the same
perception of what architecture is. In order to avoid that, a common definition of the
term “software architecture” was given in the questionnaire, and each respondent was
given the opportunity to disagree and give his or her own definition.

To counter the threat that some questions would be easier to answer for persons
with certain roles, the questionnaire was checked by a screening group at the
company. Because several roles (product manager, project manager, architect,
designer and programmer) were represented by the persons in the screening group,
there should be little bias towards any particular role. The screening group also
verified that the role list in the questionnaire did contain relevant organisational roles.

External Validity. External validity is concerned with the generalisability of the
results [26]. The main threat to external validity is that differences (and non-
differences) found among roles could be true only for the studied company. Since we
are dealing with just one case, this threat cannot be ruled out. There are, however, two
circumstances that we believe make our findings interesting in a wider context. First,
the studied company operates, as stated, on the world market with several large,
international customers. As such, it should be considered a strong industrial case.
Second, by mapping the organisational roles to traditional software engineering roles,
generalisability to a wider software engineering community, and greater replicability
of the study, has been strived for.

Another threat to external validity is the fact that we cannot guarantee that the
distribution of roles for the respondents equals the distribution of roles in the
population. Since we do not know the roles of all the persons in the population, we
cannot avoid this threat. We have tried to ensure that the respondents are
representative of the population by looking at the departmental distribution instead.

350 P. Jönsson and C. Wohlin

Internal Validity. Internal validity is concerned with the relationship between the
treatment (i.e., the questionnaire) and the outcome (i.e., the results collected) [26].
The imputation of data described in Section 3.3 is a threat, since it essentially is
fabrication of data. However, of the incomplete cases, almost all had only one
question out of seven unanswered. Only one incomplete case had two questions
unanswered. Furthermore, we based the choice of imputation technique on our
previous, supporting, findings.

Conclusion Validity. Conclusion validity is concerned with the statistical
relationship between the treatment and the outcome [26]. A threat to conclusion
validity is that we, in the data analysis, use the Kruskal-Wallis test when the number
of ties in the data is large. To address this, we apply an additional Chi-Square test to
validate the outcome of the Kruskal-Wallis test. It should also be noted that the
Kruskal-Wallis test includes correction for ties. Thus, the effect of this threat should
be minimal.

Another threat to conclusion validity is that we use the Chi-Square test when the
expected frequencies in the cells are relatively small. While this may mean that the
outcome is not reliable, Siegel acknowledges that for a large number of cells, the
expected frequencies should be allowed to be small [23]. In our case, the number of
cells is nearly 50, which Siegel hints should be enough to allow small expected
frequencies. Thus, we believe that the effect of this threat should be small.

4 Results

In this section, we present the results on the questionnaire that was distributed at the
company. We show the distribution of answers for the infrastructure questions as well
as for the improvement question. The results are analysed statistically in Section 5.

4.1 Infrastructure Questions

Fig. 1 shows, for each of the infrastructure questions, how the answers are distributed
on the response options. The exact phrasing of the questions can be found in Section
3.1. The question about to what extent documentation exists is special in the sense
that the respondents made use of all five response options. As response options 3 and
4 account for 50% or more of the answers from all roles, the agreement among roles
can be seen as large. Internally, architects (A) and designers (D) disagree more than
the other roles, whereas on the whole, there is a consensus that documentation exists
to a large extent.

For the question about documentation form, it is apparent that response option 2
dominates the answers (i.e., accounts for 50% or more) from all roles except the
architects, meaning that most roles consider the documentation to be more text-
oriented than model-oriented.

The answers to the question about how well the documentation matches the system
indicate that all roles consider the match to be medium to good (as response options 3
and 4 dominate the answers). Again, architects have greater internal disagreement

 Understanding the Importance of Roles in Architecture-Related Process Improvement 351

than the other roles. Also, functional managers (FM) and product managers (PRD)
have a slightly more positive view than the other roles.

Fig. 1. Infrastructure questions; answer distribution (y axis) per role (x axis)

The question about quality of documentation has the narrowest distribution of
answers of all the infrastructure questions. The respondents only made use of three of
the response options in total, while most roles only made use of two, namely 3 and 4.
Hence, the roles seem to agree that the documentation quality is medium or slightly
above medium. The designers have a somewhat more positive view than other roles,
whereas testers and programmers stand out because some of them consider the quality
to be below medium.

352 P. Jönsson and C. Wohlin

In the answers to the question about to what extent documentation is updated, there
seem to be a general consensus that the update frequency is high, with architects and
functional managers having the most positive views. For this question, project
managers (PRJ) have larger internal disagreement than the other roles.

Finally, for the question about how easy it is to gain insight into the system using
the documentation, response option 2 dominates the answers from all roles except
designers (where it is tied with response option 3) and functional managers. This
means that there is agreement among the roles also for this question. Here, both
programmers (P) and testers (T) have more internal disagreement than the other roles.

4.2 Most Important Improvement

When answering the improvement question, the respondents could choose “other” and
add a new purpose if the predefined ones were not satisfactory (see Section 3.1).
However, only one of the respondents chose to do this. We did not ask the other
respondents to reconsider their answers with this additional purpose in mind for two
reasons: (1) we estimated the added value to be minimal, and (2) we anticipated that it
would be difficult to get new answers from all respondents. Consequently, only the
predefined purposes are included in the analysis.

Table 1 shows the results from the improvement question. An ocular inspection
reveals a couple of interesting differences (shown in the table as shaded cells with
bold text). First, system insight (SI) was frequently specified by all roles except the
product managers. Second, risk analysis (RA) and in particular cost analysis (CA)
were more frequent for the product manager role than for any other role. In fact, risk
analysis was not specified at all by most roles except product managers and testers.
Third, change impact analysis (IA) was considerably more frequent for designers than
for any other role.

Table 1. Most important improvement; answer distribution among roles

 IA RA CA DD SI
Architect 27.3 0.0 9.1 27.3 36.4
Designer 66.7 0.0 0.0 0.0 33.3
Process group
member

33.3 0.0 0.0 0.0 66.7

Functional manager 20.0 0.0 0.0 0.0 60.0
Project manager 0.0 0.0 12.5 37.5 50.0
Programmer 25.0 0.0 0.0 25.0 50.0
Tester 0.0 7.7 15.4 0.0 76.9
Product manager 0.0 25.0 50.0 25.0 0.0

5 Analysis

In this section, the results from the questionnaire are analysed statistically. The null
hypothesis stated in Section 1.1 is tested at significance level = 0.05. Two statistical

 Understanding the Importance of Roles in Architecture-Related Process Improvement 353

tests are used, the Kruskal-Wallis test and the Chi-Square test [23]. We use these tests
because we consider the data, being on ordinal and nominal scales, respectively,
unsuitable for parametric tests. Both tests are applied to the infrastructure questions,
whereas only Chi-Square is applied to the improvement question, because of its
nominal scale.

5.1 Infrastructure Questions

The statistical significances of the results for the infrastructure questions are first
calculated using the Kruskal-Wallis test. As can be seen in the second and third
columns in Table 2, the results from the infrastructure questions are not significant at
the selected significance level, as p exceeds 0.05 for all questions. This outcome
aligns well with the results from the infrastructure questions presented in Section 4,
where it can be seen that there is much agreement among the roles.

Since the Kruskal-Wallis test should be used with care when the number of ties in
the data is large (as in our case) [9], we use the Chi-Square test for the infrastructure
questions as well. The outcome of this test, presented in the rightmost three columns
in Table 2, further confirms that there are no statistical significances in the results.
This means that the null hypothesis cannot be rejected for the infrastructure questions.

Table 2. Kruskal-Wallis (left) and Chi-Square (right) outcome, all questions

 H (K-W) p (df=7) X2 df p
Exists 5.02 0.66 31.04 28 0.32
Form 4.38 0.73 12.46 14 0.57
Quality 3.62 0.82 16.41 14 0.29
Update 9.83 0.20 24.14 21 0.29
Match 5.88 0.55 17.56 21 0.68
Insight 4.12 0.77 14.91 21 0.83
Improve N/A N/A 47.71 28 0.046

5.2 Improvement Question

Because the data collected from the improvement question are nominal, we apply
only the Chi-Square test and not the Kruskal-Wallis test. The outcome, presented in
the bottom row in Table 2, shows that there is a statistically significant difference
among the roles, as p is less than 0.05. Thus, the null hypothesis can be rejected in
favour of the alternative hypothesis for the improvement question.

The overall Chi-Square does not pinpoint the differences. In other words, it does
not identify exactly which roles that differ from others. To find the exact locations of
the differences, the significances of all the partitions in the data are calculated. Each
partition represents one pair of role and purpose (i.e., most important improvement),
and has one degree of freedom. Simply speaking, the partition significance for a
particular role-purpose pair is calculated based on the score of the pair and all scores

354 P. Jönsson and C. Wohlin

to the left and above it. Consequently, the a priori order of the rows and columns
affects the outcome of the partition significances [23]. We deal with this problem by
performing an exhaustive calculation where all possible permutations of row and
column order are evaluated. We argue that the pairs of role and purpose that are
significant in more than 50% of the permutations can be considered significant
overall. Table 3 shows the resulting pairs of role and purpose.

Table 3. Significant role-purpose pairs

Role Purpose Significance frequency (%)
Product manager Risk analysis 53.5
Product manager Cost analysis 54.7
Designer Change impact analysis 59.1

It can be seen that product managers differ from other roles in that they more
frequently chose risk analysis and cost analysis. Moreover, designers differ in that
they more frequently chose change impact analysis than other roles. We see that this
aligns well with some of the observations made in Section 4.2.

6 Discussion

In Section 4.1, we have seen that there seems to be much agreement among the roles
regarding the infrastructure questions. This is supported by the statistical analysis in
the previous section, which shows that there are no statistical differences among the
roles for these questions. In other words, the respondents have fairly similar
viewpoints. Our interpretation of this is that the architecture documentation process is
well established at the company and that everyone has a joint understanding of how
the architecture is documented and what the state of the documentation is. This is an
important starting point when doing architecture-related process improvement,
because it makes it easier to obtain a baseline of the current process. If the viewpoints
had differed among roles, it could be difficult to find a common baseline.

Looking at individual roles, the results in Section 4.1 shows that some roles have
more internal disagreement than other roles. This is true for architects and designers
on the question about to what extent architecture documentation exists, and also for
architects on the question about to what extent the documentation matches the system.
The reason that there is disagreement within both roles may be that people with these
roles work closer to the documentation and are therefore more sensitive to variations
in its state. Moreover, internal disagreement is also noticeable for project managers on
the question about to what extent the documentation is updated. A reason may be that
project managers are more dependent on documentation update frequency when
working with time and resource allocation. Finally, programmers and testers have
larger internal disagreement than other roles for the question about how easy it is to
gain insight into the system through the documentation. An explanation for this can

 Understanding the Importance of Roles in Architecture-Related Process Improvement 355

be that these roles use the documentation for gaining system insight more than the
other roles, and are therefore more sensitive to its ability to provide insight.

The results in Section 4.2 clearly show differences among the roles for the
improvement question. System insight is the top improvement for all roles except
designers and product managers. For these roles, change impact analysis and cost
analysis are most important, respectively. The product manager role also stands out
because it is the only role with strong focus on risk and cost analysis, and no focus at
all on system insight. The reason that the product manager role differs on several
accounts may be that this role has more market focus and less development focus than
the other roles. The reason that the designer role differs may be that designers depend
on the information in the architecture documentation more than other roles, and that
this requires a strong focus on change impact analysis in order to handle ever-
changing requirements.

The statistical analysis of the improvement question supports the differences
among the roles outlined above. More specifically, designers’ focus on change impact
analysis and product managers’ focus on cost and risk analysis are statistically
significant. The fact that product managers do not consider system insight an
important improvement is not significant, however. The existence of differences
among the roles for the improvement question indicates that the priorities of
respondents are different. This means that it becomes more difficult to create an
improvement plan that satisfies all process users, since the plan needs to have a wider
scope.

7 Conclusions

In this paper, we have presented results from a case study where we used a
questionnaire for investigating process users’ viewpoints and priorities regarding the
architecture documentation process. The study was conducted at an office of Ericsson
AB, Sweden. The objective of the study was to prepare improvement of the
architecture documentation process at the company by examining process users’
viewpoints and priorities with respect to their roles.

A large number of employees were asked questions about the current state of the
architecture documentation and possible improvements of it. As explained in Section
1.2, we asked about the product (architecture documentation) rather than the process
in order to have more tangible questions. The process users were divided into groups
according to their software engineering roles. In order to analyse the results
statistically, the following hypotheses were evaluated:

• H0: There are no differences among roles.
• HA: There is a difference among roles.

The two types of questions (current state and improvement) in the questionnaire
were analysed separately. When analysing the results from the questions about the
current state of the process, the null hypothesis could not be rejected. Our
interpretation of this is that the company has succeeded in spreading knowledge about

356 P. Jönsson and C. Wohlin

the process to the process users. However, some roles have larger internal
disagreement compared to other roles for some of the question. This indicates that
there may be underlying factors, other than role, that affect viewpoints.

When analysing the results from the improvement question, on the other hand, the
null hypothesis could be rejected in favour of the alternative hypothesis. By
performing a more in-depth statistical test and investigating the results from the
improvement question directly, we found the following:

• System insight is not considered important to improve by the product managers. It
is, however, the most important improvement for all other roles except the
designers.

• Cost analysis and risk analysis are significantly more important to improve for
product managers than for other roles. The reason may be a stronger market focus
for this role than for the other roles.

• Change impact analysis is significantly more important to improve for designers
than for other roles. The reason may be that designers use the documentation more
than other roles when determining change impact.

Initially, we expected differences among roles both for viewpoints and priorities,
since stakeholders of architecture documentation often are considered to have different
needs and knowledge. Our expectations were however only fulfilled for priorities, as
these clearly were different among the roles. It could be argued that it is “common
knowledge” that priorities differ, which is why our expectations were set as they were.
However, it remains difficult to foresee exactly how roles differ, which is important to
know in process improvement. Furthermore, we had expected larger differences than
were actually found. In any case, the fact that viewpoints, contrary to our expectations,
did not differ while priorities did, leads us to conclude the following:

• It is important to cover process users’ viewpoints and priorities in process
improvement work, because they may not coincide with the prevalent expectations.

• Further research should investigate in which situations roles are likely to differ and
in which they are likely to be similar.

Acknowledgements

This work was partly funded by The Knowledge Foundation in Sweden under a
research grant for the project “Blekinge - Engineering Software Qualities (BESQ)”
(http://www.bth.se/besq).

References

1. Aaen, I.: Software Process Improvement: Blueprints versus Recipes. IEEE Software 20
(2003) 86-92

2. Baddoo, N., Hall, T.: De-motivators for software process improvement: an analysis of
practitioners’ views. Journal of Systems and Software 66 (2003) 23-33

3. Basili, V., Green, S.: Software Process Evolution at the SEL. IEEE Software 11 (1994) 58-66

 Understanding the Importance of Roles in Architecture-Related Process Improvement 357

4. Berander, P., Wohlin, C.: Differences in Views between Development Roles in Software
Process Improvement – A Quantitative Comparison. Proceedings of the 8th International
Conference on Empirical Assessment in Software Engineering (EASE’04), Edinburgh
Scotland (2004) 57-66

5. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford J.:
Documenting Software Architectures: Views and Beyond. Addison-Wesley (2003)

6. Conradi, R., Dybå, T.: An Empirical Study on the Utility of Formal Routines to Transfer
Knowledge and Experience. ESEC/SIGSOFT FSE (2001) 268-276

7. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley & Sons
(1973)

8. Fowler, M.: Who Needs an Architect? IEEE Software 20 (2003) 11-13
9. Garson, G. D.: PA 765 Statnotes: An Online Textbook. North Carolina State University,

http://www2.chass.ncsu.edu/garson/pa765/statnote.htm, last checked March 3 (2005)
10. Hall, T., Wilson, D.: Views of software quality: a field report. IEE Proceedings on

Software Engineering 144 (1997) 111-118
11. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley (2000)
12. Humphrey, W.: Managing the Software Process. Addison-Wesley (1989)
13. Jönsson, P., Wohlin, C.: An Evaluation of k-Nearest Neighbour Imputation Using Likert

Data. Proceedings of the 10th International Software Metrics Symposium (METRICS’04),
Chicago IL USA (2004) 108-118

14. Karlström, D., Runeson, P., Wohlin, C.: Aggregating Viewpoints for Strategic Software
Process Improvement – a Method and a Case Study. IEE Proceedings on Software
Engineering 149 (2002) 143-152

15. Klappholz, D., Bernstein, L., Port, D.: Assessing Attitude Towards, Knowledge of, and
Ability to Apply, Software Development Process. Proceedings of the 16th Conference on
Software Engineering Education and Training (CSEET’03), Madrid Spain (2003) 268-278

16. Lehmann, D.R., Winer, R.S.: Product Management. 3rd edn. McGraw-Hill (2002)
17. McFeeley, B.: IDEALSM: A User’s Guide for Software Process Improvement. Handbook

CMU/SEI-96-HB-001. Software Engineering Institute, Carnegie Mellon University (1996)
18. Nicholas, J.M.: Project Management for Business and Technology: Principles and

Practise. 2nd edn. Prentice Hall (2001)
19. Pfleeger, S.L.: Software Engineering: Theory and Practise. Intl. edn. Prentice Hall (1998)
20. PROFES User Manual – Final Version 1999. http://www.vtt.fi/ele/profes/PUMv10.pdf,

last checked March 3 (2005)
21. Rainer, A., Hall, T.: Key Success Factors for Implementing Software Process Improvement:

a Maturity-Based Analysis. Journal of Systems and Software 62 (2002) 71-84
22. Robson, C.: Real World Research. 2nd edn. Blackwell Publishing (2002)
23. Siegel, S., Castellan Jr., N.J.: Nonparametric Statistics for the Behavioral Sciences. Intl.

edn. McGraw-Hill (1988)
24. Sommerville, I.: Software Engineering. 6th edn. Addison-Wesley (2001)
25. Svahnberg, M.: A Study on Agreement Between Participants in an Architecture

Assessment. Proceedings of the International Symposium on Empirical Software
Engineering (ISESE’03), Rome Italy (2003) 61-71

26. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.:
Experimentation in Software Engineering: An Introduction. Kluwer Academic Publishers
(2000)

27. Zahran, S.: Software Process Improvement: Practical Guidelines for Business Success.
Addison-Wesley (1998)

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 358–369, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Improved Control of Automotive Software Suppliers

Martin Ivarsson, Fredrik Pettersson, and Peter Öhman

Department of Computer Engineering,
Chalmers University of Technology, Gothenburg, Sweden

Abstract. There is a lack of early project control when automotive software is
developed by external suppliers. This paper proposes a process improvement
that targets early deliverables from suppliers as a means to improve project
control. An addition to the existing automotive process employing a two-level
use case approach is presented. In an example study involving Volvo 3P we
show that the process improvements are applicable in real industrial
development processes and that use cases are suitable for automotive
requirements communication. The example also showed that use cases can be
employed at the level of detail necessary to describe embedded systems.

1 Introduction

In many cases the first delivery from an automotive supplier to an OEM (Original
Equipment Manufacturer) after a software product has been ordered is the first
prototype. As the prototype is delivered rather late in the project there is a lack of
project control, which in turn increases the risk of a misunderstanding of requirements
and low software quality. The current common practice is based on traditional OEM
requirement documentation (such as SRS “Software Requirement Specification”). At
the supplier side, the resulting internal detailed requirements and specifications are
not useful as early deliverables since most OEMs lack the competence to understand
all the details in these documents. In addition, these documents might include supplier
proprietary information that cannot be disclosed to the OEM.

There has been rather extensive research in quality management (e.g. [26]).
Certification of software manufacturers using the CMM (Capability Maturity Model) [7,
8] or SPICE (ISO 15504) has proven useful in assessing and selecting capable suppliers.
These methods do not provide any real means to check that the supplier actually follows
the said process or the rate at which work is progressing. Thus they do not provide
control mechanisms during development, which is the purpose of this paper.

Most research in the area of software project control (such as [27]) has focused on
the actual software production process, which in the automotive domain is applicable
to the processes at the suppliers. Generally (as in [28]), research has clearly pointed out
the need to establish a reporting system that defines what critical data are needed and
how and when they are needed. However, in the current automotive common practice
process (e.g. [31]), such deliverables between an OEM and a supplier are missing in
the time from the contractual agreement to the first delivered software prototype.

 Improved Control of Automotive Software Suppliers 359

This paper presents a process improvement that targets early deliverables- in the
requirements phase- from suppliers as an important way to improve project control.
Concrete and measurable deliverables have been identified as important criteria for
controlling projects according to plan [29]. In an example, we show the feasibility of
using well-standardized use case models together with a proposed automotive-
compliant process addition as means to obtain feedback through quantitative
deliverables early in the software development process.

In order to be useable in practice, the developed process addition is cost efficient,
i.e. it generates low additional resource demands for the OEM and can be used
without a need of major changes to existing process activities. This is achieved by
letting most of the added workload be carried out by the supplier. The existing
documents and activities are not affected by the process addition, i.e. it is attachable
to any iterative software development process used in the automotive industry today.
As the added documents are based on and reflect the information in the existing
documents, the suggested attachment is consistent with the existing process.

2 Use Case Usage

We employ use cases as early deliverables since they provide a generic solution that
can be introduced into any existing development process. Use cases are useful
because they give the OEM a way to describe and communicate goals to the suppliers
and allow suppliers to communicate their grasp of the requirements on the system
back to the OEM. This is because use cases, compared to other requirement
documents, are easily understood by all stakeholders [1, 2, 3].

A well-defined use case standard is needed to enable quality control and improve
communication. Today there is no common standard for what should be included in
use cases. The UML has standardized the primitives of use case diagrams [18] but has
not indicated exactly which topics should be included in the use cases or the manner
in which they should be specified. There are a number of topics that are generally
considered mandatory, which other topics that should be included depend on the
context in which use cases are employed. For this study we adapt the templates
presented in [4], explicitly developed for embedded systems.

The definition of use cases is often that they should specify a flow of events that
the system follows in order to yield an observable value to an actor [1, 5, 6]. Fitting
the needs of the automotive industry, including the possibility to describe embedded
systems with use cases, our proposal expands the use case concept to enable
derivation of use cases from stakeholders’ needs and major functionality described in
the SRS. As a result, use cases do not necessarily yield an observable value to a
specific actor. This approach has previously been used in embedded system
specification by Nasr et al. [16].

The proposed process additions employ use cases at two different levels of detail,
similar to the strategy used by Cockburn [19]. Both levels employ Real use cases, as
defined by Larman [20], as technical details and interfaces to other systems are
captured. The first, summary level use cases, is produced by the OEM, preferably

360 M. Ivarsson, F. Pettersson, and P. Öhman

before choosing a supplier. The summary level use case model visualizes and
communicates the goals of the system to the supplier and can even be made part of
the contractual agreement. The other, detailed level use cases, is produced by the
chosen supplier on the basis of the summary level use cases and the supplier’s
knowledge of the domain of the system. It is then delivered to the OEM in order to
enable control of the progress of the work and, most importantly, to show that the
supplier has a correct understanding of the requirements.

Fig. 1. Detailed level and summary level use case templates

A structured way of writing use cases, including templates and guidelines, is
needed (especially since two parties are involved) so that they can be used for quality
assurance. To the best of our knowledge there is not a great deal of research on
guidelines for writing use cases. A set of guidelines is proposed in [22] that is a
collective result of the research done in the area. We have modified the style and
content guidelines given in [22] to suit the automotive domain.

When new artifacts are introduced in a process, the corresponding quality
assurance mechanisms must also be defined. As the literature recommends reviews to
ensure the quality of requirement documents such as use cases [3, 5, 30], reviews has
been chosen for the added quality assurance activities.

3 Process Addition Implementation

When requirement specifications have been delivered to the supplier, the first delivery
from the supplier to the OEM is currently most often the first prototype. This creates a
gap in the communication between the two parties (as illustrated in Fig. 2), hence
prohibiting the OEM from controlling the supplier during the greater part of
development.

 Improved Control of Automotive Software Suppliers 361

Still recognizing the need to investigate and improve communication during other
phases of development, we employ use cases as a deliverable to fill the gap in the
requirements phase.

Fig. 2. Process addition scope

The remaining part of this section describes the proposed additions to the process
in more detail. In order to be applicable in the automotive industry, the additions are
developed to be cost effective. Furthermore, because the automotive industry is a low
risk business not eager to change existing processes, the additions must be attachable
to these processes, i.e. they must be able to be used without affecting existing
procedures. To be attachable the process additions need to ensure consistency with
other requirement documents. Hence the new documents must not introduce new
requirements on the system under construction.

3.1 Process Description

This section presents the process additions that are used to introduce use cases into an
organization. The existing development process that they extend is assumed to be a
generic iterative development process for embedded systems.

The process description specifies a framework of activities and documents,
detailing the workflow and distribution of tasks between OEM and supplier.

It is assumed that, in the existing process, the OEM specifies customer demands
that are later elaborated into system requirements by the supplier [21]. In the
automotive industry, customer demands most often include a partial solution to the
problem. The supplier then provides a complete solution, whose details are not always
understood by OEMs. The process addition provides a means to communicate the
solution and assure its correctness.

Fig. 3 shows the proposed process additions together with existing adjacent
activities. Each activity in the workflow in the figure requires a certain input to be
carried out and subsequently produces some kind of output to be useful. The artifacts
necessary for each activity to commence, denoted with “I”, and the produced output,
denoted with “O”, are specified in Table 1.

As perspective based reading (PBR) has proven to be the most efficient review
technique for finding defects in requirement documents written in natural language

362 M. Ivarsson, F. Pettersson, and P. Öhman

Fig. 3. Proposed process addition workflow

[9, 10], it was chosen for the added quality assurance activities (activities “Review
Summary Level Use Case Model” and “Review Detailed Level Use Case Model” in
Table 1). PBR has furthermore been proven to be cost effective, as more defects are
found per hour as compared to any other technique used today [11]. Furthermore, as
PBR provides guidance for reviewers, less experienced employees can be utilized
[12]. PBR builds on the scenario-based techniques first presented by Porter et al. [11],
who based their idea on the work of Parnas et al. [13].

The most salient feature of PBR is the assignment of different roles to the
reviewers. The use case models are reviewed from different perspectives, guided by
role-specific reading instructions and a number of checklist-like questions. On the
basis of the knowledge of the automotive domain, the roles of designer, user, process
expert and tester were chosen. It should be noted that the PBR technique facilitates
the participation of the OEM (in the user role) in reviews of detailed level use cases at
the supplier.

The resulting process is attachable to any modern iterative software development
process, as documents from other parts of the process serve as input to the additional
activities and not vice versa. In other words, existing documents and activities are not
affected by the production of use cases. Producing SRS and Domain Model, both
input to the suggested process addition, is today considered best practice and these
artifacts are thus available in almost every project. Since detailed level use cases
include far more detail than their summary level counterparts, most of the added
workload is carried out by the supplier. In addition, most of the information included

 Improved Control of Automotive Software Suppliers 363

Table 1. Input and output of the activities in the proposed process addition

Identify Actors I I O
Identify Goals I I I O
Identify Use Cases I I I O
Write Summary Level
Use Cases

I I I I I O O O

Review Summary Level
Use Case Model

I I IO IO IO IO IO O O

Select Supplier I I I I I I O
Elaborate & Review
SRS

IO I I I I I

Write Detailed Level
Use Cases I I I I I IO I O

Prioritize Use Cases I I I O
Check Use Cases
against SRS

I I I I O I

Review Detailed Level
Use Case Model

I I IO IO IO IO O O IO IO

S
um

m
ar

y
Le

ve
l U

C

U
se

 C
as

e
D

ia
gr

am

S
R

S

D
om

ai
n

M
od

el

A
ct

or
 L

is
t

O
E
M

S
u
p
p
l
i
e
r

D
et

ai
le

d
Le

ve
l U

C

P
rio

rit
y

Li
st

U
se

 C
as

e
M

at
rix

D
ef

ec
t

+
 T

im
e

Lo
g

A
ct

io
n

P
la

n

C
on

tr
ac

t

A
ct

or
-G

oa
l L

is
t

U
se

 C
as

e
N

am
esArtefact

Activity

in the summary level use cases should have already been elicited in an initial
requirements analysis. This makes use cases cost effective in the OEM’s perspective.
Added workload at the supplier can of course not be neglected as a cost driver, but
these activities become part of the contract negotiations and have high visibility.
Hence, they will be subjected to the normal cost reduction efforts of the OEM. In
reality, the amount attached to this added workload that can be billed to the OEM is
not significant because of the very competitive environment of suppliers.

4 Quality Control Mechanisms

Introducing use cases as an essential delivery in the requirements phase enables a
number of important control mechanisms.

Early deliveries from the supplier to the OEM make it easier to identify
misunderstandings in the goals of the system and to correct them early in
development. As the supplier elaborates the summary level use case model into a
detailed level use case model and delivers it to the OEM, these added documents
indicate whether the supplier has interpreted the requirement documents correctly.
This provides a means to reach consensus between the OEM and supplier on the
system under construction.

364 M. Ivarsson, F. Pettersson, and P. Öhman

In addition, obtaining early attention from the supplier can be a problem, as many
suppliers tend to give priority to the OEM with the earliest production start. The
detailed use case model deliverable shows supplier progress and the delivery ensures
the OEM that development has started. Later, basing the functions to be implemented
in each prototype on the detailed use case model will make it possible to validate and
verify a subset of the functionality of the system under construction for each
prototype released. Further, the OEM can participate in setting priorities for the use
cases so that the most important functionality is implemented first. Risks are
minimized, as the most important parts of the system are implemented first and new
parts become less important with each prototype that is released. If the schedule for a
prototype is exceeded or the quality is deficient, actions can be taken before it is
realized that the system is imperfect or that the project is exceeding schedule as the
final release date is approaching or has even been reached.

The use case model itself is guaranteed high quality through the employment of a
specialized inspection technique, PBR. Inspections disclose defects in the use case
model and detect erroneous requirements in the SRS. As these inspections are carried
out before proceeding to other activities, they prevent defects from propagating from
the SRS to other artifacts. The delivery of inspection documents from supplier to
OEM can indicate the general quality of the supplier’s work and at the same time help
assure that work progresses as planned.

The delivery of these artifacts forms a point in the development where the work
carried out by the supplier to that time can be examined by the OEM, a so called
milestone or gate. As use cases are derived from ordinary atomic requirements,
measuring the quality of the use case model indicates the quality of the entire
requirements phase. Depending on the type of project, different conditions, needed to
be fulfilled at this point can be specified, e.g. completeness, number of defects found
in review etc.

5 Example: Volvo 3P

The study involves the Embedded Software Development department (here called
ESW) at Volvo 3P. Volvo 3P is a business unit in the Volvo Group that supports the
three truck companies Volvo Trucks, Renault Trucks and Mack. The ESW
department is responsible for the development and purchase of software used in
braking systems, suspension and dashboard controls etc. This example is a part of
ongoing process improvement efforts at the department and aims to show the
feasibility of the proposed process additions.

To be applicable in an industrial setting, the process addition must be shown to be
attachable and consistent with the existing requirements documents when applied to
an actual software development process used in industry today.

The Global Development Process (GDP) [14] is a framework for project
management used by Volvo companies worldwide. The GDP describes the entire
development of a new vehicle, from pre-study to follow-up. The electrical
engineering process is described in the GDIs shown in Fig. 4. The dashed lines

 Improved Control of Automotive Software Suppliers 365

represent GDP gates, and each ellipse represents a GDI. The GDIs complement the
GDP and synchronize activities and deliveries around the GDP gates.

The proposed process additions are applicable to the Software Level GDI [15] as
thisit describes the software development process used, including how to manage
externally developed software.

Fig. 4. Relationship between the GDIs and the GDP gateways

5.1 Docking to the Software Level GDI

This section shows how the proposed additions can be added to the process described
in the Software Level GDI [15]. It should be noted that not all details of the Volvo
process are disclosed in this paper. However, as the main focus of the paper is the
relation between OEM (in this case ESW) and supplier, the additions to the parts
of the GDI concerning externally developed software will be described. Fig. 5
summarizes the affected activities and artifacts of the GDI together with the proposed
additions. An “I” denotes that the artifact serves as input to the activity, while an “O”
denotes output. Even though the production of the summary and detailed level use

Detailed Specification I O O
RFQ & Supplier selection I I I O I I
SUCM Production * I O
DUCM Production * I I I O I

 * Addition

Specification Package:
Signal DB
HMI Requirements
Electrical Requirements
EE Regulation List
EE Project description
Lists of functions allocated to the node
Function specifications
Deliveries contents and scheduling
EE Architecture

Supplier Package:
SWPTP
SWDP
SWTP
MoM from SRM

S
up

pl
ie

r
P

ac
ka

ge

S
up

pl
ie

r
S

W
R

S

D
U

C
M

 *

S
U

C
M

 *

S
pe

ci
fic

at
io

n
P

ac
ka

ge

S
W

R
S

S
W

P
D

Artifact

Activity

Fig. 5. Summary of the relevant part of the Software Level GDI together with the process
additions

366 M. Ivarsson, F. Pettersson, and P. Öhman

case models is part of the “Detailed Specification” and “RFQ & Supplier selection”
activities, respectively, these have been extracted to illustrate the inputs and outputs
of the additions.

“Detailed specification” and “RFQ & Supplier selection” are the only activities of
the existing process that are directly influenced. The main output of the “Detailed
Specification” activity is the software requirement specification (SWRS). The “RFQ
& Supplier selection” activity on the other hand serves both as a vehicle to choose a
capable supplier and, for the chosen supplier, to specify how the product will be
developed.

The “Detailed specification” activity is extended with the summary level use case
model (SUCM), which is produced by the OEM (ESW) and is included in the RFQ
sent out to potential suppliers. The SUCM is produced in conjunction with the SWRS
and should reflect the goals of the SWRS.

The next activity, “RFQ & Supplier selection”, is extended with the detailed level
use case model (DUCM). The use case model is produced either by each potential
supplier before one of them has been contracted or by one contracted supplier. In
either case it should be finished and reviewed before the Specification Review
Meeting (SRM), which works as a gate at the end of this activity. The DUCM
constitutes one of the inputs to the Software Project Time Plan (SWPTP) and is
created before this document.

5.2 Results

To be attachable, the additional activities must not affect the existing procedures. As
seen in Fig. 4 above, both the SUCM and the DUCM serve as input to the “RFQ &
Supplier selection” activity. However, the SUCM is only included as one of the
documents delivered to the supplier as a part of the RFQ (“Request For Quotation”),
not affecting the other documents involved. In addition it serves as input to the
production of the DUCM, which is itself part of the addition. The DUCM serves as
input to the scheduling of prototypes and helps decide what functionality should be
included in these, hence affecting when to implement what but not how. Moreover,
the reviews of the use case models might unveil defects in the SWRS, hence
improving its quality, but do not serve as input in the production of it.

It can be concluded from the example and discussions with Volvo engineers that
the process additions are attachable to the existing process at ESW, as they do not
affect existing procedures.

Utilizing use cases in requirement engineering is today considered best practice but
is conventionally not employed at the level of abstraction needed to support the
development of embedded software at ESW. However, use cases have been employed
in this type of setting before (i.e. at Rolls Royce plc (RR)) [16, 17].

As a real pilot case the proposed process additions were applied to the “Idle
Adjust” function for Volvo engines. The “Idle Adjust” function constitutes an
embedded system, which in the use case world means that all actors interacting with
the system under construction are non-human and are either other systems or signals.
The pilot study showed promising results, completely capturing the functional

 Improved Control of Automotive Software Suppliers 367

requirements of the atomic requirement document (SWRS), including interactions
with other systems. As the use case is produced on the basis of existing requirements
documents and does not add new requirements, the proposed addition is consistent
with the documents in the existing process.

6 Discussion

Because the proposed solution is an addition to the existing development process, the
workload in the requirements phase increase both at the OEM and at the supplier. As
discussed in section 3, most of the added work is carried out by the supplier and is
subjected to the normal cost reduction efforts. The effort needed for the OEM to
produce summary level use cases can not however be neglected. This causes an increase
in the time needed to complete this phase and subsequently makes requirement
elicitation and communication more expensive. The increased costs in the early phases
are however expected to be compensated by the decrease in hidden expenses later in the
project. At this stage this is only an assumption and is not based on empirical
knowledge. Further studies must be done to establish the return on the additional money
invested. Kelly et al. [23] however concluded that more defects are found during
reviews of requirement specifications than in any other documents in the software
development life cycle. With respect to cost effectiveness, Doolan [24] reported that
industrial experience indicates a 30-time return for every hour spent on reviewing
specifications. In addition, Russell [25] reports a return of 33 hours of maintenance
saved per hour of review. Use cases serve as a vehicle for uncovering defects caused by
a supplier’s misinterpretation of the customer’s requirements, hence improving the
review process during the requirements phase. This leads to fewer defects remaining
late in development and consequently to lower expenses to correct them.

Another cause of extra expenses is a lack of experience in employing use cases as
part of the development process. A great deal of training is needed at the OEM, and
probably at the supplier as well, to enable them to utilize the solutions proposed in
this paper. The money invested in training developers is however a one-off expense
that in the long run should result in a much larger return. In theory this reasoning
should apply to all parts of the proposed addition, although no studies have yet been
done to support this.

The new artefacts can possibly replace existing requirement documents in the
longer perspective. This adds the extra value of improved, standardized methods for
eliciting requirements and communicating them while at the same time moving part
of the expenses to the supplier.

7 Conclusion

This paper shows how to increase control over automotive software development
projects by introducing new early deliverables from the suppliers. This is done by
adding standards and procedures for using use case models in early phases to the
existing automotive process.

368 M. Ivarsson, F. Pettersson, and P. Öhman

In an example involving Volvo 3P we showed that the proposed process additions
can be attached to an existing real life software development process. On the basis of
our experiences from the example and the pilot implementation, we conclude that the
process additions proposed are an important step in solving the problem of early
project control when using externally developed software, which is the case at many
OEMs today. Furthermore, the pilot study of a real engine control function
demonstrated that the two level use case models were suitable for automotive
requirement communication and showed that use cases can be employed at the level
of detail necessary to describe embedded systems.

The extra workload imposed by adding activities to the existing process is mainly
at the supplier side. To be cost neutral at the OEM side, the new activities must not
only be added but must replace some existing activities. While this is possible, it is
beyond the scope of this paper. A change in the automotive process would have taken
considerable time and effort, but is a natural step after using and assessing the
additions proposed in this paper.

Acknowledgments

The authors would like to thank Stéphane Verger at Volvo 3P for his valuable
criticism and stimulating discussions. This research has been conducted within the
project CEDES which is funded by the Swedish industry and government joint
research program IVSS – Intelligent Vehicle Safety Systems.

References

1. Jacobson I., Booch G., Rumbaugh J., The Unified Software Development Process,
Addison-Wesley (1999)

2. Jacobson I., Christerson M., Jonsson P., Övergaard G., Object-Oriented Software
Engineering – A Use Case Driven Approach, Addison-Wesley (1992)

3. Kulak D., Guiney E., Use Cases: Requirements in Context, Addison-Wesley (2000)
4. Ivarsson M., Pettersson F., “A Use Case Driven Approach to Improve Quality

Management of Suppliers”, Technical report no 04-15, Dept of Computer Engineering,
Chalmers University of Technology, Gothenburg, Sweden (2004)

5. Schneider G., Winters J.P., Applying Use Cases, Second Edition: A Practical Guide,
Addison-Wesley (2001)

6. Cockburn A., “Structuring Use Cases with Goals”, http://members.aol.com/acockburn/
papers/usecases.htm (2000)

7. Humphrey W.S., Managing the Software Process, Addison-Wesley (1989)
8. Paulk M.C., Curtis B., Crissis M.B., Weber C.V., “Capability Maturity Model for

Software, Version 1.1”, CMU/SEI-93-TR-24 (1993)
9. Basili V.R., Shull F., Lanubile F., “Using Experiments to Build a Body of Knowledge”,

IEEE Transactions on Software Engineering, 25(4) (1998) pp. 456-474
10. Basili V., Caldiera G., Lanubile F., Shull F., “Studies on Reading Techniques”, Proc. of

the Twenty-First Annual Software Engineering Workshop, SEL-96-002, (1996) pp.59-65

 Improved Control of Automotive Software Suppliers 369

11. Porter A., Votta L., Basili V.R., “Comparing Detection Methods for Software
Requirements Inspection: A Replicated Experiment”, IEEE Transactions on Softwrae
Engineering, vol. 21 no. 6 (1995) pp. 563-575

12. Shull F., Rus I., Basili V., “How Perspective-Based Reading Can Improve Requirements
Inspections”, Computer, vol. 33 no. 7 (2000) pp. 73-79

13. Parnas D.L., Weiss D.M., “Active Design Reviews: Principles and Practices”, Proc. of the
Eight International Conference on Software Engineering (1985) pp. 132-136

14. Volvo 3P, “GDP Pocket Guide”, Issue 4 2003-03-01 (2003)
15. Volvo 3P Trucks Standard, “SoftWare Level EEE GDI (GDI 966-88)”, Volvo 3P, Issued

by Andreas Nyberg and Daniel Lathuiliere
16. Nasr E., McDermid J., Bernat G., “Eliciting and Specifying Requirements with Use Cases

for Embedded Systems”, Proc. of the Seventh International Workshop on Object-Oriented
Real-Time Dependable Systems (WORDS 2002) , San Diego, California, January 7-9
(2002)

17. Nasr E., McDermid J., Bernat G., “A Technique for Managing Complexity of Use Cases
for Large Complex Embedded Systems”, Proc. of the Fifth IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, ISORC’02 (2002)

18. OMG 2003, “UML 2.0 Superstructure Specification”, Object Management Group,
http://www.omg.org/docs/ptc/03-08-02.pdf (2003)

19. Cockburn A., Writing Effective Use Cases, Addison-Wesley (2001)
20. Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented Analysis

and Design, Prentice Hall, Upper Saddle River, NJ (1998)
21. Weber M., Weisbrod J., “Requirements Engineering in Automotive Development:

Experiences and Challenges”, Software, IEEE, Vol. 20 Issue 1 (2003) pp. 16 – 24
22. Anda B., Sjöberg D., Jörgensen M. “Quality and Understandability of Use Case Models”,

ECOOP 2001 (2001) pp. 402-428
23. Kelly J.C., Sherif J.S., Hops J. “An Analysis of Defect Densities Found during Software

Inspections”, Journal of Systems Software, vol.17 (1992) pp. 111-117
24. Doolan E. P., “Experience with Fagan’s Inspection Method”, Software: Practices and

Experiences, vol. 22 no. 2 (1992) pp. 173-182
25. Russell G. W., “Experience with Inspection in Ultra Large-Scale Development”, IEEE

Software, vol. 8 no. 1 (1991) pp. 25-31
26. Dunn R.H., “Software Quality Assurance: A Management Perspective”, Software

Engineering Project Management, Thayer and Yourdon eds., IEEE Computer Society
(1997) pp. 433-440

27. Thayer R.H., “Software Engineering Project Management”, Software Engineering Project
Management, Thayer and Yourdon eds., IEEE Computer Society (1997) pp 72-104

28. Mackenzie R.A., “The Management Process in 3-D”, Harvard Business Review Nov.-Dec.
(1969) pp 80-87

29. Thamhain H.J., Wilemon D.L., “Criteria for Controlling Projects According to Plan”,
Software Engineering Project Management, Thayer and Yourdon eds., 1997, IEEE
Computer Society (1986) pp. 426-432

30. Armour F., Miller G., Advanced Use Case Modelling, Addison-Wesley (2000)
31. Heumesser N., Houdek F., “Experiences in Managing an Automotive Requirements

Engineering Process”, Proceedings of the 12th IEEE International Requirements
Engineering Conference (2004)

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 370–384, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Enterprise-Oriented Software Development
Environments to Support Software Products and

Processes Quality Improvement

Mariano Montoni, Gleison Santos, Karina Villela,
Ana Regina Rocha, Guilherme H. Travassos, Sávio Figueiredo,

Sômulo Mafra, Adriano Albuquerque,
and Paula Mian

Federal University of Rio de Janeiro - COPPE Sistemas
Caixa Postal 68511 – CEP 21941-972– Rio de Janeiro, Brazil

{mmontoni, gleison, darocha, ght}@cos.ufrj.br

Abstract. Software organizations have to adapt efficiently to cope with clients
needs changes and new and evolving technologies in order to guarantee busi-
ness success. Moreover, organizations must continuously enhance their capabil-
ity to develop software in order to increase products and processes quality.
These characteristics constitute dynamic environments that require specific
competences from software engineers such as knowledge related to software
technologies, ability to adapt software processes concerning project characteris-
tics, and experience on product and process quality management. This paper
presents enterprise-oriented software development environments that support
software engineers to execute software processes more effectively and to pro-
duce products with better quality. A main feature of these environments is the
support offered to organizational knowledge management. Thus the paper also
presents the main characteristics of the knowledge management infrastructure
integrated to those environments. The practical experience using the environ-
ments has shown several benefits, such as an increase of product and process
quality, and the preservation of organizational knowledge related to software
processes and the development of software products.

1 Introduction

Software organizations have to adapt efficiently to cope with clients needs changes
and new and evolving technologies in order to guarantee business success. Moreover,
organizations must continuously enhance their capability to develop software in order
to improve their innovation ability and increase organizational processes efficiency
[1]. In order to achieve this goal, organizations must be more productive, increase the
quality of software products, diminish project effort and costs, and deal with the criti-
cality of time-to-market for commercial products [2].

These characteristics constitute dynamic environments that require specific compe-
tences from software engineers such as knowledge related to software technologies,

 Enterprise-Oriented Software Development Environments 371

ability to adapt software processes concerning project characteristics, and experience
on product and process quality management. Globalization, increasing competition,
more dynamic markets and shorter cycles in product development and innovation in-
crease the need for a better adaptation to those environmental factors. These factors
establish the need for a consequent adaptation of all business processes, including
software processes, to existing and future market needs [1].

Software processes are knowledge-intensive business processes, i.e., a process
that relies very much on knowledge [4]. Therefore, software processes can be con-
sidered as core processes of the organization, which executions should produce or
add new knowledge to the organization’s knowledge repository. Moreover, software
processes executions require from software engineers innovative and creative abili-
ties [3, 4].

Since participants of software processes executions have different background
knowledge and past-experiences, different domains knowledge are applied at differ-
ent levels [1]. Besides that, knowledge and software processes are integrated and
should be evaluated as a whole, i.e., for knowledge management to be of use in an
organization, it should be effortlessly incorporated in everyday business activities.
Large parts of an organization’s activities, especially on the operational level, are
structured around business processes [1]. Therefore, it is imperative to integrate
knowledge management with software processes, which means that a computerized
system that supports business processes should also support knowledge management
[5, 13].

In this context, Software Development Environments (SDE) have been playing an
important role to support software engineers in the execution of software processes
through the application of specific procedures that combine integrated tools and tech-
niques in accordance to particular software paradigms. Moreover, SDE are evolving
to integrate knowledge management activities within software processes aiming to
support developers to produce better software products based on organizational
knowledge and previous experiences more effectively [6].

This paper presents SDEs. The was created
from the perception that different domain applications have distinct characteristics
that influence in the environment from which software engineers develop software
[7]. It is being used to support the deployment of software processes in small and me-
dium size Brazilian companies as part of a larger project, named QualiSoft. The ob-
jective of this project is to increase the capability of software organizations and the
quality of their software products through the adequate use of software engineering
techniques in their software processes.

The next section presents some basic concepts related to SDE. The
infrastructure is presented in section 3. The steps executed to support software

processes deployment in small and medium size companies in the context of the Qual-
iSoft project are presented in section 4. The section 5 presents the
Knowledge Management tools. The section 6 presents some practical results of or-
ganizations that have been using the SDEs. Finally, section 7 pre-
sents some conclusions and points out future work.

372 M. Montoni et al.

2 Supporting Software Products and Processes Quality
Improvement Through Software Development Environments
and Knowledge Management

A Software Development Environment (SDE) is defined as a computational system
that supports software development, maintenance and improvements. It is supposed to
support individual and group activities, project management activities, enhancement
of software products quality, and increase of the productivity, providing the means for
the software engineers to control the project and measure the activities evolution
based on information gathered across the development. SDE should also provide the
infrastructure to the development and integration of tools to support the execution of
software processes. Moreover, this infrastructure should maintain a repository con-
taining software project information gathered across its life cycle.

Recent researches have demonstrated the necessity of standardization of software
development methodologies in an organization aiming to increase the control and im-
prove the quality of products produced through the execution of software develop-
ment processes [8, 9]. Therefore, SDE should not only support software engineers in
the execution of software processes activities, but also provide the means to execute
these processes according to organizational software development standards.

The standardization of software processes can be achieved through the definition of
a Standard Process, i.e., a basic process that guides the establishment of a common
process across the organization [8]. This process is the base for the definition of soft-
ware development processes specialized according to the software type (paradigm and
technologies), and to the development characteristics (e.g., distributed or centralized
development). These specialized processes can be used to define specific processes
considering particularities of the software project, a.k.a., instantiated software proc-
esses. Therefore, a SDE should be developed to guide software engineers in the exe-
cution of software processes instantiated to a specific software project.

Although it is recognized the importance of standardization of software processes,
software organizations must cope with many difficulties that jeopardizes the institu-
tionalization of standard processes, for instance, the dynamism of software processes,
the necessity to apply new and evolving technologies, and the people turnover. There-
fore, it is imperative for the organizations to manage their members’ knowledge in an
efficient way in order to guarantee the improvement of their software products and
processes, and to preserve organizational knowledge [10, 11].

The identification, maintenance and dissemination of different types of knowledge
related to software processes from one project to another are important to increase or-
ganization competitive advantages and improve software processes and products qual-
ity [12]. Efficient management of such knowledge supports organizational learning
and initiatives for software process improvement [14].

The fact that most software development organizations are process-centered pro-
vides many benefits (e.g., process-centered knowledge management systems can be
designed to associate software process activities with knowledge necessary to execute

 Enterprise-Oriented Software Development Environments 373

it explicitly) [14]. Moreover, tacit and explicit members’ knowledge related to soft-
ware processes are valuable individual assets that must be captured and converted into
the organizational level. The collected knowledge represents indicators of problems
concerning the software process definition or the environment in which the software
is being developed. This important knowledge can be used to learn about the software
process and to provide the means for implementing organizational changes aiming to
enhance business performance [15]. In order to acquire such knowledge efficiently, it
is necessary to transform arbitrary experiences declarations in structured explicit rep-
resentations through the execution of activities for knowledge acquisition, packaging,
dissemination and utilization [16].

Lindvall et al. [17] present some benefits of a knowledge management program
institutionalization: (i) efficient reuse of documented experiences; (ii) easiness to
find solutions for problems within the organization; (iii) identification and storage
of valuable experiences; and (iv) facility to propose measures to improve processes
execution and increase software products quality. Basili et al. [18] and Ruhe [19]
point out that by structuring and explicitly representing software process knowl-
edge, it is possible to define efficient training programs that can increase employ-
ees’ productivity and foster transference of innovative software engineering tech-
nology. Landes [20] also notes that knowledge management solutions efficiently
support activities of organization members with poor experience in a specific area
or domain.

Although most organizations recognize the importance of managing software
process knowledge, the establishment of a knowledge management program is
sometimes a laborious task. For instance, it is hard to convert tacit knowledge to
explicit, and it is difficult to implement knowledge management solutions in a non-
intrusive way. Weber et al. [21] point out problems with knowledge management
systems, for instance, inadequacy of knowledge representation formats and lack of
incorporation of knowledge management systems into the processes they are in-
tended to support.

3 The Taba Workstation

The was created from the perception that different domain appli-
cations have distinct characteristics that influence in the environment from which
software engineers develop software [7]. During the last years, the
evolved to comply with the different levels of capability maturity models of software
organizations and to support knowledge management activities integrated to software
processes. Therefore, the main objectives of are: (i) to support the
configuration of process-centered software development environments for different
organizations (Configured SDE); (ii) to support the automatic generation (i.e., instan-
tiation) of software development environments for specific projects (Enterprise-
Oriented SDE); (iii) to support software development using the instantiated environ-
ment; and (iv) to support the management of organizational knowledge related to
software processes. Compared to similar SDEs, the fact that the

374 M. Montoni et al.

was developed by the research group allowed the freely distribution of the system to
software development organizations.

The CASE tools integrated in the environments offer automated support to: (i) ad-
aptation of the organization standard processes for a specific project; (ii) definition of
the organizational structure [6]; (iii) acquisition, filtering, packaging and dissemina-
tion of organizational knowledge [6]; (iv) planning the organization of specific pro-
jects; (v) time, costs, risks [22], human resources planning, monitoring and control
[6]; (vi) planning and execution of Configuration Management activities; (vii) identi-
fication of software product quality requirements; (viii) documentation planning; (ix)
supporting the planning and monitoring of corrective actions; (x) supporting meas-
urement and analysis activities based on the GQM method; (xi) project monitoring
through the generation of periodic reports and measures; (xii) controlling of the ac-
tivities executed during a specific project; (xiii) requirements management; and (xiv)
post mortem analysis.

One of the greatest restrictions for knowledge sharing is the use of different con-
cepts to describe a domain for different systems. The development of ontologies fa-
cilitates the sharing of a common terminology. The use of ontologies in the

 infrastructure facilitates the communication between multiple users and
the retrieval of knowledge stored in the environment. Considering communication,
the defined ontologies reduces terminological and conceptual mismatch in a company.
When retrieving knowledge items, the ontologies’ supplies vocabularies whose terms
are used as links among multiple knowledge/data bases contents. Moreover, when de-
fining synonyms and acronyms for the concepts, ontologies provide linguistic equiva-
lents, which may occur in text documents and can be used to classify and access non-
formal knowledge.

The Software Engineering Ontology defines a common vocabulary to guide the
registration/distribution of a company’s knowledge map and software engineering
knowledge in the . A company’s knowledge map defines for each
employee its level of skills, knowledge and experiences.

The Enterprise Ontology provides concepts and attributes related to the structure,
behavior and knowledge owned by companies, defining a common vocabulary to
guide the description of any company. The Enterprise Ontology aims to supply a
common vocabulary that can be used to represent useful knowledge for the software
developers on the involved organizations in a software project. It supports the devel-
opment of several CASE tools in the SDEs [6].

The ontology explicit definition supported the identification of potentially useful
terms and phrases, definition of ontology semantics and sub-ontologies (depicted in
figure 1) that describe concepts aiming to facilitate understanding, for example:

− how the organization is perceived in its environment,
− how the organization is structured, which are their objectives and how it behaves,
− how organization’s projects have been lead and how the desired and possessed

abilities have been distributed into the organization,
− who are the available resources on the organization and how the distribution of au-

thority and responsibility in the organization are accomplished.

 Enterprise-Oriented Software Development Environments 375

Fig. 1. Sub-ontologies of Enterprise Ontology

4 Using to Support Software
Processes Deployment in Small and Medium Size Companies

Since 2003, software engineers of several small and medium size Brazilian organiza-
tions are using the in the context of the QualiSoft project to in-
crease their capability to develop software through the adequate use of Software En-
gineering methods and techniques in its software processes. The QualiSoft project
resulted from a contract between the RioSoft (a non-governmental organization that
integrates the Softex Program - Society for the Support of Brazilian Software Produc-
tion and Exportation) and the Federal University of Rio de Janeiro.

The QualiSoft project was constituted of the following activities: (i) definition of
standard software development and maintenance processes adjusted for small and
medium size companies; (ii) training in Software Engineering methods and tech-
niques and in the software processes defined; (iii) adaptation of the standard process
to each company; (iv) use of a SDE to support the use of the proc-
esses; and (iv) follow-up of the companies in the execution of pilot projects.

Since the focus of the QualiSoft project is on small and medium size organiza-
tions, we executed the project with a pool of organizations with similar characteris-
tics aiming to decrease the overall cost and increase the project feasibility. The first
phase of the project started on August 2003 and aimed to address a pool of 10 or-
ganizations. The second phase started on January 2004 and addressed a second pool
of 9 organizations.

The next sections describe the following steps executed to achieve the objective of
the QualiSoft project: (i) definition of software process in accordance to specific
characteristics of software development and strategic goals of each organization and
training using the SDEs; and (ii) deployment of the defined soft-
ware processes using a SDE.

4.1 Software Process Definition and Training Using the

The first step in the execution of the QualiSoft project was to be acquainted of the in-
dividual characteristics of the organizations. In order to do so, each organization filled

Structure Behavior Artifacts
Intellectual

Capital

presents produces

allocates requires

implements

General
Strategy

requires

implements

defines

defines

376 M. Montoni et al.

out a detailed form and the process specialists had to schedule regular visits on the or-
ganizations. The form contained questions related to the organizational culture, soft-
ware process stages and quality management systems adopted software development
practices, main problems in the current software development and maintenance proc-
esses, and organizational objectives related to software process improvement.

The following step was to define software development and maintenance standard
processes adequate to small and medium size organizations. The processes defined is
based on the software processes life cycle described in the international standard
ISO/IEC 12207 [9] and it is adherent to the software development practices defined in
the CMMI [23] Level 2 process areas.

In parallel to the processes definition activity, the members of the organizations
were trained in the Software Engineering methods and techniques. During the first
year, approximately 32 hours were spent on formal training. This training was per-
formed under the form of tutorials on the following topics: Software Engineering,
Software Process, Requirements Engineering, Configuration Management, Project
Management and Software Products Quality. Approximately, 80 professionals were
trained during this phase. After the theoretical training, project managers and software
developers participated on a specific training on the standard software processes de-
fined. Training activities during the second year included other important topics, such
as Peer-review, Software Tests, Measurement and Analysis, Supplier Agreement and
Knowledge Management, constituting 44 hours of formal training. During the second
year of the project, more than 70 organizational members were trained.

The following step focused on the processes deployment supported by the config-
ured environment in each organization.

4.2 Software Processes Deployment Using a Taba Configured SDE

These steps had been carried out individually in each organization considering its
specific characteristics. Initially, the standard processes defined previously had
been adapted by the software process specialist to each company considering the
characteristics identified in the beginning of the project, such as software types de-
veloped, documents produced and software development paradigms adopted. After
the approval of the adaptations by the organization, a software development envi-
ronment was configured based on the adapted processes (the organization’s stan-
dard process).

The configured environment was installed in each organization followed by 20
hours of hands-on training on the software tools. After this training, a pilot project
was carried out. Using their configured environment each organization instantiated
a specific environment for its pilot project through the execution of the AdaptPro
tool.

The objective of the AdaptPro tool is to support the institutionalization of the stan-
dard processes because it facilitates the adoption of these processes in all the projects
of the organization. By using the AdaptPro tool, the software engineering can execute
the following activities: (i) characterize the project; (ii) plan the process that will
guide the project through the adaptation of the organizational standard process con-

 Enterprise-Oriented Software Development Environments 377

sidering the project characteristics; and (iii) instantiate a SDE to support the execution
of the planned process. The figure 2 presents a screenshot of the AdaptPro tool. On
the left side of this figure, the system presents the activities that guide the execution
of the tool. On the right side of the figure, the system presents another screen to sup-
port the execution of the selected activity; in this case, it is presented the screen that
supports the definition of a life cycle model to a specific project as part of the process
planning activity. A list of life cycle models and the respective level of adequability to
the project considering its characteristics are presented on the right side of the screen.
Besides that, the user can consult the justification of the automatic identification of
the adequability level and can consult the software processes defined for similar pro-
jects that used the same specialized process and life cycle model facilitating the selec-
tion of an adequate project life cycle model by the user. Moreover, the user can con-
sult knowledge related to life cycle models directly from this screen and register
knowledge related to the planning process activity, such as lessons learned. These
functionalities are described in the following section.

Fig. 2. AdaptPro – a tool to support process adaptation to specific projects

After planning the process, the project manager use the AdaptPro tool to instantiate
the specific process to the project based on its particularities. The product of this tool
is the process plan (including adaptations to support the life cycle model chosen) and
a SDE to support the execution of the planned process.

The AdaptPro tool, just like the other tools of the , is integrated
to the Knowledge Management tools. These tools are described in
the following section.

378 M. Montoni et al.

5 Knowledge Management Tools

The is constituted of several tools integrated to Knowledge Man-
agement tools that support software engineers in the execution of software processes
activities in different ways. The next sections describe the and the

 Knowledge Management tools.

5.1 : A Corporate Yellow Page Tool to Support the Representation of
Organizational Structure Knowledge

The analysis of corporative yellow pages has a great importance to human resources
selection. Because usually most of the time the desired competence exists somewhere
inside the organization, being, however, necessary to expend much time to identify,
find and have access to who possesses it [18]. is a software tool for the repre-
sentation of the organizational structure with the competences required along it and is
integrated to the tools [6]. Besides supporting staff allocation, in-
cluding the competences of each professional, it also contains search and navigation
mechanisms. This way, it is possible the creation of a culture of identification, acqui-
sition and dissemination of the existing knowledge that can be used by the organiza-
tion to know itself better and take off greater advantage of its potential. It is based on
the infrastructure defined for the , making use of the Enterprise
Ontology. Software developers can use it to find the most appropriate person to help
in the solution of a problem inside the organization.

For each position in the organizational structure, it is possible to indicate which
competences are necessary or relevant for its performance and to indicate which of
these competences are mandatory or not. In a similar way, it is possible to indicate
which competences a person owns. The association between people and competence,
as well as between position and competence, is not always equal and must take in
consideration a certain level of variation. This leveling of the competences allows the
standardization of the different degrees of “expertise” existing for a specific ability.
Predefined search options based on the ontology structure (e. g., “Who has a specific
competence?”, “Which are the competences for a person?”) are available and the user
can also create new ones.

The organizational structure knowledge represented in the tool is used by
other tools available in the environments instantiated to support the execution of
processes adapted to specific projects, for instance, the RHPlan tool. The goal of the
RHPlan tool is to support the human resources allocation in a software project. It also
has mechanisms to help the contract order or qualification of professionals order
when the necessary human resources cannot be found inside the organization. It is
based on the definition of the necessary competence profiles to the accomplishment of
project activities, and posterior search for organization professional that possesses
similar profiles to the desired one. The project manager can search the knowledge on
the existing competence inside the organization and find who possesses them. The da-
tabase of professional’s capabilities is provided by the tool.

 Enterprise-Oriented Software Development Environments 379

Figure 3 presents a screenshot of RHPlan tool, showing an example of human re-
sources allocation in project activities. In the left side is possible to see all activities
for the staff allocation plan creation: definition of profiles needed in the execution of
each process activity, selection of professionals, request of contract or training for
professionals when the available professionals in the organization do not fit the de-
sired profile, and visualization of the human resources allocation plan.

Fig. 3. Professional selection in RHPlan tool supported by organizational structure knowledge
represented in the tool

The software engineer not only can consult the knowledge competences inside the
organization through the RHPlan tool, but also consult the analysis of past experi-
ences supporting project managers in planning and controlling the human resources
allocation. Project experiences are an important source of knowledge in Software En-
gineering and, therefore, the acquired experiences must be identified and shared [24].
Moreover, the (successful or not) lessons learned about human resources allocations
in other projects are very important so previous errors can be avoided and success
cases are not forgotten.

