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Preface

Since its start in 1990, the IPCO conference series (held under the auspices of
the Mathematical Programming Society) has become an important forum for the
presentation of recent results in Integer Programming and Combinatorial Opti-
mization. This volume compiles the papers presented at IPCO XI, the eleventh
conference in this series, held June 8–10, 2005, at the Technische Universität
Berlin.

The high interest in this conference series is evident in the large number
of submissions. For IPCO XI, 119 extended abstracts of up to 10 pages were
submitted. During its meeting on January 29–30, 2005, the Program Committee
carefully selected 34 contributions for presentation in non-parallel sessions at
the conference. The final choices were not easy at all, since, due to the limited
number of time slots, many very good papers could not be accepted.

During the selection process the contributions were refereed according to the
standards of refereed conferences. As a result of this procedure, you have in your
hands a volume that contains papers describing high-quality research efforts.
The page limit for contributions to this proceedings volume was set to 15. You
may find full versions of the papers in scientific journals in the near future.

We thank all the authors who submitted papers. Furthermore, the Program
Committee is indebted to the many reviewers who, with their specific expertise,
helped a lot in making the decisions.

Aussois, March 2005 Michael Jünger
Volker Kaibel
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José R. Correa, Michael R. Wagner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Unique Sink Orientations of Grids
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Mixed-Integer Cuts from Cyclic Groups

Matteo Fischetti and Cristiano Saturni
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{matteo.fischetti, cristiano.saturni}@dei.unipd.it
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Abstract. We analyze a separation procedure for Mixed-Integer Pro-
grams related to the work of Gomory and Johnson on interpolated sub-
additive functions. This approach has its roots in the Gomory-Johnson
characterization on the master cyclic group polyhedron. To our knowl-
edge, the practical benefit that can be obtained by embedding interpo-
lated subadditive cuts in a cutting plane algorithm was not investigated
computationally by previous authors. In this paper we compute, for the
first time, the lower bound value obtained when adding (implicitly) all
the interpolated subadditive cuts that can be derived from the individ-
ual rows of an optimal LP tableau, thus approximating the optimization
over the so-called Gomory’s Corner polyhedron. The computed bound is
compared with that obtained when only Gomory mixed-integer cuts are
used, on a large test-bed of MIPLIB instances.

Keywords: Mixed-Integer Programming, Subadditive cuts, Gomory
cuts, Gyclic Group and Corner polyhedra.

1 Introduction

In this paper we study the Integer Linear Program (ILP)

min{cTx : Ax = b, x ≥ 0 integer} (1)

where A is a rational m × n matrix, b is a rational m-dimensional vector, and
c ∈ IRn is a cost vector, and we address the two associated polyhedra:

P := {x ∈ IRn
+ : Ax = b} (2)

PI := conv{x ∈ ZZn
+ : Ax = b} = conv(P ∩ ZZn) . (3)

The mixed-integer case where some variables are not restricted to be integer,
will be addressed in Section 3.

We propose an exact separation procedure for the class of so-called interpo-
lated (or template) subadditive cuts, based on the characterization of Gomory
and Johnson [10, 11, 12] of the master cyclic group polyhedron defined as

T (k, r) = conv{t ∈ ZZk−1
+ :

k−1∑
i=1

(i/k) · ti ≡ r/k (mod 1)} (4)

M. Jünger and V. Kaibel (Eds.): IPCO 2005, LNCS 3509, pp. 1–11, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 M. Fischetti and C. Saturni

where k ≥ 2 (group order) and r ∈ {1, · · · , k − 1} are given integers. The space
IRk−1 of the t variables is called the T -space in [13]. It is known that the map-
ping the original x-variable space into the T -space allows one to use polyhedral
information on T (k, r) to derive valid inequalities for PI . To our knowledge,
however, the practical benefit that can be obtained by embedding these cuts
in a cutting plane algorithm was not investigated computationally by previ-
ous authors. As a matter of fact, a number of recent papers [13, 14, 5, 6, 7, 2]
deals only implicitly with cyclic-group separation, as they address the so-called
Gomory’s shooting experiment. Roughly speaking, in this experiment the point
t∗ ∈ IRk−1 to be separated is generated at random (hence corresponding to a
random “shooting direction” d in the T -space), and statistics on the frequency
of the most-violated facets of T (k, r) are collected. A very recent paper present-
ing some computational results is the one by Koppe, Louveaux, Weismantel and
Wolsey [18], where a compact formulation of the cyclic-group separation prob-
lem is embedded into the original ILP model—this however produces a huge
extended formulation with limited practical applications. Also related to our
work are the papers by Cornuejols, Li and Vandenbussche [4], where a sub-
family of cyclic-group cuts (called k-cuts) is investigated both theoretically and
computationally, and by Letchford and Lodi [17], where a different subfamily is
addressed.

This paper is organized as follows. In Section 2 we present the theory of
Gomory and Johnson [10, 11, 12] on interpolated subadditive functions and their
role in generating valid inequalities for PI . We also introduce an exact separation
procedure for interpolated subadditive cuts based on an LP model taken from
the Gomory-Johnson characterization of the master cyclic group polyhedron.
This separation procedure allows us to exploit effectively the whole family of
interpolated subadditive cuts to improve the LP relaxation quality. In Section 3
we consider the mixed-integer case, where model (1) becomes a MIP involving
continuous variables. In Section 4, the quality of the generated cuts is analyzed
computationally. In particular we compute, for the first time, the lower bound
value obtained when adding (implicitly) all the interpolated subadditive cuts
that can be derived from the individual rows of an optimal LP tableau. This
leads to an approximation1 of the optimal value of the so-called Gomory’s Corner
polyhedron [12], hence giving a partial answer to the question posed in [14] (and
also addressed in [18]) on the quality of this relaxation. The bound we compute is
compared with that obtained when only Gomory mixed-integer cuts are used, on
a large test-bed made by the instances of the MIPLIB [19] library. The outcome
is that Gomory mixed-integer cuts play a very special role among subadditive
cuts, in that they typically produce, alone, a lower bound increase which is
comparable to that obtained when the whole family of cuts is considered. This
result confirms the theoretical findings of Dash and Gunluk [6], who showed that
interpolated subadditive cuts are dominated by Gomory mixed-integer cuts in

1 Besides getting rid of the effects of interpolation, optimizing exactly over the corner
polyhedron would require to take into account all the tableau rows simultaneously.
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a probabilistic sense, as well as the computational experience of Cornuejols, Li
and Vandenbussche [4] on the subfamily of k-cuts.

2 Cuts from Subadditive Functions

The fractional part φ(a) of a real value a is defined as

φ(a) := a− �a� ,

where �a� denotes the largest integer not greater than a. Given a positive integer
k and two real values a, b ∈ IR, we write a ≡ b (mod k) if a − b is an integer
multiple of k. In this paper we are interested in deriving valid inequalities for
PI that are not implied by the system Ax = b, x ≥ 0. To this end, given any
equation

αTx = β (5)

valid for PI , where (α, β) ∈ Qn+1 and φ(β) > 0, we consider the group polyhe-
dron

G(α, β) := conv{x ∈ ZZn
+ :

n∑
j=1

αjxj ≡ β (mod 1)} ⊇ PI . (6)

For example, the equation αTx = β can be obtained by setting (α, β)T :=
uT (A, b) for any u ∈ Qm such that φ(uT b) > 0. This is the case, e.g., when the
equation is read from the tableau associated with a fractional optimal solution
of the LP relaxation of (1).

In particular, we address the following separation problem:

Definition 1. (g-SEP) Given any point x∗ ≥ 0 and the equation αTx = β with
rational coefficients and such that φ(β) > 0, find (if any) a valid inequality for
G(α, β) that is violated by x∗.

A function g : IR→ IR is called subadditive if g(a + b) ≤ g(a) + g(b) for any
a, b ∈ IR. We call a subadditive function g(·) periodic in [0, 1) if g(a + 1) = g(a)
for all a ∈ IR. As in this paper we are only interested in subadditive functions
g(·) that are periodic in [0, 1) and such that g(0) = 0, in the sequel we will name
this kind of functions just subadditive.

Given a valid equation αTx = β for PI , it is easy to show that the inequality

n∑
j=1

g(αj)xj ≥ g(β) (7)

is valid for G(α, β)(and hence for PI) whenever g(·) is subadditive. For example,
taking g(·) = φ(·) one obtains the well-know Gomory fractional cut [8]

n∑
j=1

φ(αj)xj ≥ φ(β) ,

whereas taking the subadditive GMI function γβ(·) defined as
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γβ(a) =

{
φ(a) if φ(a) ≤ φ(β)
φ(β) 1−φ(a)

1−φ(β) otherwise for all a ∈ IR (8)

one obtains the stronger Gomory Mixed-Integer (GMI) cut [9]

n∑
j=1

min{φ(αj), φ(β)
1− φ(αj)
1− φ(β)

}xj ≥ φ(β) . (9)

A basic result, due to Gomory and Johnson [11, 12], is that all the nontrivial
facets of G(α, β) are defined by inequalities of this type.2 As a consequence,
our separation problem (g-SEP) can be rephrased as the problem of defining
a suitable subadditive function g(·) that produces a cut violated by the given
point x∗, i.e., such that

∑n
j=1 g(αj)x∗

j < g(β).
Now let k ≥ 2 be the smallest integer such that k(α, β) is integer, whose

existence follows from the assumption that (α, β) is rational. This value of k
will be called ideal with respect to equation (5). Of course, the subadditivity
(plus periodicity) of g(·) implies that the same property holds over the discrete
set {0, 1/k, 2/k, · · · , (k − 1)/k}. In other words, a necessary condition for sub-
additivity is that the “sampled” values gi := g(i/k), i = 0, · · · , k − 1 satisfy the
following set of linear constraints, called g-system in the sequel:

gi + gj ≥ gh , 1 ≤ i, j, h ≤ k − 1 and i + j ≡ h (mod k) (10)
g0 = 0 (11)
0 ≤ gi ≤ 1 , i = 1, · · · , k − 1 , (12)

where bounds (12) will play a normalization role in the sequel.
Any solution (g0, · · · , gk−1) of the g-system above can be completed so as

to define a subadditive function g : IR → IR through a simple interpolation
procedure due to Gomory and Johnson [11]. This procedure simply takes a linear
interpolation of the values g0, · · · , gk−1 over [0, 1), and then extends the resulting
piecewise-linear function to IR, in the obvious periodic way. More formally, for
any a ∈ IR the interpolated value g(a) is defined as g(a) = (1−θ)gi+θgi+1, where
θ ∈ [0, 1) and i ∈ {0, · · · , k − 1} are such that φ(a) = (1 − θ) i/k + θ (i + 1)/k,
and gk := g0 because of periodicity.

A key observation at this point is that, being k ideal, the actual value of g(·)
outside the sample points i/k is immaterial, since g(·) only needs to be evalu-
ated on these sample points when computing the coefficients in (7). Therefore,
the interpolation procedure does not actually restrict the space of the possible
subadditive functions—as it would be the case for a different choice of k. As a
consequence, we can exactly rephrase g-SEP as the following LP:

2 In addition, Gomory and Johnson have shown that non-dominated inequalities only
arise when the complementarity condition g(a) + g(b) = g(a + b)(= g(β)) holds
whenever a + b ≡ β (mod 1).
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g − SEPk : min{
k−1∑
i=1

t∗i gi : (10)− (12) } , (13)

where r := k φ(β), t∗i :=
∑

j{x∗
j : φ(αj) = i/k} for i ∈ {1, · · · , k − 1} \ {r},

and t∗r :=
∑

j{x∗
j : φ(αj) = r/k} − 1 so as to take into account the role of the

right hand side g(β) = gr in (7). With these definitions, the objective function∑k−1
i=1 t∗i gi is precisely the opposite of the violation of a cut of the form (7), hence

a violated such cut exists if and only if the optimal value of g−SEPk is strictly
negative.

Unfortunately, the ideal k is very often too large to be used in practice, so
one has to choose a smaller value in order to produce a manageable g-system.
In this case, the interpolation procedure does restrict (often considerably) the
range of subadditive functions that can be captured by g − SEPk. Moreover,
the definition of the weights t∗i becomes slightly more involved, due to the need
of taking interpolation into account. More specifically, for any integer k ≥ 2
(not necessarily ideal) the weights t∗i in (13) are defined through the algorithm
outlined in Figure 1. At step 1, we define two fictitious values α0 and x∗

0 so
as to re-write the (opposite of the) cut violation

∑n
j=1 g(αj)x∗

j − g(β) in the
more convenient form

∑n
j=0 g(αj)x∗

j . At step 2, all weights t∗i are initially set
to zero. At step 3, for each j = 0, · · · , n we locate the interval [i/k, (i + 1)/k)
that contains φ(αj), where i + 1 is replaced by 0 in case i + 1 = k so as to
take periodicity into account. At step 4 we define a “displacement” parameter
θ ∈ [0, 1) giving the exact position of φ(αj) within this interval; by definition, we
have θ = 0 if φ(αj) = i/k, whereas θ approaches its limit 1 as φ(αj) approaches
(i+1)/k. We then split, at step 5, the contribution g(αj)x∗

j between t∗i and t∗i+1,
in a way proportional to θ. Note that the procedure also works in case of ideal
k, when we always have θ = 0 at step 4.

1. define the fictitious values α0 := β and x∗
0 := −1;

2. initialize t∗0 := t∗1 := · · · := t∗k−1 := 0;
2. for j = 0, 1, · · · , n such that x∗

j > 0 and φ(αj) > 0 do

3. let i := �k φ(αj)� and h = i + 1 mod k;
4. let θ := kφ(αj) − i;
5. update t∗i := t∗i + (1 − θ)x∗

j and t∗h := t∗h + θx∗
j

6. enddo

Fig. 1. Defining the weights t∗i in g − SEPk for any given k and x∗

We finally observe that, for the interpolated function g(·), we sometimes have
g(a) > g(β). Therefore, an interpolated subadditive cut

∑n
j=1 g(αj)xj ≥ g(β)

can easily be improved to its clipped form:

n∑
j=1

min{g(αj), g(β)}xj ≥ g(β) (14)

whose validity follows trivially from the integrality of x.
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3 Dealing with Continuous Variables

We next address the case where some variables xj with j ∈ C (say) are not
restricted to be integer valued. In this case, Gomory and Johnson [11, 12] showed
that, for any subadditive function g(·), it is enough to modify cut (7) into

n∑
j∈I

g(αj)xj +
∑

j∈C:αj>0

slope+ αjxj +
∑

j∈C:αj<0

slope− αjxj ≥ g(β) , (15)

where I := {1, · · · , n} \ C is the index set of the integer-valued variables,

slope+ := lim
δ→0+

g(δ)/δ

is the slope of g(·) in 0+, and

slope− := lim
δ→0−

g(δ)/δ = − lim
δ→0+

g(1− δ)/δ

is the slope of g(·) in 0− (or, equivalently, in 1−). Notice that, by definition,
slope+ > 0 and slope− < 0, hence all coefficients in (15) are nonnegative.

The above result has an intuitive explanation based on the following simple
scaling argument. Let j ∈ C be the index of any continuous variable. We intro-
duce a scaled copy x̃j = Mxj of xj , where M > 0 is a suitable scaling factor,
and impose that x̃j can only assume integer values. This is of course correct
only if M is chosen so as not to cut any feasible point of the original MIP set,
which is always possible due the rational data assumption. A key observation
is however that M can be assumed to be arbitrarily large, since multiplying
a valid M by a positive integer yields another valid M . Now, replacing xj by
x̃j/M changes the j-th coefficient in equation αTx = β from αj to α̃j := αj/M ,
while increasing the j-th component of x∗ from x∗

j to x̃∗
j := Mx∗

j . Being x̃j con-
strained to be integer, we can compute its coefficient in (7) as g(α̃j) = g(αj/M).
If αj > 0, for M → +∞ we have that αj/M tends to 0+, hence for suf-
ficiently large M we have g(α̃j) = g(αj/M) = slope+αj/M . Analogously, if
αj < 0 we have αj/M → 0− when M → +∞, hence for sufficiently large M we
have g(α̃j) = g(αj/M) = slope−αj/M . This shows that the coefficient of the
scaled variable x̃j in the subadditive cut is slope∗ αj/M , where slope∗ = slope−
or slope− depending on the sign of αj . The back substitution xj = x̃j/M
then yields the coefficient slope∗ αj for the original (continuous) variable xj , as
in (15).

As a consequence of the above scaling argument, we can deal with continuous
variables without any modification of our separation procedure, that can used
as a black box. To this end, it is enough to implement a pre-processing scaling
phase for the continuous variables, and then a post-processing phase where the
separated cut returned by the black box is expressed in terms of the original
(non-scaled) variables. In case of interpolated subadditive functions, a suitable
scaling factor for each continuous variable xj is Mj := k|αj |, that maps the
original coefficient αj into α̃j = αj/Mj = ±1/k. This shows that, in presence of



Mixed-Integer Cuts from Cyclic Groups 7

several continuous variables with nonzero αjx
∗
j , values g1 and gk−1 play a crucial

role in the separation, the lower these values the better. Hence GMI cuts qualify
as the strongest subadditive cuts when continuous variables are present, since
they have the property of being associated with a subadditive function γβ(·)
where slope+ and slope− are as small as possible; see [12].

Finally, we observe that the clipping of coefficient g(αj) to min{g(αj), g(β)}
in (14) is guaranteed to be valid only for integer-constrained variables xj .

4 Computational Results

We next report a preliminary computational analysis aimed at comparing the
quality of Gomory mixed-integer cuts with that of the interpolated sudaddi-
tive cuts, when embedded in a pure cutting plane method. For these prelimi-
nary experiments, our test-bed includes a sample of MIPLIB instances taken
form [19] (more instances will be considered in the full paper). In order to
avoid any dependency of the experiments from the way the slack variables and
the variable bounds are dealt with, for the MIPs involving “≤” or “≥” con-
straints and/or bounds on the variables we built an equivalent MIP formulation
in standard form, that includes the variable bound constraints and slack vari-
ables in an explicit way (though this choice penalizes computing times consid-
erably). For the same reason, we did not consider the coefficient clipping (14).
All LP’s have been solved through the commercial software ILOG-Cplex 9.0
[15, 16].

Our order of business is to approximate the optimization over the Gomory’s
corner polyhedron associated with the optimal solution of the LP relaxation of
our MIP model (without any MIP preprocessing). To this end, after the solution
of first LP relaxation of our model, we store in our equation pool all the tableau
rows αTx = β with fractional right-hand side β. This pool is never updated
during the run, i.e., we deliberately avoid generating subadditive cuts of rank
greater than 1 (or, to be more precise, we avoid cuts derived from equations
different from those associated with the single rows of the first LP tableau).
The same applies to Gomory mixed-integer cuts, that have been derived from
the equations in the pool and added (at once) to the LP. At each round of
separation, at most 200 cuts are generated. Each run is aborted at the root
node, i.e., no branching is allowed.

Table 1 and Table 2 give the outcome of our experiments. In the first column
of the tables we report the problem name along with the computing time and
the value Lc of the LP relaxation of the initial model. The remaining columns
correspond to Gomory mixed-integer (GMI) and interpolated subadditive cuts
for various values of the group-order parameter k. For each problem we report
the final lower bound value L (and, in parenthesis, the ratio L−Lc

LGMI−Lc
, where

LGMI is the final Gomory mixed-integer lower bound), the total computing time
T (and, in parenthesis, the ratio T

TGMI
, where TGMI is the total computing time

for the GMI cuts), the separation time S (and, in parenthesis, the ratio S
T ) and

the total number of generated cuts. The entries marked by a star correspond to
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Table 1. Computational results (Part I)

Problem GMI K = 10 K = 20 K = 30 K = 60

10teams
0.170
917.000

921.00 (1.0)
3.47 (1.0)
0.44 (0.1)
200

921.00 (1.0)
4.52 (1.3)
1.30 (0.3)
200

921.00 (1.0)
4.76 (1.4)
1.58 (0.3)
200

921.00 (1.0)
5.43 (1.6)
2.30 (0.4)
200

921.00 (1.0)
15.71 (4.5)
12.43 (0.8)
200

a1c1s1
0.180
997.530

2996.27 (1.0)
1.16 (1.0)
0.21 (0.2)
200

2639.39 (0.8)
6.69 (5.8)
5.57 (0.8)
200

2795.01 (0.9)
15.49 (13.3)
13.32 (0.9)
356

2851.22 (0.9)
18.17 (15.6)
15.58 (0.9)
400

2932.56 (1.0)
69.07 (59.5)
66.65 (1.0)
442

aflow30a
0.020
983.167

1003.81 (1.0)
0.08 (1.0)
0.02 (0.3)
62

1001.97 (0.9)
0.42 (5.3)
0.25 (0.6)
106

1002.93 (1.0)
0.66 (8.3)
0.49 (0.7)
110

1003.19 (1.0)
1.87 (23.4)
1.60 (0.9)
132

1003.47 (1.0)
17.83 (222.5)
17.61 (1.0)
132

aflow40b
0.100
1005.665

1014.31 (1.0)
0.41 (1.0)
0.05 (0.1)
76

1014.03 (1.0)
2.64 (6.4)
1.69 (0.6)
114

1014.23 (1.0)
3.78 (9.2)
2.62 (0.7)
128

1014.28 (1.0)
4.73 (11.5)
3.65 (0.8)
132

1014.30 (1.0)
27.00 (65.8)
26.03 (1.0)
122

air03
0.591
338864.250

340160.00 (1.0)
2.23 (1.0)
0.29 (0.1)
72

340160.00 (1.0)
2.73 (1.2)
0.86 (0.3)
72

340160.00 (1.0)
2.63 (1.2)
0.85 (0.3)
72

340160.00 (1.0)
2.96 (1.3)
0.96 (0.3)
72

340160.00 (1.0)
4.36 (2.0)
2.54 (0.6)
72

air04
38.686
55535.436

55581.69 (1.0)
216.40 (1.0)
2.75 (0.0)
200

55579.31 (0.9)
331.88 (1.5)
13.38 (0.0)
266

55581.64 (1.0)
387.93 (1.8)
19.20 (0.0)
318

55583.69 (1.0)�
521.54 (2.4)
20.82 (0.0)
374

55584.80 (1.1)�
844.80 (3.9)
293.90 (0.3)
404

air05
3.024
25877.609

25900.66 (1.0)
34.46 (1.0)
3.33 (0.1)
202

25900.45 (1.0)
70.62 (2.0)
13.96 (0.2)
270

25901.92 (1.1)�
63.31 (1.8)
13.40 (0.2)
286

25902.29 (1.1)�
112.90 (3.3)
23.80 (0.2)
384

25903.37 (1.1)�
355.42 (10.3)
274.21 (0.8)
472

bell3a
0.010
862578.643

872157.51 (1.0)
0.02 (1.0)
0.00 (0.0)
82

872015.80 (1.0)
0.12 (6.0)
0.10 (0.8)
143

872092.20 (1.0)
0.31 (15.5)
0.27 (0.9)
154

872099.44 (1.0)
0.68 (34.0)
0.64 (0.9)
150

872140.08 (1.0)
10.04 (501.5)
10.02 (1.0)
149

bell5
0.010
8608417.947

8660422.46 (1.0)
0.01 (1.0)
0.00 (0.0)
64

8654669.96 (0.9)
0.08 (8.0)
0.06 (0.7)
96

8657274.83 (0.9)
0.24 (24.0)
0.22 (0.9)
109

8658662.54 (1.0)
0.72 (72.0)
0.70 (1.0)
107

8661152.43 (1.0)�
16.12 (1610.1)
16.09 (1.0)
129

cap6000
0.310
−2451537.325

−2451470.55 (1.0)
0.69 (1.0)
0.07 (0.1)
11

−2451474.73 (0.9)
1.04 (1.5)
0.19 (0.2)
14

−2451474.73 (0.9)
1.37 (2.0)
0.32 (0.2)
20

−2451472.58 (1.0)
1.12 (1.6)
0.29 (0.3)
14

−2451472.49 (1.0)
2.90 (4.2)
2.07 (0.7)
14

dano3mip
147.682
576.232

576.39 (1.0)
211.71 (1.0)
6.36 (0.0)
200

576.38 (1.0)
280.02 (1.3)
55.95 (0.2)
224

576.38 (1.0)
384.41 (1.8)
76.73 (0.2)
238

576.38 (1.0)
353.49 (1.7)
85.82 (0.2)
248

576.39 (1.0)
443.55 (2.1)
183.23 (0.4)
258

fiber
0.020
156082.518

316631.18 (1.0)
0.12 (1.0)
0.00 (0.0)
84

262906.07 (0.7)
0.53 (4.4)
0.35 (0.7)
148

311294.39 (1.0)
1.17 (9.7)
0.93 (0.8)
190

316718.91 (1.0)�
2.95 (24.6)
2.61 (0.9)
214

318754.56 (1.0)�
41.32 (343.8)
41.00 (1.0)
194

flugpl
0.000
1167185.726

1171213.72 (1.0)
0.00 (−)
0.00 (−)
25

1171004.98 (0.9)
0.02 (−)
0.02 (1.0)
47

1171142.46 (1.0)
0.07 (−)
0.07 (1.0)
52

1171193.55 (1.0)
0.28 (−)
0.27 (1.0)
48

1171197.64 (1.0)
5.08 (−)
5.08 (1.0)
50

gen
0.050
112130.041

112243.01 (1.0)
0.12 (1.0)
0.02 (0.2)
87

112221.20 (0.8)
1.54 (12.8)
1.31 (0.9)
129

112226.91 (0.9)
1.84 (15.3)
1.60 (0.9)
149

112233.89 (0.9)
3.56 (29.6)
3.26 (0.9)
151

112244.20 (1.0)�
49.32 (410.4)
48.95 (1.0)
168

gesa2-o
0.080
25476489.678

25568096.68 (1.0)
0.32 (1.0)
0.06 (0.2)
194

25565904.71 (1.0)
2.87 (9.0)
2.31 (0.8)
358

25566983.51 (1.0)
4.97 (15.5)
4.33 (0.9)
400

25567437.57 (1.0)
8.66 (27.0)
7.90 (0.9)
381

25567679.73 (1.0)
87.19 (272.1)
86.40 (1.0)
371

gesa2
0.080
25476489.678

25568096.68 (1.0)
0.32 (1.0)
0.06 (0.2)
194

25565904.71 (1.0)
2.87 (9.0)
2.31 (0.8)
358

25566983.51 (1.0)
4.97 (15.5)
4.33 (0.9)
400

25567437.57 (1.0)
8.66 (27.0)
7.90 (0.9)
381

25567679.73 (1.0)
87.19 (272.1)
86.40 (1.0)
371

gesa2 o
0.100
25476489.678

25568096.68 (1.0)
0.32 (1.0)
0.07 (0.2)
194

25565904.71 (1.0)
3.02 (9.4)
2.50 (0.8)
358

25566983.51 (1.0)
5.34 (16.7)
4.55 (0.9)
400

25567437.57 (1.0)
8.62 (26.9)
7.79 (0.9)
381

25567679.73 (1.0)
88.65 (276.6)
87.92 (1.0)
371

gesa3
0.110
27833632.451

27905722.41 (1.0)
0.40 (1.0)
0.05 (0.1)
185

27903677.78 (1.0)
4.36 (10.9)
3.77 (0.9)
276

27904785.63 (1.0)
7.53 (18.8)
6.70 (0.9)
324

27905660.84 (1.0)
12.12 (30.3)
11.18 (0.9)
354

27905671.58 (1.0)
120.32 (300.4)
119.27 (1.0)
324

gesa3 o
0.090
27833632.451

27930183.75 (1.0)
0.34 (1.0)
0.06 (0.2)
200

27927124.73 (1.0)
3.19 (9.4)
2.57 (0.8)
325

27929027.47 (1.0)
5.74 (16.9)
4.81 (0.8)
418

27929810.37 (1.0)
10.14 (29.8)
9.20 (0.9)
414

27929902.68 (1.0)
91.47 (268.6)
90.61 (1.0)
389

l152lav
0.080
4656.364

4664.09 (1.0)
0.58 (1.0)
0.13 (0.2)
98

4663.89 (1.0)
1.98 (3.4)
0.75 (0.4)
176

4664.53 (1.1)�
3.49 (6.0)
1.53 (0.4)
310

4665.04 (1.1)�
7.05 (12.1)
3.92 (0.6)
384

4665.51 (1.2)�
103.89 (178.9)
99.02 (1.0)
450

liu
0.070
346.000

560.00 (1.0)
0.81 (1.0)
0.19 (0.2)
316

560.00 (1.0)
6.81 (8.4)
5.48 (0.8)
566

560.00 (1.0)
10.33 (12.7)
8.49 (0.8)
650

560.00 (1.0)
12.62 (15.6)
10.27 (0.8)
604

560.00 (1.0)
51.55 (63.6)
49.45 (1.0)
614

lseu
0.000
834.682

945.62 (1.0)
0.01 (1.0)
0.00 (0.0)
23

945.55 (1.0)
0.05 (5.0)
0.03 (0.6)
39

946.27 (1.0)�
0.11 (11.0)
0.10 (0.9)
43

947.96 (1.0)�
0.55 (55.0)
0.54 (1.0)
47

948.32 (1.0)�
13.37 (1335.1)
13.36 (1.0)
51
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Table 2. Computational results (Part II)

Problem GMI K = 10 K = 20 K = 30 K = 60

manna81
0.200
−13297.000

−13164.00 (1.0)
7.22 (1.0)
2.45 (0.3)
800

−13164.00 (1.0)
29.05 (4.0)
22.69 (0.8)
800

−13164.00 (1.0)
29.64 (4.1)
24.16 (0.8)
800

−13164.00 (1.0)
31.11 (4.3)
25.02 (0.8)
800

−13164.00 (1.0)
37.80 (5.2)
32.11 (0.8)
800

mas74
0.000
10482.795

10570.72 (1.0)
0.02 (1.0)
0.00 (0.0)
24

10570.56 (1.0)
0.11 (5.5)
0.05 (0.5)
62

10576.53 (1.1)�
0.39 (19.5)
0.30 (0.8)
96

10581.31 (1.1)�
1.51 (75.5)
1.39 (0.9)
122

10585.77 (1.2)�
47.16 (2354.5)
46.95 (1.0)
148

mas76
0.000
38893.904

38965.29 (1.0)
0.02 (1.0)
0.01 (0.5)
22

38968.33 (1.0)�
0.05 (2.5)
0.03 (0.6)
50

38972.76 (1.1)�
0.34 (17.0)
0.26 (0.8)
88

38975.64 (1.1)�
1.07 (53.5)
1.00 (0.9)
80

38977.75 (1.2)�
31.67 (1581.0)
31.59 (1.0)
108

mitre
0.531
114740.518

115082.83 (1.0)
15.65 (1.0)
4.85 (0.3)
800

115067.80 (1.0)
89.03 (5.7)
72.11 (0.8)
925

115080.07 (1.0)
91.96 (5.9)
75.59 (0.8)
912

115082.80 (1.0)
292.09 (18.7)
254.60 (0.9)
1029

115082.79 (1.0)
868.26 (55.5)
831.83 (1.0)
1003

mkc
0.160
−611.850

−608.84 (1.0)
1.16 (1.0)
0.22 (0.2)
177

−609.53 (0.8)
10.13 (8.7)
7.42 (0.7)
393

−608.00 (1.3)�
16.59 (14.3)
12.38 (0.7)
588

−606.52 (1.8)�
26.83 (23.1)
21.17 (0.8)
743

−606.20 (1.9)�
206.67 (177.9)
201.43 (1.0)
770

mod010
0.130
6532.083

6535.50 (1.0)
0.58 (1.0)
0.12 (0.2)
68

6535.46 (1.0)
1.12 (1.9)
0.43 (0.4)
72

6535.46 (1.0)
1.42 (2.4)
0.51 (0.4)
76

6535.75 (1.1)�
1.55 (2.7)
0.72 (0.5)
76

6536.00 (1.1)�
9.63 (16.6)
8.45 (0.9)
92

opt1217
0.020
−20.021

−19.13 (1.0)
0.12 (1.0)
0.02 (0.2)
58

−19.17 (1.0)
0.54 (4.5)
0.26 (0.5)
120

−19.16 (1.0)
0.92 (7.7)
0.60 (0.7)
122

−19.14 (1.0)
2.08 (17.3)
1.61 (0.8)
130

−19.14 (1.0)
32.30 (268.7)
31.79 (1.0)
166

p0033
0.000
2520.572

2843.55 (1.0)
0.00 (−)
0.00 (−)
13

2641.20 (0.4)
0.02 (−)
0.01 (0.5)
21

2700.41 (0.6)
0.06 (−)
0.06 (1.0)
26

2756.17 (0.7)
0.38 (−)
0.38 (1.0)
34

2847.69 (1.0)�
13.68 (−)
13.68 (1.0)
39

p0201
0.010
6875.000

7030.56 (1.0)
0.02 (1.0)
0.00 (0.0)
42

7030.56 (1.0)
0.12 (6.0)
0.03 (0.2)
104

7030.56 (1.0)
0.12 (6.0)
0.06 (0.5)
104

7030.56 (1.0)
0.12 (6.0)
0.07 (0.6)
84

7030.56 (1.0)
1.71 (85.5)
1.64 (1.0)
104

p0282
0.010
176867.503

179882.58 (1.0)
0.03 (1.0)
0.00 (0.0)
58

179711.49 (0.9)
0.15 (5.0)
0.09 (0.6)
79

179830.00 (1.0)
0.30 (10.0)
0.26 (0.9)
79

179784.53 (1.0)
0.80 (26.7)
0.76 (0.9)
81

179830.00 (1.0)
15.42 (513.3)
15.36 (1.0)
85

p0548
0.020
315.255

3567.50 (1.0)
0.07 (1.0)
0.00 (0.0)
98

684.07 (0.1)
0.30 (4.3)
0.20 (0.7)
142

3089.74 (0.9)
0.45 (6.4)
0.36 (0.8)
140

3004.52 (0.8)
1.26 (18.0)
1.13 (0.9)
152

3358.15 (0.9)
30.32 (432.6)
30.15 (1.0)
190

p2756
0.080
2688.750

2690.75 (1.0)
0.26 (1.0)
0.01 (0.0)
81

2690.73 (1.0)
1.42 (5.5)
0.90 (0.6)
138

2690.93 (1.1)�
1.88 (7.2)
1.34 (0.7)
150

2690.93 (1.1)�
3.99 (15.3)
3.19 (0.8)
175

2691.06 (1.2)�
73.66 (282.9)
72.71 (1.0)
178

pp08a
0.000
2748.345

5157.91 (1.0)
0.03 (1.0)
0.01 (0.3)
104

5065.83 (1.0)
0.15 (5.0)
0.12 (0.8)
174

5122.51 (1.0)
0.43 (14.3)
0.38 (0.9)
188

5127.46 (1.0)
1.17 (39.0)
1.12 (1.0)
212

5151.88 (1.0)
23.96 (797.7)
23.90 (1.0)
206

pp08aCUTS
0.020
5480.606

6049.59 (1.0)
0.04 (1.0)
0.00 (0.0)
92

6023.68 (1.0)
0.35 (8.7)
0.27 (0.8)
136

6042.14 (1.0)
0.68 (17.0)
0.58 (0.9)
156

6041.07 (1.0)
1.86 (46.5)
1.76 (0.9)
150

6046.72 (1.0)
26.24 (655.0)
26.15 (1.0)
174

protfold
2.654
−41.957

−41.54 (1.0)
10.12 (1.0)
1.25 (0.1)
200

−41.55 (1.0)
27.50 (2.7)
11.17 (0.4)
600

−41.46 (1.2)�
42.06 (4.2)
16.25 (0.4)
800

−41.44 (1.2)�
69.14 (6.8)
33.63 (0.5)
1400

−41.38 (1.4)�
173.81 (17.2)
127.40 (0.7)
2000

qiu
0.310
−931.639

−923.65 (1.0)
0.61 (1.0)
0.06 (0.1)
74

−924.23 (0.9)
2.62 (4.3)
1.67 (0.6)
98

−923.92 (1.0)
2.89 (4.7)
2.12 (0.7)
86

−923.81 (1.0)
5.38 (8.8)
4.04 (0.8)
98

−923.81 (1.0)
38.37 (62.8)
36.89 (1.0)
96

set1ch
0.010
32007.730

40594.41 (1.0)
0.11 (1.0)
0.01 (0.1)
200

38761.54 (0.8)
0.82 (7.5)
0.64 (0.8)
412

40050.02 (0.9)
1.59 (14.5)
1.33 (0.8)
418

40393.42 (1.0)
2.77 (25.2)
2.54 (0.9)
420

40543.87 (1.0)
42.74 (388.0)
42.49 (1.0)
438

seymour
6.429
403.846

405.47 (1.0)
18.72 (1.0)
3.71 (0.2)
237

405.46 (1.0)
51.33 (2.7)
28.97 (0.6)
360

405.47 (1.0)
53.24 (2.8)
34.38 (0.6)
349

405.47 (1.0)
63.34 (3.4)
44.95 (0.7)
360

405.47 (1.0)
400.21 (21.4)
373.95 (0.9)
436

timtab1
0.010
28694.000

202346.60 (1.0)
0.07 (1.0)
0.03 (0.4)
200

200669.04 (1.0)
0.56 (8.0)
0.46 (0.8)
316

201681.99 (1.0)
1.41 (20.1)
1.23 (0.9)
362

201783.03 (1.0)
3.88 (55.3)
3.67 (0.9)
398

202346.60 (1.0)
56.60 (807.4)
56.31 (1.0)
418

timtab2
0.020
83592.000

263570.66 (1.0)
0.17 (1.0)
0.01 (0.1)
234

259881.45 (1.0)
1.87 (11.0)
1.54 (0.8)
442

262459.44 (1.0)
2.83 (16.6)
2.46 (0.9)
468

263007.56 (1.0)
6.23 (36.6)
5.75 (0.9)
486

263570.66 (1.0)
93.90 (551.5)
93.44 (1.0)
484

vpm1
0.000
15.417

15.88 (1.0)
0.02 (1.0)
0.01 (0.5)
32

15.81 (0.9)
0.18 (9.0)
0.15 (0.8)
50

15.86 (1.0)
0.31 (15.5)
0.27 (0.9)
52

15.86 (1.0)
0.90 (45.0)
0.86 (1.0)
54

15.88 (1.0)
7.73 (386.0)
7.70 (1.0)
46

vpm2
0.000
9.889

10.30 (1.0)
0.04 (1.0)
0.00 (0.0)
62

10.29 (1.0)
0.31 (7.7)
0.27 (0.9)
82

10.29 (1.0)
0.61 (15.2)
0.55 (0.9)
106

10.29 (1.0)
1.95 (48.7)
1.82 (0.9)
106

10.30 (1.0)
31.36 (782.7)
31.30 (1.0)
118
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the cases where our cutting plane method produced a better bound than GMI.
All computing times are expressed in CPU seconds on a PC Athlon 1500.

For example, according to the first column of Table 1, the first problem in
our test-bed is 10teams, whose LP relaxation takes 0.170 seconds and produces
a lower bound of 917.000. Our cutting plane method with k = 60 (last column
in the table) produces a lower bound of 921.00 (the same as GMI) after 15.71
seconds (4.5 times the time required by GMI), with 12.43 seconds spent within
our separation procedure (0.8 times the overall computing time) to generate 200
cuts.

The tables show that interpolated subadditive cuts typically become compet-
itive with (or better than) GMI cuts for k ≥ 20, though their separation requires
a substantial computing-time overhead. Moreover, the large number of subad-
ditive cuts generated and the small improvement obtained in some cases, would
suggest a more conservative policy that generates GMI cuts first, and only after-
ward resorts to g-SEP to generate new violated subadditive cuts derived from
the pool equations (if any). To be more specific, we believe that a better com-
promise between lower bound quality and computing time could be reached if
one uses first a clever set of non-interpolated subadditive functions to derive
quickly an initial set of violated inequalities (including GMI and k-cuts), and
applies g-SEP separation only afterwards. This goes into the direction suggested
by Andreello, Caprara and Fischetti [1] for an effective use of easy-to-compute
cuts such as GMI and k-cuts.
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Abstract. How difficult is, in practice, to optimize exactly over the first
Chvàtal closure of a generic ILP? Which fraction of the integrality gap
can be closed this way, e.g., for some hard problems in the MIPLIB
library? Does it pay to insist on rank-1 Chvàtal-Gomory inequalities un-
til no such inequality is violated, or one should better follow the usual
strategy of generating (mixed-integer) Gomory cuts of any rank from the
optimal tableau rows? How effective is this general-purpose approach for
solving matching problems, where the first Chvàtal closure coincides with
the integer hull? Can this approach be useful as a research (off-line) tool
to guess the structure of some relevant classes of inequalities, when a spe-
cific combinatorial problem is addressed? In this paper we give, for the
first time, concrete answers to the above questions, based on an extensive
computational analysis. Our approach is to model the rank-1 Chvàtal-
Gomory separation problem, which is known to be NP-hard, through a
MIP model, which is then solved through a general-purpose MIP solver.
As far as we know, this approach was never implemented and evaluated
computationally by previous authors, though it gives a very useful sep-
aration tool for general ILP problems. We report the optimal value over
the first Chvàtal closure for a set of ILP problems from MIPLIB 3.0.
We also report, for the first time, the optimal solution of a very hard
instance from MIPIB 2003, namely nsrand-ipx, obtained by using our
cut separation procedure to preprocess the original ILP model. Finally,
we describe a new class of ATSP facets found with the help of our sepa-
ration procedure.

Keywords: Integer Programs, separation problems, Chvàtal-Gomory
cuts, computational analysis.

1 Introduction

We consider the Integer Linear Program (ILP) problem

min{cTx : Ax ≤ b, x ≥ 0 integer} (1)

M. Jünger and V. Kaibel (Eds.): IPCO 2005, LNCS 3509, pp. 12–22, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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where A is a m× n matrix, b ∈ IRm, and c ∈ IRn, along with the two associated
polyhedra:

P := {x ∈ IRn
+ : Ax ≤ b} (2)

PI := conv{x ∈ Zn
+ : Ax ≤ b} = conv(P ∩ Zn) (3)

Unless explicitly stated, we assume that (A, b) is an integer matrix. Moreover,
we assume that PI is strictly contained in P , i.e., that P has fractional vertices.

A Chvàtal-Gomory (CG) cut [11, 7] is a valid inequality for PI of the form

�uTA�x ≤ �uT b� , (4)

where u ∈ Rm
+ is called the CG multiplier vector, and �·� denotes lower integer

part. Note that CG cuts depend on P and not directly on PI , i.e., different
formulations Ax ≤ b, x ≥ 0 of the same integer problem can produce different
CG cuts. Inequality (4) is said of rank 1 with respect to formulation Ax ≤ b,
x ≥ 0; CG cuts of rank h ≥ 2 are obtained in a similar way, starting with an
enlarged system containing all CG cuts of rank less than h. The first Chvàtal
closure of P is defined as

P1 := {x ≥ 0 : Ax ≤ b, �uTA�x ≤ �uT b� for all u ∈ IRm
+ } (5)

A basic result, due to Chvàtal [7], is that P1 is indeed a polyhedron, i.e., a finite
number of CG cuts suffice to define it.

Clearly, PI ⊆ P1 ⊆ P . It was shown by Gomory [11, 12] that every fractional
vertex x∗ of P associated with a certain basis B (say) of (A, I) can be cut off
by the CG cut in which u is chosen as the i-th row of B−1, where i is the
row associated with any fractional component of x∗. Therefore, P1 ⊂ P in case
P �= PI , i.e., P1 gives a better approximation of PI than P . In some cases,
one has that PI = P1 as, e.g., for matching problems where undominated CG
cuts correspond to the famous Edmonds’ blossom inequalities [8, 15]. Even in
case PI ⊂ P1, however, we are interested in optimizing cTx over P1 in order
to get a hopefully tight lower bound on the optimal value of the original ILP
problem (1).

By the well-known equivalence between optimization and separation [15],
we will address the CG separation problem in which we are given any point
x∗ ∈ IRn and we ask for a hyperplane separating x∗ from P1 (if any). Without
loss of generality we can assume that x∗ ∈ P , since all other points can be cut
by simply enumerating the members of the original inequality system Ax ≤ b,
x ≥ 0. Therefore, the separation problem we are actually interested in, called
CG-SEP in the sequel, reads:

Definition 1. (CG-SEP) Given any point x∗ ∈ P find (if any) a CG cut that
is violated by x∗, i.e., find u ∈ IRm

+ such that �uTA�x∗ > �uT b�, or prove that
no such u exists.
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It was proved by Eisembrand [10] that CG-SEP is NP-hard, so optimizing over
P1 also is.

In this paper we address the issue of evaluating the practical strength of
P1 in approximating PI . Our approach is to model the rank-1 CG separation
problem as a MIP model, which is then solved through a general-purpose MIP
solver. As far as we know, this approach was never implemented (and evaluated
computationally) by previous authors1. In Section 2 we describe our MIP model
for CG separation. In Section 3 we investigate computationally the practical
(and theoretical) benefits derived from using our separation tool. In particular,
we report the optimal value over the first Chvàtal closure for a set of problems
from MIPLIB 3.0 [4]. We also report, for the first time, the optimal solution of a
very hard instance from MIPIB 2003 [1], namely nsrand-ipx, obtained by using
our CG separation procedure to preprocess the original ILP model. Finally, we
describe a new class of ATSP facets found with the help of our CG separation
procedure.

2 How?

Given the input point x∗ ≥ 0 to be separated, CG-SEP calls for a CG cut αTx ≤
α0 which is (maximally) violated by x∗, where α = �uTA� and α0 = �uT b� for
a certain u ∈ IR+.

We observe that any variable xj with x∗
j = 0 gives no contribution to the cut

violation, hence there is no need to consider it explicitly in the separation model.
Indeed, whenever x∗

j = 0 one can simply disregard xj in the separation problem,
and recompute the corresponding coefficient a posteriori, when the optimal u
has been determined, as αj := uTAj (no time-consuming lifting operations being
needed). The same holds for variables at their upper bound in x∗, which can be
complemented before separation (an operation that affects the right-hand-side
vector b).

In addition, it is known that one can assume ui < 1 in case the i-th row of
(A, b) is integer, since in this case the CG cut associated with any u ≥ 0 is easily
seen to be the sum of the CG cut with ui replaced by its fractional part, plus
�ui� times the i-th constraint aT

i x ≤ bi.
A major practical issue with CG separation is the strength of the returned

cuts. As a matter of fact, several equivalent solutions of the separation problem
(in its optimization version) typically exist, some of which produce very weak
cuts for the ILP model (1). This is because the separation problem actually
considers the face F (x∗) of PI where all the ILP constraints that are tight at
x∗ (including the variable bounds) are imposed as equalities. Hence for this face
there exist several formulations of a same cut, which are equivalent for F (x∗)

1 The fact that CG separation can be modeled as a MIP can instead be attributed
to folklore and has been recently pointed out, e.g., by Caprara and Letchford [5] for
the related class of split cuts.
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but not for PI . One therefore has to consider the issue of producing a violated
cut that is as strong as possible with respect to PI . In practice, this leads to the
issue of producing “minimal” CG multiplier vectors with as few nonzero entries
as possible.

In view of the considerations above, we propose the following MIP model for
CG-SEP:

max (
∑

j∈J(x∗)

αjx
∗
j − α0)−

m∑
i=1

wiui (6)

fj = uTAj − αj , for j ∈ J(x∗) (7)
f0 = uT b− α0 (8)
0 ≤ fj ≤ 1− δ, for j ∈ J(x∗) ∪ {0} (9)
0 ≤ ui ≤ 1− δ, for i = 1, · · · ,m (10)
αj integer, for j ∈ J(x∗) ∪ {0} (11)

where J(x∗) := {j ∈ {1, · · · , n} : x∗
j > 0} denotes the support of x∗ (possibly

after having complemented same variables and updated b accordingly). In this
model we introduced explicit slack variables fj = uTAj−�uTAj� to capture the
coefficient fractionality, and required them to be in range [0, 1 − δ] for a small
δ > 0. (Some of these constraints are in fact redundant because of the objective
function, but we observed that their incorporation into the model improves its
numerical behavior.) In our implementation we chose the δ = 0.01; this choice
improves the numerical stability of our method, though it could affect the exact
nature of our CG separation procedure in some pathological cases.

We also introduced the penalty term −
∑

i wiui in the objective function (6),
where wi = 10−4 for all i, which is aimed at favoring the “minimality” of the CG
multiplier vector u. It is worth observing that, because of equations (7)-(8), one
can rewrite the violation term

∑
j∈J(x∗) αjx

∗
j −α0 in (6) as f0−

∑
j∈J(x∗) fjx

∗
j −∑m

i=1 uis
∗
i , where s∗ = b−Ax∗ ≥ 0. As a consequence, the penalty terms wi are

only relevant for tight constraints, i.e., when s∗
i = 0.

Model (6)-(11) can easily be adapted to deal with the case where the original
model (1) contains free variables and/or equations. In addition, one can also
allow for the presence of continuous variables2. Indeed, if a variable xj is not
restricted to be integer, one can still derive a valid cut by setting αj = 0 and
imposing uTAj ≥ 0 (or uTAj = 0 in case xj is a free variable).

2.1 Implementation in a Pure Cutting-Plane Framework

We have embedded our CG cut separator into a pure cutting-plane framework
where we keep generating violated CG cuts of rank 1 (with respect to the original
formulation of the ILP model at hand), until we stop either because no such

2 The mixed-integer case is however not covered in the original Chvàtal’s work, and
would be more appropriately addressed in the context of Gomory mixed-integer cuts.
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violated cut exists (in which case we have optimized over the first closure),
or because a time-limit condition is met. In our prototype implementation, we
avoided a number of possible improvements consisting, e.g., in designing ad-hoc
heuristics for our MIP separation, or in driving the MIP solver to produce a
sequence of CG cuts with disjoint support. We only used the following simple
mechanisms:

– When the LP relaxation of the original ILP model (1) is solved, we take
all the violated Gomory fractional cuts that can be read from the current
tableau, and skip CG separation; in principle this mechanism could also be
applied in the subsequent iterations, provided that we skip the Gomory cuts
having a non-zero CG multiplier for a constraint that was not in the original
formulation, so as to ensure that all generated cuts are of rank 1.

– TheMIP solver forCGseparation is invokedwith an initial lower bound of 0.01,
meaning that we are only interested in CG cuts violated by more than 0.01.

– Each time the MIP solver for CG separation updates its incumbent solution,
we store the corresponding CG cut in a pool, with the aim of adding it to the
current ILP formulation right after the end of the separation phase. Because
of the penalty term that appears in the MIP objective function (6), however,
we found that it is useful to skip all the CG cuts with the same violation∑

j∈J(x∗) αjx
∗
j − α0, except the one with the sparsest support.

– The MIP execution for CG separation is stopped if either the optimal solu-
tion has been found, or a prefixed number τ of branching nodes has been
explored after the last update of the incumbent solution, where τ = 1000 if
the violation of the incumbent is less than 0.2, and τ = 100 if the violation
is greater or equal to 0.2.

3 Why?

We next try to give concrete (i.e., supported by computational results) answers
to some important questions related to the practical behavior of our MIP sep-
arator and to the theoretical effectiveness of rank-1 CG cuts, when applied to
a wide range of ILP instances—both with and without a specific combinatorial
structure.

Our implementation of the cutting-plane method uses the commercial soft-
ware ILOG-Cplex 9.0.2 as the LP solver, whereas the separation problem is
solved through ILOG-Cplex 9.0.2 MIP solver with “mip emphasis 4” parameter;
see [13]. All computing times refer to a Pentium M 1.7 Ghz notebook with 512
MByte RAM.

3.1 Can We Solve Matching Problems?

In order to develop and test our code in a “familiar” setting, we addressed first
the Edmonds-Johnson [9] matching problem, defined as:

min{cTx : Ax = b, 0 ≤ x ≤ q, x integer} (12)
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where A, b, q are integer arrays of appropriate dimensions, and
∑m

i=1 |aij | ≤
2 holds for all j = 1, · · · , n. A celebrated result of Edmonds [8, 9] says that
P1 is an integer polyhedron, i.e., P1 and PI coincide for matching problems.
Moreover, undominated Chvàtal cuts (called blossom inequalities) only arise for
u ∈ {0, 1/2}m, and correspond to setting ui = 1/2 for (a) the equations aT

i x = bi

associated with a certain set H (say) and (b) the upper-bound constraints xj ≤
qj associated with a possibly-empty set T ⊆ {1, · · · , n}, such that

∑
i∈H bi +∑

j∈T qj is an odd number. Blossom inequalities can be separated in polynomial
time by an ad-hoc procedure looking for a minimum-weight odd cut is a certain
graph; see Padberg and Rao [16] and Letchford, Reinelt and Theis [14].

A relevant case of matching problems arises when A is the node-edge incidence
matrix of a (multi-)graph G = (V,E). Given edge costs ce (e ∈ E) and node
values bv ≥ 0 (v ∈ V ), we call for a minimum-cost partial graph G′ = (V,M)
of G where each node v has degree bv. The b-matching problem can then be
formulated as

min{cTx :
∑

e∈δ(v)

xe = bv for v ∈ V, 0 ≤ x ≤ 1, x integer} (13)

Also belonging to the family of matching problems is the T -join problem, where
each node v has an associated parity bv ∈ {0, 1} and one looks for a minimum-
cost partial graph G′ = (V,M) of G where each node v has an odd degree if
and only if bv = 1. This problem can be formulated as the b-matching problem
above, with the degree equations replaced by

∑
e∈δ(v) xe − 2zv = bv, zv integer,

for all v ∈ V .
Table 1 reports computational results on a set of 2-matching problems taken

from TSPLIB: in all cases, our method was able to compute the optimal so-
lution over the first Chvàtal closure, and produced an integer solution—as
expected.

Table 1. 2-Matching Problems

ID initial LB Optimum # iter.s # cuts CPU time
eil101 619.0 623.0 26 43 9.01
gr120 6,662.5 6,694.0 33 45 10.47
pr124 50,164.0 51,477.0 124 320 555.54
gr137 66,643.5 67,009.0 11 31 1.68
pr144 32,776.0 33,652.0 39 78 9.57
ch150 6,281.0 6,337.0 59 141 71.19
rat195 2,272.5 2,297.0 85 237 202.87
kroA200 27,053.0 27,426.0 26 84 10.93
kroB200 27,347.0 27,768.0 189 558 2,249.55
ts225 115,605.0 121,261.0 323 857 4,906.48
pr226 55,247.5 57,177.0 401 901 4,077.66
gr229 127,411.0 128,353.0 78 224 219.00
gil262 2,222.5 2,248.0 105 266 372.10
a280 2,534.0 2,550.0 52 104 40.21
lin318 38,963.5 39,266.0 292 768 6,103.32
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Table 2. 2-Matching Problems: cut-and-branch approach

ILOG-Cplex cut-and-branch
% gap % gap separation total

ID closed nodes time # cuts closed time nodes time
pr124 100.0 43,125 104.17 116 62.1 27.96 1,925 37.51
kroB200 100.0 330,913 2,748.24 129 64.1 49.34 4,113 76.30
ts225 47.1 230,115 1h 250 80.7 164.77 13,552 352.35
pr226 55.0 288,901 1h 179 62.9 61.13 19,977 281.89
gr229 100.0 15,005 180.79 126 82.8 9.65 155 60.94
gil262 100.0 117,506 2,094.77 110 84.0 12.24 217 36.78
lin318 53.3 117,100 1h 187 64.9 110.69 25,953 933.97

It should be observed that some of these instances can be solved in a much
shorter computing time by just applying ILOG-Cplex 9.0.2 MIP solver to the
rank-0 model (13). However, for some hard instances our method also has a
practical interest if used in a cut-and-branch approach where we abort our cut
generation after the addition a certain number of CG cuts, and then switch to
a commercial MIP solver for concluding the optimization. This is illustrated in
Table 2, where some large 2-matching instances are solved through ILOG-Cplex
MIP solver with and without the addition of an initial pool of CG cuts generated
by 100 calls to our separation procedure.

3.2 How Tight Is the First Closure for MIPLIB Instances?

Table 3 reports the outcome of our experiments on a test-bed made by all pure-
integer problems from MIPLIB 3.0 [4]. The cases where the MIP solver used
within our separation procedure exceeded a time limit of 3 hours without pro-
viding a violated cut, are given in the bottom part of the table. In this sit-
uation, the percentage of integrality gap closed (% gap closed), computed as
100−100(opt value(PI)−opt value(P1))/(opt value(PI)−opt value(P )), is un-
derestimated as we only have a lower bound on the optimal value opt value(P1)
over the first closure.

In order to evaluate the viability of using our cut generator in a cut-and-
branch approach akin to the one we described for 2-matching problems, we
made the following experiment on the very hard ILP instance harp2. After hav-
ing generated 211 rank-1 CG cuts (53 of which are tight at the end of the
cutting-plane phase) in 100 rounds of separation, we switched to ILOG-Cplex
MIP solver and obtained the optimal solution within 1,500 CPU seconds and
400K nodes (including both cut generation and branching), while ILOG-Cplex
alone required more than 15,000 CPU seconds and 7M nodes to solve the original
instance.

3.3 Beyond the First Closure?

The previous experiments show that optimizing over the first closure often gives
a very tight approximation of the integer optimal value, though it may require
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Table 3. General IPs of the MIPLIB 3.0

% gap
ID Optimum # iter.s # cuts closed time
air03 340,160.00 1 35 100.0 1.47
gt2 21,166.00 160 424 100.0 506.25
lseu 1,120.00 73 190 91.3 565.22
mitre 115,155.00 1,509 5,398 100.0 9,394.17
mod008 307.00 26 109 100.0 8.00
mod010 6,548.00 17 62 100.0 13.05
nw04 16,862.00 78 236 100.0 227.13
p0033 3,089.00 40 152 85.4 12.95
p0548 8,691.00 886 3,356 100.0 1,575.83
stein27 18.00 98 295 0.0 490.02
air04 56,137.00 128 901 ≥ 27.6 3h
air05 26,374.00 192 1,108 ≥ 15.5 3h
cap6000 -2,451,377.00 201 370 ≥ 26.9 3h
enigma 0.00 13,234 53,635 — 3h
fast0507 174.00 23 299 ≥ 4.7 3h
fiber 405,935.18 468 2,447 ≥ 98.5 3h
harp2 -73,899,798.00 1,081 1,661 ≥ 29.0 3h
l152lav 4,722.00 708 2,512 ≥ 69.2 3h
misc03 3,360.00 377 1,239 ≥ 51.2 3h
misc07 2,810.00 664 2,012 ≥ 16.1 3h
p0201 7,615.00 1,023 2,790 ≥ 60.5 3h
p0282 258,411.00 446 1,717 ≥ 99.9 3h
p2756 3,124.00 642 3,255 ≥ 69.2 3h
seymour 423.00 125 3,447 ≥ 23.5 3h
stein45 30.00 14,463 31,643 ≥ 0.0 3h

a large computing time. Besides the obvious issue of designing more specific
separation procedures for CG cuts, we addressed the possibility of using our
cutting plane method as a pre-processing tool, to be used to strengthen the
user’s formulation by possibly exploiting cuts of Chvàtal rank larger than 1.
This idea was evaluated by comparing two different cut preprocessors, namely:
– cpx :Apply ILOG-Cplex 9.0.2 (with mip emphasis “move best bound”) on

the current ILP model, save the final root-node model (including the gener-
ated cuts) in a file, and repeat on the new model until a total time limit is
exceeded.

– cpx-cg : Apply ILOG-Cplex 9.0.2 (with mip emphasis “move best bound”)
on the current ILP model, followed by 600 seconds of our CG separation
procedure; then save in file the ILP model with all the cuts that are active
in the last LP solution3, and repeat on the new model until a total time
limit is exceeded.

3 As we no longer insist in staying within the first Chvàtal closure, CG cuts could
be improved by deriving the stronger Gomory mixed-integer cut from the surrogate
equations uT A + s = uT b, s ≥ 0.
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Figure 1 compares the behavior of the two methods above on a very hard in-
stance from MIPLIB 2003, namely timtab1 (viewed here as a pure ILP problem,
as it is correct in this case). The horizontal axis counts the number of calls to
the separation procedures (not the computing time nor the number of generated
cuts), hence comparing the graph slopes can be misleading since every separation
call produced about 10-50 cuts for cpx, but just 1-5 cuts for cpx-cg. Method cpx
exhibits an early tailing-off phenomenon, while the growth for cpx-cg is more
regular and produces a much better final lower bound.

Fig. 1. Lower bounds provided by cpx and cpx-cg after each call of the separation
procedures, for the hard MIPLIB instance timtab1

Remarkably, our cut preprocessor allowed us to find, for the first time [1], a
provable optimal solution of value 51,200.00 for the very hard instance nsrand-
ipx (in order to get a pure ILP, the objective function x1 was replaced by its
expression given by the first constraint in the model.) To this end, we applied
ILOG-Cplex 9.0.2 MIP solver to the tightened formulation returned by cpx-cg
after 4800 seconds–this resulted in 23 new tight cuts that brought the initial LP
bound from 49,667.89 to 50,665.71.

3.4 Can We Discover New Classes of Strong Inequalities?

The capability of separating over the CG cut class also has an interesting ap-
plication in the off-line study of the facial structure of a specific problem. This
is in the spirit of the widely-used approach of producing (through appropriate
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software such as PORTA [6]) an explicit polyhedral description of very small
instances of the problem at hand, but has the advantage of being applicable to
instances of much larger size.

To illustrate a possible application to the Asymmetric Travelling Salesman
Problem (ATSP), we made the following experiment. We set up a partial ATSP
formulation including out- and in-degree equations, plus the subtour elimina-
tion constraints on 2-node sets, i.e., we addressed the NP-hard Asymmetric
Assignment Problem (AAP) relaxation studied by Balas [2]. We then applied
our separation procedure to a specific ATSP instance from TSPLIB, namely
the 48-node instance ry48p, and stored the CG cuts we found along with the
associated CG multipliers4. One of the returned CG cut had a violation of
0.75, and was associated with the following non-zero CG multipliers (reported
in parenthesis): out-degree equation for nodes 21 (-0.5), 35 (0.5), 47 (-0.25),
2 (0.5), 26 (0.5), 12 (-0.25), 20 (-0.25), and 48 (-0.5); in-degree equations for
nodes 5 (-0.5), 29 (-0.5), 35 (-0.5), 47 (0.25), 4 (-0.5), 42 (-0.5), 32 (0.5), 33
(0.25), and 20 (0.25); subtour elimination constraint on the 2-node sets {5, 29}
(0.5), {21, 47} (0.25), and {35, 45} (0.5). To simplify our analysis, we normal-
ized the corresponding cut by adding 1 to all the negative CG multipliers,
thus producing an equivalent CG cut in the so-called h-canonical form [3],
i.e., with non-negative and relative prime coefficients, whose support leaves
at least one node h isolated. This form immediately showed the presence of
clones [3], that for the purpose of our analysis could be removed from the
digraph. After renaming the nodes, we were left with a 8-node digraph and
with the following CG multipliers: out-degree equation for nodes 1 (0.75), 3
(0.75), 4 (0.5), 5 (0.75), and 6 (0.5); in-degree equations for nodes 1 (0.25), 2
(0.5), 5 (0.25), 6 (0.5), and 7 (0.25); subtour elimination constraint on the 2-
node sets {4, 5} (0.25) and {6, 7} (0.5). The associated CG cut is αTx ≤ α0,
where

α =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 1 1 0
0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0
0 1 0 0 1 1 0 0
1 1 0 1 0 1 1 0
0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;α0 = 5 (14)

and it is easily shown (by computational methods) to be facet-defining for ATSP
(and hence for AAP). Using clique lifting [3] we can then obtain a large class of
ATSP facets, that to the best of our knowledge is new.

4 For CG cuts in the form returned by our procedure, these multipliers could easily
be recomputed a posteriori, by solving an LP.
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7. V. Chvátal, Edmonds polytopes and a hierarchy of combinatorial problems, Dis-
crete Mathematics 4, 305–337, 1973.

8. J. Edmonds, Maximum matching and a polyhedron with {0,1}-vertices, J. Res.
Nat. Bur. Standards B 69, 125–130, 1965.

9. J. Edmonds, H.L. Johnson, Matching: a well-solved class of integer linear programs,
in R.K. Guy et al. (ed.s), Combinatorial Structures and Their Applications, Gordon
and Breach, New York, 89–92, 1970.

10. F. Eisenbrand, On the membership problem for the elementary closure of a poly-
hedron, Combinatorica 19, 297-300, 1999.

11. R.E. Gomory, Outline of an algorithm for integer solutions to linear programs,
Bulletin of the AMS 64, 275-278, 1958.

12. R.E. Gomory, An algorithm for integer solutions to linear programs, in R.L. Graves
and P. Wolfe (ed.s) Recent Advances in Mathematical Programming, McGraw-Hill,
New York, 1963.

13. ILOG Cplex 9.0.2: User’s Manual and Reference Manual, ILOG, S.A.,
http://www.ilog.com/, 2004.

14. A.N. Letchford, G. Reinelt, D.O. Theis, A faster exact separation algorithm for
blossom inequalities, in D. Bienstock and G. Nemhauser (ed.s), Integer Program-
ming and Combinatorial Optimization - IPCO 2004, LNCS 3064, Springer-Verlag,
Berlin Heidelberg, 196–205, 2004.

15. G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization, Wiley,
New York, 1988.

16. M.W. Padberg, M.R. Rao, Odd Minimum Cut-Sets and b-Matchings, Mathematics
of Operations Research 7, 67–80, 1982.



Sequential Pairing of Mixed Integer Inequalities

Yongpei Guan, Shabbir Ahmed, and George L. Nemhauser

School of Industrial & Systems Engineering,
Georgia Institute of Technology, Atlanta, GA, USA
{guanyp, sahmed, gnemhaus}@isye.gatech.edu

Abstract. We present a scheme for generating new valid inequalities
for mixed integer programs by taking pair-wise combinations of exist-
ing valid inequalities. Our scheme is related to mixed integer rounding
and mixing. The scheme is in general sequence-dependent and there-
fore leads to an exponential number of inequalities. For some important
cases, we identify combination sequences that lead to a manageable set of
non-dominated inequalities. We illustrate the framework for some deter-
ministic and stochastic integer programs and we present computational
results which show the efficiency of adding the new generated inequalities
as cuts.

1 Introduction

We develop a scheme for generating new valid inequalities for mixed integer
programs by taking pair-wise combinations of existing valid inequalities. Our
scheme is related to the mixed integer rounding (MIR) procedure of Nemhauser
and Wolsey [8, 9] and the mixing procedure of Günluk and Pochet [6]. We derive
new inequalities iteratively by a very simple combination of two inequalities at
a time, which we call pairing. As will be seen, the order in which the inequalities
are paired is important since the resulting new inequalities depend on the order.

We describe the pairing procedure for pure integer programs and present a
simple extension to MIPs in the next section. We study two structures in Sec-
tions 3 and 4 for which our pairing procedure gives nice results. We say that a
set of inequalities is nested if component by component the coefficients in each
successive inequality are no smaller than the coefficients in the previous inequal-
ities. In the nested case, we show that there is a unique order for combining the
inequalities that gives all of the nondominated inequalities that can be generated
by the procedure. In this case, we obtain only a small number of inequalities and
separation is fast. Moreover, we provide sufficient conditions for which the re-
sulting inequalities are facet-defining. We say that a set of inequalities is disjoint
if each integer variable appears in only one of the inequalities. Such disjoint sets
arise in two-stage stochastic integer programming. Here we are again able to
characterize the nondominated inequalities generated by the procedure, and we
give a polynomial time separation algorithm. We also provide sufficient facet
defining conditions.

M. Jünger and V. Kaibel (Eds.): IPCO 2005, LNCS 3509, pp. 23–34, 2005.
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Section 5 focuses on some applications of our procedure. In Section 6, we
present computational results for nested and disjoint sets to demonstrate the
strength of the inequalities in improving linear programming relaxation bounds.
Proofs of all results in this paper are provided in [4].

2 The Pairing Scheme

Given a set of non-negative integer vectors X ⊂ Zn
+, a vector a ∈ Rn+1 defines

a valid inequality for X if
n∑

j=1

ajxj − an+1 ≥ 0 for all x ∈ X.

Given two such valid inequalities defined by vectors a and b, the one defined by
a dominates the one defined by b if aj ≤ bj for all j = 1, . . . , n and an+1 ≥ bn+1.
We write a � b.

The inequality a ≤ b for two vectors a and b of the same dimension is meant
to hold component-wise. Similarly, min(a, b) and max(a, b) is understood to be
carried out component-wise. For brevity, given a vector a and a scalar γ, we
define a + γ = a + γ1 and min{a, γ} = min{a, γ1}, where 1 is a vector of ones
of the same dimension as a.

Definition 1. Given a, b ∈ Rn+1 with bn+1 ≥ an+1, we define the pairing of a
and b as

a ◦ b = min{a + bn+1 − an+1,max(a, b)},
i.e., (a ◦ b)n+1 = bn+1 and

(a ◦ b)j =

⎧⎨⎩
aj if aj ≥ bj

bj if aj ≤ bj , bj ≤ aj + bn+1 − an+1

aj + bn+1 − an+1 if aj ≤ bj , bj ≥ aj + bn+1 − an+1,

for all j = 1, . . . , n.

Theorem 1. If a, b ∈ Rn+1 define two valid inequalities for X, then a◦b defines
a valid inequality for X.

We note that there is a very simple and short direct proof of Theorem 1 [4],
an alternate proof that uses the MIR procedure, and a third proof for the case
of nonnegative coefficients that follows from Günluk and Pochet mixing.

Example. Consider the set

X = {x ∈ Z3
+ : 3x1 + 5x2 ≥ 3, 5x2 + 4x3 ≥ 5}.

The two original inequalities for X are defined by a = (3, 5, 0, 3) and b =
(0, 5, 4, 5). The valid inequality defined by a ◦ b is

3x1 + 5x2 + 2x3 ≥ 5. (1)
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To see that (1) can be useful, note that it cuts off the fractional point (0, 3/5, 1/2)
which is feasible to the LP relaxation of X.

The pairing scheme can be easily applied to mixed-integer sets. The pair
(a, g) ∈ Rn+1 × Rp, defines a valid inequality for a mixed-integer set Y ⊂
Zn

+ ×Rp
+ if

n∑
i=1

aixi +
p∑

j=1

gjyj ≥ an+1 for all (x, y) ∈ Y.

Corollary 1. If (a1, g1) and (a2, g2) define two valid inequalities for Y , then
(a1 ◦ a2,max{g1, g2}) defines a valid inequality for Y .

Note that the standard disjunctive inequality (see, e.g. [8]), obtained from
the inequalities (a1, g1) and (a2, g2) for Y ,

n∑
i=1

max{a1
i , a

2
i }xi +

p∑
j=1

max{g1
j , g

2
j }yj ≥ min{a1

n+1, a
2
n+1},

is dominated by the pairing inequality in Corollary 1.
We now consider the pairing inequalities obtained from a set of inequalities.

Suppose we have K valid inequalities for X defined by the vectors {a1, . . . , aK} ⊂
Rn+1. Given a subset of these K vectors, we can obtain new valid inequalities
by carrying out a sequence of pairing operations. For example, the valid in-
equality defined by the vector ((ak1 ◦ ak2) ◦ (ak2 ◦ ak3)) ◦ ak4 is obtained from
{ak1 , ak2 , ak3 , ak4} with the parentheses distinguishing the sequence in which
the pairings are carried out. Since the ◦ operation is not associative, the valid
inequalities obtained from a given set of vectors depends on the sequence in
which the pairings are done. Thus from the set of K valid inequalities defined by
{a1, . . . , aK} we can generate an exponential number of inequalities depending
on the subset of valid inequalities chosen and the sequence in which they are
mixed. A key problem is to identify pairing sequences that lead to good sets
of valid inequalities, i.e., strong inequalities over which separation can be done
efficiently.

In the following two sections, we investigate a pairing sequence that leads to
two such families of inequalities. This pairing sequence is defined by

Definition 2. Given a finite set of vectors, i.e., A = {a1, . . . , aK}, where a1
n+1 ≤

a2
n+1 ≤, . . . ,≤ aK

n+1, we define sequential pairing of the vectors in A by

Δ(A) = ((. . . ((a1 ◦ a2) ◦ a3) ◦ . . .) ◦ aK).

3 The Nested Case

Consider a set A = {a1, . . . , aK} ⊂ Rn+1 such that a1 ≤ . . . ≤ aK . We say
that the valid inequalities defined by the vectors in A are (or the set A itself



26 Y. Guan, S. Ahmed, and G.L. Nemhauser

is) nested. Here we consider mixed integer systems where the coefficients of
the integer variables are nested. Nested sets arise, for example, in the dynamic
knapsack problem considered by Loparic, Marchand and Wolsey [7] where the
feasible region is given by

X =
{

(x, y) ∈ {0, 1}n ×R+ :
i∑

j=1

ajxj + y ≥
i∑

j=1

dj , i = 1, . . . , n
}
, (2)

with a ∈ Rn
+ and d ∈ Rn

+. Here, y is a continuous inventory variable, xj ∈ {0, 1}
represents whether the amount aj is produced in period j, and dj is the demand
in period j.

Let Ak = {a1, . . . , ak} for k = 1, . . . ,K, and let Φ(A) ∈ Rn+1 be a vector
obtained by an arbitrary sequence of pairings of the vectors in A. Next, we show
that Δ(A) � Φ(A).

Theorem 2. If A = {a1, . . . , aK} is nested, then

Δ(A) = min{a1 + aK
n+1− a1

n+1, a
2 + aK

n+1− a2
n+1, . . . , a

K−1 + aK
n+1− aK−1

n+1 , aK}.

Theorem 3. If A is nested, then Δ(A) � Φ(A) for any Φ(A).

Lemma 1. If A = {a1, . . . , aK} is nested and B ⊂ A is such that aK ∈ B, then
Δ(A) � Δ(B).

Combining Theorem 3 and Lemma 1, we obtain

Theorem 4. Let A = {a1, . . . , aK} be nested. All the non-dominated inequal-
ities obtained by pairings of the vectors in A are contained in the set ∪K

k=1

{Δ(Ak)}.
Hence there are at most K non-dominated inequalities.

Now we give sufficient conditions for the inequalities in ∪K
k=1Δ(Ak) to be

facet-defining. Let A = {a1, . . . , aK} ∈ Rn+1 be a nested set such that ai ≥ 0 for
all i = 1, . . . ,K, and consider the mixed 0-1 set (with one continuous variable):

X = {(x, y) ∈ {0, 1}n ×R+ :
n∑

j=1

ai
jxj + y ≥ ai

n+1, i = 1, . . . ,K}.

Without loss of generality, we assume that ai
j ≤ ai

n+1 for all j = 1, . . . , n and
i = 1, . . . ,K, since otherwise the coefficients can be strengthened to ai

j = ai
n+1.

Let Ai = {a1, . . . , ai} for i = 1, . . . ,K, and Δi = Δ(Ai).

Theorem 5. Given i ∈ {1, . . . ,K}, the sequential pairing inequality
n∑

j=1

Δi
jxj + y ≥ ai

n+1

is facet-defining if, for all k ∈ {i, i + 1, . . . ,K},
(a) there exists j∗ ∈ {1, . . . , n} such that Δi

j∗ + ak
n+1 − ai

n+1 ≤ ak
j∗ , and

(b)
∑

j∈Z(i) ak
j ≥ ak

n+1 − ai
n+1 where Z(i) = {j ∈ {1, . . . , n} : ai

j = 0}.
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4 The Disjoint Case

A set A = {a1, . . . , aK} ⊂ Rn+1 satisfying

1. ak ≥ 0 for all k = 1, . . . ,K,
2. for any two vectors al and am, al

ja
m
j = 0 for j = 1, . . . , n, and

3. a1
n+1 ≤ a2

n+1 ≤ . . . ≤ aK
n+1.

is said to be disjoint. Here we consider mixed integer systems where the co-
efficients of the integer variables are disjoint. An example is the deterministic
equivalent formulation of a two-stage stochastic program with integer second
stage variables [3]

min cT y +
S∑

s=1

psq
T
s xs

y ∈ Y ⊆ Rn1−p1
+ × Zp1

+

Tsy + Wsxs ≥ hs s = 1, . . . , S
xs ∈ Zn2

+ s = 1, . . . , S.

In the above model, there are two sets of decision variables. The first-stage
variables y are decided prior to a scenario s of realizations of the uncertain
problem parameters (qs, Ts,Ws, hs). The second-stage decisions xs constitute
“recourse” actions corresponding to the scenario s realized. A scenario s occurs
with probability ps, and the objective is to minimize the sum of first-stage and
expected second-stage costs. Note that the second-stage variables constitute a
disjoint system.

Theorem 6. If A = {a1, . . . , aK} is disjoint, then

Δ(A) = a1 +
K∑

i=2

min{ai
n+1 − ai−1

n+1, a
i}.

As before, we let Φ(A) ∈ Rn+1 be a vector obtained by an arbitrary sequence
of pairings of the vectors in A.

Theorem 7. If A = {a1, . . . , aK} is disjoint, then for any Φ(A), there exists
Â ⊆ A with aK ∈ Â such that

Δ(Â) � Φ(A).

As a consequence of Theorem 7, among all inequalities obtained by pairings
of the vectors in a disjoint set A, it is sufficient to consider the inequalities
corresponding to the 2K − 1 vectors in C = {Δ(Â) : Â ⊆ A, Â �= ∅}.

Even though it suffices to consider the inequalities defined by the set C, the
number of such inequalities is exponential in K. Here we present a polynomial
time separation algorithm based on solving shortest path problems on a directed
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graph G with nodes N = {0, 1, . . . ,K} and arcs (i, j) for all i and j > i. Given
a point x∗, the separation problem of determining whether there exists any
violated pairing inequalities can be reduced to finding a shortest path from
node 0 to node k for 1 ≤ k ≤ K where the length of arc (i, j) is given by∑n

r=1 min{aj
r, a

j
n+1−ai

n+1}x∗
r for i > 0 and

∑n
r=1 aj

rx
∗
r for i = 0. Using Dijkstra’s

algorithm the separation problem can be solved in O(K2) time and we can find
as many as K violated inequalities from the shortest paths from 0 to k for
k = 1, . . . ,K.

Now we give sufficient conditions for the inequalities in C to be facet-defining.
Let A = {a1, . . . , aK} ∈ Rn+1 be a disjoint set, and consider the mixed 0-1 set :

X = {(x, y) ∈ {0, 1}n ×R+ :
n∑

j=1

ai
jxj + y ≥ ai

n+1, i = 1, . . . ,K},

with one continuous variable. Without loss of generality, as in the nested set
case, we assume that ai

j ≤ ai
n+1 for all j = 1, . . . , n and i = 1, . . . ,K. We also

assume that
∑n

j=1 ai
j ≥ ai

n+1, i = 1, . . . ,K, since otherwise, we can replace y by
y+(ai

n+1−
∑n

j=1 ai
j). Consider Â = {aq1 , . . . , aqQ} ⊆ A. DenoteQ = {q1, . . . , qQ}

and, for brevity, let q = q1, Q = qQ. Define Δ̂ = Δ(Â), where the jth element Δ̂j

is given by Δ̂j = min{ar(j)
n+1−a

c(r(j))
n+1 , a

r(j)
j }, with r(j) = {i ∈ {1, . . . , n} : ai

j > 0}
for j = 1, . . . , n and c(i) = argmax{k ∈ Q : k < i} for all i ∈ Q.

Theorem 8. Given Â ⊆ A and the corresponding index set Q, the sequential
pairing inequality

n∑
j=1

Δ̂jxj + y ≥ aQ
n+1

is facet-defining if

(a) max{ai
j : j ∈ {1, . . . , n}} ≥ max{aq

j : j ∈ {1, . . . , n}} + ai
n+1 − aq

n+1, for all
i ∈ Q.

(b)
∑n

j=1 ai
j ≥ ai

n+1 − aQ
n+1 + ai

k, for all k ∈ {1, . . . , n} and i ∈ {Q + 1, . . . ,K}.

5 Applications

Dynamic Knapsack Sets: Consider the Dynamic knapsack set X given by (2)
with a ∈ Rn

+ and d ∈ Rn
+. Let dij =

∑j
k=i dk, Loparic et al. [7] proved that the

inequality

y +
i∑

j=1

min{aj , dji}xj ≥ d1i (3)

is valid for conv(X) for i = 1, . . . , n, and facet-defining when i = n. Dynamic
knapsack sets are nested. Applying the pairing sequence Δ to the first i inequal-
ities of (2) gives the inequality (3).
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Star Inequalities: Given the mixed 0-1 set

Y = {(x, y) ∈ {0, 1}n ×R : aixi + y ≤ u i = 1, . . . , n},

with a1 ≤ a2 ≤ . . . ≤ an, Atamtürk et al. [1] showed that the star inequality

n∑
i=1

āixi + y ≤ u,

where ā1 = a1 and āi = ai − ai−1 for i = 2, . . . , n, is valid for Y . Note that
the inequalities that define Y form a disjoint set. By complementing the binary
variables and applying the pairing sequence Δ, we obtain the star inequality.

Deterministic Lot-Sizing: The deterministic uncapacitated lot-sizing prob-
lem is to minimize total production and inventory holding cost while satisfying
demand over a finite discrete-time planning horizon. Let yi be the production in
period i, xi ∈ {0, 1} indicate if there is a production set-up in period i, di be the
demand in period i ∈ {1, . . . , n}, and dst =

∑t
i=s di. The feasible solution set of

the lot-sizing problem is

XLS = {(x, y) ∈ {0, 1}n ×Rn
+ :

i∑
j=1

yj ≥ d1i, 0 ≤ yi ≤ dinxi, i = 1, . . . , n}.

Barany et al. [2] described the convex hull of XLS by introducing the (�, S)
inequalities ∑

i∈S

yi +
∑

i∈L\S

di�xi ≥ d1� (4)

for 1 ≤ � ≤ n, L = {1, . . . , �} and S ⊆ L.

We now show that the pairing scheme can generate all of the (�, S) inequal-
ities. For given � and S , we use the constraints

∑
j≤k yj ≥ d1k for each k ≤ �

and yj ≤ djnxj for each j ∈ {1, . . . , n} to obtain the inequalities∑
j∈Sk

yj +
∑

j∈Lk\Sk

djnxj ≥ d1k for each k ≤ �, (5)

where Lk = {1, 2, . . . , k} and Sk = S∩Lk. The family of inequalities (5) is nested
(note here 1 ∈ Sk for each k ≤ �). By Theorem 2, sequential pairing provides the
(�, S) inequality in (4) since we have Δ�

j = min{d1�−d11, . . . , d1�−d1(j−1), djn +
d1� − d1j , . . . , djn} = d1� − d1(j−1) = dj� corresponding to each j ∈ L \ S.

Stochastic Lot-Sizing: The stochastic uncapacitated lot-sizing problem is the
stochastic programming extension of the deterministic formulation. Instead of
deterministic cost and demand information for each time period, the problem
parameters are random and evolve as discrete time stochastic processes with a
finite probability space. A scenario tree is used to model this information where
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each node i in stage t of the tree represents a possible state of the system. For
each node i, let T (i) = (V(i), E(i)) be the subtree containing all descendants of
node i, L(i) be the leaf nodes of the subtree T (i), P(i, j) be the set of nodes on
the path from node i to node j and dij =

∑
k∈P(i,j) dk, where di represents the

demand in period t(i) for node i. For brevity, let T = T (0),V = V(0),L = L(0)
and P(i) = P(0, i).

Let yi be the production and xi be the indicator variable for a production
set-up in period t(i) corresponding to the state defined by node i. The feasible
solution set of the stochastic lot-sizing problem [5] is

XSLS = {(x, y) ∈ {0, 1}n ×Rn
+ :

∑
j∈P(i)

yj ≥ d0i, 0 ≤ yi ≤Mixi, i ∈ V},

where Mi = maxj∈L(i) dij is an upper bound on yi.
Guan et al. [5] have developed a family of valid inequalities for XSLS called

the (Q, SQ) inequalities. Consider a set of nodes Q = {1, 2, . . . , Q} ⊂ V, such
that d01 ≤ d02 ≤ . . . ≤ d0Q and {m,m + 1, . . . , n − 1, n} ⊆ Q(i) if m < n and
m,n ∈ Q(i), where Q(i) = Q∩V(i). Let VQ = ∪i∈QP(i) and for each i ∈ VQ let

DQ(i) = max{d0j : j ∈ Q(i)},

D̃Q(i) =
{

0, if {j : j ∈ Q \ Q(i) such that d0j ≤ DQ(i)} = ∅
max{d0j : j ∈ Q \ Q(i) such that d0j ≤ DQ(i)}, otherwise,

MQ(i) = max{dij : j ∈ Q(i)}, and

δQ(i) = min
{
DQ(i)− D̃Q(i),MQ(i)

}
.

Then, given SQ ⊆ VQ and SQ = VQ \ SQ, the (Q, SQ) inequality∑
i∈SQ

yi +
∑

i∈SQ

δQ(i)xi ≥MQ(0) (6)

is valid for XSLS.
Although the inequalities that define XSLS are neither nested or disjoint, we

can generate all (Q, SQ) inequalities by pairings as follows. For a given Q and
SQ, we use pairings, as in the deterministic lot-sizing case, to generate the (�, S)
inequalities ∑

j∈P(i)∩SQ

yj +
∑

j∈P(i)∩SQ

djixj ≥ d0i

corresponding to P(i) for each i ∈ Q. Then, we use sequential pairing of the
above (�, S) inequalities for i = 1, . . . , Q and obtain the (Q, SQ) inequality (6).

6 Computational Experiments

In this section we provide some numerical results to demonstrate the compu-
tational effectiveness of the pairing scheme on randomly generated instances of
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mixed-integer programs with nested and disjoint sets of constraints. All compu-
tations have been carried out on a Linux workstation with dual 2.4 GHz Intel
Xeon processors and 2 GB RAM using CPLEX 8.1.

For the nested case, we generated random instances of the model

min
mn∑
j=1

cjxj +
p∑

k=1

hkyk

in∑
j=1

ai
jxj +

p∑
k=1

gi
kyk ≥ bi i = 1, . . . ,m

xj ∈ {0, 1} j = 1, . . . ,mn
yk ≥ 0 k = 1, . . . , p.

This model has n additional binary variables in each successive row, with a total
of mn binary variables and p continuous variables. The constraint coefficients
and the right-hand sides were generated such that these form a nested system
and were uniformly distributed within the interval [50, 75] and [50, 100], respec-
tively. The objective function coefficients were uniformly distributed within the
interval [10, 100]. In Table 1 we present computational results for p ∈ {1, 2, 3},
n ∈ {1, 2, 3} and m ∈ {10, 20, 40}. For each combination of m,n, and p, we
tested five instances and report the average objective function value in the col-
umn labelled “OptVal.” The row labelled “LP” provides the average optimal
objective value of the linear programming relaxation without any cuts; the row
labelled “LP+CUTS”(LPC) provides the average optimal objective value af-
ter adding all inequalities obtained through pairing as cuts, which can be done
since the total number of cuts is small and equal to the number of rows; and
the row labelled “IP” provides the optimal value of the corresponding integer
programming problem. The column labelled “Gap” provides the percentage LP
relaxation gap, computed as (IP-LP)/LP × 100% and (IP-LPC)/LPC × 100%.
We observe that the cuts yield significant improvements. In 13 of the 27 cases,
the gap is reduced to 0% from over 10%. In all but three of the cases, the gap is
reduced by more than half.

For the disjoint case, we generated random instances of the model

min
m∑

i=1

n∑
j=1

ci
jx

i
j +

p∑
k=1

hkyk

n∑
j=1

ai
jx

i
j +

p∑
k=1

gkyk ≥ bi i = 1, . . . ,m

xi
j ∈ {0, 1} j = 1, . . . , n, i = 1, . . . ,m

yk ≥ 0 k = 1, . . . , p.

Each row of this model has n independent binary variables giving rise to a dis-
joint system involving a total of mn binary variables. A total of p continuous
variables couple the binary variables together. The constraint coefficients and
the right-hand sides were generated uniformly within the interval [40, 120] and
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Table 1. Computational Results for the Nested Case

m = 10 m = 20 m = 40
p n OptVal Gap OptVal Gap OptVal Gap

LP 100.59 19.58% 51.10 13.97% 24.43 22.18%
1 1 LP+CUTS 114.41 8.53% 59.40 0.00% 31.18 0.67%

IP 125.08 59.40 31.39
LP 65.88 23.63% 48.87 13.25% 21.21 15.99%

1 2 LP+CUTS 77.80 9.82% 56.33 0.00% 25.02 0.89%
IP 86.27 56.33 25.25
LP 39.71 19.83% 48.19 14.50% 21.43 14.56%

1 3 LP+CUTS 43.27 12.64% 56.36 0.00% 24.95 0.51%
IP 49.53 56.36 25.08
LP 23.00 4.61% 31.47 10.38% 65.86 13.05%

2 1 LP+CUTS 24.11 0.00% 35.12 0.00% 75.75 0.00%
IP 24.11 35.12 75.75
LP 22.62 9.50% 31.45 11.65% 58.21 15.77%

2 2 LP+CUTS 24.99 0.00% 35.60 0.00% 66.96 3.11%
IP 24.99 35.60 69.11
LP 22.02 7.92% 31.42 13.90% 56.89 15.39%

2 3 LP+CUTS 23.92 0.00% 36.49 0.00% 63.95 4.87%
IP 23.92 36.49 67.23
LP 20.28 19.45% 21.99 30.57% 69.13 14.96%

3 1 LP+CUTS 24.18 3.95% 28.03 11.52% 81.29 0.00%
IP 25.18 31.68 81.29
LP 17.05 28.54% 20.39 27.60% 64.66 13.35%

3 2 LP+CUTS 20.47 14.20% 22.81 18.99% 74.62 0.00%
IP 23.86 28.16 74.62
LP 18.99 25.28% 20.06 29.40% 64.13 11.93%

3 3 LP+CUTS 22.52 11.41% 22.74 19.96% 72.82 0.00%
IP 25.42 28.41 72.82

[100, 125] respectively. The objective function coefficients were uniformly dis-
tributed within the interval [10, 100] for the continuous variables and within the
interval [10/m, 100/m] for the binary variables. In Table 2, we present computa-
tional results corresponding to p ∈ {1, 2, 3}, n ∈ {1, 2, 3} and m ∈ {10, 20, 40}.
As before, we report averages over five random instances for each combina-
tion of m,n and p. In this case, we use the shortest path separation routine
described in Section 4 to add only violated cuts. The average number of cuts
added is reported in the row labelled “# CUTS.” Once again, we observe that
the cuts yield significant improvements. In 6 of the 27 cases, the gap is reduced
to 0%. In 19 of the 27 cases, the gap is reduced by more than half. The num-
ber of cuts ranges from 30, on average for 10 rows, to 491, on average for 40
rows.
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Table 2. Computational Results for the Disjoint Case

m = 10 m = 20 m = 40
p n OptVal Gap OptVal Gap OptVal Gap

LP 1082.24 11.62% 703.83 9.03% 874.35 12.57%
1 1 LP+CUTS 1099.88 10.17% 729.58 5.71% 928.66 7.14%

IP 1224.47 773.73 1000.08
# CUTS 45 163 925

LP 585.63 38.48% 538.49 25.20% 702.46 29.22%
1 2 LP+CUTS 793.18 16.68% 655.58 8.93% 946.30 4.65%

IP 952.00 719.89 992.45
# CUTS 32 162 1317

1 3 LP 410.88 26.45% 446.83 23.08% 559.81 24.67%
1 3 LP+CUTS 480.88 13.92% 452.76 22.05% 619.81 16.59%

IP 558.66 580.87 743.13
# CUTS 10 27 124

LP 685.99 8.36% 388.66 5.96% 497.25 7.69%
2 1 LP+CUTS 693.98 7.29% 400.19 3.17% 522.35 3.03%

IP 748.58 413.29 538.67
# CUTS 34 74 341

LP 507.76 33.72% 356.65 14.23% 464.42 13.56%
2 2 LP+CUTS 710.69 7.22% 415.34 0.12% 529.88 1.38%

IP 766.03 415.83 537.30
# CUTS 39 119 530

LP 400.18 20.50% 339.61 12.71% 437.98 13.60%
2 3 LP+CUTS 448.58 10.89% 357.13 8.21% 470.21 7.25%

IP 503.38 389.06 506.95
# CUTS 20 63 347

LP 533.31 2.84% 285.17 2.09% 387.16 4.80%
3 1 LP+CUTS 542.35 1.19% 291.25 0.00% 406.67 0.00%

IP 548.88 291.25 406.67
# CUTS 25 34 173

LP 433.80 21.02% 280 3.86% 375.75 6.84%
3 2 LP+CUTS 540.33 1.63% 291.23 0.00% 403.35 0.00%

IP 549.27 291.23 403.35
# CUTS 45 59 289

LP 420.45 14.19% 279.87 4.38% 360.44 9.80%
3 3 LP+CUTS 459.61 6.19% 292.69 0.00% 399.61 0.00%

IP 489.95 292.69 399.61
# CUTS 24 67 375

7 Conclusions

We have developed a new and very simple way of pairwise combining linear in-
equalities for MIPs to obtain new linear inequalities. These new inequalities can
be useful in tightening the LP relaxation for general MIPs. The order in which
the inequalities are combined can have a significant impact on the results. For
some structured systems, we provided combination orders that are optimal in the
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sense that no other combination order cannot dominate the set of inequalities
given by the optimal order. These structures arise in multi-period MIPs. We dis-
cussed applications of these structures to deterministic and stochastic lot-sizing
problems. One of our goals is to apply the procedure to general multi-period
stochastic MIPs. To do this we need to generalize the structures considered in
this paper to scenario trees. We are currently developing these results.
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türk and Oktay Günluk for helpful comments.

References

1. A. Atamtürk, G. L. Nemhauser and M. W. P. Savelsbergh. The mixed vertex packing
problem. Mathematical Programming, 89:35–53, 2000.

2. I. Barany, T. Van Roy, and L. A. Wolsey. Strong formulations for multi-item ca-
pacitated lot sizing. Management Science, 30:1255–1262, 1984.

3. J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer,
1997.

4. Y. Guan, S. Ahmed, and G. L. Nemhauser. Sequential pairing of mixed integer
inequalities. Technical Report No. TLI-04-04, School of Industrial & Systems En-
gineering, Georgia Institute of Technology, 2004.

5. Y. Guan, S. Ahmed, G. L. Nemhauser, and A. J. Miller. A branch-and-cut algorithm
for the stochastic uncapacitated lot-sizing problem. To appear in Mathematical
Programming, 2005.
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Abstract. We study the ratio between the minimum size of an odd cycle
vertex transversal and the maximum size of a collection of vertex-disjoint
odd cycles in a planar graph. We show that this ratio is at most 10. For
the corresponding edge version of this problem, Král and Voss [7] recently
proved that this ratio is at most 2; we also give a short proof of their
result.

1 Introduction

A set of vertices of a graph G is an odd cycle (vertex) transversal (or cover) if
its removal makes G bipartite. An odd cycle (vertex) packing in G is a collection
of vertex-disjoint odd cycles in G. Let τ and ν respectively denote the minimum
size of an odd cycle transversal and the maximum size of an odd cycle packing.
Clearly we have ν ≤ τ . Our main result is to show that τ ≤ 10ν for all planar
graphs G. For general graphs, it is known that τ is not bounded by any function
of ν. In other words, odd cycles do not satisfy the Erdös-Pósa property. In fact,
there are graphs known as Escher walls [10] for which ν = 1 and τ is arbitrarily
large. In [10], Reed proved that the Erdös-Pósa property holds for odd cycles in
graphs without Escher wall of height h, for any fixed h ≥ 3. Since planar graphs
do not contain any Escher wall, there exists a function f such that τ ≤ f(ν) for
all planar graphs G. However, the function f implicit in [10] is huge. A similar
type of result in this area applies to highly connected graphs G. Thomassen
[15] proved that τ ≤ 2ν for 239ν

-connected graphs. Reed and Rautenbach [9]
generalised this to 576ν-connected graphs.

The minimum odd cycle transversal (cover) problem and maximum odd cycle
packing problem can be formulated as integer programs whose linear program
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relaxations are duals. Letting V denote the vertex set of G and O denote the set
of odd cycles in G, these dual LPs are:

Covering LP: min
∑

v∈V

yv∑
v:v∈C

yv ≥ 1 ∀C ∈ O

yv ≥ 0 ∀v ∈ V

Packing LP: max
∑

C∈O
xC∑

C:v∈C

xC ≤ 1 ∀v ∈ V

xC ≥ 0 ∀C ∈ O

Goemans and Williamson [5] gave a constant factor approximation algorithm for
the minimum odd cycle transversal problem in planar graphs using the primal-
dual method. In doing so they proved that the integrality gap of the covering
LP is at most 9

4 . They conjecture that it is actually 3
2 . Our results show that

the integrality gap of the packing LP is bounded by a constant. In addition, our
structural result generates a polynomial time 10-approximation algorithm for
the maximum odd cycle packing problem in planar graphs.

We remark that there are corresponding edge versions of these covering and
packing problems. Recently, Král and Voss [7] showed that the minimum size of
an odd cycle edge transversal in a planar graph is at most twice the maximum
size of an odd cycle edge packing. We also give a short proof of their result.

We conclude this introductory section with an overview of the paper. At the
heart of this work lies a connection between odd cycle transversals and T -joins in
a certain auxiliary graph. In particular, T will correspond to the set of odd faces
of G. In the vertex case the auxiliary graph we need to consider is the face-vertex
incidence graph G+. Specifically, we show that minimum vertex transversals
correspond to T -joins in G+ covering the least number of vertices of G. In the
edge case the auxiliary graph is the dual graph G∗. Here minimum transversals
correspond to T -joins in G∗ with the least number of edges. This relationship
was first used by Hadlock [6] to derive a polynomial time algorithm for the
maximum cut problem in planar graphs. We present the necessary background
on T -joins and T -cuts in Section 2.1 and describe the connection between odd
cycle transversals and T -joins in Section 2.2 for the edge case and in Section 2.3
for the vertex case.

In Section 3, we present our proof that a minimum edge transversal has size
at most twice the size of a maximum odd cycle edge packing. This proof, as with
the proof of Král and Voss, requires the use of the Four Colour Theorem. We
use it to show that any laminar 2-packing (defined below) of k odd cycles in G
contains 1

4k edge-disjoint odd cycles. A result by Lovász on T -joins and T -cuts
then guarantees the existence of a 2-packing whose size is twice the minimum
size of an odd cycle edge transversal. This gives the result.

To prove our main result we begin by considering three special classes of
planar graph. In Section 4.1 we consider graphs in which every pair of odd
faces intersect. In Section 4.2 we consider 4-connected graphs such that some
(possibly even) face intersects every odd face. Finally in Section 4.3 we examine
graphs in which every pair of odd faces is “far” apart. In all of these classes
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of graph we show that τ ≤ 2ν. The proof of our main result, given in Section
5, combines the techniques developed for these special cases. We let G be a
minimum counterexample to the theorem. We take a minimum collection of
faces of G, which we call centers, such that every odd face of G intersects some
face of the collection. Then we show that G must be 4-connected with all its
centers “far” apart. Next, using the techniques of Section 4.2 we find a “local”
transversal around each center. At the same time, we find a packing of odd faces
around each center. Since the centers are “far” apart the union of these packings
is also a packing. We call this union the local packing. The results of Section
4.3 allow us to extend the “local” transversals to a transversal of the whole
graph. Associated with this transversal we find a different packing of odd cycles,
which we call the global packing. The size of the transversal we obtain is within
a constant factor of the size of the largest of the local packing and the global
packing. Our main result then follows.

2 T -Joins and Odd Cycle Transversals

In this section we show how minimum odd cycle edge and vertex transversals
of a plane graph G relate to T -joins in the dual graph and face-vertex incidence
graph of G, respectively. First, we give some background on T -joins along with
two min-max results that we will need.

2.1 Background

Consider any graph H and set of vertices T in H. A T -join in H is a set of
edges J such that T equals the set of odd degree vertices in the subgraph of
H determined by J . There exists a T -join in H if and only if each connected
component of H contains an even number of vertices of T . In particular, if H has
a T -join then |T | is even. A T -cut in H is a cut having an odd number of vertices
of T on each side. In other words, whenever a set of vertices X contains an odd
number of vertices of T , the cut δ(X) = {xy ∈ E(H) : x ∈ X, y /∈ X} is a T -cut.
The length of a T -join is the number of edges it contains. A packing of T -cuts is
a collection of edge-disjoint T -cuts. Because every T -join intersects every T -cut,
the minimum length of a T -join in H is at least the maximum size of a packing
of T -cuts in H. In fact, equality holds for bipartite graphs, see Proposition 1
below.

Two sets X and Y of vertices of H are said to be laminar if either X ⊆ Y or
Y ⊆ X or X ∩ Y = ∅. The sets X and Y are cross-free when they are laminar
or X ∪ Y = V (H). A collection of subsets of V (H) is said to be laminar (resp.
cross-free) if any two of its members are laminar (resp. cross-free). Consider a
collection F of subsets of V (H). Letting δ(F) = {δ(X) : X ∈ F}, the collection
of cuts δ(F) is said to be laminar (resp. cross-free) whenever F is.

Proposition 1 (Seymour [13]). Let H be a bipartite graph and let T be an
even set of vertices of H. The minimum length of a T -join in H equals the
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maximum size of a packing of T -cuts in H. The maximum is attained by a
cross-free collection of T -cuts. ��

The latter proposition implies the next, where a 2-packing of T -cuts is a
collection of T -cuts such that each edge is contained in at most two T -cuts of
the collection.

Proposition 2 (Lovász [8]). Let H be a graph and T be an even set of vertices
of H. The minimum length of a T -join in G equals half the maximum cardinality
of a 2-packing of T -cuts in H. The maximum is attained by a cross-free collection
of T -cuts. ��

The following observation will be useful in subsequent sections. Its proof
is based on standard uncrossing techniques (see, e.g., Proposition 3.4 in [4] or
Section 80.7b in [12]) and is not included here due to length restrictions.

Observation 1. In Propositions 1 and 2, there exists an optimal collection of
T -cuts which is laminar and consists only of inclusion-wise minimal T -cuts.

2.2 Relating Edge Transversals to T -Joins in G∗

Hadlock [6] first noted the following correspondence between odd cycle edge
transversals of G and T -joins in its dual graph. Below, G∗ denotes the dual
graph of G and T the set of odd faces of G, regarded as a subset of V (G∗). We
remind the reader that the parity of a face equals the parity of its boundary,
counting bridges twice. Note that |T | is always even.

Lemma 1 (Hadlock [6]). A set of edges F is an odd cycle edge transversal
of G if and only if F ∗ = {e∗ : e ∈ F} is a T -join in G∗. Hence, the minimum
size of an odd cycle edge transversal of G equals the minimum length of a T -join
in G∗. ��

2.3 Relating Vertex Transversals to T -Joins in G+

We now show how odd vertex cycle transversals of G relate to T -joins in its
face-vertex incidence graph. As above, T denotes the set of odd faces of G. The
face-vertex incidence graph of G is the bipartite graph G+ on the faces and
vertices of G whose edges are the pairs fv, where f is a face of G and v is a
vertex of G incident to f . The face-vertex incidence graph is planar because it
can be drawn in the plane as follows. Keep all vertices of G as vertices of G+

and add a new vertex vf in each face f of G. Then link each new vertex vf to
the vertices of G which are incident to f by an arc whose interior is contained in
f . Do this in such a way that two arcs never have a common interior point. The
resulting drawing of G+ is referred to as a standard drawing. The relationship
between transversals of G and T -joins in the face-vertex incidence graph G+ is
as follows. Below, and henceforth, F (G) denotes the face set of G.
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Observation 2. Let δ(X) be a T -cut in the face-vertex incidence graph G+ and
let R denote the subgraph of G determined by the edges incident to a face in X
and to a face in X̄. Then R is Eulerian and has an odd number of edges. Hence,
R contains an odd cycle.

Proof. Pick some vertex v of G. Let e1, . . . , ed denote the edges of G incident to
v listed in clockwise order and, for 1 ≤ i ≤ d, let fi be the face of G incident to
both ei and ei+1 (we let ed+1 = e1). Each face fi belongs either to X or to X̄.
Because there is an even number of switches between X and X̄ when one goes
clockwise around v, the degree of v in R is even. In other words, R is Eulerian. So
it can be decomposed into edge-disjoint cycles. Since X contains an odd number
of vertices of T , that is, an odd number of odd faces of G, subgraph R has an
odd number of edges. ��

Lemma 2. A subset W of V (G) is a transversal of G if and only if the subgraph
of the face-vertex incidence graph G+ induced by W ∪ F (G) contains a T -join,
that is, every component of the subgraph has an even number of vertices of T .

Proof. We first prove the forward direction. Suppose, by contradiction, that some
connected component X of the subgraph of G+ induced on W ∪ F (G) contains
an odd number of vertices of T . Then δ(X) is a T -cut in G+. Consider the
edges of G incident to a face in X and to a face in X̄. These edges determine a
subgraph R of G. Let e be an edge of R. None of the endpoints of e belongs to
W because otherwise all the faces incident to this endpoint would be in X and
e would not belong to R, a contradiction. Therefore, R is vertex-disjoint from
W . By Observation 2, we know that R contains an odd cycle. So W is not a
transversal, a contradiction.

To prove the backward direction, consider an odd cycle C and a T -join J in
G+ covering some vertices of W and no vertex of G −W . Let Y be the set of
faces of G contained in C and let X = Y ∪W . Because C is odd, X contains
an odd number of odd faces, that is, an odd number of elements of T . Because
|T | is even, there is an odd number of elements of T in X̄ too. It follows that J
contains a path P from an element of T in X to an element of T in X̄. Let v
be any vertex of G on P incident to a face in X and to a face in X̄. Then v is
a vertex of C covered by J . In other words, W intersects C. Therefore, W is a
transversal. ��

3 The Edge Case

In this section, we give a short proof that a minimum odd cycle edge transversal
has size at most twice the size of a maximum packing of edge-disjoint odd cycles.
This result was recently proved by Král and Voss [7]. Their proof is quite long
(about 10 pages). Below, we give a concise proof. As with the proof of Král and
Voss, our proof relies on the Four Colour Theorem [1, 11].
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Theorem 3 (Král and Voss [7]). The minimum size of an odd cycle edge
transversal of G is at most twice the maximum size of an odd cycle edge packing
in G.

Proof. Let τ and ν respectively denote the minimum size of an odd cycle edge
transversal of G and the maximum size of an odd cycle edge packing in G. The
theorem trivially holds if ν = 0. Assume that ν > 0. By Lemma 1, the minimum
size of a T -join in G∗ equals τ . By Proposition 2 and Observation 1, there is a
laminar family F of 2τ subsets of V (G∗) such that δ(F) = {δ(X) : X ∈ F} is
a 2-packing of inclusion-wise minimal T -cuts in G∗. Without loss of generality,
we can assume that the outer face o of G is odd and that no member of F
contains o.

Let H denote the graph on F in which X and Y are adjacent whenever the
corresponding T -cuts intersect. We claim that H is planar. The claim obviously
implies the theorem because, by the Four Colour Theorem, H has a stable set of
size at least |V (H)|/4 = 2τ/4 = τ/2. This implies the desired inequality τ ≤ 2ν.
In order to show that H is planar, it suffices to show that every block H ′ of
H is planar. Let F ′ denote the vertex set of H ′. Since F is laminar, F ′ is also
laminar and the set F ′ partially ordered by inclusion is a forest, i.e., every point
is covered by at most one point. Let X, Y and Z be three distinct elements of
F ′. The following cannot occur: (i) X ⊆ Y ⊆ Z, (ii) X ⊆ Y and Y ∩ Z = ∅.
Indeed, if (i) or (ii) holds then every X–Z path in H ′ intersects Y because δ(F)
is a 2-packing. This contradicts our assumption that H ′ is a block of H. Then F ′

partially ordered by inclusion is either a forest of height 0 (that is, an antichain)
or a tree of height 1. In both cases, it is easy to construct a planar drawing for
H ′ from G. Each element of F ′ determines a cycle in the plane graph G. In
the first case, we pick any point in the bounded face of each of these cycles and
connect the points by an arc whenever there is an edge in H ′ between the two
corresponding elements of F ′. This can be done in such a way that the resulting
graph is planar. The second case is similar. ��

4 Special Classes

In this section we show that the minimum size of an odd cycle (vertex) transver-
sal is at most twice the maximum size of an odd cycle (vertex) packing for a
collection of special classes of planar graphs. The techniques we develop here
will then be applied in the next section to give our main result for general pla-
nar graphs. For technical reasons it will be useful to assume that G is signed.
A signed graph is a graph whose edges are labeled odd (‘−’) or even (‘+’). In
a signed graph, a cycle (or more generally a subgraph) is said to be odd if it
contains an odd number of odd edges and even otherwise. Similarly, a face of a
plane signed graph is said to be odd if its boundary has an odd number of odd
edges, counting bridges twice. Otherwise, the face is said to be even. A signed
graph is said to be balanced if it has no odd cycle. Odd cycle transversals and
odd cycle packings are defined as in the unsigned case. Henceforth, in order to
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avoid unnecessary repetitions, we abbreviate odd cycle vertex transversal and
odd cycle vertex packing respectively as transversal and packing. We denote by
τ(G) and ν(G) the minimum size of a transversal of G and the maximum size
of a packing in G, respectively. We assume that G has no loops and no multiple
edges, with one exception. We allow odd digons , i.e., subgraphs with two vertices
and two edges between them, one of which is odd and the other even.

4.1 When All Odd Faces Mutually Intersect

The proofs of the following two results could not be included in this version of
the article due to length restrictions, but will be included in the journal version.
The second result will be used as a base case to prove our main approximate
min-max result.

Lemma 3. Let G be a 3-connected plane graph. Then every face of G is bounded
by a cycle. For any two faces f and f ′ of G whose respective boundaries C and
C ′ intersect, the following holds. Either C and C ′ share exactly one vertex, or
two adjacent vertices and the edge between them.

Proposition 3. If every two odd faces of G have intersecting boundaries, then
G has a transversal of size at most 2.

4.2 When Some Face Intersects Every Odd Face

In this section, we consider the graphs that have some face whose boundary
intersects the boundary of every odd face.

Proposition 4. Assume G is 4-connected, simple, has at least five vertices and
is such that the boundary of the outer face intersects the boundary of every odd
face. Then the minimum size of a transversal of G is at most twice the maximum
size of a packing in G.

Proof. We assume that G is not balanced. Otherwise, the result trivially holds.
The hypotheses severely restrict the way face boundaries intersect each other.
Consider a vertex y not incident to the outer face. If there are two distinct
vertices x, z such that each one of them is incident to the outer face and to
a face incident to y, then x and z have to be adjacent. Indeed, there exists a
polygon P in R2 intersecting G exactly in x, y and z. By the Jordan Curve
Theorem, we know that all paths from a vertex of G in the bounded region of
R2 \ P to a vertex of G in the unbounded region of R2 \ P go through x, y or
z. If x and z are not adjacent, then the two neighbours of x on the boundary of
the outer face lie in a different region of R2 \ P . Hence X = {x, y, z} is a cutset
of size 3 in G, a contradiction.

Now consider two distinct odd faces f and g different from the outer face. By
Lemma 3, the boundaries of faces f and g intersect in a vertex or in a common
edge. If the boundaries of f and g share a unique vertex y, then y is incident to
the outer face unless the following occurs. There are vertices x and z incident
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to the outer face such that xy, xz and yz are edges, x is incident to f and z is
incident to g Moreover, x is the only vertex incident to both f and the outer
face, and z is the only vertex incident to both g and the outer face. We refer to
the triangle on x, y and z as a junctional triangle. Note that junctional triangles
can be even because G is signed. If the boundaries of f and g intersect in a
common edge e then one of the endpoints of e is on the outer face and the other
is not. Moreover, in that case f and g cannot both have a common incident edge
with the outer face because otherwise G = K4, contradicting the fact that G has
at least five vertices.

Enumerate the vertices of the outer face in clockwise order as v1, v2, . . . ,
vn. For the sake of simplicity, let v0 = vn and vn+1 = v1. Let I be the set of
indices i such that there is a junctional triangle containing the edge vivi+1. For
each i ∈ I, we let ui be the vertex of the junctional triangle incident to the
edge e = vivi+1 and opposite to e, and we let wi be any point in the interior of
the edge e. For each odd face f different from the outer face, we define an arc
Af contained in the frontier of the outer face, as follows. If the boundary of f
intersects the boundary of the outer face in an edge vivi+1, then we let Af be
the edge vivi+1. Otherwise, the boundary of f intersects the boundary of the
outer face in a vertex vi. If f is incident neither to ui−1 nor to ui then we let Af

be the point {vi}. If f is incident to ui−1 and not to ui then we let Af be the
part of the edge vi−1vi between wi−1 and vi. If f is incident to ui and not to
ui−1 then we let Af be the part of the edge vivi+1 between vi and wi. Finally,
if f is incident to both ui and ui−1 then we let Af be the arc linking wi−1 and
wi on the outer face and containing vi. By construction, two odd faces f and g
different from the outer face are incident to some common vertex if and only if
their corresponding arcs Af and Ag have a nonempty intersection.

Let H denote the graph whose vertices are the odd faces different from the
outer face and whose edges are the pairs fg such that Af ∩ Ag �= ∅. Then H
is a circular arc graph. The maximum size of a packing in G is precisely equal
to the maximum size of a stable set in H, that is, we have ν(G) = α(H). We
consider the following two cases.

Case 1. There is some point x on the boundary of the outer face that is not in
any arc Af . In this case, H is an interval graph. Let W be a minimum cardinality
subset of {vi : 1 ≤ i ≤ n} ∪ {wi : i ∈ I} meeting all the arcs. By Dilworth’s
chain partitioning theorem [3], the complement of an interval graph H is perfect,
hence we have |W | = α(H) = ν(G). Now replace each wi ∈ W by vi and vi+1.
Let W ′ be the resulting set of vertices of G. Then W ′ is a transversal of G of
cardinality at most 2|W |. In other words, we have τ(G) ≤ 2ν(G).

Case 2. The arcs Af cover the whole boundary of the outer face. It follows
that for each edge e = vivi+1, the face fi incident to e and different from the
outer face is either an odd face or an even junctional triangle. If fi is odd, then
we let gi = fi. Otherwise, we let gi be the odd face incident to viui. As above,
ui denotes the vertex of the junctional triangle incident to e which is opposite
to e. Thus, every edge of the outer face has a corresponding odd face. Note that
if the boundaries of gi and gj intersect then i ∈ {j − 1, j + 1} or i = j. So if
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n is even, then we have τ(G) ≤ 2ν(G) because {v1, . . . , vn} is a transversal of
size n and {f1, f3, . . . , fn−1} yields a packing of size n/2. Now assume that n is
odd. Let H ′ be the graph whose vertices are the faces gi and whose edges are
the pairs gigj such that the boundary of gi intersects that of gj and i �= j. By
what precedes, we know that the graph H ′ is a subgraph of the odd cycle with
vertex sequence v1, . . . , vn, v1. If H ′ is not connected, then it has a stable set
of size (n + 1)/2 and we get τ(G) ≤ 2ν(G) as before. For the rest of the proof,
we assume that H ′ is connected. We claim that either all fi’s are odd faces or
all fi’s are even junctional triangles. Otherwise, there is some index i such that
fi is an even junctional triangle and fi+1 is an odd face. By what precedes, the
boundaries of gi and gi+1 cannot intersect. So our claim holds.

If all fi’s are odd faces then consider vertex v1. If {v1, . . . , vn} \ {v1} is a
transversal then we have τ(G) ≤ n − 1 ≤ 2ν(G) because H ′ has a stable set of
size (n−1)/2. Otherwise, there is some odd face f incident to v1 and to no other
vi. Then {f} ∪ {f2, f4, . . . , fn−1} yields a packing of size (n + 1)/2. Hence, we
have τ(G) ≤ 2ν(G). If all fi’s are even junctional triangles, then the odd faces
of G are exactly the outer face and the faces gi for i = 1, . . . , n. It is easy to see
that {u1, v3, v4, . . . , vn} is a transversal of size n − 1. Because H ′ has a stable
set of size (n− 1)/2, we have τ(G) ≤ 2ν(G). This concludes the proof. ��

We need a slight generalization of Proposition 4. Consider some face f of G,
which we refer to as a center. The odd faces of G whose boundary intersects
the boundary of the center are called the targets (around f). In particular, if f
is odd then f is itself a target. A local transversal is a set W of vertices of G
satisfying the following properties:

(i) every target is incident to some vertex of W ;
(ii) at most one vertex of W is not incident to the center;
(iii) if u ∈ W is not incident to the center, then u is incident to exactly two

targets.