As well as , RHPlan uses the Enterprise Ontology for its class model defi-
nition. However, while in classes are related to staff allocation in the organ-
izational structure, in RHPlan the allocation is carried through specific software de-
velopment process activities. Both of them manipulate the same database of
organization members’ competences; then they are benefited by the same mapping in-
frastructure of ontology concepts to physical model classes. RHPlan also uses the

380 M. Montoni et al.

concepts defined in the sub-ontology of Behavior to describe projects, software proc-
esses, activities, resources and distribution of necessary competences for the accom-
plishment of the activities.

During the knowledge acquisition, the ontology concepts can also be used to index
the organizational knowledge memory. Later, during the knowledge search this same
information can be used to assist the search for a specific knowledge. This functional-
ities are describes in the following section.

5.2 : A Knowledge Acquisition Tool

In order to acquire, filter and package organization members’ tacit and explicit knowl-
edge related to software processes, an acquisition process was defined and a support-
ing tool named was implemented and integrated into other tools in
the [6]. The main objective of this approach is to capture
individual knowledge valuable for the organization, such as, domain knowledge (do-
main theory), business knowledge (best practices, knowledge about clients and new
technologies), past experiences knowledge (lessons learned, common problems), and
organization members’ knowledge acquired during processes execution.

The tool can be accessed from two icons located under the title
bar of all tools from the SDE (figure 2 and 3). Organization mem-
bers’ knowledge can be acquired by clicking on the icon () and all captured knowl-
edge can be consulted by clicking on the icon (). The integration of

 to these tools avoids interruption of organization members normal
routine during knowledge capture and reuse.

Fig. 4. Consulting interface of tool

Knowledge items
related to selected
activity or process

Comments about
knowledge item

Processes and activities related
to software development

Knowledge item details

 Enterprise-Oriented Software Development Environments 381

Figure 4 presents the knowledge consulting interface. In order to facilitate the
search, some consulting parameters can be specified, such as, activity or process re-
lated to software development, knowledge type, and key words. The consulting inter-
face also allows knowledge users to register comments about knowledge items. These
comments are very useful during knowledge repository maintenance since they facili-
tate identification of knowledge items that have real value for the organization. More-
over, the comments add value to knowledge items turning them more reliable for
knowledge users, and providing the means for establishment of a continuous learning
cycle. During the knowledge acquisition, the ontology concepts can be used to index
the organizational knowledge memory. Later, during the knowledge search this same
information can be used to assist the search for a specific knowledge.

6 Success Cases of Software Processes Deployment Using

The use of the to support software processes deployment in small
and medium size companies demonstrated several benefits in the context of the Qual-
iSoft project described previously, such as increase of product and process quality,
and preservation of organizational knowledge related to software processes. A direct
benefit obtained from the use of the can be exemplified by two
organizations that obtained ISO 9000:2000 certification based on the software process
and configured environment deployed.

The first organization to obtain the ISO certification was a software development
organization that during two years was involved in software processes definition,
preparation and implantation without success. After one year of the QualiSoft project,
the organization obtained the ISO 9000:2000 certification. Nevertheless, the organiza-
tion has obtained more practical benefits than just the ISO certification, for instance:

− decrease of rework,
− increase of software products quality,
− increase of software developers’ qualification through the dissemination of soft-

ware engineering knowledge,
− establishment of best practices aligned to organizational objectives,
− preservation of organizational knowledge, obtaining relative people independence

during the projects. Although, the organization recognizes the importance of peo-
ple, the client will not suffer from lack of quality of processes and products when
people are reallocated to other projects.

The organization recognized that the SDEs facilitate and signifi-
cantly reduce repetitive work during the definition of the specific process for a pro-
ject, planning activities, project execution and monitoring. Moreover, the

 lessons learned repository has constituted a repository of historical in-
formation to be used during other projects execution aiming to prevent the re-
occurrence of common errors and problems.

382 M. Montoni et al.

The second organization to obtain the ISO certification is a software development
organization that already had the ISO 9000:1994 certification and had to be compliant
with the ISO 9000:2000 standards in order to renew their certificate. According to the
software engineers of the organization, the SDE was decisive to ob-
tain the certification renewal, because it has speeded the deployment of software proc-
esses and has facilitated the dissemination of organizational best practices.

Besides the report from these two companies, some lessons learned were identified
during the regular meetings to support the process deployment in the organizations:

1. the deployment of software processes in a group of organizations in a common
project and at low cost is feasible (the costs for each organization was about 40%
less than a similar project conducted independently for one organization),

2. the configured environments facilitates training, deployment and institutionaliza-
tion of software processes by providing case tools to assist and/or automate soft-
ware development and maintenance tasks,

3. the knowledge management approach adopted in the environments is determinant
for the success of the approach, because it helps the developer in executing its ac-
tivities by providing useful knowledge when the developer needs it the most,

4. the knowledge acquisition approach integrated into the CASE tools enables the
gradual evolution of the knowledge repository with acquisition and dissemination
of lessons learned, best practices and suggestions for processes improvement,

5. the effective support of the high-level manager of each company was a critical fac-
tor to guarantee the success of the QualiSoft project.

7 Conclusions

This paper presented the SDEs, enterprise-oriented software de-
velopment environments that support software engineers to execute software proc-
esses more effectively and to produce products with better quality. The paper also
presented the main characteristics of the knowledge management infrastructure inte-
grated to those environments. These environments have shown to be useful for soft-
ware engineers supporting the deployment and execution of software processes and
the construction of software products with better quality. Therefore, the

 SDEs guaranteed not only the increase of organizational competitive advan-
tages, but also the enhancement of software processes and products quality.

The results of the QualiSoft project have also shown the feasibility of carrying out
software process definition and deployment as a cooperative work between several
companies reducing costs without diminishing the expected results. The project has
also shown that it is possible to promote technology transfer between universities and
software organization producing good results to all the involved parts.

The SDEs also support the execution of other Brazilian compa-
nies’ software processes. The initial results regarding the use of these environments
are promising. Three companies using SDEs are expected to reach
CMMI Level 2 in official appraisals during 2005. A CMMI pre-evaluation was con-
ducted successfully in one organization in January 2005, and the official appraisal is

 Enterprise-Oriented Software Development Environments 383

schedule to March 2005. This organization has also recently obtained the ISO 9000
certification through the support of the .

Further information about Enterprise-Oriented Software Development Environ-
ment and its tools can be found at http://www.cos.ufrj.br/~Taba.

Acknowledgement

The authors wish to thank CNPq and CAPES for the financial support granted to the
project Enterprise-Oriented Software Development Environments and SEBRAE for
supporting these two years of QualiSoft project. We also wish to thank K. Oliveira, R.
Falbo, M. Amaral and B. Diaz for their contributions to this project.

References

1. Gronau, N., Müller, C., Uslar, M.: The KDML Knowledge Management Approach: Inte-
grating Knowledge Conversions and Business Process Modeling, Proc. of the 5th Int. Conf.
of Practical Aspects of Knowledge Management, Vienna, Austria, (2004) 1–10

2. Pfleeger, S. L.: Software Engineering: theory and practice, 2nd edition, Prentice-Hall, Inc.,
ISBN 0-13-029049-1 (2001)

3. Eppler, M., Seifried P., Röpnack, A.: Improving knowledge intensive Processes through
an Enterprise Knowledge Medium. In: PRASAD, J. (edt.): Proceedings of the 1999 Con-
ference on Managing Organizational Knowledge for Strategic Advantage: The Key Role
of Information Technology and Personnel. New Orleans (1999), In ref: [1]

4. Hamel, G., Prahalad, C.K.: The core competence of the corporation. Harvard Business Re-
view (1990), In ref: [1]

5. Andersson, B., Bider, I., Perjons, E.: Integration of Business Process Support with Knowl-
edge Management – A Practical Perspective, Proc. of the 5th Int. Conf. of Practical Aspects
of Knowledge Management, Vienna, Austria, (2004) 227–238

6. Montoni, M., Santos, G., Villela, K., Miranda, R., Rocha, A.R., Travassos, G.H., Fi-
gueiredo, S., Mafra, S.: Knowledge Management in an Enterprise-Oriented Software De-
velopment Environment, Proc. of the 5th Int. Conf of Practical Aspects of Knowledge
Management, Vienna, Austria, (2004) 117–128

7. Oliveira, K. M., Zlot, F., Rocha, A. R., Travassos, G. H., Gallota, C., Menezes, C.: Do-
main-oriented software development environment, Journal of Systems and Software, Vol.
172, No.2 (2004) 145 - 161

8. Eman, K. E., Drouin, J., Melo, W.: SPICE – The Theory and Practice of Software Process
Improvement and Capability Determination, IEEE Computer Society Press (1998)

9. ISO/IEC 12207:2000. Information technology – software process life cycle (2000)
10. Truex, D. P., Baskerville, R., Klein, H.: Growing Systems in Emergent Organizations,

Communications of the ACM, Vol. 42, No. 8, Aug. (1999) 117-123
11. Maidantchik, C., Santos, G., Montoni, M. A.: Organizational Knowledge: an XML-based

Approach to Support Knowledge Management in Distributed and Heterogeneous Envi-
ronments, In: Proceedings of the 16th International Conference on Software Engineering
and Knowledge Engineering SEKE’04, Banff, Canada, Jun (2004) 427-430

12. Houdek, F., Bunse, C.: Transferring Experience: A Practical Approach and its Application
on Software Inspections, In: Proc. of SEKE Workshop on Learning Software Organiza-
tions, Kaiserslautern, Germany, Jun, (1999) 59-68

384 M. Montoni et al.

13. Holz H., Könnecker A., Maurer F.: Task-Specific Knowledge Management in a Process-
Centered SEE, K.-D Althoff, R.L. Feldmann, and W. Müller (Eds): LSO, LNCS 2176,
(2001) 163-177

14. Maurer, F., Holz, H.: Process-centered Knowledge Organization for Software Engineering,
In: Papers of the AAAI-99 Workshop on Exploring Synergies of Knowledge Management
and Case-Based Reasoning, Orlando, Florida, Jul: AAAI Press, (1999)

15. Decker, B., Althoff, K.-D, Nick, M., Tautz, C.: Integrating Business Process Descriptions
and Lessons Learned with an Experience Factory, In: Professionelles Wissensmanagement
- Erfahrungen und Visionen (Beiträge der 1. Konferenz für Professionelles
Wissensmanagement), eds. Hans-Peter Schnurr, Steffen Staab, Rudi Studer, Gerd Stumme,
York Sure. Baden-Baden, Germany. Shaker Verlag, Aachen, Mar (2001)

16. Birk, A., Tautz, C.: Knowledge Management of Software Engineering Lessons Learned,
IESE-Report 002.98/E, Jan (1998)

17. Lindvall, M., Frey, M., Costa, P., Tesoriero, R.: Lessons Learned about Structuring and
Describing Experience for Three Experience Bases, K.-D Althoff, R.L. Feldmann, and W.
Müller (Eds): LSO, LNCS 2176, (2001) 106-118

18. Basili, V., Lindvall, M., Costa, P.: Implementing the Experience Factory concepts as a set
of Experiences Bases, In: Proceedings of the Int. Conf. on Software Engineering and
Knowledge Engineering, Buenos Aires, Argentina, Jun (2001) 102-109

19. Ruhe, G.: Experience Factory-based Professional Education and Training, In: Proc. of the
12th Conference on Software Engineering Education and Training, March, New Orleans,
Louisiana, USA, (1999)

20. Landes, D., Schneider, K., Houdek, F.: Organizational Learning and Experience Docu-
mentation in Industrial Software Projects, Int. J. on Human-Computer Studies, Vol. 51,
(1999) 646-661

21. Weber, R., Aha, D. W., Becerra-Fernandez, I.: Intelligent Lessons Learned Systems, Inter-
national Journal of Expert Systems Research and Applications 20, No. 1 Jan (2001).

22. Farias, L., Travassos, G. H., Rocha, A. R. C.: Knowledge Management of Software Risks
In:. Journal of Universal Computer Science, Vol. 9, No 7 (2003), 670- 681

23. CMU/SEI, Capability Maturity Model Integration (CMMI) Version 1.1 - Staged Represen-
tation, Carnegie Mellon University, Software Engineering Institute, Pittsburgh (2002)

24. Markkula, M.: Knowledge Management in Software Engineering Projects, Software Engi-
neering and Knowledge Engineering – SEKE, Kaiserlautern, Germany, Jun (1999)

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 385–398, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Evaluation of Three Methods to Predict
Project Success: A Case Study

Claes Wohlin1 and Anneliese Amschler Andrews2

1 Dept. of Systems and Software Engineering, School of Engineering,
Blekinge Institute of Technology, Box 520

SE-372 25 Ronneby, Sweden
claes.wohlin@bth.se

2 School of Electrical Engineering and Computer Science,
Washington State University,

Pullman, WA 99164-2752 USA
aandrews@eecs.wsu.edu

Abstract. To increase the likelihood for software project success, it is
important to be able to identify the drivers of success. This paper compares
three methods to identify similar projects with the objective to predict project
success. The hypothesis is that projects with similar characteristics are likely to
have the same outcome in terms of success. Two of the methods are based on
identifying similar projects using all available information. The first method of
these aims at identifying the most similar project. The second method identifies
a group of projects as most similar. Finally, the third method pinpoints some
key characteristics to identify project similarity. Our measure of success for
these identifications is whether project success for these projects identified as
similar is the same. The comparison between methods is done in a case study
with 46 projects with varying characteristics. The paper evaluates the
performance of each method with regards to its ability to predict project
success. The method using key drivers of project success is superior to the
others in the case study. Thus, it is concluded that it is important for software
developing organizations to identify its key project characteristics to improve
its control over project success.

1 Introduction

There are many project characteristics that influence project success. If it is true that
certain project characteristics lead to certain project outcomes, it becomes important
to be able to identify similar projects, since they would likely lead to similar project
outcomes. Nowadays when many software systems evolve over time and come in
several releases, it becomes even more crucial to learn from past projects to increase
the likelihood for success in future projects. Software organizations must understand
which project characteristics are most important for them to ensure successful
projects. This paper contributes with a comparison of three potential methods to use
to predict project success.

386 C. Wohlin and A. Andrews

Some examples of project characteristics include stability of requirements,
knowledge of developers and management, inherent difficulty of the project,
techniques and tools used (and how appropriate they are), tightness of schedule and
type of application, required levels of reliability, fault tolerance, security, use of
development techniques including use of object-oriented programming, design
patterns, extreme programming, etc. Success indicators include timeliness of delivery,
quality of software, as well as more long term properties such as maintainability and
evolvability.

Some of these project characteristics can be measured objectively, while others
have to be measured subjectively. The same is true for project success variables. We
focus here on subjective measurement of both project characteristics and project
success as also is the case in for example [1]. The focus here on subjective measures
is primarily due to availability in the case study presented below.

In order to predict project success reliably, it is first necessary to find a method to
identify similar projects. Projects are similar, if they show similar project
characteristics and/or similar project outcomes. This paper investigates three methods
to identify similar projects:

1. Nearest neighbor. This method takes a set of projects, the base set, and computes
for a new project the distance to each project in the base set. The new project is
most similar to the project with the smallest distance to the new project.

2. Friends. This approach also uses a base set of projects as well as the new project
and groups them based on Principal Components Analysis (PCA) [2]. The new
project is most similar to the projects with which it has been grouped.

3. Key success driver analysis. Not all project characteristics are equally important
in predicting project success. This analysis method reduces the full set of project
characteristics to those that behave similarly to project success. This reduced set
of project characteristics is then used to rank projects by success and failure.
New projects are identified as potentially successful or not based on this
classification.

We selected these three approaches, because they represent three very different
approaches to similarity identification. The first method is focused on identification of
the most similar project using a distance measure [3], which is a simple measure used
in case-based reasoning. The second method identifies a set of similar projects using
all available information. Finally, the third method is based on identification of key
success drivers. Based on these key success drivers, the most similar projects are
identified.

Other methods would have been possible to use as for example neural networks,
clustering and so forth. However, the main objective is not to make an exhaustive
comparison of methods. The objective is primarily to investigate whether is makes
more sense to focus on a few key variables (in particular the key success drivers in the
context of this paper) rather than all data available for different projects.

All three methods are evaluated with respect to their ability to predict project
outcome (success or not). Since the impact of project characteristics on project
outcomes varies over time (for example, use of the software factory concept [4] will

Amschler

 Evaluation of Three Methods to Predict Project Success: A Case Study 387

influence the effect of project characteristics over time), we need to take this into
account. Our approach is to use a sliding window of projects for the base set. This
means, that the oldest projects are removed from the base set as new ones are added to
it. Given the high degree of innovation and change in software development, it is not
likely that the base set will ever be very large. This makes it important that methods
used for prediction are able to function with small amounts of data.

The paper is organized as follows. Section 2 describes related work with respect to
identifying similar projects, predicting various aspects of project success based on
measurement of objective and subjective variables, and their use for various types of
predictions like effort estimation, risk estimation, in addition to estimating various
success factors. Section 3 describes the case study data used to illustrate the approach.
Section 4 specifies the approach and illustrates the approach on the case study data.
Section 5 draws conclusions and points out further work.

2 Related Work

Most prediction work has been directed towards using quantitative data, for example,
measures of size, person-hours spent, number of defects and so forth. However,
subjective measures have only recently been analyzed more extensively in empirical
software engineering, specifically in software project assessment and evaluation. Part
of the problem stems from issues related to collecting trustworthy data [5]. On the
other hand, subjective measures have been used successfully for effort estimation [6,
7], and risk management [8]. Expert judgment in estimation tasks has been discussed
in [9].

More recently, subjective variables have been used to map project characteristics
to project success. First in [1], subjective factors were evaluated alongside objective
quantitative ones to evaluate both efficiency and success of software production for
projects from the NASA-SEL database [10]. The paper identifies which successful
projects were also efficient and determines primary (subjective) drivers of project
success. In [11], the method for analyzing subjective project characteristics and
success indicators is refined and discussed in-depth, and two case studies are
presented. The primary success drivers amongst the project characteristics are
identified and an agreement index is established that quantifies to which degree the
project characteristics that were identified as primarily connected to project success
are able to predict project success. The results identified that about one third of the
successful projects could be predicted accurately. We believe that this is due to the
limitations of the approach, specifically that projects are classified into two
categories: upper half and lower half (both based on project characteristics). The
halves are denoted “good” and “bad” respectively although it is really up to each
individual organization to judge where the limit between “good” projects and “bad”
projects is. It is reasonable to assume that projects around the border between “good”
and “bad” exhibit more uncertainty with respect to project outcome (success or
failure). This could account for some of the misclassification. To circumvent this

388

problem, an extension was proposed in [12], where a third class was introduced to try
to avoid classifying projects close to the border between “good” and “bad”.

However, the work so far has been focused on development of a method for
identification of key success drivers in software development. Thus, the research has
been focused on developing one model and then extending and improving the model.
Here, the main focus is on using the developed model for prediction and to evaluate
the model in comparison with two other approaches using industrial data from 46
development projects.

Prediction models in software engineering have been directed towards several
different areas. Researchers have also used a large variety of statistical methods and
approaches. This includes regression analysis (linear, multiple linear regression,
stepwise regression) [13,14], multivariate statistics [15], machine learning [16]
including neural networks [14, 17], analogies [13,18] and so forth. Some of these
methods, including for example neural networks, require a substantial amount of data
for model building. To address this problem, researchers have looked at methods for
prediction when having few data points. This includes, for example, the use of
different decision making methods such as the analytic hierarchy process [19] which
is applied to effort estimation in [20]. Case-based reasoning has also been used as a
means for prediction, for example, in [14, 20].

3 Case Study Data

The data comes from the NASA-SEL database [21]. Further information about
NASA-SEL can be found in [10]. In total, the database available to us contains data
from more than 150 projects spanning five years. Of these, we selected 46 for
analysis, based on completeness of project data recorded. These 46 projects
represented a variety of types of systems, languages, and approaches for software
development. The actual data is not intended to play any major role. The main
objective is to compare three methods for prediction purposes and in particular the
importance of using key characteristics in the prediction rather than as much
information as is available.

The selection criterion of projects in the database was completeness of data for 27
project characteristics. The characteristics are measured on an ordinal scale (1-5)
using subjective judgment. A higher value denotes more of the quality ranked. The
subjective evaluations rank the projects in terms of problem complexity, schedule
constraints, nature of requirements, team ability, management performance,
discipline, software quality, etc. Six success factors were measured per project. These
six variables are aggregated to one variable in the evaluation here, since it does not
affect the actual comparison. From an analysis point of view, it is unfortunate that the
data is on an ordinal scale as seen below. However, this is the type of data that we as
researchers many times face when collecting data from industrial environments. The
actual variables are not crucial for the comparison of methods and hence the reader is
referred to, for example, [11].

C. Wohlin and A. Andrews Amschler

 Evaluation of Three Methods to Predict Project Success: A Case Study 389

4 Analysis Method

The analysis method consists of three phases:

1. Identify a base set of projects to use in assessing new ones. This base set
should describe the current spectrum of project capability of the organization.
While one way is to simply take all projects finished by an organization to date,
this might include old projects whose relationships between project
characteristics and success indicators no longer reflects current project behavior.
Reasons for changes include: changes in capability, environment, process,
successful use of experience factory concepts, etc. Thus we propose to use a
sliding window instead, since it is most likely that older projects no longer reflect
new ones. For the case study, the first 20 projects were viewed as the initial base
set, the initial experience base. This first base set was used to identify which
projects in the base set were similar to which of the following 5 new projects (for
the purpose of predicting project success). Then the base set was updated by
removing the five oldest projects from the base set. Again, the new base set
(projects 6-25) was used to identify similar projects for projects 26-30. Projects
11-30 were used to identify similar projects for projects 31-35; projects 16-35
were used to identify similar projects for projects 36-40, projects 21-40 were
used to identify similar projects for projects 41-45 and finally projects 26-45
were used to identify similar projects for project 46.
2. Identification of similar projects. This paper investigates and compares three
ways to identify similar projects. For each window and set of new projects
identified in step one, Nearest Neighbor, Friends, and Key Success Driver are
used to identify projects in the experience base that are similar to the new
projects. The detailed analysis is described in the subsections below.
3. Evaluate prediction quality. New projects identified as similar (based on
characteristics) with projects in the base set are assumed to show similar
outcomes to those projects with respect to level of success. Since we know the
level of success through the data in the database, it is possible to evaluate
prediction accuracy. We use a diffusion matrix to illustrate correct predictions
versus false positives and false negatives. In addition, we also use the kappa
statistic as an agreement index. The agreement index is described in more detail
in a software engineering context in [22] and briefly outlined below.

We selected to work with the average rather than the median, because it takes into
consideration the effect of extreme or unusual values better and accentuates
differences in data that the median would not show (if most project success indicators
are quite similar, very little can be said about their differences). Projects are then
ranked based on this average score. Similar to the original model [11], we consider a
project to be successful, if it is in the top half of the projects ranked. It should be
noted that all projects may be successful, but the upper half is more successful than
the lower half. This is a somewhat simplistic view on success to illustrate the
prediction methods. In a real case, it would be important to actually define success
properly, for example the software was developed on time within budget with the

390

correct functionality and the quality expected. Anyhow, here it is primarily a matter
of relative comparison between the projects rather than distinguishing between
successful project and failed projects. Projects in the top half are ranked green, in the
bottom half, red. We have chosen not to use the extended model with three classes
[12], since the main objective here is to compare three competing methods for
prediction and the extended method tries to circumvent the prediction problem. Here,
we would like to address the prediction difficulties.

New projects identified as being similar with green projects are predicted as green,
while new projects identified as being similar with red projects are considered red. A
diffusion matrix reports agreement between prediction using the experience base and
the actual outcome (average score of success variable).

The following subsections describe the three methods for identification of similar
project(s) and evaluate the ability of the methods to predict success.

4.1 Nearest Neighbor

In this method a distance measure is calculated for each new project from the projects
in the experience base (the case study has 20 projects in the experience base for each
iteration). The measure is a measure of dissimilarity (DS), since the most similar
project in the experience base is the project with the highest value of the measure
below. The measure is for ordinal data computed as:

DS
1

C1i C2i–()2

i 1=

n
---=

In the formulae, Cji is the value of variable i for project j, where only two projects
are considered. One project is the new project and then it is compared with all other
20 projects one at a time. This means that the nearest neighbor is the project with the
largest value of DS. More information about the measure in a software engineering
context can be obtained from [3].

Table 1. Identification of Nearest Neighbour

Project 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Neighbor 2 16 16 16 16 16 12 25 23 15 16 27 26 27

Project 35 36 37 38 39 40 41 42 43 44 45 46

Neighbor 20 21 35 30 26 24 30 35 35 35 26 39

C. Wohlin and A. Andrews Amschler

 Evaluation of Three Methods to Predict Project Success: A Case Study 391

The project in the experience base with the largest value for the distance measure
is selected as the nearest neighbor. The nearest neighbors are listed in Table 1 for
projects 21-46. The table shows that some projects end up as neighbors more often
than others. Project 16 is one of those.

The outcome of the new project is predicted as the outcome of the nearest
neighbor. The prediction is only concerned with whether the new project will be a
success (green) or not (red). One could look more closely into the prediction of the
actual value for the different success variables. However, we believe that at the stage
we are making this prediction, it is sufficient to provide an indication of where the
project is heading. When two or more projects have the same value for the distance
measure, the newest project is selected as the nearest neighbor.

The results from using this method as a prediction method for all successive
experience bases are shown in the Table 3. The method is not very accurate. Only
eight projects out of 26 (about 31%) are actually predicted correctly (green-green or
red-red). There are 5 false positives (19%) and 13 false negative (50%). An agreement
index is also calculated, which often is referred to as kappa statistic [23]. In software
engineering, the kappa statistic has been applied to inter-rater agreement of process
assessments [22]. For an introduction to the kappa statistics, please refer to these
references. An interpretation of the kappa statistics can be found in Table 2.

Table 2. The Altman kappa scale

Kappa statistics < 0.20 0.21-0.40 0.41-0.60 0.61-0.80 0.81-1.00

Strength of agreement Poor Fair Moderate Good Very good

Table 3. Diffusion matrix for Nearest Neighbour prediction

Outcome
Kappa = -0.26

Green Red

Green

27, 32, 34, 38 22, 23, 24, 25, 26, 30, 31, 35,
36, 41, 42, 43, 44

Prediction

Red 21, 28, 29, 33,
37

39, 40, 45, 46

The agreement index requires comparable scales for the two classifications, for
example, as is the case when comparing the agreement between two raters using the
same scale. The problem addressed here is different since we compare one prediction
model with the actual outcome. This problem is inherently harder and hence the

392

mapping in Table 2 is most likely too ambitious. Informally with respect to the scale,
it is still reasonable that values below 0.20 are poor and values between 0.21-0.40 are
fair. However, given that we compare predictions with outcome, we believe that 0.41-
0.60 is good, 0.61-0.80 is very good and above 0.80 is utopia.

A random assignment of projects to the cells in Table 3 should on average result
in an agreement index (kappa) of zero. Values below zero means that the prediction
method performs worse than random assignment. This is the case for this particular
method for our data set. In other words, this method fails quite dramatically in
identifying an existing project to make a prediction of project success.

4.2 Friends

The second method is based on using Principal Component Analysis [2] to “package”
similar projects (friends), i.e. projects whose characteristics seem to vary in the same
way. The statistical package used for Principal Component Analysis (PCA) is
StatView version 5.0.1. Basically, PCA tries to abstract variables (or in this case
projects) that covariate into a higher level factor. The analysis method creates factors
with loadings for each variable in each factor. A variable is here viewed to belong to
the factor where the variable has the highest positive loading.

In the case study, all 27 project characteristics are measured on an ordinal 5 point
Likert scale. While this type of analysis usually requires at least interval data, it is
fairly robust with regards to using ordinal data. In addition, we only use it to identify
projects that behave in a similar fashion with respect to the project characteristics. No
other conclusions are drawn from the analysis.

The PCA is conducted for the 27 project characteristics to identify similar
projects. Table 4 shows an example of the results of this analysis for the first
experience base (projects 1-20) and one of the projects (project 21) in the first set of
projects to be classified (projects 21-25). From Table 4, we see that project 21 has
its highest loading in Factor 1. The other projects having this are projects 2, 3, 5, 7,
10, 12, 13 and 20. Thus, these eight projects are regarded as being the Friends of
project 21.

The Friends approach extends the Nearest Neighbor approach from a single
project to a set of close projects (hence the name Friends). Given that a new project is
now considered to have the same level of success as its Friends, the average success
value of the new project is defined as the average of the success values of its Friends.

When the Friends analysis is unable to identify any similar project, all 20 projects
are used to compute the success value of the new project. Given this average success
value, the projects are ranked and divided into an upper (green) and lower (red) half.
This provides the prediction for the new projects in terms of either being a green or
red project.

The Friends for projects 21-46 are determined as illustrated in Table 4. Comparing
Friends with Nearest Neighbors, in 18 of 26 cases the Nearest Neighbor is also a
Friend. In three cases there is no Friend. This method is able to identify that there are
no friends, while the previous method still selects the nearest neighbor although it
may not be very close.

C. Wohlin and A. Andrews Amschler

 Evaluation of Three Methods to Predict Project Success: A Case Study 393

The results for all experience bases are shown Table 5. Table 5 shows that now 11
or 42% of the project outcomes are predicted correctly. There are 3 or 12% false
positives and 12 or 46% false negatives. While the correct predictions have increased,
they are still no better than random, as indicated by a kappa statistic that is close to
zero.

Table 4. PCA with loadings for projects 1-20 and project 21 as a new project

Table 5. Diffusion matrix for Friends prediction

Outcome
Kappa = -0.03

Green Red

Green

27, 32, 33, 34, 37, 38 22, 23, 25, 26, 30, 35, 36, 39,
42, 43, 44, 45

Prediction

Red 21, 28, 29 24, 31, 40, 41, 46

394

4.3 Key Success Drivers

The third method is based on identifying key project characteristics. These are
characteristics that covariate with the success variable the most. This analysis is done
using PCA with the project characteristics and the success variable.

In cases when the number of project variables exceeds the number of projects in
the experience base, the original method developed in [11] has to be adapted.
Otherwise the principal component analysis would lead to singularities. Our approach
is to reduce the project variables to those having the highest correlations with the
success variable. This can be done by setting either a threshold for the number of
project variables to be included to a value n and taking the n project variables with the
highest correlations, or by setting a threshold c for the correlation value.

In the case study we had 27 project variables, but only 20 projects in each
experience base. We decided to set the threshold at c=0.4. The threshold is not
crucial, since the main aim was to reduce the number of variables so that an analysis
could be conducted. Moreover, the variables with the lowest correlation do not vary
together with the success variable anyway. This resulted in different sets of variables
to be investigated for the different sets of 20 projects, i.e. the experience bases
obtained through the sliding window approach.

With this reduction of project variables, it was possible to perform a principal
component analysis [2] and identify project characteristics grouped in the same factor
as the success variable.

Initially nine characteristics are identified as being important for projects 1-20 and
6-25. This then changes to only two variables being identified as the key success
drivers for the organization (projects 11-30, 16-35 and 21-40) The drivers identified
are “requirements stability” and “application experience” of the development team. In
the last experience base there is a change (projects 26-45). Four characteristics are
included in the identified key success drivers. This shows that the success drivers may
change over time, as the result of change or evolution in an organization.

Table 6. Diffusion matrix for Key Success Driver prediction

Outcome
Kappa = 0.51

Green Red

Green 21, 27, 28, 29, 32, 33, 34, 37, 38 26, 30, 31, 36, 41, 42, 45

Prediction Red 22, 23, 24, 25, 35, 39, 40, 43,

44, 46

Given that the key success drivers have been identified, it is possible to also store
the average of the identified project characteristics, and hence rank them based on the

C. Wohlin and A. Andrews Amschler

 Evaluation of Three Methods to Predict Project Success: A Case Study 395

average. For new projects, the average of the key success drivers was calculated and
the outcome (in terms of red or green) was predicted after comparison with the
experience base. The outcome of the prediction is presented in the diffusion matrix in
Table 6.

The third method is best for this data set. With this method, 19 or 73% of the
projects are predicted correctly. There are no more false positives, but 7 or 27% false
negatives. The kappa statistics has increased to 0.51, which in Altman’s model would
map to moderate agreement, see Table 2. However, we would like to regard it as
fairly good given the difficulty in creating accurate prediction models in software
engineering.

4.4 Discussion

Regardless of the method, this data set tends to have a relatively high number of
projects classified as red, both in terms of correct classifications and terms of false
negatives (red projects classified as green). This can be explained by the looking
closer into the data [24], which unfortunately is impossible to fit into this paper.
Anyhow, the high number of red projects among projects 21-46 can be explained
when looking at the whole data set, both project characteristics and success variables.
From the success variables, it is clear that in the beginning we have fairly low values
and then comes a set of projects with very high scores (projects 10-20). The sliding
window used in the analysis also means that the decreasing trend that we see from
project 27 until project 46 results in that a majority of the new projects will turn out to
be viewed as less successful (red), i.e. better projects were conducted in the past. A
majority of projects is however predicted to be green since the new projects are
viewed as being similar to older projects that are better and hence the level of success
is overestimated. It is clear from looking closer into the data that the data behaves
differently in terms of how it changes over time for project characteristics and success
variables respectively. Ideally, the project characteristics and success variables should
vary together as much as possible. The trends identified in the success variable are
however not visible for the project characteristics, and hence we have a challenge.
This challenge is partially addressed by the third method, where the project
characteristics that vary together with the success variable are identified. A simple
analysis of the data using descriptive statistics provides quite a lot of information that
can be valuable to use in projects to come.

Due to the idiosyncrasies of this data set, it is impossible to generalize from it,
except that it seems to make sense to have a method that identifies the key success
drivers in terms of project characteristics. This is clearly an advantage with the third
method. It provides support to identify key success drivers for organizations and use it
for prediction purposes.

All three methods are independent of the actual measures defined by a specific
organization. This makes them suitable for a wide variety of possible applications.
Each organization can determine what they believe to be a suitable set of project
characteristics to measure.

396

The third method also has the advantage that identifying key success drivers can
help managers to plan and control success. The first two methods are aimed at
prediction only. They cannot really be used for other purposes. Thus, the third method
has two main advantages:

• It is the best predictor of project outcome.
• It provides management support to plan and control for success.

In addition, it should be noted that since we classify the data into two halves, some
of the projects are viewed as being green although the actual average values of the
success variables are decreasing. This may have been avoided if a threshold of
success was set based on, for example, the first 20 projects. This is an area for future
research, i.e. to look at absolute values for success rather than relative values as we
have done here.

In other words, this study evaluates projects relative to other projects. When
considering the data in more detail, it clearly indicates that a major improvement in
terms of success was achieved after project 9. However, there is a tendency that the
level of success is declining after that again and the level of success is closing in on
what was seen in projects 1-9. This may be explained either with an actual decline in
success or as a changed view on what is successful, i.e. our yardstick has changed.

5 Conclusions

This paper evaluated three approaches to identify similar projects. Projects are
similar, if they (a) have similar project characteristics, and (b) have similar project
outcomes related to levels of project success. We showed that grouping projects by
key success drivers is superior to nearest neighbor and friends evaluation.

The approach also dealt with aging of projects for prediction purposes by using a
sliding window of projects. An interesting question to investigate in the future is more
sophisticated methods to determine the base set over time. For example, this paper
assumed a sliding window of 20 projects. Is there a method to determine the “best”
size for such a window of base projects? Are there ways to identify projects that
should be removed from the base set (such as “atypical” projects)? How would one
identify those? Essentially this is a question of the effect of both changing project
environments as well as the effect of using the experience factory to determine the
base set of projects that represents the key descriptors for projects (both good and
bad) for a development organization.

Although the identification of key success drivers was superior to the other two
methods, it is still a challenge to identify similar projects to predict success of new
projects. The scales (i.e. the perception of a certain score for a variable) may change
over time and hence older projects may have to be re-evaluated to ensure that we use
the same scale over time. Another challenge is to understand and have methods that
are able to cope with trends and to help address decreasing trends in the data (as
observed here). The trends in the data may be due to changes in the context of

C. Wohlin and A. Andrews Amschler

 Evaluation of Three Methods to Predict Project Success: A Case Study 397

software development. In this case it is important to be able to use information like
the one in this paper or similar information to manage software organizations.

References

[1] von Mayrhauser, A., Wohlin, C., Ohlsson, M. C.: Assessing and Understanding
Efficiency and Success in Software Production. Empirical Software Engineering: An
International Journal, Vol. 5, No. 2, pp. 125-154, 2000.

[2] Kachigan S. K.: Statistical Analysis – An Interdisciplinary Introduction to Univariate &
Multivariate Methods. Radius Press, 1986.

[3] Shepperd, M.: Case-based Reasoning in Software Engineering. In A. Aurum, R. Jeffrey,
C. Wohlin and M. Handzic (eds.): Managing Software Engineering Knowledge.
Springer-Verlag, Heidelberg, Germany, 2003.

[4] Basili, V. R., Caldiera, G., Rombach, H. D.: Experience Factory. In J. J. Marciniak:
Encyclopedia of Software Engineering. John Wiley & Sons, Inc., Hoboken, N.J., USA,
2002.

[5] Valett J. D.: The (Mis)use of Subjective Process Measures in Software Engineering.
Proc. Software Engineering Workshop, NASA/Goddard Space Flight Center, Greenbelt,
Maryland, USA, pp. 161-165, 1993.

[6] Gray A. R., MacDonell S. G., Shepperd M. J.: Factors Systematically Associated with
Errors in Subjective Estimates of Software Development Effort: The Stability of Expert
Judgement. Proc. of the Sixth Int. Software Metrics Symposium, Boca Raton, Florida,
USA, pp. 216-227, 1999.

[7] Höst M., Wohlin C.: An Experimental Study of Individual Subjective Effort Estimations
and Combinations of the Estimates. Proc. IEEE Int. Conf. on Software Engineering,
Kyoto, Japan, pp. 332-339, 1998.

[8] Ropponen J., Lyytinen K.: Components of Software Development Risk: How to Address
Them? A Project Manager Survey. IEEE Trans. in Software Engineering, Vol. 26, No. 2:
98-112, 2000.

[9] Hughes R.: Expert Judgement as an Estimation Method. Information and Software
Technology, Vol. 38, pp. 67-75, 1996.

[10] Basili V., Zelkowitz M., McGarry F., Page J., Waligora S., Pajerski R.: SEL's Software
Process-Improvement Program. IEEE Software, November pp. 83-87, 1995.

[11] Wohlin, C., Amschler Andrews, A.: Assessing Project Success using Subjective
Evaluation Factors. Software Quality Journal, Vol. 9, No. 1, pp. 43-70, 2000.

[12] Wohlin C., von Mayrhauser A., Höst M., Regnell B.: Subjective Evaluation as a Tool for
Learning from Software Project Success. Information and Software Technology, Vol. 42,
No. 14: 983-992, 2000.

[13] Myrtveit, I., Stensrud E.: A Controlled Experiment to Assess the Benefits of Estimating
with Analogy and Regression Models. IEEE Transactions on Software Engineering
25(4): pp. 510-525, 1999.

[14] Shepperd, M., Kadoda, G.: Comparing Software Prediction Techniques Using
Simulation. IEEE Transactions on Software Engineering”, Vol. 27, No. 11, pp. 1014-
1022, 2001.

[15] Ohlsson, N., Zhao, M., Helander, M.: Application of Multivariate Analysis for Software
Fault Prediction. Software Quality Journal, Vol. 7, No. 1, pp. 51-66, 1998.

398

[16] Mair, C., Kadoda, G., Lefley, M., Phalp, K., Schofield, C., Shepperd, M., Webster, S.:
An Investigation of Machine Learning Based Prediction Systems. Journal of Systems and
Software, Vol. 53, No. 1, pp. 23-29, 2000.

[17] Khoshgoftaar, T.M., Szabo, R.M.: Using Neural Networks to Predict Software Faults
during Testing. IEEE Transaction on Reliability, Vol. 45 No. 3, pp. 456-462, 1996.

[18] Shepperd, M.J., Schofield C.: Estimating Software Project Effort Using Analogies. IEEE
Transactions on Software Engineering 23(11): pp. 736-743, 1997.

[19] Saaty, T. L., Vargas, L. G.: Models, Methods, Concepts & Applications of the Analytic
Hierarchy Process. Kluwer Academic Publishers, Dordrecht, the Netherlands, 2001.

[20] Shepperd, M., Cartwright, M.: Predicting with Sparse Data. IEEE Transactions on
Software Engineering, Vol. 27, No. 11, pp. 987-998, 2001.

[21] NASA-SEL: Software Engineering Laboratory Database Organization and Users Guide,
Revision 2. Goddard Space Flight Center, Greenbelt, MD, USA, NASA-SEL Series,
SEL-89-201, 1992.

[22] El Emam, K., Wieczorek, I.: The Repeatability of Code Defect Classifications. Proc. the
Ninth International Symposium on Software Reliability Engineering, pp. 322-333, 1998.

[23] Altman D.:Practical Statistics for Medical Research. Chapman-Hall, 1991.
[24] Wohlin, C., Amschler Andrews, A.: A Case Study Approach to Evaluation of Three

Methods to Predict Project Success. Technical Report, Blekinge Institute of Technology,
2004, http://www.ipd.bth.se/cwo/TR-case.pdf.

C. Wohlin and A. Andrews Amschler

Mega Software Engineering

Katsuro Inoue1, Pankaj K. Garg2, Hajimu Iida3,
Kenichi Matsumoto3, and Koji Torii3

1 Osaka University, Graduate School of Information Science and Technology,
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

inoue@ist.osaka-u.ac.jp
2 Zee Source, 1684 Nightingale Avenue, Suite 201, Sunnyvale, CA 94087, USA

garg@zeesource.net
3 Nara Institute of Science and Technology, Nara 630-0192, Japan

{iida, matumoto, torii}@is.naist.jp

Abstract. In various fields of computer science, rapidly growing hard-
ware power, such as high-speed network, high-performance CPU, huge
disk capacity, and large memory space, has been fruitfully harnessed. Ex-
amples of such usage are large scale data and web mining, grid comput-
ing, and multimedia environments. We propose that such rich hardware
can also catapult software engineering to the next level. Huge amounts of
software engineering data can be systematically collected and organized
from tens of thousands of projects inside organizations, or from outside
an organization through the Internet. The collected data can be analyzed
extensively to extract and correlate multi-project knowledge for improv-
ing organization-wide productivity and quality. We call such an approach
for software engineering Mega Software Engineering. In this paper,
we propose the concept of Mega Software Engineering, and demonstrate
some novel data analysis characteristic of Mega Software Engineering.
We describe a framework for enabling Mega Software Engineering.

1 Introduction

Over the years, sometimes borrowing from traditional engineering disciplines,
software engineering has adopted several methods and tools for developing soft-
ware products, or more recently, software product families. For example, from
hardware engineering the concept of specifying requirements before design and
implementation have been useful for software engineering. A unique feature of
software products, however, is that the end product has virtually no physical
manifestation. Hence, composing or taking apart a software product has virtu-
ally no cost implications. As a result, software component reuse is a common
practice for code sharing among multiple projects.

We posit that “sharing” among software projects can be extended beyond
code or component sharing to more and varied kinds of “knowledge” sharing.
Such sharing can be achieved using what we call mega software engineering. In-
stead of narrowly engineering a product, or a product family, an organization

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 399–413, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

400 K. Inoue et al.

can undertake the responsibility and benefits of engineering a large number of
projects simultaneously. Examples of benefits that can accrue from such a per-
spective are: projects that share functionality can benefit from code sharing or
reuse; experts in a particular implementation aspect can contribute their exper-
tise to all projects that can potentially use that expertise (sort of like syndicated
newspaper columnist or cartoonists); historical experiences of projects can be
extrapolated to similar, newer projects to eliminate repeating process mistakes;
and, ‘outliers,’ or projects with behavior deviant from the norm can be easily
distinguished for rapid problem identification and resolution.

Many existing software engineering technologies remain focused on the indi-
vidual project or programmer. For instance, code browsing tools typically allow
a programmer to browse through single project code bases. Similarly, a navi-
gation system might guide a developer utilizing data from her activities alone.
While organizations can utilize global knowledge, for software reuse and other
process improvements, an individual programmer or manager seldom enjoys the
benefits of mega or global knowledge. Often, in large organizations its difficult
for programmers to even discover projects related or similar to their own.

Prevailing organizational software engineering technologies for individuals are
locally optimized to get local benefit for the individual developers or projects
at most. They do not oversee global benefit and do not optimize the technolo-
gies using knowledge and software engineering data of other developers or other
projects.

In modern times, the capacity, connectivity and performance of various net-
works ranging from local area network to the Internet are growing rapidly. Now,
we are able to collect data from not only a single project, but all software devel-
opment activities inside an organization (or company). If the organization has
close relation to other software development organizations, as sub-contractor or
co-developer, we can also collect software engineering data from the other orga-
nizations. A huge collection of Open Source software now exists on the Internet,
which is sometimes a crucial resource for development projects. Such information
is readily available via Internet tools.

Disk capacity and CPU power of recent computer systems are also rapidly
increasing. Since vast disk space is available, we can archive project data at
a detailed, fine granularity. Every change of a product can be recognized as
a version and stored in a version control system. Every communication made
among developers can be recorded. Not only single project data, but all project
data spread over distributed organizations can be easily archived.

The collected mega software engineering data includes both process and prod-
uct information. Various characteristics can be extracted by analyzing the col-
lected data. Mining a single project data would be a relatively straightforward
and light task. On the other hand, mining through mega data, say tens of thou-
sands of projects, can be computationally expensive. Since now we have enor-
mous computational power and memory space compared to, e.g., 10 years ago,
however, such analysis becomes feasible. We may want to analyze, not only
the organizational software engineering data, but also software engineering data

Mega Software Engineering 401

available on the Internet as Open Source projects, such as various source pro-
grams, associated documents, version control logs, mail archives, and so on.

In computer science research and practice, there are many successful uses
of improved hardware capacity. For example, web data collection and mining
such as Google search engine is a case in the web engineering field. In the high-
performance computation field, GRID technology is an example. We think that
the software engineering field should also share in advantage of the improvement
of network, CPU, disk, etc. We propose to create a novel approach to software
engineering field, by collecting mega software engineering data through networks,
archiving the collected data for a long period, analyzing the huge data deeply,
and providing knowledge for organizational improvement.

Undertaking mega engineering, however, is not straightforward. In addition
to changing the programmer’s mindset from engineering one product to multiple
products, one has to accommodate the complexities of challenging the hierarchi-
cal socio-organizational context in which single product engineering is so deeply
embedded. In this paper, we do not attempt to address such socio-organizational
aspects, which have been addressed elsewhere[1]. Here we focus our efforts in de-
scribing the technology aspects of Mega Software Engineering: the novel analyzes
enabled by performing data analysis on multiple projects, the architecture of a
Mega software engineering environment, and a framework for collecting analysis
data from the environment.

We depict the distinction between Mega Software Engineering and traditional
software engineering in Section 2. In Section 3 we introduce some examples of core
technologies ofMegaSoftwareEngineering. Section 4 outlines the framework based
on Mega Software Engineering Environment. In Section 5 we compare this work to
some related work, and conclude our discussion in Section 6 with a summary.

2 Overview of Mega Software Engineering

Figure 1 shows a classification of software engineering technologies based on the
scale of engineering targets. The horizontal axis shows improvement feedback
steps, composed of collection (measurement) step, analysis (evaluation) step,
and feedback (improvement) step. The vertical axis represents the scale of the
target for software engineering, which we explain in the rest of this section.

Individual Developer Software Engineering: The first scale level includes
traditional software engineering technologies which target individual developers.
Data and knowledge for each developer is collected and analyzed, then the re-
sulting analysis is fed back to the individual developer. For instance, command
history of a tool for a developer can be collected and analyzed to improve the
arrangement of the tool’s menu bar, or to create a command navigation feature
for the developer. Many software engineering tools such as software design tools,
debug support tools, or communication support tools fall in this category.

Single Project Software Engineering: The second scale level includes cur-
rent software engineering technologies which target a single software develop-

402 K. Inoue et al.

Personal activity data Problem detection
Tool customisation/
activity navigation

Single project data Progress estimation
Process/product
 improvement

Multiple project data
Project comparison/
expertise extraction

Organizational asset
reuse

scale

Collection Analysis Improvement

Fig. 1. Scale classification of SE

ment project, or a set of closely related development projects such as product-
line development projects. The engineering data for the project is collected and
analyzed to improve the project’s processes and products. For example, we may
collect product data such as the number of completed modules in a project, and
then compare to the scheduled number. Such data can be used to monitor the
project’s progress and corrective action can be taken as necessary. Process en-
gineering tools and distributed development support tools are examples of the
Single Project Software Engineering scale.

Mega Software Engineering: At the ultimate scale level, we gather multiple
project data sets from the entire organization, and compare among projects to
draw meaningful conclusions. Analyzed data for project processes and products
can be archived as assets of the organization. We note that there have been little
software engineering research proposed and realized at this scale, since tradition-
ally there has been limitations on network capacity, CPU power, and so on. Now
those limitations have gone away; we can collect and analyze a large volume of
data, and we can consider optimization strategies beyond individual or project
boundaries. The results of such optimization will benefit the entire software de-
velopment organization and its members, rather than benefiting simply a single
developer or project.

As shown in Figure 2, we consider that Mega Software Engineering is com-
posed of the following steps:

1. huge data collection for a large number of projects,
2. intensive data analysis beyond boundary of projects, and
3. information feedback for organizational improvement.

Technologies in Mega Software Engineering relate to one of these three steps.
We will show examples of such technologies in the following section.

Mega Software Engineering 403

1. Huge data
collection

3. Feedback
for organizational

Improvement

2. Intensive data
analysis

Software development organization
Related organizations

1.

1.
Other data resources,

e.g., Open Source
software

Fig. 2. Fundamental steps of Mega Software Engineering

3 Component Technologies of Mega Software
Engineering

3.1 Mega Software Engineering Environment

An essential component of Mega Software Engineering is the ability to system-
atically collect and organize large amounts of data, from tens of thousands of
software projects. This requires: (1) mechanisms for defining the data to be col-
lected from each project, (2) systematic organization of the collected data, and
(3) mechanisms for easily obtaining the data from each project.

For each of these questions, we learn from the experiences of the Open Source
and Free Software communities that have demonstrated an environment for col-
lecting and organizing vast amounts of mega data, through the pioneering efforts
such as Open Source Development Network (OSDN) and the Gnu software tools.
Hence, similar to the OSDN, for each project we capture complete versioned
source code trees, email discussion archives, bug report and their workflow, and
documents associated with the project including web pages. We use the a com-
bination of the hierarchical file system and relational database to organize the
large amounts of data.

Rather than collect such data a posteriori, we collect and organize such data
in situ. A critical aspect of this is to collect data as a side-effect rather than
as an after-thought. This implies the existence of a Mega Software Engineering
Environment (MSEE) that can easily accommodate the development effort of
tens of thousands of projects. In the following, we briefly describe the architecture
of one such MSEE, SourceShare [2][3], with which we are most familiar. Other
MSEE’s (e.g., see [4]) have similar architecture.

Figure 3 shows the main components of SourceShare. As the figure shows,
SourceShare is a web-based service. Through the web interface, SourceShare
provides capabilities to:

404 K. Inoue et al.

Internet/
Intranet

Web
Server

Version
Control
(CVS)

Bugtracking
(GNATS)

Mailing Lists
(Mailman)

Search Engine
(Swish−e)

File
System

Database

Web
Clients

CVS
Clients

Mail
Clients

Fig. 3. MSEE architecture

- Add a new software project to the collection
- Browse through existing projects, using various sorting orders like categories,

software name, contact name, or date of submission.
- Search through the software projects, either through the source code, software

descriptions, mailing list archives, or issues and bug reports.

When a user adds a new software project, SourceShare requires the user to
input a set of information about the software, e.g., who were the authors of the
software, some keywords, a brief software description and title, etc. SourceShare
stores this information in an XML file associated with the project. It also in-
stantiates a version control repository, a mailing list, and a bug tracking system
for that software project. Henceforth, users of SourceShare can start working
on the project using the version control repository for their source code man-
agement. As in the case of Open Source software, SourceShare requires that all
decision making and discussions about the software project be carried out using
the email discussion list associated with the project. In this manner, SourceShare
maintains an archive of the history of project decision making.

An MSEE provides some important features:

- Maintain and make visible tens of thousands of software projects.
- Systematically collect and organize fine-grained data on each project for source

code versions, problem reports and their resolution, and project discussions.
- Provide a uniform web-based interface to all information.
- Collect data as side-effect of normal project activities.

3.2 Automatic Categorization

MSEE provides a fundamental vehicle for collecting thousands of project data
sets. Within the large project data stored in archives, users frequently want to
find clusters of “similar” projects. Hence, we need mechanisms to determine
related projects in a large corpus of multi-projects.

Mega Software Engineering 405

Table 1. Categorization by LSA

In the Open Source and Free Software communities, categorization is carried
out by human input, usually at the beginning of the project. It is unrealistic, how-
ever, to consider human categorization given the multitude of software systems
that can be expected in a typical mega environment. For example, SourceForge
is a huge web site for Open Source software development projects, and as of this
writing it contains about 78,000 projects. Human categorization would require
not only a good understanding of the individual project to be categorized, but
the potential categories that can be created by upto 78,000 projects.

To this end, we are studying automatic categorization of software systems
[5][6]. The first approach performs cluster analysis for the sets of source code [6].
This is based on the similarity of two sets of source code, which is defined as
the ratio of the numbers of similar code lines to that of the overall lines of two
software systems. The similar code lines are detected by a combination of a
code-clone detection tool CCFinder [7] and a difference extraction tool diff.

For categorization of software systems with little shared code, we propose
another approach of categorization of software systems using LSA (Latent Se-
mantic Analysis) [8] for keywords appearing in the source code of the target
systems [5]. LSA is a method for extracting and representing the contextual-
usage meaning of words by statistical computations applied to a large corpus of
text. It has been applied to a variety of uses ranging from understanding human
cognition to data mining.

We have chosen 11 software systems from SourceForge, and software groups
D1–D3, E1–E3, and V1–V3, and X1–X2 are categorized by hand in the same
groups at SourceForge. Table 1 shows the similarity values which are the cosines
of the column vectors of the resulting matrix by LSA. Two systems having a 1
entry implies they are very similar, and those with 0 mean no similarity in the
keyword lists.

Groups E, V, and X have very high similarities inside the groups. The result
shows that although there are some outliers, it would give us a good intuition of
categorization of software groups. We further continue this approach to improve
the categorization precision.

By adding such automated categorization tool as an analysis feature, man-
agers and developers can easily find similar or related projects to a target project,
and they can obtain useful knowledge of similar past projects.

406 K. Inoue et al.

3.3 Selecting Similar Cases by Collaborative Filtering

In the approach described above, we are able to identify cluster of software
systems that are similar to each other. We cannot, however, specify which one
system is the most similar to any given software system. Collaborative filtering
can answer this question of finding the project most related to a given system [9].
We are studying such collaborative filtering as a means of identifying software
features from activity data [10]. Here, we propose to apply the collaborative fil-
tering technique to find a similar system (or project) from thousands of systems.

We assume that there is a list of α metrics M = {m1,m2, . . . , mα} and a
list of β systems P = {p1, p2, . . . , pβ}. Value vij can be obtained by applying
metric mi to the data set of system pj . In similarity computation between two
systems pa and pb, we first isolate the metrics, which had been applied to both
of these systems, and then apply a similarity computation to the value of the
isolated metrics. For example, two systems are thought of as two vectors in
the α-dimensional metric-space. The similarity between them is measured by
computing the cosine of the angle between these two vectors. Once we can isolate
the set of the most similar systems based on the similarity measures, we can
estimate metric value vij even when a metric mi is not available. In such case,
an estimation value, such as a weighted average of the metric values of these
similar systems, is employed.

This means that collaborative filtering is robust to the defective data sets.
In contrast, the conventional regression analysis requires the complete matrix of
metric values, and it is unrealistic to assume complete data sets for all systems.

If a project manager finds a deviation from the scheduled project plan, she
has to take corrective action to bring future performance in line with the project
plan [11]. In such a situation, the project manager may want to know a viable
solution for the problem. Collaborative filtering can present a set of the most
similar systems to the ongoing system, so that we can explore the product and
process data collected in these similar systems, and find a concrete solution.
Hence, to proceed with Mega Software Engineering effectively, we need to provide
not only a bird’s-eye view of software systems and projects, but also concrete
information useful for software developers and project managers.

3.4 Code-Clone Detection

As an example of deep analysis for the large collection of software engineer-
ing data beyond project boundaries, we will show code-clone detection tool
CCFinder and its GUI Gemini for large scale of source code [7].

Code clone is a code fragment in a source file that is identical or similar to
another fragment. CCFinder takes a set of source-code files as an input, and
generates a list of code-clone locations as the output.

Figure 4 is an example of the display of Gemini. This is the scatterplot of
detected clones between two GUI libraries Qt and GTK. These two libraries are
developed independently in different organizations. Qt (version 3.2.1) is com-
posed of 929 files and about 686K lines in total. GTK (version 2.2.4) consists of
658 files and 546K lines in total.

Mega Software Engineering 407

Fig. 4. Scatterplot between Qt and GTK

Each dots in the scatterplot represents existence of code clones with more
than 30 tokens. Smaller tokens less than 30 tokens are eliminated here. The left-
upper pane shows clones inside Qt, and the right-lower pane shows clones insider
GTK. The result is symmetrical to the main diagonal line, so the right-upper
half is omitted.

The left-lower pane shows clones between Qt and GTK. The overall clone den-
sity in this pane is generally lower than others, but there is one exceptional portion
annotated by “a”, where there are many clones, meaning that two systems share
most code. This portion is the font handler for both Qt and GTK, and we know
by reading README files that the font handler of Qt is imported from GTK.

Using these tools, we can quantify similarity of source codes, leading to cat-
egorization of software systems and to measurement of code reuse. Also, we can
create an effective search tool for similar code portion to the huge archive of
organizational software assets.

3.5 Software Component Search

Automation of reusable software component libraries is an important issue in
organization. We have designed an automatic software component library that
analyzes a large collection of software components, indexing them for efficient
retrieval, and ranking them by the importance of components. We have pro-
posed a novel method of ranking software components, called Component Rank,
based on the analysis of actual use relations of components and also based on
convergence of the significance values through the use relations [12].

Using the component rank computation as a core ranking engine, we are cur-
rently developing Software Product Archiving, analyzing, and Retrieving System
for Java, called SPARS-J.

408 K. Inoue et al.

Fig. 5. SPARS-J for “bubblesort”

Figure 5 shows a display result for a query keyword “bubblesort” for SPARS-
J. The result is returned almost instantly to the searcher through a web browser.
There are 28 classes having the keyword. Similar or the same classes are merged
into 19 groups out of 28 classes, and these 19 groups are sorted by the component
ranks. The details of listed classes, which include the source code, various metric
values, and various links to other classes, can be viewed simply by clicking on
the web browser.

This system can become a very powerful vehicle to manage organizational
mega software assets. It is easy to collect all source code created in an organiza-
tion at the raw component archive. Then, the analysis for the ranking and the
retrieval for the query are performed fully automatically, without using human
hand. So the cost of the software asset management can reduce drastically, and
developers can leverage past assets for efficient development of reliable products.

4 Mega Software Engineering Framework

To investigate various technologies in Mega Software Engineering, we are cur-
rently developing a tool collection environment called Mega Software Engineering
Framework, as shown in Figure 6. We do not intend to build a single huge system
to perform all the steps in Mega Software Engineering, but we construct a plug-

Mega Software Engineering 409

Versioning
(CVS)

Mailing
(Mailman)

Other tool
data

Format
Translator

Format
Translator

Format
Translator

Format
Translator

Process data archive
(XML format)

Product data archive
(CVS format)

Code clone
detection

Component
search

Metrics
measurement

Project
categorization

Collaborative
filtering

Source
Share
GUI

Managers

Developers

Project x
Project y
Project z

. . .

Issue
tracking

(GNATS)

Fig. 6. Architecture of Mega Software Engineering Framework

gable framework in which individual technologies for Mega Software Engineering
can easily be incorporated.

This framework is composed of following three tool collections: (1) Source-
Share as a Mega Software Engineering Environment, which manages project
progress and collects project data, (2) Product and Process data archives, and
(3) analysis tools which extract various feedback information.

As described in Section 3.1, SourceShare employs version management tool
CVS, mail management tool Mailman, and issue (bug) tracking tool Gnats [13].
SourceShare provides control and unified GUI for these tools; however, we can
employ other tools for version control, mailing, or issue tracking. Note that
the data collection by SourceShare is done non-intrusively. Checking into CVS
repositories, sending mails, and tracking issues are performed as daily activities
for software development and maintenance, not as special activities for the data
collection.

As the central archives of this framework, we prepare a product data archive
in the CVS format and a process data archive in an XML format. The product
data archive directly reflects to the repositories of each project in the CVS
format. The process data is obtained by transforming log files of CVS, Mailman,
and Gnats into a standard format in XML, and it is stored into an XML database
that is implemented by PostgreSQL with XML extension. This framework can
easily handle process data obtained by other tools if the data is transformed into
the standard format in XML.

The process data and product data in the archives are analyzed by a tool for
measuring various metrics data and by the tools presented in previous sections.
The analysis results are given back to the developers and managers. We are
designing a unified GUI for analysis results, which would accomplish effective
feedback to developers and managers.

410 K. Inoue et al.

Now we briefly show an example scenario of using the mega software engi-
neering framework.

Step 1: Progress Monitoring under the Framework
A project, say Project X, starts with the mega software engineering framework.
The progress is monitored by the metrics measurement tool in the framework,
and the current metric values are compared with scheduled metrics values, so
that the current status of the project is recognized. Now we assume that the
project is behind schedule.
Step 2: Similar Project Search
In order to investigate the cause of the problem on Project X, we find projects
similar to X. This is performed with the project categorization tool and collab-
orative filtering tool. The project categorization tool, based on the automatic
categorization method, provides a set of similar projects to X. The collaborative
filter chooses a past project Y as the most similar from the “similar” set.
Step 3: Investigation by Various Metric Views
The evolution of various metric values of Y through its beginning to end is inves-
tigated, and compared to the metrics values of X. Some outlier metric values are
identified. Assume here that X’s metric value for reuse rate of software compo-
nents is much worse than that of Y. This can be detected by measuring amount
of code clones between Project X and past projects including Y.
Step 4: Improvement
Since we know that the reuse in Project X is not as actively done as Project
Y, we try to promote the reuse actively in X by using the software component
search tool. The developers start to browse the product data archive and to
search useful legacy software components in Y or similar projects. The reuse
rate of X increases to the similar level of Y, and the schedule delay is recovered.

5 Related Work

- Global Software Development
Due to the rapidly increasing network capacity and speed, and differentiated
cost structures, Global Software Development is an active area of software engi-
neering research and practice [14]. Although analysis shows deficiency of global
software development, compared to same site work [15], the importance of Global
Software Development will continue to increase and strong support tools to ease
site distance barrier are required. For example, Herbsleb and Mockus have pro-
posed an “expertise browser” to help locate far flung experts and contributors
of software modules [16]. The Mega Software Engineering framework provides
a fundamental environment of code sharing and message exchanging for Global
Software Development. Also, our approach provides directly needed knowledge
or asset to developers or managers, rather than a point solution of e.g., providing
assistance in finding expertise.

- Knowledge Sharing
There are several researchers investigating light-weight knowledge extraction and
sharing among developers. For example, Curanic et al. analyze link information

Mega Software Engineering 411

to provide related knowledge [17], while Ye and Fischer describe a system for
automatically providing source-code components that is not well identified or
understood by a developer [18]. The light weight approach focuses on a single
developer or a single project. Our approach explores knowledge or information
which is based on deeper analyses of multiple projects, and a huge collection of
software engineering data.

- Measuring and Analyzing Open Source Project Data
German and Mockus have proposed a measurement tool collection for CVS and
mail data [19]. They generate various statistical values for Open Source devel-
opment projects. Similarly, Draheim and Pekacki use CVS data to determine
several process metric values [20]. Finally, Mockus and Votta use CVS data to
classify the causes of changes made to software products [21]. These approaches
are also considered to be examples of analysis techniques in Mega Software En-
gineering. However, their systems are more specific to getting the objective sta-
tistical values or classification. We are trying to build a more flexible framework
for a large collection of projects, in which we can extract both inter-project
knowledge of process and product for various objectives. Thus, we employ an
exchangeable standard format in XML for process data, and use a standard
database to archive it. Once the data is in the form of a standard database, we
can apply various techniques for data mining for traditional data.

- Measurement-Based Improvement Framework
There is a large body of research and practical implementation of measurement
and improvement frameworks. Goal Question Metrics paradigm is an example
in which suitable metrics are derived from measurement objectives [22]. The
frameworks of software process improvement such as CMM and SPICE are also
cases that aim measurement-based improvement for organization, and Personal
Software Process targets improvement for personal capability [23]. We might
consider that Mega Software Engineering would be an improvement framework
similar to those. However, Mega Software Engineering is different in the sense
that it assumes organizational-wide huge data collection of many projects and
software systems, rather than a single person or single project. Also, the anal-
yses made by Mega Software Engineering are more intensive and deeper ones
compared to per-project metric values made by earlier frameworks.
Also, Mega Software Engineering can be considered as a framework in the context
of software process improvement such as CMMI or ISO-9001. Applicability and
effectiveness of Mega Software Engineering in such context have to be explored
further in various industrial environments.

- Experience Factory
Vic Basili’s group has developed and successfully applied the concept of an
“Experience Factory,” where organizations systematically collect and reuse past
experiences [24]. Indeed, Neto et al. propose a “knowledge management” frame-
work for storing such experience base for organizations [25]. Dingsoyr et al.
report practical experiences and recommendations for “knowledge reuse” [26].
We believe that Mega Software Engineering is an evolution of the Experience
Factory concept, enriched from the “communal” aspects of Open Source software
development. Hence, instead of requiring a separate organizational element that

412 K. Inoue et al.

captures and packages relevant “experience elements,” we propose to directly
capture the contents of software engineering activities, and make “experience”
available through deep analysis of this raw data.

6 Summary

We have proposed a novel concept of Mega Software Engineering, and presented
several of its core technologies. We described a framework that allows for plug-
gable technologies for mega software engineering. Previous work in software en-
gineering research has given limited attention to data collection and analysis of
tens of thousands of projects. Rapid advances in hardware and communication
technologies allow the application of various technologies to huge data collection
and intensive analysis. Therefore, we believe that we are at the best starting
point to utilize the benefits of Mega Software Engineering.

This work is supported by Ministry of Education, Culture, Sports, Science
and Technology of Japan, the Comprehensive Development of e-Society Foun-
dation Software program.

References

1. Melian, C., Ammirati, C., Garg, P.K., Sevon, G.: Collaboration and Open-
ness in Large Corporate Software Devlopment. In: Presented at the European
Academy of Management Conferenec, Stockholm, Sweden (2002) Available from
http://www.zeesource.net/kc.shtml.

2. Dinkelacker, J., Garg, P., Nelson, D., Miller, R.: Progressive Open Source. In:
ICSE, Orlando, Florida (2002)

3. ZeeSource: (SourceShare) http://www.zeesource.net.
4. Halloran, T.J., Scherlis, W.L., Erenkrantz, J.R.: Beyond Code: Content Manage-

ment and the Open Source Development Portal. In: 3rd WS Open Source SE,
Portland, OR, USA (2003)

5. Kawaguchi, S., Garg, P.K., Matsushita, M., Inoue, K.: Automatic Categorization
for Evolvable Software Archive. In: Int. WS Principles of Software Evolution,
Helsinki, Finland (2003) 195–200

6. Yamamoto, T., Matsusita, M., Kamiya, T., Inoue, K.: Measuring Similarity of
Large Software Systems Based on Source Code Correspondence. In: PROFES
2005, Oulu Finland (2005)

7. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: A Multi-Linguistic Token-based
Code Clone Detection System for Large Scale Source Code. IEEE TSE 28 (2002)
654–670

8. Landauer, T.K., Foltz, P.W., Laham, D.: Introduction to latent semantic analysis.
Discourse Processes 25 (1998) 259–284

9. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based Collaborative Filtering
Recommendation Algorithms. In: Int. World Wide Web Conf. (WWW10), Hong
Kong (2001) 285–295

10. Ohsugi, N., Monden, A., Morisaki, S.: Collaborative Filtering Approach for Soft-
ware Function Discovery. In: Int. Symp. Empirical SE (ISESE), vol.2, Nara, Japan
(2002) 45–46

Mega Software Engineering 413

11. : Project Management Institute, A Guide to the Project Management Body of
Knowledge 2000 Edition (2000)

12. Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto, T., Matsushita, M., Kusumoto,
S.: Component Rank: Relative Significance Rank for Software Component Search.
In: ICSE, Portland, OR (2003) 14–24

13. Gnu: (Gnats Project) http://www.gnu.org/software/gnats.
14. Herbsleb, J.D., Moitra, D.: Global Software Development. IEEE Software 18

(2001) 16–20
15. Herbsleb, J.D., Moitra, D.: An Empirical Study of Speed and Communication in

Globally Distributed Software Development. IEEE TSE 29 (2003) 481–494
16. Mockus, A., Herbsleb, J.D.: Expertise Brower: A Quantitative Approach to Iden-

tifying Expertise. In: ICSE, Orlando, FL (2002) 503–512
17. Cubranic, D., Holmes, R., Ying, A., Murphy, G.C.: Tool for Light-weight Knowl-

edge Sharing in Open-source Software Development. In: 3rd WS Open Source SE,
Portland, OR, USA (2003) 25–30

18. Ye, Y., Fischer, G.: Supporting Reuse by Delivering Task-Relevant and Personal-
ized Information. In: ICSE, Orlando, FL (2002) 513–523

19. German, D., Mockus, A.: Automating the Measurement of Open Source Projects.
In: 3rd WS Open Source SE, Portland, OR (2003) 63–68

20. Draheim, D., Pekacki, L.: Process-Centric Analytical Processing of Version Control
Data. In: Int. WS Principles of Software Evolution, Helsinki, Finland (2003) 131–
136

21. Mockus, A., Votta, L.G.: Identifying Reasons for Software Changes Using Historic
Database. In: ICSM, San Jose, CA (2000) 120–130

22. Basili, V.R. In: Goal Question Metrics Paradigm, in Encyclopedia of Software
Engineering (J. Marciniak ed.). John Weily and Sons (1994) 528–532

23. Humphrey, W.S.: Introduction to the Personal Software Process. Addison-Wesley
(1996)

24. Basili, V.R., Caldiera, G.: Improve Software Quality by Reusing Knowledge and
Experience. Sloan Management Review Fall (1995) 55–64

25. Neto, M.G.M., Seaman, C.B., Basili, V., Kim, Y.: A Prototype Experience Man-
agement System for a Software Consulting Organization. In: SEKE 2001, Buenos
Aires, Argentina (2001)

26. Conradi, R., Dingsoyr, T.: Software Experience Bases: A Consolidated Evaluation
and Status Report. In: 2nd PROFES 2000, Oulu, Finland (2000) 391–406

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 414–428, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Software Development and Experimentation in an
Academic Environment: The Gaudi Experience

Ralph-Johan Back, Luka Milovanov, and Ivan Porres

Turku Centre for Computer Science,
Åbo Akademi University, Department of Computer Science,

Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland
{backrj, lmilovan, iporres}@abo.fi

Abstract. In this article, we describe an approach to empirical software engi-
neering based on a combined software factory and software laboratory. The
software factory develops software required by an external customer while the
software laboratory monitors and improves the processes and methods used in
the factory. We have used this approach during a period of four years to define
and evaluate a software process that combines practices from Extreme Pro-
gramming with architectural design and documentation practices in order to
find a balance between agility, maintainability and reliability.

1 Introduction

One of the main problems that hinders the research and improvement of various
software construction techniques is the difficulty to perform significant experi-
ments. Many processes and methods in software development have been conceived
in the context of large industrial projects. However, in most cases, it is almost im-
possible to perform controlled experiments in an industrial setting due to resource
constraints.

However, university researchers also meet with difficulties when experimenting
with new software development ideas in practice. Performing an experiment in col-
laboration with the industry using newly untested software development methods can
be risky for the industrial partner but also for the researcher, since the project can fail
due to factors that cannot be controlled by the researcher. The obvious alternative is to
perform software engineering experiments inside a research center in a controlled
environment. Still, this approach has at least three important shortcomings.

First, it is possible that a synthetic development project arranged by a researcher
does not reflect the conditions and constraints found in an actual software develop-
ment project. This happens specially if there is no actual need for the software to be
developed. Also, university experiments are quite often performed by students. Stu-
dents are not necessarily less capable than employed software developers, but they
must be trained and their programming experience and motivation in a project may
vary. Finally, although there is no market pressure, a researcher often has very limited
resources and therefore it is not always possible to execute large experiments.

 Software Development and Experimentation in an Academic Environment 415

These shortcomings disappear if the software built in an experiment is an actual
software product that is needed by one or more customers that will define the product
requirements and will carry the cost of the development of the product. In our case,
we found such customer in our own environment: other researchers that need software
to be built to demonstrate and validate their research work. This scientific software
does not necessarily need to be related to our work in software engineering.

In this paper we describe our experiences following this approach: how we created
Gaudi, our own laboratory for experimental software engineering, and how we stud-
ied software development in practice while building software in Gaudi for other re-
searchers. This experience is based on experiments conducted during the last four
years. The objective of these experiments was to find and document software best
practices in a software process that focus on product quality and project agility.

As we proposed in [1], we chose Extreme Programming [2] (XP) as the framework
process for these experiments. Extreme Programming is an agile software methodol-
ogy that was introduced by Beck in 2000. It is characterized by a short iteration cycle,
integration of the design and implementation phases, continuous refactoring sup-
ported by extensive unit testing, onsite customer, promoting team communication and
pair programming. XP has become quite popular these days, but it has also been criti-
cized for lack of concrete evidences of success [3].

This paper is structured as follows: in Section 2 we describe the Gaudi Software
Factory as a university unit for building software in the form of controlled experi-
ments. Section 3 present the typical settings of such experiments and portrays their
technical aspects. Section 4 discusses the practices of the software process, while
Section 5 summarizes our observations from our experience in Gaudi. Due to space
limitations, this article focuses on presenting the qualitative evaluation of these ex-
periments. The reader can find more detailed information about the actual experi-
ments in [5].

2 Gaudi and Its Working Principles

Gaudi is a research project that aims at developing and testing new software devel-
opment methods in a realistic setting. We are interested in the time, cost, quality, and
quantitative aspects of developing software, and study these issues in a series of con-
trolled experiments. We focus on lightweight or agile software processes. Gaudi is
divided into a software factory and a software laboratory.

2.1 Software Factory

The goal of the Gaudi software factory is to produce software for the needs of various
research projects in our university. Software is built in the factory according to the
requirements given by the project stakeholders. These stakeholders also provided the
required resources to carry out the project. A characteristic of the factory is that the
developers are students. However, programming in Gaudi is not a part of their studies,
and the students get no credits for participating in Gaudi – they are employed and paid
a normal salary according to the university regulations.

416 R.-J. Back, L. Milovanov, and I. Porres

Gaudi factory was started as a pilot experiment in the summer of 2001 [4] with a
group of six programmers working on a single product (an outlining editor). The
following summer we introduced two other products and six more programmers. The
work continued with half-time employments during the following fall and spring. In
the fourth cycle, in the summer of 2003, there were five parallel experiments with five
different products, each with a different focus but with approximately the same set-
tings. Altogether, we have carried out 18 software construction experiments in Gaudi
to this day. The application areas of the software built in Gaudi are quite varied: an
editor for mathematical derivations, software construction and modeling tools, 3D
model animation, a personal financial planner, financial benchmarking of organiza-
tions, a mobile ad-hoc network router, digital TV middleware, and so on.

2.2 Software Laboratory

The goal of the Gaudi software laboratory is to investigate, evaluate and improve the
software development process used in the factory. The factory is in charge of the
software product, while the laboratory is in charge of the software process. The labo-
ratory supplies the factory with tasks, resources and new methods, while the factory
provides the laboratory with the feedback in the form of software and experience
results. The laboratory staff is composed of researchers and doctoral students working
in the area of software engineering.

The kinds of projects carried on by the factory are quite varied and the application
area, technology, and project stakeholders changed from project to project. However,
there were also common challenges in all the projects to be addressed in the labora-
tory: product requirements were quite often underspecified and highly volatile and the
developer turnaround was big.

Research software is often built to validate and demonstrate promising but immature
ideas. Once it is functional, the software creates a feedback loop for the researchers. If
the researchers make good use of this feedback, they will improve and refine their
research work and therefore, they will need to update the software to include their
improved ideas. In this context, the better a piece of research software fulfills its goal,
more changes will be required in it. High developer turnaround is a risk that needs to
be minimized in any software development company and the impacts of this have to be
mitigated. In a university environment, this is part of normal life. We employ students
as programmers during their studies. But, eventually, they will graduate and leave the
programming team. A few students may continue as Ph.D. students or as part of a more
permanent programming staff, but this is more the exception than the norm.

Our approach to these challenges was to use agile methods, in particular on Ex-
treme Programming, and to split a large development project into a number of succes-
sive smaller projects. A smaller project will typically represent a total effort of one to
two person years. This also is the usual size of project that a single researcher can find
financing for in a university setting per year. A project size of one person year is also
a good base for a controlled experiment. It is large enough to yield significant results
while it can be carried out in the relatively short period of three calendar months using
a group of four students.

 Software Development and Experimentation in an Academic Environment 417

3 Experiments in the Gaudi Factory

The Gaudi laboratory uses the Gaudi factory as a sandbox for software process im-
provement and development. Software projects in the factory are run as a series of
monitored and controlled experiments. The settings of those experiments are defined
a priori by the laboratory. After an experiment is completed, the settings are reviewed
and our project standards are updated. In this section we describe the project settings
and arrangements for Gaudi.

3.1 Schedule and Resources

A Gaudi experiment has a tight schedule, usually comprising three months. Most of
the experiments are performed during summer, when students can work full-time (40
hours a week). In practice, this means that the developers start their work the first day
of June and the final release of the software product is the last day of August. In pro-
jects carried out during the terms, students work half time (25-30 hours a week).

All the participants in an experiment are employed by the university, including the
students working as developers, using standard employment contracts. All members
of the same development team sit in the same room, arranged according to the advice
given by Beck in [2].

3.2 Training

We should provide proper training to the developers in a project before it starts. How-
ever, the projects are short so we can not spend much time on the training. We chose
to give the developers short (1-4 hours) tutorials on the essentials of the technologies
that they are going to use. The purpose of these tutorials is not to teach a full pro-
gramming language or a method, but to give a general overview of the topic and pro-
vide references to the necessary literature. We consider these tutorials as an introduc-
tion to standard software best practices, which are then employed throughout the
Gaudi factory. Besides general tutorials that all developers take, we also provide tuto-
rials on specific topics that may be needed in only one project, and which are taken
only by the developers concerned. An example of the complete set of tutorials can be
found in [5].

3.3 Experiment Supervision, Metrics Collection and Evaluation

We have established an experimental supervision and metric collection framework in
order to measure the impact of different development practices in a project.

The complete description of our measurement framework is an issue for a separate
paper, but in this section we outline its main principles. Our choice is the Goal Ques-
tion Metric (GQM) approach [6]. GQM is based upon the assumption that for an or-
ganization to measure in a meaningful way it must first specify the goals for itself and
its projects, then it must trace those goals to the data that are intended to define those
goals operationally, and finally provide a framework for interpreting the data with
respect to the stated goals [6]. The current list of goals for the Gaudi factory as we see
them can be found in [5] and its metric framework in [7].

418 R.-J. Back, L. Milovanov, and I. Porres

4 Software Practices in Gaudi

In this section we describe the main practices in our process and our observations
after applying them in several projects. We started our first pilot project [4] with just a
few basic XP practices, evaluating them and gradually including more and more XP
practices into the Gaudi process. After trying out a new practice in Gaudi we evaluate
it and then, depending on the results of the evaluation, it either becomes a standard
part of the Gaudi process, is abandoned, or is left for later re-implementation and re-
evaluation. In this section, we discuss our experience with the agile practices which
have been tried out in our projects. Some of the practices are adopted into our process
and became a standard part of it, while some are still under evaluation.

The list of all these practices can be found in [5]. The technical report also includes
percentages of activities performed by developers.

We now proceed as following: first we give a general overview of a practice, then
we present our experience and results achieved with this practice. Finally we discuss
possible ways to improve these practices in Gaudi environment. For the reader’s con-
venience we split the practices into four categories: requirement management, plan-
ning, engineering and asset management.

4.1 Requirement Management Practices

Requirement management in XP is performed by the person carrying out the customer
role. The requirements are presented in the form of user stories.

Customer Model
The role of the customer in XP is to write and prioritize user stories as defined in the
next practice. The customer should also explain and clarify the stories to the devel-
opment team and define and run acceptance tests to verify the correct functionality of
the implemented stories. One of the most distinctive features of XP is that the cus-
tomer should work onsite, as a member of the team, in the same room with the team
and be 100% available for the team’s questions.

As could have been guessed directly, it is hard to implement the onsite customer
model in practice [8, 9]. Our experience confirms this. Among the 18 Gaudi projects,
there was a real onsite customer only in one project – FiPla [7]. Before this the cus-
tomer’s involvement was minimal and it was in the Feature Driven Development [10]
style: the offsite customer wrote requirements for the application, then the coach
transformed these requirements into product requirements. Then the coach compiled
the list of features based on the product requirements, and the features were given to
the developers as programming tasks.

Studying the advantages of an onsite customer was one of the main objectives of
the FiPla project. In this project the customer was available for questions or discus-
sions whenever the development team felt this was necessary. However, the customer
did not work in the same room with the development team. This was originally rec-
ommended by XP practices [11], but it was considered to be unnecessary because the
customer’s office situated in the same building with the development team’s premises
– this was considered to be “sharing enough”.

 Software Development and Experimentation in an Academic Environment 419

Apparently, being an onsite customer does not increase the customer’s work load
very much [7]. One might even wonder whether an onsite presence is really necessary
based on these figures. However, the feedback from the development team shows that
an onsite customer is very helpful even though the customer’s input was rather sel-
dom needed. The developers’ suggestion about involving the customer more in the
team’s work could also be implemented by seating the customer in the same room
with the programmers. The feeling was that there could have been more spontaneous
questions and comments between the developers and the customer if she had been in
the same room.

Since summer 2004 we started using a customer representative or so called cus-
tomer proxy model in Gaudi. The difference between these two customer models were
that the customer representative does not commit himself to be always available to the
team and in order to make decisions he had to consult the actual customer who was
basically offsite. In both cases all customer-team communications were face-to-face,
without e-mail neither phone discussions.

It is essential to have an active customer or customer’s representative in an experi-
mental project when the customer model itself is not a subject for the experiment.
This allows us to keep the developers focused on the product, not the experiment and
not be disturbed by the experimental nature of project.

User Stories
Customer requirements in XP projects are presented in the form of user stories [2]. User
stories are written by the customer and they describe the required functionality from a
user’s point of view, in about three sentences of text in the customer’s terminology.

We have used both paper stories and stories written into a web-based task man-
agement system. An advantage of paper stories is their simplicity. On the other hand,
the task management system allows its users to modify the contents of stories, add
comments, track the effort, attach files (i.e. tests or design documents) etc. It is also
more suitable when we have a remote or offsite customer. Currently we are only using
the task management system and do not have any paper stories at all.

In many projects, product or component requirements are represented in the form of
tasks written by programmers. Tasks contain a lot of technical details, and often also
describe what classes and methods are required to implement a concrete story. A story
normally produces 3-4 tasks. When a story is split into tasks, the tasks are linked as
dependencies of the story, and the story becomes dependent on tasks. When we used
paper stories, we just attached the tasks to their stories. This is done in order to ensure
the bidirectional traceability of requirements. Moreover, it is possible to trace each
story or task to the source code implementing it. This is discussed in the Configuration
Management practice. It is essential that each story makes sense for the developers (see
Section 4.2) and it is estimable (we talk about the estimations in the Section 4.2).

4.2 Planning Practices

The most fundamental issues in XP project planning are to decide what functional-
ity should be implemented and when it should be implemented. In order to deal

420 R.-J. Back, L. Milovanov, and I. Porres

with these issues we need the planning game and a good mechanism for time esti-
mations.

Planning Game and Small Iterations
The planning game is the XP planning process [2]: business gets to specify what the
system needs to do, while development specifies how much each feature costs and
what budget is available per day, week or month. XP talks about two types of plan-
ning: by scope and by time. Planning by time is to choose the stories to be imple-
mented, rather than taking all of them and negotiating about a release date and re-
sources to be used (planning by scope).

The team estimates all the stories for the project and writes their estimations di-
rectly for the stories (we will discuss the estimation process in more details in the
Section 4.2). These estimations are not very precise, the error is 20% on average [5],
but can be smaller. E.g., in the FiPla [7] project the estimation error for the whole
effort was 10% (approximately 30 hours). The estimations create an overall project
plan and immediately tell us whenever some stories should be postponed to the next
project or whether there is time to add more stories.

The task managements and bug tracking system allows us to submit tasks and
bugs, and to keep track of them. Currently, we use the JIRA task management to keep
track of task estimations. These kinds of systems are easy to use and provide an over-
all view of which tasks and bugs are currently under correction, which are fixed and
which are open. This is especially important when the customer cannot act as an on-
site customer (see Section 4.1).

In our experience, the planning game, the small releases and time estimations are
very hard to implement without well-defined customer stories and technical tasks, and
hence, without an active customer or customer representative.

Time Estimations
The essence of the XP release planning meeting is for the development team to esti-
mate each user story in terms of ideal programming weeks [2]. An ideal week is how
long a programmer imagines it would take to implement a story if he or she had abso-
lutely nothing else to do. No dependencies, no extra work, but the time does include
tests.

We have two estimation phases in the Gaudi process. The first phase is when the
team estimated all of the stories in ideal programming days and weeks. These estima-
tions are not very precise and they are improved in the second estimation phase when
the team splits stories into tasks. When programmers split stories into technical tasks
they make use of their previous programming experience and try to think of the sto-
ries in terms of the programs they have already written. This makes sense for the
programmers and makes the estimating process easier for them.

The estimated time for a task is the number of hours it will take one programmer to
write the code and the unit tests for it. These estimations are done by the same pro-
grammers that are signed up for the tasks, i.e., the person who estimates the task will
later implement it. This improves the precision of the estimations. The sum is doubled
to allocate time for refactoring and debugging. This is the estimation of a story for

 Software Development and Experimentation in an Academic Environment 421

solo programming. In case of pair programming we need to take the Nosek’s [12]
principle into consideration: two programmers will implement two tasks in pair 60
percent slower then two programmers implementing the same task separately with
solo programming. This means that a pair will implement a single task 20% faster
then a single programmer. Similarly, to get the estimation for an iteration we have to
sum the estimations of all stories the iteration consists of. Project estimation will be
the sum of all its iteration estimations.

Estimating tasks turns out to be rather easy even for inexperienced programmers.
The accuracy of the estimations depends, of course, on the experience of the devel-
oper. Experience in the particular programming language turns out to be more impor-
tant than experience in estimation. Examples of the estimation accuracy in Gaudi can
be found in [5].

XP-style project estimation is useful to plan the next one or two iterations in the
project, but they can seldom be used to estimate the calendar length or resources
needed in a project.

4.3 Engineering Practices

Engineering practices include the day-to-day practices employed by the programmers
in order to implement the user stories into the final working system.

Design by Contract
Design by Contract [14] (DBC) is a systematic method for making software reliable
(correct and robust). A system is structured as a collection of cooperating software
elements. The cooperation of the elements is restricted by contracts, explicit defini-
tions of obligations and guarantees. The contracts are pre- and postconditions of
methods and class invariants. These conditions are written in the programming lan-
guage itself and can be checked at runtime, when the method is called. If a method
call does not satisfy the contract, an error is raised. Some reports [15, 16] show that
XP and design by contract fit well together, and unit tests and contracts compliment
each other.

Our first experiment with Eiffel and DBC showed very good results. First of all,
the use of this method was one of the reasons for the low defect rate in the project [7].
As the development team commented out: “All the tests written (to a complete code)
always pass and the tests that don’t pass have a bug in the test itself”. Most of the
bugs were caught with the help of preconditions, when a routine with a bug was
called during unit testing. Most of the unit tests were written before the actual code,
but the contracts were specified after it because the programmers did not get any
instructions from their coach on when the contracts should be written. Example data
for the post-release defect rate of the software developed with DBC is reported in [7].

Stepwise Feature Introduction
Stepwise Feature Introduction (SFI) is a software development methodology intro-
duced by Back [17] based on the incremental extension of the object-oriented soft-
ware system one feature at a time. This methodology has much in common with the

422 R.-J. Back, L. Milovanov, and I. Porres

original stepwise refinement method. The main difference to stepwise refinement is
the bottom-up software construction approach and object orientation. Stepwise Fea-
ture Introduction is an experimental methodology and is currently under development.

We are using this approach in our projects in order to get practical experience with
the method and suggestions for further improvements. Extreme Programming does
not say anything about the software architecture of the system. Stepwise Feature In-
troduction provides a simple architecture that goes well with the XP approach of con-
structing software in short iteration cycles. So far we have had positive feedback from
using SFI with a dynamically typed object-oriented language like Python. An experi-
ment with SFI and Eiffel, a statically typed object-oriented language showed us some
aspects of the methodology which need improvement. The explanation of these find-
ings requires a more thorough explanation of SFI than what is motivated in this paper,
so we decided to discuss this in a separate paper. Developers found SFI methods rela-
tively easy to learn and use. The main complain was the lack of tool support. When
building a software system using SFI, programmers need to take care of a number of
routines which are time consuming but which could be automated. The most positive
feedback about SFI concerned the layered structure: it clarifies the system architecture
and it also helps in debugging, since it is relatively easy to determine the layer in
which the bug is introduced.

Pair Programming
Pair programming is a programming technique in which two programmers work to-
gether at one computer on the same task [18]. Pair programming has many significant
benefits for the design and code quality, communication, education etc [19, 20, 21,
22, 23]. Programmers learn from each other while working in pairs. This is especially
interesting in our context since in the same project we can have students with very
different programming experience.

In our first experiments we were enforcing developers to always work in pairs,
later on when we had some experienced developers in the projects, we gave the de-
velopers the right to choose when to work in pair and when to work solo. In the 2003
projects pair programming was not enforced, but recommended, while in summer
2004 two months were pair programming and one month solo. We leave it up to the
programmer whether to work in pairs while debugging or refactoring. The percentage
of the solo-pair work for the five projects of 2003-2004 is reported in [5].

All of the developers agree that the code written in pairs is easier to read and con-
tains less bugs. They also commented that refactoring is much easier to do in pairs.
However there are different opinions and experiences on debugging. In some projects
developers said that it was almost impossible to debug in pair because “everyone has
his own theory about where the bug is” and “while you want to scroll up, your pair
want to scroll down, this disturbs concentration during debugging”. In other projects
programmers preferred pair debugging because they found it easier to catch bugs
together. We think that working in pairs should be enforced for writing all productive
code, including tests, while it should be up to the developers, whenever debug or
refactor in pairs or solo. It would be interesting to know which part of the code is
actually pair programmed and which solo. A possible solution to distinguish between

 Software Development and Experimentation in an Academic Environment 423

pair and solo code is to use specific annotations in the code [24], as used in Energi
[25] projects, where the origin (pair or solo) of the code is described by comments.

Unit Testing
Unit testing is defined as testing of individual hardware or software units or groups of
related units [26]. In XP, unit testing refers to tests written by the same developer as
the production code. According to XP, all code must have unit tests and the tests
should be written before the actual code. The tests must use a unit test framework to
be able to create automated unit test suites.

Learning to write tests was relatively easy for most developers. The most difficult
practice to adopt was the “write test first” approach. Our experience shows that if the
coach spends time together with the programmers, writing tests himself and writing
the tests before the code, the programming team continues this testing practice also
without the coach. Some supervision is, however, required, especially during the first
weeks of work. The tutorial about unit testing focused at the test driven development
before the project is also essential. The implementation of the testing practice also
depends on the nature of the programming task. Our experience showed that the
“write test first” approach worked only in the situation where the first programming
tasks had no GUI involved because GUI code is hard to test automatically.

In many projects the goal is to achieve 100% unit test coverage for non-GUI com-
ponents. A program that calculates test coverage automatically provides an invaluable
help to achieve this goal to both programmers and coaches.

Continuous Refactoring and Collective Code Ownership
Refactoring is the process of changing a software system in such a way that it does
not alter the external behavior of the code, yet improves its internal structure [27]. XP
promotes refactoring throughout the entire project life cycle to save time and increase
quality [28]. This practice together with pair programming also promotes collective
code ownership, where no one person owns the code and may become a bottleneck
for changes. Instead, every team member is encouraged to contribute to all parts of
the project.

Pair programming, continuous refactoring, collective code ownership, and the lay-
ered architecture make the code produced in the Gaudi factory simpler and easier to
read, and hence more maintainable. As mentioned before, larger products are devel-
oped in a series of three-month projects and not necessarily by the same developers.
To ensure that a new team that takes over the project gets to understand the code
quickly, we usually compose the team with one or two developers who have experi-
ence with the product from a previous project, the rest of the team being new to the
product. In this way new developers can take over the old code and start contributing
to the different parts of the product faster. When the team is completely new, the
coach will help the developers to take over the old code.

4.4 Asset Management

Any nontrivial software project will create many artifacts which will evolve during
the project. In XP those artifacts are added in the central repository and updated as

424 R.-J. Back, L. Milovanov, and I. Porres

soon as possible. Each team member is not only allowed, but encouraged to change
any artifact in the repository.

Configuration Management and Continuous Integration
All code produced in the Gaudi Software Factory, as well as all tests (see Section
4.3), are developed under a version control system. We started in 2001 using CVS but
now most projects have migrated to Subversion, which is now the standard version
control system in Gaudi. The source code repository is also an important source of
data for analyzing the progress of the project, since all revisions are stored there to-
gether with a record of the responsible person and date and time for check-in. The
metrics issues were discussed in the Section 3.3.

Due to the small size (four to six programmers) of the development teams in
Gaudi, we do not use a special computer for integration, neither do we make use of
integration tokens. When a pair needs to integrate its code, the programmers from this
pair simply inform their colleagues and ask them to wait with their integration until
the first pair checks in the integrated code. The number of daily check-ins varies, but
there is at least one check-in every day. In many cases integration is just a matter of
few seconds.

It is important to be able to trace every check-in to concrete tasks and user stories
[29]. For this purpose programmers add the identification of the relevant task or
story to the CVS or Subversion log. The identification is the unique ID of the story
or task in the task management system (SourceForge or JIRA). The exception is
when the programmers refactor or debug existing code, it is then very hard (or im-
possible) to trace this activity to a concrete task or story. Therefore check-ins after
refactoring or debugging are linked to the “General Refactoring and Debugging”
task (see Section 4.1).

Agile Documentation
When a story is implemented, the pair or single programmer who implemented it
should also write the user documentation for the story. The documentation is written
directly on the story or in a text file located in the project’s repository. This file is
divided into sections, where each section corresponds to an implemented story. If the
stories are on a web-base task management system, the documentation is written di-
rectly in the stories – this simplifies the bidirectional traceability for stories and their
documentation. Later on the complete user documentation will be compiled from the
stories’ documentation. Documenting a user story is basically rephrasing it, and it
takes an average of 30 minutes to do it.

This approach allows us to embed the user documentation into the development
process. Bidirectional traceability of the stories and user documentation makes it easy
to update the corresponding documentation whenever the functionality changes. The
documentation examples from one of the Gaudi projects can be found in [5].

5 Conclusions and Related Work

In this paper we have presented Gaudi, our approach to empirical research in software
engineering based on the development of small software products in a controlled

 Software Development and Experimentation in an Academic Environment 425

environment. This approach requires a large amount of resources and effort but pro-
vides a unique opportunity to monitor and study software development in practice.

The software process used in Gaudi is based on agile methods, especially on Ex-
treme Programming. In this, paper we have discussed the adoption and performance
of 12 different agile practices. We believe that our collected data represents a signifi-
cant sample of actual software development due to its size and diversity, and lends
support for many of the claims made by the advocates of Extreme Programming.

There have been several efforts to study and validate how agile methods are used
in the industry, such as the survey performed i.e. in [30, 31]. An industrial survey can
help us to determine the performance of a completely defined process such as XP, but
it cannot be used to study the effects of different development practices quantitatively,
since the researchers cannot monitor the project in full details. Instead, the survey has
to be based on the qualitative and subjective assessments of project managers of the
success of the different development practices used in their projects. Abrahamsson
follows a research approach that is similar to ours, combining software research with
software development in Energi [25]. The main focus of his research is to evaluate
agile methods proposed by other researchers in the field. In contrast, our intention is
to perform empirical experiments not only to evaluate existing practices but also to
propose new practices that we think will improve the overall software process.

The Gaudi framework project started in 2001 and have completed 18 projects dur-
ing a period for 4 years representing an effort of 30 person years in total. This work
has been measured and the results of these measurements are being used to create the
so called Gaudi process. Once this process is completely defined it will be tested
again in empirical experiments. It is possible to argue that this approach will result in
a software process that is optimized for building software only in a university setting.
Although this criticism is valid, it is also true that most of the challenges found in our
environment such as scarce resources, undefined and volatile requirements and high
programmer turn around are also present in many industrial projects.

In the previous section, we have evaluated each practice in detail. However, we
would like to discuss some of the overall experiences obtained from the framework
project.

Agile Methods Work in Practice: As overall conclusions of our experiences is that
agile methods provide good results when used in small projects with undefined and
volatile requirements. Agile methods have many known limitations such as difficul-
ties to scale up to large teams, reliance on oral communication and a focus on func-
tional requirements that dismisses the importance of reliability and safety aspects.
However, when projects are of relatively small size and are not safety critical, agile
methods will enable us to reliably obtain results in a short time.

The fact that agile methods worked for us does not mean that is not possible to im-
prove existing agile practices. Our first recommendation is that architectural design
should be an established practice. We have never observed a good architecture to
“emerge” from a project. The architecture has been either designed a priory at the
beginning of a project or a posteriori, when the design was so difficult to understand
that a complete rethinking was needed.

426 R.-J. Back, L. Milovanov, and I. Porres

Also, we established project and product documentation as an important task. XP
reliance on oral communication should not be used in environments with high devel-
oper turnaround. Artifacts describing the software architecture, design and product
manual are as important as the source code and should be created and maintained
during the whole life of the project.

Project Management and Flying Hats: Another observation is that in many cases
the actual roles and tasks performed by the different people involved in a project did
not correspond to the roles and tasks assigned to them before the project started. This
was due to the fact that the motivation and interest in a given project varied greatly
from person to person. In some cases, the official customer for a project lost interest
in the project before it was completed, e.g. in less than three months. In these cases,
another person took the role of a customer just because that person was still interested
in the product or because a strong commitment to the project made this person to take
different roles simultaneously even if that was not his or her duty.

Our conclusion is that standard management tasks such project staffing, project su-
pervision and ensuring a high motivation and commitment from the project staff and
different stakeholders are as relevant in agile process in a university setting as in any
other kind of project.

Tension Between Product and Experiment: Finally, we want to note that during
these four years we have observed a certain tension between the development of soft-
ware and the experimentation with methods. We have had projects that produced
good products to customer satisfaction but were considered bad experiments since it
was not possible to collect all the desired data in a reliable way. Also, there have been
successful experiments that produced software that has never been used by its cus-
tomer.

To detect and avoid these situations a well-defined measurement framework should
be in place during the development phase of a project but also after the project has
been completed to monitor how the products are being used by their customers.

References

1. Back, R.J., Milovanov, L., Porres, I., Preoteasa, V.: XP as a Framework for Practical
Software Engineering Experiments. In: Proceedings of the Third International Confer-
ence on eXtreme Programming and Agile Processes in Software Engineering – XP2002
(2002)

2. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley (1999)
3. Abrahamsson, P.: Extreme Programming: First Results from a Controlled Study. In: Pro-

ceedings of the 29th EUROMICRO Conference ”NewWaves in System Architecture”,
IEEE (2003)

4. Back, R.J., Milovanov, L., Porres, I., Preoteasa, V.: An Experiment on Extreme Program-
ming and Stepwise Feature Introduction. Technical Report 451, TUCS (2002)

5. Back, R.J., Milovanov, L., Porres, I.: Software Development and Experimentation in an
Academic Environment: The Gaudi Experience. Technical Report 641, TUCS (2004)

6. Basili, V., Caldiera, G., Rombach, D.: The Goal Question Metric Approach. Encyclopedia
of Software Engineering. John Wiley and Sons (1994)

 Software Development and Experimentation in an Academic Environment 427

7. Back, R.J., Hirkman, P., Milovanov, L.: Evaluating the XP Customer Model and Design
by Contract. In: Proceedings of the 30th EUROMICRO Conference, IEEE Computer So-
ciety (2004)

8. Korkala, M.: Extreme Programming: Introducing a Requirements Management Process for
an Offsite Customer. Department of Information Processing Science research papers series
A, University of Oulu (2004)

9. Korkala, M., Abrahamsson, P.: Extreme Programming: Reassessing the Requirements
Management Process for an Offsite Customer. In: Proceedings of the European Software
Process Improvement Conference EUROSPI 2004, Springer Verlag LNCS Series
(2004)

10. Palmer, S.R., Felsing, J.M.: A Practicel Guide to Feature-Driven Development. The Coad
Series. Prentice Hall PTR (2002)

11. Beck, K.: Embracing Change with Extreme Programming. Computer 32 (1999) 70–73
12. Nosek, J.: The Case for Collaborative Programming. Communications of the ACM 41

(1998) 105–108
13. Meyer, B.: Eiffel: The Language. second edition edn. Prentice Hall (1992)
14. Meyer, B.: Object-Oriented Software Construction. second edition edn. Prentice Hall

(1997)
15. Feldman, Y.A.: Extreme Design by Contract. In: Proceedings of the 4th International Con-

ference on Extreme Programming and Agile Processes in Software Engineering, Springer
(2003)

16. Heinecke, H., Noack, C. In: Integrating Extreme Programming and Contracts. Addison-
Wesley Professional (2002)

17. Back, R.J.: Software Construction by Stepwise Feature Introduction. In: Proceedings of
the ZB2001 – Second International Z and B Conference, Springer Verlag LNCS Series
(2002)

18. Williams, L., Kessler, R.: Pair Programming Illuminated. Addison-Wesley Longman Pub-
lishing Co., Inc. (2002)

19. Cockburn, A., Williams, L.: The Costs and Benefits of Pair Programming. In: Proceedings
of eXtreme Programming and Flexible Processes in Software Engineering XP2000. (2000)

20. Constantine, L.L.: Constantine on Peopleware. Englewood Cliffs: Prentice Hall (1995)
21. Johnson, D.H., Caristi, J.: Extreme Programming and the Software Design Course. In:

Proceedings of XP Universe. (2001)
22. Müller, M.M., Tichy, W.F.: Case study: Extreme programming in a university environ-

ment. In: Proceedings of the 23rd Conference on Software Engineering, IEEE Computer
Society (2001)

23. Williams, L.A., Kessler, R.R.: Experimenting with Industry’s Pair-Programming Model in
the Computer Science Classroom. Journal on Software Engineering Education (2000)

24. Hulkko, H.: Pair programming and its impact on software quality. Master’s thesis, Electri-
cal and Information Engineering department, University of Oulu (2004)

25. Salo, O., Abrahamsson, P.: Evaluation of Agile Software Development: The Controlled
Case Study approach. In: Proceedings of the 5th International Conference on Product Fo-
cused Software Process Improvement PROFES 2004, Springer Verlag LNCS Series
(2004)

26. Institute of Electrical and Electronics Engineers: IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries. New York (1990)

27. Fowler, M.: Refactoring: Improving the Design of Existing Code. Object Technology Se-
ries. Addison-Wesley (1999)

428 R.-J. Back, L. Milovanov, and I. Porres

28. Roberts, D.B.: Practical Analysis of Refactorings. PhD thesis, University of Illinois at Ur-
bana-Champaign (1999)

29. Asklund, U., Bendix, L., Ekman, T.: Software Configuration Management Practices for
eXtreme Programming Teams. In: Proceedings of the 11th Nordic Workshop on Pro-
gramming and Software Development Tools and Techniques NWPER’2004. (2004)

30. Ilieva, S., Ivanov, P., Stefanova, E.: Analyses of an Agile Methodology Implementation.
In: Proceedings of the 30th EUROMICRO Conference, IEEE Computer Society (2004)

31. Rumpe, B., Schröder, A.: Quantitative survey on extreme programming projects. In: Third
International Conference on Extreme Programming and Flexible Processes in Software
Engineering, XP2002, May 26-30, Alghero, Italy (2002) 95–100

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 429 – 442, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Issues in Software Inspection Practices

Sami Kollanus

Department of Computer Science and Information Systems,
P.O.Box 35 (Agora), FI-40014 University of Jyväskylä, Finland

sami.kollanus@jyu.fi

Abstract. The motivation for this research comes from a need to improve
software inspection practices in software organizations. Even if inspections are
well defined and regularly used in an organization, there may be some problems
which can greatly reduce inspection effectiveness. The paper presents a list of
inspection related problems which are known in the literature. It also relates
some experiences from two case organizations. In addition, this paper provides
an approach which helps identifying problems of this kind and directing limited
improvement resources effectively.

1 Introduction

Since Michael Fagan published his software inspection method [2] almost 30 years
ago, it has inspired several researchers who work with inspections. Existing research
is strongly concentrated on different inspection methods and on different factors in
inspection effectiveness. For example, Laitenberg and DeBaud [12] have introduced
these research areas in their survey. There is very little systematic research conducted
about inspection adoption and improvement in an organization.

 Research which would describe how software industry is really practicing
inspections is still lacking. However, some references are available. Johnson [7]
reported about an informal survey, which indicated that 80% of the 90 respondents
practised inspection irregularly or not at all. Also, CMM [18] assessment results may
be a useful indicator about the use of inspections. A recent report of the Software
Engineering Institute [19] shows that about 55% of the assessed organizations
between the years 1999-2003 are still below the third level where some kinds of
formal reviews are required. These statistics obviously emphasize organizations
which take their process improvement seriously. It can only be guessed how small the
fraction of the whole software industry that would reach the third CMM level is, and
how well this indicates the use of inspections. Regardless of the missing facts about
the inspection use in industry, there is certainly need for inspection improvement. The
major motivation for this paper comes from that need.

There is already some support for inspection improvement in the form of maturity
models (see [10] and [21]). Those models describe what kinds of elements an
organization should have in their inspection practices, and can assess the current level
of inspection practices in an organization. The assessment may also give some

430 S. Kollanus

suggestions about where the improvement actions should be directed to. However,
even if inspections are formally defined and regularly used in an organization, there
may be some problems which make inspections ineffective or in the worst case may
totally prevent the inspection practice. This paper introduces a problem based
approach to inspection improvement. This approach is created to help an organization
to identify possible problems in their inspection practices. It may also help the
organization to target its improvement actions effectively.

The major focus of this research was on the field of problems related to software
inspections. There is no existing systematic research about inspection problems,
although there are problems known in several areas. Therefore, the first thing in this
research was to list the known problems in the literature. The second task was to
collect empirical experiences from two case organizations. These experiences were
used to evaluate the original problems listed to get some ideas for inspection
improvement. An additional goal was to find some new problems from the case
organizations.

The following section will give some background knowledge about the case
studies. Section 3 will present a list of known inspection problems and possible
solutions. It also includes some case experiences about the problems listed. Section 4
discusses more fully the case experiences, and Section 5 will introduce a problem
based approach for inspection improvement.

2 Case Studies

The case studies in this research had the following goals:

− to evaluate the validity of the inspection related problems found in the literature
− to find some new problems
− to find out how the case organizations are practicing inspections or more informal

reviews

The case experiences were collected from two organizations, the selection being
based on their size. Both of these organizations (> 250 employees) have a quite well
defined software development process. These organizations are referred to as the
organization A and the organization B in this paper. It was a conscious decision to
choose organizations which already had some experience about inspections. This
naturally means that problems emphasized here may differ from those of a small
organization which does not use inspections regularly.

2.1 How Were the Case Studies Conducted?

The case studies included three interviews in each of the two organizations. The
organizations were asked to find interviewees from different levels in the
organization. The recommended roles were quality manager, project manager and
software developer. The case organizations had no difficulties in finding relevant
interviewees.

 Issues in Software Inspection Practices 431

The first part of an interview focused on evaluating current inspection practices in
the organization. This evaluation was made based on the Inspection Capability
Maturity Model (ICMM) [10]. It is quite similar to the internationally well known
CMMI [18] model, but assesses only the maturity of inspection practices instead of
the whole software development process. In addition, participants were asked whether
they partake regularly in more informal reviews. The next subsection will briefly
introduce the summary of these results as background knowledge about the case
organizations. The primary focus of this paper is on the other part of the interviews.

In the other part of the interviews, problems which may occur in inspection
practices were discussed. First, the participants were asked to evaluate the current
inspection practices in their organization without any further explanation given to
them. They had to give a grade for their organization with scale from 1 to 5 (5 being
the best). Then the interviewees were asked to freely talk about the most important
inspection related problems in their organization. Finally, the participants went
through a list of inspection problems, which have been mentioned in the literature.
The problems in this list are described in the next section of this paper. They had to
comment on how familiar the suggested problem seemed in their own organization.
They were asked to rate the frequency of the problem occurrence in their work, using
a scale from 1 to 5: one meaning never and five that it happened all the time. Those
numerical results are not presented in this paper, as they were collected from only six
interviews - these averages would not tell anything useful.

2.2 How Are the Case Organizations Practicing Inspections?

Both of the case organizations have included reviews in their defined software
development process. In addition, the defined form of the reviews is quite similar to
inspection, although not as formal as the traditional inspection process [2]. However,
based on the interviews, the real practice is still on the initial ICMM level in both of
the case organizations.

There was a clear difference between the case organizations in everyday inspection
activity. The second level in ICMM requires inspecting requirements and some design
documents in every project. The organization A satisfied this requirement pretty well,
but the organization B appeared to have still quite a bit of work to do with it. Another
requirement of the second ICMM level is to arrange inspection training at least for the
inspection leaders. Neither organization had any kind of inspection training. The
organization A, which had a better inspection performance, would have satisfied even
most of the ICMM third level requirements if it had had inspection training for all the
relevant stakeholders. The organization B still had some more work to do with the
second level.

3 Problems in Inspection Practices

This section will introduce a list of problems which may occur in inspection practices.
The issues in the list are primarily derived from the literature. The following
subsections give a detailed description about each of the problems. Each problem

432 S. Kollanus

description includes possible symptoms, solutions and experiences from the case
organizations. These problems are not categorized here and neither are they in any
specific order. Case experiences are presented here very briefly. Section 4 includes
some more discussion about the case results.

3.1 Meeting Scheduling May Cause Delay

It may be hard to find a common inspection meeting time for all the participants.
Typically, inspection scheduling is made later than scheduling for most of the other
tasks. Votta [2] suggests that up to 20% of the requirements and design development
interval is spent just waiting for reviewers to meet. In his research, typical waiting
time in bigger projects is two weeks.

In the conclusion of his research, Votta [2] casts doubts on the effectiveness of
inspection meetings. According to Gilb and Graham [5] in an optimal situation 80%
of the defects could be found during preparation and 20% in the inspection meeting.
Votta [22] noticed in his research that the gain of inspection meetings was only 4% in
defects when compared with inspections without meeting. However, he doesn’t
suggest totally rejecting inspection meetings. He suggests the replacement of a
traditional meeting with Deposition, a meeting in which the participants would
include only the author, the reviewer and maybe a distinct moderator.

Later several researchers (for example [6][8][13]) have suggested virtual inspection
as a solution to scheduling problems. By virtual inspection we refer here to tool-
supported inspection process, involving no physical meeting. Some researches have
found virtual inspections just as effective as the traditional inspection and cheaper to
arrange [8][13]. Among other results, Stein et al. [20] found virtual inspection a
feasible method for their case study, but they still did not suggest eliminating
meetings. Their study shows that some of the defects may be hard to find without
meetings.

Solution: A solution for scheduling problem may be found in a kind of alternative
meeting arrangement. One should be able to plan the schedule beforehand and
allocate it to work plans. In an optimal situation inspection, the schedule would be
part of the project planning and resources would be allocated from the beginning of
each project.

Experiences: This was seen as a problem, but not as a very important one. In the
organization B, the chances of not inspecting a document at all were greater when the
schedule appeared to be busy. In the organization A, the problems experienced were
related to their customers, who sometimes had difficulties in finding time for
inspections.

3.2 Meetings Consume Resources with Few Gains in Finding New Defects

The previous subsection already referred to this problem. Votta [22] found, in his
research, that synergy was very low in inspection meetings. Later Porter and Votta
[15] supported this by their research. It should be noticed that this is a quite limited

 Issues in Software Inspection Practices 433

aspect in an inspection meeting. Votta [22] also found meetings useful in finding false
positives. A meeting can also be a good learning situation.

There may also be other reasons, such as poor preparation, creating the same
effect. If the participants are not well prepared, usually very few major defects are
found [5]. In the studies mentioned ([15], [22]), data was collected in an environment
in which inspections are practiced extremely well. The conclusion in these studies
was that a traditional inspection meeting is not effective and should be replaced with
some alternative method. Laitenberg and DeBaud [12] suggest that an organization
should start with a traditional meeting-based inspection and maybe later go on to
some alternative meeting arrangements.

Solution: First, the reasons for this problem should be identified. If there is some
obvious reason, like poor preparation, it should be dealt with first. If there are no
other problems, some alternative meeting arrangements could be entertained.
However, the other aspects relating to the purpose of the meeting should be
considered carefully before any rearrangements. For example, in some organizations a
meeting can be the element which maintains discipline in the whole inspection
process.

Experiences: The organization B arranged meetings infrequently, and the
interviewees there were quite unfamiliar with them. In the organization A, only one
participant experienced this as a problem.

3.3 Poor Inspection Support Material

There may be insufficient support material for inspectors. The material can be poorly
designed, and often there is no material at all. This may cause noticeable inefficiency
in the inspection process. Typically, individual defect finding is based on checklists or
is of ad-hoc type [12]. Laitenberg et al. [11] criticize the fact that checklists are
usually too general. Checklists tell what kind of defects could be found, but do not
show how to find them. Porter and Votta [15] found that inspection material increase
defect finding rate even among experienced professionals.

Solution: Laitenberg et al. [11] suggest perspective-based reading (PBR) as a solution
to this problem. PBR is based on scenarios, which give more specific guidelines for
the reader than typical checklists. Rifkin and Daimel [16] found that training which
focused on document reading skills improved defect finding rate remarkably. In their
training, the participants made their own checklists and learned how to use them. The
conclusion is that good inspection support material which guides in defect finding can
remarkably improve the defect finding rate in inspection.

Experiences: Both of the organizations had at least some checklists, but neither of
them used these. However, only one of the interviewees experienced this as an
outstanding problem.

3.4 Participants Don’t Understand Inspection Process

It may be that the participants do not understand their own role in the inspection
process. They may not know which of their own documents should be inspected,

434 S. Kollanus

when it should be done, and how the inspection should be conducted. In his work in
which Karl Wiegers [23] writes generally about software reviews, he states that lack
of common understanding can lead to inconsistencies in review objectives, review
team size and composition, forms used, recordkeeping, and meeting approaches.
Wiegers also writes that it may not be clear who is running a review meeting, and that
meetings may lose their focus, drifting from finding defects to solving problems or
challenging the author’s programming style. As a conclusion, he states that these
kinds of problems affect inspection effectiveness and in the worst case the inspection
may not take place at all.

Solution: Wiegers suggests that training is the best way to ensure common
understanding about review process between the participants. Also Fagan [3]
emphasizes the importance of training. He even warns about starting inspections in an
organization if not based on proper training. Fagan writes that some companies
having started inspections without proper training had not succeeded that well.

Experiences: This was seen as a relatively small problem. Most of the problems
experienced were related to uncertainty about which documents should be inspected.

3.5 Criticism May Be Directed at Author

Wiegers [23] claims that initial attempts to hold reviews sometimes lead to personal
assaults on the skills and style of the author. If authors feel personally attacked, they
may not be willing to allow their future documents to be reviewed. In the worst case
they may seek for revenge.

Solution: Wiegers [23] emphasizes the role of the inspections leader, who should
control the meeting. Having capable and well trained inspection leaders can be a
solution.

Experiences: This was not experienced as a problem in the case organizations.

3.6 Poor Inspection Planning

According to Wiegers [23], in many projects inspections are seen as milestones in the
project plan. If the inspection is arranged as a milestone, there is no time for rework.
This may cause the project to slip in its schedule. Gilb [4] recommends inspecting
documents not only just before the milestone, but several times during the working
process.

Solution: The solution is naturally to plan and arrange inspections in time. However,
this may not be so simple. Project managers must first understand inspection
advantages and processes. Proper training for the managers is, therefore, also needed.

Experiences: The organization A found these kinds of problems very rare. The
organization B experienced some delays, especially with requirement documents.
However, this was not seen as an important problem. Moreover, poor planning may
not have been the major reason for the delay.

 Issues in Software Inspection Practices 435

3.7 Meeting Straying to Irrelevant Issues

Already Fagan [2] emphasized the purpose of defect-finding and warned about
discussions in inspection meetings. Also Gilb and Graham [5] comment on this. If
discussion and problem solving is allowed, it can easily take the whole time. This is a
widely agreed viewpoint, which Johnson [7] has, however, criticized. He claims that
the most important benefit of a meeting is learning and that collective problem
solving is an important factor in learning. In the same article [7] Johnson suggests a
kind of asynchronous tool-supported defect-logging instead of a physical meeting. In
any case it is obvious that discussion and logging cannot be effectively arranged in
the same meeting. It is good if there is support for the author in problem solving, but
this should not take place in a meeting, which should be focused on logging and
finding defects.

Solution: Training is again seen as the solution for this. Inspection leaders are the key
players in meetings and they should be well trained. Also, training for all the
participants may help. If the purpose of the meeting is clear for everybody, there will
be less temptation to drift into problem solving.

Experiences: This was a well-known problem in both of the organizations. The
problem comes up occasionally, but not for all the time. However one of the
interviewees in the organization B thought this as a considerable problem, often seen
in the organization.

3.8 Poor Preparation

According to Gilb and Graham [5], preparation is the most critical part in the
inspection process. They claim that without preparation, the result is a group review,
which probably finds only 10 % of all the defects that could have been found in a
more rigorous inspection. There may be different reasons for this. Managers may
have a temptation to save resources or single participants may feel too busy to prepare
carefully.

Solution: Wiegers [23] suggests that the preparing time of the participants should be
recorded. However, this may not be enough to guarantee a good preparation if there is
no control over the collected information. Someone on the management level should
have the responsibility for the inspection practices and for motivating the participants.
The organization should also have standards about proper preparation time in
different kinds of inspections.

Experiences: This was experienced as the most important problem in both of the
organizations, and was seen very often. One of the interviewees commented that it
was rare to have a meeting where all the participants would have been well prepared.

3.9 Wrong People Participate

Wiegers [23] suggests that there may be participants who do not have the appropriate
skills or knowledge to find defects. Overall, the level of expertise of individual
participants is the most important factor in inspection effectiveness [17].

436 S. Kollanus

Solution: In the worst case this can be a complicated managerial issue. It is hard to
find obvious solutions apart from training. Rifkin and Deimel [16] got good results
when they arranged inspection training which focused on defect-finding skills instead
of regular inspection processes.

Experiences: The organization A very rarely experienced any of these problems. The
problems, which the organization B faced occasionally, were usually related to
customers, who sometimes did not have the proper expertise to review the documents.

3.10 Roles May Be Missing

Defining different roles for the participants has been one of the key ideas in
inspection from the beginning [2]. Porter et al. [14] claim that in practice participants
use ad-hoc or checklist based defect-detection techniques to discharge identical
general responsibilities. This causes considerable overlap in their work and makes
defect-finding ineffective.

Solution: This is an organizational issue. Porter et al. [14] suggest that the
participants should not only have different roles, but also different tasks in inspection.
This means there should be customized material (checklists, scenarios etc.) for
different roles. In their research Porter et al. [14] found that totally distinct
responsibilities with scenario tasks produced the best result. As a method it was
remarkably more effective than the one based on a checklist, which had more vague
responsibilities.

Experiences: Neither organization used different roles in inspections. The
organization A experienced it as a small problem and the organization B did not
regard it as a problem at all.

3.11 Poor Quality Documents Waste Time

Kelly & Shepard [9] refer to this problem in their article. They concentrated on code
reviews in their research and noticed the importance of clean and well documented
code in inspection. Poor documentation wastes the participants’ time. According to
Gilb and Graham [5], a poor quality work product should not be inspected at all. Their
support for preconditions in inspection is meant, in particular, to avoid unnecessary
work.

Solution: Good standards help authors to make good quality documents. Good
checklists may also help authors in their work. Gilb & Graham [5] suggest creating
preconditions for inspections. The inspection leader should check these preconditions
before starting the inspection process.

Experiences: This problem occurred quite rarely in the organization A and was not
experienced as any problem in the organization B. In B, incomplete documents were
unlikely to be inspected at all.

 Issues in Software Inspection Practices 437

3.12 Bad Attitude

An author may not be willing to bring his or her documents to inspection if it is not
compulsory. The question is about attitude. Many organizations regard inspections in
their processes as obligatory. However, if inspections remain just mandatory
unpleasant tasks, the participants will be less likely to do their work well. So, these
kinds of attitude problems may significantly influence inspection effectiveness.

Solution: The solution is again in training. The participants should understand the
benefits of inspections. In the best case the participants may regard inspections as an
opportunity to get help and aid others in their work. The managers should also clearly
understand this, because they have a big role in creating a proper atmosphere in an
organization.

Experiences: This was not a problem in the organization A and only occasionally
was seen as such in the organization B. In both of the organizations the interviewees
saw more attitude problems in the willingness to read others’ work documents. It
appears to be a challenge to motivate all the participants to prepare carefully for the
inspection meetings.

3.13 Too Much Material in Inspection

Gilb and Graham [5] warn about reduced inspection effectiveness if there is too much
material in any one inspection. They suggest that in preparing a phase, a typical
optimum rate is one page per participant per hour. According to Gilb and Graham this
time is needed to find defects which would not be found in more informal reviews.

Solution: There is often a question about the attitude towards inspections. There is no
trick which could resolve these attitudinal problems. It needs time and a lot of work to
build up an organizational culture which would respect inspections on every level of
the organization. It may not be appropriate in every situation to try and inspect every
piece of documentation. With large documents, Gilb and Graham [5] advice
estimating the product quality by inspecting only selected parts of the documents.

Experiences: Both of the organizations rated this as a minor problem. However, there
was some variance in the answers. One of the interviewees complained about
excessive amount of material in inspections.

3.14 No Resources Allocated for Inspections

In many projects inspections are included within some other tasks, for example within
requirements engineering, and there are no resources allocated specifically for
inspections. In these cases employees are often too busy to use their time for
inspections. This typically results in a poor preparation and a significant loss in
inspection effectiveness.

Solution: This is a management level issue. Resource allocation is one of the basic
signs of management commitment. In this case project managers should have proper

438 S. Kollanus

training about inspection benefits. There should also be an organizational project
planning standard, which takes inspections into account.

Experiences: The organization A had no problems with this, because they had
explicitly allocated resources for inspections. The organization B was in a quite
opposite situation. They did not have separate resources allocated for inspections and
they were having problems with this. However, one interviewee did not experience
this as a problem.

4 Discussion About the Case Studies

This section discusses the case results. It should be noted that strong conclusions
cannot be made based on six interviews in two case organizations. However, some
interesting aspects can be found there.

It is not easy to draw conclusions from the interviews, because the answers varied
considerably. However, two problems clearly came up in both the organizations:

− Poor preparation
− Straying to irrelevant issues

In addition, one of the case organizations experienced it as a real problem that
there were no clearly allocated resources for inspections. There was nothing
unexpected in these results. By contrast, it was somewhat surprising that none of the
interviewees had faced any criticism directed at the author in inspection meeting.
There were also quite a few problems experienced in the authors’ attitudes to bring
work products for inspection. It became evident that the interviewees had experienced
a variety of problems in willingness to read others’ work products. Employees
basically want to get comments about their own work, but are lazy to read others’
documents themselves.

It became obvious that the state of the whole organization was not easy to discover
with those few interviews. Many interview questions yielded very different answers,
even in the same organization. This may indicate that different project groups work in
different ways. Another possible reason is that the interviewees simply interpreted the
questions differently. In any case, it would have required more information to find out
the real state of the whole organization in each case. For any future work at least the
questions should be clarified. Maybe a general questionnaire could be designed and
added to the interviews.

The interviews appeared to provide quite a limited amount of information of the
real problems in the organizations. Some of the problems in the question list would
have required more background knowledge than the interviewees had. For example,
neither organization used clearly differentiated roles in their inspections. However,
the missing roles were not experienced as a noteworthy problem, because the
interviewees had not been thought the meaning of roles before. Neither organization
used any kind of support material, but this was not experienced as a problem.

There appeared to be some problematic issues which didn’t exist, because there
were some other urgent problems in the inspection practices. For example, in one of

 Issues in Software Inspection Practices 439

the case organizations it was usual not to arrange an inspection if the schedule was
busy. That organization, of course, did not appear to have many problems with
delayed inspection meetings or poor quality documents in inspection. Any such
problems are unlikely to surface if inspections are not arranged at all.