The proof of Proposition 4 in fact shows:

Lemma 4. Assume G is 4-connected, simple and has at least five vertices. Let f
be a face of G acting as center. Then the minimum size of a local transversal of
G is at most twice the maximum number of boundary-disjoint targets in G. ��

4.3 When Odd Faces Are Disjoint

We begin this section by recasting the minimum transversal and the maximum
packing problems entirely in terms of T -joins and T -cuts in the face-vertex inci-
dence graph. This slight change of terminology simplifies the proofs and enables
us to state our results with more generality. Let H denote any bipartite graph
with bipartition {A,B}, and let T be any even subset of B. The width of a T -join
in H is the number of vertices of A it covers. The fringe of a T -cut δ(X) in H
is the set of vertices of A which have a neighbour in X and a neighbour in X̄.
Note that the minimum width of a T -join in H is at least the maximum number
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of fringe-disjoint T -cuts in H. This is due to the fact that every T -join covers
some element in the fringe of every T -cut.

We now relate the above definitions to odd cycle vertex transversal and pack-
ing in plane signed graphs. Consider the case where H is the face-vertex incidence
graph G+ of the plane signed graph G, set A is the vertex set of G, set B is the
face set of G, and set T is, as before, the set of odd faces of G. By Lemma 2,
every T -join in H defines a transversal of G, namely, the vertices of A it cov-
ers. Reciprocally, to every transversal W there corresponds a T -join in H which
covers some vertices of W and no vertex of A \W . So the minimum width of a
T -join in H equals the minimum size of a transversal of G. Furthermore, there is
a correspondence between T -cuts in H and odd cycles in G. By Observation 2,
every T -cut in H determines a Eulerian subgraph of G with an odd number of
odd edges. This subgraph contains an odd cycle. The vertex set of the subgraph
is the fringe of the T -cut. Reciprocally, every odd cycle in G determines a T -cut
in H whose fringe is the vertex set of the cycle. Hence the maximum size of a
collection of fringe-disjoint T -cuts in H equals the maximum size of a packing in
G. We use the following notation: let ν denote the maximum size of a collection
of fringe-disjoint T -cuts in H, let τ denote the minimum width of a T -join in H
and let � denote the minimum length of a T -join in H.

Proposition 5. Let H be any bipartite graph with bipartition {A,B} and let T
denote any even subset of B. Assume that the shortest path distance dH(t, t′)
between any two distinct elements t and t′ of T is at least 2c for some c ≥ 1.
Then we have

ν ≥ 1
2
(�− |T |+ 1) ≥

(
1− 1

c

)
τ.

Proof. Let F denote a laminar collection of � sets of faces and vertices of G
such that δ(F) = {δ(X) : X ∈ F} is a collection of edge-disjoint T -cuts in H.
Such a laminar collection of T -cuts is guaranteed to exist by Proposition 1 and
Observation 1.

We claim that whenever X, Y and Z are three distinct elements of F such
that X ⊆ Y ⊆ Z or X ⊆ Y and Y ∩ Z = ∅, then T -cuts δ(X) and δ(Z)
are fringe-disjoint. It suffices to consider the first case. Suppose there exists an
element a ∈ A which belongs to the fringes of X and Z. In particular, a has
a neighbor b in X and a neighbor b′ in Z̄. If a ∈ Y then ab′ ∈ δ(Y ) ∩ δ(Z), a
contradiction. If a ∈ Ȳ then ab ∈ δ(X) ∩ δ(Y ), a contradiction. So our claim
holds.

The set F partially ordered by inclusion is a forest. Without loss of generality,
we can assume that the leaves of this forest are singletons of the form {b} for
some b ∈ T . It follows that F has at most |T | leaves. Note that the claim above
implies that two nodes of the forest X and Y are fringe-disjoint unless X is the
parent of Y , Y is the parent of X, X and Y are siblings or X and Y are roots.

Rank the children of each node of the forest F arbitrarily and order its roots
arbitrarily also. Let F ′ denote the subset of F formed by all nodes which are
ranked first in their respective ordering. Letting λ denote the number of leaves
of F , we claim that F ′ contains at least |F|−λ+1 ≥ |F|− |T |+1 elements. Let
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X be any node. We define a function f : F → F as follows. If X is a leaf then
we set f(X) = X. Otherwise, we set f(X) = f(Y ), where Y is the first child of
X. So f(X) is the “first” leaf amongst the descendants of X. Observe that, for
any leaf node Z the preimage of Z, under f , either contains exactly one node
in F ′ or contains the highest ranked root node. Moreover, by construction, the
preimages of any pair of leaves are disjoint. Thus, λ = |F|− |F ′|+1. Our second
claim follows.

To obtain a packing of fringe-disjoint T -cuts, colour the elements of F ′ black
or white in such a way that no parent and child have the same colour, i.e.,
whenever X is the parent of Y then X and Y have different colours. In other
words, colour the subgraph of the Hasse diagram of F induced on F ′ with two
colours. Let F ′′ denote the biggest of the two colour classes. Then δ(F ′′) is a
collection of fringe-disjoint T -cuts of size at least 1

2 (�− |T |+ 1).
Note that every minimum length T -join in G can be thought of as a perfect

matching on T whose edges have become edge-disjoint shortest paths in H.
Hence � is at least |T |

2 · 2c. Note also that τ is at most �
2 because the width of

any T -join is at most half its length. It follows that we have

ν ≥ 1
2
(�−|T |+1) ≥ 1

2
(�−|T |) ≥

(
1− 1

c

)
�

2
≥
(

1− 1
c

)
τ. ��

Corollary 1. If the boundaries of the odd faces of G are pairwise disjoint then
the minimum size of a transversal of G is at most twice the maximum size of a
packing in G.

Proof. This follows directly from Proposition 5 with H = G+, A = V (G), B =
F (G) and c = 2. ��

5 Combining the Local and Global Approaches

We are now ready to prove our result for general planar graphs. We will combine
the local and global approaches we have described to give our main approximate
min-max result. Towards this end, let ρ(G) denote the minimum size of a collec-
tion of faces of G such that the boundary of every odd face of G intersects the
boundary of some face in the collection. The following two lemmas are simple
and we omit their proofs. Lemma 5 implies that ρ(G′) ≤ ρ(G) for any subgraph
G′ of G.

Lemma 5. Let G be a plane signed graph with ρ(G) = r, and let f1, . . . , fr be
a collection of faces such that for every odd face f there is an index i such that
the boundary of fi intersects the boundary of f . Then we have ρ(G− e) ≤ r for
each edge e. Moreover, we have ρ(G− e) ≤ r − 1 if edge e is incident to fi and
fj for some distinct indices i and j. ��
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Lemma 6. Let G be a plane graph and X be a cutset of G with at most three
vertices (we allow the case X = ∅). If G has no cutset with fewer than |X|
elements, then there exists a polygon P ⊂ R2 intersecting G only in vertices and
such that X is precisely the intersection of P and G and each region of R2 \ P
contains a vertex of G. ��

The next lemma, combined with Lemma 6, will allow us to focus on 4-
connected graphs G.

Lemma 7. Let G be a plane signed graph, let P ⊂ R2 be a polygon intersecting
G only in vertices, and let X = P ∩ V (G). Assume that each region R1 and
R2 of R2 \ P contains at least one vertex of G. Then X is a cutset in G. For
i = 1, 2, let Gi be the part of G contained in the closure of region Ri. Then we
have ρ(G1) + ρ(G2) ≤ ρ(G) + 2.

Proof. Let {f1, . . . , fr} denote a collection of r = ρ(G) faces of G such that
the boundary of every odd face of G intersects the boundary of some face of
the collection. Without loss of generality, we can assume that there are some
indices r1 and r2 with r1 ≤ r2 such that f1, . . . , fr1 are contained in R1 and
incident to no vertex of X, and fr2 , . . . , fr are contained in R2 and incident to
no vertex of X. For i = 1, 2, let gi denote the face of Gi containing R2−i+1. Then
the boundary of every odd face of G1 intersects the boundary of some face in
{f1, . . . , fr1} ∪ {g1}. Similarly, the boundary of every odd face of G2 intersects
the boundary of some face in {fr2 , . . . , fr} ∪ {g2}. The lemma follows. ��

Theorem 4. For every unbalanced plane signed graph G, we have τ(G) ≤
7ν(G) + 3ρ(G)− 8.

Proof. Let G be a counterexample with |V (G)| as small as possible, and let
{f1, . . . , fr} denote any minimum collection of faces of G such that the boundary
of every odd face of G intersects the boundary of some face in the collection.
Note that we have r = ρ(G) ≥ 1. We claim: (1) G has a packing of size 2,
no transversal of size at most 9, and G is simple; (2) G is 4-connected; (3) the
shortest path distance dG+(fi, fj) between fi and fj is at least 8 whenever i �= j.

Proof of Claim (1). If G has no packing of size 2, then by Proposition 3, we have

τ(G) ≤ 2 = 7 + 3− 8 ≤ 7ν(G) + 3ρ(G)− 8,

a contradiction. So G has a packing of size 2, that is, we have ν(G) ≥ 2. Now
a similar argument shows that G has no transversal of size at most 9, that is,
we have τ(G) > 9. If G is not simple, then it has an odd digon. Letting x and
y be the vertices of the digon and X = {x, y}, we have ν(G −X) ≤ ν(G) − 1.
By Lemma 5, we have also ρ(G − X) ≤ ρ(G). Therefore, because G − X is
unbalanced and has less vertices that G, we have

τ(G) ≤ 2 + τ(G−X)
≤ 2 + 7ν(G−X) + 3ρ(G−X)− 8
≤ 7ν(G) + 3ρ(G) + 2− 7− 8 ≤ 7ν(G) + 3ρ(G)− 8,

a contradiction. So Claim (1) holds.
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Proof of Claim (2). By the previous claim, G has at least 10 vertices. Therefore,
to prove the present claim, it suffices to prove that G has no cutset of size 3.
However, in order to use Lemma 6 we need to show that G is 3-connected; we
leave this straightforward task to the reader. Now assume that G is 3-connected.
Suppose that G has a cutset X consisting of three vertices x, y and z. Let
Y = {y, z}. By Lemma 6, there exist induced subgraphs G1 and G2 of G and a
polygon P ⊂ R2 determining two regions R1 and R2 in the plane such that P
intersects G precisely in x, y and z, and Gi equals the restriction of G to the
closure of region Ri, for i = 1, 2. It suffices to consider the following two cases.
Indeed, if G1 − X and G2 − X are both balanced then G has a transversal of
size at most 3, contradicting Claim (1).

Case 1. Neither G1−X nor G2−X is balanced. It follows that neither G1−Y
nor G2−Y is balanced. If we have ν(G) ≥ ν(G1−Y ) + ν(G2−Y ) then Lemma
7 implies

τ(G) ≤ 2 + τ(G1 − Y ) + τ(G2 − Y )
≤ 2 + 7ν(G1 − Y ) + 3ρ(G1 − Y )− 8 + 7ν(G2 − Y ) + 3ρ(G2 − Y )− 8
≤ 7ν(G) + 3ρ(G) + 2 + 6− 16 = 7ν(G) + 3ρ(G)− 8,

a contradiction. Else, we have ν(G) = ν(G1−Y )+ν(G2−Y )−1. It follows that
every maximum packing of G1 − Y and every maximum packing of G2 − Y hit
the vertex x. So we have ν(G1−X) = ν(G1−Y )−1, ν(G2−X) = ν(G2−Y )−1
and ν(G) = ν(G1 −X) + ν(G2 −X) + 1. Therefore, we have

τ(G) ≤ 3 + τ(G1 −X) + τ(G2 −X)
≤ 3 + 7ν(G1 −X) + 3ρ(G1 −X)− 8 + 7ν(G2 −X) + 3ρ(G2 −X)− 8
≤ 7ν(G) + 3ρ(G) + 3− 7 + 6− 16 ≤ 7ν(G) + 3ρ(G)− 8,

a contradiction.
Case 2. G1−X is balanced and G2−X is not balanced. If G1 is not balanced,

then we have ν(G) ≥ ν(G2 −X) + 1 and hence

τ(G) ≤ 3 + τ(G2 −X) ≤ 3 + 7ν(G2 −X) + 3ρ(G2 −X)− 8
≤ 7ν(G) + 3ρ(G) + 3− 7− 8 ≤ 7ν(G) + 3ρ(G)− 8,

a contradiction. Otherwise, G1 is balanced. Consider the graph G′
2 obtained

from G2 by adding a triangle on x, y and z to G′
2. We do not add an edge if

it is already present in G2. Since we can easily modify G to get a drawing of
G′

2, we can regard G′
2 as a plane graph. Consider any two distinct vertices u,

v in X = {x, y, z}. Because G1 is balanced, all u–v paths in G1 have the same
parity. We let the parity of the edge uv in G′

2 be the parity of all u–v paths in
G1. Note that we have τ(G) ≤ τ(G′

2) and ν(G′
2) ≤ ν(G). Moreover, we have

ρ(G′
2) ≤ ρ(G), as we now prove. Since G is 3-connected, there is a vertex t in

G1 −X sending three independent paths to x, y and z in G1. By Lemma 5, if
we delete from G all edges which are contained in G1 except those which belong
to one of the three paths, the resulting graph G′ satisfies ρ(G′) ≤ ρ(G). Since
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the triangle on x, y, z determines an even face in G′
2, we have ρ(G′

2) ≤ ρ(G′).
Hence, we have ρ(G′

2) ≤ ρ(G), as claimed. It follows that we have

τ(G) ≤ τ(G′
2) ≤ 7ν(G′

2) + 3ρ(G′
2)− 8 ≤ 7ν(G) + 3ρ(G)− 8,

a contradiction. In conclusion, Claim (2) holds.

Proof of Claim (3). Suppose that dG+(fi, fj) ≤ 6 for some distinct indices i
and j. Let X denote the set of vertices of G on a shortest path between fi

and fj in G+. So X contains at most three vertices. By Lemma 5, we have
ρ(G−X) ≤ ρ(G)− 1. Because G−X is not balanced, we have

τ(G) ≤ 3 + τ(G−X) ≤ 3 + 7ν(G−X) + 3ρ(G−X)− 8 ≤ 7ν(G) + 3ρ(G)− 8,

a contradiction. So Claim (3) holds.
Now we would like to apply Lemma 4 around each face in the collection

{f1, . . . , fr}. So each face fi will perform as a center. The targets around fi are
the odd faces of G whose boundary intersects the boundary of f . By Claim (3),
whenever g is a target around fi and g′ is a target around fj with i �= j, the
boundaries of g and g′ are disjoint. By Lemma 4, for each center fi there exists
a packing of odd cycles Ci formed by target boundaries, and a local transversal
Wi whose size is at most twice the size of packing Ci. Let Clocal denote the union
of packings C1, . . . , Cr. Then Clocal is a packing.

Now let H = G+, let A = V (G) and let B = F (G). Consider the graph H̃
obtained from H by contracting, for 1 ≤ i ≤ r, all vertices of H at distance at
most 2 from fi to a single vertex f̃i. Note that H̃ is still bipartite, with bipartition
{Ã, B̃}, where

Ã = A \ {a ∈ A : dH(a, fi) ≤ 2 for some i with 1 ≤ i ≤ r},
B̃ = B \ {b ∈ B : dH(b, fi) ≤ 2 for some i with 1 ≤ i ≤ r} ∪ {f̃i : 1 ≤ i ≤ r}.

Let T̃ denote the set of those f̃i’s that correspond to centers fi which have an
odd number of targets around them. So T̃ is an even subset of B̃. Let J̃ denote
a minimum length T̃ -join in H̃. Then, by Proposition 5, there is a collection of
fringe-disjoint T̃ -cuts δ(F̃) in H̃ such that

|δ(F̃)| ≥ 1
2
(|J̃ | − |T̃ |+ 1) ≥ 1

2
(|J̃ | − r + 1)⇒ |J̃ | ≤ 2|δ(F̃)|+ r − 1.

This collection of fringe-disjoint T̃ -cuts yields a packing of odd cycles Cglobal in
G, of the same size. The T̃ -join J̃ defines a set of edges Jglobal in H = G+, as
follows. Every edge of J̃ that belongs to H is kept as it is. Every other edge
of J̃ is of the form vf̃i and is replaced by any shortest path between v and fi

in H. Because we have dH̃(f̃i, f̃j) ≥ 4 whenever i �= j and because J̃ is the
edge-disjoint union of shortest paths between pairs of vertices of T̃ , the length
of Jglobal is at most twice the length of J̃ .

For each local transversal Wi, let Ji denote the set of edges vf of the face-
vertex incidence graph G+ such that v ∈Wi and f is a target around fi incident
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to v. Let Jlocal denote the union of J1, . . . , Jr. The union of Jlocal and Jglobal

contains a T -join, say J . Because the width of J is at most the width of Jlocal

plus the width of Jglobal and because the width of a T -join is at most half of its
length, the width of J is at most

r∑
i=1

|Wi|+
1
2
|Jglobal| ≤ 2|Clocal|+ 2|Cglobal|+ r − 1 ≤ 4ν(G) + ρ(G)− 1.

By Claim (1), we have ν(G) ≥ 2. Therefore, we have

τ(G) ≤ 4ν(G) + ρ(G)− 1 ≤ 7ν(G) + 3ρ(G)− 8,

a contradiction. This concludes the proof of the theorem. ��

Because ρ(G) is at most the size of any inclusion-wise maximal collection of
boundary-disjoint odd faces in G, which is in turn at most ν(G), we obtain our
main result from Theorem 4.

Corollary 2. For every plane signed graph G, we have τ(G) ≤ 10ν(G). ��
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Abstract. In the edge-disjoint cycle packing problem we are given a
graph G and we have to find a largest set of edge-disjoint cycles in G. The
problem of packing vertex-disjoint cycles in G is defined similarly. The
best approximation algorithms for edge-disjoint cycle packing are due
to Krivelevich et al. [16], where they give an O(

√
log n)-approximation

for undirected graphs and an O(
√

n)-approximation for directed graphs.
They also conjecture that the problem in directed case has an integrality
gap of Ω(

√
n). No non-trivial lower bound is known for the integrality

gap of this problem. Here we show that both problems of packing edge-
disjoint and packing vertex-disjoint cycles in a directed graph have an
integrality gap of Ω( log n

log log n
). This is the first super constant lower bound

for the integrality gap of these problems. We also prove that both prob-
lems are quasi-NP-hard to approximate within a factor of Ω(log1−ε n),
for any ε > 0. For the problem of packing vertex-disjoint cycles, we give
the first approximation algorithms with ratios O(log n) (for undirected
graphs) and O(

√
n) (for directed graphs). Our algorithms work for the

more general case where we have a capacity cv on every vertex v and
we are seeking a largest set C of cycles such that at most cv cycles of C
contain v.

1 Introduction

We study approximation algorithms, lower and upper bounds for the integrality
gaps, and hardness results for the problems of packing disjoint cycles in a graph
(directed or undirected). In the problem of packing edge-disjoint cycles (EDC ),
we are given a graph G (which can be directed or undirected) and we have to find
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a largest set of edge-disjoint cycles in G. The problem of packing vertex-disjoint
cycles (VDC ) is defined similarly: find the maximum number of vertex-disjoint
cycles in G. The EDC problem has been studied extensively both in undirected
and directed graphs (see [16, 4, 6, 21]). Both EDC and VDC are fundamental
problems in graph theory with applications in several areas (see the discussion
in [4] for an application in computational biology and reconstruction of evolu-
tionary trees). Let’s denote by νe(G) and νv(G) the sizes of largest collections
of edge-disjoint and vertex-disjoint cycles in G, respectively. It is well known
that computing νe(G) and νv(G) are NP-hard even for undirected graphs. This
motivates the study of approximation algorithms for these problems. An algo-
rithm is called an α-approximation for a maximization problem if the solution
returned by the algorithm is at least a factor 1/α of the optimal solution, and α
is called the approximation (or performance) ratio of the algorithm. A natural
generalization of EDC is the problem of S-cycle packing (denote by s-EDC ).
In this problem, along with G we are given a subset S of vertices of G and the
goal is to find maximum number of edge-disjoint S-cycles in G, i.e. cycles each
of which contains a vertex of S. The analogous problem of s-VDC is defined as
finding maximum number of cycles in G each of which contains a vertex of S
and are disjoint on the vertices in V − S.

Known Results: Carpara et al. [6] showed that a simple greedy algorithm
yields an O(log n)-approximation for computing νe(G) and that the problem
is APX-hard even for planar graphs (i.e. for an absolute constant ε0 > 0,
no (1 + ε0)-approximation exists unless P=NP). Very recently, Krivelevich et
al. [16] showed that the greedy algorithm of [6] actually yields an O(

√
log n)-

approximation for EDC and gave examples to show that this is tight. In fact
they proved an upper bound of O(

√
log n) for the integrality gap of EDC . For

directed graphs, they gave an O(
√
n)-approximation for EDC and an O(n

2
3 )-

approximation for s-EDC . Their algorithm for directed EDC shows that the
integrality gap of EDC in directed graphs is at most O(

√
n). No non-trivial

lower bounds for the integrality gap of EDC in directed setting is known. The
authors in [16] conjectured that there is a lower bound of Ω(

√
n) for this inte-

grality gap.

Related Results: The dual problems of packing cycles (known as feedback
sets problems) are also very well studied problems in both directed and undi-
rected settings. The dual problem of VDC , known as Feedback Vertex Set
(FVS), is the problem of finding minimum number of vertices in a graph whose
removal makes the graph acyclic. This problem and its generalization (in which
every vertex has a weight and we seek to minimize the total weight of selected
vertices) has 2-approximation algorithms in undirected graphs (see [3, 5, 10]).
The problem of finding minimum number of edges in a graph that meet every
cycle (FES) is trivial for undirected graphs (complement of a spanning tree).
For directed graphs, there is an easy reduction from FES to FVS. Seymour [21]
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showed that, if the optimal fractional FVS in a directed graph G has value ϕ∗

then the optimal integral FVS in G has value at most O(ϕ∗ logϕ∗ log logϕ∗).
This yields an O(logϕ∗ log logϕ∗)-approximation algorithm for FVS in directed
graphs [13]. Alon and Seymour (see [21]) showed that the integrality gap of FVS
is Ω(logϕ∗).

As far as we know, the only hardness result for the problems of packing
disjoint cycles is the the APX-hardness result proved in [6] for undirected EDC ,
and no better hardness or even a super constant lower bound for the integrality
gap of EDC in directed graphs is known. As mentioned earlier, Krivelevich et al.
[16] have conjectured that this gap is Ω(

√
n). This conjecture seems conceivable,

given the fact that the well known similar problem of edge-disjoint paths (EDP)
has such an integrality gap (even in undirected case). Here we take the first step
toward tightening this gap. Our main result is that EDC in directed setting has
an integrality gap of Ω( log n

log log n ). More importantly, we prove that it is quasi-
NP-hard to approximate νe(G) within a factor of Ω(log1−ε n) for any ε > 0.
Under stronger complexity assumptions we can prove a slightly better hardness
of Ω( log n

log log n ). As we will see, there are quite easy reductions between EDC and
VDC in directed graphs. Therefore, our hardness result for EDC carries over to
VDC , i.e. VDC in directed graphs is hard to approximate within a factor of
Ω(log1−ε n).

We also consider the capcitated version of cycle packing problems. In the
capacitated version of VDC , we are given a graph G(V,E) with a positive
capacity cv on every vertex v ∈ V and the goal is to find a largest collection C of
cycles in G such that each vertex v belongs to at most cv cycles of C. We abuse
the notation slightly by calling this capacitated version VDCc , although the
cycles are not required to be vertex-disjoint anymore. For undirected VDCc , we
give an O(log n)-approximation. This also shows an upper bound of O(log n) on
the integrality gap of VDCc in undirected graphs. We are not aware of any earlier
approximation algorithm for this problem. For directed VDCc , we show that a
simple randomized rounding algorithm (similar to the ones we presented in [9])
yields an O(

√
n)-approximation. The same algorithm works for the even more

general case of capacitated (directed) s-VDC , where every vertex v ∈ V − S
has a capacity cv and we have to find a largest collection C of S-cycles (i.e.
cycles that intersect S) such that each vertex v ∈ V − S belongs to at most cv

cycles. We denote this problem by s-VDCc . Note that for the s-EDC [16] gave
an O(n

2
3 ) greedy approximation algorithm. It can be shown (as we will see) that

this upper bound is tight for their greedy algorithm.

Remark: For the capacited version of EDC (denoted by EDCc ), as noted by
the authors in [16], their results for EDC can be easily extended to an O(

√
log n)-

approximation algorithm for undirected EDCc and an O(
√
n)-approximation for

directed EDCc .
Throughout the paper, we use n to denote the number of vertices of the input

graph.
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2 Approximation Algorithms

Let G(V,E) be the given graph with a capacity cv for every vertex v ∈ V , and
let C(G) denote the set of all cycles of G. The following is the standard integer
program (IP) formulation of VDCc :

maximize
∑

C∈C xC

subject to ∀v ∈ V :
∑

C:v∈C xC ≤ cv

∀C ∈ C : xC ∈ {0, 1}
(1)

Trivially, for VDC all cv values are equal to 1. The fractional VDCc prob-
lem is the linear program relaxation of this IP. The integer program formula-
tion for EDCc is defined similarly. Here, we will have a constraint of the form∑

C:e∈C xC ≤ ce, for every edge e ∈ E. For the EDC problem, all the capacities
are 1. Clearly, the solutions to the fractional problems (LP’s) are upper bounds
to the solutions for the corresponding integral problems (IP’s). Let ν∗

v (G) and
ν∗

e (G) denote the values of optimal fractional solutions for VDC and EDC ,
respectively.

Theorem 1. There is an O(log n)-approximation for (undirected) VDCc .

Proof. We are going to incorporate a technique from [18] with the simple greedy
algorithm, similar to the one for the EDC in [6, 16]. The idea of this greedy
algorithm was implicit in [11].

Consider the problem of fractional VDCc , i.e. the LP corresponding to the
IP given in (1). Note that the separation oracle for the dual of this LP is the
problem of finding a shortest cycle in a weighted graph. Since this problem can
be solved in polynomial time, using the same method as in Theorem 4.1 of [15]
(or [7]) we can solve the primal LP in polynomial time. Let ϕ(G) and ϕ∗(G)
denote the values of optimal solution to the IP and the corresponding LP for
VDCc . Let Y = {x1, . . . , xp} be the set of primal variables that have value > 0
in the optimal fractional solution. One of the features of the algorithm of [15]
is that p (the number of fractional cycles) is polynomial in n, even-though the
LP has an exponential number of variables. If

∑p
i=1�xi� ≥ 1

log n

∑p
i=1 xi then

Y ′ = {�x1�, . . . , �xp�} is an integral solution with value at least ϕ∗(G)
log n , which is

at least ϕ(G)
log n . In this case the algorithm returns the cycles corresponding to the

variables in Y ′ and stops. Otherwise, if
∑p

i=1�xi� < 1
log n

∑p
i=1 xi then

ϕ∗(G) =
p∑

i=1

xi =
p∑

i=1

�xi�+
p∑

i=1

(xi − �xi�) <
ϕ∗(G)
log n

+ p.

Therefore, with Q = p · ( log n
log n−1 ): ϕ∗(G) < Q. This implies that for every vertex

v ∈ G, at most a value of min{cv, Q} of capacity of v is used in any optimal
(fractional or integral) solution. So we can decrease the capacity cv of every
vertex v to min{cv, Q}.
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We are also going to assign capacities to the edges of G. Initially, every edge
has infinite capacity. Throughout the algorithm, we will replace a vertex v of
degree 2 with neighbors u and w with an edge between u and w with capacity cv.
We perform the following algorithm on G as long as G has a cycle. The algorithm
is based on the greedy algorithm proposed in [6] for the EDC . Initially C = ∅.

1. While G contains a vertex v of degree ≤ 1 or with capacity 0 delete v (and
all the edges incident with it).

2. While G contains a vertex v of degree 2 with neighbors u and w delete v
and add an edge uw with capacity cv to G.

3. Find a shortest cycle C in G and add it to C, decrease the capacity of every
vertex in C and every edge with finite capacity in C by 1. Go to step 1.

It is easy to see that steps 1 and 2 don’t change the value of an optimal
solution. Also, since the capacity of every vertex is polynomial in n, the size
of the graph is always a polynomial factor of the initial size of G. Let Si be
the i’th iteration in which we perform step 3 and let Gi be the graph at the
beginning of iteration Si, and ni = |Gi|. It is well known that every graph
with minimum degree at least 3 on n vertices has girth (size of the shortest
cycle) at most O(log n) [11]. Since graph Gi has minimum degree 3, the girth
of Gi is at most O(log ni). Therefore, the cycle found in step Si intersects at
most O(log ni) (which is O(log n)) cycles of the optimal fractional solution. This
is true for every step Si. Thus, ϕ∗(G) ≤ O(log n)|C|, i.e. the algorithm is an
O(log n) approximation. �

Our next theorem gives an O(
√
n)-approximation algorithm for directed s-

VDCc . First we show that the greedy algorithm of [16] for s-EDC (and its
adapted version for s-VDC ) will have a ratio of at least Ω(n

2
3 ). We give the

construction of a graph G which is a simple modification of a construction given
by Chekuri and Khanna [8] for the problem of edge-disjoint paths (EDP) in
directed graphs. G consists of two layered graphs G1 and G2, where G1 contains
layers X1, . . . , Xq and G2 contains layers Y1, . . . , Yq of vertices, with q = n

2
3 .

Each Xi and Yi has n
1
3 vertices and every vertex in Xi (in Yi), 1 ≤ i < q, is

connected by an edge to every vertex in Xi+1 (in Yi+1). For every odd value
of i ≤ q − 2 pick a representative vertex xr

i from Xi and one yr
i+1 from Yi+1.

Connect xr
i to yr

i+1 and connect yr
i+1 to xr

i+2. Finlay put an edge between every
vertex in Yq to every vertex in X1. Let S = X1. It is easy to verify that G has
Ω(n

2
3 ) edge-disjoint S-cycles (and they are in fact vertex disjoint on V − S). If

the greedy algorithm picks in its first S-cycle all the edges between G1 and G2

then it finds only one cycle (since the edges from G1 to G2 form a cut of size
O(q) from G1 to G2). Therefore, the ratio of greedy algorithm proposed in [16]
for s-EDC (and its analogous for s-VDC ) is at least Ω(n

2
3 ).

Theorem 2. There is an O(
√
n)-approximation algorithm for directed s-VDCc .

Proof. The proof of this theorem follows the same steps as the approximation
algorithms of [9] for disjoint Steiner trees in directed graphs. Let G(V,E), set
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S ⊆ V , and capacity cv for every vertex v ∈ V − S be the given instance of
s-VDCc . Consider the IP/LP formulation of the s-VDCc problem, which is the
same as (1) given for VDCc except that C(G) will be the set of all S-cycles of
G. Consider the optimal fractional solution which is again computed using the
technique of [15] or [7]. We can compute this fractional solution in polynomial
time since the separation oracle for the dual LP is the problem of finding a
shortest S-cycle in a weighted graph, and this can be computed in polynomial
time. Consider a solution to the LP of s-VDCc and let X∗ = {x∗

1, x
∗
2, . . . x

∗
p(n)}

be the set of fractional cycles in this optimal fractional solution, where p(n) is
some polynomial in n. For every S-cycle C with fractional value x∗

C ≥ 1 we
“take out” �x∗

C� copies of that cycle from the graph and put them in the final
integral solution that we are computing. This way we will find a set C1 of size at
least ϕ∗

1 =
∑p(n)

i=1 �x∗
i � integral S-cycles. We also decrease the capacity of every

vertex in cycle C by �x∗
C�, and replace x∗

C with x∗
C − �x∗

C� in the fractional
solution. Now let ϕ∗

2 =
∑p(n)

i=1 x∗
i . Note that the value of the solution to the LP

of s-VDCc is ϕ∗
1 + ϕ∗

2. We show how to find a set C2 of size at least O( ϕ∗
2√
n
)

integral cycles. The final solution will be C1 ∪ C2 which clearly has size at least
O(ϕ∗

1 + ϕ∗
2√
n
), and since the value of the solution to the original LP is ϕ∗

1 + ϕ∗
2,

we get an O(
√
n)-approximation.

If ϕ∗
2 ≤ 30

√
n then it is enough to find just one S-cycle in G and place it in

C2. So let’s assume that ϕ∗
2 > 30

√
n. For every cycle C ∈ C(G), pick that cycle

with probability x∗
c/λ for a λ > 0 to be defined soon. Define YC to be random

variable that is 1 if and only if cycle C is selected. So for Y =
∑

C∈C(G) YC (i.e.
total number of cycles placed in C2), we have:

E[Y ] =
∑

C∈C(G)

Pr[YC = 1] =
∑

C∈C(G)

x∗
C

λ
=

ϕ∗
2

λ
.

Define the bad event Av to be the event that more than cv cycles containing
vertex v ∈ V − S are selected. We can show that with positive probability none
of these events happens (so no vertex capacity is violated) and that the number
of cycles selected is at least O(ϕ∗

2/λ). We borrow the following lemma from [9]:

Lemma 1. [9] Assume that A = {a1, . . . , an} is a set of n non-negative re-
als and let Ak be the set of all subsets of size k of A. If

∑n
i=1 ai ≤ Q , then∑

{ai1 ,...,aik
}∈Ak

ai1ai2 . . . aik
≤
(
n
k

)
(Q/n)k.

For every vertex v ∈ V −S, denote the number of fractional cycles C with x∗
C > 0

that contain v by ψv. By this definition:

Pr[Av] ≤
∑ cv+1∏

i=1

x∗
Cai

/λ,
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where the summation is over all subsets {Ca1 , . . . , Cacv+1} of size cv +1 of cycles
with x∗

Cai
> 0 that contain vertex v. Therefore, using Lemma 1:

Pr[Av] ≤
(

ψv

cv + 1

)(
cv

λψv

)cv+1

≤
(

vψv

cv + 1

)cv+1(
cv

λψv

)cv+1

≤ e2

λ2
,

where we have used the fact
(
n
k

)
≤ ( en

k )k for the second inequality. It is intuitively
clear that if Av holds then it does not increase the probability of any other Av′ . In
other words, events Av are “positively correlated”. Therefore: Pr[

∧
v∈V −S Av] ≥∏

v∈V −S Pr[Av] ≥ (1 − e2

λ2 )n. Also, by Chernoff bound, for 0 ≤ δ < 1: Pr[Y <

(1− δ)E[Y ]] ≤ e−δ2ϕ∗
2/2λ. Thus:

Pr[(Y < (1− δ)E[Y ]) ∨ (∃v ∈ V − S : Av)] ≤ e−δ2ϕ∗
2/2λ + 1− (1− e2/λ2)n.

If we show that for suitable δ and λ: (1 − e2/λ2)n > e−δ2ϕ∗
2/2λ then using the

method of conditional probability, we can efficiently find a selection C2 of S-cycles
such that |C2| ≥ (1−δ)ϕ∗

2/λ and that no vertex capacity constraint is violated. If
ϕ∗

2 ≤ n then with δ = 1
2 and λ = e

√
n we find a collection C2 of S-cycles that obey

the capacity constraints of vertices with |C2| ≥ ϕ∗
2/2e
√
n. If ϕ∗

2 > n then there
is a constant σ > 0 such that with δ = 1

2 and λ = σ: (1− e2/λ2)n > e−δ2ϕ∗
2/2λ.

Again, we can find a collection C2 of S-cycles that satisfy the capacity constraints
of vertices and |C2| ≥ ϕ∗

2
2σ . In any case, we find a set C2 of size at least Ω( ϕ∗

2√
n
).

Therefore, the algorithm is an O(
√
n)-approximation for s-VDCc . �

3 Integrality Gap and Hardness of Directed EDC and
VDC

In this section, we prove that each of EDC and VDC has an integrality gap of
Ω( log n

log log n ). Furthermore, each of νv(G) and νe(G) is quasi-NP-hard to approxi-
mate within a factor of O(log1−ε n), for any ε > 0. First, we provide approximate
preserving reductions between EDC and VDC .

Theorem 3. Given a directed graph G(V,E) as an instance of VDC (of EDC )
there is an instance G′(V ′, E′) of EDC (of VDC ) with |G′| = poly(|G|), such
that G has k vertex-disjoint cycles (edge-disjoint cycles) if and only if G′ has k
edge-disjoint cycles (vertex-disjoint cycles).

Proof. 1st direction: For each node v ∈ V , G′ contains two nodes v1, v2. We
add v1v2 to E′. Furthermore, for every edge uv ∈ E we create an edge u2v1

in E′ and for every edge vw ∈ E we create an edge v2w1 in E′. It is easy to
see that if C is a collection of integral (or fractional) vertex-disjoint cycles in
G with size k then there is a collection C′ of k integral (or fractional) edge-
disjoint cycles in G′. Conversely, suppose that C′ is a collection of k integral (or
fractional) edge-disjoint cycles in G′. Then for every edge v1v2 (corresponding to
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a vertex v ∈ V (G)) there is at most a total of one integral (or fractional) cycle(s)
containing that edge. Therefore, by contracting the edges of the form v1v2 on
each cycle of C′ we obtain a collection of k integral (or fractional) vertex-disjoint
cycles in G.

2nd direction: Suppose G is an instance of EDC . For every edge xy in G create
a vertex vxy in G′. For every vertex x ∈ G with ingoing edges y1x, y2x, . . . , ypx
and outgoing edges xz1, xz2, . . . , xzq add the following edges to G′: vyixvxzj

for
every 1 ≤ i ≤ p and 1 ≤ j ≤ q. It can be seen that G has k edge-disjoint
integral (or fractional) cycles if and only if if G′ has k vertex-disjoint integral
(or fractional) cycles. �

So it is enough to prove our lower bound for integrality gap and the hardness
result for EDC . Then we use Theorem 3 to deduce a similar result for VDC .

Theorem 4. The directed EDC problem has an integrality gap of Ω( log n
log log n ).

We give the construction of a graph G on n vertices, such that ν∗
e (G)

νe(G) ∈
Ω( log n

log log n ). Our starting point is a grid-like graph which gives the Ω(
√
n) in-

tegrality gap for the well-known problems of disjoint paths. An instance of the
edge-disjoint paths (EDP) problem consists of a (directed) graph G with pairs
of vertices si, ti, for 1 ≤ i ≤ k, and the goal is to connect maximum number of
pairs si, ti using edge-disjoint paths. The vertex-disjoint paths (VDP) problem
is defined similarly.

Let r be a positive integer and define a directed graph which consists of
vertices si, ti (1 ≤ i ≤ r) together with vertices hij , uij , vij , 1 ≤ j ≤ i ≤ r.
There is an edge from hij to uij and an edge from hij to vij (1 ≤ j ≤ i ≤ r).
There are also edges uijhi(j+1) and vijh(i+1)j for 1 ≤ j < i < r. Furthermore,
for every 1 ≤ i < r it has edges uiih(i+1)(i+1), sihi1, and vriti. Finally ur(r−1) is
connected to tr. Since this graph has a drawing on the plane, there cannot be
two vertex-disjoint paths Pi and Pj (1 ≤ i �= j ≤ r) where Pi starts from si and
ends in ti and Pj starts from sj and ends in tj . Because we want to have edge-
disjoint property, we “split” every vertex hij into two copies h1

ij and h2
ij , where

the ingoing edges of hij are now going into h1
ij and the outgoing edges of hij are

s2

sj

sr

t1 t2 ti tj tr

s1

si vij

uijh2
ij

h1
ij

Fig. 1. Construction of Dr: each gray circle corresponds to an intersection module
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going out of h2
ij and put the edge h1

ijh
2
ij in (see Figure 1). Let’s call this graph

Dr and the subgraph induced by four vertices h1
ij , h

2
ij , uij , vij an intersection

module of Dr. Again, it is easy to see that there cannot be two edge-disjoint
paths from si’s to ti’s (because we can route at most one path through every
intersection module). Note that:
Fact 1: The half-integral fractional solution for EDP in Dr has value ≥ r

2 .
This creates a gap of Ω(r), which is Ω(

√
n), with n being the number of

vertices in the graph. We will use this fact again, later on. A natural attempt to
extend this result to the cycle packing problem would be to add directed edges
tisi, for 1 ≤ i ≤ r. Unfortunately, this new graph will have an integral solution of
value Ω(r) (for e.g. consider the directed cycle that goes from s1 to tr along the
diagonal path, then to sr and to t1 and back to s1. We can pick r

4 such cycles).
So this doesn’t create the desired gap. The problem here is caused because the
cycles are not bond to follow a path directly from si to ti (they may go through
other sj ’s and tj ’s before reaching ti). Our idea to resolve this problem is to
make it “too costly” for the cycles to do so. In other words, we are going to
combine many copies of Dr in a special manner so that if a cycle consist of a
“non-trivial” path from si to ti then it has a very long length; so long that we
cannot have many of them. This will create the desired gap.

Using two copies of graph Dr we construct another graph Hr in the follow-
ing way. Consider graph Dr with input vertices s1, . . . , sr and output vertices
t1, . . . , tr. Take two copies of this graph, D1

r and D2
r , and identify (only) the in-

put vertices of them. Let s1, . . . , sr be the new set of (unified) input vertices and
t11, . . . , t

1
r and t21, . . . , t

2
r be the set of output vertices. Let’s call this graph Hr (see

Figure 2). An important observation to make here is that Hr is acyclic. This is
crucial to our main construction. We call the triple si, t

1
i , t

2
i “block” i with start

point si and end points t1i , t
2
i , 1 ≤ i ≤ k. Consider Hr and the 2r pairs si, t

1
i and

si, t
2
i (two pairs for each block) as an instance of the EDP problem. We say block

i is fully routed in a solution to this instance if there are edge-disjoint paths
connecting both pairs si, t

1
i and si, t

2
i in the solution. If only one of these paths

exists in the solution then we say block i is partially routed. It is easy to see:

s2

sj

sr

s1

t1r t2r

si

t2jt1jt2it1it22t12t21t11

Fig. 2. Construction of Hr from two copies of Dr
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Fact 2: Any optimal (integral) solution for EDP on Hk with 2k pairs, either
contains only one routed block or two partially routed blocks. Furthermore, there
is a half-integral solution in which every block is fully routed (with value 1

2 on
each path).

We will use the following technical lemma in our construction.

Lemma 2. For given positive integers r, k, and g with r < k, there is an explicit
construction for a k-uniform r-regular hypergraph of girth at least g where the
size of the construction (number of vertices) is O(k2g

r ).

Proof. We start with an explicit k-regular graph G(V,E) of size at most O(k2g−1)
and girth at least 2g. These graphs exist (see, for instance, [17] and the refer-
ences there). Construct a bipartite graph G′(A ∪ B,E′) from G where A and
B are copies of V with ai and bi being the vertices of A and B (respectively)
corresponding to vertex vi ∈ V , and aibj ∈ E′ if and only if vivj ∈ E. It is
easy to see that G′ is k-regular with girth at least 2g and has size O(k2g−1). To
simplify our calculations, let’s assume that k is a power of 2 (this only affects
the implicit multiplicative constant in the lemma).

Construct a new bipartite graph G′′(A′ ∪ B,E′′) from G′ in this way: for
each vertex ai ∈ A create two vertices a1

i and a2
i in A′. Then join a1

i to half
of the neighbors of ai and join a2

i to the other half. Repeating this procedure
log(k/r) times, we get the bipartite graph G′′ in which every vertex in A′ has
degree k

2log(k/r) = r and every vertex in B has degree k, |A′| = k2g

r , |B| = k2g−1,
and the girth is 2g. Now we define hypergraph H with vertex set A′ whose edge-
set is the set of neighborhoods of vertices of B. This hypergraph is k-uniform,
r-regular, with girth g and has size O(k2g

r ). �

Proof of Theorem 4: Let r, k, and g be some positive integers to be specified
later and let r′ =

(
r
2

)
. Consider a k-uniform r′-regular girth g hypergraph H.

Such graphs exist by Lemma 2. The underlying structure of the main graph
for the integrality gap is hypergraph H. Let p and q be the number of vertices
and hyperedges of H, respectively. Take a set Pr = {D1

r , . . . , D
p
r} containing p

copies of graph Dr (constructed earlier), one corresponding to each vertex in
hypergraph H. Also take a set Qk = {R1

k, . . . , R
q
k} containing q copies of Hk,

one corresponding to each hyperedge of H. For every graph in Pr we fix an arbi-
trary ordering of its intersection modules (note that the number of intersection
modules of Dr is

(
r
2

)
= r′; the same as degree of a vertex in H). Similarly, for

each graph in Qk we fix an arbitrary ordering of its blocks (note that the number
of blocks of each graph in Qk is k; the same as the size of a hyperedge in H).
Initially, we assign a green flag to every intersection module of every graph in Pr

and to every block of every graph in Qk. Soon we will start modifying the blocks
and modules and change their flags to “red”. For each pair sj

i , t
j
i in each copy

Dj
r ∈ Pr add the directed edge tjis

j
i to Dj

r. We call these edges feedback edges.
Consider an arbitrary hyperedge ei ∈ H and let Ri

k ∈ Qk be the copy of Hk in
Qk which corresponds to hyperedge ei. Note that Ri

k has k blocks; let’s denote
these blocks by bi

1, . . . , b
i
k, where bi

λ consist of triple si
λ, t

1,i
λ , t2,i

λ . Furthermore,
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look at the vertices of hyperedge ei and find the corresponding copies of Dr in
Pr. More precisely, let

Si ={Daj
r ∈ Pr| the vertex of H corresponding to D

aj
r belongs to ei, 1 ≤ j ≤ k}.

Pick the first green block of Ri
k, say si

λ, t
i,1
λ , ti,2λ (for some 1 ≤ λ ≤ k) according to

the fixed ordering of the blocks of Ri
k and change its flag to red. Also, pick the first

green intersection module of Daλ
r (from its fixed ordering), say h1

ab, h
2
ab, uab, vab

(for some 1 ≤ a, b ≤ r) and change its flag to red. Remove vertex h2
ab and its

incident edges (i.e. edges h1
abh

2
ab, h2

abuab, and h2
abvab) from Daλ

r and add the
following edges: h1

abs
i
λ, t1,i

λ uab, and t2,i
λ vab. We will consider these new three

edges (instead of the three edges that were removed from Daλ
r ) as part of Daλ

r .
Do this for all the blocks of Ri

k. This process is going to modify (and change
the flag from green to red for) one intersection module from each graph in Si

(i.e. Da1
r , . . . , DaK

r ); one for every block of Ri
k. Repeat the same procedure for

all the hyperedges of H (i.e. for all graphs in Qk). We obtain a huge directed
graph Gr,k,g, which has constant degree and O(r2p + k2q) vertices. Note that,
since each graph Ri

k ∈ Qk is acyclic, every cycle in Gr,k,g must contain one of
the feedback edges.

The basic idea behind the construction is that intersection modules in copies
of Dr (graphs in Pr) are now replaced with “blocks” of copies of Hk (graphs in
Qk) and in order to go from h1

ab to uab in the intersection module of Daλ
r , we

have to go from si
λ to t1,i

λ in a “block” of Ri
k. For the moment, assume that:

(i) all the blocks where completely independent of each other i.e. they were not
part of the same graph and therefore there was no way to start at the start
point of a block bi (of a copy of Hk) and end at an end point of another
block bj .

(ii) among all the blocks, only an ε-fraction could be (partially or fully) routed,
and for the other (1− ε)-fraction no routing existed at all.

This would imply that Gr,k,g has no more than εrp cycles. The reason is that
each cycle must contain a feedback edge, and so goes from some sα in a copy
of Dr in Pr to tα in the same copy. Therefore, it goes through at least r blocks
(previously intersection modules), since each cycle in a copy of Dr uses at least
r intersection modules. This would give us the required gap. Fortunately, the
assumption (i) above is easy to prove (by Fact 2), i.e. a large fraction of all of
the blocks of graphs in Qk do not have any routing (neither partial nor full). But
the trouble is that the second assumption is not correct. That is, the blocks are
not completely independent as we assumed, and they appear in groups of size
k in one graph (a copy of Hk in Qk). For this reason, cycles in Gr,k,g may have
complicated structures and go through several copies Di

r’s in Pr. For instance,
a cycle C may start (as a path) at some vertex sα in a copy Di

r in Pr (Di
r

corresponds to vertex vi ∈ H) and then at some vertex h1
ab ∈ Di

r the path enters
the start point of a block bx in a graph Rj

k (which is a copy of Hk in Qk). But
instead of going out from an end point of the same block bx (of Rj

k) it goes
(within Rj

k) to an end point of another block by of Rj
k. We call this situation
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a jump between blocks of Rj
k. This way, the path may end-up in another copy

Di′
r (before going back to sα). Looking from a higher level at the underlying

hypergraph structure (which has a structure like H), we can think of this path
as going from vertex vi (graph Di

r ∈ Pr) to vi′ (graph Di′
r ∈ Pr) in H through

hyperedge ej (through graph Rj
k ∈ Qk by starting at the start point of one block

and going down to an end point of another block of Rj
k). But if this happens,

since the start point (sα) is in Di
r, this path must eventually come back to tα

in Di
r (because tα ∈ Di

r is the only vertex that has an edge to sα). However,
because H has girth g, the path has to go through at least g other graphs in Pr

before getting back into Di
r. Therefore, the cycle contains at least Ω(g) edges

from the graphs in Pr. We call these cycles (that go through several graphs in
Pr) long cycles (because g is going to be large) and those that are within one
graph of Pr (and so do not jump between blocks of graphs in Qk), short cycles.
This implies that the total number of long cycles can be at most a fraction 1

g
of the total number of edges in the graphs in Pr. If g is large and r is small the
total number of short and long cycles will be small.

Lemma 3. ν∗
e (Gr,k,g) ∈ Ω(rp), that is, Gr,k,g has a fractional cycle packing

solution of value Ω(rp).

Proof. Recall that by Fact 1, there is a half-integral solution (for EDP problem)
in any instance Dr, which contains one half-integral path for each pair si, ti. If
we add edges tisi (for 1 ≤ i ≤ r) to Dr then there are at least r half-integral
cycles in Dr. In this fractional solution, we route exactly two (half-integral)
cycles through each intersection module.

We do have the feedback edges in Gr,k,g (in every graph Dj
r ∈ Pr). Also, by

Fact 2, for every graph Ri
k ∈ Qk there is a half-integral fractional solution in

which all the blocks in Ri
k are fully routed (with value 1

2 ). Therefore, all the
blocks in all graphs in Qk (which have replaced all the intersection modules
in graphs in Pr) are fully routed (with value 1

2 ). These two imply that each
(modified) graph Dj

r ∈ Pr has r half-integral (short) cycles (where parts of the
fractional cycles go through blocks of the graphs in Qk). Since there are p graphs
in Pr we get Ω(rp) half-integral cycles. �

Lemma 4. νe(Gr,k,g) ∈ O( q
r + r2p

g ).

Proof sketch. By Fact 2, for every graph Ri
k ∈ Qk, there is at most two blocks

that can be (partially or fully) routed. So over all graphs in Qk, there are at most
2q blocks that can be (partially or fully) routed. Since blocks have replaced the
intersection modules of the graphs in Pr and every short cycle in a graph in
Pr goes through at least r blocks, plus the fact that at most two cycles can go
through any routed block, there can be at most 4q/r directed short cycles in the
graphs of Pr in Gr,k,g.

Now we upper bound the number of long cycles. Because every graph in Pr

has constant degree and O(r2) vertices, the total number of edges of Gr,k,g that
are parts of the graphs in Pr is O(r2p). Therefore, by the arguments before
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Lemma 3, there are at most O( r2p
g ) long cycles in Gr,k,g. Thus the total number

of short and long cycles is O( q
r + r2p

g ). �

Recall that for hypergraph H, the number of vertices p and hyperedges q are
in O(k2g

r ) and O(k2g−1), respectively. Let r be some (not too small) constant
and k = g. This implies that p ∈ O(k2k) and q ∈ O(k2k−1). The total number
of vertices n in graph Gr,k,g is O(r2p + k2q) which is O(k2k+1). By Lemmas 3
and 4, the integrality gap is at least Ω((rp)/( q

r + r2p
g )) which is Ω(k). This is

Ω( log n
log log n ), which completes the proof of Theorem 4. �

Combining Theorems 3 and 4 and noting that the constructions in Theorem
3 have size polynomial, we obtain:

Corollary 1. Directed VDC has an integrality gap of Ω( log n
log log n ).

The construction for the hardness result has similar structure and uses the
hardness of directed EDP by Ma and Wang [19] which is based on PCP theorem
[1, 2] together with Raz [20] parallel repetition theorem.

Theorem 5. [19] For any ε > 0, directed EDP cannot be approximated within
ratio 2− log1−ε n unless NP ⊆ DTIME(2polylog(n)).

A careful analysis of proof of Theorem 5 reveals that in fact their proof implies
the following stronger version:

Theorem 6. Given an instance I of directed EDP, which consists of an acyclic
digraph G (on n vertices) and k source-sink pairs (s1, t1), . . . , (sk, tk) in G, where
k ∈ Ω(nδ) for some absolute δ > 0, it is quasi-NP-hard to decide between the
following two cases:

1. (Yes-instance) All pairs (si, ti) can be routed by disjoint paths, or
2. (No-instance) At most a fraction 2− log1−ε n of the pairs can be routed.

Theorem 7. For any ε > 0, there is no O(log1−ε n)-approximation for EDC un-
less NP ⊆ DTIME(2polylog(n)).

Proof. Let IEDP be an instance of (directed) EDP as in Theorem 6 which con-
sists of a directed acyclic graph G and k pairs (si, ti), 1 ≤ i ≤ k. Take two copies
of IEDP , named I1

P and I2
P and identify the source s1

i ∈ I1
P with s2

i ∈ I2
P and call

this new vertex si (1 ≤ i ≤ k). Denote this new graph by Hk, with 2k source-sink
pairs si, t

1
i and si, t

2
i , 1 ≤ i ≤ k. As in the construction of the integrality gap, we

name the triple si, t
1
i , t

2
i block i of Hk with start point si and end points t1i and

t2i . In a solution to EDP problem with instance Hk and the 2k pairs si, t
1
i and

si, t
2
i (1 ≤ i ≤ k) we say block i is fully routed if there are two paths, one from si

to t1i and one from si to t2i , in the solution. If only one of these paths exists then
we say block i is partially routed. If none of them exists block i is not routed
at all. Again, the fact that Hk is acyclic will be crucial in the analysis of our
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construction. Let r and g be some positive integers (to be specified later) and
take a

(
r
2

)
-regular k-uniform hypergraph H with girth g. As before, let p and q

be the number of vertices and hyperedges of H, respectively. We construct graph
Gr,k,g whose underlying structure is hypergraph H in the same manner we did in
Theorem 4 except that now we use copies of Hk (defined above) to place in Qk.
The rest of the construction remains the same. That is, we take p copies of Dr

and put them in the set Pr and then replace the intersection modules of them
with blocks of copies of Hk in Qk in the same manner. Let Pr = {D1

r , . . . , D
p
r}

and Qk = {R1
k, . . . , R

q
k}. We define short and long cycles in Gr,k,g in the same

way as we did in Theorem 4.
If IEDP is a Yes instance then all the k blocks in Hk can be fully routed.

This means that every block of every Ri
k ∈ Qk can be fully routed. So for every

graph Dj
r ∈ Pr there are r disjoint paths from si to ti, one for each 1 ≤ i ≤ r,

and because of the existence of feedback edges (connecting ti to si) we have r
edge-disjoint cycles in each Dj

r ∈ Pr. This gives a total of Ω(rp) edge-disjoint
cycles.

If IEDP is a No instance then at most a fraction 2− log1−ε n of the k pairs
can be routed. Since k ∈ Ω(|IEDP |δ), this fraction is at most 2−( log k

δ )1−ε

, which
we name it α. So, at most 2αk blocks in each graph in Qk, and therefore, at
most 2αkq blocks over all the graphs in Qk can be (fully or partially) routed.
Because each short cycle in a graph Di

r ∈ Pr goes through r blocks (previously
intersection modules), the number of short cycles over all graphs in Pr is at
most 2αkq/r. The same argument we had in Theorem 4 for long cycles implies
that the number of long cycles here is at most a 1

g fraction of the total number

of edges in all graphs in Pr. This is at most O( r2p
g ). All together, the num-

ber of short and long cycles is O(2αkq
r + r2p

g ), which is O(rp(2α + r
g )), because

q = r2p
k .

The above arguments, together with Theorem 6 imply that deciding between
Ω(rp) cycles and O(rp(2α+ r

g )) cycles in Gr,k,g is quasi-NP-hard. Equivalently, it
is quasi-NP-hard to have an approximation algorithm with factor Ω(1/F (r, k, g))
where F (r, k, g) = 2α+ r

g . Let r be a (not too small) constant and g = O(logc k)
for an arbitrary large constant c > 0. This implies that the hardness factor (i.e.
1/F (r, k, g)) is Ω(logc k). With this setting of parameters, hypergraph H has
p = O(klogc k) vertices and q = rp

k = O(klogc k−1) edges. So, if N denotes the
number of vertices of Gr,k,g (i.e. the size of construction), then it will be at most
O(klogc k) (for the vertices in graphs in Pr) plus O(k

2
δ +logc k) (for the vertices in

graphs in Qk). So overall, N ∈ O(k
2
δ +logc k), which is quasi-polynomial in the

size of input (instance IEDP ). Rewriting the hardness factor Ω(logc k) in terms
of N gives a hardness of Ω(log

c
c+1 N). �

Under a stronger complexity assumption that for some sufficiently small
δ > 0, NP �⊆ DTIME(2nδ

), we can improve the hardness result to
Ω( log n

log log n ).
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11. P. Erdös and L. Pósa, On the maximal number of disjoint circuits of a graph, Publ.
Math. Debrecen 9:3–12, 1962.

12. G. Even, J. Naor, B. Schieber, and L. Zosin, Approximating minimum subset feed-
back sets in undirected graphs with applications, SIAM J. Discrete Math. 13(2):255-
267, 2000.

13. G. Even, J. Naor, B. Schieber, and M. Sudan, Approximating minimum feedback
sets and multicuts in directed graphs, Algorithmica 20(2): 151–174, 1998.

14. V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis, Near-
Optimal Hardness Results and Approximation Algorithms for Edge-Disjoint Paths
and Related Problems, J. of Computer and System Sciences 67(3):473–496, 2003.
Earlier version in STOC’99.

15. K.Jain, M.Mahdian, M.R.Salavatipour, Packing Steiner trees, In Proc. SODA 2003.
16. M. Krivelevich, Z. Nutov, R. Yuster, Approximation algorithms for cycle packing

problems, To appear in Proc. of SODA’05.
17. F. Lazebnik, V.A. Ustimenko and A.J. Woldar, New upper bounds on the order of

cages, Electronic Journal of Combinatorics, Volume 14, R13: 1–11, 1997.
18. L.C.Lau, An approximate max-Steiner-tree-packing min-Steiner-cut theorem, In

Proc. 45th IEEE FOCS 2004.
19. B. Ma and L. Wang, On the inapproximability of disjoint paths and minimum

steiner forest with bandwidth constraints, J. of Computer and Systems Sciences,
60(1):1–12, 2000.

20. R. Raz, A parallel repetition theorem, SIAM J. of Computing, 27(3): 763–803, 1998.
21. P. D. Seymour, Packing directed circuits fractionally, Combinatorica 15(2):281–

288, 1995.



A Combinatorial Algorithm to Find
a Maximum Even Factor�
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Abstract. We give a new, algorithmic proof for the maximum even fac-
tor formula which can be converted into a polynomial time combinatorial
algorithm to solve the maximum even factor problem. In several aspects,
the approach is similar to Edmonds’ Matching Algorithm, but there is a
significant difference.

1 Introduction

W.T. Tutte [15] characterized the existence of a perfect matching in a graph,
then C. Berge gave a min-max formula in [2] to determine the maximum size of a
matching – the so-called Berge-Tutte formula. In [6] J. Edmonds gave an efficient
algorithm to determine a maximum matching, which also implies a structural
description – independently found by T. Gallai [7] – called the Gallai-Edmonds
decomposition.

W.H. Cunningham and J.F. Geelen [4] investigated separation algorithms for
the matchable set polytope, first studied by E. Balas and W. Pulleyblank in [1].
In [4] they concluded that a strongly polynomial time separation algorithm can
be given, provided there is a polynomial time algorithm for solving a combinato-
rial problem which they called the optimal path-matching problem. They settled
this by giving polynomial algorithms for the optimal path-matching problem,
which is in fact a direct generalization of the matching problem. Tutte’s original
approach related matchings to the rank of a matrix over indeterminates – now
known as the Tutte-matrix – Cunningham and Geelen noticed that the maximal
value of a path-matching is equal to the rank of an analogue matrix. In general, it
is an unsolved problem to determine the rank of a matrix A in polynomial time,
if the entries of A are linear expressions of algebraically independent indetermi-
nates. However, evaluations of the indeterminates with random integers yield a
polynomial-time randomized algorithm, using the fact that the rank of a matrix
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over the integers can be determined in polynomial-time; see [9]. This provides a
polynomial time randomized algorithm for maximum matching, optimal path-
matching; Cunningham and Geelen gave two different deterministic algorithms.
In [4] they showed a polyhedral description which admits polynomial time sepa-
ration, then the optimal path-matching problem can be solved via the ellipsion
method. Later in [5] they gave an algorithm based on deterministic evaluations
of the Tutte-matrix. Both algorithms return a maximum path-matching along
with a so-called minimal “stable pair”, this gives a min-max formula for optimal
path-matchings.

As a direct extension of the Berge-Tutte formula, A. Frank and L. Szegő
[8] gave a simplified min-max formula for optimal path-matchings. A Gallai-
Edmonds-type structural description was given by B. Spille and L. Szegő [13].
Both results are formulated so that known results about matchings are direct
special cases, in fact techinques useful for matchings are used in their proofs.
So it was a challange to develop an algorithm that follows lines similar to those
in Edmonds’ matching algorithm. B. Spille and R. Weismantel [14] constructed
such an algorithm to find an optimal path-matching.

In [3] Cunningham introduced the so-called maximum even factor problem in
digraphs, which is yet another generalization of maximum matching and optimal
path-matching problems. The maximum even factor problem is NP-hard, but the
problem is tractable when restricted to the class of odd-cycle-symmetric digraphs
– this includes the path-matching problem as a special case. We refer to the
maximum even factor problem as the restricted problem to odd-cycle-symmetric
graphs. This problem may be represented by the rank of a Tutte-type matrix,
the algorithm in [5] can be used to compute this rank.

The simplified formula of Frank and Szegő on path-matchings was extended
to even factors by G. Pap and L. Szegő [12]. In fact, in [12] the formula is
only formulated in a tighter class of graphs called “weakly symmetric”, but
the method also works for odd-cycle-symmetric graphs, this was already known
by the authors at the time of publication. The aim of this paper is to give a
new proof of the min-max formula presented in [12] for odd-cycle-symmetric
graphs, this proof can be converted into a polynomial-time algorithm for the
maximum even factor problem. Our approach is different from any approaches
mentioned above. It bears some characteristics of Edmonds’ matching algorithm,
but there are significant differences, too. When we apply this algorithm to solve
a maximum matching problem, we do not get back to Edmonds’ algorithm. The
concept of alternating forests is replaced by a weaker structure which is easier
to maintain.

The paper has the following structure: after the notation is introduced, we
give an algorithmic proof for the Berge-Tutte type Theorem 1; next, this is
extended to a Gallai-Edmonds type structural description. In the end we make
some concluding remarks on the concept of the paper, relating it to well-known
concepts for matchings, accompanied by some examples.
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2 Basic Definitions for Even Factors

In this section we summerize notions and notation used in the paper. Consider
a digraph D = (V,A) without loops, a cycle (path) is the arc-set of a closed
(unclosed) directed walk without repetition of arcs or nodes. A path-cycle-factor
is the arc-set M ⊆ A of a subgraph of G which is a node disjoint union of paths
and cycles. Equivalently, a path-cycle-factor is a set of edges with in- and out-
degree at most 1 in each node. We call an arc e = uv ∈ A symmetric if vu ∈ A,
otherwise e is asymmetric. A cycle or a path is even (odd) if it consists of an
even (odd) number of arcs; a cycle is asymmetric, whenever it has at least one
asymmetric arc. An even factor is a path-cycle-factor which has no odd cycle,
let ν(D) denote the maximum cardinality of an even factor. An even factor is
perfect if each node is covered with an even cycle.

A min-max formula was given in [12] by Pap and Szegő for ν(D) in a special
class of digraphs D called weakly symmetric. A graph is called weakly symmetric
(a definition introduced in [3]) if all cycles in the graph are symmetric – or
equivalently, if all edges inside a strong component are are symmetric. The results
and the method in [12] also work in a slightly larger class of graphs called odd-
cycle-symmetric: D is called odd-cycle-symmetric if there is no asymmetric odd
cycle – or equivalently, if each odd cycle in D is symmetric.

Throughout the paper we only consider odd-cycle-symmetric graphs, we show
that determining ν(D) for odd-cycle-symmetric graphs is polynomially solvable.
The restriction is in fact necessary, since for an arbitrary graphD it is NP-complete
to determine ν(D) [3]. In some papers, we have used the terms “hardly symmetric
graphs” for the notion called odd-cycle-symmetric graphs in this paper.

Some further definitions, notation: for a set X ⊆ V let Γ+
D (X) := {x ∈

V − X : ∃y ∈ X, yx ∈ A} and �D(X) = |{uv ∈ A : u ∈ V − X, v ∈ X}|
and δD(X) = |{uv ∈ A : u ∈ X, v ∈ V − X}|. For a path-cycle-factor M let
V +(M) := {v ∈ V : δM (v) = 1} and V −(M) := {z ∈ V : �M (v) = 1}, so the
set V − V +(M) consists of the M -source-nodes and V − V −(M) consists of the
M -sink-nodes. For an arc set F ⊆ A then let

←→
F := F ∪ {uv : vu ∈ F}, hence

if C ⊆ A is an odd cycle then
←→
C ⊆ A. A set U ⊆ V induces the subgraph

D[U ] = (U,A[U ]) where A[U ] = {uv ∈ A : u, v ∈ U}. D − U := D[V − U ].
For a set U ⊆ V we denote the contracted graph by D/U having node set
V/U = V − U + {U} and arc-set A/U given by deleting the arcs in A[U ] and
identifying the nodes in U by {U} (we will use contractions only if D[U ] is
connected, thus this definition is equivalent with the usual contraction of the
arcs in A[U ]). For uv ∈ A we call v the head of arc uv, while u is called the tail
of arc uv; uv leaves u and enters v.

An undirected graph G = (V,E) is called factor-critical if for all v ∈ V the
graph G − v has a perfect matching. (For a survey on matching theory, see L.
Lovász and M.D. Plummer [10].) A digraph is called symmetric-critical if all
its arcs are symmetric and the underlying undirected graph is factor-critical.
In a digraph D a set S ⊆ V is called a source-component if D[S] is strongly
connected and �D(S) = 0. Let σ(D[X]) denote the number of those source-
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components in D[X] which are symmetric-critical. For example a source-node is
a symmetric-critical source-component.

(!) Recall that in the well-known Berge-Tutte formula we use the number of
odd components of G−X, here the definition of σ(D[X]) is concerned with G[X].
Notice, if we orient the edges of a factor-critical graph, we do not necessarily get
a symmetric-critical digraph: it will only be symmetric-critical if all edges are
symmetric. (!)

Definition 1. The deficiency of an even factor M is defDM := |V | − |M |,
which is non-negative, of course. The deficiency of a set X ⊆ V is defined by
defDX := σ(D[X])−|Γ+

D (X)|. Let us use the notation τD(X) := |V |+|Γ+
D (X)|−

σ(D[X]) = |V | − defDX for a node set X ⊆ V .

To prove the main theorem 1, in the next section we will use the following
well-known statements about factor-critical undirected graphs:

Lemma 1. If G = (V,E) is an undirected graph, for some U ⊆ V the induced
subgraph G[U ] is factor-critical and G/U is factor-critical, then G is factor-
critical, too.

Lemma 2. If G = (V,E) is a factor-critical undirected graph and s, t ∈ V then
a) if s �= t then there is an even path P from s to t and a perfect matching

M in G− V (P ),
b) if s = t then there is a perfect matching M in G− s (a degenerate version

of a)).

Proof. Let Ms, Mt be perfect matchings in G − s, G − t, respectively. Then
Ms ∪ Mt consists of alternating cycles – which have even length – and one
alternating s, t path P on an even number of edges – in case of s = t P has no
edges. In the alternating cycles let us choose the edges of Ms to form the perfect
matching M on V − V (P ).

3 The Main Theorem with a Constructive Proof

In this section, we give a simple, algorithmic proof of the following theorem.

Theorem 1 (Pap, Szegő [12]). If D = (V,A) is an odd-cycle-symmetric di-
graph, then

ν(D) = min
X⊆V

|V |+ |Γ+
D (X)| − σ(D[X]). (1)

The easy part of the proof is to see that the left hand side in (1) is at most
the right hand side. To this end we show that for any even factor M and any
set X ⊆ V we have |M | ≤ τD(X). Let

M1 := {vz ∈M : v, z ∈ X} = M [X], (2)
M2 := {vz ∈M : v ∈ X, z ∈ V −X}, (3)
M3 := {vz ∈M : v ∈ V −X}. (4)

It is easy to see that M1,M2,M3 is a partition of M .
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Lemma 3. The following inequalities hold:

|M1| ≤ |X| − σ(D[X]), (5)

|M2| ≤ |Γ+
D (X)|, (6)

|M3| ≤ |V | − |X|. (7)

Proof. First we show that if S ⊆ X is a symmetric-critical component in D[X]
then there is a node s in S for which �M1(s) = 0. Suppose for contradiction, for
each node v in S there is an arc in M1 with head v, then S would be covered by
cycles in M1 – and since a symmetric-critical graph has odd number of nodes –
there would be an odd cycle in M . Thus there must be at least σ(D[X]) nodes
s in X with �M1(s) = 0, this proves inequality (5). Each arc in M2 has head in
Γ+

D (X), this proves inequality (6). Each arc in M3 has tail in V −X, this proves
inequality (7).

The sum of inequalities (5)–(7) gives |M | ≤ τD(X).

Definition 2. A set X ⊆ V is a verifying set for an even factor M if |M | =
τD(X), or equivalently defDM = defDX.

Lemma 4. If M is an even factor with a verifying set X – i.e. equality holds
in (1) – then each of (5)-(7) holds with equality. In particular, for each node
v ∈ V −X we have δM (v) = 1.

Proof. Equality in (7) implies δM (v) = 1 for the nodes v in V −X.

As a preparation for the more difficult part of the proof we need to study some
properties of symmetric-critical subgraphs and even factors.

Lemma 5. If D = (V,A) is symmetric-critical and s, t ∈ V are two not neces-
sarily distinct nodes, then there is an even factor Mst for which

1. |Mst| = |V | − 1,
2. Mst has no arc entering s and no arc leaving t,
3. Mst consists of even cycles and an even s, t path Pst (in case of s = t this

path has length zero).

Proof. Let us apply Lemma 2 for the underlying undirected graph. Mst is con-
structed by taking the edges in M in both directions and taking edges on the
path P in direction s to t.

Lemma 6. In an odd-cycle-symmetric digraph D = (V,A), if C ⊆ A is an odd
cycle then D[V (C)] is symmetric-critical.

Proof. By definition, the arcs of C must be symmetric, thus
←→
C ⊆ A. For any

arc ab ∈ A[V (C)] there is an even path P ⊆ ←→C for which P +ab is an odd cycle.
Thus ab must be symmetric.
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Definition 3. For a node-set U ⊆ V , a directed path P ⊆ A is called an odd
ear on U if the first and last nodes of P are in U , the inner nodes of P are in
V − U , and |P | is odd.

Lemma 7. If D = (V,A) is odd-cycle-symmetric and D[U ] is symmetric-critical
for some U ⊆ V , then the contracted graph D/U is odd-cycle-symmetric.

Proof. Odd cycles in D/U not incident with {U} are symmetric, since D/U−{U}
is isomorfic to D−U . Consider an odd cycle C of D/U incident with {U}. The
set C ′ ⊆ A of arcs corresponding to the arcs of C must be an odd ear on U –
say C ′ has first node t and last node s. By Lemma 5 there must be an even path
Pst from s to t in D[U ], then C ′ ∪ Pst is an odd cycle in D. So all arcs in C ′

must be symmetric, then all arcs in C must be symmetric in D/U , too.

Lemma 8. Consider an odd-cycle-symmetric digraph D, suppose node-set U ⊆
V induces a symmetric-critical subgraph D[U ], Y induces a symmetric-critical
subgraph in D/U with {U} ∈ Y . Then the pre-image of Y , i.e. Z = Y −{U}∪U
induces a symmetric-critical subgraph in D.

Proof. By Lemma 1 we only need to show that each arc in D[Z] is symmetric.
Since all arcs in D[U ] and D/U [Y ] are symmetric, only arcs ab ∈ A[Z] with
|{a, b} ∩ U | = 1 need to be checked. We show that ab is contained in an odd
cycle of D. By Lemma 5 there is an even path Pba in D/U [Y ], then C = Pba +ab
is an odd cycle in D/U . The set of arcs C ′ ⊆ A corresponding to C give an odd
ear on U , suppose this odd ear has first node t and last node s. By Lemma 5
there is an even path Pst in D[U ], then C ′ + Pst is an odd cycle in D.

Definition 4. We say an even factor N fits the odd cycle C if |N ∩ C| =
|V (C)| − 1 and δN (V (C)) = 0.

Observe, if N is an even factor, C is an odd cycle, and NC is the set of arcs of N
adjacent with a node in V (C), then N fits C if and only if either NC = C − ab
(for an arc ab ∈ C) or NC = C − ab + cb (for an arc ab ∈ C and an arc cb ∈ A
with c /∈ V (C)). Consider an even factor N which fits the odd cycle C, let us
summerize the consequences of the above Lemmas on N and C: V (C) induces a
symmetric-critical subgraph, D/V (C) is hardly symmetric, and N/C is an even
factor in D/V (C).

The following theorem describes the key property of the contraction of an odd
cycle for even factors, which is the analogue of a known property of matchings,
see Section 5.

Theorem 2. Suppose D = (V,A) is odd-cycle-symmetric, N is an even factor
in D which fits the odd cycle C; define D′ = D/V (C) and N ′ = N/V (C).

1. If N is maximum, then N ′ is maximum.
2. If X ′ is a verifying set for N ′, then the pre-image X is a verifying set for

N .
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It is easy to see that the first assertion in this theorem follows from Lemma
9, while the second follows from Lemma 10. For technical reasons in the al-
gorithm, these claims are formulated a little bit stronger than needed for
Theorem 2.

Lemma 9. Suppose D = (V,A) is odd-cycle-symmetric, C is an odd cycle in
D, and M is an even factor in D/V (C). Then

1. there is an even factor of size |M |+ |V (C)| − 1 in D,
2. ν(D) ≥ ν(D/V (C)) + |V (C)| − 1.

Proof. The second statement follows from the first, we need to prove the first.
Let M ′ denote the set of arcs in D corresponding to arcs in M . Then M ′ contains
at most one arc entering U , let this arc be s′s if any, otherwise choose s ∈ V (C)
arbitrarily. Similarly, M ′ contains at most one arc leaving V (C), let this arc be
tt′ if any, otherwise choose t ∈ V (C) arbitrarily. Let Mst be the even factor in
D[V (C)] as in Lemma 5, we show that M ′ ∪Mst is an even factor of cardinality
|M |+ |V (C)| − 1.

The cardinality is as indicated, since M ′ and Mst are disjoint, it is also easy
to see that M ′ ∪Mst is a path-cycle-factor. The only way we could get an odd
cycle would be using the arcs s′s and tt′. Let C be the cycle in M ′ ∪Mst using
these edges, then C/Pst is a cycle in M and Pst is even, thus C must be even,
too.

Lemma 10. Suppose N is an even factor in D which is nice with some odd
cycle C; define D′ = D/V (C) and N ′ = N/V (C). As already observed, N ′ is
an even factor in D′. If X ′ is a verifying set in D′ for N ′, then {C} ∈ X ′ and
the pre-image X := X ′ − {C} ∪ V (C) is a verifying set for N .

Proof. Since X ′ is a verifying set for N ′, N ′ is a maximum even factor. By
definition δN ′({C}) = 0, thus by Lemma 4 we get that {C} ∈ X ′. Consider
a symmetric-critical source-component Q′ in D′[X ′], if {C} /∈ Q′ then Q′ is a
symmetric-critical source-component in D[X], too. If {C} ∈ Q′ then we claim
that Q := Q′ − {C} ∪ V (C) induces a symmetric-critical source-component in
D[X], which can be seen as follows: Since D′[Q′] is a source component in D′[X ′],
D[Q] must be a source component in D[X]; moreover D′[Q′] is symmetric-
critical, D[V (C)] is symmetric-critical, then by Lemma 8 D[Q] is symmetric-
critical.

Thus D[X] has at least as many symmetric-critical source-components as
D′[X ′], that is σ(D[X]) ≥ σ(D′[X ′]). Furthermore {C} ∈ X ′ implies Γ+

D (X) =
Γ+

D′(X ′) and |X| = |X ′| − |V (C)|+ 1.

|N | = |N ′|+ |V (C)| − 1 = ν(D′) + |V (C)| − 1 =

= |V/C|+ |Γ+
D′(X ′)| − σ(D′[X ′]) + |V (C)| − 1 ≥

≥ |V |+ |Γ+
D (X)| − σ(D[X]) ≥ |N |.

The following definitions present the tool to find N fitting an odd cycle C.
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Definition 5. Let M be a fixed even factor in D = (V,A), recall the definition
V +(M) := {v ∈ V : δM (v) = 1}, let K+ := V − V +(M) – i.e. K+ is the set
of M -sink-nodes. A sequence W = (v0, e0, v1, e1, . . . , vn−1, en−1, vn) is called an
M -alternating walk if v0 ∈ K+, ei = vivi+1 ∈ A if i is even, ei = vi+1vi ∈ M
if i is odd. Here n is called the length of W , v0 is the first node of W and
vn is the last node of W . W is called even/odd by the parity of its length. Let
A(W ) = {ei : 0 ≤ i ≤ n − 1} denote the set of arcs in W . A node vi with i
even/odd is called an even/odd node of W .

Definition 6. An M -alternating walk W = (v0, e0v1, e1, . . . , vn−1, en−1, vn) is
called special if its even nodes are pairwise distinct, and its odd nodes are pair-
wise distinct. The starting segment of a walk (v0, e0, v1, e1, . . . , vn) of length k
is (v0, e0, v1, e1, . . . , vk). Notice, the starting segment of a special M -alternating
walk is a special M -alternating walk.

Lemma 11. If for some nodes w, z ∈ V there is an even M -alternating walk
from w to z, then there is a special even M -alternating walk from w to z,
too.

Proof. If an M -alternating walk W is not special, then vi = vj (for some i < j,
i ≡ j mod 2), so a shorter M -alternating walk can be constructed by deleting
the section from vi to vj . So it is easy to see, that a shortest M -alternating walk
of even length from v0 to vn must be special.

Definition 7. Let L = L(D,M) be the set of nodes in V which arise as a last
node of some even alternating walk.

Given an even factor M in a digraph D, the set L(D,M) can be determined
quite easily – by using an ordinary breadth first search in an auxiliary bipartite
graph.

Lemma 12. For a special even M -alternating walk W , MΔA(W ) is a path-
cycle-factor.

v0

v1

v2

v4

v6 = v3

v7

v8

v0

v1

v2

v4v5

v6 = v3

v7

v8

M MΔA(W )

v5

Fig. 1. A special M -alternating walk W = (v0, · · · , v8) with q = v0 and the symmetric
difference MΔA(W )
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Notice, that MΔA(W ) is not necessarily an even factor, see Figure 1 for exam-
ple. On the left hand side of Figure 1 we have an odd-cycle-symmetric graph
where the bold lines form an even factor M , and v0, v1, . . . , v8 is a special M -
alternating walk. On the right hand side the bold lines form a path-cycle-factor
MΔA(W ), illustrating Lemma 12.

Proof of Theorem 1. We prove Theorem 1 by induction on |V |. Consider an odd-
cycle-symmetric digraph D = (V,A), let M ⊆ A be a maximum even factor. We
need to show that there is a verifying set X giving equality |M | = τD(X). Recall
the definition of V −(M) := {z ∈ V : �M (z) = 1} which is the set of M -source-
nodes.

Case I. Suppose there is an arc ab = e ∈ A with a ∈ L = L(D,M) and
b ∈ V − V −(M). In this case we will find a maximum even factor N which is
nice with an odd cycle, the proof will be completed using Theorem 2. By Lemma
11 there is a special even M -alternating walk W with last node a, suppose
q = v0 ∈ K+ is the first node, i.e.

W = (q = v0, e0, v1, e1, . . . , vn−1, en−1, vn = a).

Let n = 2l be the length of W , let Wi be the starting segments of W length
2i (for i = 0, . . . , l), of course each Wi is a special even M -alternating walk. By
Lemma 12 Mi := MΔA(Wi) are path-cycle-factors, here M0 = M . It is easy to
see that for i ≤ n− 1

Mi+1 = Mi + v2iv2i+1 − v2i+2v2i+1, (8)

i.e. Mi+1 is obtained from Mi by replacing an arc entering v2i+1 by a different
arc entering v2i+1. (Figure 2 illustrates the sequence of Mi’s for the example of
D,W given in Figure 1.)

Subcase Ia. Suppose Ml is an even factor. It is easy to see that Ml has no arc
leaving a; by assumption b ∈ V − V −(M), thus Ml has no arc entering b; hence
Ml+ab is a path-cycle-factor. Ml+ab is not an even factor, since |Ml+ab| > |M |.
As Ml is an even factor, there must be a unique odd cycle C ⊆Ml + ab, and for
this cycle ab ∈ C. So N := Ml is nice with C.
Subcase Ib. Suppose Ml is not an even factor. M0 is an even factor, consider
the smallest 0 ≤ i < l for which Mi is an even factor, but Mi+1 is not an even
factor. Then by (8) there is a unique odd cycle C in Mi+1, it is easy to see that
it contains v2iv2i+1, so N := Mi is nice with C. (In Figure 2 M3 is nice with a
cycle of length 5 occurring in M4.)

Now we have a maximum even factor N which is nice with an odd cycle C. By
part 1 of Theorem 2 N ′ = N/V (C) is a maximum even factor in D′ = D/V (C).
By induction, there is a verifying set X ′ for N ′ in D′. By part 2 of Theorem 2
there is a verifying set for N in D.
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M1M0

M3M4

M2

Fig. 2. The sequence of Mi’s in Case I for W indicated in Figure 1

Case II. Suppose there is no arc ab = e ∈ A with a ∈ L = L(D,M) and
b ∈ V − V −(M).

We will prove that L is a verifying set. Let M1 := M [L] = {vz ∈ M : v ∈
L, z ∈ L}, M2 := {vz ∈M : v ∈ L, z ∈ V −L} and M3 := {vz ∈M : v ∈ V −L}.
Let S be the set of source-nodes in D[L].
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Lemma 13. In Case II we have |M3| = |V | − |L|, |M2| = |Γ+
D (L)| and |M1| =

|L| − |S|.

Proof. The first equality follows from K+ ⊆ L.
Consider a node b in Γ+

D (L), then there must be a node a in L for which
ab ∈ A. b ∈ V −(M) follows from the assumption of case II, thus there must be
an arc cb ∈M . By the definition of L there is an even M -alternating walk W with
last node a, the extension of W by arcs ab and cb gives an even M -alternating
walk with last node c, thus c ∈ L. We get that each node in b ∈ Γ+

D (L) is covered
by an arc cb ∈M2 with c ∈ L, which implies the second equality.

For the third equality, consider a node b ∈ L−S; then there is an arc ab ∈ A
with a ∈ L. From the assumption of case II we get that b must be in V −(M),
i.e. there must be an arc cb ∈M . There is an even M -alternating walk W with
last node a, the extension of W by arcs ab and cb gives an even M -alternating
walk with last node c, thus c ∈ L. We get that each node in b ∈ L−S is covered
by an arc cb ∈M3, which implies the third equality.

The proof of Theorem 1 is completed by the following calculation:

|M | = |M1|+|M2|+|M3| = |V |+|Γ+
D (L)|−|S| ≥ |V |+|Γ+

D (L)|−σ(D[L]) ≥ |M |.

4 A Gallai-Edmonds-Type Structure

A structural description was given by Edmonds [6] and Gallai [7] on the struc-
ture of maximum matchings in a graph. The properties of the Gallai-Edmonds
decomposition are extended to even factors in the following theorem, a proof
was given in [12] for weakly symmetric digraphs, which also works for odd-cycle-
symmetric digraphs. Here we give a different proof.

Theorem 3 (Pap, Szegő, [12]). Suppose D = (V,E) is odd-cycle-symmetric,
let LD be the set of nodes v ∈ V for which there is a maximum even factor M
with δM (v) = 0. Then the following assertions hold.

1. ν(D) = |V |+ |Γ+
D (LD)| − σ(D[LD])

2. For any verifying set X we have LD ⊆ X.
3. All source-component in D[LD] is symmetric-critical.
4. M is a maximum even factor if and only if it fulfills the inequalities (5)–(7)

for X = LD with equality.

Proof. Assertion 2 also follows from assertion 1 by Lemma 4, assertion 3 follows
from assertion 2, assertion 4 also follows from assertion 1. We prove the first
assertion by induction on |V |. Consider a maximum even factor M , in Section
3 we have shown that (Case I) there is a maximum even factor N which fits an
odd cycle C or (Case II) L(D,M) is a verifying set.

First suppose L(D,M) is a verifying set. By Lemma 4 LD ⊆ L(D,M), if
LD = L(D,M) then we are done. Otherwise consider a node v ∈ L(D,M)−LD,



A Combinatorial Algorithm to Find a Maximum Even Factor 77

by definition there is a special even M -alternating walk W with last node v.
MΔA(W ) is a path-cycle-factor with no arc leaving v, so by v /∈ LD we get that
MΔA(W ) is no even factor. By the argument in Subcase Ib we get a maximum
even factor N which fits an odd cycle C.

If a maximum even factor N fits an odd cycle C, then by Theorem 2 N ′ =
N/V (C) is a maximum even factor in D′ = D/V (C). Thus {C} ∈ LD′ . By
induction LD′ is a verifying set in D′, let X be its pre-image in D. We need
to show that X is a verifying set and X ⊆ LD, since by Lemma 4 these imply
X = LD.

N is a maximum even factor fitting C, thus the nodes in V (C) are easily seen
to be in LD. Consider a node v ∈ X −{C}, let M be a maximum even factor in
D′ with δM (v) = 0. The construction in Lemma 9 gives a maximum even factor
M ′′ := M ′ ∪Mst in D with δM ′′(v) = 0, this proves X ⊆ LD.

Lemma 10 implies that X is a verifying set.

Remark. In Theorem 3 the set LD corresponds to the set “D”, while Γ+
D (LD)

corresponds to the set “A” in the Gallai-Edmonds decomposition. The change
of notation is to avoid ambiguity of the notation D for the digraph.

5 Conclusions and Examples

1.) Let us try to distinguish concepts which are basically the same as for the
matching case, and concepts which needed to be modified – compared to Ed-
monds’ matching algorithm. The following theorem is the analogue of Theorem
2 for maximum matchings.

Theorem 4. Suppose N is a matching in an undirected graph G and C is an
N -alternating odd cycle adjacent to an exposed node; define G′ = G/V (C) and
N ′ = N/V (C).

1. If N is maximum, then N ′ is maximum.

2. If Z ′ is a barrier (in the Berge-Tutte formula) for N ′, then the pre-image Z
is a barrier for N .

In fact the definition of “N fitting C” was motivated by the nice correspondence
of Theorems 4 and 2. An odd cycle C with the above properties can be used in
an inductive or algorithmic way – both for matchings and for even factors. The
key difference between the concept of this paper and well-known concepts for
matchings is the way how we find this odd cycle.

2.) Notice that M -alternating walks are easier to handle than alternating paths:
the concatenation of two M -alternating walks is an M -alternating walk, too. The
analogue statement neither holds for M -alternating paths for matchings, nor for
special walks for even factors.

For this reason, the proof and the algorithm uses M -alternating walks, let us
sketch how this works for the special case of matchings. The algorithm first tries
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P

Cqp

Fig. 3. An M -alternating blossom

to find an alternating walk W joining two exposed nodes, consider a shortest
one. If W is an alternating path, then the actual matching can be augmented.
Otherwise, let W ′ be a shortest segment of W which is not a path. One can
easily see that W ′ is an M -alternating blossom, i.e. W ′ = P ∪ C where P is an
M -alternating even path from an exposed node p to q, and C is an M -alternating
odd cycle for which V (P )∩V (C) = {q} (see Figure 3). We apply Theorem 4 for
MΔP , C, we are done by induction.

If there is no M -alternating walk W joining two exposed nodes, then the set
L := L(

←→
G ,
←→
M ) is an indepedent set, and Γ←→

G
(L) will be a verifying set in the

Berge-Tutte formula.

3.) Consider the reduction of the maximum matching problem in a graph G

to the maximum even factor problem in
←→
G . A maximum matching in G has

exactly ν(
←→
G )/2 edges, since (a) for a matching M in G we can give the even

factor
←→
M having two-edge cycles in place of the edges of M , and (b) if M is an

even factor in
←→
G , then an even cycle in M can be replaced by a matching with

half as many edges, a directed path of length l can be replaced by a matching
with �l/2� edges.

The proof of Theorem 1 can be specialized to the instance
←→
G to prove the

Berge-Tutte formula, but we cannot avoid directed paths to occur. Hence, we in
fact solve the “maximum 2-matching without odd cycles” problem.

A 2-matching is a node-disjoint family of edges with weight 2, and paths or
cycles with weight 1 on each edge. In Figures 4, 5 only the supporting edge sets
of 2-matchings are indicated with bold lines. Alternating walks, the symmetric
difference should be understood by the reduction to

←→
G , an alternating walk is

bq a

C

Fig. 4.
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q a b

C

Fig. 5.

indicated by a dotted line on the left hand side, while the symmetric difference
is indicated on the right hand side.

We explain Subcase Ib by the example shown in Figure 4. q, b are the exposed
nodes, the dotted line is a special even M -alternating walk W from q to a, the
edge ab has the role of Case I. The algorithm constructs the sequence of Mi’s
step by step with i increasing. When the algorithm gets to i = 4 an odd cycle
C occurs which will be contracted.

In Subcase Ib, Ml +ab is not an even factor, so it has at least one odd cycle. In
general, Ml +ab may have several odd cycles in this case; for example in Figure 4
we have l = 12 and the 2-matching M12 +ab has three odd cycles. The algorithm
does not choose one of them as C for the contraction, Figure 5 (using the same
notation) shows an example where the cycle C does not appear in Ml + ab.
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Abstract. We consider a generic paradigm to design improved PTAS
for linear programming relaxations of combinatorial optimization prob-
lems. For the case of the uncapacitated facility location problem, the
scheduling problem R||Cmax and the set covering problem we substan-
tially improve the running time dependence on ε from the previously
known O(1/ε2) to O(1/ε). All these algorithms are remarkably simple to
implement. For the survivable network design problem we improve the
dependence from O(1/ε2) to O((1/ε) log(1/ε)). We present some prelim-
inary computational results that seem to suggest that our algorithms
may prove very competitive in practice. Furthermore, we present a gen-
eral approximation version of a result of Nesterov that potentially can
be applied to a very large class of linear programming problems.

Our results build mainly on work of Nesterov and extend the work
of Bienstock and Iyengar. In fact, one of the objectives of this paper is
to make clearer the relationship between these two.

1 Introduction

In this paper we present algorithms for approximately solving special cases of
linear programming problems. All the problems we study are linear programs of
polynomial size and, thus, can be solved using standard algorithms (e.g., inte-
rior point methods) in polynomial time. However, from a practical point of view,
very often large scale instances of these linear programs cannot be handled using
these algorithms. In these circumstances, practitioners have used decomposition
methods extensively. These methods typically consider some form of Lagrangian
relaxation followed by some variant of subgradient optimization. From a theo-
retical point of view, the question of validating this type of decomposition ap-
proaches has been translated into different types of convergence analysis. Among
these, researchers have studied the worst-case convergence rate of the algorithms.
This paper fits in this line of research.

For a minimization linear program (LP) we are interested in finding a poly-
nomial time approximation scheme (PTAS). In other words, given an ε > 0

M. Jünger and V. Kaibel (Eds.): IPCO 2005, LNCS 3509, pp. 81–96, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



82 F.A. Chudak and V. Eleutério

our task is to find a feasible solution within a factor of 1 + ε of the LP op-
timum (which we always denote by OPT) in polynomial time. The focus of
this paper is on the dependence of the running time on ε. Up to recently algo-
rithms for approximately solving LP’s have typically considered a Lagrangian
relaxation followed by something that can be usually described as a subgra-
dient optimization procedure. The literature is extensive. The book of Bien-
stock [5] covers many of these algorithms for multicommodity flow problems
and some of its generalizations; we also refer the reader to [10, 11, 26, 9]. All
of these algorithms have a running time dependence on ε of O(1/ε2). On the
negative side, there is some compelling evidence that algorithms that are only
allowed to obtain a subgradient (in addition to function evaluation) at each it-
eration require Ω(1/ε2) iterations (see [20, 14]). These results do not completely
rule out the possibility of a faster subgradient-based algorithm, but do sug-
gest that one needs to use substantial additional information from the problem
structure.

In a departure from subgradient-optimization based algorithms, Nesterov
[21, 19] proposed a method that uses gradient optimization instead. The method
can be essentially explained as follows. There are two steps: smoothing and gra-
dient optimization. In the smoothing step the idea is to make the Lagrangian
function differentiable. In the second step we apply an “optimal” gradient opti-
mization algorithm (see [20]) which has a convergence rate of O(L/

√
ε), where

L is the Lipschitz continuous constant of the gradients of the function. The
smoothing process can be tailored to produce a function whose gradient Lips-
chitz continuous constants grow as O(A/

√
ε). Thus for an additive error of ε,

the required number of iterations is O(A/
√
ε)/
√
ε = O(A/ε). There are two

caveats: (a) the dependence on the data, namely A, usually is not polyno-
mial, and (b) the subproblems that need to be solved at each iteration are
non-linear and can be very non-trivial (even harder than the original problem).
Bienstock and Iyengar [6] were the first to adapt the methods of [21] to design
PTAS for the maximum concurrent multicommodity flow problem with a run-
ning time dependence on ε of O(1/ε log(1/ε)) improving the previously known
O(1/ε2). The first “pure” 1/ε dependence on ε that we are aware of are in
[23, 22] which were developed at about the same time as our algorithms (in the
packing problem of [6], the issue of solving the subproblems is not addressed in
detail).

In this paper we explore further applications and extensions of the work of
[21, 19]. Our approach is very different from that of [6]. In [6] their focus was
on extending previous work incorporating only the gradient optimization part of
the approach of [21]. In effect, they only considered one type of smoothing that
was used frequently in the literature [5, 26]: the logarithmic approximation of the
max (maxi xi ≈ μ ln(

∑
i e

xi/μ)). In contrast, in this paper we use the theory of
Nesterov at a fuller extent. We show that to deal with problem (a) above we can
restrict the feasible region using additional information about OPT and using
binary search (this method has been used before [5, 26, 10, 6]). For dealing with
the subproblems, that is (b) above, we show first that in some important special
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cases they are easy to solve, and second that an approximate version of the
results of Nesterov can accommodate approximate solutions to the subproblems
extending the work of [6].

Our main contributions are the following. We present improved PTAS for the
linear programming relaxation of the uncapacitated facility location problem, the
scheduling problem R||Cmax

1 , the set covering problem and the survivable net-
work design problem. All of our algorithms find feasible solutions that are within
(1+ε) of the fractional optimum and run in time proportional to 1/ε for the first
three problems mentioned above and (1/ε) log(1/ε) for the survivable network
design problem. Our algorithms improve the previously known dependences on
ε of O(1/ε2) at a moderate increase in the dependence on the polynomial on
the size of the input. Furthermore we elaborate on a generic paradigm to design
improved PTAS that potentially could be applied to other linear programming
problems. Many of our algorithms can be easily implemented and we report
some preliminary computational experience that suggests that they could be
very competitive in practical applications.

In Section 2, we elaborate on our methods for the uncapacitated facility
location problem. In Section 3, we summarize the steps we needed to design our
algorithms, revisit the results of [6], and present algorithms for the scheduling
problem R||Cmax and the set covering problem. In Section 4, we present our
approximate version of the results of Nesterov, an algorithm for the survivable
network design problem and a discussion on further applications. Finally Section
5 reports on preliminary computational results.

2 The Algorithm for the Uncapacitated Facility Location
Problem

In the uncapacitated facility location problem (UCFLP) there is a set of poten-
tial facility locations F ; building a facility at location i ∈ F has an associated
fixed cost fi ≥ 0, and any open facility can provide an unlimited amount of a
certain commodity. There is also a set of clients D that require service; client
j ∈ D has a demand dj > 0 that must be shipped from one of the open fa-
cilities. If a facility at location i ∈ F is used to satisfy the demand of client
j ∈ D, the service cost incurred is proportional to the distance from i to j, cij .
The goal is to determine a subset of the set of potential facility locations at
which to open facilities and an assignment of clients to these facilities so as to
minimize the overall total cost, that is, the fixed costs of opening the facilities
plus the total service cost. We assume that all the demands are 1 (otherwise
we replace cij with djcij). Throughout we let m = |F| and n = |D|. The sim-

1 This is a special case of packing linear programs considered in [6]. However no general
run-time bound is provided. Even assuming that their approach to the maximum
concurrent multicommodity flow problem can be extended, our algorithm is at least
a factor of O(log(1/ε)

√
nm) faster and much simpler.
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plest linear programming relaxation (from [2]), which we will refer to as P, is as
follows:

Minimize p(x, y) =
∑
j∈D

∑
i∈F

cijxij +
∑
i∈F

fiyi

subject to
∑
i∈F

xij = 1 ∀j ∈ D (1)

xij ≤ yi ∀j ∈ D, i ∈ F (2)
xij ≥ 0.

Any 0-1 feasible solution corresponds to a feasible solution to the UCFLP:
yi = 1 indicates that a facility at location i ∈ F is open, whereas xij = 1
means that client j ∈ D is serviced by the facility built at location i ∈ F .
Inequalities (1) state that each demand point j ∈ D must be assigned to
some facility, whereas inequalities (2) say that clients can only be assigned to
open facilities. Thus the linear program P is indeed a relaxation of the prob-
lem. The linear programming relaxation P is known to provide excellent lower
bounds, and sometimes is referred to as the “strong linear programming re-
laxation” (see [18] for a practical point of view, and [8] and references there-
after for a theoretical point of view). Because of its large size (O(mn) vari-
ables and constraints), Lagrangian relaxations have been considered to solve
it. In practice, the algorithms that are known to obtain the best results are
those that relax equations (1). However these algorithms usually have prob-
lems delivering feasible primal solutions (see [4]) and do not have a known
worst-case analysis of the running time. In contrast, from a theoretical point
of view, relaxing constraints (2) has proved more useful. In this category are
the algorithms of [25], [10] and [7]. In this paper, we follow this approach as
well.

Next we proceed to describe an algorithm that has an additive error of ε.
To simplify the notation, we will use Δm to denote the m-dimensional sim-
plex, that is, Δm = {z ∈ Rm :

∑m
i=1 zi = 1, zi ≥ 0, for i = 1, . . . ,m}.

Thus, if (x, y) is feasible for P, then x ∈ Δn
m. If now we let wij be the mul-

tipliers of inequalities (2), we have the following Lagrangian formulation of P:
maxwij≥0{minx∈Δn

m

∑m
i=1

∑n
j=1(cij + wij)xij +

∑m
i=1 yi(fi −

∑n
j=1 wij)}. Since

we do not require that the yi’s be nonnegative, we can assume that for each
i = 1, . . . ,m, fi =

∑n
j=1 wij . If now we use the change of variables fiuij = wij ,

we get the following representation of P: maxu∈Δm
n
{minx∈Δn

m

∑m
i=1

∑n
j=1 cijxij+∑m

i=1

∑n
j=1 fiuijxij}. For fixed u ∈ Δm

n and x ∈ Δn
m consider the following two

functions

d(u) = min
x∈Δn

m

{ m∑
i=1

n∑
j=1

cijxij +
m∑

i=1

n∑
j=1

fiuijxij

}
,

p(x) = max
u∈Δm

n

{
m∑

i=1

n∑
j=1

cijxij +
m∑

i=1

n∑
j=1

fiuijxij}.
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From the argument above, we know that maxu∈Δm
n
d(u) has the same optimal

value as P. The same is true for minx∈Δn
m
p(x) as we show next, and indeed these

two optimization problems map exactly to the standard primal and dual formu-
lations of P. For fixed x ∈ Δn

m, observe that since the fi ≥ 0, we can always
consider the feasible solutions (x, y) with yi = maxj=1,...,n xij (i = 1, . . . ,m).
Thus the equivalence of P and minx∈Δn

m
p(x) follows immediately from the el-

ementary fact that for fixed i, maxj=1,...,n xij = maxui∈Δm

∑n
j=1 uijxij (where

ui ∈ Rn, (ui)j = uij).
Next we state a result of Nesterov [19] in some generality that we will need

later. Suppose that Q1 ⊆ Rn, Q2 ⊆ Rm are bounded, closed, and convex sets
and A ∈ Rm×n, c ∈ Rn and b ∈ Rm. Consider the functions f(x) = ctx +
maxu∈Q2{〈Ax, u〉−btu} (x ∈ Q1) and φ(u) = −btu+minx∈Q1{ctx+〈Ax, u〉} (u ∈
Q2), where 〈Ax, u〉 = (Ax)tu. Note that f(x) ≥ φ(u) (weak-duality). The goal
is to solve minx∈Q1 f(x) and maxu∈Q2 φ(u). Suppose next that we fix the norms
|| || 1© in Rn and || || 2© in Rm (index 1© indicates the space of the x’s in Rn and
index 2© indicates the space of the u’s in Rm; they can be any norms). Now we can
define the operator norm of A as ||A|| 1©, 2© = max{〈Ax, u〉 : ||x|| 1©, ||u|| 2© ≤ 1}.
In addition, we fix two strongly convex functions d1 defined on Rn and d2 defined
on Rm. Let x◦ = arg minx∈Q1 d1(x) and u◦ = arg minu∈Q2 d2(u), without loss of
generality d1(x◦) = d2(u◦) = 0. We assume that the strongly convex constants
with respect to the chosen norms are respectively σ1 and σ2, so that d1(x) ≥
1
2σ1||x − x◦||21© for all x ∈ Q1 and d2(u) ≥ 1

2σ2||u − u◦||22© for all u ∈ Q2. Let
D1 = maxx∈Q1 d1(x) and D2 = maxu∈Q2 d2(u).

Theorem 1 ([19]). There is a primal-dual algorithm that finds a sequence of
points (xk, uk) ∈ Q1 ×Q2 such that the duality gap of the N th iteration is

f(xN )− φ(uN ) ≤ 4||A|| 1©, 2©
N + 1

√
D1D2

σ1σ2
. (3)

At each iteration the algorithm needs to compute the exact solution of three
problems of the form minx∈Q1 α

tx + d1(x) (α ∈ Rn) or minu∈Q2 β
tu + d2(u)

(β ∈ Rm). Alternative variants need the exact solution of problems of the form
minz∈Qi

γtz + ||z − z||2i© (γ ∈ Rn or γ ∈ Rm), z ∈ Qi fixed, i = 1, 2.

The proof of the theorem is based on making both functions f and φ differ-
entiable by perturbing the max (respectively min) with the strongly convex
function d2 (resp. d1). The perturbation makes the solution of the max (resp.
min) problems unique and, thus, differentiable. The gradients of these pertur-
bations give good directions of improvement and are used iteratively to reduce
the duality gap. The proofs of convergence are simple and ingenious, and the
reader is referred to [19]. A very nice property of the algorithms of the theorem
that all of our algorithms inherit is that if our target is an absolute error of
ε > 0, the algorithm does not use ε during the computations; ε is needed solely
to determine how many iterations to run the algorithm to make sure that the
bound (3) holds.

We apply Theorem 1 to the UCFLP as follows. The functions p and d cor-
respond with f and φ, the set Q1 is Δn

m, the set Q2 is Δm
n , the operator A is



86 F.A. Chudak and V. Eleutério

defined by 〈Ax, u〉 =
∑m

i=1

∑n
j=1 fiuijxij , c is our cost vector and b = 0. We

choose now the standard Euclidean norm in both spaces x and u. Next we set
d1(x) = 1

2 ||x− x◦||21©, where (x◦)ij = 1
m (i = 1, . . . ,m, j = 1, . . . , n), that is, the

jth column of x◦ is the center of the jth simplex of the feasible primal region Δn
m,

and similarly, d2(u) = 1
2 ||u−u◦||22©, where (u◦)ij = 1

n (i = 1, . . . ,m, j = 1, . . . , n).
Thus we have that σ1 = σ2 = 1. Notice that for x ∈ Δn

m, 1
2 ||x − x◦||21© =

1
2 (||x||21©− n

m ), and thus its maximum value is D1 = 1
2n

m−1
m . Similarly, if u ∈ Δm

n ,
the maximum of 1

2 ||u − u◦||22© is D2 = 1
2m

n−1
n . Let F = maxn

i=1 fi, that is, the
maximum facility cost. Finally we need to compute ||A|| 1©, 2©, but this is sim-
ple too since

∑
i,j fi|xijuij | ≤ F

∑
i,j |xijuij | ≤ F ||x|| 1©||u|| 2© (using Cauchy-

Schwarz), and thus ||A|| 1©, 2© ≤ F . With all these ingredients, plugging in (3) we
have the following.

Theorem 2. Given ε > 0, if we run algorithm corresponding to Theorem 1
N = � 1ε 2F

√
(n− 1)(m− 1) − 1� iterations, we obtain primal and dual feasible

solutions, x ∈ Δn
m and u ∈ Δm

n , such that p(x)− d(u) ≤ ε.

Two issues need to be addressed carefully: the run time of each iteration
and the dependence on the facility costs F . We address first the former. Fo-
cus in one iteration of the algorithm of Theorem 2. According to Theorem
1 each iteration needs to solve three optimization problems. In our case, all
of the subproblems take the form minx∈Δn

m

{
〈α, x〉+ ||x− x||21©

}
(primal) or

minu∈Δm
n

{
〈β, u〉+ ||u− u||22©

}
(dual) for some fixed α, β ∈ Rmn and x ∈ Δn

m,
u ∈ Δm

n . By symmetry, we will only consider the primal problems. First of all, no-
tice that by changing α, the primal problem can be written as minx∈Δn

m
{〈α, x〉+

1
2

∑
ij x

2
ij}. And thus, it is separable on the clients, that is, the minimum can

be written as the sum
∑

j minxj∈Δm
{
∑

i αijxij + 1
2

∑
i x

2
ij}. Thus we only need

to show how to solve problems of the form minz∈Δm

{
1
2

∑m
i=1 z

2
i +

∑m
i=1 aizi

}
,

for any a ∈ Rm. We show next that this quadratic convex constrained prob-
lem can be solved very efficiently as follows. First we sort the ai’s and assume
that a1 ≤ a2 ≤ . . . ≤ am; in addition, since

∑
i zi = 1, we can also assume

that a1 = 0. Since the objective function is strictly convex and the feasible
region is convex, the optimal solution, z∗, is unique. Also, it is easy to see
that z∗

1 > 0 (if z∗
1 = 0 and any other z∗

j > 0 with aj > 0, we can inter-
change z∗

j and z∗
1 ; if all the positive z∗

j have aj = 0, the optimal solution is
to split 1 evenly among those). Using the KKT conditions, it is simple to ar-
gue that in an optimal solution z∗

i = (z∗
1 − ai)+ for i = 1, . . . ,m. Finally to

set z∗
1 we use the equation

∑
i z

∗
i = 1. The whole procedure can be imple-

mented in O(m logm) time. We also point out that z∗ is the unique optimal
solution of the following LP (which we will refer as SP): max{z1 :

∑m
i=1 zi ≤

1, z1 ≤ zi + ai (i = 1, . . . ,m) , zi ≥ 0 (i = 1, . . . ,m)}. Thus, we can give the fol-
lowing interpretation. Suppose that this subproblem came from client j so that
client j has to decide the proportion of how much to assign to each facility.
In a subgradient algorithm, it will simply choose one facility, the one that it
perceives as the cheapest (arg mini ai). Instead, in our algorithm, we first do a
normalization step (sorting and setting a1 = 0) and then do the assignment by
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solving SP. We still want to assign j to facility 1 (the cheapest), if we imag-
ine that z1 starts growing from 0, each time that our assigned proportion z1

covers facility i (i.e., z1 ≥ ai) we must start covering facility i as well (start
increasing zi). Once all of j is allocated, we stop. The dual of SP has also a
combinatorial interpretation: we want assign j to facilities, the cost of assign-
ing j to facility i is ai, the facility costs are 1, but all open facilities have to
be assigned the same fraction. The optimal solution of this problem chooses
the k cheapest facilities (for some unique k) and assigns j evenly among them.
From a theoretical point of view, sorting can be avoided altogether using a vari-
ant of the weighted median algorithm 2 (see [15]), thus obtaining a linear time
algorithm.

Lemma 1. All the subproblems of the algorithm of Theorem 2 are separable by
client or facility and can be solved in O(nm) time each.

Next we show how to transform Theorem 2 into a polynomial time approxi-
mation algorithm. The following two results closely follow [10].

Lemma 2. Let (x, y) be any feasible solution of P. Then if some yi◦ > 0 with
fi◦ > p(x, y), we can find a new solution (x̂, ŷ) with strictly smaller objective
function value such that ŷi◦ = 0.

Proof. Note first that it must be that y◦ < 1. Define x̂ij = xij/(1 − xi◦j) for
each j ∈ D, i ∈ F − {i◦}, and ŷi = yi/(1 − yi◦), ŷi◦ = 0. Then, it is easy
to see that (x̂, ŷ) is feasible. Furthermore, p(x̂, ŷ) ≤ 1

1−yi◦
(p(x, y) − fi◦yi◦) <

1
1−yi◦

(p(x, y)− yi◦p(x, y)) = p(x, y).

Lemma 3. For each client j ∈ D, let LBj = mini∈F (cij + fi), and let LB =
maxj∈D LBj. Then LB ≤ OPT ≤ n LB, and there is a feasible solution to P
whose cost is also bounded by (n LB).

Proof. It is clear that LBj is a lower bound for each client j ∈ D. For the upper
bound consider the solution obtained opening all the facilities that realize the
minima of LBj (j ∈ D). Then, the solution is feasible and its cost is at most∑

j LBj ≤ (n LB).

The following result is due to Young ([26]). Suppose that we have a decision
procedure A-FEAS, such that given an error ε′ > 0 and a target R > 0, it
either finds a feasible solution x such that p(x) < (1 + ε′)R or concludes that
OPT > R. The running time of the procedure depends on the size of the input
and a polynomial on 1

ε′ of the form 1
ε′ q(1/ε

′) (but not on R).

Lemma 4. Suppose that we know a feasible solution x and a lower bound LB
such that LB ≤ OPT ≤ p(x) ≤ t LB, for some t > 0, then we can find a solution

2 The idea of using a variant of the weighted median algorithm was pointed out to us
by one of the referees.
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x such that p(x) ≤ (1+ε)OPT by running A-FEAS O(log log t) times with ε′ = 1
2

and an additional number of A-FEAS runs whose overall running time is O(1)
times the time necessary to run once A-FEAS with ε′ = ε.

Now we eliminate the dependence of our algorithm on F . Given ε, R > 0, we
design A-FEAS as follows: first remove the facilities with fi > R, then apply

the algorithm of Theorem 2 for N = � 2
√

(n−1)(m−1)

ε − 1� iterations. If p(xN ) ≤
(1 + ε)R, we return xN ; else we claim that OPT > R. To see that A-FEAS is
a valid decision procedure, note that if OPT ≤ R, because of Theorem 2 and
Lemma 2 (OPT does not change), we have that

p(xN ) ≤ ε R + d(uN ) ≤ ε R + OPT ≤ (1 + ε)R.

Finally we apply Lemma 4 using the initial solution given in Lemma 3 to obtain
an algorithm that finds a (1+ε)-approximate solution in O(

√
nm (log log n + 1

ε ))
iterations. The following theorem improves the dependence on ε of the algo-
rithms in [25, 10, 7] by a factor of O(1/ε), which had a fastest running time of
O
(
nm2 log n(log log n + 1

ε2 )
)
.

Theorem 3. There is an algorithm for the linear programming relaxation of
UCFLP that given ε > 0 finds a feasible solution x ∈ Δn

m with objective value
p(x) ≤ (1 + ε)OPT in O(

√
nm (log log n + 1

ε )) iterations each of which can be
implemented in O(mn) time.

We conclude this section by noting that the soft-capacities variant of UCFLP
(now facilities have a capacity, but we can open many copies) can be easily han-
dled with our methods as well. This case is interesting because typical subgra-
dient algorithms used in practice have problems when variables are allowed to
take values greater than 1.

3 A Generic Paradigm

In this section, we summarize and generalize our arguments of the previous
section. For simplicity of the exposition, we describe the process as follows.

1. Modeling.
2. Solving the problem within an additive error of ε.
3. Using binary search to obtain a relative error of (1 + ε).

We point out that this type of approach has been followed before in the literature
(see Introduction), and our contribution consists only of a generalization that
includes the work of [21, 19].

Step 1 is the most important and difficult since it has to take into account
what the other steps can do. To be specific, consider the following LP writ-
ten in the form min{ctx : Ax ≥ b : x ∈ Q1}, where we assume that c ∈ Rn

+,
A ∈ Rm×n, b ∈ Rm, and Q1 ⊆ Rn

+ is a polyhedron. Then for multipliers u ∈ Rm
+ ,

the Lagrangian relaxation is given by L(u) = minx∈Q1 c
tx + ut(b − Ax). As we
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argued in Section 2, solving the original LP is equivalent to solving the prob-
lems minx∈Q1{p(x) := maxu∈Q2{ctx + 〈−Ax, u〉 + utb}} and maxu∈Q2{d(u) :=
minx∈Q1{ctx + 〈−Ax, u〉 + utb}} (here Q2 = Rm

+ ). Since we want to apply the
approach of [21, 19] ideally we have to make sure that Q1 and Q2 are bounded
(e.g., in Section 2, Q1 = Δn

m, Q2 = Δm
n ), but sometimes we may need to de-

lay this to Step 2 when we make additional assumptions about OPT. In Step
2 we have to choose norms and the strongly convex functions d1 and d2, and
then design the feasibility procedure A-FEAS. Thus, under the assumption that
OPT ≤ R we have to show that the right hand-side of (3) is a polynomial in the
input times R divided by N + 1. In general, we accomplish this by restricting
our primal (or dual) solution using the bound on OPT (in Section 2, we elimi-
nated the facilities i with fi > R; in other problems, we only consider feasible
points within a ball -for some appropriate norm- of radius O(R)). In addition,
we have to argue how to solve the subproblems of Theorem 1 exactly. Step 3 is
very concise and self-contained in Lemma 4. The problem at this point is to find
a good enough initial feasible solution.

In the next subsections we show three examples on how to apply the paradigm
we described above.

3.1 Packing Problems

In this section we consider the packing problems considered in [6] and recast their
algorithm using our paradigm. These are of the form min{x∈Q} maxm

i=1 at
ix, with

ai ∈ {0, 1}n, and Q ⊆ Rn
+ a polyhedron (we need also that for each j, there is

an i with (ai)j = 1). Following our paradigm we first reformulate the problem
as a Lagrangian relaxation, which (proceeding as in Section 2) takes the simple
form min{x∈Q}{maxu∈Δm

∑m
i=1(a

t
ix)ui} = min{x∈Q}{maxu∈Δm

〈Ax, u〉}, where
the ith row of A is at

i. Q may not be bounded, however under the assumption
that OPT ≤ R (start of Step 2), we can restrict our attention to the sets Q(R) =
{x ∈ Q : xj ≤ R for all j} (this is the main idea in [6]).

Now we continue with Step 2. In the primal space x we take the Euclidean
norm together with d1(x) = 1

2 ||x − x◦||21©, where x◦ ∈ Q(R) (σ1 = 1). In the
dual space u we use the norm ||u|| 2© =

∑m
i=1 |ui|, together with the entropy

distance, d2(u) =
∑m

i=1 ui lnui + lnm (here too σ2 = 1, see [21]). Then if K
is the maximum number of nonzeros in any row, it follows that ||A|| 1©, 2© =
max||x|| 1©≤1 maxm

i=1 |at
ix| ≤

√
K, D1 ≤ 2nR2 and D2 = logm. So that (3) gives

an upper bound on the number of iterations of O(
√
nK logm/ε)R for an additive

error of εR.
In Step 3 we consider the initial solution given in [6] with value no more

than min{m,K}LB for a valid lower bound LB on the true optimum. Then us-
ing Lemma 4, we obtain the bound of O(

√
nK logm(1

ε + log log min{m,K}))
iterations (exactly as in [6]). The subproblems we need to solve at each iteration
are of the same type as in [6]: convex quadratic problems in Q with the cost
function separable (i.e., no product terms of the form xixj) and simple problems
on the simplex that take O(m) time (they correspond with evaluating the poten-
tial function in [6]). We point out that the question of how to solve the primal
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problems (that have the form minx∈Q(R){||x− y||21© + αtx}) is not addressed in
[6] in detail. We discuss this in next section.

In some cases we can remove the factor of
√
K in the number of iterations

by choosing a better norm in the primal space x and keeping the dual norm as
before. For x ∈ Rn

+, let f(x) = maxi at
ix = maxu∈Δm

〈Ax, u〉. In [23] it is shown
how to find a diagonal Euclidean norm, ||x||D, in O(n2m(lnn+lnm)) time, such
that ||x||D ≤ f(x) for any x ∈ Rn

+ and ||A||D, 2© ≤ 2
√
n. Let d1(x) = 1

2 ||x−x◦||2D
(where x◦ is the projection of 0 into Q using || ||D). If we use this norm now, under
the assumption that OPT ≤ R, we can restrict our problem to Q(R) = {x ∈
Q : ||x||D ≤ R} (since ||x∗||D ≤ f(x∗) = OPT for an optimal solution x∗). If we
plug in formula (3), we would immediately improve the bound of [6] by a factor
of
√
K (since now D1 ≤ 2R2). Unfortunately, the subproblems in Q(R) may be

too difficult to solve (now the constraints are nonlinear). In one important case
this is possible, however, when Q = Δn. Now our problem is equivalent to the
linear fractional packing problem [23], that is, max{ctx : at

ix ≤ bi, x ≥ 0} where
all the entries are nonnegative. In this case, we can improve the result of [23] by
a factor of O(log

√
n/ log log

√
n) by recasting the problem and using our generic

paradigm.

Theorem 4. After computing a diagonal rounding in O(n2m(lnn+lnm)) time,
the fractional packing problem can be approximated within a relative gap of (1−ε)
in O(

√
n lnm (log log

√
n+ 1

ε )) iterations, each of which requiring O(n+m) time.

3.2 Scheduling Jobs on Unrelated Parallel Machines

Here we consider the linear programming relaxation of the following schedul-
ing problem (known as R||Cmax), a special case of packing that we can solve
efficiently. There are m machines and n jobs that need to be processed on
the machines without preemption. The processing time of job j if processed
by machine i is pij > 0 (1 ≤ i ≤ m, 1 ≤ j ≤ n) and the goal is to sched-
ule all the jobs on the machines so as to minimize the makespan (i.e., the last
job completion time). Since xij is 1 when job j is assigned to machine i, and
0 otherwise, it is easy to see (using the same notation as in Section 2) that
minx∈Δn

m
{max{maxi

∑
j pijxij ,maxj

∑
i pijxij}} is a linear programming relax-

ation. Indeed, using [24] and the filtering technique of [16] the value of this re-
laxation is at most within a factor of 4 of the integer optimum. The Lagrangian
relaxation is minx∈Δn

m
{maxu∈Δm+n

{
∑

i ui

∑
j pijxij +

∑
j um+j

∑
i pijxij}}. As

before, in the dual space u we use the norm ||u|| 2© =
∑m+n

i=1 |ui|, together with the
entropy distance, d2(u) =

∑m+n
i=1 ui lnui + ln(m + n), σ2 = 1, D2 = log(n + m).

In the primal space x we choose the norm ||x|| 1© = 1√
m

(
∑

i,j p
2
ijx

2
ij)

1/2 and
d1(x) = 1

2 ||x− x◦||21© (x◦ is the projection of 0 into Δn
m using the primal norm,

σ1 = 1). Then we have that if f(x) = max{maxi

∑
j pijxij ,maxj

∑
i pijxij}},

for any x ∈ Δn
m, ||x|| 1© ≤ f(x) and ||A|| 1©, 2© ≤

√
nm (as sought in [23]).

Now we use the same idea as before to construct a feasibility procedure. If
OPT ≤ R, using (3) in the restricted set Q(R) = {x ∈ Q : ||x|| 1© ≤ R} (so
D1 ≤ 2R2), we need O(

√
nm ln(n + m)/ε) iterations to get a feasible solution
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of value at most R(1 + ε). Concerning the subproblems, the quadratic programs
minimizing over x take again O(nm) time (generalizing Lemma 1), and the
problems minimizing over u take O(n + m) time. It is easy to find a feasible
solution and a lower bound with t = n satisfying the conditions of Lemma 4
(assign each job to the machine with shortest processing time). The previously
known algorithm for this problem is described in [13] and has a running time of
O( (m+n) log(n+m)

ε2 mn).

Theorem 5. There is an approximation algorithm for the linear programming
relaxation of R||Cmax that needs O(

√
nm ln(n + m)(1

ε + log log n)) iterations
requiring each O(nm) time to find a feasible solution within (1 + ε) of
optimum.

3.3 Set Covering Problem

In this section we consider the set covering problem, which for simplicity we think
as the special case of UCFLP when cij ∈ {0,∞} and only consider the case when
n is substantially greater than m. We first eliminate the variables xij from the
linear programming relaxation. Let N(j) := {i ∈ F : cij < ∞} be the set of
facilities that can be assigned to client j ∈ D, and let ej ∈ Rm be the incidence
vector of N(j), that is, (ej)i = 1 if i ∈ N(j) and 0 otherwise. Then the LP we
need to solve takes the form: min{

∑
i∈F fiyi : (ej)ty ≥ 1 for each j ∈ D, yi ≤

1 for each i ∈ F , y ∈ Rm
+}. Next, if we let e ∈ Rm be the vector of all 1’s and

use the change of variables y = e− z, we can apply Lemma 2 and the algorithm
of Theorem 4 to obtain the following result, which improves by a factor 1/ε the
running times in [25, 10, 7, 13]

(
O
(
m2n log(n)(log log n + 1

ε2 )
))

.

Theorem 6. There is an approximation algorithm for the linear programming
relaxation of the set covering problem that in O(m1.5

√
lnn(m+n)/ε) + O∗(m2n)

time computes a feasible solution within a factor of (1 + ε) of optimum.3

4 Approximating the Subproblems

A drawback of the method of the previous section (i.e., those in [19, 22]) is that
the subproblems of Theorem 1 need to be solved exactly for the bound (3) to be
valid. However, in many important cases, even though the subproblems are gen-
erally much smaller than the original problem, they may be hard to solve exactly.
For example, in the special case of multicommodity flow problems, if we choose
an Euclidean norm, typically, the subproblems are single-commodity minimum
cost flow problems with convex quadratic and separable objective function (see
[6] for the special case of the maximum concurrent multicommodity flow prob-
lem). Minoux [17] showed that these subproblems can be solved exactly, however
the final step of his algorithm can be very costly (in [17], the ellipsoid method

3 The notation O∗(.) hides logarithmic factors in n or m.
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is used). Thus, to make the technique of Section 3 available to more general
problems we investigate how the precision of the solution of the subproblems
affects the overall performance of the algorithms. Our results are generalizations
of [19, 22, 6]. Under the assumption that the subproblems can be solved up to an
additive error of δ in O(log 1

δ ) time (times a polynomial on the size of the input),
the bound on the number of iterations (3) remains essentially unchanged. But
now each iteration depends on O(log 1

ε ) by choosing δ = δ(ε) (see Theorem 7
below), and thus the overall dependence on ε of the running time of the algo-
rithms deteriorates by that factor. We can prove the following generalization of
Theorem 1 by strengthening the arguments of [6] and providing error bounds
for the primal and dual subproblems.

Theorem 7. Suppose that the problems that need to be solved in Theorem 1 are
solved up to an additive error of δ. Then the modified algorithm finds a sequence
of points (xk, uk) that essentially satisfy (3) (e.g. replace 4 by 5), if we choose δ
with O(δ) = O( 1

(N+1)4
1

||A||1,2
( σ1σ2

D1D2
)1/2).

We omit the proof in this extend abstract. It essentially uses the fact that an
approximate minimizer of a strongly convex function is close to the true mini-
mizer.

Using the theorem, if ε > 0 is given, we can find N so that the right hand side
of (3) is less than ε, and then we choose δ using this value of N . In this way, we
get an additive error of ε and the dependence on ε of the number of iterations
is O(1/ε). Notice that to run the algorithm we need to specify a procedure
to approximately solve the subproblems and to get an estimate of the overall
running time we need to estimate how long it takes to do that. Under reasonable
assumptions, the input size for each subproblems in the theorem can be bounded
by O(log(1/ε)). We will further discuss this issue in Section 4.2.

For the special case of the setting of [17] (see also [6]), the subproblems can
be solved in O(log(1/ε)) times a polynomial on the size of the input, then the
theorem gives essentially the result of [6] for the maximum concurrent multi-
commodity flow problem.

4.1 Network Design Problems

Here we consider the survivable network design problem (SNDP). In this prob-
lem we are given an undirected graph G = (V,E) with edge costs fe ≥ 0
(e ∈ E). In addition, for each pair i, j ∈ V , i �= j, there is a connectivity
requirement rij ∈ Z+. A feasible solution to the problem consists of a subgraph
that for each pair i, j ∈ V , i �= j, contains rij edge-disjoint paths, and the
objective is to find a minimum cost feasible solution. This problem and many
of its variations have been studied extensively and a linear programming relax-
ation has proven very useful for the design of approximation algorithms (see
[12] and references thereafter). Recently this linear programming relaxation was
treated in [9] and the approach was to consider the exponential version of the
LP that had the additional difficulty that the variables were constrained to be at
most 1.
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Here we proceed differently and solve the following multicommodity flow
generalization of the problem (using the max flow-min cut theorem). Now G =
(V,E) is a directed graph with edge costs, fe ≥ 0 (e ∈ E), and edge capacities
all equal to 1. We also have k commodities. Each commodity i has a source-
sink pair (si, ti) and a demand di > 0. Now we are looking for a minimum cost
subgraph that can route all the demands. We will use xi(e) to denote the amount
of flow of commodity i that is routed on edge e, and ye indicates whether edge e is
picked. We will use Ni ⊆ Rm

+ to denote the convex polytope representing the flow
constraints for commodity i with the capacity constraints of 1, that is, if y ∈ Ni,
y satisfies the conservation of flow constraints for every node v �∈ {si, ti} and si is
a source with demand ≥ di of commodity i and ye ≤ 1 (e ∈ E). Thus, (xi(e))e ∈
Ni, and x = (xi(e))i,e ∈ N1×. . .×Nk means that x is a feasible multicommodity
flow. Thus we would like to solve min{

∑
e∈E feye : x ∈ N1 × . . .×Nk, xi(e) ≤

ye (e ∈ E, i = 1, . . . , k), ye ≥ 0(e ∈ E)}. This LP is a slight modification of the
one given in [12] (it has constraints of the form x(e) ≤ 1 and uncapacitated
Ni’s, we move the capacity constraints inside Ni) and allows us to get away
without being concerned about the hard variable upper bounds of [9] (her LP
and ours are equivalent for SNDP). As in Section 2, we choose Euclidean norms
in the primal and dual spaces. If |V | = n, |E| = m and F = maxe∈E fe, then
again ||A|| 1©, 2© ≤ F and here D1 = O(km), D2 = O(m). The dual subproblems
we need to solve are as in Section 2, so we can solve them exactly. Using ideas
from [6], we approximately solve the primal subproblems via piece-wise linear
functions and use Theorem 7 to derive an algorithm with an additive error. The
extension of Lemma 2 is in [9]. An initial solution satisfying the conditions of
Lemma 4 is readily available by considering each commodity separately. As in
[6] the binary search step is changed to accommodate the approximate solutions
of the subproblems (e.g., ε′ is always taken as a positive or negative power of
2) and for simplicity we choose the accuracy δ as a function of the target final
accuracy ε and F that works all the time. Below D is the maximum demand. The
following improves the dependence on ε of the algorithm described in [9], whose
running time is O(m(m+nmin{n, k} log n) log n/ε2 +min{n, k}Tm

n ), where Tm
n

is the time needed to compute a single minimum cost flow problem.

Theorem 8. Given ε > 0, there is an algorithm that finds a feasible solution
to the SNDP within a factor of (1 + ε) of optimum in O(m

√
k(log log k + 1

ε ))
iterations plus the time to solve k single commodity maximum flow problem with
unit capacities (to find an initial solution) of O(mnk) [1]. Each iteration can be
implemented in O∗((log(1/ε)+logF +logD)km) shortest path computations, or
O∗((log(1/ε) + logF + logD)km(m + n log n)) overall time.

Furthermore we can provide similar results for several extensions of the problem
such as more general single-commodity flow problems per commodity, routing
costs and soft-capacities.

4.2 Discussion

Here we address the issue of solving the subproblems for more general cases,
in which the structure of the feasible region is not as benign as the case of a
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network flow problem. In such cases, for instance, we could always use an in-
terior point method to approximately solve the subproblems. In general, if we
keep Q(R) polyhedral, we can always approximately solve our subproblems in
O(log2(1/ε)) times a log on the size of the data (ε excluded). The additional log
factor comes from the size of the numbers generated by the algorithm which are
of size O(log(1/ε)) times a polynomial on the size of the data (notice that this
additional log factor did not affect the algorithm of [6] or Theorem 8 because,
essentially, there is a strongly polynomial time algorithm to compute shortest
paths). Thus, to get an algorithm with dependence on ε > 0 of O((1/ε) log2(1/ε))
we only need to worry about the problems we initially had in Section 3 (i.e.,
finding bounds on Lagrangian multipliers, polynomial -or optimum dependent-
bounds on the norm operator, D1 and D2, and finding a good initial solution).
From a practical point of view, Theorem 7 suggests that the crude implementa-
tion of the algorithms that lets a commercial standard solver (such as Cplex or
Mosek) deal with the strongly convex subproblems of the algorithms of [19, 22]
may produce very good solutions. Of course, this approach makes sense only if
the subproblems are substantially smaller than the original problem.

5 Computational Experiments

In this section we present a preliminary report on computational experiments for
the UCFLP using the algorithm of Section 2 and a few of its variants obtained
by changing update rules and norms. We primarily compared the number of
iterations that each algorithm required. Our instances were generated randomly
following [4].

Among the variations of the implementation of the algorithm of Section 2
(e.g, using the entropy distance), the algorithm that used Euclidean norms typ-
ically outperformed all the others as well as substantially its theoretical bounds.
On the other hand, the algorithms that used the entropy distance performed
fairly poorly. This fact seems quite interesting since many algorithms that were
implemented using exponential functions (which map exactly to the entropy
distance) were reported to have slow convergence in practice.

The algorithm of [4] is a very fine-tuned subgradient algorithm (based on
the volume algorithm of [3]), and produces typically only approximate primal
solutions. In general, our best algorithm (the one we describe in Section 2) turn
out to be very competitive and in some cases superior to the one in [4].
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Abstract. We are given an undirected simple graph G = (V, E) with
edge capacities ce ∈ ZZ+, e ∈ E, and a set K ⊆ V 2 of commodities
with demand values d(s,t) ∈ ZZ+, (s, t) ∈ K. An unsplittable short-
est path routing (USPR) of the commodities K is a set of flow paths
Φ(s,t), (s, t) ∈ K, such that each Φ(s,t) is the unique shortest (s, t)-path
for commodity (s, t) with respect to a common edge length function
λ = (λe) ∈ ZZE

+. The minimum congestion unsplittable shortest path
routing problem (Min-Con-USPR) is to find an USPR that minimizes
the maximum congestion (i.e., the flow to capacity ratio) over all edges.
We show that it is NP-hard to approximate Min-Con-USPR within a
factor of O(|V |1−ε) for any ε > 0. We also present a simple approximation
algorithm that achieves an approximation guarantee of O(|E|) in the
general case and of 2 in the special case where the underlying graph G is
a cycle. Finally, we construct examples where the minimum congestion
that can be obtained with an USPR is a factor of Ω(|V |2) larger than the
congestion of an optimal unsplittable flow routing or an optimal shortest
multi-path routing, and a factor of Ω(|V |) larger than the congestion
of an optimal unsplittable source-invariant routing. This indicates that
unsplittable shortest path routing problems are indeed harder than their
corresponding unsplittable flow, shortest multi-path, and unsplittable
source-invariant routing problems.

The Min-Con-USPR problem is of great practical interest in the
planning of telecommunication networks that are based on shortest path
routing protocols.

Keywords: Shortest Path Routing, Unsplittable Flow, Computational
Complexity, Approximation.
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1 Introduction

Most data networks presently employ shortest path routing protocols such as
OSPF, IS-IS, or RIP. Shortest path routing offers many advantages in practice,
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for instance, decentralized and distributed routing algorithms, little administra-
tive overhead, and better scaling properties than classical connection oriented
protocols. These advantages however come at a cost. The end-to-end routing
paths can be controlled only jointly and indirectly by changing the administra-
tive routing lengths of the network links. Finding lengths that induce a set of
globally efficient end-to-end routing paths is a major difficulty in such networks.
The shortest path routing paradigm enforces rather complicated and subtle in-
terdependencies among the paths that comprise a valid routing. Additional dif-
ficulties are introduced if the communication demands must be sent unsplit (i.e.,
via uniquely determined shortest paths) through the network – a requirement
that is often imposed in order to ensure tractability of end-to-end traffic flows
and to prevent package reordering and other unwanted effects of multi-path
routing. As links with small routing lengths are preferred by all communication
demands, shortest path routing protocols potentially lead to congestion in the
network. This may have severe effects on the overall service quality. Network
providers therefore put much effort into reducing and balancing the congestion
of their network links.

Mathematically, this planning task can be formulated as a minimum conges-
tion unsplittable shortest path routing problem (Min-Con-USPR). The prob-
lem input consists of an undirected graph G = (V,E) with capacities ce ∈ ZZ+

for all e ∈ E, and a set of commodities K ⊆ V 2 with demand values d(s,t) ∈ ZZ+,
(s, t) ∈ K. A feasible solution is an unsplittable shortest path routing (USPR)
of the commodities, i.e., a single flow path Φ(s,t) for each commodity (s, t) ∈ K
such that each Φ(s,t) is the unique shortest (s, t)-path with respect to a common
edge length function λ = (λe) ∈ ZZE

+. The objective is to minimize the maximum
congestion (i.e., the flow to capacity ratio) over all edges.

In spite of their great practical relevance, unsplittable shortest path rout-
ing problems have receive only little attention in the mathematical literature.
Ben-Ameur and Gourdin [1] discuss some structural properties of unsplittable
shortest path routings. They also devise several (integer) linear programming
models to find lengths that induce a prescribed set of shortest paths. Bley [2]
shows that the problem of finding small integer routing weights that uniquely
induce a prescribed set of shortest paths is computationally hard. Algorithms
based on local search techniques, Lagrangian relaxation, and integer program-
ming methods as well as computational results for real-world network design
and congestion minimization problems with unsplittable shortest path routing
are presented in [3, 4, 5, 6, 7, 8]. Results concerning the approximability of these
problems have not been published (to our knowledge).

In this paper, we prove that it is NP-hard to approximate Min-Con-USPR
within a factor of O(|V |1−ε) for any ε > 0. In the special case where all demand
values and edge capacities are one, Min-Con-USPR remains inapproximable
within 2 − ε. Furthermore, we present two simple O(|E|)-approximation algo-
rithms for Min-Con-USPR. In the special case where the underlying graph is
a cycle, both algorithms achieve an approximation guarantee of 2. In the last
section, we construct examples where the gap between the minimum congestion
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value for USPR and the minimum congestion for unsplittable flow routing is as
bad as Ω(|V |2). We also show that USPR may be Ω(|V |2) worse than shortest
multi-path and multicommodity flow routing and Ω(|V |) worse than unsplittable
source-invariant routing. This gives theoretical evidence for the practical expe-
rience that routing planning is harder for USPR than for shortest multi-path
routing, unsplittable source-invariant routing, and unsplittable flow routing.

2 Notation and Preliminaries

Let G = (V,E) be an undirected graph with edge capacities ce ∈ ZZ+, e ∈ E
and let K ⊆ V 2 be a set of (undirected) commodities with demand values
d(s,t) ∈ ZZ+, (s, t) ∈ K. An edge length function λ = (λe) ∈ ZZE

+ defines
an unsplittable shortest path routing (USPR) for the commodity set K if the
shortest (s, t)-path Φ(s,t)(λ) with respect to λ is uniquely determined for each
commodity (s, t) ∈ K. The demand of each commodity is routed unsplit along
the respective shortest path. For edge lengths λ that define such an USPR, the
total flow through an edge e ∈ E is

fe(λ) :=
∑

(s,t)∈K: e∈Φ(s,t)(λ)

d(s,t) . (1)

The task in the Minimum Congestion Unsplittable Shortest Path Rout-
ing problem is to find edge lengths λ that define an USPR for the given com-
modity set K. The objective is to minimize the maximum congestion (i.e., the
ratio fe(λ)/ce) over all edges. Formally, this problem is defined as follows:

Problem: Min-Con-USPR
Instance: Graph G = (V,E) with edge capacities ce ∈ ZZ+, e ∈ E, and

commodity set K ⊆ V × V with demands d(s,t) ∈ ZZ+, (s, t) ∈ K.
Solution: Edge lengths λe ∈ ZZ+, e ∈ E, such that the shortest (s, t)-path

is uniquely determined for each commodity (s, t) ∈ K.
Objective: min maxe∈E fe(λ)/ce, where fe(λ) is as defined in (1).

We may assume without loss of generality that the underlying graph G is
connected. Clearly, no commodity (s, t) ∈ K with s and t in different components
can be routed and all nodes and edges in a commodity’s routing path must
belong to the same component of G. Furthermore, we may assume that G is
simple and that there are no parallel commodities. Loops cannot be contained
in any uniquely determined shortest path. If two parallel edges were contained
in two commodities’ routing paths, these paths would not be unique shortest
paths. Parallel commodities between two nodes s and t would have to use the
same flow path in any unsplittable shortest path routing and therefore can be
aggregated into one commodity.

Observe that, for any bijection idx : E ↔ {1, . . . , |E|}, the edge length func-
tion λe := 2idx(e) induces unique shortest paths between all node pairs. Hence,
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there exists an USPR for any given commodity set K, provided that the under-
lying graph G is connected.

An assumption that is commonly made for unsplittable flow problems is that
the maximum demand value does not exceed the minimum capacity. Typically,
unsplittable flow problems are easier to approximate with this additional as-
sumption than in the general case, c.f. [9, 10, 11]. For unsplittable shortest path
routing problems this is not the case.

Proposition 1. For any instance I = (G, c,K, d) of Min-Con-USPR with
dmax > cmin, there exists an equivalent instance I′ = (G′, c′,K ′, d′) with d′

max ≤
c′
min (i.e., any solution for I with objective value L can be transformed into a

solution for I′ with objective value L, and vice versa).

Proof. Suppose we are given a Min-Con-USPR instance (G, c,K, d) with cmin <
dmax. Let r := dmax/cmin and q := �

√
r �. For each node v ∈ V , we introduce

q additional nodes vj and edges vvj , j = 1, . . . , q. The capacities c′ are set
c′
e := ce for all e ∈ E and c′

vvj :=
∑

e∈E ce for all j = 1, . . . , q. Each com-
modity (s, t) ∈ K is replaced by q2 new commodities (si, tj) with demand val-
ues d′

(si,tj) ∈ {�d(s,t)/q
2�, �d(s,t)/q

2�} such that
∑q

i,j=1 d
′
(si,tj) = d(s,t). Clearly,

d′
max ≤ c′

min holds.
Because each node vj , j = 1, . . . , q has only one neighbor, namely v, all q2

commodities (si, tj), i, j = 1, . . . , q, are routed via the same (s, t)-subpath in
any unsplittable shortest path routing. An unsplittable shortest path routing in
G therefore corresponds to an unsplittable shortest path routing in G’, and vice
versa. As the corresponding routings induce the same flows on the edges of G,
the maximum congestion values are equal for both routings. ��

Note that this transformation is not polynomial in the strong sense. The size of
the graph grows by a factor of Θ(dmax/cmin).

If the underlying graph G is a forest, then all edge length vectors define
the same USPR. In this case, any edge length vector λ is an optimal solution
for Min-Con-USPR. The simplest non-trivial case is when G is a cycle. Yet,
already in this case Min-Con-USPR is (weakly) NP-hard.

Theorem 2. Min-Con-USPR is NP-hard even if the underlying graph is a
cycle.

Proof. We construct a polynomial reduction from Partition to the problem of
solving Min-Con-USPR to optimality. Given a Partition instance consisting
of the items i ∈ {1, . . . , k} with sizes di ∈ ZZ+, the instance of Min-Con-USPR
is built as shown in Figure 1.

Since the graph is a cycle and all commodity pairs “cross”, each unsplittable
flow routing of the commodities can be realized as an unsplittable shortest path
routing [1]. Therefore, any feasible partition of the items corresponds to an undi-
rected unsplittable shortest path routing of the commodities such that the flows
do not exceed the edge capacities, and vise versa. The commodities routed across
s1tk form one set of the partition, those routed across skt1 the other set. ��
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. . .

. . .

s1 s2 s3 sk

tk t3 t2 t1 For each item i ∈ {1, . . . , k}, we introduce
two nodes si, ti and a commodity (si, ti)
with a demand value d(si,ti) = di. The
edge set E consists of the edges sisi+1 and
ti, ti+1 for all i = 1, . . . , k − 1, as well
as s1tk and skt1. The edge capacities are
cs1tk = cskt1 = 1/2

∑k
i=1 di, and csisi+1 =

ctiti+1 =
∑k

i=1 di for all i = 1, . . . , k − 1.

Fig. 1. Reduction from Partition to Min-Con-USPR: Solid lines are edges, dashed
lines are commodities

3 Inapproximability Results

In this section, we show that Min-Con-USPR is not approximable within a
factor in O(|V |1−ε), unless P = NP . As a first step, we show that there is no
constant factor approximation.

Lemma 3. Let α ∈ ZZ+ be an arbitrary number. It is NP-hard to approximate
Min-Con-USPR within a factor less than α + 1.

Proof. We construct a reduction from the NP-complete decision problem Fully
Disjoint Paths to Min-Con-USPR. Fully Disjoint Paths is a restricted
variant of the classical Disjoint Paths problem [12]. Given an undirected graph
H = (W,F ) and a set of node pairs (si, ti), i = 1, . . . , k, the task is to find (si, ti)-
paths Pi in H that are not only internally disjoint but share no nodes at all
(including the paths’ first and last nodes), i.e., {v ∈W | v ∈ Pi and v ∈ Pj} = ∅
for all i, j = 1, . . . , k with i �= j. It is easy to verify that the Disjoint Paths
problem remains NP-complete with this stronger notion of disjointness.

Suppose we are given a Fully Disjoint Paths instance consisting of the
graph H = (W,F ) and the node pairs (si, ti), i = 1, . . . , k. W.l.o.g., we may
assume that there is an (si, ti)-path in H for each i = 1, . . . , k and that {si, ti}∩
{sj , tj} = ∅ for all i �= j.

We construct a Min-Con-USPR instance (G, c,K, d) as follows. The graph
G = (V,E) contains all nodes and edges of H. Furthermore, G contains one
extra node r and 2kα additional nodes nodes ul

i and vl
i with l = 1, . . . , α and

i = 1, . . . , k, i.e.,

V := W ∪ {r} ∪ {ul
i, v

l
i | i = 1, . . . , k , l = 1, . . . , α}.

For each i = 1, . . . , k, we add 2α + 1 new edges, which comprise the edge set

Eα :={rv1
i , v

α
i ti, u

α
i si | i = 1, . . . , k}

∪ {ul
iu

l+1
i , vl

iv
l+1
i | i = 1, . . . , k , l = 1, . . . , α− 1}.

Additionally, we introduce α2 edges for each pair i, j = 1, . . . , k with i �= j.
These edges form the set

E1 := {ul
iv

m
j | i, j = 1, . . . , k , i �= j , l,m = 1, . . . , α}.
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We let E := F ∪ Eα ∪ E1. The edge capacities are defined as

ce :=

{
1 , if e ∈ E1, and
α , otherwise.

The commodity set K contains two types of commodities. For each i = 1, . . . , k,
there is a commodity (u1

i , r) with demand value d(u1
i ,r) = α. For each pair

i, j = 1, . . . , k with i �= j and each pair l,m = 1, . . . , α, there is a commodity
(ul

i, v
m
j ) with d(ul

i,v
m
j ) = 1.

Figure 2 illustrates the constructed Min-Con-USPR instance for the case
where k = 2. It is obvious that this transformation is polynomial in the encoding
size of the given Fully Disjoint Paths instance and α. Furthermore, any edge
length function λ ∈ ZZE

+ that induces unique shortest paths for the commodities
in K defines a feasible solution for the constructed Min-Con-USPR instance.

In the first part of the proof, we show that there exists an unsplittable short-
est path routing of the commodities K that does not exceed the edge capacities
c if the given Fully Disjoint Paths instance has a feasible solution. Assume
there exist fully disjoint (si, ti)-paths Pi in H, i = 1, . . . , k. Let idx be an arbi-
trary bijection idx : F ∪ Eα ↔ {1, . . . , |F ∪ Eα|} and consider the edge length
function λ′ on the subgraph GP := (V, F ∪ Eα) defined as

r

v1
1

vα
1

t1

s1

uα
1

u1
1

v1
2

vα
2

t2

s2

uα
2

u1
2

H

(a)— Graph G with indicated edge
capacities: Edges with capacity α are
bold, edges with capacity 1 are thin

r

v1
1

vα
1

t1

s1

uα
1

u1
1

v1
2

vα
2

t2

s2

uα
2

u1
2

H

(b)— Commodities K with indicated
demand values: commodities with de-
mand α are bold, commodities with
demand 1 are thin

Fig. 2. Constructed Min-Con-USPR instance
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λ′
e :=

{
2 , if e ∈ Pi or e ∈ Eα , and
2 · |F |+ 2idx(e) , otherwise.

Since GP is connected, the distance dist(u, v) in GP with respect to λ′ is well
defined for each node pair u, v ∈ V . We define the edge lengths λ on the entire
graph G as

λe :=

{
λ′

e , if e ∈ F ∪ Eα, and
dist(ul

i, v
m
j )− 1 , otherwise (i.e., e = ul

iv
m
j ∈ E1).

It is easy to verify that all shortest paths in G are unique with respect to
λ. In particular, the shortest (u1

i , r)-path is the path (u1
i , . . . , u

α
i , si) + Pi +

(ti, vα
i , . . . v

1
i , r) for each i = 1, . . . , k, and the shortest (ul

i, v
m
j )-path is the edge

ul
iv

m
j for each i, j = 1, . . . , k with i �= j and l,m = 1, . . . , α. Figure 3 illus-

trates this routing. Clearly, the induced edge flows do not exceed the given edge
capacities c.

In the second part of the proof, we show that the flows of any unsplittable
shortest path routing exceed at least one edge capacity by a factor of at least
α + 1 if the Fully Disjoint Paths instance is not solvable. So, suppose there
is no set of fully disjoint (si, ti)-paths in H and let λ ∈ ZZE

+ be an arbitrary
edge length function that defines unique shortest (u, v)-paths Φ(u,v)(λ) for all
(u, v) ∈ K.

First, assume that some edge ul
iv

m
j is contained in the shortest path Φ(u1

i′ ,r)
(λ)

for some commodity (u1
i′ , r). Since Φ(u1

i′ ,r)
(λ) is the unique shortest (u1

i′ , r)-path,
its edge (ul

i, v
m
j ) is also the unique shortest (ul

i, v
m
j )-path. The total flow across

r

v1
1

vα
1

t1

s1

uα
1

u1
1

v1
2

vα
2

t2

s2

uα
2

u1
2

Fig. 3. USPR in G if fully disjoint (si, ti)-paths exist in H
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r

v1
1

vα
1

t1

s1

uα
1

u1
1

v1
2

vα
2

t2

s2

uα
2

u1
2

w

Fig. 4. No USPR. If the shortest
(u1

1, r)- and (u1
2, r)-paths intersect in

some internal node w, they are not
uniquely determined

r

v1
1

vα
1

t1

s1

uα
1

u1
1

v1
2

vα
2

t2

s2

uα
2

u1
2

Fig. 5. If t1 ∈ Φ(u1
2,r)(λ), then the

shortest path property forces all com-
modities (ul

2, vm
1 ) to follow their respec-

tive subpath of Φ(u1
2,r)(λ)

this edge therefore is at least d(u1
i′ ,r)

+ d(ul
i,v

m
j ) = α + 1, while its capacity is

cul
iv

m
j

= 1.
In the following, we thus may assume that all commodities (u1

i , r), i ∈
{1, . . . , k}, are routed within the subgraph Gα = (V, F ∪ Eα). Now, suppose
we had ti ∈ Φ(u1

i ,r)(λ) for all i = 1, . . . , k. Then at least two of these paths, say
Φ(u1

1,r)(λ) and Φ(u1
2,r)(λ), would have to intersect in some internal node w ∈W ,

as illustrated in Figure 4. Otherwise, there would exist fully disjoint (si, ti)-paths
in H. However, these two paths cannot be uniquely determined shortest paths,
as they contain different subpaths between w and r.

Consequently, there must be some i = 1, . . . , k such that ti �∈ Φ(u1
i ,r)(λ).

Since Φ(u1
i ,r)(λ) is completely contained in Gα, there is some j �= i such that

tj ∈ Φ(u1
i ,r)(λ). Furthermore, all nodes ul

i and vm
j with l,m ∈ {1, . . . , α} are

contained in Φ(u1
i ,r)(λ) . Hence, all α2 commodities (ul

i, v
m
j ) are routed along

their respective subpath of Φ(u1
i ,r)(λ), see Figure 5. The total flow across the

edge tju
α
j therefore is at least α + α2 · 1, while its capacity is only α.

Together, the two parts of the proof imply that it is NP-hard to approximate
Min-Con-USPR within a factor less than α + 1. ��

If we choose α = 1 in the above construction, all capacities and demand values of
the Min-Con-USPR instance are equal to 1. This yields the following theorem.

Theorem 4. For any ε > 0, it is NP-hard to approximate Min-Con-USPR
within a factor of 2 − ε, even if all demand values and capacities are equal to
one.
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For the general case, we obtain a stronger non-constant inapproximability bound
by choosing α depending on the size of the given Fully Disjoint Paths in-
stance.

Theorem 5. For any ε > 0, it is NP-hard to approximate Min-Con-USPR
within a factor of O(|V |1−ε).

Proof. It is not difficult to verify that the encoding size of the constructed Min-
Con-USPR instance is O

(
α2 logα(|W | + |F |)

)
. With α = α(H) := |W |q, the

presented construction thus remains polynomial in |W | + |F | for any fixed q ∈
ZZ+. Because |V | ∈ Ω(α), there exists some qε ∈ ZZ+ for each ε > 0, such that
α �∈ O(|V |1−ε) for α := |W |qε . With Lemma 3, this implies the claim. ��

Analogously, it follows that approximating Min-Con-USPR within a factor of
O(|E|1/2−ε) or O(〈I〉1/2−ε) is NP-hard for any ε > 0, where 〈I〉 is the encoding
size of the Min-Con-USPR instance.

By adding α many new nodes rj , j = 1, . . . , α, and replacing each commodity
(u1

i , r) of demand d(u1
i ,r) = α by α many commodities (u1

i , r
j) with d(u1

i ,rj) = 1,
we may transform the Min-Con-USPR instance constructed in the proof of
Lemma 3 into an instance that satisfies dmax ≤ cmin. For the class of Min-Con-
USPR instances we construct in the proof of Lemma 3, this transformation is
strongly polynomial. Therefore, the inapproximability results of Lemma 3 and
Theorem 5 also hold for the case where dmax ≤ cmin.

4 An O(|E|)-Approximation Algorithm

By Theorem 2, Min-Con-USPR is NP-hard to approximate within a factor
less than O(|V |). However, it is easy to compute O(|E|)-approximate solutions.

For each commodity (s, t) ∈ K, let P(s,t) denote the set of all (s, t)-paths
in G. Furthermore, let P :=

⋃
(s,t)∈K P(s,t). In a fractional multicommodity

flow (MCF) routing, the demand of each commodity (s, t) may be distributed
arbitrarily among the paths P(s,t). Such a routing can be expressed as an as-
signment x : P → [0, 1], where each xP denotes the fraction of the demand d(s,t)

that is sent along P ∈ P(s,t). The problem of finding an MCF routing of minimal
congestion can be formulated as follows:

min L (MCF-LP)∑
P∈P(s,t)

xP = 1 ∀ (s, t) ∈ K

∑
(s,t)∈K

∑
P∈P(s,t):e∈P

d(s,t) · xP ≤ L · ce ∀ e ∈ E (2)
L ≥ 1

0 ≤ xP ≤ 1 ∀ (s, t) ∈ K, P ∈ P(s,t)

Let (L∗, x∗) be an optimal solution of (MCF-LP). Clearly, L∗ is a lower bound for
the minimum congestion with an unsplittable shortest path routing. By fe(x∗) :=
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(s,t)∈K

∑
P∈P(s,t):e∈P d(s,t)x

∗
P we denote the total flow across an edge e ∈ E

in the corresponding multicommodity flow routing.
The idea of the RemoveSmallLinks algorithm is to construct a spanning tree

of G by “removing” the least utilized edges. All commodities are routed just
within the remaining tree.

RemoveSmallLinks

1. Compute optimal solution (L∗, x∗) of (MCF-LP).
2. Let F = E.
3. For all edges e ∈ F in order of increasing fe(x∗) do
4 If F − e spans G, then remove e from F

5. Return USPR defined by λe :=

{
1 , if e ∈ F ,
|F |+ 1 , else.

Theorem 6. RemoveSmallLinks is a O(|E|)-approximation algorithm for Min-
Con-USPR.

Proof. Obviously, λ defines an USPR. Let fe(x∗) and fe(λ) denote the edge flows
induced by the optimal solution (L∗, x∗) of (MCF-LP) and by the edge lengths
λ returned by RemoveSmallLinks, respectively. For all edges e �∈ F , we clearly
have fe(λ) = 0. An edge e ∈ F receives additional traffic only from those edges
that were considered for removal before e. Hence, we have

fe(λ) ≤
∑

e′:fe′ (x∗)≤fe(x∗)

fe′(x∗) ≤ |E| · fe(x∗) for any e ∈ F .

Consequently, L∗ ≤ maxe∈E fe(λ)/ce ≤ maxe∈F |E| · fe(x∗)/ce = |E| · L∗. ��

Let π∗
e ∈ IR+, e ∈ E, be the optimal dual variables corresponding to the con-

straints (2) in (MCF-LP). It follows from LP duality that all paths P with
x∗

P > 0 are shortest paths between their respective terminal nodes with respect
to the edge lengths π∗

e . However, these paths are not necessarily uniquely deter-
mined shortest paths and not all shortest paths have a positive flow. The idea
behind our second algorithm PenalizeSmallLinks is to start with the optimal dual
variables π∗

e and perturb these lengths until the shortest path is unique for each
commodity.

PenalizeSmallLinks

1. Compute optimal solution (L∗, x∗) of (MCF-LP).
Let π∗

e be the optimal dual variables for (2).
2. Find integer weights λ′

e ≥ 1 that induce the same shortest paths as π∗
e .

(i.e. all paths P with x∗
P > 0).

3. Number the edges idx : E → {1, . . . , |E|} in order of decreasing fe(x∗).
4. Return weights λe := 2|E|+1 · λ′

e + 2idx(e).
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Theorem 7. PenalizeSmallLinks is a O(|E|)-approximation algorithm for Min-
Con-USPR.

It is easy to see that there always exist integer edge lengths that induce ex-
actly the same shortest paths like some given fractional weights (whether or not
uniqueness is an issue). They can be computed in polynomial time with linear
programming based scaling and rounding methods, as shown in [1]. It is straight-
forward to verify that the weights λe returned by Algorithm PenalizeSmallLinks
define an USPR with congestion at most |E| times the congestion of the opti-
mum MCF routing. In the next section, we present examples where the ratio of
Ω(|E|) between the optimal USPR and MCF routings is attained.

If the underlying graph is a cycle, both algorithms need to remove or penalize
only one edge until the remaining graph is a path itself or all shortest paths are
unique.

Corollary 8. Both algorithms RemoveSmallLinks and PenalizeSmallLinks achieve
a 2-approximation guarantee for Min-Con-USPR on a cycle.

This guarantee extends straightforward to the case where all blocks of the un-
derlying graph are cycles.

5 Relation to Other Routing Problems

The unsplittable shortest path routing model is very restrictive and inherits
structural properties of several other routing models. In this section, we com-
pare unsplittable shortest path routing to four closely related but less restrictive
routing models. We show that the minimal congestion that can be obtained
with unsplittable shortest path routing for a given commodity set may exceed
the congestion achievable with the other routing models by an arbitrarily large
factor.

The most flexible routing model is (fractional) multicommodity flow routing.
With this routing model, the demand of each commodity may be distributed
arbitrarily and independent of the other commodities onto several flow paths
and thus admits the best possible use of the available capacities. In order to
implement a MCF routing in practice, the network must admit the configuration
of arbitrary end-to-end routing paths and flow distributions for each commodity
individually, which introduces many practical difficulties and complicates the
network management. Therefore, many telecommunication network protocols are
based on routing models that are less capacity efficient but easier to implement
in practice.

With shortest multi-path routing, the traffic that is sent from a node s to
a node t is distributed equally to all neighbors of s that are contained in any
shortest (s, t)-path with respect to the administrative edge lengths λ. This rout-
ing model (adequately) describes so-called equal cost multi-path traffic splitting
policies in shortest path routing protocols. Fortz and Thorup [13] show that the
minimum congestion shortest multi-path routing cannot be approximated within
a factor less than 3/2.
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The unsplittable flow routing model requires that each commodity is sent un-
split via a single path through the network. In contrast to the USPR model, the
commodities’ flow paths may be chosen independent of each other. Kollipoulos
and Stein [10] prove that it is NP-hard to approximate the minimum congestion
unsplittable flow routing within a factor of 2− ε, for any ε > 0.

The third routing model that is closely related to USPR is unsplittable source-
invariant routing. With this routing model, each commodity is routed on a single
flow path. All flow paths with the same destination must form a tree directed
towards this destination. Once two flows meet on their way to a common desti-
nation, they cannot split anymore. This model describes the routing possibilities
of packet networks with independently configurable store-and-forward routers.
Lorenz et al. [14] show that finding a minimum congestion unsplittable source-
invariant routing is NP-hard. They also show that the minimum congestion
may be factor Ω(|V |) higher for unsplittable source-invariant routing than for
unsplittable flow routing.

Let G = (V,E) be a graph with edge capacities ce ∈ ZZ+ for all e ∈ E, and
K ⊆ V 2 be a set of commodities with demands d(s,t) ∈ ZZ+ for all (s, t) ∈ K. We
denote the optimal solution value of the Min-Con-USPR problem by LUSPR.
With LMCF , LUFP , LSMPR, and LUSIR we refer to the minimal congestion
values that can be obtained with fractional multicommodity flow routing, un-
splittable flow routing, shortest multi-path routing, and source-invariant routing
on the same instance, respectively.

It is obvious that LUSPR ≥ LUFP ≥ LMCF , LUSPR ≥ LSMPR ≥ LMCF ,
and LUSPR ≥ LUSIR ≥ LMCF , since every unsplittable shortest path routing is
also a valid shortest multi-path routing, a valid unsplittable flow routing, and a
valid unsplittable source-invariant routing of the given commodities. Instances
where the gap between unsplittable shortest path routing and the other routing
models is large can be constructed straightforward.

Proposition 9. There is a family of instances with

(i) LUSPR ≥ Ω(|V |2) · LSMPR,
(ii) LUSPR ≥ Ω(|V |2) · LUFP , and
(iii) LUSPR ≥ Ω(|V |2) · LMCF .

Proof. For each α ∈ ZZ+, consider the graph G = (V,E) illustrated in Figure
6. It consists of the nodes V := {s, t} ∪ {si, ti, ui, vi | i = 1, . . . , α} and the
edges E := Eα ∪ E1, where Eα := {(si, s), (s, ui), (vi, t), (t, ti) | i = 1, . . . , α}
and E1 := {(ui, vj) | i, j = 1, . . . , α}. The edge capacities are ce = 1 for
all e ∈ E1 and ce = α for all e ∈ Eα. In this graph, consider the com-
modities K := {(ui, vj) | i, j = 1, . . . , α} with demands d(ui,vj) = 1 for all
(ui, vj) ∈ K.

The congestion of any unsplittable shortest path routing is LUSPR = α2,
since all commodities’ routing paths must follow the same subpath between the
nodes s and t in an unsplittable shortest path routing, and therefore share some
edge uivj of capacity 1.
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s1 sα

u1 uα

v1 vα

t1 tα

s

t

Fig. 6. Instance with LUSPR = α2 and
LUFP = LSMPR = LMCF = 1. Edges with
capacity α are bold, edges with capacity 1
are thin. For each node pair sitj there is a
commodity with demand 1

s

t

v1 v2 . . . vα

t1 t2 . . . tα

Fig. 7. Instance with LUSPR ≥
Ω(|V |) LUSIR: The solid lines are
edges, the dashed lines are the com-
modities

On the other hand, the congestion is 1 for an optimal shortest multi-path
routing (where all edge lengths are chosen equal), as well as for an optimal un-
splittable flow routing or an optimal multicommodity flow routing.

��

Proposition 10. There is a family of instances with LUSPR ≥ Ω(|V |) ·LUSIR.

Proof. Let α ∈ ZZ+ and consider the graph illustrated in Figure 7. It con-
tains the nodes V := {s, t} ∪ {ti, vi | i = 1, . . . , α} and the edges E :=
{(s, vi), (vi, t), (t, ti) | i = 1, . . . , α}. All edges have capacity 1. In this net-
work, consider the commodities K := {(s, ti) | i = 1, . . . , α} with demands
d(s,ti) = 1. In any unsplittable shortest path routing, all commodities are routed
via the same subpath between s and t. The minimal congestion value for USPR
therefore is LUSPR = α. With source-invariant routing, the commodities may
be routed via different s, t-subpaths, as they have different destinations. The
optimal congestion for this routing model therefore is 1. ��

6 Concluding Remarks

Our inapproximability results carry over straightforward to the directed case, as
well as the proven gaps between the different routing paradigms. The special case
where the underlying digraph is a bidirected ring can be approximated within a
factor of 3.
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Abstract. We consider important generalizations of a wide class of tra-
ditional deterministic inventory and facility location models that we call
inventory/facility location models with market selection. Instead of the
traditional setting, we are given a set of markets, each specified by a se-
quence of demands and associated with a revenue. Decisions are made in
two stages. We first make a decision of what markets to select, where all
other markets are rejected. Next we have to construct a minimum-cost
production plan (facility layout) to satisfy all of the demands of all the
selected markets. The goal is to minimize the overall lost revenues of
rejected markets and the production (facility openings and connection)
costs. We show how to leverage existing approximation results for the
traditional models to corresponding results for the counterpart models
with market selection. More specifically, any LP based α−approximation
for the traditional model can be leveraged to a 1

1−e
− 1

α
−approximation

algorithm for the counterpart model with market selection. Our tech-
niques are also applicable to an important class of covering problems.

1 Introduction

Traditional deterministic inventory theory provides streamlined optimization
models where the goal is to satisfy a sequence of specified demands over a given
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planning horizon with minimum overall cost, optimally balancing different costs
in the supply chain. Recent trends in supply chain research and practice have led
to a broadened perspective that considers not only decisions on the supply side
but on the demand side as well. More specifically, the demands to which the sup-
ply chain must respond and commit to are not completely exogenous parameters,
but may be influenced by endogenous decisions such as pricing, promotions, and
other strategic marketing-based factors. In particular, a supplier should strive to
optimally fit the shape of the demand to the supply chain’s production capabili-
ties. A fundamental aspect of these issues is the choice of markets (or customers)
to which the supplier commits to sell commodities. That is, given products and
a set of potential markets, which markets should the supplier target for sales?
Clearly, this decision is impacted by the potential profitability of each market.
While marketing models can be used to predict the potential revenue available
in a market, economies of scale in production make it difficult to isolate the cost
of serving a market, in particular, because this cost depends on the collective
set of markets being served. Aiming to address such market selection decisions
in the planning phase, we propose the following integrated market selection and
production planning problem.

We consider generalizations to a wide class of traditional deterministic in-
ventory models that capture the above mentioned issues. In these more general
models, the input consists of a set of markets (or customers), where each is spec-
ified by a sequence of demands over the given planning horizon and is associated
with a potential revenue. The decisions are made in two stages. First we decide
which markets we are going to select and which ones will be rejected. By selecting
a market we commit to satisfy all of its demands over the horizon. Rejecting a
market implies that we can ignore all of its demands, but we lose its potential
revenue. Once a subset of markets is selected, we need to construct a minimum
cost production plan to satisfy all of the demands of the selected markets on
time. As in the traditional inventory models the production cost usually con-
sists of a fixed ordering cost that is incurred in each period an order is placed,
and of holding cost for carrying excess inventory from period to period. Our
goal is to minimize the overall cost, namely the lost revenue incurred by market
rejection and the production cost of satisfying the demands of the selected mar-
kets. We call this new class of extended models inventory models with market
selection.

All of the inventory models we consider in this paper can be formulated as fa-
cility location type integer programs that admit strong LP relaxations. We show
how to modify these LP’s to capture the more general models with market se-
lection. We then describe general LP-rounding and primal-dual frameworks that
leverage any LP-based approximation algorithm for the traditional inventory
models to a corresponding algorithm for its counterpart with market selection.
This results in a stream of approximation algorithms for these more general
market selection models that have constant worst-case performance guarantees.
That is, for any instance of the specific market selection problem, the algorithm
provides a solution with cost at most constant multiple of the optimal cost.
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The Models. Following are the details of some of the models to which our LP-
rounding and primal-dual frameworks are applicable. In the joint replenishment
problem with market selection, we consider a set of m markets, denoted by M.
Each market j ∈ M is specified by a sequence of demands for N commodities
over a finite planning horizon of T periods and is associated with a potential rev-
enue, rj . The demands required by market j for item i are denoted by dj

i1, . . . , d
j
iT

(for i = 1, . . . , N). The production cost structure is identical to the traditional
joint replenishment problem (JRP). Each order incurs a fixed joint ordering cost,
K0, regardless of the combination of items being ordered. In addition, for each
item included in the order, we incur a fixed item ordering cost, Ki, regardless of
the number of units being ordered. The fixed ordering cost is balanced by the
holding cost for carrying excess inventory over periods. The holding cost struc-
ture follows [13], i.e., for each i = 1, . . . , N , t = 1, . . . , T and s ≤ t, we have
a parameter hi

st that denotes the per unit cost of providing item i in period t
from period s ≤ t. The parameters hist are assumed to be non-negative and
non-increasing in s. Per unit ordering cost can be incorporated into the h pa-
rameters. This generalizes the traditional holding cost structure, where we have
a parameter hit ≥ 0 for each i and t, which denotes the per unit cost to hold
inventory from period t to t + 1.

The single item lot-sizing problem with market selection is a special case of the
JRP problem above, where we have only one commodity, i.e., N = 1. As a result
there is no point to consider separate joint and item ordering cost, and instead
we have just time dependent fixed ordering cost Ks (for each s = 1, . . . , T ).

The one-warehouse multi-retailer (OWMR) problem with market selection is a
generalization of the JRP problem, where we assume that each item corresponds
to a different retailer, and the retailers are supplied by a central warehouse that
can hold inventory. We follow the general holding cost structure described in
[18, 19].

In the assembly problem with market selection, each market is again specified
by a sequence of T demands for a single commodity (end-product). However,
the end-product is assembled from N components (see [13, 14] for details).

We will also consider some of these models with the additional constraints
that orders are placed in batches, each with a given capacity. For each additional
batch ordered, we incur an additional fixed ordering cost. These constraints are
usually called soft capacity constraints.

In addition, our techniques are applicable to several market selection variants
of facility location problems. This includes the classical uncapacitated metric
facility location problem and its variants with soft capacities, and with service
installation costs (see [22] for details).

The goal in all of these models is to first select a subset of the markets, and
then construct a minimum cost production plan (or facility layout) for all of the
demands of the selected markets, such that the overall cost incurred by market
rejection and the production (facility layout and connection) plan is minimized.

Related Literature. The traditional inventory models mentioned above, have at-
tracted the attention of many researchers throughout the years. The single item
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lot-sizing problem can be solved to optimality using dynamic programming [23],
including the case with soft capacity constraints [17]. The JRP and the OWMR
problems are known to be NP-hard [1]. The assembly problem with general hold-
ing cost structure as in [13, 14] is also known to be NP-hard, and it is a long
standing open problem whether or not it is NP-hard in the case of traditional
holding cost. In several recent papers [13, 14, 18, 19], Levi, Roundy and Shmoys
have developed LP-based approximation algorithms for these inventory models.
In particular, they have provided a primal-dual 2-approximation algorithm for
the JRP and the assembly problem, and an LP-rounding 2.398-approximation
algorithm for the OWMR problem.

The facility location problem is known to be NP-hard, and there is a huge
body of literature on approximation algorithms for this problem. Mahdian, Ye
and Zhang have the currently best known result, an LP-based 1.52-approximation
algorithm [15] (we refer the reader to [20] for a survey on approximation results
on this problem).

There are several other models, such as the prize-collecting travelling sales-
man problem [2, 6], prize-collecting Steiner tree [10, 9] and multi-processor schedul-
ing with rejection [4], where classical combinatorial optimization problems were
extended to consider rejection/selection decisions. However, in all of these mod-
els the rejection /selection decisions are made independently for each element
(node or a job). Our market selection models are different in that the rejec-
tion/selection is made with respect to a collection of elements as a set. We note
that in their full generality our techniques and results are applicable to the mar-
ket selection variants of the prize-collecting problems mentioned above, as well
as to market selection variants of additional covering problems.

In [8], Geunes, Romeijn and Taaffe have considered a single item, single loca-
tion order selection model where each market is specified by a single demand in
a single period; they have provided an optimization algorithm based on dynamic
programming. In this paper, we consider multi-item, multi-stage and capaci-
tated inventory models with more complex selection decisions that are made
with respect to markets specified over the time horizon rather than in a single
period.

Our approach, when applied to the metric facility location problem, general-
izes the model of facility location with penalties discussed by Charikar, Khuller,
Mount and Narasimhan in [7]. They have also considered a model where the re-
jection/selection decision is made per demand point independently rather than
with respect to subsets of demands. They have provided a 3-approximation al-
gorithm for this model, extending the novel primal-dual algorithm of Jain and
Vazirani [11] for the facility location problem. For the more general model con-
sidered in this paper, we provide a significantly better approximation factor of
2.075 using LP-rounding. We also provide a 2.542-approximation algorithm for
the market selection variant of the facility location problem with soft capacities.
However, our LP-rounding framework is not applicable to some of the facility
location models they have considered.
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Our Techniques and Results. Our LP-rounding framework builds on known fa-
cility location type LP relaxations for the traditional models. We modify the
LP’s to capture the corresponding market selection problems by adding a vari-
able for each market that indicates whether it is rejected or not. If we think
about this variable as representing a special ‘order’ (or facility), then we either
serve all of the demands of the corresponding market by this special ‘order’ and
lose the revenue of the market, or we have to assign each one of its demands
to a regular order (facility). We solve the market selection LP relaxation and
consider its optimal solution. The rounding algorithm is conceptually very sim-
ple. For some threshold 1

β (for some β ≥ 1), we reject all the markets that the
LP fractional solution rejects by more than 1

β . Clearly, this gives a bound on
the rejection cost that our solution incurs. The main observation is that once
we decide on the selected markets, then the market selection LP is reduced to
the traditional LP for the inventory (facility location) model, for an instance de-
fined by the selected markets aggregated. We now construct the production plan
(facility openings) for these markets using existing LP-based α-approximation
algorithm for the traditional inventory (facility location) model. It is clear that
the cost incurred is at most α times the optimal value of the (reduced) tradi-
tional LP. Finally, observe that if a certain market is fractionally rejected to
an amount less than 1

β , then the fractional production plan satisfies at least
1− 1

β of each of its demands. Therefore, we can scale the fractional solution that
corresponds to the selected markets by no more than 1 − 1

β to get a feasible
fractional solution to the reduced traditional LP. This bounds our production
cost to be at most α/(1− 1

β ) times the optimal fractional production cost of the
market selection LP. Optimizing deterministically over β we can now leverage
any existing LP-based α-approximation algorithm for the traditional inventory
problem to an (α + 1)-approximation algorithm for the corresponding market
selection counterpart. However, drawing 1

β at random from the appropriate dis-
tribution, as described by Goemans in [9], provides a randomized algorithm with
improved expected guarantees. Using derandomization we can now leverage any
α-approximation into a deterministic 1

1−e− 1
α

guarantee. As a by product we also

show that if the traditional model admits a strong LP relaxation so does its
market selection counterpart. We note that somewhat similar ideas were used
independently in [21] in the context of 2-stage stochastic models.

In addition, we show how to extend the primal-dual framework described
in [13, 14] to provide combinatorial approximation algorithms for the market
selection variants of the single item lot-sizing problem, the JRP problem and the
assembly problem. We provide worst-case guarantees of 2, 3 and 3, respectively.

The rest of the paper is organized as follows. In Section 2, we start with the
illustrative simple example of the single item lot-sizing problem. Then in Section
3, we describe the general LP-rounding framework and the approximation results
it implies. Finally, in Section 4, we briefly discuss how to extend the primal-dual
framework of [13, 14].
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2 The Single Item Lot-Sizing Problem - An Illustrative
Example

In this section, we will use the illustrative simple example of the single item lot-
sizing problem with market selection to demonstrate the underlying techniques
of our LP-rounding framework.

Next we describe a facility location type LP-relaxation of this selection prob-
lem that is based on the LP relaxation of its traditional counterpart. We then
show how to round the optimal solution of this LP into a feasible solution to the
market selection variant with cost at most 1.582 times the optimal cost.

The LP. The LP is as follows:

minimize
m∑

j=1

zjrj +
T∑

s=1

ysKs +
m∑

j=1

T∑
t=1

t∑
s=1

xj
stH

j
st (P)

subject to
t∑

s=1

xj
st + zj = 1, j = 1, . . . ,m, t = 1, . . . , T, (1)

xj
st ≤ ys, j = 1, . . . ,m, t = 1, . . . , T, (2)

s = 1, . . . , t,

xj
st, ys ≥ 0, j = 1, . . . ,m, s = 1, . . . , T, (3)

t = s, . . . , T.

The selection variable zj is equal to 1 if we decided to reject market j and 0
otherwise. The assignment variable xj

st indicates whether the demand of market
j in period t, dj

t , was provided from period s. Correspondingly, we let Hj
st be

the overall cost of providing the demand dj
t from period s, i.e., Hj

st = hstd
j
t .

The order variable ys indicates whether an order was placed in period s. The
assignment constraint (1) ensures that each demand in period t of a selected
market is satisfied from some time period s ≤ t. Note that if we have selected
market j and set zj = 0, then for each period t, constraint (1) implies that∑

s≤t x
j
st = 1. Hence, all of the demands of market j must be satisfied on time.

Conversely, if zj = 1, then we do not have to satisfy any of the demands of
market j, and in turn we incur a cost of rj . The order constraint (2) ensures
that no demand can be provided from period s without placing an order in period
s. It is straightforward to verify that the induced integer programm provides a
correct formulation for the single item lot-sizing problem with market selection,
and therefore, the optimal solution of the LP-relaxation provides a lower bound
on the cost of any feasible solution to the problem.

Observe that once we decide on the selected markets (i.e., assign zero/one
value to each variable zj), then the above LP is reduced to an LP of a traditional
single item lot-sizing problem defined by the selected markets. The demand in
period t is equal to the aggregated demands dj

t over all markets j ∈ M that
were selected (i.e., the demand in period t is equal to

∑
j∈M dj

t ). Moreover, it
is well known that this LP always provides an integer solution i.e., it has an
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integrality property (for different proofs see [12, 3, 5, 13]). However, we note that
the market selection LP, (P ) above, does not have an integrality property (i.e.,
for some instances the optimal solution is fractional).

A Rounding Algorithm. Let (ẑ, x̂, ŷ) be the optimal solution of (P ) above. We
next describe an extremely simple procedure to round this optimal fractional
solution into a feasible solution for the single item lot-sizing problem with market
selection, denoted by (z̄, x̄, ȳ), and then show that its cost is always at most twice
the optimal cost.

Let Z 1
2

:= {j ∈ M : ẑj ≥ 1
2}, be the set of all markets that are rejected by

‘amount’ of at least 1
2 in the fractional optimal solution. Let ZS :=M\Z 1

2
. We

now reject all the markets j ∈ Z 1
2

and select all other markets, i.e., we set z̄j = 1
if and only if ẑj ≥ 1

2 . Next consider the single item lot-sizing problem defined
by the selected markets, i.e., by the markets j ∈ ZS , where again the demand in
period t is equal to

∑
j∈ZS

dj
t . This problem can be efficiently solved to optimality

using dynamic programming (see [23] for details). We take this solution as our
production plan. This concludes the description of the algorithm.

Analysis. We start with a lemma that bounds the rejection cost incurred in
(z̄, x̄, ȳ). The proof is rather straightforward and follows from the construction
of the algorithm.

Lemma 1. The rejection cost of the solution (z̄, x̄, ȳ) is at most twice the rejec-
tion cost of the optimal fractional solution (ẑ, x̂, ŷ), i.e.,

∑m
j=1 z̄j ≤ 2

∑m
j=1 ẑj.

To complete the analysis, it is enough to show that the production cost of
the solution (z̄, x̄, ȳ) is at most twice the production cost of the solution (ẑ, x̂, ŷ).

Lemma 2. The production cost of the solution (z̄, x̄, ȳ) is at most twice the pro-
duction cost of (ẑ, x̂, ŷ):

∑T
s=1 ȳsKs+

∑m
j=1

∑T
t=1

∑t
s=1 x̄

j
stHst ≤ 2(

∑T
s=1 ŷsKs+∑m

j=1

∑T
t=1

∑t
s=1 x̂

j
stHst).

Proof. Recall that once we decide on the selected markets, then the problem and
the LP are reduced to a traditional lot-sizing problem defined by the markets
in ZS . Moreover, since the facility location LP of the lot-sizing problem has an
integrality property, we know that the optimal value of that LP is equal to the
value of the optimal solution achieved by applying dynamic programming to this
problem. It is then enough to observe a feasible solution to this reduced LP that
has cost at most twice the production cost in (ẑ, x̂, ŷ). We next describe how to
construct such a solution, denoted by (x, y).

For each j ∈ Z 1
2

we set xj
st = 0 for each s ≤ t. Now for each j ∈ ZS we set

xj
st := x̂j

st

1−ẑj
. Finally, for each s = 1, . . . , T we set ys := max{minj∈ZS

( ŷs

1−ẑj
), 1}.

It is readily verified that (x, y) constructed above is a feasible fractional solution
for the LP of the lot-sizing problem defined by the markets in ZS .

Observe that for every j ∈ ZS we have 1 − ẑj > 1
2 . Hence, for each j ∈ ZS

and s ≤ t we have xj
st ≤ 2x̂j

st and for each s = 1, . . . , T we have ys ≤ 2ŷs. Now
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by construction of the algorithm (x̄, ȳ) provides an optimal solution to the LP
of the lot-sizing problem defined by the markets in ZS . We get that,

T∑
s=1

ȳsKs +
m∑

j=1

T∑
t=1

t∑
s=1

x̄j
stHst ≤

T∑
s=1

ysKs +
m∑

j=1

T∑
t=1

t∑
s=1

xj
stHst ≤

2(
T∑

s=1

ŷsKs +
m∑

j=1

T∑
t=1

t∑
s=1

x̂j
stHst).

This concludes the proof of the lemma.

As a corollary of Lemmas 1 and 2 we get the following theorem.

Theorem 1. The algorithm provides a 2-approximation algorithm for the lot-
sizing problem with market selection, i.e., the cost (z̄, x̄, ȳ) is at most twice the
optimal cost.

2.1 Randomized Algorithm

Next we briefly discuss how randomized rounding yields an improved approxi-
mation algorithm. Instead of using the threshold 1

2 , we follow the ideas in [9],
and choose a threshold 1

β uniformly at random from (0, δ], where 0 < δ ≤ 1
(the value of δ will be specified later). Once 1

β is chosen we proceed in the same
way described above, i.e., we reject all markets j ∈ M with ẑj ≥ 1

β , and con-
struct a minimum-cost production plan for the selected markets (using dynamic
programming).

Following are several lemmas that establish the expected performance guar-
antee of the randomized algorithm described above.

Lemma 3. For each market j ∈ M, the probability that market j is rejected is
at most ẑj

δ , i.e., the expected rejection cost of the solution is at most
∑

j ẑjrj

δ .

Proof. For each market j with ẑj ≤ δ the claim follows trivially. For each market
j with ẑj > δ, we reject the market with probability 1, however, ẑj

δ > 1. This
concludes the proof.

Lemma 4. The expected production cost of the solution is at most
ln( 1

1−δ )

δ (
∑T

s=1 ŷsKs +
∑m

j=1

∑T
t=1

∑t
s=1 x̂

j
stHst).

Proof. By similar arguments to Lemma 2 above, it is readily verified that, for
each value of 1

β , the production cost is at most 1
1− 1

β

times the production cost

of the optimal LP solution, (ẑ, ẑ, ŷ). Taking the integral 1
δ

∫ δ

0
1

1− 1
β

d( 1
β ) gives the

required result.

Setting δ equal to 1 − e−1 provides and a solution with expected cost at
most 1.582 times the optimal cost. Observe that the solution constructed by the



Inventory and Facility Location Models with Market Selection 119

algorithm is uniquely determined by the set of rejected markets. Hence, there
are at most m relevant values of 1

β that will yield distinct solutions. We can then
derandomize the algorithm by enumerating only the m relevant values of 1

β and
get the following theorem.

Theorem 2. There exists a 1.582-approximation algorithm for the market se-
lection variant of the lot-sizing problem.

3 General LP-Rounding Framework

In this section, we will generalize the example discussed in Section 2 above,
and propose a general LP-rounding framework that can be applied to market
selection variants of a wide class of classical deterministic inventory and facility
location models. The ingredients for our LP-rounding framework are a facil-
ity location type LP relaxation and an LP-based α-approximation algorithm
for the traditional model without market selection. We show how, given these
ingredients, one can leverage the α-approximation algorithm into an 1

1−e− 1
α

-

approximation algorithm for the corresponding counterpart model with market
selection.

Our algorithms can use any facility location type LP with assignment vari-
ables, x, and order variables, y, and with assignment constraints (e.g., constraint
(1) above), ordering constraints (e.g., constraint (2) above) and possibly soft ca-
pacity constraints. Here the order variables y indicate how many batches were
ordered in each order, where each batch incurs an additional fixed ordering cost.
The number of batches installed dictates the capacity of the order, or in other
words, how many units of demand can be satisfied by this order. For the lot-sizing
example discussed in Section 2, but with soft capacity constraints, we would have
the constraint,

∑
t≥s

∑m
j=1 x

j
std

j
t ≤ ysUs, for each period s = 1, . . . , T , where Us

is the batch capacity associated with the order in period s. By an LP-based α-
approximation algorithm we mean an algorithm that constructs a solution with
cost guaranteed to be at most α times the optimal LP value.

We now state and prove a general theorem that relates the approximation
results for traditional deterministic inventory (and facility location models) to
approximation results for their corresponding counterparts with market selec-
tion.

Theorem 3. Consider a deterministic inventory or a facility location model
that can be formulated as a facility location type integer program with assign-
ment and order variables, and with assignment constraints, order constraints
and possibly soft capacity constraints. Also assume that the model has an LP-
based α-approximation. Then there exists an (α + 1)-approximation algorithm
for the counterpart of this model with market selection.

Proof. We first adjust the LP relaxation for the traditional model to capture the
counterpart model with market selection. LetM be again the set of m markets.
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As before we let the selection variable zj be equal 1 if we reject market j and
0 otherwise. For each demand of market j, we have a separate set of assign-
ment variables (for each facilty/order that can serve it). Similarly there is an
assignment constraint for each of its demands that includes the zj variable. The
order constraints and possibly the soft capacity constraints are adapted accord-
ingly. Finally, we modify the objective function and add the market rejection
part

∑m
j=1 zjrj . We now solve this LP and let (ẑ, x̂, ŷ) be the respective optimal

solution.
Now for some parameter β > 1 that will be determined later, let Z 1

β
:= {j :

ẑj ≥ 1
β }, i.e., the set of markets that are rejected in the market selection LP

optimal solution by ‘amount’ at least 1
β . Let ZS be the set of all other markets

(i.e., ZS =M\Z 1
β
). We now reject all the markets in Z 1

β
and select all markets

j ∈ ZS . Next consider the instance for the traditional variant of the model
defined by the markets in ZS , where again, for each period (location) and each
commodity, we aggregate the corresponding demands of all the selected markets.
We then apply the α-approximation algorithm to the instance defined by ZS ,
and get a production plan (facility location solution).

It is straightforward to see that the rejection cost incurred by the solution is at
most β

∑m
j=1 ẑjrj . Also observe that by a similar scaling to the one described in

Lemma 2, we can observe a feasible solution to the traditional LP defined by the
markets in ZS of cost at most β

β−1 times the cost of the (fractional) production
plan in (ẑ, x̂, ŷ). However, by our assumption, the cost of the production plan
constructed by the algorithm, is at most α times the cost of the optimal solution
to the above traditional LP defined by the markets in ZS . Therefore, it is at most
α( β

β−1 ) times the cost of the production plan in (ẑ, x̂, ŷ). Setting β = α + 1, we
get that the cost of the solution is at most α+ 1 times the cost of (ẑ, x̂, ŷ). This
concludes the proof.

Similar to the lot-sizing case, if we choose 1
β at random uniformly from (0, δ]

(where again 0 < δ ≤ 1), then the expected rejection cost is at most 1
δ the

rejection cost in the optimal LP solution, (ẑ, x̂, ŷ) (i.e., at most
∑

j ẑjrj

δ ), and

the expected production cost is at most
α ln( 1

1−δ )

δ times the production cost in

(ẑ, x̂, ŷ) (i.e., at most
α ln( 1

1−δ )

δ (
∑T

s=1 ŷsKs +
∑m

j=1

∑T
t=1

∑t
s=1 x̂

j
stHst)). Setting

δ equal to 1 − e− 1
α guarantees that expected cost of the algorithm is at most

1

1−e− 1
α

times the optimal cost. By the same derandomization techniques, we

achieve the same guarantee deterministically.

Approximation Results. The single item lot-sizing problem with soft capacity con-
straints can be solved optimally [17]. In [18], Levi, Roundy and Shmoys have
showed that the integrality gap of the facility location type LP of this model is
at most 2. We get the following theorem.

Theorem 4. There exists a 2.542-approximation algorithm for the market se-
lection single item lot-sizing problem with soft capacity constraints.
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We consider a sequence of LP-based approximation algorithms described in
[13, 14, 18, 19], namely, a 2-approximation algorithms for the JRP and assembly
problems, a 4-approximation algorithm for the JRP with soft capacities, a 2.398-
approximation algorithm for the OWMR and a 4.769-approximation algorithm
for the OWMR with soft capacities. We then conclude the following theorems.

Theorem 5. There exist a 2.54-approximation algorithms for the market se-
lection variants of the joint replenishment and the assembly problems, and a
4.521-approximation algorithm for market selection variant of the JRP with soft
capacities.

Theorem 6. There exist a 2.993-approximation algorithm and a 5.287-approxi-
mation algorithm for the market selection variants of the OWMR and the OWMR
with soft capacities, respectively.

Finally, in [15, 16], Mahdian, Ye and Zhang have provided a 1.52-approxima-
tion algorithm and 2-approximation algorithm for the facility location problem
and its variant with soft capacities, respectively. Both algorithms are LP-based.
In [22], Shmoys, Swamy and Levi have provided a 6-approximation algorithm for
the facility location problem with service installation costs. We again conclude
a corresponding theorem.

Theorem 7. There exist a 2.075, 2.542 and 6.514 approximation algorithms
for the market selection variants of the uncapacitated facility location problem,
the facility location problem with soft capacities and facility location with service
installation costs.

4 Extended Primal-Dual Framework

In [13, 14], Levi, Roundy and Shmoys have described a general primal-dual
framework that solves the lot-sizing problem to optimality, and provides a 2-
approximation for the JRP and assembly problem. In this section, we will briefly
discuss how to modify their algorithms to provide combinatorial approximation
algorithms (i.e., algorithms that do not require solving the LP) for the counter-
part models with market selection. Using these modified algorithms, we provide
performance guarantees of 2, 3 and 3 for these models, respectively. For simplic-
ity and due lack of space, we next focus on the single item lot-sizing problem.
Similar extensions exist for the JRP and assembly problem.

The following is the dual of (P ) from Section 2.

maximize
m∑

j=1

T∑
t=1

bj
t (D)

subject to bj
t ≤ Hj

st + ljst, j = 1, . . . ,m, t = 1, . . . , T. (4)
s = 1, . . . , t.
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m∑
j=1

T∑
t=s

ljst ≤ Ks,s = 1, . . . , T, (5)

T∑
t=1

bj
t ≤ rj , j = 1, . . . ,m, (6)

lst ≥ 0, t = 1, . . . , T, s = 1, . . . , t. (7)

The above dual program is very similar to the dual used in [13, 14], and the
main difference is the additional constraint (6). As in [13, 14], the primal-dual
algorithm works in two stages. We first construct a feasible dual solution, and
then use this solution to construct a cheap feasible integer solution for the primal
LP.

Constructing a Dual Solution. We associate a budget bj
t with each demand point

(j, t) (i.e., the required demand of market j in period t, dj
t ). We now start to

increase the budget using a mechanism that is called wave form. Think of a wave
the moves backward in time, and let τ be the indicator of the wavefront location.
We initialize the wavefront variable τ to T . The algorithm consists of a series of
iterations as the value of τ is (continuously) decreased through the interval [T, 1].
This parameter controls the values of the budgets bj

t of each unfrozen demand
point (j, t). The budget bj

t is kept equal zero as long as τ > t. Once τ ≤ t and
until it is frozen, bj

it is always equal Hj
τt. As the wave moves backward in time,

we will temporarily open orders and freeze budgets (i.e., stop increasing then) of
demand points; as the budgets are increased we identify the following events:

Event 1. When τ = s (for s = T, T−1, . . . , 1), we consider all unfrozen demand
points (j, t) with t ≥ s, and start increasing the variable ljst at the same rate as
bj
t , i.e., we keep bj

t = Hj
τt = Hj

st + ljst; (Note that as the wavefront reaches s and
the budget bj

t increases to Hj
st the constraint (4) becomes tight).

Event 2. Suppose that for some s, we have that
∑m

j=1

∑
t≥s l

j
st = Ks. (Note

that this means that we can no longer increase any variables ljst without violating
the constraint (5)). We then temporarily open an order in period s, and freeze
all unfrozen budgets of demand points (j, t) with t ≥ s.
Event 3. Suppose that for some market j we have

∑T
t=1 b

j
t = rj (i.e., constraint

(6) becomes tight). We then mark market j and freeze all the budgets of its
demand points. This includes also budgets of demand points with t < τ that
will be kept at zero even after τ will advance and cross time t.

We continue this procedure until all the budgets are frozen. Let (b̄, l̄) be the
dual solution at the end of the first phase of the algorithm. It is straightforward
to verify that this solution is feasible with respect to (D) above. Next we show
how to use this solution to construct a feasible solution for the market selection
problem.

Constructing an Integer Primal Solution. We reject all markets that were marked
by event 3 above. We then construct a production plan for the rest of the markets
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following a similar procedure to the one described in [13, 14]. Let R = {s1 = 1 <
s2 < · · · < sp} be the set of the time periods of all temporarily opened orders.
For each s ∈ R, let open(s) be the location of the wavefront when the order at s
was temporarily opened. We say that the interval [open(s), s] is the shadow in-
terval of s. Furthermore, r and s in R are said to be dependent if and only if their
shadow intervals intersect. We consider the periods si, i = 1, . . . , p, in increasing
order of si, and permanently open an order sq whenever its associated shadow
interval does not intersect the shadow interval of any earlier si, i = 1, . . . , q− 1,
that has already been permanently opened. The set of permanently opened or-
ders provides a feasible production plan, where each demand point of a selected
market is satisfied from the latest possible opened order.

Analysis. The analysis follows along the lines of [13, 14]. By similar arguments
to the ones used there, we can show that it is possible to ‘pay’ for the cost of the
production plan of the solution, using every budget b̄j

t at most once. In addition,
it is clear that the rejection cost can be ‘paid’ with the budgets associated with
the demands of the rejected markets. Therefore, the total cost of the solution
can be ‘paid’ using each budget b̄j

t at most twice. For the JRP and assembly
problem the modification in the algorithm is similar. Here it can be shown that
the production cost can be ‘paid’ using each budget at most twice, and the
rejection cost is again ‘paid’ by the budgets of the rejected markets. We then
conclude the following theorem.

Theorem 8. The modified primal-dual framework provides approximation algo-
rithms with worst-case performance guarantees of 2, 3 and 3, respectively, for the
market selection variants of the lot-sizing, the JRP and the assembly problem.
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Abstract. In this paper we study semidefinite programming (SDP)
models for a class of discrete and continuous quadratic optimization prob-
lems in the complex Hermitian form. These problems capture a class of
well–known combinatorial optimization problems, as well as problems
in control theory. For instance, they include Max–3–Cut where the
Laplacian matrix is positive semidefinite (in particular, some of the edge
weights can be negative). We present a generic algorithm and a unified
analysis of the SDP relaxations which allow us to obtain good approxima-
tion guarantees for our models. Specifically, we give an (k sin(π

k
))2/(4π)–

approximation algorithm for the discrete problem where the decision
variables are k–ary and the objective matrix is positive semidefinite. To
the best of our knowledge, this is the first known approximation result
for this family of problems. For the continuous problem where the ob-
jective matrix is positive semidefinite, we obtain the well–known π/4
result due to [2], and independently, [12]. However, our techniques sim-
plify their analyses and provide a unified framework for treating these
problems. In addition, we show for the first time that the integrality gap
of the SDP relaxation is precisely π/4. We also show that the unified
analysis can be used to obtain an O(1/ log n)–approximation algorithm
for the continuous problem in which the objective matrix is not positive
semidefinite.

1 Introduction

Following the seminal work of Goemans and Williamson [6], there has been an
outgrowth in the use of semidefinite programming (SDP) for designing approxi-
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M. Jünger and V. Kaibel (Eds.): IPCO 2005, LNCS 3509, pp. 125–135, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



126 A.M.–C. So, J. Zhang, and Y. Ye

mation algorithms. Recall that an α–approximation algorithm for a problem P
is a polynomial–time algorithm such that for every instance I of P, it delivers
a solution that is within a factor of α of the optimum value [5]. It is well–known
that SDPs can be solved in polynomial time (up to any prescribed accuracy)
via interior–point algorithms (see, e.g., [10]), and they have been used very suc-
cessively in the design of approximation algorithms for, e.g., graph partitioning,
graph coloring, and quadratic optimization problems [4, 11].

In this paper, we consider a class of discrete and continuous quadratic opti-
mization problems in the complex Hermitian form. Specifically, we consider the
following problems:

maximize zHQz

subject to zj ∈ {1, ω, . . . , ωk−1} j = 1, 2, · · · , n
(1)

and
maximize zHQz

subject to |zj | = 1 j = 1, 2, · · · , n
z ∈ Cn

(2)

where Q ∈ Cn×n is a Hermitian matrix, ω is the principal k–th root of unity, and
zH denotes the conjugate transpose of the complex vector z ∈ Cn. The difference
between (1) and (2) lies in the values that the decision variables are allowed to
take. In problem (1), we have discrete decision variables, and such variables
can be conveniently modelled as roots of unity. On the other hand, in problem
(2), the decision variables are constrained to lie on the unit circle, which is a
continuous domain. Such problems arise from many applications. For instance,
the Max–3–Cut problem where the Laplacian matrix is positive semidefinite
can be formulated as an instance of (1). On the other hand, (2) arises from the
study of robust optimization as well as control theory [9, 2].

It is known that both of these problems are NP–hard, and thus we will settle
for approximation algorithms. Previously, various researchers have considered
SDP relaxations for (1) and (2). However, approximation guarantee is known
only for the continuous problem [2, 12], and to the best of our knowledge, no
such guarantees are known for the discrete problem.

Our main contribution is to present a generic algorithm and a unified treat-
ment of the two seemingly very different problems (1) and (2) using their nat-
ural SDP relaxations, and to give the first known approximation result for
the discrete problem. Specifically, we are able to achieve an (k sin(π

k ))2/(4π)–
approximation ratio for the discrete problem1. As a corollary, we obtain an
0.537–approximation algorithm for the Max–3–Cut problem where the Lapla-
cian matrix is positive semidefinite. This should be contrasted with the 0.836–
approximation algorithm of Goemans and Williamson [7] for Max–3–Cut with
non–negative edge weights. For this particular case, our result might be seen

1 Recently, Zhang and Huang [13] have informed us that by extending their analysis in
[12], they are able to obtain the same approximation ratio for the discrete problem.
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as a generalization of Nesterov’s result [8] that gives an 2/π–approximation
for the Max–Cut problem where the Laplacian matrix is positive
semidefinite.

For the continuous problem, our analysis also achieves the π/4 guarantee of
[2, 12]. However, our analysis is simpler than that of [2, 12], and it follows the
same framework as that of the discrete problem. Moreover, we give a tight ex-
ample showing that the integrality gap of the SDP relaxation is precisely π/4. In
addition, we show that the unified analysis can be used to obtain an O(1/ log n)–
approximation algorithm for the continuous problem in the case where the objec-
tive matrix is not positive semidefinite. This result also provides an alternative
analysis of the algorithm by Charikar and Wirth [3] for the (real) quadratic
optimization problem.

One apparent difficulty in analyzing SDP relaxation–based algorithms for
problems (1) and (2) is that the usual Goemans–Williamson analysis [6, 7] (and
its variants thereof) only provides a term–by–term estimate of the objective
function and does not provide a global estimate. Although global techniques
for analyzing (real) SDP relaxations exist [8], it is not clear how they can be
applied to our problems. Our analysis is mainly inspired by a recent result of
Alon and Naor [1], who proposed three different methods for analyzing (real)
SDP relaxations in a global manner using results from functional analysis. One
of these methods uses averaging with Gaussian measure and the simple fact
that

∑
i,j qij(vi · vj) ≥ 0 if the matrix Q = (qij) is positive semidefinite and

vi · vj is the inner product of two vectors vi and vj in some Hilbert space. Our
results for (1) and (2) in the case where Q is positive semidefinite are moti-
vated by this method. Although the assumption that Q is positive semidefinite
is essential to make the analyses go through, we manage to analyze our al-
gorithm in a unified way for the case where Q is not positive semidefinite as
well.

2 Complex Quadratic Optimization

Let Q ∈ Cn×n be a Hermitian matrix. Given an integer n ≥ 1, consider the
following discrete quadratic optimization problem:

maximize zHQz

subject to zj ∈ {1, ω, . . . , ωk−1} j = 1, 2, · · · , n
(3)

where ω is the principal k–th root of unity. We note that as k goes to infinity,
the discrete problem (3) becomes a continuous optimization problem:

maximize zHQz

subject to |zj | = 1 j = 1, 2, · · · , n
z ∈ Cn

(4)
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Although problems (3) and (4) are quite different in nature, the following complex
semidefinite program provides a relaxation for both of them:

maximize Q • Z
subject to Zjj = 1 j = 1, 2, · · · , n

Z � 0
(5)

We use wSDP to denote the optimal value of the SDP relaxation (5).
Our goal is to get a near optimal solution for problem (3) and (4). Below

we present a generic algorithm that can be used to solve both (3) and (4). Our
algorithm is quite simple, and it is similar in spirit to the algorithm of Goemans
and Williamson [6, 7].

Algorithm
STEP 1. Solve the SDP relaxation (5) and obtain an optimal solution Z∗.

Since Z∗ is positive semidefinite, we can obtain a Cholesky decomposition Z∗ =
V V H , where V = (v1, v2, · · · , vn).

STEP 2. Generate two independent normally distributed random vector x ∈
Rn and y ∈ Rn with mean 0 and covariance matrix 1

2I. Let r = x + yi.
STEP 3. For j = 1, 2, · · · , n, let ẑj = f(vj ·r), where the function f(·) depends

on the structure of the problem and will be fixed later. Let ẑ = (ẑ1, ẑ2, · · · , ẑn)
be the resulting solution.

In order to prove the performance guarantee of our algorithm, we are inter-
ested in analyzing the quantity:

ẑHQẑ = Q • ẑẑH =
∑
l,m

Qlmẑlẑm =
∑
l,m

Qlmf(vl · r)f(vm · r)

Since our algorithm is randomized, we compute the expected objective value
given solution ẑ. By linearity of expectation, we have:

E[ẑHQẑ] =
∑
l,m

QlmE[f(vl · r)f(vm · r)]

To that end, it would be sufficient to compute the quantity E[f(vl · r)f(vm · r)]
for any l,m, and this will be the main concern of our analysis. The analysis,
of course, depends on the choice of the function f(·). However, the following
Lemma will be useful and it is independent of the function f(·). Recall that for
two vectors b, c ∈ Cn, we have b · c =

∑n
j=1 bjcj .

Lemma 1. For any pair of vectors b, c ∈ Cn, E[(b · r)(c · r)] = b · c, where
r = x + yi and x ∈ Rn and y ∈ Rn are two independent normally distributed
random vector with mean 0 and co-variance matrix 1

2I.

Proof. This follows from a straightforward computation:

E[(b · r)(c · r)] = E

⎡⎣⎛⎝ n∑
j=1

bjrj

⎞⎠(
n∑

k=1

ckrk

)⎤⎦ =
n∑

j,k=1

bjckE[rjrk] =
n∑

j=1

bjcj
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where the last equality follows from the fact that the entries of x and y are
independent normally distributed with mean 0 and variance 1/2.

3 Discrete Problems Where Q Is Positive Semidefinite

In this section, we assume that Q is Hermitian and positive semidefinite. We
consider the discrete complex quadratic optimization problem (3).

In this case, in the generic algorithm presented in Section 2, we specify the
function f(·) as follows:

f(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if arg(z) ∈ [−π/k, π/k)
ω if arg(z) ∈ [π/k, 3π/k)
...

...
ωk−1 if arg(z) ∈ [(2k − 3)π/k, (2k − 1)π/k)

(6)

This way, we guarantee that ẑj ∈ {1, ω, . . . , ωk−1} for j = 1, 2, · · · , n, i.e. ẑ is a
feasible solution of problem (3).

Then, we can establish the following lemma:

Lemma 2.

E[(b · r)f(c · r)] =
k sin(π/k)

2
√
π

(b · c)

Proof. By rotation invariance, we may assume without loss of generality that
b = (b1, b2, 0, . . . , 0) and c = (1, 0, . . . , 0). Then, we have:

E[(b1r1 + b2r2)f(r1)] = b1E[r1f(r1)]

=
b1
π

∫
R

∫
R

(x− iy)f(x− iy) exp{−(x2 + y2)} dxdy

=
b1
π

∫ ∞

0

∫ 2π

0

ρ2e−iθf(ρe−iθ)e−ρ2
dθdρ

Now, observe that, for j = 1, . . . , k, we have:∫ (2j−1)π/k

(2j−3)π/k

f(ρe−iθ)e−iθ dθ = ωj−1

∫ (2j−1)π/k

(2j−3)π/k

e−iθ dθ = 2 sin(π/k)

In particular, the above quantity is independent of j. Moreover, since we have:∫ ∞

0

ρ2e−ρ2
dρ =

√
π

4

it follows that:

E[(b1r1 + b2r2)f(r1)] =
k sin(π/k)

2
√
π

b1 =
k sin(π/k)

2
√
π

(b · c)

We are now ready to prove the main result of this section.
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Theorem 1. When Q is positive semidefinite and Hermitian, there exists an
(k sin( π

k ))2

4π –approximation algorithm for (3).

Proof. It follows from Lemma 1 and Lemma 2 that:

E

[{
(b · r)− 2

√
π

k sin(π
k )

f(b · r)
}{

(c · r)− 2
√
π

k sin(π
k )

f(c · r)
}]

= −(b · c) +
4π

(k sin(π
k ))2

E[f(b · r)f(c · r)]

Therefore, we have:

E[ẑHQẑ] =
(k sin(π

k ))2

4π

n∑
l=1

n∑
m=1

qlm(vl · vm)

+
(k sin(π

k ))2

4π

n∑
l=1

n∑
m=1

qlmE
[{

(vl · r)−
2
√
π

k sin(π
k )

f(vl · r)
}
·

·
{

(vm · r)−
2
√
π

k sin(π
k )

f(vm · r)
}]

≥
(k sin(π

k ))2

4π

n∑
l=1

n∑
m=1

qlm(vl · vm) =
(k sin(π

k ))2

4π
wSDP (7)

The last inequality is true since

E

[{
(vl · r)−

2
√
π

k sin(π
k )

f(vl · r)
}{

(vm · r)−
2
√
π

k sin(π
k )

f(vm · r)
}]

is an inner product of two vectors in a Hilbert space, which together with the
fact that Q is positive semidefinite shows that:

n∑
l=1

n∑
m=1

qlmE
[{

(vl · r)−
2√
π
f(vl · r)

}{
(vm · r)−

2√
π
f(vm · r)

}]
≥ 0

It follows that our algorithm gives an (k sin( π
k ))2

4π –approximation.

Now, let us consider problem (4) when Q is positive semidefinite. This prob-
lem can be seen as a special case of (3) by letting k → ∞. In this case, the
function f(·) defined in (6) is as follows:

f(t) =

{ t
|t| if |t| > 0

0 if t = 0
(8)

Note that as k → ∞, we have (k sin( π
k ))2

4π → π/4. This establishes the following
result, which has been proved independently by Ben–Tal, Nemirovski and Roos
[2], and Zhang and Huang [12]. However, our proof is quite a bit simpler.
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Corollary 1. When Q is positive semidefinite and Hermitian, there exists an
π
4 –approximation algorithm for (4).

Next, we show that our analysis is in fact tight for the continuous complex
quadratic optimization problem (4). We give a family of examples which shows
that the natural SDP relaxation for the above problem has an integrality gap
arbitrarily close to π/4. We begin with a technical lemma.

Lemma 3. Let u, v be two random, independent vectors on the unit sphere of
Cp. Then, we have:

E[|u · v|2] =
1
p
; E[|u · v|] =

(√
π

2
+ o(1)

)
1
√
p

Proof. Omitted in this extended abstract.

To construct the tight example, let p and n " p be fixed. Let v1, . . . , vn be
independent random vectors chosen uniformly according to the normalized Haar
measure on the unit sphere of Cp. We define A = (aij) by aij = 1

n2 (vi · vj). By
construction, the matrix A is positive semidefinite and Hermitian. Moreover, we
have: ∑

i,j

aij(vi · vj) =
1
n2

∑
i,j

|vi · vj |2

By taking n → ∞, the right–hand side converges to the average of the square
of the inner product between two random vectors on the unit sphere of Cn. By
Lemma 3, this value is 1/p, and hence the optimal value of the SDP relaxation
is at least 1/p.

Now, let zi ∈ C be such that |zi| = 1. Then, we have:

zHAz =
∑
i,j

aijzizj =

∣∣∣∣∣ 1n
n∑

i=1

zivi

∣∣∣∣∣
2

Hence, the value of the original SDP is the square of the maximum possible
modulus of a vector 1

n

∑n
i=1 zivi. If we somehow know that the direction of this

optimal vector is given by the unit vector c, then we must set zi = f(vi · c) in
order to maximize the modulus. It then follows that:

1
n

n∑
i=1

zivi · c =

∣∣∣∣∣ 1n
n∑

i=1

zivi

∣∣∣∣∣
by the Cauchy–Schwarz inequality. Moreover, this quantity converges to the
average value of |v · c| as n → ∞. By letting n arbitrarily large and choosing
an appropriate ε–net of directions on the sphere, we conclude that with high
probability, the value of the original SDP is at most [(

√
π/2 + o(1))/

√
p]2 =

(π/4 + o(1))/p, which yields the desired result.
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4 Continuous Problems Where Q Is not Positive
Semidefinite

In this section, we deal with problem (4) where the matrix Q is not positive
semidefinite. However, for convenience, we assume that wSDP > 0 such that the
standard definition of approximation algorithm makes sense for our problem. It
is clear that wSDP > 0 as long as all the diagonal entries of Q are zeros.

Again, we use our generic algorithm presented in Section 2. In this case, we
specify the function f(·) as follows:

f(t) =

{ t
T if |t| ≤ T

t
|t| if |t| > T

(9)

where T is a parameter which will be fixed later. If we let zj = f(vj · r), the
solution z = (z1, . . . , zn) obtained by this rounding may not be feasible, as the
point may not have unit modulus. However, we know that |zj | ≤ 1. Thus, we
can further round the solution as follows:

ẑ =

{
z/|z| with probability (1 + |z|)/2

−z̄/|z| with probability (1− |z|)/2

We then have the following:

Fact. For i �= j, E[ẑiẑj ] = E[zizj ].

This shows that the expected value of the solution on the circle equals that of
the “fractional” solution obtained by applying f(·) to the SDP solution. There-
fore, we could still restrict ourselves to the rounding function f(·).

Define

g(T ) =
1
T
− 1

T
e−T 2

+
√
π(1− Φ(

√
2T ))

where Φ(·) is the probability distribution function of N(0, 1).

Lemma 4. E[(b · r)f(c · r)] = g(T )(b · c)

Proof. Again, without loss of generality, we assume that c = (1, 0, . . . , 0) and
b = (b1, b2, 0, . . . , 0). Then, we have:

E[(b · r)f(c · r)]

= E
[
(b1r̄1 + b2r̄2)

r1
T

∣∣∣|r1| ≤ T
]

+ E
[
(b1r̄1 + b2r̄2)

r1
|r1|

∣∣∣|r1| > T

]

=
1
T

E
[
b1|r̄1|2

∣∣∣|r1| ≤ T
]

+ E
[
b1|r̄1|

∣∣∣|r1| > T
]
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=
b1
T
· 1
π

∫
x2+y2≤T 2

(x2 + y2) exp(−(x2 + y2))dxdy

+
b1
π

∫
x2+y2>T 2

√
x2 + y2 exp(−(x2 + y2))dxdy

=
b1
πT

∫ 2π

0

∫ T

0

ρ3 exp(−ρ2) dρdθ +
b1
π

∫ 2π

0

∫ ∞

T

ρ2 exp(−ρ2) dρdθ

= g(T )b1

where the last equality follows from the facts:∫ T

0

ρ3 exp(−ρ2)dρ =
1
2
(
1− (T 2 + 1) exp(−T 2)

)
and ∫ ∞

T

ρ2 exp(−ρ2)dρ =
1
2

(
T exp(−T 2) +

√
π(1− Φ(

√
2T ))

)

Lemma 5. E[f(c · r)f(c · r)] = 1
T 2 − 1

T 2 exp(−T 2)

Proof. The proof is similar to that of Lemma 2. We again assume that c =
(1, 0, . . . , 0).

E[f(c · r)f(c · r)]

= E
[ r̄1
T

r1
T

∣∣∣|r1| ≤ T
]

+ E
[
r̄1
|r1|

r1
|r1|

∣∣∣|r1| > T

]

=
1
T 2
· 1
π

∫
x2+y2≤T 2

(x2 + y2) exp(−(x2 + y2)) dxdy

+
1
π

∫
x2+y2>T 2

exp(−(x2 + y2)) dxdy

=
1
T 2
· 1
π

∫ 2π

0

∫ T

0

ρ3 exp(−ρ2) dρdθ +
1
π

∫ 2π

0

∫ ∞

T

ρ exp(−ρ2) dρdθ

=
1
T 2

(1− (T 2 + 1) exp(−T 2)) + exp(−T 2)

=
1
T 2
− 1

T 2
exp(−T 2)

Theorem 2. If T = 3
√

ln(n), then we have E[ẑHQẑ] ≥ 1
10 ln(n) wSDP .
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Proof. It follows from Lemma 1 and Lemma 4 that:

E[{(b·r)−Tf(b·r)}{(c · r)− Tf(c · r)}] = (1−2Tg(T ))(b·c)+T 2E[f(b·r)f(c · r)]

Then, we have:

E[ẑHQẑ] =
n∑

k=1

n∑
m=1

2Tg(T )− 1
T 2

qkm(vk · vm)

+
1
T 2

n∑
k=1

n∑
m=1

qkmE[{(vk · r)− Tf(vk · r)}{(vm · r)− Tf(vm · r)}]

Again, the quantity E[{(b · r) − Tf(b · r)}{(c · r)− Tf(c · r)}] can be seen as
an inner product of two vectors in a Hilbert space. Moreover, by letting b = c
and using Lemma 5, we know that the norm of an Euclidean unit vector in this
Hilbert space is:

2− 2Tg(T )− exp(−T 2) = exp(−T 2)− 2T
√
π(1− Φ(

√
2T ))

It follows that:

1
T 2

n∑
k=1

n∑
m=1

qkmE[{(vk · r)− Tf(vk · r)} · {(vm · r)− Tf(vm · r)}]

≥ −exp(−T 2)− 2T
√
π(1− Φ(

√
2T ))

T 2

n∑
k=1

n∑
m=1

|qkm|

On the other hand, one can show that wSDP ≥ 1
6n3

∑
k,m |qkm| > 0. Thus, we

have:

1
T 2

n∑
k=1

n∑
m=1

qkmE[{(vk · r)− Tf(vk · r)} · {(vm · r)− Tf(vm · r)}]

≥ −exp(−T 2)− 2T
√
π(1− Φ(

√
2T ))

T 2
6n3 wSDP

from which it follows that:

E[ẑHQẑ] ≥
(

2Tg(T )− 1
T 2

− exp(−T 2)− 2T
√
π(1− Φ(

√
2T ))

T 2
6n3

)
wSDP

≥ 1− (2 + 6n3) exp(−T 2)
T 2

wSDP

By letting T = 3
√

lnn, we have E[ẑHQẑ] ≥ 1
10 ln nwSDP when n ≥ 3 as desired.
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Semidefinite Bounds for the Stability Number of
a Graph via Sums of Squares of Polynomials
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1098 SJ Amsterdam, The Netherlands

Abstract. Lovász and Schrijver [9] have constructed semidefinite relax-
ations for the stable set polytope of a graph G = (V, E) by a sequence
of lift-and-project operations; their procedure finds the stable set poly-
tope in at most α(G) steps, where α(G) is the stability number of G.
Two other hierarchies of semidefinite bounds for the stability number
have been proposed by Lasserre [4],[5] and by de Klerk and Pasechnik
[3], which are based on relaxing nonnegativity of a polynomial by requir-
ing the existence of a sum of squares decomposition. The hierarchy of
Lasserre is known to converge in α(G) steps as it refines the hierarchy of
Lovász and Schrijver, and de Klerk and Pasechnik conjecture that their
hierarchy also finds the stability number after α(G) steps. We prove this
conjecture for graphs with stability number at most 8 and we show that
the hierarchy of Lasserre refines the hierarchy of de Klerk and Pasechnik.

1 Introduction

Semidefinite programming plays an essential role for constructing good relax-
ations for hard combinatorial optimization problems, in particular, for the max-
imum stable set problem which will be considered in the present paper. Lovász
[8] introduced the theta number ϑ(G) as an upper bound for the stability number
α(G) of a graph G; ϑ(G) can be computed efficiently (to any arbitrary precision)
using semidefinite programming and it coincides with α(G) when G is a perfect
graph. Lovász and Schrijver [9] construct a hierarchy of semidefinite relaxations
for the stable set polytope of G by a sequence of lift-and-project operations; their
procedure is finite and it finds the stable set polytope in at most α(G) steps.

Two other hierarchies of semidefinite bounds for the stability number have
been proposed by Lasserre [4, 5] and by de Klerk and Pasechnik [3]. They are
based on the following paradigm: While testing nonnegativity of a polynomial
is a hard problem, one can test efficiently whether a polynomial can be written
as a sum of squares of polynomials via semidefinite programming. As was al-
ready proved by Hilbert in 1888 not every nonnegative multivariate polynomial
can be written as a sum of squares (see Reznick [14] for a nice survey on this

� Supported by the Netherlands Organization for Scientific Research grant NWO
639.032.203.

M. Jünger and V. Kaibel (Eds.): IPCO 2005, LNCS 3509, pp. 136–151, 2005.
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topic). However, some representation theorems have been proved ensuring the
existence of certain sums of squares decompositions under some assumption, like
positivity of the polynomial on a compact basic closed semi-algebraic set (see,
e.g., [18] for an exposition of such results). An early such result is due to Pólya
[13] who showed that, if p(x) is a homogeneous polynomial which is positive
on Rn

+ \ {0}, then (
∑n

i=1 xi)rp(x) has only nonnegative coefficients (and thus
(
∑n

i=1 x
2
i )

rp(x2
1, . . . , x

2
n) is a sum of squares) for some sufficiently large integer

r.
The starting point for Lasserre’s construction is that the stability number

α(G) of a graph G = (V,E) can be expressed as the smallest scalar t for which
the polynomial t−

∑
i∈V xi is nonnegative on the set {x ∈ RV | xixj = 0 (ij ∈

E), x2
i = xi (i ∈ V )}. Requiring the weaker condition that the polynomial

t −
∑

i∈V xi can be written as a sum of squares modulo the ideal generated by
xixj (ij ∈ E) and x2

i − xi (i ∈ V ) with given degree bounds, yields a hierarchy
of semidefinite upper bounds for α(G). The dual approach (in terms of moment
matrices) yields the hierarchy of Lasserre [4, 5] of semidefinite relaxations for the
stable set polytope. This hierarchy refines the hierarchy of Lovász and Schrijver
(see [6]) and thus it also finds the stable set polytope in α(G) steps.

By a result of Motzkin and Straus [11], one may alternatively express α(G) as
the smallest scalar t for which the matrix M := t(I +AG)−J (with entries t−1
on the diagonal and at positions corresponding to edges and −1 elsewhere) is
copositive, meaning that the polynomial pM (x) :=

∑
i,j∈V x2

ix
2
jMij is nonnega-

tive on Rn. Following Parrilo [12], de Klerk and Pasechnik [3] propose to relax the
nonnegativity condition on pM (x) and to require instead that (

∑
i∈V x2

i )
rpM (x)

be a sum of squares for some integer r ≥ 0. The convergence of these bounds to
α(G) is guaranteed by the above mentioned result of Pólya. The first bound in
the hierarchy coincides with the strengthening ϑ′(G) of the theta number intro-
duced by McEliece, Rodemich and Rumsey [10] and Schrijver [16]. It is however
not clear how the next bounds relate to the bounds provided by the construction
of Lasserre. It is conjectured in [3] that the stability number is found after α(G)
steps. In this paper we study this conjecture and develop a proof technique which
enables us to show that the conjecture holds for graphs with stability number at
most 8. Moreover, we show that the hierarchy of bounds of Lasserre (enhanced
by adding some nonnegativity constraint) refines the hierarchy of bounds of de
Klerk and Pasechnik, answering another open question of [3].

The paper is organized as follows. In Section 2, we first recall some definitions
and results related to the hierarchies of bounds of Lasserre and of de Klerk and
Pasechnik. Then we introduce a dual formulation for the latter bounds, which
will enable us to compare the two hierarchies of bounds, and we present our main
results. The proofs are delayed till Section 3, where we prove the conjecture for
graphs with stability number at most 8, and till Section 4, where we prove the
relation between the two hierarchies.

Throughout, G = (V,E) denotes a graph with node set V = {1, . . . , n}. Let
α(G) denote its stability number, i.e., the largest cardinality of a stable set in
G, and let AG denote the adjacency matrix of G, i.e., AG is the 0/1 matrix
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indexed by V whose (i, j)-th entry is 1 when i, j ∈ V are connected by an
edge. All matrices are assumed to be symmetric and I, J , e, ei (i = 1, . . . , n)
denote, respectively, the identity matrix, the all-ones matrix, the all-ones vector,
and the standard unit vectors of suitable sizes. A matrix M is copositive if
xTMx ≥ 0 for all x ∈ Rn

+ and Cn denotes the copositive cone, consisting of
the n × n copositive matrices. For a symmetric matrix M , we write M � 0
if M is positive semidefinite. For a sequence β ∈ Zn

+, we set |β| :=
∑n

i=1 βi,
β! := β1! · · ·βn!, S(β) := {i | βi �= 0}, and Sodd(β) := {i | βi is odd}. One says
that β is even when Sodd(β) = ∅. Finally, set I(n, r) := {β ∈ Zn

+ | |β| = r} and
Pr(V ) := {I ⊆ V | |I| ≤ r}.

2 Semidefinite Bounds for the Stability Number

2.1 The Semidefinite Bounds of Lasserre

Given an integer r ≥ 1 and a vector x = (xI)I∈P2r(V ), consider the matrix:

Mr(x) := (xI∪J )I,J∈Pr(V )

known as the moment matrix of x of order r. By setting:

las(r)(G) := max
∑

i∈V xi s.t. Mr(x) � 0, xI ≥ 0 (I ⊆ V, |I| = r + 1),
x∅ = 1, xij = 0 (ij ∈ E)

(1)

one obtains a hierarchy of semidefinite bounds for the stability number, known
as Lasserre’s hierarchy [5, 6]. Indeed, if S is a stable set, the vector x ∈ RP2r(V )

with xI = 1 if I ⊆ S and xI = 0 otherwise, is feasible for (1) with objective
value |S|, showing α(G) ≤ las(r)(G). We note that las(1)(G) = ϑ′(G). For fixed
r, the parameter las(r)(G) can be computed in polynomial time (to an arbitrary
precision) since the semidefinite program (1) involves matrices of size O(nr) with
O(n2r) variables.

Equality α(G) = las(r)(G) holds for r ≥ α(G). This result remains valid if we
remove the nonnegativity constraint: xI ≥ 0 (|I| = r + 1) in (1) ([6]). However,
with this nonnegativity condition, we will be able to compare the hierarchies of
Lasserre and de Klerk and Pasechnik (see Theorem 3 below).

2.2 The Semidefinite Bounds of de Klerk and Pasechnik

The starting point in [3] is the following formulation for α(G) found by Motzkin
and Straus [11]:

1
α(G)

= min xT (I + AG)x subject to x ≥ 0,
n∑

i=1

xi = 1.

In other words,

α(G) = min t subject to t(I + AG)− J ∈ Cn. (2)
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Therefore, upper bounds for α(G) can be obtained by replacing in program (2)
the copositive cone Cn by a smaller subcone of it. Following [12], given an integer
r ≥ 0, K(r)

n is the cone of n× n matrices M for which the polynomial

p
(r)
M (x) :=

(
n∑

i=1

x2
i

)r
⎛⎝ n∑

i,j=1

Mijx
2
ix

2
j

⎞⎠ (3)

can be written as a sum of squares of polynomials. Parrilo [12] shows that

K(0)
n = {P + N | P � 0, N ≥ 0}. (4)

A characterization of K(1)
n can be found in [12, 1]. Obviously, K(r)

n ⊆ K(r+1)
n ⊆

. . . ⊆ Cn. The result of Pólya mentioned in the Introduction shows that the
interior of the cone Cn is equal to

⋃
r≥0K

(r)
n . Setting

ϑ(r)(G) := min t subject to t(I + AG)− J ∈ K(r)
n , (5)

one obtains a hierarchy of upper bounds for α(G). The first bound ϑ(0)(G) is
equal to

ϑ′(G) = max Tr(JX) s.t. Tr(X) = 1, Xij = 0 (ij ∈ E), X � 0, X ≥ 0 (6)

(see [3]). Thus, ϑ(0)(G) ≤ ϑ(G), since program (6) without the nonnegativity
condition is a formulation of the theta number.

The problem of finding a sum of squares decomposition for a polynomial of
degree 2d can be formulated as a semidefinite program involving matrices of
size O(nd) and O(n2d) variables (see, e.g., [12]). Therefore, for fixed r, program
(5) can be reformulated as a semidefinite program of polynomial size and thus
ϑ(r)(G) can be computed in polynomial time (to any precision).

De Klerk and Pasechnik [3] show that

α(G) = �ϑ(r)(G)� for r ≥ α(G)2.

Indeed the matrix M := α(1 + ε)(I + AG)− J with α = α(G) and ε = α−1
α2−α+1 ,

belongs to the cone K(r)
n since all the coefficients of the polynomial p(r)

M (x) are
nonnegative; this implies that α(G) ≤ ϑ(r)(G) ≤ α(G)(1 + ε) < α(G) + 1.

Let us observe that, for the matrix M := α(I + AG) − J , the polynomial
p
(r)
M (x) has a negative coefficient for any r ≥ 0 when α = α(G) ≥ 2. To see it,

recall from [1] that

p
(r)
M (x) =

∑
β∈I(n,r+2)

r!
β!

cβx
2β , where cβ := βTMβ − βT diag(M). (7)

If S(β) is a stable set, then cβ = α
∑

i βi(βi−1)−(r+1)(r+2). Write r+2 = qα+s
with q, s ∈ Z+, 0 ≤ s < α; then cβ < 0 for β = (q + 1, . . . , q + 1, q, . . . , q, 0, . . . 0)
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with s entries equal to q + 1, α − s entries equal to q, and S(β) being a stable
set.

It is also shown in [3] that

ϑ(1)(G) ≤ 1 + max
i∈V

ϑ(0)(G\i⊥) (8)

where, for i ∈ V , G\i⊥ is the graph obtained from G by deleting i and its
neighbours. Therefore, ϑ(1)(G) = α(G) when α(G) ≤ 2. More generally, de
Klerk and Pasechnik [3] conjecture:

Conjecture 1. ϑ(r)(G) = α(G) for r ≥ α(G)− 1.

2.3 Dual Formulation

Using conic duality, the bound ϑ(r)(G) from (5) can be reformulated as

ϑ(r)(G) = max Tr(JX) subject to Tr((I + AG)X) = 1, X ∈ (K(r)
n )∗. (9)

As the programs (5) and (9) are strictly feasible, there is no duality gap and
the optima in (5) and (9) are indeed attained ([3]). For r = 0, it follows from
(4) that (K(0)

n )∗ is the cone of completely positive (i.e., positive semidefinite and
nonnegative) matrices. For r ≥ 1, one can give an explicit description of the dual
cone (K(r)

n )∗ in terms of moment matrices.

Definition 1. Let y = (yδ)δ∈I(n,2r+4) be given.

(i) Define the matrix Nr+2(y) indexed by I(n, r + 2), whose (β, β′)-th entry is
equal to yβ+β′ , for β, β′ ∈ I(n, r + 2).

(ii) For γ ∈ I(n, r), Nγ(y) denotes the principal submatrix of Nr+2(y) indexed
by γ+2e1, . . . , γ+2en; that is, Nγ(y) is the n×n matrix with (i, j)-th entry
y2γ+2ei+2ej

, for i, j = 1, . . . , n.
(iii) Define the n× n matrix

C(y) :=
∑

γ∈I(n,r)

r!
γ!

Nγ(y). (10)

Definition 2. Define the cone

C(r)n := {Z ∈ Rn×n | Z = C(y) for some y ∈ RI(n,2r+4) with Nr+2(y) � 0}.

As the matrix C(y) in (10) involves only entries of y indexed by even sequences,
one can assume w.l.o.g. in the definition of the cone C(r)n that yδ = 0 whenever
δ has an odd component.

Lemma 1. The cones K(r)
n and C(r)n are dual of each other; i.e., C(r)n = (K(r)

n )∗

and K(r)
n = (C(r)n )∗.
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Proof. For a polynomial p(x) =
∑

δ pδx
δ, let p := (pδ)δ denote the vector of its

coefficients. The following can be easily verified:

yT v = uT (Nr+2(y))u for y ∈ RI(n,2r+4), u ∈ RI(n,r+2), v(x) := u(x)2. (11)

Consider the cones C := {y ∈ RI(n,2r+4) | Nr+2(y) � 0}, D := {p ∈ RI(n,2r+4) |
the polynomial p(x) is a sum of squares}. Then, C = D∗ as a direct application
of (11), which implies D = C∗ since D is a closed cone (see [15]). Using (7), one
can also easily verify that

Tr(MC(y)) = yT (p(r)
M ) for y ∈ RI(n,2r+4), M symmetric n× n matrix (12)

where p
(r)
M (x) is the polynomial from (3). We can now prove the lemma. As

C(r)n is a closed cone, it suffices to show: K(r)
n = (C(r)n )∗. The inclusion K(r)

n ⊆
(C(r)n )∗ follows using (11) and (12). Conversely, let M ∈ (C(r)n )∗. Then, by (12),
yT (p(r)

M ) ≥ 0 for all y ∈ C; that is, p(r)
M ∈ C∗ = D, showing that M ∈ K(r)

n . ��

Consider the program

ϑ̃(r)(G) := max Tr(X) s.t. X ∈ C(r)n = (K(r)
n )∗, Tr(AGX) = 0,

X − diag(X)diag(X)T � 0.
(13)

Then,
α(G) ≤ ϑ̃(r)(G) ≤ ϑ(r)(G). (14)

Indeed, if X is feasible for (13), then X ′ := X
Tr(X) is feasible for (9) with

Tr(JX ′) ≥ Tr(X), which shows ϑ̃(r)(G) ≤ ϑ(r)(G). Given a stable set S with
incidence vector x := χS , define the vector y ∈ RI(n,2r+4) with yδ = 1

|S|r if δ is
even and S(δ) ⊆ S, and yδ = 0 otherwise. Then, Nr+2(y) � 0; X := C(y) = xxT

is feasible for (13) with Tr(X) = |S|, which shows α(G) ≤ ϑ̃(r)(G).

2.4 The Main Results

Our main results are the following:

Theorem 1. For a graph G and a positive integer r ≤ min(α(G)− 1, 6),

ϑ(r)(G) ≤ r + max
S⊆V stable, |S|=r

ϑ(0)(G\S⊥), (15)

where S⊥ denotes the set of nodes that belong to S or are adjacent to a node
in S.

Theorem 2. Conjecture 1 holds for α(G) ≤ 8; that is,

ϑ(α(G)−1)(G) = α(G) if α(G) ≤ 8.

Theorem 3. For r ≥ 1, the parameters from (1),(9) and (13) satisfy:

las(r)(G) ≤ ϑ̃(r−1)(G) ≤ ϑ(r−1)(G). (16)
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Theorem 2 follows directly from Theorem 1 when α(G) ≤ 7 and from its proof
technique when α(G) = 8. Our proof technique does not apply to the case when
α(G) ≥ 9. It is quite more complicated than the proof of convergence in α(G)
steps for the Lovász-Schrijver and the Lasserre semidefinite hierarchies. One of
the main difficulties (as pointed out later in the proof) comes from the fact that,
for r ≥ 1, the cone K(r)

n is not invariant under some simple matrix operations,
like extending a matrix by adding a zero row and column to it, or rescaling
it by positive multipliers (which obviously preserve copositivity and positive
semidefiniteness). For instance, when G is a circuit of length 5, the matrix M :=
2(I + AG) − J belongs to K(1)

5 , but adding a zero row and column yields a
matrix that does not belong to K(1)

6 . We thank E. de Klerk for communicating
this example to us.