Some possible problems, found in the literature, are very hard to identify in
interviews. For example, Basili [1] found in his experiments that due to attitude
problems, participants found very few defects in code inspections. They put more
trust in testing and did not show motivation for inspections if they knew that the code
was to be tested later. Identifying these kinds of symptoms would require
systematically collected statistics about inspection effectiveness. Secondly, a lack of
inspection metrics can be a problem itself. Gilb and Graham [5] state that there is no
sense in inspection improvements without using some metrics to verify the
improvement.

The major conclusion from the case studies was that just a few interviews do not
provide enough information to identify all the real problems in inspection practices.
At least some more interviews would be needed in the case organizations to
understand their practices better. In addition, the experiences collected in the
interviews did not appear to reveal all the problems in the organizations. Therefore, a
more careful analysis and interpretation of the results is required to create well
reasoned improvement suggestions.

5 A Problem Based Approach to Inspection Improvement

The motivation for writing this paper was improvement of inspection practices in
software organizations. This section makes a suggestion about how to use problem
analysis in inspection improvement. First, it is recommended to use some inspection
maturity model (see [10] and [21]) as a tool to asses the current state in an
organization and to identify the possible improvement areas. This problem-based
approach is not suggested to replace other improvement actions, but to complete
them. Even well defined regularly used inspection practices may have some problems
which have a dramatic effect on inspection effectiveness. A problem analysis
presented here can help an organization to identify problems of this kind and direct
their improvement actions effectively.

The problem analysis suggested here includes the following five tasks:

1. Assess inspection practices: The current state of inspection practices should be
assessed based on some inspection maturity model [10][21]. If this has not been
done before, it can be undertaken at the same time with the problem analysis. The
assessment may reveal some problems which would be hard to detect otherwise.

2. Collect experiences: The second task is to collect experiences about possible
problems with interviews or questionnaires. The list presented in this article can be
used as a basis for this. The task is to find out how regularly the different problems
are experienced.

3. Identify real problems: The next task is to identify the most regular and serious
problems based on an assessment and on collected experiences. It was found in the

440 S. Kollanus

case studies that collected experiences probably do not reveal all the significant
issues. This identification of the real problems should, therefore, include a more
careful analysis by an expert with sufficient knowledge about inspections. The
focus in this task is to analyze the degree of effect that the identified problems have
on inspection effectiveness in the organization. Finally, the importance of each
identified problem is estimated in scale from 1 to 5.

4. Estimate required effort: This task estimates the effort required to correct the
problems. The required improvement effort to handle a problem is estimated in
scale from 1 to 3. One in this scale means the problems which take a lot of time to
be dealt with. These are usually problems which require change in the whole
organizational culture. Three in this scale means issues which are pretty easy to fix
with small changes in inspection practices.

5. Prioritize problems: The final task is to prioritize the improvement actions to
handle the identified problems. The estimated values from the tasks 3 and 4 are
multiplied. The problems which get the highest result values are recommended to
be handled first.

6 Conclusions

This paper has discussed problems which may occur in inspection practices. The
paper presents a list of known problems in the literature. Secondly, it includes
experiences from two case organizations. Finally, it introduces a problem-based
approach to inspection improvement, which was the major motivation for writing this
paper. The approach helps an organization to identify the problems which are causing
loss in inspection effectiveness. It may also help in prioritizing inspection
improvement actions effectively.

Probably the inspection of the problems in inspection practices varies in different
kinds of organizations. However, the two case studies in this research cannot provide
any explanation for this variation. The studies should have included many different
kinds of organizations in order to allow finding of any convincing trends in their
experiences. This is a challenge for the future work. However, this research brought
up some factors which may have some bearing on inspection problems. These
possible factors might include inspection maturity, organization size and average
project size.

It should be noted that the literature includes also references to some problems
which may cause difficulties in inspection improvement. These kinds of issues were
excluded from this paper, but would be an interesting research area for any future
studies. Inspections are obviously practiced effectively in very few organizations. It
would be worth of a deeper study to find out what the real obstacles to inspection
improvement are.

Acknowledgements

I am grateful to the case organizations for their co-operation in this research. I want to
thank the anonymous reviewers for their comments. Finally, I want to give my thanks
to Jussi Koskinen and Markku Sakkinen for supporting my work.

 Issues in Software Inspection Practices 441

References

1. Basili, V.R.: Evolving and Packaging Reading Technologies. J. Systems Software, Vol.
38, 1 (1997) 3-12

2. Fagan, M.E.: Design and Code Inspection to Reduce Errors in Program Development.
IBM Systems Journal, Vol. 15, 3 (1976) 182-211

3. Fagan, M.E.: Advances in Software Inspections, IEEE Transactions on Software
Engineering, Vol. 12, 7 (1986) 744-751

4. Gilb, T.: Planning to Get the Most out of Inspections. Software Quality Professional, Vol.
2, 2 (2000)

5. Gilb, T., Graham, D.: Software Inspection. McGraw-Hill: New York (1993)
6. Harjumaa, L., Hedberg, H., Tervonen, I: A Path to Virtual Software Inspection. Proc. of

Asia-Pacific Conference on Quality Software, Hong Kong (2001)
7. Johnson, P.M.: Reengineering Inspection. Communications of the ACM, Vol. 41, 2 (1998)

49-52
8. Johnson, P. M., Tjahjono, D: Does Every Inspection Really Need a Meeting? Empirical

Software Engineering, Vol. 3, 1 (1998) 9-35
9. Kelly, D, Shepard, T.: Qualitative Observations from Software Code Inspection

Experiments. Proceedings of the 2002 Conference of the Centre for Advanced Studies on
Collaborative research, Toronto, Canada (2002)

10. Kollanus, S.: ICMM – Inspection Capability Maturity Model. The IASTED International
Conference on Software Engineering, Innsbruck, Austria (2005)

11. Laitenberg, O., Atkinson, C, Schlich, M., El-Emam, K.: An Experimental Comparison of
Reading Techniques for Defect Detection in UML-Documents. Technical Report NRC
43614, National Research Council of Canada (1999)

12. Laitenberg, O., DeBaud, J.-M.: An Encompassing Life-Cycle Centric Survey of Software
Inspection. J. Systems and Software, Vol. 50, 1 (2000) 5-31

13. Perpich, J. M., Perry, D. E., Porter, A. A., Votta, L. G., Wade, M. W.: Anywhere, Anytime
Code Inspections: Using the Web to Remove Inspection Bottlenecks in Large-Scale
Software Development. Proceedings of the 19th International Conference on Software
Engineering. Boston, Massachusetts, United States (1997) 14-21

14. Porter, A., Votta, L., Basili, V.R..: Comparing Detection Methods for Software
Requirements Inspections: A Replicated Experiment. IEEE Transactions on Software
Engineering, Vol. 21, 6 (1995) 563-575

15. Porter, A., Votta, L.: Comparing Detection Methods for Software Requirements
Inspections: A Replication Using Professional Subjects. Empirical software engineering,
Vol. 3, 4 (1998) 355-379

16. Rifkin, S., Deimel, L.: Applying Program Comprehension Techniques to Improve
Software Inspections. Presented at the 19th Annual NASA Software Engineering
Laboratory Workshop, Greenbelt, MD, USA (1994)

17. Sauer, C., Ross, J, Land, L., Yetton, P.: The Effectiveness of Software Development
Technical Reviews: A Behaviorally Motivated Program of Research. IEEE Transactions
on Software Engineering, Vol. 26, 1 (2000) 1-14

18. SEI: Capability Maturity Model Integration version 1.1. Software Engineering Institute
(2002) <URL: http://www.sei.cmu.edu/cmmi/>

19. SEI: March 2004 release of the SW-CMM Maturity Profile. Software Engineering Institute
(2004) <URL: http://www.sei.cmu.edu/sema/pdf/SW-CMM/2004marSwCMM.pdf>

442 S. Kollanus

20. Stein, M., Riedl, J., Harner, S.J., Mashayekhi, V.: A Case Study of Distributed,
Asynchronous Software Inspection. Proceedings of the 19th International Conference on
Software Engineering. Boston, Massachusetts, United States (1997) 107-117

21. Tervonen, I., Iisakka, J., Harjumaa, L.: Looking for Inspection Improvements through the
Base Practices. Proc. Workshop on Inspection in Software Engineering, Paris, France
(2001) 145-152

22. Votta, L.: Does Every Inspection Need a Meeting? Proceedings of the 1st ACM
SIGSOFT Symposium on Foundations of Software Engineering, Los Angeles, CA, USA
(1993) 107-114

23. Wiegers, K. 1998. Seven Deadly Sins of Software Reviews. Software Development, Vol.
6, 3 (1998)

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 443–457, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Risk-Based Trade-Off Between Verification and
Validation – An Industry-Motivated Study

Kennet Henningsson and Claes Wohlin

Blekinge Institute of Technology, PO BOX 520, 37225 Ronneby, Sweden
{Kennet.Henningsson, Claes.Wohlin}@bth.se

Abstract. Within industry the demand for short lead-time and reduced effort
consumption is in focus. For an associated industry partner the lead-time and
effort focus has meant turning the interest towards the Verification and
Validation (V&V) process. The industry cooperation motivating this study aims
at providing a tailored and applicable V&V process, where the order of
verification and validation may be changed as well as the amount of V&V
activities conducted. Through the industry cooperation as well as industrial and
academic experience, a method has been formulated that address how to select a
suitable V&V process depending on the functionality being developed. The
method describes how a suitable process is created and selected, where the
appropriate process is identified based on functionality and coupling between
the system entities being developed. It is concluded that the method provides
support, structure and clarification to address the possibilities to a trade-off
between verification and validation.

1 Introduction

Software process models have evolved over the years starting with the waterfall
model [1] into agile processes [2] In-between several process models have been
proposed and used, including the spiral model [3], incremental and evolutionary
development [4, 5] among others. The introduction of new models is a response to the
constant need of improvement in software development. Companies are constantly
making trade-offs between cost, delivery time, quality, and delivered functionality.
The software community also recognizes that not all types of software need the same
treatment. Different processes, methods, techniques, and tools are used depending on
the type of software [6] [7, 8]. Safety-critical software has different requirements than
computer games, and hence the development process has to be adapted accordingly.

It is clear that different types of software need different processes. If taking this
one-step further, different functionality needs different processes. However, this
requires processes that are possible to tailor [9, 10]. In other words, the software
process needs to be flexible. Process tailoring is discussed in the context of the
Capability Maturity Model (CMM) in [9]. In a joint project with an industrial partner,
in this case UIQ Technology (a subsidiary of Symbian), it was decided that an attempt
should be made to tailor their verification and validation (V&V) activities [11] based

444 K. Henningsson and C. Wohlin

on the types of functionality being developed. Verification is concerned with whether
the software is developed correctly and validation is focused on whether the correct
software is developed. The company works in an environment where some
functionality is fairly standard or similar to other functionality that has been
developed previously and other functionality is leading edge services that have not
been developed before. The company wants to work with flexible processes to ensure
as short lead times as possible for their software.

These different types of functionality require different approaches to V&V, or at
least open up for an opportunity to run the V&V activities differently. For example,
standard functionality is straightforward to develop from a user point of view; the
company is confident of what functionality the user desires. On the other hand, the
user has high expectations when it comes to the quality of service for this type of
functionality. Thus, in this case a possible scenario is that there is rather little need for
validation, but a high need for verification. At the other end of the spectrum, there are
completely new functions that are not currently available on the market. To ensure
that these services meet the needs on the market, it is important to validate their
usefulness with users or representatives for the markets in some sense. Normally, the
expectations on correctness are less for new functionality and hence it may be
discussed how much verification is needed. In this case, the validation is probably
more critical than the verification, the situation can occur when it is necessary to
negotiate quality, or functionality, of the delivered product [6]. This reasoning implies
that different ways of handling V&V can be applied for different types of
functionality within the same project.

The functionality characteristic indicates the uncertainty whether the correct
functionality is implemented or not, i.e. likelihood for changes and, to some extent,
faults. However, this does not provide the true picture of the risk (risk meaning
exceeded budgets, too low quality, and increased project lead-time). There is a need
for determining the risk impact as well. A system entity’s coupling, i.e. connections to
other system entities indicate the magnitude of the risk. The magnitude shows the
number of dependencies each entity has, and how large the ripple effect would be by
a late change or fault. It is likely that for a system entity with a high number of
connections, the impact would be larger than for a low-coupled entity. By
determining the functionality characteristic for the system entity as well as the
coupling, sufficient information is available for risk assessment.

Bottom-line is that the company wanted a risk-based approach to their V&V
activities, providing the possibility to determine which risks to take in terms of how
much verification, and how much validation that should be performed for different
types of functionality.

This paper presents a method for selecting a suitable V&V process based on being
flexible regarding both the amount (in relative terms) of V&V needed and the order of
the activities. The method is motivated by industry needs, and it is developed from an
industrial case using an exploratory approach. The method is presented in a number of
steps that can be adapted to different situations depending on the functionality being
developed. This method is partly illustrated using input from the industrial partner
where the need for this type of approach was identified.

 Risk-Based Trade-Off Between Verification and Validation 445

The contribution of this paper is the formulation of a method for tailoring the V&V
process, involving changing order and extent of the V&V process. Moreover, the
method is illustrated using input from an industrial interview study. The suggested
method is presented in Section 2, where the method is presented in generic terms.
Section 3 presents a partial application of the method in the company context. In
Section 4, the paper is concluded.

2 Verification and Validation Process Tailoring Method

The method presented supports the verification and validation (V&V) trade-off by
addressing the traditional order and scope (or amount) of V&V activities. Adaptation
of the V&V process adheres to a system entity’s functional characteristics. The term
system entity is used as the part of the product that provides specified functionality to
the overall product or user of the product. The system entity relates to a coherent
collection of requirements, defining the functionality. The V&V trade-off within the
proposed method is implemented by process selection among a set of pre-developed
and described process alternatives. A prerequisite for this method is a flexible and
adjustable process for V&V being present in the company applying this method. The
method does not suggest or exclude any specific V&V activities. The objective is to
provide decision support for choosing how to apply the existing V&V activities.

Fig. 1 presents the addition to the standard process typically present for handling
verification and validation.

Fig. 1. The replacement of the traditional V&V process with a selection of alternatives
corresponding to the varying functionality demands and risk impact assessment

The core of the method is the adaptation of the V&V processes. The adaptation is
guided by the product needs, the essential attributes, and risk reduction. Risk is
assessed by determining the coupling for a system entity. The list below outlines the
steps of the method.

1. Functionality classification – Classifying the functionality according to the
validation complexity and scope required to assure a valid product.

446 K. Henningsson and C. Wohlin

2. Coupling classification – A subjective evaluation in early stages regarding the level
of coupling for the system entity at hand.

3. Process alternatives – Developing a set of process alternatives defining order and
scope for the V&V processes.

4. Attributes affected by the process alternatives – Identifying the core attributes
involved in determining the success of the project.

5. Process recommendation – Based on the system entity at hand, i.e. the type of
functionality and coupling of the entity and the alternative processes,
recommendations of a suitable process or processes are provided.

6. Establish impact on the attributes per process alternative – Based on the alternative
processes, what is the likely impact on the monitored core attributes.

7. Analyzing attribute impact – From the process recommendation it is possible to see
whether that process fulfils the project goals with sufficient probability. It may be
decided whether to take a specific alternative process or not, depending on the risk
associated with the choice.

8. Feedback and re-evaluation of the process selection – Improving the process
selection and monitoring the process impact on a continuous basis improves the
method and builds trust, and hence it is an important part of the method.

Sections 2.1 through 2.8 present the steps of the method in more detail, and Section
2.9 discusses possible future extensions of the method.

2.1 Functionality Classification

For adapting the processes according to the system entity, it is required to examine
each system entity. Each system entity has a set of properties; one property is the
functionality. A system entity’s characteristics, i.e. functionality, govern, along with
the coupling classification (Section 0), the recommendation of what process
alternative or alternatives to use. Given that the functionality drives the choice of
V&V activities, it is suitable for classification. The apparent alternative is to classify
requirements, but the vast amount of requirements would make it impossible to base
the recommendation on single requirements. Functionality classification focuses on a
group of requirements associated with a specific system entity.

The functionality classification scheme depends on the company’s domain and
prior history. The classification scheme shown in Table 1 is an illustration and
exemplification. The number of classification alternatives also needs to be decided in
each specific application of the method. The functionality classification accounts for
if the validation is internal (performed within the company) or external (performed or
involving external parties). Further, the classification considers if the verification and
validation is particularly challenging for any reason. Each classification is assigned a
classification on a nominal scale. The classification represents the difficulty and
potential risk of changes and faults connected to each entity.

It is important to differentiate between internal and external validation. Internal
validation takes place within the organization and is associated with less lead-time
consumption, based on easier transition between development and testing and that the
developing organization still has the control over the V&V activities.

 Risk-Based Trade-Off Between Verification and Validation 447

External validation involves external resources, being customer, users, user
reference groups, legislators, assessors, or other. This process consumes additional
lead-time and is not under the developing organization’s control. However, the
accuracy of the V&V might improve in comparison to internal V&V.

Table 1. Suggested generic functionality classification

Value Classification
Name

Validation
opportunities

Exemplification

1 Well-known
functionality

Internal – based
on experience

Functionality typically developed by
the organization prior to this specific
project, historically the organization
is experienced and capable with the
domain and the required
functionality.

2 Standard
functionality

Internal – with
aid of standards
External – if
standard
interpretation is
required

Functionality related to complying
with a standard, for example
communication protocol, language
specification, storage facility,
encryption, or other standard.

3 Familiar
functionality

External,
possible internal
– based on the
level of
experience

Functionality not previously
developed by the organization, but
partial experience within the general
functionality and domain exists.

4 New
experience
functionality

External – based
on the
knowledge
possessed
concerning the
requirements

Functionality where the organization
lacks previous experience and
domain knowledge. This is typically
related to breaking new ground for
the organization in question, but
experience is present in the
community.

5 Exploratory
functionality

None – not
possible to
determine what
is the correct
functionality

Functionality that is typically
breaking new ground also within the
community, implying that the
domain knowledge and experience
does not exist.

The classification needs to reflect the nuances of the functionality affecting the
V&V process. Concerns are directed towards that a too detailed classification might
render it impossible to separate classifications without extensive education effort. The
recommendation is to use common sense when creating the classifications. The

448 K. Henningsson and C. Wohlin

classification is essential for the process recommendations later in the method, and for
that reason, needs special attention. The functionality classification needs to represent
the functionality categories present in the product and related to the verification and
validation in full, at the same time, it must be feasible to separate the classes clearly.

The next section discusses the coupling classification, illustrating dependencies
and connections for a system entity.

2.2 Coupling Classification

By classifying the functionality, it is possible to assess the probability for a change
occurring in the system entity dealt with. However, it is also necessary to discuss the
impact of the potential change for providing a complete risk assessment.

The impact of interest in this paper is to handle the time-consuming changes and
faults to stay in control of, and try to minimize, lead-time and effort. The lead-time
and effort consumption of a change or fault is influenced by the number of
dependencies an entity has. It seems reasonable to believe that an alteration made to a
central, highly coupled entity consumes more lead-time and effort, than a similar
alteration to an entity with low coupling.

The coupling is subjectively assessed on an ordinal scale from 1-5, 1 lowest, and
5 highest coupling. The experience of the person assigning the coupling determines
the value. Though this method is blunt, subjective, and not always repeatable, it is
possible to perform early, and provides sufficient support for further evaluation of
the risk.

The next section, Section 2.3, addresses the creation of, and describes the process
alternatives.

2.3 Process Alternatives

The recommendation is to create the processes alternatives in advance, for two
reasons: 1) Not limiting the process alternatives to the problems faced and 2) The
upcoming project can facilitate the process alternatives directly, i.e. the process
alternatives are in place from the start.

When handling verification and validation, there are two tailoring alternatives. One
is the order, and the other is the scope of the V&V activity. Order and scope are
labeled modification variables in this paper. When creating the process alternative all
combinations of the modification variables is documented and investigated.

Dealing with the order of V&V, there are two natural alternatives, verification first
or validation first. The characteristics of the system entity’s functionality are typically
more or less suitable for one or the other of these alternatives. Section 2.5 describes
this further.

In addition to rearrange the order of V&V, the scope (or amount) is also subject for
modification. In our model the scope of V&V activities are separated into two groups,
high and low, shown in Table 3. The implication of high and low is not determined by
the method, and it is up to the organization applying the method to make that
definition. The characteristics of the system entity’s functionality as well as change
impact (moderated by coupling) motivate the variance in scope. An example is that

 Risk-Based Trade-Off Between Verification and Validation 449

well-known functionality might not require extensive external validation; instead
could be directly submitted for verification to more rapidly reach a final state for the
system entity. The process alternatives and the scope generate eight possible
alternatives; these alternatives are listed along with the affected attributes in Table 3.
Section 2.4 discusses the affected attributes further.

2.4 Attributes Affected by the Process Alternatives

Depending on the requirements on the V&V process, a generic set of important
attributes is presented, namely number of changes, number of defects, project effort,
and project lead-time. These attributes are often mentioned or indicated in literature,
for example in [12, 13], and are judged as important for many companies. Though
these attributes are generic, an adaptation is possible to suit the needs of an
organization for selecting an appropriate process.

Conflicts between attributes are probable, meaning that maximization of two
attributes may be contradictory, and in the example, there is, for example, a
contradiction between low numbers of faults and minimum project effort [1, 14, 15].
The rationale being that in many cases a low number of faults typically requires
extensive testing, which consumes effort. Table 3 lists the attributes along with the
process alternatives. Section 2.5 continues by describing the process
recommendation task.

2.5 Process Recommendation

The goal of decreasing effort and shorten project lead-time is vital. However, to
shorten project lead-time it is necessary to reduce the scope of for example
verification and validation. But simply decreasing the scope of these activities
increases the risk for overrun of both time and budget, due to a high number of
changes and faults. To handle this risk and focus the resources on the crucial parts of
the system, the functionality and coupling classification is used to recommend a
suitable process.

The process recommendation combines the classification of functionality and
coupling by building a process selection key for each system entity. The
characteristics of the functionality and coupling reflect in this two-parted key. The
structure of the key is: [funct.class.value : coupl.rank]. The functional value is
obtained from Table 1 (nominal scale) and the coupling is a rank (1-5) on an ordinal
scale. By producing a key for each component, it is possible to use the key to
recommend a process.

The mapping between a system entity’s characteristics and process alternatives is
the basis for process recommendation. The suitability of the recommendations is
essential, and it is a task for the organization to establish. One or more processes, as
described in Table 2, are matching the keys produced by the classification process.

At this stage, the focus is on recommending an appropriate process based on the
key generated by the classifications, without reflecting on the impact on the
attributes.

450 K. Henningsson and C. Wohlin

The founding idea behind the recommended processes is that if the functional
characteristic of an entity represents uncertainty, it is wise to start the validation
process early, to avoid a high number of changes due to un-validated requirements
late in the process. On the other hand, if the functional characteristic represents
familiarity and stability, it is possible to decrease the effort of validation in favor of
early and thorough verification. This is based on the assumption of few changes in the
requirements and minimal uncertainty and misunderstanding. Late changes are
unwanted for many reasons, promoting sufficient validation activities preventing the
risk for additional and unnecessary changes, possibly avoided by the selection of an
appropriate process.

Additionally, the process selection reflects the potential impact of late changes and
faults, from the aspect of system entity coupling. A change to high coupling
component is likely to consume more effort and project lead-time, and hence posing a
greater risk if not properly handled.

Table 2. Functionality classification and process recommendation

Key range Processes Motivation

[1-2 : 1-3] P4, P3,
P2, P8

Key representing easy internal validation, with low
coupling, possibility to go for low V&V, or focusing on
finalizing the product through high verification.

[1-2 : 3-5] P1, P2 Key representing easy internal validation, with high
coupling, high verification is recommended.

[3-4 : 1-2] P6, P3 Key representing challenging validation, with low
coupling, high validation early is recommended,
possible lower verification

[3-4 : 2-4] P6, P3,
P5

Key representing challenging validation, with
intermediate coupling, early and high validation
recommended, but also high verification.

[4-5 : 4-5] P5 Key indicating tough validation and high coupling,
early and high validation is recommended.

The processes alternatives are assigned an identification number, as in Table 3. The
identification number is used to connect suitable processes to each key or key range.
The keys produce links to one or more process alternatives. Table 2 states the
generated keys, and recommended processes, as well as a motivation for the process
recommendations. In Table 2 a key range is used, comprising a range of classification
also some values occur more than once, i.e. there is an overlap. The main motivation
being that there are borderline cases in the classification of functionality due to the
subjective judgment of the classification.

The next section analyzes the impact on the attributes based on the selected
processes.

 Risk-Based Trade-Off Between Verification and Validation 451

2.6 Establish Impact on the Attributes per Process Alternative

The selection of appropriate process alternatives requires that the likely impact on the
attributes presented in Table 3 is established.

Based on the keys created, a set of alternative and suitable processes are
determined. For each of the keys and the suitable processes the predicted impact on
the attributes is established. The impacts presented in Table 4 are used as an
illustration. Actual impacts have to be determined in each specific case. The effects of
the impact on the attributes are limited to two, i.e. increase, or decrease. A horizontal
arrow indicates no impact. In Table 3, arrows indicate the expected impact. It is
important to stress that the impacts need to be established within each organization
and representing the best knowledge of the organization. Section 3.1 discusses the
company cooperation. However, the recommendation is to use surveys to capture the
knowledge within the organization. This includes using existing documentation from
past projects, available literature, and the tacit experience of the personnel.

The assumption is that the selection is done in a sensible way. In other words, the
selection is done so that the best possible outcome is expected. For example, a process
with extensive validation is not chosen for well-known functionality.

As described, the order of verification and validation change when creating the
process alternatives. By starting with verification and ending with validation, it is
assumed that the number of faults found late in the process decreases, but postpones
the validation. This means that there is a risk that the number of changes late in the
process increases. This alternative is used when a small number of changes are
expected.

Starting with validation is expected to decrease the number or change requests, but
might increase the number of faults at late stages in the process. The reason is that
early validation will prevent misunderstandings and varying interpretations, but may
delay the fault identification. This alternative is used when a high number of changes
are expected if no proper action is taken.

When discussing the amount of V&V, two alternative levels are used, i.e. high and
low. The actual meaning of these levels is not defined here, and is up to each
company applying the method. High verification is likely to decrease the number of
faults, but will consume more effort and also increase project lead-time. Low
verification is likely to increase the number of faults. However, a beneficial influence
on effort and probably also project lead-time, with certain reservations for that high
number of faults is likely to prolong the project. This alternative should be used when
a low number of changes are expected, thus fully using the verification effort. It is
also important to acknowledge the system entity’s coupling, and the impact of
potential changes and defects. Changes to highly coupled entities might cause ripple
effects, generating faults or changes in other entities, or require extensive re-
verification.

High validation decreases the number of change requests, but is likely to increase
project effort and lead-time. Low validation is likely to increase the number of change
requests, and possible the number of faults, but project effort and lead-time is likely to
decrease, given that the cost for correcting the changes and faults surpasses the gain

452 K. Henningsson and C. Wohlin

of decreased validation. This alternative should be used when a high number of
changes are expected and not continuing with major verification efforts based on
invalid functionality specifications.

When the impact on all attributes is established for each key and process
alternative, the table is completed and a suggestion is presented as in Table 3. Table 3
is an exemplification based on the authors’ experience though company cooperation.

The next section, Section 2.7, addresses the analysis of the attribute impact.

Table 3. Table presenting process alternatives, attributes, and expected impact

Process
ID

Order Verification Validation #Change
requests

#Fault Project
Effort

Project
Lead-
time

P1 High High

P2 High Low

P3 Low High

P4

Effort

Low Low

 Order Validation Verification

P5 High High

P6 High Low

P7 Low High

P8

Effort

Low Low

2.7 Analyzing Attribute Impact

This step compares the recommended processes and the expected outcome for the
monitored variables to the prioritized attributes for the project at hand. The goal is to
find the most appropriate process based on the functionalities’ characteristics for the
specific system entity, providing the desired impact on the monitored attributes.

The recommended process(es) presents an expected impact on the attributes, as
presented in Table 3. This needs to be compared to the outcome of the project. If the
project goal is to decrease project lead-time, process alternatives with the likely
impact of decreased project lead-time is a suitable choice. However, based on the
functionality characteristics, the recommended processes might not provide the
desired impact on the important attributes from an overall project perspective.

The analysis is influenced by risk assessment, asking if the recommended process
is likely to cause overrun of the limited resources, typically effort and project lead-
time. Further, the quality is also an important factor to evaluate, if an increase in
faults and changes is likely, then the risk for lower quality can be too high.

The main usage of Table 3 is to see how the attributes are affected based on the
selected process. However, it is possible to exclude or include processes alternatives
based on the attribute viewpoint as well. If there are specific demands for a system
entity, for example, the number of fault must be low, when addressing the number of

 Risk-Based Trade-Off Between Verification and Validation 453

faults column in Table 3, it is possible to exclude process alternatives that is likely to
increase the number of faults.

The exclusion or inclusion of processes from the column viewpoint is also a
desirable alternative when dealing with prioritized or fixed attributes.

Besides excluding processes, the alternative is to modify the input, i.e. the
functionality characteristics or coupling for the system entity developed. In this case,
an adaptation would alter the product to suit the desired process. For example, this
can be done to meet highly prioritized lead-time demands.

A final alternative is to accept the potential mismatch between the recommended
process and the predicted outcome, and be informed of the potential risks, and address
these risks as they appear. This is still an improvement over being surprised when the
risks turn into problems. The final handling is still up to the organization
implementing this method for verification and validation trade-off.

2.8 Feedback and Re-evaluation of the Process Selection

Despite testing and evaluation, no process is without openings for improvement. The
approach suggested in this paper is by itself a process improvement approach
targeting lead-time and effort optimization. However, the method described, including
this section, does not stand above improvements.

To assure that the best possible method is used for tailoring the company’s process,
evaluation and improvement are required. Within this method, there are three central
areas for improving the accuracy and correctness of the method: 1) Functionality and
coupling classification, 2) Process recommendation, and 3) Variable outcome.

The feedback and re-evaluation of the process selection aims at assuring the
correctness of these three areas. If they are not performing according to expectations,
i.e. supplying correct recommendations, the outcome of the process selection is likely
to fail.

To address the evaluation of the three central areas, a three-phased approach is
suggested. The approach is described briefly, and should be implemented according to
suitability within the organization implementing this tailoring process.

The reason for presenting a three alternative approach is to cover the majority of
situations, from when little historical data is available to when the historical database
is sufficient for deducting statistics. The three alternatives are: 1) Value-based
evaluation, 2) General statistic evaluation, and 3) Specific statistic evaluation.

Value-based evaluation: This is carried out by surveying project personnel,
typically project managers and stakeholders interested in the core attributes. The
focus is on the compliance and correctness related to the functionality classification
and interconnections. Also, the prediction reliability of the core attributes is subject
for evaluation, it should be determined if the right processes were recommended.

General statistic evaluation: This is done by comparing the outcome of the project
by any previously completed project regarding the level on the core attributes. This
would indicate if the process tailoring was beneficial or not.

Specific statistic evaluation: This is done by comparing the outcome with a prior
project representing the same categories in terms of classification.

454 K. Henningsson and C. Wohlin

2.9 Method Extension

There are possible extensions of the process described in Sections 2.1 through 2.7.
The described process is though sufficient for supplying value for the organization
adopting the approach to verification and validation trade-off. Four possible
extensions are identified:

• Additional events of V&V.
• Finer grained scope for V&V, i.e. not only low and high.
• Increased set of attributes, i.e. more than four attributes.
• Magnitude of impact on the variables, i.e. more different levels.

Additional events of V&V are to add a third or fourth, and so on, activity of V&V,
creating a process of verification then validation, followed by another event of
verification activities.

Increasing the granularity of the scope of V&V is also a possible extension. The
scope could be divided into more levels for example, high, medium, low or any other
division.

The proposed method handles a set of basic attributes these attributes are not final.
Thus, it is possible to extend the model with more attributes.

The magnitude of impact on the attributes is also a possible extension. In the
current proposal the impact is indicated as an increase, a decrease or not affected. It
would be desirable to have a magnitude on these increases or decreases as well. This
would, for example, make it possible to prioritize a small increase in project lead-time
in favor of a large decrease in the number of changes.

3 Investigation at the Company

The method presented in Section 2 is a result of a close cooperation between
researchers at the university and UIQ Technology. The focus is on improving their
V&V processes by tailoring the process based on characteristics of the different
system entities in the software products. This section provides some first reactions
and experiences when introducing the concept of adaptable V&V processes.

3.1 Company Cooperation

The cooperation between the company and the researcher is a long-term activity. The
researcher has been present in the company’s facilities and also through related
studies, introduced and familiarized with challenges and goals of the company,
becoming familiar with the company, its personnel and the products.

The development of method for V&V trade-off originates from the environment
and knowledge of challenges and desires from the company.

Through close interaction and frequent discussion with a company representative
having long experience and a good understanding of the goals of the company the
method has emerged. The main contribution by the researcher is to formulate and

 Risk-Based Trade-Off Between Verification and Validation 455

structure the model based on industry input. In addition, the objective has been to
make the method generally applicable and focusing on the few but prominent and
important issues. The key contact person and main point for cooperation is operating
as a line manager with extensive experience and insight within the company. The line
manager is head of the development department, being responsible for several parallel
projects. Additional responsibilities include providing sufficient support and
knowledge in the form of process support to the developers. The line manager is also
in involved in customer negotiations addressing contracting issues such as delivery
dates and product content and quality.

Thus, the line manager is interested in process improvements that could help the
company to deliver higher quality products in a shorter time with less effort.

3.2 Company Challenge

The main challenge for the company is to deliver high quality in as short time as
possible. The demands typically force the company to deliver their products with
increased functionality, extended features, higher quality and in less time. This
challenge requires a new perspective on the commonly used processes within the
company. An adapted way of handling the processes has been seen as one way of
meeting the challenges ahead. The alternative process (including selection of a
suitable V&V process) requires handling the system or system parts differently based
on the characteristics of them. To gain effort and lead-time, adaptable processes are
considered, but changing processes imply risk. To handle the risk it is necessary to
trade-off verification and validation in such a way that the overall project lead-time
and effort does not suffer, typically by finding a large number of faults or changes late
in the process. On the other hand, too much lead-time may be consumed if both
verification and validation is operated to a full extent, when not called for.

The proposed method addresses the verification and validation trade-off by dealing
with the order and scope of these two activities. Both verification and validation is
quality assuring activities, focusing typically on providing answers to whether the
right functionality is being developed and if it is operating as intended.

3.3 Company Result

The company study, at this stage, is performed through discussions. In addition, a
structured interview took place, which discussed the handling of the creation of
alternative processes and the process selection at the company.

The interview focused on three parts: important project success attributes for the
company, the feasibility and applicability of the suggested method, and finally the
creation and difference between the alternative processes.

This section describes the result from the interview. The most important attributes
for the company is the ones described in Section 2.4: lead-time, effort, number of
defects, and number of changes. The success of the project relates to the timeliness of
the delivery as well as the quality of the product. During the interview, the
applicability of the method was discussed. The method is apprehended as applicable

456 K. Henningsson and C. Wohlin

and suitable in the requirements management, and project planning phase of a typical
project within the company.

The issues of creating the process alternatives and determining the likely outcome
resulted in that four classes of functionality were found suitable and hence to be used.
However, this adaptation is natural since the method has been formulated from a
balance between a generally applicable method and the wishes from UIQ Technology.
As the method suggests that each key is accompanied with a set of suggested
processes and likely impacts. Thus, the suitable processes were decided upon for each
key and the outcome variables were determined.

The result shows that it is clear that different keys generate different selections of
processes. However, it is also clear that some process alternatives are most desired
and highly prioritized, and some process alternatives are not selected at all. It is clear
that the preferred processes are initiated with validation, which to some extent
contradicts the typical process starting with verification and ending with validation.

4 Conclusions

The main contribution of this paper is how to deal with adaptability and in particular
how classification and the creation of tangible keys can be used to select a suitable
process alternative. The proposed method deals with the creation of keys focused on
tangible characteristics for the functionality and component under development,
providing guidance on selecting a suitable process alternative.

The verification and validation trade-off, discussed in this paper, deals with the
necessity of finding the right balance between these two important activities without
extending the resource consumption or lower quality in any case. In the case of the
studied company there are two challenges. The first is to avoid a too safe route, and
hence not fulfilling the timeliness of the product. The second is to avoid a too risky
route, and risking a vast amount of faults and changes in the later stages of
development, and as a result pushing the delivery date and increasing the cost.

There is also a clear connection between the success in reaching the timeliness and
fulfilling market demand, and the success of the company. This strengthens the
necessity of tailored processes that delivers as good results as possible. To tailor
processes, it is required to monitor the circumstances under which the process shall
operate, motivating the attribute and characteristics monitoring described in this
paper. However, it is easy to understand that these characteristics and attributes are
not the only ones of importance. Further work could be directed towards investigating
other characteristics and attributes and their influence on the verification and
validation process, and hence the process selection. However, it is impossible to cover
all possible characteristics, and hence simplifications are required. It is argued in this
paper that the method described in Section 2 is a sufficient and working starting point
for the discussion of an adaptable approach to verification and validation trade-off,
based on functional and coupling characteristics.

In summary, it is concluded that this approach should be feasible to obtain
processes that are better tailored for the needs of different types of functionality.

 Risk-Based Trade-Off Between Verification and Validation 457

Acknowledgement

Special thanks are addressed to UIQ Technology participating in this study. This work
was partly funded by The Knowledge Foundation in Sweden under a research grant
for the project "Blekinge - Engineering Software Qualities (BESQ)"
(http://www.ipd.bth.se/besq).

References

[1] W. Scacchi, “Process Models in Software Engineering”, in J. J. Marciniak (ed.),
Encyclopedia of Software Engineering, Wiley, New York, 2003.

[2] K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley,
Publishing Company, Reading, 2000.

[3] B. Boehm, "A Spiral Model of Software Development and Enhancement", Computer,
vol. 21, pp. 61-72, 1988.

[4] W. Royce, "Trw's Ada Process Model for Incremental Development of Large Software
Systems," presented at 12th International Conference on Software Engineering, 1990.

[5] T. Gilb and S. Finzi, Principles of Software Engineering Management, Addison-Wesley
Publishing Company, Wokingham 1988.

[6] B. Ramesh, J. Pries-Heje, and R. Baskerville, "Internet Software Engineering: A
Different Class of Processes", Annals of Software Engineering, vol. 14, pp. 169-195,
2002.

[7] F. Keenan, "Agile Process Tailoring and Problem Analysis (APTLY)", presented at 26th
International Conference on Software Engineering, Edinburgh, Scotland, UK, 2004.

[8] P. Xu, "Knowledge Support in Software Process Tailoring", presented at 38th Hawaii
International Conference on System Sciences, Hawaii, 2005.

[9] M. P. Ginsberg and L. H. Quinn, "Process Tailoring and the Software Capability
Maturity Model", Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Technical report, ESC-TR-94-024, November 1995.

[10] P. Donzelli, "Tailoring the Software Maintenance Process to Better Support Complex
Systems Evolution Projects", Journal of Software Maintenance and Evolution: Research
and Practice, vol. 15, pp. 27-40, 2003.

[11] J. Radatz, "IEEE Standard Glossary of Software Engineering Terminology," IEEE
Standards Board, New York, Standard IEEE std. 610.12-1990, 1990.

[12] R. T. Futrell, D. F. Shafer, and L. I. Shafer, Quality Software Project Management,
Prentice Hall, Upper Saddle River, 2002.

[13] G. Succi and M. Marchesi, Extreme Programming Examined, Addison-Wesley
Publishing Company, Boston, 2001.

[14] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional Requirements in
Software Engineering, Kluwer Academic, Boston, 2000.

[15] B. Boehm and H. In, "Identifying Quality-Requirement Conflicts", IEEE Software, vol.
13, pp. 25-35, 1996.

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 458 – 473, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Investigating the Impact of Active Guidance
on Design Inspection

Dietmar Winkler, Stefan Biffl, and Bettina Thurnher

Vienna University of Technology, Institut of Software Technology,
Karlsplatz 13, A-1040 Vienna, Austria

{Dietmar.Winkler, Stefan.Biffl,
Bettina.Thurnher}@qse.ifs.tuwien.ac.at

Abstract. Software inspection helps to improve the quality of software products
early in the development process. For design inspection recent research showed
that usage-based reading of documents is more effective and efficient than
traditional checklists. Usage-based reading guides actively the inspector with
pre-sorted use cases, while traditional checklists let the inspector figure out how
best to proceed. This paper investigates the impact of active guidance on an
inspection process: We introduced checklists that give the inspector a process to
follow, which should be as flexible as traditional checklists but more efficient.
We compared the performance of this approach in a controlled experiment in an
academic environment with traditional checklist and usage-based reading. Main
results of the investigation are (a) checklists with active guidance are
significantly more efficient than traditional checklists for finding major defects
and (b) usage-based reading is more effective and efficient than both types of
checklists. These results suggest that active guidance improves the efficiency of
inspectors while the upfront investment into usage-based reading pays off
during inspection.

Keywords: inspection process improvement, reading techniques, software
product improvement, empirical software engineering, active guidance.

1 Introduction

Software inspection is a current approach for quality improvement of software
products in industrial environment, since Fagan introduced it in 1976 [5]. Inspection
is a defect detection technique to reduce defects in software artifacts and to improve
software product quality [4][17]. The inspection method is classified as a static
verification and validation technique, which doesn’t need executable software.
Therefore, inspection approaches are applicable to written text documents, e.g. design
documents, as well.

Inspection in our context concentrates on defect detection in early stages of
software development, i.e. in design documents. The early elimination of defects
leads to a higher level of product quality, due to a lower number of remaining defects
and, as a consequence, to a reduction of required resources (e.g. budget, time, etc.).
Therefore, inspection is one important approach for software product improvement.

 Investigating the Impact of Active Guidance on Design Inspection 459

In order to find defects, inspectors have to traverse the document under inspection.
Reading is a key activity in defect detection processes to (1) understand the document
under inspection and (2) compare the inspection artifact to a set of expectations
regarding content, structure and product quality. This comparison and recognition
helps to spot defects. Because of this key activity, several reading techniques (RTs)
have been developed to improve inspection process quality.

In general, inspectors have to learn reading and to analyze the software artifacts
applying reading techniques. Systematic reading techniques consist of series of steps
that help inspectors to understand particular aspects of a document with active reading
work and to use this information for defect detection. Important characteristics of RTs
are [13]: usability (simplicity to follow predefined guidelines) [16], applicability to
different document notation and application domains, repeatability of inspection
results, document coverage, and target defects.

Therefore, a well-designed RT must achieve those requirements and uses available
knowledge on the structure of a document to provide guidance through the most
important parts of the document. RTs support readers while inspecting the document
in an active or passive way. Readers using a passive approach inspect the artifact
regarding a number of steps sequentially (e.g. given checklist items). Active guidance
includes a detailed inspection process (how to perform an inspection) and a separation
of perception (what to inspect) [3][14].

Empirical studies in academic environment use checklists (CBR), scenarios (SBR),
use cases (UBR), or perspectives (PBR) [1] [12] to focus on different types of defects,
e.g. defect severity classes, document locations, impact of individual defects, etc. to
investigate the benefits of the individual RT approaches. Examples for empirical
studies are: checklist-based RT (CBR) [15][27] and usage-based RT (UBR)
[23][24][25][26][27]. Gilb et al. presents an overview and comparison of CBR and
SBR [7]. Families of empirical studies must be performed to provide generalization of
empirical findings, e.g. [6][11][18][19][21][29].

Checklist-based reading (CBR) approaches use sequentially predefined items,
which lead the inspector through the document under inspection. Inspectors have to
traverse the document several times for a complete coverage of the specification
document and the checklist. The new checklist-based RT variant (CBR-tc) uses a
tailored checklist to provide an active guidance to the inspector. Inspectors have to
analyze requirements and system function and prioritize them according to their
knowledge of the application domain. This proceeding is included in the inspection
process. Usage-based approaches (UBR) use expert prioritized use cases and
scenarios for defect detection. Inspectors follow them and traverse the document in
order to find defects. The main advantage of UBR is the application of expert
prioritized use cases to find the most important defects and the support of active
guidance.

This paper presents the results of a large-scale experiment in academic
environment at Vienna University of Technology [28]. The empirical study cover a
checklist-based reading technique (CBR-gc) using a generic checklist, and a usage-
based reading technique approach (UBR) with use cases and a new CBR variant, a
tailored checklist (CBR-tc). The aim of this paper is the investigation of the impact of
active guidance on the number of defects found at different severity classes (crucial
and major defects).

460 D. Winkler, S. Biffl, and B. Thurnher

The remainder of this paper is structured as follows. Section 2 presents the reading
techniques compared in our experiment. Section 3 describes research questions and
Section 4 outlines the empirical study. Section 5 presents the study results. Section 6
discusses the results. Section 7 concludes and outlines directions for future research.

2 Checklists and Usage-Based Reading Techniques

A well-design reading technique is a structured approach to support inspectors in
defect detection processes. We cover two classes of RTs, (a) the checklist-based
(CBR-gc) approach using a generic checklist and (b) the usage-based RT (UBR)
approach. Furthermore, we introduce a new checklist-based RT variant (CBR-tc).
This new variant includes tailored checklist items, which support the reader by active
guidance through the specification document.

A checklist-based RT (CBR-gc) is a method, which typically consists of a set of
questions for general purposes, usually independent from a specific notation [7].
Inspectors traverse the document according to every checklist item several times
sequentially and report defects found during inspection. CBR-gc offers little guidance
on defect detection processes. Therefore, the results depend strongly on the individual
inspectors and suffer from variability according to inspector capability.

RTs including active guidance aim to support inspectors during reading processes
and improve disadvantages of CBR-gc. Active guidance helps inspectors to traverse
the document under inspection, providing guidelines, how to perform inspection and
what to inspect, e.g. according to defect types, etc. [14]. We use two different
approaches, a tailored checklist (CBR-tc) and usage-based RT approach (UBR).

CBR-tc is a modified checklist providing active guidance to the inspector. A more
application specific checklist lead the inspector through the inspection process,
performing the following major steps:

1. Analysis of requirements and system function within the requirements document.
2. Investigation and prioritization of correlations between requirements and system

functions according to the experience of the inspector.
3. Tracking of requirements and functions according to their importance through the

document under inspection.
4. Report differences and defects.
5. Select the next most important requirement and proceed until the time is up or the

inspector has covered all requirements and system functions.

CBR-tc leads the inspector through the specification document in an active way
regarding application domain and focus on important defects, due to a prioritization
task at the beginning of individual inspection. Nevertheless, it depends on the
knowledge of the inspector to perform a correct ranking.

Usage-based reading (UBR) focuses on prioritized use cases and support active
guidance, due to given guidelines and scenario representations [24]. Use cases
represent the user view and spot defects, which are normally hard to find. Inspectors
read prioritized use cases sequentially, apply them to the design specification and
report defects. Because of this focus, UBR improve the understanding of inspectors
and support them in finding more severe defects.

 Investigating the Impact of Active Guidance on Design Inspection 461

Most experiments focus on defect detection for individual inspectors and teams,
concerning time variables and performance measures [2][23]. But there is very little
concern for the effort of inspection preparation, i.e. the time interval before inspection
within the inspection environment. Because inspection managers prefer using existing
inspection material, there is a very low hurdle applying a checklist-based reading
technique for individual inspection. More sophisticated reading techniques such as
UBR and SBR need to be tailored upfront to the document under inspection.

Thus, there are several criteria that need to be considered when deploying a defect
detection technique in practice: Effort for individual inspectors, effectiveness and
efficiency of defect detection when applying a reading technique and upfront
investment due to tailoring of documents.

Concerning CBR-gc the preparation phase requires very low effort because of the
usage of a generic checklist, i.e. very less or no additional effort to adapt checklists to
different application domains.

Experts almost need more effort to the preparation of CBR-tc reading technique
approaches, because there is a context to the application domain. Experts also have to
pay attention to the requirements document to provide active guidance to inspectors.
Additional effort is necessary during individual inspection for analysis and
prioritization of requirements and system functions.

Obviously, UBR reading technique approaches require most pre-work of experts
depending on given artifacts according to their notation. Textual requirements
notation requires the translation of requirements into use cases and a prioritization of
use cases afterwards. In case of given use cases, i.e. the notation of requirements
contains scenarios and use cases, experts have to prioritize them according to their
expert knowledge.

This paper represents the empirical results of our investigations of active guidance
according to effectiveness, efficiency, and effort, also regarding defect severity
classes and reading technique approaches.

3 Research Questions

The main focus of this paper is the investigation of the impact of active guidance on
design inspections with respect to time variables and performance measures. We use
the results of an external replication of the UBR experiment as described in [27] and
[28]. In addition to CBR and UBR inspection we introduce a slightly adjusted version
of CBR, namely CBR-tc (CBR using tailoring approaches to prioritize requirements
and corresponding system functions).

The UBR reading technique approach uses guidelines how to proceed during
inspection and a predefined prioritized list of use cases [20]. The ranking of use cases
is important to focus on crucial defects and to guide the inspector through the design
specification. Nevertheless, this ranking requires additional effort by expert before
inspection started. Further information on the importance of use-case ranking was
discussed in a previous paper [28].

CBR-gc inspectors apply a generic checklist for multiple purposes to find defects
in the software artifact. Inspectors have to traverse the document several times

462 D. Winkler, S. Biffl, and B. Thurnher

according to every checklist item to achieve full document coverage. They do not
apply any use cases or scenarios at all.

In this paper we introduce a slightly adjusted checklist to provide active guidance
for checklist based reading. The initial checklist consists of a strict proceeding to
identify requirements, system functions and their correlation. Additionally, the
inspectors have to prioritize the requirements according to their subjective importance
according to their own knowledge of the application domain. Therefore, inspectors
need additional effort for this task during inspection proceeding. The inspectors use
this prioritized requirements to traverse the specification document. This approach
enables a deeper understanding of the specification document and the system
requirements as well as system functions.

The application of an individual reading technique approach requires a different
amount of effort for experiment preparation concerning RT specific tasks:

• CBR-gc uses checklists [15], which were developed before the experiment for
generic purposes. The application of CBR-gc does not require any additional
effort.

• CBR-tc also uses checklists, but leave the tailoring process to the inspection (as a
part of the inspection process) according to the individual knowledge of the
inspectors. Inspectors have to identify, classify and prioritize requirements, system
functions and their dependability.

• UBR provide use cases and scenarios [26], which are unique to the application
domain and the software document. Experts find use cases, and prioritize them
according to the application domain to guide the inspector active through the
inspection process.

The purpose of this paper is the investigation of inspection effort, effectiveness and
efficiency of defect detection regarding the influence of active guidance. Inspection
effort is importance in industrial environment for acceptability and applicability of
inspections in general regarding deadlines and cost. Inspection effectiveness is the
number of found defects in relation to all defects within the software document. One
of the major goals of software inspection is the reduction of defects in software
products to improve software quality [4][18]. Because different RTs focus on
different defect classes (e.g. defect severity), it is interesting to point out the best
applicable RT. Efficiency joins effort and effectiveness and depicts the number of
found defects in a defined time interval (i.e. defects per hour).

3.1 Variables

The experiment setup contains two different types of variables [27] [28], (a)
independent and (b) dependent variables. We use the reading technique used as
independent variable, i.e. CBR-gc, CBR-tc, and UBR. CBR-gc applies a generic
checklist for general purposes (predefined within the experiment environment). CBR-
tc provides a checklist including the procedure how to proceed during inspection, i.e.
finding and prioritizing requirements, classifying system functions and locating
associations, etc.). UBR implies a predefined order of use cases (including expert
know how) for inspection. We controlled the influence of inspector experience by
randomly assigning reading techniques to inspectors.

 Investigating the Impact of Active Guidance on Design Inspection 463

We use dependent variables to capture the performance of the individual
inspection procedures regarding different reading technique approaches. Following
standard practice in empirical studies we focus on time variables and performance
measures. Therefore, we capture inspection time in minutes (preparation and
inspection time) and the number of defects found during inspection. Regarding
performance measures we investigate the influence of active guidance to inspection
effectiveness and efficiency (the number of defects per hour) according to the reading
techniques applied. Furthermore, we pay special attention to defect severity classes.
Experts ranked the defects according to three defect severity classes: critical defects
class A), major defects (class B), and minor defects (class C). For evaluation
purposes, we focus on finding important defects in the classes A or A+B (including
class A or class B defects).

3.2 Hypotheses

In the experiment we observe the performance of inspectors who apply one of three
reading techniques: CBR-gc, CBR-tc, or UBR. As main goal of this paper we
investigate research hypothesis regarding inspection effort, effectiveness and
efficiency according to the reading technique approach used and the influence of
active guidance. In more detail we evaluate the following hypotheses:

Inspection Effort: Inspection effort includes inspection preparation and inspection
duration as part of the individual inspection process. We do not cover effort of experts
as part of the overall inspection preparation, i.e. ranking of use cases, generation of
guidelines, checklists, etc.

CBR-gc inspectors have to traverse the document several times according to every
checklist item to achieve full document coverage. Therefore, we expect the highest
overall inspection effort. CBR-tc inspectors use active guidance but have to perform
an additional tailoring session to analyze requirements and system function including
prioritization. This additional session increase preparation time.

H1: Effort (CBR-tc) < Effort (CBR-gc): In summary we expect a lower effort
through active guidance (CBR-tc), because the inspectors benefit from better
understanding of the application domain and document under inspection.

Effectiveness: In this paper we consider effectiveness as the number of defects found
at three different severity classes (critical, major, and minor) regarding the overall
number of seeded defects of every severity class.

H21: Effectiveness (UBR) > Effectiveness (CBR-gc): UBR inspectors benefit from
active guidance using prioritized use cases and scenario. Therefore, we expect a
higher effectiveness in relation to CBR-gc inspectors, who have to read the document
several times sequentially. Additionally, UBR readers focus on important defects due
to an expert ranked approach of prioritization. Experts are familiar with the design
specification including background knowledge of seeded defects.

H22: Effectiveness (UBR) > Effectiveness (CBR-tc): The argument is similar to
H21 for UBR inspectors. CBR-tc inspectors perform tailoring and prioritization of
requirements and system functions without background knowledge. We expect an
advantage of expert ranking effects for important defects according to inspection
effectiveness regarding UBR approaches.

464 D. Winkler, S. Biffl, and B. Thurnher

H23: Effectiveness (CBR-tc) > Effectiveness (CBR-gc): The argument is similar to
H22 under the assumption that the analysis of requirements and system functions
during the preparation phase improve defect detection and effectiveness. CBR-gc
inspectors traverse the design specification several times using a generic checklist
without special attention on the application domain.

Efficiency: Efficiency combines effort and effectiveness and is defined as the number
of detected defects per time interval, i.e. per hour. To investigate efficiency we
summarize overall inspection effort (including preparation and inspection time) and
total number of matched (seeded) defects.

H31: Efficiency (UBR) > Efficiency (CBR-gc): We expect a higher efficiency for
UBR inspectors because of active guidance of inspectors using use cases and
scenarios. CBR-gc inspectors traverse the specification document several times
without active support by the reading technique. Therefore, UBR inspectors will find
more defects and need less effort.

H32: Efficiency (UBR) > Efficiency (CBR-tc): The argument is similar to H31.
Additionally CBR-tc is classified as a method with active guidance with focus on
prioritized requirements and system functions. Because of an additional effort for this
analysis and prioritization task, inspection effort will increase. Obviously, efficiency
will decrease.

H33: Efficiency (CBR-tc) > Efficiency (CBR-gc): Active guidance and prioritized
requirements and system functions improve efficiency of CBR-tc in contrast to
CBR-gc, where the inspectors have to traverse the document under inspection several
times sequentially. The expected additional effort for prioritization compensates
CBR-gc approaches.

4 Experiment Description

The experiment was conducted at Vienna University of Technology in academic
environment in December 2003. This study is a replicated experiment as described in
[27] and [23] involving 127 inspection participants. We leave the details to the
original developers of UBR and the experiment environment. In this section we will
briefly describe key aspects of the experiment and point out the basic experiment
proceeding, used artifacts, and involved subjects.

4.1 Experiment Proceeding

The empirical study consists of three major phases, a preparation phase, the
inspection execution, and the evaluation phase:

Experiment preparation: Experts had to prepare inspection artifacts, e.g. require-
ments document, design specification, guidelines for reading techniques, and
questionnaires. Using 3 different RT approaches, corresponding tasks had to be
performed by experts before conducting the inspection within the experiment
environment. We do not cover organizational aspects in this paper.

 Investigating the Impact of Active Guidance on Design Inspection 465

Additional to the preparation of guidelines and questionnaires, this preparation
phase included:

• Conductance and prioritization of use cases by experts for UBR.
• Preparation of checklist items for tailoring tasks to support inspectors for CBR-tc.

Inspectors have to perform analysis and prioritization of requirements and system
functions during the inspection process using those guidelines.

• Preparation of a generic checklist for CBR-gc. This approach did not require much
additional effort because of the generic structure of the checklist (re-use of this
checklist).

Inspection execution: The experiment execution included three steps: a training and
preparation session, individual inspection, and data submission. Inspectors got an
overview of the inspections process and learned basics about inspection and different
reading technique approaches during a short training session. Individual inspection
included (a) the inspection preparation, i.e. reading the document under inspection,
analysis and prioritization of requirements and system functions (CBR-tc) etc., (b) the
defect detection and reporting process, and (c) data submission. During data
submission step, all inspectors had to log their candidate defects electronically for
quality assurance purposes. This data submission task also included questionnaire
results and time stamps for processes and defects findings.

Data evaluation: After individual inspection, experts mapped candidate defects, i.e.
defects noted by individual inspectors, to reference defects, i.e. real defects seeded by
experts. The data, derived from the database were checked for consistency and
correctness. We excluded the data from subjects, who delivered inconsistent data or
did not follow the experiment process properly.

Also note, that candidate defects that refer to one true seeded defects were counted
only once at the first clock time of defect detection.

For statistical evaluation we use the Mann-Whitney test to investigate effort and
efficiency and a chi square test to test effectiveness. The significance level of rejecting
the hypotheses is set to 0.05 for all tests.

4.2 Software Artifacts

The artifacts describe a taxi management system and include (a) a textual
requirements definition, (b) a design document, (c) use case documents, (d) several
guidelines for reading technique approaches, and (d) questionnaires for capturing
experience and feedback information.

• The textual requirements document was used as a reference document and was
assumed to be accurate.

• The design document describes an overview of the software modules and their
individual context. The document includes the internal representation (between two
or more modules) as well as the external representation (between the user and the
taxi management system). The design document consists of 9 pages, including
2500 words, 2 sequence charts, and 39 known defects, i.e. seeded defects.

466 D. Winkler, S. Biffl, and B. Thurnher

• Defect reports were linked to 39 seeded defects at different severity classes (13
crucial (class A), 15 major (class B), and 11 minor (class C) defects) spread all
over the document, which were seeded before inspection by experts during
experiment preparation. Class A means a heavy adverse affect on functionality
which will appear very often (highest risk). Class B contains important rarely used
defects or unimportant often used defects (medium risk). Class C defects are
neither crucial nor very important (low risk).

• The use case document contained 24 use cases from user view-point in task
notation. Experts prioritized those use cases according to their importance for the
usage-based reading technique application.

• RT specific guidelines support the individual inspectors and lead them through the
inspection process while applying the assigned reading technique.

• We use two types of questionnaires to achieve (a) background information of the
individual inspectors (experience questionnaire) at the beginning, and (b) feedback
on the RT applied (feedback questionnaire) at the end of inspection.

4.3 Subjects

127 software engineering students were taking part in the experiment using CBR-gc,
CBR-tc, or UBR reading technique approaches. The experiment was fully integrated
into the course as a practical part to practice software inspection and learn key aspects
of software product improvement in early stages of software development. We
controlled the influence of inspection capability by randomly assigning reading
techniques to inspectors.

To our knowledge this is the largest empirical study comparing UBR and CBR RT
approaches. Similar experiments involved a total number 12 [3], 23 [27], 62 [23], and
42 participants [14].

Table 1. Number of inspectors by RT

RT Number of Insp. Percentage
CBR-gc 24 19%
CBR-tc 48 38%

UBR 55 43%
Total 127 100%

Table 1 displays the distribution of inspectors with respect to reading technique
roles. We used the CBR-gc reading technique as control group involving 19% of
inspectors.

5 Experiment Results

In this section we present the empirical results of the study. We pay attention to
inspection effort, effectiveness (number of defects found), and efficiency (defects
found per hour).

 Investigating the Impact of Active Guidance on Design Inspection 467

5.1 Effort

Inspection effort includes preparation time and inspection duration. The inspectors
logged the clock time for each individual task; reading the specification and design
document, tailoring and prioritizing of requirements – summarized in preparation time
and inspection time. Table 2 displays the mean and standard deviation for the three
reading techniques.

Table 2. Individual preparation and inspection time in minutes

 CBR-gc CBR-tc UBR
Preparation 43.3 46.0 42.8
Inspection 120.3 110.0 117.7

M
ea

n

Total 163.5 155.9 160.6
Preparation 15.7 19.0 22.5
Inspection 27.9 30.8 28.1

S
td

.D
ev

Total 25.1 34.6 29.5

All three RTs have a similar total effort on average. Concerning preparation time,
CBR-tc inspectors need somewhat longer because of an additional tailoring and
prioritization task in contrast to CBR-gc and UBR inspectors, but the subsequent
inspection duration is shorter. In summary, CBR-tc inspectors need somewhat less
effort for overall inspection.

Concerning our research hypothesis we observe that there is no significant
difference of inspection effort between all three RT approaches.

5.2 Effectiveness

In the context of this paper we define effectiveness as the number of seeded defects
found by an individual inspector in relation to the overall number of seeded defects
within the design document. The experiment setup contains 39 seeded defects,
summarized by 13 crucial, 15 major and 11 minor defects. To figure out the benefits
of the individual RTs we investigate crucial defects (class A), important defects (class
A and class B), and all defects found by inspectors.

Table 3 summarized mean values and standard deviations of effectiveness
according to defect classes and reading techniques.

Table 3. Effectiveness by defect class and reading technique

 Defect CBR-gc CBR-tc UBR
Class A 24.4 29,2 35.8
Class A+B 26.3 28,1 33.1

M
ea

n

All defects 24.9 25,2 29.8
Class A 19.2 13,5 14.4
Class A+B 14.4 10,0 11.0

S
td

.D
ev

All defects 10.9 8,8 11.9

468 D. Winkler, S. Biffl, and B. Thurnher

On average there is a notable difference between the effectiveness of CBR-gc,
CBR-tc, and UBR, that is consistent for all classes of defects investigated. UBR
inspectors found more defects than CBR-tc and CBR-gc inspectors for every defect
class. Also CBR-tc dominates CBR-gc for every subset of defects. The performance
advantage of UBR is greatest for defects belonging to class A. Note the smallest
standard deviation at CBR-tc with respect to all defects.

Fig. 1 depicts effectiveness of three reading technique with respect to defect
severity classes.

554824 554824 554824N =

reading technique

UBRCBR - tcCBR - gc

ef
fe

ct
iv

en
es

s
[%

]

80

60

40

20

0

class A

class A+B

all defects

Fig. 1. Effectiveness of three reading techniques

Table 4 shows the results of our investigation according to significance values.
There is a notable difference concerning all defect severity classes and all couples of
reading techniques investigated.

Table 4. p-values for effectiveness according to defect classes and RT

 Class A Class A+B All Defects
CBR-gc / UBR <0,001(S) 0,021(S) 0,018 (S)
CBR-tc / UBR <0,001(S) <0,001(S) 0,029(S)
CBR-gc / CBR-tc <0,001(S) 0,022(S) 0,043(S)

Therefore, we can actually confirm our research hypotheses: UBR with expert
ranking significantly outperforms all other reading techniques, due to active guidance
including the prioritized use cases applied. Thus, the performance advantage of UBR
is greatest for all defects. CBR-tc also dominates CBR-gc for every subset of defect
severity classes, because of the impact of active guidance for CBR-tc inspection.

Additionally we investigated the ratio of false positives, i.e. the ratio of candidate
defects that do not match to true defects regarding all defects found be individual

 Investigating the Impact of Active Guidance on Design Inspection 469

inspectors. Because the inspectors did not know the number of real defects, they
reported all possible defects, which were matched to real defects by experts. We did
not recognize significant differences concerning false positives at noted defects and
false positives. We did register significant differences with respect to non reference
defects. CBR-gc inspectors received the highest number of wrong defects because of
a non-active guidance through the inspection process using a generic checklist.

5.3 Efficiency

We combine the measures of effort and effectiveness to investigate inspection
efficiency, i.e. defect detection rate per hour. Effort is concerned as the total amount
of preparation and inspection time in minutes. We also use the total number of
matched defects to derive efficiency.

Table 5. Inspection efficiency (number of defects found per hour)

 Defect CBR-gc CBR-tc UBR
Class A 1.1 1,5 1.8
Class A+B 2.7 3,1 3.6

M
ea

n

All defects 3.6 3,9 4.5
Class A 0.8 0,7 0.8
Class A+B 1.4 1,2 1.3

S
td

.D
ev

All defects 1.5 1,4 1.7

Table 5 displays mean values and standard deviations for three defect classes with
respect to the reading technique approaches. The results show that UBR inspectors
achieve the highest efficiency according to all defect severity classes. We measured
the lowest efficiency for CBR-gc inspectors, and somewhat between for CBR-tc
inspectors.

Table 6. P-values for efficiency according to defect severity and reading techniques

 Class A Class A+B All defects
CBR-gc / UBR 0,002(S) 0,023 (S) 0,053(-)
CBR-tc / UBR 0,059(-) 0,098(-) 0,079(-)
CBR-gc / CBR-tc 0,039(S) 0,166(-) 0,400(-)

Table 6 shows a summary of p-values, derived by the Mann-Whitney test, for
defect classes and all three reading techniques used. We notice significant differences
for crucial defects (class A) by comparing RTs using active guidance (UBR and
CBR-tc) with respect to CBR-gc. Furthermore, we recognize significant differences
for important (class A or class B defects) defects concerning CBR-gc and UBR but
not for all defects.

470 D. Winkler, S. Biffl, and B. Thurnher

One interesting finding is that there is no significant difference at efficiency at
CBR-tc and UBR (both RTs with active guidance). This implies that active guidance
focus the inspectors efficiently on the more important defect classes.

6 Discussion

In this section we summarize the empirical results from our experiment concerning
the comparison of CBR-gc, CBR-tc, and UBR. Analyzing our empirical results we
derive the following implications for this comparison:

Effort of inspection duration: Inspectors from all reading techniques required a
similar overall amount of time for inspection. Although CBR-tc inspectors needed
longer for preparation due to their additional classification and prioritization phase of
requirements and system functions, but they used also less time for the subsequent
inspection phase. They benefit from better understanding of the application domain
and the document under inspection.

We used the Mann-Whitney test for statistical evaluation, but we do not register
any significant differences. One possible reason might be some kind of group effect,
because we did not specify any upper limit for overall inspection duration.

Effectiveness: The analysis of the results supports all hypotheses (H21-H23)
nominally for reading technique approaches. We found significantly differences
according to all defect severity classes, i.e. crucial, major, and minor defects.

The impact of active guidance due to expert ranking of use cases influences
effectiveness at any class of defects. The reasons might be (a) a well performed
prioritization process by experts during inspection preparation phase, (b) the active
guidance of use cases and scenarios during inspection, and (c) a well-formed
presentation of the application domain due to use-case notation. Therefore UBR
outperforms all CBR RT approaches. One disadvantage of this approach is the effort,
spent by experts during the prioritization phase, because these activities were
executed in the before the inspection process started at all.

The comparison of CBR-tc and CBR-gc also shows significant differences
according to inspection effectiveness for all defect severity classes. Inspection
effectiveness also benefits from the additional task of analysis and prioritization of
requirements and system functions, using the CBR-tc approach, due to a better
understanding and structuring of the application domain and the active guidance
through the inspection process.

Efficiency: Our hypotheses are confirmed as well. UBR is most efficient and CBR-gc
is less efficient. Concerning all defects, there is no significant difference at any
comparison of RTs.

The results also show significant differences at RTs using active guidance in
comparison to CBR-gc (which does not use active guidance) according to crucial
defects (class A). We assume the influence of use cases and scenarios as the main
reason for those findings. Nevertheless, active guidance improves inspection
efficiency in comparison to generic checklist approaches. Tailoring of requirements
(CBR-tc) improve efficiency due a structured approach and a deeper understanding of

 Investigating the Impact of Active Guidance on Design Inspection 471

the document under inspection in comparison to a generic checklist approach.
Nevertheless, use cases and scenarios approaches exceed efficiency of CBR-tc.

Analyzing the data from our experiment we conclude that UBR with expert
ranking shows highest effectiveness and efficiency and therefore best overall
performance.

The comparison to CBR-tc implies that the analysis, classification and
prioritization of requirements and system functions have some influence on the
performance of inspection. Active guidance, as provided by CBR-tc and UBR
improve efficiency due to a reduction of overall inspection effort. Concerning
effectiveness, the UBR reading technique approach, outperforms the tailored checklist
approach and the generic checklist approach. The usage of use cases and scenarios
lead to a deeper understanding of the application domain and improve effectiveness.

7 Conclusion and Further Work

Inspection is an important approach to reduce defects in software engineering
artifacts. Reading techniques such as UBR can focus inspector attention on specific
types of defects, i.e. crucial defects. Active guidance lead to a better understanding
and a more structured approach of inspection proceeding and, therefore, improves
inspection effectiveness and efficiency.

This paper presented a large-scale external experiment replication in the UBR
family of experiments [2] in an academic environment. In addition to previous
empirical studies, we introduced a new reading technique variant, a tailored checklist
approach (CBR-tc) to investigate the impact of active guidance on inspection
performance.

Main results of the study were: (a) active guidance improves inspection
effectiveness and efficiency, (b) UBR expert know-how has significant effects of on
defect detection rates; (c) the application of use cases and scenarios improve
document understanding and inspection performance, and (d) both RTs with active
guidance perform significantly better than CBR-gc.

Further work is to investigate the impact of inspector capability on defect
detection: The empirical studies in this family of experiments have investigated defect
detection according to different UBR and CBR approaches without regarding
inspector capability in detail. Whereas we aware that inspector capability is an
important factor to achieve well-performed inspection results.

References

1. Basili V.R., S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Soerumgaard, and M.
Zelkowitz, “The Empirical Investigation of Perspective-Based Reading”, Empirical
Software Engineering Journal, vol. 1, no. 2, pp. 133-164, 1996.

2. Basili V.R., F. Shull, and F. Lanubile, “Building Knowledge through Families of
Experiments,” IEEE Trans. Software Eng., vol. 25, no. 4, pp. 456-473, July/Aug. 1999.

3. Denger C., Ciolkowsky M., Lanubile F. Investigation the Active Guidance Factor in
Reading Techniques for Defect Detection. ISESE 2004.

4. Ebenau R.G. and S.H. Strauss, Software Inspection Process. McGraw-Hill, 1994.

472 D. Winkler, S. Biffl, and B. Thurnher

5. Fagan M., “Design and Code Inspections To Reduce Errors In Program Development”,
IBM Systems J., vol. 15, no. 3, 1976, pp. 182-211.

6. Fusaro P., F. Lanubile, and G. Visaggio, “A Replicated Experiment to Assess
Requirements Inspection Techniques,” Empirical Software Eng.: An Int’l J., vol. 2, no. 1,
pp. 39-57, 1997.

7. Gilb T., Graham D., Software Inspection, Addison-Wesley, 1993.
8. ITU-T Z.100, Specification and Description Language, SDL, ITU-T Recommendation

Z.100, 1993.
9. ITU-T Z.120, Message Sequence Charts, MSC, ITU-T Recommendation Z.120, 1996.

10. Jeffery, R.; Scott, L.; Has twenty-five years of empirical software engineering made a
difference? Software Engineering Conference, 2002. Ninth Asia-Pacific , 4-6 Dec. 2002
pp. 539 -546

11. Juristo N. and A.M. Moreno, Basics of Software Engineering Experimentation. Kluwer
Academic, 2001.

12. Laitenberger O., Atkinson C. “Generalizing Perspective-based Inspection to handle
Object-Oriented Development Artifacts”, Proc. of the Int. Conf. on Software Engineering,
1999.

13. Laitenberger O., DeBaud J.-M., “An encompassing life cycle centric survey of software
inspection”, Journal of Systems and Software, vol. 50, no. 1, 2000, pp. 5-31.

14. Lanubile F., Mallardo T., Calefato F., Denger C., Ciolkowksi M. Assessing the Impact of
Active Guidance for Defect Detection: A Replicated Experiment. METRICS 2004.

15. Miller J., M. Wood, and M. Roper; “Further experiences with scenarios and checklists”,
Empirical Software Engineering Journal, vol. 3, no. 1, pp. 37-64, 1998.

16. Nielson, J.; “Usability Engineering”, San Diego: Academic Press, 1993.
17. Parnas D., Lawford M., “The role of inspection in software quality assurance”, IEEE

Trans. on SE, vol. 29(8), August 2003, pp. 674-676.
18. Porter A., L. Votta, “Comparing Detection Methods for Software Requirements

Inspections: a Replicated Experiment using professional subjects”, Empirical Software
Engineering Journal, vol. 3, no. 4, 1998, pp. 355-379.

19. Porter A., L. Votta, and V. Basili, “Comparing Detection Methods for Software
Requirements Inspections: a Replicated Experiment”, IEEE Transactions on Software
Engineering vol. 21, no. 6, pp. 563-575, June 1995.

20. Saaty T.L., Vargas L.G.; “Models, Methods, Concepts & Applications of the Analytic
Hierarchy Process”; Kluver Academic, 2001.

21. Sandahl K., Blomkvist O., Karlsson J., Krysander C., Lindvall M., Ohlsson N.: An
Extended Replication of an Experiment for Assessing Methods for Software Requirements
Inspections, Kluwer Academic Publishers, 1998

22. Shull F.J., “Developing Techniques for using Software Documents: A Series of Empirical
Studies”, PhD thesis, University of Maryland, College Park,
www.cs.umd.edu/~fshull/pubs, 1998.

23. Thelin T., C. Andersson, P. Runeson, N. Dzamashvili-Fogelström “A Replicated
Experiment of Usage-Based and Checklist-Based Reading”, Metrics 2004.

24. Thelin T., P. Runeson, and B. Regnell, “Usage-Based Reading—An Experiment to Guide
Reviewers with Use Cases,” Information and Software Technology, vol. 43, no. 15, pp.
925-938, 2001.

25. Thelin T., P. Runeson, C. Wohlin, T. Olsson, and C. Andersson, “How Much Information
Is Needed for Usage-Based Reading? —A Series of Experiments,” Proc. First Int’l Symp.
Empirical Software Eng., pp. 127-138, 2002.

 Investigating the Impact of Active Guidance on Design Inspection 473

26. Thelin T., Runeson P., Wohlin C., “Prioritized Use Cases as a Vehicle for Software
Inspections”, IEEE Software, vol. 20(4), July/August 2003, pp. 30-33.

27. Thelin T., Runeson P., Wohlin C., “An experimental comparison of usage-based and
checklist-based reading”, IEEE Trans. on SE, vol. 29(8), August 2003, pp. 687-704.

28. Winkler D., Halling M., Biffl St. “Investigating the Effect of Expert Ranking of Use Cases
for Design Inspections”, Euromicro 2004.

29. Wohlin C., P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in Software Engineering - An Introduction, The Kluwer International
Series in Software Engineering, Kluwer Academic Publishers, 2000.

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 474–486, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An XP Experiment with Students – Setup and Problems

Thomas Flohr and Thorsten Schneider

Software Engineering Group, University of Hannover,
Welfengarten 1, 30167 Hannover, Germany

{Thomas.Flohr, Thorsten.Schneider}@Inf.Uni-Hannover.de

Abstract. Designing experiments to be carried out with students as subjects in
an XP setup is a difficult task: Students lack experiences with XP, there are
limited resources, the experiment might not be taken seriously and other effects
interfere. This paper presents an experiment using student subjects examining
test-first in comparison to classical-testing. We proved several hypotheses about
test coverage, number of test-cases, contacts with customer, acceptance for test-
first, development speed and not required features. While designing the
experiment we noticed that it is useful to include some additional XP
techniques on top of test first, because of our special setup and the demands we
had. Despite careful planning and conduction of the experiment we still faced a
number of problems. In this paper we also discuss the problems with our
experimental setup.

1 Introduction

Extreme Programming (XP) by Kent Beck [1] is the best-known agile Method. XP
is a collection of several practices to be obeyed during software development
projects.

The effectiveness of most XP practices is only weakly confirmed by empirical data
gained through experiments. A single XP technique can either be examined in
isolation, in a complete XP setup, or in a mixed setup in which some other XP
techniques are applied as well. In winter semester of 2004/05 the Software
Engineering Group of the University of Hannover conducted an experiment and for
practical reasons (e.g. limited hardware resources and realistic setup) we decided to
choose the last alternative, in which some other XP techniques are applied at the same
time. Objects of investigation were test-first and classical-testing. For the automatic
tests we used the JUnit framework.

We designed two experimental setups: a test-first setup including test-first and
some other XP techniques (pair programming, on-site customer and user stories) and
a classical-testing setup including the same XP techniques, but test-first was replaced
by a classical-testing approach.

− Students should implement a useful program (e.g. not a small and abstract
programing task) because students do not take synthetic tasks seriously.

 An XP Experiment with Students – Setup and Problems 475

− As in real life the requirements on the program are sometimes vague.
− The experiment should take place at the same location and time for all

participants to create equal conditions for everyone and also because of our
limited resources.

− Implementation during the experiment is restricted to our computer lab. Homework
is not allowed in order to maintain comparability and control.

To meet these criteria we carefully designed a setup. Nevertheless we faced problems
while designing and conducting the experiment. The focus of this paper lies on a
description of the experiment’s setup, the problems we faced and how we avoided
some of them. This paper does not include the results of the experiment, because the
experimental run is not completely finished.

1.1 Related Work

So far most techniques of XP were studied in isolation in controlled experiments.
Case studies often observed more complex XP settings with multiple XP techniques.

Müller and Hagner observed 19 graduate students with some experience in XP [2].
In their experiment test-first was compared to traditional development separately. The
students were divided in two groups to apply one of the approaches each. Each group
had to implement the main class of a graph library which only contains declarations
of methods. The experiment included unit and acceptance tests. Objects of
investigation was programming speed, reliability of the final code and program
understanding (reuse of code). The authors conclude that test-first for a traditional
developer is not necessarily faster than traditional development.

In a further case study Müller and Tichy report about experiences, when realizing
an XP course with students [3]. The study focused on pair programming, iteration
planning, test-first, refactoring and the question of the best size of a team for an XP-
project. One result was that pair programming is no problem for students, but test-first
is hard to learn in the beginning.

Noll and Atkinson [4] report about a case study dealing with a comparison between
XP and traditional development at a university. A class was divided into 4 teams;
each consisted of 6 to 8 students and each team had to develop a web-based room
reservation system. Two teams followed XP and two teams followed the traditional
approach. One result was that the teams following the traditional approach delivered
less robust code, but their solutions had more features. The test-first teams delivered
more robust code with less features, but the user interface was sloppy and difficult to
use. It was also observed that requirements were interpreted by the teams to their
favor, despite an always available customer. The authors advise to prefer a strong
customer (e.g. professor) and to outline the differences between XP and traditional
development better.

Lindvall et al. [5] report about an eWorkshop about different empirical findings in
agile Methods. Objects under discussion were team size, personnel, reliability,
training requirements, refactoring and documentation in agile projects. The authors
conclude that 10% of qualified personnel in an agile project with pair programming

476 T. Flohr and T. Schneider

might be enough. Furthermore, they concluded that the requirements are addressed
earlier (because the customer steadily gives input) and less formal training is required,
because the developers train each other.

1.2 Outline

This paper is structured as follows: section two gives a detailed definition of our
understandings of test-first and classical-testing and contains a list of partly proved
statements about test-first gained from literature. Section three summarizes the
hypotheses of test-first and classical-testing we verified. It also contains
information on how to measure the experimental data. Section four describes the
prerequisites, setup, and conduction of the experiment. Section five contains a
discussion about the setup, what problems we faced and how we avoided some of
them. Finally the conclusion gives suggestions what to avoid in experiments with
students as subjects.

2 Test-First and Classical-Testing

Before we show a detailed description of test-first and classical-testing we give a list
of definitions we use throughout this paper. We are not completely satisfied with the
terms used in JUnit, because they collide with the terms we used in our lectures and
they are not always intuitive. Table 1 shows our definitions:

Table 1. Comparison of our definitions and respective terms in the JUnit-Framework

Our terms Terms in JUnit-Framework
Test-case: Verification whether the
return value of one method matches the
specified value or not.

assert-statement

Test: Verification whether a method or
functionality fulfills the specification.
A test includes at least one test-case.

TestMethod

Test-set: A collection of tests belonging
together, because they test the same
class or functionality.

TestCase

Test-suite: A collection of Test-sets
belonging to one package or
application.

TestSuite

Test-first with unit tests (test-first for short) is one of the core techniques of XP. The
basic cycle in the test-first approach is to write one single test-case gained from the
program specification, make it run with the easiest implementation and then continue
with the next test-case. The Test-first approach can be specified in more detail in the
following way:

 An XP Experiment with Students – Setup and Problems 477

1. Write one single test-case.
2. Run this test-case. If it fails continue with step 3. If the test-case succeeds, continue

with step 1.
3. Implement the minimal code to make the test-case run.
4. Run the test-case again. If it fails again, continue with step 3. If the test-case

succeeds, continue with step 5.
5. Refactor the implementation to achieve the simplest design possible.
6. Run the test-case again, to verify that the refactored implementation still succeeds

the test-case. If it fails, continue with step 5. If the test-case succeeds, continue
with step 1, if there are still requirements left in the specification.

The classical-testing approach is less specified. In general test-cases in the classical-
testing approach are written after some code is implemented, but there is no specific
rule when to write test-cases. One can summarize classical-testing as follows:

1. Read the specification.
2. Design the program
3. Write a few lines of code, some method(s), class(es), package(s) or the whole

application.
4. Write some (new) or no test-suites, tests-sets, tests or test-cases gained from the

specification.
5. Run the tests. If they succeed, continue with step 1, 2, 3 or 4. If the tests fail,

continue with step 6. If there are no more further requirements and the code is
tested enough (perspective of the developer), exit the classical-testing cycle.

6. Remove the errors in the implementation and continue with step 5.

Partly (statistically) proved statements about test-first are known from literature [1]
and our experiences:

− Developers write more test-cases, because they start to test earlier and more
systematically.

− Development is driven by tests, so test-coverage should be 100% percent.
− Developers do not implement not-required features and therefore also increase

their development speed.
− Developers are more likely to discuss requirements with the customer earlier,

because they are forced to think of requirements earlier.
− Developers trust their program code more.

3 Our Hypotheses

We derived several hypotheses from the above statements. This section gives a short
overview of these hypotheses. For each hypothesis we also give methods or metrics
on how to gain the data. We obtained the metrics by applying the GQM paradigm [6,
7]. This paper does not center on this process, so we only give a very short summary:
for each hypothesis, which can be categorized as a goal, we obtained a set of
questions. Several metrics were refined from the questions.

478 T. Flohr and T. Schneider

Our hypotheses centered on:

3.1 Number of Test-Cases

Our assumption is that the test-first approach produces more test-cases than the
classical-testing approach, because the creation of test-cases starts earlier and
development is driven by tests. We gain data by counting the test-cases and compare
the ratio between the source code of the application and the number of test-cases.

3.2 Test-Coverage

Since development is driven by tests, test-first should produce 100% test-coverage
(method-coverage, statement-coverage and conditional-coverage). Due to the fact,
that most participants of the experiment are not quite familiar with test-first and JUnit
we intuitively suppose that the test-coverage will be around 90% and classical-testing
should result in 70% test-coverage, because trivial methods and some branches are
not tested and all test-cases are written after coding. To determine the test-coverage
the Eclipse plug-in Clover (version 1.1.4) is used.

3.3 Development Speed

The project’s requirements are written on story-cards. We define the development
speed as the time needed to meet the requirements of a story-card (also including the
time for writing and executing the test-cases). Our assumption is that classical-testing
will be faster than test-first, because less time is spent on testing. The measurement
result is the time needed to meet the story-card’s requirements.

Fig. 1. Acceptance curve

 An XP Experiment with Students – Setup and Problems 479

3.4 Acceptance

We assume that students’ acceptance for test-first can be mapped to the curve shown
in Figure 1. After a test-first training students have a slight rejection towards test-first,
because they suppose that it will slow down the development process. Shortly after,
they change their opinion, because they realize that test-first can guide through the
development process. Afterwards the acceptance steadily increases until the hot spot
(final hours of development) is reached. After the hot spot the acceptance decreases
rapidly, because time is short and will not be “wasted” for testing. The acceptance is
gathered from questionnaires handed out to the students throughout the experimental
run to verify or discard the assumed curve.

3.5 Not Required Features

Test-first is based on implementing the minimal functionality and new code is only
written when a test fails, so the application should not contain any additional features.
We assume that the classical-testing approach contains more not required features
than the test-first approach. Automatically gathering data for this hypothesis is quite
difficult, so we can only gain some tendencies by examining the application and the
source code.

3.6 Contact with Customer

We assume that students using test-first will think of requirements earlier, so they will
also ask the customer more early and often. With classical-testing the development
process is not primary focused on requirements, therefore students will ask later. Data
regarding the customer contacts is gained by measuring the contact times and
frequency.

4 Experimental Setup

We started our experiment with 19 graduate students in the middle of October 2004.
The students knew that they were part of an experiment and were asked to fill out
questionnaires, so we got an impression of their abilities and experiences.

4.1 Results of the Survey

All students had attended a software engineering course and 12 of them had prior
knowledge of test-first. 16 students had knowledge of JUnit and understood how to
use it. One student even used it in a professional way.

14 students had average or above average knowledge in Java, the remaining 5
students had at least some basic knowledge in Java. Only 3 students never used
Eclipse. 7 participants only had experiences with software projects in university, 7
had an industrial project before (6 months maximum) and 5 designed software in a

480 T. Flohr and T. Schneider

professional way in the industry for many years. 12 students attended at least one
meeting with a real customer before.

4.2 Groups and Schedule

We divided the group of 19 students into two smaller groups, 11 in the test-first group
and 8 in the classical-testing group. Each group was again divided in teams of two
people each, so we had 5 teams and a one-person team in the test-first group and 4
teams in the classical-testing group. All pairs were randomly composed.

Chronologically, the experiment was limited to the length of the winter semester.
We had a total of 13 weeks and in each week the experiment session lasted 4
consecutive hours. The experiment took place in our computer lab (some sessions
were dropped because of Christmas and New Year) and each student could get 6
credit points (ECTS) for participation.

The experiment itself was divided into 3 phases and the phases are described in the
next subsections. Figure 2 shows the phases and the schedule of the experiment.

Fig. 2. Experiment's phases and schedule

4.3 Training Phase

The experiment started with a training phase being subdivided into four trails and
which lasted two weeks:

General Trail (two hours): Every student attended the general trail. We started to
show how to write a small “Hello World!” application using Eclipse. Later we
presented how to the implement a stack in Java. At the same time we also showed
some handy features of Eclipse. After we finished the implementation of the stack, we
introduced the JUnit framework. First we gave some small general information about
JUnit and then we showed how to write unit tests to test our implementation of the
stack.

Special Trails (for each group one hour): In the special trails the two groups received
a special training. Precisely, we showed both groups how to implement a small
application converting decimal numbers to roman numbers (we took the idea from
[8]). This was taught in the way they had to develop the programming task later.
Therefore, the test-first group only got an introduction, how to develop this
application using test-first. For the classical-testing group we first implemented the
application and then wrote several use cases to test it.

 An XP Experiment with Students – Setup and Problems 481

Programming Task Trail (45 minutes): After the general trail and the special trails,
we presented the programming task. All students attended this trail. The students
should implement a library for FLOW in Java. FLOW is a research project in our
department. The core idea of FLOW is to model flows of communication within
projects which can be direct as well as indirect via documents.

Practical Trail (45 minutes): Before we started the real development phase, every
team should make some practical programming experiences learned from the special
trail. So we prepared a small programming task (implementation of an
“isPrimeNumber-method”) for every team.

4.4 Development Phase

The development phase has lasted 10 weeks in which the students should implement
the FLOW library from scratch. In each session each team worked separately and
implemented an own version of the library. Every session lasted 4 consecutive hours
and after two hours we had a break of 15 minutes, so the students were “forced” to
relax.

For each session we had basic rules to control the experiment and create an equal
environment for everyone:

− Every team could only program in the four hours of every session, so conditions
were equal for everyone.

− Students could not transfer any of the source code to another computer (e.g. via
internet, disk or CD). This rule prevented, that some diligent students got an
advantage over lazy students by programming at home. For the same reason we
collected every story card, questionnaire and sketch drawn by the teams after each
session. In the next session we handed the material out again.

− During the sessions every team had access to a library containing the
documentation of the Java API, two online books about Java, one tutorial about
Eclipse and JUnit, an introduction to the FLOW concepts and all documents and
source codes from the different trails of the training phase. Besides, we restricted
the access to the Internet, so students did not use their time for searching solutions
for their programming problems on the Internet (and some students are very good
in doing this).

− We asked the students not to talk about anything regarding the experiment with
other participants of the experiment (except the team mate), because discussion
about the experiment could influence the results. Of course this is very hard to
control, because there is no way to avoid it. Therefore we only appeal to the
student’s honour.

− We avoided mentioning any results we observed in the experiment, because it
could influence the students. We also avoided mentioning any opinions we had
about the different test approaches. None of the participants knew any of our
hypotheses.

482 T. Flohr and T. Schneider

− To avoid any competition between the teams students did not get a mark for the
participation. Each student could earn the certificate and the credit points quite
easily.

We included several XP techniques in our experimental setup as well, whereas they
were not objects of investigations:

Pair Programming: Every team consisted of two students programming as a pair on
a single workstation.

On-site Customer: We simulated an on-site customer who was available for question
regarding the requirements of the FLOW library at any time during the experiment.
Besides, we also offered an advisor being able to answer technical question, whereas
the technical advisor could not answer any question regarding the customer
requirements.

User Stories: Requirements were written on story cards by the on-site customer.
Developers estimated the time they need to implement the functionality. Story cards
were given in a fixed order, and the customer handed the story cards out in this order,
so it was only necessary to estimate the time for implementation. Every story card
contained at least one functionality. Our basic cycle for each story card was:

1. Hand out the next story card to a team.

2. The team started to implement the new functionality and asked the customer for an
acceptance test if they thought that they tested enough (internally by unit tests) and
implemented all the necessary features.

3. If the customer was satisfied with the functionality, we checked in the current state
of the code in our CVS system and continued with step 1. If the customer was not
satisfied the students had to continue with step 2.

4.5 Analysis Phase

In the analysis phase we present the empirical results of the experiment to the
students. Since the experiment is not finished, the analysis phase has not been
conducted so far.

4.6 Geometrical and Technical Setup

Due to the geometrical restrictions of our computer lab and the fact that all 19
students have to program at the same time we arranged our computer lab as shown in
Figure 3.

Our lab was equipped with 10 workstations, each with a TFT screen. The operating
system was Linux and an Eclipse platform (version 3.0) was installed on each
workstation. For the experiment the computer lab was divided in 3 zones. On the left
side the 6 test-first groups were placed. On the right side the classical-testing groups
were placed. Discussions with the customer take place in the back of the computer lab
or on the team’s workplace.

 An XP Experiment with Students – Setup and Problems 483

Fig. 3. Geometrical setup in our computer lab

5 Discussion

We designed the experiment in a way to avoid a number of mistakes we had in mind.
Nevertheless we faced some problems while conducting the experiment.

5.1 The Programming Task

In the beginning we looked for one appropriate programming task. It should be
testable, interesting for students and the result should be useful for our department at
the same time. Our first thought was to avoid graphical user interface, because it is
hard to test and will distract students into paying attention to a beautiful appearance of
their application. We had the idea to develop a code metric plug-in for the Eclipse
platform and formulate the unit tests with PDE JUnit which is an extension to the
JUnit framework. Eclipse offers a lot of extensions-points reducing the effort to
implement a graphical user interface to a minimum, so this task seemed to be
appropriate.

484 T. Flohr and T. Schneider

After we made some practical experiences in implementing a plug-in, we cancelled
this idea. Development of plug-ins is based on searching familiar solutions (“Monkey
See/Monkey Do” rule [9]) and reading large API’s, so that access to plug-in
development is difficult even for good programmers. Finally we decided to turn to a
normal Java application, due to the fact that all students are familiar with Java. The
new idea was to develop a library for FLOW. Additionally, we demanded a minimal
command line interface to make the library useable.

When we started the experiment we soon discovered that the idea of the minimal
interface was a failure, because students invested a lot of time to design this interface.
Furthermore, the students could not test this interface very well, so they were
immediately confronted with some code being not testable in the way we
demonstrated it in the trails.

5.2 Geometrical Setup

In a good experimental setup interfering effects should be minimized as much as
possible. So in best case every team works in an isolated environment at the same
time and under the same conditions. Because of limited resources we could not offer
an isolated environment for everyone. At least we realized that each team could work
at the same time and place in our computer lab. Nevertheless, this does not avoid, that
students disturb each other (and in fact the students complained a little bit about the
noise). Worse, teams could get information from other teams unintentionally, because
the distance between the workplaces was not very far.

5.3 Workstations

In the first session all TFT-Monitors and keyboards were placed on one side of the
table. We realized that this setup makes pair programming difficult, because only one
student of a team could really develop. The other student’s distance to TFT and
keyboard was too far. We encouraged the students to change the seats after some
time (they could decide this time), but this was difficult to control. Therefore, we put
TFT and keyboard for the next sessions in middle of the table. After this both students
equally participated on the development process and no further problems with pair
programming occurred.

5.4 Students’ Experiences with XP and Missing Seriousness

Lack of a serious background makes it difficult to conduct good experiments and
software projects at universities. Students do not take practical courses in university
seriously or often do not possess appropriate knowledge of agile or traditional
development processes (and do not know the pains linked to this processes [10]).
Therefore they often do not follow all the principles they learned in software
engineering courses. To eliminate the missing knowledge our experiment included an
introduction to testing, JUnit, test-first and traditional testing. Additionally, we
offered unlimited aid regarding technical and software engineering problems.
Nevertheless, we observed that students had difficulties to follow the test-first

 An XP Experiment with Students – Setup and Problems 485

approach. Some teams integrated functionality in their application without writing the
test-cases before. Because of the experimental setup we tried to interfere as little as
possible in the development process. We only asked, why they write source code
without writing the test-cases before. At least after some sessions all test-first teams
followed the test-first approach quite well.

6 Conclusions

This paper presented an experimental setup to compare test-first to classical-testing.
We observed how difficult it is to conduct a good experiment with students, mainly
because of a lack of students’ experiences with XP. From our point of view and our
experiences we suggest:

− Start the experiment with a programming task being testable, especially when the
students are inexperienced with XP. Avoid any (graphical) user interface in the
beginning. We believe a library is a suitable programming task.

− Choose a serious and useful programming task, otherwise students will not take it
seriously and the customer will not play their role seriously.

− When applying pair programming on one workstation make sure that both students
can attend the development process (equally). For example by putting monitor,
keyboard and mouse in the middle of the table or by changing the seats.

− Be aware that most students are not familiar with XP and do not know the
drawbacks of traditional development processes. Therefore an extensive practical
XP course before an experiment’s start is an adequate possibility to avoid this.
Maybe a complete change of mindset is necessary to perform XP techniques in an
effective way?

Despite the problems we faced during design and conduction of the experiment, we
presented a carefully designed experimental setup. We encourage computer scientist
to think of other setups.

References

1. Beck, K.: Extreme Programming Explained. 2000: Addison-Wesley
2. Müller, M.M., Hagner, O.: Experiment about Test-first programming. IEEE Proceedings

Software, 2002. 149(5)
3. Müller, M.M., Tichy, W.F.: Case Study: Extreme Programming in a University

Environment. in International Conference on Software Engineering. 2001. Toronto,
Ontario, Canada: IEEE Computer Society

4. Noll, J., Atkinson, D.C.: Comparing Extreme Programming to Traditional Development
for Student Projects: A Case Study. in XP 2003. 2003. Genova, Italy

5. Lindvall, M., et al.: Empirical Findings in Agile Methods. in Extreme Programming and
Agile Methods - XP/Agile Universe 2002. 2002: Springer-Verlag

6. Basili, V., Caldiera, G., Rombach, H.: Goal question metric paradigm, in Encyclopedia
of Software Engineering, J.J. Marciniak, Editor. 1994, John Wiley & Sons: New York. p.
528-532

486 T. Flohr and T. Schneider

7. Basili, V.R., Selby, R., Hutchens, D.: Experimentation in Software Engineering. IEEE
Transactions on Software Engineering, 1986

8. Lipscombe, R.: Test First: Roman Numeral Conversion,
http://www.differentpla.net/node/view/58, 2004

9. Gamma, E., Beck, K.: Contributing to eclipse Principles, Patterns and Plug-Ins. the
eclipse series, ed. E. Gamma, L. Nackman,J. Wiegand. 2004

10. Lappo, P.: No Pain, No XP - Observations on Teaching and Mentoring Extreme
Programming to University Students. In Conference on eXtreme Programming and Agile
Proceses in Software Engineering. 2002. Alghero Sardinia

Views from an Organization on How Agile
Development Affects Its Collaboration with a

Software Development Team

Harald Svensson1 and Martin Höst2

1 The Royal Institute of Technology, Forum 100,
SE-164 40 Kista, Sweden

2 Lund University, Box 118, SE-221 00 Lund, Sweden

Abstract. The purpose of this study is to investigate how agile de-
velopment affects collaboration in an organization. Agile processes have
received interest from the software development community during the
last years as they address changes, such as new customer requirements
or re-prioritization of development tasks, which is important to man-
age in software development. Most of the research published about agile
processes are based on opinions from teams applying these processes.
However, since software development is an activity where many parties
often collaborate, it is interesting to investigate from an organizational
point of view, how agile development affects collaboration between these
teams and their organizations. An agile process based on extreme pro-
gramming, XP, was applied by a team during eight months. The team
interacted with its surrounding organization regularly. People from the
organization which the team collaborated with were interviewed to un-
derstand how the use of the process affected their collaboration with
the team. The results show that the interviewed people perceived an
improvement of their collaboration with the team, as the team started
develop software in an agile way.

1 Introduction

Successful software development projects are characterized by project teams that
collectively take responsibility of their engineering processes. Further, a team
should recognize the team members’ viewpoints on how team performance can
be improved, as stated in [4]. This is also true when developing software, as con-
firmed in [7]. Software development projects of today are often large and involve
a lot of people with different abilities. It is important to recognize their view-
points on how collaboration can improve, in order to deliver fault free software
on time. The study addresses this issue, by recognizing how an organization
perceives its collaboration with a software development team.

Agile methods have received interest from the software development com-
munity during the last years, perhaps mainly due to the fact that they address
changes which is important in software development. Agile methods emphasize

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 487–501, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

488 H. Svensson and M. Höst

simple and direct communication as a means for improving software develop-
ment results. Communication is facilitated as people sit close to each other,
daily meetings are performed and charts on team performance are made visi-
ble. These aspects and more enable a simple and direct communication, which
help manage changes in software development. Further, collaboration is based
on communication as mentioned in [6]. Thus, the use of an agile process ought
to improve collaboration in an organization, as agile methods facilitate com-
munication. The purpose of the study is to investigate whether this is the
case.

In the study, an agile process was introduced to a large organization with a
complex software development environment, which included both support and
maintenance of several systems. In these kinds of environments changes occur
frequently such as new versions of requirements and re-prioritization of tasks. A
team applied the agile process during eight months. The team wanted to improve
its software development process by using this kind of process, as iterative devel-
opment and an improved ability to handle changes were appealing to the team.
The process was based on XP [1], but not identical to it since some parts of the
process were not introduced and others were adapted to fit the team’s develop-
ment environment. The team collaborated with its surrounding organization to
develop software.

This paper investigates how collaboration between a team and its surround-
ing organization was affected, from an organizational point of view, during in-
troduction of an agile process. Most of the research published about agile pro-
cesses are based on viewpoints from teams applying these processes, but this
study provides input on how an organization considers use of an agile pro-
cess. Hence, interviews were conducted with the organization on how it per-
ceived its collaboration with the team before, during and after the process
was introduced. The results of the study may help understand how agile de-
velopment affects collaboration in organizations, seen from an organizational
perspective. The study presented in this paper is part of a case study where
the purpose was to investigate the effects of introducing an agile process based
on XP to a large organization with a complex software development environ-
ment. The results presented in this paper concern how the surrounding organi-
zation perceived that their collaboration with the software development team
changed as the agile process was introduced to the team. The results pre-
sented in [11] address the team’s performance by analyzing quantitative data
before and after the agile process was introduced. Finally, the results presented
in [12] concern how the team perceived their use and adaptation of the agile
process.

Section 2 contains related work and Section 3 presents the research method-
ology. In Section 4, the study context is described. Section 5 details the intro-
duction of the agile process. Section 6 presents the research results. Section 7
summarizes the main conclusions from the study and Section 8 includes discus-
sion of the results and future research.

How Agile Development Affects Collaboration 489

2 Related Works

Most of the research concerning introduction and use of agile processes are based
on opinions from the teams applying these processes, such as [6, 14, 8, 9]. How-
ever, as stated in [7] it is important to recognize viewpoints on improvement
issues from different perspectives when developing software.

[10] reports on an Italian company who introduced XP in two projects. The
company had recognized the fact that introducing an agile process into an orga-
nization affects more people than just the software engineers. The output from
the study were experiences of introducing XP from a non-programmer’s per-
spective. Three different perspectives were presented including viewpoints from
project managers, customers and an quality assurance team. Two observations
were made from the customer’s point of view. First, customers tend not to ac-
cept requirements which are not written down. The customers representatives
felt that it would be difficult getting contracts signed without formally specify-
ing the requirements. The second observation was that people representing the
customer did not own the customer’s requirements. This meant that they some-
times lacked the authority or knowledge to resolve issues. Often, they had to
contact the real customer and ask for advice. Further, this detachment of a real
customer in the team reduced the emotional commitment from the customer.
The project managers observed that XP allowed software engineers to maintain
and enhance their programming abilities. That is, through practices such as Pair
Programming, Collective Code Ownership and Coding Standard were the engi-
neers supported to improve their skills in software development. The company
was ISO 9001-certified, and the quality team observed that using XP improved
the company’s quality system by providing guidelines for project management.
Further, the quality team noticed that XP focuses on a few key process aspects
which allowed the software engineers freedom to customize the rest of their work
processes. Therefore, the quality team concluded that XP can be adapted to fit
the ISO 9001 framework.

To summarize, the non-programmer’s perspective on using XP was that XP
supports a software development team to improve its development skills. Further,
XP is not a hinder for an organization pursuing a quality management system
based on ISO 9001, as its contents can be adapted to the framework. However,
it is important to have a real customer in a team to handle business issues when
developing a system.

3 Research Methodology

This section presents the research method used when drawing conclusions on
how the organization perceived the agile process’ effect on its collaboration with
the team. Further, the validity of the study is discussed. The study is conducted
at a Swedish software development company, described in Section 4.

As stated earlier, collaboration is based on communication as confirmed in
[6]. Further, agile methods facilitate communication in various aspects. For in-

490 H. Svensson and M. Höst

stance, new requirements are addressed through frequent and informal contacts
with customers. Another example is the practices pair programming and plan-
ning game which are used as means for intensifying communication in software
development teams. Based on this argument, we claim that agile development
improves collaboration in an organization as agile methods facilitate communi-
cation. Thus, the research question is:

Hoe does use of an agile process affect collaboration in a software devel-
opment organization?

The term collaboration can mean different things to different people. There-
fore, it is motivated to define what the term means in the study. As stated in [13]
the concept of collaboration is often defined as communicative interaction, where
trust is considered a critical success factor for improving collaboration. Trust is
gained when mutual goals are achieved and when involved parties can rely on
each other that joint activities will be performed as agreed. An increased trust
is usually a sign of improved collaboration. In the study, the term collabora-
tion is defined as working together where several parties may achieve something
beyond what either would have achieved separately. This concept also involves
trust. Thus, an improved collaboration is based on whether the organization
perceived that it increased its trust to the team and that they performed better
together than they did prior to the introduction of the agile process.

Further, how collaboration is affected due to the introduction of a software
development process may be investigated in a number of ways. The approach
that was chosen in the study was to interview people from the organization be-
fore, during and after the introduction of the process and perform an analysis of
the recorded interviews, as described below. This approach had several advan-
tages. First, since we had limited experience of how the team and its surrounding
organization collaborated, it was difficult to know where on a more detailed level
the research should be performed. For instance the collaboration efforts could
be modelled in some sort of a communication path, but such approaches are
based on an extensive knowledge how the team collaborates with its surround-
ing organization. Further, since there is little research performed on this issue
there is a risk of missing important information if a more detailed research ap-
proach is chosen. The interview approach used in the study addresses this issue,
since the interviewees provide information from different angles, based on their
experiences. Hence, the risk of missing important information was reduced by
performing interviews on the organization.

Customer representatives, which collaborated with the team, acted as inter-
mediaries of the organization’s viewpoint on how the agile process affected the
organization’s collaboration with the team. Although the results of the study
are based on interviews with customer representatives, it is the organization’s
viewpoint that is gathered. The customer representatives had other work tasks
than those that were customer related. Thus, they were part of the organiza-
tion and should not be considered as customers. More information on the study
participants is provided in Section 4.

How Agile Development Affects Collaboration 491

The customer representatives were interviewed before, during and after the
agile process was introduced. The number of customer representatives was three
which is many in terms of number of customers in XP projects. Therefore, con-
sidering the nature of the study which concerns organizational input based on
customer representatives involved in agile development projects, the number
of study participants is adequate. Qualitative analyses were conducted on the
interview results, and conclusions were drawn based on the analyses. The conclu-
sions drawn before introducing the agile process, were compared with conclusions
drawn during and after the process was introduced. Thus, any effects the agile
process had on the collaboration between the customer representatives and the
software development team was investigated.

A flexible qualitative design approach [2] was used for the research. Flexible
means an evolving design which starts with a single idea or problem that the
researcher seeks to understand. The study was explorative in character since it
investigated how agile development may affect the collaboration between a soft-
ware development team and its surrounding organization, which we had limited
experience of. The procedure of drawing conclusions from the interviews followed
the steps in the model [5] shown in Figure 1.

Fig. 1. A general model of qualitative studies

Below, the steps mentioned in Figure 1 are described in a detailed manner
in order for the reader to better understand how the procedure for drawing
conclusions from the interviews was conducted.

Data Collection. Data was collected through interviews. Three participants
were interviewed. Each participant was interviewed three times, one time before
the agile process was introduced, one time during introduction of the process and
finally one time after the process was introduced. The length of the interviews
ranged from approximately 10 to 30 minutes. The interviews were of the type
open-guided interviews described in [5]. Open-guided interviews means a research
question being enlightened by in advance planned question areas, where the
interviewees can respond with open answers. Audio software was used to record
the interviews. One person at a time was interviewed. Thus, personal opinions
were not biased by other’s opinions.

Data Reduction. To easier perform the analysis, the amount of data to be an-
alyzed was reduced. The data reduction procedure was to remove sentences that

492 H. Svensson and M. Höst

did not address the research question. The recorded interviews were transcribed
and reviewed.

To illustrate the data reduction process an example is provided from the
study. The following text was recorded from an interview with one of the study
participants. The text shown is a response on the question how the study par-
ticipant communicates with the team.

Often I communicate with the team rather informally. It can be at a
lunch or if I meet a team member in the corridor. Personally, I like that
approach, formal meetings require preparation and take a lot of time.

Here, the ambition is to recognize what parts of the text that refer to the
research question. For instance, the fact that communication is of an informal
nature is relevant to the question, thus that sentence is kept. However, the sen-
tence where the respondent states his preference for informal communication
does not address the question. Thus, that sentence is not kept.

Data Description. This step prepares data for analysis where possible conclu-
sions may be drawn. By coding the data without loosing its meaning, a better
overview of the data is provided. Each response’s content is interpreted to a
certain question, and characterized its content on a more abstract level in forms
of codes. Responses from different interviewees could be classified to the same
code, if the meanings of the responses were the same although not necessarily
with the same wording.

To illustrate the data description process an example from the study is pro-
vided. The text shown is a response on the question how often the respondent
communicates with the team.

Well, I communicate with the team a few times a week if I would make
some kind of average guess. It is not every day at least.

The response was replaced by the code ”Communication occurs a couple of
times a week on average.” Thus, the text is described in a manner that better
answers the research question.

Pattern Finding. The purpose of this step is to structure gathered data, in
forms of codes, thus enabling reflection on how the codes correlate to each other
and the research question. By seeking patterns in the data, conclusions may be
drawn that answer the research question.

To illustrate how data can be ordered when seeking patterns an example is
provided from the study. Table 1 presents two aspects of the research question.
These aspects divide the research question into subparts which may help draw
valid conclusions. The aspects were identified when interviewing the study par-
ticipants. Each row in the table corresponds to codes from one study participant
on experiences how his collaboration with the team changed, as the agile process
was introduced. By viewing codes ordered in some form, patterns can be found
which may provide a deeper understanding of the phenomenon studied.

How Agile Development Affects Collaboration 493

Table 1. Experiences made by the organization when collaborating with the team

Team influence on collaboration Organizational influence on collaboration

”The team provides better time estimates
after the introduction of the agile process.”

”Internal projects require much attention,
which reduces available time to communi-
cate with the team.”

”The team answers questions faster after
the introduction of the agile process.”

”The organization does not understand
terms used in the agile process, which
makes communication with the team more
difficult.”

Critical Review. The last step of the qualitative data analysis process pre-
sented in Figure 1, is a critical review of the drawn conclusions. The purpose is
to investigate if alternative interpretations and conclusions can be drawn. Thus,
the validity of the conclusions is tried. The conclusions were reviewed subjec-
tively by us, in an attempt to validate them.

3.1 Validity

A number of threats to flexible design studies that applied to the study, are
mentioned in [2]. Description and respondent biases are threats that may affect
the validity of results gained. Description refers to the risk of providing invalid
descriptions of what you have seen or heard, based on inaccuracy or incom-
pleteness of data. To counter this, audit trail was used. That is, the interviews
were recorded with audio software, transcribed and stored electronically. Fur-
ther, daily notations were written down to maintain a research log. Respondent
bias refers to how respondents interact with the researcher, for instance pro-
viding answers they judge the researcher wants. To counter this, it was made
clear to the study participants that our researcher role was neutral to whether
the introduced process had any positive effects on the collaboration or not, thus
they did not have to feel any pressure for liking or disliking the process. The
countermeasures were subjectively considered to have a positive impact on the
validity of the results.

4 The Study Context

This section includes presentations of the case company and the study partici-
pants.

4.1 The Company

The study was conducted at a Swedish software development company. About
1500 people are employed by the company. Out of these 1500 approximately
250 work as software developers. The case company develops and maintains
more than 30 software systems, with several code tracks. In addition to this, a
number of software releases are delivered to customers each year. Apart from

494 H. Svensson and M. Höst

developing new functionality the company also corrects, adapts and modifies
software systems. Thus, the case company has an evolutionary and maintenance
software development environment.

4.2 The Study Participants

The target population for the research was people in the organization that col-
laborated with the software development team. Three persons, acting as cus-
tomer representatives, were chosen to participate in the study. To ensure that
the study participants were representative of the target population, they were
subjectively assessed through interviews before participating in the study. Two
persons worked as project leaders, and the third as an interface to external
customers by receiving requirement specifications, support issues and so forth.
The project leaders worked with several software development teams, and they
represented several customers. The third person who interacted regularly with
external customers had daily meetings with teams to discuss development issues.
The study participants had worked at the case company for about four years and
they were all around 35 years old. Each participant was interviewed three times,
to gain input on their views on the collaboration with the software development
team before, during and after the agile process was introduced. Thus, there was
in total nine interviews.

5 Introducing the Agile Process

This section provides an understanding on what was introduced and how it
differed from the standard XP. This is important information when analyzing
how the organization’s attitude varied as the agile process was introduced to the
team. The comparison between the introduced agile process and the standard XP
is provided in Section 5.1. Further, changes in collaboration between the team
and its surrounding organization as a result of introducing the agile process are
identified. These changes are presented in Section 5.2.

The agile process was based on XP, but not identical to it. Not all of XP was
introduced and some parts of XP were adapted to fit the team’s development
environment. Further, a large part of XP did not affect how the team developed
software. Thus, efforts were spent on introducing the parts of XP that generated
changes in the team’s software development process.

The text in this section is structured as follows. First, the section contains a
comparison between the introduced process and XP to clarify how the processes
differ in content. Finally, changes in the organization’s way to collaborate with
the software development team are identified, as a result of introducing the agile
process.

5.1 Comparing the Introduced Process to XP

Table 2 presents differences regarding the introduced agile process which the
team applied versus the standard version of XP. The table contains the practices
that were implemented differently than XP advocates.

How Agile Development Affects Collaboration 495

Table 2. Differences regarding the agile process versus XP

Planning game does not include user sto-
ries. No customer is present during plan-
ning game.

Planning game includes user stories. Cus-
tomer is present during planning game.

Pair programming is adapted. Software
tasks are solved individually, but pairs
meet regularly to discuss results.

Software is developed in pairs. Two per-
sons shift places periodically, one writes
and the other thinks strategically.

Coding standards are used for different
systems.

One coding standard is used for all soft-
ware development.

Simple designs may include needs for fu-
ture integration of new functionality.

A simple design include what is needed for
the moment.

Continuous testing covers only part of
a system.

Continuous testing covers a whole system.

On-site customer is an internal customer
representative, and is not part of the team
and not available all the time.

On-site customer is a real customer and is
part of the team and available all the time.

Continuous integration of a system oc-
curs at least once a week.

Continuous integration of a system occurs
at least once a day.

5.2 Changes in Collaboration Due to the Introduced Process

The introduced process changed how the team and its surrounding organization
collaborated. Below, a summary of the practices that had most impact on how
the team and its surrounding organization collaborated is presented. These prac-
tices were identified by interviewing people in the organization that collaborated
with the software development team.

Planning Game. The planning aspect mentioned in the practice Planning
Game was important for the team when collaborating with its surround-
ing organization. The organization’s current and future needs were included
in the team’s planned software development releases. The practice Planning
Game had a positive effect on the collaboration since it provided the orga-
nization with a better insight of the team’s software development progress.

Small Releases. The team delivered new software releases to the organization,
as covered by the practice Small Releases. To continuously release new ver-
sions of software was important in the collaboration between the team and
its surrounding organization, since the organization was able to continuously
review a system while it was being developed.

On-site Customer. The practice On-site customer addresses an important as-
pect that affected the collaboration between the team and its surrounding
organization, and that is the role of the customer. The team discussed de-
velopment issues with the customer representatives. These meetings acted
as a communication channel between the team and the organization. The
practice On-site customer had a positive effect on the collaboration between
the team and its surrounding organization since it provided the organization

496 H. Svensson and M. Höst

and the team with means for discussing software development issues on a
more detailed level.

The practice 40-hour week addresses an important issue in software develop-
ment projects, and that is time. The standard version of XP does not recommend
working overtime more than a couple of weeks in a row. The team applied the
practice whenever possible, but if something urgent needed to be solved the team
worked overtime if necessary. Thus, the collaboration was not affected negatively
seen from an organizational perspective, since the team was always available if
necessary. However, if the practice would have been applied as advocated by
the standard XP it is likely that the organization would had regarded this as
negative due to the team’s refusal of working overtime.

6 Results

The interview answers underwent qualitative analyses, according to the steps
described in Section 3. The customer representatives were interviewed before,
during and after the agile process was introduced. Based on these analyses a
number of conclusions were drawn concerning collaboration issues between the
team and its surrounding organization. Thus, the study investigated how agile
development affected the collaboration between the team and its surrounding
organization. The results are based on interviews with the customer representa-
tives. That is, from an organizational point of view.

6.1 Conclusions Drawn Before Introducing the Agile Process

Below, conclusions are listed concerning collaboration issues between the team
and its customer representatives before introducing the agile process.

1. The customer representatives feel that there is sufficient communication with
the software development team.

2. The customer representatives do not trust that the software development
team will deliver software when it has promised to.

3. The customer representatives feel that the software development team does
not inform them about recent changes in work issues. The team should pro-
vide feedback more often to the customer representatives.

4. The customer representatives feel they provide the software development
team with enough information so that the team can perform well with their
issues.

5. There does not exist any formal way of communicating with the team. For
instance, it varies which person in the team is contacted, how often and in
which way.

6.2 Conclusions Drawn During Introduction of the Agile Process

Below, conclusions are listed concerning collaboration issues between the team
and its customer representatives during introduction of the agile process.

How Agile Development Affects Collaboration 497

1. The customer representatives feel that there is sufficient communication with
the software development team.

2. Two of three customer representatives feel that the software development
team has improved its ability of keeping delivery dates.

3. Two of three customer representatives feel that the software development
team reduced the elapsed time before providing the customer representatives
with answers.

4. The customer representatives feel that the software development team does
not inform them about recent changes in work issues. The team should pro-
vide feedback more often to the customer representatives.

5. There does not exist any formal way of communicating with the team. For
instance, it varies which person in the team is contacted, how often and in
which way.

6.3 Conclusions Drawn After Introducing the Agile Process

Below, conclusions are listed concerning collaboration issues between the team
and its customer representatives after introducing the agile process.

1. The customer representatives feel that there is sufficient communication with
the software development team.

2. Two of three customer representatives feel that the software development
team has improved its ability of keeping delivery dates.

3. Two of three customer representatives feel that the software development
team reduced the elapsed time before providing them with answers.

4. Two of three customer representatives feel that the software development
team informs them about recent changes in work issues.

5. The customer representatives feel that the software development team has
improved its competence level and spread it throughout the team.

6. There does not exist any formal way of communicating with the team. For
instance, it varies which person in the team is contacted, how often and in
which way.

6.4 Trends Regarding the Collaboration Between the Team and
Its Surrounding Organization

The text in this section presents trends regarding the organization’s perception
of how its collaboration with the team changed, as the team was introduced to
the agile process. The trends regarding the organization’s viewpoints are based
on a subjective analysis of the drawn conclusions before, during and after the
introduction of the agile process. The trends are shown in Table 3.

As shown in Table 3, the subjective analysis concluded that the organization
perceived the introduction of the agile process positively. The team was consid-
ered more service-minded as it more often informed its surrounding organization
with software development issues and answered more quickly on questions gen-
erated from the organization.

498 H. Svensson and M. Höst

Table 3. Trends regarding collaboration issues between the team and its surrounding
organization

There is sufficient communication between
the team and its surrounding organization.

The introduction of the agile process did
not affect how often the team and its sur-
rounding organization communicated, ac-
cording to the organization.

There does not exist any formal way of
communication between the team and its
surrounding organization.

The introduction of the agile process did
not affect how the team and its surround-
ing organization communicated, according
to the organization.

The organization feels that the team has
improved its ability of keeping delivery
dates.

The introduction of the agile process had
an improvement of the team’s ability to de-
liver software at agreed dates, according to
the organization.

The organization feels that the team pro-
vides more feedback regarding software de-
velopment issues.

The introduction of the agile process
meant that the team more often informed
the organization about software develop-
ment issues, according to the organization.

The organization feels that the team has
reduced the elapsed time before providing
it with answers.

The introduction of the agile process
meant that the team more quickly pro-
vided its surrounding organization with
answers, according to the organization.

These positive aspects may be a result of the introduced changes in how
the team developed software. As the team started to plan their work in detail
they may have gained a better insight in how their work progressed and could
therefore more easily inform the organization on software development issues.
Further, the focus on the customer role may have made the team more service-
minded and as the team started to discuss software development issues in pairs,
knowledge was spread which made the team as a whole more competent.

7 Main Conclusions

Below, the main conclusions from the study are listed. They are subjectively
derived and concern how agile development affects the collaboration between
a software development team and its surrounding organization seen from an
organizational point of view. The main conclusions are based on conclusions
derived from interviews with customer representatives before, during and after
the introduction of the agile process.

1. The introduction of the agile process did not affect the way or how often
the customer representatives communicated with the software development
team.

2. After introducing the agile process, the customer representatives perceived
that the software development team responded to them with answers more
quickly.

How Agile Development Affects Collaboration 499

3. After introducing the agile process, the customer representatives increased
their trust to the software development team.

4. After introducing the agile process, the customer representatives perceived
that anyone in the team could more likely provide them with requested
information when asked for.

The empirical data presented in this paper is based on subjective opinions
of those interviewed. However, to better understand the effects of introducing
the agile process, the quantitative data presented in [11] could be considered.
An analysis of the data shows an improvement of productivity during the intro-
duction of the agile process. Hence, we can argue that the introduction of the
agile process had a positive effect, when referring to the analysis of the quantita-
tive data. This conclusion supports the views of the customer representatives, as
they argued that the team responded more quickly on questions and started to
deliver software releases at agreed dates, when the agile process was introduced.
Further, the customer representatives perceived that the team improved its level
of knowledge, which surely affects the team’s productivity in a positive way.

The effects from introducing the agile process presented in [12] is based on
the team’s viewpoint. As stated in [10] it is important to recognize different
perspectives when introducing software development processes in organizations.
The team’s opinion was that the introduction of the agile process did not alter the
way or how the team communicated with its surrounding organization. The team
discussed software development issues with its customer representatives. The
team perceived that the practice Planning Game improved its understanding
how it should plan its work. However, contrary to what is advocated by the
standard XP, the customer representatives did not participate in the planning
game since they were busy and occupied with other work tasks. As stated in [1],
the planning game is an important tool for communication between customer and
software engineers. Thus, it is possible that the collaboration between the team
and its surrounding organization would have been even better if the customer
representatives would have participated in the planning game.

8 Discussion and Future Research

The results show that the introduction of the agile process had a positive affect
on the collaboration between the software development team and its surrounding
organization. A stated in the main conclusions, the organization did not perceive
that it changed the way or how often it communicated with the team. Thus, the
improved collaboration is a reaction of how the team changed its software de-
velopment process. Earlier research mentioned in [13] has identified trust as a
critical success factor in collaboration issues, which this research also supports.
The organization increased its trust to the team as the team started deliver soft-
ware at agreed dates and more frequently informed the organization regarding
software development issues.

However, it is important to try to understand the underlying causes of why
use of the agile process improved the collaboration between the team and its

500 H. Svensson and M. Höst

surrounding organization. A better understanding of this issue may help organi-
zations realize how to introduce and adapt agile methods in order to maximize
results from collaboration efforts. First of all, the fact that the team members
were placed closer to each other probably played an important part, since this
facilitated the team’s communication. Another factor was the introduction of the
pair programming concept, where pairs helped themselves solve software issues.
In our opinion, this contributed to an increased transfer of knowledge within the
team. The planning game resulted in better time estimations from the engineers
which may have contributed to the increased level of trust to the team from the
organization. These activities and many more resulted in an improved perfor-
mance by the team which was recognized by the organization, as it received the
benefits of how the team developed software.

The results indicate that this informal approach to communication between
the customer representatives and the team facilitated use of the agile process.
Informal communication [3] is characterized as casual, spontaneous and can for
instance appear in the form of ad-hoc conversations or memos. The credibility
of the contents may be low, but the speed when communicating is high. Formal
communication on the other hand is characterized as deliberate and impersonal
with a high credibility of contents, but with a low speed when communicating.
The style is in form of reports, briefings, tables or diagrams and so forth. Further,
formal communication can easily be reviewed and referenced to since its contents
is under configuration control. Future research may investigate if agile methods
perform best in environments where informal communication channels are used,
or if software development results can improve as a result of introducing agile
methods in environments where formal communication channels is the norm.

The overall conclusion from the case study is that the organization perceived
that use of the agile process had a positive affect on its collaboration with the
software development team. Although there is no ambition to generalize the
results from the case study, they indicate that agile development facilitates col-
laboration between software development teams and their surrounding organiza-
tions. Hopefully, these results may inspire others to conduct research to further
explore how agile development affects collaboration in organizations.

Acknowledgements

Many thanks to the study participants at the case company who were willing to
share their experience regarding collaboration issues with a team using an agile
software development process.