As Theorem 3 shows, the bound las(r)(G) is at least as good as ϑ̃(r−1)(G).
There exist in fact graphs for which strict inequality: las(2)(G) < ϑ̃(1)(G) holds.
For this, given integers 2 ≤ d ≤ n, consider the graph G(n, d) with node set
P(V ) (|V | = n) where I, J ∈ P(V ) are connected by an edge if |IΔJ | ∈
{1, . . . , d − 1}. Then α(G(n, d)) is the maximum cardinality of a binary code
of word length n with minimum distance d. Delsarte [2] introduced a linear pro-
gramming bound which coincides with the parameter ϑ′(G(n, d)) ([16]). Schrijver
[17] introduced a stronger semidefinite bound which roughly1 lies between the
bounds las(1)(G(n, d)) and las(2)(G(n, d)) ([7]). While G(n, d) has 2n vertices,
Schrijver’s bound can be computed via a semidefinite program of size O(n3)
(using a block-diagonalization of the underlying Terwiliger algebra). It turns
out that the same algebraic property holds for the bound ϑ(1)(G(n, d)); thus
we could compute this bound as well as Schrijver’s bound for the parameters
(n, d) = (17, 4), (17, 6), (17, 8), and we found:

las(2)(G(17, 4)) ≤ 3276 < 3607 ≤ ϑ(1)(G(17, 4))
las(2)(G(17, 6)) ≤ 352 < 395 ≤ ϑ(1)(G(17, 6))
las(2)(G(17, 8)) ≤ 41 < 42 ≤ ϑ(1)(G(17, 8)).

3 Proofs of Theorems 1 and 2

Let G = (V,E) be a graph with stability number α(G), V = {1, . . . , n} and
1 ≤ r ≤ α(G)− 1 an integer. Set

t := r + max
S⊆V stable,|S|=r

ϑ(0)(G\S⊥).

Then, t ≥ r + 1. By assumption,

(t− r)(I + AG\S⊥)− J ∈ K(0)

n−|S⊥| for any stable set S in G of size r. (17)

1 Indeed, the formulation of Schrijver’s bound has an additional constraint, namely,
xijk ≤ xij for all i, j, k ∈ V , which does not appear in the definition of the bound
las(r)(G) used in the present paper.
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In order to prove Theorem 1, we have to show that, for 1 ≤ r ≤ min(α(G)−1, 6),

M := t(I + AG)− J ∈ K(r)
n . (18)

We need some notation. For two nodes u, v ∈ V , write u # v if u = v or
uv ∈ E, and u �# v otherwise. For x ∈ Rn, set v(x) := (x2

i )
n
i=1. Let B be an m×n

matrix. We say that B is a q×s block matrix if the set {1, . . . ,m} indexing its rows
can be partitioned into Q1∪ . . .∪Qq and the set {1, . . . , n} indexing its columns
can be partitioned into S1 ∪ . . . ∪ Ss in such a way that, for any h ∈ {1, . . . , q},
h′ ∈ {1, . . . , s}, the entries Bij for i ∈ Qh, j ∈ Sh′ are all equal to the same value,
say b̃hh′ . In other words, B is obtained from the matrix B̃ := (b̃hh′) h∈{1,...,q}

h′∈{1,...,s}
by

suitably duplicating rows and columns. Obviously, B � 0 if and only if B̃ � 0.
We call B̃ the skeleton of the block matrix B.

The following observation plays a central role in the proof.

Lemma 2. Let X(i) (i ∈ V ) be symmetric matrices satisfying the condition:

X(i)jk + X(j)ik + X(k)ij ≥ 0 for all i, j, k ∈ V, (19)

then the polynomial
∑

i∈V x2
i v(x)TX(i)v(x) =

∑
i,j,k∈V x2

ix
2
jx

2
kX(i)jk is a sum

of squares.

Proof. The polynomial
∑

i,j,k∈V x2
ix

2
jx

2
kX(i)jk is equal to∑

(i,j,k)∈V 3
i�=j �=k �=i

x2
ix

2
jx

2
k[X(i)jk + X(i)jk + X(i)jk]

+
∑

(i,j)∈V 2
i�=j

x2
ix

4
j [X(i)jj + 2X(j)ij ] +

∑
i∈V x6

iX(i)ii,

which is a sum of squares, since all coefficients are nonnegative by (19). ��

Our strategy will be to construct matrices X({i1, ..., ik}, i) (i ∈ V ) satisfying
(19) when {i1, ..., ik} is a stable set of size k ≤ r. We will use them to recursively
decompose M into M −X(i1)−X(i1, i2)− . . .−X(i1, . . . , ik) in such way that
at the last level k = r we obtain matrices in K(0)

n .

3.1 Defining Sets of Matrices Satisfying the Linear Condition (19)

Let S be a stable set of cardinality k, 0 ≤ k ≤ r. We define a set of matrices
X(S, i) (for i ∈ V ) indexed by V that satisfy the condition (19). Set m0 := 1
and mk := tk

(t−1)···(t−k) for k = 1, . . . , r. (Then, t ≥ r + 1 > k.)
For i ∈ S⊥, X(S, i) is the symmetric matrix whose entry at position (u, v) is

defined as follows:

mk times

⎧⎨⎩
0 if u or v ∈ S⊥

t− k − 1 if u, v ∈ V \ S⊥ and u # v
−1 if u, v ∈ V \ S⊥ and u �# v.
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For i �∈ S⊥, X(S, i) is the symmetric matrix whose entry at position (u, v) is
defined as follows:

mk times

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if u, v ∈ S⊥

− t−k−1
2 if u ∈ S⊥, v ∈ i⊥ \ S⊥

1
2 if u ∈ S⊥, v ∈ V \ (S⊥ ∪ i⊥)
0 if u, v ∈ i⊥ \ S⊥ and u # v
−(t− k) if u, v ∈ i⊥ \ S⊥ and u �# v
t− k

2 if u ∈ i⊥ \ S⊥, v ∈ V \ (S⊥ ∪ i⊥) and u # v
k
2 if u ∈ i⊥ \ S⊥, v ∈ V \ (S⊥ ∪ i⊥) and u �# v
−k if u, v ∈ V \ (S⊥ ∪ i⊥) and u # v
0 if u, v ∈ V \ (S⊥ ∪ i⊥) and u �# v.

If S = {i1, . . . , ik}, we also denote X(S, i) as X(i1, . . . , ik, i). When S = ∅, we
set X(∅, i) =: X(i). Given an ordering (S) = (i1, . . . , ik) of the elements of S,
define the matrix

M((S)) := M −X(i1)−X(i1, i2)− . . .−X(i1, . . . , ik). (20)

Lemma 3. Given a stable set S of size 0 ≤ k ≤ r, the matrices X(S, i) (i ∈ V )
satisfy (19).

Proof. Direct verification. ��

3.2 The Role of the Matrices X(S, i) and M((S)) in the Proof

Our objective is to prove that the matrix M from (18) belongs to the cone K(r)
n ,

i.e., that the polynomial p(r)
M (x) = σ(x)rv(x)TMv(x) is a sum of squares, setting

σ(x) :=
∑n

i=1 x
2
i . The basic idea is to decompose p

(r)
M (x) as

σ(x)r−1
n∑

i=1

x2
i v(x)T (M −X(i))v(x) + σ(x)r−1

n∑
i=1

x2
i v(x)TX(i)v(x). (21)

The second sum is a sum of squares by Lemmas 2 and 3. Each matrix M −X(i)
can be written as

M −X(i) =
( i⊥ V \ i⊥

i⊥ (t− 1)J −J
V \ i⊥ −J t(I + AG\i⊥)− J

)
(22)

=
t

t− 1

(
0 0
0 (t− 1)(I + AG\i⊥)− J

)
+
(

(t− 1)J −J
−J 1

t−1J

)
. (23)

When r = 1, (22),(23) together with assumption (17) imply that M−X(i) ∈ K(0)
n

and thus p
(1)
M (x) is a sum of squares; therefore, (8) holds. Assume now r ≥ 2.

The last matrix in (23) is positive semidefinite. Suppose our assumption would



Semidefinite Bounds for the Stability Number of a Graph 145

be that (t − 1)(I − AG\i⊥) − J ∈ K(r−1)

n−|i⊥|, then it would be tempting to con-

clude from (22) and (23) that M −X(i) ∈ K(r−1)
n (which would then imply that

M ∈ K(r)
n and thus conclude the proof). This would be correct if we would work

with cones of matrices which are closed under adding a zero row and column,
but this is not the case for the cones K(r) and thus this argument does not
work. To go around this difficulty, we further decompose the first sum in (21)
by developing σ(x)r−1 as σ(x)r−2

∑n
j=1 x

2
j and using the matrices X(i, j). Gen-

erally, one can write the following ‘inclusion-exclusion’ formula for the matrix
σ(x)rM :

σ(x)rM =
r∑

h=1

σ(x)r−h
∑

i1∈V, i2 �∈i⊥1 ,...,ih−1 �∈i⊥1 ∪...∪i⊥
h−2

ih∈V

x2
i1 · · ·x

2
ih
X(i1, . . . , ih)

+
r∑

h=2

σ(x)r−h
∑

i1∈V, i2 �∈i⊥1 ,...,ih−1 �∈i⊥1 ∪...∪i⊥
h−2

ih∈i⊥1 ∪...∪i⊥
h−1

x2
i1 · · ·x

2
ih
M((i1, . . . , ih))

+
∑

i1∈V, i2 �∈i⊥1 ,...,ir−1 �∈i⊥1 ∪...∪i⊥
r−2

ir �∈i⊥1 ∪...∪i⊥
r−1

x2
i1 · · ·x

2
ir
M((i1, . . . , ir)).

(24)
Therefore, in order to show that M ∈ K(r)

n , it suffices to show that

M((i1, . . . , ik, ik+1)) ∈ K(0)
n for S := {i1, . . . , ik} stable,

ik+1 ∈ S⊥, 1 ≤ k ≤ r − 1,
(25)

and
M((i1, . . . , ir)) ∈ K(0)

n for {i1, . . . , ir} stable. (26)

For this we need to study the structure of the matrices M((S)).

3.3 The Structure of the Matrices M((S))

Given an ordered stable set (S) = (i1, i2, ..., ik) with k = 1, . . . , r, consider the
matrix M((S)) from (20) and write

M((S)) :=
( S⊥ V \ S⊥

S⊥ Ck(S) Dk(S)
V \ S⊥ Dk(S)T Ek(S)

)
. (27)

Lemma 4. The matrix M((S)) from (27) has the following properties.

(i) Ck(S) is a k × k block matrix whose rows and columns are indexed by the
partition of S⊥ into i⊥1 ∪ (i⊥2 \ i⊥1 ) ∪ . . . ∪ (i⊥k \ {i1, . . . , ik−1}⊥). Let Ck be
the skeleton of Ck(S) (Ck is a k× k matrix) and set dk := Cke ∈ Rk. Then,

eTCke =
k∑

h=1

dk(h) = (mk − 1)(t− k)2.
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(ii) The matrix Dk(S) is a k × 1 block matrix, with the same partition as above
for the set S⊥ indexing its rows. Given h ∈ {1, . . . , k}, all entries in the
(h, 1)-block take the same value, which is equal to −dk(h)

t−k .
(iii) For u, v ∈ V \S⊥, the (u, v)-th entry of Ek(S) is equal to tmk−1−1 if u # v

and to −1 if u �# v.

Proof. The block structure of the matrices Ck and Dk is determined by the
construction of the matrix M((S)) in (20) and the shape of the matrices X(.)
defined in Section 3.1. We show the lemma by induction on k ≥ 1. For k = 1,
the matrix M((S)) = M − X(i1) has the shape given in (22) and the desired
properties hold. Assume (i),(ii),(iii) hold for a stable set S of size k ≥ 1. Let
i ∈ V \ S⊥. We show that (i),(ii),(iii) hold for the stable set S ∪ {i}. Let D′

k(S)
(resp., D′′

k(S)) be the submatrices of Dk(S) whose columns are indexed by i⊥ \S
(resp., V \ (S ∪ i⊥)) and with the same row indices as Dk(S). Then Ck+1(S, i)
and Dk+1(S, i) have the following block structure:

Ck+1(S, i) =
(

Ck(S) D′
k(S) + t−k−1

2 mkJ

D′
k(S)T + t−k−1

2 mkJ
T (tmk−1 − 1)J

)
(28)

Dk+1(S, i) =
(
D′′

k(S)− 1
2mkJ

(−1−mk
k
2 )J

)
, (29)

where J denotes the all-ones matrix of appropriate size. By simple calculation
one can show that Ck+1(S, i) and Dk+1(S, i) satisfy the induction hypothesis.

Finally, the (u, v)-th entry of the matrix Ek+1(S, i) remains the same as in
Ek(S), i.e., equal to −1, if u �# v and, for u # v, it is equal to tmk−1−1+kmk =
(t− k)mk − 1 + kmk = tmk − 1. ��

Corollary 1. Let S be a stable set of size k = 1, . . . , r. Then,

G((S)) :=
(

Ck(S) Dk(S)
Dk(S)T (mk − 1)J

)
� 0⇐⇒ Ck(S) � 0, (30)

M((S)) = G((S)) + mk

(
0 0
0 (t− k)(I + AG\S⊥)− J

)
, (31)

M((S, i)) = G((S)) if i ∈ S⊥. (32)

Proof. By Lemma 4, Ck(S), Dk(S) are block matrices; hence G((S)) � 0 if and

only if its skeleton G :=
(

Ck − 1
t−kCke

− 1
t−ke

TCk mk − 1

)
is positive semidefinite. Now,

G � 0⇐⇒ Ck � 0 since the last column of G is a linear combination of the first
k columns; thus (30) holds. Relations (31), (32) follow using the definitions. ��

Therefore, (25), (26) hold (and thus M ∈ K(r)
n ) if we can show that Ck(S) � 0

for any stable set S of size k ≤ r. As Ck(S) is a block matrix, it suffices to show
that its skeleton Ck is positive semidefinite. Moreover, it suffices to show that
Cr � 0 since, in view of (28), the matrices Ck (1 ≤ k ≤ r) are in fact the leading
principal submatrices of Cr.
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3.4 The Matrix Cr Is Positive Semidefinite When
r ≤ min(α(G) − 1, 6)

Recall that the entries of Cr depend on the parameter t; thus one may alterna-
tively write Cr as Cr(t). Our task is now to show that Cr(t) � 0 for all t ≥ r+1
and r ≤ min(α(G)− 1, 6). We achieve this by proving that

detCk(t) > 0 for t ≥ r + 1, k = 1, . . . , r. (33)

The proof for (33) relies on establishing a recurrence relationship among the
determinants of Ck(t). We need the following lemma.

Lemma 5. Assume Ck+1 is nonsingular. Then,

eT (Ck+1)−1e =
t2

(t− k)2
detCk

detCk+1
. (34)

Proof. Write Ck+1 :=
(
Ck x
xT a

)
, (Ck+1)−1 :=

(
A y
yT b

)
. Then,

(a) ACk +yxT = I; (b) Cky+bx = 0; (c) Ax+ay = 0; (d) xT y+ab = 1. (35)

By Lemma 4 and (28), a = tmk−1 − 1 = (t− k)mk − 1 and x = ρke− 1
t−kCke,

setting ρk := mk
t−k−1

2 . Moreover, eTCke = (mk − 1)(t− k)2, implying

eTx = kρk − (t− k)(mk − 1),
eTx

t− k
+ a = ρk

(
k

t− k
+ 2

)
. (36)

Taking the inner product of relation (c) with the all-ones vector and using (35)(a)
and (36), we find:

0 = eTAx + aeT y = eTA(ρke− 1
t−kCke) + aeT y

= ρke
TAe− 1

t−ke
T (I − yxT )e + aeT y = ρke

TAe− k
t−k + eT y(xT e

t−k + a)
= ρk(eTAe + 2eT y) + k

t−k (ρke
T y − 1);

that is,

eTAe + 2eT y =
k

t− k

(
1
ρk
− eT y

)
. (37)

Using relations (35)(d),(b) and (36), we find:

1 = xT y + ab = (ρke− 1
t−kCke)T y + ab

= ρke
T y + b

t−ke
Tx + ab = ρke

T y + bρk( k
t−k + 2);

that is,

eT y =
1
ρk
− b

(
k

t− k
+ 2

)
. (38)

Relations (37) and (38) imply that eT (Ck+1)−1e = eTAe + 2eT y + b = b t2

(t−k)2 .

By the cofactor rule, b = det Ck

det Ck+1
, and the lemma follows. ��
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Corollary 2. Let k ≥ 2 and assume that Ck(t) is nonsingular. Then,

detCk+1(t) =
2tρk

t− k
detCk(t)− t2ρ2

k

(t− k + 1)2
detCk−1(t), (39)

after setting ρk := mk
t−k−1

2 .

Proof. Setting P :=
(
I − 1

t−ke
0 1

)
, we find that PTCk+1P =

(
Ck ρke
ρke

T μ

)
,

after setting μ := mk
t(t−k−1)

t−k . Set u := (Ck)−1e and let v1, . . . , vk+1 denote the
columns of PTCk+1P . Then, vk+1 − ρk(

∑k
i=1 uivi) has all zero entries except

the last (k +1)-th entry equal to μ− ρ2
k(
∑k

i=1 ui) = mk
t(t−k−1)

t−k − ρ2
ke

T (Ck)−1e.
Therefore, we can conclude that

detCk+1 = detPTCk+1P =
(

2tρk

t− k
− ρ2

ke
T (Ck)−1e

)
detCk. (40)

Relation (39) now follows directly from Lemma 5 and (40). ��

Lemma 6. Consider the rational functions f1(t) = t− 1, f2(t) := t2(t−2)(3t−2)
4(t−1)2

and, for h = 2, . . . , k,

fh+1(t) =
2tρh

t− h
fh(t)− t2ρ2

h

(t− h + 1)2
fh−1(t),

and the polynomials g1(t) := 1, g2(t) := 3t− 2 and, for h = 2, . . . , k,

gh+1(t) = εh(t− h)gh(t)− t(t− h− 1)gh−1(t),

with εh = 1 if h is even and εh = 4 otherwise. As before, ρh := mh
t−h−1

2 .

(i) For h = 2, . . . , k + 1, fh(t) = t(
h+1
2 )−1

(t−h)
4	h/2
(t−1)h(t−2)h−1···(t−h+1)2

gh(t).
(ii) For 1 ≤ k ≤ 6, gk(t) > 0 for all t ≥ k. Moreover, g7(8) > 0.

Proof. The proof for (i) is by induction on k. For (ii), setting Gk(t) := gk(t+k),
one has to show that Gk(t) > 0 for t ≥ 0, k ≤ 6. This follows from the fact that
G2(t) = 4 + 3t, G3(t) = 7 + 7t + 2t2, G4(t) = 64 + 68t + 30t2 + 5t3, G5(t) =
167+165t+ 84t2 + 25t3 +3t4, G6(t) = 1776+1296t+540t2 + 248t3 + 70t4 + 7t5.
Moreover, g7(8) = 1024. ��

We can now conclude the proof of Theorem 1. Consider 1 ≤ r ≤ min(α(G), 6)
and t ≥ r + 1. We show that (33) holds using Corollary 2 and Lemma 6. First
note that detCh(t) = fh(t) for h = 1, 2 (direct verification). Let k ∈ {1, . . . , r}.
If k = 1, 2, then detCk(t) > 0. Assume k ≥ 3 and Ck−1(t) % 0. By Corollary
2, detC1(t), . . . ,detCk(t) are related via (39); that is, detCh(t) = fh(t) for
h = 1, . . . , k. We now deduce from Lemma 6 that detCk(t) > 0. This shows that
Cr(t) % 0 for t ≥ r + 1, which concludes the proof of Theorem 1.
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Let us now conclude the proof of Theorem 2 in the case when α(G) = 8.
We have to show that the matrix M = t(I + AG) − J from (18) with t :=
α(G) = 8 belongs to K(7)

n . We use the same argument as in the proof of Theo-
rem 1. Thus we are left with the task of proving that detC1(t), . . . ,detC7(t) >
0 for t = 8. This follows from the assertions g1(8), . . . , g6(8), g7(8) > 0 in
Lemma 6.

Note that the same argument cannot be used for proving Conjecture 1 in the
case α(G) = 9, since g1(9), . . . , g6(9) > 0 while g7(9) < 0 which implies that the
matrix C7(9) is not positive semidefinite.

4 Proof of Theorem 3

Obviously, las(1) = ϑ(0)(G). In view of (14), we have to show that las(r) ≤
ϑ̃(r−1)(G) for any positive integer r. For this, let x ∈ RP2r(V ) be feasible for (1),
i.e., x∅ = 1, xI ≥ 0 (|I| = r+1), xij = 0 (ij ∈ E), and Mr(x) � 0. Then, xI = 0
for any I ∈ P2r(V ) containing an edge. We may assume that

∑n
i=1 xi > 0. For

p = 1, . . . , r + 1, define

�p :=
∑

β∈I(n,p−1)

(p− 1)!
β!

xS(β).

Then, �1 = 1, �p ≥ �2 =
∑n

i=1 xi > 0 for p ≥ 2. For p = 1, . . . , r, define
y = (yδ)δ∈I(n,2p+2) as follows: yδ = 0 if Sodd(δ) �= ∅, yδ := 1

�p
xS(δ) otherwise

(then |S(δ)| ≤ p + 1 ≤ r + 1).

Lemma 7. Np+1(y) � 0.

Proof. For I ⊆ V , set OI := {β ∈ I(n, p + 1) | Sodd(β) = I} and NI :=
(yβ+β′)β,β′∈OI

. Then, Np+1(y) is a block diagonal matrix with the matrices NI

(I ⊆ V ) as diagonal blocks. As �pNI = (xS(β)∪S(β′))β,β′∈OI
, NI � 0 since it is ob-

tained from a principal submatrix of Mr(x) by duplicating certain rows/columns
(unless |I| = r + 1 in which case NI is the 1 × 1 matrix with entry x|I| ≥ 0,
implying again NI � 0). ��

Therefore, the matrix Z(p) := C(y) =
∑

γ∈I(n,p−1)
(p−1)!

γ! Nγ(y) belongs to

the cone C(p−1)
n . Moreover, Z(p)ij = 0 if ij ∈ E. Define the matrix

Z̃(p) :=

⎛⎜⎜⎝
1 Z(p)11 . . . Z(p)nn

Z(p)11
... Z(p)

Z(p)nn

⎞⎟⎟⎠ . (41)
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Lemma 8. Z̃(p) � 0.

Proof. The matrix:

�pZ̃(p) =
∑

γ∈I(n,p−1)

(p− 1)!
γ!

⎛⎜⎜⎝
xS(γ) y2γ+4e1 . . . y2γ+4en

y2γ+4e1

... (y2γ+2ej+2ek
)n
j,k=1

y2γ+4en

⎞⎟⎟⎠

=
∑

γ∈I(n,p−1)

(p− 1)!
γ!

⎛⎜⎜⎜⎝
xS(γ) xS(γ+e1) . . . xS(γ+en)

xS(γ+e1)

... (xS(γ+ej+ek))n
j,k=1

xS(γ+en)

⎞⎟⎟⎟⎠
is positive semidefinite, since the matrices in the above summation are principal
submatrices of Mr(x). ��

Lemma 9.
∑n

i,j=1 Z(p)ij = �p+2
�p

and
∑n

i=1 Z(p)ii = �p+1
�p

.

Proof. Direct verification. ��

Lemma 10. �p+2
�p+1

≥ �p+1
�p

.

Proof. By Lemma 8, Z̃(p) � 0, implying Z(p) − diag(Z(p))diag(Z(p))T � 0.
Therefore, eT (Z(p) − diag(Z(p))diag(Z(p))T )e ≥ 0, yielding

∑n
i,j=1 Z(p)ij ≥

(
∑n

i=1 Z(p)ii)2. The result now follows using Lemma 9. ��

From Lemmas 9 and 10, we deduce that
∑n

i=1 Z(r)ii = �r+1
�r
≥ �2

�1
=
∑n

i=1 xi.
As the matrix Z(r) is feasible for the program (13) defining the parameter
ϑ̃(r)(G), this shows that ϑ̃(r)(G) ≥

∑n
i=1 xi and thus ϑ̃(r)(G) ≥ las(r)(G), con-

cluding the proof of Theorem 3.

Acknowledgements. The second author thanks Etienne de Klerk for several
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Abstract. We describe the semidefinite analog of the vector packing
problem, and show that the semidefinite programming relaxations for
Maxcut [10] and graph coloring [17] are in this class of problems. We
extend a method of Bienstock and Iyengar [5] which was based on ideas
from Nesterov [25] to design an algorithm for computing ε-approximate
solutions for this class of semidefinite programs. Our algorithm is in the
spirit of Klein and Lu [18], and decreases the dependence of the run-time
on ε from ε−2 to ε−1. For sparse graphs, our method is faster than the best
specialized interior point methods. A significant feature of our method
is that it treats both the Maxcut and the graph coloring problem in a
unified manner.

1 Introduction

Semidefinite programming (SDP) has become a powerful tool for solving op-
timization problems. Lovász [22] applied semidefinite programming to model
the Shannon-capacity of a graph, which, with the work of Grötschel, Lovász,
and Schrijver [14], led to the first polynomial-time algorithm for finding the
largest stable set in a perfect graph. Beginning with the work of Goemans and
Williamson [10], semidefinite programming has been used as a tool for approxi-
mating NP-hard optimization problems. In this case, a semidefinite relaxation of
the original problem is formulated and solved and then a rounding step is used
to output a feasible and approximately optimal solution to the original problem.
Since Goemans and Williamson used this technique to design approximation al-
gorithms for Maxcut, Maxdicut and Max2sat, it has been used successfully
by several other researchers. Karger, Motwani, and Sudan [17] use an SDP re-
laxation and rounding strategy to develop an approximation algorithm for the
graph coloring problem. Skutella [30] used SDP to solve a scheduling problem,
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and recently, Arora, Rao and Vazirani [2] have used semidefinite programming to
approximate graph partitioning problems. In all these problems, using the SDP
relaxation yields better approximation bounds than using a linear programming
relaxation or combinatorial techniques. In this paper we show that several of
these and other SDPs appearing in the context of relaxations of combinato-
rial optimization problems can be viewed as packing problems over semidefinite
matrices. We will call the SDP

max C •X,
s.t. Ai •X ≤ 1, i = 1, . . . ,m,

X ∈ X ⊆ Rn×n,
(1)

an SDP with packing constraints if the following is true:

(i) Each Ai � 0 (A � 0 denotes that A is symmetric positive definite);
(ii) Optimizing a linear function over the set X ⊆ {X : X � 0} is “easy”;

e.g., let X = {X : X � 0,Tr(X) = a > 0}. Then max{C •X : X ∈ X} =
amax{λmax(C), 0}, where λmax(C) denotes the maximum eigenvalue of C.

The SDP with packing constraints is the natural extension of a vector problem
with packing constraints [27] defined as follows.

max cT x,
s.t. aT

i x ≤ 1, i = 1, . . . ,m,
x ∈ X ,

(2)

where X is a polytope over which linear optimization is easy. The vector pack-
ing (and the corresponding covering) problem has received a lot of attention in
the combinatorial optimization community. Since (2) is a linear program (LP),
an optimal solution can be found in polynomial time. However, in practice, for
common applications such as multicommodity flow, it takes an extremely long
time and large amount of memory to solve these problems to optimality [4].
On the other hand, if one is content with a solution within a (1 + ε) factor
of the optimal solution (called an ε-optimal solution), the situation is much
more encouraging. Leveraging the fact that LPs over X are “easy,” one designs
Lagrangian relaxation algorithms which “dualize” the constraints aT

i x with ap-
propriate multipliers and reduce the packing problem to a series of LPs over
X . These ε-optimal approximation algorithms tend to be faster, both in theory
and in practice. Although the computational complexity of these algorithms de-
pends on many parameters defining the problem size, here we will focus mainly
on the dependence of the number of iterations on ε. Shahrokhi and Matula [29]
developed an algorithm that computes an ε-optimal solution for the concurrent
flow problem (a special case of (2)) in O(ε−7) iterations, where each iteration
involves optimizing a linear function over X . Subsequent research quickly re-
duced the dependence on ε to O(ε−2), and many other improvements reduced
the number of iterations, the time per iteration, and expanded the techniques to
broader packing and covering problems. See, e.g., [20, 21, 12, 13, 27, 28, 9, 8] for
details. A recent breakthrough by Bienstock and Iyengar [5] employed a result
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of Nesterov [25] to reduce the dependence on ε to O(ε−1). Since the basic oper-
ation in all of these algorithms is linear optimization ([5] considers a regularized
version), all of these methods are useful only when this step is cheap.

In this paper, we continue research into algorithms which have O(ε−1) depen-
dence on ε, and extend the theory to SDPs with packing constrains. The main
contributions in this paper are as follows.

(a) We show that several interesting SDPs, such as the Maxcut SDP, the
graph coloring SDP, and the Lovász Shannon-capacity problem can all be
cast as SDPs with packing constraints. This allows us to design algorithms
for all these problems in a unified manner, leveraging the knowledge gained
from designing algorithms for the vector packing problem.

(b) We extend the technique proposed by Nesterov [25] to design an algorithm
for the SDP with packing constraints that computes an ε-optimal solution
in O(n log n

ε ) iterations, where each iteration solves a regularized linear op-
timization problem over the set X = {X : X � 0,Tr(X) ≤ 1}, i.e. we
reduce the SDP packing problem to a series of simple optimization prob-
lems over the set X . As in the case of vector packing, such an algorithm will
be attractive if linear optimization over X is cheap.

(c) Algorithms for vector packing problems, including the one in [5], do not yield
a feasible solution (one notable exception is in [7]); instead, they compute
an ε-feasible solution that is close to optimal. In contrast, the algorithm
proposed in this paper computes ε-optimal strictly feasible solution for two
special instances, namely the Maxcut SDP and the graph coloring SDP.
This feature is also true of the algorithms presented by Klein and Lu [18]
for Maxcut and coloring (see below).

(d) We show that a regularized version of the linear optimization problem
max{W •X : X ∈ X}, with W = WT , can be solved in
O
(
n(n + m) log3(1/ε)

)
time, where m denotes the maximum number of non-

zero terms in W.

Klein and Lu [18] (see also [19]) describe ε-approximation algorithms to solve
the Maxcut SDP and the graph coloring SDP that build on an algorithm
described in [27]. The number of iterations required to compute ε-optimal solu-
tion to the Maxcut SDP (resp. graph coloring SDP) is O(ε−2nm log2 n) (resp.
O(ε−4nm log3 n)). When graphs are sparse, algorithms in [18] are especially effi-
cient. This work, however, does not utilize the fact that both the Maxcut and
the graph coloring SDPs are, in fact, particular instances of a more general prob-
lem class that can be efficiently solved. (Note the large difference in the run times
for Maxcut and graph coloring.)

Interior point algorithms can solve SDPs with packing constraints in time
polynomial in the input size and logarithmic in the error ε [1, 26]. Specialized
interior point methods [3, 6] for solving the Maxcut SDP have a worst-case
complexity of O(n3.5 log( 1

ε )); in practice, however, the specialized methods per-
form faster than this worst-case bound. The theoretical complexity of general
interior point methods for solving the graph coloring problem is O(n6.5 log( 1

ε )).
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The significant difference in worst-case complexity is a consequence of the fact
that the number of constraints increases from O(n) to O(n2). No specialized
interior point methods have been developed for graph coloring.

In contrast to interior point methods, the iteration count of the algorithm
proposed in this paper is O(n log p

ε ) where p is the number of constraints. We
assume that p = O(nk) for some fixed k, as is typically the case, which re-
sults in an iteration count of O(n log n

ε ). For Maxcut, k = 1, and for graph
coloring k = 1.5. Since any linear optimization problem over X can be solved
by computing a spectral decomposition, each iteration in the packing algorithm
is O(n3), yielding a worst case bound of O(n4 log n

ε ). If the matrix is sparse,
i.e., m = O(n), we obtain a bound of O(ε−1n3 log(n) log3( 1

ε )). Clearly, inte-
rior point methods will be superior to our algorithm for very small ε; thus,
these methods will be competitive only for moderately small ε or in the pres-
ence of sparsity. In addition, as is the case with vector packing problem, the
algorithms proposed here are interesting only for large problems with special
structure that still allow cheap linear optimization over X but the interior
point methods are not able to leverage the structure to reduce memory
requirements.

Our presentation focuses on the Maxcut and coloring problems, and briefly
describes the Lovász Shannon-capacity problem. Our results apply to a broader
class of SDPs but we do not pursue the details in this extended abstract. Sec-
tion 2 introduces notations and definitions. In Section 3, we describe the special
case of the Maxcut SDP and how solutions to this SDP can be computed from
ε-optimal solutions to a related saddle-point problem. In Section 4, we describe
the main algorithm that approximates the saddle-point problem. In Section 5,
we describe how the graph coloring SDP can be approximated in an analogous
fashion. These two instances will clearly imply the algorithm for general SDP
packing problems. We are currently simplifying some of the details of the general
algorithm. In Section 6, we describe the Lovász Shannon-capacity problem as an
SDP with packing constraints. In Section 7, we describe how to exploit sparsity
to improve the run-time of a bottleneck subroutine used to optimize over X .
The technical details for the algorithms approximating the Maxcut and graph
coloring SDPs can be found in [16].

2 Notation and Definitions

All vectors will be denoted by lowercase boldfaced letters, and matrices by cap-
ital boldfaced letters. Unless explicitly indicated, we use n dimensional column
vectors and n×n matrices. We use I to denote the identity matrix and 1 for the
vector of all ones. For a square matrix, A = [aij ], diag(A) = [a11 a22 . . . ann]T

denotes the main diagonal of A. For a vector a, diag(a) = [dij ], where dij = ai

when i = j and zero when i �= j, i.e. diag(a) is the diagonal matrix with
the vector a as the main diagonal. For matrices A and B, we define A • B
= Tr(AB), and use A � 0 to indicate that A is a positive semidefinite
matrix.
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For a function Φ : Θ × Υ → R consider the saddle-point problem

max
z∈Θ

min
p∈Υ

Φ(z,p). (3)

For a given ε > 0, we say that the pair (z̄, p̄) ∈ Θ × Υ is an ε-saddle-point if,

0 ≤ min
p∈Υ

Φ(z̄,p)−max
z∈Θ

Φ(z, p̄) ≤ ε. (4)

Let h : Θ → R be a function that we wish to minimize and let h∗ denote
the minimum value. We say that z̄ is ε-optimal in the absolute sense if h(z̄) ≤
h∗ + ε, i.e. h(z̄) is within an additive error ε to the optimal value. Suppose
h∗ ≥ C. Then h(z̄) ≤ h∗ + ε = h∗ + C(ε/C) ≤ (1 + ε/C)h∗, thus, an ε-optimal
solution in the absolute sense has a relative error at most ε/C. If C is a constant,
then an ε-optimal solution in the absolute sense is an ε-optimal solution in the
more traditional multiplicative sense. (We will make analogous definitions for
maximization problems.) This relation between the absolute and relative error
in each of these problems was described by Klein and Lu [18]. Our algorithms
will actually return an ε-optimal primal-dual pair, i.e. a pair of primal and dual
solutions whose objective values differ by no more than ε. By standard strong
duality arguments, this immediately implies that both the primal and the dual
are ε-optimal.

Let γ ∈ Rn. Then the following linear program has a simple solution.

max
y

{ n∑
i=1

γiyi : y ≥ 0,
n∑

i=1

yi ≤ 1
}

= max
{
0, max

1≤i≤n
{γi}

}
. (5)

For a square matrix A, λ1(A) ≤ λ2(A) ≤ . . . ≤ λn(A) will denote the
ordered set eigenvalues of A, λmax(A) := λn(A) and λmin := λ1(A). Note that
for all square matrices A, the following optimization problem reduces to a linear
program identical to (5) in the space of eigenvalues:

max
X

{
A •X : Tr(X) ≤ 1,X � 0

}
= max

y

{ n∑
i=1

λi(A)yi : y ≥ 0,
∑

i

yi ≤ 1
}

= max
{
0, λmax(A)

}
. (6)

3 The SDP Relaxation for Maxcut

In this section we review the well-known SDP relaxation of the exact vector
formulation for the Maxcut problem. We then show the equivalence of this
relaxation to a maximin problem. The exact vector formulation for Maxcut is
as follows.

max 1
4W • (11T −X)

subject to X = xxT ,
x ∈ {−1, 1}n,

(7)
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where W is the weight matrix. The Laplacian L = [�ij ] of a weighted graph with
weights W is given by

�ij =
{
−wij , i �= j,∑n

k=1 wik, i = j.
(8)

The Laplacian L of a graph is a positive semidefinite matrix. From (8) it follows
that (7) is equivalent to

max 1
4L •X

subject to X = xxT

x ∈ {−1, 1}n,

(9)

The SDP relaxation of (9) employed by the Goemans-Williamson [10] approxi-
mation algorithm is equivalent to the following

max L •X
subject to diag(X) ≤ 1,

X ∈ X̄ ≡ {X : X � 0,Tr(X) ≤ n}.
(10)

Note that relaxing diag(X) = 1 to diag(X) ≤ 1 does not change the formu-
lation, because increasing the diagonal of a positive semidefinite matrix keeps
it positive semidefinite, and only increases the objective. The extra constraint
Tr(X) ≤ n in the definition of X is implied by diag(X) ≤ 1. Since linear opti-
mization over X̄ reduces to a problem of the form (6), it follows that (10) is an
SDP with packing constraints. We assume that the edge weights {wij} sum to
1, i.e. L • I = 2. Since I is feasible for (10), it follows that the optimal value of
(10) is at least 2.

On dualizing the constraints diag(X)− 1 we get the saddle-point problem

max
{X:X�0,Tr(X)≤n}

min
{u:u≥0}

{
L •X−

n∑
i=1

ui(xii − 1)
}
. (11)

We want to compute a good solution X̂ for (10) by starting from an initial
X(0) � 0 with Tr(X(0)) ≤ n, and then iterating by choosing the next dual
iterate u(k+1) (resp. primal iterate X(k+1)) to be the “best response” to current
primal iterate X(k) (resp. dual iterate u(k)). However, this is impossible unless
we are able to bound the “width” of the set of dual variables. In Theorem 1, we
show that it is sufficient to restrict to dual variables u such that

∑n
i=1 ui ≤ 5n.

We will find it more convenient to work with the following scaled version of the
saddle-point problem (11):

max
X∈X

min
u∈U

φ(X,u) = min
u∈U

max
X∈X

φ(X,u),
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where

φ(X,u) = nX • L−
n∑

i=1

5nui(nxii − 1), (12)

X =
{
X ∈ Rn×n : X � 0,Tr(X) ≤ 1

}
, (13)

U =
{
u ≥ 0 :

n∑
i=1

ui ≤ 1
}
. (14)

Theorem 1. Fix ε > 0. Suppose (X̄, ū) ∈ X×U is an ε-saddle-point with respect
to φ satisfying (4). Let d̄ = nmax1≤i≤n{x̄ii}, λ̄ = λmax(L− 5ndiag(ū)), and

X̂ =
{
nX̄ d̄ ≤ 1,
nX̄/d̄, otherwise;

û =
{

5nū, λ̄ ≤ 0,
5nū + λ̄1, otherwise.

(15)

Then (X̂, û) are an ε-optimal primal-dual pair for (10) and (16).

Proof. From the definition of d̄, it follows that X̂ is feasible for (10). The dual
of (10) is given by

min
∑n

i=1 ui

subject to diag(u)− L � 0,
u ≥ 0.

(16)

Since

diag(û)− L = 5ndiag(ū) + max
{
0, λmax(L− diag(5nū))

}
I− L � 0,

it follows that û is dual feasible. From the definition of X and (6) it follows that

max
X∈X

φ(X, ū) = max
X∈X

{
nX • (L− 5ndiag(ū)) + 5n

n∑
i=1

ūi

}
= 5n

n∑
i=1

ūi + nmax
{
0, λmax

(
L− 5ndiag(ū)

)}
=

n∑
i=1

ûi. (17)

From the definition of U and (5), we have that minu∈U φ(X̄,u) = nX̄ • L −
maxu∈U

{
5n
∑n

i=1 ui(nx̄ii − 1)
}

= nX̄ • L− 5nmax
{
0, d̄− 1}. We show below

that L • X̂ is at least minu∈U φ(X̄,u).

(i) d̄ ≤ 1: Then L•X̂ = nL•X̄ = nL•X̄−5nmax
{
0, d̄−1

}
= minu∈U φ(X̄,u).

(ii) d̄ > 1: Since Tr(X̄) ≤ 1, we have |x̂ij | ≤
√
x̄iix̄jj ≤ 1, and 0 ≤ L • X̄ ≤∑n

i,j=1 |�ij ||x̄ij | ≤
∑n

i,j=1 |�ij | ≤ 5. For all d > 0, we have 1/d ≥ 1−(d−1),
therefore,

L • X̂ =
nL • X̄

d̄
≥ nL • X̄− n(d̄− 1)(L • X̄)

≥ nL • X̄− 5n(d̄− 1) = min
u∈U

φ(X̄,u). (18)
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From (4), (17), and (18) we have that
∑n

i=1 ûi − L • X̂ ≤ ε, i.e. (X̂, û) is an
ε-optimal primal-dual pair.

4 Computing the Approximate Saddle-Point (X̄, ū)

In order to “implement” Theorem 1 we need to compute an ε-saddle-point,
(X̄, ū), for φ. In this section we show how to compute an ε-saddle point by suit-
ably extending a technique proposed in Nesterov [25]. Due to space constraints,
some of the technical details are relegated to [16].

Let λi = λi(L− 5ndiag(u)), i = 1, . . . , n, and define f : U → R as follows.

f(u) = max
X∈X

φ(X,u) = 5n
n∑

i=1

ui + nmax
{
0, λmax

}
, (19)

where λmax = λn = max1≤i≤n{λi}, and the second equality follows from (6).
We compute a pair (X̄, ū) such that f(ū) − minu∈U φ(X̄,u) ≤ ε, i.e. it is an
ε-saddle-point.

Our algorithm is based on a technique developed by Nesterov [25]. Since
evaluating f involves solving an LP (see (6)), it is not differentiable. There-
fore, we replace it by a smooth approximation fα (see (20) below). This ap-
proach is very similar to the approach taken in the packing-covering literature
(see, e.g. [27, 12, 5, 7]). In each iteration t, the algorithm computes a primal
iterate X(t) ∈ X such that the gradient ∇fα(u(t)) = 5n

(
1 − ndiag(X(t))

)
.

This gradient is then used to compute the next dual iterate. The ε-saddle-point
(X̄, ū) is a weighted combination of all the primal-dual iterates generated by the
algorithm.

Define fα as follows.

fα(u) = 5n
n∑

i=1

ui +
1
α

ln

(
1 +

n∑
i=1

eαnλi

)
. (20)

Straightforward calculations show that for any α > 0, f(u) ≤ fα(u) ≤ f(u) +
ln(n+1)

α . Therefore, by setting α = 2 log(n+1)
ε , our problem reduces to computing

an ε
2 -optimal solution for fα.
Let Vdiag(λ)VT = L − 5ndiag(u) denote the eigendecomposition of L −

5ndiag(u). Then the gradient ∇fα(u) of fα(u) is given by

∇fα(u) = 5n(1− ndiag(Xu)), (21)

where

Xu =
diag

(
Vdiag(enαλ)VT

)(
1 +

∑n
i=1 e

nαλi
) , (22)

and diag(enαλ) denotes a diagonal matrix with enαλi as the i-th entry. Comput-
ing this gradient will be the subject of Sect. 7. For now we assume the existence of
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a procedure SmoothGrad which takes as input a vector u and returns ∇fα(u)
and Xu as defined in equations (21) and (22).

Once the gradient is explicitly known, a Frank-Wolfe-type gradient descent
method takes O(ε−2) iterations to compute ε-optimal ū. The method proposed
by Klein and Lu [18] can be interpreted as such a first-order method. In order to
develop an algorithm in which the number of iterations grows as O(ε−1) one has
to use a second-order Taylor series expansion and a more involved procedure for
the inner loop. For all u,u′ ∈ U ,

fα(u) ≤ fα(u′) +∇fα(u′)T (u− u′) +
n2α

2
‖u− u′‖21 , (23)

where ‖u‖1 =
∑n

i=1 |ui| denotes the L1-norm. This result essentially follows from
the Cauchy-Schwartz inequality. See [25] or [5] for a proof. We want to compute
the iterates by minimizing the second-order bound in (23) and, to minimize the
computational complexity of each step, we would like to write the iterate in
closed form. Since this is impossible to do when the distance between iterates is
measured in terms of the L1-norm, we replace it by the relative entropy or the
Kullback-Leibler (K-L) distance d(u,u′) defined as follows

d(u,u′) =
n+1∑
i=1

ui log
(
ui

u′
i

)
(24)

where un+1 = 1−
∑n

i=1 ui and u′
n+1 = 1−

∑n
i=1 u

′
i. Equation (42) in [16] shows

that d(u,u′) ≥ 1
2 ‖u− u′‖21. Thus, we get the following bound

fα(u) ≤ fα(u′) +∇fα(u′)T (u− u′) + n2αd(u,u′). (25)

By using the Lagrange multipliers (see proof after (37) in [16]), argminu∈U{
d(u,u′) + gT u

}
is given by

ui =
u′

ie
−gi

u′
n+1 +

∑n
k=1 u

′
ke

−gk
, i = 1, . . . , n. (26)

where u′
n+1 = 1 −

∑n
i=1 u

′
i. We define a procedure SmoothOpt that given

vectors u′ and g, returns the vector u defined by (26).
We now have all the ingredients necessary to describe the procedure

SmoothApprox displayed in Fig. 1. The algorithm wants to compute iter-
ates that converge to the minimum of fα over U by sequentially minimizing the
approximate second-order Taylors’ series expansion (25). Note that the bound
(25) does not use the Hessian of fα. This is because including the Hessian in
the Taylors’ series leads to a complicated optimization problem that cannot be
solved in closed form. On the other hand, without the Hessian term, (25) is not
likely to be a good estimate of the function fα, at least when the iterates are far
away from the minimum.

In SmoothApprox we compensate for the lack of Hessian information by
using a technique proposed by Nesterov [25]. This technique computes the esti-
mates y(k) of the minimizer of fα by keeping track of two sets of iterates: one set
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SmoothApprox(L, ε)

T ← 4n log(n + 1)/ε; α ← 2n log(n + 1)/ε; u(0) ← 1
n+1

1

(g(0), X(0)) ← SmoothGrad(u(0))
s ← 1

2
g(0); X̂ ← X(0)

y(0) ← SmoothOpt
(
u(0), 1

2n2α
g(0)

)
for k ← 0 to T

do
1 τk ← 2/(k + 3)
2 z(k) ← SmoothOpt

(
u(0), 1

n2α
s
)

3 u(k+1) ← τkz
(k) + (1 − τk)y(k).

4 (g(k+1), X(k+1)) ← SmoothGrad(u(k+1))
5 s ← s + k+2

2
g(k+1)

6 X̂ ← X̂ + (k + 2)X(k+1)

7 û(k+1) ← SmoothOpt
(
z(k), k+2

2n2α
g(k+1)

)
8 y(k+1) ← τkû

(k+1) + (1 − τk)y(k)

ū ← y(T ) X̄ ← 2
(T+1)(T+2)

X̂

return (X̄, ū)

Fig. 1. Procedure SmoothApprox(L, ε)

uses the gradient ∇fα(u(k)) computed at the current iterate, and the other set
uses a weighted combination of all the previous iterates ∇fα(u(i)), i = 0, . . . , k.
From Line 5 of SmoothApprox, we have that at the beginning of iteration k

of the variable s = s +
(

k+1
2

)
g(k+1) =

∑k
i=1

(
i+1
2

)
. Therefore, the iterates z(k)

computed in Line 2 depend on a weighted combination of the gradients at all the
previous iterates. The iterate û(k+1) computed in Line 7 “corrects” the iterate
z(k) using the “local” gradient information g(k+1) from the current u(k+1). The
new estimate y(k+1) computed in Line 8 is a convex combination of the previous
iterate y(k) and the iterate û(k+1).

By Lemma 1 in [16] (proved via results from [25]), the following theorem is
immediate:

Theorem 2. For any ε > 0, the output (X̄, ū) of SmoothApprox is an ε-
saddle-point. The running time is O(ε−1Q(n)n log n), where Q(n) is the running
time of SmoothGrad.

Corollary 1. Suppose SmoothGrad computes Xu in (22) via an eigendecom-
position. Then the running time of SmoothGrad is O(ε−1n4 log n).

5 Semidefinite Relaxation of Graph Coloring

The SDP relaxation for graph coloring corresponding to a graph G = (V,E) can
be formulated as
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max ζ,
s.t. xii ≤ 1, i = 1, . . . , n,

xij + ζ ≤ 0, (i, j) ∈ E,
X ∈ X̄ ≡ {X : X � 0,Tr(X) ≤ n}.

(27)

For k-colorable graphs (k ≥ 2), 1 ≥ ζ∗ ≥ 1
k , hence, an ε-optimal solution has

a relative error of kε [17, 18]. Since, without loss of generality, x∗
ii = 1 in any

optimal solution of (27), the second constraint in (27) can be reformulated as
1
2 (xii + xjj) + xij + ζ ≤ 1. With this reformulation, the problem (27) reduces to
an SDP with packing constraints. The dual of this SDP is given by

min
∑n

i=1 ui

s.t.
∑m

j=1 vj = 1,
diag(u) + Av � 0,
u,v ≥ 0,

(28)

where m = |E| denotes the number of edges in the graph, A : Rm (→ Rn×n is
the linear operator Av = 1

2

∑
(i,j)∈E v(i,j)Eij , and Eij ∈ Rn×n with 1’s in the

(i, j) and (j, i) position and zeros everywhere else.
As in the case with Maxcut, we dualize both the constraints diag(X) ≤ 1

and max(i,j)∈E{xij}+ ζ ≤ 0 to define a saddle-point problem:

max
X∈X

min
(u,v)∈U×V

φ(X,u,v),

where

φ(X,u,v) = n

m∑
i=1

ui − n(nu + Av) •X, (29)

X = {X : X � 0,Tr(X) ≤ 1} ,
U = {u : u ≥ 0,

∑n
i=1 ui ≤ 1} ,

V =
{
v : v ≥ 0,

∑m
j=1 vj = 1

}
.

(30)

Theorem 3. Fix ε > 0. Suppose (X̄, (ū, v̄)) ∈ X × (U ×V) is an ε-saddle-point.
Let ζ̄ = −nmax(i,j)∈E{x̄ij}, d̄ = nmaxi=1,...,n{x̄ii},

û = nū−
(
min{λmin(diag(ū) + Av̄), 0}

)
1, v̂ = v̄, (31)

and

x̂ii =
{
nx̄ii, d̄ ≤ 1,
n¯̄xii

d̄
, d̄ > 1,

x̂ij =

⎧⎨⎩
nx̄ij , d̄ ≤ 1, ζ̄ > 0,
nx̄ij

d̄
, d̄ > 1, ζ̄ > 0,

0, ζ̄ ≤ 0.
ζ̂ = −max(i,j)∈E{x̂ij}.

(32)

Then (ζ̂ , X̂) and (û, v̂) are an ε-optimal primal-dual pair for (27) and (28).
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Proof. One can check that (û, v̂) defined in (31) is feasible for the dual SDP
(28). From the definition of X , it follows that

max
X∈X

φ(X, ū, v̄) = n

m∑
i=1

ūi − n
(
min{λmin(diag(ū) + nAv̄), 0}

)
=

n∑
i=1

ûi. (33)

The pair (ζ̂ , X̂) defined in (32) is feasible for the primal SDP (27). Next, we
show that the objective value ζ̂ is lower bounded by

min
(u,v)∈U×V

φ(X̄,u,v) = ζ̄ − nmax{d̄− 1, 0}. (34)

(a) d̄ ≤ 1, ζ̄ > 0: In this case (ζ̂ , X̂) = (ζ̄ , X̄), and ζ̂ = ζ̄ = ζ̄ − nmax{d̄− 1, 0},
since d̄ ≤ 1⇒ max{d̄− 1, 0} = 0.

(b) d̄ ≥ 1, ζ̄ > 0: In this case, ζ̂ = ζ̄
d̄
≥ ζ̄

(
1− (d̄− 1)

)
≥ ζ̄ − n(d̄− 1), where the

first inequality follows from the fact that 1
d ≥ 1− (d− 1) for all d > 0, and

the second inequality follows from the bound |x̄ij | ≤
√
x̄iix̄jj ≤ 1.

(c) ζ̄ ≤ 0. In this case, ζ̂ = 0 ≥ ζ̄ + nmax{d̄− 1, 0}.
Thus, we have established the existence of an ε-optimal primal-dual pair (λ̂, X̂)
and (û, v̂).

As in Sect. 3 we work with the function f(u,v) = maxX∈X φ(X,u,v), and
smooth it to obtain

fα(u,v) = n

n∑
i=1

ui −
1
α

log
(
1 +

n∑
i=1

e−nαλi

)
,

where λi = λi(ndiag(u) + Av), i = 1, . . . , n. As before,

f(u,v) ≤ fα(u,v) ≤ f(u,v) +
log(n + 1)

α
,

and[
∇ufα(u,v)
∇vfα(u,v)

]
=
[
n2 diag(Xu)− n1

AT Xu

]
, Xu =

e−nα(n diag(u)+Av)(
1 +

∑n
i=1 e

−nαλi
) . (35)

The function fα can be optimized using a procedure very similar to SmoothAp-
prox except that each iteration we solve two optimization problems: one in u
and the other in v. This change is reflected in the timebound by an extra log.5 m
factor. Further details of the procedure SmoothApproxColoring are in Ap-
pendix B of [16].

Theorem 4. For any ε > 0, the output (X̄, ū, v̄) of SmoothApproxCol-
oring is an ε-saddle-point. The running time is O(ε−1Q(n)n

√
log(n) log(m)),

where Q(n) is the running time of SmoothGrad.
The

√
log(m) factor appears because the number of constraints in the graph

coloring problem is m as opposed to n in the case of the Maxcut problem.
Again the bottleneck step is the computation of the smoothed gradient Xu.

Corollary 2. If Xu computed via eigendecomposition then the running time of
SmoothApproxColoring is O

(
ε−1n4 log n

)
.
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6 The Lovász Shannon-Capacity Problem

The Lovász Shannon-capacity problem (see [22], [14]) on a graph with edge set
E can be formulated as the SDP:

max
∑

i,j xij ,

s.t. Tr(X) + xij ≤ 1, (i, j) ∈ E
Tr(X)− xij ≤ 1, (i, j) ∈ E
X ∈ {X � 0 : Tr(X) = 1},

(36)

This is an SDP with packing constraints. Our method can be used to solve this
problem, which, for space reasons we do not include in this extended abstract.

7 Computing the Matrix Exponential

The most expensive step in SmoothApprox and SmoothApproxColoring
is SmoothGrad that computes

Xu =
Vdiag(enαλ)VT(
1 +

∑n
i=1 e

nαλi
) =

enαA

Tr(enαA)
,

where enA denotes the matrix exponential [23, 24] of

A =
[
0 0T

0 L− 5ndiag(u)

]
.

The direct method for computing enαA involves computing an eigendecomposi-
tion of the matrix A and then using this to compute Xu via (22). In this section
we discuss a method that computes an ε-approximation for enαA without first
computing the eigendecomposition.

We use a method which we refer to as SI-Lanczos, or the shift-and-invert
Lanczos, developed by van den Eshof and Hochbruck [31]. The main improve-
ment in [31] results from using Krylov subspaces generated by (I+γA)−1, where
γ > 0 (see also [15]). Therefore, at each iteration, we need to compute a solution
to the linear system yk+1 = (I + γA)yk. SI-Lanczos works best when A % 0,
so we approximate the exponential of Ā = A+(6n−2)I (resp. Ā = A+2nI) for
the Maxcut (resp. coloring) SDP. This shift ensures that Ā % 0 and the condi-
tion number κ(Ā) = λmax(Ā)/λmin(Ā) ≤ 2. Note that this shift does not change
the value of Xu defined in (7). Since the condition number, κ(Ā), is bounded,
SI-Lanczos can use the well-known conjugate gradient method (see, e.g., Golub
and Van Loan [11]) to solve the system of linear equations required at each itera-
tion. The conjugate gradient method computes solutions to linear systems that,
at iteration k, have residual error bounded by [(

√
κ(A) − 1)/(

√
κ(A) + 1)]k,

which implies the convergence is geometric. Thus, this solves systems of linear
equations in O((n + m) log(1/ε)) iterations where ε > 0 is the relative error
and m is the number of nonzeros in the matrix A. Overall, Theorem 3.3 of [31]
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indicates that O(log2(1/ε)) iterations are required to approximate each column
of the exponential. This results an overall complexity of O(n(n + m) log3(1/ε)).
Thus, we have the following corollary.

Corollary 3. The complexity of computing Xu via SI-Lanczos is
O
(
n(n + m) log3( 1

ε )
)
. Therefore, using SI-Lanczos for SmoothGrad in

SmoothApprox and SmoothApproxColoring results in a complexity of
O
(
ε−1n2(n + m) log(n) log3( 1

ε )
)
.
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Abstract. We present a short geometric proof for the price of anar-
chy results that have recently been established in a series of papers on
selfish routing in multicommodity flow networks. This novel proof also
facilitates two new types of results: On the one hand, we give pseudo-
approximation results that depend on the class of allowable cost func-
tions. On the other hand, we derive improved bounds on the inefficiency
of Nash equilibria for situations in which the equilibrium travel times
are within reasonable limits of the free-flow travel times. These tighter
bounds help to explain empirical observations in vehicular traffic net-
works. Our analysis holds in the more general context of congestion
games, which provides the framework in which we describe this work.

1 Introduction

Congestion games (Rosenthal 1973) are noncooperative games in which a player’s
strategy is to choose a subset of resources, and the utility of each player only
depends on the number of players choosing the same or some overlapping strat-
egy. In this paper, we consider a particular variant of atomic congestion games,
Rosenthal’s original setting where the number of players is finite, as well as
nonatomic congestion games. Nonatomic games (Schmeidler 1973) model inter-
actions involving a large number of players, each with a negligible ability to
affect the others. Nonatomic congestion games have been studied, among oth-
ers, by Milchtaich (2000, 2004), Chau and Sim (2003), and Roughgarden and
Tardos (2004).

The most prominent example of a nonatomic congestion game is the traffic
routing model of Wardrop (1952). The arcs in a given network represent the
resources, the different origin-destination pairs correspond to the player types,
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and the strategies available to a particular player type are the paths in the
network between its origin-destination pair. The cost of an arc describes the
delay experienced by traffic traversing that arc as a function of the flow on
that arc. A social optimum corresponds to a multicommodity flow of minimum
total delay, while a Nash equilibrium equals a user equilibrium flow, where every
player is traveling on a shortest path under the prevailing conditions.

Nash equilibria in general and user equilibria in particular are typically ineffi-
cient: They generally do not minimize the social cost. Koutsoupias and Papadim-
itriou (1999) proposed to analyze the inefficiency of equilibria from a worst-case
perspective; this led to the notion of “price of anarchy” (Papadimitriou 2001),
which is the ratio of the worst social cost of a Nash equilibrium to the cost of
an optimal solution. In the context of selfish routing (i.e., the traffic model de-
scribed in the previous paragraph), the price of anarchy was analyzed in a series
of papers for increasingly more general classes of cost functions and model fea-
tures; see, among others, Roughgarden and Tardos (2002), Roughgarden (2003),
Schulz and Stier-Moses (2003), Chau and Sim (2003), Correa, Schulz, and Stier-
Moses (2004), Roughgarden and Tardos (2004), Perakis (2004), and Roughgar-
den (2005).

In this paper, we give alternative proofs for most results in the above-
mentioned papers. Our proofs simplify and unify previous arguments, and they
enable us to extend these insights to more general settings. In Section 2, we
study nonatomic congestion games with separable cost functions. For two known
bounds on the inefficiency of Nash equilibria, we provide proofs that rely on a
new interpretation of the parameter β introduced by Stier-Moses (2004) in the
context of traffic routing. This interpretation sets the stage for various gener-
alizations. In particular, we obtain new tight pseudo-approximation (sometimes
also called bicriteria) results that depend on the class of allowable cost functions
(Sections 2.1 and 2.2), and a more realistic bound on the price of anarchy for
situations where the variable cost of a resource does not exceed its fixed cost by
too much (Section 2.3). Section 2.4 considers cost functions that do not include
fixed costs. We show that for polynomials of small degree the price of anarchy
is significantly smaller than with arbitrary fixed costs. In Sections 3 and 4 we
extend these results to atomic congestion games with divisible demands and to
nonseparable cost functions, respectively.

2 Nonatomic Congestion Games with Separable Costs

In nonatomic congestion games, we are given a finite set A of resources, and k
different types of players. Players are infinitesimal agents, and the continuum
of players of type i is represented by the interval [0, ni]. Each player type i
possesses a set Si of strategies, where each strategy consists of a subset of the
resources. For notational convenience, we assume that the sets Si, i = 1, 2, . . . , k,
are disjoint, and we denote their union by S. The rate of consumption of a re-
source a ∈ S by a strategy S ∈ Si is given by ra,S ≥ 0. Each player selects a
strategy, which leads to a strategy distribution x = (xS)S∈S with

∑
S∈Si

xS = ni
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for each player type i, and xS ≥ 0 for all S ∈ S. A strategy distribution generates
a utilization rate xa :=

∑k
i=1

∑
S∈Si:a∈S ra,S xS for each resource a ∈ A. The

cost cS(x) of using a strategy S is the sum of the costs of the resources associ-
ated with that strategy, amplified with the corresponding rate of consumption.
The cost of resource a ∈ A is given by a nondecreasing and continuous func-
tion ca : IRA

+ → IR+. Hence, cS(x) :=
∑

a∈S ra,S ca(x). The social cost C(x)
of a strategy distribution x is defined as the total disutility experienced by the
players: C(x) :=

∑k
i=1

∑
S∈Si

cS(x)xS =
∑

a∈A ca(x)xa.1

A social optimum xopt is a strategy distribution of minimum social cost; i.e.,
C(xopt) ≤ C(x) for all strategy distributions x. A strategy distribution xne is a
Nash equilibrium when no player has an incentive to unilaterally change his or
her strategy; i.e., cS(xne) ≤ cS′(xne) for any two strategies S, S′ ∈ Si with xne

S >
0, for each i = 1, 2, . . . , k. It is well known (e.g., Dafermos and Sparrow (1969),
Smith (1979)) that a strategy distribution xne is a Nash equilibrium if and only
if it satisfies∑

a∈A

ca(xne)(xne
a − xa) ≤ 0 for all strategy distributions x. (1)

In this section we present different bounds on the inefficiency of equilibria in
nonatomic congestion games with separable cost functions. The cost functions ca

are separable if ca(x) = ca(xa) for all a ∈ A. Beckmann, McGuire, and Winsten
(1956) showed that in this case a Nash equilibrium xne exists, and any two
different equilibria have the same social cost. While two of the bounds are known,
at least in the context of selfish routing, we propose a different way to look at
their proofs, which allows us to derive additional types of bounds.

2.1 Affine Cost Functions

Let us begin by studying the simplest case of nonatomic congestion games,
namely that of separable and affine cost functions. In other words, the cost
of resource a ∈ A under the utilization rate vector x is ca(x) = caxa + ba for
some nonnegative coefficients ca, ba. The most compact proof of the following
result was presented in the context of selfish routing by Correa, Schulz, and
Stier-Moses (2004), and our proof below can be viewed as a geometric variant
of it. The result itself is due to Roughgarden and Tardos (2002, 2004).

Theorem 1 (Roughgarden and Tardos 2004). Let xne be a Nash equilib-
rium of a nonatomic congestion game with separable, affine cost functions, and
let xopt be a social optimum. Then, C(xne) ≤ 4/3C(xopt).

Proof. Let x be an arbitrary strategy distribution. Because of (1), we have

C(xne) ≤
∑
a∈A

ca(xne
a )xa =

∑
a∈A

ca(xa)xa +
∑
a∈A

(ca(xne
a )− ca(xa))xa . (2)

1 Because of the equivalence of the strategy-by-strategy view and the resource-by-
resource view of the social cost, we interchangeably use x to denote a strategy
distribution and its associated vector of utilization rates.
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xne
axa0

ca(x)

ba

ca(xa)

ca(xne
a )

Fig. 1. Illustration of the proof of Theorem 1

Since each function ca(·) is nondecreasing, we only need to focus on the expres-
sions (ca(xne

a )−ca(xa))xa for which xa < xne
a to bound the last term from above.

In this case, (ca(xne
a ) − ca(xa))xa is equal to the area of the shaded rectangle

in Figure 1. Note that the area of any rectangle whose upper-left corner point
is (0, ca(xne

a )) and whose lower-right corner point lies on the line representing
ca(xa) = caxa + ba, is at most half that of the triangle defined by the three
points (0, ca(xne

a )), (0, ba), and (xne
a , ca(xne

a )). In particular,

(ca(xne
a )− ca(xa))xa ≤

1
4
ca(xne

a )xne
a ,

which completes the proof. ��

An immediate consequence of this proof is a pseudo-approximation result,
which upper bounds the social cost of a Nash equilibrium by that of an optimal
strategy distribution for the same game with more players of each type. More
precisely, one only needs the following inequality derived in the preceding proof,∑

a∈A

ca(xne
a )xa ≤ C(x) +

1
4
C(xne) , (3)

which holds for any nonnegative vector x (i.e., x need not be a strategy distri-
bution), to obtain this result:

Corollary 2. If xne is a Nash equilibrium of a nonatomic congestion game with
separable, affine cost functions and xopt is a social optimum for the same game
with 5/4 times as many players of each type2, then C(xne) ≤ C(xopt).

Proof. Let x be an arbitrary strategy distribution of the nonatomic congestion
game with 5/4 times as many players as in the original game. Then,

C(xne) =
5
4

∑
a∈A

ca(xne
a )xne

a −
1
4
C(xne) ≤

∑
a∈A

ca(xne
a )xa −

1
4
C(xne) ≤ C(x) .

2 Formally, the continuum of players of type i in the new game is represented by the
interval [0, 5

4
ni], i = 1, 2, . . . , k.
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The first inequality is implied by (1) and the feasibility of the vector 4x/5 for
the original game, while the second one follows from (3). ��

The first result of this kind was given by Roughgarden and Tardos (2002),
who showed that an equilibrium traffic assignment causes a total travel time of
at most that of a social optimum routing twice as much traffic. This result and its
subsequent extension to general nonatomic congestion games (Roughgarden and
Tardos 2004) hold for arbitrary (separable) cost functions. The selfish routing
version of Corollary 2 is due to Chakrabarty (2004) and inspired us to qualify the
pseudo-approximation bounds according to the class of cost functions considered;
see the next section for details.

2.2 General Cost Functions

Note that we used the linearity of the cost functions ca(·) in only one place,
namely when we proved (3). Hence, a suited generalization of (3) is the key for
extending the results in Theorem 1 and Corollary 2 to more general classes of cost
functions. For arbitrary (but still separable) cost functions, we are confronted
with the situation depicted in Figure 2. To upper bound the area of the shaded
rectangle, i.e., (ca(xne

a )− ca(xa))xa, in terms of the area of the large rectangle,
which is of size ca(xne

a )xne
a , we simply define for each cost function ca(·) and

nonnegative scalar va ≥ 0,

β(ca, va) := max
xa≥0

(ca(va)− ca(xa))xa

ca(va)va
.

Here, 0/0 = 0 by convention. Note that 0 ≤ β(ca, va) ≤ 1. For a given class C of
cost functions (e.g., polynomials of a certain degree), we let

β(C) := sup
ca∈C,va≥0

β(ca, va) .

This definition leads directly to the following lemma.

Lemma 3. Let xne be a Nash equilibrium of a nonatomic congestion game with
separable cost functions drawn from a given class C, and let x be an arbitrary

xne
axa

0
0

ca

ca(0)
ca(xa)

ca(xne
a )

Fig. 2. Illustration of the definition of β
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nonnegative vector. Then,∑
a∈A

ca(xne
a )xa ≤ C(x) + β(C)C(xne) .

In turn, Lemma 3 yields the following generalizations of Theorem 1 and
Corollary 2, with virtually no change in proof except for the replacement of (3)
with Lemma 3.

Theorem 4. Let xne be a Nash equilibrium of a nonatomic congestion game
with separable cost functions drawn from a given class C.

(a) If xopt is a social optimum of this game, then C(xne) ≤ (1−β(C))−1 C(xopt).
(b) If xopt is a social optimum of the same game with 1 + β(C) times as many

players of each type, then C(xne) ≤ C(xopt).

The parameter β(C) was first defined in the context of selfish routing by
Correa, Schulz, and Stier-Moses (2004), but without mentioning the motivation
offered by Figure 2. It is related to the anarchy value α(C) of Roughgarden (2003)
(in the context of selfish routing) and Roughgarden and Tardos (2004), but α(C)
is only defined for cost functions ca(·) that are differentiable and for which
ca(xa)xa is convex. If α(C) exists, then α(C) = (1 − β(C))−1. Concrete val-
ues of β(C) can readily be calculated for several classes of cost functions; see
Roughgarden (2003) and Correa, Schulz, and Stier-Moses (2004) as well as
Figure 4 (a) and Table 1 below.

2.3 Cost Functions with Limited Congestion Effects

To motivate our next set of results, it is helpful to consider selfish routing in
traffic networks. The empirically observed ratio of the total travel time of a
user equilibrium to that of a system optimum is typically significantly smaller
than predicted by the price-of-anarchy results of Theorem 4. For instance, in
the computational studies of Jahn, Möhring, Schulz, and Stier-Moses (2005) the
largest ratio of user equilibrium cost to system optimum cost over several realistic
instances is 1.15 (instead of the theoretical worst case of 2.151). Qiu et al. (2003)
made a similar observation in the context of telecommunication networks. For a
given class of latency functions, the corresponding price of anarchy is a worst-
case measure, taken over all possible instances. However, if one compares the
time needed to drive to work during rush hour with the duration of the same
trip at night, then the “free-flow travel time” is usually not a negligible fraction
of the rush-hour experience. Formally, we make the following assumption: The
cost of any given resource at utilization rate zero is at least a constant fraction
of that of the same resource at the utilization rate in equilibrium. A different
way of illustrating this assumption is by looking at a production process, where
the fixed cost of any resource accounts for a substantial fraction of the total cost
(fixed plus variable costs) in equilibrium. Depending on the ratio of fixed to total
cost, we obtain a parametrized sequence of improved bounds on the inefficiency
of equilibria.
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Theorem 5. Let xne be a Nash equilibrium of a nonatomic congestion game
with separable cost functions drawn from a given class C such that ca(0) ≥
η ca(xne

a ) for all a ∈ A, for some constant 0 ≤ η ≤ 1.3

(a) If xopt is a social optimum, then C(xne) ≤ (1− (1− η)β(C))−1 C(xopt).
(b) If xopt is a social optimum of the same game with 1 + (1− η)β(C) times as

many players of each type, then C(xne) ≤ C(xopt).

The proof of Theorem 5 rests upon the following generalization of Lemma 3.

Lemma 6. Let xne be a Nash equilibrium of a nonatomic congestion game with
separable cost functions drawn from a given class C such that ca(0) ≥ η ca(xne

a )
for all a ∈ A, for some constant 0 ≤ η ≤ 1. Moreover, let x be an arbitrary
nonnegative vector. Then,∑

a∈A

ca(xne
a )xa ≤ C(x) + (1− η)β(C)C(xne) .

xne
axa

0
0

ca

ca(0)
ca(xa)

ca(xne
a )

Fig. 3. Illustration of the proof of Lemma 6

Proof. We again rewrite ca(xne
a )xa as ca(xa)xa+(ca(xne

a )−ca(xa))xa. If xa ≥ xne
a ,

there is nothing left to prove. So assume xa < xne
a , and consider Figure 3.

Because ca(0) ≥ η ca(xne
a ), the area (ca(xne

a ) − ca(xa))xa of the small shaded
rectangle is at most β(C) times that of the rectangle with upper-left corner
point (0, ca(xne

a )) and lower-right corner point (xne
a , ca(0)), which is of size at

most (1− η)ca(xne
a )xne

a . The result follows. ��

Figure 4 (a) displays the relationship between η and the bound on the price of
anarchy given by Theorem 5 (a) for polynomials of different degrees. Note that
the price of anarchy is at most 1/η, even if we do not place any restriction on C.
This observation qualifies the unboundedness of the price of anarchy for instances

3 We also assume that C is closed under adding constants b ∈ IR for which c(0)+b ≥ 0;
otherwise, the resulting improvement would not be directly visible but would remain
hidden in the value of β(C).
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with general cost functions described by Roughgarden and Tardos (2002, 2004).
As another example, consider a vehicular network in which users travel at most
twice as long when the network is congested compared to the situation when it
is not. If arc latencies are modeled as polynomials of degree 4, as it is the case
for the widely used Bureau of Public Roads’ functions (1964), Theorem 4 (a)
gives an upper bound of 2.151 on the price of anarchy. However, Theorem 5 (a)
gives a more accurate bound of 1.365. More generally, we believe that the bounds
presented in Theorem 5 offer a good explanation of the satisfactory performance
of Nash equilibria in many practical situations. Figure 4 (b) illustrates part (b)
of Theorem 5.

Let us also point out that the bounds given in Theorem 5 are tight. Consider
the traffic assignment instance in Figure 5, where v units of flow must be routed
from one node to the other over two parallel arcs a and a′. The arc latencies
are ca(xa) = c(v) (a constant) and ca′(xa′) = η c(v)+ (1− η)c(xa′), respectively.
Here, the function c and the scalar v are chosen such that β(C) = β(c, v). Both
bounds given in Theorem 5 are simultaneously tight for this instance.

2.4 Cost Functions Without Fixed Costs

In contrast to the preceding section, we now consider instances where the cost
of each resource at utilization rate zero is equal to zero. This model helps to
capture situations in which variable costs dominate fixed costs or where fixed
costs can be neglected altogether. Examples include telecommunication networks
where the propagation delays are usually negligible compared to the queueing
delays in the routers, and production systems where the equipment has been
installed already. We give the first results of this kind; in particular, the price of
anarchy for small-degree polynomials in this setting is smaller than the bounds
given in Theorem 4. Polynomials are of particular interest in several application
contexts. For instance, the Bureau of Public Roads’ cost functions used in traffic
networks are polynomials of degree 4.
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Fig. 4. (a) Price of anarchy as a function of fixed to total costs. (b) Minimum value for
which the pseudo-approximation result holds. Each curve refers to a set C that contains
nonnegative polynomials of fixed degree
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v v

c(v)

η c(v) + (1 − η)c(xa′)

Fig. 5. Instance for which the bounds in Theorem 5 are tight

Dafermos and Sparrow (1969) showed that when all cost functions are mono-
mials of the same degree, Nash equilibria and system optima coincide. In partic-
ular, the price of anarchy is 1 if we only allow linear functions (affine functions
without constant term) instead of 4/3, the value for the set of all affine func-
tions. Before we show that a similar effect can be observed for polynomials of
(somewhat) higher degree, let us introduce some notation to facilitate the proofs.
We represent the cost functions as ca(xa) :=

∑
1≤i≤d ca,i x

i
a whenever we con-

sider polynomials of degree d. Moreover, we denote the total cost of a strategy
distribution x when resources are utilized according to another vector x′ by
Cx′

(x) :=
∑

a∈A ca(x′
a)xa. Also, we denote the total cost restricted to the de-

gree i monomials by Ci(x) :=
∑

a∈A ca,i x
i+1
a and Cx′

i (x) :=
∑

a∈A ca,i xa (x′
a)i,

respectively. Using this notation, we can rewrite (1) as C(xne) ≤ Cxne
(x), which

is valid for any strategy distribution x and Nash equilibrium xne. The follow-
ing lemma is well known in the context of variational inequalities; see, e.g.,
Smith (1979).

Lemma 7. If xne is a Nash equilibrium and x is an arbitrary strategy distribu-
tion of a nonatomic congestion game, then Cx(xne) ≤ C(x).

With the notation and preliminary results in place, we are prepared to bound
the price of anarchy in networks without fixed costs.

Theorem 8. Consider the family of nonatomic congestion games with separable
cost functions that are polynomials of degree at most d, for 1 ≤ d ≤ 4. Then, the
price of anarchy for this class of games is bounded from above and below by the
values displayed in Table 1.

Due to space limitations, we restrict ourselves to prove the upper bound of
5/4 for cubic functions.

Proof. We use two simple bounds: (δxa − xne
a )2 ≥ 0 with δ ∈ IR, which implies

that Cx
1 (xne) ≤ C1(xne) + 1

4C1(x) and Cxne

2 (x) ≤ 1
2C

x
2 (xne) + 1

2C2(xne), and
(1
2x

2
a−(xne

a )2+xa xne
a )2 ≥ 0, which implies that Cxne

3 (x) ≤ 1
2C

x
3 (xne)+ 1

2C3(xne)+
1
8C3(x). Now,

C(xne) ≤ Cxne
(x) = Cxne

3 (x) + Cxne

2 (x) + Cxne

1 (x)
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≤ Cx
3 (xne)

2
+

C3(xne)
2

+
C3(x)

8
+

Cx
2 (xne)

2
+

C2(xne)
2

+

Cx
1 (xne)

2
+

C1(xne)
2

+
C1(x)

8

≤ C(xne)
2

+
Cx(xne)

2
+

C(x)
8
≤ 1

2
C(xne) +

5
8
C(x) .

��

Table 1. Comparison of guarantees for the efficiency of equilibria with and without
fixed costs. All coefficients are assumed to be nonnegative. The column entitled ‘ca(0) =
0’ shows lower and upper bounds on the price of anarchy without fixed costs. The
lower bounds represent the worst-case coordination ratio of a Pigou-type instance with
two parallel arcs, cost functions in C, and no fixed costs. The column entitled ‘ca(0)
arbitrary’ shows the exact price of anarchy with arbitrary fixed costs

Set C of allowable Price of Anarchy α(C)
cost functions Example ca(0) = 0 ca(0) arbitrary

LB UB
linear functions a1x + a0 1 1 1.334

quadratic functions a2x2 + a1x + a0 1.035 1.185 1.626
cubic functions a3x3 + a2x2 + a1x + a0 1.098 1.25 1.896

polynomials of degree 4
∑4

i=0 aix
i 1.167 1.999 2.151

3 Weighted Congestion Games with Divisible Demands

Rosenthal’s (1973) original version of congestion games has a finite number of
players, and each player controls one unit of demand that cannot be split across
strategies. While he showed that a pure-strategy Nash equilibrium always ex-
ists, this is not necessarily the case for weighted congestion games, where players
can have arbitrary demands (Fotakis et al. 2004). We consider a hybrid between
weighted congestion games and nonatomic congestion games, which is guaran-
teed to possess a pure-strategy Nash equilibrium. Moreover, the price of anarchy
can be bounded in similar terms to the results discussed above.

An atomic weighted congestion game with divisible demands is similar to
a nonatomic congestion game, except that there is a finite number of play-
ers 1, 2, . . . , k. Each player i has a divisible demand ni > 0 and assigns por-
tions xS ≥ 0 of it to various strategies S in his or her strategy space Si

such that
∑

S∈Si
xS = ni. For a given strategy distribution x = (xS)S∈S ,

the cost to player i is Ci(x) :=
∑

S∈Si
cS(x)xS . The social cost C(x) is equal

to the total cost; i.e., C(x) :=
∑k

i=1 Ci(x) =
∑

a∈A ca(xa)xa, where xa =∑k
i=1

∑
a∈S∈Si

ra,SxS is the utilization rate of resource a. A strategy distri-
bution x constitutes a Nash equilibrium if, for each player i, (xS)S∈Si

minimizes
Ci(x), keeping the actions of the other players fixed. This model provides an ab-
stract framework for the “atomic splittable selfish routing problem” considered
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in previous papers. Catoni and Pallotino (1991) presented instances for which
the ratio of the equilibrium cost to the optimal cost is smaller for the nonatomic
version than its atomic splittable counterpart, while Roughgarden (2005) proved
that the price of anarchy for any given class of allowable cost functions is al-
ways dominated by that of nonatomic games. Harker (1998) and Orda, Rom,
and Shimkin (1993) established the existence of pure-strategy Nash equilibria,
and Roughgarden and Tardos (2002) showed that their pseudo-approximation
results for nonatomic selfish routing games also holds for the atomic splittable
case.

Although the variational inequality (1) does in general not hold for Nash
equilibria of atomic games with divisible demands, it actually suffices to prove
that (2) is still true in order to derive results similar to Theorems 4 and 5.
Consider a Nash equilibrium xne and define, for a ∈ A, c̄a(xa) := ca(xne

a ) if
xa ≤ xne

a and c̄a(xa) := ca(xa), otherwise. It is straightforward to extend a result
in the proof of Roughgarden and Tardos (2002, Theorem 5.4) to characterize
Nash equilibria in atomic congestion games with divisible demands:

Lemma 9 (Roughgarden and Tardos 2002). Let xne be a Nash equilibrium
of an atomic congestion game with divisible demands. Furthermore, assume that
the functions ca(xa)xa are convex, for all a ∈ A. Then,

∑
a∈A c̄a(xne

a )xne
a ≤∑

a∈A c̄a(xa)xa for all strategy distributions x.

Using slightly weaker versions of (2) and Lemma 3, we can bound the price
of anarchy of atomic congestion games with divisible demands.

Theorem 10. Let xne be a Nash equilibrium of an atomic congestion game
with divisible demand and separable cost functions drawn from a given class C.
Assume that ca(xa)xa is a convex function, for all ca ∈ C.

(a) If xopt is a social optimum of this game, then C(xne) ≤ (1−β(C))−1 C(xopt).
(b) If xopt is a social optimum of the same game with 1 + β(C) times as many

players of each type, then C(xne) ≤ C(xopt).

Proof. Lemma 9 implies that the cost C(xne) of a Nash equilibrium is bounded
from above by

∑
a∈A c̄a(xa)xa for any strategy distribution x. Let us consider the

terms c̄a(xa)xa individually. If xa ≥ xne
a , then c̄a(xa)xa = ca(xa)xa, and we are

done. Otherwise, c̄a(xa)xa = ca(xa)xa + (ca(xne
a )− ca(xa))xa. Hence, C(xne) ≤∑

a∈A c̄a(xa)xa ≤ C(x)+β(C)C(xne), which shows part (a). For part (b), notice
that (1 + β(C))−1xopt is feasible for the original problem. Therefore,

C(xne) ≤
∑
a∈A

c̄a

(
xopt

a

1 + β(C)

)
xopt

a

1 + β(C) ≤
1

1 + β(C)
∑
a∈A

c̄a(xopt
a )xopt

a ,

where the second inequality follows from the monotonicity of the cost functions.
Now, we can proceed as in Corollary 2:

C(xne)=(1+β(C))C(xne)−β(C)C(xne)≤
∑
a∈A

c̄a(xopt
a )xopt

a −β(C)C(xne)≤C(x) .

��
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Part (a) of Theorem 10 extends and simplifies a result of Roughgarden (2005)
who proved a similar bound for network games. Part (b) is new. Using the
arguments in the proof of Theorem 10, it is straightforward to extend Theorem 5
to atomic games.

4 Nonatomic Games with Nonseparable Costs

In some practical situations, the cost of using one resource may depend on the
rate of consumption of others. For instance, the time a vehicle needs to cross
through a stop sign clearly depends on the amount of flow traversing the per-
pendicular street; the waiting time of passengers at a given bus stop depends
on the number of passengers boarding the bus at previous stops; or, to give an
example in the context of wireless communication networks, transmission delays
depend on the load of neighboring cells, because of interference.

The purpose of this section is to extend our results on nonatomic conges-
tion games to the case where cost functions are not necessarily separable. In
this context it is convenient to write the social cost of a strategy distribution x
as an inner product, C(x) = 〈c(x), x〉, with c : X → IRA

+ continuous. Here, X
denotes the convex and compact space of feasible utilization vectors. (In partic-
ular, X can be used to model side constraints such as resource capacities; see
Correa, Schulz, and Stier-Moses (2004) for a discussion.) In the spirit of Equa-
tion (1), a strategy distribution xne is an equilibrium if it satisfies the variational
inequality

〈c(xne), xne − x〉 ≤ 0 for all x ∈ X. (4)

Moreover, a social optimum xopt is an optimal solution to minx∈X〈c(x), x〉.
Under the continuity of c as well as the compactness and convexity of X, an
equilibrium exists by the classic result of Hartman and Stampacchia (1966) (see
also Smith 1979). Of course, a system optimum also exists as c is continuous and
X is compact.

For a cost function c and a utilization vector v ∈ IRA
+, a natural extension of

the parameter β is

β(c, v) := max
x≥0

〈c(v)− c(x), x〉
〈c(v), v〉 .

With the definition of β(C) := supc∈C,v∈X β(c, v), we can extend Lemma 3 to
nonseparable cost functions, thereby simplifying and extending earlier work.
Chau and Sim (2003) proved that the price of anarchy for nonseparable and
symmetric cost functions is bounded by a natural extension of the parameter
α(C) of Roughgarden and Tardos (see Section 2.2). Perakis (2004) considered
general nonseparable cost functions. Let us mention that the known bounds
require stronger assumptions on the cost functions, such as convexity, differen-
tiability, and monotonicity.

Lemma 11. Let xne be an equilibrium of a nonatomic congestion game with
cost functions drawn from a class C of nonseparable cost functions, and let x be
a nonnegative vector. Then, 〈c(xne), x〉 ≤ C(x) + β(C)C(xne).
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This lemma yields the following price-of-anarchy and pseudo-approximation
results for nonatomic congestion games with nonseparable cost functions.

Theorem 12. Let xne be an equilibrium of a nonatomic congestion game with
cost functions drawn from a class C of nonseparable cost functions.

(a) If xopt is a social optimum for this game, then C(xne) ≤ (1−β(C))−1C(xopt).
(b) If xopt is a social optimum for the same game with 1 + β(C) times as many

players of each type, then C(xne) ≤ C(xopt).

Proof. For (a), it suffices to use (4) and Lemma 11:

C(xne) = 〈c(xne), xne〉 ≤ 〈c(xne), xopt〉 ≤ C(xopt) + β(C)C(xne) .

Let us now prove part (b). Because of the feasibility of (1 + β(C))−1 xopt

for the original game, we have that 〈c(xne), xne〉 ≤ 〈c(xne), (1 + β(C))−1 xopt〉.
Therefore,

〈c(xne), xne〉 = (1 + β(C))〈c(xne), xne〉 − β(C)〈c(xne), xne〉
≤ (1 + β(C))〈c(xne), (1 + β(C))−1xopt〉 − β(C)〈c(xne), xne〉
≤ C(xopt) + β(C)C(xne)− β(C)C(xne)
= C(xopt) .

��

A particular class of nonseparable cost functions that has been studied be-
fore are affine functions; i.e., c(x) = Ax + b, with b ≥ 0, and A symmetric
and positive semidefinite. Theorem 12 provides a simple proof of a result by
Chau and Sim (2003), which established that the price of anarchy for this kind
of cost functions is at most 4/3. Indeed, in this case

β(c, v) = max
x≥0

〈c(v)− c(x), x〉
〈c(v), v〉 =

maxx≥0〈A(v − x), x〉
〈Av, v〉+ 〈b, v〉 .

As A is symmetric and positive semidefinite, the numerator amounts to a convex
minimization problem, and the optimum is attained at x = v/2, leading to
β(affine costs) = 1/4. Theorem 12 yields C(xne) ≤ 4/3C(xopt), where xopt is a
social optimum for this game. Moreover, C(xne) ≤ C(xopt), for a social optimum
xopt of the same game with 5/4 times as many players of each type.

Let us finally note that the improved results for games with limited congestion
(i.e., Theorem 5) also hold in this setting. Indeed, we only need to generalize
Lemma 6. Similarly to Section 2.3, we assume that C satisfies that for c ∈ C and
a constant vector b ∈ IRA for which c(x) + b ∈ IRA

+ for all x ∈ IRA
+, c(x) + b ∈ C.

Lemma 13. Let xne be an equilibrium of a nonatomic congestion game with cost
functions drawn from a class C such that c(0) ≥ η c(xne) for c ∈ C and 0 ≤ η ≤ 1.
If x is a nonnegative vector, then 〈c(xne), x〉 ≤ C(x) + (1− η)β(C)C(xne).
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Proof. Let us write c ∈ C as c(x) = M(x) + b, where b = c(0) ≥ η c(xne) ≥ 0.
Thus,

β(c, xne) = max
x≥0

〈c(xne)− c(x), x〉
〈c(xne), xne〉 ≤ max

x≥0

〈M(xne)−M(x), x〉
〈M(xne), xne〉+ η

1−η 〈M(xne), xne〉

= (1− η)max
x≥0

〈M(xne)−M(x), x〉
〈M(xne), xne〉 ≤ (1− η)β(C) .

So, 〈c(xne), x〉 ≤ 〈c(x), x〉+ β(c, xne)〈c(xne), xne〉 ≤ C(x) + (1− η)β(C)C(xne).
��
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Abstract. We consider unrelated parallel machine scheduling problems
with the objective to minimize the schedule makespan. In addition to
its machine-dependence, the processing time of any job is also depen-
dent on the usage of a scarce renewable resource. An amount of k units
of that resource, e.g. workers, can be distributed over the jobs in pro-
cess, and the more of that resource is allocated to a job, the smaller
its processing time. The model generalizes the classical unrelated ma-
chine scheduling problem, adding a resource-time tradeoff. It is also a
natural variant of a generalized assignment problem studied previously
by Shmoys and Tardos, the difference lying in the fact the resource is
renewable and not a total budget constraint. We use a two-phased LP
rounding technique to assign resources to jobs and jobs to machines.
Combined with Graham’s list scheduling, we thus prove the existence of
a (4+2

√
2)-approximation algorithm. We show how our approach can be

adapted to scheduling problems with dedicated machines as well, with
an improvement of the performance bound to (3 + 2

√
2). Moreover, we

derive a lower bound of 2 for the employed LP-based analysis, and we
prove a (3/2)-inapproximability result.

1 Introduction and Related Work

Unrelated parallel machine scheduling to minimize the makespan, R||Cmax in
the three-field notation of Graham et al. [6], is one of the classical problems in
combinatorial optimization. Given are n jobs that have to be scheduled on m
parallel machines, and the processing time of job j on machine i is pij . The
goal is to minimize the latest job completion, the makespan Cmax. If the num-
ber of machines m is not fixed, the best approximation algorithm to date is a
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2-approximation by Lenstra, Shmoys and Tardos [10]. Moreover, the problem
cannot be approximated within a factor smaller than 3/2, unless P=NP [10].

Shmoys and Tardos [12] consider the same problem with the additional fea-
ture of costs λij if job j is processed on machine i. They show that, if a schedule
with total cost Λ and makespan T exists, a schedule with total cost Λ and
makespan at most 2T can be found in polynomial time. The proof relies on
rounding the solution of an LP relaxation. They obtain the same result even
for a more general version of the problem, namely when the processing time pij

of any job-machine pair is not fixed, but may be reduced linearly, in turn for
a linear increase of the associated cost λij [12]. Note that, in both versions of
the problem studied in [12], the costs λij are non-renewable resources, such as
a monetary budget, with a global budget Λ.

In this paper, we consider a different variant of the problem of [12]. Namely,
the processing times pij of any job-machine pair can be reduced by utilizing
a renewable resource, such as additional workers, that can be allocated to the
jobs. In other words, a maximum number of k units of a resource may be used
to speed up the jobs, and the available amount of k units of that resource must
not be exceeded at any time. In contrast to the linearity assumption on the
costs and processing times in [12], the only assumption we make in this paper
is that the processing times pijs, which now depend also on the number s of
allocated resources, are non-increasing in s for each job-machine pair. That is,
we assume that pij0 ≥ · · · ≥ pijk for all jobs j and all machines i. The practical
motivation to study this problem is evident; to give an example, one may think
of production planning where additional (overtime) workers can be allocated
to specific tasks within the production in order to reduce the production cycle
time.

Related Work. In a manuscript by Grigoriev et al. [7], a restricted version of
the problem is addressed. They consider dedicated, parallel machines, thus each
job is dedicated beforehand to be processed on a given machine. Moreover, their
model is restricted to a binary resource, thus the availability of the additional
resource is k = 1. Any job may be processed either with or without using that
resource, with a reduced processing time if the resource is used. Finally, the
number of machines m in their paper is considered fixed, and not part of the
input. For that problem, they derive a (3+ε)–approximation, and for the problem
with m = 2 machines, they derive (weak) NP-hardness and a fully polynomial
time approximation scheme [7].

Jobs with resource dependent processing times also appear in the literature as
malleable or parallelizable tasks, e.g. in [11, 13]. In these models, jobs can be pro-
cessed on one or more parallel processors, and they have non-increasing process-
ing times pjs in the number s of processors used. Any processor can only handle
one job at a time, and the goal is to minimize the schedule makespan. Turek et
al. [13] derive a 2–approximation algorithm for this problem. In fact, the model
considered in [13] is just a special case of the problem considered in this paper.
Interpreting the parallel processors as a generic ‘resource’ that must be allocated
to jobs, the problem of [13] corresponds to the problem considered in this paper,
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letting n jobs, with resource dependent processing times, be processed on m = n
identical parallel machines (instead of unrelated parallel machines). Mounie et
al. [11] consider yet another variant, in that the processor allocations must be
contiguous (for that problem, [13] includes a 2.7–approximation). Moreover, in
[11] it is not only assumed that the processing times pjs are non-increasing in s,
but also the processing ‘areas’ s · pjs are assumed to be non-decreasing in s. For
that problem, a

√
3–approximation is derived in [11].

When we restrict even further, and assume that the decision on the allocation
of resources to jobs is fixed beforehand, we are back at (machine) scheduling
under resource constraints as introduced by Blazewicz et al. [1]. More recently,
such problems with dedicated machines have been discussed by Kellerer and
Strusevich [8, 9]. We refer to these papers for various complexity results, and
note that NP-hardness of the problem with dedicated machines and a binary
resource was established in [8]. More precisely, they show weak NP-hardness for
the case where the number of machines is fixed, and strong NP-hardness for an
arbitrary number of machines [8].

From the more practical viewpoint, a resource-time tradeoff problem has also
been addressed by Chen [2]. He considers parallel, identical machine scheduling
problems. Just like in the paper by Shmoys and Tardos [12], job processing times
can be reduced by utilizing a non-renewable, monetary resource. The objective
considered in [2] is either the total weighted completion times of jobs, or the
weighted number of tardy jobs, incremented by the total resource consumption
of the schedule. The paper describes branch and bound algorithms, together
with computational results.

Results and Methodology. We derive a constant-factor approximation algo-
rithm for the problem at hand. Our approach is based upon an integer linear
program that defines a relaxation of the problem, extending a formulation used
by Grigoriev et al. [7]. The main idea is the utilization of an aggregate ver-
sion of the resource constraints, yielding a formulation that does not require
time-indexed variables. More precisely, we use a formulation that takes as in-
put all possible processing times pijs of jobs. We then consider the linear pro-
gramming relaxation of this integer program. In a first step, the solution of
this LP relaxation is rounded into a (still fractional) solution for another lin-
ear program. We then show that this in fact defines an instance (and solution)
of the linear programming relaxation used by Shmoys and Tardos [12] for the
generalized assignment problem. In a second step, we thus apply their round-
ing procedure to obtain an approximate integral solution for the original inte-
ger programming relaxation. From this solution, we extract both the machine
assignments and the resource allocations for the jobs. We then use Grahams
list scheduling [4] to generate a feasible schedule. Using the LP lower bounds,
we prove that this schedule is not more than a factor (4 + 2

√
2) away from

the optimum. For the special case of dedicated machines, our approach sim-
plifies, because the machine assignments are fixed beforehand, thus the second
rounding step is not required. For that case, we prove a performance bound of
(3 + 2

√
2).



Scheduling with Resource Dependent Processing Times 185

For both problems, unrelated and dedicated machines, we furthermore pro-
vide an instance showing that the linear programming based analysis cannot
yield anything better than a 2 approximation.

Concerning lower bounds on the approximability, note that the problem at
hand is a generalization of the classical unrelated machine scheduling problem
R||Cmax. Therefore it cannot be approximated better than a multiplicative factor
of 3/2, unless P=NP [10]. Restricting to the special case of dedicated machines,
strong NP-hardness follows from Kellerer and Strusevich [8], hence the problem
cannot admit an FPTAS, unless P=NP. This is true even for the case of a binary
resource, i.e., if k = 1. We furthermore show that, for general k, the problem
cannot be approximated better than a multiplicative factor of 3/2, unless P=NP.

2 Problem Definition

Let V = {1, . . . , n} be a set of jobs. Jobs must be processed non-preemptively on
a set of m unrelated machines, and the objective is to find a schedule that mini-
mizes the makespan Cmax, that is, the time of the last job completion. During its
processing, a job j may be assigned an amount s ∈ {0, 1, . . . , k} of an additional
resource, for instance additional workers, that may speed up its processing. If s
resources are allocated to a job j, and the job is processed on machine i, the
processing time of that job is pijs. The only assumption on the processing times
in dependence on the amount of allocated resources is monotonicity, that is, we
assume that

pij0 ≥ pij1 ≥ · · · ≥ pijk

for every machine-job pair (i, j). The allocation of resources to jobs is restricted
as follows. At any time, no more than the available k units of the resource may
be allocated to the set of jobs in process. Moreover, the amount of resources
assigned to any job must be the same along its processing. In other words, if s ≤ k
resources are allocated to some job j, and xj denotes its starting time on some
machine i, only k − s of the resources are available for other jobs between xj

and xj + pijs.
We finally introduce an additional piece of notation. Since we do not assume

that the functions pijs, in dependence on s, are strictly decreasing, the only
information that is effectively required is the breakpoints of pijs, this is, indices s
where pijs < pij,s−1. Hence, define the ‘relevant’ indices for job j on machine i
as

Sij = {0} ∪ {s | s ≤ k, pijs < pij,s−1} ⊆ {0, . . . , k} .

Considering this index set suffices, since in any solution, if s resources are allo-
cated to some job j on machine i, we may as well use s′ = min{r | r ≤ s, pijr =
pijs} ∈ Sij resources for that job, without violating feasibility.
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3 IP Relaxation and LP-Based Rounding

Let xijs denote binary variables, indicating that an amount of s resources is used
for processing job j on machine i. Then the following integer linear program,
referred to as (IP), has a feasible solution if there is a feasible schedule of length
C for the original scheduling problem.

m∑
i=1

∑
s∈Sij

xijs = 1 , ∀ j ∈ V (1)

∑
j∈V

∑
s∈Sij

xijs pijs ≤ C , ∀ i = 1, . . . ,m , (2)

∑
j∈V

m∑
i=1

∑
s∈Sij

xijs s pijs ≤ kC , (3)

xijs = 0 , if pijs > C, (4)
xijs ∈ {0, 1} , ∀ i, j, s.

Here, C represents the schedule makespan. Equalities (1) make sure that every
job is assigned to one machine and uses a constant amount of resources during
its processing. Inequalities (2) express the fact that the total processing on each
machine is a lower bound on the makespan. Inequalities (3) represent the aggre-
gated resource constraints: In any feasible schedule, the left-hand side of (3) is
the total resource consumption of the schedule. Because no more than k resources
may be consumed at any time, the total resource consumption cannot exceed
kC. Finally, constraints (4) make sure that we do not use machine-resource pairs
such that the job processing time exceeds the schedule makespan. These con-
straints are obviously redundant for (IP), but they will be used later in rounding
a solution for the linear relaxation of (IP). Notice that this integer program may
have a feasible solution for some integer value of C, although no feasible schedule
with makespan C exists; see Example 1 further below.

LP Relaxation. The integer linear program (IP) with the 0/1-constraints on
x relaxed to

xijs ≥ 0 , j ∈ V , s ∈ Sij , i = 1, . . . ,m

also has a solution of value at most C if there is a feasible schedule for the original
scheduling problem with makespan C. We refer to this relaxation as (LP), and
note that it can be solved in polynomial time, because it has a polynomial
number of variables and constraints. Since we assume integrality of data, we are
actually only interested in integral values C. Therefore, by using binary search,
we can find in polynomial time the smallest integral value CLP such that (LP)
has a feasible solution xLP. Then CLP is a lower bound on the makespan of any
feasible schedule.
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Rounding the LP Solution. Given a pair (CLP, xLP) we next define an integer
solution x∗ from xLP by the following, 2-phase rounding procedure. In the first
rounding phase, we transform a fractional solution xLP to another fractional
solution x̄, in such a way that for every machine-job pair (i, j) there is exactly
one index s (amount of resource) such that x̄ijs is nonzero. Intuitively, we decide
for every machine-job pair on the amount of resources it may consume. By doing
this, we effectively get rid of the index s. This new fractional solution in fact
defines a fractional solution for an LP relaxation for the generalized assignment
problem discussed by Shmoys and Tardos [12]. Therefore, we will be able to use
their rounding procedure as our second rounding phase, and thus we eventually
obtain an integral solution x∗ from xLP.

First, let us choose an arbitrary ε such that 0 ≤ ε ≤ 1 . Then, for every
machine i and job j individually, define

ỹij =
∑

s∈Sij

xLP
ijs (5)

as the total fractional value allocated by the LP solution xLP to the machine-job
pair (i, j). Then let index tij ∈ Sij be chosen minimal with the property that∑

s∈Sij ,s≤tij

xLP
ijs ≥ (1− ε) ỹij . (6)

Then, for every machine i and job j define index sij ≥ tij as the minimizer of
s · pijs, for s ≥ tij ,

sij = arg mins≥tij s · pijs . (7)

By definition, it follows that sij ∈ Sij . We now consider a fractional solution x̄
defined by

x̄ijs =

{
ỹij s = sij ,

0 otherwise .
(8)

By definition, this solution fulfills (1). Moreover, we claim that it is an approxi-
mate solution for inequalities (2) and (3) in the following sense.

Lemma 1. Let (CLP, xLP) be an optimal fractional solution for the linear pro-
gramming relaxation (LP), and let x̄ = (x̄ijs) be the fractional solution obtained
by the above described rounding procedure. Then∑

j∈V

∑
s∈Sij

x̄ijs pijs ≤
1

1− ε
CLP , i = 1, . . . ,m , (9)

∑
j∈V

m∑
i=1

∑
s∈Sij

x̄ijs s pijs ≤
k

ε
CLP . (10)
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Proof. The proof of both claims is based on proving the statement for every
machine-job pair. Validity of (9) can be seen as follows. We know that

(1− ε) x̄ijsij = (1− ε) ỹij ≤
∑

s∈Sij ,s≤tij

xLP
ijs

by definition of tij in (6). By the fact that pijtij ≤ pijs for all s ≤ tij , we therefore
have

(1− ε) x̄ijsijpijtij ≤
∑

s∈Sij ,s≤tij

xLP
ijs pijs ≤

∑
s∈Sij

xLP
ijs pijs

for every machine i and job j ∈ V . Again due to monotonicity, pijsij ≤ pijtij for
all j ∈ V and i = 1, . . . ,m, and we obtain

∑
s∈Sij

x̄ijs pijs = x̄ijsijpijsij ≤ x̄ijsijpijtij

≤ 1
1− ε

∑
s∈Sij

xLP
ijs pijs

for all jobs j ∈ V and machines i = 1, . . . ,m. Summing over j ∈ V , and using
(2), inequalities (9) follow for any machine i.

To see (10), first observe that ε x̄ijsij = ε ỹij ≤
∑

s∈Sij ,s≥tij x
LP
ijs by definition

of tij , since tij is the minimal index with property (6). Therefore,

ε x̄ijsijsijpijsij ≤
∑

s∈Sij ,s≥tij

xLP
ijs s pijs ≤

∑
s∈Sij

xLP
ijs s pijs

for every machine i and job j ∈ V , where the first inequality follows because sij

was chosen among all s ≥ tij such as to minimize s pijs. Hence, we obtain

∑
s∈Sij

x̄ijs s pijs = x̄ijsijsij pijsij ≤ 1
ε

∑
s∈Sij

xLP
ijs s pijs ,

for all jobs j ∈ V and machines i = 1, . . . ,m. Summing over j ∈ V and all
machines i = 1, . . . ,m, and using (3), eventually yields (10). ��

Next, we want to use the rounding procedure by Shmoys and Tardos in order
to end up with an integer solution.
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Lemma 2 (Shmoys & Tardos [12–Theorem 2.1]). Given a feasible frac-
tional solution ỹ = (ỹij) to the linear program

m∑
i=1

yij = 1 , ∀ j ∈ V (11)∑
j∈V

yijτij ≤ T , ∀ i = 1, . . . ,m , (12)

∑
j∈V

m∑
i=1

yijλij ≤ Λ , (13)

yij ≥ 0 , ∀ i, j. (14)

with nonnegative parameters T,Λ, τ =(τij), and λ=(λij), there is a polynomial
time algorithm which computes an integral solution ȳ to (11), (13), (14), and∑

j∈V

ȳijτij ≤ T + τmax , ∀ i = 1, . . . ,m , (15)

where τmax = maxi,j{τij | ỹij > 0}. ��

The fractional solution ỹ defined in (5), however, is nothing but a feasible
fractional solution for linear program (11)–(14), namely with parameters T =
1/(1− ε)CLP, Λ = k/εCLP, τij = pijsij , and λij = sijpijsij for all job-machine
pairs (i, j). Therefore, combining Lemma 1, the above result of Shmoys and
Tardos, and the fact that

τmax = max
i,j

pijsij ≤ max
i,j,s
{pijs | xLP

ijs > 0} ≤ CLP (16)

by constraints (4), we can show the following.

Lemma 3. Let (CLP, xLP) be an optimal fractional solution for the linear pro-
gramming relaxation (LP), then we can find a feasible solution x∗ = (x∗

ijs) for
the following integer linear program in polynomial time.

m∑
i=1

∑
s∈Sij

xijs = 1 , ∀ j ∈ V, (17)

∑
j∈V

∑
s∈Sij

xijs pijs ≤
(

1 +
1

1− ε

)
CLP , ∀ i , (18)

∑
j∈V

m∑
i=1

∑
s∈Sij

xijs s pijs ≤
k

ε
CLP , (19)

xijs ∈ {0, 1} , ∀ i, j, s . (20)

Proof. We briefly summarize the previously described steps. Using the fractional
solution xLP = (xLP

ijs), define ỹ = (ỹij) as in (5), and apply the rounding defined
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by (8). This yields a fractional solution x̄ = (x̄ijs) that is nonzero only for one
resource index s = sij , for any pair of i and j, as defined in (7). Interpreting
ỹ as fractional solution for the generalized assignment problem (11)–(14), use
Lemma 2 to round it to an integral solution ȳ = (ȳij). Now define the integral
solution x∗ by

x∗
ijs =

{
ȳij s = sij ,

0 otherwise .

With the help of Lemmas 1 and 2, and utilizing (16), it is now straightforward
to verify that x∗ fulfills (17)–(20). ��

4 LP Based Greedy Algorithm

Our approach to obtain a constant factor approximation for the scheduling prob-
lem is now the following. We first use the rounded 0/1-solution from the previous
section in order to decide both, on the amount of resources allocated to every
individual job j, and on the machine where this job must be executed. More
precisely, job j must be processed on machine i and use s additional resources
iff x∗

ijs = 1, where x∗ is the feasible integral solution of (17)–(20) obtained after
the 2-phase rounding. Then the jobs are scheduled according to the greedy list
scheduling algorithm of Graham [4], in arbitrary order.

Algorithm LP-Greedy: With the resource allocations and machine
assignments as determined by the LP based rounding, do until all jobs
are scheduled: Starting at time 0, iterate over completion times of jobs,
and schedule as many jobs as allowed, obeying the machine assignments
and the resource constraints.

Theorem 1. Algorithm LP-Greedy is a (4 + 2
√

2)–approximation algorithm
for unrelated parallel machine scheduling with resource dependent processing
times.

The fact that the algorithm requires only polynomial time follows directly from
the fact that both, solving and rounding the LP relaxation, as well as the list
scheduling, can be implemented in polynomial time.

To verify the performance bound, we first need some additional notation.
Consider some schedule S produced by algorithm LP-Greedy, and denote by
CLPG the corresponding makespan. Denote by COPT the makespan of an optimal
solution. For schedule S, let t(β) denote the earliest point in time after which
only big jobs are processed, big jobs being defined as jobs that have a resource
consumption larger than k/2. Moreover, let β = CLPG − t(β) be the length of
the period in which only big jobs are processed (note that possibly β = 0).

Next, we fix a machine, say machine i, on which some job completes at
time t(β) which is not a big job. Due to the definition of t(β), such a machine
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must exist, because otherwise all machines were idle right before t(β), contradict-
ing the definition of the greedy algorithm. Note that, between time 0 and t(β),
periods may exist where machine i is idle. Denote by α the total length of busy
periods on machine i between 0 and t(β), and by γ the total length of idle periods
on machine i between 0 and t(β). We then have that

CLPG = α + β + γ . (21)

Due to (18), we get that for machine i

α ≤
∑
j∈V

∑
s∈Sij

x∗
ijs pijs ≤

(
1 +

1
1− ε

)
CLP . (22)

The next step is an upper bound on β + γ, the length of the final period
where only big jobs are processed, together with the length of idle periods on
machine i.

Lemma 4. We have that

β + γ ≤ 2
ε
CLP .

Proof. First, observe that the total resource consumption of schedule S is at least
β k

2 + γ k
2 . This because, on the one hand, all jobs after t(β) are big jobs and

require at least k/2 resources, by definition of t(β). On the other hand, during all
idle periods on machine i between 0 and t(β), at least k/2 of the resources must
be in use as well. Assuming the contrary, there was an idle period on machine i
with at least k/2 free resources. But after that idle period, due to the selection
of t(β) and machine i, some job is processed on machine i which is not a big job.
This job could have been processed earlier during the idle period, contradicting
the definition of the greedy algorithm. Next, recall that (k/ε)CLP is an upper
bound on the total resource consumption of the jobs, due to (19). Hence, we
obtain

k

ε
CLP ≥ β

k

2
+ γ

k

2
.

Dividing by 2/k yields the claimed bound on β + γ. ��

Now we are ready to prove the performance bound of Theorem 1.

Proof (of Theorem 1). First, use (21) together with (22) and Lemma 4 to obtain

CLPG ≤
(

1 +
1

1− ε

)
CLP +

2
ε
CLP ≤

(
1 +

1
1− ε

+
2
ε

)
COPT .

Solving for the best possible value for ε gives ε = 2−
√

2 ≈ 0.5858, which yields
the claimed performance bound of 4 + 2

√
2. ��
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5 Dedicated Machines

As a special case of the unrelated machine scheduling model considered so far,
let us assume that the jobs are assigned to machines beforehand. That is, the
set of jobs V is partitioned into m subsets V1, . . . , Vm a priori, Vi being the jobs
that must be processed on machine i, and pjs, s = 0, . . . , k, denotes the resource
dependent processing time of job j.

By letting all but one machine assignment result in very large processing
times, this is obviously a special case of the unrelated machine scheduling model.
Hence, our above analysis also yields a (4+ 2

√
2)–approximation for this model.

However, noting that the machine index i can be eliminated from the linear
program, we can use the following LP relaxation instead.

min. C (23)

s. t.
∑

s∈Sj

xjs = 1 , ∀ j ∈ V , (24)

∑
j∈Vi

∑
s∈Sj

xjs pjs ≤ C , ∀ i = 1, . . . ,m , (25)

∑
j∈V

∑
s∈Sj

xjs s pjs ≤ kC , (26)

xjs ≥ 0 , ∀j, s . (27)

Here, according to our previous notation, Sj are the breakpoints of the function
pjs, hence

Sj = {0} ∪ {s | s ≤ k, pjs < pj,s−1} ⊆ {0, . . . , k} .
This way, the accordingly adapted first phase rounding of (8) already yields

an integral solution. More precisely, given a fractional solution (CLP, xLP) for
the above LP relaxation, we choose index tj minimal with the property that∑

s∈Sj ,s≤tj x
LP
js ≥ 1 − ε and define index sj = arg mins≥tjs · pjs. Again, it

follows that sj ∈ Sj . Then the solution x̄, defined by x̄js = 1 if s = sj and
x̄js = 0 otherwise, is already integral. Hence, Shmoys and Tardos’ rounding is
not required, and instead of using the bounds (18) and (19), we now have an
integral solution x̄ = (x̄js) which fulfills the constraints∑

j∈Vi

∑
s∈Sj

x̄js pjs ≤
1

1− ε
C , ∀ i = 1, . . . ,m ,

∑
j∈V

∑
s∈Sj

x̄js s pjs ≤
k

ε
C .

Validity of these bounds is proved along the same lines as Lemma 1. This even-
tually yields an improved performance bound for the dedicated machine model.
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Theorem 2. Algorithm LP-Greedy is a (3 + 2
√

2)–approximation algorithm
for dedicated parallel machine scheduling with resource dependent processing
times.

Lower Bound for the (Integer) Linear Program. We next give an instance
to show that the integer linear program we use can be a factor 2 away from the
optimal solution. Hence, our LP-based analysis cannot yield anything better than
a 2-approximation, for both versions, the dedicated and the unrelated machine
case.

Example 1. Consider the problem with m = 2 dedicated machines and k units
of the additional resource, where k is odd. There are 2 jobs, each to be processed
on its own machine, with resource-dependent processing times

pjs =

{
2k + 1 if s < k

2

k if s > k
2

for both jobs j. ��
We have the following, feasible integer solution for the LP-relaxation (23)–(27):
xjs = 1 if s = �k/2�, and xjs = 0 otherwise, for both jobs j. This setting of
variables would yield C ≥ k by (25), and kC ≥ 2k�k/2� = k(k + 1) by (26).
Therefore, with C = (k + 1), there exists a feasible, even integral, solution
for (23)–(27). A fortiori, we know that for the linear programming relaxation
(LP), CLP ≤ k + 1. But in the optimal solution, COPT = 2k. Hence, the gap
between CLP and COPT can be as large as 2− ε, for any ε > 0. The bad quality
of the LP lower bound is obviously a consequence of the fact that we only use an
aggregate formulation of the resource constraints in (26) (or (3), respectively),
whereas any schedule has to respect the resource constraint at any time.

6 Lower Bounds on Approximation

The problem with unrelated machines cannot be approximated within a factor
smaller than 3/2 as a generalization of the classical unrelated machine scheduling
problem [10], as mentioned earlier. We next show that the same inapproxima-
bility result holds for the problem with dedicated machines.

Theorem 3. There is no polynomial time approximation algorithm for dedi-
cated parallel machine scheduling with resource dependent processing times that
has a performance guarantee less than 3/2, unless P=NP.

Proof. The proof relies on a gap-reduction from Partition [3]: Given n inte-
gers aj , with

∑n
j=1 aj = 2k, it is NP-complete to decide if there exists a subset

W ⊆ {1, . . . , n} with
∑

j∈W aj = k. Let us define an instance of the dedicated
machine scheduling problem as follows. Each aj gives rise to one job j with an
individual machine. Hence, we have n jobs and m = n dedicated machines. There
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are k units available of the additional resource. Any job j has a processing time
defined by

pjs =

{
3 if s < aj

1 if s ≥ aj .

Hence, the aj ’s are the only breakpoints in the functions pjs, and the index set
Sj = {0, aj} for all jobs j. In other words, the functions pjs can be encoded
in O( log aj ) for all jobs j, and the transformation is indeed polynomial. We
claim that there exists a feasible schedule with makespan Cmax < 3 if and only
if there exists a solution for the Partition problem. Otherwise, the makespan
is at least 3. To this end, observe that in any solution with makespan Cmax < 3,
we may assume that each job j consumes exactly aj units of the resource: If it
was less than aj for some jobs j, the makespan would be at least 3; if it was
more than aj for some job j, letting the resource allocation equal aj does not
violate feasibility, while maintaining the same processing time. Now, if and only
if there is a solution, say W , for the Partition problem, there exists a resource
feasible schedule with makespan 2, namely where jobs j ∈ W start at time 0,
and all jobs j �∈W start at time 1. ��

Finally, it is not difficult to see that the above proof yields the same inapprox-
imability result for the problem with dedicated machines, even if the resource
consumption of jobs is fixed beforehand.

Corollary 1. There is no polynomial time approximation algorithm for resource
constrained dedicated machine scheduling that has a performance guarantee less
than 3/2, unless P=NP.
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Abstract. We study classic machine sequencing problems in an online
setting. Specifically, we look at deterministic and randomized algorithms
for the problem of scheduling jobs with release dates on identical paral-
lel machines, to minimize the sum of weighted completion times: Both
preemptive and non-preemptive versions are analyzed. Using linear pro-
gramming techniques, borrowed from the single machine case, we are
able to design a 2.62-competitive deterministic algorithm for the non-
preemptive version of the problem, improving upon the 3.28-competitive
algorithm of Megow and Schulz [13]. Additionally, we obtain random-
ized algorithms for both versions of the problem with competitive ratio
strictly smaller than 2 for any number of machines (but approaching
two as the number of machines grows). Our algorithms naturally extend
several approaches for single and parallel machine scheduling. Moreover,
in contrast to previous algorithms achieving similar bounds, obtained by
Schulz and Skutella [15], ours is a list-scheduling algorithm and has one
less randomization step.

1 Introduction

We study online versions of classic parallel machine scheduling problems. Given
a set of jobs N = {1, . . . , n}, where each job j has a processing time pj > 0, a
weight wj > 0 and a release date rj ≥ 0, we want to process these jobs on m
identical machines. We consider both non-preemptive and preemptive versions;
in the latter case, a job being processed may be interrupted and resumed later,
possibly on a different machine. Letting Cj be the completion time of job j in a
given schedule, we are interested in minimizing the weighted sum of completion
times:

∑
j∈N wjCj . As we only consider online problems, jobs are not known

until their respective release date. In scheduling notation [10], we consider online
versions of P |rj |

∑
j wjCj and P |rj , pmtn|

∑
j wjCj .

In online optimization we are dealing with limitations on information, con-
trasting with the limitations on computational power in classic approximation
algorithm design. The standard measure of quality of online algorithms is the
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so-called competitive ratio. Similarly to the approximation guarantee of an al-
gorithm, this is defined to be the worst case ratio, over all instances, of the cost
output by the online algorithm to the optimal offline cost. We shall also say that
an online algorithm is c-competitive if, for any instance, the cost output by the
online algorithm is at most c times the optimal offline cost. We may alternatively
define the competitive ratio of an online algorithm as the infimum of all values
c, where the algorithm is c-competitive. In some situations randomization is a
powerful tool to obtain algorithms with better performance ratios. The compet-
itive ratio of a randomized online algorithm is defined as above replacing “the
cost output by the online algorithm” by the expected cost output by the online
algorithm.

1.1 Previous Work

There has been an enormous amount of work on parallel machine scheduling.
As we do not intend to do a complete review of results in the area, let us
only mention some of the most relevant literature on online scheduling problems
directly related to the matter of this paper.

To the best of our knowledge, the first deterministic online algorithm for
P |rj |

∑
j wjCj was given by Hall, Schulz, Shmoys and Wein [11]. They design a

(4+ ε)-competitive algorithm. Prior to this paper, the best-known deterministic
algorithms for both P |rj |

∑
j wjCj and P |rj , pmtn|

∑
j wjCj were recently given

by Megow and Schulz [13] and are 3.28 and 2-competitive, respectively. They
also show that the former algorithm has a competitive ratio between 2.78 and
3.28 while the latter analysis is tight.

Considering randomized algorithms, a (2.89 + ε)-competitive algorithm for
P |rj |

∑
wjCj , was obtained by Chakrabarti, Phillips, Schulz, Shmoys, Stein

and Wein [3]. Schulz and Skutella [15] give randomized strategies that are 2-
competitive for both P |rj , pmtn|

∑
j wjCj and P |rj |

∑
j wjCj . Related results

have been obtained in [4, 14] when the objective is to minimize the average com-
pletion time of the schedule. In a more restricted setting, Chou, Queyranne and
Simchi-Levi [5] consider the online P |rj |

∑
j wjCj with lower and upper bounds

on jobs’ weights and processing times; the authors prove that the online weighted
shortest processing time heuristic is asymptotically optimal. They even extend
this to the problem Q|rj |

∑
j wjCj .

We also mention some single machine scheduling results, as our work essen-
tially extends these analyses to the parallel machine case. Using the idea of α-
points and mean-busy-time relaxations, Goemans, Queyranne, Schulz, Skutella
and Wein [9] designed a deterministic 2.4143-competitive and a randomized
1.6853-competitive algorithm for the online 1|rj |

∑
j wjCj . A similar approach

was taken by Schulz and Skutella [16] to give a randomized 4
3 -competitive al-

gorithm for 1|rj , pmtn|
∑

j wjCj , which improved upon a 1.56-competitive algo-
rithm by Sitters [18]. On the other hand, Anderson and Potts [2] provide a best
possible deterministic online algorithm for 1|rj |

∑
j wjCj which has a competi-

tive ratio of 2.
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Let us now discuss some lower bounds on the competitive ratios for certain
problems. Hoogeveen and Vestjens [12] showed that there is no deterministic
algorithm with competitive ratio strictly better than 2 for 1|rj |

∑
j wjCj . On

the other hand Stougie and Vestjens [19] showed that e
e−1 is a lower bound on

the competitive ratio of online randomized algorithms for the same problem.
In the parallel machine case, Vestjens [20] proved that any deterministic algo-
rithm for P |rj |

∑
j wjCj (resp. P |rj , pmtn|

∑
j wjCj) has a competitive ratio

of at least 1.309 (resp. 22
21 ). Seiden [17] proved that any randomized algorithm

for P |rj |
∑

j wjCj has a competitive ratio of at least 1.157. To the best of our
knowledge, there are no specific lower bounds for randomized algorithms for
P |rj , pmtn|

∑
j wjCj .

Finally, we remark that all the problems considered in this paper admit poly-
nomial time approximation schemes (offline) [1].

1.2 Our Results

Our main results are the following:

– A 2.618-competitive online algorithm for P |rj |
∑

j wjCj , which improves
upon the 3.28-competitive algorithm of Megow and Schulz [13].

– A randomized �m-competitive online algorithm for P |rj |
∑

j wjCj , where
�m < 2 for all m ≥ 1. Here, m denotes the number of machines and �m is
obtained implicitly. Our result improves upon the 2-competitive randomized
algorithms by Schulz and Skutella [15]. In contrast to their work our algo-
rithm has the desirable property of being a list-scheduling algorithm and
uses only one step of randomization. The algorithm we present can be seen
as the parallel machine extension of Goemans et al.’s [9] algorithm for a
single machine. Indeed, the competitive ratio that it achieves is 1.6853 for
m = 1 (as in Goemans et al.); for m = 2, 3 and 4 it is 1.8382, 1.8915 and
1.9184, respectively.

– A randomized ρm-competitive online algorithm for P |rj , pmtn|
∑

j wjCj ,
where ρm < 2 for all m ≥ 1. Here, m denotes the number of machines and
ρm is obtained implicitly. The reader may wish to compare our result with
the current best algorithm to date: the deterministic algorithm by Megow
and Schulz [13], which has a competitive ratio of 2 (and not better than 2)
for any number of machines. Additionally, our algorithm can be simultane-
ously seen as an extension of Megow and Schulz’s result and of Schulz and
Skutella’s [16] single machine algorithm. Indeed for a single machine, the
competitive ratio of our algorithm is 4/3, as in [16]; for two, three and four
machines it is 1.3867, 1.603 and 1.7173, respectively. In general we have that
ρm < 2− 1/m, for m > 1.

2 Preliminaries

According to Phillips et al. [14] the α-point tj(α), 0 < α ≤ 1, of job j in a given
schedule is defined as the first time an α-fraction of job j has been completed
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(i.e., the first time αpj has been processed). The general idea of our subsequent
algorithms is to schedule jobs on the m machines by list-scheduling the jobs
in the order of their α-points on a virtual machine, which is “m-times faster”.
Additionally, these algorithms may use job-dependent α’s to guide the schedule;
in this latter case, we shall denote job j’s alpha value as αj . The concept of
a single fast virtual machine was apparently first considered by Eastman, Even
and Isaacs [6]. Recently, Chekuri et al. [4] considered a “preemptive one-machine
relaxation” where jobs are list-scheduled on parallel machines in order of their
completion times on a single virtual machine.

Another important ingredient in what follows is related to mean-busy-time
relaxations of 1|rj |

∑
wjCj . The mean busy time Mj of job j is defined as the

average point in time at which job j is being processed [8, 9]. Alternatively it can
be computed as Mj =

∫ 1

0
tj(α)dα. Let p(S) =

∑
j∈S pj , w(S) =

∑
j∈S wj and

rmin(S) = minj∈S{rj}. Following Goemans et al. [9] for a scheduling instance
I = {(pi, ri, wi), i ∈ N} we define ZR(I) to be the value of mean busy time
relaxation for 1|rj , pmtn|

∑
j wjCj ; i.e.:

ZR(I) Δ= min
∑
j∈N

wjMj

subject to
∑
j∈S

pjMj ≥ p(S)
(
rmin(S) +

1
2
p(S)

)
, S ⊆ N.

It was shown in [8] that ZR(I) can be obtained online by scheduling, at any
point in time, the available job j with the highest ratio wj/pj . This schedule is
called the LP schedule.

Now, for an instance I = {(pi, ri, wi), i ∈ N} of P |rj , pmtn|
∑

wjCj with m
parallel machines, let Zm(I) be the value of the optimal schedule. Consider the
instance Im = {(pi

m , ri, wi), i ∈ N} and let Zm
R (I) = ZR(Im) i.e., the value of

the mean-busy-time relaxation on Im (note that this is equivalent to the value
of the mean-busy-time relaxation on instance I in a machine that is m times
faster). Thus, Zm

R (I) can be evaluated as:

Zm
R (I) = min

∑
j∈N

wjMj

subject to
∑
j∈S

pjMj ≥ p(S)
(
rmin(S) +

1
2m

p(S)
)
, S ⊆ N.

The following lemma provides a simple, yet powerful, lower bound for the prob-
lem P |rj , pmtn|

∑
wjCj . It is a particular case of a bound obtained by Chou et

al. [5] in a more general framework. It was also obtained by Schulz and Skutella
[15], expressed in terms of an equivalent time-indexed relaxation.

Lemma 1 ([5],[15]). For any scheduling instance I,

Zm
R (I) +

1
2

∑
j∈N

wjpj ≤ Zm(I).
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To finish this section let us review the concept of canonical decomposition [7]
and a useful formula to rewrite

∑
wjMj [8] (see also [9]). For a set of jobs S,

consider a single machine schedule that processes jobs in S as early as possible.
This induces a partition of jobs in S into S1, . . . , Sk such that the machine is busy
exactly in the disjoint intervals [rmin(Sl), rmin(Sl) + p(Sl)], for l = 1, . . . , k. This
partition is the canonical decomposition of S. Also, a set is canonical if it equals
its canonical decomposition. Assume that w1/p1 ≥ · · · ≥ wn/pn ≥ wn+1/pn+1 =
0 and let [i] = {1, . . . , i}. Consider Si

1, . . . , S
i
k(i), the canonical decomposition of

[i]; then for any vector M = (M1, . . . ,Mn):

∑
j∈N

wjMj =
n∑

i=1

(
wi

pi
− wi+1

pi+1

)∑
j∈[i]

pjMj =
n∑

i=1

(
wi

pi
− wi+1

pi+1

) k(i)∑
l=1

∑
j∈Si

l

pjMj .

(1)

3 A Deterministic Online Algorithm for P |rj|
∑

wjCj

Consider the following online algorithm Non-preemptive α Scheduling (NAS),
where each job j is assigned a deterministic value of αj :

Algorithm NAS:

Input: A scheduling instance I = {(pi, ri, wi), i ∈ N} which is revealed
online, and a vector α = {α1, . . . , αn}.

(1) Construct the preemptive LP-schedule on a single virtual machine m-times
faster (I (→ Im).

(2) At job j’s αj-point tj(αj) in the virtual machine, it enters into a FIFO
queue for the m machines (job j is then scheduled the first time a machine
is available after all preceding jobs in the queue have started).

From now on, whenever we refer to the LP-schedule of instance I, we mean
the LP-schedule in a machine that is m times faster (or the LP-schedule of
Im). Consider job j and let ηk(αj) denote the fraction of job k that has been
completed in the LP-schedule by time tj(αj). Letting Cα

j denote the completion
time of job j in algorithm NAS when the vector α = {α1, . . . , αn} is applied,
we can show the following bound. Bounds of similar flavor have been frequently
used in the scheduling literature (e.g. [9, 11, 14]).

Lemma 2.
Cα

j ≤ tj(αj) +
∑

k:αk≤ηk(αj)

pk

m
+ (1− 1

m
)pj .

Proof. The completion time of job j is equal to the time to enter the queue for
the parallel machines plus the waiting time in queue plus the processing time of
job j.

The time to enter the queue is tj(αj), which is the αj-point of job j in the
single virtual machine that is m-times faster.
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The wait time in the queue can be bounded as follows: Consider all jobs that
entered the queue before job j, i.e., jobs belonging to the set {k �= j : αk ≤
ηk(αj)} (which are all available for processing at time tj(αj) or earlier). Then
the total time that needs to be processed before job j in the m machines is at
most

∑
k �=j:αk≤ηk(αj)

pk. Thus the first time that a machine will free up is at
most:

tj(αj) +

∑
k �=j:αk≤ηk(αj)

pk

m
= tj(αj)−

pj

m
+

∑
k:αk≤ηk(αj)

pk

m
,

which is obtained by averaging the processing times of all jobs before j. Adding
up the previous term with the processing time pj gives the result.

Our deterministic algorithm will perform best by taking a fixed value of α for
all jobs: αj = α, ∀j. The following theorem is the main result of this section. Its
proof is an extension of the proof of Theorem 3.3 in [9] to the parallel machine
case.

Theorem 1. Algorithm NAS is max{1 + 1
α , 2 + α}-competitive. In particular,

for α =
√

5−1
2 , the schedule is

(
3+

√
5

2

)
-competitive ( 3+

√
5

2 < 2.6181).

Proof. Consider a canonical set S = {1, . . . , l} for the fast single machine. Fix
a job j ∈ S and let ηk = ηk(α) represent the fraction of job k processed before
tj(α). By reordering the elements in S such that t1(α) ≤ . . . ≤ tl(α), we have
that

tj(α)− rmin(S) =
∑
k∈S

ηk
pk

m
≤

l∑
k=j

α
pk

m
+

j−1∑
k=1

pk

m
=

α

m
p(S)+

(1− α)
m

j−1∑
k=1

pk. (2)

Let Cα
j be the completion time of job j output by algorithm NAS. Define

R to be the set of jobs such that tk(α) < rmin(S); note that R
⋂

S = ∅ and
R
⋃
{1, . . . , j} = {k : α ≤ ηk}. Thus, combining Lemma 2 with Equation (2) and

then noting that αp(R)
m ≤ rmin(S), we get

Cα
j ≤ rmin(S) +

α

m
p(S) +

(1− α)
m

j−1∑
k=1

pk +
1
m

p(R) +
1
m

j−1∑
k=1

pk + pj

≤ (1 +
1
α

)rmin(S) +
α

m
p(S) +

(2− α)
m

j−1∑
k=1

pk + pj .

Multiplying by pj and summing over S we get

∑
j∈S

pjC
α
j ≤ (1 +

1
α

)rmin(S)p(S) +
α

m
p(S)2 +

(2− α)
m

∑
j∈S

j−1∑
k=1

pjpk +
∑
j∈S

p2
j .
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Using the identity
∑

j∈S

∑j−1
k=1 pjpk = 1

2p(S)2 − 1
2

∑
j∈S p2

j we obtain that for
any canonical set S:∑

j∈S

pjC
α
j ≤ (1 +

1
α

)rmin(S)p(S) + (2 + α)
p(S)2

2m
+
∑
j∈S

p2
j

≤ max{1 +
1
α
, 2 + α}

⎛⎝p(S)
(
rmin(S) +

p(S)
2m

)
+

1
2

∑
j∈S

p2
j

⎞⎠ .

Assume now that the jobs are ordered such that w1/p1 ≥ · · · ≥ wn/pn ≥
wn+1/pn+1 = 0. Let us now bound the overall cost of the schedule using Equation
(1) applied to instance Im and the feasibility of Zm

R (I):

∑
j∈N

wjC
α
j =

n∑
i=1

(
wi
pi

m

− wi+1
pi+1
m

) k(i)∑
l=1

∑
j∈Si

l

pj

m
Cα

j

≤ max{1 +
1
α
, 2 + α}

n∑
i=1

(
wi
pi

m

− wi+1
pi+1
m

)
·

k(i)∑
l=1

⎛⎝p(Si
l )

m

(
rmin(Si

l ) +
p(Si

l )
2m

)
+

1
2m

∑
j∈Si

l

p2
j

⎞⎠
≤ max{1 +

1
α
, 2 + α}

n∑
i=1

(
wi
pi

m

− wi+1
pi+1
m

)
·

k(i)∑
l=1

⎛⎝∑
j∈Si

l

pj

m
Mj +

1
2m

∑
j∈Si

l

p2
j

⎞⎠
= max{1 +

1
α
, 2 + α}

n∑
i=1

(
wi
pi

m

− wi+1
pi+1
m

) k(i)∑
l=1

∑
j∈Si

l

pj

m

(
Mj +

pj

2

)
.

Here, Mj denotes the mean-busy-time of job j in the LP-schedule. Applying
Equation (1) again it follows that the previous quantity equals

max{1+
1
α
, 2+α}

∑
j∈N

wj

(
Mj +

pj

2

)
=max{1+

1
α
, 2+α}

⎛⎝Zm
R (I) +

1
2

∑
j∈N

wjpj

⎞⎠,

and by Lemma 1 it follows that
∑

j∈N wjC
α
j ≤ max{1 + 1

α , 2 + α}Zm(I). Fi-
nally, we recall that Zm(I) is a lower bound on the optimal offline cost of
P |rj |

∑
j wjCj , and the proof is complete.

As in the single machine case, there are instances for which algorithm NAS
gives a schedule with cost as much as twice the LP lower bound; see, for example,
[9]. However, we do not know whether our analysis is tight.
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4 A Randomized Online Algorithm for P |rj|
∑

j wjCj

Consider the following algorithm, which we denote as Non-preemptive α Schedul-
ing Randomized (NASR).

Algorithm NASR:

Input: A scheduling instance I = {(pi, ri, wi), i ∈ N} which is revealed
online and a distribution f .

(1) Construct the preemptive LP-schedule on a single virtual machine m-times
faster (I (→ Im).

(2) Each αj is taken identically and independently from distribution f(α).
(3) At job j’s αj-point tj(αj), it enters into a FIFO queue for the m machines

(job j is then scheduled the first time a machine is available after all preceding
jobs in the queue have started).

We start by proving that, by utilizing the uniform distribution, algorithm
NASR is 2-competitive; this matches Schulz and Skutella’s [15] bound with a
list-scheduling algorithm. The proof is very similar to Theorem 3.4 in [9].

Theorem 2. NASR is 2-competitive when f(α) is the uniform distribution on
(0, 1].

Proof. Let Cα
j be the completion time of job j in the schedule given by algorithm

NASR. We apply Lemma 2 and first find a conditional expectation, holding αj

constant:

E[Cα
j | αj ] ≤ tj(αj) +

∑
k �=j

pk

m

∫ ηk(αj)

0

dαk + pj

= tj(αj) +
∑
k �=j

pk

m
ηk(αj) + pj

≤ 2(tj(αj) +
pj

2
).

This implies that

E
{
Cα

j

}
≤
∫ 1

0

2(tj(αj) +
1
2
pj)dαj = 2(Mj +

1
2
pj),

where Mj denotes the mean-busy-time of job j in the LP-schedule. Multiplying
by wj and summing over j we get

E

⎡⎣∑
j∈N

wjC
α
j

⎤⎦ ≤ 2

(
ZR(Im) +

1
2

∑
i∈N

wipi

)
≤ 2 · Zm(I),

which proves the result.

We now turn to deriving improved bounds which will depend on the number
of machines. We show that by taking the αj from an appropriate distribution
we can improve on 2-competitiveness. To begin, we must first give a refinement
of Lemma 2.
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Lemma 3.

Cα
j ≤ tj(αj) +

∑
k:αk≤ηk(αj)

k �=j

(
1 +

αk

m
− ηk(αj)

m

)
pk

m
+ pj .

Proof. As in Lemma 2, the completion time of job j is equal to the time to
enter the queue for the parallel machines plus the wait-time in queue plus the
processing time of job j. The only difference in the bound we are attempting to
prove here lies in the in-queue waiting time. This can be bounded as follows.

Consider the set K of jobs that entered the queue before job j; i.e., K =
{k : αk ≤ ηk(αj), k �= j}. If at time t > tk(αk) the fast machine is processing
job k, then at least one of the parallel machines is busy (maybe processing a
different job). Thus, at time tj(αj), the parallel machines have together processed∑

k∈K(ηk(αj) − αk)pk

m . Now, the total processing requirement entered into the
queue before job j is

∑
k∈K pk. Since we have just argued that by time tj(αj),

the m machines have processed
∑

k∈K(ηk(αj)−αk)pk

m , the remaining processing
requirement in the system at time tj(αj) is

∑
k∈K

pk −
∑
k∈K

(ηk(αj)− αk)
pk

m
=
∑
k∈K

(
1 +

αk

m
− ηk(αj)

m

)
pk.

Using standard averaging arguments, the first time a machine will empty
up to process job j is at most

∑
k∈K

(
1 + αk

m −
ηk(αj)

m

)
pk

m , and the proof is
complete.

For a given job j, we partition N \ {j} into N1 and N2. N2 is the set of all
jobs that are processed between the start and completion of job j on the fast
virtual machine and N1 consists of any remaining jobs. For any k ∈ N2, we let
μk denote the fraction of job j that, in the LP schedule of Im, is processed before
the start of job k. This implies ∀k ∈ N2

ηk(αj) =
{

0, αj ≤ μk

1, αj > μk.

Letting tj(0+) denote the start time of job j, we may then write

tj(αj) = tj(0+) +
∑

k∈N2
αj>μk

pk

m
+ αj

pj

m
.

Recalling that in the LP-schedule Mj =
∫ 1

0
tj(α)dα we have that

Mj = tj(0+) +
∑

k∈N2

(1− μk)
pk

m
+

1
2
pj

m
. (3)
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We can now rewrite Lemma 3 as

Cα
j ≤ tj(0+) +

∑
k∈N1

αk≤ηk(αj)

(
1 +

αk

m
− ηk(αj)

m

)
pk

m

+
∑

k∈N2
αj>μk

(
2− 1− αk

m

)
pk

m
+
(
1 +

αj

m

)
pj .

This bound is useful in the proof of the main result in this section.
For any m ≥ 1, consider the following equation, which extends the equation

in Theorem 3.9 in [9] to an arbitrary number of machines:

ln
(
1 + 1

m−
γ
m

)
+ γ

m =
e(−γ/m)(1+ 1

m − γ
m −e(−γ/m))(me(γ/m)−γe(γ/m)+ 1

m e(γ/m)+1−m)
1+ 1

m − γ
m

.

(4)

For any finite value of m, it can be shown that equation (4) has a unique solution
γ ∈ (0, 1). We set

δm

m
= ln

(
1 +

1
m
− γ

m

)
+

γ

m
,

for the unique value of γ that satisfies equation (4). It can also be shown that
δm ∈ (0, 1) for any finite m. With this, we can consider the following distribution:

f(α) =
{
cme(α/m), 0 ≤ α ≤ δm

0, o.w.

where cm = (m
(
eδm/m − 1

)
)−1. The main result is then the following.

Theorem 3. With f(α) as above, NASR is (1 + cm)-competitive.

Proof. Omitted for space limitations.

The class of distributions we applied is optimal for our analysis. Essentially,
equation (4) is a sufficient optimality condition for our distributions and analysis
technique.

We can also prove that cm < 1 for any finite m ≥ 1 and limm→∞ cm = 1. Not
surprisingly then, as m grows, f uniformly approaches the uniform distribution
on (0, 1]. Figure 1 plots 1 + cm as a function of the number of machines.

5 A Randomized Online Algorithm for
P |rj, pmtn|∑j wjCj

We now consider the simpler preemptive case. Consider the following algorithm
Preemptive α Scheduling Randomized (PASR):
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Algorithm PASR:

Input: A scheduling instance I = {(pi, ri, wi), i ∈ N} which is revealed
online and a distribution f .

(1) Construct the preemptive LP-schedule on a single virtual machine m-times
faster (I (→ Im).

(2) Draw α randomly from the distribution f(α).
(3) Apply preemptive list-scheduling in order of non-decreasing tj(α) on the m

machines.

Repeating an observation from Schulz and Skutella [16], we see that at any
given time, the order of the tj(α) of already released jobs can be found, even if
the actual values of tj(α) are not known. It is interesting to note that if step
(2) is replaced by “Take α = 1” the algorithm becomes a deterministic online
algorithm and it coincides with Megow and Schulz’s 2-competitive algorithm for
P |rj , pmtn|

∑
j wjCj [13]. On the other hand, if f is taken as the uniform dis-

tribution in [0, 1], PASR is also 2-competitive (and this follows as a consequence
of the forthcoming analysis).

Let Cα
j denote the completion time of job j in the schedule output by algo-

rithm PASR. Consider job j. Define J as the set of jobs that start before job
j in the LP-schedule. For any k �= j, let ηk denote the fraction of job k that is
completed in the LP-schedule by time tj(0+). Note that ηk = 0, ∀k �∈ J . We
also have that tj(0+) ≥

∑
k∈J ηk

pk

m . Now, define K1 = {k | tk(α) < tj(0+)}
and K2 = {k | tj(0+) < tk(α) < tj(α)}. So K = K1 ∪ K2 is the set of
jobs that can preempt job j. Note that jobs k ∈ K2 preempt job j in the
LP-schedule and are all processed in the interval [tj(0+), tj(α)]. Consequently,
tj(α) = tj(0+)+

∑
k∈K2

pk

m +α
pj

m . The following bound is central to our analysis.

Lemma 4.

Cα
j ≤ tj(α) + (1− α

m
)pj +

∑
k∈J,ηk≥α

(1− ηk

m
)
pk

m
.

Proof. We first note that if the LP-schedule is busy, then at least one machine
is busy in the schedule defined by PASR. Thus, by time tj(0+), the LP-schedule
will have processed a total of

∑
k∈K1

ηk
pk

m and consequently, so will have the
schedule defined by algorithm PASR.

We now make some assumptions that can only increase the completion time
of job j: (1) Job j has not begun processing in the schedule defined by PASR
at time tj(0+) and (2) jobs k ∈ K2 are released at time tj(0+) (note that,
originally, jobs in K2 were released sometime in the interval [tj(0+), tj(α)]).
While it is obvious that (1) will only increase the completion time of job j,
it is not immediately clear that (2) also increases the completion time of job j.
However, as we are dealing with preemptive scheduling and as job j cannot finish
before tj(α), making jobs in K2 available earlier only increases the times tj(x)
for any 0 ≤ x ≤ 1 (since it was possible that job j found some open machine
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in the interval [tj(0+), tj(α)]). Thus, job j’s completion time can only increase
under assumption (2).

Thus, under Assumptions (1) and (2), at time tj(0+), the amount of available
processing that remains from K1 ∪K2 is at most

∑
k∈K2

pk +
∑

k∈K1
(1− ηk

m )pk.
Since we have m machines, by standard averaging arguments, we have that

Cα
j ≤ tj(0+) +

∑
k∈K2

pk

m
+
∑

k∈K1

(1− ηk

m
)
pk

m
+ pj

= tj(0+) +
∑

k∈K2

pk

m
+

∑
k∈J,ηk≥α

(1− ηk

m
)
pk

m
+ pj

= tj(0+) +
∑

k∈K2

pk

m
+ α

pj

m
+ (1− α

m
)pj +

∑
k∈J,ηk≥α

(1− ηk

m
)
pk

m

= tj(α) + (1− α

m
)pj +

∑
k∈J,ηk≥α

(1− ηk

m
)
pk

m
,

and the proof is complete.

The next lemma generalizes a result by Schulz and Skutella [16]; its proof is
omitted for space limitations.

Lemma 5. Suppose there exists a distribution f(α) and a constant γm ∈ (0, 1)
such that:

– maxα∈[0,1] f(α) ≤ 1 + γm.
– (1− η

m )
∫ η

0
f(α)dα ≤ γmη, ∀η ∈ [0, 1].

– 1− E{α}
m ≤ 1+γm

2 .

Then, Algorithm PASR is (1 + γm)-competitive.

Consider the following distribution for α for the case where we have m ma-
chines:

f(α) =

{
γm

m2

(m−α)2 , α ∈ [0, δm]
(1 + γm) α ∈ (δm, 1],

where γm = δm(m−δm)
m−δm(1−δm) and δm ∈ (0, 1].

Note that for m = 1, if we let δ1 = 1
2 , then γ1 = 1

3 and f is exactly the
distribution chosen by Schulz and Skutella [16], which gives a (1 + γ1) = 4

3 -
competitive algorithm. We are able to find an optimal value δ∗

m for all m ≥ 2
and show that the above distribution satisfies the conditions of Lemma 5, proving
the main result of this section.

Theorem 4. Algorithm PASR is (1 + γm)-competitive for m ≥ 2.

Proof. Omitted for space limitations.

Figure 1 plots 1 + γm as a function of the number of machines.
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Abstract. We introduce unique sink orientations of grids as digraph
models for many well-studied problems, including linear programming
over products of simplices and generalized linear complementarity prob-
lems over P-matrices (PGLCP). We investigate the combinatorial struc-
ture of such orientations and develop randomized algorithms for finding
the sink. We show that the orientations arising from PGLCP satisfy the
combinatorial Holt-Klee condition known to hold for polytope digraphs,
and we give the first expected linear-time algorithms for solving PGLCP
with a fixed number of blocks.

1 Introduction

A grid is a graph whose vertex set is the Cartesian product of n finite sets, with
edges joining all pairs of vertices that differ in exactly one component.

If all sets have size two, we get the graph of the n-cube. A face or subgrid
is any induced subgraph spanned by the Cartesian product of subsets of the
original sets. An orientation ψ of the grid is called a unique sink orientation
(USO) if any nonempty face has a unique sink with respect to ψ. Figure 1 (left)
depicts a USO of the (3 × 2 × 2)-grid. In particular, the grid itself must have
a unique global sink. Grid USO may contain directed cycles, as the 3-cube in
Figure 1 (right) shows.

The significance of USO on grids comes from the fact that they form a sim-
ple combinatorial framework subsuming a number of well-studied problems. We
show in this paper that the problem of solving a generalized linear complemen-
tarity problem over a P-matrix (PGLCP), as introduced by Cottle and Dantzig
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Fig. 1. Left: USO of the (3 × 2 × 2)-grid. Right: cyclic USO of the 3-cube

[2], can be recast as the problem of finding the unique sink of an implicitly given
grid USO. As special cases, this includes the well-known standard linear comple-
mentarity problems over P-matrices (PLCP) [3], linear programming (LP) over
products of simplices, and LP over combinatorial cubes. In the LP applications,
we get acyclic unique sink orientations (AUSO).

Two major open problems motivate our research. On the one hand, it is
unknown whether polynomial-time algorithms exist for PLCP or PGLCP, even
though both problems are unlikely to be NP-hard. Megiddo has shown that
hardness of PLCP would imply NP = co-NP [4], and his proof extends to PGLCP
easily. LP, on the other hand, is solvable in polynomial time (a celebrated result
of Khachyian [5]), but a strongly polynomial algorithm is not known, even if
we are dealing only with LP over combinatorial cubes. Candidates for strongly
polynomial algorithms must be combinatorial in the sense that the number of
arithmetic operations they perform depends only on the combinatorial structure
of the LP but not on the actual numbers that encode it. The AUSO approach
attempts to extract the combinatorial structure behind LP; in this paper, we
generalize to the combinatorics of PGLCP. A polynomial-time algorithm for
finding the sink of a grid USO (using an oracle that returns the orientation of
a given edge) would solve both problems in strongly polynomial time. It seems
unlikely that such an algorithm for general USO will be easier to find than
one for PGLCP. Still, the generalization reveals some (algorithmically useful)
hidden structure, leading to new results for PGLCP. Ultimately, results obtained
along these lines may help to resolve the (combinatorial) complexities of LP and
PGLCP.

The AUSO framework also covers a generalization of LP resulting from the
replacement of linear objective functions with abstract objective functions (AOF)
[6, 7], or completely unimodal numberings of vertices [8, 9]. On general polytopes,
these concepts are dual to the notion of shellings [9], and they have successfully
been applied to the theory of polytope (di)graphs and linear programming [10, 11].

The case of grid AUSO—equivalently, AOF on products of simplices—has
been treated in detail by Björklund et al. as a combinatorial framework for
the problem of computing optimal infinite game strategies [12, 13]. The games
considered include parity, mean-payoff, and simple stochastic games. Whether
parity games (the easiest among the three) can be solved in polynomial time is
an important open question [14].



212 B. Gärtner, W.D. Morris, and L. Rüst

In the planar case (n = 2), the combinatorial and algorithmic properties of
AUSO have been examined by Tschirschnitz et. al. [15, 16].

Unique sink orientations of cubes (not necessarily acyclic) were first consid-
ered by Stickney and Watson as digraph models for PLCP [17]. Most remarkably,
Szabó and Welzl gave algorithms for finding the sink of an n-cube USO by look-
ing at only O(cn) vertices and edges, for some c strictly smaller than 2 [18]. This
in particular yields the first combinatorial algorithms for PLCP with nontrivial
runtime bounds. Unique sink orientations of the graphs of general polytopes are
dual to exact signings studied by Kleinschmidt and Onn [19].

In this paper, we generalize results known to hold in some of the above
special cases, and we prove new structural and algorithmic results of particular
significance for the theory of PLCP and PGLCP. Probably the most surprising
fact is that all these results hold even under the presence of directed cycles in
the orientation.

We develop two simple randomized algorithms whose expected number of
calls to the oracle is of the order f(n)N , with N being the sum of sizes of the
n sets whose product forms the grid, and with f(n) ≈ n!. If n is fixed, we
get linear-time algorithms. Specialized to PGLCP, this corresponds to the case
in which we have a fixed number of blocks; in this situation, we get the first
algorithms whose expected complexity is linear in the number of variables—this
is optimal.

In the acyclic case, linear-time algorithms for fixed n are known. This follows
from the fact that the problem of finding the sink in an AUSO can be formulated
as an LP-type problem [20] in a natural way [12]. In the LP-type framework, a
number of f(n)N oracle calls suffices, even deterministically [21]. The currently
best algorithm for the acyclic case combines two randomized algorithms [20, 22]
and requires an expected number of O(Nn + f(n)) oracle calls, where f(n) =
exp(O(

√
n log n)) is a subexponential function [23]. No subexponential bounds

are known for USO that contain cycles.
Unique sink orientations coming from LP over products of simplices satisfy

an interesting geometric property: consider any subgrid along with its unique
sink and unique source.1 The Holt-Klee (HK) condition states that there is a
set of as many vertex-disjoint directed paths between source and sink as there
are neighbors of the source (equivalently, the sink) in the subgrid [24]. The HK
condition does not hold for general AUSO; there are two nonequivalent AUSO
of the 3-cube with no set of three vertex-disjoint directed paths from source to
sink. The HK condition is important as the only known simple combinatorial
condition that can distinguish geometric from abstract situations, and there is
an interesting algorithmic scenario in which this distinction becomes apparent
[25, 26].

We prove that all grid USO coming from PGLCP do satisfy the HK condition
(we also say that they are HK), even in the presence of cycles. This result
emphasizes the geometric nature of PGLCP and establishes a new combinatorial

1 The existence of a unique source follows from Theorem 1.
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way of proving that a given USO cannot be realized as a PGLCP instance. The
result is new also in the context of PLCP with its wide range of applications
[3, 27].

The rest of this paper is organized as follows. After giving some basic results
in the next section, Section 3 introduces two problems giving rise to USO of
grids. Section 4 analyses two algorithms finding the sink of a grid USO and the
final section is devoted to the proof that PGLCP induced orientations fulfill the
HK condition.

2 Basics

Throughout this paper, we fix two natural numbers N ≥ n ≥ 1 and an ordered
partition

Π = (Π1, . . . , Πn)

of the set [N ] := {1, . . . , N} into n nonempty subsets. We also refer to Πi as the
block i.

A subset J ⊆ [N ] is called a Π-vertex (or simply vertex ) if |J∩Πi| = 1 for all
i. Let V be the set of all vertices. The n-dimensional grid spanned by S ⊆ [N ]
is the undirected graph G(S) = (V (S), E(S)), with

V (S) := {J ∈ V | J ⊆ S}, E(S) := {{J, J ′} ⊆ V (S) | |J ⊕ J ′| = 2}.

The vertices of G(S) canonically correspond to the elements of the Cartesian
product

n∏
i=1

Si, Si := S ∩Πi.

Edges join pairs of vertices J, J ′ that differ in exactly one coordinate.
A face or subgrid of G(S) is any graph of the form G(S′), for S′ ⊆ S.

Throughout, we abbreviate G([N ]) as G.

Definition 1. Let ψ be an orientation of G. ψ is called a unique sink orientation
(USO) if all nonempty faces of G have unique sinks w.r.t. ψ.

If ψ induces the directed edge (J, J ′), we also write J
ψ→ J ′.

Outmap and h-Vector. Any USO can be specified by associating each vertex J
with its outgoing edges. Given J and j ∈ [N ] \ J , we define J � j to be the
unique vertex J ′ ⊆ J ∪{j} which is different from J , and we call J ′ the neighbor
of J in direction j. Note that J is a neighbor of J ′ in some direction different
from j.

Given an orientation ψ, the function sψ : V → 2[N ], defined via

sψ(J) := {j ∈ [N ] \ J | J ψ→ J � j}, (1)

is called the outmap of ψ. Björklund et. al consider the outmap for acyclic grid
USO and call it VID-function (vector of improving directions) [12]. Szabó and
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Welzl [18] deal with outmaps for cube USO; formally, these are different from
ours, even when we specialize to the cube case, because Szabó and Welzl identify
the n-cube vertices with the subsets of some n-element set, while we identify
them with certain n-subsets of some 2n-element set. Still, we can generalize the
characterization of USO outmaps by Szabó and Welzl, using one more ingredient.

Definition 2. Let s : V → 2[N ]. The vector h(s) = (h0(s), . . . , hN−n(s)), de-
fined via

hk(s) = #{J ∈ V | |s(J)| = k}

is called the h-vector of s. If s = sψ for some orientation ψ on G, we also refer
to h(s) as h(ψ).

The following result is well-known for the acyclic case [9, 12] but going through
its proof, one realizes that only the unique sink property is used [15].

Theorem 1. h(ψ) = h(ψ′) for any two USO ψ,ψ′ of G.

As all USO on a grid have the same h-vector, we denote it by h(Π), empha-
sizing the fact that it depends on the parameters of the grid only. An imme-
diate corollary of this theorem is that the h-vector is symmetric, meaning that
hk(Π) = hN−n−k(Π) for all k ∈ {0, . . . , N−n} (reversing all edge orientations of
a USO yields a USO again [1]). In particular, w.r.t. any given USO, all nonempty
subgrids of G also have unique sources.

Here is the characterization of functions s that are of the form sψ, for ψ being
USO (see [1] for a proof).

Lemma 1. Let s : V → 2[N ] satisfy s(J) ∩ J = ∅ for all J ∈ V . Such an s is
the outmap of a USO of G if and only if

(i) (s(J)⊕ s(J ′)) ∩ (J ⊕ J ′) �= ∅, for all J �= J ′, and
(ii) h(s) = h(Π).

Refined Index. The outmap value sψ(J) ⊆ [N ] of a vertex J w.r.t. some USO ψ
is partitioned according to the dimensions of the grid (the sets Πi). Accordingly,
the outdegree of J can be refined to an n-vector of dimensional outdegrees, as
follows.

Definition 3. Let ψ be a grid USO. The function

rψ : V →
n∏

i=1

{0, . . . , |Πi| − 1},

with
rψ(J) = (|sψ(J) ∩Π1|, . . . , |sψ(J) ∩Πn|) , J ∈ V

is called the refined index of ψ.
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Unlike the outmap, the refined index is a mapping between two sets of the
same size, so it is natural to ask whether this mapping is a bijection. This is true
in the cube case (where the refined index is just a different way of writing the
outmap) [18], and it also holds for grid AUSO [12], where Björklund et al. use
the term signature (SIG). The proof of the latter result does not generalize to
the case of general USO. We show in [1] that the refined index is a bijection in
general.

Theorem 2. Let ψ be a grid USO. The refined index rψ is a bijection.

In the proof, we make use of the concept of inherited orientations. Given
a grid orientation, an inherited grid orientation can be obtained by collaps-
ing dimensions of the grid, merging vertices along the collapsed dimensions to
hypervertices. Hypervertices correspond to faces of the original grid, and the
outmap of a hypervertex is defined as the outmap of the corresponding face
sink.

The important fact is that inherited orientations of USO are USO again. This
is utilized to get a contradiction in the case of two vertices with the same refined
index: collapse the grid until we get a 1-dimensional grid USO where two vertices
have the same outdegree, contradicting Theorem 1.

The bijection property of the refined index is useful in the proof of the follow-
ing theorem [1]. Previously, this was only known to hold for USO of 2-dimensional
grids that satisfy the Holt-Klee condition [15, 16].

Theorem 3. Any unique sink orientation of a 2-dimensional grid is acyclic.

3 Grid LP and Generalized LCP

In this section, we present two geometric models of grid USO arising from
Grid LP and Generalized LCP. Consider a linear program in the variables
x = (x1, . . . , xN )T , of the form

minimize cTx
subject to Ax = b,

x ≥ 0,
(2)

where A ∈ Rn×N , b ∈ Rn, c ∈ RN . For S ⊆ [N ], let AS denote the submatrix of
columns indexed by S. Furthermore assume that every vertex J is a nondegener-
ate basis in (2), meaning that A−1

J b > 0. We say that the LP is Π-compatible (or,
equivalently, the LP is a Grid LP), and we call AJ a representative submatrix.
We will assume that the ordering of the columns in AJ is compatible with Π,
meaning that the i-th column of AJ comes from block Πi, i ∈ [n].

The feasible region of a Π-compatible LP is combinatorially equivalent to
the product of n simplices with a total of N facets. A unique sink orientation of
the grid G is obtained from a Π-compatible LP with generic objective function
vector c, meaning that cTx is not constant on any edge. In this case, an edge
can be directed towards its vertex of lower objective function value. The resulting



216 B. Gärtner, W.D. Morris, and L. Rüst

orientation is a USO, with the unique sink of the face G(S) corresponding to
the unique optimal basis of the linear program resulting from (2) by restricting
to the variables with indices in S.

The simplex algorithm (Chvátal’s book [28] contains an excellent introduc-
tion) determines the edge orientations in terms of reduced cost coefficients. More
precisely, if J is some basis, the row vector

c̄(J) := cT − cT
J A

−1
J A (3)

is the reduced cost vector associated with J . Note that c̄(J)J = 0, and that
c̄(J)j �= 0 for j /∈ J , if c is generic. Thus, if J ′ is adjacent to J , with j being the
unique index in J ′ \ J , we have

J → J ′ ⇔ c̄(J)j < 0. (4)

The existence of a unique sink therefore provides us with a solution to the
following feasibility problem.

Definition 4. Let A ∈ Rn×N and c ∈ RN such that A has property P, mean-
ing that all determinants of representative submatrices AJ of A have the same
nonzero sign. The P-generalized linear complementarity problem (PGLCP) de-
fined by (A, c) is the problem of finding a vector y ∈ Rn such that cT ≥ yTA,
and with the property that for every i ∈ [n], there is some j ∈ Πi satisfying
cj = (yTA)j.

Intuitively, PGLCP is LP of the form (2) ’without a right-hand side’. It turns
out that under this generalization, uniqueness of solution as well as the USO
formulation persist. Because already the cyclic cube USO of Figure 1 (right)
arises from a PGLCP [17], the generalization is proper.

Theorem 4. Let A ∈ Rn×N and c ∈ RN define a PGLCP instance. Then

(i) there exists a unique solution y ∈ Rn to (A, c), and
(ii) if c is generic, the edge orientations given by (4) define a unique sink orien-

tation of the grid G.

Proof. Fix some vertex J , define

MT := A−1
J A,

qT := c̄(J) = cT − cT
J A

−1
J A,

and consider the problem of finding z ∈ Rn, w ∈ RN such that

w −Mz = q, (5)∏
j∈Πi

wj = 0, i ∈ [n], (6)

and
w, z ≥ 0. (7)
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By definition, every solution must satisfy

zi = wj , i ∈ [n], j ∈ Ji, (8)

meaning that (6) is equivalent to

zi

∏
j∈Πi

wj = 0. (9)

Equations (5), (7) and (9) define the P-generalized linear complementarity prob-
lem according to Cottle & Dantzig who show that a feasible solution (w, z) exists
if every representative submatrix of MT is a P-matrix [2]. A matrix is a P-matrix
if all determinants of principal minors are positive [3]. In our case, MT satisfies
this, which easily follows from the fact that MT has property P and contains
a representative identity matrix. Note that the n variables wj , j ∈ J of system
(5) are redundant by (8) and can be deleted from the problem, along with their
corresponding rows.

To prove the existence of y in part (i), it remains to observe that y fulfills the
conditions of Definition 4 if and only if zT = cT

J − yTAJ and wT = cT − yTA
solve (5), (6) and (7). The uniqueness of y follows from the known uniqueness
proofs in the setup of Cottle & Dantzig [29, 30].

Statement (ii) is a corollary of (i), because c being generic implies that the
vector y from (i) can be expressed in the form yT = cT

KA−1
K for exactly one K.

This set K is the unique sink of G in the orientation defined by (4). The fact
that this orientation defines a USO easily follows: applying the above arguments
to the PGLCP instance (AS , cS), we can prove the existence of a unique sink in
the subgrid G(S). ��

4 Algorithms

In this section, we develop randomized algorithms for finding the sink of a
given grid USO, implicitly specified by an edge evaluation oracle. The oracle
must be able to return the orientation of any given grid edge. Our complex-
ity measure will be the maximum (expected) number of oracle calls needed
to find the sink in the worst case. In all concrete instances, this oracle can
easily be implemented in polynomial time, meaning that the number of oracle
calls is a good measure of complexity. In the case of PGLCP, for example, an
edge evaluation must return the sign of a single coefficient of the reduced cost
vector (3).

Any USO algorithm which calls the oracle only a polynomial number of times
is actually a strongly polynomial algorithm for LP and PGLCP. Moreover, the
complexity of a single edge evaluation typically only depends on n but not on
N (in the PGLCP case, this complexity is O(n3)). Thus, if n is considered to
be a constant, any bound on the number of edge evaluations determines the
complexity of the algorithm up to a constant factor.
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4.1 The Product Algorithm

This algorithm generalizes the product algorithm of Szabó and Welzl from cubes
[18] to grids, with a slight twist: while in the n-cube, all dimensions are equiv-
alent with respect to their size (which is two), a general grid may have ’heavy’
dimensions (with large Πi) and ’light’ dimensions. Our algorithm gives priority
to the heavy dimensions. Recall that Si := S ∩Πi. A generic call to Product
finds the sink of a nonempty face G(S), see Figure 2 (left).

Algorithm 5
Product(S):

IF is vertex(S) THEN

RETURN S
ELSE

choose a heaviest Si ∈ S
choose j ∈ Si at random
K := Product(S \ {j})
K′ := K � j

IF K′ ψ→ K THEN

RETURN K
ELSE

RETURN

Product((S \ Si) ∪ {j})
END

END

Algorithm 6
RandomFacet(J, S):
IF S = J THEN

RETURN J
ELSE

choose a heaviest Si ∈ S
choose j ∈ Si \ Ji at random
K := RandomFacet(J, S \ {j})
K′ := K � j

IF K′ ψ→ K THEN
RETURN K

ELSE

RETURN

RandomFacet(K′, (S \ Si) ∪ {j})
END

END

Fig. 2. The Algorithms Product and RandomFacet

The algorithm recursively computes the sink K of the subgrid G(S \ {j}).
If the edge incident to K in direction j is incoming, we have already found the
global sink, otherwise we need to search the lower-dimensional ’facet’ G((S\Si)∪
{j}) recursively. To prepare the analysis of the algorithm, let S ⊆ [N ] be a set
containing a vertex and let z = maxn

i=1 |Si| be the size of a heaviest dimension.
The (z − 1)-vector (a2, . . . , az), defined through

at = |{i ∈ [n] | |Si| = t}|

is called the characteristic of S. If z = 1 (meaning that S is a vertex itself), the
characteristic is the empty vector ().

It can easily be shown by induction that the expected number of edge evalu-
ations in Product(S) only depends on the characteristic of S but (maybe sur-
prisingly) not on the input USO ψ. We can even compute the exact expectation.

Theorem 5. For z ≥ 1, let Te(a2, . . . , az) denote the expected number of edge
evaluations in a call to Product(S), where S has characteristic (a2, . . . , az).
Then

Te(a2, . . . , az) = Te(a2, . . . , az−1 + 1, az − 1) + 1
+ Te(a2, . . . , az−1, az − 1)/z (10)
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for z > 1, with Te(a2, . . . , az−1, 0) := Te(a2, . . . , az−1) and Te() = 0. The solu-
tion to this recurrence is

Te(a2, . . . , az) =
z∏

k=2

Hak

k +
z∑

k=2

z∏
�=k

(H� −Hk−1 + 1)a� − z. (11)

Here, Hk is the k-th Harmonic number.

Proof. It is clear that (a2, . . . , az−1 +1, az−1) and (a2, . . . , az−1, az−1) are the
characteristics of the grids handled in the recursive calls. Moreover, the second
recursive call is executed if and only if the global sink contains the chosen ele-
ment j. This happens with probability 1/z. The recurrence follows. The closed
form (11) can be checked by induction. ��

For fixed z, (11) is maximized if az = n. This corresponds to the characteristic
(0, . . . , 0, n) of the (z × · · · × z)-grid. It follows that

Te(a2, . . . , az) ≤ Hn
z +

z∑
k=2

(Hz −Hk−1 + 1)n − z. (12)

The middle term

f(n, z) :=
z∑

k=2

(Hz −Hk−1 + 1)n (13)

asymptotically dominates the bound in (12), and an estimate of f(n, z) ≤
(z − 1)Hn

z ≈ z lnn z immediately follows. The next result shows that the bound
is actually linear in z.

Lemma 2.

Te(a2, . . . , az) ≤ (�en!� − 1) z + Hn
z .

Proof. Using the estimate

u∑
t=�

g(t) ≤
∫ u

�−1

g(x) dx (14)

for any decreasing function g such that the integral exists, we can bound (13)
as follows.

f(n, z) =
z∑

k=2

(Hz −Hk−1 + 1)n
(14)

≤
z∑

k=2

(ln z − ln(k − 1) + 1)n

=
z−1∑
k=1

(
1− ln

k

z

)n

<

z∑
k=1

(
1− ln

k

z

)n

(14)

≤
∫ z

0

(
1− ln

k

z

)n

dk = z

∫ 1

0

(1− lnx)n
dx := zIn.
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Integration by parts yields the recurrence relation

In = 1 + nIn−1,

with I0 = 1. This solves to In = �en!� for n > 0 [31]. The statement follows. ��
This means, algorithm Product solves any PGLCP instance with a fixed

number n of blocks in expected time O(z) = O(N) which is asymptotically
optimal.

Algorithm 5 is a close relative of algorithms due to Seidel (for linear pro-
gramming with n variables and N constraints) [32] and Welzl (for finding the
smallest enclosing ball of a set of N points in dimension n) [33].

The expected number of edge evaluations depends on the rule for choosing
i, and a bad rule can lead to a complexity which is asymptotically worse than
what we found in Theorem 5. For instance, always choosing i to be a lightest
dimension yields an expected number of

z−1∑
k=1

k

(
k∏

�=2

Ha�

�

)
ak+1−1∑

m=0

Hm
k+1

az :=n= (z − 1)
n−1∑
m=0

Hm
z =

z − 1
Hz − 1

(Hn
z − 1),

edge evaluations, which is superlinear in z. We believe (although we cannot prove
it formally) that our choice of i in Algorithm 5 leads to the smallest possible
expected number of edge evaluations.

4.2 The Algorithm RandomFacet

The RandomFacet algorithm shares its basic idea with the Product algo-
rithm. In addition to the current set S, it maintains a current vertex J ∈ V (S)
which may be replaced at some point by a neighbor of J along an outgoing edge.
This means, we get a path-following algorithm. In order to guarantee the invari-
ant J ∈ V (S), the element j which gets removed from S for the first recursive
call must not be in J , see Figure 2 (right).

As in the case of the Product algorithm, we can derive an explicit bound
on the runtime, but here it is an upper bound instead of an exact bound. We
get that the expected number of edge evaluations for a grid of characteristic
(a2, . . . , az) is at most

z−1∑
k=1

z−1∏
�=k

(H� −Hk−1 + 1)a�+1 − z + 1.

The complexity is again maximized if az = n, and an upper bound of

z−1∑
k=1

(Hz−1 −Hk−1 + 1)n − z + 1 = (Hz−1 + 1)n +
z∑

k=2

(Hz−1 −Hk−1 + 1)n − z

holds. Comparing this with (12), we see that for large z, both algorithms have
approximately the same expected worst-case complexity which we have shown



Unique Sink Orientations of Grids 221

to be linear in z. However, only RandomFacet has the potential of being faster
than the upper bound in practice, for example if the starting vertex is already
close to the sink, or if paths tend to be short in the USO under consideration.

The algorithm RandomFacet is a close relative of an algorithm by Ma-
toušek, Sharir and Welzl for LP-type problems [20].

5 The Holt-Klee Condition

A grid USO is said to be Holt-Klee (HK), if there exists a set of N-n vertex-
disjoint paths from source to sink and if in addition, every nonempty subgrid is
HK.

In the following, we prove that USO coming from PGLCP are HK. We actu-
ally prove that a larger class of digraphs, those defined by complete pointed fans
in Rd, has the Holt-Klee property. Here, we follow the notation of Ziegler [34].

Definition 7. A fan in Rd is a family F = {C1, C2, . . . , Ct} of nonempty poly-
hedral cones, so that

(i) Every nonempty face of a cone in F is also a cone in F .
(ii) The intersection of any two cones in F is a face of both.

A fan F is complete if the union of its cones is Rd. It is pointed if the zero vec-
tor is one of its cones. The dual graph GF of a fan has as its vertex set the set of
d-dimensional cones of F , with two cones joined by an edge if their intersection
is a (d− 1)-dimensional face of F .

In our PGLCP application (see Section 3), we use d = N−n, and we consider
a matrix Â that has as its row space the complement of the row space of A in
RN and say that a set of columns of Â generates a cone of F if and only if the
set does not contain all of the columns indexed by Πi for any i. We show in [1]
that property P of the matrix A ensures that the family F satisfies (i) and (ii).
The dual graph of such a fan is a grid graph.

A vector q ∈ Rd is said to be in general position with respect to F if it is
not contained in any hyperplane that contains a (d− 1)-dimensional cone of F .
If a vector q is in general position with respect to a fan F , we can define an
orientation Γq,F , in which an edge joining cones C and C ′ is oriented from C to
C ′ if C\C ′ and q are on opposite sides of the hyperplane containing C ∩C ′. The
digraph Γq,F has a unique sink and source, which are the faces of F that contain
q and −q. The interior of a directed path in a digraph is the set of vertices in
the path other than the first and the last vertex.

Theorem 6. There is a set of d directed paths in Γq,F from the source to the
sink that have pairwise disjoint interiors.

We need the following lemma for the proof.

Lemma 3. Let K = {K1,K2, . . . ,Kd−1} be d-dimensional cones of F , and sup-
pose that none of these cones contains q or −q. Then there exists a vector w
orthogonal to q so that the segments from q to w and from −q to w both have
empty intersection with each of the cones of K.
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Proof. Assume without loss of generality that q is the dth unit vector (0, . . . , 0, 1).
Let K ∈ K and let ÂK be the submatrix of Â containing the generators of
K. Now let AK be the matrix obtained from ÂK by deleting the last row.
The columns of AK are the projections of the columns of ÂK onto the hy-
perplane Hq orthogonal to q. Because neither q nor −q is in K, the systems
ÂKx = q, x ≥ 0 and ÂKx = −q, x ≥ 0 have no solution. It follows that the
system AKx = 0, x ≥ 0, x �= 0 has no solution. By Gordan’s Theorem [35] there
exists a vector zK so that zT

KAK > 0. For such a zK , any sufficiently small pertur-
bation of it will also satisfy the inequality. Therefore there we can find a linearly
independent set {zK1 , zK2 , . . . , zKd−1} so that for each i, zT

Ki
AKi

> 0. Let Z be
a (d− 1)× (d− 1) matrix that has as its rows the vectors zT

Ki
, i = 1, . . . , d− 1.

Stiemke’s Theorem [36] says that the system Zw ≤ 0, Zw �= 0 has a solution
if and only if the system yTZ = 0, y > 0 has no solution. But the matrix Z is
nonsingular, so the second system has no solution. Therefore there must be a
vector w ∈ Hq that is not in any of the cones AK for K ∈ K. This w is nonzero,
because Zw is nonzero. The vector w satisfies the requirements of the lemma,
because any intersection of a cone of K with the segment from q to w or the
segment from −q to w would project to the cone generated by w. It should also
be noted that since the cones AK are closed, there is an open set of such w. ��

With this, we are ready for the proof.
Proof (of Theorem 6). The directed vertex version of Menger’s theorem states
that there will be d disjoint directed paths from the source of Γq,F to the sink if
and only if there do not exist d− 1 vertices of the graph other than the source
and the sink that cover all directed paths from the source to the sink. A set of
d − 1 vertices of Γq,F other than the source and the sink corresponds to a set
K = {K1,K2, . . . ,Kd−1} as in the lemma. Because the set of w satisfying the
conditions of the lemma is open, we can choose a w for which the segments from
w to q and from w to −q do not meet any cones of F of dimension less than
d − 1. We claim that the sequence of d-dimensional cones met by the directed
segment from −q to w, followed by the sequence of d-dimensional cones met by
the directed segment from w to q, corresponds to a directed path from the source
to the sink of Γq,F . Suppose Ci and Cj are two d-dimensional cones of F , and
that the directed segment from −q to w crosses, in order, (Ci, Ci∩Cj , Cj). Then
Ci\(Ci ∩Cj) and q are on opposite sides of the hyperplane spanned by Ci ∩Cj ,
so the edge of Γq,F connecting Ci and Cj is oriented from Ci to Cj . Similarly,
the edges connecting cones met by the directed segment from w to q are oriented
consistently with the direction of the segment. ��

The grid orientation defined by Γq,F is the same as that defined in Section 3
through the reduced costs in Equation (3) [1]. This yields the desired result.

Corollary 1. Any PGLCP-induced grid USO ψ satisfies the Holt-Klee condi-
tion.

Reorienting all edges along a fixed dimension of the grid preserves the prop-
erty of being PGLCP-induced [1]. It follows that a grid USO can only be PGLCP-
induced if all 2n reorientations satisfy the Holt-Klee condition.
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The special case of the Theorem 6 in which F is the normal fan of a poly-
tope was shown by Holt and Klee [24]. Our proof uses Menger’s theorem, which
was used by Holt and Klee, but does not use the geometry of a polytope. Our
approach may be seen as an alternate way to prove the Holt - Klee Theorem.
The graph Γq,F has been used by Kleinschmidt and Onn to prove that fans are
signable [19]. Restricted to PGLCP-induced fans, their result simply says that
the undirected grid graph ΓF underlying Γq,F has a unique sink orientation,
namely Γq,F . Theorem 6 strengthens the result of Kleinschmidt and Onn by
showing that the signings they produce have an interesting additional property.
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20. Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear program-
ming. Algorithmica 16 (1996) 498–516
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23. Gärtner, B., Welzl, E.: Linear programming – randomization and abstract frame-
works. In: Proc. 13th Ann. ACM Symp. Theoretical Aspects of Computer Science.
Volume 1046 of Lecture Notes Comput. Sci., Springer-Verlag (1996) 669–687

24. Holt, F., Klee, V.: A proof of the strict monotone 4-step conjecture. In Chazelle,
J., Goodman, J.B., Pollack, R., eds.: Advances in Discrete and Computational
geometry. Contemporary Mathematics. Amer. Math. Soc. (1998)
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36. Stiemke, E.: Über positive Lösungen homogener linearer Gleichungen. Journal

für die reine und angewandte Mathematik 76 (1915) 340–342



Jumping Doesn’t Help in Abstract Cubes

Ingo Schurr� and Tibor Szabó��
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Abstract. We construct a class of abstract objective functions on the
cube, such that the algorithm BottomAntipodal takes exponentially
many steps to find the maximum. A similar class of abstract objective
functions is constructed for the process BottomTop, also requiring ex-
ponentially many steps.

1 Introduction

The Model. Let P ⊆ IRn be a convex polyhedron (given as the intersection of m
halfspaces) and c : IRn → IR be a linear objective function; linear programming
seeks a vertex of P maximizing c. While linear programming is known to have
a polynomial time algorithm in the bit size of the input, its complexity in the
so-called unit-cost model remains an important open question. That is, what
is the smallest f(n,m) such that any linear program in dimension n with m
constraints can be solved in time at most f(n,m) if all arithmetic operations are
assumed to incur unit cost?

Numerous researchers studied this problem and still our understanding is far
from satisfactory. The best known algorithms, due to Kalai [9] and Matoušek,
Sharir, and Welzl [11], work in time eO(

√
m log n). An important aspect of both

approaches is that they disregard most of the geometric content of the problem
and consider only a basic combinatorial skeleton.

One of the most natural and useful combinatorial simplifications is the con-
cept of abstract objective functions, which was first introduced by Adler and his
coauthors [1, 2], and later by Williamson Hoke [15] and Kalai [8] under different
names. Given a convex polytope P with vertex set V , the graph of P is the
graph G(P ) with vertex set V and with edges corresponding to the edges (1-
dimensional faces) of P . A function f : V → IR is called an abstract objective
function if on every face F of P there is a unique local maximum of f . That is,
there is a unique vertex v ∈ F , such that v has a larger f -value than all its neigh-
bors in G(P ). In particular, this unique local maximum is a global maximum
on F .
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Note that a generic linear function is a special case of an abstract objective
function, though most abstract objective functions of a given polytope cannot be
achieved by a linear function. The model is still quite powerful: Kalai’s subexpo-
nential randomized simplex algorithm for linear programming works for arbitrary
abstract objective functions.

In our paper we prefer to formulate our results in an alternative but equivalent
framework. An orientation of the edges of the graph G(P ) is called an acyclic
unique sink orientation1 or AUSO of the polytope P if the induced subgraph of
G(P ) on the vertex set of any face of P has exactly one sink (vertex of outdegree
zero). We assume that the orientation is given by an oracle: after querying a
vertex the oracle returns the orientation of the edges incident to the queried
vertex.

Any abstract objective function induces an AUSO: Orient every edge from
the vertex with the smaller value to the one with the larger value. The optimum
vertex with the largest value of the objective function becomes the (unique)
sink of G(P ). On the other hand, given an AUSO, the vertices of G(P ) can be
numbered according to an arbitrary linear order which extends the partial order
defined by the AUSO. This numbering defines an abstract objective function
on P .

The Algorithm. The oldest and most natural combinatorial attack to solve a lin-
ear program is the simplex algorithm. Geometrically, it can be viewed as follows:
We start at some initial vertex of the polytope P and at each step we move from
the current vertex v along an edge of P to another vertex w with c(w) > c(v)
(this is called a pivot step). Typically there are several possible choices of w
at each step, and the way of selecting one of them is called a pivot rule. The
simplex algorithm terminates for every pivot rule, of course, but the difference
in the number of steps for different pivot rules may be enormous.

Earlier results on the worst-case complexity of various pivot rules are rather
discouraging. For Dantzig’s original pivot rule, Klee and Minty [10] constructed
a class of examples where this rule leads to an exponential number of steps. It
is a polytope isomorphic to the cube [0, 1]n, but the cube is slightly deformed in
such a way that there is a Hamiltonian monotone path, that is, a directed path
visiting all vertices such that a suitable linear objective function increases along
it. Subsequently such worst-case examples were found by various researchers for
almost all known deterministic pivot rules; see Goldfarb [6] for an overview and
Amenta and Ziegler [3] for a new unified view of these examples.

Motivated by the unsuccessful attempts of deterministic simplex algorithms,
Kaibel [7] suggested a very non-simplex-like algorithm, something which takes
not only one of the outgoing edges into account, but, in some sense all of them. Of
course in order to abandon the idea of progress along an edge, one needs to know
something about the structure of the polytope. For example, when our polytope
is combinatorially equivalent to the n-dimensional cube, then it makes sense to

1 For some purposes, it is also very interesting to consider unique-sink orientations of
polytopes that are not necessarily acyclic (see, e.g., [12, 14, 13]).
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speak about an “antipodal vertex”. Each vertex is at the bottom of the face
generated by its outgoing edges, as it is the source of this face. Motivated by the
picture of the orthogonal cube, the algorithm BottomAntipodal jumps from
the bottom vertex of the face generated by its outgoing edges to the antipodal
vertex within this face.

We also consider a process called BottomTop (also suggested by Kaibel
[7]), which, in some sense, represents the most greedy approach one can imagine.
Being at a vertex v and knowing the adjacent outgoing edges, one knows that
every vertex in the face generated by these outgoing edges is better than the
current vertex. Suppose we have access to an oracle which tells us the best vertex,
i.e., the sink, in this subcube, and thus we are able to jump there in one step.
It is then plausible to believe this to be a good idea. A step of the process
BottomTop is defined by jumping from the current vertex v to the sink v′ in
the subcube generated by the outgoing edges incident to v. BottomTop is of
course not an algorithm, since we need to have access to an oracle which tells us
the sink of a subcube once we provide the source.

The Results. In Sect. 4 of this paper we construct an acyclic unique sink ori-
entation of the n-dimensional cube, such that BottomAntipodal takes an
exponential number of queries to find the sink. In Sect. 5 we give a construction
of an AUSO of the cube on which BottomTop performs an exponential number
of queries.

2 Preliminaries on AUSOs

Let ei ∈ {0, 1}n be the vector having 1 at position i and zeros elsewhere. For
zero-one vectors v and w, v + w is understood as the modulo 2 sum of v and w.
The notation vw stands for the concatenation of the vectors v and w. The zero
vector of dimension greater than one is denoted by 0 and the reader is trusted
to figure out the correct length of the vector.

From now on, by an AUSO we will mean an acyclic unique-sink orientation of
the cube [0, 1]n (we will not consider any other polytopes). The graph of the n-
dimensional cube is the usual n-dimensional (graph-theoretic) cube with vertex
set {0, 1}n. The neighbors of a vertex v are v + ei, i = 1, 2, . . . , n.

Formally we will identify an n-dimensional AUSO A with its outmap sA :
{0, 1}n → {0, 1}n, where sA(v)i = 1 if the edge {v, v + ei} is oriented from v
towards v+ ei, and sA(v)i = 0 otherwise, i.e., if that edge is oriented from v+ ei

towards v. It is known that the outmap sA is a bijection for any AUSO A, even
if we restrict it to an arbitrary subcube. In particular, an AUSO does not only
have a unique sink per face, but also, e.g., a unique source. For this and other
facts about unique sink orientations of cubes see, for example, [14].

We say that two AUSOs A and B are isomorphic if there is a bijection be-
tween the vertices of A and the vertices of B that preserves the oriented edges.

In the following we describe two lemmas, special cases of results of [13],
which allow us to construct new AUSOs from old ones. The first lemma uses the
product structure of the cube.
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Fig. 1. The blowup-
construction: Four identical
2-dimensional AUSO (drawn in
black) are interconnected by 22

2-dimensional frames (drawn in
gray)

Lemma 1 (Blowup construction, [13–Lemma 3]). Let A be an AUSO of
dimension m and for each u ∈ {0, 1}m let Bu be a n-dimensional AUSO. Then
the map sC : {0, 1}m+n → {0, 1}m+n defined by sC(uv) = sA(u)sBu

(v) is the
outmap of an (m + n)-dimensional AUSO C.

One can imagine that we blow up each vertex of A to a n-dimensional cube,
which is oriented according to some AUSO, generally different for different ver-
tices. For us, however, a complementary view will be more useful: We can obtain
C by taking 2n copies of A and, for each vertex u of A, interconnecting all the
2n copies of u by an n-dimensional cubic “frame” oriented according to Bu. This
is illustrated in Fig. 1.

The second lemma, the heart of our recursion, allows to change the orientation
on a smaller subcube under appropriate conditions. Let A be an n-dimensional
AUSO and let S be a face of the n-dimensional cube (isomorphic to an m-
dimensional cube for some m ≤ n). We call S a hypersink of A if all edges
connecting vertices of S to vertices outside S are oriented towards S.

Lemma 2 (Hypersink reorientation, [13–Lemma 5]). Let A be an n-
dimensional AUSO and let S be an m-dimensional hypersink of A. If the edges
within S are reoriented according to an arbitrary m-dimensional AUSO B, and
the orientations of all other edges are left as in A, then the resulting orientation
of the n-dimensional cube is an AUSO.

As a warm-up let us recall the definition of the Klee-Minty cube in the frame-
work of our lemmas. The zero-dimensional Klee-Minty cube KM0 consists of one
vertex. To construct KMn we take two copies K and K ′ of KMn−1 and flip the
orientations of all edges in one of them, say in K ′. Then we add a perfect match-
ing between the vertices of K and K ′ having identical coordinates and orient
these edges from K ′ towards K . Note that by Lemma 1 the resulting orientation
is an AUSO: We interconnect 2n−1 copies of a 1-dimensional USO using the two
frames K and K ′. Originally the Klee-Minty cube was defined as a geometric ob-
ject. It is a polytope combinatorially equivalent to the cube, which produces the
orientation defined above if we evaluate an appropriate linear objective function
on its vertices. (See, e.g, [4] for a more detailed study on Klee-Minty cubes.)
As we mentioned in the introduction the Klee-Minty cube is a worst-case ex-
ample for many of the natural pivot rules of the simplex algorithm. As it turns
out, BottomAntipodal and BottomTop are very efficient on the Klee-Minty
cube, even on a much wider class of AUSOs called decomposable orientations (See
[15] for an introduction to decomposable AUSOs).



Jumping Doesn’t Help in Abstract Cubes 229

Lemma 3. Starting at an arbitrary vertex, BottomTop needs at most n + 1
steps to find the sink of the n-dimensional Klee-Minty cube.

Due to the construction of the Klee-Minty cubes for the coordinate n all
edges are oriented towards the same facet S0. In particular all subcubes have
their sink in S0, so after the first step BottomTop will be in S0. Repeating this
argument inductively, after n + 1 steps we are in the sink. A similar argument
works for BottomAntipodal (see [13–Proposition 7]).

3 The BottomAntipodal Tree

The behavior of BottomAntipodal on an AUSO A can be described by the
following directed graph Tba(A): The vertex set of Tba(A) is the vertex set of the
underlying cube of A. Two vertices v, w form an edge v → w if v + sA(v) = w.
In particular, every vertex v has exactly one outgoing edge v → v + sA(v). We
call v + sA(v) the successor of v and denote it by succA(v). The sink o of sA is
special since it is the only vertex in Tba(A) having a loop. For an example, see
Fig. 2.

The unique path starting in a vertex v in Tba(A) will be called the trace of v.
Obviously, the trace of a vertex v is the sequence of queries BottomAntipodal
produces starting in v.

BottomAntipodal will terminate on any AUSO, i.e., Tba(A) is a tree. The
vertex v is a source in the cube spanned by v and v+sA(v). The following lemma
provides us with a path from v to v+sA(v) in the AUSO A. (The proof is rather
easy and omitted.)

Lemma 4. There is a path from the source of an AUSO to any vertex of the
cube.

By the above lemma, the trace of a vertex in Tba(A) induces a trail in A.
In particular, if Tba(A) contains a cycle, so does A. Hence for an AUSO A the
graph Tba(A) is a tree, the so-called bottom-antipodal tree. This tree was first
introduced by Kaibel [7] in connection to randomized simplex algorithms.

Since Tba(A) is a tree, the trace of a vertex v is a path in Tba(A) to the sink
of A. The length of this path is the height hA(v) of v. Obviously, hA(v) differs

0

1
2

3

4

5
6

7

Fig. 2. An AUSO A with a graph Tba(A) of height 4
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by one from the number of queries of BottomAntipodal starting in v. The
height h(A) of Tba(A) is defined as the maximal height of a vertex in A and the
average height h̃(A) is the average over the heights of all vertices in A, that is,
for an n-dimensional A we have

h(A) = max {hA(v) | v ∈ {0, 1}n } h̃(A) =
1
2n

∑
v∈{0,1}n

hA(v).

The height of A corresponds to the worst-case behavior of BottomAntipo-
dal, whereas the average height reflects the expected behavior if we randomize
the starting vertex. Thus, if we can construct a family of examples for which the
maximal height grows exponentially, then BottomAntipodal has exponential
worst-case complexity.

4 The Construction

Theorem 1. Let A be an arbitrary n-dimensional AUSO. Then there exists a
(n + 2)-dimensional AUSO D, such that the height of D is at least 2h(A) and
the average height of D is at least 3

4 h̃(A) + 1
2h(A).

Starting, e.g., with A2 = KM2 and the orientation A3 from Fig. 2, Theorem 1
yields a sequence of AUSOs with exponential height.

Corollary 1. In every dimension n ≥ 2 there is an AUSO, such that the height
of the corresponding bottom-antipodal tree is at least

√
2

n
and the average height

is at least 2
5

√
2

n
.

Proof (of Theorem 1).
We can assume without loss of generality that the sink of A is in 0. As an

intermediate step we first construct an (n + 2)-dimensional AUSO C, which is
the blow-up of A. For each vertex u ∈ {0, 1}n we select a 2-dimensional AUSO
Bu which is isomorphic to KM2. We do not, however, select identical copies. Let
K0 = KM2 be the 2-dimensional Klee-Minty cube, while K1 be KM2 with its
two coordinates permuted. (Fig. 3)

Now let Bu = K0 if the height hA(u) is even and let Bu = K1 if hA(u) is odd.
We let C be the blowup of A by these Bu. So, according to our preferred view
of the blowup construction, we take 4 copies of A and interconnect them by the
2-dimensional frames Bu, each is the Klee–Minty cube with possibly permuted
coordinates. All Bu have their sink at u00, that is, in the same n-dimensional
face S0, which is a copy of A. Consequently, this copy of A is a hypersink in C.

00

1001

11

00

1001

11

Fig. 3. The two orientations K0

and K1
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Table 1. The outmap of the constructed AUSO D in the last two coordinates and the
color-coding of the vertices of D

v′′ 00 11 10 01
hA(v′) even odd even odd even odd
sD(v)′′ 00 01 10 10 11 11 01

color blue green red yellow yellow red

Let vmax be a vertex of A with hA(vmax) = h(A). We now reorient the hypersink
S0 by rotating vmax to 0 (which used to be the sink in S0). More formally, we
obtain a new orientation A′ isomorphic to A, where the outmap of a vertex z is
obtained by sA′(z) = sA(z+w). Then we orient the hypersink S0 of C according
to A′ and we denote the resulting (n + 2)-dimensional AUSO by D.

We can also express the outmap of D formally. For an (n + 2)-dimensional
vector v denote by v′ the projection of v to the first n coordinate, while v′′ is
the projection of v to the last 2 coordinates. Then sD(v)′ = sA(v′) unless v′′ = 0
in which case sD(v)′ = sA(v′ + vmax). The last two coordinates sD(v)′′ of the
outmap sD(v) only depend on the last two coordinates of v and the parity of
hA(v′). See Table 1 for the details.

We introduce a color-coding of the vertices depending on where they lie in
the 2-dimensional Klee-Minty frame they belong to. The hypersink S0, having
vertices with last two coordinates 00, is composed of blue vertices only. The
green vertices occupy the n-dimensional subcube S3 with last two coordinates
11. The remaining two subcubes, S1 and S2 are occupied by yellow and red
vertices, depending on the parity of the height of the projection of the particular
vertex in A. Crucially, v ∈ S1 ∪ S2 and v + 011, being in the same Klee-Minty
frame, have different colors; one of them is red, the other is yellow. See Table 1
on how the vertices are colored. Fig. 4 aims to illustrate the construction and
color-coding.

In the following we make a few observations about the successor succD(v) of
a vertex v ∈ {0, 1}n+2 in the bottom antipodal tree of D.

The successor of a blue vertex is blue. Moreover if v is blue then succD(v)′ =
succA′(v′). In other words once BottomAntipodal is in the hypersink S0,
it never leaves S0 and follows the trace of A′ (which is isomorphic to A). In
particular hD(v) = hA′(v′) = hA(v + vmax).

Next we check the height of the four vertices with v′ = 0. By construction,
the vertices 001, 010, and 011 are the sinks of the copies of A in S1, S2, S3,
respectively. In the subcube S0 we rotated A, such that the sink and vmax

change position. Hence, 000 has height hD(000) = hA(vmax) = h(A). The
vertex 010 has only its (n + 1)-edge outgoing. Thus, its successor is 000 and
hD(010) = 1 + hD(000) = 1 + h(A). The vertex 001 has outgoing edges along
coordinate (n + 1) and (n + 2) and its successor is 010. Therefore
hD(001) = 1 + hD(010) = 2 + h(A). Finally, the vertex 011 has only its (n+ 2)-
edge outgoing and hD(011) = 1 + hD(010) = 2 + h(A).
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S0

S1 S2

S3

S0

S1 S2

S3

Fig. 4. The orientations A3 and A4. The orientation A3 to the left is constructed from
the 1-dimensional AUSO A1 with sink in 0. The orientation A4 to the right is based on
A2. The subcubes S1, S2, and S3 contain A1 and A2, respectively, whereas S0 contains
a flipped variant. The colors are encoded the following way: yellow , green , blue ,
red

The remaining vertices are considered by their color. Assume now that v is
not blue and v′ 	= 0.

If v is red then its successor is blue.
If v is yellow then its successor is also yellow. Moreover succD(v)′ = succA(v′).

A yellow vertex is either in S1 or S2. Since sD(v)′′ = 11, the successor of v is
in the antipodal n-face. Moreover succD(v)′ = succA(v′), since the copies of A
in S1 and S2 are translates of each other. Now succD(v) is yellow because the
height of succD(v)′ is one less, thus has a different parity than the height of v′.
Thus, the trace of v reaches the sink of S2 through yellow vertices while the
first n coordinates are going through the trace of v′ in A. Hence, we have that
hD(v) = hA(v′) + 1 + hD(010) = hA(v′) + h(A) + 2.

If v is green then its successor is yellow. Moreover succD(v)′ = succA(v′).
The argument is similar to the above. As v is in S3 and sD(v)′′ = 01 or 10,

the successor of v is either in S1 or S2 Moreover succD(v)′ = succA(v′), since
the copies of A in S3, S1, and S2 are translates of each other. Now succD(v)
is yellow: The height of succD(v)′ has a different parity than the height of v′.
Hence, succD(v) is in a different frame than v and sD(succD(v))′′ = 11. In fact
the successor of v is identical to the successor of the yellow vertex w in the 2-
dimensional Klee-Minty frame v belongs to. Quantitatively, hD(v) = hD(w) =
hA(w′) + h(A) + 2 = hA(v′) + h(A) + 2.

Now consider the green vertex u with u′ = vmax. By the above we obtain
that

h(D) ≥ hD(u) = hA(u′) + h(A) + 2 = 2h(A) + 2.
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For the average height h̃(D) we forget about the red vertices (as we don’t
know their height) and get (with B being the set of blue vertices, Y the set of
yellow vertices and G the set of green vertices)

h̃(D) =
1

2n+2

∑
v

hD(v) ≥ 1
2n+2

(∑
v∈B

hD(v) +
∑
v∈Y

hD(v) +
∑
v∈G

hD(v)

)

=
1
4
· 1
2n

∑
v∈B

hA′(v′) +
1
4
· 1
2n

∑
v∈Y

hA(v′) +
1
4
· 1
2n

∑
v∈G

hA(v′) +
h(A)

2
+ 1

=
3
4
h̃(A) +

1
2
h(A) + 1. 
�

5 The BottomTop Tree

Recall that the process BottomTop in each step jumps to the sink of the sub-
cube spanned by the outgoing edges of the current vertex. We define a directed
graph Tbt(A), similar to Tba(A). The vertex set of Tbt(A) is the vertex set of A.
Two vertices u and v are connected by an edge u → v, if v is the sink in the
subcube spanned by u and the outgoing edges incident to u. Again, we call v
the successor of u. Since A has a unique sink in every subcube, each vertex u
has exactly one successor v. Also, since A is acyclic, by Lemma 4 again Tbt(A)
is a tree, the bottom top tree. Let tA(v) be the height of v in Tbt(A), t(A) be the
height of Tbt(A) and t̃(A) be the average height of Tbt(A).

Theorem 2. Let A be an arbitrary n-dimensional AUSO. Then there exists a
(n + 2)-dimensional AUSO D, such that the height of the bottom top tree of D
is at least 2t(A) and the average height is at least 1

2 t̃(A) + 1
4 t(A).

Proof. We repeat the construction in Theorem 1, but now we use t instead of h.
That is, vmax now is of maximal height with respect to tA and the copies of K0

and K1 for the frame are chosen according to the parity of tA(u).
With the same color coding as in Theorem 1 we now have the following

picture. As before, blue vertices have blue successors and succD(v)′ = succA′(v′)
provided v is a blue vertex. The vertex 000 corresponds to vmax in A, hence
tD(000) = t(A). The vertices 001 and 010 have successor 000 and thus tD(001) =
1 + t(A) = tD(010). Finally, 011 has successor 010.

Assume that v′ 	= 0. Red and yellow vertices all have blue successors. The
major difference, compared to the proof of Theorem 1 is that now the green
vertices have green successors. A green vertex v has exactly one of the edges
along coordinates n + 1 and n + 2, say n + 1, outgoing. Thus, the subcube B
spanned by v and its outgoing edges consists of two facets, each is a translate of
the subcube B′, spanned by v′ and its outgoing edges in A. The sink of B is either
in the vertex w′01 or w′11, where w′ is the sink of B′. Since w′ = succA(v′), the
value tA(w′) is one less, thus has a different parity than tA(v′). Thus the edge
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between w′01 and w′11 is oriented towards w′11, which is then the sink of B and
the successor of v. Note, that w′11 is a green vertex and succD(v)′ = succA(v′).

For u = vmax11 we now obtain tD(u) = tA(vmax) + 2 + t(A) = 2t(A) + 2.
The average height of D we estimate by forgetting about all the red and

yellow vertices. Summing over the green and blue vertices we get an estimate of

t̃(D) ≥ 1
2
t̃(A)+

1
4
t(A). 
�

Easy calculation shows that t(A2) = 2, t̃(A2) = 1, t(A3) = 4, and t̃(A3) =
7/4. This yields the following corollary.

Corollary 2. In every dimension n ≥ 2 there is an AUSO, such that the height
of the corresponding BottomTop tree is at least

√
2

n
and the average height is

at least 1
6

√
2

n
.

6 Remarks and Open Problems

1.In [14] unique sink orientations of cubes were investigated, which are not neces-
sarily acyclic. As it turns out this more general model is quite useful, for example
it contains linear programming in its whole generality, not just on polytopes com-
binatorially equivalent to the cube. This connection is more abstract than the
obvious relation to AUSOs, more details about it are found in [5]. BottomAn-
tipodal is also possible to perform on this more general model, except that it
is even less useful than for AUSOs since there BottomAntipodal can cycle.
2. It is an intriguing open question to decide what happens when BottomAn-
tipodal or BottomTop is performed on a realizable AUSO, that is on a poly-
tope combinatorially equivalent to the cube. Note that for the Klee-Minty-cube,
and in fact for the much larger class of decomposable orientations, both processes
have a worst case running time of n + 1.

Also, we don’t know whether it is possible to extend our construction to
AUSOs which satisfy the Holt-Klee condition. (The Holt-Klee condition, satisfied
by all realizable polytopes, requires that there are d edge-disjoint source-to-sink
paths in any d-dimensional face of the polytope.)
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Abstract. A symmetric matrix A is said to be sign-nonsingular if every
symmetric matrix with the same sign pattern as A is nonsingular. Hall,
Li and Wang showed that the inertia of a sign-nonsingular symmetric
matrix is determined uniquely by its sign pattern. The purpose of this
paper is to present an efficient algorithm for computing the inertia of such
matrices. The algorithm runs in O(nm) time for a symmetric matrix
of order n with m nonzero entries. The correctness of the algorithm
provides an alternative proof of the result by Hall et al. In addition, for
a symmetric matrix in general, it is shown to be NP-complete to decide
whether the inertia of the matrix is not determined by the sign pattern.

1 Introduction

The inertia of a symmetric matrix indicates the number of the positive/negative
eigenvalues. This is an important quantity invariant under the congruence trans-
formation. Quadratic forms are classified by the inertia of the coefficient matri-
ces. In this paper, we discuss computing the inertia of a given symmetric matrix
from the sign pattern of its entries without numerical information.

Matrix analysis by sign patterns has been studied by many researchers (see
[2]). The analysis is called qualitative matrix theory. It is useful because the sign
pattern of a matrix can be easily inferred in a variety of situations, rather than
the exact value of the matrix entries. For a matrix A, we denote by Q(A) the
set of all matrices having the same sign pattern as A, which is called the sign
pattern class of A. Klee, Ladner and Manber [5] proved that for a rectangular
matrix A, it is NP-complete to discern whether there exists Ã ∈ Q(A) which
is not row full-rank. However, Robertson, Seymour and Thomas [9] devised a
polynomial time algorithm to discern whether Ã is nonsingular for any square
matrix Ã ∈ Q(A).

This paper deals with the sign pattern class of symmetric matrices, which is
denoted by Q∗(A) := {Ã | Ã ∈ Q(A), Ã� = Ã}. A symmetric matrix A is said
to be sign-nonsingular if Ã is nonsingular for any symmetric matrix Ã ∈ Q∗(A).
We first discuss computing the inertia of a sign-nonsingular symmetric matrix
from its sign pattern. Hall, Li and Wang [3] gave several characterizations of
the symmetric sign patterns that require unique inertia in 2001. Their result
implies that the inertia of a sign-nonsingular symmetric matrix is determined
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uniquely by the sign pattern. We prove the uniqueness of the inertia of a sign-
nonsingular symmetric matrix in a different way from Hall et al., that is, we find
a nested sequence {Ak}n

k=1 of the principal submatrices of order k such that at
least one of Ak−1 and Ak is sign-nonsingular for any k = 2, . . . , n. Our proof is
based on a characterization of the structure of a symmetric bipartite graph. Fur-
thermore, our proof naturally provides an O(nm) time algorithm for computing
the inertia of a sign-nonsingular symmetric matrix of order n with m nonzero
entries.

We also discuss the problem of deciding whether a symmetric matrix is sign-
nonsingular or not. We prove that the decision problem whether a given sym-
metric matrix is not sign-nonsingular is NP-complete by the result of Klee et
al. Hence, for a symmetric matrix A in general, it is NP-complete to discern
whether there exists Ã in Q∗(A) such that the inertia of Ã is different from that
of A.

The present paper is organized as follows. Section 2 contains some notations
and preliminaries about matrices and bipartite graphs. In Section 3, we recapit-
ulate the inertia of a symmetric matrix in terms of linear algebra. From Sections
4 to 6, we discuss the inertia of a sign-nonsingular symmetric matrix. Section
4 gives the structure of a symmetric bipartite graph with perfect matchings. In
Section 5, we show that the inertia of a sign-nonsingular symmetric matrix A
is determined uniquely by the sign pattern. In Section 6, we design an efficient
algorithm for computing the inertia of a sign-nonsingular symmetric matrix. In
Section 7, we describe NP-completeness of the decision problem whether there
exists Ã in Q∗(A) such that the inertia of Ã is different from that of A for a
symmetric matrix A in general.

2 Matrices and Bipartite Graphs

For a matrix A, the row index set and the column index set are denoted by
Row(A) and Col(A), i.e., A = (aij | i ∈ Row(A), j ∈ Col(A)), where aij is the
(i, j)-entry of A. For I ⊆ Row(A) and J ⊆ Col(A), A[I, J ] = (aij | i ∈ I, j ∈ J)
means the submatrix of A with row set I and column set J .

For a square matrix A of order n, the determinant of A is defined by

detA :=
∑

π∈Sn

sgnπ
n∏

i=1

aiπ(i), (1)

where Sn denotes the set of all the permutations of order n, and sgnπ ∈ {1,−1}
is the signature of the permutation π ∈ Sn. A square matrix is said to be
nonsingular if its determinant is distinct from zero.

As a combinatorial counterpart of nonsingularity, we say that a matrix A
is term-nonsingular if the expansion in (1) contains at least one nonvanishing
term, that is, if aiπ(i) 	= 0 (∀i ∈ Row(A)) for some permutation π ∈ Sn. Since
the right-hand side of (1) is distinct from zero only if the summation contains a
nonzero term, nonsingularity implies term-nonsingularity. The term-rank of A is
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the maximum size of a term-nonsingular submatrix of A. We denote term-rank
of A by t-rankA. Hence we have t-rankA ≥ rankA.

Let G = (U, V ;E) be a bipartite graph with vertex sets U, V and an edge
set E ⊆ U × V . A path P ⊆ E is a sequence of consecutive edges in a graph.
A circuit C ⊆ E is a path which ends at the vertex it begins. For an edge
subset F ⊆ E, we denote by ∂F the set of all the end-vertices of edges in F ,
i.e., ∂F := {u, v | (u, v) ∈ F}. An edge subset M in G is called a match-
ing if 2|M | = |∂M |, and a matching M is said to be a perfect matching if
∂M = U ∪ V .

With a matrix A, we associate a bipartite graph G(A) = (U, V ;E) with
vertex sets U := {ui | i ∈ Row(A)} and V := {vj | j ∈ Col(A)}. The edge set
E is given by E := {(ui, vj) | aij 	= 0, ui ∈ U, vj ∈ V }, that is, an edge of G(A)
represents a nonvanishing entry of A. A perfect matching in G(A) corresponds
to one nonvanishing term of detA. Therefore, A is term-nonsingular if and only
if G(A) has a perfect matching. Furthermore, the term-rank of A is equal to the
maximum size of a matching in G(A).

For a square matrix A, we say that A has the equisignum determinant if
every nonvanishing term of the determinant of A has the same sign. If a square
matrix has the equisignum determinant, the matrix is obviously nonsingular
independently of the magnitude of its entries. It is known that Ã is nonsingular
for any Ã ∈ Q(A) if and only if A has the equisignum determinant [5]. Because
of Q∗(A) ⊆ Q(A), this is a sufficient condition for a symmetric matrix to be
sign-nonsingular.

Consider a directed bipartite graph D = (U, V ;E). An edge subset F is said
to be central if the subgraph obtained from D by deleting the vertices ∂F has a
perfect matching. A circuit is said to be oddly oriented in D if the circuit contains
an odd number of edges that are directed in the direction of each orientation of
the circuit. We say that a directed bipartite graph D is Pfaffian if every central
circuit in D is oddly oriented.

Let D(A) be a directed bipartite graph associated with a matrix A de-
fined as follows. A vertex set of D(A) is the same as that of G(A), and an
edge e = (ui, vj) is oriented from ui to vj for aij > 0, and from vj to ui for
aij < 0. It is known that A has the equisignum determinant if and only if
D(A) is Pfaffian [6]. The complexity status of the decision problem whether a
given matrix has the equisignum determinant or not had been an open prob-
lem for a long time. This problem is polynomial time equivalent to the de-
cision problem whether a given undirected bipartite graph has a Pfaffian ori-
entation [10]. In 1999, Robertson, Seymour and Thomas [9] gave a polynomial
time algorithm to discern if a given bipartite graph has a Pfaffian orientation.
Moreover, for a bipartite graph which has a Pfaffian orientation, there exists a
polynomial time algorithm to discern if a given orientation is Pfaffian or not.
Thus it can be tested in polynomial time whether Ã is nonsingular for any Ã ∈
Q(A) for a given matrix A. See also McCuaig [7] for a survey on these decision
problems.
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3 The Inertia of Symmetric Matrices

In this section, we recapitulate the inertia of a symmetric matrix in terms of
linear algebra. We consider a symmetric matrix A of order n, where Row(A)
and Col(A) are both identical with a finite set N of cardinality n.

Let p(A) be the number of positive eigenvalues of A, q(A) the number of
negative eigenvalues, and z(A) the number of zero eigenvalues, all counting mul-
tiplicity. The ordered triple In(A) := (p(A), q(A), z(A)) is called the inertia of
A. By the definition of the inertia, we have

rankA = p(A) + q(A), (2)
z(A) = n− rankA. (3)

Consider transforming A to S�AS by a nonsingular matrix S. This trans-
formation is called a congruence transformation. It is known that the inertia of
a symmetric matrix is invariant under congruence transformations (Sylvester’s
law of inertia [4]). Hence, a symmetric matrix A is congruent to a diagonal matrix
as follows:

S�AS = diag(1, . . . , 1,−1, . . . ,−1, 0, . . . , 0), (4)

where the indicated matrix has exactly p(A) “1”, q(A) “−1”, and z(A) “0” in
its diagonal entries. If A is nonsingular, it follows from (4) that

det(S�AS) = (detS)2 detA = (−1)q(A). (5)

The sign of detA is thus determined by the parity of q(A).
Let Ak be a principal submatrix of order k for 1 ≤ k ≤ n. Then there exists

a nonsingular matrix S such that

S�AS =

⎛⎝ Ip(Ak) O O
O −Iq(Ak) O
O O H

⎞⎠ , (6)

where H is a symmetric matrix, and Ip is the identity matrix of order p. This
implies

p(Ak) ≤ p(A), q(Ak) ≤ q(A).

Let {Ak}n
k=1 be a nested sequence of principal submatrices of order k (An := A).

In a similar way, we have

p(Ak) ≤ p(Al), q(Ak) ≤ q(Al), (7)

for each 1 ≤ k < l ≤ n.
A nonsingular symmetric matrix A has a nested sequence {Ak}n

k=1 of princi-
pal submatrices such that no two consecutive submatrices are singular. We call
such a sequence admissible. If we find an admissible nested sequence {Ak}n

k=1 of
principal submatrices, then the inertia of A can be obtained by comparing the
signs of detAk as follows.
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If both Ak and Ak−1 are nonsingular (k ≥ 2), then (5) implies that the
signs of the principal minors detAk and detAk−1 are equal to (−1)q(Ak) and
(−1)q(Ak−1), respectively. Moreover, the difference between q(Ak) and q(Ak−1)
is at most one by (2) and (7). Therefore, we have

In(Ak) =
{

In(Ak−1) + (1, 0, 0) (if sgndetAk = sgn detAk−1)
In(Ak−1) + (0, 1, 0) (if sgn detAk 	= sgn detAk−1).

(8)

In an admissible sequence {Ak}n
k=1, if Ak is nonsingular and Ak−1 is singular

(k ≥ 3), then Ak−2 is nonsingular. Consider transforming Ak by a nonsingular
matrix S to diagonalize Ak−2 as (6). Since Ak−1 is singular and Ak is nonsingular,
the determinant of the submatrix H in the right-hand side of (6) is negative.
Hence sgn detAk 	= sgndetAk−2. Then, by (5), the parities of q(Ak) and q(Ak−2)
are different. Moreover, the difference between q(Ak) and q(Ak−2) is at most two
by (2) and (7). Therefore, we have

In(Ak) = In(Ak−2) + (1, 1, 0). (9)

4 Symmetric Bipartite Graphs

Let G = (U, V ;E) be a bipartite graph with vertex sets U := {u1, . . . , un} and
V := {v1, . . . , vn}. Both of the vertex sets are identified with N := {1, . . . , n}.
A bipartite graph G = (U, V ;E) is said to be symmetric if e = (ui, vj) ∈ E
implies (uj , vi) ∈ E for all e ∈ E. The bipartite graph G(A) associated with a
symmetric matrix A is symmetric. For edge subsets F1 and F2 of G, we denote
by F1F2 the symmetric difference between F1 and F2.

Let G = (U, V ;E) be a symmetric bipartite graph with perfect matchings.
An edge (ui, vi) ∈ E is called a diagonal edge for i ∈ N . For an edge subset F
of G, we call F� := {(uj , vi) | (ui, vj) ∈ F} the transpose of F . If F� coincides
with F , F is called symmetric, otherwise asymmetric.

Let M be a perfect matching in G. A perfect matching M corresponds to
a permutation π ∈ Sn. Since G is symmetric, M� is also a perfect matching
in G, and M� corresponds to the inverse permutation π−1. A permutation π
is expressed uniquely as a product of some cyclic permutations, that is, π =∏h

k=1 σk, where h is a positive integer and σk is a cyclic permutation. Let Mk ⊆
M be a matching in G corresponding to σk. Then M is the disjoint union of Mk,
that is, M =

⋃h
k=1 Mk.

Let C be a circuit in G. Since G is symmetric, the transpose C� is also a
circuit in G. A chord of a circuit is an edge in E \ C having both ends on the
circuit. We say that a circuit C is chordless if C has no chord.

Theorem 1. Let G be a symmetric bipartite graph with perfect matchings. Then
G satisfies the following (a), (b) or (c).
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(a) There exists a perfect matching M in G such that (ui, vi) ∈ M for some
i ∈ N .

(b) There exists a perfect matching M in G such that (ui, vj) ∈ M and (uj , vi) ∈
M for some distinct i, j ∈ N .

(c) The symmetric bipartite graph G is a disjoint union of some chordless sym-
metric circuits.

Proof. By the assumption, the symmetric bipartite graph G has a perfect match-
ing M and its transposed perfect matching M�. Furthermore, M is the disjoint
union of matchings Mk for k = 1, . . . , h corresponding to cyclic permutations.

We will show that if G does not satisfy the condition (a) or (c), then G
satisfies the condition (b).

First, we claim that M ∪M� consists of Ck ∪C�
k for k = 1, . . . , h, where Ck

is a circuit (Ck may coincide with C�
k ). Indeed, M ∪M� is the disjoint union of

Mk ∪ M�
k for k = 1, . . . , h. Since M does not have either (ui, vj) or (uj , vi) for

some i, j ∈ N (otherwise, G satisfies (a) or (b)), Mk ∪ M�
k consists of circuits.

If |Mk|(≥ 3) is odd, then Mk ∪ M�
k is a symmetric circuit of length 2|Mk| (see

Fig.1 for the case of |Mk| = 5). If |Mk|(≥ 4) is even, then Mk ∪M�
k consists of

an asymmetric circuit of length |Mk| and its transpose (see Fig.2 for the case of
|Mk| = 4).

Suppose that there exists an asymmetric circuit Ck and its transposed circuit
C�

k (	= Ck) in M ∪ M�. Then M ′ := MC�
k is also a perfect matching in G,

and M ′ has both (uj , vi) and (ui, vj) for each (ui, vj) ∈ Ck ∩M . This implies G
satisfies the condition (b).

Hence we may suppose there exist only symmetric circuits in M ∪M�. Since
G is not a disjoint union of some chordless circuits, (i) there exists (ui, vj) ∈
E \ (M ∪ M�), ui ∈ ∂Ck, vj ∈ ∂Cl for some distinct 1 ≤ k, l ≤ h, or (ii) there
exists (ui, vj) ∈ E \ (M ∪M�), ui ∈ ∂Ck, vj ∈ ∂Ck for some 1 ≤ k ≤ h.

Suppose G satisfies (i). Then there also exists (uj , vi) ∈ E \ (M ∪M�), uj ∈
∂Cl, vi ∈ ∂Ck, because of symmetry of G(A). Let Pk ⊆ Ck be a path from
ui ∈ U ∩ ∂Ck to vi ∈ V ∩ ∂Ck such that both end-vertices of Pk are incident
with an edge of M ∩ Pk. Let Pl ⊆ Cl be a path in a similar way. Then C ′ :=
(Pk∪Pl)∪{(ui, vj), (uj , vi)} is a circuit in G. Furthermore, M ′ := MC ′ is also a
perfect matching in G, and M ′ has both (ui, vj) and (uj , vi). Moreover, it shows
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that there exists (uj′ , vi′) ∈ (P�
k ∪ P�

l ) ∩M ′ for each (ui′ , vj′) ∈ (Pk ∪ Pl) ∩M ′

because Ck and Cl are symmetric. Thus G satisfies the condition (b).
Suppose G satisfies (ii). Then let Pk ⊆ Ck be a path from ui ∈ U ∩ ∂Ck to

vj ∈ V ∩ ∂Ck such that both end-vertices of Pk are incident with an edge of
M ∩Pk. Then C ′ := Pk ∪{(ui, vj)} is a circuit in G. Furthermore, M ′ := MC ′

is also a perfect matching in G, and there exists (uj′ , vi′) ∈ Ck ∩ M ′ for each
(ui′ , vj′) ∈ (PkP�

k ) ∩M ′. Thus G satisfies the condition (b).
Consequently, if G does not satisfy the condition (a) or (c), G satisfies the

condition (b). 
�

5 Uniqueness of the Inertia

In this section, we discuss the uniqueness of the inertia of a sign-nonsingular
symmetric matrix A. For convenience, we denote by A[J ] the principal submatrix
A[J, J ] for J ⊆ N . Since sign-nonsingularity implies nonsingularity, it is clear
that z(A) = 0.

A nested sequence {Ak}n
k=1 of principal submatrices is called sign-admissible

if at least one of Ak−1 and Ak is sign-nonsingular for any k = 2, . . . , n. It follows
from (8) and (9) that if A has a sign-admissible sequence, the inertia of A is
determined uniquely by the sign pattern.

However, it is not easy to find such a sequence. Even if a symmetric matrix
A has the equisignum determinant, a principal submatrix of A may not be sign-
nonsingular. For example,

A =

⎛⎜⎜⎝
+1 +1 +1 −1
+1 +1 +1 +1
+1 +1 −1 0
−1 +1 0 0

⎞⎟⎟⎠
has the equisignum determinant, and hence A is sign-nonsingular, while a nested
sequence of the leading principal submatrices is not sign-admissible (A[{1, 2}]
and A[{1, 2, 3}] are not sign-nonsingular). However, the inertia is determined
independently of the magnitude of its entries, In(A) = (2, 1, 0). This is because
each of A[{2}], A[{2, 3}] and A[{1, 2, 3, 4}] has the equisignum determinant.

Thus, it is sufficient to find one sign-admissible nested sequence of principal
submatrices for determining the inertia uniquely by the sign pattern. To find a
sign-admissible nested sequence, we will use the characterization of a symmetric
bipartite graph described in Section 4.

The main result in this section is the following theorem.

Theorem 2. Let A be a sign-nonsingular symmetric matrix. Then there exists a
sign-admissible nested sequence of principal submatrices. Hence Ã has the same
inertia for any Ã ∈ Q∗(A).

We first provide the following three lemmas to prove Theorem 2.
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Lemma 1. Let A be a sign-nonsingular symmetric matrix such that G(A) sat-
isfies the condition (a) of Theorem 1, that is, there exists a perfect matching
M in G(A) containing (ui, vi) for some i ∈ N . Then the principal submatrix
A′ := A[N \ {i}] is sign-nonsingular, and the inertia of A is obtained by

In(A) =
{

In(A′) + (1, 0, 0) (if aii > 0)
In(A′) + (0, 1, 0) (if aii < 0). (10)

Proof. The determinant of A is expanded as

detA = aii detA′ +
∑
j �=i

(−1)i+jaij detA[N \ {i}, N \ {j}].

Since G(A′) has a perfect matching M \{(ui, vi)}, A′ is term-nonsingular. It then
follows from the sign-nonsingularity of A that A′ is a sign-nonsingular symmetric
matrix (otherwise, the sign of the determinant of A can change by the magnitude
of aii). Therefore, by (5), we have

sgndetA = (−1)q(A) = sgn(aii)(−1)q(A′),

which implies that the parity of q(A) depends on that of q(A′) and the sign of
aii. Therefore, by (8), we have

(p(A), q(A)) =
{

(p(A′) + 1, q(A′)) (if aii > 0)
(p(A′), q(A′) + 1) (if aii < 0).


�
Lemma 2. Let A be a sign-nonsingular symmetric matrix such that G(A) does
not satisfy the condition (a) of Theorem 1. Suppose G(A) satisfies the condition
(b), that is, there exists a perfect matching M in G(A) such that (ui, vj) ∈ M
and (uj , vi) ∈ M for some distinct i, j ∈ N . Then the principal submatrix
A′ = A[N \ {i, j}] is sign-nonsingular, and the inertia of A is obtained by

In(A) = In(A′) + (1, 1, 0). (11)

Proof. In the same way as Lemma 1, the determinant of A is expanded as

detA = −(aij)2 detA′+
∑

(k,l)�=(i,j),
k �=l

±detA[{k, l}, {i, j}] detA[N \ {k, l}, N \ {i, j}].

Notice that detA[{i, j}] = −(aij)2, because G(A) has no perfect matching con-
taining any diagonal edge by the assumption. Since A is sign-nonsingular and
G(A′) has a perfect matching M \ {(ui, vj), (uj , vi)}, the principal submatrix A′

is sign-nonsingular. Then, by (5), we have

sgn detA = (−1)q(A) = (−1)q(A′)+1,

which implies that the parity of q(A) is different from that of q(A′). Therefore,
by (9), we have

(p(A), q(A)) = (p(A′) + 1, q(A′) + 1). 
�
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Notice that it is not necessary that the principal submatrix A[N \ {i}] or
A[N \ {j}] is sign-nonsingular.

Lemma 3. Let A be a sign-nonsingular symmetric matrix of order n := 2s + 1
such that G(A) is a chordless symmetric circuit. Let 2t be the number of the
negative entries of A. Then the inertia of A is obtained by

In(A) =
{

(s + 1, s, 0) (if t ≡ s mod 2)
(s, s + 1, 0) (if t 	≡ s mod 2). (12)

Proof. Since G(A) is a chordless symmetric circuit, the matrix size n is odd.
Since detA has only two nonvanishing terms, we have

sgn detA = (−1)t. (13)

Let A′ be the principal submatrix obtained by deleting the ith row and the ith
column from A for any i ∈ N . Then G(A′) consists of two paths. Since G(A′)
has only one perfect matching, A′ has the equisignum determinant. Hence A′ is
sign-nonsingular. Then, by (5), we have

sgn detA′ = (−1)q(A′). (14)

Since G(A′) consists of two paths and G(A′) has no diagonal edge, G(A′) satisfies
the condition (b) of Theorem 1. By applying (11) repeatedly, we have p(A′) =
q(A′) = s. Hence, by (8), we have

(p(A), q(A)) =
{

(s + 1, s) (if sign detA = sign detA′)
(s, s + 1) (if sign detA 	= sign detA′),

which together with (13) and (14) implies (12). 
�

A sign-nonsingular symmetric matrix A such that G(A) is a chordless circuit
has a sign-admissible sequence. Indeed, by row and column permutations, A is
represented as

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a1 0 · · · 0 an

a1 0 a2
. . . 0

0 a2
. . . . . . . . .

...
...

. . . . . . . . . an−2 0

0
. . . an−2 0 an−1

an 0 · · · 0 an−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where a1, . . . , an designate nonzero entries of A. Hence any nested sequence of
principal submatrices in A is sign-admissible.

We are now ready to prove Theorem 2.
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Proof of Theorem 2. By Lemmas 1–3 and Theorem 1, if a symmetric matrix
A of order n is sign-nonsingular, then we can find a sign-nonsingular principal
submatrix of order n−1 or n−2, or G(A) is the disjoint union of chordless sym-
metric circuits. Hence there exists a sign-admissible nested sequence of principal
submatrices in A. Therefore, the inertia of A is uniquely determined by the sign
pattern. 
�

6 Algorithm for Sign-Nonsingular Symmetric Matrices

In this section, we present a polynomial time algorithm for computing the inertia
of a given sign-nonsingular symmetric matrix.

Let A be a sign-nonsingular symmetric matrix of order n. Then z(A) = 0.
It is easy to see from Lemmas 1–3 that the inertia is obtained from the inertia
of the sign-nonsingular symmetric matrix smaller than A by finding a perfect
matching M in G(A) which satisfies the condition (a) or (b) of Theorem 1. Thus
we can compute the inertia of A recursively. However, we present a practically
more efficient algorithm that computes the inertia by finding circuits in M ∪M�

in the same way as the proof of Theorem 1.
The algorithm starts with finding a perfect matching Md in G(A) with max-

imum number of diagonal edges. The index set N of the row and column set
is partitioned into J+ := {j | (uj , vj) ∈ Md, ajj > 0}, J− := {j | (uj , vj) ∈
Md, ajj < 0} and J∗ := {j | (uj , vj) 	∈ Md}. We can find Md efficiently by the
maximum weight perfect matching algorithm. Indeed, define the weight function
w : E → {0, 1} on the bipartite graph G(A) by we = 1 for each diagonal edge
e and we = 0 for the other edges. Then a maximum weight perfect matching
with respect to w corresponds to Md. The maximum weight perfect matching
algorithm runs in O(n(m + nW )) time with Dial’s implementation of Dijkstra’s
shortest path algorithm [1], where W is the largest weight in the graph and m
is the number of edges. In this case, W is equal to 1. Hence it requires O(nm)
time.

Let C be the set of all symmetric circuits in Md ∪ M�
d . If there exist a pair

of symmetric circuits C,C ′ ∈ C connected by an edge in E \ (Md ∪ M�
d ), then

delete C and C ′ from C. We repeat this until there are no such pair of symmetric
circuits.

We denote by C1, . . . , Ch the remaining symmetric circuits in C. Let Jk be
the index set of ∂Ck for each k = 1, . . . , h, that is, Jk := {i | (ui, vj) ∈ Ck}. Let
J0 be the remaining indices, that is, J0 := J∗ \

⋃h
k=1 Jk. Then it follows from

Lemmas 1 and 2 that the inertia of A is obtained by

p(A) = |J+| +
1
2
|J0| +

h∑
k=1

p(A[Jk]),

q(A) = |J−| +
1
2
|J0| +

h∑
k=1

q(A[Jk]).

(15)
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The first term in the right-hand side of (15) is obtained by applying (10) repeat-
edly to each i ∈ J+ ∪ J−, and the second term by applying (11) repeatedly to
each i, j ∈ J0.

The inertia of A[Jk] for k = 1, . . . , h is obtained by Lemmas 2 and 3. Indeed, if
Ck has a chord, then find a chordless symmetric circuit C ′

k in G(A[Jk]) (otherwise
C ′

k := Ck). Let J ′
k be the index set of ∂C ′

k.
Let 2t′k be the number of the negative entries of A[J ′

k]. Comparing s′
k :=

(|J ′
k| − 1)/2 with t′k, we have, by (11) and (12), that

(p(A[Jk]), q(A[Jk])) =
{

(sk + 1, sk) (if t′k ≡ s′
k mod 2)

(sk, sk + 1) (if t′k 	≡ s′
k mod 2), (16)

where sk := (|Jk| − 1)/2. Thus the inertia of A can be computed from (15) and
(16).

The algorithm is now summarized in Fig. 3.

� �
1. Find a perfect matching Md in G(A) with maximum number of diagonal

edges.
2. Find the set of all symmetric circuits C in Md ∪ M�

d .
3. Repeat the following.

(1) If there exist a pair of symmetric circuits C and C′ in C connected by an
edge in E \ (Md ∪ M�

d ), then delete C and C′ from C.
4. Denote the remaining symmetric circuits in C by C1, . . . , Ch. Let Jk be the

index set of ∂Ck. For each connected component G(A[Jk]) for k = 1, . . . , h,
do the following.
(1) If Ck has a chord, then find a chordless symmetric circuit C′

k in G(A[Jk]).
(2) Compute the inertia of A[Jk] by (16).

5. Return the inertia of A obtained by (15).
� �
Fig. 3. Algorithm for computing the inertia of a sign-nonsingular symmetric matrix

The algorithm requires O(mn) time in total. Indeed, it requires O(nm) time
to find a perfect matching Md. In addition, it requires O(m) time to find symmet-
ric circuits C1, . . . , Ch in Md∪M�

d , and O(m) time to find a chordless symmetric
circuit in G(A[Jk]) for k = 1, . . . , h by breadth first search.

Theorem 3. For a sign-nonsingular symmetric matrix A of order n, the inertia
of A can be computed in O(nm) time, where m is the number of nonzero entries
of A.

7 Complexity of Testing Sign-Nonsingularity

In this section, we discuss the complexity status of the decision problem whether
the inertia of a given symmetric matrix is uniquely determined by the sign
pattern of the matrix entries. Hall, Li and Wang [3] proved the following theorem.
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Theorem 4 (Hall, Li and Wang [3]). For a given symmetric matrix A, Ã
has the same inertia for any Ã ∈ Q∗(A) if and only if

max{rankÃ | Ã ∈ Q∗(A)} = min{rankÃ | Ã ∈ Q∗(A)}.

Furthermore, it is known that t-rankA = max{rankÃ | Ã ∈ Q∗(A)} [8]. Hence
the inertia of A is uniquely determined by the sign pattern if and only if A
satisfies

t-rankA = min{rankÃ | Ã ∈ Q∗(A)}. (17)

However, it is not clear how to discern efficiently if a given symmetric matrix
satisfies (17) or not.

First, we suppose A is a term-nonsingular matrix of order n. Then A satisfies
(17) if and only if A is sign-nonsingular. As already mentioned in Section 2,
it can be tested in polynomial time whether a given symmetric matrix has the
equisignum determinant. However, having the equisignum determinant is not a
necessary condition for a symmetric matrix to be sign-nonsingular. For example,

A =

⎛⎜⎜⎝
+1 0 +1 +1
0 +1 +1 +1

+1 +1 −1 0
+1 +1 0 −1

⎞⎟⎟⎠
is sign-nonsingular, while it does not have the equisignum determinant [3].

We prove the following theorem.

Theorem 5. For a symmetric matrix A, the problem of deciding whether A is
not sign-nonsingular is NP-complete.

To prove Theorem 5, we use the following result by Klee, Ladner and Manber [5].

Theorem 6 (Klee, Ladner and Manber [5]). For an n×(n+�n1/k�) matrix
A with a positive integer k, the problem of deciding whether there exists Ã ∈ Q(A)
such that it is not row full-rank is NP-complete.

Proof of Theorem 5. It is clear that the decision problem whether a given sym-
metric matrix A is not sign-nonsingular is in NP, as it suffices to exhibit a
singular symmetric matrix with the same sign pattern as A.

Suppose we can discern in polynomial time whether A is not sign-nonsingular.
Consider

A =
(

O B
B� I

)
,

where B is a rectangular matrix such that |Col(B)| = 2|Row(B)| and t-rankB =
|Row(B)|, and I is an identity matrix. Then detA = −detB�B holds. Since
B�B is a positive semidefinite matrix, this implies detA ≤ 0. By the assumption,

we can discern in polynomial time whether there exists Ã =
(

O B̃

B̃� Ĩ

)
∈ Q∗(A)
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such that det Ã = −det B̃�B̃ = 0. This implies that we can test in polynomial
time whether there exists B̃ ∈ Q(B) which is not row full-rank. Hence it is NP-
complete to discern whether A is not sign-nonsingular by Theorem 6. 
�

It follows from Theorem 5 that the decision problem whether the inertia of
A is not determined by the sign pattern is also NP-complete.

Corollary 1. For a symmetric matrix A, it is NP-complete to discern whether
there exists Ã in Q∗(A) such that the inertia of Ã is different from that of A.
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Abstract. In the Max FS problem, given an infeasible linear system
Ax ≥ b, one wishes to find a feasible subsystem containing a maximum
number of inequalities. This NP-hard problem has interesting applica-
tions in a variety of fields. In some challenging applications in telecom-
munications and computational biology one faces very large Max FS
instances with up to millions of inequalities in thousands of variables.
We propose to tackle large-scale instances of Max FS using random-
ized and thermal variants of the classical relaxation method for solving
systems of linear inequalities. We present a theoretical analysis of one
particular version of such a method in which we derive a lower bound
on the probability that it identifies an optimal solution within a given
number of iterations. This bound, which is expressed as a function of a
condition number of the input data, implies that with probability 1 the
randomized method identifies an optimal solution after finitely many it-
erations. We also present computational results obtained for medium- to
large-scale instances arising in the planning of digital video broadcasts
and in the modelling of the energy functions driving protein folding. Our
experiments indicate that these methods perform very well in practice.

1 Introduction

We consider the following problem, referred to as Max FS:

Given an infeasible linear system Ax ≥ b, where A ∈ Rm×n and b ∈ Rm,
find a feasible subsystem containing as many inequalities as possible.
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This problem has a number of interesting applications in various fields such as op-
erations research [8, 13], radiation therapy [14], image and signal processing [16],
statistical discriminant analysis and machine learning [5, 15]. There is growing in-
terest in Max FS due to the fact that many complex phenomena that can be well-
approximated with linear models yield formulations involving large and generally
infeasible linear systems for which approximate solutions in terms of l1- or l2-
norms are not meaningful. Note that since linear system feasibility can be checked
in polynomial time, the Max FS structure differs substantially from that of Max
SAT, the well-known problem of satisfying a maximum number of Boolean clauses.
Like Max SAT though, Max FS can be approximated within a factor of 2 but
it does not admit a polynomial-time approximation scheme, unless P = NP [3].
The reader is referred to [1] for a survey of work on Max FS up to 2003.