References

1. Beck, K.: Exreme Programming Explained - Embrace Change. Addison-Wesley.
(2000)

2. Robson, C.: Real World Research - Second Edition. Blackwell Publishing Ltd.
(2002)

How Agile Development Affects Collaboration 501

3. Müller, R.: Communication of Information Technology Project Sponsors and Man-
agers in Buyer-Seller Relationships. Henley Management College, Brunel Univer-
sity. (2003)

4. Katzenbach, J. R. and Smith, D. K.: The Wisdom of Teams - Creating the High-
Performance Organization. Harperbusiness Essentials. (1993)

5. Lantz, A.: Intervjumetodik - Den professionellt genomförda intervjun (in Swedish).
Studentlitteratur. (1993)

6. Abrahamsen, P.: Samarbete, samverkan, samvaro (in Swedish). SVENSKA
FÖRLAGET liv & ledarskap ab. (2003)

7. Reifer, D.: How Good Are Agile Methods?. IEEE Software, Volume 19, Issue 4,
16–18, July-August (2002)

8. Grenning, J.: Launching Extreme Programming at a Process-Intensive Company.
IEEE Software, Volume 18, Issue 6, 27–33, November-December (2001)

9. Schuh, P.: Recovery, Redemption, and Extreme Programming. IEEE Software,
Volume 18, Issue 6, 34–41, November-December (2001)

10. Murro, O. and Roberto, D. and Giampiero, M.: Assessing XP at a European In-
ternet Company. IEEE Software, Volume 20, Issue 3, 37–43, May-June (2003)

11. Svensson, H.: A Case Study on Introducing an Agile Process to the Industry.
The International Conference on Empirical Assessment of Software Engineering
(EASE’04), Edinburgh, Scotland. (2004)

12. Svensson, H. and Höst, M.: Introducing an Agile Process in a Software Mainte-
nance and Evolution Organization. 9th IEEE European Conference on Software
Maintenance and Reengineering, Manchester, UK. (2005)

13. Blomqvist, K. and Hurmelinna, P. and Seppnen, R.: Playing the collaboration
game right - balancing trust and contracting. Technovation, Volume 25, Issue 5,
497–504, May (2004)

14. Rising, L. and Janoff, N. S.: The Scrum Software Development Process for Small
Teams. IEEE Software, Volume 17, Issue 4, 26–32, July-August (2000)

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 502–516, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Adapting PROFES for Use in an Agile Process:
An Industry Experience Report

Andreas Jedlitschka1, Dirk Hamann1, Thomas Göhlert2, and Astrid Schröder2

1 Fraunhofer Institute for Experimental Software Engineering,
Sauerwiesen 6, 67661 Kaiserslautern Germany
{jedl, hamann}@iese.fraunhofer.de

2 BMW Car IT GmbH,
Petuelring 116, 80809 München, Germany
Thomas.Goehlert@bmw-carit.de

Astrid.Schroeder@bmw.de

Abstract. Background: Agile methods are starting to get established not only in
new business organizations, but also in organizations dealing with innovation
and early product development in more traditional branches like automotive in-
dustry. Customers of those organizations demand a specified quality of the de-
livered products.
Objective: Adapt the PROFES Improvement Methodology for use in an indus-
trial, agile process context, to ensure more predictable product quality.
Method: An explorative case study at BMW Car IT, which included several
structured interviews with stakeholders such as customers and developers.
Result: Adapted PROFES methodology with regard to agility and initial prod-
uct-process dependencies, which partially confirm some of the original
PROFES findings.
Conclusion: The cost-value ratio of applying PROFES as an improvement
methodology in an agile environment has to be carefully considered.

1 Introduction

Agile methods have a reputation for being faster, more customer-related, and more
flexible in the case of unknown or changing requirements. As a result, agile methods
are being established not only in new business organizations, but also in organizations
dealing with innovation and early product development in more traditional branches,
like automotive industry. Nevertheless, customers of those organizations demand a
specified quality of the delivered product. It is here that software process improve-
ment (SPI) promises to contribute to an organization’s process maturity and, there-
fore, to obtaining stable and predictable product quality. Today, it is widely accepted
that SPI, similarly to software development, has to be performed in a systematic and
managed way. The PROFES (ESPRIT project no. 23239: “PROduct Focused im-
provement of Embedded Software processes”) improvement methodology [1] pro-
vides a framework of methods and tools that supports industries in their product-
driven process improvement. In contrast to traditional process-driven improvement

 Adapting PROFES for Use in an Agile Process: An Industry Experience Report 503

approaches that are mostly based on process capability and maturity models (e.g.,
[2]), PROFES starts with the product and especially with product quality to identify
improvement potential. The quality attributes are preferably defined by the customer
and used to drive improvement activities. This does not mean that, for example, proc-
ess assessments are not used, but they are not the only source for improvement initia-
tives. Another important aspect of the PROFES approach, and especially of the idea
of systematically managing experience with technology application, is to base deci-
sions on a comprehensible and documented basis, or, in other words, on empirical
evidence [3], [4], [5].

On the other hand, agile software development approaches have also become more
and more important today (e.g., [6]). Two of the main characteristics of agile devel-
opment approaches are short cycle times and less documentation in usually small
teams. Nevertheless, certain development activities including necessary documents
are explicitly demanded and set up.

So far, not much experience exists in improving agile software development proc-
esses and maturity. Basically, two scenarios are possible for coming up with a soft-
ware process improvement (SPI) approach for agile software development: a) define
an agile-specific SPI approach from scratch, or b) use an existing SPI approach and
adapt it to the specific needs of an agile approach.

For this work we have chosen the second scenario, since the aim of the company,
BMW Car IT, was to get a pragmatic solution with early results. The main reason to
do so was the expectation to come up with initial results in a shorter period of time.
Therefore, an existing software process improvement approach was chosen as the
starting point, namely PROFES, since it is especially designed for and used in the
embedded domain (due to the automotive background of the company). Before
PROFES could be used for an existing agile development process, PROFES had to be
adapted.

Research question: Is PROFES, although developed as an improvement method for
more traditional software development processes, transferable (after the typical, or-
ganization-specific adaptations) to an agile process environment?

To answer this question, we started with the identification of major quality issues
and product-process dependencies across eight projects. With regard to the quality
issues, we documented the shortcomings mentioned by the customers and provided
related Goal-Question-Metric-based quality models. To identify product-process-
dependencies (PPD), we performed structured interviews. The findings from the qual-
ity models and the PPD interviews were combined with information we were able to
obtain from a previous CMMi assessment. This led us to the areas with major im-
provement potential. Finally, we extended the agile process framework with the nec-
essary concepts to keep the PROFES continuous improvement cycle running.

The research question can be answered positively. In addition, we were able to
confirm that PPDs found in traditional processes are also valid in agile processes.

The remainder of the paper is structured as follows. First, in chapter two, we give
the necessary background to understand the case, a brief insight into the company, the
development process at hand, and a sketch of the PROFES methodology. Chapter
three gives a summary of related work. The methods used during the study are de-
scribed in chapter four. The steps performed to adapt PROFES to the agile environ-

504 A. Jedlitschka et al.

ment are shown in chapter five. In chapter six we summarize the main findings and
present some lessons learned. The paper is concluded in chapter seven.

2 Background

Software has become a fast-growing element in the modern automotive industry (c.f.,
Fig. 1). During the next few years, the effort for research and development (R&D) of
software-based functions will surpass the one for pure electronic R&D. Searching for
a better position to meet the challenges of the next decades, the BMW Group founded
BMW Car IT in 2002 as a competence center for automotive-specific IT know-how.
The task of BMW Car IT is to identify, evaluate, and integrate software-based tech-
nologies and methods for and in the BMW Group development process. Therefore,
three subgroups are concentrating on different aspects of information technology in
the automobile. The Man-Machine-Interface (MMI) group is researching methods and
processes enabling the efficient development of MMIs. The second group works on
integrated data management to support abstract communication and interaction of car
functions. The research on concepts
to modify or upgrade software after
the cars have left the manufacturing
base is done in the software transfer
group. Important aspects are coordi-
nated authorized access in different
areas of security as well as the
guarantee for consistency after
changes take place. These fields of
research at BMW Car IT are the pre-
requisite to enable software as a
product in the automotive industry.

2.1 The Process Context

Influenced by traditional software
process improvement teaching, the
need for stable and predictable
processes was identified. The mis-
sion for innovation and the vague-
ness of customer requirements were
accepted as main influencing fac-
tors for the targeted development
process. To establish such a proc-
ess, a separate project was started to
identify possibilities and assess
them for the specific demands.
Therefore, and to support the busi-
ness process, different approaches

Software-based
Functions

Mechanical
Functions

Electronic
Functions

Performance
[# interrelated
Car Functions]

Accummulated
R&D Effort [MY]

10

100

1.000

10.000

Status
Today

Fig. 1. Potential of Software Technologies

Code Test Refactor

acclamating
requirements

refining
requirements

internal planning
of iterations

new
functionality

Tuning Workshops

Risk-meeting Review

Fig. 2. The agile process at BMW CarIT

 Adapting PROFES for Use in an Agile Process: An Industry Experience Report 505

ranging from agile methods like “XP” to traditional approaches like the “V-Model”
were taken into account. It was found that due to the need for flexibility with regard to
customer requirements, fast delivery of first product versions, and involvement of the
customer, an agile model will fit the needs best. Nevertheless, it was not the aim to
instantiate the Agile Manifesto [7] as is, but a combination of techniques from differ-
ent agile approaches (mainly XP, but also FDD and Scrum) is needed. The process, as
depicted in Fig. 2, uses iterative development with preparation similar to the planning
game, selective pair programming, unit tests, refactoring, and acceptance tests.

2.2 The SPI Context: PROFES Methodology in a Nutshell

After having applied the process for half a year, a CMMi assessment found some
improvement potential. The company's goal to achieve higher quality complies with
the target to fulfill CMMi requirements, but the question was how to find an inte-
grated and proper approach for this company to apply, monitor, and assess the im-
provement actions. Therefore, a flexible but comprehensive improvement approach
was needed. The decision for an existing approach was made between the IDEAL
(Initiating, Diagnosing, Establishing, Acting, Learning) approach [8], and the
PROFES approach [1]. Since the IDEAL approach was not explicitly defined for the
embedded domain and defines SPI activities mainly based on the results of a CMM-
based software process assessment, the PROFES approach was chosen as the basis for
the agile SPI approach.

Fig. 3. The PROFES Improvement Methodology

The PROFES improvement methodology [1], [9], [10] uses a modified version of
the Quality Improvement Paradigm (QIP) [11]. To illustrate and emphasize the im-
portance of the product as a driver for process improvement, it is placed into the cen-
ter of the PROFES improvement circle (see Fig.3). The product is the starting point
for any improvement activities, starting with the identification of the product quality

506 A. Jedlitschka et al.

needs and the determination of the preliminary product quality goals. Product-
Process-Dependencies (PPD) [12], [13] form the linking element between the product
and the product development processes. PPD models are used to find and determine
the required process changes such that stated product quality improvement goals are
achieved. The PROFES improvement methodology consists of six phases, which are
further refined into twelve steps. The phases are depicted in Fig. 3. A detailed descrip-
tion can be found in [1].

2.3 Project Context

Projects at BMW Car IT deliver mainly textual documents, containing concepts, fea-
sibility studies, and proof of concept. The evidence is shown by developing (throw-
away) prototypes that will, as such, not be used in production. To better understand
the context, we give a brief categorization of the projects. In contrast to pure software
development, the customer of BMW Cat IT is mainly interested in the transfer of
knowledge, which is typical for R&D organizations. Four different types of projects
occur:

• Feasibility study, which is an evaluation of solutions regarding realizability
• Specification, e.g., of software to be delivered from externals
• Prototype, which is a proof of concept of the previous deliverables
• Concept, which is a detailed description of a solution for a given problem with

alternatives and evaluation. Concept includes the three project types listed above.

The size of projects ranges from one person up to seven, whereas the majority is
small to medium-sized; only a few projects consist of a number of six or more devel-
opers.

With regard to the agile process framework of techniques, appropriate techniques
can be chosen with regard to the type of project. For example, the role of the customer
varies. In projects initiated by customers without IT background, many assumptions
must be made without the customer being on-site. This changes if the customer di-
rectly participates in the project, for example with his own developers. Thus, in the
first case a customer proxy can be installed.

3 Related Work

Generic frameworks for Software Process Improvement (SPI) are the Software Engi-
neering Institute’s (SEI) Capability Maturity Model® (CMM)1 [14], or more recently,
the SEI Capability Maturity Model® Integrated (CMMI)2 [15], ISO9000:20003, and
the Software Process Improvement and Capability Determination (SPICE)4 [16].
These frameworks are standards for assessing organizational and software process
maturity. They can be used for benchmarking against an ideal set of requirements. But
they do not propose concrete SE techniques to be used in specific project situations.

1 http://www.sei.cmu.edu/cmm/cmm.html
2 http://www.sei.cmu.edu/cmmi/
3 http://www.iso.ch/iso/en/iso9000-14000/iso9000/iso9000index.html
4 http://www.sqi.gu.edu.au/spice/

 Adapting PROFES for Use in an Agile Process: An Industry Experience Report 507

Traditional SPI approaches are thought of as being related to plan-driven development
processes.

The most prominent continuous SPI approaches are SEI’s IDEAL Model [17] and
the QIP, which can be seen as the software engineering equivalent of Total Quality
Management [18]. The aim for continuity is reflected through the cyclic nature of the
above mentioned improvement approaches. The relation between PROFES and QIP
was mentioned before.

Recently, “revolutionary” approaches are coming up, especially in the area of the
Internet. They tackle what they call the “bureaucracy” by moving the human factor
(communication) into the main focus. To facilitate reading, we summarize all
those approaches under the name “agile methods”. A recent survey is given in [19].
Nevertheless, according to Boehm [6] a liberal interpretation of CMMI includes agile
methods.

Traditional as well as agile methods have to overcome issues like short time to
market, frequently changing requirements, low budgets, and high quality demands.
Addressing desires such as speeding up software development (more software parts
with fewer staff in shorter time) and dealing with vague requirements (late changes)
Manhart & Schneider [20] added single agile practices (e.g., test first) to their QIP-
based process improvement toolbox.

In addition, there is a lot of research going on to replace ore enrich traditional tech-
niques with those compatible with agile development. Especially in the area of meas-
urements [21], [22], [23], [24] and [25] have given much attention to retrospective-
like practices.

The main difference between Manhard & Schneider’s work and the work presented
here is the starting point. They started with the traditional software development proc-
ess, including process improvement, and brought agile aspects into that framework to
improve the development process. Our work started from a given agile process
framework and the task was to show how a “traditional” process improvement
method (PROFES) can support higher product quality and learning from experience.

4 Research Method

The research approach can be summarized as follows. First, we performed a survey
among eight experts on the customer site of BMW Car IT (customer interviews). Each
expert is a customer’s representative responsible for one project at the customer site.
These experts are the most important stakeholders and have the broadest quality over-
view regarding requirements and issues. Out of the eight customer projects, six had
already finished the starting phase. One project had just been started, whereas another
one was just finished. The aim of this survey was to identify relevant product qualities
and related characteristics from a customer perspective. The interviews were struc-
tured as follows: After some initial questions, we asked for the expected deliverables.
For each deliverable, we asked for positive as well as negative experience related to
quality. We concluded with questions related to the customer’s quality requirements.

For the purpose of finding initial PPDs we used goal-oriented interviews based on
the well-known Goal-Question-Metric (GQM) method [26] (PPD interviews). We
interviewed four senior employees of BMW Car IT (two project leaders, one technical

508 A. Jedlitschka et al.

coordinator, and one developer). For each goal we interviewed each person; addition-
ally, we interviewed two persons each for the project types prototype and concept.

To find further details and to evaluate the initial findings, we conducted five addi-
tional interviews. The interviews were comparable to retrospectives. We confronted
the project members with the quality requirements and issues of the customer (our
findings from the customer interviews). Thus, we asked, e.g., how did you achieve
customer satisfaction, or how will you avoid this problem in the future. This led to
concrete techniques and more detailed PPDs. Table 1 gives an overview of the se-
quence of the interviews.

Table 1. Sequence of interviews

Step # Inter-
views

Interviewees Purpose of the Interview

1 8 Experts on customer
site

Identify product qualities and
related characteristics

2 4+4 Senior employees Identify initial PPDs
3 5 Project members Evaluate the initial findings

With regard to the acquisition and evaluation of the PPDs, a more quantitative
analysis of the projects was not possible, since a measurement program was not in
place before.

5 Adapting PROFES for Use in an Agile Environment

Before describing what has been done, we give some restrictions. Some are due to
practical reasons, whereas others are due to time restrictions. The first step was to
decide whether PROFES should be applied in a specific project (bottom-up) or
whether it should be applied across projects (top-down) right from the beginning.
Taking into account the inhomogeneity of the projects in that company, yielding
transferability issues, it was decided to start top-down. Due to time restrictions we
skipped phases four (execute) and five (analyze). In phase three, we suggested how to
adapt the development process to support PROFES in future.

5.1 Product Quality Criteria

For the analysis of the first series of the customer interviews, we distinguish between
the concept and prototype project types and categorized the quality criteria accord-
ingly. We found that some requirements and issues are valid for both types of pro-
jects, so they were assigned to the category generic. Since the company is working in
the area of software, we used ISO 9126 as a starting point and extended the given
criteria with company-specific criteria like “development time” and “cooperation”.
The first one was already addressed in PROFES, whereas the latter one is a new but
very important one in this context. Both of them are valid across the company’s

 Adapting PROFES for Use in an Agile Process: An Industry Experience Report 509

products (projects). Other criteria, like functionality and usability, are more specifi-
cally related to the type of project.

Fig. 4. Overview - distribution of the quality criteria relevance

Fig.4 gives a summary of the analysis of the customer survey. The x-axis depicts
the extended list of quality criteria and the y-axis shows the relevance. The relevance
is the standardization of the weighted customer statements consisting of number and
kind (fulfilled, unfulfilled, wished, and unimportant).

In contrast to the original PROFES approach, where for each project the quality at-
tributes have to be acquired in advance, in the context of R&D, quality and project
goals are a matter of evolution, and thus difficult to obtain in advance. In addition,
because of the innovative character of R&D projects, the knowledge about what will
happen might have a lower level than in more traditional software development.

Table 2. Quality characteristics chosen for further investigation and number of related PPDs
found during the interviews

Quality characteristic Operational problem area # PPDs

Communication

Infrastructure Collaboration
Controlling

8

Risk management

Time divergences Time
Customer overview

9

Innovation / Feasibility Functionality & Usabil-
ity Suitability / Understandability

7

Within this work, we did not explicitly perform a process assessment as described
in PROFES step 4 to identify further process improvement potential. Instead, we used
information from a CMMi assessment that was performed during the year before our

510 A. Jedlitschka et al.

work started. The identified weaknesses in addition to the findings from the customer
interviews were used as a basis for the definition of the improvement goals.

Based on the customer interviews and the results from the CMMi assessment, we
chose the quality goals shown in Table 2.

The reason for the combination of functionality and usability is due to the special
context of BMW Car IT in the early development. This also reflects the fact that in
requirement documents, functionality and usability cannot really be separated, so an
explicit assignment of customer statements was not possible.

5.2 Product-Process-Dependencies

Hamann et al. [12] and Birk [27] propose a process for the construction of PPDs.
Ideally, the process starts with a literature survey to acquire the state of the art and the
state of the practice. In parallel, expert interviews and analysis of existing data are
used to get organization-specific information. The theoretical and practical informa-
tion is combined into initial PPD models. During its life cycle, the PPD is continu-
ously evolved and evaluated (if applied).

For the purpose of this project, we used the analysis of the PPD interviews, which
yielded initial quality models and more concrete insights with regard to problems. We
found eight PPDs for collaboration, nine PPDs for time, and seven PPDs for func-
tionality & usability. These PPDs are already in use and have shown their applicabil-
ity in different projects (up to four) (c.f. Table 2). Additionally, we found detailed
information with regard to metrics.

Further on, we analyzed the PPDs found during the PROFES project with respect
to their transferability into this organization. We found four PPDs (candidates), from
which two have already been successfully applied, among them a PPD related to
development time, which is positively influenced (shortened) by having project and
iteration planning installed.

Further investigation of the PPDs provided by the PROFES project yielded few
operational results; in most cases, the context was not provided in a way that would
have allowed a goal-oriented selection. A comparison with the PPDs developed from
the interviews showed that they can be seen as operationalization of the abstract
PROFES PPDs that were candidates for this environment. For those PPDs that could
not be operationalized, detailed investigation will be done in future projects. In the
case of design and requirements PPDs, work has already started. That was the reason
for separating the relevant PPDs into two groups: those that are applicable directly,
and those that have to be detailed further.

5.2.1 The Influence of Context Factors on PPD Evolution
Many authors have already discussed the need of context factors. Birk describes a
two-layer model with different abstraction levels based on taxonomies, e.g., for proc-
esses [27]. In many cases, information about the company, like domain, size, etc. as
well as project and team characteristics are used to describe the context in which a
certain technology has been applied in.

Since this work was performed in a project organization, we started with the char-
acterization of the projects. On this level the more general context factors describe the
kind of project, (1) the definition of work, (2) the number of team members, (3) the

 Adapting PROFES for Use in an Agile Process: An Industry Experience Report 511

number of stakeholders, (4) the responsible group, and (5) the proximity to produc-
tion. The context factor definition of work is a four-dimensional vector, whose axes
are related to the proportions of conceptual work, coding, theoretical investigation,
and demonstration. Each axis has four possible values: none, low, medium, and high.
These factors were provided by the interviewees for their specific project. Later on,
the more technology-specific factors were acquired, for example, what Jedlitschka et
al. [4] call pre-condition for the application of the technology.

The interviews with experts, such as project managers and leading developers,
yielded context factors, technology experience, and best practices. Due to the clarity
of the process, the relationship between PPD and process area was implicit.

PPDs found in this company differ from the PROFES PPDs [1], especially in the
handling of context factors. To allow us to also learn from negative experience, we
extended the status of context factors. A context factor can also be “negatively vali-
dated”. Additionally, we do not only have a single context model for one PPD, but a
separate context model for each single application. This gives us the opportunity to
provide “historic” information and assures that we do not loose information through
the process of aggregation. Nevertheless, we provide aggregated context information
to the user, thus not overloading him with unnecessary information. Additionally, we
do have descriptions of the contexts in which a PPD has been applied, and so we are
able to validate them on different levels.

Fig. 5. Resulting problems of simple context aggregation

The example given in Fig.5 depicts the problem that would arise with “simple” ag-
gregation of context factors. Assume we would have applied a certain technique in
two different projects, Project 1 and Project 2. The technique was applied success-
fully in Project 1 using an agile life cycle method and eight developers. The same
technique was also successfully applied in a waterfall-driven project with 19 develop-
ers. “Simple” aggregation would lead to the assumption that the technique is also
applicable in a project within an agile environment and with a team consisting of 18
persons, or vice-versa. Although validated in their specific combination, the new
combination is only a hypothesis and not validated yet. By taking the “history” into
account, we help the decision maker not to be trapped by misleading assumptions.

The downside of this approach is that we have to explicitly deal with contradictory
findings. One reason, especially for contradictions over a longer time-span, might lay

512 A. Jedlitschka et al.

in the evolution of the organization. If there are contradictions, the reason is in the
application itself or within the relationships of the context factors; the discriminating
one is missing. In this case we suggest a careful investigation of the context factors,
e.g., through technology reviews, followed by aggregation supported by the technol-
ogy experts. Returning to the given example, the PPD could be separated considering
the lifecycle as a separating context factor. The conclusion is that only those PPDs
can be aggregated (automatically) that vary in the instances for only one context fac-
tor. Additionally, we need to differentiate between the levels of validity; a PPD that
has been applied successfully, e.g., eight times, has a greater validity than one that has
only been applied once.

5.2.2 PPD Repository
In contrast to the original PROFES approach where the PPDs are stored in a data-
base-driven repository, the PPDs are stored in a Wiki5. This allows distributed “con-
tent (PPD) management”, since everyone is allowed to provide information. In gen-
eral, the process team hosts the Wiki and supports people with their PPD-related work.
Especially in case of contradictions, the process team acts as “mediator”, thus is re-
sponsible for resolving the contradiction as mentioned above. This very open solution
might only fit an organization with smoothly cooperating developers where security is
not a big issue. We are well aware that for bigger organizations and those with more
separated projects, security and PPD management are an issue.

5.3 Adaptation of PROFES

Finally, we suggest how to use and evolve the PROFES methodology in the agile
process environment.

The main issue, after having shown that PROFES is, in general, usable in an agile
environment, and after having collected initial organization-specific PPDs, was to
extend the agile process with aspects that are necessary in order to be able to benefit
from PROFES. One conflicting requirement with regard to the adaptation of the agile
process was that the agility of the process environment should remain. This required
some adaptations of the PROFES approach.

The first issue is that because of the agile environment, the goals and therefore the
quality attributes are not fixed from the beginning. The goals are to be defined during
the project itself. The original PROFES approach requires the goals right from the
beginning, since they are used to perform the goal-oriented tailoring, that is, selection
of the right technology taking the quality goals into account.

The second issue is that the iterations are very short, i.e., on average six weeks,
which makes it very hard to fulfill all PROFES steps. Nevertheless, we found that
many projects have a rough plan that spans more than one iteration, especially if the
project has already been running for some time.

5 Wiki is in Ward's original description: The simplest online database that could possibly work.

Wiki is a piece of server software that allows users to freely create and edit Web page content
using any Web browser. Wiki supports hyperlinks and has a simple text syntax for creating
new pages and cross links between internal pages on the fly [from http://wiki.org/
wiki.cgi?WhatIsWiki].

 Adapting PROFES for Use in an Agile Process: An Industry Experience Report 513

The third issue is that the projects do not have the resources to deal with formal
PPD construction. In some cases, when, for instance, a new technique was applied,
PPD construction is implicitly done, but the formal description has to be supported by
the organization, i.e., the process team.

Fig.6 depicts the extension of PROFES with regard to the agile environment.
Whereas the standard PROFES methods can be applied on the organizational level
and on the project level, we found that on iteration or group level, some more “light-
weighted” methods are to be used.

Based on these circumstances, we suggest to adapt PROFES as follows:

• In the phase start of project after the initial requirements elicitation, the initial
goals for the project are available. Based on these goals, it is possible to apply
PROFES. In this phase we propose to use “heavy-weighted” activities like as-
sessments, but also the preparation and enactment of a measurement plan.

• In the subsequent iterations, the application of PROFES is useful if important as-
pects have been changed, e.g., quality goals. In the beginning of the projects, this
occurs quite often, so the sugges-
tion is to use only “light-
weighted” PROFES aspects, like
interviews with customers and
usage of an online PPD reposi-
tory. For now, the company has
decided to use regular require-
ments meetings and resulting lists
of requirements and issues to
track product quality from a cus-
tomer perspective. These lists are
also used to select appropriate
techniques. After having applied
the technique, the application ex-
perience has to be stored in the
Wiki.

• The explicit PPD construction
also needs to be done, as de-
scribed in this work, on an organizational level. This is in slight accordance with
the QIP paradigm where we do have an organizational level and a project level.

6 Main Achievements and Lessons Learned

Based on the work presented here, we present results for four perspectives.
For the PROFES perspective, we have provided evidence that PROFES is highly

adaptable because of its flexibility in using the underlying methods and technologies.
A more comprehensive guideline with references to known alternatives would be
helpful, but could not replace an introduction-/adaptation phase of PROFES in a new
organization. Ideally, the target process is also adapted to improve the integration of
PROFES. This includes, for instance, a higher documentation effort for the developer,
or the extension of the project cycle by an additional iteration cycle.

Fig. 6. Aggregating PROFES and agility

514 A. Jedlitschka et al.

For improving PROFES, we suggest to

• consider negative experience as valuable for being stored in the PPDs
• extend the customer-oriented view of PROFES beyond the product quality horizon

with aspects like quality of cooperation if there is an influence on the product
quality

For the agile perspective, we found that the proposed approach supports learning.
Traditionally, agile environments heavily depend on interpersonal communication
(socialization [28]) to transfer knowledge. The approach proposed here extends this
kind of communication by active knowledge elicitation, i.e., by using interviews, and
the publication of this knowledge within PPDs. In cases where “light-weight” is not
the key issue, continuous assessments [29], in comparison to traditional assessments,
reduce the effort (time and resources) needed for assessments [30] and thus contribute
to the agile idea.

For the organization perspective, we found that:

• the primary benefit is the exploration of the customer quality requirements, and
the integrated way of achieving their fulfillment.

• PROFES assists in the development of a learning organization, which is a critical
success factor for the evolution of an organization, especially in R&D.

• the need for achieving higher capability or maturity levels in a process becomes a
more sophisticated aspect. This helps to invest available resources in product qual-
ity-related processes in a goal-oriented manner with respect to the organizational
needs.

From a customer perspective, we found that:

• the integration of the customer in product quality improvement gives him the
chance to articulate his quality requirements explicitly, but he also assumes the
risk of failure if he does not do so.

• through the methodological assistance, it becomes easier to formulate product
quality requirements that are easier to understand and realize by developers.

7 Summary

With this work we have shown that PROFES as an improvement method can be ap-
plied in an agile environment. The adaptation of PROFES to the organization-specific
requirements did not exceed the expected effort. Besides this finding and the acquisi-
tion of the initial PPDs, some of the original PROFES PPDs were revalidated. So we
have at least initial indicators that techniques are transferable between traditional and
agile environments.

Adaptations with regard to the agile process framework were necessary in the area
of measurement and documentation. We did not start a dedicated measurement pro-
gram (although measurement is also a topic in agile environments); instead, we pro-
posed retrospectives using the quality models to track progress and quality, and to
discuss the usability of PPDs. To overcome the issue of documentation in agile envi-
ronments, we proposed a Wiki-based PPD infrastructure.

 Adapting PROFES for Use in an Agile Process: An Industry Experience Report 515

The experience we made at BMW Car IT show that combining PROFES with an
agile approach is possible and useful, although, it requires some effort, in particular,
when the issue is to keep the resulting process possible as “light-weighted” as possi-
ble. At BMW Car IT, we use process review meetings at the end of each iteration to
reflect upon and document the context factors under which certain best practices did
or did not work. In summary, the cost-value ratio of applying PROFES in an agile
environment has to be carefully considered.

Acknowledgements

We would like to thank all interviewees at the customer site who have contributed to
the success of this work by providing their expert knowledge. Without their support,
this work would not have been possible. We would also like to thank Dietmar Pfahl
for fruitful discussions and the anonymous reviewers for giving valuable feedback,
thus helping to improve the paper. Furthermore, we are grateful to Sonnhild Nam-
ingha from the Fraunhofer Institute for Experimental Software Engineering for re-
viewing a previous version of this paper.

References

[1] The PROFES Consortium. The PROFES User Manual. Fraunhofer IRB Verlag, Stuttgart,
Germany, 1999.

[2] CMMI Product Team. Capability Maturity Model Integration CMMI, Version 1.1 CMMI
for Systems Engineering and Software Engineering (CMMI-SE/SW, V1.1) Staged Repre-
sentation. Technical Report CMU/SEI-2002-TR-002, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, December 2001.

[3] Kitchenham, B.A.; Dybå, T.; Jørgensen, M.; “Evidence-based Software Engineering”, in
Proc. Intern. Conf. on Software Engineering, May 2004 Edinburgh, Scotland, UK, pp.
273-281

[4] A. Jedlitschka; D. Pfahl, and F. Bomarius: “A Framework for Comprehensive Experi-
ence-based Decision Support for Software Engineering Technology Selection”; In Proc.
of Intern. Conf. SEKE 2004. Banff, Canada, 2004, pp. 342-345

[5] A. Jedlitschka; M. Ciolkowski: Towards Evidence in Software Engineering; In Proc. of
ACM/IEEE ISESE 2004, Redondo Beach, California, August 2004, IEEE CS, 2004

[6] B.Boehm; Get Ready For Agile Methods With Care; Computer, Vol. 35, 2002, pp.64-69,
[7] Agile Alliance. Manifesto for Agile Software Development, http://www.agilemanifesto.

org, 2001
[8] B. McFeeley. IDEAL: A User’s Guide for Software Process Improvement. Handbook

CMU/SEI-96-HB-001, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pennsylvania 15213, February 1996.

[9] A. Birk, J. Järvinen, S. Komi-Sirviö, P. Kuvaja, M. Oivo, and D. Pfahl. PROFES – A
Product Driven Process Improvement Methodology. In Proceedings of the Fourth Euro-
pean Conference on Software Process Improvement (SPI ’98), Monte Carlo, Monaco,
Dec 1998.

[10] M. Oivo, A. Birk, S. Komi-Sirviö, P. Kuvaja, and R. v. Solingen. Establishing Product
Process Dependencies in SPI. In Proceedings of the European Software Engineering
Process Group Conference 1999 – European SEPG99, Amsterdam, The Netherlands,
June 1999.

516 A. Jedlitschka et al.

[11] V.R. Basili, G. Caldiera, and H.D. Rombach: Experience Factory; in: Marciniak JJ (ed.),
Encyclopedia of Software Engineering, Vol. 1, pp. 511-519, John Wiley & Sons, 2001.

[12] D. Hamann, J. Järvinen, A. Birk, and D. Pfahl. A Product–Process Dependency Defini-
tion Method. In Proceedings of the 24th EUROMICRO Conference: Workshop on Soft-
ware Process and Product Improvement, Volume II, pages 898–904, Västerås, Sweden,
August 1998. IEEE Computer Society Press.

[13] D. Hamann, J. Järvinen, M. Oivo, and D. Pfahl. Experience with explicit modelling of re-
lationships between process and product quality. In Proceedings of the Fourth European
Conference on Software Process Improvement (SPI ’98), Monte Carlo, Monaco,
Dec.1998.

[14] Jalote, P.; “CMM in Practice. Processes for Executing Software Projects at Infosys” Ad-
dison-Wesley, Reading; 1999.

[15] Chrissis, M. B.; Konrad, M.; Shrum, S.; “CMMI. Guidelines for Process Integration and
Product Improvement”; Addison-Wesley, Boston; 2003,

[16] El Emam,K.; Drouin,J.-N.; Melo,W. (Eds.); “SPICE. The Theory and Practice of Soft-
ware Process Improvement and Capability Determination”; IEEE CS, Los Alamitos,
1998.

[17] Gremba, J.; Myers, C.: “The IDEALSM Model: A Practical Guide for Improvement” in
Software Engineering Institute (SEI) publication, Bridge, issue three, 1997.

[18] S.K.M. Ho; TQM – An integrated approach; School of Business, Hongkong Baptist
University; 1999

[19] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta. Agile Software Development
Methods. Review and Analysis. VTT publications 478, VTT Electronics, Espoo, Finland,
2002.

[20] P. Manhart, K. Schneider: Breaking the Ice for Agile Development of Embedded
Software: An Industry Experience Report; IN Proc. Of the 26th Intern. Conf. on Software
Engineering (ICSE’04), Mai 2004, Edinburgh, Scotland, pp 378-386

[21] M. Visconti and C. R. Cook. An Ideal Process Model for Agile Methods. PROFES 2004,
pages 431–441.

[22] A. Birk, T. Dingsoyr, T. Stalhane; Postmortem: never leave a project without it; IEEE
Software, Vol. 19 , Issue: 3 , May-June 2002, pp. 43 - 45

[23] J. Kerievsky. Continuous Learning, Proc XP. 2001.
[24] C. T. Collins and R. W. Miller. Adaption: Xp style, Proc XP. 2001.
[25] T. Dingsøyr and G. K. Hanssen, Extending Agile Methods: Postmortem Reviews as Ex-

tended Feedback, Learning Software Organizations Workshop, Chicago, Illinois, USA,
2002

[26] V.R. Basili, G. Caldiera, and H.D. Rombach: Goal Question Metric Paradigm; in: Mar-
ciniak JJ (ed.), Encyclopedia of Software Engineering, Vol. 1, pp. 528–532, John Wiley
& Sons, 2001.

[27] A. Birk: A Knowledge Management Infrastructure for Systematic Improvement in Soft-
ware Engineering; Ph. D. diss., Dept. of Computer Science, University of Kaiserslautern,
Germany; Stuttgart: Fraunhofer IRB Verlag; 2000.

[28] I. Nonaka, H. Takeuchi. The Knowledge-Creating Company: How Japanese Companies
Create the Dynamics of Innovation. Oxford University Press, New York 1995.

[29] J. Järvinen. Measurement based continuous assessment for software engineering proc-
esses. PhD thesis, VTT Publications, Technical Research Centre of Finland, 2000.

[30] J. Järvinen and R. v. Solingen. Establishing continuous assessment using measurements,
in Proc. of the 1st International Conference on Product Focused Software Process Im-
provement 8PROFES’99), Oulu, Finland, June 22-24. 1999, pp. 49-67

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 517 – 529, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Agile Hour: Teaching XP Skills to Students
and IT Professionals

Daniel Lübke and Kurt Schneider

University Hannover
{daniel.luebke, kurt.schneider}@inf.uni-hannover.de

Abstract. Agile Methods, like Extreme Programming, have increasingly
become a viable alternative for conducting software projects, especially for
projects with a very short time-to-market or uncertain customer-requirements.
Using a technique called Agile Hours it is possible to convey many feelings
associated with an Extreme Programming project. Within 70 minutes, a project
is performed in which a product is built with Lego bricks. We applied this
approach to (1) students and (2) IT professionals. By comparing the two groups,
we found that both behaved comparable: we observed a number of interesting
differences, although of minor importance. Both groups seemed to benefit from
the Agile (Lego) Hours.

1 Introduction

In opposition to the established process-oriented software-methodologies, agile
methods have increasingly become common for conducting software projects during
the last years. These methods are built around very light-weight techniques [1] aimed
at producing high-quality software in projects with very short time-to-market, with
uncertain or even unknown customer requirements [2].

All agile methods share common values which are described in the Agile
Manifesto [3]. The Agile Manifesto’s authors “have come to value…

• …Individuals and interactions over processes and tools,
• …Working software over comprehensive documentation,
• …Customer collaboration over contract negotiation,
• …Responding to change over following a plan.”

These values have proven to be useful in scenarios where requirements are rapidly
changing and huge efforts to plan upfront waste resources [4-7].

The best-known agile method is Extreme Programming (XP) [1, 8] originally
introduced by Kent Beck. XP consists of 12 practices, which support each other.
These practices are project guidelines prescribing how to deal with requirements, how
to manage code etc.

We started using the Extreme Hour when we were teaching agile methods in a
software engineering lecture. The Extreme Hour was originally developed by Merel
[9]. It is a very short simulation of an XP project. In this simulation, no software is

518 D. Lübke and K. Schneider

being developed but instead products are constructed by being drawn on paper. Later
on, we modified the Extreme Hour and called the generalization “Agile Hours”. For
example, we developed it further by using Lego bricks instead of drawing. We called
this particular variant the “Agile Lego Hour”. In our terminology, Agile Hour is a
more general term than Extreme Hour (drawing) and Agile Lego Hour (building).

We not only used the Agile Hours to introduce XP to (1) computer science students
but had also the opportunity to teach XP to (2) IT professionals in an industrial Java
User Group. In this paper we compare the behaviour of the two groups during the
Agile Hours. On this empirical basis, we infer a number of lessons learned about the
Agile Hour, and Agile Lego Hours in particular. We explored the options and
potentials of Agile Hour variants. We present our observations from this exploration.
Obviously, those observations need further confirmation through (controlled)
experiments; we hope our findings will help to guide this continuing empirical work.

In the next section of this paper, typical problems of teaching XP in general are
discussed. Afterwards, the Agile Hour is presented as our approach to deal with those
problems. In the forth section, we discuss the differences between the Agile Hour and
actual XP projects. Afterwards, we share common experiences of six Agile Hours we
conducted. In the last two sections the differences between the students’ and IT
professionals’ reaction to the Agile Hour and XP are analyzed.

2 Problem of Conveyance

2.1 Conveying XP Experience

XP favours and utilizes many social capabilities of the project’s participants.
Therefore, it is difficult to teach XP without practicing it. Because many things need
to be experienced in order to fully understand them and realize their consequences, it
simply is not sufficient to know what practices XP comprises, what they are called
and what to do. XP, like other agile methods, needs to be experienced! In this case,
we mean by experience (1) an observation combined with (2) associated feelings and
(3) derived reasoning and conclusions. Experiences are stronger than (theoretical)
knowledge, as they are more memorable and the reasoning can be used in future
situations. Agile methods (like XP) evolved from programmers’ experiences in the
first place and can only be fully understood when combined with own experiences
concerning their practices. Furthermore, many of the practices’ dependencies can
hardly be inferred in theory. However, they become obvious when the method is
applied to a problem.

Moreover, XP practices are completely different from other established process
models, like the waterfall-model [10] or the V-model used by the German government
[11, 12]. Therefore, it is even more challenging to introduce XP to IT professionals
who have used and got used to the above-mentioned traditional processes and their
underlying assumptions. They often do not believe that some software projects could
be run this way. Some have even learned to resent this option.

Besides the “softness” of this topic, time-constraints are further complicating the
teaching of agile methods. In university, a lecturer often faces about 100 students in a
software engineering lecture, all of whom are supposed to understand agile methods

 Agile Hour: Teaching XP Skills to Students and IT Professionals 519

within two or three weeks. In the best case, this requires an opportunity for about 100
students to somehow gain the necessary experience. In industry agile method courses,
one does not have such a high number of participants, but their time is more
expensive and, thus, even more limited. Employees are rarely assigned for a longer
time just to see whether a new methodology is good or not. Neither a large number of
students nor highly expensive IT professionals can conduct real XP projects for
learning only.

2.2 From the Extreme Hour to the Agile Lego Hour

The first time we had to teach XP was in an introductory level Software Engineering
lecture, which includes a chapter about Agile Methods. Because of the above-
mentioned problems, we decided to organize the corresponding exercises as Extreme
Hours. An Extreme Hour lasts 70 minutes. Because of this, Extreme Hours are an
easy and time-effective way to convey the most important aspects. Extreme Hours
have been successfully used in different variations (e.g. [13]). With our own minor
variations, we called them “Agile Hours” to indicate the more general approach.

During the above-mentioned lecture we organized five Agile Hours. However, we
encountered some disadvantages: Students could easily cheat with drawing because
drawing a computer or some kind of controller is very easy and can solve arbitrary
tasks. Furthermore, we found drawing is dissimilar from programming in important
aspects:

• Programming is a more constructive task than drawing,
• With computers, operations like moving, deleting and reorganizing source

code is much easier than to alter a drawn picture,
• Parts of drawings cannot be easily organized in hierarchical structures like

packages, modules etc.
• Programming nowadays often uses components and frameworks for solving

reoccurring tasks; programmers have to search for such solutions to their
problems in libraries.

Finally, the quality assurance (QA) role was a very ungrateful role to play: The
students doing the QA job did not participate at the planning game and development,
and therefore could not participate in the most important activities.

To eliminate this effect, we decided to modify the Agile Hour more drastically. We
replaced drawing by the use of Lego bricks and removed the QA role completely. The
usage of Lego bricks addresses the outlined problems with drawings:

• Lego bricks are assembled in a constructive manner,
• Lego bricks can be easily removed or shifted around in a model,
• Lego bricks can be assembled to modules,
• Lego bricks are predefined components of which limited types are available.

We call this new variant “Agile Lego Hour”, as it uses Lego bricks. We conducted
two Agile Lego Hours in different environments: One with 6 students, the other with
11 IT professionals during a Java User Group meeting. In the remainder of this paper
we focus on comparing Agile Lego Hours in the two different environments.

520 D. Lübke and K. Schneider

3 Description of an Agile Lego Hour

For helping participants to understand agile methods, we introduced agile methods
with a strong focus on XP before starting with the Agile Hour. The lecture provided
the students with necessary theory.

For the IT Professionals we did a 30-minute introduction explaining the basics of
XP and the origin of agile methods.

Afterwards, the participants chose their roles: For Agile Hours, two customers are
needed; the rest of the participants work as developers. We acted as trackers and
coaches who supervised the project and answered questions concerning the method.
After the roles had been assigned, the project goal was given to the whole team. These
project goals should be mechanical items buildable with elementary Lego bricks and
should offer enough freedom for the customers to shape the project according to their
ideas. We found “Mosquito Hunter” and “Family Spaceship” appropriate project
goals because they represent general ideas, everyone has a general understanding of
their functionality, and they call for mechanical (e.g. Lego) implementation.

The following main part of the Agile Lego Hour is divided into 7 phases of exactly
ten minutes (and zero seconds!) each. In each phase the remaining time is projected
onto a wall and as such is visible to all participants. The phases are:

1. Story Cards & Spike: In the first ten minutes, the customers write down
their story cards for the given project idea. This is done on a flipchart, while
reserving some space to the left, which is needed later on in the planning
game (see figure 1). Story cards correspond to 1-2 lines on the flipchart each.
In the meantime the developers are pairing, i.e. grouping to a team of 2
developers. Each team builds a prototype independently to get ideas for the
project and to get accustomed to the Lego bricks available. During this phase
the trackers supervise the story card creation process.

2. Estimation of Priorities and Effort: In the second phase the developers
present their prototypes which are destroyed afterwards. Then, the customers
have to explain the story cards to the developers and to prioritize them. Three
levels are available: “A” for very important/cannot ship without, “B” for
important and “C” for nice to have but not necessary. The priority is written
next to the story cards. After this presentation, the developers have to
estimate the needed effort in points. The Agile Hour (like XP) uses an
abstract effort unit, e.g. “points”. Those points are calibrated using the
prototypes (coaches simply “assign” them a number of points). All further
estimations are carried out in relation to that number. If, for example, a
prototype was assigned eight points, then a story card of four points should
cause half the effort.

3. Iteration I planning: In the next phase the customers decide which story
cards they want to have implemented next. They can “buy” story cards as
long as their total points do not exceed the points achieved in the prototype
phase. This rule implies that developers will be able to build the same
number of points again during the next iteration (constant efficiency).
Customers have to select next tasks based on this assumption. Developers
may be faster or slower, but the initial guess is they will work at the same

 Agile Hour: Teaching XP Skills to Students and IT Professionals 521

speed. Afterwards, the developers organize themselves in new pairs and plan
how to develop the chosen story cards in the next iteration.

4. Iteration I: While the customers add new story cards to the flipchart, the
developers are implementing the chosen story cards. Pair programming with
Lego bricks means that one developer of a pair may search for specific Lego
bricks while the other one assembles the bricks to the pair’s model.
Typically, at the end the whole iteration product is assembled from the pairs’
models.

5. Product Presentation & Estimation of Priorities and Effort: In the
beginning of this phase, the developers present the so far developed product
and the customers are judging if it fulfils their requirements. The judgement
has to be based on the selected story cards. Features are only completed if
they are visibly built – no hand waving and talking about how it might work
is allowed. Any missing features or other shortcomings are added as story
cards to the flipchart. The points of all successfully completed story cards are
summed up and can be used to “buy” story cards for the second iteration.
Afterwards, the customers present the new story cards and prioritize them as
in phase 2. Likewise, the developers estimate the effort of the new story
cards and eventually update the points of story cards already existing.
This phase is normally the one, in which time easily runs out and the trackers
need to speed up the process causing stress in the development process.

6. Iteration II planning: Customers choose story cards to complete in the
second iteration. Again, the estimated effort (points) of these story cards
must not exceed the points completed in the first iteration. Developers
arrange in new pairs and plan how to implement the chosen story cards.

7. Iteration II: The second iteration is carried out like the first one, except the
customers do not need to create new story cards. Instead, they are able to
look at how the development is done and are able to get an impression of
pairing.

After the second iteration the developers again present their product and the
customers must decide whether to accept or to reject it. In all cases, the customers
could accept the developed product although some small issues remained which
would need to be fixed in a future iteration.

Finally, participants discussed their experiences and reflected on what had
happened during the agile hour. We helped them to emphasize the parallels to XP
projects. Reflection is very important, as it reaps the benefits of experiences: during
reflection, the above-mentioned “reasoning and conclusions” are derived that help
participants in future (real) projects. Emerging discussions answer questions and
clarify misunderstandings and unclear aspects. For example, having only one stick per
pair was mentioned as awkward. Students found it hard during integration of their
results to be unable to “contribute” by drawing themselves. This phenomenon can be
traced back to a real development situation in which there is only one computer per
pair. In another example, customers complained about the short story card format they
were forced to use. During reflection, they realized that real story cards are almost as
short as our lines on the flipcharts, so the short format – and the restrictions associated
with it – stays the same. Third, quality requirements caused problems: they were
treated like normal story cards, but were highly orthogonal in nature. Reflection made

522 D. Lübke and K. Schneider

obvious that this effect was again not a fault of the agile hour but a phenomenon
waiting in real projects, too.Figure 1 shows a part of a prioritized story card flipchart,
and the final result of an “automated mosquito hunter”.

Fig. 1. (a) Story cards with priorities and estimated effort (b) Mosquito Hunter built with Lego

4 Agile Hour as a Model of XP Projects

Agile Hours (in particular Agile Lego Hours) are models of XP projects. Because of
this, it is necessary to question (a) for whom this model is informative, (b) what the
relevant attributes are, and (c) what model attributes do not match reality. Relevant
attributes of the model (the Agile Hour) correspond to relevant attributes of reality
(XP projects), and observations in the model will be mapped back to reality. Both
model and reality have several attributes that are not relevant. Those attributes must
not be mapped back, as there is no reasonable mapping. For example, building with
Lego can be mapped back to writing Java code (relevant), but the weight of a Lego
brick may have no (relevant) correspondence in an XP project.

• Agile Hours are designed to convey relevant properties of XP projects to
people, who do not have any experiences in agile, especially XP, projects.

• The model focuses on the process, and not on the programming tasks.
Because of this, relevant activities are e.g. pair programming, onsite
customer, story cards, planning game, and time pressure. All of them except
the last one are XP practices [1].

• Other practices are not included in the Agile Hour, like test first, coding
standards, and 40 hour week, because it is not possible to simulate them in
the given time-frame or they are specific to programming.

• A summary of the Agile Lego Hour’s attributes is given in table 1. Before
conducting the Agile Lego Hours, we expected the planning game, pair
programming, and the onsite customer to be the dominant attributes which
the participants would recognize.

 Agile Hour: Teaching XP Skills to Students and IT Professionals 523

Table 1. Relevant and non-relevant attributes of the Agile (Lego) Hour

Attribute Type Relevant Explanation
Acceptance
Tests

XP Practice Yes Customers decide after each iteration if the
features are working as expected or
problems arise out of the implementation.

Onsite
Customer

XP Practice Yes Customers are available for questions all
the time

Pair
Programming

XP Practice Yes Developers are grouped in pairs and have
different tasks in that pair. Pairs are
changing between iterations and prototype.

Planning
Game

XP Practice Yes Efforts are estimated using a relative
metric which is refined during the process.
Customers pick the most business-critical
stories and prioritize requirements.

Short
Releases

XP Practice Yes Iterations only last exactly 10 minutes
allowing immediate customer feedback.

Spike/
Prototype

XP Practice Yes A prototype is built upfront in order to
explore the problem domain.

Story Cards XP Practice Yes Requirements are collected story card-like
at a flipchart.

Time
Pressure

Project
Constraint

Yes Time pressure is always applied by the
minimal time window of 10 minutes and
the projection of the remaining time.

Uncertain
Requirements

Project
Constraint

Yes Customers do not know the exact
requirements before project start.

Continuous
Builds

XP Practice Partly Lego Models are integrated in a short
period of time but due to the time-
constraint mostly at the end of the iteration
like in normal projects.

Embrace
Change

Agile Value Partly During iterations the customers are allowed
to introduce new story cards contrary to
existing requirements. However, only two
iterations are carried out.

Refactoring XP Practice No Refactoring in XP Projects is done during
the test-first cycle while “refactoring” in
Agile Hours is only done to integrate
further components.

Test-First XP Practice No Lego constructions cannot be automatically
tested; therefore, test-first development is
not possible.

Coding
Standards

XP Practice No No Coding Standards can be applied for
building Lego objects.

40 Hour
Week

XP Practice No The Agile Lego Hour is too short to
simulate a 40 Hour Week.

524 D. Lübke and K. Schneider

Because agile methods and XP in particular are very useful for time-limited projects
and unsure customers, two relevant attributes are the time pressure and uncertain
requirements.

5 Experiences with Agile Hours

While conducting Agile Hours (and by comparing Extreme Hours with Agile Lego
Hours, in particular), we recognized some pitfalls in both and some decisive
differences between them.

• The first problem is the QA role in the Extreme Hour. If there is an odd
number of participants, introducing a QA role for it, looks nice at first
glance. However, the role is unsatisfying from a learning perspective, since
QA people do not participate in important parts, like the Planning Game.
Therefore, the learning effect is worse than with participants being
developers or customers. Because of this, we came to avoid the QA role in
later Agile Hours and had fewer problems with this setup.

• Another set of problems comes with pair programming: Participants do not
like to switch pairs (relevant effect: occurs in XP projects, too) or are
sometimes even falling back to teamwork with 10 people building one big
team. This is an irrelevant effect of the model only: In real XP projects, it is
impossible to program with 10 persons at a computer, however building with
Lego bricks or drawing on a sheet of paper is. In this case, the trackers have
to try to encourage pairing. Furthermore, the room should be set up to hinder
full-team work. For example, Lego bricks should not be put on one table but
instead be left in distributed boxes for pairs.

• Concerning story cards, trackers should take care, that story cards really
define functional requirements. If there are too many quality story cards, like
“machine must not hurt children”, it is very difficult to realize these. This is
especially true for Agile Lego Hours, because it is nearly impossible to
model quality properties, which is a slight disadvantage compared to
Extreme Hours with mere drawings.

However, there are many advantages for Agile Lego Hours outweighing the
disadvantages:

• For using Lego bricks we assume team-sizes may be smaller: we conducted
the best Extreme Hours using drawing with 4 to 5 developer pairs, while the
same level could be accomplished in an Agile Lego Hour with 3 pairs using
Lego bricks.

• If one reduces special-purpose Lego bricks (e.g., looking like computers or
antennas), developers cannot cheat by claiming powerful components. In
Extreme Hours developers often drew computers, chips, sensors and
controllers which, as they said, could literally do everything during the
acceptance tests. This drives the approach to the absurd. With limited Lego
bricks pretending unlimited features is less tempting.

 Agile Hour: Teaching XP Skills to Students and IT Professionals 525

• It is as hard to destroy prototypes as in real life (relevant effect): Whereas
prototype drawings were put aside easily, destroying Lego prototypes in
front of the participants really hurts. Like in real projects there is a big
temptation to stick with prototypes despite their declared mission: being
thrown away.

Finally, we found Agile Lego Hours to be more fun than Extreme Hours. While this
observation may be very subjective, it was confirmed by comparing 24 questionnaires
from Extreme Hours with 17 questionnaires from Agile Lego Hours. Lego bricks
seem to stimulate a certain play instinct and are better received.

The essential reflection phase ties participants´ experiences from “playing with
Lego” back to the serious world of software development. We consider it an
advantage to provide a fun learning environment – given participants recognize its
implications for their (serious) studies and work.

6 Differences Between Students and IT Professionals

While doing experiments, workshops or alike with students, often the question is
raised to which extend these results are transferable to the professional area. This
question is justified because both groups are different. Very different is their
background: IT Professionals have more experience and have normally better
knowledge about tools, programming languages and project management – it has
been their business for several years if not decades. In contrast, students are more
used to learning, are more willing to adopt new practices, and are even better at some
new methods. Both groups have in common an interest for IT and related subjects.

Furthermore, IT professionals are normally older than students. Because of this, it
is not necessarily sure, that playful methods being successful with students really
work with IT professionals as well.

We had the opportunity to conduct an Agile Lego Hour with IT Professionals
participating in an industrial Java User Group. While the Agile Lego Hour took place
in the same way like the students’ ones, at some points the IT Professionals behaved
differently and had other problems, which are certainly related to their experiences:

• The main difference was that IT Professionals were stuck much more to an
opposition of the roles of developer against customer. This contradicts XP
practices in which developers are required to communicate and collaborate
with the customer. However, IT Professionals wanted crystal-clear contracts
in their story cards.

• Especially the story-cards and the relative effort estimation seemed to be a
major annoyance. The problem with story cards was that they are too sketchy
and not every detail is written down. For people who are only used to
binding, detailed contracts it is difficult to get used to such a way of defining
requirements (“that’s not written here, so we don’t have to do that”, although
the customer obviously meant it that way).

• Problems also arose with effort estimation in XP. It is based on relative
estimation of points assigned to story cards. This makes cost- and time-
estimations for comprehensive functionality upfront impossible. The ability

526 D. Lübke and K. Schneider

to estimate cost and time has been considered very important by the IT
professionals.

• Team organization between students and IT Professionals was different, too.
Students normally organize in groups for learning and know each other quite
well. Because of this, pairing was easy and the teams were focused on their
tasks. Contrary, the group of IT professionals spent most of the time
discussing solutions and organizational questions which probably is related
to the “Big Design Upfront”-approach normally taken. This was inherently
apparent during the prototype phase, in which an IT professional pair sorted
bricks according to their size to be better prepared for the project, instead of
exploring the problem domain. The reason given for this behaviour was that
unless “I really know what the customer wants I benefit the team most by
preparation”. In the second iteration, IT Professionals reverted from pair
programming to team work which ended in a group meeting inefficiently
discussing implementation problems.

All in all, students seemed to be more pragmatic which seems to be a beneficial
attitude during Agile Hours and XP projects. Consequently, students realized more
customer requirements during the two iterations, although the team compromised
fewer developer pairs.

However, the IT Professional group reflected better about their Agile Lego Hour
and about XP: During the reflection participants were aware that the second iteration
went wrong and was inefficient. Furthermore, better questions and better realization
what XP would change compared to their existing processes created a better
discussion with them than with the students.

7 Analysis of the Questionnaires

After each Extreme and each Agile (Lego) Hour we handed out questionnaires asking
the participants about what XP practices they think they recognized and what they
feel about the Agile Hour. For comparing students to IT professionals only
questionnaires of Agile Lego Hours are considered in order to have a comparable
setup (see figure 2 and 3).

Most of the XP practices were rated similarly by the students and by the IT
Professionals. However, there are some slight differences: The onsite customer and
the planning game have been recognized by more IT Professionals than by students.
We suppose this is influenced by the different backgrounds the two groups have. For
IT Professionals it is not ordinary that the customer is always reachable to ask
questions while the students are used to intensive support by their lecturers.

Because the second iteration of the IT Professionals was more team work than pair
programming, the answers to pair programming and collective ownership seem
reasonable.

Interestingly, some practices were recognized by participants, which we thought
they would not. For example, simple design and 40 hour week were recognized by
some IT professionals and continuous integration has been identified by both students
and IT professionals. The 40 hour week probably can be traced back to an additional

 Agile Hour: Teaching XP Skills to Students and IT Professionals 527

comment on the same questionnaire which states that the time pressure is very intense
and thus is very exhausting.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

On S
ite

 C
usto

mer

Acc
ept

an
ce

 T
ests

Sim
ple

 D
es

ign

Ref
ac

tor
in

g

Cod
ing

 S
ta

nd.

Plan
ning G

am
e

Pair P
ro

g.

Shor
t R

el.
Cyc

l.

Con
t. I

nt.

40h
 w

eek

Coll
ec

t.
O

wners
h.

Metaph
or

Unit
 T

ests

Students

IT Professionals

Fig. 2. Answers of the participants which XP practices they recognized

All in all, the questionnaires results confirm our expectations of the Agile Hour’s
most relevant attributes: Besides short release cycles, the onsite customer, planning
game, and acceptance tests were recognized by most participants.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Use in
Projekt

Fun Similar
Things

Students

IT Professionals

Fig. 3. Results of the Agile Hours

What both groups share is the enthusiasm about the Agile Lego Hour our as a way
to learn XP: All of the participants said that they had fun attending the Agile Lego
Hour and over 80% would like to attend to similar “classes” for other topics.
Moreover, the Agile Lego Hour seems to be a good way to promote XP or at least
agile methods: Over 80% of the students would like to use XP in some projects and
even more - over 90% - of the IT Professionals answered that they would do so, too.

528 D. Lübke and K. Schneider

8 Conclusions and Outlook

In order to teach agile methods, including XP, it is necessary to not only convey
textbook knowledge but also some experiences about how the methods work. This
seems to be especially true for professionals using classic process models for a long
time. They had a harder time to get used to the new methodologies. A very
successful way of allowing these necessary experiences are Extreme Hours
(drawing), Agile Lego Hours (building), or in general: Agile Hours (following the
70-minute scheme).

These models of XP projects allow experiencing those XP practices dealing with
project management and communications. However, reflection afterwards is highly
necessary in order to realize a significant learning effect. Reflection allows the
participants to transfer all the experienced elements to software projects, the possible
advantages and disadvantages this might have for their projects, and how this
correlates with the experience they possibly have. For this, reflection does not mean
filling out questionnaires but discussing and sharing the experiences and translating
them back to software projects.

Encouraged by the very positive participant feedback and the interest we received,
we will continue to use Agile Hours with students and with other IT professionals in
the future, polishing the approach of Agile (Lego) Hours further.

Through this paper, we want to encourage others to try Agile Hours with both
professionals and in student education. We hope to provide a good start by offering
our insights and describing our newest variant, the Agile Lego Hour.

References

1. Beck, K., Extreme Programming Explained: Embrace Change. 1999: Addison-Wesley
Pub Co. 224.

2. Goetz, R. How Agile Processes Can Help in Time-Constrained Requirements
Engineering. in TCRE 2002. 2002. Essen, Germany.

3. Kent Beck, M.B., Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin
Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian
Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas,
Manifesto for Agile Software Development, 2001, http://www.agilemanifesto.org/.

4. Dietmar Rohrbach, P.D.M.A. Realisierung und Pflege von vier Versicherungs
produkten. in Informatik 2004 - Informatik verbindet. 2004. Ulm, Germany.

5. Martin Lippert, S.R., Henning Wolf, Software entwickeln mit eXtreme Programming.
2002, Heidelberg: dpunkt.verlag. 282.

6. Wright, K., XP success story: CodeFab develops for Noggin, 2002, http://builder.
com.com/5100-6374_14-1046489-1-1.html.

7. Object Mentor, Success Story: How Scrum + XP changed Primavera, 2004,
http://www.objectmentor.com/resources/articles/Primavera.

8. Ron Jeffries, A.A., Chet Hendrickson, Ronald E. Jeffries, Extreme Programming
Installed. 2000: Addison-Wesley Professional. 288.

9. Merel, P., Extreme Hour, 2004, http://c2.com/cgi/wiki?ExtremeHour.

 Agile Hour: Teaching XP Skills to Students and IT Professionals 529

10. Royce, W. Managing the Development of Large Software Systems. in IEEE WESCON.
1970.

11. Versteegen, G., Das V-Modell 97 in der Praxis. 1999: dpunkt.verlag. 442.
12. IABG, Das V-Modell. 2004.
13. Silicon Valley Patterns Group, Silicon Valley Extreme Hour, 2005, http://c2.com/

cgi/wiki?SiliconValleyExtremeHour.

Measuring Similarity of Large Software Systems
Based on Source Code Correspondence

Tetsuo Yamamoto1, Makoto Matsushita2, Toshihiro Kamiya3, and Katsuro Inoue2

1 College of Information Science and Engineering, Ritsumeikan University,
Kusatsu, Shiga 525-8577, Japan

Phone: +81-77-561-5265, Fax:+81-77-561-5265
tetsuo@cs.ritsumei.ac.jp

2 Graduate School of Information Science and Technology, Osaka University,
Toyonaka, Osaka 560-8531, Japan

Phone: +81-6-6850-6571, Fax:+81-6-6850-6574
3 Presto,Japan Science and Technology Agency,

Current Address:Graduate School of Information Science and Technology, Osaka University,
Toyonaka, Osaka 560-8531, Japan

Phone: +81-6-6850-6571, Fax:+81-6-6850-6574
{matusita, inoue, kamiya}@ist.osaka-u.ac.jp

Abstract. It is an important and intriguing issue to know the quantitative sim-
ilarity of large software systems. In this paper, a similarity metric between two
sets of source code files based on the correspondence of overall source code lines
is proposed. A Software similarity MeAsurement Tool SMAT was developed and
applied to various versions of an operating system(BSD UNIX). The resulting
similarity valuations clearly revealed the evolutionary history characteristics of
the BSD UNIX Operating System.

1 Introduction

Long-lived software systems evolve through multiple modifications. Many different
versions are created and delivered. The evolution is not simple and straightforward.
It is common that one original system creates several distinct successor branches dur-
ing evolution. Several distinct versions may be unified later and merged into another
version. To manage the many versions correctly and efficiently, it is very important to
know objectively their relationships. There has been various kinds of research on soft-
ware evolution[1, 2, 3, 4], most of which focused on changes of metric values for size,
quality, delivery time or process, etc.