Apart from large-scale instances arising in classification problems [5, 15] and
in the context of infeasible linear programs [8, 13], very large Max FS instances
with up to millions of inequalities and thousands of variables occur in several
challenging applications in telecommunications (digital video broadcasting [22])
and computational biology (modelling the energy function that drives the folding
of proteins [17]) that are of current interest. Such instances are beyond the
reach of available computational approaches, which include state-of-the-art MIP
solvers applied to big-M formulations, the best available heuristics [8], as well as
the latest polyhedral techniques based on partial set covering formulations [4, 20]
and combinatorial Benders’ cuts [9].

To tackle large-scale instances of Max FS, we propose to use randomized and
thermal variants of the classical Agmon-Motzkin-Schoenberg (AMS) relaxation
method for solving systems of linear inequalities. Deterministic AMS relaxation
versions have been extensively studied in the mathematical programming liter-
ature, often as special cases of subgradient methods (see e.g. [12, 23]), and in
the machine learning literature under the name of perceptron procedures (see
e.g. [6, 18]). The algorithms we propose and investigate here extend the thermal
perceptron heuristic [11]. It is worth pointing out that the power of random-
ization in relaxation/subgradient type methods, which was first exploited by
the machine learning community, has also been recently studied in the con-
text of feasible systems of convex inequalities, see [21], and in the context of
the minimization of sums of convex component functions with a large number
of summands, see [19]. In this paper the focus is on a difficult combinatorial
optimization problem.

In Section 2 we give a detailed description of the methods under considera-
tion. Section 3 is then devoted to a theoretical analysis of one particular variant.
In Section 4 we report some computational results that show that our methods
are very competitive for solving medium- to large-scale Max FS instances.

2 Randomized and Thermal Relaxation Methods

The relaxation method is a simple algorithmic framework for solving systems of
linear inequalities, see e.g. [12, 23]. At every iteration the attention is focused
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on reducing the violation of a single inequality. Given a feasible system Ax ≥ b
with A ∈ Rm×n and b ∈ Rm, as well as a starting point x0 ∈ Rn, such a
method generates a sequence

(
xi

)
N
⊂ Rn of approximate solutions as follows.

In iteration i an index ki ∈ {1, . . . ,m} is selected according to some specified
rule, the corresponding inequality aki

x ≥ bki
is considered, and the next iterate

is determined via

xi+1 =
{

xi + ηi aki
with probability pi if aki

xi < bki

xi otherwise, (1)

where ηi > 0 and pi ∈ [0, 1] may be chosen differently in every iteration. When
xi+1 	= xi we say that an update has occurred. Any specific variant of this
approach can be characterized by

i) a selection rule which specifies the way a single inequality is selected
at each iteration,
ii) a step-length multiplier rule which specifies how the sequence of ηi is
determined,
iii) and a decision rule characterized by the updating probability pi.

Let us now briefly comment on some specific choices of these rules.

i) In most classical versions of the relaxation method the inequalities are con-
sidered in cyclic order or according to the largest violation. In the randomized
relaxation method, we assume that ki is chosen uniformly at random from the
set {1, . . . ,m}. This introduces a first level of randomization.
ii) Classical choices for the step length multiplier ηi include ηi ≡ 1 in the per-
ceptron method and ηi = (bki

− aki
xi)/‖aki

‖ in the cyclic projection method. In
the algorithms we consider in this paper, we use ηi > 0 as a tool for prioritiz-
ing the level of attention paid to attempting to satisfy the different inequalities
depending on their varying degrees of violation.
iii) The updating probability pi with which an update is carried out introduces
a second layer of randomization. When pi < 1, we therefore speak of a doubly
randomized method, while pi ≡ 1 corresponds to the standard (singly) random-
ized relaxation method. The use of double randomization is interesting because
it allows replacing a large number of small updates by updates of moderate size
that occur with small probability.

To adapt the relaxation method to the Max FS framework and infeasible
systems Ax ≥ b, we make ηi and pi dependent on a parameter ti that keeps
changing over time. This leads to the so-called thermal variants of the randomized
relaxation method, henceforth referred to as RTR. The motivation is that the
choice of ηi should initially allow large corrections to the iterates xi, in order for
the algorithm to make good progress. However, once the iterates have moved to a
region of the solution space containing good approximate solutions of Max FS,
xi should be further improved only by small local updates, as large updates
risk destroying much of the progress previously achieved. Therefore, we want to
force the method to favour updates generated by inequalities with progressively
smaller violation vi = max

{
0, bki

− aki
xi

}
. A natural way to achieve this is by
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introducing a decreasing temperature schedule (ti)N ⊂ R+ and to choose (ηi)N

as a function of ti and vi, for example, by setting

ηi =
ti
t0

exp(−vi/ti). (2)

For large values of ti, any violated inequality yields a significant update, while
for small ti only inequalities with small violations vi yield significant updates.
In the doubly randomized framework one trades small step-length multipliers ηi

for small updating probabilities pi. For example, in the RTR variant analyzed
in Section 3, we choose ηi = 1 for all i and

pi =
ti
t0

exp(−vi/ti). (3)

Like in simulated annealing (SA), ti can be interpreted as a temperature that
gradually “cools down” the activity level of the algorithm and forces it to pursue
more localized searches. It is however important to point out that the similarity
does not extend beyond this intuitive level. For example, in doubly randomized
RTR methods the updating probability depends only on the violation vi of a
single inequality, while in SA it would depend on the objective function value
(i.e., the number of satisfied inequalities) of the new iterate xi+1. The two ap-
proaches are thus significantly different. Our analysis of Section 3 is based on a
technique that does not occur in the SA literature and our probabilistic finite
termination results are stronger than SA asymptotic convergence guarantees.

We conclude with two technical remarks:
• To complete the description of our RTR methods, we need to specify the
termination criterion. Since these methods do not ever properly terminate for
infeasible systems, the best iterate found up to iteration i needs to be stored in
a so-called ratchet vector zi. In practical implementations, a maximum number
of iterations, maxit, is selected at the outset and the ratchet vector at iteration
maxit is returned as an approximate solution of Max FS.
• The inherent parallelism of the RTR methods can be exploited to tackle very
large Max FS instances such as those considered in Section 4. See also [7] for
parallel versions of relaxation methods for linear (convex) feasible systems.

3 Probabilistic Termination Guarantees

In this section we establish, as an illustrative example, the probabilistic finite
termination guarantee to an optimal solution of Max FS for a particular RTR
variant. The method we consider is the doubly randomized RTR variant charac-
terized by the choice ηi ≡ 1 and pi as in (3). We investigate the situation where
this method is applied to a homogeneous system Ax > 0 of strict inequalities in
which all row vectors a of A have unit length.

We write A for the set of row vectors of the input matrix A. For any x ∈ Rn

we write Ax := {a ∈ A : a · x > 0} for the subset of inequalities satisfied by x
and #Ax for its cardinality.
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Definition 1. Let (ti)N0 be a decreasing temperature schedule, x0 ∈ Rn a start-
ing point with unit norm, and z0 = x0. Let (Ai)N0 be a sequence of i.i.d. random
vectors which are uniformly distributed over A. Then a sequence (Ui)N0 of binary
random variables and sequences (Xi)N0 and (Zi)N0 of random vectors in Rn are
defined via the following recursive relations:

i) X0 ≡ x0, Z0 ≡ z0,
ii) Ui is σ(Ai,Xi)-measurable binary random variable for which

P
[
Ui = 1

∥∥Ai · Xi ≤ 0
]

= pi :=
ti
t0

exp
(
−|Ai · Xi|

ti

)
P
[
Ui = 1

∥∥Ai · Xi > 0
]

= 0.

iii) Xi+1 = Xi + Ui Ai,
iv) Zi+1 = Xi+1 if #AXi+1 > #AZi

, and Zi+1 = Zi otherwise.

One run of our algorithm consists in sampling the random sequences (Ui)N0

and (ai)N0 , thus defining sample sequences (xi)N0 and (zi)N0 of (Xi)N0 and (Zi)N0

respectively. In order to analyze the probabilistic behaviour of our algorithm, it
therefore suffices to analyze the random sequences (Xi)N0 and (Zi)N0 . In The-
orem 1 we derive a lower bound on the probability that Zi becomes Max FS-
optimal in at most a certain number of iterations. Furthermore, we will show
that almost surely all but finitely many terms of the ratchet sequence (Zi)N0 are
Max FS-optimal solutions.

The general line of attack can be outlined as follows. Let x̃ be an optimal
solution of the Max FS problem, that is, #Ax̃ = m∗ := max {#Ax : x ∈ Rn},
and let x∗ := x̃/α, where α := min{a · x̃ : a ∈ Ax̃}. We focus our attention on
this fixed optimal solution x∗ and the associated feasible subsystem Ax∗x > 0.
As long as the iterate xi satisfies #Axi

< m∗, there exists at least one a ∈ Ax∗

for which a · xi ≤ 0. Under uniform sampling this particular inequality is drawn
with probability 1/m, and then xi+1 	= xi with probability pi. According to
Lemma 1 below, no more than a certain number γ̃ of consecutive such updates
can occur before xi satisfies a ·xi > 0 for all a ∈ Ax∗ , and then xi is optimal for
Max FS. Subdividing the sequence of iterates into epochs of length γ̃, optimality
is achieved with positive probability in each epoch. Although the law of large
numbers can be seen as the motivating idea of our approach, the analysis is more
complicated because the events that optimality is achieved in iterations i and
i + 1 respectively are not independent of one another.

The convergence speed claimed in Theorem 1 is a function of a condition
number κ(A), defined in [2] as the inverse of the smallest possible strictly positive
k-dimensional volume of a parallelepiped generated by a subset of k row vectors
of A for k ranging from 1 to m. In the case where A consists of rational data of
total bit length L , the inequality κ(A) ≤ 2L holds, see [2] for details. Here we
also write κ(A), since the condition number does not depend on the ordering of
the input vectors.
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Theorem 1. Let M := 2κ(A)23n/2+1 and γ := (M+‖x∗‖)2. If the temperature
schedule in Definition 1 satisfies ti ≥ c

log i for i ≥ 2 and ti ≥ c
log 2 for i = 0, 1

for some constant c ≥ 2Mγ, then the following statements hold true.

i) For all k ∈ N, we have

P
[
#AZkγ

= m∗] ≥ 1 −
k∏

j=2+� r
γ �

(
1 − 1

jγ

)
,

where r > 0 is large enough so that m log x
log 2 < x

1
2γ holds for all x > r.

ii) Almost surely the ratchet vector becomes Max FS-optimal after a finite num-
ber of iterations.

We need two lemmas in the proof of Theorem 1. The first one deals with the
finite termination of the relaxation method for feasible inequality systems.

Lemma 1. Let any variant of the relaxation method be applied to a feasible
linear system Ax > 0 and let (i(l))N ⊂ N be the sequence of iterations in which
updates occur. If limu→∞

∑u
l=1 ηi(l)(2−ηi(l)) = +∞ then xi(l) becomes a feasible

solution for some l ≤ γ̃ := max
{
u ∈ N :

∑u
l=1 ηi(l)(2− ηi(l)) ≤ (‖x0‖+ ‖x∗‖)2

}
.

Note that γ̃ = γ̃(‖x0‖, ‖x∗‖, (ηi(l))N) is a monotone increasing function of
‖x0‖ if all other entries are fixed. Lemma 1 can easily be shown by adapting the
proof of a similar result from [6, 18] that was given for constant ηi ≡ 1. It has
long been known that the number of updates required can grow exponentially
in the input size [23], but we note that a variant of the relaxation method in
which the underlying space is periodically rescaled was recently shown to be
polynomial in a probabilistic framework [10].

In the case of infeasible systems, infinitely many updates occur due to violated
inequalities. However, our second lemma shows the interesting fact that under
bounded step-length multipliers the sequence of iterates (xi)N remains bounded.

Lemma 2. Let Ax > 0 be an arbitrary homogeneous system, x0 ∈ Rn and
(xi)i∈N the sequence of iterates generated by any version of the relaxation method
that uses a bounded sequence of step-length multipliers 0 < ηi ≤ η for some η > 0.
Then for all i, we have

‖xi‖ ≤ M(A,x0) := 2max
{
‖x0‖ , η

(
κ(A) 23n/2 + 1

)}
.

For a proof see Theorem 6.1 in [2]. Lemma 2 is a generalization of the classical
perceptron boundedness theorem [6, 18] to non-constant step-length multipliers,
but its proof is based on a different approach in order to settle the open question
of expressing M as an explicit function of the input data (A,x0), and in order
to overcome a limitation of the classical approach by which a lower bound on
the ηi had to be assumed. The explicit expression for M is a crucial ingredient
in the proof of Theorem 1 which we are now ready to present.
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Proof. (Theorem 1) Under the assumptions ‖a‖ = 1 ∀a ∈ A and ‖x0‖ = 1,
Lemma 2 implies that ‖Xi‖ ≤ M for all i ∈ N. The monotonicity of γ̃ implies
that

γ̃
(
‖Xkγ‖, ‖x∗‖, (1)N

)
≤ γ, ∀k ∈ N. (4)

Since (1)N is shift-invariant, we can concentrate on epochs of constant length γ
under the general framework outlined above.

i) Denoting the complement of a set B ⊆ A by Bc = A \ B, we define the
events Ei := {#AXi

= m∗} ∪
{
Ai ∈ Ax∗ ∩ Ac

Xi
, Ui = 1

}
. We claim that for all

k ∈ N,

E[k] := Ekγ−1 ∩ · · · ∩E(k−1)γ ⊆
{
#AZkγ

= m∗} . (5)

Indeed, suppose that E[k] occurs. If #AXi
= m∗ for some index i ∈ [(k−1)γ, kγ−

1] then the ratchet will assure that #AZi
= m∗ and a fortiori #AZkγ

= m∗.
Otherwise for γ consecutive iterations a violated inequality Ai · Xi ≤ 0 with
Ai ∈ Ax∗ is drawn and Xi is updated to Xi+1 = Xi + Ai. But then (4) and
Lemma 1 imply that AXi

= Ax∗ occurs for some i ∈ [(k − 1)γ + 1, kγ] and it is
again the case that #AZkγ

= m∗, establishing the truth of our claim.
Equation (5) implies

P
[
#AZkγ

< m∗ ∥∥#AZ(k−1)γ
< m∗] ≤ 1 − P

[
E[k]

∥∥#AZ(k−1)γ
< m∗

]
. (6)

Our next goal is to bound the right-hand side of (6). As long as #AXi
< m,

we have Ax∗ ∩ Ac
Xi

	= ∅, so that for any σ(X0;A0, . . . ,Ai−1;U0, . . . , Ui−1)-
measurable event F ⊆ {#AXi

< m∗} it is true that

P
[
Ei

∥∥F
]

= P
[
Ai ∈ Ax∗∩Ac

Xi
, Ui = 1

∥∥ F
]
≥ 1

m
× ti

t0
exp

(
−|Ai · Xi|

ti

)
. (7)

In particular, Bi∩{#AXi
< m∗} is σ(X0;A0, . . . ,Ai−1;U0, . . . , Ui−1)-measurable

for i > (k − 1)γ, where Bi :=
(⋂i−1

j=(k−1)γ Ej

)
∩
{
#AZ(k−1)γ

< m∗}.
Therefore,

P
[
Ei

∥∥Bi

]
= P

[
Ei

∥∥#AXi
< m∗, Bi

]
× P

[
#AXi

< m∗ ∥∥Bi

]
+ P

[
Ei

∥∥#AXi
= m∗, Bi

]
× P

[
#AXi

= m∗ ∥∥Bi

]
(7)

≥ ti
mt0

exp
(
−|Ai · Xi|

ti

)
× P

[
#AXi

< m∗ ∥∥Bi

]
+ 1 × P

[
#AXi

= m∗ ∥∥Bi

]
≥ ti

mt0
exp

(
−|Ai · Xi|

ti

)
,
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so that

P
[
E[k]

∥∥#AZ(k−1)γ
< m∗] = (8)

P
[
E(k−1)γ

∥∥#AZ(k−1)γ
< m∗] ×

kγ−1∏
i=(k−1)γ+1

P
[
Ei

∥∥Bi

]
≥

kγ−1∏
i=(k−1)γ

ti
mt0

exp
(
−|Ai · Xi|

ti

)
. (9)

We wish to bound this quantity solely in terms of the epoch k. The assumption
on the temperature schedule implies |Ai·Xi|

ti
< M log i

2Mγ = log i
2γ , and hence

ti
mt0

exp
(
−|Ai · Xi|

ti

)
>

log 2
m log i

× i−
1
2γ .

Let r > 0 be such that m log x
log 2 < x

1
2γ for all x > r. Then for i > r we

have ti

mt0
exp

(
− |Ai·Xi|

ti

)
> i−

1
γ . Using this inequality in (9), it follows that for

k > 1 + r
γ

P
[
E[k]

∥∥#AZ(k−1)γ
< m∗] >

kγ−1∏
i=(k−1)γ

i−
1
γ >

(
(kγ)− 1

γ
)γ =

1
kγ

.

This finally provides the desired bound on the right-hand side of (6), so that

P
[
#AZkγ

< m∗ ∥∥#AZ(k−1)γ
< m∗] ≤ 1 − 1

kγ
. (10)

Using (10), we now find

P
[
#AZkγ

< m∗] = P
[
#AZ0 < m∗]× k∏

j=1

P
[
#AZjγ

< m∗ ∥∥#AZ(j−1)γ
< m∗]

≤
k∏

j=2+� r
γ �

(
1 − 1

jγ

)
, (11)

which settles the claim of part i).

ii) Since

lim
k→∞

log
k∏

j=2+� r
γ �

(
1 − 1

jγ

)
≤ − lim

k→∞

k∑
j=2+� r

γ �

1
jγ

= −∞,

the right-hand side of (11) converges to zero when k → ∞, and since the events
{#AZi

< m∗} are nested, we have

P

[⋂
i∈N

{#AZi
< m}

]
= lim

k→∞
P
[
#AZkγ

< m
]

= 0. 
�
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We note that the proof of Theorem 1 can be modified to obtain similar
probabilistic finite termination results for other variants of the RTR method
applied to the Max FS problem. In particular, for the RTR variant with pi =
exp

(
−vi/ti

)
and ηi = ti/t0 additional difficulties arise since pi and ηi jointly

decrease.

4 Computational Results

In our theoretical analysis, we have considered long non-overlapping sequences
of updates and very slow temperature decreasing schedules. By weakening the
mutual dependence of the events of finding an optimal solution during particular
epochs, we made it possible to use arguments akin to the law of large numbers.
But our theoretical bounds on the temperature schedules are overly cautious
and, as we shall see, our RTR methods perform very well in practice with much
faster linearly decreasing temperature schedules.

To tackle large-scale instances of Max FS, we have developed an efficient
RTR implementation which includes the following additional features.

Linearly Decreasing Temperature Schedule. We have devised a simple way to
select the initial temperature based on the average inequality violation: t0 is
renormalized after randomly picking m inequalities as t0 := 1

3 t0 + 2
3

∑m
k=1 vk.

We also use an adaptive way of decreasing ti over the maximum number of
iterations maxit, which is effective on infeasible systems coming from a variety
of applications: ti :=

(
1 − i

maxit

)
t0, where i is the iteration index.

Projection on Bounding Box. When facing Max FS instances whose variables
are subject to mandatory lower and upper bounds, the next iterate obtained after
each update is projected back into the bounding box whenever it falls out of it.

Update Direction Based on a Block of Inequalities. Good sub-optimal solutions
are obtained more rapidly by considering a block-iterative variant of the RTR
method in which the update direction is given by a (convex) combination of the
ak’s of the violated inequalities in a block and the size of the block is decreased
over the iterations. For the block idea applied to feasible linear systems see for
example [7]. Suppose that I ⊆ {1, . . . ,m} is the index set of the inequalities in
the block that are violated by the current iterate xi. Since in our experiments
all inequalities are considered to be equally important, vi can be replaced by∑

k∈I(bk − akxi)
|I| and the updating step is described by

xi+1 = xi + ηi

∑
k∈I ak

|I| , (12)

where |I| denotes the number of violated inequalities in the block. Decreasing
the size of the block to 1 during the iterations (proportionally to ti and to
the number of inequalities violated by the current iterate) leads to substantial
improvements.
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Variable-Based Local Search. After a certain number of non-improving iterations
of plain RTR, we apply a local search step with respect to single variables.
Given a current solution x = (x1, x2 . . . , xn), we look for a variable index j,
1 ≤ j ≤ n, and a scalar δ such that the number of inequalities satisfied by
(x1, x2 . . . , xj + δ . . . , xn) is maximum. This 1-D search, which has a complexity
of nm, yields improved solutions. Encouraged by the performance of the RTR
block variant, we have adopted a grouping strategy also for this variable-based
local search step, which provides better quality solutions.

One-Dimensional Optimization Along the Update Direction. At each iteration,
after xi+1 is found, we look for a point of the segment connecting xi and xi+1,
i.e., of the set {xi + α(xi+1 − xi), 0 ≤ α ≤ 1}, that satisfies the largest number
of inequalities. Despite the higher complexity (nm if we are using the group
subgradient or the variable-based local search), this procedure yields improved
solutions for a number of instances.

Preprocessing Step. If the variables are subject to mandatory upper and lower
bounds, some inequalities can be satisfied by either all or none of the points
lying in the bounding box, and hence may be deleted. By taking into account
the sign of the coefficients aij as well as the bounds on the variables, we can easily
determine whether any given inequality can be satisfied by all x in the bounding
box or by none of them. Similarly, by checking the coefficients of a given variable
xj it is easy to establish whether its value can be fixed to the upper or lower
bound, provided the vector b is suitably modified. The two above preprocessing
steps are repeated alternatively until no more inequalities or variables can be
deleted from the system.

If the variables are bounded, the initial iterate x0 is generated uniformly at
random within the bounding box, otherwise it is taken as 0. The RTR method
terminates either after maxit iterations or when no significant improvement is
achieved during a predefined number of iterations.

We now present some computational results obtained for large-scale Max FS
instances arising in digital video broadcasting [22] and in modelling protein fold-
ing potentials [17]. We also report some results for small-size instances occurring
in two-group linear discriminant analysis. The experiments were carried out with
a 2.8 GHz processor and 2 GB of RAM.

Digital Video Broadcasting (DVB). In planning a DVB network, an in-
teresting problem is that of determining the emission power of a given set of
n transmitters so as to maximize territory coverage [22]. Suppose the territory
is subdivided into m sufficiently small squared areas, considered as test points
(TPs). A signal emitted from a transmitter is useful or interfering at a TPde-
pending on the arrival delay. In the single frequency and fixed window model
[22], for each TP i the signal quality constraint can be linearized as follows:

n∑
j=1

aij xj ≥ bi, (13)
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where the variable xj indicates the emission power of the jth transmitter, subject
to a mandatory upper bound given by the maximum power pmax. The field
strength aij of the signal arriving at TP i from transmitter j is positive (negative)
for the useful (interfering) part of the signal, and bi is the minimum field strength
required to cover TP i with probability 0.95. Since total coverage is usually not
achievable, one faces sparse instances of Max FS with one inequality per TP,
a variable per transmitter and mandatory upper (maximum power) and lower
bounds for each variable. A reasonable discretization yields instances for the
whole Italian territory with of the order of 55000 inequalities in a few thousands
of variables. To maximize the population covered, a weight can be assigned to
each inequality (13) and one searches for a Feasible Subsystem (FS) of maximum
total weight. See [22] for the modelling details.

Computational experiments were conducted on a selection of DVB instances
with different sizes m and n. In the upper part of Table 1 we report the number
of inequalities in the feasible subsystems obtained with our RTR method and the
computing time needed to find them. The results and performance are compared
with Cplex 8.1 MIP solver applied to the big-M formulations. For some instance
we mention the best solutions obtained at different times. Although a reasonable
value of M is easily derived from the variable bounds, it is quite large due to the
problem nature and it makes the linear relaxation very poor. The time limit of
two hours allowed Cplex to solve optimally only the smallest instances and one
medium-size instance. According to Table 1, the approximate solutions provided
by the RTR method are often of much better quality than the best solutions
found by Cplex in two hours (and mentioned in the table with the time to find
them). Moreover, RTR typically finds a good solution almost immediately and
improves it subsequently. As an example, for instance dvb5 RTR yields a feasible
subsystem with 3346 inequalities after 0.16 sec. and improves it to size 3354
within 2.33 sec., while Cplex yields a feasible subsystem with 3314 inequalities
after 41.13 sec. and improves it to size 3336 after 77089.65 sec. It is worth
pointing out that, because of the wide range of values the system coefficients can
take, the implementation of the best available (LP-based) heuristic [8] based on
MINOS and the exact method presented in [9] failed out of numerical problems
on all these instances.

Protein Folding Potentials. As described in [17], the problem of modelling
the energy function (potential) underlying the folding of amino acid sequences
into proteins gives rise to large and dense linear systems with millions up to tens
of millions inequalities in hundreds of variables. Let E(s, t) denote the energy
of sequence s when folded into the three-dimensional structure t and let t∗

s be
the native structure of sequence s. The premise that the energy of the native
structure is lower than that of any structure chosen from a set of “decoys”
amounts to

E(s, t) − E(s, t∗
s) > 0 ∀s, ∀t 	= t∗

s. (14)
Focusing on the common features, potential modelling can then be formalized
as the problem of approximating the unknown energy E by a linear combi-
nation of some appropriate basis function set {φi(s, t)}1≤i≤n, i.e., by Ẽ(s, t) =
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Table 1. Comparison between the RTR method and Cplex 8.1 MIP solver applied to
the big-M formulations for some DVB and protein folding instances. A “�” indicates a
proven optimal solution, “–” that no feasible solution has been found within the time
limit, and “†” that the corresponding instance is feasible

rtr cplex
m n FS size time in sec. FS size time in sec.

digital video broadcasting
dvb1 550 487 538� 0.01 537 0.02

538� 0.36
dvb2 912 487 867 0.01 850 0.02

870� 19.58 870� 14.28
dvb3 1580 487 1531 2.09 1515 2.00

1533 13.99 1534� 24.38
dvb4 3767 487 3346 0.16 3314 41.13

3354 2.33 3336 77089.65
dvb5 6649 487 5757 46.88 – –
dvb6 14057 487 12819 128.38 12365 58.20
dvb7 11229 487 9475 1.16 9480� 36.97
dvb8 19916 487 17154 167.49 15754 246.75
dvb9 8701 487 7479 12.09 – –
dvb10 48758 487 41884 110.94 40082 1562.43
dvb11 49008 1681 42740 159.10 – –

protein folding potentials
prot1 19404 12 16772 1.22 – –
prot2 92890 212 92383 242.80 – –
prot3 250233 150 249865 9.11 – –

250225 92.85 – –
prot4 349584 22 268396 121.53 – –
prot5 837802 11 837689 23.88 – –
feas1 200176 301 200173 21.21 †
feas2 240219 301 240213 27.55 †
feas3 280364 301 280364� 32.92 †
feas4 320543 301 320541 30.29 †
feas5 360630 301 360629 31.85 †
feas6 401115 301 401112 75.50 †

∑n
i=1 xiφi(s, t) where x is the vector of parameters. As a simple example, φi(s, t)

may count the number of contacts between a certain pair of amino acids that
appear when s is folded into structure t. Thus, by requiring that the potential
models Ẽ satisfy (14), we have

∑n
i=1 xi(φi(s, t) − φi(s, t∗

s)) > 0 for all s and
all t 	= t∗

s. Since perfect structure recognition is unrealistic, these dense homo-
geneous systems are generally infeasible and one is interested in finding an x
satisfying as many inequalities (14) as possible [17].

As mentioned in the lower part of Table 1, these instances are much larger
than the DVB ones, and the corresponding big-M formulations could not be
solved within the time limit of two hours and did not provide any primal solution.
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For three out of the five first instances, our RTR variant yields in a very short
amount of computing time a feasible subsystem containing more than 99.4% of
the inequalities in the original system, that is, a solution which is within 0.6%
from the optimum. Note, for example, that for prot3 the feasible subsystem with
249865 inequalities found by the RTR variant after 9 sec. is improved to size
250225, with only 8 violated inequalities, just after 92.85 sec.

To further evaluate the quality of the RTR solutions, we have also considered
five feasible systems with up to 400000 inequalities in 301 variables. For such
systems, the Max FS-optimal solution is obviously known and can be used for
comparison purposes. It is worth emphasizing that, unlike linear programming
solvers, our RTR variants deal with such instances (feasible subsystems) as if
they were infeasible and strive to find an iterate satisfying as many inequalities
as possible. The results are reported in the lower part of Table 1, where a “†”
indicates that the MIP solver performance on the big-M formulations is of no
interest for these feasible systems. Our RTR method turns out to yield extremely
good solutions (within 0.001% from the optimum) in less than 80 sec., even for
the largest instance with 401115 inequalities. Note that, on the same PC, Cplex
8.1 MIP solver could not even start optimizing the big-M formulation for the
feasible instances with more than 300000 inequalities due to excessive memory
requirements.

Discriminant Analysis. To assess the performance of the RTR method on
smaller instances with known optimal solutions, we have considered the collection
of linear classification instances used in [9]. The general problem is to determine
the values of the parameters of a hyperplane so as to separate two groups of
data points as well as possible. In Table 2 RTR results are compared with those
obtained with the exact method based on Combinatorial Benders’ Cuts (cbc) [9]
and with Cplex 8.1 MIP solver applied to the big-M formulations. The focus
here is on the instances with more than 300 inequalities. We have adopted a
simple two-phase approach: after running a given number of RTR iterations
(5000), we consider the inequalities in the largest feasible subsystem found, F ,
as mandatory and we apply a MIP solver to the reduced big-M formulation
which aims at identifying among the other inequalities those that are consistent
with F .

The upper part of Table 2 corresponds to the instances that are solved opti-
mally with both the cbc method and the big-M formulations, the middle part
to those solved only by cbc, and the lower part to the instances that could not
be solved by either of them within the time limit of 10000 sec. For the cbc
method and the big-M formulations, we report either the optimal solution and
the computing time to find it (if it is reached within the time limit) or the best
lower bound. For the RTR method, we report the value of the best solution and
the time needed to find it. Note that, for the instances that are easily solved by
cbc, the RTR variant yields near-optimal solutions within less than 7 seconds.
For the instances that could not be solved to optimality within the time limit,
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Table 2. Comparison between the two-phase RTR variant, the cbc method and Cplex
8.1 MIP solver applied to the big-M formulations for some small classification instances.
A “–” means that the time limit has been reached, whereas “�” indicates proven optimal
solutions. Computing times are expressed in seconds

rtr+ cplex cbc
m n FS size time FS size time FS size time

BCW-367 367 10 359� 1.31 359� 365 359� 1
BCW-683 683 10 669 6.13 673� 6750 673� 10
BusVan445 445 18 436 4.76 436 – 437� 102
Bv-os-376 376 18 363 5.50 367 – 368� 125
Solar-flare-323 323 12 284 1.03 282 – 285� 3
Flags-169 169 29 159 1.24 159 – 159 –
Horse-colic-253 253 26 240 7.60 240 – 240 –
Horse-colic-185 183 26 173 3.08 173 – 173 –
Solar-flare-1066 1066 12 817 6.56 796 – 782 –

823 139.27

RTR compares well with the two exact approaches since it provides the best
solutions in extremely short computing times.

5 Concluding Remarks

We have proposed randomized and thermal variants of the classical relaxation
method to tackle large-scale instances of Max FS. We have sketched a frame-
work to analyze the probabilistic termination properties of these RTR methods
in terms of the input data. In particular, we have established sufficient condi-
tions under which one of these methods is guaranteed to find with probability
1 an optimal solution of Max FS within a finite number of iterations. Compu-
tational results obtained for instances arising in the planning of digital video
broadcasts and in the modelling of protein folding potentials indicate that a
simple RTR variant performs very well in practice. Interestingly it provides a
remarkably good trade-off between solution quality and computing time even for
small linear classification instances.

As our RTR methods do not require computationally expensive matrix op-
erations such as matrix inversion, they are particularly suited to large-scale
Max FS instances. We are currently investigating ways to exploit the inher-
ent parallelism to tackle protein folding instances with up to forty millions of
inequalities.
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Abstract. Clique separators in graphs are a helpful tool used by Tar-
jan as a divide-and-conquer approach for solving various graph problems
such as the Maximum Weight Stable Set (MWS) Problem, Coloring and
Minimum Fill-in but few examples are known where this approach was
used. We combine decomposition by clique separators and by homoge-
neous sets and show that the resulting binary tree gives an efficient way
for solving the MWS problem. Moreover, we combine this approach with
the concept of nearly chordal and nearly perfect and obtain some new
graph classes where MWS is solvable in polynomial time by our approach.
On some of these classes, the unweighted Maximum Stable Set (MS)
Problem was known to be solvable in polynomial time by the struction
method or by augmenting techniques, respectively, but the complexity of
the MWS problem was open. A graph is nearly chordal if for each of its
vertices, the subgraph induced by the set of its nonneighbors is chordal,
and analogously for nearly perfect graphs.

1 Introduction

For a graph G = (V,E) and a vertex weight function w on V , let αw(G) (α(G))
denote the maximum weight (maximum cardinality) of a stable vertex set in G.

The Maximum Weight Stable (or Independent) Set (MWS) Problem asks for
a stable set of maximum weight in the given graph G with vertex weight function
w. The MS problem is the MWS problem if all vertices v have the same weight
w(v) = 1.

The MWS problem is one of the fundamental algorithmic graph problems
occuring in many models of optimization and computer science in its original
form or in variants such as the Minimum Vertex Cover Problem or modifications.

It is known to be NP-complete in general and solvable in polynomial time
on various graph classes by various techniques. Some of these techniques such as
augmenting, reducing α-redundant vertices and struction lead only to efficient
solutions of the unweighted Maximum Stable Set (MS) Problem.

A famous divide-and-conquer approach by using clique separators is described
by Tarjan in [22]. It works for various problems on graphs such as Minimum fill-
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c© Springer-Verlag Berlin Heidelberg 2005
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in, Coloring, Maximum Clique, and the MWS problem as shown in [22]. The
subgraphs not containing clique separators are called atoms in [22]. Whenever
MWS is efficiently solvable on the atoms of a graph G, it is efficiently solvable on
G. However, few examples are known where this approach could be applied for
obtaining a polynomial time MWS algorithm on a graph class. A recent example
is given by Alekseev [1] showing that for a certain subclass C of P5-free graphs,
the atoms are 3K2-free from which it follows that the MWS problem is solvable
in polynomial time on this graph class C.

We combine decomposition by clique separators with decomposition by ho-
mogeneous sets in order to refine graph decomposition, and we use the following
notion: Let Π denote a graph property. A graph is nearly Π if for each of its
vertices, the subgraph induced by the set of its nonneighbors has property Π.
We deal with the cases Π ∈ {chordal, perfect}.

Obviously, the MWS problem on a graph G with vertex weight function w
can be reduced to the same problem on antineighborhoods of vertices in the
following way:

αw(G) = max{w(v) + αw(G[N(v)]) | v ∈ V }

Thus, whenever MWS is solvable in time T on a class with property Π, it
is solvable on nearly Π graphs in time nT . For example, Frank [12] gave a
linear time algorithm for the MWS problem on chordal graphs. Hence, the MWS
problem can be solved in time O(nm) for nearly chordal graphs. Grötschel,
Lovász and Schrijver [14] gave a polynomial time algorithm for the MWS problem
on perfect graphs. Thus, the MWS problem can be solved in polynomial time
for nearly perfect graphs.

We combine these two examples with our decomposition by clique separators
and homogeneous sets in order to give new classes where MWS can be solved
in polynomial time. In particular, we can explain some results in a simpler way
which were originally obtained by struction introduced by Ebenegger, Hammer
and de Werra [11] (a complicated method to compute the unweighted stability
number of a graph which came from optimizing Boolean functions), we can
extend them to MWS and we use clique separators in combination with nearly
chordal graphs for the MWS problem on the following two classes where the
complexity of the MWS problem remained open:

(i) for (P6, C4)-free graphs which considerably extends and improves the poly-
nomial time result for the MS problem given in [20] by using augmenting
techniques;

(ii) for (P5, P )-free graphs which extends and improves a result in [6, 17] where
a (robust, see [6]) polynomial time solution for the MS problem on (P5, P )-
free graphs was given using α-redundant vertices in [6] and an augmenting
argument in [17], respectively.

The class of (P6,C4)-free graphs contains split graphs and (C4,2K2)-free
graphs, and (P5,P )-free graphs also generalize various interesting graph classes
such as split graphs, (C4,2K2)-free graphs, co-bipartite graphs, cographs and
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P4-sparse graphs (for the definition of all these classes see e.g. [5]). In Theo-
rem 5, we show that for (P6,C4)-free graphs without clique separator, the MWS
problem is efficiently solvable. This leads to a polynomial time MWS algorithm
on this class by Tarjan’s approach.

2 Basic Notions

Throughout this note, let G = (V,E) be a finite undirected graph without self-
loops and multiple edges and let |V | = n, |E| = m. Let V (G) = V denote the
vertex set of graph G. For a vertex v ∈ V , let N(v) = {u | uv ∈ E} denote
the (open) neighborhood of v in G, let N [v] = {v} ∪ {u | uv ∈ E} denote the
(closed) neighborhood of v in G, and for a subset U ⊆ V and a vertex v /∈ U , let
NU (v) = {u | u ∈ U, uv ∈ E} denote the neighborhood of v with respect to U .
The antineighborhood N(v) is the set V \N [v] of vertices different from v which
are nonadjacent to v.

Disjoint vertex sets X,Y form a join, denoted by X 1©Y (co-join, denoted
by X 0©Y ) if for all pairs x ∈ X, y ∈ Y , xy ∈ E (xy /∈ E) holds. We will also
say that X has a join to Y , that there is a join between X and Y , or that X
and Y are connected by join (and similarly for co-join). Subsequently, we will
consider join and co-join also as operations, i.e., the co-join operation for disjoint
vertex sets X and Y is the disjoint union of the subgraphs induced by X and Y
(without edges between them), and the join operation for X and Y consists of
the co-join operation for X and Y followed by adding all edges xy ∈ E, x ∈ X,
y ∈ Y .

A vertex z ∈ V distinguishes vertices x, y ∈ V if zx ∈ E and zy /∈ E or
zx 	∈ E and zy ∈ E. We also say that a vertex z distinguishes a vertex set
U ⊆ V , z /∈ U , if z has a neighbor and a non-neighbor in U . A vertex set M ⊆ V
is a module if no vertex from V \M distinguishes two vertices from M , i.e., every
vertex v ∈ V \M has either a join or a co-join to M .

A graph G is prime if it contains only trivial modules, i.e., ∅, V (G) and one-
elementary vertex sets. A nontrivial module is called a homogeneous set. The
notion of module plays a crucial role in the modular (or substitution) decompo-
sition of graphs (and other discrete structures) which is of basic importance for
the design of efficient algorithms - see e.g. [19] for modular decomposition of
discrete structures and its algorithmic use and [18] for a linear-time algorithm
constructing the modular decomposition tree of a given graph.

For U ⊆ V , let G[U ] denote the subgraph of G induced by U . Throughout
this paper, all subgraphs are understood to be induced subgraphs. Let F denote
a set of graphs. A graph G is F-free if none of its induced subgraphs is in F .

A vertex set U ⊆ V is stable (or independent) in G if the vertices in U
are pairwise nonadjacent. For a given graph with vertex weights, the Maximum
Weight Stable Set (MWS) Problem asks for a stable set of maximum vertex
weight.

Let co-G = G = (V,E) denote the complement graph of G. A vertex set
U ⊆ V is a clique in G if U is a stable set in G. Let K� denote the clique
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with � vertices, and let �K1 denote the stable set with � vertices. K3 is called
triangle.

A clique separator or clique cutset in G is a clique Q such that G[V \Q] has
more connected components than G.

For k ≥ 1, let Pk denote a chordless path with k vertices and k−1 edges, and
for k ≥ 3, let Ck denote a chordless cycle with k vertices and k edges. A hole is
a Ck with k ≥ 5, and an antihole is Ck with k ≥ 5. An odd hole (odd antihole,
respectively) is a hole (antihole, respectively) with odd number of vertices.

For a subgraph H of G, a vertex not in H is a k-vertex for H if it has exactly
k neighbors in H. We also say that H has no k-vertex if there is no k-vertex
for H. For a set S ⊆ V (H) with |S| = k let MS be the set of k-vertices for
H adjacent to vertices in S. We also write Ma,b respectively Mx for S = {a, b}
respectively S = {x}, etc. The subgraph H dominates the graph G if there is no
0-vertex for H in G. Let N denote the set of 0-vertices for H.

A graph is chordal if it contains no induced Ck, k ≥ 4. A graph is nearly
chordal if for each of its vertices, the subgraph induced by the set of its non-
neighbors is a chordal graph.

More generally, if Π is a graph property then a graph is nearly Π if for
each of its vertices, the subgraph induced by the set of its nonneighbors has the
property Π. Note that this notion appears in the literature in many variants,
e.g., as nearly bipartite graphs [3].

3 Connected (Claw, Antena, Net)-Free Graphs Are
Nearly Chordal

A graph is (claw,antena,net)-free (CAN-free) if it contains none of the graphs in
Figure 1 as induced subgraphs.

���� ������ ���

Fig. 1. The claw, antena and net

Theorem 1. Connected (claw, antena, net)-free graphs are nearly chordal.

Proof. Assume that there is a vertex v ∈ V such that Gv := G[V \N [v]] is not
chordal.
Case 1. Gv contains C4. Let C be a C4 in Gv with vertices v1, v2, v3, v4 and
edges vivi+1, i ∈ {1, 2, 3, 4} (index arithmetic modulo 4). Since G is claw-free, C
has no 1-vertex, and for any 2-vertex x of C, its neighbors in C are consecutive.
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Since G is antena-free, no 0-vertex is adjacent to a 2-vertex of C, and since G
is claw-free, no 0-vertex is adjacent to a 3- or 4-vertex of C. Thus, C has no
0-vertex since G is connected but v is a 0-vertex for C - contradiction.
Case 2. Gv is C4-free but contains Ck for k ≥ 5. Let C be a Ck in Gv with
vertices v1, . . . , vk and edges vivi+1, i ∈ {1, . . . , k} (index arithmetic modulo
k). As before, C has no 1-vertex, and 2- and 3-vertices of C have consecutive
neighbors in C. 0-vertices are not adjacent to 2-vertices since G is net-free, and
0-vertices are not adjacent to k-vertices, k ≥ 3 since G is claw-free. Thus, C has
no 0-vertex but v is a 0-vertex of C - contradiction.

This shows that G is nearly chordal. 
�

Corollary 1. The MWS problem can be solved in time O(nm) on (claw, antena,
net)-free graphs.

This simplifies and extends a result by Hammer, Mahadev and de Werra in
[15] solving the MS problem in polynomial time by so-called struction (a quite
complicated stability reduction method) - CAN-free graphs have been one of the
key examples for the use of struction. Another key example for the struction
method was the larger class of (claw, net)-free graphs for which struction was
shown to solve the MS problem in polynomial time in [16]; in [4], also this case
was generalized in a similar way to a O(nm) algorithm for the MWS problem
on the larger class of nearly (claw,AT)-free graphs. In the next section, we will
show that (claw,net)-free graphs are nearly perfect. A third example is the class
of circular-arc graphs for which struction solves the MS problem [13]; note,
however, that circular-arc graphs are nearly interval graphs and thus, MWS
can be solved in time O(nm) on circular-arc graphs (note that interval graphs
are chordal.)

It seems to be a challenging task to find examples where struction works well
and cannot be replaced by such a simple technique. As already mentioned, for
nearly perfect graphs, MWS is solvable in polynomial time. In the next sections,
we give further examples for nearly perfect graphs as well as for nearly chordal
graphs.

4 Connected (Claw,Net)-Free Graphs Are Nearly Perfect

Theorem 2. Connected (claw,net)-free graphs are nearly hole-free.

Proof. Let G be a connected (claw,net)-free graph. Suppose there is a ver-
tex x such that in the non-neighborhood of x there is a hole C with vertices
v1, v2, . . . , vk and edges vivi+1 for i = 1, . . . , k and k ≥ 5 (with subscript taken
modulo k). Since G is connected, we may assume x has a neighbor y that has
neighbors in C. If y has more than two neighbors in C, then y is center of a
claw. If y has exactly one neighbor vi in C, then vi is center of a claw. So, y has
exactly two consecutive neighbors in C, say vi and vi+1. But now the vertices
vi−1, vi, vi+1, vi+2, x, y form a net. 
�
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Theorem 3. Connected (claw,net)-free graphs are nearly odd-antihole-free.

Proof. Let G be a connected (claw,net)-free graph. Suppose there is a vertex x
such that in the non-neighborhood of x there is an odd antihole C with vertices
v1, v2, . . . , vk and non-edges vivi+1 for i = 1, . . . , k and k being an odd integer
at least seven (with subscript taken modulo k.) Since G is connected, we may
assume x has a neighbor y that has neighbors in C.

First, let us remark that y cannot be adjacent to two consecutive vertices
vi, vi+1 of C, for otherwise y is center of a claw. Now, let vi be a neighbor of y
in C. The above remark shows that y is not adjacent to vi−1, vi+1. If y is not
adjacent to vi+2, then y must be adjacent to vi+3 (for otherwise, vi, vi+2, vi+3, y
form a claw); but now the vertices x, y, vi, vi+1, vi+2, vi+3 form a net. We have
shown that if y is adjacent to vi, then y is adjacent to vi+2 and nonadjacent to
vi+1. It follows that k is even, a contradiction. 
�

Corollary 2. Connected (claw,net)-free graphs are nearly perfect.

Proof. By Theorem 2, prime (claw,net)-free graphs are nearly hole-free, and
by Theorem 3, these graphs are nearly odd-antihole-free. Thus, by the Strong
Perfect Graph Theorem by Chudnovsky, Robertson, Seymour and Thomas [7],
these graphs are nearly perfect. 
�

Corollary 3. The Maximum Weight Stable Set Problem can be solved in poly-
nomial time for (claw,net)-free graphs.

5 (P6,C4)-Free Graphs and Clique Separators

By using augmenting techniques, Mosca [20] has shown that the MS problem can
be solved in time O(n4) on (P6,C4)-free graphs. The complexity of the weighted
MWS problem remained open in [20]. Here we show that the concept of clique
separators can also be applied to (P6,C4)-free graphs. As a first step, we show:

Theorem 4. (P6,C4)-free graphs without clique cutset are nearly perfect.

Proof. Let G be a (P6,C4)-free graph without clique cutset. Then G contains
no Ck for k ≥ 7 and no Ck for k ≥ 6.

Now we use again the Strong Perfect Graph Theorem. In order to show that
(P6,C4)-free graphs without clique cutset are nearly perfect, it is sufficient to
show that these graphs are nearly C5-free.

Assume to the contrary that there is a vertex v in G whose antineighborhood
N(v) contains a C5 C, say with vertices v1, . . . , v5 and edges vivi+1, i ∈ {1, . . . , 5}
(index arithmetic modulo 5).

Since G is (P6,C4)-free, no vertex x ∈ N(v) is a k-vertex, k ∈ {1, 2, 4},
for C, and 3-vertices have consecutive neighbors in C. Let Mk denote the set
of k-vertices for C, and let Mk(v) denote the set of k-vertices for C in N(v),
k ∈ {0, 3, 5}.
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Since G is C4-free, M5 is a clique and has a join to the set M3 of 3-vertices for
C. Moreover, M3(v) is a clique since for any two vertices x, x′ ∈ M3(v), there is
a vertex y ∈ C that is adjacent to both x and x′ since x, x′ have three neighbors
in C. Now, xx′ ∈ E for otherwise v, x, x′, y induce a C4.

Let Q := M5∪M3(v) which is a clique as shown above. Since G has no clique
cutset, there is a path between v and C avoiding Q, i.e., there is a 0-vertex
x ∈ N(v) having a neighbor y ∈ N(v) but every such neighbor y must be a 5-
or 0-vertex for C since G is P6-free, and if y is a 5-vertex then y ∈ Q. The same
argument holds for 0-vertex y and a neighbor y′ ∈ N(v) of y which is closer to
C. Thus, the vertex v together with the 0-vertex neighbors of v on one hand and
C on the other hand are in different components of G[V \Q] - contradiction. 
�

Since MWS is solvable in polynomial time for perfect graphs [14], Tarjan’s
clique separator approach implies:

Corollary 4. The MWS problem for (P6, C4)-free graphs is solvable in polyno-
mial time.

A more detailed structure analysis of (P6, C4)-free graphs is given by the
following Theorem 5. To this purpose, we define specific graphs as follows. Let
a clique-C6 denote the result of substituting cliques into the vertices of a C6.
Figure 2 shows the Petersen graph B which is the corresponding extension of the
C6 by four other vertices. Let B′ denote the graph resulting from B by adding a
universal vertex to B, i.e., a vertex which is adjacent to all vertices of B. A graph
is specific if it results from substituting cliques of arbitrary size into vertices of
the graph B′ or is an induced subgraph of this one (obtained by substituting
some cliques of size 0).

Fig. 2. The Petersen graph B

Theorem 5. (P6,C4)-free graphs without clique cutset are either nearly chordal
or specific.

For space limitations, we skip the proof of Theorem 5. The time bounds given
in [22] imply:

Corollary 5. The MWS problem for (P6, C4)-free graphs is solvable in time
O(n3m).

Note that specific graphs are not prime.
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Corollary 6. Prime (P6,C4)-free graphs with at least 11 vertices and without
clique cutset are nearly chordal.

6 Combining Decomposition by Clique Cutsets and by
Homogeneous Sets

In this section, we combine decomposition by clique cutsets and decomposition
by homogeneous sets to a binary decomposition tree which gives a refinement of
the two decompositions obtained separately.

Consider a graph G = (V,E). Let G[Vi] be the subgraph of G induced by
Vi ⊆ V . We study the decomposition φ of a G defined as follows. If G has a
clique cutset C ⊂ V , then G is decomposed into subgraphs G1 = G[V1] and
G2 = G[V2] where V = V1∪V2 and C = V1∩V2. Whitesides [23] (see also Tarjan
[22]) showed that given a decomposition of a graph G into two graphs G1, G2

as above, if the MWS problem for G1, G2 can be computed in polynomial time,
then so can the problem for G.

If G has a homogeneous set H, then G is decomposed into induced subgraphs
G1 = G[V1] and G2 = G[V2] where V1 = H and V2 = V − H ∪ {h} for some
vertex h in H. It is easy to see that given a decomposition of a graph G into
two graphs G1, G2 as above, if the MWS problem for G1, G2 can be computed
in polynomial time, then so can the problem for G.

We can recursively decompose G1 and G2 in the same way, until we obtain
φ-prime graphs (i.e., graphs that have no clique cutset, and no homogeneous
set). This decomposition can be represented by a binary tree T (G) whose root is
G, the two children of G are G1 and G2, which are in turn the roots of subtrees
representing the decompositions of G1 and G2. Each leaf of T (G) corresponds
to an induced φ-prime subgraph of G.

Theorem 6. For any graph G, T (G) contains O(n2) nodes.

Proof. We will show that each internal node of T (G) can be labeled with a
distinct 2-tuple (a, b) where a, b are two vertices of G. We only need to label
internal nodes that correspond to graphs with at least three vertices.

Let GX denote the induced subgraph of G that corresponds to an internal
node X of T (G). If GX is decomposed by a clique cutset C into two graphs
G1, G2, then label X with (a, b) where a is any vertex G1 − C, and b is any
vertex G2 − C (we say X is a node of type 1). If GX has a homogeneous set H,
and G is decomposed into subgraphs G1 = G[V1] and G2 = G[V2] where V1 = H
and V2 = V −H∪{h} for some vertex h in H, then we label X with (a, b), where
a is any vertex in V − H, and b is a vertex in H − {h} (we say X is a node of
type 2). Now we show that each internal node in T (G) has a distinct 2-tuple.

Assume there are two nodes A,B in T (G) with the same 2-tuple (x, y), in
particular, we have x, y ∈ GA ∩GB . Suppose first that B is a descendant of A.
Our choice of the labels implies that, whether A is of type 1 or 2, there is at
least one vertex in the label of GA that does not belong to GB , a contradiction.
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Now, we may assume A is not a descendant of B and B is not a descendant
of A. Let X be the lowest common ancestor of A and B in T (G). For simplicity,
we may assume that A (B) either is the left (right) child of X, or is a descendant
of the left (right) child of X. If X is a node of type 2, then A and B can have at
most one vertex in common, and thus cannot have the same 2-tuple. So, X must
be a node of type 1 with a clique cutset C. We thus have x, y ∈ C implying xy
is an edge. This is a contradiction since we chose x to be nonadjacent to y. �

Corollary 7. If the MWS problem can be solved in polynomial time for every φ-
prime subgraph of a graph G, then so can the problem for G. �

As an example, we will study the corresponding decomposition of (P5,P )-free
graphs. As a first step, we show that these graphs are nearly perfect.

7 Prime (P5,P )-Free Graphs and Clique Separators

In [6, 17], a (robust, see [6]) polynomial time solution for the (unweighted) Max-
imum Stable Set Problem on (P5, P )-free graphs was given. The complexity of
the MWS problem on (P5, P )-free graphs remained an open question in [6, 17].
In this section, we will show that prime (P5, P )-free graphs are nearly perfect
which implies that the MWS problem is solvable in polynomial time on this
graph class.

Theorem 7. Prime (P5, P )-free graphs are nearly perfect.

For space limitations, we skip all remaining proofs (which are the technically
most involved of this paper).

Corollary 8. The Maximum Weight Stable Set Problem can be solved in poly-
nomial time for (P5, P )-free graphs.

However, a detailed structure analysis gives a much better result:

Theorem 8. Prime (P5,P )-free graphs without clique cutset are nearly chordal.

Corollary 9. The MWS problem for (P5, P )-free graphs is solvable in time
O(n3m).

Corollary 9 follows from Corollary 7.

8 Conclusion

In this paper, we give new applications of the clique separator approach, com-
bine it with the decomposition by homogeneous sets and improve some known
polynomial time results for the unweighted Maximum Stable Set problem which
were obtained by various methods such as struction, augmenting and elimination
of α-redundant vertices to the weighted MWS problem.
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It remains a challenging task to study under which conditions a method
which works for the unweighted MS problem can be replaced by the decompo-
sition studied in this paper. Moreover, the combined decomposition should be
applied to other cases where augmenting and other methods for MS work well.
In particular, it might be interesting whether the O(n7) time augmenting algo-
rithm for the MS problem on (P7,P )-free graphs given by Alekseev and Lozin in
[2] can be explained in terms of our approach.
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4. A. Brandstädt, F.F. Dragan, On the linear and circular structure of (claw,net)-free
graphs, Discrete Applied Math. 129 (2003) 285-303
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Topics on perfect graphs, North-Holland, Amsterdam, 1984



Smoothed Analysis of Integer Programming�
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Abstract. We present a probabilistic analysis of integer linear programs
(ILPs). More specifically, we study ILPs in a so-called smoothed analysis
in which it is assumed that first an adversary specifies the coefficients of
an integer program and then (some of) these coefficients are randomly
perturbed, e.g., using a Gaussian or a uniform distribution with small
standard deviation. In this probabilistic model, we investigate structural
properties of ILPs and apply them to the analysis of algorithms. For
example, we prove a lower bound on the slack of the optimal solution. As
a result of our analysis, we are able to specify the smoothed complexity
of classes of ILPs in terms of their worst case complexity. For example,
we obtain polynomial smoothed complexity for packing and covering
problems with any fixed number of constraints. Previous results of this
kind were restricted to the case of binary programs.

1 Introduction

Many algorithmic problems are hard with respect to worst-case instances but
there are algorithms for these problem that work quite efficiently on “typical
instances”, that is, on instances occurring frequently in practice. Finding an ad-
equate theoretical model for typical instances, however, is a challenging task.
A reasonable approach seems to be to represent typical instances in form of a
probability distribution on the set of possible inputs. A classical average-case
analysis begins with the specification of the input distribution. Usually, this is
just a simple uniform distribution. The dilemma with such an approach is that
any fixed input distribution can be argued to be not the right, typical one. Dur-
ing the last years there has been an increased interest in more general input
models and more robust kinds of probabilistic analyses that do not only hold
for particular input distributions. An example for such a concept is the so-called
smoothed analysis of the Simplex algorithm by Spielman and Teng [12]. They
assume that first an adversary specifies the input numbers of an LP and then
these adversarial numbers are slightly perturbed at random using a Gaussian
distribution with specified standard deviation. Spielman and Teng show that
the expected running time of the Simplex algorithm under such random pertur-
bations is bounded polynomially in the size of the input and the reciprocal of
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the standard deviation. Intuitively, this means that the running time function
of the Simplex algorithm shows superpolynomial behavior only at some isolated
peaks.

Beier and Vöcking [5] generalize smoothed analysis towards discrete optimiza-
tion problems. In particular, they study optimization problems that can be rep-
resented in form of binary programs. A linear binary optimization problem is de-
fined by a set of linear constraints and a linear objective function over some sub-
set S ⊆ {0, 1}n. By parametrizing which constraints are of stochastic and which
are of adversarial nature, it is possible to randomize some of the constraints with-
out destroying the combinatorial structure described by other constraints. Their
analysis covers various probability distributions for the choice of the stochas-
tic numbers and includes smoothed analysis with Gaussian and other kinds of
perturbation models as a special case. It is shown that a binary optimization
problem has polynomial smoothed complexity if and only if it has random pseu-
dopolynomial complexity, i.e., the unary variant of the problem is in ZPP. Other
results on the smoothed and average-case analysis of discrete optimization prob-
lems can be found, e.g., in [1, 4, 2, 3, 6, 8, 10, 11]. All these results are restricted
to problems that can be written in form of a binary optimization problem.

In this paper, we extend the results of Beier and Vöcking [5] from binary to-
wards integer linear programs (ILPs), that is, we assume that the variables have
a finite domain D ⊂ ZZ instead of just {0, 1}. We investigate structural proper-
ties of ILPs and, as a result of our analysis, we are able to describe the smoothed
complexity of classes of ILPs in terms of their worst case complexity. In partic-
ular, we show that any class of ILPs with polynomially bounded domain has
polynomial smoothed complexity if and only if it has random pseudopolynomial
complexity. For example, our characterization implies polynomial smoothed (av-
erage) complexity for packing and covering problems with any fixed number of
constraints since these classes of ILPs admit pseudopolynomial time algorithms.
On the other hand, packing and covering problems with an unbounded number
of constraints do not have polynomial smoothed complexity, unless ZPP = NP,
as these classes are strongly NP-hard1.

Outline. In the next section, we define the considered probabilistic model and
state our results in a formal way. The probabilistic analysis is presented in Sec-
tion 2. It is centered around structural properties of integer linear programs,
called loser and feasibility gaps. Finally, in Section 3, we show how to exploit
these gaps algorithmically in form of an adaptive rounding scheme increasing
the accuracy of calculation until the optimal solution is found.

1.1 Problems and Model

Our analysis deals with integer linear programs (ILPs). W.l.o.g. we consider
maximization programs with ≤-constraints of the following standard form:

1 An NP-hard problem is called strongly NP-hard if it remains NP-hard even if all
input numbers are encoded in unary (see e.g. [9]).
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max cTx (1)
s.t. Ax ≤ b (2)

x ∈ Dn, (3)

where A ∈ IRk×n, b ∈ IRk, c ∈ IRn, and D ⊂ ZZ. In our analysis, we consider
classes of ILPs, that is, we place certain restrictions on ILPs. Packing and cov-
ering ILPs are good examples for such classes. In a packing ILP all coefficients
are non-negative, the objective is max cTx and all constraints are of the form
Ax ≤ b. In a covering ILP all coefficients are non-negative as well, the objective
is min cTx and all constraints are of the form Ax ≥ b. Both in packing and in
covering ILPs there are constraints which ensure that x ≥ 0 holds in every feasi-
ble solution. As another example, one can also place restrictions on the number
of allowed constraints. Such classes are, e.g., specified in the compendium of NP
optimization problems [7]. For example, packing ILPs with only one constraint
correspond to the INTEGER KNAPSACK PROBLEM, and packing ILPs with
a constant number k of constraints correspond to the MAXIMUM INTEGER
k-DIMENSIONAL KNAPSACK PROBLEM.

Description of the Probabilistic Input Model. Smoothed analysis assumes a semi-
random input model: First, an adversary specifies all input numbers (coefficients
in A and c as well as all thresholds in b), then some of the coefficients and
thresholds are randomly perturbed. We assume that all numbers specified by
the adversary are from the interval [−1, 1]. Observe that this is not a restriction
as every ILP can be brought into this form by scaling the linear expressions that
violate this assumption. In this extended abstract, we assume that the adver-
sarial numbers in the constraints, i.e. the coefficients in A and the thresholds
in b, are then randomly perturbed by adding an independent random number
to each of them. (For an outline of alternative perturbation models see Sec-
tion 1.3.) Spielman and Teng use Gaussian perturbations [12]. Following [5], we
use a more general perturbation model: The random numbers that are added to
the adversarial numbers are drawn according to a specified familiy of probability
distributions satisfying the following conditions. Let f : IR → IR≥0 be a density
function such that sups(f(s)) = 1 and E :=

∫
IR
|s|f(s)ds is finite. In words, the

random variable described by f has “maximum density equal to 1” and a “finite
expected absolute mean value”. Function f is called the perturbation model. For
φ ≥ 1, we define fφ by scaling f , that is, fφ(s) = φf(sφ), for every s ∈ IR.
This way it holds sups(fφ(s)) = φ and

∫
IR
|s|fφ(s)ds = E/φ. Now we obtain

φ-perturbations according to perturbation model f by adding an independent
random variable with density fφ to each coefficient in A and each threshold
in b.

For example, one obtains the Gaussian perturbation model from [12] by
choosing f to be the Gaussian density with standard deviation (2π)−1/2. A
non-negative domain for the random numbers can be obtained, e.g., by choosing
f to be the density of the uniform distribution over [0, 1]. In [12], the running
time is described in terms of the standard deviation σ. Following [5], we describe
the running time in terms of the density parameter φ. For the Gaussian and the
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uniform distribution these two parameters are closely related; in both cases, φ is
proportional to 1/σ. Intuitively, φ can be seen as a measure specifying how close
the probabilistic analysis is to a worst-case analysis. A worst-case instance can
be interpreted as a stochastic instance in which the probability mass for each
stochastic number is mapped to a single point. Thus, the larger φ, the closer we
are to a worst-case analysis.

Definition of Smoothed Complexity. The smoothed complexity of a class of
ILPs Π with an associated perturbation model f is given in terms of the in-
put length N and the parameter φ. First of all, the definition of the input length
needs some clarification as some of the input numbers are assumed to be ran-
dom variables following continuous probability distributions. These numbers are
irrational with probability 1 but we define that each of these numbers has a
virtual length of one. (This way, we ensure N ≥ nk.) The bits of the stochastic
numbers can be accessed by asking an oracle in time O(1) per bit. The bits after
the binary point of each stochastic number are revealed one by one from left to
right. As one of the results of our probabilistic analysis, we will see that O(log n)
revealed bits per number are sufficient to determine the optimal solution with
high probability. The deterministic part of the input2 does not contain irrational
numbers and can be encoded in an arbitrary fashion. Let IN denote the set of
possible adversarial inputs for Π of length N . For an instance I ∈ IN , let I + fφ

denote the random instance that is obtained by a φ-perturbation of I. We say
that Π has polynomial smoothed complexity under f if and only if it admits a
polynomial P and an algorithm A whose running time T satisfies

Pr
[
T (I + fφ) ≥ P

(
N,φ,

1
ε

)]
≤ ε ,

for every N ∈ IN, φ ≥ 1, ε ∈ (0, 1], I ∈ IN , that is, with probability at least
1 − ε the running time of A is polynomially bounded in the input length N ,
the perturbation parameter φ, and the reciprocal of ε. For a discussion of this
definition see [5].

1.2 Our Results

We show that the smoothed complexity of ILPs can be characterized in terms of
their worst-case complexity. For a class of ILPs Π, let Πu denote the correspond-
ing optimization problem in which all numbers in the constraints are assumed
to be integers in unary representation instead of randomly chosen real-valued
numbers. We say that the domain D ⊂ ZZ of the decision variables is polyno-
mially bounded if the cardinality of D can be bounded by a polynomial in the
number of variables n.

Theorem 1. A class Π of ILPs with polynomially bounded domain has polyno-
mial smoothed complexity if and only if Πu ∈ ZPP .

2 In this extended abstract, the deterministic part consists only of the coefficients of
the objective function.
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In other words, Π has polynomial smoothed complexity if it admits a (pos-
sibly randomized) algorithm with (expected) pseudopolynomial worst-case run-
ning time. If we apply this theorem to packing and covering problems then we
can even drop the restriction on the domain as perturbed instances of these
problems have a polynomially bounded domain with high probability.

Theorem 2. A class Π of packing (covering) ILPs has polynomial smoothed
complexity if and only if Πu ∈ ZPP .

This characterization shows that strong NP -hard classes like general packing
or covering ILPs do not have polynomial smoothed complexity, unless ZPP =
NP . On the other hand, packing and covering problems with a fixed number of
constraints like, e.g., in the MAXIMUM INTEGER (k-DIMENSIONAL) KNAP-
SACK PROBLEM have polynomial smoothed complexity as they admit pseu-
dopolynomial time algorithms. The same is true for ILPs with polynomially
bounded domain and a fixed number of constraints. The results for packing and
covering problems should only be seen as examples of our analysis. In fact, the
given characterization can easily be extended to classes of ILPs in which not all
constraints are required to be packing or covering constraints but only one of
the constraints needs to be a packing or covering constraint.

Technical Comparison to Previous Work. In this paper we present a general-
ization of the smoothed analysis for binary optimization problems presented in
[5] towards integer optimization problems. The rough course of the probabilistic
analysis presented in the subsequent sections is similar to the analysis from [5]:
We prove certain structural properties which are then exploited algorithmically
in form of an adaptive rounding scheme using pseudopolynomial algorithms as
a subroutine. In particular, we present a probabilistic analysis showing that it
is sufficient to reveal only a logarithmic number of bits of each stochastic num-
ber in order to determine the optimal solution. We want to remark, however,
that the generalization of this result from the binary to the integer case is not
straightforward but technically difficult in several aspects. The major challenge
we have to tackle is that the previous probabilistic analysis heavily relies on the
fact that variables have only a {0, 1} domain. For example, the previous analy-
sis uses the existence of 0 entries in any solution (except 1n) in order to place
assumptions on subsets of solutions sharing a 0 at the same position. Observe
that assumptions on the values of the solutions in such subsets do not effect the
random coefficients at which all these solutions take the value 0. Obviously, this
elementary trick fails already when going from a binary to a tertiary domain. In
this paper, we use a different kind of analysis that places assumptions on sub-
sets of solutions in such a way that only values of linear combinations of pairs
of random coefficients are revealed. In the subsequent analysis, the knowledge
about these linear combinations is taken into account carefully.

1.3 Alternative Perturbation Models

Actually, the class of perturbation models to which our analysis can be applied
is far more general than the one described above. For example, in case of packing
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or covering constraints one does not need to perturb the thresholds but only the
coefficients. More importantly, as in the analysis of the binary case in [5] not all
constraints need to be randomly perturbed. Instead, one can explicitly distin-
guish between those linear expressions, i.e. objective function and constraints,
that shall be of adversarial and those that shall be of stochastic nature. In
particular, our analysis also covers the situation that only the coefficients of the
objective function or only the coefficients and the threshold of one constraint are
randomly perturbed. This is important if some of the linear expressions define
an underlying problem structure which should not be touched by the randomiza-
tion. Furthermore, we can even drop the assumption that the expressions which
are of adversarial nature are linear. This assumption is only needed for stochastic
expressions. Finally, we can also extend the perturbation model in such a way
that the so-called “zero structure of ILPs” is preserved, that is, coefficients set to
0 by the adversary need not to be randomly perturbed. Due to space limitations
we have to shift a more detailed description of these extensions to a full version
of this paper.

2 Probabilistic Analysis of ILPs

In order to prepare the proof of Theorem 1, we will analyze structural proper-
ties of semi-random ILPs. Let I = (A, b, c) be an ILP with n integer variables
x1, . . . , xn with domain D which has been generated according to the semi-
random input model described above. We rank all solutions from Dn according
to their objective value in non-decreasing order, i.e. we assume the objective
function has to be maximized. Solutions with the same objective values are
ranked in an arbitrary but fixed fashion. Throughout this analysis let m = |D|
and mmax = max{|x| |x ∈ D} and let [n] denote the set {1, . . . , n}. Note that
m ≤ 2mmax + 1 holds for every domain D.

Loser and Feasibility Gap for a Single Constraint. At first, we will define and
analyze two structural properties called “loser” and “feasibility gap” only in the
case that the set of feasible solutions is described by exactly one constraint. We
assume that this constraint is of the form wTx = w1x1 + . . . + wnxn ≤ t where
the coefficients w1, . . . , wn correspond to indepedent random variables following
possibly different probability distributions with bounded densities f1, . . . , fn,
respectively. For i ∈ [n], let φi = sups∈IR fi(s) and φ = maxi∈[n] φi. For technical
reasons, we have to allow further restrictions on the set of feasible solutions. To
be more concrete, we assume that an arbitrary subset S ⊆ Dn is given and that
the set of feasible solutions is obtained as intersection of S with the half-space B
described by the constraint wTx ≤ t. The winner, denoted by x∗, is the solution
with highest rank in S ∩ B. The feasibility gap is defined by

Γ =
{

t− wTx∗ if S ∩ B 	= ∅
⊥ otherwise .

In words, Γ corresponds to the slack of the winner with respect to the threshold t.
A solution from S is called a loser if it has a higher rank than x∗, that is, the
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losers are those solutions from S that are better than the winner (w.r.t. the
ranking) but that are cut off by the constraint wTx ≤ t. The set of losers is
denoted by L. If there is no winner, as there is no feasible solution, then we
define L = S. The loser gap is defined by

Λ =
{

min{wTx− t|x ∈ L} if L 	= ∅
⊥ otherwise .

Our goal is to show that both the loser and the feasibility gap of a semi-random
ILP are lower bounded by a polynomial in (nmmaxφ)−1 with probability close
to 1.

Observe that the solution 0n is different from all other solutions in S as its
feasibilty does not depend on the outcome of the random coefficients w1, . . . , wn.
Suppose 0n ∈ S and 0n has the highest rank among all solutions in S. Then one
can enforce Γ = 0 by setting t = 0. Similary, one can enforce Λ → 0 for t < 0
and t → 0. For this reason, we need to exclude the solution 0n from our analysis.
Later we will describe how the random perturbation of the threshold helps us
to cope with this problem.

The key result of this section is the following lemma about the sizes of loser
and feasibility gap.

Lemma 3. Let S with 0n /∈ S be choosen arbitrarily and let c = maxi∈[n] E [|wi|].
For all ε with ε ≤ (32n5m7mmaxφ

2)−1, Pr [Γ ≤ ε] ≤ 2(ε · 32cn5m7mmaxφ
2)1/3

and Pr [Λ ≤ ε] ≤ 2(ε · 32cn5m7mmaxφ
2)1/3.

The proof of this lemma is subdivided into a few steps. At first, we will
assume that the densities f1, . . . , fn have a bounded support, i.e. we assume the
existence of a constant s ∈ IR≥0 such that fi(x) = 0 holds for every i ∈ [n] and
for every x /∈ [−s, s]. In addition to that, we assume that the set S does only
contain elements which are pairwise linearly independent, i.e. we assume that
there do not exist two solutions x, y ∈ S such that x = αy or y = αx holds for
some α ∈ IR. In this case we can show an upper bound on the probability that
the loser gap does not exceed ε. Then, we will use symmetry properties between
the two gaps in order to show that bounds for the loser gap also hold for the
feasibility gap and vice versa. Thus, the bound proven for the loser gap holds
for the feasibility gap as well. The assumption that the set S does not contain
linearly dependent solutions can be dropped at the cost of an extra factor m for
the feasibility gap. Due to the symmetry this bound also applies to the loser gap.
In the last step we will drop the assumption that the support of the densities is
bounded.

Lemma 4. Let S with 0n /∈ S be choosen arbitrarily such that S does not contain
two linearly dependent solutions. Assume fi(x) = 0, for i ∈ [n] and x /∈ [−s, s].
Then, for all ε ≥ 0 and for all p ≥ 1,

Pr [Λ ≤ ε] ≤ 1
2p

+ ε · 4n4m6mmaxφ
2sp.
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Proof. The role of the parameter p needs some explanation. We will show that
the density of the loser gap is upper bounded by 4n4m6mmaxφ

2sp if some failure
event E(p) does not occur. It holds Pr [E(p)] ≤ 1/(2p). Thus, the first addend
corresponds to the case of failure E(p) and the second one corresponds to the
case ¬E(p). Note that an upper bound α on the density of Λ implies an upper
bound on the probability that Λ takes a value less than or equal to ε of εα since
Λ takes only non-negative values.

Now we will present our approach to bound the density fΛ of the random
variable Λ. We will see that this approach fails under certain circumstances and
define the failure event E := E(p) accordingly. For each combination of i, j ∈ [n]
with i < j and of m = (m1,m2,m3,m4) ∈ D4 with linearly independent vectors
(m1,m2) and (m3,m4), we define a random variable Λm

i,j in such a way that
there are always indices i, j and a vector m such that Λ = Λm

i,j holds. Thus, it
holds

Pr [Λ ≤ ε] = Pr [Λ ∈ [0, ε]] ≤
∑
i,j,m

Pr
[
Λm

i,j ∈ [0, ε]
]
.

For this reason, a bound on the densities of the random variables Λm
i,j implies a

bound on the probability that Λ does not exceed ε.
Let x∗ denote the winner, let xmin denote the minimal loser, i.e. xmin =

argmin{wTx|x ∈ L}, and fix some i, j ∈ [n] with i < j and a vector m ∈ D4

with linearly independent subvectors (m1,m2) and (m3,m4). First of all, we
will formally define the random variable Λm

i,j . Therefore, let x∗,m3,m4
i,j denote the

winner of those solutions x with xi = m3 and xj = m4, i.e. x∗,m3,m4
i,j denotes

the highest ranked solution in {x ∈ S|xi = m3, xj = m4} ∩ B. Based on this
definition, we define a set of losers

Lm
i,j = {x ∈ S | xi = m1, xj = m2, x is ranked higher than x∗,m3,m4

i,j }.

The minimal loser xmin,m
i,j is defined to be the solution from Lm

i,j with the smallest
weight, i.e. xmin,m

i,j = argmin{wTx | x ∈ Lm
i,j}. Now the random variable Λm

i,j is
defined to be the slack of the minimal loser xmin,m

i,j w.r.t. the threshold t, i.e.
Λm

i,j = wTxmin,m
i,j − t. If Lm

i,j = ∅ then xmin,m
i,j and Λm

i,j are undefined.
One can easily argue that the requirement that Λ always takes a value equal

to one of the values of the Λm
i,j is fulfilled: The winner x∗ and the minimal loser

xmin are linearly independent since they are both elements from S. Thus, there
can always be found two indices i, j ∈ [n] with i < j such that the vectors
(x∗

i , x
∗
j ) and (xmin

i , xmin
j ) are linearly independent. Setting (m3,m4) = (x∗

i , x
∗
j )

and (m1,m2) = (xmin
i , xmin

j ) yields Λ = Λm
i,j .

In order to obtain an upper bound on the density of the random variable
Λm

i,j , we reduce the degree of randomness. That is, we assume the coefficients
wk with k 	= i and k 	= j and the sum m3wi + m4wj to be fixed arbitrarily.
An upper bound for the density of Λm

i,j holding for all deterministic choices of
these random variables obviously holds for all random choices as well. The win-
ner x∗,m3,m4

i,j can be determined without knowing the outcome of wi and wj as
the weights of all solutions in {x ∈ S|xi = m3, xj = m4} are known. Thus,
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also Lm
i,j is known. Since the random variables wi and wj affect the weight of

all solutions in Lm
i,j in the same fashion, also the minimal loser xmin,m

i,j does not
depend on the outcome of wi and wj . Hence, if the outcome of wk with k 	= i and
k 	= j and the sum m3wi +m4wj are known, the loser gap Λm

i,j can be rewritten
as

Λm
i,j = wTxmin,m

i,j − t = κ + m1wi + m2wj ,

where κ denotes a constant depending on the fixed values of wk with k 	= i
and k 	= j and m3wi + m4wj . Thus, under our assumption, Λm

i,j andm1wi +
m2wj are random variables which differ only by a constant addend. In partic-
ular, upper bounds on the density of the random variable m1wi + m2wj hold
for the density of Λm

i,j as well. Recall that we still assume the sum m3wi +
m4wj to be fixed to an arbitrary value z ∈ IR. Therefore, we will determine
the conditional density gm,z

i,j of m1wi + m2wj under the condition m3wi +
m4wj = z.

Let f : IR × IR → IR≥0 denote the joint density of the random variables
A := m1wi + m2wj and B := m3wi + m4wj . Since the vectors (m1,m2) and
(m3,m4) are assumed to be linearly independent, the transformation Φ : IR2 →
IR2 with Φ(x, y) = (m1x + m2y,m3x + m4y) is bijective and can be inverted as
follows

Φ−1(a, b) =
(

m4a−m2b

m1m4 −m2m3
,

m1b−m3a

m1m4 −m2m3

)
.

In order to determine the conditional density gm,z
i,j , we have to determine the

Jacobian matrix M of the transformation Φ−1 containing the partial derivations
of Φ−1 as matrix entries. With d = m1m4 −m2m3 it holds

M =

(
m4
d −m2

d

−m3
d

m1
d

)
.

The determinant of the Jacobian matrix is 1/d. Due to the independence of the
random variables wi and wj , the joint density f of A and B can be written
as

f(a, b) = |detM | · fi(Φ−1
1 (a, b)) · fj(Φ−1

2 (a, b))

=
1
|d| · fi

(
m4a−m2b

d

)
· fj

(
m1b−m3a

d

)
≤ φ2

|d| ≤ φ2.

The conditional density gm,z
i,j can be expressed as follows

gm,z
i,j (x) =

f(x, z)∫
IR

f(x, z) dx
=

f(x, z)
fm3wi+m4wj

(z)
,
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where fm3wi+m4wj
denotes the density of the random variable B = m3wi+m4wj .

Thus, for all x ∈ IR, it holds

gm,z
i,j (x) ≤ φ2

fm3wi+m4wj
(z)

, (4)

where fm3wi+m4wj
denotes the density of the random variable m3wi + m4wj .

Hence, gm,z
i,j cannot be upper bounded since, in general, the denominator

in (4) can become arbitrarily small. Therefore, we have to restrict the possible
choices for z to the set IR\Mm3,m4

i,j with

Mm3,m4
i,j =

{
z ∈ IR

∣∣∣∣0 ≤ fm3wi+m4wj
(z) ≤ 1

4n2m2mmaxsp

}
.

We will denote the event that m3wi + m4wj takes a value from Mm3,m4
i,j by

Em3,m4
i,j . In case of ¬Em3,m4

i,j the conditional density gm,z
i,j is bounded from above

by 4n2m2mmaxspφ
2. Hence, Pr

[
Λm

i,j ∈ [0, ε]|¬Em3,m4
i,j

]
≤ ε · 4n2m2mmaxφ

2sp.
Due to the bounded support of the densities fi and fj , it is not very likely
that the event Em3,m4

i,j occurs. Let E denote the event that, for at least one
combination of i, j ∈ [n] and m3,m4 ∈ D, the event Em3,m4

i,j occurs, that is, E
denotes the union of all these events. An easy (though long) calculation shows

Pr [Λ ∈ [0, ε]|¬E ] ≤ ε · 4n4m6mmaxφ
2sp (5)

and
Pr [E ] ≤ 1

2p
(6)

and, therefore,

Pr [Λ ≤ ε] ≤ Pr [E ] + Pr [Λ ∈ [0, ε]|¬E ] ≤ 1
2p

+ ε · 4n4m6mmaxφ
2sp.

�

Now we will show that Lemma 4 holds for the feasibility gap as well. First of
all, we have to generalize the definitions of loser and feasibility gap a little bit.
Let Λ(t) denote the loser gap w.r.t. the constraint wTx ≤ t and let Γ (t) denote
the feasibility gap w.r.t. to this constraint.

Lemma 5. Let t ∈ IR and ε ∈ IR≥0 arbitrary then Pr [Λ(t) < ε|¬E ] =
Pr [Γ (t + ε) < ε|¬E ] .

This lemma can be proven by arguments similar to those used in the proof of
Lemma 9 in [5].

Next, we will drop the assumption that the set of feasible solutions S does
not contain linearly dependent solutions and obtain the following result.

Lemma 6. Let S with 0n /∈ S be choosen arbitrarily. Assume fi(x) = 0, for
i ∈ [n] and x /∈ [−s, s]. Then, for all ε ≥ 0 and for all p ≥ 1, Pr [Γ < ε|¬E ] ≤
ε · 4n4m7mmaxφ

2sp and Pr [Λ < ε|¬E ] ≤ ε · 4n4m7mmaxφ
2sp.



286 H. Röglin and B. Vöcking

Proof. The main idea of the proof is to partition the set S into m classes
S(1), . . . ,S(m) such that none of these classes contains two solutions which are
linearly dependent. Let D = {d1, . . . , dm}. If 0 /∈ D, such a partition can simply
be created by setting S(k) = {x ∈ S|x1 = dk}, for k ∈ [m]. Otherwise, we assume
w.l.o.g. dm = 0 and we set, for k ∈ [m− 1],

S(k) = {x ∈ S | ∃i ∈ [n] : x1 = . . . = xi−1 = 0 and xi = dk}.

For each of these classes a feasibility gap Γ (k) is defined. First we define the
winner x∗,(k) w.r.t. S(k) to be that element from S(k)∩B which is ranked highest.
The feasibility gap Γ (k) is simply defined as t − wTx∗,(k), if S(k) 	= ∅, and ⊥
otherwise. Since the winner x∗ of the original problem is contained in one of the
classes S(k), the feasibility gap Γ always takes the value of one of the variables
Γ (k). Observe that Lemma 4 can be applied to the subproblems defined by
the classes S(k) since these classes do not contain linearly dependent solutions.
Hence, we can combine equation (5) and Lemma 5 to obtain Pr

[
Γ (k) ≤ ε|¬E

]
≤

ε · 4n4m6mmaxφ
2sp. Thus, it holds

Pr [Γ ≤ ε|¬E ] ≤
m∑

k=1

Pr
[
Γ (k) ≤ ε|¬E

]
≤ ε · 4n4m7mmaxφ

2sp.

The result on the loser gap follows by another application of Lemma 5. �

Now we will drop the assumption that the densities f1, . . . , fn have bounded
supports and finish the proof of Lemma 3.

Proof (Lemma 3). The main idea is to choose some constant s ∈ IR such that
the probability that one of the coefficients w1, . . . , wn takes a value outside of
the interval [−s, s] is bounded above by 1/(2p). We set s = 2npc. For i ∈ [n],
let Gi denote the event that wi /∈ [−s, s] and let G denote the union of these
events. An application of Markov’s inequality shows Pr [G] ≤ 1/(2p). For the
conditional density functions it holds

fi|¬G(x) =

{
0 if x /∈ [−s, s]

fi(x)
Pr[wi∈[−s,s]] otherwise ≤

{
0 if x /∈ [−s, s]

2fi(x) otherwise .

Thus, the densities of the random variables w1, . . . , wn have a bounded sup-
port under the condition ¬G. We define F = E ∪ G to be the failure event. We
can bound the probability that the loser gap or the feasibility gap does not ex-
ceed ε under the condition ¬F . We have seen, that the condition ¬G leads to
a conditional density which is by a factor of at most 2 larger than the uncon-
ditional density Hence, Lemma 6 yields Pr [Λ < ε|¬F ] ≤ ε · 32cn5m7mmaxφ

2p2.
Furthemore, it holds Pr [F ] = Pr [E ∪ G] ≤ Pr [E ]+Pr [G] ≤ 1

p . Thus, we obtain

Pr [Λ < ε] ≤ 1
p

+ ε · 32cn5m7mmaxφ
2p2.

Setting p = (ε ·32cn5m7mmaxφ
2)−1/3 yields the desired result. The upper bound

on ε is due to the assumption p ≥ 1. The claim about the feasibility gap follows
analogously. �
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Loser and Feasibility Gap for Multiple Constraints. Assume there are k ≥ 2
constraints. W.l.o.g. these constraints are of the form Ax ≤ b with A ∈ IRk×n

and b ∈ IRk, and the set of points satisfying these constraints are B1, . . . ,Bk,
respectively. We generalize the definition of feasibility and loser gap as follows.
Given a set of solutions S ⊆ Dn and a ranking, the winner x∗ is the highest
ranked solution in S ∩ B1, . . . ,∩Bk. The feasibility gap for multiple constraints
is the minimal slack of x∗ over all constraints, that is, Γ = minj∈[k]{(b−Ax)j},
if x∗ exists, and Γ =⊥ otherwise. The set of losers L consists of all solutions
from S that have a higher rank than x∗. We define the loser gap for multiple
constraints by Λ = minx∈L maxj∈[k]{(Ax− b)j}, if L 	= ∅, and Λ =⊥, otherwise.
(See [5] for a motivation of this definition.)

Lemma 7. Let c = maxj∈[k] maxi∈[n] E [|Aj,i|] and let k denote the number
of constraints. Then, for all ε with ε ≤ (32n5m7mmaxφ

2)−1, Pr [Γ ≤ ε] ≤
2k(ε · 32cn5m7mmaxφ

2)1/3 and Pr [Λ ≤ ε] ≤ 2k(ε · 32cn5m7mmaxφ
2)1/3.

The proof of this lemma is completely analogous to the generalization to multiple
constraints in the binary case in [5].

3 From Structural Properties to Algorithms

At first, we prove that a randomized pseudopolynomial algorithm implies poly-
nomial smoothed complexity. We design an algorithm with polynomial smoothed
complexity calling the pseudopolynomial algorithm with higher and higher preci-
sion until the optimal solution is found. Due to space limitations, we only present
the core of the algorithm and its analysis, namely we present how to compute a
certified winner when only a bounded number of bits per input number is avail-
able. The algorithm has available d bits after the binary point of each random
coefficient and either outputs the true winner or, if it cannot compute such a
winner as it needs more bits, it reports a failure.

Certifier. Let I denote an ILP created with the semi-random input model and
let k denote the number of constraints, that is the constraints have the form
Ax ≤ b with A ∈ IRk×n and b ∈ IRk. First of all, the certifier checks whether
there exists an index i ∈ [k] such that bi ∈ [−(nmmax + 1)2−d, 0) or not. In the
former case, the certifier cannot compute the true winner with the given number
of revealed bits d per coefficient. Otherwise, the pseudopolynomial algorithm is
called to calculate the winner x′ w.r.t. to the coefficients A′ := �A�d and the
thresholds b′ := �b�d + (nmmax + 1)2−d, where �.�d denotes the matrix or the
vector that is obtained by rounding down each entry to the next multiple of 2−d.

First, we will show that solutions which are feasible w.r.t. to the constraints
Ax ≤ b stay feasible w.r.t. the constraints A′x ≤ b′. Assume Ax ≤ b. Since the
rounding changes each coefficient by at most 2−d and since, for i ∈ [n], it holds
|xi| ≤ mmax, the j-th weight of the solution x, i.e. (Ax)j := aj,1x1 + . . .+aj,nxn,
for j ∈ [k], is changed by at most nmmax2−d. Hence,

A′x = �A�bx ≤ Ax + nmmax2−d ≤ b + nmmax2−d ≤ �b�d + (nmmax + 1)2−d,
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where ≤ means ≤ in every component and, for a matrix A and a real number z,
A + z denotes the matrix obtained from A by adding z to each entry.

Now we must check, whether the solution x′ is feasible w.r.t Ax ≤ b or has
become feasible due to the rounding. Therefore, the certifier tests if �A�dx

′ ≤
�b�d − (nmmax + 1)2−d holds. Only in the affirmative case, the solution x′ can
be certified to be feasible w.r.t. the constraints Ax ≤ b. Otherwise, the certifier
cannot calculate a certified winner. Assume x′ is not feasible w.r.t. to Ax ≤ b,
then, for at least one j ∈ [k], it holds (Ax′)j > bj . Hence,

(�A�bx)j ≥ (Ax)j − (nmmax)2−d > bj − (nmmax)2−d ≥ �bj�d − (nmmax +1)2−d.

Altogether the certifier fails if, for at least one i ∈ [k], bi ∈ [−(nmmax +
1)2−d, 0) holds or if �A�dx

′ ≤ �b�d − (nmmax + 1)2−d does not hold. Since the
thresholds are random variables whose densities are bounded by φ, the proba-
bility of the first event is bounded from above by k(nmmax +1)2−dφ. In order to
bound the probability of the second event, we have to distinguish between the
cases that x′ is feasible w.r.t. Ax ≤ b or not. In the former case the feasibility
gap cannot exceed (nmmax + 1)2−d+1, in the latter case the loser gap cannot
exceed (nmmax + 1)2−d+1.

We will further analyze the case that �A�dx
′ ≤ �b�d − (nmmax + 1)2−d does

not hold. Let j ∈ [k] with (�A�dx
′)j > �bj�d − (nmmax + 1)2−d. Assume that x′

is feasible w.r.t the constraints Ax ≤ b, that is x′ is the true winner. Then, it
holds

(Ax)j ≥ (�A�dx
′)j − nmmax2−d

> �bj�d − (nmmax + 1)2−d − nmmax2−d

≥ bj − (nmmax + 1)2−d+1.

Thus, in this case, the feasibiliy gap cannot be larger than (nmmax + 1)2−d+1.
Now assume that x′ is not feasible w.r.t the constraints Ax ≤ b, that is x′

has become feasible due to the rounding. Assume further that the loser gap is
larger than (nmmax + 1)2−d+1, that is, it exists at least one j ∈ [k] such that
(Ax′)j > bj + (nmmax + 1)2−d+1 holds. Then

(�A�dx
′)j ≥ (Ax′)j − nmmax2−d

> bj + (nmmax + 1)2−d+1 − nmmax2−d

≥ �bj�d + (nmmax + 1)2−d+1 − nmmax2−d − 2−d

= �bj�d + (nmmax + 1)2−d.

Thus, in contradiction to the assumption, x′ is not feasible w.r.t. A′x ≤ b′.
Hence, the loser gap cannot be larger than (nmmax + 1)2−d+1 if x′ has become
feasible due to the rounding.

Until now, we have not yet considered the case 0n ∈ S explicitly. Assume
that there exists at least one j ∈ [k] such that bj < −(nmmax + 1)2−d. Then
0n is neither feasible w.r.t. Ax ≤ b nor w.r.t. A′x ≤ b′. Hence, in this case,
the solution 0n does not affect our analysis. Since the certifier fails if, for at
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least one j ∈ [k], bj ∈ [−(nmmax + 1)2−d, 0), also in this case, the solution 0n

does not affect the certifier. Now assume, for all j ∈ [k], bj ≥ 0. Then 0n is
feasible with w.r.t. Ax ≤ b and A′x ≤ b′. If 0n is not the optimal solution w.r.t.
Ax ≤ b, then 0n does not affect the certifier. Hence, the only case which needs
to be considered in more detail is the case that 0n is the optimal solution w.r.t.
Ax ≤ b. Oberserve that the feasibility of the solution 0n can be verified easily.
Therefore, no problem occurs in the case that 0n is the optimal solution w.r.t.
A′x ≤ b′.

The only case which is a little bit tricky to handle is the case that 0n is
the optimal solution w.r.t. Ax ≤ b but that x′ 	= 0n is the optimal solution
w.r.t. A′x ≤ b′. In this case, x′ is rejected by the certifier since �A�dx

′ ≤ �b�d −
(nmmax + 1)2−d does not hold. We have to bound the probability that this case
occurs. Analogous to the case 0n /∈ S, one can argue that this can only happen
if the size of the loser gap Λ does not exceed (nmmax + 1)2−d+1. Unfortunately,
we cannot apply Lemma 7 directly since we analyzed the gaps only in the case
0n /∈ S. Instead, we exclude 0n from the set of feasible solutions, that is we define
S ′ = S\{0n} and argue with the help of the loser gap Λ′ w.r.t. to S ′. The crucial
observation is that adding 0n to the set of solutions can, in the case b ≥ 0, only
result in an increase of the size of the loser gap. The reason therefore is that, in
the case b ≥ 0, 0n is a feasible solution which means that by adding 0n to the
set of solutions one cannot enlarge the set of losers L. Hence, it holds Λ ≥ Λ′

and we can make use of Lemma 7 in order to bound the probability that Λ′ does
not exceed (nmmax + 1)2−d+1.
Adaptive Rounding. Now let us briefly sketch the missing details of the algo-
rithm and its analysis. Until now we did not specify how the optimal solution
for the rounded coefficients is actually computed. For this purpose, we use the
pseudopolynomial algorithm. First, we set d = 1, that is we reveal only the
first bit after the binary point of each coefficient. The pseudopolynomial algo-
rithm is called to calculate the optimum w.r.t. to the rounded coefficients. If
the certifier fails, the number of revealed bits d is increased by one and the
pseudopolynomial algorithm and the certifier are called again. This is repeated
until a certified winner can be calculated. The optimal solution is found when
d = O(log(φnkmmax)), with high probability (whp). Hence, the pseudopolyno-
mial algorithm has to deal with numbers described by O(log(φnkmmax)) bits so
that its running time is bounded by 2O(log(φnkmmax)) = poly(φnkmmax), whp.
(More details can be found in a full version of this paper.)
From Polynomial Smoothed Complexity to Pseudopolynomial Running Time. Fi-
nally, we need to show that polynomial smoothed complexity implies the exis-
tence of a randomized pseudopolynomial algorithm. This can be shown analo-
gously to the binary case analyzed in [5].

4 Conclusions

Our probabilistic analysis shows that important classes of ILPs with a fixed
number of constraints have polynomial smoothed complexity. This means that
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random or randomly perturbed instances of such ILPs can be solved in poly-
nomial time. The presented algorithmic framework giving these results uses al-
gorithms with pseudopolynomial worst-case complexity as subroutines. Usually
these pseudopolynomial time algorithms are based on dynamic programming.
We want to remark that we do not believe that this approach is the most prac-
tical one to tackle ILPs of this kind. We expect that branch and bound and
branch and cut heuristics are much faster than algorithms based on dynamic
programming. The next challenging task is a smoothed analysis of these heuris-
tics in order to theoretically explain their great success on practical applications.
We think that the main contribution of this paper is to point out chances and
limitations for such a probabilistic analysis.
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Abstract. It is a long standing open problem to find an explicit de-
scription of the stable set polytope of claw-free graphs. Yet more than
20 years after the discovery of a polynomial algorithm for the maximum
stable set problem for claw-free graphs, there is even no conjecture at
hand today.

Such a conjecture exists for the class of quasi-line graphs. This class
of graphs is a proper superclass of line graphs and a proper subclass of
claw-free graphs for which it is known that not all facets have 0/1 normal
vectors. Ben Rebea’s conjecture states that the stable set polytope of a
quasi-line graph is completely described by clique-family inequalities.
Chudnovsky and Seymour recently provided a decomposition result for
claw-free graphs and proved that Ben Rebea’s conjecture holds, if the
quasi-line graph is not a fuzzy circular interval graph.

In this paper, we give a proof of Ben Rebea’s conjecture by showing
that it also holds for fuzzy circular interval graphs. Our result builds
upon an algorithm of Bartholdi, Orlin and Ratliff which is concerned
with integer programs defined by circular ones matrices.

1 Introduction

A graph G is claw-free if no vertex has three pairwise nonadjacent vertices. Line
graphs are claw free and thus the weighted stable set problem for a claw-free
graph is a generalization of the weighted matching problem of a graph. While
the general stable set problem is NP-complete, it can be solved in polynomial
time on a claw-free graph [21, 29] even in the weighted case [22, 23] see also [32].
These algorithms are extensions of Edmonds’ [10, 9] matching algorithms.
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The stable set polytope STAB(G) is the convex hull of the characteristic
vectors of stable sets of the graph G. The polynomial equivalence of separation
and optimization for rational polyhedra [16, 26, 18] provides a polynomial time
algorithm for the separation problem for STAB(G), if G is claw-free. However,
this algorithm is based on the ellipsoid method [19] and no explicit description
of a set of inequalities is known that determines STAB(G) in this case. This
apparent asymmetry between the algorithmic and the polyhedral status of the
stable set problem in claw-free graphs gives rise to the challenging problem
of providing a “. . . decent linear description of STAB(G)” [17], which is still
open today. In spite of results characterizing the rank-facets [12] (facets with
0/1 normal vectors) of claw-free graphs, or giving a compact lifted formulation
for the subclass of distance claw-free graphs [27] , the structure of the general
facets for claw-free graphs is still not well understood and even no conjecture is
at hand.

The matching problem [9] is a well known example of a combinatorial opti-
mization problem in which the optimization problem on the one hand and the
facets on the other hand are well understood. This polytope can be described by a
system of inequalities in which the coefficients on the left-hand-side are 0/1. This
property of the matching polytope does not extend to the polytope STAB(G)
associated with a claw-free graph. In fact, Giles and Trotter [14] show that for
each positive integer a, there exists a claw-free graph G such that STAB(G) has
facets with a/(a + 1) normal vectors. Furthermore they show that there exist
facets whose normal vectors have up to 3 different coefficients (indeed up to 5
as it is shown in [20]). Perhaps this is one of the reasons why providing a de-
scription of STAB(G) is not easy, since 0/1 normal vectors can be interpreted
as subsets of the set of nodes, whereas such an interpretation is not immediate
if the normal vectors are not 0/1.

A graph is quasi-line, if the neighborhood of any vertex partitions into two
cliques. The complement of quasi-line graphs are called near-bipartite, and a
linear description of their stable set polytope has been given in [33]. The class of
quasi-line graphs is a proper superclass of line graphs and a proper subclass of
the class of claw-free graphs. Interestingly also for this class of graphs there are
facets with a/(a + 1) normal vectors, for any nonnegative integer a [14], but no
facet whose normal vector has more than 2 different coefficients is known for this
class. Ben Rebea [28] considered the problem to study STAB(G) for quasi-line
graphs. Oriolo [25] formulated a conjecture inspired from his work.

Ben Rebea’s Conjecture

Let F = {K1, . . . ,Kn} be a set of cliques, 1 ≤ p ≤ n be integral and r = n
mod p. Let Vp−1(F) ⊆ V (G) the set of vertices covered by exactly (p−1) cliques
of F and V≥p(F) ⊆ V (G) the set of vertices covered by p or more cliques of F .
The inequality

(p− r − 1)
∑

v∈Vp−1(F)

x(v) + (p− r)
∑

v∈V≥p(F)

x(v) ≤ (p− r)
⌊
n

p

⌋
(1)
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is valid for STAB(G) and is called the clique family inequality associated with
F and p.

Conjecture 1 (Ben Rebea’s conjecture [25]). The stable set polytope of a quasi-
line graph G = (V,E) may be described by the following inequalities:

(i) x(v) ≥ 0 for each v ∈ V
(ii)

∑
v∈K x(v) ≤ 1 for each maximal clique K

(iii) inequalities (1) for each family F of maximal cliques and each integer p with
|F| > 2p ≥ 4 and |F| mod p 	= 0.

In this paper we prove that Ben Rebea’s Conjecture holds true. This is done
by establishing the conjecture for fuzzy circular interval graphs, a class intro-
duced by Chudnovsky and Seymour [6]. This settles the result, since Chudnovsky
and Seymour showed that the conjecture holds if G is quasi-line and not a fuzzy
circular interval graph. Interestingly, since all the facets are rank for this latter
class of graphs, the quasi-line graphs that “produce” non-rank facets are the
fuzzy circular interval graphs.

We first show that we can focus our attention on circular interval graphs [6]
a subclass of fuzzy circular interval graphs. The weighted stable set problem
over a circular interval graph may be formulated as a packing problem max{c x |
Ax ≤ b, x ∈ Zn

≥0}, where b = 1 and A ∈ {0, 1}m×n is a circular ones matrix,
i.e., the columns of A can be permuted in such a way that the ones in each row
appear consecutively. Here the last and first entry of a row are also considered
to be consecutive. Integer programs of this sort with general right-hand side
b ∈ Zm have been studied by Bartholdi, Orlin and Ratliff [3]. From this, we
derive a separation algorithm which is based on the computation of a negative
cycle, thereby extending a recent result of Gijswijt [13]. We then concentrate
on packing problems with right-hand side b = α1, where α is an integer. By
studying non-redundant cycles leading to separating hyperplanes, we show that
each facet of the convex hull of integer feasible solutions to a packing problem
of this sort has a normal vector with two consecutive coefficients. Instantiating
this result with the case where α = 1, we obtain our main result.

Cutting Planes

Before we proceed, we would like to stress some connections of this work to
cutting plane theory. An inequality c x ≤ �δ� is a Gomory-Chvátal cutting
plane [15, 7] of a polyhedron P ⊆ Rn, if c ∈ Zn is an integral vector and
c x ≤ δ is valid for P . The Chvátal closure P c of P is the intersection of P
with all its Gomory-Chvátal cutting planes. If P is rational, then P c is a ra-
tional polyhedron [30]. The separation problem for P c is NP-hard [11]. A poly-
tope P has Chvátal-rank one, if its Chvátal closure is the integer hull PI of
P . Let QSTAB(G) be the fractional stable set polytope of a graph G, i.e., the
polytope defined by non-negativity and clique inequalities. It is known [25] that
QSTAB(G) does not have Chvátal rank one, if G is a quasi-line graph. A famous
example of a polytope of Chvátal-rank one is the fractional matching polytope
and thus QSTAB(G), where G is a line graph.

l
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An inequality c x ≤ δ is called a split cut [8] of P if there exists an integer
vector π ∈ Zn and an integer π0 such that c x ≤ δ is valid for P ∩ {x ∈ Rn |
π x ≤ π0} and for P ∩ {x ∈ Rn | π x ≥ π0 + 1}. The split closure P s of P is the
intersection of P with all its split cuts and this is a rational polyhedron if P itself
is rational [8, 2]. The separation problem for the split closure is also NP-hard [4].
A polyhedron P ⊆ Rn has split-rank one, if P s = PI .

Both cutting plane calculi are simple procedures to derive valid inequalities
for the integer hull of a polyhedron. It is easy to see that a clique family inequality
is a split cut for QSTAB(G) with π(v) = 1 if v ∈ Vp−1∪V≥p, π(v) = 0 otherwise
and π0 = �n

p �. Thus, while the fractional stable set polytope of a quasi-line graph
does not have Chvátal rank one, its split-rank is indeed one.

2 From Circular Interval to Quasi-Line Graphs

A circular interval graph [6] G = (V,E) is defined by the following construction:
Take a circle C and a set of vertices V on the circle. Take a subset of intervals
I of C and say that u, v ∈ V are adjacent if {u, v} is a subset of one of the
intervals.

Any interval used in the construction will correspond to a clique of G. Denote
the family of cliques stemming from intervals by KI and the set of all cliques in
G by K(G). Without loss of generality, the (intervals) cliques of KI are such that
none includes another. Moreover KI ⊆ K(G) and each edge of G is contained in
a clique of KI . Therefore, if we let A ∈ {0, 1}m×n be the clique vertex incidence
matrix of KI and V one can formulate the the (weighted) stable set problem on
a circular interval graph as a packing problem

max
∑

v∈V c(v)x(v)
Ax ≤ 1
x(v) ∈ {0, 1} ∀v ∈ V

where the matrix A is a circular ones matrix (e.g. using clockwise ordering of
the vertices).

Chudnovsky and Seymour [6] also introduced the more general class of fuzzy
circular interval graphs. A graph G is a fuzzy circular interval if the following
conditions hold.

(i) There is a map Φ from V to a circle C.
(ii) There is a set of intervals I of C, none including another, such that no point

of C is the end of more than one interval so that:
(a) If two vertices u and v are adjacent, then Φ(u) and Φ(v) belong to a

common interval.
(b) If two vertices u and v belong to a same interval, which is not an interval

with endpoints Φ(u) and Φ(v), then they are adjacent.

In other words, in a fuzzy circular interval graph, adjacencies are completely
described by the pair (Φ, I), except for vertices u and v such that one of the in-
tervals with endpoints Φ(u) and Φ(v) belongs to I. For these vertices adjacency
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is fuzzy. We are particularly interested in non-empty cliques arising from end-
points of intervals of I. If [p, q] is an interval of I such that Φ−1(p) and Φ−1(q)
are both non-empty, then we call the cliques (Φ−1(p), Φ−1(q)) a fuzzy pair.

Trivially, a circular interval graph is a fuzzy circular interval graph. When is
a fuzzy circular interval graph a circular interval graph? The following lemma
addresses this question. Say that a graph is C4-free if it does not have an induced
subgraph isomorphic to a cordless cycle of length 4. For X ⊆ V , we denote by
G[X] the subgraph of G induced by X.

Lemma 1 (Chudnovsky and Seymour [5]). Let G be a fuzzy circular inter-
val graph. If for every fuzzy pair of cliques (Ki,Kj), the subgraph G[Ki ∪Kj ] is
C4-free, then G is a circular interval graph.

We sketch a proof of the above lemma. Trivially, if a fuzzy circular interval
graph admits a fuzzy representation with no fuzzy pairs of cliques, then G is a
circular interval graph. Now let (Φ, I) be a fuzzy representation of G minimizing
the number of vertices belonging to fuzzy pairs. Let (K1,K2) be a fuzzy pair of
cliques with respect to (Φ, I). Every vertex v ∈ K1 has a neighbor and a non-
neighbor in K2. Otherwise one could remove v from the fuzzy pair, contradicting
the minimality of (Φ, I). Now the following statement holds true: if G = (V,E)
is any graph with V = V1 ∪ V2, V1 and V2 cliques and such that every vertex
of V1 (V2) has a neighbor and a non-neighbor in V2 (V1), then there exist an
induced C4 = {u1, u2, v2, v1} with u1, u2 ∈ V1 and v1, v2 ∈ V2.

Theorem 1. Let F be a facet of STAB(G), where G is a fuzzy circular interval
graph. Then F is also a facet of STAB(G′), where G′ is a circular interval graph
obtained from G by removing some edges.

Proof. Suppose that F is induced by the valid inequality a x ≤ β. Trivially, if we
remove an edge (u, v) connecting two vertices u ∈ Ki to v ∈ Kj of a fuzzy pair
of cliques (Ki,Kj), the graph G\(u, v) is still a fuzzy circular interval graph. An
edge e is F -critical, if a x ≤ β is not valid for STAB(G\e). If e is not F -critical,
then F is also a facet of STAB(G \ e). We prove that the removal of all non
F -critical edges connecting two vertices in different cliques of fuzzy pairs results
in a circular interval graph G′. Therefore, since F is a facet of STAB(G′), the
claim follows.

Suppose G′ is not a circular interval graph. Then from Lemma 1, there exists
a fuzzy pair of cliques (K1,K2) such that the subgraph G′[K1∪K2] contains a C4.
Say V (C4) = {u1, u2, v1, v2} with u1, u2 ∈ K1, v1, v2 ∈ K2, (u1, v1), (u2, v2) ∈
E(C4). The edge (u1, v1) is F -critical. Hence there exists a set S containing
u1, v1 such that S violates a x ≤ β and S is stable in G′ \ (u1, v1). Property (ii)
above implies that K1 has no other fuzzy pair than K2 and thus u1 and u2 are
adjacent to the same vertices in G′ \K2. This implies that (S\u1)∪u2 is a stable
set. Therefore a(u2) < a(u1) (else (u1, v1) is not F -critical). Applying the same
argument to (u2, v2) leads to a(u1) < a(u2). Which is a contradiction. 
�

Fuzzy circular interval graphs are quasi-line graphs. Chudnovsky and Sey-
mour [6] gave a complete characterization of the stable set polytope of a quasi-
line graph for the case in which the graph is not a fuzzy circular interval graph.

Circular Ones Matrices and the Stable Set Polytope of Quasi- ine Graphsl
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Let F = {K1,K2, ...,K2n+1} an odd set of cliques of G. Let T ⊆ V be the set
of vertices which are covered by at least two cliques of F . Then the inequality∑

v∈T x(v) ≤ n is a valid inequality for STAB(G) and inequalities of this type
are called Edmonds’ inequalities.

Theorem 2 ([6]). Let G be a connected quasi-line graph, which is not a fuzzy
circular interval graph. Then all non trivial facets of STAB(G) are Edmonds’
inequalities.

Observe that Edmonds’ inequalities are special clique family inequalities asso-
ciated with F and p = 2. Moreover, Theorem 1 implies that, if we prove that
all the non-trivial facets of the stable set polytope of a circular interval graph
are clique family inequalities, then the same holds for the stable set polytope of
a fuzzy one (cliques of G′ are also cliques of G). Therefore, if we combine these
facts, we may give a positive answer to the Ben Rebea’s Conjecture if we prove
that it holds for circular interval graphs. This is what we are going to show in
the following sections.

3 Slicing and Separation

Let P be a polytope P = {x ∈ Rn | Ax ≤ b, x ≥ 0}, where A ∈ {0, 1}m×n is a
circular ones matrix and b ∈ Zm an integral vector. In this section, we consider
the separation problem for the integer hull PI of P :

Given x∗ ∈ Rn, determine, whether x∗ ∈ PI and if not, determine an
inequality c x ≤ δ which is valid for PI and satisfies c x∗ > δ.

We present a membership algorithm of Gijswijt [13] and develop it further to
retrieve a separating hyperplane. Following Bartholdi, Orlin and Ratliff [3], we
consider the unimodular transformation x = T y, where T is the unimodular
matrix

T =

⎛⎜⎜⎜⎝
1

−1 1
−1 1

−1

. . .
1

−1 1

⎞⎟⎟⎟⎠ (2)

The problem then reads, separate y∗ = T−1x∗ from the integer hull QI of the
polytope Q defined by the system(

A
−I

)
T y ≤

(
b
0

)
. (3)

In the following we denote the inequality system (3) by B y ≤ d. Let us rewrite
the matrix B as B = (N |v), i.e. v is the n-th column of B. Observe that, by

construction, v is also the last column of
(

A
−I

)
.

Each row of the matrix N has at most one entry which is +1 and at most
one entry which is −1. All other entries are 0. The matrix N is thus totally
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unimodular. Thus, whenever y(n) is set to an integer β ∈ Z, the possible values
for the variables y(1), . . . , y(n − 1) define an integral polytope Qβ = {y ∈ Rn |
B y ≤ d, y(n) = β}. We call this polytope Qβ the slice of Q defined by β.

Since T is unimodular, the corresponding slice of the original polyhedron
P ∩ {x ∈ Rn |

∑n
i=1 x(i) = β} is an integral polyhedron. From this it is already

easy to see that the split-rank of P is one. However, we present a combinatorial
separation procedure for the integer hull PI of P which computes a split cut via
the computation of a negative cycle.

If y∗(n) is integral, then y∗ lies in QI if and only if y∗ ∈ Qy∗(n). Therefore
we assume in the following that y∗(n) is not integral and let β be an integer
such that β < y∗(n) < β + 1 and let 1 > μ > 0 be the real number with
y∗(n) = β + 1 − μ. Furthermore, let QL and QR be the left slice Qβ and right
slice Qβ+1 respectively. A proof of the next lemma follows from basic convexity.

Lemma 2. The point y∗ lies in QI if and only if there exist yL ∈ QL and
yR ∈ QR such that

y∗ = μ yL + (1 − μ)yR.

In the following we denote by y ∈ Rn−1 the vector of the first n−1 components
of y ∈ Rn. From the above discussion one has y∗ ∈ QI if and only if the following
linear constraints have a feasible solution.

y∗ = yL + yR

NyL ≤ μdL

NyR ≤ (1 − μ) dR

, (4)

where dL = d− βv and dR = d− (β + 1)v.
Using Farkas’ Lemma [31], it follows that equation (4) defines a feasible sys-

tem, if and only if
∑n−1

i=1 λ(i)y∗(i)+μfLdL+(1−μ)fRdR is nonnegative, whenever
λ, fL and fR satisfy

λ + fLN = 0
λ + fRN = 0

fL, fR ≥ 0.
(5)

Now λ+fLN = 0 and λ+fRN = 0 is equivalent to λ = −fLN and fLN = fRN .
Thus (4) defines a feasible system, if and only if the optimum value of the
following linear program is nonnegative

min−fLN y∗ + μfLdL + (1 − μ)fRdR

fLN = fRN
fL, fR ≥ 0.

(6)

Let w be the negative sum of the columns of N . Then (6) is the problem of
finding a minimum cost circulation in the directed graph D = (U,A) defined by
the edge-node incidence matrix

M =
(

N w
−N −w

)
and edge weights μ(−N y∗ + dL), (1 − μ)(−N y∗ + dR) (7)

Circular Ones Matrices and the Stable Set Polytope of Quasi- ine Graphsl
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Thus y∗ /∈ QI if and only if there exists a negative cycle in D = (U,A). The
membership problem for QI thus reduces to the problem of detecting a negative
cycle in D, see [13].

A separating split cut for y∗ is an inequality which is valid for QL and QR but
not valid for y∗. The inequality fLNy ≤ fLdL is valid for QL and the inequality
fRNy ≤ fRdR is valid for QR. The corresponding disjunctive inequality (see,
e.g., [24]) is the inequality

fLNy+c(n)y(n) ≤ δ, where c(n) = fLdL−fRdR and δ = (β+1)fLdL−βfRdR.
(8)

The polytopes QL and QR are defined by the systems

y(n) = β
N y + v y(n) ≤ d

and
y(n) = β + 1

N y + v y(n) ≤ d
(9)

respectively.
Let fL,0 be the number c(n) − fLv. Then the inequality (8) can be derived

from the system defining QL with the weights (fL,0, fL). Notice that, if y∗ can
be separated from QI , then fL,0 must be positive. This is because y∗ violates
(8) and satisfies the constraints (9) on the left, where the equality y(n) = β in
the first line is replaced with y(n) ≥ β. Let fR,0 be the number c(n) − fRv.
Then the inequality (8) can be derived from the system defining QR with the
weights (fR,0, fR). Notice that, if y∗ can be separated from QI , then fR,0 must
be negative.

A negative cycle in a graph with m edges and n nodes can be found in time
O(mn), see, e.g. [1]. Translated back to the original space and to the polyhedron
P this gives the following theorem.

Theorem 3. The separation problem for PI can be solved in time O(mn).
Moreover, if x∗ ∈ P and x∗ 	∈ PI one can compute in O(mn) a split cut c x ≤ δ
which is valid for PI and separates x∗ from PI together with a negative integer
fR,0, a positive integer fL,0 and a vector fL, fR, which is the incidence vector of
a simple negative cycle of the directed graph D = (U,A) with edge-node incidence
matrix and weights as in (7), such that c x ≤ δ is derived with from the systems

1x ≤ β
Ax ≤ b
−x ≤ 0.

and
−1x ≤ −(β + 1)
Ax ≤ b
−x ≤ 0,

(10)

with the weights fL,0, fL and |fR,0|, fR respectively.

The above theorem gives an explicit derivation of the separating hyperplane as
a split cut of P . We have the following corollary.

Corollary 1. The integer hull PI is the split closure of P .
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4 The Facets of PI for the Case b = α · 1

In this section we study the facets of PI , where P = {x ∈ Rn | Ax ≤ b, x ≥ 0},
where A is a circular ones matrix and b is an integer vector of the form α1, α ∈ N.
For this, we actually inspect how the facets of the transformed polytope Q
described in Section 3 are derived from the systems (9) and apply this derivation
to the original system. It will turn out that the facet normal-vectors of PI have
only two integer coefficients, which are in addition consecutive. Since the stable
set polytope of a circular interval graph is defined by such a system with α = 1,
we can later instantiate the results of this section to this special case. We can
assume that the rows of A are inclusion-wise maximal.

Let F be a facet of QI and let y∗ be in the relative interior of F . This facet
F is generated by the unique inequality (8), which corresponds to a simple cycle
of (6) of weight 0. Furthermore assume that F is not induced by an inequality
y(n) ≤ γ for some γ ∈ Z. Since F is a facet of the convex hull of integer points
of two consecutive slices, we can assume that y∗(n) = β + 1/2 and thus that
μ = 1/2 in (6). This allows us to rewrite the objective function of problem (6)
as follows:

min(s∗ + 1
2v) fL + (s∗ − 1

2v) fR (11)

where s∗ is the slack vector

s∗ =
(
α1
0

)
−By∗ =

(
α1
0

)
−
(

A
−I

)
x∗ ≥ 0. (12)

The point x∗ in (12) is x∗ = T y∗. Notice that x∗ satisfies the system Ax ≤ α1.
Furthermore, we are interested in the facets of QI which are not represented

by the system B y ≤ d. If F is such a facet, then one can translate y∗ away from
QI , without changing y∗(n) = β +1/2, such that y∗ /∈ QI and By∗ ≤ d with the
property that the facet we are considering is the unique inequality (8), where
fL, fR is a simple negative cycle in the graph D = (U,A).