Closely related software systems usually are identified as product lines, so develop-
ment and management of product lines are actively discussed[5]. Knowing development
relations and architectural similarity among such systems is a key to efficient develop-
ment of new systems and to well-organized maintenance of existing systems[6].

We have been interested in measuring the similarity between two large software
systems.This was motivated by our scientific curiosity such as what is the quantitative
similarity of two software systems. We would like to quantify the similarity with a solid

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 530–544, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Measuring Similarity of Large Software Systems 531

and objective measure.The quantitative measure for similarity is an important vehicle
to observe the evolution of software systems, as is done in the Bioinformatics field. In
Bioinformatics, distance metrics are based on the alignment of DNA sequences. Phylo-
genetic trees using this distance are built to illustrate relations among species[7]. There
are huge numbers of software systems already developed in the world and it should be
possible to identify the evolution history of software assets in a manner like that done
in Bioinformatics.

Various research on finding software similarities has been performed, most of which
focused on detecting program plagiarism[8, 9, 10]. The usual approach extracts several
metric values (or attributes) characterizing the target programs and then compares those
values.

There also has been some research on identifying similarity in large collections of
plain-text or HTML documents[11, 12]. These works use sampled information such as
keyword sequences or“fingerprints”. Similarity is determined by comparing the sam-
pled information.

We have been interested in comparing all the files. It is important that the software
similarity metric is not based on sampled information as the attribute value (or finger-
print), but rather reflect the overall system characteristics. We are afraid that using sam-
pled information may lose some important information. A collection of all source code
files used to build a system contains all the essential information of the system. Thus,
we analyze and compare overall source code files of the system. This approach requires
more computation power and memory space than using sampled information, but the
current computing hardware environment allows this overall source code comparison
approach.

In this paper, a similarity metric called Sline, is used, which is defined as the ratio
of shared source code lines to the total source code lines of two software systems being
evaluated.

Sline requires computing matches between source code lines in the two systems,
beyond the boundaries of files and directories. A naive approach for this would be to
compare all source file pairs in both systems, with a file matching program such as
diff[13], but the comparison of all file pairs does not scale so that it would be impractical
to apply to large systems with thousands of files.

Instead, an approach is proposed that improves efficiency and precision. First, a fast,
code clone (duplicated code portion) detection algorithm is applied to all files in the two
systems and then diff is applied to the file pairs where code clones are found.

Using this concept, a similarity metric evaluation tool called SMAT(Software sim-
ilarity MeAsurement Tool) was developed and applied to various software system tar-
gets. We have evaluated the similarity between various versions of BSD UNIX, and
have performed cluster analysis of the similarity values to create a dendrogram that
correctly shows evolution history of BSD UNIX.

Section 2 presents a formal definition of similarity and its metric Sline. Section 3
describes a practical method for computing Sline and shows the implementation tool
SMAT. Section 4 shows applications of SMAT to versions of BSD UNIX. Results of our
work and comparison with related research are given in Section 5. Concluding remarks
are given in Section 6.

532 T. Yamamoto et al.

2 Similarity of Software Systems

2.1 Definitions

First we will give a general definition of software system similarity and then a concrete
similarity metric.

A software system P is composed of elements p1, p2, · · · , pm, and P is represented
as a set {p1, p2, · · · , pm}. In the same way, another software system Q is denoted by
{q1, q2, · · · , qn}. We will choose the type of elements, such as files and lines, based on
the definitions of the similarity metrics described later.

Software system P Software system Q
Correspondence Rs

p1

p2

p3

pm

q1
q2

qn

Fig. 1. Correspondence of elements Rs

Suppose that we are able to determine matching between pi and qj (1 ≤ i ≤ m, 1 ≤
j ≤ n), and we call Correspondence Rs the set of matched pair (pi, qj), where Rs ⊆
P ×Q(See Figure 1). Similarity S of P and Q with respect to Rs is defined as follows.

S(P,Q) ≡ |{pi|(pi, qj) ∈ Rs}| + |{qj |(pi, qj) ∈ Rs}|
|P | + |Q|

This definition means that the similarity is the ratio of the total number of p’s and
q’s elements composing Rs to the total number of elements of P and Q. The numerator
is the total number of pi and qi possibly related to Rs, and the denominator is the total
number of pi and qi. If Rs becomes smaller, S will decrease, and if Rs = φ then
S = 0. Moreover, when P and Q are exactly the same systems, ∀i(pi, qi) ∈ Rs and
then S = 1.

2.2 Similarity Metrics

The above definition of the similarity leaves room for implementing different concrete
similarity metrics by choosing the element types or correspondences. Here, we show a
concrete operational similarity metric Sline using equivalent line matching.

Each element of a software system is a single line of each source file composing the
system. For example, if a software system X consists of source code files x1, x2, · · ·
and each source code file xi is made up of lines xi1, xi2, · · ·. Pair (xij , ymn) of two
lines xij and ymn between system X and system Y is in correspondence when xij and
ymn match as equivalent lines. The equivalency is determined by the duplicated code

Measuring Similarity of Large Software Systems 533

detection method and file comparison method that will be discussed in detail later in
this paper. Two lines with minor distinction such as space/comment modification and
identifier rename are recognized as equivalent.

Sline is not affected by file renaming or path changes. Modification of a small part in
a large file does not give great impact to the resulting value. On the other hand, finding
equivalent lines generally would be a time consuming process. A practical approach for
this is given in Section 3.

It is possible to consider other definitions of similarity and its metrics. A comparison
to other such approaches is presented in Section 5.

3 Measuring Sline

3.1 Approach

A key problem of Sline is computation of the correspondence. A straightforward ap-
proach we might consider is that first we construct appended files x1;x2; · · · and
y1; y2; · · · which are concatenation of all source files x1, x2, · · · and y1, y2, · · · for sys-
tems X and Y , respectively. Then we extract the longest common subsequence (LCS)
between x1;x2; · · · and y1; y2; · · · by some tool, say diff [13], which implements an
LCS-finding algorithm[14, 15, 16]. The extracted LCS is used as the correspondence.

However, this method is fragile due to the change of file concatenation order caused
by internal reshuffling of files, since diff cannot follow line block movement to dif-
ferent positions in the files. For example, for two systems X = a; b; c; d; e and Y =
d; e; a; b; c, the LCS found by diff is a; b; c. In this case, a subsequence d; e cannot be
detected as a common sequence.

Another approach is that we try to greedily apply diff to all combination of files
between two systems. This approach might work, but the scalability would be an issue.
The performance applied to huge systems with thousands of files would be doubtful.

Here, an approach is proposed that effectively uses both diff and a clone detection
tool named CCFinder[17].

CCFinder is a tool used to detect duplicated code blocks (called clones) in source
code written in C, C++, Java, and COBOL. It effectively performs lexical analysis,
transformation of tokens, computing duplicated token sequences by a suffix tree
algorithm[18], and then reports the results. The clone detection is made along with nor-
malization and parameterization, that is, the location of white spaces and lines breaks
are ignored, comments are removed, and the distinction of identifier names is disre-
garded. By the normalization and parameterization, code blocks with minor modifica-
tion are effectively detected as clones.

Applying CCFinder to two sets of files {x1, x2, · · ·} and {y1, y2, · · ·} finds all possi-
ble clone pairs (bx, by), where bx is a code block in x1, or x2, · · ·. and by is that of y1, or
y2, · · ·, and bx and by are identical without considering difference of line breaks, white
spaces, comments, user-defined identifiers, constant values, and so on. This process is
performed by simply specifying two sets of file names or directory names containing
{x1, x2, · · ·} and {y1, y2, · · ·}. CCFinder reports all clone pairs among the files. Those
clone pairs found are members of the correspondence.

534 T. Yamamoto et al.

Code clones are only non-gapped ones. Closely similar code blocks with a gap
block(unmatching to them) such as l1l2 and l1lxl2 are not detected as a larger clone
l1 ∗ l2 but identified as two smaller clones l1 and l2. When the lengths of l1 and l2 are
less than threshold of CCFinder(usually 20 tokens1), then CCFinder reports no clones at
all. To reclaim such small similar blocks and similar directives undetected by CCFinder,
diff is applied to all pairs of the two files xi and yj , where CCFinder detects a clone
pair (bx, by) and bx is in xi and by is in yj , respectively. The result of diff is the longest
common subsequences, which also are considered members of the correspondence. The
combined results of CCFinder and diff is to increase Sline by about 10%, compared to
using only CCFinder.

3.2 Example of Measurement

A simple example of computing Sline with CCFinder and diff is given here. Consider
a software system X and its extended system Y as shown in Figure 2. X is composed
of two source code files A and B, while Y is composed of four files A′, A′′, B, and C.
Here, A′ and A′′ are evolved versions of A, and C is a newly created file.

File A’

File A’’

File B

File C

File A

File B

Software system X Software system Y

Fig. 2. How to find a correspondence

At first, CCFinder is applied to detect clones between two file sets {A,B} and
{A′, A′′, B,C}. This finds clones between A and A′, A and A′′, and B and B. Assume
that no clones are detected between other combination of files. Each line in the clones
found across files is put into the correspondence.

Next, diff is applied to the file pairs A and A′, A and A′′, and B and B. Then, the
lines in the resulting common subsequences by diff are added to the correspondence

1 The threshold 20 used here is determined by our experiences of CCFinder[17]. Based on the
analyses of our experiences, a practical threshold is 20 to 30. If we set a further lower number,
say 5, a lot of accidentally similar substrings (e.g., a=b+c is a clone of x=y+z) are detected as
clones, and the precision of the resulting similarity value is degraded.

Measuring Similarity of Large Software Systems 535

obtained by the clone detection. The correspondence finally we obtain includes all the
clones found by CCFinder and all the common subsequences found by diff.

This approach has benefits in both computation complexity and precision of the re-
sults. We do not need to perform diff on all the file pair combinations. Also, we can chase
movement of lines inside or outside the files, which cannot be detected by diff alone.

3.3 SMAT

Based on this approach, we have developed a similarity evaluation tool SMAT which
effectively computes Sline for two systems. The following is the detailed process of the
system. An overview is illustrated in Figure 3.
INPUTS: File paths of two systems X and Y , each of which represents the subdirectory
containing all source code.
OUTPUTS: Sline of X and Y (0 ≤ Sline ≤ 1).

Execution of
CCFinder

Execution of
diff

Construction of
Correspondence

X

Y

Step2 Step3

Step4

Step1

Calculatng
Sline

Step5

Sline

Preprocessing

Fig. 3. Similarity measuring process

Step 1 Preprocessing:
All comments, white spaces, and empty lines are removed, which do not affect the
execution of the programs. This step helps to improve the precision of the following
steps, especially Step 3.

Step 2 Execution of CCFinder:
We execute CCFinder between two file sets X and Y . CCFinder has an option for
the minimum number of tokens of clones to be detected, and whose default is set
to 20.

Step 3 Execution of diff:
Execute diff on any file pair xi and yj in X and Y respectively, where at least one
clone is detected between xi and yj .

Step 4 Construction of Correspondence:
The lines appearing in the clones detected by Step 2 and in the common subse-
quences found in Step 3 are merged to determine the correspondence between X
and Y .

536 T. Yamamoto et al.

Step 5 Calculating Sline:
Sline is calculated using its definition; i.e., the ratio of lines in the correspondence to
those in whole systems. Note that the number of lines after Step 1 is used hereafter,
where all comments and white spaces are removed.

SMAT works for the source code files written in C, C++, Java, and COBOL.
For given two systems, each of which has m files of n lines, the worst case time com-

plexity is as follows: CCFinder requires O(mn log(mn))[17]. diff requiresO(n2 log n)
[13] for a single file pair and we have to perform O(m2) execution of diff for all file
pairs. So in total, O(m2n2 log n) is the worst case time complexity.

However, in practice, the execution of diff is not performed for all file pairs. In many
cases, code clones are not detected between all file pairs, but only a few file pairs.

Practically, the execution performance of SMAT is fairly efficient, since it grows
super-linearly. For example, it took 329 seconds to compute Sline of about 500K line C
source code files in total on a Pentium III 1GHz CPU system with 2G Bytes memory,
and 980 seconds for 1M line files. On the other hand, in the case of using only diff for
all file pairs, it took about 6 hours to compute Sline for 500K line files.

4 Applications of SMAT

4.1 BSD UNIX Evolution

Target systems. To explore the applicability of Sline and SMAT, we have used many
versions of open-source BSD UNIX operating systems, namely 4.4-BSD Lite, 4.4-BSD
Lite2[19], FreeBSD2, NetBSD3, OpenBSD4. The evolution histories of these versions

Table 1. The number of files and LOC of BSD UNIX

FreeBSD
Version 2.0 2.0.5 2.1 2.2 3.0 4.0

No. of files 891 1018 1062 1196 2142 2569
LOC 228868 275016 297208 369256 636005 878590

NetBSD
Version 1.0 1.1 1.2 1.3 1.4 1.5

No. of files 2317 3091 4082 5386 7002 7394
LOC 453026 605790 822312 1029147 1378274 1518371

OpenBSD
Version 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

No. of files 4200 4987 5245 5314 5507 5815 6074 6298 6414
LOC 898942 1007525 1066355 1079163 1129371 1232858 1329293 1438496 1478035

4.4BSD
Version Lite Lite2

No. of files 1676 1931
LOC 317594 411373

2 http://www.freebsd.org/
3 http://www.netbsd.org/
4 http://www.openbsd.org/

Measuring Similarity of Large Software Systems 537

4.4BSD Lite(1994/03)

FreeBSD 2.0(1994/11)

FreeBSD 2.0.5(1995/06)

FreeBSD 2.1(1995/11)

FreeBSD 2.2(1997/03)

FreeBSD 3.0(1998/10)

FreeBSD 4.0(2000/03)

NetBSD 1.0(1994/10)

NetBSD 1.3(1998/01)

NetBSD 1.4(1999/05)

NetBSD 1.5(2000/12)

NetBSD 1.1(1995/11)

4.4BSD Lite2(1995/06)

OpenBSD 2.3(1998/05)

OpenBSD 2.4(1998/12)

OpenBSD 2.5(1999/05)
OpenBSD 2.6(1999/12)

OpenBSD 2.7(2000/06)
OpenBSD 2.8(2000/12)

OpenBSD 2.2(1997/12)

OpenBSD 2.0(1996/10)

OpenBSD 2.1(1997/06)

NetBSD 1.2(1996/10)

Fig. 4. BSD UNIX evolutional history

are shown in Figure 45. As shown in this figure, 4.4-BSD Lite is the origination of
the other versions. New versions of FreeBSD, NetBSD, and OpenBSD are currently
being developed in open source development style. 23 major-release versions, as listed
in Figure 4, were chosen for computing Sline of all pair combinations. The evaluation
was performed only on source code files related to the OS kernels written in C(i.e., *.c
or *.h files).

Results. Table 1 shows the number of files and total source code lines of each ver-
sion after the preprocessing of Step 1. Table 2 shows part of the resulting values Sline

for pairs of each version. Note that Table 2 is symmetric, and the values on the main
diagonal line are always 1 by the nature of our similarity.

As a general tendency, Sline values between a version and its immediate ances-
tor/descendant version are higher than the values for non-immediate ancestor/descendant
versions. Figure 5 shows Sline evolution between FreeBSD 2.2 and other FreeBSD ver-
sions. The values monotonically decline with increasing version distance. This indicates
that the similarity metric Sline properly captures ordinary characteristics of software
systems evolution.

Figure 6 shows Sline between each version of FreeBSD and some of NetBSD. These
two version streams have the same origin, 4.4-BSD Lite, and it is naturally assumed
that older versions between the two streams have higher Sline values, since younger
versions have a lot of independently added codes. This assumption is true for FreeBSD

5 http://www.tribug.org/img/bsd-family-tree.gif

538 T. Yamamoto et al.

Table 2. Part of Sline values between BSD UNIX kernel files

F 2.0 F 2.0.5 F 2.1 F 2.2 F 3.0 F 4.0 Lite Lite2 N 1.0 N 1.1 N 1.2 N 1.3

FreeBSD 2.0 1.000
FreeBSD 2.0.5 0.833 1.000
FreeBSD 2.1 0.794 0.943 1.000
FreeBSD 2.2 0.550 0.665 0.706 1.000
FreeBSD 3.0 0.315 0.392 0.421 0.603 1.000
FreeBSD 4.0 0.212 0.264 0.286 0.405 0.639 1.000
4.4BSD-Lite 0.419 0.377 0.362 0.226 0.138 0.101 1.000
4.4BSD-Lite2 0.290 0.266 0.258 0.179 0.133 0.100 0.651 1.000
NetBSD 1.0 0.440 0.429 0.411 0.291 0.220 0.140 0.540 0.450 1.000
NetBSD 1.1 0.334 0.348 0.336 0.254 0.193 0.152 0.421 0.431 0.691 1.000
NetBSD 1.2 0.255 0.269 0.265 0.225 0.190 0.158 0.331 0.436 0.553 0.783 1.000
NetBSD 1.3 0.205 0.227 0.225 0.201 0.208 0.179 0.259 0.366 0.445 0.622 0.769 1.000

F 2.0 means FreeBSD 2.0, Lite means 4.4BSD-Lite, N 1.0 means NetBSD 1.0.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5. Sline of FreeBSD 2.2 and other versions

2.0 through 2.2. However, for FreeBSD 3.0 and 4.0, the youngest version NetBSD 1.3
has higher values than other NetBSD versions (Figure 6 A and B). This is because both
FreeBSD 3.0 and NetBSD 1.3 imported a lot of code base from 4.4-BSD Lite2 as shown
Figure 4. SMAT clearly spotted such an irregular nature of the evolution.

Cluster Analysis. Classifications were made of OS versions using a cluster analysis
technique[20] with respect to Sline values shown above. For the cluster analysis, we
need to define the distance of two OS versions. We defined it by 1 − Sline. A cluster is
a non-empty collection of OS versions, and the distance of two clusters are the average
of the pairwise distances of the numbers of each cluster. To construct a dendrogram, we
start with clusters having exactly one version, and merge the nearest two clusters into
one cluster. The merging process is repeated until we get only one cluster. The den-

Measuring Similarity of Large Software Systems 539

�
�

Fig. 6. Sline between FreeBSD and NetBSD

 FreeBSD 2.0
FreeBSD 2.0.5
 FreeBSD 2.1
 FreeBSD 2.2
 FreeBSD 3.0
 FreeBSD 4.0
 4.4BSD Lite
 4.4BSD Lite2
 NetBSD 1.0
 NetBSD 1.1
 NetBSD 1.2
 OpenBSD 2.0
 OpenBSD 2.1
 OpenBSD 2.2
 OpenBSD 2.3
 OpenBSD 2.4
 OpenBSD 2.5
 OpenBSD 2.6
 OpenBSD 2.7
 OpenBSD 2.8
 NetBSD 1.3
 NetBSD 1.4
 NetBSD 1.5

0.5 01

I

II

III

IV

Fig. 7. Dendrogram of BSD UNIX

drogram from this cluster analysis is shown in Figure 7. The horizontal axis represents
the distance. OS versions categorized on the left-hand side are closer ones with high
similarity values to each other.

This dendrogram reflects very well the evolution history of BSD UNIX versions
depicted previously by Figure 4. Further, as shown in Figure 7, all FreeBSD versions
are contained in Cluster I and all OpenBSD are in Cluster II. FreeBSD and OpenBSD

540 T. Yamamoto et al.

are distinct genealogical systems that diverged at a very early stage of their evolution,
as shown in Figure 4. The dendrogram using Sline objectively discloses it.

Also, we can see the classification of NetBSD and OpenBSD. All versions of
OpenBSD except for 2.0 are in the same cluster III, and this cluster is combined with
NetBSD 1.1 in cluster IV together with OpenBSD 2.0. This suggests that all OpenBSD
versions were derived from NetBSD 1.1. This is confirmed by their evolution history.

5 Discussion and Related Work

As presented in previous sections, our similarity definition, similarity metric Sline, and
the similarity measurement tool SMAT worked fine to various software systems.

5.1 Metric Sline

The correspondence which determines Sline is a many-to-many matching between
source lines located within files and directories. The reasons of the many-to-many
matching is that we would like to trace the movement of any source code block within
files and directories as much as possible, and obtain the ratio of succeeded and revised
codes to overall codes.

It is possible to use one-to-one matching in the correspondence, but it characterizes
the similarity metric too naively to duplicated source code. Assume that a system X is
composed of a file x1, and a new system X ′ is composed of two files x′

1 and x′
2 where

both x′
1 and x′

2 are the same copies of x1. In our definition using the many-to-many
matching, the similarity is 1.0, but using the one-to-one matching gives 0.67, since
x1 matches x′

1 (or x′
2) by the one-to-one matching so that the similarity is (|{x1}| +

|{x′
1}|)/(|{x1}| + |{x′

1, x
′
2}|) = 2/3 ∼= 0.67. Therefore, we think that the one-to-one

matching does not reflect development efforts properly.
Another reason for using many-to-many matching is performance. The one-to-one

approach needs some mechanism to choose the best matching pair from many possibil-
ities, which generally is not a simple, straightforward process.

Actually, metric Sline showed very high correlation with release durations of
FreeBSD. The release durations are calculated from the difference of OS release dates
presented in Figure 4. The Pearson’s correlation coefficient between Sline values and
release durations of FreeBSD versions is -0.973. On the other hand, the increases of the
size or the release durations are not highly correlated. The Pearson’s correlation coeffi-
cient between the size increases(Table 1) and the release durations is 0.528. Therefore,
we think that Sline is a reasonable measures of release durations in this case.

5.2 SMAT

SMAT worked very efficiently for large software systems. To compute Sline, execu-
tion of diff for all possible file pairs would have been a simple approach. However,
the execution speed would have become unacceptably slow as mentioned in 3.3. Com-
bining CCFinder and diff boosted the performance of SMAT. Also, as mentioned be-
fore, the movement and modification of source code lines can be traced better by
CCFinder, which effectively detects clones with different white spaces, comments,

Measuring Similarity of Large Software Systems 541

identifier names, and so on. The matching computation using only diff cannot chase
those changes.

There are a lot of researches on clone detection and many tools have been developed
[21, 22, 23, 24, 25, 26, 27].We could have used those tools instead of CCFinder.

5.3 Related Work

There has been a lot of work on finding plagiarism in programs. Ottenstein used Hal-
stead metric valuations[28] of target program files for comparison[29]. There are other
approaches which use a set of metric values to characterize source programs[30, 31, 32].
Also, structural information has been employed to increase precision of comparison[33,
34]. In order to improve both precision and efficiency, abstracted text sequences (token
sequences) can be employed for comparison[8, 9, 10, 35]. Source code texts are trans-
lated into token sequences representing programs structures, and the longest common
subsequence algorithm is applied to obtain matching.

These systems are aimed mainly at finding similar software code in the education
environment. The similarity metric values computed by comparison of metrics values
do not show the ratio of similar codes to non-similar codes. Also, scalability of those
evaluation methods to large software system such as BSD UNIX is not known.

In reverse engineering field, there has been research on measuring similarity of com-
ponents and restructuring modules in a software system, to improve its maintainability
and understandability[36, 37, 38]. Such similarity measures are based on several metric
values such as shared identifier names and function invocation relations. Although these
approaches involve important views of similarity, their objectives are to identify compo-
nents and modules inside a single system, and cannot be applied directly to inter-system
similarity measurement.

There are many literatures for detection of code clones and patterns[17, 21, 22, 23,
24, 25, 26, 27]. Some of those proposed metrics for the clones; however they have not
been extended to the similarity of two large software systems.

A study on the similarity between documents is presented by Broder[11]. In this
approach, a set of fixed-length token sequences are extracted from documents. Then
two sets X and Y are obtained for each document to compute their intersection. The
similarity is defined as (|X| ∩ |Y |)/(|X| ∪ |Y |).

This approach is very suitable for efficiently computing the resemblance of a large
collection of documents such as world-wide web documents. However, choosing token
sequences greatly affects the resulting values. Tokens with minor modification would
not be detected. Therefore, this is probably an inappropriate approach for computing
subjective similarity metric for source code files.

Manber[12] developed a tool to identify similar files in large systems. This tool uses
a set of keywords and extracts subsequences starting with those keywords as finger-
prints. A fingerprint set X of a target file is encoded and compared to a fingerprint set
Y of a query file. The similarity is defined as |X ∩ Y |/|X|.

This approach works very efficiently for both source program files and document
files and would fit exploration of similar files in a large system. However, it is fragile
to the selection of keywords. Also, it would be too sensitive to minor modifications of
source program files such as identifier changes and comment insertions.

542 T. Yamamoto et al.

Broder and Manber methods are all quite different from those developed and pre-
sented herein, since they do not perform comparison on raw and overall text sequences,
but rather on sampled text sequences. Sampling approaches would get high perfor-
mance, but the resulting similarity values would be less significant than our whole text
comparison approach.

6 Conclusion

A proposed definition of similarity between two software systems with respect to cor-
respondence of source code lines was formulated as a similarity metric called Sline.
An Sline-based evaluation tool SMAT was developed and applied to various software
systems. The results showed that Sline and SMAT are very useful for identifying the
origin of the systems and to characterize their evolution.

Further applications of SMAT to various software systems and product lines will be
made to investigate their evolution. From a macro level analysis viewpoint, categoriza-
tion and taxonomy of software systems analogous to molecular phylogeny should be
an intriguing issue to pursue. From a micro level analysis view point, chasing specific
code blocks through system evolution will be interesting to perform.

References

1. Antoniol, G., Villano, U., Merlo, E., Penta, M.D.: Analyzing cloning evolution in the linux
kernel. Information and Software Technology 44 (2002) 755–765

2. Basili, V.R., Briand, L.C., Condon, S.E., Kim, Y.M., Melo, W.L., Valett, J.D.: Understanding
and predicting the process of software maintenance release. In: 18th International Confer-
ence on Software Engineering, Berlin (1996) 464–474

3. Cook, S., Ji, H., Harrison, R.: Dynamic and static views of software evolution. In: the IEEE
International Conference On Software Maintenance (ICSM 2001), Florence, Italy (2001)
592–601

4. Kemerer, C.F., Slaughter, S.: An empirical approach to studying software evolution. IEEE
Transactions on Software Engineering 25 (1999) 493–509

5. The First Software Product Line Conference (SPLC1): The First Software Product Line Con-
ference (SPLC1), http://www.sei.cmu.edu/plp/conf/SPLC.html (2000) Denver, Colorado
(2000)

6. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison Wesley
(2001)

7. Baxevanis, A., Ouellette, F., eds. In: Bioinformatics 2nd edition. John Wiley and Sons, Ltd.,
England (2001) 323–358

8. Schleimer, S., Wilkerson, D., Aiken, A.: Winnowing: Local algorithms for document finger-
printing. In: Proceedings of the ACM SIGMOD International Conference on Management
of Data. (2003) 76–85

9. Prechelt, L., Malpohl, G., Philippsen, M.: Jplag: Finding plagiarisms among a set of pro-
grams. Technical Report 2000-1, Fakultat fur Informatik, Universitat Karlsruhe, Germany
(2000)

10. Wise, M.J.: YAP3: Improved detection of similarities in computer program and other texts.
SIGCSEB: SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education)
28 (1996)

Measuring Similarity of Large Software Systems 543

11. Broder, A.Z.: On the resemblance and containment of documents. In: Proceedings of Com-
pression and Complexity of Sequences. (1998) 21–29

12. Manber, U.: Finding similar files in a large file system. In: Proceedings of the USENIX
Winter 1994 Technical Conference, San Fransisco, CA, USA (1994) 1–10

13. Hunt, J.W., McIlroy, M.D.: An algorithm for differential file comparison. Technical Re-
port 41, Computing Science, Bell Laboratories, Murray Hill, New Jersey (1976)

14. Miller, W., Myers, E.W.: A file comparison program. Software- Practice and Experience 15
(1985) 1025–1040

15. Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica 1 (1986)
251–256

16. Ukkonen, E.: Algorithms for approximate string matching. INFCTRL: Information and
Computation (formerly Information and Control) 64 (1985) 100–118

17. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: A multilinguistic token-based code clone
detection system for large scale source code. IEEE Transactions on Software Engineering
28 (2002) 654–670

18. Gusfield, D.: Algorithms on strings, trees, and sequences. Computer Science and Computa-
tional Biology. Cambridge University Press (1997)

19. McKusick, M., Bostic, K., karels, M., Quarterman, J.: The Design and Implementation of
the 4.4BSD UNIX Operating System. Addison-Wesley (1996)

20. Everitt, B.S.: Cluster Analysis. Edward Arnold, 3rd edition, London (1993)
21. Baker, B.S.: On finding duplication and near-duplication in large software systems. In:

Second Working Conference on Reverse Engineering, Toronto, Canada (1995) 86–95
22. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using abstract

syntax trees. In: Proceedings of the International Conference on Software Maintenance,
Bethesda, Maryland (1998) 368–378

23. Ducasse, S., Rieger, M., Demeyer, S.: A language independent approach for detecting du-
plicated code. In: Proceedings of the International Conference on Software Maintenance,
Oxford, England, UK (1999) 109–119

24. Johnson, J.H.: Identifying redundancy in source code using fingerprints. In: Proceedings of
CASCON ’93, Toronto, Ontario (1993) 171–183

25. Johnson, J.H.: Substring matching for clone detection and change tracking. In: Proceedings
of the International Conference on Software Maintenance, Victoria, British Columbia (1994)
120–126

26. Kontogiannis, K.: Evaluation experiments on the detection of programming patterns using
software metrics. In: Proceedings of Fourth Working Conference on Reverse Engineering,
Amsterdam, Netherlands (1997) 44–54

27. Mayrand, J., Leblanc, C., Merlo, E.: Experiment on the automatic detection of function
clones in a software system using metrics. In: Proceedings of the International Conference
on Software Maintenance, Monterey, California (1996) 244–253

28. Halstead, M.H.: Elements of Software Science. Elsevier, New York (1977)
29. Ottenstein, K.J.: An algorithmic approach to the detection and prevention of plagiarism.

ACM SIGCSE Bulletin 8 (1976) 30–41
30. Berghel, H.L., Sallach, D.L.: Measurements of program similarity in identical task environ-

ments. ACM SIGPLAN Notices 19 (1984) 65–76
31. Donaldson, J.L., Lancaster, A.M., Sposato, P.H.: A plagiarism detection system. ACM

SIGCSE Bulletin(Proc. of 12th SIGSCE Technical Symp.) 13 (1981) 21–25
32. Grier, S.: A tool that detects plagiarism in pascal programs. ACM SIGCSE Bulletin(Proc.

of 12th SIGSCE Technical Symp.) 13 (1981) 15–20
33. Jankowitz, H.T.: Detecting plagiarism in student Pascal programs. The Computer Journal

31 (1988) 1–8

544 T. Yamamoto et al.

34. Verco, K.L., Wise, M.J.: Software for detecting suspected plagiarism: Comparing structure
and attribute-counting systems. In Rosenberg, J., ed.: Proc. of 1st Ausutralian Conference
on Computer Science Education, Sydney, Australia (1996) 86–95

35. Whale, G.: Identification of program similarity in large populations. The Computer Journal
33 (1990) 140–146

36. Choi, S.C., Scacchi, W.: Extracting and restructuring the design of large systems. IEEE
Software 7 (1990) 66–71

37. Schwanke, R.W.: An intelligent for re-engineering software modularity. In: Proceedings of
theThirteenthInternational Conference on Software Engineering, Austin, Texas, USA (1991)
83–92

38. Schwanke, R.W., Platoff, M.A.: Cross references are features. In: Proceedings of the 2nd
International Workshop on Software Configuration Management. (1989) 86–95

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 545–559, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Tool Support for Personal Software Process

Jouni Lappalainen

Department of Information Processing Science, University of Oulu,
P.O.Box 3000, FIN-90014 OULU, Finland
Jouni.Lappalainen@oulu.fi

Abstract. Improving the software development process is something that many
organizations aim for. Many methods have been devised to reach this goal, one
of which focuses on the personal level of software development, namely the
Personal Software ProcessSM1 (PSPSM). There is a dire need for automated tool
support for PSP, since the method is laborious if used manually. During four
university-level courses several tools were studied and later evaluated using
feature analysis. As one result, a requirements set for an ideal PSP tool was de-
vised. The results of the evaluation showed that none of the evaluated tools ful-
filled the acceptance threshold set for a tool, though one of them can be
modified so that it could be used within the setting of an academic PSP course.

1 Introduction

Structured and disciplined development process is commonly found to be helpful in
software quality improvement efforts. Methods and models such as SW-CMM or
CMMI have traditionally been more focused towards an organizational approach of
software engineering. In the end, the work is done by individuals, and their capabili-
ties to address the requirements of organizational software engineering models have
been at least varied if not limited. As a personal level software development and
quality process, Watts S. Humphrey developed the Personal Software ProcessSM in the
mid-1990s. If the PSP is used as described in [1] and followed faithfully, it is very
laborious due to the constant measuring of own work. The “tools” provided in [1] are
essentially document templates and statistical formulae, and these have been found
inadequate to at least classroom usage during several courses in University of Oulu
[2] [3] and Copenhagen Business School [4]. The practical need in teaching has
prompted the question: how can the Personal Software Process be supported with
software tools? In order to find the answer to this an analysis of what kinds of tools
exist and ideal tool requirements is conducted.

The problem is approached qualitatively, by studying the feedback given by stu-
dents in PSP courses. This feedback, combined with personal experiences from the
same courses as well as a comprehensive literature study, is used as the material while
evaluating the software tools. To select the appropriate way to evaluate software
tools, methodology identified during the DESMET-project is used [5]. The tools for

SM1 Personal Software Process and PSP are service marks of Carnegie Mellon University.

546 J. Lappalainen

the analysis cover some of those used in classroom setting as well as those not used
during the courses. This is to give more validity to the results of the study, if not the
analysis itself. The selection is also to be more of a descriptive set of the types of
tools, rather than a comprehensive set of tools available.

Rest of the paper has been organized as follows. The following sections give a
short overview of PSP method as well as tools used to support it. This is followed by
the description of the evaluation method and evaluation context, after which a section
summarizing some of the features of an ideal PSP tool is presented. Results of the
evaluations of the tools are outlined and briefly discussed in section 6. Finally, section
7 provides some concluding remarks.

2 Overview of the PSP Method

The PSP aims to enable an individual software engineer to improve the quality of the
product by improving the quality of the process she uses to develop the product. This
is achieved by introducing elements to the process that help the user of the PSP to
plan, track and analyze both the product and the process, as well as manage the devel-
opment project on a personal level. The PSP is often taught as a course, where these
elements to the process are gradually introduced into the initial, or the baseline proc-
ess, as is suggested by [1]. After augmenting the baseline process with product and
process measurements, standard reporting features and the general process structure,
the process elements introduced deal with personal project management issues. This
PSP1-level adds test reporting as well as size and effort estimating into the process
elements. The following PSP2-level gives the user tools for software quality man-
agement on a personal level, code and design reviews to name a few. Finally, the
PSP3-level introduces cyclical development concepts to the process in order to scale
the PSP for larger projects.

According to Humphrey [6], the PSP “is based in part on the quality management
principles of W. Edwards Deming and Joseph M. Juran. In a more general sense,
these methods follow principles that Frederick Winslow Taylor introduced over 100
years ago.” Some founding principles behind the PSP can be seen to be process
tracking, project planning, product and process measurement, analyzing of that data,
and process improvement based on the analysis. Here only a cursory overview of the
PSP is given, and for example many of the methods, process elements and statistical
formulas that the PSP uses cannot be discussed. For more information about the PSP,
the reader is encouraged to refer to [1].

As so many other software engineering issues, the PSP is by no means a single so-
lution to all possible problems, or “the silver bullet” if wished. Considerably crucial
points for critique have been found over the years, one of which is the already men-
tioned amount of work the PSP demands from the user [7]. Disney and Johnson have
also studied the problems in collecting the PSP data [8], and found that the data col-
lected doesn’t always properly and accurately reflect the reality. This is partly due to
the sometimes overwhelming amount of data that needs to be collected, and partly to
the fact that when recording some data from the process, the software engineer needs

 Tool Support for Personal Software Process 547

to switch her context of thought from solving the problem (design, coding, etc.) to the
recording of data. This interleaving of two different tasks can cause inaccuracies in
the data and hinders the motivation to collect the data. In addition to the problems in
collecting data, there are also many different ways of defining productivity, which is
one of the key metrics of the PSP. The straightforward approach to counting lines of
code that is adopted in the PSP – setting aside the excoriating in the measurement
literature – can cause considerable fluctuations in productivity when taking into ac-
count such issues like code reuse, commenting, and the amount of base code. As-
sumed linearity between the amount of work and the size of the product can cause
problems as well, which is often highlighted when using historical data as the basis of
resource estimations.

3 PSP Tools

Following the “no silver bullet” –principle, software tools can help the user of the
PSP, but they will not solve all the problems (which is just as with processes). Such
standard tools as word processors, spreadsheets and statistical packages will provide a
starting point. In the end, though, in addition to those basic tools, CASE-environ-
ments or similar programs that are specifically developed for the purpose of support-
ing the PSP are needed.

For the purposes of this text it is considered that a PSP tool is such a tool that can
assist in executing at least some portion of the PSP. Even though the definition allows
tools that are something else than pieces of software, and Humphrey’s fundamentally
manual way of conducting the PSP is analyzed as one tool in this text, the study here
concentrates on software tools. The concept of a software tool is rather common, but a
more thorough analysis and evolutionary view can be found in [9]. The PSP on the
other hand is defined in almost excruciating detail in [1].

Therefore, the requirements for a PSP tool are stated by the PSP. The Software En-
gineering Institute has issued a specification for a PSP tool [10] (which has then been
removed from distribution). Although the specification assumes heavy usage of
spreadsheets and/or document forms, some points in it are applicable to a more gen-
eral variety of tools:

• customization
• privacy of data
• free selection of the current process phase
• phase and time tracking
• project planning and estimating support
• issue logging
• software design must be produced
• phases of a software development process

These points can be elaborated into detailed requirements. With the more general tool
evaluation and selection criteria [11] that takes into account such issues as reliability,
usability, efficiency and maintainability, a basis for a requirements set can be com-

548 J. Lappalainen

bined. This set was modified, mostly by adding requirements that were deemed nec-
essary by experiences from the PSP courses, a set consisting of 110 distinct
requirements can be defined. Some of those requirements are implicitly described
later in this text while discussing some of the features of an ideal PSP tool.

For the purposes of managing the different kinds of tools and putting them into
perspective, a classification of PSP tools can be devised. Figure 1 shows the classifi-
cation hierarchy according to the experiences from the tools used in the PSP courses.
All PSP tools can be divided into manual and automated tools, as well as into being
either “custom-built” for PSP or not. Generic tools are either mental models (such as a
mathematical formula) or common tools designed assist in various work tasks (e.g.
word processors). PSP-specific tools can support the whole process or just a part of it.
At the same time, the tools designed for PSP may either need direct attention from the
user during the enactment of the process, resulting into a switching of mental context
by the user, or function completely unobtrusively to the user.

Fig. 1. Classification hierarchy for PSP tools using EER-type notation

It is interesting to note that in his book [1] Humphrey states that it would be good
to have a completely automated PSP tool, but that such a tool is nearly impossible
because of the human judgment required in several parts of the process. The set of
manual tools that he gives leaves many things to be improved, and even if the com-
pletely automated PSP tool would be impossible to realize (in the near future at least),
automated tool support can ease the overhead of data collection and analysis, as well

PSP tools

d

Automated Manual

d

PSP-specific
Generic

Full process
support

Partial process
support

Context-
switching Unobtrusive Mental models

Common tools

d

d
d

 Tool Support for Personal Software Process 549

as improve the quality of both collected and analyzed data. Depending on the point of
view, the set of tools given in [1] can be interpreted to consist from 1 (document tem-
plates) to over 50 or even as much as nearly 100 different tools (each metric, form,
statistical formula, etc. calculated separately). In this study the “1”-option is adopted.

4 Tool Evaluation Using DESMET Feature Analysis

For all purposes relevant here, the DESMET methodology [5] can be viewed as a set
of nine related evaluation methods that have a higher-level rationale for selecting
between them. This high-level method enables the organization conducting a tool or
method evaluation and selection to select the most appropriate evaluation method,
given the context of the organization. The DESMET method is not particularly ada-
mant whether the target being evaluated is a method or a tool (or a combination of the
two), and thus in the context of a PSP tool evaluation can be viewed to apply to tools
as such. It should be noted that the DESMET evaluations assume that the target of
evaluation is always comparative between several candidate tools (or methods).

4.1 Selecting the Appropriate Evaluation Method

The different evaluation methods can be classified into quantitative, qualitative and
hybrid methods, as well as by the organization of the evaluation. Both quantitative
and qualitative methods can be organized as formal experiments, case studies or sur-
veys. In addition to these, qualitative methods have a feature analysis method that
allows the screening of candidate tools with little resources. Hybrid methods include
the qualitative effects analysis (subjective – qualitative – opinion on how much effect
the evaluation target has) and benchmarking (quantitative results of standard tests are
evaluated qualitatively).

Main limitations concerning the DESMET method include two issues. Firstly, a
combination of several different tools or methods cannot be evaluated very well. This
is not a problem in the context of this study, since a single tool that could support the
user of the PSP is searched for. Secondly, the organization conducting the evaluation
should have a controlled production process, so that the changes caused by the tool in
evaluation can be observed with some reliability. If a PSP course is taken as the or-
ganization, it has a rather stable process, and PSP itself is very strictly defined, so this
shouldn’t cause many problems either considering the reliability of the results of the
evaluation. Final note about the limitations of the DESMET method that should be
addressed here is that the method is aimed more for industrial than academic organi-
zations. The four different types of contexts for industrial evaluation that have been
identified in [5] differ somewhat from that of the academic evaluation. In the PSP
courses held in the University of Oulu, the students require support from the tool in
learning the PSP-method. This is close to the industrial context described by Kitchen-
ham, where a tool is selected to a single project.

In addition to the evaluation context, the other criteria defined [5] for selecting the
appropriate evaluation method (nature of the impact of the tool, nature of the tool
itself, the scope of impact and the maturity of the tool, the learning curve associated

550 J. Lappalainen

with the tool and the measurement capability of the organization) point towards the
selection of the feature analysis screening as the evaluation method. Other, more
practical issues also favor this choice, such as the time and resources available. This
has the adverse effect that the results of the evaluation may not be as reliable as with
formal experiment for example. Some of the effects regarding reliability by subjec-
tivity involved in feature analysis screening are attempted to minimize by including
representatives of potential user groups (students, teachers) into the evaluation proc-
ess. Alternative DESMET-approaches for tool evaluation within this context can be
identified, which each have their own advantages and drawbacks. According to [5],
qualitative evaluation methods are more suited for analyzing the appropriateness of a
tool than quantitative evaluations. Qualitative case study can be used for establishing
more profound understanding of the features and appropriateness of a tool, as has
been the case for some of the tools of this study. Though this alternative may yield
more reliable results than feature analysis screening, it is not so applicable to a situa-
tion where a tool or a set of tools is needed to be selected from a larger set, for exam-
ple to be candidate tools for a further evaluation, with limited time and resources.

4.2 Feature Analysis on PSP Tools

The feature analysis screening executed on the PSP tools is discussed here shortly, by
describing the set of candidate tools selected for evaluation, the features and their
scoring scheme used in the evaluation, and the analysis principles of the evaluation
results. Other issues concerning the evaluation planning, execution and analysis are
recognized [5] and attended to, but not discussed here.

This study is mainly concerned with evaluating the tools used in the four PSP
courses held in the University of Oulu and Copenhagen business school (in 2001).
Some other tools that were identified while preparing for these courses have also been
taken into the evaluation to improve the possibilities of finding acceptable tool sup-
port for future courses. The most applicable tool is the one that meets the require

Table 1. The list of tools used in the PSP courses studied

Course Tool Description
PPLogControl Automated time-tracking tool
EvalPPLog Parser for the log file of PPLogControl
Document templates Electronic version of manual forms of [1]

Oulu
2000

Student-authored tools Small helper tools that the students created as
assignments during the course

CBS
2001

OpenStat Generic statistics program

Oulu
2002

Logfile parsers Student-authored parsers for PPLogControl
log files

LEAP Tool to help in a PSP-style process, by CSDL
in University of Hawaii

Oulu
2003

Hackystat Next generation process support software
from the developers of LEAP

 Tool Support for Personal Software Process 551

ments of an ideal tool to an acceptable degree. The set of tools (previously not used in
course settings) for each of the firs four courses studied is listed in table 1. In addition
to these, two tools outside these courses are included into the evaluated set, PSP Stu-
dio and Process Dashboard. In addition to the feature analysis, the analysis findings of
the latter tool are compared against the feedback and experiences of the PSP course
arranged in 2004 in the University of Oulu.

As mentioned above, the feature set that is used to evaluate a PSP tool is devised
by modifying the IEEE set of CASE tool selection criteria [11], and reviewing it with
the representatives of potential user groups of the tool. User participation was also
solicited while determining priorities for the features, as well as the level of accepted
support for each feature. The prioritizing and scoring schemes follow the proposition
of Kitchenham [5]. Every feature has a distinct description for each grade (between 0
and 5), making the scoring of the features more explicit. Each feature has as well an
acceptance level for each user group to determine if the tool can be acceptable from
the part of the current feature in classroom use.

A tool can be accepted only, if both user groups accept that every mandatory
feature has acceptable level of support from the tool. While analyzing the evaluation
results, this is visible in that the main emphasis is put on the mandatory features. The
rest of the features are analyzed if all mandatory features achieve the acceptance
treshold. Since the feature analysis allows the features to form hierarchies, 24 of the
110 features are compositions of lower features (e.g. “reliability” consist of issues like
“data integrity”, “robustness”, etc.). The remaining, atomic features can be used as a
metric describing the overall suitability of the tool. Even if in {5] single numeric
metrics for overall results are discouraged, for the sake of simplicity in reporting here
the results of the study, a metric of mandatory atomic features that achieve the
acceptance treshold is used. This is because during the evaluation process this metric
was found to be most descriptive from the set of several metrics used.

5 Requirements of an Ideal PSP Tool

The requirements for a tool that supports the PSP ideally can be derived from the
scoring scheme of the feature analysis. Because each feature has a written description
for each grade it can have, the ideal situation would be the one described by the high-
est score of every feature. Only some of the requirements, namely those that have
most influence over the issues regarding the PSP, are outlined here. It should be
noted, that the requirements are “client requirements”, or general descriptions of what
the tool should be able to do and how, not exact specifications.

5.1 Non-functional Requirements

Some issues concerning reliability, usability and efficiency are discussed here. Re-
quirements for maintainability, transferability and other general requirements, as well
as many other than those outlined here from the previous categories can be identified.

The tool should inhibit the unauthorized use of the tool, as well as unauthorized
viewing of the data collected by the tool. In the case of centralized data storages, other

552 J. Lappalainen

than personal data of the user cannot be accessed. Other, common information secu-
rity related issues are also valid to an ideal PSP tool. Technical solutions can be used
to some extent, but at least equally important can be considered to be the security
awareness of the users.

The tool should support the reliable storing and retrieval of data. The integrity of
the data should be ascertained by internal solutions and data cannot be distorted while
storage or retrieval [12]. In practice this can be difficult to achieve, but techniques
such as checksums and noting potential data storage problems can minimize the ef-
fects that reduce the integrity of data to some extent.

The tool should be so robust and stable that it will not stop its execution without an
explicit instruction from the user. Should such an unlikely event occur despite all
precautions, the effort required to restore correct state of execution should be mini-
mal. More accurate limits (in terms such as mean time between failures) could be
specified, but for purposes of this study this is not done.

Regarding efficiency, the tool has two directions for requirements. As far as hard-
ware is concerned, no unreasonable resources should be needed [13]. From the user
viewpoint, all the required functions are initiated and executed automatically, and
keystrokes or mouse movements are needed rarely if at all. With the PSP, the increase
in overhead caused by measuring one’s work should be minimized close to zero with
the help of the tool [14].

The usability of the tool must be good. This requires that the tool must be easy to
use for both beginner and advanced users. For example, during the user interface
design both instructive texts and shortcuts for common tasks should be available [15].
Since the users are students in a PSP course, the learning curve associated with the
tool must be initially low. Intuition and basic knowledge of the PSP should be enough
for a user to be able to use the tool without additional time and work [16].

The nonexistence of the need to switch the context of thought by the user is essen-
tial to an ideal PSP tool. The use of the tool may not interfere with the thought proc-
ess in the middle of software development. The trouble with removing the need for
this context-switching is the quality, granularity and accuracy of the data required by
the PSP [8]. For example, if the time tracking during the design phase of the process
were automated to that extent that no context-switching is necessary, the tool should
be able to read the very thoughts of the user and determine when those thoughts are
related to the design effort and when not. Other, possibly a bit more realistic problems
can be found in [1].

5.2 Functional Requirements

The tool should cover all phases of software development process (at least those that
are applicable to the personal level) [9]. In addition, every phase must be internally
comprehensive, so that all PSP functions can be executed with the tool. Disregarding
every other requirement, this should be well within bounds to be implementable. The
transitions between phases should be unnoticeable by the user and her actions or the
tools she uses tell the tool what is the current phase of the process [14].

To function, the tool should not require any specific software. Taking into account
the most common operating systems and platforms, independence from all other pro-

 Tool Support for Personal Software Process 553

grams should be enforced. In reality, this can be approximated e.g. through the use of
virtual machines, or by developing mutually compatible versions of the tool for dif-
ferent platforms.

The process that the tool supports should be customizable, and the tool should be
able to reflect these changes. User should be able to add, edit and remove process
phases as necessary and different process approaches (iterative, prototyping, etc.)
must be supported. Task management must be flexible and for example reordering the
tasks must be uncomplicated [17]. The process model must be built into the tool, but
it may not restrict the user to use just that kind of a process.

The tool should automate the defect management. This includes that the defects are
classified (one example classification is given in [1], but others must be possible too)
automatically, without user intervention, and logged for historical data analysis [8].
Logging requires information about the injection and removal phases of the defect,
duration of defect removal, etc. as specified in [1]. Even though the defects are logged
automatically, a manual interface to insert and edit the defect entries should be pro-
vided. While defect logging could be automated at least to a certain extent, the classi-
fication of defects is rather difficult, since it requires perception of contexts in a way
that is not typical for computers and programs [17].

Product size measurement should be automated, and at least logical lines of codes
should be used as a metric, while other options can be provided too. In this context
the programming language used and possible standards that the code should adhere to
must be identified. All line of code –measures should be logged with the tool, and
categorized to facilitate LOC-accounting as defined in [1].

All required data should be collected automatically, and the tool should remove the
need for user to collect the PSP process data [8]. In many cases the PSP presumes the
data to be of such nature that it is automatically collectable. Also manual data entry
should be provided for management reasons. For time data the requirement for auto-
mated data collection poses some challenges, since the tool must be able to detect the
difference between productive working time and times of other activities. This re-
quirement is closely related with the ability of the tool to detect transitions between
process phases.

All the calculations on the data collected required by the PSP should be automated
by the tool. The user shouldn’t need to calculate anything by herself. This applies to
estimating and planning phases, as well as data collection and analysis phases of the
process [19]. Especially with resource management and estimating the calculations
must be automated. As far as estimation methods are concerned, at least the PROBE
method defined in [1] should be supported, but other popular estimation methods
could be implemented as options.

From other concepts of the PSP, the tool should provide automated support for
planned value management and earned value tracking, process improvement feedback
in some form (the PSP provides process improvement proposal forms for this), and
checklists used in reviews. The checklists - or at least their outlines – should be gen-
erated automatically from the results of the data analysis of previous projects. Tool
should also enforce the use of checklists somehow.

554 J. Lappalainen

6 Tools and Their Evaluation Results

The basis for the feature analysis was the feedback from students together with the
first-hand experiences from using the tools in question. To give some perspective on
the results and the discussion of them, a short description of the student profiles and
assignments used in the courses is provided first.

6.1 Scenario and Student Feedback

Most of the tools evaluated here have been used in the context of an academic PSP
course. Each course has featured at least slightly differing sets of tools, and a mixture
of users and programming assignments. While the first two courses utilized the exer-
cise sets given in [1], the latter three have used customized assignment specifications,
mainly to do with devising small helper tools to augment the functionality in other
tools used in the course. A typical profile of a student given by a student enrolling a
course in this study included an indication of a study year of 2 or higher, mediocre or
better programming skills with several thousand lines of codes written prior to the
course, little or no knowledge of statistics, and a position in an industrial software
organization (although this was more common with students of more study years than
2 or 3). A summary of the background information about the courses and the data
collected is presented in table 2.

Table 2. Course details

 Oulu
2000

CBS
2001

Oulu
2002

Oulu
2003

Oulu
2004

Course length (weeks) 10 14 10 11 10
PSP level achieved 2 3 3 3 3
Number of participants 31 22 32 13 23
Pass % 65% 77% 53% 31% 48%
Study year 3-4 4-5 3-5 2- n 2- n
Amount of tool-related
feedback comments

33 36 100 60 87

The discrepancy between passed amount of students and number of comments
about the tools is noticeable between the last two courses and those that preceded
them. This is partly explained by the fact that the last courses introduced explicit
solicitations for tool commentary in the form of a distinct question in feedback ques-
tionnaire that the students were able to submit after each assignment. Although, with
every course, all tool-related comments were taken into account despite the form or
document they were delivered in.

Initially students were either requesting better tools rather explicitly, or were dis-
mayed by the amount of documents needed.

 Tool Support for Personal Software Process 555

• “Tools needed for paperwork”
• “Far too many forms/templates. Writing data to zillion forms takes too much time”
• “don’t you have any program that can automate all the calculations for PSP?”

With the course tool selection maturing and course staff gaining experience, the
quality of tools as well as their deployment to the students improved. Still many
problems persisted.

• “Practically every program I used in development failed at least once, including
JBuilder and PPLogControl”

• “Working parser would help time tracking a lot.”
• “Actually using PSP would require a tool that is quite ‘invisible’, e.g. actual

development time, sizes and defect data should be calculated automatically.”
• “You actually can live with LEAP after you learn (the hard way) what it can/

cannot do.”

6.2 Tool Scoring and the Results of the Feature Analysis

The feedback data is used to score each feature for each tool. By analyzing the scores
in respect with the acceptance levels for each feature, the tools can be measured for
their suitability for the classroom use in given context. For this analysis, a listing
(unordered one) of all mandatory atomic feature names is given in table 3.

Table 3. Listing of those atomic features that were determined to be of mandatory priority

Feature name Feature name Feature name
Data integrity Required software Size measurement
Security Supported software LOC-accounting
Robustness Hardware support/-need Statistical estimation
Learning curve Method support Planned value
Knowledge
requirements

Language support Earned value

Ease of use Process modelling Automatic calculation
Response times Checklists Improvement feedback
Ease of installation Data collection Tool implementation cost
Context-switching Time data Organizational effects
Workload efficiency Process coverage Defect classification
Resource optimization Phase transitions Defect logging

With this feature set and the predetermined acceptance levels, each tool is scored
and analyzed. Results of that analysis are shown in table 4. It should be noted that
there are two different acceptance percentages shown per tool. The first one is from
the analysis against the acceptance levels set by the representative of teaching staff,
while the second results from the acceptance levels of students. A short, written
comment about the applicability of the tool is also included.

556 J. Lappalainen

It can be determined from the results in table 4 that generic tools are not good for
supporting the PSP, but rather a tool designed specifically for the PSP support is
needed. Even though none of the tools that were selected for the evaluation provided
explicitly acceptable level of support for the PSP, the Process Dashboard tool did
come close to the acceptance threshold. Because the tool that the results showed to be
the most suitable for the course context was one that wasn’t used in any of the
courses, it was selected to be the candidate for further studying.

The next PSP course organized in the University of Oulu that was arranged during
the fall of 2004 utilized Process Dashboard in order to gather student feedback and
experiences such as those from the previous courses. The aim was to validate the
findings of the feature analysis conducted in this study, and compare the anticipated
student feedback on the tools used (based on the feature scores from the analysis) to
the actual response. Experiences for basing opinions on continued use of the tool in
PSP courses were also gained.

Table 4. Acceptance percentages for mandatory atomic features for each tool

Tool Acceptance % Comment
Document
templates

39 % (teacher) /
39 % (student)

Good coverage, but completely manual

Student-
authored tools

36 % / 30 % Good in the very narrow field that they apply
to

PPLogControl 61 % / 58 % Coverage is narrow
EvalPPLog 42 % / 36 % Batch-style program, applicable only to the

analysis phase of the process
OpenStat 39 % / 39 % Supports the statistics needed in the PSP, but

no other process support
Logfile
parsers

39 % / 36 % Batch-style programs, same as EvalPPLog,
operational problems

LEAP 76 % / 58 % Full process support, but problems in usability
and stability

Hackystat 64 % / 55 % Unnoticeable, no context-switching, but
support isn’t exactly for the PSP

PSPStudio 73 % / 67 % Wide process coverage, but a lot of context-
switching required

Process
Dashboard

97 % / 91 % Some context-switching required, but other-
wise very nearly acceptable

6.3 Discussion of the Result Validation Case

The overall result of Process Dashboard being the most suitable from the evaluated
tools was validated during the Oulu 2004 course. In addition to the personal
experiences of the teaching staff, the feedbacks from the students enforce this view.
One student, who happened to have experience from both the Leap and Dashboard
tools, commented

 Tool Support for Personal Software Process 557

• “Tool is great. Much better than the “Leap”. The data is gathered in a good way.”

It could be derived from the feature analysis results that the most critical issues
with the Process Dashboard tool in the classroom setting have to do with context-
switching, learning curve associated with the tool, and workload efficiency. This is
only partly visible from the student feedback, though. Majority of the comments re-
garding tools and their usage were positive, acknowledging the assistance the tool
provided. While the support for learning curve and workload efficiency -features is
visible from, even though not dominant in the student feedback, context-switching is
not so evident. This may be partly due to the lack of constant reference point, such as
the Hackystat tool, being available for the course participants, even though issue of
context-switching was discussed during the lectures.

• “I want “always on top” –property to dashboard tool bar.”
• “Scheduler was a pain before the logic sank in.”

Some unexpected issues were found also from the tool usage, namely cross-
platform support and usability issues. Although quite severe, at least considering the
classroom usage of the tool, these issues are technically solvable. Therefore it is
possible to develop the Dashboard tool so that it can be viewed to achieve the mini-
mum acceptance level for a PSP course tool. The feature analysis framework
developed in this study can be used to evaluate new versions of the tool, as well as
completely new tools for course usage. Reuse of the existing evaluation framework is
also encouraged by the experience on the time required evaluating, possibly several
tools, against over one hundred features.

7 Summary

Ten different tools were analyzed in order to determine their support for the PSP. A
feature analysis was conducted for the tools, which required identifying certain fea-
tures that the tool should implement, as well as a construction of a scoring scheme for
the tools based on those features. Over one hundred features were identified. Some of
the most crucial ones were described in their ideal state of support, thus outlining a
requirements set for an ideal PSP tool. These requirements may be impossible to
implement with current technology, but they serve as a reference point for future PSP
tool evaluations. The thought about the realism of the requirements [17] should be
remembered, though, when creating requirements that are to be implemented, but in
this text the ideal case was set as the goal of the study.

From the tools analyzed, none were found to be acceptable as such for use in a PSP
course. This was determined from the acceptance levels user group representatives
stated for each feature in preparation for the feature analysis. The best suited tool was
selected as a candidate for further research, which validated some of the results of the
feature analysis, and highlighted some new points of development before the tool
could be considered acceptable for continuous use in classroom setting.

558 J. Lappalainen

References

1. Humphrey, W.S.: A Discipline for Software Engineering. Addison-Wesley, Reading,
Mass. (1995)

2. Abrahamsson, P. and Kautz, K.: Personal Software Process: Classroom Experiences from
Finland. In: Kontio, J., Conradi, R. (eds.): Software Quality – Proceedings of the 7th Euro-
pean Conference on Software Quality. Lecture Notes in Computer Science, Vol. 2349.
Springer-Verlag, Heidelberg (2002) 175-185

3. Abrahamsson, P., Kautz, K., Sieppi, H. and Lappalainen, J.: Improving Software
Developer’s Competence: Is the Personal Software Process Working? In: Bunse, J.,
Jedlitschka, A. (eds.): Empirical Studies in Software Engineering – Proceedings of the
First International Workshop, WSESE 2002 Rovaniemi, Finland. Workshop Series on
Empirical Software Engineering, Vol. 1. Fraunhofer-Institut für Experimentelles Software
Engineering IESE, Kaiserslautern (2003)

4. Abrahamsson, P. and Kautz, K. Personal Software Process: Experiences from Denmark.
In: Fernandez, M. (ed.): Proceedings of the 28th Euromicro Conference September
4-6, 2002 Dortmund, Germany. IEEE Computer Society. Los Alamitos, CA. (2002)
367-374

5. Kitchenham, B.: DESMET: A Method for Evaluating Software Engineering Methods and
Tools. Technical Report TR96-09. Dept. of Computer Science, University of Keele, U.K.
(1996)

6. Humphrey, W.: The Personal Software Process: Status and Trends. IEEE Software, Vol.
17, no. 6 (2000)

7. Johnson, P. and Disney, A.: The Personal Software Process: A Cautionary Case Study.
IEEE Software, Vol. 15, no. 6 (1998) 85-88

8. Disney, A. and Johnson, P.; Investigating Data Quality Problems in the PSP. In: Osterweil,
L., Scherlis, W (eds.): Proceedings of the 6th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Lake Buena Vista, Fl. ACM Press, New York
(1998) 143 – 152

9. Harrison, W., Ossher, H. and Tarr, P.: Software Engineering Tools and Environments: A
Roadmap. In: Proceedings of the Conference on the Future of Software Engineering.
Limerick, Ireland. ACM Press, New York (2000) 261 – 277

10. Software Engineering Institute: A Specification for Automated Support for the PSP.
Carnegie Mellon University, Pittsburgh, PA (1996)

11. IEEE Computer Society: IEEE Recommended Practice for the Evaluation and Selection of
CASE Tools. IEEE Std 1209-1992. The Institute of Electrical and Electronics Engineers,
New York (1993)

12. Parker, D.: Computer Security Management. Prentice-Hall, Reston (1981)
13. Moore, C.: Lessons Learned from Teaching Reflective Software Engineering Using the

Leap Toolkit. In: Proceedings of the 22nd International Conference on Software
Engineering. Limerick, Ireland (2000) 672 – 675

14. Johnson, P., Kou, H., Agustin, J., Zhang, Q., Kagawa, A. and Yamashita, T.: Practical
Automated Process and Product Metric Collection and Analysis in a Classroom Setting:
Lessons Learned from Hackystat-UH. In: Proceedings of the 2004 International
Symposium on Empirical Software Engineering. Los Angeles, CA (2004)

15. Molich, R. and Nielsen, J.: Improving a Human-Computer Dialogue. In: Communications
of the ACM, Vol. 33, No. 3 (1990) 338 – 348

16. Kemerer, C.: How the Learning Curve Affects CASE Tool Adoption. In: IEEE Software,
Vol. 9, no. 3 (1992) 23 – 28

 Tool Support for Personal Software Process 559

17. Fugetta, A.: Software Process: A Roadmap. In: Proceedings of the Conference on the
Future of Software Engineering. Limerick, Ireland (2000) 25 – 34

18. Morrell, L. and Middleton, D.: The Software Engineering Learning Facility. In:
Proceedings of the Seventh Annual Consortium for Computing in Small Colleges Central
Plains Conference on the Journal of Computing in Small Colleges. Branson, MO (2001)
299 – 307

19. Morisio, M.: Applying the PSP in Industry. In: IEEE Software, Vol. 17, no. 6 (2000)
90 – 95

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 560–573, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Experience Factory to Improve Software
Development Effort Estimates

Ricardo Kosloski and Káthia Marçal de Oliveira

Universidade Católica de Brasília,
SGAN 916 - Módulo B - Pós Graduação - Campus II,

Brasília - DF – Brasil, CEP: 70790-060
rikoslos@brturbo.com, kathia@ucb.br

Abstract. It is well known that effort estimate is an important issue for software
project management. Software development effort can be obtained from the size
of the software and the productivity of its development process. Nowadays the
Function Point Analysis stands out as an approach largely used for software
size estimate, while productivity values are extracted from international
historical databases. Some databases show the median value of various
productivity projects while others present all data according to some specific
characterization of the projects. We argue that defining a framework of
characteristics that impact on software project productivity can improve
comparison between finished projects and the new ones that need an effort
estimate. This article presents an approach to effort estimate with continuous
improvement of the estimates using some characterization of the projects.
Continuous improvement is based on the use of an experience factory.

1 Introduction

Planning and controlling software development projects demand a lot of attention
from the managers. Appropriate effort estimate is an important part of this task. It is
particularly important to the organizations, because too high an estimate may result in
loosing a contract to a competitor, whereas too low an estimate could result in a loss
for the organization [2].

One way of defining effort estimates consists in relating the software size, to the
effort required to produce it, by means of a value of productivity [18] (i.e., effort =
productivity x software size). The effort is defined in man/hours and is the quantity of
work required to realize the software development project [9]. The software size can
be defined by its functional content using methods such as the well estabilished
Function Point Analysis [17, 18]. The productivity can be computed as the
relationship between the effort required for the software construction and the
functional size of this software [18].

Productivity values can be found, organized according to some characteristics, in
historical databases [13, 19]. However, each organization should set up its own
historical productivity database, so as to better reflect its own relationship with its
customers in software development [8]. The similarity of old projects with new ones

 An Experience Factory to Improve Software Development Effort Estimates 561

could thus result in better productivity value itself resulting in better effort estimate of
the future projects. Another important part of this work is the definition of appropriate
characteristics to compare the similarity of projects.

This article presents an approach to effort estimate based on appropriate
characterization of the projects. The characterization of the projects is continuously
improved so as to reach a better productivity definition for each new project based on
past projects with similar characterization. Continuous improvement approaches for
software organizations have been defended by different authors [2,14,20]. In this
context, Basili et al. proposed the concept of experience factory to institutionalize the
collective learning of the organization that is at the root of continual improvement and
competitive advantage. Since the main idea of experience factory is to use past
experiences and since we believe that the effort estimate of old projects can help in a
more accurate definition of new estimates, we decided to base our approach on the
experience factory.

In the following sections we present a brief review of the use of productivity for
effort estimates (section 2) and experience factory (section 3). Next, we present the
definition (section 4) and use (section 5) of the experience factory for software
development effort estimate. Section 6 presents our conclusions and ongoing work.

2 Using Productivities in Software Effort Estimates

The productivity can be defined as the ratio between the quantity of work required to
develop a software and the size of this software [9,21]. In this case, the effort is
accounted in man/hours while the size can be measured by different kinds of metrics
(e.g., Function Point Analysis–FPA [12], NESMA [22] and COSMIC [6]).
Benchmarking studies concluded that the productivity obtained by sizing the software
in function points is more consistent and allow better comparisons [17,18]. Also FPA
is a functional software size metric that can have its elements extracted from the
requirements of the system, available early in the developing process [7], and FPA is
independent of the technology used for implementation [12] and can be used to
determine whether a tool, an environment, a language or a process is more productive
than an other within an organization or among organizations [2,10].

We found different factors, in the relevant literature, which can impact the software
development productivity. Some authors [5,8,21] show that the experience of the
software development team in the technology used or in the system’s business area, is
an important factor for the correct definition of productivity. Others defend that
schedule restrictions imposed to the software development [2,23] and software
complexity [19,23] impact the productivity. Software size is also a relevant factor in
effort estimate and impacts the productivity [2,5,17,21,23]. Maxwell [19] say that
the use of CASE tools in software development projects can improve the productivity.
Finally, productivity increases with reuse because consumers of reusable work
products do less work in the software construction [15].

Two main historical databases for software productivity are proposed by the
Software Productivity Research (SPR) group [29] and the Institute of Software

562 R. Kosloski and K.M. de Oliveira

Benchmarking Standards Group (ISBSG) [13]. SPR presents an average of
productivity values characterized by the programming language used in the projects
and ISBSG has more than two thousand projects registered according to a specific
taxonomy for characterization. However, both SPR and ISBSG miss some important
characteristics found in the literature as relevant for software development
productivity (for instance, experience of the development team and schedule
restrictions are not considered). Another problem is that the ISBSG historical
database only shows the realized projects productivity, without supplementary
information about the accuracy of the early projects’ estimates. These problems make
it difficult for a company to use the productivity proposed by these groups and apply
it to its own projects.

Also, registered productivity is not enough to improve the accuracy of the effort
estimate [19]. In this paper, the authors report an analysis on software projects
characteristics to understand their influence on the productivity. For them, identifying
the characteristics or combination of characteristics, that help to understand the values
registered in the historical database of productivities, can be useful to find new
software projects productivity by comparison with similar past projects.

3 Experience Factory

Since 1939 when Schewart or Deming proposed the PDCA (Plan-Do-Check-Act)
cycle for process continuous improvement, the idea of an evolutionay improvement in
an organization has been applied in different contexts [14]. The PDCA has four steps.
It begins with the planning and the definition of improvement objectives. Next, the
planning is executed (Do) and then evaluated (Check) to see if the initial objectives
are achieved. Actions are taken based on what was learnt in the check step. If the
changes are successful, they will be incorporated as new practices in the process. If
not, it is necessary to go through the cycle again with modifications in the original
plans.

In 1994, Basili et al [3] defined the concept of experience factory aimed at
capitalization and reuse of life cycle experience and products. The experience factory
is a logical and physical organization supported by two major concepts: a concept of
evolution - the Quality Improvement Paradigm (QIP), and a concept of measurement
and control - the Goal-Question-Metric approach.

QIP is based on the PDCA, it emphasizes the continuous improvement by learning
from experience, both at the level of projects and at the level of organizations. It
builds on experimentation and application of measurement [28]. The model consists
of the following six steps:

• Characterize: Understand the environment based on available models, data, etc.
• Set Goals: On the basis of the initial characterization set quantifiable goals for

success and improvement;
• Choose Process: On the basis of the characterization and of the goals, choose the

appropriate process to improve;

 An Experience Factory to Improve Software Development Effort Estimates 563

• Execute: Execute the process constructing the products and providing project
feedback based upon the data on goal achievement that are being collected;

• Analyze: At the end of each specific project, analyze the data and the information
gathered to evaluate the current practices, identify problems, record findings, and
make recommendations for future projects improvement;

• Package: Consolidate the experience gained in the form of new, or updated and
refined, models and other forms of structured knowledge gained from this and prior
projects, and store it in an experience base so it is available for future projects.

An appropriate and unambiguous characterization of the environment is a
prerequisite to a correct application of the paradigm [3]. This characterization requires
that we classify the current project with respect to a variety of characteristics. It
allows to isolate a class of projects with characteristics similar to the project being
developed. Characterization provides a context for reuse of experience and products,
process selection, evaluation and comparison, and prediction.

The Goal-Question-Metric approach (GQM) [4] is the mechanism used by the QIP
for defining and evaluating a set of operational goals using measurement. The main
idea of the GQM is that measurement should be goal-oriented [4,28]. It is a top-down
methodology starting with the definition of an explicit measurement goal that is
refined in several questions that break down the goal into its major components.
Then, each question is refined into metrics that, when measured, will provide
information to answer the questions. By answering the questions we will be able to
analyze if the goal has been attained. As a result of this process we have a model in
three levels [4]: the conceptual level, where a goal is defined for an object (product,
process or resource) from various points of view; an operational level, where
questions are defined for the goal and characterize the object of measurement with
respect to a selected quality issue from the selected point of view; and, the
quantitative level, representing a set of data associated with each question in order to
answer it in a quantitative way.

4 Continuous Improvement for Software Development Effort
Estimates

With the need of providing better estimates for each new software development
project and inspired by the idea of continuous improvement based on prior, we
decided to define and build an experience factory for software effort estimate. To
define this experience factory we had to attend each one of the steps of the QIP. The
following sections will present the characterization (Section 4.1), the improvement
goals definition (section 4.2) and the estimate process defined (section 4.3). The three
other steps (execute, analyze and package) should be executed for each new project
that need effort estimate.

4.1 Characterization

To address this step we had to define how we will characterize each project that need
effort estimate. Considering that effort is the product of a software size and the

564 R. Kosloski and K.M. de Oliveira

productivity of the team, and that software size is already established by Function
Point Analysis approach, we decided to look for the factors that have influence on the
productivity of personnel in the software development.

In order to define these factors, we looked carefully in the literature and
interviewed two specialists (with more than five years of experience) in the effort
estimate area. Table 1 shows those factors with the references that relate them to
software productivity. It also describes the possible values for each factor. The factors
were grouped in different categories: (C1) software project, with 4 general
characteristics about the software to be developed; (C2) software project
development, with 15 factors about the software development itself; (C3) software
size, with 4 factors about the size and its measurement method; (C4) work effort,
with 4 factors related to the work needed to the software construction; and, (C5) team
experience, with 6 factors related to the human aspects.

We consider that the software size will be estimated with FPA [12] or NESMA
[22]. Both methods produce the size in function points, but the measurement obtained
by NESMA (called estimated count) is more generic, based on media values, whereas
the measurement obtain with FPA (called detailed count) is more detailed.

Thus, at the beginning of each software development project, we need to
charaterize the software project according to these factors. From this characterization,
we can select, in the experience database, the projects with similar characteristics. The
recorded productivity of these projects will support the project manager in estimating
the effort for his-her project. The search for similar projects is done by a simple query
in the project database using the characteristics selected by the project manager.

Table 1. Software development project characterization

Impact Factors [authors] Possible values
C1.1–Precedentedness [5]

Very low, high or extra high as defined by [5]
analyzing the software project according with the
organizational understanding of product objectives,
the experience in working with related software
systems, the concurrent development of associated
new hardware and operational procedures and the
need for innovative data processing architectures
algorithms

C1.2-Application type [15,16]

Transaction and production systems, management
information systems, etc

C1.3-Software complexity[5, 19] The functional complexity as defined by FPA [12]
method in simple, media or complex functions

C1.4-Business area type [13,19] Accounting, banking, legal, health, etc
C2.1-Development Type [13]

New development, maintenance–enhancement or
corrections of bugs

C2.2-Development platform[13] PC, Mainframe or mixed;
C2.3-Development paradigm[13] Object oriented or structured
C2.4-Primary programming
language[13,29];

The main programming language used

C2.5-Development techniques [13] 1-Data modeling; 2-Prototyping; 3-Project
management; 4-Metrics; 5-Tests; 6-JAD; 7-

 An Experience Factory to Improve Software Development Effort Estimates 565

Requirement management
C2.6-Use of CASE Tools Levels
[5;9]

As defined by [9]:
0-Tools not used at all
1-Tools used only as an aid to less than 20% of

documentation
2-Tools used for documenting at least 50% of the

high-level design
3-Tools used for documenting at least 50% of the

high-level and detailed design
4-Tools used for design and automatic code

generation of at least 50% of the system
5-Tools used for design and automatic code

generation of at least 90% of the system
C2.7-Reuse Level [5,15] 0 – there is no part of the software ready to be to

reused
1 – there is less than 20% of the software ready to

be to reused
2 - there is between 20 and 50% of the software

ready to be to reused
3 - there is between 50 and 80% of the software

ready to be to reused
4 - there is more then 80% of the software ready to

be to reused
C2.8-Development schedule
restrictions [2,23]

The schedule restrictions imposed in the software
development by the client.

C2.9-Effort estimate schedule
restrictions [2]

The time spent to do the effort estimate

C2.10-Software development
process maturity level [5,25]

As defined by CMMI [11]: levels 1, 2,3, 4 or 5, The
company level while developing the software
project.

C2.11-Max team size [2,5,16] The maximum size of the team during the
devlopment

C2.12-Size team variation tax [13]; the relationship between the maximum and
minimum team size

C2.13-Registration data method

As defined by [13]:
Method A: Staff Hours recorded in their daily
activties
Method B: Derived from time records that indicate,
for example, the assignment of people to the project.
Method C: Productive time only spent by each
person on the project.

C2.14-Project Scope[13] The software development phases (planning, design,
specify, build, test and/o implementation) that were
considered in the effort estimate

C2.15-Project elapsed time [13]; The time in months to develop the software project
estimated at the beginning and collected at the end
of the software development.

C3.1-Count approach [13,
17,18,22]

FPA-IFPUG or NESMA

C3.2-Function size metric used [13] IFPUG-3.0,IFPUG-4.0
C3.3-Software size
[2,7,10,12,13,16,17,18,21,23];

The value obtained by the application of FPA
method at the beginning and end of the software

566 R. Kosloski and K.M. de Oliveira

development
C3.4-Function point adjustment
factor [12,13];

From the FPA/NESMA count at the beginning and
end of the software development

C4.1-Total work effort [2,16,19,21] Effort for the whole software development
estimated at the beginning and collected at the end
of the software development.

C4.2-Work effort by activity in the
development life cycle [13]

Effort for each activity (planning, design, specify,
build, test, implementation) estimated at the
beginning and collected at the end of the software
development.

C4.3-Efficiency of the use of the
project time [8,27];

Percentage of the project time, lost with team health
problems, vacations, training, meetings and general
absences

C4.4-Rework [11] Total work effort recorded by each person for the
rework tasks

C5.1-Size measurement technical
experience [7,10,17]
C5.2-Size measurement experience
in the application business area
[7,10,17];
C5.3-Software development
technical experience [2,21]
C5.4-Software development
experience in the application
business area) [2,21]
C5.5-Requirements development
technical experience [9]
C5.6-Requirements development
experience in the application
business area [7]

Mean of the team evaluation, defined using [5]:
0-No previous experience at all
1-Familiarity (through course or book) but no

working experience
2-Working experience on one previous project or up

to 20 worked hours of use
3-Working experience on several previous projects

or between 21 and 100 worked hours of use
4-Thoroughly experienced

4.2 Goals Definition

According to the frame proposed by [28] we defined the following goal:

Analyze: The effort estimates
For the purpose of: Understanding
With respect to: The accuracy of the estimate
From the viewpoint of: The project management

As previously defined effort = size x productivity. Therefore, the questions and
metrics of the GQM were defined to evaluate both size and productivity (Table 2).
We focus on the absolute and relative errors in the measurements and on
understanding their respective causing factors. The absolute error is the difference
between the values of a variable, measured at the beginning and at the end of a
software project development. The relative error is the ratio between these two values
in percentage.

 An Experience Factory to Improve Software Development Effort Estimates 567

Table 2. Questions and metrics to analyze the effor estimate

Questions Metrics
1-What is the error in the size
estimate?

M 1.1-Size estimate absolute error
M 1.2-Size estimate relative error

2-What were the schedule
constraints imposed to the initial
count of the software
development project?

M 2.1-Fastness of the count (number of function points
counted by day and by each counter);
M 2.2-Percentage of additional hours used in the count
(by “additional hours” we mean that hours beyond the
normal work day journey)

3-What is the effort estimate
error?

M 3.1-Absolute error between estimated and real work
effort;
M 3.2-Relative error between estimated and real work
effort
M 3.3–Initial productivity (estimated)
M 3.4–Final productivity (measured)
M 3.5-Productivity absolute error
M 3.6-Productivity relative error

4-What is the elapsed time
estimate error?

M 4.1-Absolute error between estimated and real elapsed
time
M 4.2-Relative error between estimated and real elapsed
time

5-What were the schedules
constraints imposed to the
software development project?

M 5.1-Percentage of additional work hours with respect
to the total work effort of the software development
project. Additional hours means hours beyond the normal
day of work.

Table 3. Effort Estimate Process

Activity Description
Choose an estimate approach

Evaluate the level of detail of the system
development to choose between the software size
estimate method to be used in the beginning of the
project (detailed – IFPUG or estimated – NESMA)

Plan the estimate

Plan the steps of the estimate, that is, who will do it,
when and what effort will be required.

Approve the plan Obtain acceptance and commitment from the
managers for the plan defined.

Obtain the system documentation Get the system documents needed for the estimate
Execute the software size estimate /
measurements

Use the FPA/NESMA to measure (estimate) the
software size

Execute the effort estimate Select the characteristics of the framework to search
similiar projects, then choose a productivity value
and compute the effort estimates

Approval of the estimate Present the results and approve them with the
management

568 R. Kosloski and K.M. de Oliveira

4.3 Choose Process

Since the improvement expected is the accuracy of the effort estimate, the process
choosen for the experience factory is the software effort estimate process. We found
two proposals in the literature: the Personal Software Measurement process (PSM)
[24], and the process described by Agarwal [2]. The PSM process consists in the
following steps: select estimate approaches, map analogies, compute and evaluate
estimates. We notice that some activities are too generic and would require some
more detail (for example: “compute estimates” depends on the method used). Also the
activity applied after the estimate (evaluate estimates) is not part of the effort estimate
that interest us. Agarwal proposal also deals with this process in a generic way, but
adds the importance of an historical database as a source of useful information to
calibrate the estimates.

We are focused in the effort estimated obtained by the use of the software size and
the development productivity values. We defined, therefore, a specific process based
on those proposals. The resulting process is presented in table 3.

5 Applying the Approach

We are applying this approach in a large company in Brazil. This company has been
working with effort estimate for more than five years and is continually worried about
getting better estimates in its projects. Currently, it uses historical databases from SPR
and ISBSG to get productivity values. To apply this approach we followed some
steps:

i) extended the company’s tool to register the 33 characteristics defined;
ii) populate the database with prior projects to have a starting point;
iii) simulate some effort estimate by similarity considering the prior projects; and,
iv) doing effort estimate for new software projects.

To do the first step (i) we just made an evolutive maintenance in the tool already
used in the company. This tool already supported the function point count of projects.
We extended the data model and included three new facilities: one to characterize a
software project using the 33 characteristics defined, another to allow searching
similar projects in the database, and one to support the collection of the results of the
metrics defined by the GQM approach.

In [26] the authors report that a difficulty with the experience factory is to have the
first experiences registered in the database with lessons learned to motivate its use.
They suggest populating it with information from the literature and from prior
experience done before the use of the experience factory. Therefore, to populate the
database with prior projects (step (ii)) we analyzed the documentation of 30 projects
that had the effort estimated during the last 5 years in the company. Unfortunatelly
since we have 33 characteristics it was difficult to find projects well documented to
get all the characteristics. We got 27 of the 33 characteristic defined for 7 projects (it
was not possible to find out information about C2.8, C2.9, C4.2, C4.3, e C4.4). For
the other projects we did not have the information, neither in the documentation, nor

 An Experience Factory to Improve Software Development Effort Estimates 569

by interviewing the managers (some of them were not working in the company
anymore).

Table 4 shows the characterization of the 7 projects. Table 5 shows the projects
with similar characteristics. Table 6 shows the metrics’ results. We see that we had
effort error more than 100% (S1, S2, S5 and S7) and elapsed time error more than
50% for three systems (S1, S4 and S5).

Table 4. System Characteristics

Char.
S1 S2 S3 S4 S5 S6 S7

C 1.1
Very low Very low High Very low Very low Extra high Very low

C 1.2
MIS MIS MIS MIS MIS MIS MIS

C 1.3
simple=71
media=12

complex=17

simple =67
media =18

complex =15

simple =51
media =23

complex =26

simple =61
media =18

complex =21

simple =79
media =13
complex =8

simple =62
media =14

complex =24

simple =89
media =0

complex =11

C 1.4

banking
legal

banking
pensions

banking
legal

banking
Administrati

on

banking
Administrati

on

banking
Legal

Health

C 2.1 develop. develop. develop. develop. develop. develop. develop.

C 2.2 PC,
mainframe

PC, mid-
range

PC, mid-
range

PC,mid-
range

PC,mid-
range

PC,mid-
range

PC,mid-
range

C 2.3 structured structured
object

oriented
object

oriented
object

oriented structured
object

oriented

C 2.4 Natural Natural Java Java Java Cold Fusion Java

C 2.5 1,2 1,2,3,4,5 1,2,3,4,5,7 1,2,3,4,5,6 1,2,3,4,5 1,2,3,4,5,7 1,2,3,4,5

C 2.6 1 2 3 2 2 3 2

C2.7 0 1 1 1 1 2 0

C2.10 1 1 1 1 1 1 1

C 2.11 22 18 14 14 6 14 9

C 2.12 > 250% 80% 63% 55% 100% 50% 80%

C 2.13 C C B B B A B

570 R. Kosloski and K.M. de Oliveira

C2.14 all phases all phases all phases all phases all phases all phases all phases

C2.15i 12 12 16 7 5 11 6

C2.15f 27 17 21 11 8 13 9

C 3.1/
C3.2 i

NESMA IFPUG4.1 NESMA NESMA NESMA IFPUG4.1 NESMA

C 3.1 /
C3.2 f

IFPUG4.1 IFPUG4.1 IFPUG4.1 IFPUG4.1 IFPUG4.1 IFPUG4.1 IFPUG4.1

C.3.3i
(FP) 2324 1967 1710 698 277 2008 224

C3.3f
(FP) 3023 3446 2421 1124 625 2183 395

C3.4i 1.12 1.12 1.05 1.01 0.94 1.22 0.97

C3.4f 1.12 1.12 1.05 1.01 0.94 1.22 0.97

4.1i
(hour) 22032 18647 19152 7818 3103 19678 3164

4.1f
(hour) 49010 43091 32617 13903 8106 21705 7194

C5.1 1.0 2.30 2.5 2.0 3.0 2.5 1.7

C5.2 0.50 1.0 1.5 1.0 1.0 3.8 0.3

C5.3 2.4 3.4 2.6 2.25 1.0 3.0 2.0

C5.4 1.6 2.3 1.8 1.5 0.5 3.0 1.0

C5.5 3.5 2.10 2.3 2.6 2.5 2.7 1.3

C5.6 0.75 1.30 2.7 1.2 1.0 3.7 0.0

Legend: i=Initial of the software development / f = final/end of the software development
FP=function point

Table 5. Analogous systems (same magnitude when needed)

System Analogies
1 and 2 C1.1, C2.8, C1.2, C2.1, C2.3, C2.4, C 3.1, C3.2, C2.13, C2.11, C3.3 (difference in

initial size less than 20%), C3.4, C1.3
3 and 5 C1.4, C2.1, C2.3, C2.4, C3.1, C3.2, C2.13, C2.5 (only one different technique

used)
3 and 1 C1.2, C2.1, C2,8, C3,1, C3.2, C3.3, M2.1, C1.3
4 and 5 C2.8, C3.1, C3.2, C3.3, C2.1, C2.3, C2.4, C2.13, C2.5 (only one different

technique used)

With this information we could start the QIP cycle for each new project. The
complete evaluation of this approach will take some years since we need to estimate
the effort at the beginning of a software development project, wait for its completion
and then analyze the metrics. Thus, to have an idea about the pontential improvement
we could get, we decide to do some simulations (step (iii)) with the 7 projects already

 An Experience Factory to Improve Software Development Effort Estimates 571

Table 6. Metrics Results

Metrics S1 S2 S3 S4 S5 S6 S7

M 1.1 (FP) 699 1479 711 426 348 175 171
M 1.2 (%) 30.1 75 42 61 126 8.7 76
M 2.1 (FP/day) 186 65,2 57 - X - 92,3 29,8 75
M 3.1 (hours) 26978 24444 13465 6085 5003 2027 4030
M 3.2 (%) 123 131 70 78 161 10.3 127
M 3.3 (1)
(hour/FP)

9.48
(SPR)

9.48
(SPR)

11.20 (SPR) 11.20 (SPR)
11.20
(SPR) 9.8 (*) 12.9 (*)

M 3.4 (2)
(hour/FP) 16.2 12,50 13.40 12.40 13.00 9.94 18.2

M 3.5 (hour/FP) 6.70 3.02 2.20 1.20 1.20 0.14 5.3
M 3.6 (%) 71 32 20 11 16 1.5 40.5
M 41 (months) 15 5 5 4 3 2.3 3
M 4.2 (%) 136 42 31 57 60 21 50

Legend:FP=function point ; * - ISBSG

Table 7. Precisions of Effort Estimate

 Using SPR Using our approach Precisions Errors (%)

System

Initial
Size
(FP)

SPR
Product

ivity
(h/FP)

Effort
(h)

Hist.
Productivity

(h/FP)

Effort
(h)

Final
Effort
(hour)

SPR

Our
appr
oach

Improve
ment

2 1967 9.48 18648
From System 1

(16,2 h/FP)
31865

4309
1

131 35 73

3 1710 11.20 19152
From system 5

(13.0 h/FP)
22230

3261

7
 70 46 35

3 1710 11.20 19152
From System 1

(16,2 h/FP)
27702

3261

7
70 18 74

4 698 11.20 7818
From system 5

(13.0 h/FP)
9074

1390
3

78 53 32

characterized. The idea was to look for two similar projects, define the effort
estimate of one based on the productivity of the other and check if it would be better
than the effort actually estimated for this project. Table 6 shows the absolute
estimate error with the SPR database (used in the company for those projects) and
our approach. Project 1 and 5 were used as reference in evaluation of estimates of the
other projects. We can see that just with this small simulation we can have
improvement in the effort estimate (two projects around of 30% and two around of
70% of improvement).

The step (iv) is in progress.

572 R. Kosloski and K.M. de Oliveira

6 Conclusion and Ongoing Work

Effort estimate is a fundamental input for software development project management.
The continuous improvement of the effort estimate accuracy would lead an
organization to improve its capacity to carry out its commitments, delivering its
software products on time and, therefore, bring competitive advantage.

This article presents an approach for continuous effort estimate improvement by
using the experience factory concept. We are applying this approach in a company in
Brazil that use measurement process for more than five years. We expect that, at each
new project, we will reach better accuracy of the effort estimates by using more
realistic productivity values obtained from past similar projects, registered in an
historical database. We already populated the experience database with 7 projects and
did some simulation to evaluate our approach. Our next step will be to use this initial
database for estimating software effort in new software projects. We are also studying
new ways of computing the similarity of a new project to old ones in the database. We
plan to experiment using Case Based Reasoning [1].

Acknowledgments

This work is part of the “Knowledge Management in Software Engineering” project,
which is supported by the CNPq, an institution of the Brazilian government for
scientific and technological development.

References

1. AAMODT, Agnar; PLAZA, Enric; CASE-BASED Reasoning: Foundational Issues,
Methodological Variations and Systems Approaches, AI Communications, IOS Press, Vol.
7:1, pp. 39-59, 1991.

2. AGARWAL, Manish, Kumar; YOGESH, S. Mallick; BRARADWAJ, R. M., et all,
Estimating Software projects, ACM SIGSOFT, p.60, 2001

3. BASILI,V.;CALDIERA,Gianluigi;ROMBACH,H.Dieter “The Experience Factory”,
Encyclopedia of Software Engineering, John Wiley & Sons, 1994, V.1 pp. 476-496

4. BASILI,V.,Rombach, H.Goal Question Metric Paradigm; Encyclopedia of Software
Engineering – 2, 1994

5. BOEHM, Barry et al,Software Cost Estimate With COCOMO II, Prentice Hall PTR, 2000
6. COSMIC, Measurement Manual, The COSMIC Implementation Guide for ISO/IEC

19761:2003, Version 2.2, 2003
7. DEKKERS, Carol; AGUIAR, Mauricio; Using Function Points Analysis (FPA) do Check

the Completeness (Fullness) of Functional User Requirements, Quality Plus, 2000
8. FARLEY,Dick. Making Accurate Estimates, IEEE, 2002
9. FENTON, N., PFLEEGER, S. Software Metrics A Rigorous & Practical Approach, 2nd.

Ed., PWS Publishing Company, 1997.
10. FUREY, Sean, Why we should use Function Points, IEEE, 1997
11. JOHNSON, Donna I.; BRODMAN, Judith G.; “Realities and Rewards of Software

Process Improvement”, IEEE 1996

 An Experience Factory to Improve Software Development Effort Estimates 573

12. IFPUG, CPM – Counting Practices Manual, release 4.1.1; IFPUG – International Function
Point Users Group; 2000

13. ISBSG. International Software Benchmarking Standards Group. The Benchmarking,
Release 8, ISBSG; 2003.

14. JOHNSON, Corine N., The Benefits of PDCA, Quality Progress, pp.120, 2002
15. LIM, Wayne C., Effects of Resue on quality, Productivity, and Economics, IEEE, 1994
16. LOKAN, Chris; TERRY, Wright; HILL, Peter R.; STRINGER, Michael; “Organizacional

Benchmarking Using the ISBSG Data Repository”, IEEE, 2001
17. LOW,Graham C., ROSS, D.Jeferry, “Function Points in the Estimate and Evaluation of

the Software Process, IEEE, 1990
18. Martin, Arnold; PEDROSS, Peter; Software Size Measurement and Productivity Rating in

Large Scale Softwre Development Department, IEEEE, 1998
19. MAXWELL, Katrina, FORSELIUS, Pekka, Benchmarking Software Development

Productivity, IEEE, 2000
20. MCFEELEY, Bob, IDEAL: A User´s Guide for Software Process Improvement, SEI,1996
21. MORASCA,GIULIANO, ,Sandro, GIULIANO, Russo. An Empirical Study of Software

Productivity, IEEE, 2002
22. NESMA, Estimate Counting, Netherlands Software Metrics Users Association, 2003
23. POTOK,VOUK, Tom; VOUK, Mladen. Development productivity for comercial SW

Using OO Methods; ACM, 1995
24. PSM, Pratical Software Measurement, Adison Wesley, 2002
25. RUBIN, Howard A ., Software Process Maturity: Measuring its Impact on Productivity

and Quality, IEEE, 1993
26. RUS,Ioana, LINDVALL, Mikael, SEAMAN, Carolyn, BASILI, Victor, Packaging and

Disseminating Lessons Learned from COTS-Based Software Development, IEEE, 2003
27. SHEPPERD, Martin; CARTWRIGHT, Michele; Predicting with Sparse Data; IEEE, 2000
28. SOLINGEN, R., BERGHOUT, Egon, The Goal / Qestion / Metric Method: A practical

Guide for Quality Improvemnet of Software Development. London: McGraw-Hill.
1999. 195 p.

29. SPR, “The Programming Language Table”, Software Productivity Research, 2001

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 574–585, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Instrument for Measuring the Maturity of
Requirements Engineering Process

Mahmood Niazi

National ICT Australia, Sydney, NSW 1430, Australia
Mahmood.niazi@nicta.com.au

Abstract. Requirements problems are widely acknowledged to have impact on
the effectiveness of the software development process. In order to improve the
requirements engineering (RE) process and to reduce requirements problems,
Sommerville et al. [1] have developed a requirements maturity model.
Literature shows that the measurement process, designed in this model, is very
confused and can lead organizations to incorrect results. This is because the
measurement process is ambiguous and no strategic and systematic approach is
used to decide different scores for various RE practices.

The objective of this paper is to propose a measurement instrument for
Sommerville et al.’s model to effectively measure the maturity of the RE
process. The main purpose of proposing this measurement instrument is to
develop better ways to assist practitioners in effectively measuring the maturity
of the RE process. This instrument provides a very practical structure with
which to measure the maturity of the RE process. I have tested this instrument
in one case study where only one category of RE process, i.e. ‘requirements
elicitation’ was used as an exemplar. The case study results show that the
measurement instrument has potential to assist practitioners in effectively
measuring the maturity of ‘requirements elicitation’ category of the RE process.
Thus, I recommend organizations trial this instrument for other categories of
RE process in order to further evaluate its effectiveness in the domain of RE
process.

1 Introduction

Requirements problems are widely acknowledged to have impact on the effectiveness
of the software development process [2; 3]. Many software projects have failed
because they contained a poor set of requirements [4]. No software process can keep
delivery times, costs and product quality under control if the requirements are poorly
defined and managed [5]. In order to produce software that closely matches the needs
of an organisation and the stakeholders, great attention needs to be paid to
improvement of the RE process [5; 6].

In order to improve the RE process and to reduce requirements problems, some
researchers have published their work [1; 5]. Sommerville et al.’s model is derived
from existing standards and has three levels of maturity: Level 1-Initial, Level 2-
repeatable and Level 3-Defined. The model can be used to assess the current RE

 An Instrument for Measuring the Maturity of Requirements Engineering Process 575

process and it provides a template for requirements engineering practice assessment.
It is based upon 66 good requirements practices which are classified into Basic,
Intermediate and Advanced. Against each practice, four types of assessments are
made: 3 points are scored for standardized practice, 2 for normal use, 1 for
discretionary use and 0 for practices that are never used. This model classifies
organizations with less than 55 points in the basic guidelines as Level 1-Initial,
organizations with above 55 points in the basic guidelines and less than 40 points in
the intermediate and the advanced guidelines as Level 2-Repeatable and organizations
with more than 85 points in the basic guidelines and more than 40 points in the
intermediate and advanced guidelines as Level 3-Defined.

In earlier work, in order to use the Sommerville et al. maturity model, the author
has conducted an empirical study with Australian practitioners [7]. This study was a
two-fold process; firstly, requirements process maturity was assessed using the
requirements maturity model developed by Sommerville et al. and secondly, the types
and number of problems faced by different practitioners during their software project
was documented. In this study the interviews were conducted with twenty-two
Australian practitioners. During interviews the practitioners had the opinion that
although all the practices, in Sommerville et al. maturity model, are very well defined,
the measurement process designed for these practices was very confused and could
lead organizations to incorrect results. This is because the measurement process is
ambiguous and no strategic and systematic approach is used to decide different scores
for various practices. The practitioners in this study were very happy with the list of
practices for RE process but they wanted more formal and structured measurement
instrument in order to assess the maturity of the RE process. Somerville et al. have
also indicated this: “this assessment scheme is not a precise instrument and is not
intended for formal accreditation” [1:p29].

I have developed an instrument in order to effectively measure the maturity of the
RE process. The objective of this paper is to describe this measurement instrument
and to test this instrument in one case study.

To focus this study, I investigated the following research question:
RQ. Does the proposed measurement instrument help practitioners measure the
maturity of their RE processes?

The main reason for addressing this research question is to develop better ways in
order to assist practitioners in effectively measuring the maturity of the RE process.

This paper is organised as follows. Section 2 provides background. Section 3
describes the development process of an assessment instrument. In Section 4 the
assessment instrument is described. In Section 5 a case study is presented. Finally the
paper presents a summary of conclusions and recommendations for practitioners as
concluding remarks.

2 Background

RE is often considered an important process of the software life-cycle. This is because
software industry and research communities have realised the difficulties of
producing high quality requirements [8]. It has been observed through RE literature
that one can achieve better quality requirements if the RE process is properly defined

576 M. Niazi

[4; 5]. Despite the importance of RE processes, little research has been conducted to
reduce the requirements problems and to improve requirements quality.

Several studies have been conducted to identify the problems with RE process [3;
4; 9-13]. To highlight few of these:

• El Emam and Madhavji [4] described a field study that indicated that there
are seven key issues that must be addressed in a successful RE process
improvement effort: package consideration, managing the level of detail of
functional process models, examining the current system, user participation,
managing uncertainty, benefits of case tools and project management
capability.

• Hall et al. [3] discussed the requirements process problems in twelve
software companies. Their main findings show that the requirements process
is a major source of problems in the software development process.

• Nikula et al. [10] analysed the requirements engineering practices in a survey
with twelve small and medium enterprises in order to understand current
requirements engineering practices and the desire to improve them. Their
results show that the problem is not in the practitioners’ lack of desire for
improvement, but in management not knowing that many requirements
engineering issues can be solved with standard practices that are well
documented in the literature.

• Finally, Siddiqi and Chandra [12] mentioned a gap between current research
and practice and in order to reduce this gap they suggested a continuous
discussion between researchers and practitioners.

Only identification of requirements problems is not sufficient but a holistic
approach is required in order to reduce these problems and to achieve quality
requirements [6; 7]. A very limited work has been done in developing ways to reduce
requirements problems by improving the requirements process. One of these is the
REAIMS (Requirements Engineering Adaptation and IMprovement for Safety and
dependability) project, partially funded by the European Commission, started at the
University Of Lancaster UK [1]. The objective of REAIMS was to provide a
framework for improving the RE process for dependable and safety-related systems
and to assess this in a real industrial context [1]. In this project a requirements
maturity model was developed that was derived from the Capability Maturity Model
[14]. A set of guidelines was proposed for a requirements maturity model.

The aim of the present study is to design a measurement instrument to measure the
effectiveness of each practice designed in Sommerville et al. requirements maturity
model [1]. This measurement instrument should provide requirement practitioners
with some insight into designing appropriate RE processes in order to achieve better
results.

3 A Requirements Process Maturity Assessment Instrument
Development Process

An examination of the RE literature, together with the previously conducted empirical
study [7], highlights the need to develop an instrument to effectively measure the

 An Instrument for Measuring the Maturity of Requirements Engineering Process 577

maturity of RE process. The requirements process maturity assessment instrument
(RPMAI) development was initiated by creating its success criteria. Objectives are set
to clarify the purpose of the instrument and outline what the instrument is expected to
describe. These criteria guide development and are later used to help evaluate the
instrument.

The RPMAI building activities involved abstracting characteristics from three
sources:

• RE literature data [3; 15-18]
• Interviews data [7]
• Sommerville etc al Maturity Model [1; 5; 19]

Figure 1 outlines the stages involved in creating the RPMAI.

Fig. 1. Activities involved in building the requirements process maturity assessment
instrument

The first stage in RPMAI development is to set the criteria for its success. The
motivation for building these criteria for RPMAI development comes from empirical
research with eleven Australian software development companies [7]. In order to
design the RPMAI the following criteria have been decided.

• Consistency
The RPMAI features need to be consistent and complete. Language between

different components of the RPMAI will be consistent. The RPMAI will include all
the information, which is necessary, and there will be no conflicts between different
parts of the instrument. The structures of different components of the RPMAI will
have consistent granularity.

• User satisfaction
The end users need to be satisfied with the results of the measurement instrument.

The end users will be able to use the measurement instrument and will achieve
specified goals according to their needs and expectations without any confusion and
ambiguity.

• Ease of use
The complex models and standards are unlikely to be adopted by the organizations

as they require lot of resources, training and efforts. The RPMAI will have different
levels of decomposition starting with the highest level in order to gradually lead the

3
Rationaliza-

tion and
Structuring of

Sommerville et
al. model

1
Specify

criteria for
instrument
developme

nt

4
Develop-
ment of
RPMAI

5
Evaluation
through a
case study

2
Research
question

578 M. Niazi

user through from a descriptive framework towards a more prescriptive solution. The
structure of the RPMAI will be flexible and easy to follow.

In order to address these criteria, a research question (see Section 1) was developed
in stage 2. The stage 3 is the stage where the author undertook a rationalisation and
structuring of Sommerville et al. [1] model. The stage 4 is the stage where RPMAI
was developed. The final stage is where an evaluation of the RPMAI was performed
using a case study.

4 A Requirements Process Maturity Assessment Instrument

At Motorola an instrument has been developed in order to assess the organization’s
current status relative to software process improvement and to identify weak areas
that need attention and improvement [18]. Diaz and Sligo [20] describe the use of this
instrument: “at Motorola Government Electronics Divisions, each project performs a
quarterly SEI self-assessment. The project evaluates each KPA activity as a score
between 1 and 10, which is then rolled into an average score for each key process
area. Any key process area average score that falls below 7 is considered a weakness”
[20:p76]. The Motorola’s assessment instrument has the following three evaluation
dimensions [18]

• Approach: Criteria here are the organization commitment and management
support for the practice as well as the organization’s ability to implement the
practice.

• Deployment: The breadth and consistency of practice implementation across
project areas are the key criteria here.

• Results: Criteria here are the breadth and consistency of positive results over
time and across project areas.

Motorola’s instrument successfully assisted in producing high quality software,
reducing cost and time, and increasing productivity [20].

In this paper, I have adapted Motorola’s instrument [18] and based on the work of
Sommerville et al. [1] and Niazi et al. [16] developed an instrument in order to
effectively measure the maturity of the RE process. There are many compelling
reasons for adapting Motorola’s instrument:

• it is a normative instrument designed to be adapted;
• it has been successfully tried and tested at Motorola; and
• it has a limited set of activities.

In order to be used effectively in the domain of RE, I have tailored the Motorola
instrument and made some minor changes in different evaluation activities of three
dimensions using literature and the empirical study (as shown in Appendix A). The
structure of the RPMAI is shown in Figure 2.

The 66 best practices designed by Sommerville et al. can be divided into 8
categories: requirements documents, requirements elicitation, requirements analysis
and negotiation, describing requirements, system modelling, requirements validation,
requirements management and requirements for critical systems. These categories are
shown as ‘requirements process category’ in Figure 2. Figure 2 shows that

 An Instrument for Measuring the Maturity of Requirements Engineering Process 579

requirements process category maturity indicates requirements process maturity [5].
These requirements process categories contain different best practices designed for
RE process [5]. For each best practice an instrument has been developed, in this
paper, in order to effectively measure its maturity.

In order to effectively measure the maturity of RE process, the following steps
have been adapted in RPMAI [15; 16; 18] (One example is provided in Table 1):

• Step 1: For each practice, a key participant who is involved in the RE
process assessment calculates the 3-dimensional scores of the assessment
instrument.

• Step 2: The 3-dimensional scores for each practice are added together and
divided by 3 and rounded up. A score for each practice is ticked in the
evaluation sheet.

• Step 3: Repeat this procedure for each practice. Add together the score of
each practice and average it to gain an overall score for each requirements
process category.

• Step 4: A score of 7 or higher for each requirements process category will
indicate that specific category maturity has been successfully achieved [16;
18]. Any category maturity with an average score that falls below 7 is
considered a weakness [16; 18].

• Step 5: It is possible that some practices may not be appropriate for an
organization and need never be implemented. For such practices ‘Not
applicable’ (NA) option is selected. This NA practice should not be used in
calculating the average score of requirements process category.

Fig. 2. The structure of RPMAI [1; 5; 16; 19]

Requirements process
category maturity

Best practices

How to measure
each practice

Contain Form
Requirements

process maturity

Indicate

Organized
into Activities

Describe

Inform Motorola’s
instrument
and Niazi
et al.’s
model

Inform

Inform

Sommerville
et al.’s model

Organized
by

Measurement

Describe

Sommerville
et al.‘s model

580 M. Niazi

At the end of this measurement process it will be very clear to companies to know
which requirements process categories are weak and needs further consideration.

5 The Case Study

The case study method was used because this method is said to be powerful for
evaluation and can provide sufficient information in the real software industry
environment [21]. The case study also provides valuable insights for problem solving,
evaluation and strategy [22]. Since the RPMAI is more applicable to a real software
industry environment, the case study research method is believed to be a more
appropriate method for this situation. Real life case study was necessary because it:

• Showed that the RPMAI is suitable or will fit in the real world environment.
• Highlighted areas where the RPMAI needs improvements.
• Showed the practicality of the RPMAI in use.

In the case study, a participant from Company A has used RPMAI and measured
the RE process maturity of his/her company independently without any suggestion or
help from the researcher. Company A is a multinational company that provides
software services, employing (101-500) professionals worldwide and less than 10 in
Australia. The main purpose of the company is to develop warehouse management
system, manufacturing executive systems and ERP integration. The process
improvement programme was initiated 3-5 years ago in Company A. This
improvement programme was initiated to: shorten software development cycle times,
reduce time-to-market, improve the quality of the software developed and reduce
maintenance.

At the end of a case study, a feedback session was conducted with the participant
in order to provide feedback about RPMAI. The questionnaire (available from author)
used in the study of Niazi et al. [17] was adapted in order to structure this feedback
session.

In order to evaluate the RPMAI the following criterion has been decided. The
primary motivation for building this criterion for RPMAI evaluation emanates from
the criteria designed for the development of RPMAI (Section 3).

• Usability of the RPMAI
Usability is formally defined as the “the extent to which a product can be used by

specified users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use” [23]. The goal of a usability analysis is to
pinpoint areas of confusion and ambiguity for the user which, when improved will
increase the efficiency and quality of a users' experience [23].

The usability of the RPMAI can be linked with ‘ease of use’ and ‘user
satisfaction’. If one can successfully use the instrument and achieve specified goals
according to user needs and expectations without any confusion and ambiguity then
this fulfils the usability criteria of RPMAI [23].

 An Instrument for Measuring the Maturity of Requirements Engineering Process 581

5.1 Implementation of RPMAI

In this case study, in order to evaluate the RPMAI, the requirements elicitation
category is used as an exemplar. A participant of Company A has carried out
requirements elicitation category assessment using RPMAI (Section 4). I have
summarised the assessment results in Table 1.

The key points of this assessment are as follows:

• It is clear from Table 1 that requirements elicitation process of Company A
is weak (i.e., score is < 7).

• In order to achieve matured requirements elicitation process, the Company A
needs to improve all those individual practices with less than seven score as
shown in Table 1.

• Table 1 shows that Company A is not developing prototypes for poor
understood requirements.

• In Company A, stakeholders are not identified and consulted.
• Requirements rationale are not recorded

Table 1. Practice evaluation sheet for Requirements Elicitation category (6+6+4+8+6+6+6+4+
6+2+10+8+6=44/No of practices) -> 78/13=6, Average core=6

Requirements Elicitation 0 1 2 3 4 5 6 7 8 9 1
0

N
A

Assess System Feasibility X

Be sensitive to
organizational and political
consideration

 X

Identify and consult
system stakeholders

 X

Record requirements
sources

 X

Define the system’s
operating environment

 X

Use business concern to
drive requirements
elicitation

 X

Look for domain
constraints

 X

Record requirements
rationale

 X

Collect requirements from
multiple viewpoints

 X

Prototype poorly
understood requirements

 X

Use scenarios to elicit
requirements

 X

Define operational
processes

 X

Reuse requirements X

582 M. Niazi

• Scenarios are strongly used to elicit requirements
• Requirements sources are recorded
• Operational processes are well defined

Out of thirteen requirements elicitation practices, ten are identified as weak
practices. The results suggest that Company A should focus on these weak practices
in order to improve its requirements elicitation process and to reduce problems
associated with requirements elicitation. Only three practices of requirements
elicitation are well defined in Company A. The weak requirements elicitation
practices, identified by RPMAI, can be improved using the guidelines provided by
Sommerville et al. [19].

5.2 The Case Study Lessons Learned

The case study was conducted in order to test and evaluate the RPMAI in the real
world environment. The lessons learned from this case study are summarised as
follows:

• A participant agreed that the RPMAI is clear and easy to use.
• A participant was able to successfully use the RPMAI without any confusion

and ambiguity in order to measure the RE process maturity.

• A participant agreed that RPMAI is general enough and can be applied to
most companies.

• The RPMAI provides an entry point through which the participant can
effectively judge the effectiveness of different requirements elicitation
practices.

• A participant who used the RPMAI was fully agreed and satisfied with the
assessment results

• A participant was agreed that the use of RPMAI would improve the RE
process maturity.

• All the components of the RPMAI are self explanatory and require no further
explanation to be used effectively.

• The RPMAI is capable of determining the current state of the ‘requirements
elicitation’ category of the RE process.

In summary, the participant was very satisfied with the use of RPMAI. The
participant was also very satisfied with the structure of the RPMAI. The participant
suggested to extend the RPMAI to include all phases of the RE process. He also
suggested providing some guidelines about who should do this assessment in a
company.

6 Conclusion and Future Work

This research has met its objectives and aim with respect to providing an instrument
in order to assist practitioners in measuring the maturity of the RE process. The main
purpose of proposing this measurement instrument was to develop better ways in
order to assist practitioners in effectively measuring the maturity of the RE process. In

 An Instrument for Measuring the Maturity of Requirements Engineering Process 583

order to design this instrument some criteria were decided for its success. The
research question was that: Does the proposed measurement instrument help
practitioners measure the maturity of their RE processes? The results of the case study
are very positive. However, only one category ‘Requirements Elicitation’ was used as
an exemplar in the case study. Thus, I recommend organizations trial this instrument
for other categories of RE process in order to further evaluate its effectiveness in the
domain of RE process. Further large case studies using other RE categories will
further evaluate the effectiveness of the RPMAI.

In particular, one aspect that the participant considered important is to provide
some guidelines about who should be using the RPMAI in a company. This comment
is very positive and a valuable suggestion. RPMAI is a dynamic instrument that will
be extended and evolved based on feedback and input from software industry. This
suggestion will be considered in future work by developing some guidelines for its
use. It is hope that I will be able to continue further evaluation of RPMAI through
multiple case studies in order to improve it and to make it more complete.

Acknowledgements

I am thankful to Professor Ross Jeffery (Program leader, Empirical Software
Engineering NICTA) and Dr. Mark Staples (Researcher at NICTA) for their
comments to complete this paper.

References

1. Sommerville, I., Sawyer, P. and Viller, S.: Requirements Process Improvement Through
the Phased Introduction of Good Practice, Software Process-Improvement and Practice (3).
(1997) 19-34.

2. Sommerville, I.: Software Engineering Fifth Edition. Addison-Wesley.(1996).
3. Hall, T., Beecham, S. and Rainer, A.: Requirements Problems in Twelve Software

Companies: An Empirical Analysis, IEE Proceedings - Software (August). (2002) 153-
160.

4. El Emam, K. and Madhavji, H. N.: A Field Study of Requirements Engineering Practices
in Information Systems Development. Second International Symposium on Requirements
Engineering. (1995) 68-80.

5. Sommerville, I., Sawyer, P. and Viller, S.: Improving the Requirements Process. Fourth
International Workshop on Requirements Engineering: Foundation of Software Quality.
(1998) 71-84.

6. Niazi, M.: Improving the Requirements Engineering Process: A Process Oriented
Approach. Thirteenth Australasian Conference on Information Systems (ACIS02). (2002)
885-898.

7. Niazi, M. and Shastry, S.: Role of Requirements Engineering in Software development
Process: An empirical study. IEEE International Multi-Topic Conference (INMIC03).
(2003) 402-407.

8. Lamsweerde, A., van: Requirements Engineering in the year 00: A research perspective.
22nd International Conference on Software Engineering (ICSE). (2000) 5-19.

9. Kamsties, E., Hormann, K. and Schlich, M.: Requirements Engineering in Small and
Medium Enterprises, Requirements Engineering 3 (2). (1998) 84-90.

584 M. Niazi

10. Nikula, U., Fajaniemi, J. and Kalviainen, H.: Management View on Current Requirements
Engineering Practices in Small and Medium Enterprises. Fifth Australian Workshop on
Requirements Engineering. (2000) 81-89.

11. Nuseibeh, B. and Easterbrook, S.: Requirements Engineering: a roadmap. 22nd
International Conference on Software Engineering. (2000) 35-46.

12. Siddiqi, J. and Chandra, S.: Requirements Engineering: The Emerging Wisdom, IEEE
Software 13 (2). (1996) 15-19.

13. Niazi, M. and Shastry, S.: Critical success factors for the improvement of requirements
engineering process. International conference on software engineering research and
practice. (2003) 433-439.

14. Paulk, M., Weber, C., Curtis, B. and Chrissis, M.: A high maturity example: Space shuttle
onboard software, in the Capability Maturity Model: Guidelines for improving software
process. Addison-wesley.(1994).

15. Beecham, S., Hall, T. and Rainer, A.: Building a requirements process improvement
model. Department of Computer Science, University of Hertfordshire, Technical report
No: 378 (2003).

16. Niazi, M., Wilson, D. and Zowghi, D.: A Maturity Model for the Implementation of
Software Process Improvement: An empirical study, Journal of Systems and Software 74
(2). (2005) 155-172.

17. Niazi, M., Wilson, D. and Zowghi, D.: A Framework for Assisting the Design of Effective
Software Process Improvement Implementation Strategies, Accepted for publication:
Journal of Systems and Software (2005)

18. Daskalantonakis, M. K.: Achieving higher SEI levels, IEEE Software 11 (4). (1994) 17-
24.

19. Sommerville, I. and Sawyer, P.: Requirements Engineering - A good Practice Guide.
Wiley.(1997).

20. Diaz, M. and Sligo, J.: How Software Process Improvement helped Motorola, , IEEE
software 14 (5). (1997) 75-81.

21. Yin, R. K.: Applications of Case Study Research. Sage Publications.(1993).
22. Cooper, D. and Schindler, P.: Business research methods, seventh edition. McGraw-

Hill.(2001).
23. ISO/DIS-9241-11: International Standards Organization, ISO DIS 9241-11: Guidance on

Usability. (1994).

24. Appendix A

Measurement Insptrument [18]
Score Key Activity evaluation dimensions

 Approach Deployment Results
Poor (0) No management recognition

of need
No organizational ability
No organizational
commitment
Practice not evident
Higher management is not
aware of investment
required and long term
benefits of this practice

No part of the organization uses
the practice
No part of the organization shows
interest

Ineffective

 An Instrument for Measuring the Maturity of Requirements Engineering Process 585

Weak (2) Management begins to
recognize need
Support items for the
practice start to be created
A few parts of organization
are able to implement the
practice
Management begins to
aware of investment
required and long term
benefits of this practice

Fragmented use
Inconsistent use
Deployed in some parts of the
organization
Limited to monitoring/verification
of use

Spotty results
Inconsistent
results
Some
evidence of
effectiveness
for some parts
of the
organization

Fair (4) Wide but not complete
commitment by
management
Road map for practice
implementation defined
Several supporting items for
the practice in place
Management has some
awareness of investment
required and long term
benefits of this practice

Less fragmented use
Some consistency in use
Deployed in some major parts of
the organization
Monitoring/verification of use for
several parts of the organization
No mechanism to distribute the
lessons learned to the relevant
staff members

Consistent
and positive
results for
several parts
of the
organization
Inconsistent
results for
other parts of
the
organization

Marginally
qualified

(6)

Some management
commitment; some
management becomes
proactive
Practice implementation
well under way across parts
of the organization
Supporting items in place
Management has wide but
not complete awareness of
investment required and
long term benefits of this
practice

Deployed in some parts of the
organization
Mostly consistent use across many
parts of the organization
Monitoring/verification of use for
many parts of the organization
A mechanism has been
established, and used in some
parts of the organization, to
distribute the lessons learned to
the relevant staff members

Positive
measurable
results in
most parts of
the
organization
Consistently
positive
results over
time across
many parts of
the
organization

Qualified
(8)

Total management
commitment
Majority of management is
proactive
Practice established as an
integral part of the process
Supporting items encourage
and facilitate the use of
practice
A mechanism has been
established to use and
monitor this practice on
continuing basis
Management has wide and
complete awareness of
investment required and
long term benefits of this
practice

Deployed in almost all parts of the
organization
Consistent use across almost all
parts of the organization
Monitoring/verification of use for
almost all parts of the
organization
A mechanism has been
established, and used in all parts
of the organization, to distribute
the lessons learned to the relevant
staff members

Positive
measurable
results in
almost all
parts of the
organization
Consistently
positive
results over
time across
almost all
parts of the
organization

Outstanding
(10)

Management provides
zealous leadership and
commitment
Organizational excellence in
the practice recognized even
outside the company

Pervasive and consistent deployed
across all parts of the organization
Consistent use over time across all
parts of the organization
Monitoring/verification for all
parts of the organization

Requirements
exceeded
Consistently
world-class
results
Counsel
sought by
others

Author Index

Ahlgren, Riikka 143
Albuquerque, Adriano 370

Andrews, AnnelieseAmschler 385

Back, Ralph-Johan 414
Biffl, Stefan 458
Bjørnson, Finn Olav 245, 314
Bornstein, Claudio T. 257
Bunse, Christian 54

Capilla, Rafael 173
Cerón, Rodrigo 173
Churcher, Neville 84
Conradi, Reidar 54, 128
Counsell, Steve 3
Crnkovic, Ivica 272

Dale, Tony 84
de Oliveira, Káthia Marçal 560
Dingsøyr, Torgeir 245
Dooms, Ko 224
Dueñas, Juan C. 173

Ferre, Xavier 202
Figueiredo, Sávio 370
Flohr, Thomas 474
Fukazawa, Yoshiaki 299

Garg, Pankaj K. 399
Geddes, Stella 3
Gilb, Tom 1
Göhlert, Thomas 502

Hamann, Dirk 502
Hanssen, Geir K. 314
Henningsson, Kennet 443
Höst, Martin 39, 487

Iida, Hajimu 399
Inoue, Katsuro 399, 530
Irwin, Warwick 84
Ivarsson, Martin 358

Jakobsson, Markus 157
Jaufman, Olga 328

Jedlitschka, Andreas 502
Johansen, Trond 216
Johansson, Enrico 39
Jokela, Timo 115
Jönsson, Per 343
Juristo, Natalia 202

Kamiya, Toshihiro 530
Khan, Umair 54
Kim, Soo Dong 69
Kollanus, Sami 429
Kosloski, Ricardo 560
Kubo, Atsuto 299
Kubrusly, Lucia Silva 257
Kylmäkoski, Roope 224

Lappalainen, Jouni 545
Larsson, Stig 272
Le, Hien Nam 128
Lee, Seo Jeong 69
Leszak, Marek 98
Li, Jingyue 54
Lübke, Daniel 517

Mafra, Sômulo 370
Markkula, Jouni 143, 157
Matsumoto, Kenichi 399
Matsushita, Makoto 530
Mazhelis, Oleksiy 157
McCaffery, F 286
McFall, D 286
Mendes, Emilia 3
Mian, Paula 370
Milovanov, Luka 414
Montoni, Mariano 370
Moreno, Ana M. 202
Morisio, Maurizio 54
Münch, Jürgen 328

Nedstam, Josef 39
Niazi, Mahmood 574
Nyg̊ard, Mads 128

Öhman, Peter 358

ergal
onald

588 Author Index

Pettersson, Fredrik 358
Phalp, Keith 3
Porres, Ivan 414

Ramampiaro, Heri 128
Rocha, Ana Regina 257, 370

Santos, Gleison 370
Schneider, Kurt 517
Schneider, Thorsten 474
Schröder, Astrid 502
Serrano, Enrique 173
Sindhgatta, Renuka 189
Slyngstad, Odd Petter N. 54
Šmite, Darja 234
Sørensen, Carl-Fredrik 128
Svensson, Harald 487

Taipale, Virpi 16
Takasu, Atushiro 299
Taramaa, Jorma 16

Thonse, Srinivas 189
Thurnher, Bettina 458
Torchiano, Marco 54
Torii, Koji 399
Travassos, Guilherme H. 370

Villela, Karina 370
Vinter, Otto 29
Virtanen, Ari 2

Wang, Alf Inge 128
Wartenberg, Fredrik 39
Washizaki, Hironori 299
Westerheim, Hans 314
Wilkie, F. G 286
Winkler, Dietmar 458
Wohlin, Claes 343, 385, 443

Yamamoto, Tetsuo 530

Zambalde, André Luiz 257

eorge

	Frontmatter
	Keynote Addresses
	Competitive Product Engineering: 10 Powerful Principles for Winning Product Leadership, Through Advanced Systems Engineering, Compared to10 Failure Paths Still Popular in Current Culture
	From Products and Solutions to End-User Experiences

	Systems and Software Process Improvement
	What Formal Models Cannot Show Us: People Issues During the Prototyping Process
	Process Improvement Solution for Co-design in Radio Base Station DSP SW
	A Framework for Classification of Change Approaches Based on a Comparison of Process Improvement Models

	Systems and Software Quality
	A Qualitative Methodology for Tailoring SPE Activities in Embedded Platform Development
	An Empirical Study on Off-the-Shelf Component Usage in Industrial Projects
	A Rendezvous of Content Adaptable Service and Product Line Modeling
	A Framework for Linking Projects and Project Management Methods
	Software Defect Analysis of a Multi-release Telecommunications System
	Performance Rather than Capability Problems. Insights from Assessments of Usability Engineering Processes

	Mobile and Wireless Applications
	Using the MOWAHS Characterisation Framework for Development of Mobile Work Applications
	Design Patterns and Organisational Memory in Mobile Application Development
	Specifying Patterns for Mobile Application Domain Using General Architectural Components

	Requirements Engineering and Usability
	A Meta-model for Requirements Engineering in System Family Context for Software Process Improvement Using CMMI
	Functional and Non-functional Requirements Specification for Enterprise Applications
	Framework for Integrating Usability Practices into the Software Process

	Industrial Experiences
	Using Evolutionary Project Management (Evo) to Create Faster, More Userfriendly and More Productive Software. Experience Report from FIRM AS, a Norwegian Software Company
	Comprehensive Documentation Made Agile -- Experiments with RaPiD7 in Philips
	A Case Study: Coordination Practices in Global Software Development
	A Study of a Mentoring Program for Knowledge Transfer in a Small Software Consultancy Company
	Impacts of Software Deployment in the Coffee Agribusiness of Brazil
	Case Study: Software Product Integration Practices

	Process Analysis
	Improving the Express Process Appraisal Method
	Relation Analysis Among Patterns on Software Development Process

	Process Modeling
	Tailoring RUP to a Defined Project Type: A Case Study
	Acquisition of a Project-Specific Process

	SPI Methods and Tools
	Understanding the Importance of Roles in Architecture-Related Process Improvement -- A Case Study
	Improved Control of Automotive Software Suppliers
	Enterprise-Oriented Software Development Environments to Support Software Products and Processes Quality Improvement

	Experimental Software Engineering
	Evaluation of Three Methods to Predict Project Success: A Case Study
	Mega Software Engineering
	Software Development and Experimentation in an Academic Environment: The Gaudi Experience

	Validation and Verification
	Issues in Software Inspection Practices
	Risk-Based Trade-Off Between Verification and Validation -- An Industry-Motivated Study
	Investigating the Impact of Active Guidance on Design Inspection

	Agile Methods
	An XP Experiment with Students -- Setup and Problems
	Views from an Organization on How Agile Development Affects Its Collaboration with a Software Development Team
	Adapting PROFES for Use in an Agile Process: An Industry Experience Report
	Agile Hour: Teaching XP Skills to Students and IT Professionals

	Measurement
	Measuring Similarity of Large Software Systems Based on Source Code Correspondence
	Tool Support for Personal Software Process
	An Experience Factory to Improve Software Development Effort Estimates
	An Instrument for Measuring the Maturity of Requirements Engineering Process

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