In the following we denote U = {1, . . . , n}, where node i corresponds to the
i-th column of the matrix M in (7). Notice that A partitions in two classes of arcs
AL and AR. The arcs AR are simply the reverse of the arcs AL.
AL consists of two sets of arcs SL and TL, where SL is the set of arcs asso-
ciated with inequalities Ax ≤ α1 and TL are the arcs stemming from the lower
bounds x ≥ 0. Likewise AR can be partitioned into SR and TR. In other words,
if we look at the arc-node incidence matrix M in (7), the rows of M appear in
the order SL,TL, SR,TR.

In particular, let a denote a row vector of A. Since A is a circular ones
matrix one has a x ≤ α ≡

∑p
h=0 x(i + h) ≤ α for some suitable i and p, where

computation is modulo n, so xn ≡ x0, xn+1 ≡ x1, etc. It is straightforward to
see that a x ≤ α generates the arcs (i + p, i− 1) ∈ SL and (i− 1, i + p) ∈ SR of
A, see Figure 1. The weights of the two arcs coincide, if n /∈ {i, i + 1, . . . , i + p}
and is exactly the slack α −

∑p
h=0 x∗(i + h) in this case. Otherwise, the weight

of the arc (i + p, i − 1) is α −
∑p

h=0 x∗(i + h) + 1/2 and the weight of the arc
(i− 1, i + p) is α−

∑p
h=0 x∗(i + h) − 1/2.

Circular Ones Matrices and the Stable Set Polytope of Quasi- ine Graphsl
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On the other hand, a lower bound −xi ≤ 0 generates the two arcs (i− 1, i) ∈
TL and (i, i − 1) ∈ TR. The weight of both arcs is equal to x∗(i), if i 	= n. If
i = n, the arc (n − 1, n) ∈ TL has weight x∗(n) − 1/2 and (n, n − 1) ∈ TR has
weight x∗(n) + 1/2.

Since the slacks are non-negative, the arcs whose cost is equal to the corre-
sponding slack minus 1

2 are the only candidates to have a negative cost. We call
those light arcs. Consequently we call those arcs whose cost is equal to the slack
plus 1

2 heavy. Observe that the light arcs belong to SR ∪ {(n− 1, n)}.

Lemma 3. Let C be a simple negative cycle in D, then the following holds:

(a) C contains strictly more light arcs than heavy ones.
(b) An arc of C in SL (TL) cannot be immediately followed or preceded by an

arc in SR (TR).
(c) The cycle C contains at least one arc of SR or contains no arc of SL ∪ SR.

Proof. (a) follows from the fact that the slacks are nonnegative. (b) follows from
our assumption that the rows of the matrix A are maximal and that C is simple.

To prove (c) suppose that the contrary holds. It follows that (n− 1, n) is in
C, because it is the only light arc not in SR. We must reach n − 1 on the cycle
without using heavy arcs.

Each arc in SL with starting node n is heavy. Thus (n− 1, n) is followed by
(n, 1) ∈ TL. Suppose that (n−1, n) is followed by a sequence of arcs in TL leading
to i and let (i, j) /∈ TL be the arc which follows this sequence. It follows from
(b) that (i, j) /∈ TR and thus that (i, j) ∈ SL. Since (i, j) cannot be heavy, we
have 1 ≤ j < i < n. This is a contradiction to the fact that C is simple, since we
have a sub-cycle contained in C, defined by (i, j) and (j, j + 1), . . . , (i− 1, i). 
�

Lemma 4. If there exists a simple cycle C of D with negative cost, then there
exists a simple cycle C′ of D with negative cost that does not contain any arc
from SL.

i
i + p

i − 1

l
l − 1

Fig. 1. The incidence vector of a row of A consists of the nodes{i, i+1, . . . , i+p} which
are consecutive on the cycle in clockwise order. Its corresponding arc in SL is the arc
(i + p, i − 1). The arc (l − 1, l) in TL corresponds to the lower bound x(l) ≥ 0
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ki − 1 j − 1 l

A B C

(a)

ki − 1 j − 1 l

A B C

(b)

Fig. 2. (a) depicts an arc (k, i− 1) ∈ SL, followed by arcs in TL and the arc (j − 1, l) ∈
SR. (b) depicts the situation, where the intermediate arcs are in TR

Proof. Suppose that C also contains an arc from the set SL. We know from
Lemma 3 that the cycle C contains at least one arc of SR. Lemma 3 implies that
C has an arc in SL, followed by arcs in TL or TR but not both, followed by an
arc in SR. We first consider the case that the intermediate arcs are all in TL.

This situation is depicted in Figure 2, (a). The arc in SL is (k, i− 1). This is
followed by the arcs (i− 1, i), . . . , (i− 1, j− 1) in TL and the arc (j− 1, l) in SR.
Let this be the path P1. We now show that we can replace this path with the
path P2 = (k, k+1), . . . , (l−1, l) consisting of arcs in TL. We proceed as follows.
First we show that the weight of this path is at most the weight of the original
path, where we ignore the addition of ±1/2 to the arc-weights. Let light(P) and
heavy(P) be the number of light and heavy edges in a path P, respectively. We
then show that light(P2) − heavy(P2) = light(P1) − heavy(P1), from which we
can conclude the claim in this case.

Consider the set of indices A = {i, . . . , j − 1}, B = {j, . . . , k} and C =
{k + 1, . . . , l} and the numbers A =

∑
μ∈A x∗(μ), B =

∑
μ∈B x∗(μ) and C =∑

μ∈C x∗(μ) . Ignoring the eventual addition of ±1/2 to the edge weights, we
have that the weight of P2 is C and that of P1 is α− (A+B)+A+α− (B +C)
and suppose that this is less than C. Then B + C > α which is not possible,
since x∗ satisfies the constraints Ax ≤ α1. Thus, if none of the edges in P1 and
P2 is heavy or light, the weight of P2 is at most the weight of P1.

Suppose now that n ∈ A. Then P1 contains exactly one heavy edge (k, i− 1)
and one light edge (n − 1, n). The path P2 contains no heavy or light edge.
Suppose that n ∈ B, then P1 contains exactly one heavy edge, (k, i− 1) and one

Circular Ones Matrices and the Stable Set Polytope of Quasi- ine Graphsl
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light edge (j − 1, l). P2 does not contain a heavy or light edge. If n ∈ C, then
P1 contains exactly one light edge (j − 1, l) and no heavy edge. P2 also contains
exactly one light edge (n − 1, n). This concludes the claim for the case that an
arc of SL is followed by arcs of TL and an arc of SR.

The case, where the intermediate arcs belong to TR is depicted in Figure 2,
(b). The assertion follows by a similar argument. 
�

Combining Theorem 3 with the above lemma we obtain the following
theorem.

Theorem 4. Let P = {x ∈ Rn | Ax ≤ α1, x ≥ 0} be a polyhedron, where
A ∈ {0, 1}m×n is a circular ones matrix and α ∈ N a positive integer. A facet of
PI is of the form

a
∑
v∈T

x(v) + (a− 1)
∑
v/∈T

x(v) ≤ a β, (13)

where T ⊆ {1, . . . , n} and a, β ∈ N.

Proof. Theorem 3 implies that a facet which is not induced by Ax ≤ α1, x ≥ 0
or 1x ≤ γ is a nonnegative integer combination of the system on the left in (10)
with nonnegative weights fL,0, fL. Lemma 4 implies that fL can be chosen such
that the only nonzero (+1) entries of fL are corresponding to lower bounds
−x(v) ≤ 0. The theorem thus follows with a = f0,L and T set to those variables,
whose lower bound inequality does not appear in the derivation. 
�

5 The Solution to Ben Rebea’s Conjecture

Let G be a circular interval graph and let KI the family of cliques stemming from
the intervals in the definition of G (see Section 2). Then QSTAB(G) = {x ∈
Rn | Ax ≤ 1, x ≥ 0} where the 0/1 matrix A, corresponding to the cliques KI ,
has the circular ones property. Theorem 4 implies that any facet of STAB(G)
is of the form

a
∑
v∈T

x(v) + (a− 1)
∑
v �∈T

x(v) ≤ a · β (14)

We now show that a facet, which is not induced by an inequality of Ax ≤
1, x ≥ 0 is induced by a clique family inequality associated with some set of
cliques F ⊆ KI and some integer p. Recall from Theorem 3 that any facet of
this kind can be derived from the system

−1x ≤ −(β + 1)
Ax ≤ 1
−x ≤ 0,

(15)

with weights |fR,0|, fR, where fR,0 is a negative integer while fR is a 0-1 vector. A
root of F is a stable set, whose characteristic vector belongs to F . In particular,
we have that the multiplier fR(v) associated with a lower bound −x(v) ≤ 0 must
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be 0 if v belongs to a root of size β + 1. If v does not belong to a root of size β
or to a root of size β + 1, then the facet is induced by x(v) ≥ 0. Thus if v /∈ T ,
then v belongs to a root of size β + 1.

Let F = {K ∈ KI | fR(K) 	= 0} and p = a + |fR,0|. The multiplier |fR,0|
must satisfy

−|fR,0| + |{K ∈ F | v ∈ K}| = a− 1 ∀v 	∈ T
−|fR,0| + |{K ∈ F | v ∈ K}| = a ∀v ∈ T, v is in a root of size β + 1
−|fR,0| + |{K ∈ F | v ∈ K}| ≥ a ∀v ∈ T, v is not in a root of size β + 1

−|fR,0|(β + 1) + |F| = aβ

Observe that |F| = (a + |fR,0|)β + |fR,0| and therefore r = |F| mod p = |fR,0|.
Moreover, any vertex not in T belongs to exactly p − 1 cliques from F , while
each vertex in T belongs to at least p cliques from F . Therefore, inequality (14)
is the clique family inequality associated with F and p. We may therefore state
the following theorem.

Theorem 5. Let G be a circular interval graph. Then any facet of STAB(G),
which is not induced by an inequality of the system Ax ≤ 1, x ≥ 0, is a clique
family inequality associated with some F and p such that |F| mod p 	= 0.

If we combine this result with Theorem 1, Theorem 2 and we recall that
Edmonds’ inequalities are also clique family inequalities associated with |F| odd
and p = 2, we obtain the following corollary.

Corollary 2. Let G be a quasi-line graph. Any non-trivial facet of STAB(G) is
a clique family inequality associated with some F and p such that |F| mod p 	= 0.

We may assume, without loss of generality, that the cliques in the family
F are maximal [25]. A last lemma is the missing brick to the solution of Ben
Rebea’s conjecture.

Lemma 5. Let G be a quasi-line graph and (F , p) a pair such that

(p− r − 1)
∑

v∈Vp−1(F)

x(v) + (p− r)
∑

v∈V≥p(F)

x(v) ≤ (p− r)
⌊
|F|
p

⌋
(16)

is a facet of STAB(G). If |F| < 2p, then the inequality (16) is a clique inequality.

We may therefore state our main result:

Theorem 6. Ben Rebea’s conjecture holds true.
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graphe sans étoile. Discrete Mathematics, 29:53–76, 1980.

30. A. Schrijver. On cutting planes. Annals of Discrete Mathematics, 9:291–296, 1980.
31. A. Schrijver. Theory of Linear and Integer Programming. John Wiley, 1986.
32. A. Schrijver. Combinatorial optimization. Polyhedra and efficiency (3 volumes).

Algorithms and Combinatorics 24. Berlin: Springer., 2003.
33. F. B. Shepherd. Applying Lehman’s theorems to packing problems. Mathematical

Programming, 71:353–367, 1995.

Circular Ones Matrices and the Stable Set Polytope of Quasi- ine Graphsl



Approximation Algorithms for Stochastic
Inventory Control Models

Retsef Levi1,�, Martin Pál2,��, Robin Roundy3,� � �, and David B. Shmoys4,†

1 School of ORIE, Cornell University,
Ithaca, NY 14853
rl227@cornell.edu

2 DIMACS Center, Rutgers University,
Piscataway, NJ 08854-8018
mpal@dimacs.rutgers.edu

3 School of ORIE, Cornell University,
Ithaca, NY 14853

robin@orie.cornell.edu
4 School of ORIE and Department of Computer Science,

Cornell University,
Ithaca, NY 14853

shmoys@cs.cornell.edu

Abstract. We consider stochastic control inventory models in which the
goal is to coordinate a sequence of orders of a single commodity, aiming to
supply stochastic demands over a discrete finite horizon with minimum
expected overall ordering, holding and backlogging costs. In particular,
we consider the periodic-review stochastic inventory control problem and
the stochastic lot-sizing problem in the case where demands over time
are correlated and non-stationary (time-dependent). In these cases, it is
usually very hard to compute the optimal policy. We provide what we
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1 Introduction

In this paper we address the long-standing problem of finding computationally
efficient and provably good inventory control policies in supply chains with cor-
related and non-stationary (time-dependent) stochastic demands. This problem
arises in many domains and has many practical applications such as dynamic
forecast updates (for some applications see [5, 8]). We consider two classical mod-
els, the periodic-review stochastic inventory control problem and the stochastic
lot-sizing problem with correlated and non-stationary demands. Here the corre-
lation is inter-temporal, i.e., what we observe in period s changes our forecast for
the demand in future periods. We provide what we believe to be the first com-
putationally efficient policies with constant worst-case performance guarantees;
that is, there exists a constant C such that, for any given joint distribution of
the demands, the expected cost of the policy is guaranteed to be within C times
the expected cost of an optimal policy. More specifically, we provide a worst-
case performance guarantee of 2 for the periodic-review stochastic inventory
control problem, and a performance guarantee of 3 for the stochastic lot-sizing
problem.

The Models. The details of the periodic-review stochastic inventory control prob-
lem are as follows. A sequence of random demands for a single commodity at a
single location occurs over a finite planning horizon of T discrete periods. The
random demands over the T periods are denoted by D1, . . . , DT , and can be
non-stationary and correlated. The goal is to coordinate a sequence of orders
over the planning horizon aiming to satisfy these demands with minimum ex-
pected cost. In each period we can order any number of units that are assumed
to arrive only after L periods, where L is a positive integer that is called the lead
time. The cost is incurred in the following way. At the beginning of each period t
(for t = 1, . . . , T ) we first receive the order that was placed at time period t−L.
Next we place an order (for any number of units). Let qt be the size of the order
placed in period t. This order will incur a per-unit ordering cost ct for each unit
ordered, i.e., an overall cost of ctqt (this order will arrive in period t + L). We
then observe the realized demand dt of the random demand Dt (as a convention
throughout the paper we will use capital letters to denote random variables and
lower case letter to denote a realization of them). Each demand can be supplied
only from physical on-hand inventory. Let NIt be the net inventory at the be-
ginning of period t. The net inventory can be positive in case we have excess
(physical) on-hand inventory, or negative in case there is a shortage, i.e., there
are units of demands still waiting to be satisfied. Unsatisfied units of demand
are called back orders. More specifically, we can fully supply the demand dt only
if we have enough physical inventory, i.e., nit + qt−L ≥ dt. The assumption is
that unsatisfied units of demand are going to stay in the system until they are
satisfied. Hence, at the end of each period t we incur one of the following costs. If
the net inventory at the end of the period, NIt+1 = nit + qt−L −Dt, is positive,
i.e., NIt+1 > 0, we incur a per-unit holding cost, ht, for each excess unit that is
carried in inventory from period t to period t + 1 (an overall cost of htNIt+1).



308 R. Levi et al.

On the other hand, if there is a shortage, i.e., NIt+1 < 0, we incur a per-unit
backlogging penalty cost, pt, for each unit that is still back ordered (the overall
cost is pt(−NIt+1)). The only assumption on the cost parameters ct, ht, pt is
that they are non-negative, and that there is no speculative motivation to hold
inventory. In particular, in the case where there is no lead time (L = 0), this
implies that if we know that a demand is going to occur in period t, it is always
cheaper to order it in period t rather than t − 1 or t + 1 (i.e., ct−1 + ht−1 ≥ ct

and ct+1 + pt ≥ ct). This assumption on the cost parameters implies that, with-
out loss of generality, one can assume that ct = 0 and ht, pt ≥ 0 for each
t = 1, . . . , T . More specifically, any instance of the problem that satisfies the
property of no speculative motivation specified above, can be converted to an
equivalent instance with the property that ct = 0 and ht, pt ≥ 0 for each t
(i.e., the modified instance has the same set of optimal policies). This is done
by means of a cost transformation commonly used in the inventory literature.
The details of this cost transformation will be discussed at the end of Section
3. In the stochastic lot-sizing problem, we consider, in addition, a fixed ordering
cost that is incurred in each period in which an order is placed (regardless of its
size), but we assume that there is no lead time (L = 0).

In both models, the goal is to find a policy of orders with minimum expected
overall discounted cost over the given planning horizon, where the cost incurred
in period t is discounted by αt (0 < α ≤ 1). Since the costs are non-stationary
we assume, again without loss of generality, that α = 1.

The assumptions that we make on the demand distributions are very mild
and generalize all of the currently known approaches in the literature to model
correlation and non-stationarity of demands over time (for details we refer the
reader to [7, 11, 17]). As part of the model, we will assume that at the begin-
ning of each period s, we are given what we call an information set that is
denoted by fs. The information set fs contains all of the information that is
available at the beginning of time period s. More specifically, the information
set fs consists of the realized demands (d1, . . . , ds−1) over the interval [1, s), and
possibly some more (external) information denoted by (w1, . . . , ws) (e.g., wj can
specify the next period in which new information on the demand distribution
is going to become available to us). The information set fs in period s is one
specific realization in the set of all possible realizations of the random vector
(D1, . . . , Ds−1,W1, . . . ,Ws). This set is denoted by Fs. In addition, we assume
that in each period s there is a known conditional joint distribution of the future
demands (Ds, . . . , DT ), denoted by Is := Is(fs), which is determined by fs (i.e.,
if we know fs, we also know Is(fs)). For ease of notation, Dt will always denote
the random demand in period t according to the conditional joint distribution
Is for some s ≤ t, where it will be clear from the context to which period s
we refer. We will use t as the general index for time, and s will always refer to
the period we are currently in. The only assumption on the demands is that for
each s = 1, . . . , T , and each fs ∈ Fs the conditional expectation E[Dt|fs] is well
defined and finite for each period t ≥ s.



Approximation Algorithms for Stochastic Inventory Control Models 309

We note again that by allowing correlation we let Is be dependent on the
realization of the demands over the periods 1, . . . , s − 1 and possibly on some
other information that becomes available by time s (i.e., Is is a function of fs).
However, the conditional joint distribution Is is assumed to be independent of
the specific inventory control policy being considered. Moreover, in period s,
each feasible policy can only use the information fs, i.e., we allow only non-
anticipatory policies.

Related Literature. These models have attracted the attention of many researchers
over the years and there exists a huge body of related literature. The dominant
paradigm in almost all of the existing literature has been to formulate these
models using a dynamic programming framework. The optimization problem is
defined recursively over time using subproblems for each possible state of the
system. If all the demands are independent, then the state consists of a given
time period s and the inventory position at the beginning of the period, which
is the net inventory at the beginning of the period plus all the units that were
ordered over the last L periods, i.e., nis +

∑s−1
j=s−L qj . If the demands are corre-

lated then the state will also consist of a given information set fs ∈ Fs. For each
subproblem, we compute an optimal solution to minimize the expected overall
discounted cost from time s until the end of the horizon, assuming that we make
optimal decisions in future periods.

This framework has turned out to be very effective in characterizing the
structure of optimal policies for the overall system. Surprisingly, the optimal
policies for these rather complex models follow simple forms, known as state-
dependent base-stock policies. For each period s and observed information set
fs ∈ F , there exists an optimal target base-stock level that is independent of the
starting inventory position level at the beginning of the period (i.e., it is only a
function of s and fs). The optimal policy aims to keep the inventory level at each
period as close as possible to the target base-stock level. That is, it orders up
to the target level whenever the inventory level at the beginning of the period is
below that level, and orders nothing otherwise (see [11, 7, 25, 17] for a discussion
of different results along these lines).

Unfortunately, these rather simple forms of policies do not always lead to
efficient algorithms for computing the optimal policies. This is especially true
in the presence of correlated and non-stationary demands which cause the state
space of the relevant dynamic programs to grow exponentially and explode very
fast. The difficulty essentially comes from the fact that we need to solve ’too
many’ subproblems. This phenomenon is known as the curse of dimensionality.
Moreover, because of this phenomenon, it seems unlikely that there exists an
efficient algorithm to solve these huge dynamic programs.

Muharremoglu and Tsitsiklis [16] have proposed an alternative approach to
the dynamic programming framework. They have observed that this problem
can be decoupled into a series of unit supply-demand subproblems, where each
subproblem corresponds to a single unit of supply and a single unit of demand
that are matched together. This novel approach enabled them to substantially
simplify some of the dynamic programming based proofs on the structure of op-
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timal policies, as well as to prove several important new structural results. Using
this unit decomposition, they have also suggested new methods to compute the
optimal policies. However, their computational methods are essentially dynamic
programming approaches applied to the unit subproblems, and hence they suffer
from similar problems in the presence of correlated and non-stationary demand.
Although our approach is very different than theirs, we use some of their ideas
as technical tools in some of the proofs in the paper.

As a result of this apparent computational intractability, many researchers
have attempted to construct computationally efficient (but suboptimal) heuris-
tics for these problems. However, we are aware of very few attempts to analyze
the worst-case performance of these heuristics (see for example [12]). Moreover,
we are aware of no computationally efficient policies for which there exist con-
stant performance guarantees. For details on some of the proposed heuristics
and a discussion of others, see [11, 12, 7]. One specific class of suboptimal poli-
cies that has attracted a lot of attention is the class of myopic policies. In a
myopic policy, in each period we attempt to minimize the expected cost for that
period, ignoring the impact on the cost in future periods. The myopic policy is
attractive since it yields a base-stock policy that is easy to compute on-line, that
is, it does not require information on the control policy in the future periods. In
many cases, the myopic policy seems to perform well. However, in many other
cases, especially when the demand can drop significantly from one period to the
next, the myopic policy performs poorly and can even be arbitrarily more expen-
sive than the optimal policy (see [9]). Myopic policies were extensively explored
by Vienott [24, 23], Ignall and Veinott [6], Zipkin [25], Iida and Zipkin [7] and
Lu, Song and Regan [12].

Chan and Muckstadt [2] have considered a different way for approximating
huge dynamic programs that arise in the context of inventory control problems.
More specifically, they have considered un capacitated and capacitated multi-
item models. Instead of solving the one period problem (as in the myopic policy)
they have added to the one period problem a penalty function which they call
Q-function. This function accounts for the holding cost incurred by the inventory
left at the end of the period over the entire horizon. Their look ahead approach
with respect to the holding cost is somewhat related to our approach, though
significantly different.

Another approach that was applied to these models is the robust optimization
approach (see [1]). Here the assumption is of a distribution-free model, where
instead the demands are assumed to be drawn from some specified uncertainty
set. Each policy is then evaluated with respect to the worst possible sequence
of demands within the given uncertainty set. The goal is to find the policy with
the best worst-case (i.e., a min-max approach). This objective is very different
from the objective of minimizing expected (average cost) discussed in most of
the existing literature, including this paper.

We note that our work is also related to a huge body of approximation results
for stochastic and on-line combinatorial problems. The work on approximation
results for stochastic combinatorial problems goes back to the work of Möhring,
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Radermacher and Weiss [13, 14] and the more recent work of Möhring, Schulz
and Uetz [15]. They have considered stochastic scheduling problems. However,
their performance guarantees are dependent on the specific distributions (namely
on second moment information). Recently, Dean, Goemans and Vondrák consid-
ered a version of a multi-stage stochastic knapsack problem [3]. There is also
a growing stream of approximation results for several 2-stage stochastic combi-
natorial problems. For a comprehensive literature review we refer the reader to
[22, 4, 20]. We note that the problems we consider in this paper are by nature
multi-stage stochastic problems, which are usually much harder.

Our Work. Our work is distinct from the existing literature in several significant
ways, and is based on three novel ideas:

Marginal cost accounting. We introduce a novel approach for cost accounting
in stochastic inventory control problems. The key observation is that once we
place an order of a certain number of units in some period, then the expected
ordering and holding cost that these units will incur over the rest of the plan-
ning horizon is a function only of the realized demands over the rest of the
horizon, not of future orders. Hence, with each period, we can associate the
overall expected ordering and holding cost that is incurred by the units ordered
in this period, over the entire horizon. We note that similar ideas of holding
cost accounting were previously used in the context of models with continuous
time, infinite horizon and stationary (Poisson distributed) demand (see, for ex-
ample, the work of Axsäter and Lundell [19] and Axsäter in [18]). However, this
new way of marginal cost accounting is significantly different from the dynamic
programming approach, which, in each period, accounts only for the costs that
are incurred in that period. We believe that this new approach will have more
applications in the future in analyzing stochastic inventory control problems.

Cost balancing. The idea of cost balancing was used in the past to construct
heuristics with constant performance guarantees for deterministic inventory prob-
lems. The most well-known example is the part-period cost balancing heuristic
of Silver and Meal for the lot-sizing problem (see [21]). We are not aware of any
application of these ideas to stochastic inventory control problems.

Non base-stock policies. Our policies are not state-dependent base-stock policies.
This enable us to use, in each period, the distributional information about the fu-
ture demands beyond the current period (unlike the myopic policy), without the
burden of solving huge dynamic programs. Moreover, our policies can be easily
implemented on-line and are simple, both conceptually and computationally.

Using these ideas we provide what is called a 2-approximation algorithm for
the periodic-review stochastic inventory control problem; that is, the expected
cost of our policy is no more than twice the expected cost of an optimal pol-
icy. Our result is valid for all known approaches used to model correlated and
non-stationary demands. We also note that this guarantee refers only to the
worst-case performance and it is likely that on average the performance would
be significantly better. We then use the standard cost transformation (mentioned
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above) to achieve significantly better guarantees if the ordering cost is the dom-
inant part in the overall cost, as it is the case in many real life situations. For
the stochastic lot-sizing problem we provide a 3-approximation algorithm. This
is again a worst-case analysis and we would expect the typical performance to
be much better.

The rest of the paper is organized as follows. In Section 2 we explain the
details the marginal cost accounting approach. In Section 3 we describe a 2-
approximation algorithm for the periodic-review stochastic inventory control
problem and possible extensions. The stochastic lot-sizing problem is briefly
discussed in Section 4. A full version of this extended abstract can be found in
[9]. In subsequent work [10], we were able to construct a 2-approximation algo-
rithm for the periodic-review stochastic inventory control problem with capacity
constraints on the size of the order in each period.

2 Marginal Cost Accounting

In this section, we will present a new approach to the cost accounting of stochas-
tic inventory control problems. Our approach differs from the traditional dy-
namic programming based approach. In particular, we account for the holding
cost incurred by a feasible policy in a different way, which enables us to design
and analyze new approximation algorithms.

Recall that the inventory position is equal to the net inventory plus all the
units in orders that are on the way. Let Xs be the inventory position at the
beginning of period s before the order in that period was placed, and let Ys be
the inventory position after the order in period s was placed. Similarly, xs and
ys will denote the realization of Xs and Ys, respectively. Observe that once we
decide to order qs units in period s (where qs = ys − xs), then the holding cost
they are going to incur from period s until the end of the planning horizon is
independent of any future decision in subsequent time periods. It is dependent
only on the demand to be realized over the time interval [s, T ].

To make this rigorous, we use a ground distance-numbering scheme for the
units of demand and supply, respectively. More specifically, we think of two
infinite lines, each starting at 0, the demand line and the supply line. The demand
line LD represents the units of demands that can be potentially realized over the
planning horizon, and similarly, the supply line LS represents the units of supply
that can be ordered over the planning horizon. Each ’unit’ of demand, or supply,
now has a distance-number according to its respective distance from the origin of
the demand line and the supply line, respectively. If we allow continuous demand
(rather then discrete) and continuous order quantities the unit and its distance-
number are defined infinitesimally. We can assume without loss of generality
that the units of demands are realized according to increasing distance-number.
Similarly, we can describe each policy P in terms of the periods in which it
orders each supply unit, where all unordered units are ”ordered” in period T +1.
It is also clear that we can assume without loss of generality that the supply
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units are ordered in increasing distance-number. We can further assume (again
without loss of generality) that as the demand is realized, the units of supply are
consumed on a first-ordered-first-consumed basis. Therefore, we can match each
unit of supply that is ordered to a certain unit of demand that has the same
number. We note that Muharremoglu and Tsitsiklis [16] have used the idea of
matching units of supply to units of demand in a novel way to characterize and
compute the optimal policy in different stochastic inventory models. However,
their computational method is based on applying dynamic programming to the
single-unit problems. Therefore, their cost accounting within each single-unit
problem is still additive, and differs fundamentally from ours.

Suppose now that at the beginning of period s we have observed information
set fs. Observe that for each non-anticipatory policy, knowing the observed in-
formation set in period s implies that the inventory position at the beginning of
period s is known deterministically. Let xs be the inventory position at the be-
ginning of period s, and suppose that qs additional units are ordered. We have
already seen that, without loss of generality, we can assume that the supply
units in inventory are going to be consumed on a first-ordered-first-consumed
basis. This implies that the expected additional (marginal) holding cost that
these qs units are going to incur from time period s until the end of the planning
horizon is in independent of any future decision. More specifically, it is equal
to

∑T
j=s+L E[hj(qs − (D[s,j] − xs)+)+|fs] (recall that we assume without loss

of generality that α = 1), where x+ = max(x, 0) and D[s,j] is the accumulated
demand over the interval [s, j], i.e., D[s,j] =

∑j
t=s Dt. We note again that the

assumption that units of supply are consumed on a first-ordered-first-consumed
basis, was used previously to compute holding costs in models with continu-
ous time, infinite horizon and stationary demand (mainly Poisson distributed
demand) [19, 18].

Using this approach, consider any feasible policy P and let HP
t := HP

t (QP
t )

(t = 1, . . . , T ) be the discounted ordering and holding cost incurred by the
additional QP

t units ordered in period t by policy P . Thus, HP
t = HP

t (QP
t ) :=

ctQ
P
t +

∑T
j=t+L hj(QP

t − (D[t,j] − Xt)+)+. Now let BP
t be the discounted

backlogging cost incurred in period t + L (t = 1 − L, . . . , T − L). In particular,
BP

t := pt+L(D[t,t+L] − (Xt+L + QP
t ))+ (where Dj := 0 with probability 1 for

each j ≤ 0, and QP
t = qt is given as part of the input for each t ≤ 0). Let C(P )

be the cost of the policy P . Clearly,

C(P ) :=
0∑

t=1−L

BP
t + H[1,L] +

T−L∑
t=1

(HP
t + BP

t ),

where H[1,L] denotes the total holding cost incurred over the interval [1, L] (by
units ordered before period 1). We note that the first two expressions

∑0
t=1−L BP

t

and H[1,L] are not affected by our decisions (i.e., they are the same for any
feasible policy and each realization of the demand), and therefore we will omit
them. Since they are non-negative, this will not effect our results. Also observe
that without loss of generality, we can assume that QP

t = HP
t = 0 for any
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policy P and each period t = T − L + 1, . . . , T , since nothing that is ordered
in these periods can be used within the given planning horizon. We now can
write C(P ) =

∑T−L
t=1 (HP

t +BP
t ). In some sense, we change the accounting of the

holding cost from periodical to marginal, i.e., we associate with each decision
of how many units to order in each period all the costs that, after this decision
is made, become independent of any future decision. As we will demonstrate in
the sections to come, this new approach serves as a powerful tool for designing
simple policies with expected cost guaranteed to be within a constant factor of
the optimal expected cost.

3 Dual-Balancing Policy

In this section, we consider a new policy for the periodic-review stochastic inven-
tory control problem, which we call a dual-balancing policy. Recall the assump-
tion on the cost parameters, in particular, that there is no speculative motivation
for holding inventory or backorders. As mentioned in Section 1, this implies that,
without loss of generality, we can assume that ct = 0 and ht, pt ≥ 0 for each
t = 1, . . . , T . Next we shall describe the new policy and its worst-case analysis
under the above assumption. The generality of this assumption will be discussed
in detail at the end of this section. In this policy we aim to balance the expected
marginal holding cost against the expected marginal backlogging cost. In each
period s = 1, . . . , T − L, we focus on the units that we order in period s only,
and balance the expected holding cost they are going to incur over [s, T ] against
the expected backlogging cost in period s + L. We do that using the marginal
accounting of the holding cost that was introduced in Section 2.

We next describe the details of the policy, which is very simple to implement,
and then analyze its expected performance. A superscript B will refer to the
dual-balancing policy described below.

The Policy. We first describe the policy and its worst-case analysis in the case
where the demands have a density function and fractional orders are allowed.
Later on, we will describe how to extend the policy and the analysis to the case
in which the demands and the order sizes are integer-valued. In each period
s = 1, . . . , T − L, we consider a given information set fs (where again fs ∈ Fs)
and the resulting pair (xB

s , Is) of the inventory position at the beginning of
period s and the conditional joint distribution Is of the demands (Ds, . . . , DT ).
We then consider the following two functions:

(i) The expected holding cost over [s, T ] that is incurred by the additional qs

units ordered in period s, conditioning on fs. We denote this function by
lBs (qs), where
lBs (qs) := E[HB

s (qs)|fs] and HB
s (Qs) :=

∑T
j=s+L hj(Qs − (D[s,j] −Xs)+)+.

(ii) The expected backlogging cost incurred in period s + L as a function of the
additional qs units ordered in period s, conditioning again on fs. We denote
this function by bB

s (qs), where bB
s (qs) := E[BB

s (qs)|fs] and
BB

s := ps(D[s,s+L] − (XB
s + Qs))+ = ps(D[s,s+L] − Y B

s )+. We note again
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that conditioned on some fs ∈ Fs and given any policy P , we already know
xs, the starting inventory position in time period s. Hence, the backlogging
cost in period s, BB

s |fs, is indeed only a function of qs and future demands.

The dual-balancing policy now orders qB
s units in period s, where qB

s is such that
the expected holding cost incurred over the time interval [s, T ] by the additional
qB
s units we order at s is equal to the expected backlogging cost in period s+L.

In other words, we set lBs (qB
s ) = bB

s (qB
s ) (i.e., E[HB

s (qB
s )|fs] = E[BB

s (qB
s )|fs]).

Since we assume that the demands are continuous we know that the functions
lPt (qt) and bP

t (qt) are continuous in qt for each t = 1, . . . , T −L and each feasible
policy P . It is straightforward to verify that both lPs (qs) and bP

s (qs) are convex
functions of qs. Moreover, the function lPs (qs) is equal to 0 for qs = 0 and is an
increasing function in qs, which goes to infinity as qs goes to infinity. In addition,
the function bP

s (qs) is non-negative for qs = 0 and is a decreasing function in
qs, which goes to 0 as qs goes to infinity. Thus, qB

s is well-defined and we can
indeed balance the two functions. We also point out that qB

s can be computed as
the minimizer of the function gs(qB

s ) := max{lBs (qs), bB
s (qs)}. Since gs(qs) is the

maximum of two convex functions of qs, it is also a convex function of qs. This
implies that in each period s we need to solve a single-variable convex minimiza-
tion problem and this can be solved efficiently. In particular, if for each j ≥ s,
D[s,j] has any of the distributions that are commonly used in inventory theory,
then it is extremely easy to evaluate the functions lPs (qs) and bP

s (qs). More gen-
erally, the complexity of the algorithm is of order T (number of time periods)
times the complexity of solving the single variable convex minimization defined
above. The complexity of this minimization problem can vary depending on the
level of information we assume on the demand distributions and their charac-
teristics. In all of the common scenarios there exist straightforward methods to
solve this problem efficiently.

We end this discussion by pointing out that the dual-balancing policy is not a
state-dependent base-stock policy. However, it can be implemented on-line, free
from the burden of solving large dynamic programming problems. This concludes
the description of the policy for continuous-demand case. Next we describe the
analysis of the worst-case expected performance of this policy.

Analysis. We start the analysis by expressing the expected cost of the dual-
balancing policy.

Lemma 1. Let C(B) denote the cost of the dual-balancing policy.Then E[C(B)]=
2
∑T−L

t=1 E[Zt], where Zt := E[HB
t |Ft] = E[BB

t |Ft] (t = 1, . . . , T − L).

Proof. In Section 2, we have already observed that the cost C(B) of the dual-
balancing policy can be expressed as

∑T−L
t=1 (HB

t + BB
t ). Using the linearity of

expectations and conditional expectations, we can express E[C(B)] as

T−L∑
t=1

E[E[(HB
t (QB

t ) + BB
t (QB

t ))|Ft]].
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However, by the construction of the policy, we know that for each t = 1, . . . , T −
L, we have that E[HB

t |Ft] = E[BB
t |Ft] = Zt. Note that Zt is a random variable

and a function of the realized information set ft in period t. We then conclude
that the expected cost of the solution provided by the dual-balancing policy is
E[C(B)] = 2

∑T−L
t=1 E[Zt], where for each t, the expectation E[Zt] is taken over

the possible realizations of information sets in period t, i.e., over the set Ft.

Next we wish to show that the expected cost of any feasible policy is at least∑T−L
t=1 E[Zt]. In each period t = 1, . . . , T − L let Qt ⊆ LS be the set of supply

units that were ordered by the dual-balancing policy in period t.
Given an optimal policy OPT and the dual-balancing policy B, we define the

following random variables Z ′
t for each t = 1, . . . , T −L. In case Y OPT

t ≤ Y B
t , we

let Z ′
t be equal to the backlogging cost incurred by OPT in period t+L, denoted

by BOPT
t . In case Y OPT

t > Y B
t , we let Z ′

t be the holding cost that the supply
units in Qt incur in OPT , denoted by H̄OPT

t . Note that by our assumption each
of the supply units in Qt was ordered by OPT in some period t′ such that t′ ≤ t.
Moreover, for each period s, if we condition on the some information set fs ∈ Fs

and given the two policies OPT and B, then we already know yOPT
s and yB

s

deterministically, and hence we know which one of the above cases applies to
Z ′

s, but we still do not know its value.
The next lemma shows that

∑T−L
t=1 E[Z ′

t] is at most the expected cost of
OPT , denoted by opt. In other words, it provides a lower bound on the expected
cost of an optimal policy. Observe that this lower bound is closely related to
the dual-balancing policy through the definition of the variables Z ′

t (the proof is
omitted due lack of space).

Lemma 2. Given an optimal policy OPT , we have
∑T−L

t=1 E[Z ′
t] ≤ E[C(OPT )]

=: opt.

Next we would like to show that for each s = 1, . . . , T − L, we have that
E[Zs] ≤ E[Z ′

s].

Lemma 3. For each s = 1, . . . , T − L, we have E[Zs] ≤ E[Z ′
s].

Proof. First observe again that if we condition on some information set fs ∈ Fs,
then we already know whether Z ′

s = BOPT
s or Z ′

s = H̄OPT
s . It is enough to

show that for each possible information set fs ∈ Fs, conditioning on fs, we have
zs ≤ E[Z ′

s|fs].
In case Z ′

s := BOPT
s , we know that yOPT

s ≤ yB
s . Since for each period t and

any given policy P , BP
t := pt(D[t,t+L] − Yt)+, this implies that for each possible

realization ds, . . . , dT of the demands over [s, T ], we have that the backlogging
cost BB

s that the dual-balancing policy will incur in period s + L is at most
the backlogging cost BOPT

s = Z ′
s that OPT will incur in that period. That is,

with probability 1, we have BB
s |fs ≤ Z ′

s|fs. The claim for this case then follows
immediately.

We now consider the case where Z ′
s := H̄OPT

s . Observe again that each unit
in Qs was ordered by OPT in some period t′ ≤ s. Recall that for each period t,
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the per unit ordering cost is equal to ct = 0 and the per unit holding cost ht is
assumed to be nonnegative. It is then clear that for each realization of demands
ds, . . . , dT over the interval [s, T ], the ordering and holding costs HB

s |fs that the
units in Qs will incur in B will be at most the holding costs H̄OPT

s |fs = Z ′
s|fs

that they will incur in OPT .

As a corollary of Lemmas 1, 2 and 3, we conclude the following theorem.

Theorem 1. The dual-balancing policy provides a 2-approximation algorithm
for the periodic-review stochastic inventory control problem with continuous de-
mands and orders, i.e., for each instance of the problem, the expected cost of the
dual-balancing policy is at most twice the expected cost of an optimal solution.

3.1 Extensions

Integer-Valued Demands. We now briefly discuss the case in which the demands
are integer-valued random variables, and the order in each period is also assumed
to be integer. In this case, in each period s, the functions lBs (qs) and bB

s (qs) are
originally defined only for integer values of qs. We define these functions for any
value of qs by interpolating piecewise linear extensions of the integer values. It
is clear that these extended functions preserve the properties of convexity and
monotonicity discussed in the previous (continuous) case. However, it is still
possible (and even likely) that the value qB

s that balances the functions lBs and
bB
s is not an integer. Instead we consider the two consecutive integers q1

s and
q2
s := q1

s + 1 such that q1
s ≤ qB

s ≤ q2
s . In particular, qB

s := λq1
s + (1 − λ)q2

s for
some 0 ≤ λ ≤ 1. We now order q1

s units with probability λ and q2
s units with

probability 1 − λ. This constructs what we call a randomized dual-balancing
policy. By rather straightforward arguments, one can establish an analogous
theorem to Theorem 1 above, and show that the randomized dual-balancing
policy provides a 2-approximation for this case.

Stochastic Lead Times. We can also consider a more general model, where the
lead time of an order placed in period s is some integer-valued random variable
Ls. However, we assume that the random variables L1, . . . , LT are correlated,
and in particular, that, with probability 1, s + Ls ≤ t + Lt for each s ≤ t. In
other words, we assume that any order placed at time s will arrive no later than
any other order placed after period s. This is a very common assumption in the
inventory literature, usually described as ”no order crossing”. The algorithm and
the analysis can then be extended to provide a 2-approximation algorithm for
this more general case (see [9] for details).

3.2 Cost Transformation

In this section, we discuss in detail the cost transformation that enables us to
assume, without loss of generality that, for each period t = 1, . . . , T , we have ct =
0 and ht, pt ≥ 0. Consider any instance of the problem with cost parameters that
imply no speculative motivation for holding inventory or backorders (as discussed
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in Section 1). We use a transformation of the cost parameters, commonly used
in the inventory theory literature. This constructs an equivalent instance with
the property that, for each period t = 1, . . . , T , we have ct = 0 and ht, pt ≥ 0.
More specifically, the modified instance has the same optimal policies, since the
expected cost of each feasible policy is changed by the same constant. Applying
the dual-balancing policy to that instance will provide a feasible policy to the
original instance that has a performance guarantee of at most 2.

Next we describe the transformation for the case with no lead time (L = 0)
and α = 1; the extension to the case of arbitrary lead time and α is straight-
forward. Recall that any feasible policy P satisfies the following equations. For
each t = 1, . . . , T , we have that Qt = NIt −NIt−1 + Dt. Using these equations
we can express the ordering cost in each period t as ct(NIt−NIt−1 +Dt). Using
the positive and negative parts of the net inventory at the end of each period,
we can replace NIt with NI+

t − NI−
t . This leads to the following transforma-

tion of cost parameters. We let ĉt := 0, ĥt := ht + ct − ct+1 (cT+1 = 0) and
p̂t := pt − ct + ct+1. Note that the assumption that there is no speculative moti-
vation to hold inventory or back orders, implies that ĥt and b̂t are non-negative
(t = 1, . . . , T ). It is readily verified that the induced instance is equivalent to the
original one, and that the expected cost of each feasible policy is decreased by
E[
∑T

t=1 ctdt]. Hence, any 2-approximation algorithm for the modified instance
will yield a 2-approximation algorithm for the original instance.

Moreover, in practice, it is often the case that the ordering cost is the dom-
inant part of the overall cost. In particular, if E[

∑T
t=1 ctdt] is large compared

to the optimal expected cost, then applying the dual-balancing policy to the
modified instance will yield a significantly better performance guarantee (see [9]
for more details).

4 The Stochastic Lot-Sizing Problem

In this section, we change the previous model and in addition to the per-unit
ordering cost, consider a fixed ordering cost K that is incurred in each period
t with positive order (i.e., when Qt > 0). We call this model the stochastic lot-
sizing problem. The goal is again to find a policy that minimizes the expected
discounted overall ordering, holding and backlogging costs. Here we will assume
that L = 0 and that in each period t = 1, . . . , T , the conditional joint distribution
It of (Dt, . . . , DT ) is such that the demand Dt is known deterministically (i.e.,
with probability 1).

Next we briefly describe a policy which we call the triple-balancing policy
and denote by TB. It can be shown that its worst-case expected performance
guarantee is 3 (see [9]).

The policy follows two rules that specify when to place an order and how
many units to order once an order is placed. In each period s, we consider the
last period in which we have placed an order, say s∗. We then place an order only
if by not placing it the backlogging cost over (s∗, s] will exceed K. This is possible
since at the beginning of period s the demand ds is known deterministically. Once
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an order is placed, we order qs units where qs is the maximum number of units,
such that the expected holding cost that these units will incur until the end of
the planning horizon (i.e., over [s, T ]) is at most K.

The analysis in this case is based on the following idea. We consider all the
random orders placed by the TB policy. These orders induced a random partition
of the planning horizon into intervals. The analysis shows that over each interval,
the expected cost of the TB policy is at most 3K, whereas the expected cost
of the optimal policy is at least K. We can then show that the performance
guarantee of the policy is 3.

Theorem 2. The Triple-Balancing policy provides a 3-approximation for the
stochastic lot-sizing problem with correlated demands.
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Abstract. We consider the undirected minimum spanning tree problem
in a stochastic optimization setting. For the two-stage stochastic opti-
mization formulation with finite scenarios, a simple iterative randomized
rounding method on a natural LP formulation of the problem yields a
nearly best-possible approximation algorithm.

We then consider the Stochastic minimum spanning tree problem in a
more general black-box model and show that even under the assumptions
of bounded inflation the problem remains log n-hard to approximate un-
less P = NP ; where n is the size of graph. We also give approximation
algorithm matching the lower bound up to a constant factor.

Finally, we consider a slightly different cost model where the sec-
ond stage costs are independent random variables uniformly distributed
between [0, 1]. We show that a simple thresholding heuristic has cost
bounded by the optimal cost plus ζ(3)

4
+ o(1).

1 Introduction

Stochastic optimization refers to problems where the inputs have an uncertainty,
usually modeled by giving a probability distribution over the inputs. A common
framework for stochastic optimization problem is two-stage stochastic optimiza-
tion with recourse [2]. The uncertainty in the variables is modeled by proba-
bility distribution over a set of scenarios one of which will emerge tomorrow.
Recourse is the ability to take corrective action tomorrow when one of the sce-
narios emerges.

This framework is well suited to network design problems where, in practice,
the network has to be designed depending on the future demand patterns. One of
the basic problems in network design is the minimum cost spanning tree problem.
In this paper, we consider various models of the Stochastic Minimum Spanning
Tree problem and give near optimal approximation algorithms for them.
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Related Work. Stochastic Programming is well studied field with vast litera-
ture [16]. Recently, there has been work in designing approximation algorithm
for the problems [6, 7, 9, 12, 15].

The models considered here are usually the two stage stochastic optimization
with recourse. However, the variables in each scenario are correlated; e.g., in the
network design problems considered by [6, 7, 9, 12], the costs of all edges in each
scenario increases by the same factor.

In [15], Shmoys et al consider the problem of Stochastic set-cover and show
how a ρ-approximation for the deterministic version of the problem can be used
to obtain a 2ρ-approximation to the Stochastic version of the set-cover problem.
Although, the spanning tree problem can be formulated as a set cover problem
(see Section 3), the techniques of [15] do not yield a solution as the set cover
problem is exponential in size. Also, the deterministic spanning tree problem
when formulated as a set cover problem has a integrality gap of 2 while stochastic
version of the problem is O(log n)-hard to approximate unless P = NP . Hence,
it is unlikely that techniques discussed in [15] will be applicable to Stochastic
MST problem.

2 Models and Our Results

2.1 Stochastic MST with Explicit Scenarios

A popular formulation for stochastic optimization problems explicitly lists the
finite set of scenarios which can occur tomorrow. The stochastic version of the
minimum spanning tree problem under this model can be stated as follows: In
the first stage we are given a complete graph G = (V,E) on n nodes and a non-
negative cost function c0 on edges. In the second stage we have k scenarios and
probabilities pi, 1 ≤ i ≤ k of their occurrences. Each scenario has a different cost
function ci on the edges. The problem is select a subset of edges E0 in the first
stage and then augment it with Ei in the ith scenario to obtain a spanning tree
in each of the k scenarios. The objective function to minimize is the expected
cost of the edges chosen. Note that, this cost is c0(E0)+

∑k
i=1 pici(Ei). Observe

that in this model the costs of the edges in any scenario need not be correlated.
Although, the deterministic version of the problem has linear-time randomized
algorithm [10], the stochastic version of this problem is hard. It has been shown
in [3, 5] that the problem is hard to approximate within a factor ofmin{log n,
log k}, by a reduction from set-cover.

We give the following result for this model:

Theorem 1. There exists a polynomial time randomized algorithm which re-
turns a solution of expected cost O((log n + log k) · OPT) with high probability,
where OPT is the cost of the optimum solution of the Stochastic spanning tree
problem on graph G = (V,E), |V | = n with k scenarios. The running time is
polynomial in k and n.

Observe that, when k = poly(n) our algorithm gives the best approximation up
to a constant factor.
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We formulate a simple linear program for the stochastic spanning tree problem.
We then use an optimal fractional solution to randomly round each edge. The
techniques used for proving Theorem 1 are adapted from Alon[1].

2.2 Stochastic MST in the Black-Box Model

In this model, the scenarios are not stated explicitly but we have access to a
Black-box from which we can sample the second stage scenarios. The samples
are drawn from the same probability distribution as the second stage scenarios.
Let λ = max1≤i≤k,e∈E{ ci

e

c0
e
,

c0
e

ci
e
} denote the maximum cost inflation factor. We

show that even when λ is polynomial in n = |V (G)| the problem is hard to
approximate.

Theorem 2. Stochastic Spanning Tree problem on a graph G = (V,E) with
n = |V (G)| with inflation λ is O(log n)-hard to approximate unless P = NP
even when λ = poly(n).

We then give an approximation algorithm matching the lower bound proved
in Theorem 2.

Theorem 3. Given an instance of Stochastic Spanning Tree problem in the
Black-box model with inflation factor λ, there exists a randomized algorithm
which returns a solution of expected cost O((log n+log λ) ·OPT) with high prob-
ability, where OPT is the cost of the optimum solution. The running time of the
algorithm is polynomial in n and λ.

Hence, if λ = p(n) for some polynomial p(n), we get an approximation algorithm
optimal up to a constant factor. We reduce the Stochastic MST problem in the
black-box model to the Stochastic MST with explicit scenarios by sampling
k = poly(n, λ) times and using these scenarios in the new problem constructed.
We show that solving the Stochastic MST problem with these explicit scenarios
gives a good solution to Stochastic MST problem in the Black-box model as well.

2.3 Stochastic MST with Independent Random Costs

A well-studied problem is to determine the cost of the minimum spanning tree
of a complete graph when the edge costs are independent random variables uni-
formly distributed in [0, 1]. A classic result of Frieze [4] shows that the expected
cost of the minimum spanning tree is ζ(3) + o(1). A natural stochastic version
of the problem can be formulated when first-stage costs are given by a cost
function c0 and second-stage costs are independent random variables uniformly
distributed between [0, 1].

For this model, we analyze a thresholding heuristic. The thresholding heuris-
tic with threshold α consists of excluding all edges with cost more than α in the
first stage and constructing a minimum spanning tree over each of the resulting
components. These components are then optimally joined in the second stage.
We show that a thresholding heuristic gives a solution within ζ(3)

4 + o(1) of the



324 K. Dhamdhere, R. Ravi, and M. Singh

optimum solution. We also show that if the optimum solution is ‘tiny’, then our
solution is also small by showing that the expected cost of our solution is at
most

√
3ζ(3) · OPT + o(1).

Theorem 4. The thresholding heuristic with the threshold ζ(3)
n gives a solution

whose expected cost is at most OPT + ζ(3)
4 +o(1), where OPT is the expected cost

of the optimal solution. The expected cost is also bounded by
√

3ζ(3) · OPT+o(1).

Another stochastic version of the problem, when both the first stage and second
stage costs are independent random variables uniformly distributed between
[0, 1], was studied by Flaxman et al[3]. Flaxman et al[3] show that a thresholding
heuristic gives a solution of cost ζ(3)− 1

2 +o(1), while ζ(3)
2 +c for some c > 0 is a

lower bound for the optimum. Surprisingly, the best threshold for their problem
is 1

n .

3 Stochastic MST with Explicit Scenarios

Linear Programming Formulation. The LP formulation for the two-stage Stochas-
tic MST is the standard formulation enforcing the requirement that every non-
trivial cut must be covered by an edge chosen in the first stage or, in each
scenario, it must be covered with an edge chosen in the second stage. Although
this LP formulation has an integrality gap of 2 in the deterministic setting, for
stochastic version of the MST problem the optimal solution can be rounded
to obtain a near optimal approximation algorithm. We call the following linear
program the cut-cover LP.

min
∑

e c
0
ex

0
e +

∑
e

∑k
i=1 pi ci

ex
i
e

s.t. ∑
e∈δ(S) x

0
e + xi

e ≥ 1 ∀S ⊂ V, 1 ≤ i ≤ k

xi
e ≥ 0 ∀e ∈ E, 0 ≤ i ≤ k

We solve the the cut-cover linear programming formulation of the 2-stage
spanning tree problem. Although, the linear program is not compact, an efficient
separation subroutine can be supplied via an invocation to a min-cut subproblem.
Alternately, equivalent compact reformulations can be readily obtained. (For eg.
see the survey on spanning tree formulations by Magnanti and Wolsey [11]).

Rounding the Linear Program. Let x̂ denote the optimal solution. We construct
k forests, one for each scenario, by rounding the LP solution x̂ in phases. Ini-
tially, all k forests have singleton components. In each phase, we pick edge e
independently with probability x̂0

e and include it in each of the k forests. Also
for each i, 1 ≤ i ≤ k, we pick edge e independently with x̂i

e and include it in the
ith forest. Clearly, the expected cost of edges included in each phase is precisely
OPT where OPT is the cost of the optimal LP solution x̂. We argue that in one
phase, for each of the k forests, the number of components decrease by a factor
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of 9
10 with probability at least 1

2 . We then argue that in O(log n+ log k) phases,
with very high probability, each of the k forests will have just one component,
i.e., a feasible solution for the 2-stage spanning tree problem and the expected
cost of the solution is O(log n + log k) · OPT as claimed. We elaborate on the
above outline.

Lemma 1. The expected cost of the edges paid in any phase is at most OPT.

Proof. An edge e is included in the first stage with probability x̂0
e and in the

ith scenario with probability x̂i
e. Hence, the expected cost paid for including this

edge is c0ex̂
0
e +

∑k
i=1 pici

ex̂
i
e. Hence, the total expected cost paid in any phase is∑

e∈E(c0ex̂
0
e +

∑k
i=1 pici

ex̂
i
e) which is exactly OPT. 
�

Let F i
j denote the ith forest after j phases. Let Ci

j denote the number of
components in F i

j . We call a phase j ‘successful’ for scenario i, if Ci
j < 0.9Ci

j−1

or if Ci
j−1 = 1. We now state a lemma from [1]. For completeness, we also include

the proof in the Appendix.

Lemma 2 (Alon [1]). For every i, j, the conditional probability that phase j is
successful for scenario i, given any set of components in F i

j−1, is at least 1
2 .

Lemma 3. After t = (40 log n+ 16 log k) phases, the probability that any of the
k forests, F i

t , 1 ≤ i ≤ k, is not connected is at most 1
(kn)2 .

Proof. Observe that the ith forest gets connected after at most log0.9 n < 10 log n
successful phases. Hence, if F i

t is not connected, then there have been at most
10 log n successful phases for the ith scenario. The probability of this event is no
more than the probability that we get at most 10 logn heads in t independent
tosses of a fair coin. Although, the event that a phase j is successful for scenario
i is not independent for different j, we can apply the above bound since Lemma
2 gives a lower bound on success given any history. Using estimates for tails of
Binomial distributions, this probability is at most

e−(10 log n+8 log k)2/2×(20 log n+8 log k) ≤ e−(10 log n+8 log k)/4 ≤ 1
(kn)2

.

Using union bound, we get that the probability that any of the k forests is not
connected is at most k × 1

(kn)2 = 1
kn2 . 
�

Hence, after 40 log n + log k phases with very high probability each of the k
forests are connected and from Lemma 1, the expected cost of the solution is
(40 log n + log k) · OPT proving Theorem 1.

Remark 1. If the randomized rounding fails to connect any forest after O(log n+
log k) phases, then we use a simple k-approximation algorithm: for each scenario
build a tree by running Kruskal’s algorithm on edge costs equal to the minimum
of first and second stage costs. This will guarantee that our algorithm always
builds a spanning tree; further, since the failure probability is at most 1

(kn)2 per
scenario the expected cost of our solution is still bounded by O(log n + log k)
times the optimum.



326 K. Dhamdhere, R. Ravi, and M. Singh

Remark 2. Theorem 1 shows that the cut-cover LP formulation has a integrality
gap of O(log n) assuming k = poly(n). Also, the reduction from set cover given
by Gupta [5], yields examples where the cut-cover LP has a integrality gap of
Ω(log n). Hence, the integrality gap of the cut-cover LP formulation is θ(log n).

4 Approximation Algorithm for Black-Box Model

In this section, we consider the black-box model for the Stochastic spanning tree
problem. We assume that the inflation factor λ is bounded by some polynomial
p(n). Note that the problem still remains O(log n)-hard to approximate unless
P = NP (Theorem 2).

Let TRUE-LP denote the linear programming formulation of the stochastic
spanning tree problem. Given any ε > 0, δ > 0, we sample from the black
box, according to probability distribution ρ, the second stage scenarios k =
poly(n, λ, 1

ε ,
1
δ ) times. We then formulate a new stochastic MST problem using

these k samples as the second stage scenarios each occurring with probability
1
k . We call the corresponding linear program of the new instance of the problem
formed SAMPLE-LP.

Let x̂0 denote the first stage component of the optimal solution of SAMPLE-LP.
We show that if x̂0 is used as the first stage solution for TRUE-LP, with proba-
bility 1− δ, we can extend this solution in any scenario with total expected cost
(1 + ε)OPT where is the expected cost of the optimal solution of TRUE-LP.
Hence, using the result of Theorem 1, we round this LP solution to get an inte-
gral solution of expected cost O(log n · OPT). Observe that, to obtain the first
stage solution we only need to know the first stage fractional variables x̂0 and
need not know the second stage distribution or second stage solution.

Given any x0, the first stage variables, let f(x0) denote the cost of extending
x0 to a feasible solution on a random sample according to probability distribution
ρ and let F (x0) = E

[
f(x0)

]
. Let Fk(x0) be the random variable denoting the

average completion cost over k independently sampled scenarios, i.e., Fk(x0) =
1
k

∑k
i=1 fi(x0) where fi(x0) is the random variable denoting the cost of extending

x0 in the ith sample. The key to bounding our sample size is Lemma 4. The
techniques of [15, 14] also can also be used to prove Lemma 4, we here give a
much simpler proof. For simplicity, we assume that probability distribution ρ is
discrete and finite but the same argument also works for continuous distributions.

Lemma 4. Given any ε > 0 and δ > 0, if k = λ4

ε2δ , then Pr[|Fk(x0)− F (x0)| <
ε · OPT] ≤ δ. Here, OPT is the expected cost of the optimal solution.

Proof. Clearly E
[
Fk(x0)

]
= 1

k

∑k
i=1 E

[
fi(x0)

]
= 1

k

∑k
i=1 F (x0) = F (x0). Also,

V ar[Fk(x0)] =
1
k2

k∑
i=1

V ar[fi(x0)] =
1
k
V ar[f(x0)] (1)

as f i(x0) are independent random variables with distribution identical to f(x0).
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Now,
V ar[f(x0)] =

∑
t

ρt(ct(x0) − F (x0))2 (2)

where ρt is the probability of the tth scenario and ct(x0) is the cost paid in this
scenario to extend x0 to a feasible solution. Let j denote the index for which
ct(x0) is minimum. As we can select exactly the edges selected in the jth scenario
in any other scenario to extend x0 and inflation factor is bounded by λ, hence

ct(x0) ≤ λ2cj(x0) (3)

Also, if we do not select anything in the first stage our cost only goes up by a
factor of λ and hence

∑
t ρ

tct(x0) ≤ λ ·OPT. As cj(x0) is minimum, this implies

cj(x0) ≤ λ · OPT (4)

From Equation (2), (3) and (4), we have

V ar[f(x0)] ≤
∑

t ρ
tct(x0)2

≤ (λ2cj(x0))
∑

t ρ
tct(x0)

= λ2cj(x0) · λ · OPT
≤ λ4 OPT2

(5)

Hence, using Equation (1),

V ar[Fk(x0)] =
1
k
V ar[f(x0)] = ε2δ · OPT2 (6)

Hence, by the Chebychev inequality we have,

Pr[|Fk(x0) − F (x0)| > ε · OPT] ≤ ε2δ · OPT2

ε2 · OPT2 = δ (7)


�

Proof of Theorem 3. Let x̂0 denote the first stage component of the optimial
solution of SAMPLE-LP formed using k = λ4

ε2δ samples. Also let x̄0 denote the
first stage optimal solution to TRUE-LP. Using Lemma 4 twice, once for x̂0 and
once for x̄0, we have with probability at least 1 − 2δ that

|Fk(x̂0) − F (x̂0)| ≤ ε · OPT
|Fk(x̄0) − F (x̄0)| ≤ ε · OPT

As x̂0 is the optimal solution to SAMPLE-LP and x̄0 is the optimal solution to
TRUE-LP, we have

Fk(x̂0) ≤ Fk(x̄0), F (x̄0) ≤ F (x̂0)

Using the above we have that

F (x̂0) ≤ F (x̄0) + 2ε · OPT (8)
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Hence, sampling k = λ4

ε2δ times and solving the SAMPLE-LP gives first stage
variables which can be extended to second stage with total cost at most (1 +
ε)OPT with probability at least 1 − 2δ. Hence, now if we apply Theorem 1
to SAMPLE-LP, we obtain the first stage component of a solution of total cost
O((log n+log λ+log 1

εδ )OPT) with probability at least 1−δ proving Theorem 3.

�

5 Stochastic MST with Random Costs

In this section, we consider the two stage stochastic MST when the second stage
costs are given by independent random variables uniformly distributed between
[0, 1].

Thresholding. A thresholding heuristic with threshold α consists of removing all
edges in the first stage with costs more than α and constructing a minimum cost
spanning tree over each of the components formed. The components are then
joined in an optimal manner in the second stage.

Observe that, for a forest F , the cost of extending F to a spanning tree
in the second stage depends only on the sizes of the components of F . Let
the components of F be (C1, . . . , Ck). Construct an auxillary graph F ′ with k
vertices vi, 1 ≤ i ≤ k where vi corresponds to component Ci of F . Include |Ci| ·
|Cj | edges between vi and vj , where the cost of edges are independent random
variables distributed uniformly between [0, 1]. Clearly, the cost of extending F
to a spanning tree in the second stage is the cost of minimum spanning tree of
F ′ which only depends on the sizes of the components of F .

In Lemma 6, we show that if we join k components then the expected average
cost of each edge bought tomorrow is between ( k

n ) ζ(3)
n + o( 1

n ) and ζ(3)
n + o( 1

n ).
Hence, it is ‘reasonable’ not to buy any edge which costs more than ζ(3)

n and
buy the edges which cost less than ζ(3)

n in the first stage itself.
First, we prove a lemma which shows how the cost of the second stage depends

on the sizes of the components formed in the first stage. Note that the cost of
extending a forest F to a spanning tree in the second is the exactly the cost of
minimum cost spanning tree in the auxillary graph F ′ defined above.

Lemma 5. Let G and G′ be two forests, where the components of G are (C1, C2,
. . . , Ck) and the components of G′ are (C1 ∪ {x}, C2 \ {x}, C3, . . . , Ck) for some
vertex x ∈ C2. If |C1| ≥ |C2|, then the expected cost of extending G to a span-
ning tree in the second stage is less than the cost of extending G′ to a spanning
tree.

Proof. Let E[c(G)] denote the expected cost of extending G to a spanning tree in
the second stage. Consider graph H which has components(C1, C

′
2, x, C3,. . . , Ck),

where C ′
2 = C2 \ x. If we connect up x to C1 for free, then we get G′, and if we

connect x to C ′
2 for free, then we get G. Therefore,

E[c(H)] ≥ E[c(G)] and E[c(H)] ≥ E[c(G′)]
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We will show that the reduction in cost when connecting x to C1 is larger.
This will imply that E[c(G)] ≤ E[c(G′)].

Let Gp denote the graph formed by including in G every edge independently
with probability p. Similarly, define G′

p and Hp. In order to bound expected cost
of spanning trees on G and G′, we look at the expected number of connected
components in Gp, G′

p and Hp. Let χ(Gp) and χ(G′
p) denote the number of

connected components of Gp and G′
p respectively. We will show that E[χ(Gp)] ≤

E
[
χ(G′

p)
]
. Note that this suffices in proving the above claim, since E[c(G)] =∫ 1

0
(E[χ(Gp)] − 1) dp.
Note that we can obtain Gp (resp. G′

p) from Hp by connecting x to C1 (resp.
C ′

2) in Hp. We focus only on the number of connected components.
We use the principle of deferred decision. We first reveal the edges coming

out of vertex x in Hp. If x has edges to both C1 and C ′
2 or to neither of them,

then adding an edge from x to either C1 or C ′
2 and revealing rest of the edges

in the graph gives the expected number of connected components.
Now observe that since |C1| > |C ′

2|, the probability that x is connected
to component C1 in Hp is reater than the probability that x is connected to
C ′

2. Therefore, G′
p formed by including x to C ′

2 in Hp, has higher probability
of reducing the number of connected components by 1 than in Gp, formed by
including x in C1. From this it follows that E[χ(Gp)] ≤ E

[
χ(G′

p)
]
. This proves

the lemma. 
�

The cost of extending a forest with k components to a spanning tree in the
second stage can now be bounded as follows. The proof involving some careful
calculations appears in the Appendix.

Lemma 6. Given a forest F with k components, the expected cost of extending F

to a spanning tree in the second stage is between ( k
n )

2
ζ(3)+o(1) and k

nζ(3)+o(1).

Using this lemma, we now prove the main result of this section.

Proof of Theorem 4. Now, we prove Theorem 4 which bounds the expected
cost of the solution returned by a thresholding heuristic. First, observe that the
optimum solution must buy a forest in the first stage and join the components
of the forest in the second stage. Suppose, the thresholding heuristic and the
optimum solution buys k and opt1 edges respectively, in the first stage. Then,
they buy n− k − 1 and n− opt1 − 1 edges respectively, in the second stage. We
form two cases depending on which of k and opt1 is larger.

Case I (k ≤ opt1). Let the cost of the k edges bought by the thresholding
heuristic be c1(k). List the opt1 edges included in the optimum solution in the
first stage in increasing costs. Clearly, cost of the first k edges in the order is at
least c1(k) as we chose the cheapest k acyclic edges. Also, rest of the opt1 − k

edges in the sequence must cost at least ζ(3)
n as any acyclic subgraph of edges

with cost at most ζ(3)
n is of size at most k. If E[c(G)] denotes the expected cost

of the thresholding heuristic and Loss denotes E[c(G)] − OPT,then by Lemma
6 we have,
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E[c(G)] ≤ c1(k) +
(
n− k − 1

n

)
ζ(3) + o(1)

and OPT ≥ c1(k) + (opt1 − k)
ζ(3)
n

+
(
n− opt1 − 1

n

)2

ζ(3) − o(1)

⇒ Loss ≤
(
n− opt1 − 1

n

)
ζ(3) −

(
n− opt1 − 1

n

)2

ζ(3) + o(1)

Case II (k > opt1). Let the cost of the opt1 edges bought by the optimum
solution be c1(opt1). Order the k edges bought by the thresholding heuristic in
increasing order of costs. The cost of the first opt1 edges in this order is at most
c1(opt1) as we buy the cheapest acyclic subgraph of size opt1. Also, each of the
last k−opt1 edges in the order costs at most ζ(3)

n as we threshold at ζ(3)
n . Hence,

using Lemma 6, we get

E[c(G)] ≤ c1(opt1) + (k − opt1)
ζ(3)
n

+
(
n− k − 1

n

)
ζ(3) + o(1)

and OPT ≥ c1(opt1) +
(
n− opt1 − 1

n

)2

ζ(3) − o(1)

⇒ Loss ≤
(
n− opt1 − 1

n

)
ζ(3) −

(
n− opt1 − 1

n

)2

ζ(3) + o(1)

Now, (n−opt1−1
n )ζ(3) − (n−opt1−1

n )2ζ(3) ≤ ζ(3)
4 for any value of opt1. Hence, we

get that

E[c(G)] ≤ OPT +
ζ(3)
4

+ o(1)

for both of the cases, proving the first claim in the theorem.
Now observe that OPT ≤ ζ(3) and consequently, each of the terms in the

expression of OPT must be less than ζ(3). Using this, in case I, we have that

E[c(G)] ≤ c1(k) +
(
n− k − 1

n

)
ζ(3) + o(1)

= c1(k) +
(
opt1 − k

n

)
ζ(3) +

(
n− opt1 − 1

n

)
ζ(3) + o(1)

≤

√√√√3

(
c1(k)2 +

((
opt1 − k

n

)
ζ(3)

)2

+
(
n− opt1 − 1

n

)
ζ(3)

)2

+o(1)

≤
√

3(ζ(3)c1(k) + ζ(3)(opt1 − k)
ζ(3)
n

+ζ(3)(
n− opt1 − 1

n
)2ζ(3))+o(1)

≤
√

3ζ(3) · OPT + o(1)

The second step of the inequality follows from the fact that
√

3(a2 + b2 + c2)≥
a + b + c for any reals a, b, c.
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In the second case, we have that

E[c(G)] ≤ c1(k) +
(
k − opt1

n

)
ζ(3) +

(
n− opt1 − 1

n

)
ζ(3) + o(1)

= c1(opt1) +
(
n− opt1 − 1

n

)
ζ(3) + o(1)

≤

√√√√2

(
c1(opt1)

2 +
((

n− opt1 − 1
n

)
ζ(3)

)2
)

+ o(1)

≤

√√√√2

(
ζ(3)c1(opt1) + ζ(3)

(
n− opt1 − 1

n

)2

ζ(3)

)
+ o(1)

≤
√

2ζ(3) · OPT + o(1)

Here, the second step follows from
√

2(a2 + b2) ≥ a + b for any reals a, b.
Hence, c(T ) ≤

√
3ζ(3) · OPT + o(1) as claimed.
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Appendix A: Hardness of Stochastic MST with Bounded
Inflation

In this section, we prove Theorem 2 stating that Stochastic MST with polynomial
inflation is O(log n)-hard to approximate unless NP ⊆ DTIME(nO(log log n)). We
give an approximation preserving transformation from the Set Cover problem to
the Stochastic MST with inflation λ = p(n) for some polynomial p(n).

Given an instance of set cover problem, i.e, a set U = [n] and collection of
subsets S1, . . . , Sm, we construct an instance of stochastic spanning tree problem
with m+n+1 vertices. Let the vertices be {v1, . . . , vn, s1, . . . , sm, r}. The vertex
vi corresponds to element i ∈ U and sj corresponds to subset Sj .

The first stage cost of edge (r, sj) is 1, for each 1 ≤ j ≤ m and cost of all
other edges is mn. See Figure 1(a). The edges not present have cost mn.

There are n scenarios, one corresponding to each element i ∈ U , each having
a probability 1

n of appearance in the second stage. In the ith scenario, each edge
of cut separating Ti = {vi}∪{sj : i ∈ Sj} from G\Tj has cost mn and remaining
edges have cost 1

mn . See Figure 1(b). The edges absent have cost mn.

1 1 1 1 1 1 1

1
mns1 sm

v1 vn v1

r r

1
mn

(a) (b)

T1

1
mn

Fig. 1. (a) First stage costs (b) Second stage scenario corresponding to v1
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It is clear that the inflation factor of any edge is bounded by m2n2. Given any
set cover C of size k, choose edges (r, vj) such that Sj ∈ C in the first stage. In
the ith scenario, this first stage solution can be extended to a spanning tree with
edges of cost 1

mn . Hence, there exists a feasible solution of stochastic spanning
tree of total cost at most k + 1

n . Given a feasible solution to the stochastic
spanning tree of total cost c ≤ m + 1, we construct a feasible set cover of cost
between c − 1

n and c. Clearly, the solution contains no edge of cost mn. Let
C = {Sj : (r, sj) is selected in the first stage}. In the ith scenario, we cannot
buy any edge of cost mn. Hence, the ith element must have been covered by
some set in C. Hence, the sets selected form a set cover. Also, the total cost paid
in the second stage is at most 1

n . Hence, the size of C is at least c− 1
n . The cost

of the set cover is exactly the first stage cost paid in the solution.
Hence, the hardness of the approximation result for the set cover [8, 13] imply

that the stochastic spanning tree is at least O(log n)-hard to approximate unless
P = NP .

Appendix B: Proofs

Proof of Lemma 2. If F i
j−1 is connected, then the claim is trivial. Given some

forest F i
j−1, shrink each component to a singleton vertex and call the constructed

multi-graph H. Consider any vertex v in H. An edge e is not included in F i
j with

probability (1−x0
e)(1−xi

e). Let δ(v) denote the neighborhood of node v. Hence,
the probability that v remains isolated is∏

e∈δ(v)

(1 − x0
e)(1 − xi

e) ≤ exp(−
∑

e∈δ(v)

(x0
e + xi

e))

Using the fact that
∑

e∈δ(v)(x
0
e + xi

e) ≥ 1, we get that the probability that v

is isolated is at most 1
e . Using linearity of expectation, the expected number

of isolated vertices in H is |H|/e, and hence with probability at least 1
2 , the

number of isolated vertices is less than 2|H|/e. Hence, the number of connected
components in F i

j is at most

2|H|
e

+
1
2
(|H| − 2|H|/e) = (

1
2

+
1
e
)|H| < 0.9|H|

Using that |H| = Ci
j−1, we get the desired result.

Proof of Lemma 6. Let E[c(F )] denote the expected cost of extending the
forest F to a spanning tree. By Lemma 5, we get that E[c(F )] is minimum
when the k components of F are of equal sizes and it is maximum when all
except one component are singletons. We calculate the expected costs of joining
k components in either cases and get appropriate bounds as claimed.

Consider the case when F has one component of size n − k + 1 and rest
k − 1 components are singleton vertices. Then, the expected cost of joining the
components optimally is
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E[c(F )] =
∫ 1

p=0

E[κ(Fp) − 1] dp (9)

where Fp is the graph formed when each edge is included in F , independently,
with probability p and κ(Fp) denotes the connected component of Fp. Now,
using the ideas from [3], we need to consider components of size at most (log n)2.
There are at most n

(log n)2 components of size greater than (log n)2 and each can

be joined with probability 1 − o(1) with an edge of cost at most log n
n . Hence,

the total cost of joining such components is o(1). Also, we can assume that
n− k + 1 ≥ (log n)2, otherwise the claim holds trivially as otherwise k−1

n ζ(3) +

o(1) ≥ n−(log n)2

n ζ(3) + o(1) = ζ(3) + o(1). Hence, we assume that the that the
largest component of F is not included in a component of size more than (logn)2.
Using the above observations we have that,

E[c(F )] =
∫ 1

p=0

(log n)2∑
j=1

(
k − 1

j

)
jj−2 pj−1(1 − p)j(n−j)+O(j2)dp + o(1)

=
(log n)2∑

j=1

(
k − 1

j

)
jj−2

∫ 1

p=0

pj−1(1 − p)jn dp + o(1)

=
(log n)2∑

j=1

(
k − 1

j

)
jj−2 (j − 1)!(jn)!

(j + jn)!
+ o(1)

=
(log n)2∑

j=1

(k − 1)j

j!
jj−2 (j − 1)!

jjnj
+ o(1)

=
(log n)2∑

j=1

(
k − 1
n

)j 1
j3

+ o(1)

≤ k − 1
n

(log n)2∑
j=1

1
j3

+ o(1) =
k

n
ζ(3) + o(1)

Now consider the case when all k components are nearly of equal sizes. As-
sume for the sake of simplicity that all the components are of size n

k . Then F is
equivalent to a multi-graph on k vertices, each vertex representing a component
in F . The multi-graph has (n

k )2 edges between any two vertices. We replace the
(n

k )2 edges edges with a single edge whose cost is a random variable defined to
be the minimum of (n

k )2 independent random variables uniformly distributed
between [0, 1]. Observe that the new random variable has is distributed around
the origin like a uniform random variable between [0, ( k

n )2]. Hence, using the
result by Frieze [4], the cost of the minimum cost spanning tree is ( k

n )2ζ(3). The
argument goes through even in the case when k does not divide n and all compo-
nents differ in sizes by at most one and the same bound holds. The calculations
are tedious and are omitted.
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Abstract. This paper investigates the Kronecker canonical form of ma-
trix pencils under the genericity assumption that the set of nonzero en-
tries is algebraically independent. We provide a combinatorial charac-
terization of the sums of the row/column indices supported by efficient
bipartite matching algorithms. We also give a simple alternative proof
for a theorem of Poljak on the generic ranks of matrix powers.

1 Introduction

A matrix pencil is a polynomial matrix whose nonzero entries are of degree at
most one. Based on the theory of elementary divisors, Weierstrass established
a criterion for strict equivalence, as well as a canonical form, of regular ma-
trix pencils. Somewhat later, Kronecker investigated singular pencils to obtain
a canonical form for matrix pencils in general under strict equivalence transfor-
mations, which is now called the Kronecker canonical form.

The Kronecker canonical form finds a variety of applications in control theory
of linear dynamical systems [2, 18]. It is also in a close relation to the index of
differential algebraic equations [7, 8, 16].

Numerically stable algorithms are already available for computing the Kro-
necker canonical form [1, 3, 11, 20, 21]. Nevertheless, these algorithms are not very
accurate in the presence of round-off errors. The numerical difficulty is inherent
in the problem as the Kronecker canonical form is highly sensitive to pertur-
bation. This recently motivates extensive research on perturbation of matrix
pencils [5, 6].

On the other side, matrix pencils arising in applications are often very sparse
and their entries that represent physical characteristics are not precise in value
because of noises. Hence one may assume that there is no algebraic dependency
among the nonzero entries. It is then desirable to predict the structure of the
Kronecker canonical form efficiently from the combinatorial information such
as the zero/nonzero pattern without numerical computation. Such a structural
approach has been conducted for regular matrix pencils by Duff and Gear [4]
and Pantelides [16] in the context of differential algebraic equations. Murota [13]
described a complete characterization of the Kronecker canonical form of regular
matrix pencils in terms of the maximum degree of minors, which is tantamount
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to the maximum weight of bipartite matchings under the genericity assumption.
An extension of this characterization to mixed matrix pencils is also presented
in [14, 15]. A recent paper of van der Woude [19] provides another combinatorial
characterization based on the Smith normal form [12].

In this paper, we extend the structural approach to the analysis of singu-
lar matrix pencils. The possible existence of the minimal row/column indices
(rectangular blocks in the canonical form) makes this problem much more com-
plicated than the regular case. In fact, it remains open to design an efficient
algorithm for determining the row/column indices. The main result of this pa-
per, however, is an efficiently computable combinatorial characterization of the
sums of the minimal row/column indices using the Dulmage-Mendelsohn de-
composition and weighted bipartite matchings. The sum of the indices provides
significant information such as the controllability of the linear dynamical system
described by the matrix pencil.

The structure of the Kronecker canonical form is closely related to the se-
ries of larger constant matrices, called the expanded matrices. We investigate
those expanded matrices to show that their ranks are equal to the term-ranks
in most cases. As a byproduct, we give a simple alternative proof for a theorem
of Poljak [17] on the generic ranks of matrix powers.

The outline of this paper is as follows. Section 2 recapitulates the Kronecker
canonical form. In Section 3, we introduce generic matrix pencils. In Section 4,
we explain the Dulmage-Mendelsohn decomposition, which plays an essential
rôle in our result on the minimal row/column indices presented in Section 5.
Sections 6 and 7 are devoted to the analysis of expanded matrices. The simple
proof for the theorem of Poljak is shown in Section 8.

2 The Kronecker Canonical Form of Matrix Pencils

Let D(s) = sA+B be an m×n matrix pencil of rank r with the row set R and
the column set C. We denote by D(s)[X,Y ] the submatrix of D(s) determined
by X ⊆ R and Y ⊆ C. A matrix pencil D̄(s) is said to be strictly equivalent
to D(s) if there exists a pair of nonsingular constant matrices U and V such
that D̄(s) = UD(s)V . A matrix pencil D(s) = sA + B is said to be regular if
detD(s) 	= 0 as a polynomial in s. It is strictly regular if both A and B are
nonsingular matrices.

For a positive integer μ, we consider μ×μ matrix pencils Nμ and Kμ defined
by

Nμ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 s 0 · · · 0

0 1 s
. . .

...
...

. . . . . . . . . 0
...

. . . 1 s
0 · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Kμ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

s 1 0 · · · 0

0 s 1
. . .

...
...

. . . . . . . . . 0
...

. . . s 1
0 · · · · · · 0 s

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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For a positive integer ε, we further denote by Lε an ε× (ε+ 1) matrix pencil

Lε =

⎛⎜⎜⎜⎜⎝
s 1 0 · · · 0

0 s 1
. . .

...
...

. . . . . . . . . 0
0 · · · 0 s 1

⎞⎟⎟⎟⎟⎠ .

We also denote by L�
η the transpose matrix of Lη.

The following theorem establishes the Kronecker canonical form of matrix
pencils under strict equivalence transformations.

Theorem 1 (Kronecker, Weierstrass). For any matrix pencil D(s), there
exists a pair of nonsingular constant matrices U and V such that D̄(s) =
UD(s)V is in a block-diagonal form

D̄(s)=block-diag(Hν ,Kρ1 , · · · ,Kρc
, Nμ1 , · · · , Nμd

, Lε1 , · · · , Lεp
, L�

η1
, · · · , L�

ηq
, O),

where ρ1 ≥ · · · ≥ ρc > 0, μ1 ≥ · · · ≥ μd > 0, ε1 ≥ · · · ≥ εp > 0, η1 ≥ · · · ≥ ηq >
0, and Hν is a strictly regular matrix pencil of size ν. The numbers c, d, p, q,
ν, ρ1, · · · , ρc, μ1, . . . , μd, ε1, · · · , εp, η1, · · · , ηq are uniquely determined. 
�

The block-diagonal matrix pencil D̄(s) in Theorem 1 is often referred to as
the Kronecker canonical form of D(s). The numbers μ1, . . . , μd are called the
indices of nilpotency. The numbers ε1, · · · , εp and η1, · · · , ηq are the minimal
column and row indices, respectively. These numbers together with ν, ρ1, · · · , ρc

are collectively called the structural indices of D(s). Note that the matrix pencil
D(s) is regular if and only if p = q = 0.

For a polynomial g(s) in s, let deg g(s) and ord g(s) denote the highest and
lowest degrees of nonvanishing terms of g(s), respectively. For each k = 1, . . . , r,
we denote

δk(D) = max{deg detD(s)[X,Y ] | |X| = |Y | = k,X ⊆ R, Y ⊆ C},
ζk(D) = min{ord detD(s)[X,Y ] | |X| = |Y | = k,X ⊆ R, Y ⊆ C}.

Note that δk(D) is concave in k and ζk(D) is convex in k. The following well-
known lemma asserts that δk and ζk are invariant under strict equivalence trans-
formations.

Lemma 1. If D̄(s) is strictly equivalent to D(s), then δk(D̄) = δk(D) and
ζk(D̄) = ζk(D) hold. 
�

In the Kronecker canonical form of D(s), we have c = r−max{k | ζk(D) = 0}
and d = r − max{k | δk(D) = k}. Moreover, we have ρi = ζr−i+1(D) − ζr−i(D)
for i = 1, . . . , c and μi = δr−i(D)−δr−i+1(D)+1 for i = 1, . . . , d. These equalities
imply

d∑
i=1

μi = r − δr(D),
c∑

i=1

ρi = ζr(D). (1)
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Since the sum of the structural indices is equal to the rank of D(s), we have

ν +
p∑

i=1

εi +
q∑

i=1

ηi = δr(D) − ζr(D). (2)

For an m × n matrix pencil D(s) = sA + B, we construct a (k + 1)m × kn
matrix Ψk(D) and a km× (k + 1)n matrix Φk(D) defined by

Ψk(D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A O · · · O

B A
. . .

...

O B
. . . O

...
. . . . . . A

O · · · O B

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Φk(D) =

⎛⎜⎜⎜⎜⎝
A B O · · · O

O A B
. . .

...
...

. . . . . . . . . O
O · · · O A B

⎞⎟⎟⎟⎟⎠ .

We denote ψk(D) = rankΨk(D) and ϕk(D) = rankΦk(D). We also construct a
pair of km× kn matrices Θk(D) and Ωk(D) defined by

Θk(D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A B O · · · O

O A B
. . .

...
...

. . . . . . . . . O
...

. . . A B
O · · · · · · O A

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Ωk(D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

B O · · · · · · O

A B
. . .

...

O A
. . . . . .

...
...

. . . . . . B O
O · · · O A B

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We denote θk(D) = rankΘk(D) and ωk(D) = rankΩk(D). Then it is easy to
see that the ranks of these expanded matrices are expressed by the structural
indices as follows.

Theorem 2. Let (ν, ρ1, · · · , ρc, μ1, . . . , μd, ε1, . . . , εp, η1, . . . , ηq) be the structural
indices of a matrix pencil D(s). Then we have

ψk(D) = rk +
p∑

i=1

min{k, εi}, ϕk(D) = rk +
q∑

i=1

min{k, ηi},

θk(D) = rk −
d∑

i=1

min{k, μi}, ωk(D) = rk −
c∑

i=1

min{k, ρi},

where r is the rank of D(s). In particular, ψ1(D) = r+p and ϕ1(D) = r+q. 
�

Corollary 1. If D(s) is of column-full rank, so is Ψk(D) for each k. If D(s) is
of row-full rank, so is Φk(D) for each k.

Proof. If D(s) is of column-full rank, the Kronecker canonical form has no min-
imal column indices. Hence Theorem 2 implies ψk(D) = rk. Similarly, if D(s)
is of row-full rank, the Kronecker canonical form has no minimal row indices,
which together with Theorem 2 implies ϕk(D) = rk. 
�

Theorem 2 together with (1) implies the following corollary.
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Corollary 2. Let D(s) be a matrix pencil of rank r. For k ≥ r, we have θk(D) =
r(k − 1) + δr(D) and ωk(D) = rk − ζr(D).

Proof. For k ≥ r, we have θk(D) = rk −
∑d

i=1 μi and ωk(D) = rk −
∑c

i=1 ρi

by Theorem 2. Then it follows from (1) that θk(D) = r(k − 1) + δr(D) and
ωk(D) = rk − ζk(D) hold for k ≥ r. 
�

3 Generic Matrix Pencils

Given a matrix A with the row set R and the column set C, we construct a
bipartite graph G(A) = (R,C;E) with the vertex sets R and C and the edge set
E that consists of nonzero entries of A. A subset M ⊆ E is called a matching
if no two edges in M share an end-vertex. The term-rank of A, denoted by
t-rankA, is the maximum size of a matching in G(A). The term-rank provides
an upper bound on the rank of A. Under the genericity assumption that the set
of nonzero entries are algebraically independent, this upper bound is tight. That
is, rankA = t-rankA holds for a generic matrix. A set function τ defined by
τ(X) = t-rankA[X,C] for X ⊆ R is submodular, i.e,

τ(X) + τ(Z) ≥ τ(X ∪ Z) + τ(X ∩ Z)

holds for any X,Z ⊆ R. This submodularity will be used later in Section 7.
A matrix pencil D(s) = sA+B is called a generic matrix pencil if the nonzero

entries in A and B are indeterminates (independent parameters). To be more
precise, suppose D(s) is a matrix pencil over a field F. That is, A and B are
matrices over the field F. Then D(s) is a generic matrix pencil if the set T of
nonzero entries in A and B is algebraically independent over the prime field K
of F. A typical setting in practice is F = R and K = Q.

For a matrix pencil D(s) = sA + B with the row set R and the column set
C, let E and F be the sets of nonzero entries in A and in B, respectively. Then
we construct a bipartite graph G(D) = (R,C;E∪F ) with the vertex sets R and
C and the edge set E ∪ F . Note that G(D) allows parallel edges. Each edge e
has weight w(e) defined by w(e) = 1 for e ∈ E and w(e) = 0 for e ∈ F . A subset
M of E ∪ F is called a matching if no two edges in M share an end-vertex. The
maximum size of a matching in G(D) is the term-rank, denoted by t-rankD(s).
The weight w(M) =

∑
e∈M w(e) of a matching M is equal to the number of

edges in M ∩E. We denote by δ̂k(D) the maximum weight of a matching of size
k. We also denote by ζ̂k(D) the minimum weight of a matching of size k.

The following two lemmas demonstrate that some fundamental quantities of
a generic matrix pencil coincide with their combinatorial counterparts. It should
be emphasized here that these combinatorial counterparts are easy to compute
with efficient combinatorial algorithms for bipartite matchings.

Lemma 2. For a generic matrix pencil D(s), we have rankD(s) = t-rankD(s).

�
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Lemma 3. For a generic matrix pencil D(s), we have δk(D) = δ̂k(D) and
ζk(D) = ζ̂k(D). 
�

4 Dulmage-Mendelsohn Decomposition

In this section, we recapitulate the Dulmage-Mendelsohn decomposition of bi-
partite graphs following the exposition in [15–§2.2.3].

With a matrix pencil D(s), we associate a submodular function f defined as
follows. Let Γ (Y ) ⊆ R denote the set of vertices adjacent to Y ⊆ C in G(D).
Then the function f defined by

f(Y ) = |Γ (Y )| − |Y | (Y ⊆ C)

is submodular, i.e.,

f(Y ) + f(Z) ≥ f(Y ∪ Z) + f(Y ∩ Z)

holds for any Y,Z ⊆ C.
The term-rank of the matrix pencil D(s) is characterized by the minimum

value of this submodular function f , i.e.,

t-rankD(s) = min{f(Y ) | Y ⊆ C} + |C|,

which follows from the Hall-Ore theorem for bipartite graphs. The set of mini-
mizers of a submodular function forms a distributive lattice.

Let Y0 denote the unique minimal minimizer of f and Y∞ denote the unique
maximal minimizer of f . We put

C0 = Y0, R0 = Γ (Y0),
C∗ = Y∞ \ Y0, R∗ = Γ (Y∞) \ Γ (Y0),
C∞ = C \ Y∞, R∞ = R \ Γ (Y∞).

Then D(s) is in a block-triangular form with respect to the partitions (R0;R∗;R∞)
and (C0;C∗;C∞). That is, D(s)[R∗, C0] = O, D(s)[R∗, C0] = O, D(s)[R∞, C∗] =
O.

Furhtermore, if D(s) is a generic matrix, we have

rankD(s)[R0, C0] = |R0|,
rankD(s)[R∗, C∗] = |R∗| = |C∗|,

rankD(s)[R∞, C∞] = |C∞|.

We call D0(s) = D(s)[R0, C0] the horizontal tail and denote its rank by r0 =
|R0|. We also call D∞(s) = D(s)[R∞, C∞] the vertical tail and denote its rank
by r∞ = |C∞|.

This block-triangularization is called the Dulmage-Mendelsohn decomposi-
tion (DM-decomposition) of D(s). The DM-decomposition can be computed
efficiently with the aid of the bipartite matching algorithms.
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5 The Kronecker Canonical Form via DM-Decomposition

In this section, we investigate the Kronecker canonical form of a generic matrix
pencil D(s) via the DM-decomposition.

Lemma 4. For the horizontal tail D0 of a generic matrix pencil D(s), we have
ψk(D) = ψk(D0) + k(r − r0) and ψ̂k(D) = ψ̂k(D0) + k(r − r0).

Proof. Recall r = |R0|+|C\C0| and r0 = |R0|. Since D∗(s) = D(s)[R\R0, C\C0]
is of column-full rank, so is Ψk(D∗) by Corollary 1, namely, ψk(D∗) = k|C\C0| =
k(r− r0). Since ψk(D∗) ≤ ψ̂k(D∗) ≤ k(r− r0), we also have ψ̂k(D∗) = k(r− r0).
Then it follows from D(s)[R \ R0, C0] = O that ψk(D) = ψk(D0) + ψk(D∗) =
ψk(D0) + k(r − r0) and ψ̂k(D) = ψ̂k(D0) + ψ̂k(D∗) = ψ̂k(D0) + k(r − r0). 
�

Lemma 4 together with Theorem 2 implies that the minimal column indices of
D(s) coincide with those of D0(s). We now investigate the Kronecker canonical
form of the horizontal tail D0.

Let g0(s) be the monic determinantal divisor

g0(s) = gcd{detD(s)[R0, Y ] | |Y | = r0, Y ⊆ C0},

where gcd designates the greatest common divisor whose leading coefficient is
equal to one. The following lemma is a special case of a theorem of Murota [12]
(see also [15–Theorem 6.3.8]). We describe its proof here for completeness.

Lemma 5. The monic determinantal divisor g0(s) is a monomial in s.

Proof. We first claim that g0(s) belongs to K[s]. For any column j ∈ C0, there
exists a column subset Y ⊆ C0 \{j} such that |Y | = r0 and detD(s)[R0, Y ] 	= 0.
Therefore, for any independent parameter t ∈ T , the monic determinantal divisor
g0(s) is free from t. Thus g0(s) is a polynomial over K.

We now suppose that g0(s) is not a monomial in s. Let K be the algebraic
closure of K. Note that T is algebraically independent over K. Then there exists
a root ξ ∈ K \ {0} that satisfies g0(ξ) = 0. For a regular submatrix D(s)[R0, Y ],
we have detD(ξ)[R0, Y ] = 0, which contradicts the algebraic independence of T
over K. 
�

The determinantal divisor is invariant under strict equivalence transforma-
tions. Hence g0(s) is equal to the determinantal divisor of the Kronecker canon-
ical form D̄0 of D0. Then Lemma 5 implies that D̄0 does not contain a strictly
regular block.

Theorem 3. The sum of the minimal column indices is obtained by

p∑
i=1

εi = δ̂r0(D0) − ζ̂r0(D0). (3)
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Proof. Since the Kronecker canonical form D̄0 of D0 does not contain a strictly
regular block or a rectangular block L�

η , it follows from (2) and Lemma 3 that∑p
i=1 εi = δr0(D0) − ζr0(D0) = δ̂r0(D0) − ζ̂r0(D0). 
�
A similar argument applied to the vertical tail D∞ leads to the following

results. Lemma 6 implies by Theorem 2 that the minimal row indices of D(s)
coincide with those of D∞(s). Lemma 7 shows that the Kronecker canonical
form D̄∞(s) of D∞(s) does not contain the strictly regular block.

Lemma 6. For the vertical tail D∞ of a generic matrix pencil D(s), we have
ϕk(D) = ϕk(D∞) + k(r − r∞) and ϕ̂k(D) = ϕ̂k(D∞) + k(r − r∞). 
�

Lemma 7. The monic determinantal divisor

g∞(s) = gcd{detD(s)[X,C∞] | X ⊆ R∞, |X| = r∞}

is a monomial in s. 
�

Theorem 4. The sum of the minimal row indices is obtained by

q∑
i=1

ηi = δ̂r∞(D∞) − ζ̂r∞(D∞). (4)


�

As an immediate consequence of Theorems 3 and 4, we have the following
theorem implied by (2).

Theorem 5. The size ν of the strictly regular block in the Kronecker canonical
form D̄(s) of D(s) is obtained by

ν = δ̂r(D) − ζ̂r(D) − δ̂r0(D0) + ζ̂r0(D0) − δ̂r∞(D∞) + ζ̂r∞(D∞). (5)


�

Note that all these right-hand sides of (3), (4), and (5) can be computed effi-
ciently by the DM-decomposition and weighted bipartite matching algorithms.
We have thus obtained a useful combinatorial characterization of the sums of
the minimal row/column indices as well as the size of the strictly regular block
in the Kronecker canonical form.

Among the structural indices of a generic matrix pencil, μ1, · · · , μd and
ρ1, · · · , ρc are known to be efficiently computable by weighted bipartite match-
ing algorithms. The results in this section enables us to compute ν,

∑p
i=1 εi and∑q

i=1 ηi as well. It still remains open to determine the values of the minimal
row/column indices. The obtained partial results, however, provide sufficient in-
formation to discern if the Kronecker canonical form contains vertical/horizontal
rectangular blocks.
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6 Expanded Matrices for Indices of Nilpotency

We now turn to the ranks of the expanded matrices, which are in a close relation
to the structural indices as shown in Theorem 2, for a generic matrix pencil
D(s) = sA+B. Even though the set of nonzero entries in A and B is algebraically
independent, the expanded matrices are not generic matrices. It will be shown,
however, that the ranks of the expanded matrices are equal to their term-ranks
in most cases. In this section, we deal with the expanded matrices Θk(D) and
Ωk(D), which are particularly related to μ1, · · · , μd and ρ1, · · · , ρc. The other
expanded matrices Ψk(D) and Φk(D) will be investigated in Section 7.

In order to examine the ranks of Θk(D) and Ωk(D), we consider the bipartite
graphs G(Θk(D)) and G(Ωk(D)) associated with the expanded matrices. It will
turn out that these bipartite graphs allow maximum matchings with periodic
structures. As a consequence, the ranks of these expanded matrices are equal to
their term-ranks denoted by θ̂k(D) and ω̂k(D).

We first investigate Θk(D). Let R̄ and C̄ be the row set and the column set of
Θk(D). Then R̄ = R1∪· · ·∪Rk and C̄ = C1∪· · ·∪Ck, where Rh and Ch are the
copies of the row set R and the column set C of D for h = 1, . . . , k. For vertices
u ∈ R and v ∈ C, we denote by uh and vh the corresponding vertices in Rh and
Ch. The edge set of the bipartite graph G(Θk(D)) consists of Ē = E1 ∪ · · · ∪Ek

and F̄ = F 1 ∪ · · · ∪ F k−1, where Eh and Fh are the copies of E and F . The
edges in Eh connect Rh and Ch, whereas the edges in Fh connect Rh and Ch+1.
In other words, Eh = {(uh, vh) | (u, v) ∈ E} and Fh = {(uh, vh+1) | (u, v) ∈ F}.

For a matching M in G(D), let M◦ be the set of edges (uh, vh) with (u, v) ∈
E ∩M for h = 1, . . . , k and (uh, vh+1) with (u, v) ∈ F ∩M for h = 1, . . . , k − 1.
Then M◦ forms a matching in G(Θk(D)). A matching in G(Θk(D)) is called a
periodic matching if it can be represented as M◦ with a certain matching M in
G(D).

We now introduce the weight wk on the edge set of G(D) by wk(e) = k for
e ∈ E and wk(e) = k− 1 for e ∈ F . For a matching M in G(D), we consider the
weight of M by wk(M) =

∑
e∈M wk(e).

Lemma 8. Let M be a matching that maximizes wk(M) in G(D). Then the
corresponding periodic matching M◦ is a maximum matching in G(Θk(D)).

Proof. Suppose to the contrary that M◦ is not a maximum matching in G(Θk(D)).
Then there exists an augmenting path with respect to M◦ in G(Θk(D)). Let P ◦

be such an augmenting path with minimum number of arcs. The corresponding
set of edges in G(D) forms an augmenting path P with respect to M in G(D).
Then we analyze the weight of a matching M ′ = MP , which is the symmet-
ric difference of M and P . Suppose that the end-vertices of P ◦ are uh ∈ Rh

and vl ∈ Cl. If h < l, then the weight of M ′ satisfies wk(M ′) − wk(M) =
(l − h)(k − 1) − k(l − h − 1) = k − l + h. On the other hand, if h ≥ l, then we
have wk(M ′)−wk(M) = (h− l+ 1)k− (h− l)(k− 1) = k +h− l. Thus in either
case, we have wk(M ′) = wk(M) + k + h − k > wk(M), which contradicts the
maximality of wk(M). 
�
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Let M◦ be a maximum periodic matching in G(Θk(D)) corresponding to
the maximum-weight matching M in G(D). We denote by ∂M◦ the set of end-
vertices of the edges in M◦. Consider the submatrix Θk(D)[X,Y ] determined by
X = R̄∩∂M and Y = C̄∩∂M . Then the expansion of detΘk(D)[X,Y ] contains
a nonzero term ∏

(u,v)∈M∩E

Auv
k

∏
(u,v)∈M∩F

Buv
k−1,

where Auv and Buv denote the (u, v)-components of A and B. Each Auv appears
exactly k times in Θk(D) and Buv appears exactly k− 1 times in Θk(D). Hence
no other matching cancels this term in the expansion. Thus Θk(D)[X,Y ] is a
nonsingular submatrix of size |M◦|, which implies θk(D) = θ̂k(D) by Lemma 8.

A similar argument on G(Ωk(D)) leads to ωk(D) = ω̂k(D). Thus we obtain
the following theorem.

Theorem 6. For a generic matrix pencil D(s), we have θk(D) = θ̂k(D) and
ωk(D) = ω̂k(D).

7 Expanded Matrices for Column/Row Indices

This section is devoted to a combinatorial analysis of the ranks of the expanded
matrices Ψk(D) and Φk(D) for a generic matrix pencil D(s). Let ψ̂k(D) and
ϕ̂k(D) denote the term-ranks of these matrices. Since these expanded matrices
admit the same indeterminates to appear in different places, it is not immediately
clear that the ranks are equal to the term-ranks. In fact, there is an example
of such a expanded matrix whose rank is less than its term-rank. Our analysis,
however, makes it possible to assert that they are equal for sufficiently large k
as well as k = 1, 2.

Theorem 7. For a generic matrix pencil D(s) of rank r, let r0 be the rank of
the horizontal tail D0. If k ≥ r0, we have

ψk(D) = ψ̂k(D) = kr + δ̂r0(D0) − ζ̂r0(D0).

Proof. Due to the submodularity of the term-rank, we have

ψ̂k(D0) + ϕ̂k−1(D0) ≤ θ̂k(D0) + ω̂k(D0).

Since D0 is of row-full rank, Corollary 1 implies ϕ̂k−1(D0) = (k−1)r0. It follows
from Corollary 2 and Theorem 6 that θ̂k(D0) = θk(D0) = r0(k − 1) − δr0(D0)
and ω̂k(D0) = ωk(D0) = r0k − ζr0(D0) hold for k ≥ r0 Thus, we obtain

ψ̂k(D0) ≤ kr0 + δr0(D0) − ζr0(D0).

Then by Lemma 4 we have

ψ̂k(D) ≤ kr + δ̂r0(D0) − ζ̂r0(D0).

On the other hand, Theorems 2 and 3 imply ψk(D) = rk + δ̂r0(D0) − ζr0(D0)
for k ≥ r0. Since ψk(D0) ≤ ψ̂k(D0), we have ψk(D) = ψ̂k(D) = kr + δ̂r0(D0) −
ζ̂r0(D0) for k ≥ r0. 
�
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A similar argument applied to the vertical tail D∞ leads to the following
theorem.

Theorem 8. For a generic matrix pencil D(s) of rank r, let r∞ be the rank of
the vertical tail D∞. If k ≥ r∞, we have

ϕk(D) = ϕ̂k(D) = kr + δ̂r∞(D∞) − ζ̂r∞(D∞). 
�

For k = 1, 2, the ranks of the expanded matrices coincide with their term-
ranks. This is immediate for k = 1 as Ψ1 and Φ1 are generic matrices. The
following theorem deals with the case of k = 2.

Theorem 9. For a generic matrix pencil D(s), we have ψ2(D) = ψ̂2(D) and
ϕ2(D) = ϕ̂2(D).

Proof. Let M∗ be a maximum matching in G(Ψ2(D)). The row set R̄ and the
column set C̄ are given by R̄ = R1 ∪ R2 ∪ R3 and C̄ = C1 ∪ C2, where Rh and
Ch are the copies of R and C. For u ∈ R and v ∈ C, we denote their copies by
uh ∈ Rh and vh ∈ Ch. We also denote X = R̄ ∩ ∂M∗ and Y = C̄ ∩ ∂M∗. Then
it suffices to show that W = Ψ2(D)[X,Y ] is nonsingular.

Let M∗
1 and M∗

2 be the sets of edges in M∗ incident to C1 and C2, respectively.
We denote X1 = X∩∂M∗

1 , X2 = X∩∂M∗
2 , Y1 = C1∩∂M∗, and Y2 = C2∩∂M∗.

Let P denote the family of perfect matchings in G(W ). For each matching
M ∈ P, we denote π(M) =

∏
(u,v)∈M Wuv, where Wuv is the (u, v)-component

of W . Recall that
detW =

∑
M∈P

σMπ(M),

where σM takes 1 or −1. We also denote by P• the family of perfect matchings
M = M1 ∪M2 such that ∂M1 = ∂M∗

1 and ∂M2 = ∂M∗
2 .

We now claim that π(M•) 	= π(M ′) for any pair of M• ∈ P• and M ′ ∈ P\P•.
Suppose to the contrary that π(M•) = π(M ′). The matching M ′ contains an
edge (u2, v2) with u2 ∈ X1. Then we have (u1, v1) ∈ M•\M ′, and hence (u1, z1) ∈
M ′ for some z ∈ C \ {v}, which implies (u2, z2) ∈ M•. This is a contradiction
to u2 ∈ X1.

Since both W [X1, Y1] and W [X2, Y2] are generic matrices, we have∑
M∈P•

σMπ(M) = detW [X1, Y1] · detW [X2, Y2] 	= 0.

Then the claim above implies detW 	= 0, which means W is nonsingular. 
�
For general k, however, the ranks of the expanded matrices may differ from

their term-ranks. For instance, consider a generic matrix pencil

D(s) = sA + B =

⎛⎜⎜⎜⎜⎜⎜⎝
β1 sα1 0 0 0 0 0 0
0 β2 sα2 0 0 0 0 0
0 0 0 sα3 β3 0 0 0
0 0 β4 0 sα4 β5 0 0
0 0 0 0 0 sα5 + β6 sα6 β7

0 0 0 0 0 0 β8 sα7

⎞⎟⎟⎟⎟⎟⎟⎠ .
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The Kronecker canonical form of D(s) is D̄(s) = block-diag(L4, L2), which
implies

ψk(D) =

⎧⎨⎩
8k (k ≤ 2)
7k + 2 (2 ≤ k ≤ 4)
6k + 6 (k ≥ 4),

whereas

ψ̂k(D) =
{

8k (k ≤ 3)
6k + 6 (k ≥ 3).

Thus ψk(D) = ψ̂k(D) holds for k 	= 3. For k = 3, however, we have ψ3(D) = 23
and ψ̂3(D) = 24.

8 Generic Matrix Powers

As a byproduct of our combinatorial analysis in Section 6, we give a simple
alternative proof for a theorem of Poljak [17] on the ranks of powers of generic
square matrices.

Let A be an n × n generic matrix. We associate a directed graph G(A) =
(R,E) with vertex set R identical with the row/column set of A. The arc set
E is the set of nonzero entries of A, namely E = {(u, v) | Auv 	= 0}. A k-
walk in G(A) is an alternating sequence (v0, e1, v1, · · · , ek, vk) of vertices vh ∈ R
and eh ∈ E such that eh = (vh−1, vh) for h = 1, . . . , k. A pair of k-walks
(v0, e1, v1, · · · , ek, vk) and (v′

0, e
′
1, v

′
1, · · · , e′

k, v
′
k) is called independent if vh 	= v′

h

holds for h = 0, 1, . . . , k. The following theorem characterizes the rank of Ak in
terms of independent k-walks.

Theorem 10 (Poljak [17]). For a generic square matrix A, the rank of Ak is
equal to the maximum number of mutually independent k-walks in G(A).

Consider a regular matrix pencil D(s) = sA + I, where I denotes the unit
matrix. Then a k-walk naturally corresponds to a path P in G(Θk(D)) from C1

to Rk. To be more specific, the path P is given by

P = {(vh−1
h, v̄h

h) | h = 1, . . . , k} ∪ {(vh
h, v̄h

h) | h = 1, . . . , k},

where v̄h denotes the column that is identical to the row vh ∈ R. Then a pair of
independent k-walks correspond to a pair of vertex-disjoint paths in G(Θk(D)).
Let P̄ = P1 ∪ · · · ∪ P� denotes the edge set of � such vertex-disjoint paths that
come from � independent k-walks. Then the symmetric difference P̄F̄ forms
a matching of size � + n(k − 1). Conversely, any periodic matching M◦ can be
obtained in this way from a set of independent k walks. Therefore, Lemma 8
implies that the maximum number of independent k-walks is equal to θ̂k(D) −
(k − 1)n.

On the other hand, we have

rankAk = θk(D) − (k − 1)n.
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Therefore, in order to prove Theorem 10, it suffices to show that θk(D) = θ̂k(D).
Since D(s) is not a generic matrix, we can not directly apply Theorem 6. How-
ever, we can use essentially the same argument.

Let M◦ be a maximum periodic matching in G(Θk(D)) that corresponds to
a matching M in G(D). Consider the submatrix Θk(D)[X,Y ] with X = R̄∩∂M
and Y = C̄ ∩ ∂M . Then the expansion of detΘk(D)[X,Y ] contains a nonzero
term ∏

(u,v)∈M∩E

Auv
k,

where Auv denotes the (u, v)-component of A. Since each Auv appears exactly
k times in Θk(D), no other matching cancels this term in the expansion. Thus
Θk(D)[X,Y ] is a nonsingular submatrix of size |M◦|, which implies θk(D) =
θ̂k(D) by Lemma 8.

9 Conclusion

This paper has investigated the Kronecker canonical form of generic matrix
pencils. Even if the genericity assumption is not valid, we can efficiently compute
the combinatorial estimates of the sums of the minimal row/column indices.
These estimates are correct in most cases unless there is an unlucky numerical
cancellation. Hence we can use them for checking if the result of numerical
computation is consistent with the combinatorial information.

Another way to use the combinatorial estimates is to design a numerical
algorithm that exploits the combinatorial information. If one had an easier way
to check the correctness of the estimates, it would lead to a new algorithm
particularly efficient for sparse matrices. In fact, such algorithms of combinatorial
relaxation type have been developed for the maximum degree of subdeterminants
[9, 10, 13, 15]. It would be interesting to devise the same type of algorithms for
minimal row/column indices.
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Abstract. Given a graph with costs on the edges, the power of a node is
the maximum cost of an edge leaving it, and the power of the graph is the
sum of the powers of the nodes of this graph. Motivated by applications in
wireless multi-hop networks, we consider four fundamental problems un-
der the power minimization criteria: the Min-Power b-Edge-Cover prob-
lem (MPb-EC) where the goal is to find a min-power subgraph so that
the degree of every node v is at least some given integer b(v), the Min-
Power k-node Connected Spanning Subgraph problem (MPk-CSS), Min-
Power k-edge Connected Spanning Subgraph problem (MPk-ECSS), and
finally the Min-Power k-Edge-Disjoint Paths problem in directed graphs
(MPk-EDP). We give an O(log4 n)-approximation algorithm for MPb-EC.
This gives an O(log4 n)-approximation algorithm for MPk-CSS for most
values of k, improving the best previously known O(k)-approximation
guarantee. In contrast, we obtain an O(

√
n) approximation algorithm

for MPk-ECSS, and for its variant in directed graphs (i.e., MPk-EDP),
we establish the following inapproximability threshold: MPk-EDP cannot
be approximated within O(2log1−ε n) for any fixed ε > 0, unless NP-hard
problems can be solved in quasi-polynomial time.

1 Introduction

Wireless multihop networks are an important subject of study due to their exten-
sive applications (see e.g., [8,24]). A large research effort focused on performing
network tasks while minimizing the power consumption of the radio transmit-
ters of the network. In ad-hoc networks, a range assignment to radio transmitters
means to assign a set of powers to mobile devices. We consider finding a range
assignment for the nodes of a network such that the resulting communication
network satisfies some prescribed properties, and such that the total power is
minimized. Specifically, we consider “min-power” variants of three extensively
studied “min-cost” problems: the b-Edge Cover problem and the k-Connected
Spanning Subgraph Problem in undirected networks, and the k-Edge-Disjoint
Paths problem in directed networks.

M. Jünger and V. Kaibel (Eds.): IPCO 2005, LNCS 3509, pp. 349–361, 2005.
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In wired networks, generally we want to find a subgraph with the minimum
cost instead of the minimum power. This is the main difference between the
optimization problems for wired versus wireless networks. The power model for
undirected graphs corresponds to the static symmetric multi-hop ad-hoc wireless
networks with omnidirectional transmitters. This model is justified and used in
several other papers [3,4, 14].

An important network task is assuring high fault-tolerance ( [1–4, 11, 18]).
The simplest version is when we require the network to be connected. In this
case, the min-cost variant is just the min-cost spanning tree problem, while
the min-power variant is NP-hard even in the Euclidean plane [9]. There are
several localized and distributed heuristics to find the range assignment to keep
the network connected [18, 24, 25]. Constant approximation guarantees for the
min-power spanning tree problem are given in [4, 14]. For general k, the best
previously known approximation ratio for MPk-CSS was 2k = O(k) [5, 11,19].

Min-cost k-connected and k-edge connected spanning subgraph problems
were extensively studied [7, 10, 12, 13, 16, 17]. While the min-cost k-edge con-
nected spanning subgraph problem admits a 2-approximation algorithm [12,13],
no constant approximation guarantee is known for the min-cost k-connected
spanning subgraph problem. The best known approximation ratios for the latter
are O(ln k · min{

√
k, n+k

n−k ln k}) [17] and O(ln k) for n ≥ 2k2 [7].
The notation and preliminaries used in the paper are as follows. Let G =

(V,E) be a graph. For disjoint X,Y ⊆ V let δG(X,Y ) = δE(X,Y ) be the set
of edges from X to Y in E. We will often omit the subscripts G,E if they are
clear from the context. For brevity, δE(X) = δE(X,V − X), and degE(X) =
|δE(X)| is the degree of X. For a function g on a groundset U and S ⊆ U let
g(S) =

∑
u∈S g(u). Given edge costs c(e), e ∈ E, the power pG(v) = pE(v)

of a node v in G is the maximum cost of an edge incident to v in E, that is,
p(v) = maxe∈δE(v) c(e). The power of G is p(G) = pE(V ) =

∑
v∈V p(v). Note

that p(G) differs from the ordinary cost c(G) =
∑

e∈E c(e) of G even for unit
costs. In this case, if G has no isolated nodes then c(G) = |E| and p(G) = |V |.
For example, if E is a perfect matching on V then p(G) = 2c(G). If G is a
clique then p(G) is roughly c(G)/

√
m/21. The following statement whose proof

is presented in Section 3 shows that these are the extremal cases also for general
edge costs.

Lemma 1. For any graph G = (V,E) holds: c(G)/
√

|E|/2 ≤ p(G) ≤ 2c(G).
For a forest T , c(T ) ≤ p(T ) ≤ 2c(T ).

Throughout the paper, let G = (V, E) denote the input graph with nonnega-
tive costs on the edges; n denotes the number of nodes in G, and m the number
of edges in G. Let opt denote the optimal solution value of an instance at hand.
Given G, our goal is to find a minimum power spanning subgraph G of G that
satisfies some prescribed property. In undirected graphs, we consider the follow-
ing two variants. Given an integral function b on V , we say that G (or E) is

1 In this paper, we ignore that some numbers might not be integers, since the adaption
to floors and ceilings is immediate.
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a b-edge cover if degG(v) ≥ b(v) for every v ∈ V , where degG(v) = degE(v) is
the degree of v in G. In the Minimum Power b-Edge Cover Problem (MPb-EC),
G is required to be a b-edge cover; the Minimum Power k-Edge Cover Problem
(MPk-EC) is a particular case when b(v) = k for all v ∈ V . It is easy to see that
the greedy algorithm that for every v ∈ V picks the lightest b(v) edges incident
to v is a (k + 1)-approximation algorithm for MPb-EC, where k = maxv∈V b(v).
The following simple example shows that the (k+1)-approximation ratio is tight
for this greedy algorithm. Take k+1 stars with k leaves each, and add edges of a
clique on their centers. All edges have unit costs. Set b(v) = k if v is a star center
and b(v) = 0 otherwise. The greedy algorithm may pick the edges of the stars,
thus getting a solution of value (k + 1)2. The optimal solution is obtained by
picking the clique, and has power k+1. This example easily extends to MPk-EC.
We prove:

Theorem 1. MPb-EC is APX-hard. It admits an O(log4 n)-approximation
algorithm.

A graph G is k-(node) connected if there are k internally disjoint paths be-
tween every pair of its nodes. In the Minimum Power k-Connected Spanning
Subgraph Problem (MPk-CSS) G is required to be k-connected. The motivation
of the “min-power” variant for wireless networks is similar to the one of the
“min-cost” variants for wired networks, e.g., for MPk-CSS we require that the
network remains connected even in failure of up to k−1 terminals. The problem
admits an O(k)-approximation algorithm [5, 11]. We prove:

Theorem 2. MPk-CSS is APX-hard. Unless k = n − o(n), MPk-CSS admits
an O(log4 n)-approximation algorithm. For k = n − o(n), MPk-CSS admits an
O(

√
k)-approximation algorithm.

Theorem 2 is proved by combining Theorem 1 with part (i) of the following
theorem, and using the currently best known approximation guarantees [7, 16]
for the Min-Cost k-Connected Spanning Subgraph problem.

Theorem 3. (i) If there exists an α-approximation algorithm for the Min-Cost
k-Connected Spanning Subgraph problem and a β-approximation algorithm
for MPk-EC then there exists a (2α + β)-approximation algorithm for MPk-
CSS.

(ii) If there exists a ρ-approximation for MPk-CSS then there exists a (2ρ + 1)-
approximation for the Min-Cost k-Connected Spanning Subgraph problem.

Note that part (ii) of Theorem 3 implies that MPk-CSS is almost as hard to
approximate as the Min-Cost k-Connected Spanning Subgraph problem.

We also consider the Min-Power k-Edge Connected Spanning Subgraph (MPk-
ECSS) problem where G is required to be k-edge connected. This problem admits
a O(k)-approximation algorithm [11]. We prove:

Theorem 4. MPk-ECSS is APX-hard and admits an O(
√
n)-approximation

algorithm.
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Power optimization problems were considered in asymmetric networks as
well [14]. This setting is mainly motivated for the purpose of broadcasting or
multicasting in multihop wireless networks. In this case, the power of a node v
is the maximum cost of an edge outgoing from v. We give some evidence that
minimum-power connectivity problems in directed graphs are hard by showing a
strong inapproximability result for a simple variant: the problem of finding the
minimum-power subgraph that contains k edge-disjoint directed (s, t)-paths. We
call it the Min-Power k-Edge-Disjoint Paths (MPk-EDP) problem, since it is the
“min-power variant” of the Min-Cost k-Edge-Disjoint Paths problem. We prove
the following strong inapproximability result for MPk-EDP, in contrast to the
polynomial solvability of the “min-cost” case.

Theorem 5. MPk-EDP cannot be approximated within O(2log1−ε n) for any fixed
ε > 0, unless NP-hard problems can be solved in quasi-polynomial time.

We also note that, in contrast, the problem of finding Minimum Power k-
Vertex-Disjoint Paths (from s to t) in directed graphs can be solved in polynomial
time as follows. First, we can assume that we know the power p of s (there are at
most n possible values) and thus we know all optimum edges incident to s. Now,
we give zero cost to all these edge (whose original costs were at most p), delete
all the other edges incident to s, and compute the minimum cost k internally
vertex-disjoint paths using the polynomial-time min-cost k-flow algorithm of
Orlin [21], and a flow decomposition. As the outdegree of every internal node is
one, and the outdegree of t is zero, this is an optimal solution to our minimum
power vertex-disjoint case.

Table 1 summarizes our main results.

Table 1. Our approximation ratios and hardness results (α is the best approximation
ratio for the Min-Cost k-Connected Spanning Subgraph problem)

Problem Approximation Ratio Hardness
MPb-EC min(O(log4 n), k + 1) APX-hard
MPk-CSS min(O(log4 n) + 2α, k(1 + o(1)) APX-hard, Ω(α)
MPk-ECSS O(

√
n) APX-hard

MPk-EDP – Ω
(
2log1−ε n

)
Theorem 1 is proved in Section 2, Lemma 1 and Theorems 2, 3, and 4 are

proved in Section 3, and finally Theorem 5 is proved in Section 4. In the rest of
this section we show that already very restricted instances of MPb-EC, MPk-CSS,
and MPk-ECSS are APX hard, thus proving the hardness results of Theorem 1,
2, and 4.

Theorem 6. MPk-EC, MPk-CSS, and MPk-ECSS are APX-hard even for
k = 1.

Proof. To prove the theorem, we will use the following well-known formulation
of the Set-Cover Problem (SCP); in this formulation, J is the incidence graph



Power Optimization for Connectivity Problems 353

of sets and elements, where A is the family of sets and B is the universe (we
denote the edge set by I).
Input: A bipartite graph J = (A ∪B, I) without isolated nodes.
Output: A minimum size subset T ⊆ A such that every node in B has a neighbor
in T .

The reduction is as follows. Given an instance J = (A ∪ B, I) for the SCP,
we construct a graph G = (V ∪ {r}, E) with edge cost function c by setting
c(e) = 1 for every e ∈ E, adding a new node r and edges of cost zero from r
to every a ∈ A; for MPk-EC we set b(v) = 1 for every v ∈ V , and for MPk-CSS
and MPk-ECSS we set k = 1. It is easy to see that SCP has a solution of size
τ if and only if the obtained instance of MPk-EC (MPk-CSS/MPk-ECSS) has a
solution of size |B| + τ .

A 4-bounded instance SC-4 of SC is one in which all sets have size at most 4,
that is degJ(a) ≤ 4 for every a ∈ A. Any solution to SC-4 has size ≥ |B|/4. Thus
any solution of power |B| + τ in our MPk-EC (MPk-CSS/MPk-ECSS) instance
of power at most (1 + ε)(|B| + τ) gives us a solution to SC-4 of size at most
τ+τε+|B|ε ≤ (1+5ε)τ . Consequently, a (1+ε)-approximation to MPk-EC gives
a (1 + 5ε)-approximation to SC-4. Since SC-4 is APX-hard [22], APX-hardness
of MPk-EC (MPk-CSS/MPk-ECSS) follows.

Finally to obtain APX-hardness of MPk-EC (MPk-CSS/MPk-ECSS) for k >
1, we add vertices t1, . . . , tk−1 to graph G constructed above and we add edges
of zero cost from them to all previous vertices. The proof again follows from the
fact that each vertex corresponding to an element should be adjacent to at least
one edge of cost one. �

2 Proof of Theorem 1

In this section, we present the proof of Theorem 1. Throughout this section we
assume that c(e) ∈ {1, . . . , n4} for every e ∈ E . In particular, opt ≤ n6. Indeed,
let c be the least integer so that {e ∈ E : ue ≤ c} is a b-edge cover. Edges of
cost ≥ cn2 do not belong to any optimal solution, and thus deleted from the
graph. Edges of cost ≤ c/n2 in fact get zero costs, as adding all of them to the
solution affects only the constant in the approximation ratio (we also update
b(v)’s, v ∈ V , accordingly). This gives an instance with cmax/cmin ≤ n4, where
cmax and cmin denote the maximum and the minimum nonzero cost of an edge
in E , respectively. Further, for every e ∈ E set c(e) ← �c(e)/cmin�. It is easy to
see that the loss incurred in the approximation ratio is only a constant, which
is negligible in our context.

Let b(V ) =
∑

v∈V b(v). For an edge set F and v ∈ V , let

bF (v) = max{b(v) − degF (v), 0}

be the residual deficiency of v w.r.t. F (so b(v) = b∅(v)). Also, bF (V ) =∑
v∈V bF (v). Our algorithm runs with a parameter τ that should be set to

τ = opt to achieve the claimed approximation ratio. Specifically, we will prove:
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Lemma 2. There exists a polynomial time algorithm that given an instance of
MPb-EC and an integer τ , either returns an edge set E′ ⊆ E such that

pE′(V ) = τ ·O(lg4 n) (1)

bE′(V ) ≤ lg3 n (2)

or establishes that τ < opt.

Note that if τ < opt, the algorithm may return an edge set E′ that satisfies
(1) and (2). Let us now show that Lemma 2 implies Theorem 1. Since opt is
not known, we apply binary search to find the minimum integer τ so that an
edge set E′ satisfying (1) and (2) is returned; then pE′(V ) = opt ·O(lg4 n) (note
that binary search for appropriate τ requires O(lg n6) = O(lg n) iterations).
Then we apply the greedy algorithm on G − E′ to compute a bE′ -edge cover
E′′ of power ≤ opt · (lg3 n + 1). Then E = E′ ∪ E′′ is a feasible solution,
and pE′∪E′′(V ) ≤ pE′(V ) + pE′′(V ) = opt · O(lg4 n). Thus Lemma 2 implies
Theorem 1.

The proof of Lemma 2 follows. Let D(F ) = {v ∈ V : bF (v) > 0} be the
set of deficient nodes w.r.t. F , and D = D(∅) = {v ∈ V : b(v) > 0}. Let
μ = min{b(v) : v ∈ D}.

Lemma 3. There exists a polynomial time algorithm that given an instance of
MPb-EC with max{b(v) : v ∈ D} ≤ rμ and integers W , T , and τ , returns an
edge set F such that

p(F ) ≤ 2 (W |D| + b(V ) lgW/T ) , (3)

and if τ ≥ opt then

bF (V ) ≤ τ (T lgW + μr/(2W )) . (4)

Proof. Let E0 = {e ∈ E : 1 ≤ c(e) ≤ 2} and Ei = {e ∈ E : 2i + 1 ≤ c(e) ≤ 2i+1}
for i = 1, . . . , lgW . Consider the following algorithm that starts with F = ∅:
For i = 0 to lgW do:

While there is v ∈ V with |δEi
(v,D(F ))| ≥ 2iT do F ← F + δEi

(v,D(F ))
End For
It is easy to see that the algorithm is polynomial. Let F be the edge set computed
by the algorithm. Let p′ =

∑
v∈D pF (v) and p′′ =

∑
v∈V −D pF (v) = pF (V )− p′.

The following two claims show that (3) holds.

Claim: p′ ≤ 2W |D|.
Proof: pF (v) ≤ 2i+1 ≤ 2W for every v ∈ D. Thus p′ ≤ 2W |D|. �

Claim: p′′ ≤ 2b(V ) lgW/T .

Proof: If at iteration i we added to F edges incident to v, then the deficiency
of v drops by at least 2iT . Thus the total number of nodes in V − D incident
to edges added at iteration i is at most b(V )/(2iT ). Since every added edge
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has cost at most 2i+1 the total increase in the power at iteration i is at most
2i+1b(V )/(2iT ) = 2b(V )/T . The claim follows. �

Assume that τ ≥ opt. Let O be a feasible solution with p(O) ≤ τ . Let
A = {e ∈ O−F : c(e) ≤ 2W}, B = (O−F )−A. The following two claims show
that O − F decreases the deficiency of D(F ) by at most τ (T lgW + rμ/2W ).
This implies (4), since bF (V ) = bF (D(F )).
Claim: A decreases the deficiency of D(F ) by at most τT lgW .
Proof: Fix some i ≤ lgW . Let Ai = Ei ∩ A. Since pAi

(V ) ≤ τ , the edges in Ai

are incident to at most τ/2i nodes. Note that |δAi
(v,D(F ))| ≤ T2i for every

v ∈ V . Thus each Ai reduces the deficiency of D(F ) by at most τT . The claim
follows. �

Claim: B decreases the deficiency of D(F ) by at most μrτ/(2W ).

Proof: The number of nodes in D(F ) adjacent to the edges in B is at most
τ/(2W ). The deficiency of each v ∈ D(F ) is at most rμ. The claim follows. �

The proof of Lemma 3 is complete. �

Corollary 1. There exists a polynomial time algorithm that given an instance
of MPb-EC with max{bv : v ∈ D} ≤ rμ and an integer τ , returns an edge set F
such that: p(F ) = τ ·O(r + lg2 n) and if τ ≥ opt then bF (V ) ≤ b(V )/2.

Proof. For W = 2τμr/b(V ) and T = b(V )/(4τ lgW ), the algorithm from Lemma 3
computes an edge set F such that (note that W = 2τ · (μr)/b(V ) ≤ 2τ ≤ 2n6):

p(F ) ≤ 2
(

2τr
μ|D|
b(V )

+ 4τ lg2 W

)
≤ 4τ

(
r + 2 lg2 W

)
= τ ·O(r + lg2 n).

If τ ≥ opt then:

bF (V ) ≤ τ

(
b(V )/4

τ
+

μrb(V )
4τμr

)
= b(V )

(
1
4

+
1
4

)
=

b(V )
2

.

�

Proof of Lemma 2: Consider the following algorithm that starts with E′ = ∅:

Algorithm b-Edge-Cover(τ )
While b(V ) ≥ lg3 n do:

- Let V0 = {v ∈ V : 1 ≤ b(v) ≤ 2} and Vj = {v ∈ V : 2j + 1 ≤ b(v) ≤ 2j+1},
j = 1, . . . , lg n.

- Let q be an index so that b(Vq) ≥ b(V )/ lg n.
- Compute F as in Corollary 1 with b′(v) = b(v) if v ∈ Vq and b′(v) = 0

otherwise.
- If bF (Vq) ≤ b(Vq)/2 then: E′ ← E′ ∪F , G ← G−F , b ← bF ; Else declare

“τ < opt” and STOP.
End While



356 M.T. Hajiaghayi et al.

If the algorithm declares “τ < opt” then this is correct, by Corollary 1. Let
us assume therefore that this is not so.

Claim: The algorithm calls to the algorithm from Corollary 1 O(lg2 n) times.

Proof: Let Bt be the total residual deficiency before iteration t + 1 of the while
loop, where B0 = b(V ) ≤ n2. We have Bt+1 ≤ Bt(1 − 1/(2 lg n)), so Bt ≤
B0(1 − 1/(2 lg n))t. Thus after at most

lg(n2/ lg3 n)
− lg(1 − 1/(2 lg n))

= O(lg2 n)

iterations the condition in the while loop is met, and the iterations stop. �

From the last claim and Corollary 1, we obtain that pE′(V ) = τ · O(lg4 n)
(note that when Algorithm b-Edge-Cover(τ ) calls Corollary 1, we can set
r = 2 since b(v)’s of all v ∈ Vq are within a factor 2 of each other). �

The proof of Theorem 1 is now complete.

3 Proof of Lemma 1 and Theorems 2–4

We first present the proof of Lemma 1 which is a basis to our results.

Proof of Lemma 1: Except the inequality c(G)/
√

|E|/2 ≤ p(G) the statement
was proved in [11,19]. We restate the proof for completeness of exposition. The
inequality p(G) ≤ 2c(G) follows from

p(G) =
∑
v∈V

p(v) ≤
∑
v∈V

∑
e∈δ(v)

c(e) = 2
∑
e∈E

c(e) = 2c(G).

If T is a tree, root it at an arbitrary node r. Then c(T ) ≤ p(T ) since for each
v 	= r, p(v) is at least the cost of the parent edge of v.

We now show that c(G) ≤
√
|E|/2p(G)) It is sufficient to prove that

∑
xy∈E

min{p(x), p(y)} ≤
√
|E|/2

∑
v∈V

p(v) (5)

for any graph G = (V,E) with nonnegative weights p(v) on the nodes. Suppose
to the contrary that the statement is false, and let G = (V,E) with p be a
counterexample to (5) so that maxv∈V p(v) − minv∈V p(v) is minimal. Let μ =
minv∈V p(v), let U = {v ∈ V : p(v) = μ}, and let EU be the set of edges in E
with at least one endpoint in U . If |EU | ≤

√
|E|/2|U | then the statement is also

false for G′ = (V ′, E′) = (V −U,E −EU ) and p′ being the restriction of p to V ′

since
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xy∈E′

min{p′(x), p′(y)} ≥
∑

xy∈E

min{p(x), p(y)} −
√
|E|/2|U |μ >

>
√
|E|/2

∑
v∈V

p(v) −
√
|E|/2|U |μ =

√
|E|/2

∑
v∈V ′

p′(v) >

>
√
|E′|/2

∑
v∈V ′

p′(v).

In particular, this implies a contradiction if U = V . Else, let μ′ = min{p(v) : v ∈
V −U} be the second minimum value of p. Then by setting p(v) ← p(v)+μ′ −μ
for every v ∈ U we obtain again a counterexample to (5). This contradicts our
choice of G, p. �

We now prove Theorems 2 and 3. We need the following fundamental state-
ment due to Mader.

Theorem 7 ( [20]). In a k-connected graph G, any cycle in which every edge
is critical contains a node whose degree in G is k.

Here an edge e of a k-connected graph G is critical (w.r.t. k-connectivity) if G−e
is not k-connected.

The following corollary (e.g., see [20]) is used to get a relation between (k−1)-
edge covers and k-connected spanning subgraphs.

Corollary 2. If degJ(v) ≥ k − 1 for every node v of a graph J , and if F is an
inclusion minimal edge set such that J ∪ F is k-connected, then F is a forest.

Proof. If not, then F contains a cycle C of critical edges, but every node of this
cycle is incident to 2 edges of C and to at least k − 1 edges of G, contradicting
Mader’s Theorem. �

Proof of Theorem 3: By the assumption, we can find a subgraph J with
degJ(v) ≥ k− 1 of power at most p(J) ≤ βopt. We reset the costs of edges in J
to zero, and apply an α-approximation algorithm for the Min-Cost k-Connected
Spanning Subgraph problem to compute an (inclusion) minimal edge set F so
that J + F is k-connected. By Corollary 2, F is a forest. Thus p(F ) ≤ 2c(F ) ≤
2αopt, by Lemma 1. Combining, we get the desired statement.

The proof of the other direction is similar. We find a min-cost (k − 1)-edge
cover J in polynomial time, and reset the costs of its edges to zero. Then we use
the ρ-approximation algorithm for MPk-CSS with the new cost function. The
edges with nonzero cost in this new graph form a forest F , by Corollary 2. Then
clearly c(J) is at most the minimum cost of a k-connected spanning subgraph,
and c(F ) is at most 2ρ times the minimum cost of a k-connected spanning
subgraph, by Lemma 1. This gives a (2ρ + 1)-approximation algorithm for the
Min-Cost k-Connected Spanning Subgraph problem. �

We can combine the various existing approximation algorithms for the Min-
Cost k-Connected Spanning Subgraph problem [7, 16, 17] to get better approx-
imation for MPk-CSS. The currently best approximation ratios for the former
are O(ln k · min{

√
k, n+k

n−k ln k}) [17] and O(ln k) for n ≥ 6k2 [7].
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In particular, we set β = k in Theorem 3 to get a k(1 + o(1))-approximation
for any non-constant k. Using α = O(ln k · min{

√
k, n+k

n−k ln k}) from [17] gives
the bound in Theorem 2.
Remark: In [16] a (2 + k/n)-approximation was given for k-CS with metric
costs. This does not imply that for metric costs we can set α = 2 + k/n in
Theorem 3. Note that our algorithm first resets the costs of the edges in a k-
edge cover to zero, and thus when applying an algorithm for min-cost k-CS the
triangle inequality property does not hold for the obtained k-CS instance.

To prove Theorem 4, we combine Lemma 1 with the following theorem due
to Cheriyan and Thurimella [6], which is the edge-connectivity counterpart of
Corollary 2.

Theorem 8 ( [6]). If degJ(v) ≥ k for every node v of a graph J , and if F is an
inclusion minimal edge set such that G∪F is k-edge connected, then |F | ≤ n−1.

Proof of Theorem 4: We use the O(log4)-approximation for MPb-EC. Then
we change the cost of these edges to zero and find the minimum cost k-edge con-
nected subgraph using the known 2-approximation algorithms for the minimum
cost k-edge connected subgraph problem [13]. From Lemma 1 and Theorem 8,
the power of this augmentation is at most 2

√
n/2 of the minimum power k-edge

connected subgraph. This gives an O(
√
n)-approximation algorithm. �

4 Proof of Theorem 5

To prove Theorem 5, we will show that approximating MPk-EDP is at least as
hard as approximating the following problem, which is an alternative formula-
tion, of the LabelCover-Max Problem defined in [15].

The MaxRep Problem:
Instance: A bipartite graph H = (A∪B, I), and equitable partitions A of A and
B of B into q sets of same size each.
Objective: Choose A′ ⊆ A and B′ ⊆ B with |A′ ∩ Ai| = |B′ ∩ Bj | = 1 for each
i, j = 1, . . . , q such that the subgraph induced by A′ ∪B′ has maximum number
of edges.

The bipartite graph and the partition of A and B induce a super-graph Γ
in the following way: The vertices in Γ are the sets Ai and Bj . Two sets Ai

and Bj are connected by a (super) edge in Γ if and only if there exist ai ∈ Ai

and bj ∈ Bj which are adjacent in G. For our purposes, it is convenient (and
possible) to assume that the graph Γ is regular. Say that every vertex in Γ has
degree d, and hence, the number of super-edges is h = qd. Raz [23] proved:
Theorem 9. [23] Let I be an instance of any NP-complete problem. For any
0 < ε < 1, there exists a (quasi-polynomial) reduction that maps I to an instance
G of MaxRep with n vertices so that: 1) If I corresponds to a yes instance then
there exists a feasible solution covering all super-edges, and 2) If I corresponds
to a no instance, then every MaxRep feasible solution covers at most h/2log1−ε n

super-edges.
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In the above reduction the size n of the MaxRep instance G is quasi-polynomial in
the size of the NP-complete instance. The following is implied from Theorem 9.

Theorem 10. Unless NP ⊆ DTIME(npolylogn), the MaxRep Problem admits
no 2log1−ε n-approximation algorithm, for any constant ε > 0.

The Reduction. We reduce MaxRep to MPk-EDP. Let H be the bipartite instance
of MaxRep. Form an instance G for MPk-EDP as follows. First we put H into
G and give all the edges of H directions from the Ai vertices to the Bj vertices.
The edges of H are assigned cost n3. Add a source s and a sink t. For each set
Ai (Bi), 1 ≤ i ≤ q, we also add a local source si (a local sink ti). We add d
edge-disjoint paths of length 2 from si, 1 ≤ i ≤ q, into every aj

i ∈ Ai, 1 ≤ j ≤ N ,
and d edge-disjoint paths of length 2 from s to every si. These edges are given
cost 0. Finally, we add d edge-disjoint paths of length 2 from every bj

i ∈ Bi,
1 ≤ i ≤ q, 1 ≤ j ≤ N into ti, and d edge-disjoint paths of length 2 from ti into t.
The first edge in every one of paths from a vertex in Bi to ti gets cost n3 while
the rest of edges get cost 0.

A direct inspection shows that there exists h = dq edge-disjoint paths from
s to t and indeed we pick k = h for the MPk-EDP instance.

Let H be a MaxRep instance resulting from a yes instance of the NP-complete
instance and let G be the resulting MPk-EDP instance.

Lemma 4. The graph G admits a subgraph G′ of power-cost 2qn3 so that in G′

there exist k = h edge-disjoint paths from s to t.

Proof. We select the following edges as a solution F to MPk-EDP. Let ai ∈
Ai, bj ∈ Bj be a MaxRep solution covering all the superedges as guaranteed
in Theorem 9. Add all the ai to bj edges into the solution. Note that the edge
(ai, bj) exists as the chosen representatives cover all the super-edges. Include all
the edges which are on a path from s to ai, 1 ≤ i ≤ q, and all edges which are
on a path from bj , 1 ≤ j ≤ q, to t. Clearly the solution F admits h edge-disjoint
s− t paths. The solution pays n3 per every ai because of the Ai to Bj edges and
n3 per every bj because of the d paths to tj . �

Lemma 5. If G corresponds to a no instance of MaxRep then the cost of any

MPk-EDP solution is at least 0.4qn32
log1−ε n

4 .

Proof. The idea of the proof is to start with a solution for MPk-EDP and use it
to build a MaxRep solution that covers a number of superedges which is related
to the cost of this solution. Let F be the solution to MPk-EDP. Call a vertex v
active (with respect to F ) if at least one edge in F touches v. Let A′

i (respectively,
B′

j) be the collection of active vertices in Ai (respectively, Bj).
We may clearly assume that the outdegree of A′

i and B′
j vertices is nonzero

(vertices that do not obey this can be discarded). The power-cost is thus at least
(
∑

i |A′
i| +

∑
j |B′|j)n3.

Let (
∑

i |A′
i|+

∑
j |B′|j) = 2qρ. The average size of A′

i (respectively, |B′
j |) is

at most 2ρ. Call an Ai sparse if |A′
i| > 8ρ. Similarly, Bj is sparse if |B′

j | > 8ρ.
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Remove from the super-graph Γ all the sparse sets Ai and Bj . Clearly, the
number of sparse Ai sets is no larger than q/4 and the same holds for Bj . Now
we update the number of s− t paths discarding paths of sparse sets. The loss of
paths incurred by the removal of a sparse Ai or sparse Bj is at most d. Hence,
the removal of sparse Ai and Bj sets incurs a loss of at most 2q/4d = h/2 paths.
Hence, at least h/2 s− t edge-disjoint paths still exist after this update.

We now dilute the path collections so that at most one path remains between
every pair of sets Ai, Bj . Since the remaining sets Ai and Bj are not sparse, the
number of active vertices in each set is bounded by 8ρ. Hence, the total number
of paths between every pair of sets Ai and Bj is at most (8ρ)2. Therefore, the
dilution results in a total number of paths of at least h

128ρ2 . Let F ′ be the subset
of
⋃

A′
i ∪

⋃
B′

j restricted to the non-sparse Ai, Bj .
We now create a feasible MaxRep solution by drawing a single vertex in ev-

ery non-sparse A′
i and B′

i with all elements being equally likely to be chosen.
Let F ′′ be the resulting set of unique representatives; Clearly F ′′ is a feasible
MaxRep solution. Observe that a super-edge covered by F ′ has probability ex-
actly 1/64ρ2 to be covered by F ′′. The expected number of superedges covered
by F ′′ is h

8192ρ4 . This implies the existence of a MaxRep solution that covers this

many superedges. By Theorem 9, 8192ρ4 ≥ 2log1−ε n. Finally, we note that the
probabilistic construction of F ′′ can be easily de-randomized using the method
of conditional expectation and thus the claim follows. �

By Lemma 4 and 5, it is hard to approximate MPk-EDP within 2
log1−ε n

4 /10.
Since ε can be chosen to be any arbitrary constant, the hardness result follows.
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Abstract. Given an undirected multigraph G and a set S :={S1, . . . , St}
of disjoint subsets of vertices of G, a Steiner S-forest F is an acyclic
subgraph of G such that each Si is connected in F for 1 ≤ i ≤ t. In
this paper, we study the Steiner Forest Packing problem where we
seek a largest collection of edge-disjoint S-forests. The main result is a
connectivity-type sufficient condition for the existence of k edge-disjoint
S-forest, that yields the first polynomial time approximation algorithm
for the Steiner Forest Packing problem. We end this paper by a
conjecture in a more general setting.

1 Introduction

Given an undirected multigraph G and a set S := {S1, . . . , St} of disjoint subsets
of vertices of G, a Steiner S-forest F is an acyclic subgraph of G such that each
Si is connected in F for 1 ≤ i ≤ t. The Steiner Forest Packing problem
is to find a largest collection of edge-disjoint S-forests. This is a generalization
of the Steiner Tree Packing problem where we are given G and a subset of
vertices S ⊆ V (G), and the goal is to find a largest collection of edge-disjoint
trees that each connects S. The Steiner Tree Packing problem is well-studied
in the literature as it generalizes the edge-disjoint s, t-paths problem [11] as well
as the spanning tree packing problem [14, 12], and also it has applications in
network broadcasting and VLSI circuit design. We say a set S ⊆ V (G) is k-edge-
connected in G if there are k edge-disjoint paths between u, v for all u, v ∈ S,
and a tree is a S-tree if it connects S. A necessary condition for G to have k edge-
disjoint S-trees is that S is k-edge-connected in G. The following conjecture by
Kriesell [7] gives a sufficient condition for the existence of k edge-disjoint S-trees:

Kriesell conjecture: If S is 2k-edge-connected in G, then G has k
edge-disjoint S-trees.
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This beautiful conjecture is the best possible and has generated much interest
[13, 3, 6, 7, 2, 8, 9], recently it is shown in [9] that the conjecture is true if 2k is
replaced by 26k.

A related problem is the Minimum Steiner Forest problem, where the goal
is to find a minimum-cost S-forest F in G. Goemans and Williamson [4] gave
a primal-dual 2-approximation algorithm for the Minimum Steiner Forest
problem. Very recently, Chekuri and Shepherd [1] present a new 2-approximation
algorithm for the Minimum Steiner Forest problem via the Steiner Forest
Packing problem. Specifically, they show that given an Eulerian graph G, if
each Si is 2k-edge-connected in G, then there are k edge-disjoint S-forests in G.
They then show that this result implies the integrality gap of the standard LP
formulation of the Minimum Steiner Forest problem is at most 2.

Motivated by the above results, we study the Steiner Forest Packing
problem in general graphs. The main result is the following:

Theorem 1. Given an undirected multigraph G and a set S := {S1, . . . , St} of
disjoint subsets of vertices of G. If each Si is Qk-edge-connected in G, then there
are k edge-disjoint S-forests in G.

Remark: The best upper bound on Q that we can achieve is 32; however, the
proof is fairly involved. In this extended abstract, for the sake of clarity, we
only give a proof for Q = 56 which contains most of the underlying ideas. We
also remark that the proof of Theorem 1 is constructive, and this yields the
first polynomial time constant factor approximation algorithm for the Steiner
Forest Packing problem.

2 Preliminaries

The organization of this section is as follows. We first develop the necessary
notations and concepts in Section 2.1. Then, we review the basic theorems that
we will be using in Section 2.2. Finally, we give an overview of the proof of our
result in Section 2.3.

2.1 Basic Definitions

Given an undirected multigraph G and a set S := {S1, . . . , St} of disjoint subsets
of vertices of G. We call each Si a group, note that we can assume that each
group is of size at least 2. A subgraph H of G is a S-subgraph if each Si is
connected in H for 1 ≤ i ≤ t; a subgraph H is a double S-subgraph of G if
H is a S-subgraph of G and every vertex in S1 ∪ . . . ∪ St is of degree at least
2 in H. Given S ⊆ V (G), we say a subgraph H of G is a S-subgraph if H is
connected and S is connected in H; a subgraph H is a double S-subgraph of
G if H is a S-subgraph of G and every vertex in S is of degree at least 2 in H.
A subgraph H spans a subset of vertices U if U ⊆ V (H).

In the rest of this paper, we denote S := S1 ∪ . . . ∪ St. A subset of vertices
X is a S-separating cut if (i) S ∩ X 	= ∅, S ∩ (V (G) − X) 	= ∅ and (ii) for
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each Si, either Si ⊆ X or Si ⊆ V (G)−X. We denote by δG(X) the set of edges
in G with one endpoint in X and the other endpoint in V (G) − X, the open
neighbourhood set of a vertex v in G by NG(v), and the induced subgraph on a
set of vertices X by G[X]. A core C is a S-separating cut with δG(C) ≤ Qk and
|C| minimal. Let R be a specified set of vertices such that R ∩ S = ∅ and each
vertex in R is of degree at least Qk. A subset of vertices X is a R-isolating cut
if R ∩X 	= ∅ and S ∩X = ∅.

Given a vertex v, we denote by E(v) the set of edges with an endpoint in
v. Pk(v) := {E1(v), . . . , Ek(v)} is a balanced edge-subpartition of E(v) if
(i) E1(v) ∪ E2(v) ∪ . . . ∪ Ek(v) ⊆ E(v), (ii) |Ei(v)| ≥ 2 for 1 ≤ i ≤ k and (iii)
Ei(v) ∩ Ej(v) = ∅ for i 	= j. We denote the set of neighbours of u in Ei(u)
by NEi

(u). Given k edge-disjoint subgraphs {H1, . . . , Hk} of G, a vertex v is
called balanced-extendible with respect to {H1, . . . , Hk} (or just balanced-
extendible if the context is clear) if there exists a balanced edge-subpartition
{E1(v), . . . , Ek(v)} of E(v) so that Hi ∩ E(v) ⊆ Ei(v). An easy fact that will
be used many times later: if there are 2k edges in E(v) not used in any of
{H1, . . . , Hk}, then v is balanced-extendible (with respect to {H1, . . . , Hk}).
And, of course, if v is of degree at least 2 in each Hi, then v is balanced-
extendible.

Cut Decomposition: Given a multigraph G a subset of vertices Y ⊂ V (G),
the cut decomposition operation constructs two multigraphs G1 and G2 from G
as follows. G1 is obtained from G by contracting V (G) − Y to a single vertex
v1, and keeping all edges from Y to v1 (even if this produce multiple edges).
Similarly, G2 is obtained from G by contracting Y to a single vertex v2, and
keeping all edges from V (G) − Y to v2. So, V (G1) = Y ∪ {v1}, δG(Y ) ⊆ E(G1)
and V (G2) = (V (G) − Y ) ∪ {v2}, δG(Y ) ⊆ E(G2). Notice that for each edge
e ∈ δG(Y ), e will appear in both G1 and G2 (i.e. e in G1 is incident with v1

where e in G2 is incident with v2). So, given an edge e incident with v1 in G1,
we refer to the same edge in G2 incident with v2 the corresponding edge of
e in G2, and vice versa. The cut decomposition operation will be used several
times later, the following are two basic properties of G1 and G2:

1. For each pair of vertices u, v in Gi, the number of edge-disjoint paths between
u, v in Gi is at least the number of edge-disjoint paths between u, v in G.
In particular, if a set S is Qk-edge-connected in G, then S ∩ V (G1) and
S ∩ V (G2) are Qk-edge-connected in G1 and G2 respectively.

2. The degree of each vertex v in V (Gi)−{vi} is equal to the degree of v in G.

2.2 Basic Tools

The following Mader’s splitting-off lemma has been a standard tool in many
edge-connectivity related problems. Let G be a graph and e1 = xy, e2 = yz be
two edges of G, the operation of obtaining G(e1, e2) from G by replacing {e1, e2}
by a new edge e′ = xz is called splitting off at y. The splitting-off operation is
said to be suitable, if the number of edge-disjoint u, v-paths in G(e1, e2) is the
same as the number of edge-disjoint u, v-paths in G for u, v ∈ V (G) − y.
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Lemma 1. (Mader’s Splitting Lemma) [10] Let x be a vertex of a graph G.
Suppose that x is not a cut vertex and that x is incident with at least 4 edges and
adjacent to at least 2 vertices. Then there exists a suitable splitting-off operation
of G at x.

By repeatedly applying Mader’s splitting-off lemma, one can make the fol-
lowing assumption on the degree of vertices in V (G)−S. The proof of Lemma 2
is now standard and appeared in [3, 6, 7, 9], we omit the details here.

Lemma 2. Every vertex in V (G) − S is incident with exactly three edges and
adjacent to exactly three vertices.

The following are two results on the Steiner Tree Packing problem which
we will be using. Somewhat surprisingly, to prove the result in this paper, we
could not use Theorem 3 as a black box. In fact, we need to revise and generalize
many parts of the proof of Theorem 3 in order to meet our requirements, this
point will be elaborated more in the next subsection.

Theorem 2. [3] If there is no edge between any two vertices in V (G) − S and
S is 3k-edge-connected in G, then G has k edge-disjoint S-trees.

Theorem 3. [9] If S is 26k-edge-connected in G, then G has k edge-disjoint
S-trees.

2.3 Overview

Here we outline the approach of Chekuri and Shepherd [1]. In [1], they consider
the Steiner Forest Packing problem when G is Eulerian. This allows them
to assume that V (G) = S (recall that S := S1 ∪ . . .∪St) by repeatedly applying
the Mader’s splitting-off lemma. Then they find a core C in G and show that
G[C] has k edge-disjoint spanning trees T1, . . . , Tk, by using Tutte [14] and Nash-
Williams [12] result on spanning tree packing. Now they contract C in G and
obtain a new graph G∗. Note that C contains a group and thus has at least
two vertices, so G∗ has fewer vertices than G. By induction, G∗ has k edge-
disjoint Steiner forests F1, F2, . . . , Fk. Now, as each tree is spanning in C, F1 ∪
T1, . . . , Fk ∪ Tk are the desired k edge-disjoint Steiner forests in G.

However, if G is non-Eulerian, we cannot assume that V (G) = S. So, even
if we assume the existence of a core C of G so that G[C] has k edge-disjoint
Steiner trees T1, . . . , Tk, and also the existence of k edge-disjoint Steiner forests
F1, . . . , Fk of G∗ as constructed above, the main difficulty is that we cannot
guarantee that for all pair of vertices which are connected in Fi are still con-
nected in Fi ∪ Ti. Here the extension property introduced in [9] comes into the
picture. Roughly, we show that there are k edge-disjoint Steiner trees in G[C]
that “extend” F1, . . . , Fk so that F1∪T1, . . . , Fk ∪Tk are actually k edge-disjoint
Steiner forests. Unlike the situation in the Steiner Tree Packing problem,
however, we also need to prove structural properties on F1, . . . , Fk so that they
can actually be extended (not every F1, . . . , Fk can be extended). This requires
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us to revise and generalize the extension theorem in [9], in particular we need
to add an additional constraint on the extension theorem, which causes the con-
stant in Theorem 1 (i.e. approximation ratio) to be slightly bigger than that in
Theorem 3.

The organization of the proof is as follows. In Section 3, we prove structural
results on R-isolating cut, S-separating cut and core. With these, in Section 4,
we show how to reduce a stronger version (see Theorem 4) of Theorem 1 to
the Steiner Tree Packing problem with the extension property (defined in
subsection 4.1) and an additional requirement (see Theorem 5). Then, in Section
5, we prove the extension theorem (Theorem 5).

3 Structural Results

This section contains structural results on R-isolating cut and S-separating cut;
these results will be used in Section 4 to reduce the Steiner Forest Packing
problem to a modified version of the Steiner Tree Packing problem (see
Theorem 5).

3.1 R-Isolating Cut

Let G be a minimal counterexample of Theorem 1 (or Theorem 4) in the follow-
ing.

Lemma 3. G has no R-isolating cut Y with |δG(Y )| ≤ (Q− 2)k.

Proof. Suppose not. Consider a R-isolating cut Y with |δG(Y )| minimum. Apply
the cut decomposition operation on G and Y to obtain two graphs G1 and
G2, let R1 := R ∩ V (G1) and R2 := R ∩ V (G2). Also, by definition of Y ,
S ⊆ V (G2). From the properties of the cut decomposition operation, S is Qk-
edge-connected in G2 and every vertex of R2 is of degree at least Qk in G2. Note
that R1 	= ∅, hence |Y | ≥ 2 as each vertex in R is of degree at least Qk while
|δG(Y )| ≤ (Q− 2)k < Qk. As |Y | ≥ 2, G2 is smaller than G. By the choice of G,
G2 has k edge-disjoint S-subgraphs {H ′

1, . . . , H
′
k} such that every vertex in R2

is balanced-extendible.
Let l := |δG(Y )|, then l ≤ (Q − 2)k. We claim that each vertex r ∈ R1 has

l edge-disjoint paths to v1 in G1. Suppose not, then there exists Y ′ ⊆ V (G1)
so that r ∈ Y ′, v1 /∈ Y ′ and |δG1(Y

′)| < l. Hence, Y ′ is a R-isolating cut in
G with |δG(Y ′)| < l, but this contradicts the minimality of |δG(Y )|. Therefore,
each vertex in R1 has l edge-disjoint paths to v1. Choose a vertex r∗ ∈ R1 so
that the total length of the l edge-disjoint paths {P1, . . . , Pl} from v1 to r∗ is
minimized. Let P := {P1, . . . , Pl} and H := P1 ∪ P2 ∪ . . . ∪ Pl. We claim that
r is of degree at most l in H for each r ∈ R1. Suppose not, let r ∈ R1 be
of degree at least l + 1 in H. Then r 	= r∗ and at least (l + 1)/2 paths from
v1 to r∗ pass through r, say {P1, . . . , P(l+1)/2}. For 1 ≤ i ≤ (l + 1)/2, let the
subpath of Pi from v1 to r be P ′

i , and the subpath of Pi from r∗ to r be P ′′
i .

Then we claim that H − P ′′
(l+1)/2 contains l edge-disjoint paths from v1 to r;
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indeed, {P ′
1, . . . , P

′
(l+1)/2, P(l+1)/2+1 ∪ P ′′

1 , . . . , Pl ∪ P ′′
(l−1)/2} are l edge-disjoint

paths from v1 to r in H − P ′′
(l+1)/2. This contradicts with the choice of r∗ and

thus r is of degree at most l ≤ (Q−2)k for each r ∈ R1 in H. In particular, each
r ∈ R1 is balanced-extendible with respect to {P1, . . . , Pl}.

Now, we show that the k edge-disjoint double S-subgraphs {H ′
1, . . . , H

′
k} in

G2 can be extended to k edge-disjoint double S-subgraphs in G, by using the
edge-disjoint paths from v1 to r∗ in G1 constructed in the previous paragraph.
For each H ′

i in G2, let Ei(v2) := E(H ′
i)∩E(v2) and Ei(v1) be the corresponding

edge set in G1. Let Pi be the paths in P of G1 using the corresponding edges in
Ei(v1) (note that |Pi| = |Ei(v1)|), and we set Hi := H ′

i ∪ Pi to be a subgraph
of G. Now each path in H ′

i using v2 in G2 is still connected in G via the paths
of Pi in G1. Since H ′

i is a double S-subgraph in G2, Hi is a double S-subgraph
in G. Also, since H ′

i and H ′
j are edge-disjoint in G2 for i 	= j, and Pi and Pj are

edge-disjoint in G1 for i 	= j, Hi and Hj are edge-disjoint in G for i 	= j. Finally,
since vertices in R1 and R2 are balanced-extendible in G1 and G2 respectively,
vertices in R are balanced-extendible in G with respect to {H1, . . . , Hk}. As a
result, {H1, . . . , Hk} are k edge-disjoint double S-subgraphs in G so that every
vertex in R is balanced-extendible. This contradiction completes the proof of the
lemma. 
�

3.2 S-Separating Cut and Core

Let C be a core of G. We apply the cut decomposition operation on G and C
to obtain two graphs G1 and G2, and let C ⊆ V (G1), R1 := R ∩ V (G1) and
S1 := S∩V (G1) (recall that S := S1∪ . . .∪St). We prove some structural results
of G1 in the following lemma.

Lemma 4. Let G1 be defined above. Then S1 is Qk-edge-connected in G1 and
S1 ∪ R1 is (Q − 2)k-edge-connected in G1. Besides, either one of the following
must be true:

1. S1 ∪ {v1} is Qk-edge-connected in G1.
2. NG1(v1) ⊆ S1 ∪R1.

Proof. First we prove that S1 is Qk-edge-connected in G1 (note that S1 maybe
the union of several groups). Suppose not, then there exists Y ⊆ V (G1) such
that Y ∩ S1 	= ∅, (V (G1) − Y ) ∩ S1 	= ∅, and |δG1(Y )| < Qk. Without loss of
generality, we can assume that v1 /∈ Y and hence Y is also a cut in G. Since
|δG1(Y )| < Qk, each group in G1 is either contained in Y or disjoint from
Y ; otherwise this contradicts with the assumption that each group is Qk-edge-
connected in G. So, Y is a S-separating cut in G with |δG(Y )| < Qk and |Y | < |C|
(as (V (G1) − Y ) ∩ S1 	= ∅). This contradicts with the fact that C is a core, and
so S1 is Qk-edge-connected in G1.

Next we prove that S1 ∪R1 is (Q− 2)k-edge-connected in G1. Suppose not,
then there exists Y ⊆ V (G1) such that Y ∩ (R1 ∪ S1) 	= ∅, (V (G1) − Y ) ∩
(R1 ∪ S1) 	= ∅, and |δG1(Y )| < (Q − 2)k. Since S1 is Qk-edge-connected in G1,
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either S1 ⊆ Y or S1 ⊆ V (G1) − Y . Without loss of generality, we assume that
v1 /∈ Y and hence Y is also a cut in G. If S1 ⊆ Y , by a similar argument as in
the previous paragraph, Y is a S-separating cut in G with |δG(Y )| < Qk and
|Y | < |C| (as (V (G1) − Y ) ∩R1 	= ∅), and this contradicts with the fact that C
is a core. So S1 ⊆ V (G1)−Y . This, however, implies that Y is a R-isolating cut
in G with |δG(Y )| < (Q− 2)k, which contradicts Lemma 3. As a result, S1 ∪R1

is (Q− 2)k-edge-connected in G1.
Finally, we prove that if NG1(v1) 	⊆ S1 ∪ R1, then S1 ∪ {v1} is Qk-edge-

connected in G1. First, we show that v1 must be of degree Qk. Suppose not,
then v1 is a vertex of degree less than Qk. Let w ∈ NG1(w1) be a vertex in
V (G1) − S1 − R1. Since w is of degree 3 by Lemma 2, |δG(C − w)| ≤ Qk and
hence C − w is also a S-separating cut which contradicts the fact that C is a
core. So, v1 is of degree exactly Qk. Suppose indirectly that S1∪{v1} is not Qk-
edge-connected in G1, then there exists Y ⊆ V (G1) such that v1 /∈ Y , Y ∩S1 	= ∅
and |δG1(Y )| < Qk. Since S1 is Qk-edge-connected in G1, we have S1 ⊆ Y . Also,
since v1 is of degree Qk but |δG1(Y )| < Qk, we have |V (G1)−Y | ≥ 2 and hence
|Y | < |C|. This implies that Y is also a S-separating cut which contradicts with
the fact that C is a core. Therefore, if NG1(v1) 	⊆ S1 ∪ R1, then S1 ∪ {v1} is
Qk-edge-connected in G1. This completes the proof of the lemma. 
�

4 Proof of the Main Theorem

We are going to prove the following stronger theorem, which helps us to reduce
the Steiner Forest Packing problem to a modified version of the Steiner
Tree Packing problem (see Theorem 5).

Theorem 4. Given G, S := {S1, . . . , St}, R ⊆ V (G). If each Si is Qk-edge-
connected in G and each vertex in R is of degree at least Qk, then there are k
edge-disjoint double S-subgraphs {H1, . . . , Hk} of G so that every vertex in R is
balanced-extendible with respect to {H1, . . . , Hk}.

Theorem 4 immediately implies Theorem 1 (just set R := ∅). In the following,
we consider a minimal counterexample G of Theorem 4, and show that it does
not exist.

4.1 The Extension Theorem

The extension property defined below is crucial in applying divide-and-conquer
strategy to decompose the original problem instance to smaller instances with
restricted structures.

Definition 1. (The Extension Property) Given G, S ⊆ V (G), and an
edge-subpartition Pk(v) := {E1(v), . . . , Ek(v)} of a vertex v. {H1, . . . , Hk} are k
edge-disjoint double S-subgraphs that extend Pk(v) if for 1 ≤ i ≤ k:

(1) Ei(v) ⊆ E(Hi);
(2) Hi − v is a double (S − v)-subgraph that spans NEi

(v).
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The following lemma illustrates how to use the cut decomposition operation
to reduce the Steiner Tree Packing problem (with the extension property
and the balanced-extendible constraint) in a graph to the same problem in two
smaller graphs.

Lemma 5. Given G, S,R ⊆ V (G), v ∈ S and an edge-subpartition Pk(v) of v.
Let G1 and G2 be two graphs obtained from the cut decomposition operation of
a graph G and assume v ∈ G2, let S1 := S ∩ V (G1), S2 := S ∩ V (G2), R1 :=
R ∩ V (G1), and R2 := R ∩ V (G2). Suppose {H2

1 , . . . , H
2
k} are k edge-disjoint

double S2-subgraphs of G2 that extend Pk(v) so that every vertex in R2 is
balanced-extendible. Let Pk(v2) := {H2

1 ∩ E(v2), . . . , H2
k ∩ E(v2)} and Pk(v1)

be the corresponding edge-subpartition of v1 in G1. If {H1
1 , . . . , H

1
k} are k edge-

disjoint double S1-subgraphs of G1 that extend Pk(v1) so that every vertex in R1

is balanced-extendible, then {H1
1 ∪H2

1 , . . . , H
1
k∪H2

k} are k edge-disjoint double S-
subgraphs of G that extend Pk(v) so that every vertex in R is balanced-extendible.

Proof. The statement of the lemma is somewhat long, but the proof is quite
straightforward and a similar proof (without the balanced-extendible constraint)
is available in Lemma 3.2 of [9]. We omit the proof here for the sake of space. 
�

Of course, not every edge-subpartition of an arbitrary vertex can be extended.
The following extension theorem, which is at the heart of the proof of Theorem 4,
gives a sufficient condition for an edge-subpartition of a vertex to be extendible.
The proof of Theorem 5 is in Section 5.

Theorem 5. Given G, S,R ⊆ V (G). If S is Qk-edge-connected in G and S∪R
is (Q−2)k-edge-connected in G, then there are k edge-disjoint double S-subgraphs
in G such that every vertex in R is balanced-extendible. Furthermore, given a
balanced edge-subpartition Pk(v) of a vertex v ∈ S of degree Qk, then there are
k edge-disjoint double S-subgraphs that extend Pk(v) such that every vertex in
R is balanced-extendible.

4.2 Proof of Theorem 4

Now, with Theorem 5, we are ready to prove Theorem 4.

Proof. First suppose that S is Qk-edge-connected in G. Then, by Lemma 3, S∪R
is (Q−2)k-edge-connected in G. Hence, Theorem 5 (without using the extension
property) implies the theorem in this case.

So S is not Qk-edge-connected in G, then a core C exists. We apply the cut
decomposition operation on G and C to obtain two graphs G1 and G2, and as-
sume without loss of generality that C ⊂ V (G1). Let S1 := S ∩ V (G1), S2 :=
S ∩ V (G2)R1 := R ∩ V (G1), R2 := R ∩ V (G2), and S1 and S2 be the groups
contained in S1 and S2 respectively. By the properties of the cut decomposi-
tion operation, each group in S1 and S2 is Qk-edge-connected in G1 and G2

respectively. Also, vertices in R1 and R2 are of degree at least Qk in G1 and G2

respectively. By the choice of G, there are k edge-disjoint double S2-subgraphs
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{H2
1 , . . . , H

2
k} in G2 such that every vertex in R′

2 is balanced-extendible. Based
on Lemma 4, we distinguish two cases based on the possible structures of v1.

The first case is that S1∪{v1} is Qk-edge-connected in G1, let S′
1 := S1∪{v1}

and R′
2 := R2 ∪ {v2}. Let P2

k(v2) := {H2
1 ∩E(v2), . . . , H2

k ∩E(v2)} be the edge-
subpartition on v2 induced by {H2

1 , . . . , H
2
k} in G2, and P1

k(v1) be the corre-
sponding edge-subpartition defined on E(v1) in G1. Since v2 ∈ R′

2, v2 is balanced-
extendible with respect to {H2

1 , . . . , H
2
k}. Now, we apply Theorem 5 on G1 with

S′
1, R1 and P1

k(v1) to get k edge-disjoint double S ′
1-subgraphs {H1

1 , . . . , H
1
k} in

G1 that extend P1
k(v1), so that every vertex in R1 is balanced-extendible. Then,

by Lemma 5, we obtain k edge-disjoint double S-subgraphs {H1, . . . , Hk} in G
such that every vertex in R is balanced-extendible.

The second case is that NG1(v1) ⊆ S1 ∪ R1. Consider G1 − v1. Since v1

is of degree at most Qk, S1 ∪ R1 is at least (Q − 2)k − Qk/2 ≥ 26k-edge-
connected in G1. By Theorem 3, G1 has k edge-disjoint double S1∪R1-subgraphs
{H ′

1, . . . , H
′
k} in G1−v1. Setting H1

i := H ′
i∪Ei, {H1

1 , . . . , H
1
k} are k edge-disjoint

double S1 ∪ R1-subgraphs in G1 that extend Pk(v1). Then, by Lemma 5, we
obtain k edge-disjoint double S-subgraphs {H1, . . . , Hk} in G such that every
vertex in R is balanced-extendible.

By Lemma 4, these are the only two cases that could happen in G1. Therefore,
G is not a counterexample and the theorem follows. 
�

5 Proof of the Extension Theorem

In this section, we will prove Theorem 5 by showing that a minimal counterex-
ample G of Theorem 5 does not exist. In Section 5.1, we first prove that there is
no edge between two vertices in V (G) − S − R, which allow us to apply Theo-
rem 2 to prove Theorem 5. Then, in Section 5.2, we construct an auxiliary graph
G′ from G and show some properties of G′. We then introduce the concept of
diverging paths and common paths in Section 5.3. Finally, we distinguish two
cases of the structure of G′ and show that each is impossible in Section 5.4 and
Section 5.5.

5.1 There Is no Edge Between Two Vertices in V (G) − S − R

Lemma 6. There is no edge in G with both endpoints in V (G) − S −R.

Proof. Suppose indirectly that e is such an edge. If S is Qk-edge-connected and
S∪R is (Q−2)k-edge-connected in G−e, then by the choice of G, G−e satisfies
Theorem 5 and thus G. So we may assume that either (i) there exists Y ⊆ V (G)
and e ∈ δG(Y ) so that Y ∩S 	= ∅, (V (G)− Y )∩S 	= ∅ and |δG(Y )| = Qk; or (ii)
there exists Y ⊆ V (G) and e ∈ δG(Y ) so that S ⊆ Y , (V (G) − Y ) ∩ R 	= ∅ and
|δG(Y )| = (Q − 2)k. In either case, we apply the cut decomposition operation
on G and Y to obtain two graphs G1 and G2, and let Y ⊂ G1, S1 := S ∩V (G1),
R1 := R∩V (G1), S2 := S∩V (G2) and R2 := R∩V (G2). Notice that since both
G1 and G2 contain a vertex in V (G) − S − R (an endpoint of e), both G1 and
G2 are smaller than G and hence they both satisfy Theorem 5.
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We first consider case (i). In this case, S1 and S2 are non-empty. Hence,
S1 ∪ {v1} and S2 ∪ {v2} are Qk-edge-connected in G1 and G2, respectively. We
let S′

1 := S1 ∪ {v1} and S′
2 := S2 ∪ {v2}. Without loss of generality, we assume

that v is in G2, where v is the vertex to be extended in G. By the choice of G, there
are k edge-disjoint double S′

2-subgraphs {H2
1 , . . . , H

2
k} in G2 that extend Pk(v)

such that every vertex in R2 is balanced-extendible. Since v2 ∈ S′
2, Pk(v2) :=

{H2
1 ∩ EG2(v2), . . . , H2

k ∩ EG2(v2)} is a balanced edge-subpartition of v2. Let
Pk(v1) be the corresponding balanced edge-subpartition of v1 in G1. Again, by
the choice of G, there are k edge-disjoint double S′

1-subgraphs {H1
1 , . . . , H

1
k} in

G1 that extend Pk(v1) such that every vertex in R1 is balanced-extendible. Now,
by applying Lemma 5, there are k edge-disjoint double S-subgraphs in G that
extend Pk(v) such that every vertex in R is balanced-extendible.

Now consider case (ii). Notice that we must have that v ∈ G1, since v ∈ S
and we assume S ⊆ Y and Y ⊂ V (G1). Then V (G)−Y is a R-isolating cut which
does not contain v in G. By using exactly the same argument as in Lemma 3, we
can show that this contradicts with the fact that G is a minimal counterexample.
So case (ii) cannot happen either, and this completes the proof. 
�

5.2 Construction and Properties of G′

The case when |S ∪ R| = 2 is trivial. Henceforth, we assume that |S ∪ R| ≥ 3.
Our goal is to show that G has k edge-disjoint double S-subgraphs that extend
Pk(v) of v such that every vertex in R is balanced-extendible. Let W be the set
of neighbours of v in V (G)−S−R and B be the set of neighbours of v in S ∪R.
By Lemma 2, each wi ∈ W is incident with exactly three edges and adjacent to
exactly three vertices, so we let NG(wi) := {v, xi, yi} and call {xi, yi} a couple.
By Lemma 6, xi and yi are in S ∪ R. For each bi ∈ B, we denote by c(bi) the
number of multiple edges between v and bi.

Let G′ be G − v − W . Let Z be a minimum (S ∪ R − v)-cut of G′ and
{C1, . . . , Cl} be the connected components of G′ − Z. We let Si := S ∩ V (Ci),
Ri := R∩V (Ci) and Bi := B∩V (Ci). Also, c(Bi) denotes the sum of the c(b) for
b ∈ Bi and Xi denotes the collection of couples with both vertices in Ci. By the
minimality of Z, each edge e in Z connects two vertices in different components,
and we call it a crossing edge. Similarly, a couple {xi, yi} is a crossing couple
if xi and yi are in different components, and we denote the collection of crossing
couples by XC .

Lemma 7. (S ∪R− v) is at most (6k − 1)-edge-connected in G′.

Proof. Since |S ∪ R| ≥ 3, |S ∪ R − v| ≥ 2. If (S ∪ R − v) is 6k-edge-connected
in G′, then by Theorem 2, there are 2k edge-disjoint (S ∪ R − v)-subgraphs
{H ′′

1 , . . . , H
′′
2k} in G′. Notice that since the union of two edge-disjoint (S∪R−v)-

subgraphs is a double (S ∪ R − v)-subgraph, by setting H ′
i := H ′

2i−1 ∪ H ′
2i,

{H ′
1, . . . , H

′
k} are k edge-disjoint double (S ∪ R − v)-subgraphs of G′. Now, let

Hi := H ′
i ∪ {vbj |vbj ∈ Ei(v)} ∪ {vwj , wjxj |vwj ∈ Ei(v)}. So, Ei(v) ⊆ Hi, and

Hi−v is a double (S∪R−v)-subgraph that spans NEi
(v). Also, since |Ei(v)| ≥ 2,
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Hi is a double (S ∪R)-subgraph of G. By Definition 1, {H1, . . . , Hk} are k edge-
disjoint double (S ∪R)-subgraphs of G that extend Pk(v), a contradiction. 
�

Lemma 8. G′ − Z has 2 connected components.

Proof. We just need to show that G′ has at most 2 connected components,
then the statement that G′ − Z has 2 connected components follows from the
minimality of Z. Notice that from our construction of G′ from G, the set of
neighbours of every vertex in V (G)−S−R that remained in G′ is the same as in G.
Since G is connected, no component in G′ contains only vertices in V (G)−S−R.
Therefore, it remains to show that there are at most two components in G′ that
contain vertices in S ∪R.

Suppose there are three connected components containing vertices in S ∪R.
Let u1, u2, u3 ∈ S ∪R be vertices in C1, C2, C3 respectively. Since u1, u2, u3 have
at least (Q − 2)k edge-disjoint paths to v and v is of degree Qk, there exists a
vertex w ∈ NG(v) such that u1, u2, u3 all have a path to w in G. If w ∈ S∪R, then
clearly u1, u2, u3 are still connected in G′, a contradiction. If w ∈ V (G)−S−R,
then w is of degree 3 by Lemma 2. Then there must exist a pair of vertices, say u1

and u2, both have a path to the same neighbour of w in G′, a contradiction. 
�

5.3 Diverging Paths and Common Paths

Consider a vertex u 	= v where u ∈ S. Since S is Qk-edge-connected in G,
by Menger’s theorem, there are Qk edge-disjoint paths, denoted by P (u) :=
{P1(u), . . . , PQk(u)}, from u to v. Note that since v is of degree exactly Qk,
each path in P (u) uses exactly one edge in E(v). Furthermore, since wi is of
degree 3 by Lemma 2, each wi is used by exactly one path in P (u). Similarly, for
u 	= v where u ∈ R. There are (Q− 2)k edge-disjoint paths from u to v denoted
by P (u) := {P1(u), . . . , P(Q−2)k(u)}. Again, we may assume that each path use
exactly one edge in E(v) and at most one vertex in W . Consider Pi(u) induced in
G′, denoted by P ′

i (u). Let P ′(u) := {P ′
1(u), . . . , P ′

Qk(u)} for u ∈ S, and similarly
P ′(u) := {P ′

1(u), . . . , P ′
(Q−2)k(u)} for u ∈ R. Notice that P ′(u) contains edge-

disjoint paths in G′, and we call them the diverging paths from u.
We plan to use the diverging paths from a and b for any two vertices a, b ∈

S ∪ R in the same component of G′ − Z to establish the connectivity of S ∪ R
in each component of G′ −Z. We say v1 and v2 have λ common paths if there
are λ edge-disjoint paths starting from v1, λ edge-disjoint paths starting from
v2, and an one-to-one mapping of the paths from v1 to the paths from v2 so that
each pair of paths in the mapping ends in the same vertex. The following lemma
gives a lower bound on the number of edge-disjoint paths between two vertices
based on the number of their common paths.

Lemma 9. [9] If v1 and v2 have 2λ + 1 common paths in G, then there exist
λ + 1 edge-disjoint paths from v1 to v2 in G.
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5.4 Both Components of G′ − Z Contain Vertices in S

In this subsection, we consider the case that both components contain some
vertices in S. The lemmas in this section all share this assumption.

Lemma 10. If both components of G′−Z contain some vertices in S, then there
are at least Qk − 2|Z| crossing couples, that is, |XC | ≥ Qk − 2|Z|.

Proof. Let u1 ∈ S be in C1. In G′, u1 has at least c(B2)+|X2| edge-disjoint paths
in P ′(u1) to C2. Since Z is an edge-cut in G′, it follows that c(B2) + |X2| ≤ |Z|.
Similarly, by considering a vertex u2 ∈ S in C2, we have c(B1) + |X1| ≤ |Z|. By
Lemma 8, there are only two components in G′ − Z. So Qk = |XC | + |X1| +
|X2| + c(B1) + c(B2), and we have |XC | ≥ Qk − 2|Z|. 
�

Lemma 11. If both components of G′ − Z contain some vertices in S, then
Si ∪Ri is (Q/2 − 14)k-edge-connected in Ci of G′ − Z.

Proof. Consider any two vertices a, b ∈ Si ∪ Ri in Ci. In G′, P ′(a) has at least
|XC | − 2k paths to different crossing couples. Among those paths, at most |Z|
of them may use edges in Z. So, in G′ −Z, a has at least |XC | − 2k − |Z| edge-
disjoint paths such that each starts at a and ends in different crossing couples,
and similarly for b. Therefore, in G′−Z, a and b have at least (|XC |−2k−|Z|)+
(|XC | − 2k − |Z|) − (|XC |) = |XC | − 4k − 2|Z| ≥ Qk − 4k − 4|Z| ≥ Qk − 28k
common paths in Ci; the second last and the last inequality hold because of
Lemma 10 and Lemma 7, respectively. By Lemma 9, a and b are (Q/2 − 14)k-
edge-connected in Ci. 
�

Lemma 12. If both components of G′ − Z contain some vertices in S, then G
has k edge-disjoint double S-subgraphs {H1, . . . , Hk} that extend Pk(v) such that
every vertex in R is balanced-extendible.

Proof. (Sketch) We pick arbitrarily min{k, |Z|} edges in Z and call them the
connecting edges. For each connecting edge e with a endpoint w ∈ V (G)−S−R
in Ci, we remove one edge e′ in Ci which is incident with w (by Lemma 6, the
other endpoint of e′ must be black), and we call e′ a reserve edge of e. Let the
resulting component be C ′

i. Since we remove at most k edges and Si ∪ Ri is
(Q/2 − 14)k-edge-connected in Ci by Lemma 11, each Si ∪ Ri is (Q/2 − 15)k-
edge-connected in C ′

i. In particular, each Si ∪ Ri is 6k-edge-connected in C ′
i.

By Theorem 2, there are 2k edge-disjoint (Si ∪ Ri)-subgraphs in C ′
i. So there

are k edge-disjoint double (Si ∪ Ri)-subgraphs {Hi
1, . . . , H

i
k} in each C ′

i for
i ∈ {1, 2}.

Now we set Hj := H1
j ∪H2

j ∪{vbi|vbi ∈ Ej(v)}∪{vwi, wixi, wiyi|vwi ∈ Ej(v)}
for 1 ≤ j ≤ k. Notice that Ej(v) ⊆ E(Hj) and Hj−v spans NEj

(v) for 1 ≤ j ≤ k.
Suppose there is a crossing couple {xi, yi} such that vwi ∈ Ej(v), then Hj

is also connected and thus is a (S ∪ R)-subgraph of G that Ej(v) ⊆ E(Hj)
and Hj − v is a (S ∪ R − v)-subgraph that spans NEj

(v). Let’s assume that
{vw1, . . . , vw|XC |} be the set of edges such that the corresponding couples are
crossing. By Lemma 10, |XC | ≥ Qk − 2|Z|. Since Pk(v) is a balanced edge-
subpartition, |Ei(v)| ≥ 2 for 1 ≤ i ≤ k. So, there are at most min{k, |Z|}
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classes of Pk(v) with no edges in {vw1, . . . , vwQk−2|Z|}. Hence there are at most
min{k, |Z|} of Hj ’s, say {H1, . . . , Hmin{k,|Z|}}, are not connected by the crossing
couples. Now, by adding each connecting edge and its reserve edge (if any) to
a different Hj that has not been connected by a crossing couple, {H1, . . . , Hk}
are k edge-disjoint double (S ∪ R)-subgraphs of G that extend Pk(v). (We skip
the not-so-interesting case that |Si| = 1 for some i ∈ {1, 2}, which needs to be
handled separately.)


�

5.5 One Component Contains Only Vertices in R

Without loss of generality, we assume that C1 contains vertices in S and C2 con-
tains only vertices in R. Lemma 13 and Lemma 14 are counterparts of Lemma 10
and Lemma 11, we omit the proofs here. However, it should be pointed out that
we only have a weaker bound on the number of crossing couples in Lemma 13,
and hence the strategy in Lemma 12 cannot be used. In Lemma 15, we use a
different strategy to construct the desired subgraphs.

Lemma 13. If C2 contains only vertices in R, then there are at least (Q−2)k−
2|Z| crossing couples, that is, |XC | ≥ (Q− 2)k − 2|Z|.

Lemma 14. If C2 contains only vertices in R, then S1 ∪R1 is at least (Q/2 −
15)k-edge-connected in C1 of G′ − Z.

Lemma 15. If C2 contains only vertices in R, then G has k edge-disjoint double
S-subgraphs that extend Pk(v) such that every vertex in R is balanced-extendible.

Proof. Let E′ := {e1, . . . , e|X2|+c(B2)} be the set of edges incident to v in G
so that either (i) the other endpoint of ei is in B2 or (ii) the other endpoint
of ei has both of its neighbour in C2. Let u1 ∈ S. From P (u1) in G, there
are |X2| + c(B2) edge-disjoint paths from u1 to v such that each uses exactly
one edge in E′. From these paths, in G − C1, there are |X2| + c(B2) edge-
disjoint paths P := {P1, . . . , P|X2|+c(B2)} with the following property: each Pi

starts from v and ends in some vertex of C1, and ei ∈ Pi. Since each vertex in
w ∈ V (C1) − S1 − R1 is of degree 3, by the minimality of |Z|, it has at most
one neighbour in C2. Therefore, each w ∈ V (C1) can be in at most one path
in P . Now, for each ui ∈ V (C1) − S1 − R1, we remove one edge e′ in C1 which
is incident with w and set P ′

i := Pi ∪ {e′} (by Lemma 6, the other endpoint of
e′ must be in S1 ∪ R1); otherwise, P ′

i := Pi. So P ′ := {P ′
1, . . . , P

′
|X2|+c(B2)

} are
edge-disjoint paths with the following property: each P ′

i starts from v and ends
in some vertex ui ∈ S1 ∪R1, and ei ∈ P ′

i . In constructing P ′ from P , we remove
at most |X2|+ c(B2) ≤ |Z| ≤ 6k edges from C1. Let the resulting component be
C ′

1. Since S1 ∪ R1 is (Q/2 − 15)k-edge-connected in C1 by Lemma 14, S1 ∪ R1

is (Q/2 − 21)k-edge-connected in C ′
1. In particular, C ′

1 is S1 ∪ R1 is 6k-edge-
connected in C ′

1. By Theorem 2, there are 2k edge-disjoint (S1 ∪R1)-subgraphs
in C ′

1. So there are k edge-disjoint double (S1 ∪ R1)-subgraphs {H1
1 , . . . , H

1
k}

in C ′
1. Now, we set Hj := H1

j ∪ {vbi|vbi ∈ Ej(v)} ∪ {vwi, wixi, wiyi|vwi ∈
Ej(v)} ∪ {Pi|ei ∈ Ej(v)}. Then, it is straightforward to check {H1, . . . , Hk}
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are k edge-disjoint double S-subgraphs that extend Pk(v) so that every vertex
in R is balanced-extendible. Indeed, every vertex in R1 is balanced-extendible
because it is of degree at least 2 in each H1

i and thus Hi; while every ver-
tex in R2 is balanced-extendible because it has degree at most 12k in Hj ,
as it is used by at most 6k paths from P ′. This completes the proof of the
lemma.


�
Putting Lemma 12 and Lemma 15 together shows that a minimal counterexam-
ple G of Theorem 5 does not exist, and this completes the proof of Theorem 5.


�

6 Concluding Remarks

As far as the algorithmic aspects go, it is straightforward to check that the
proof yields a polynomial time constant factor approximation algorithm for
the Steiner Forest Packing problem. Also, using the same technique as
in [9], the approximation algorithm can be extended to the capacitated ver-
sion of the Steiner Forest Packing, where each edge e has an capacity ce

so that at most ce forests can use e (for the original problem, ce = 1 for all
e ∈ E(G)).

The following is a general problem that captures the Steiner Forest Pack-
ing problem. Given an undirected multigraph G and a connectivity requirement
ruv for each pair of vertices u, v ∈ V (G), find a largest collection of edge-disjoint
subgraphs of G such that in each subgraph there are ruv edge-disjoint paths
from u to v for all u, v ∈ V (G). Since connectivity is transitive, it is not difficult
to see that (see [1]) Theorem 1 is equivalent to the following:

Theorem 6. Given an undirected multigraph G and a connectivity requirement
ruv ∈ {0, 1} for u, v ∈ V (G). If there are Qk · ruv edge-disjoint paths for all
u, v ∈ V (G), then there are k edge-disjoint forests such that in each forest there
is ruv path between u, v for all u, v ∈ V (G).

I conjecture that Theorem 6 can be generalized to arbitrary non-negative
integer connectivity requirements:

Conjecture 1. Given an undirected multigraph G and a connectivity requirement
ruv for each pair of vertices u, v ∈ V (G). There exists a universal constant
c so that the following holds. If there are ck · ru,v edge-disjoint paths for all
u, v ∈ V (G), then there are k edge-disjoint subgraphs H1, . . . , Hk in G such
that in each subgraph there are ruv edge-disjoint paths between u and v for all
u, v ∈ V (G).

It would be interesting to first verify Conjecture 1 for Eulerian graphs (with
c = 2?). This may also yield insights into the generalized Steiner network prob-
lem, for which the only constant factor approximation algorithm is due to Jain’s
iterative rounding technique [5].
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Abstract. We consider geometric problems in which rectangles have
to be packed in (identical) squares, that turn out to be very hard in
practice and for which ILP formulations in which variables specify the
coordinates in the packing perform very poorly. While most methods
developed until the end of last century are based on simple geometric
considerations, a recent landmark result of Fekete and Schepers suggests
to put these geometric aspects aside and use the most advanced tools
for the 1-dimensional case. In this paper we make additional progress
in this direction, especially on the basic question “Does a given set of
rectangles fit in a square?”, that turns out to be the bottleneck of all the
approaches known.

Given a set of rectangles and the associated convex hull of the inci-
dence vectors of rectangle subsets that fit in a square, we derive a wide
class of valid inequalities for this convex hull from a complete descrip-
tion of the two knapsack polytopes associated with the widths and the
heights of the rectangles, respectively. Additionally, we illustrate how to
solve the associated separation problem as a bilinear program, for which
we develop a solution method that turns out to be fast in practice, and
show that integer solutions that satisfy all these inequalities generally
correspond to vertices of the original convex hull. The same tools are
used to derive lower bounds for the 2-dimensional bin packing problem,
corresponding to the determination of an optimal pair of so-called dual
feasible functions, that in many cases equal the lower bounds obtained by
the customary set covering formulation (for which column generation is
very hard) being computable within times that are orders of magnitude
smaller.

All our results extend immediately to the general problem of packing
d-dimensional parallelepipeds in hypercubes.

1 Introduction

Bidimensional packing problems, that play an important role in practical cutting
and packing applications, have been studied in the literature since the early 60s.
These problems share the well-known characteristic that they are extremely com-
plicated to model from a mathematical viewpoint unless some strong constraints
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on the form of the packings produced are imposed, such as two- or three-stage
patterns. In particular, the natural ILP models in which one specifies the coor-
dinates of each item in the packing tend to be of very large size and to have
very weak LP relaxations. Due to this inherent complication, mainly heuristic
algorithms were proposed for most of these problems, some of which were an-
alyzed from a worst-case point of view. Only starting from the late 90s serious
attempts were made to solve some of these problems to proven optimality, using
rather simple combinatorial/geometric considerations to derive bounds on the
optimum rather than using any ILP. This led to some achievement, but there
seems to be wide space for improvement.

The hardest problems in this context arise when items have to be packed in
finite bins, the main representatives requiring to pack a given set of rectangles
in squares. In particular, the 2-dimensional bin packing problem requires to
pack all the given rectangles in the minimum number of identical squares, and
the 2-dimensional knapsack problem to pack a maximum-profit subset of the
given rectangles in a single square. A recent breakthrough in the study of these
problems [11, 24] was the observation that the so-called dual feasible functions,
corresponding to dual solutions of the customary LP relaxation of 1-dimensional
bin packing, can also be used to compute bounds for 2-dimensional packing. So
far, however, the choice of the dual feasible functions to use in these cases was
limited to a (small) number of predefined ones. Our paper builds on the idea of
finding the best dual-feasible functions for the instance at hand.

The state-of-the-art exact approaches to 2-dimensional bin packing are the
purely combinatorial branch-and-bound approaches by [20, 19] and the branch-
and-price approach of [23]. For 2-dimensional knapsack, the best exact ap-
proaches are the branch-and-bound approaches in [12, 8], both using fairly simple
bounds. For all of these methods with the exception of [23], branching conditions
do not specify the coordinates of the rectangles in a packing but simply a set of
rectangles that one intends to pack in a square, and then one has to test whether
this set actually fits in a square by a separate enumeration. At present this feasi-
bility test is the most time consuming part of the algorithms, the most promising
approach to it being in our opinion based on the graph-theoretic characterization
of feasible packings by [10], that does not have to specify the coordinates of the
rectangles and can be used to drive enumeration [12].

1.1 Our Contribution

According to the above discussion, any progress towards the answer to the fol-
lowing question: “Does a given set of rectangles fit in a square?” is expected to
lead to progress towards the solution of the two hard problems mentioned above.
In this paper, we face the problem from a polyhedral viewpoint, considering, for
a given set of rectangles, the 2-dimensional knapsack polytope, defined as the
convex hull of the incidence vectors of rectangle subsets that fit in a square.
Building on the results in [11, 24], the main results presented in this paper, all
of which extend immediately to the general problem of packing d-dimensional
parallelepipeds in hypercubes, are the following:
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– We show that, given a set of rectangles and two inequalities
∑

j αjxj ≤
1 and

∑
j βjxj ≤ 1 valid for the (binary) knapsack polytopes associated,

respectively, with the widths and the heights of the rectangles, the inequality∑
j αjβjxj ≤ 1 (1)

is valid for the 2-dimensional (binary) knapsack polytope associated with
the rectangles. This also implies that the value∑

j αjβj (2)

is a valid lower bound on the optimal value of the 2-dimensional bin packing
associated with the rectangles.

– We show that separation of inequalities (1), as well as the computation
of α, β leading to the highest lower bound (2), can be stated as a bilinear
programming problem, that we solve by a canonical LP-based approach that
turns out to be fast in practice.

– For 2-dimensional (binary) knapsack, we show that for most instances of the
literature the optimal value coincides with the upper bound given by the op-
timum over the convex hull of the binary vectors that satisfy all inequalities
(1).

– For 2-dimensional bin packing, we show that for several instances of the lit-
erature the best lower bound (2) dominates all combinatorial bounds (being
computable in comparable time) and equals the (optimum and the) lower
bound obtained by the naive generalization of the customary LP relaxation
for the 1-dimensional case, which is generally order of magnitudes slower to
solve.

– Noting that the first of the above points was essentially stated in terms of
valid inequalities for the unbounded knapsack polytope in [11, 24], we show
both that the problem in the second point is easier in this case, but also that
the bounds in the third and fourth points are weaker for several instances of
the literature.

The points above are not presented in this order in the paper, namely we
will address first the 2-dimensional bin packing case and then the 2-dimensional
knapsack case. For space reasons, several proofs are deferred to the full paper.

1.2 The Problems Considered

Given an optimization problem P and an instance I of P, we will let optP(I)
denote the optimal value of P for instance I.

The 1-dimensional problems that we will consider throughout the paper work
with a set of items of a specified size to be packed in bins, guaranteeing that the
total size of the items packed in each bin does not exceed its size.

Definition 1. We will denote by I the collection of all item sets I = (n, s),
where n ∈ IN is the number of items and, for j = 1, . . . , n, sj ∈ (0, 1] is the size
of item j.
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Definition 2. The Bin Packing Problem (BP), given I ∈ I and infinitely many
bins of size 1, calls for packing all the items in I in the minimum number of bins.

Definition 3. The (Binary) Knapsack Problem (KP), given I ∈ I, along with
a profit pj > 0 for the jth item in I, and a single bin (knapsack) of size 1,
calls for packing a subset of the items in I with maximum profit in the bin. The
Unbounded KP (UKP) is the variant of KP in which each item is available in
unlimited number of copies, and one can pack any number of copies of each item
in the bin.

Definition 4. Given I = (n, s) ∈ I, a bounded feasible pattern is a vector
b ∈ {0, 1}n such that

∑n
j=1 bjsj ≤ 1, i.e. the incidence vector of a feasible

solution of KP associated with I. We will denote by B(I) the collection of all
binary feasible patterns associated with I, and by PKP(I) := conv(B(I)) the
corresponding KP polytope.

Definition 5. Given I = (n, s) ∈ I, an unbounded feasible pattern is a vec-
tor u ∈ ZZn

+ such that
∑n

j=1 ujsj ≤ 1, i.e. the incidence vector of a feasible
solution of UKP associated with I. We will denote by U(I) the collection of all
unbounded feasible patterns associated with I, and by PUKP(I) := conv(U(I))
the corresponding UKP polytope.

The results of this paper concern the two dimensional generalizations of the
problems above, all of which work with a set of rectangles of specified width and
height to be packed in squares. The packing in each square must be orthogonal
without rotation, i.e. the rectangles packed must not overlap and all the widths
of the rectangles packed must be parallel to the same edge of the square.

Definition 6. We will denote by R the collection of all rectangle sets R =
(n,w, h), where n ∈ IN is the number of rectangles and, for j = 1, . . . , n, wj , hj ∈
(0, 1] are the width and the height of rectangle j.

Definition 7. The 2-Dimensional BP (2BP), 2-Dimensional KP (2KP) and 2-
Dimensional UKP (2UKP) are the generalizations of BP, KP and UKP, respec-
tively, in which one is given a set R ∈ R (along with a profit pj > 0 for the jth
rectangle in R in the last two cases) instead of a set I ∈ I, and bins that are
squares of size 1.

Definition 8. Given R = (n,w, h) ∈ R, we will denote by P2KP(R) and by
P2UKP(R) the convex hulls of the incidence vectors of the feasible solutions of
2KP and 2UKP, respectively.

1.3 Bilinear Programming

Definition 9. A (Disjoint) Bilinear Program (BLP), given c ∈ IRn1 , d ∈ IRn2 ,
E ∈ IRn1×n2 , A ∈ IRm1×n1 , B ∈ IRm2×n2 , a ∈ IRm1 , b ∈ IRm2 , calls for x ∈ IRn1

and y ∈ IRn2 that solve:

max{cTx + dT y + xTEy : Ax ≤ a,By ≤ b}. (3)
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Informally, a BLP is the generalization of LP in which there are two variable
vectors x and y, distinct linear constraints are imposed separately on x and y,
and the objective function involves products of components of x and y. It is
known that the problem is strongly NP-hard in general. Solution approaches
to the problem have been widely studied in the literature and are surveyed in
[2, 14]. Among these, we outline a simple branch-and-bound approach [21] that
will be convenient for our purposes. We restrict attention to the case in which
the upper and lower bounds on x and y implied by the linear constraints are
finite:

lx ≤ x ≤ ux, ly ≤ y ≤ uy, (4)

and E ≥ 0, i.e. all coefficients for quadratic terms in the objective function
are nonnegative. Consider the linearization of the objective function obtained
by replacing each term eijxiyj by eijzij , where zij are new variables that are
bounded by the following additional linear constraints:

zij ≤ uy
jxi+lxi yj−lxi u

y
j , zij ≤ ux

i yj +lyj xi−lyj u
x
i , i = 1, . . . , n1, j = 1, . . . , n2,

(5)

that are easily seen to be implied by zij = xiyj . Actually, all linear constraints
of the form zij ≤ αxi + βyj + γ that are implied by (4) and zij ≤ xiyj are
dominated by (5). Moreover, if either xi or yj attains its lower or upper bound,
(5) are equivalent to zij ≤ xiyj .

The branch-and-bound algorithm proceeds by first solving the the LP relax-
ation obtained by the above substitution, i.e.

max{cTx + dT y +
∑n1

i=1

∑n2
j=1 eijzij : (5), Ax ≤ a,By ≤ b}. (6)

If in the optimal solution (x∗, y∗, z∗) of (6) each of the x and y variables attains
either its lower or upper bound, the solution is optimal for (3). Otherwise, one
considers an x or y variable whose optimal value is strictly between its bounds
and branches by changing the bounds on that variable, noting that the bounds
affect constraints (5) and therefore the objective function value. We refer to the
references above and to the full paper for further details.

2 Fractional Bin Packing, Dual Feasible Functions,
and Knapsack Separation

There are two commonly used versions of the customary LP relaxation of BP,
which are often confused with each other. Since using one version or the other
often makes a lot of difference in our application, and in fact it is sometimes
better to use both, we point out the differences in this section in order to avoid
confusion later. In the classical version [15], the LP has one variable xu associated
with each unbounded feasible pattern u ∈ U(I):

min{
∑

u∈U(I) xu :
∑

u∈U(I) ujxu ≥ 1 (j = 1, . . . , n), x ≥ 0}, (7)

whose dual is:
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max{
∑n

j=1 πj :
∑n

j=1 ujπj ≤ 1 (u ∈ U(I)), π ≥ 0}. (8)

Definition 10. The Unbounded Fractional BP (UFBP) is defined by LP (7).

Definition 11. The (Bounded) Fractional BP (FBP) is the variant of UFBP in
which bounded feasible patterns in B(I) rather than unbounded feasible patterns
in U(I) are considered.

Fact 1. Given I ∈ I, optBP(I) ≥ optFBP(I) ≥ optUFBP(I).

Concerning the complexity of UFBP and FBP, the following is a well known
result:

Proposition 1. Both UFBP and FBP are weakly NP-hard and can be solved in
time pseudopolynomial in the size of I.

This follows from the well-known equivalence between separation and optimiza-
tion [16] and the easy observation that the column generation problems (or,
equivalently, the separation problems for the dual) correspond to the recogni-
tion version of UKP and KP, respectively, as already noted in [15]. The lower
bound given by the optimal solution value of UFBP (and therefore also of FBP)
turns out to be extremely strong in practice, as partially explained by the fol-
lowing theoretical result, which is implicit in [13, 18] and made explicit in [7]:

Theorem 1. lim
z→∞

sup
I∈I:optBP(I)≥z

optBP(I)
optUFBP(I)

= 1.

Dual solutions of UFBP and FBP can have different interpretations. The
following notion is introduced in [9]:

Definition 12. A Dual Feasible Function (DFF), is a function f : [0, 1] → [0, 1]
such that

∑m
i=1 f(xi) ≤ 1 for each m ∈ IN and x ∈ IRm

+ such that
∑m

i=1 xi ≤ 1.
We let D denote the collection of all DFFs.

DFFs can be used to compute lower bounds for BP, since clearly

Fact 2. Given I = (n, s) ∈ I, optBP(I) ≥
∑n

j=1 f(sj) for each f(·) ∈ D.

The approach proposed by [9] and then followed by other authors is to try a few
DFFs and take the best lower bound obtained. From a different perspective, one
may try to solve the following problem:

Definition 13. The DFF Problem (DP), given I = (n, s) ∈ I, calls for f(·) ∈ D
that solves: supf(·)∈D

∑n
j=1 f(sj).

The following easy observation is pointed out in [9] (see [7] for a formal proof).

Lemma 1. Consider I = (n, s) ∈ I, assuming s1 ≤ s2 ≤ . . . ≤ sn. For ev-
ery f(·) ∈ D the vector (f(s1), . . . , f(sn)) is a feasible dual solution of UFBP.
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Conversely, for every feasible dual solution π of UFBP, the function f(·) defined
by f(x) := πj for x ∈ [sj , sj+1) and j = 0, . . . , n (letting s0 := 0 and sn+1 := 1)
belongs to D.

This implies:

Proposition 2. UFBP and DP are equivalent.

There is another fundamental interpretation of UFBP and FBP, namely their
feasible solutions correspond to valid inequalities for PUKP and PKP, respectively.
We state the formal results for FBP and PKP, noting that they have immediate
counterparts for UFBP and PUKP.

Fact 3. Given I = (n, s) ∈ I, π ∈ IRn
+ is a feasible solution of the dual of FBP

if and only if inequality
∑n

j=1 πjxj ≤ 1 is valid for PKP(I).

The corresponding separation problem is the variant of FBP in which we allow
the objective function coefficients to be arbitrary nonnegative values, which does
not change the solution approach outlined above.

Fact 4. Given I = (n, s) ∈ I and x∗ ∈ [0, 1]n, the optimal solution of the dual
of FBP with the modified objective function max

∑n
j=1 x∗

jπj is at most 1 if and
only if x∗ ∈ PKP(I). If this is not the case, the optimal dual FBP solution π∗

defines the valid inequality
∑n

j=1 π∗
jxj ≤ 1 for PKP(I) which is most violated

by x∗.

3 From 2-Dimensional Bin Packing . . .

As anticipated, while in the 1-dimensional case one generally starts with KP and
then moves to BP, we start from 2BP in the 2-dimensional case. For this case,
the straightforward generalizations of UFBP and FBP are the following.

Definition 14. The 2-Dimensional Unbounded FBP (2UFBP) and 2-Dimen-
sional FBP (2FBP) are the generalizations of FBP and UFBP in which one is
given a set R ∈ R instead of a set I ∈ I, and bins that are squares of size 1.

In particular, 2UFBP and 2FBP contain one variable for each feasible solution of
2UKP and 2KP, respectively. The clear disadvantage of solving the correspond-
ing LPs is that the column generation problems correspond to a 2UKP and a
2KP, that at present are very hard in practice. So far there were many attempts
to use one of these generalizations anyway, but the only reference reporting
successful results is [23].

3.1 2-Dimensional Bin Packing and Dual Feasible Functions

Rather than trying to work on the obvious extensions above, we will see how
DFFs can be extended here. While DFFs in the BP case are just a different way
(although useful in many respects) to see the dual LP relaxation (8), they are a
basic tool to tackle 2BP. The milestone result in this direction is from [11], for
which a simple direct proof is given in [24] (and that holds for any dimension):
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Theorem 2. Given R = (n,w, h) ∈ R such that the corresponding rectangles
can be packed in a square of size 1,

∑n
j=1 f(wj)g(hj) ≤ 1 for every f(·), g(·) ∈ D.

This has the following immediate corollary:

Corollary 1. Given R = (n,w, h) ∈ R, opt2BP(R) ≥
∑n

j=1 f(wj)g(hj) for
every f(·), g(·) ∈ D.

Following the approach to BP in [9], the proposal in [11] is to try a number of
possibilities for f(·) and g(·) and choose the pair leading to the best lower bound
on the 2BP solution value. The purpose of this section is show how to find the
best pair at all.

Definition 15. The 2-Dimensional DFF Problem (2DP), given R = (n,w, h) ∈
R, calls for f(·), g(·) ∈ D that solve: supf(·),g(·)∈D

∑n
j=1 f(wj)g(hj).

The following easy observation shows that the bound that we can hope for is
not going to be better than the one associated with 2UFBP:

Fact 5. Given R ∈ R, opt2BP(R) ≥ opt2UFBP(R) ≥ opt2DP(R).

On the other hand, the key issue is that 2DP turns out to be much easier to
solve than 2UFBP.

Concerning the worst-case ratio between the optimal 2BP and 2DP values,
the following holds, where ζ ≈ 1.69 is the worst-case ratio of the famous harmonic
algorithm for BP [17]:

Proposition 3. lim
z→∞

sup
R∈R:opt2BP(R)≥z

opt2BP(R)
opt2DP(R)

∈ [9/8, ζ].

3.2 The 2-Dimensional DFF Problem as a BLP

Recalling the correspondence between DFFs and solutions of UFBP pointed out
by Lemma 1, we can formulate 2DP as follows. Given R = (n,w, h) ∈ R we
consider the (1-dimensional) item sets Iw := (n,w) ∈ I and Ih := (n, h) ∈ I
with corresponding unbounded feasible pattern collections U(Iw) and U(Ih). A
BLP formulation of 2DP is:

max
n∑

j=1

πjρj ,

n∑
j=1

ujπj ≤ 1, u ∈ U(Iw),

n∑
j=1

ujρj ≤ 1, u ∈ U(Ih),

πj , ρj ≥ 0, j = 1, . . . , n.

(9)

It is immediate to see that 2DP is weakly NP -hard, as a corollary of Proposition
1, and we conjecture that it is strongly NP -hard. Our solution approach to 2DP
follows the branch-and-bound scheme outlined in Section 1.3.
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Definition 16. We will denote by 2LDP the LP relaxation (6) associated with
BLP (9).

Of course, as both the constraints on the π and ρ variables are exponentially
many, we adopt a cutting plane approach to solve 2LDP, the separation problem
being clearly an UKP. Another obvious corollary of Proposition 1 is:

Proposition 4. 2LDP is weakly NP -hard and can be solved in time pseudopoly-
nomial in the size of R.

A key issue for the strength of the LP relaxation is the tightness of the bounds
on the variables. Rather than setting all lower bounds to 0 and all upper bounds
to 1, we can use:

Fact 6. Given R = (n,w, h) ∈ R, the following are valid lower and upper bounds
on the optimal 2DP variables:{

uπ
j = 1/k, if wj ∈ (1/(k + 1), 1/k] with k ∈ IN, k ≥ 2,

lπj = 1 − 1/k, if wj ∈ [1 − 1/k, 1 − 1/(k + 1)) with k ∈ IN, k ≥ 2. (10)

as well as their counterparts for uρ
j and lρj .

With the above lower and upper bounds, we can show that the ratio between the
optimal values of 2DP and 2LDP is bounded by a constant, where the definition
of η ≈ 1.35 is given in the full paper.

Proposition 5. sup
R∈R

opt2LDP(R)
opt2DP(R)

∈ [η, 2].

3.3 The Bounded Version

Recalling that FBP is a stronger version of UFBP, it is natural to define the
following BLP:

max
n∑

j=1

πjρj ,

n∑
j=1

ujπj ≤ 1, u ∈ B(Iw),

n∑
j=1

ujρj ≤ 1, u ∈ B(Ih),

πj , ρj ≥ 0, j = 1, . . . , n.

(11)

The fact that also the optimal solution of this BLP yields a valid lower bound
for 2BP is due to the following variant (in fact, generalization) of Theorem 2:
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Theorem 3. Given R = (n,w, h) ∈ R and any subset S ⊆ {1, . . . , n} such that
the corresponding rectangles can be packed in a square of size 1,

∑
i∈S πiρi ≤ 1

for every feasible solution (π, ρ) of (11) associated with R.

We therefore define the following strengthening of 2DP, whose optimal solution
yields a better lower bound for 2BP:

Definition 17. The 2-Dimensional Strengthened DFF Problem (2SDP), given
R = (n,w, h) ∈ R, is defined by (11).

The following is the counterpart of Fact 5:

Fact 7. Given R ∈ R, opt2BP(R) ≥ opt2FBP(R) ≥ opt2SDP(R) ≥ opt2DP(R).

Our solution approach to 2SDP is perfectly analogous to the one for 2DP,
with the difference that Facts 6 does not hold any more, leading to weaker LP
relaxations and making 2SDP generally more difficult to solve than 2DP.

3.4 Computational Results

We implemented the above methods in C using CPLEX 8.1 as LP solver. In
order to check the appropriateness of our approach, we first verified that our
method widely outperforms a state-of-the-art code for general BLP by [3, 1].

As benchmark, we considered the 500 2BP instances from the literature [4,
20]. For each instance R in this set, we considered the best lower bound known L∗

[5, 6], including the lower bounds proposed in [11] but excluding the one obtained
by solving 2FBP as in [23], and the best known heuristic solution value U∗ [22].
In order to extract a representative set, we considered the 62 instances for which
(i) L∗ < U∗ (actually L∗ = U∗ − 1 in all cases) and (ii) opt2FBP(R) = U∗, i.e.
those for which optimality was proved by solving 2FBP. All these instances are
given in Table 1, where we report the (rounded-up) values of 2DP, 2SDP and
2FBP along with the corresponding running times, in seconds on a Pentium M
1600 MHz, where for 2FBP we used our own implementation since we do not
have the results of [23] for single instances (anyway, looking at the averages, the
performances of our implementation appear to be similar to those in [23]).

The table shows that the 2DP running time, on average equal to 0.20, is
notably smaller than the others and consistently small for all instances. In 17
cases, the associated 2BP lower bound is sufficient to prove optimality without
resorting to the other two methods. The running time of 2SDP is higher, on
average equal to 3.95, and less stable, but reasonably small in all cases. In 12
cases for which 2DP failed to prove optimality, 2SDP made it. For the remaining
33 cases optimality is proved by 2FBP, whose running time is much larger, on
average equal to 1898.26, and very much dependent on the instance. In summary,
for about half of the instances that were open before solving 2FBP, optimality
can be proved within a time that is orders of magnitude smaller by running
2DP and then possibly 2SDP. There are 22 instances R out of the 500 for which
opt2FBP(R) < U∗ (actually L∗ = opt2FBP(R) = U∗ −1) that, as far as we know,
remain open.
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Table 1. 2BP, instances from the literature

R n L∗ U∗ 2DP 2SDP 2FBP

Value Time Value Time Value Time
1 40 1 40 9 10 10 0.00 10 0.04 10 3.68
1 40 2 40 11 12 11 0.10 12 0.24 12 0.02
1 40 3 40 16 17 16 0.00 16 0.12 17 0.00
1 60 1 60 22 23 23 0.00 23 0.12 23 0.03
1 60 2 60 18 19 19 0.01 19 0.48 19 0.46
1 60 7 60 15 16 16 0.00 16 0.60 16 0.67
1 80 1 80 24 25 25 0.01 25 0.75 25 0.04
3 20 3 20 5 6 5 0.01 5 0.08 6 0.04
3 20 6 20 6 7 6 0.00 7 0.04 7 0.01
3 40 10 40 7 8 7 0.03 7 0.52 8 1.33
3 60 2 60 12 13 13 0.08 13 1.52 13 13.53
3 60 3 60 13 14 13 0.09 13 1.84 14 1.49
3 60 4 60 14 15 15 0.02 15 1.45 15 0.33
3 80 3 80 17 18 18 0.03 18 3.35 18 1.32
3 80 5 80 16 17 16 0.25 16 4.09 17 22.51
3 100 3 100 18 19 19 0.42 19 9.57 19 440.72
3 100 9 100 21 22 22 0.08 22 7.18 22 0.67
5 40 4 40 12 13 12 0.02 12 0.54 13 1.54
5 40 5 40 13 14 13 0.10 13 0.61 14 0.55
5 40 9 40 9 10 9 0.07 9 0.69 10 3.28
5 60 6 60 15 16 15 0.22 15 2.07 16 10.86
5 60 10 60 23 24 23 0.04 23 1.49 24 0.57
5 80 2 80 22 23 23 0.12 23 5.33 23 112.63
5 80 3 80 24 25 24 0.10 24 4.79 25 2.44
5 80 5 80 22 23 22 0.28 22 4.75 23 1.92
5 80 6 80 25 26 25 0.09 25 4.57 26 1.62
5 80 9 80 26 27 26 0.17 26 3.45 27 9.27
5 80 10 80 22 23 23 0.32 23 5.12 23 10.41
5 100 1 100 23 24 24 0.46 24 10.20 24 331.23
5 100 2 100 28 29 28 0.33 28 10.41 29 66.92
7 20 6 20 5 6 5 0.01 6 0.09 6 0.30
7 40 3 40 9 10 9 0.13 9 0.58 10 5.05
7 40 7 40 11 12 11 0.03 12 0.39 12 4.33
7 60 5 60 14 15 14 0.06 15 0.79 15 17.03
7 80 1 80 20 21 20 0.30 20 3.74 21 637.01
7 80 3 80 20 21 20 0.10 20 5.09 21 103.52
7 80 5 80 23 24 23 0.07 24 1.98 24 3.54
7 80 6 80 22 23 22 0.09 23 1.93 23 226.20
7 80 8 80 22 23 22 0.07 23 2.61 23 15.91
7 80 9 80 23 24 23 0.09 23 5.20 24 75.87
7 100 3 100 24 25 24 0.08 25 4.07 25 18.76
7 100 4 100 26 27 26 0.10 27 3.69 27 13.95
8 40 1 40 11 12 11 0.04 11 0.46 12 1.41
8 60 9 60 16 17 16 0.07 17 1.19 17 2.85
8 80 3 80 20 21 20 0.07 20 4.85 21 2.47
8 100 1 100 26 27 26 0.10 26 11.40 27 13.64
8 100 4 100 30 31 30 0.11 30 10.03 31 44.02
8 100 6 100 26 27 26 0.11 26 7.60 27 3.87
8 100 7 100 25 26 25 0.69 25 8.67 26 37.76
10 20 4 20 4 5 4 0.02 5 0.06 5 0.09

10 20 10 20 2 3 3 0.08 3 0.10 3 4545.67
10 40 2 40 7 8 7 0.14 7 0.87 8 20.26
10 40 6 40 5 6 6 0.07 6 0.90 6 3070.52
10 60 4 60 7 8 7 0.47 7 3.90 8 6645.98
10 60 6 60 12 13 13 0.07 13 2.62 13 1.80
10 60 9 60 8 9 8 0.55 8 4.06 9 9757.99
10 80 1 80 12 13 12 0.88 12 8.34 13 4448.28
10 80 4 80 13 14 14 0.18 14 5.89 14 9311.99

10 80 10 80 14 15 14 0.34 14 7.07 15 2916.16
10 100 3 100 15 16 15 1.04 15 16.99 16 2525.43
10 100 5 100 17 18 17 1.06 17 16.00 18 2504.44
10 100 7 100 13 14 13 1.66 13 17.66 14 3955.68
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4 . . . To 2-Dimensional Knapsack

In this section we apply the methods of the previous section in order to compute
upper bounds for 2KP. As mentioned in the introduction we would like to find
a tight relaxation of the 2KP polytope and optimize over it. For instance, the
method proposed in [8], works with the following relaxation of P2KP(R):

P 0(R) := conv{x ∈ {0, 1}n :
∑n

j=1 wjhjxj ≤ 1}. (12)

In the direction of defining tighter relaxations, the following corollary of Theorem
2 is pointed out in [11].

Corollary 2. Given R = (n,w, h) ∈ R, the following class of inequalities is
valid for P2UKP(R) and P2KP(R):

n∑
j=1

f(wj)g(hj)xj ≤ 1, f(·), g(·) ∈ D. (13)

The stronger result that we obtain by considering Theorem 3 instead of Theorem
2 is:

Theorem 4. Given R = (n,w, h) ∈ R, the following class of inequalities is
valid for P2KP(R):

n∑
j=1

αjβjxj ≤ 1,
∑n

j=1 αjxj ≤ 1 valid for PKP(Iw),∑n
j=1 βjxj ≤ 1 valid for PKP(Ih). (14)

In [11] the authors propose to compute a lower bound by optimizing over the
convex hull of binary vectors that satisfy the inequalities (13) generated by
choosing f(·), g(·) ∈ D out of a small number of predefined possibilities. As
before, we discuss how to impose all the inequalities. We state the result for
(14), the counterpart for (13) being immediate with 2DP instead of 2SDP:

Theorem 5. Given R = (n,w, h) ∈ R and x∗ ∈ [0, 1]n, the optimal solution
of 2SDP with the modified objective function max

∑n
j=1 x∗

jπjρj is at most 1 if
and only if x∗ satisfies all inequalities (14). If this is not the case, the optimal
2SDP solution (π∗, ρ∗) defines the inequality (14)

∑n
j=1 π∗

j ρ
∗
jxj ≤ 1 which is

most violated by x∗.

Since, as in the 1-dimensional case, our solution approach to 2DP and 2SDP
is valid also for generic nonnegative objective function coefficients, using the
implementation in Section 3 we can separate over constraints (13) and (14).
Given a 2KP instance associated with R ∈ R and profit vector p, this allows us
to optimize pTx over the following relaxations of P2KP(R), in increasing order
of strength:

P 1(R) := {x ∈ IRn
+ : (13)},

P 2(R) := conv{x ∈ {0, 1}n : (13)},
P 3(R) := conv{x ∈ {0, 1}n : (14)},

(15)
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Table 2. 2KP, instances from the literature

(R, p) n opt2KP(R, p) opt(P 0(R)) opt(P 1(R)) opt(P 2(R)) opt(P 3(R))
cgcut1 16 244 260 244 244 244
cgcut2 23 2892 2919 2909 2903 2903
cgcut3 62 1860 2020 2005 1940 1900
ngcut1 10 164 201 206 201 164
ngcut2 17 230 253 257 253 230
ngcut3 21 247 266 260 254 247
ngcut4 7 268 275 271 268 268
ngcut5 14 358 373 359 358 358
ngcut6 15 289 317 317 317 289
ngcut7 8 430 430 430 430 430
ngcut8 13 834 938 906 906 856
ngcut9 18 924 962 945 924 924
ngcut10 13 1452 1517 1511 1452 1452
ngcut11 15 1688 1864 1779 1726 1688
ngcut12 22 1865 2012 1953 1913 1865
gcut1 10 48368 62500 50960 48440 48368
gcut2 20 59798 62500 61630 60662 59798
gcut3 30 61275 62500 62043 61275 61275
gcut5 10 195582 250000 229301 223327 195582
gcut6 20 236305 250000 244022 237682 236305
gcut7 30 240143 250000 245300 240143 240143
gcut9 10 939600 1000000 949424 939600 939600
gcut10 20 937349 1000000 975890 947385 937349
gcut11 30 969709 1000000 988334 972140 969709
hccut1 15 5827 7016 5827 5827 5827
hccut2 7 1178 1347 1201 1178 1178
hccut3 15 1270 1547 1291 1270 1270
hccut4 10 2517 3079 2578 2517 2517
hccut5 15 2949 3604 2949 2949 2949
wang20 42 2726 2800 2800 2747 2726
okp1 50 27718 29133 28714 28431 27796
okp2 30 22502 24800 24849 24738 22906
okp3 30 24019 26714 26520 25884 24019
okp4 61 32893 33631 33246 32893 32893
okp5 97 27923 29045 28371 27934 27923

using a cutting plane approach in the first case and branch-and-cut in the other
two cases.

Most questions about the worst-case strength of the above relaxations are
hard and remain open. As far as we know, the only published result [8] concerns
2KP and reads:

Proposition 6. sup
R∈R,p∈IRn

+

max{pTx : x ∈ P 0(R)}
opt2KP(R, p)

= 3.
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For 2UKP, we can prove the following counterpart of Proposition 3:

Proposition 7. sup
R∈R,p∈IRn

+

max{pTx : x ∈ P 1(R)}
opt2UKP(R, p)

∈ [9/8, ζ].

4.1 Computational Results

In this section we present the optimal values of the relaxations in (15) for the
2KP instances in the literature. As our current implementation is very rough, we
simply report the optimal values in Table 2, comparing them with opt2KP(R, p),
that is known for all the instances considered [12, 8], and with the simple upper
bound obtained by optimization over P 0(R) as defined in (12).

The clear outcome of the results is that the optimum over P 3(R) is equal
to opt2KP(R, p) in almost all cases, namely for 30 out of 35 instances, with an
average percentage gap of 0.2%. The same property is not shared by the other
three relaxations, although the optimum over P 2(R) is equal to opt2KP(R, p)
in 15 cases, with an average percentage gap of 2.9%, and the optimum over
P 1(R), with an average percentage gap of 4.6%, is often much better than the
optimum over P 0(R), with an average percentage gap of 9.6%. Moreover, for
the 30 instances for which the optimum over P 3(R) turns out to be equal to
opt2KP(R), in 27 cases the corresponding solution turns out to be feasible for
2KP.

These results suggest the development of exact algorithms based on relaxation
P 3(R) rather than P 0(R) as the current state-of-the-art ones.
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with the BLP code described in [3, 1], to Marco Boschetti for having provided
us with instance-by-instance 2BP results from [5, 6], and to Sándor Fekete for
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Abstract. We discuss extensions of Jain’s framework for network de-
sign [7] that go beyond undirected graphs. The main problem is ap-
proximating a minimum cost set of directed edges that covers a crossing
supermodular function. We show that iterated rounding gives a factor 3
approximation, where factor 4 was previously known and factor 2 was
conjectured. Our bound is tight for the simplest interpretation of iterated
rounding. We also show that (the simplest version of) iterated rounding
has unbounded approximation ratio when the problem is extended to
mixed graphs.

1 Introduction

Iterated rounding, introduced by Jain [7], has taken its place as a general tech-
nique for approximating solutions to integer linear programs. Jain’s original
framework was for undirected network design problems. This paper investigates
the directed case. The approximation guarantee for the directed case was known
to be at most 4 but conjectured to be 2, just like the undirected case. We prove
an upper bound of 3. We prove a matching lower bound, at least for the sim-
plest version of iterated rounding. Specifically, we show that 1/3 is the tight
lower bound on the L∞-norm of an extreme point of the directed cut-covering
LP for a crossing supermodular requirement function.

Previous Work. Jain showed that iterated rounding achieves a factor 2 ap-
proximation for the undirected Steiner network problem [7, 12]. Iterated round-
ing remains the only way known to achieve any O(1)-approximation for this
problem. More generally Jain gave a factor 2 approximation for any undirected
network design problem whose cut requirements are given by a weakly super-
modular function.

Subsequently a number of iterated rounding algorithms were presented for ap-
proximating a minimum cost subgraph that satisfies a given requirement on ver-
tex connectivity. The algorithms are all based on the setpair-covering LP. Fleis-
cher et.al. achieve a 2-approximation for element connectivity as well as {0, 1, 2}
vertex connectivity, both on undirected graphs [5]. These are the best results
known for these problems. Cheriyan et.al. [1] give an O(

√
m)-approximation for

M. Jünger and V. Kaibel (Eds.): IPCO 2005, LNCS 3509, pp. 392–406, 2005.
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setpair covering, which extends to an O(n/
√
n− k)-approximation for k-vertex

connectivity on both directed and undirected graphs [2] (a recent improvement
is given in [9]).

Detouring a little, let k-EC stand for “k-edge connected” and let k-ECSS
stand for “k-edge connected spanning subgraph”. A problem of interest is finding
a minimum cost k-ECSS. We will also refer to the problem of finding a minimum
cost k-EC augmentation (this is the same problem, except the cost 0 edges are
not recorded as part of the solution). Khuller and Vishkin give 2-approximations
for these two problems, on both directed and undirected graphs [8]. Their work
generalizes the algorithm for the case k = 1 by Frederickson and Ja’Ja’ [4].

Most relevant to our results is the work of Melkonian and Tardos [10]. They
generalize Jain’s framework to directed graphs. Jain’s weakly supermodular cut
requirement function becomes a crossing supermodular function. This is slightly
less powerful, but the directed model still includes problems of interest. For
example the model includes the minimum cost directed k-ECSS problem, and
more sophisticated versions of this problem such as making a directed hyper-
graph k-edge connected by adding a minimum cost set of directed graph edges.
(See Section 2.)

Melkonian and Tardos [10] proved that iterated rounding achieves an approx-
imation ratio of 4. They conjectured that the true approximation ratio is 2 (like
the undirected case) and supported this conjecture with experimental evidence.

In addition to the iterated rounding algorithm, [10] proves an approxima-
tion ratio of 2 for their problem by using a different algorithm: It consists of
two applications of an algorithm of Frank [3] which gives an exact solution in
the special case of an intersecting supermodular cut requirement function. The
resulting approximation algorithm is a natural generalization of [4, 8].

In the experiments this 2-approximation gave poorer results than iterated
rounding, e.g., the 2-approximation averaged 25% above optimum while iter-
ated rounding averaged within 1.5% of optimum (more details are in [10]). Such
results, plus the success of iterated rounding on other problems, motivate our
further study of the directed case.

Our Results. The only known method of proving a performance bound for
iterated rounding is via Jain’s original result. It says iterated rounding gives
a 1/ε-approximation when every optimum extreme point of the LP family has
L∞-norm at least ε (for 0 < ε < 1). [10] conjectured that supermodular directed
cut problems have ε = 1/2. We prove a tight bound of ε = 1/3. More pre-
cisely for the cut-covering LP of any supermodular directed cut problem, every
nonzero extreme point has L∞-norm at least 1/3. Furthermore the simplest su-
permodular directed cut problem of interest, minimum cost k-EC augmentation,
has an infinite family of instances where the unique optimum extreme point is
(1/3, . . . , 1/3), the vector with all coordinates equal to 1/3. (This holds for any
integer k ≥ 1. The proof is based on a “generic” example which should allow it
to extend to other supermodular cut problems.) The simplest version of iterated
rounding gives approximation ratio exactly 3 on these instances (for both min-
imum cost k-EC augmentation and minimum cost k-ECSS). We leave open the
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possibility that a more sophisticated rounding strategy achieves approximation
ratio 2. However new proof techniques will be required for such a result.

The reason we can prove a tight lower bound is that we concentrate more on
linear independence than on graph properties.

The last part of this paper briefly examines the supermodular cut problem on
mixed graphs. Here the solution may use both directed and undirected edges. The
main finding is negative: Looking again at minimum cost k-EC augmentation,
for any integer k > 1 there is an infinite family of instances where the unique
optimum extreme point is (2/n, . . . , 2/n), for n the number of vertices. But for
minimum cost 1-EC augmentation and its generalizations like the hypergraph
augmentation problem mentioned above, 1/4 is the tight lower bound for the
L∞-norm of an extreme point of the cut-covering LP. So iterated rounding is a
4-approximation for these problems.

Section 2 defines the supermodular directed cut problem and gives several
examples. Section 3 proves the L∞ lower bound, implying that iterated rounding
achieves approximation ratio 3. Section 4, showing that our bound is tight, and
Section 5, the mixed graph results, are much abbreviated. The complete paper
is available as [6].

Terminology. Throughout this paper n and m denote the number of vertices
and number of edges of the given graph G = (V,E), respectively. In all graphs,
each edge e has an associated integral multiplicity that specifies the number of
copies of e. (m does not count multiplicities.) Self-loops are not allowed. We also
refer to functions that assign each edge e a weight, which plays the role of the
number of copies of e but need not be integral.

For S, T ⊆ V , δ(S, T ) denotes the number of edges directed from S − T
to T − S. In addition we define δ(S) = δ(S, V − S), ρ(S, T ) = δ(T, S) and
ρ(S) = ρ(S, V − S).

A set S ⊆ V is k-edge connected if no two vertices of S are separated by a
cut of < k edges, i.e., any set of vertices X with S∩X,S−X 	= ∅ has ρ(X) ≥ k.
Equivalently any two distinct vertices s, t ∈ S are joined by k edge-disjoint
st-paths.

2 Crossing Supermodular Directed Cut Problems

Sets S, T ⊆ V cross if each of the four sets S − T, T − S, S ∩ T and V − (S ∪ T )
is nonempty. A family C of subsets of V is crossing if S, T ∈ C with S and T
crossing implies S ∩ T, S ∪ T ∈ C. In this case a function f : C → � is crossing
supermodular if f(S) + f(T ) ≤ f(S ∩ T ) + f(S ∪ T ) for every two crossing sets
S, T ∈ C.

Let G = (V,E) be the given graph. We use the vector space �m, where each
dimension corresponds to an edge of E. In particular we use this notation for
vectors:

x is a vector of values xe for each e ∈ E. For F ⊆ E, xF denotes the vector
x with every component outside of F zeroed.
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For e ∈ E, e denotes the unit vector having xe = 1.
For S ⊆ V , δ(S) (ρ(S)) denotes the boundary vector of edges leaving (enter-

ing) S, i.e., the entry for e is 1 if e leaves (enters) S, and 0 otherwise.
For r ∈ �, (r, . . . , r) denotes the vector of �m with every component equal

to r.

A (crossing) supermodular (directed) cut problem is specified by a digraph
G = (V,E), a crossing family C ⊆ 2V with crossing supermodular function
f : C → Z, and three vectors in �m

+ , an edge cost vector c and upper and lower
bound vectors u and l respectively. Without loss of generality we assume l ≤ u,
l and u are integral vectors, and we allow infinite upper bounds. We seek a
minimum cost set of edges respecting the upper and lower bounds such that
every set S ∈ C has in-degree at least f(S).

We list several supermodular cut problems that are of interest. The simplest
is finding a minimum cost directed k-ECSS (C = 2V − {∅, V }, f ≡ k).

(a) Consider a “host” graph H = (W,F ), a subset of vertices V ⊆ W , and
a set of “candidate” edges E ⊆ V × V . A k-EC internal augmentation (of V )
is a subset E′ ⊆ E with V k-edge connected in the graph (W,E′ ∪ F ). (Here
E′ and F are multisets.) The problem is to find a minimum cost k-EC internal
augmentation of V , given directed graph H, vertex set V , plus candidate directed
edges E and their costs.

(b) (This is a special case of (a).) Recall that in a directed hypergraph H,
each hyperedge consists of a set of head vertices and a set of tail vertices [11–
p.769]. A graph-edge augmentation of H consists of H plus a number of (ordinary
graph) edges. A k-EC graph-edge augmentation makes H k-edge connnected. The
problem is to find such an augmentation of minimum cost, given H plus a set of
(ordinary) candidate directed edges and their costs.

(c) In any supermodular cut problem we can add arbitrary lower bound con-
straints on the in-degree and out-degree of each vertex. For instance consider
the problem of finding a minimum cost spanning out-tree directed from a given
root vertex. Adding lower bounds on the out-degree of each vertex gives a su-
permodular cut problem that is NP-hard (it contains the directed Hamiltonian
path problem).

(d) More generally the given edges may be colored red or green and we can
require some minimum number of edges of each color in each direction at each
vertex. Still more generally we can require the solution to contain at least iv(S)
(ov(S)) edges of S for every S ⊆ Iv (S ⊆ Ov) and every v ∈ V , where Iv

is an intersecting family of subsets of the edges directed to v, iv : Iv → Z is
an intersecting supermodular function, and Ov, ov are defined similarly on the
edges directed from v.

We use the following “cut-covering” linear program, which results from drop-
ping the integrality constraints from the supermodular directed cut problem.
Recall our conventions for vectors, e.g., the inner product x · ρ(S) equals the
in-degree of S using edge weights given by x.
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(LP )

minimize x · c
subject to x · ρ(S) ≥ f(S) S ∈ C

x ≤ u
x ≥ l

Our approximation algorithm is iterated rounding. Although any version suf-
fices for our upper bounds we need to be specific for the lower bound examples.
We use round-the-highest [10]: Find an optimum extreme point x. Fix the value
of all components xe that are largest (i.e., equal to ‖x‖∞) to what will be their
final value, �xe�. Modify (LP ) to the residual problem (i.e., for each newly fixed
e, decrease f(S) by xe for each S entered by e, and then discard e from the
problem). Repeat the procedure until all values are fixed.

As shown in [7, 12], if any nonzero extreme point for any instance of (LP )
has L∞-norm at least ε (0 < ε < 1) then iterated rounding achieves a 1/ε
approximation ratio.

3 Lower Bound Analysis

This section is devoted to a proof of our L∞ lower bound:

Theorem 1. Any nonzero extreme point to (LP ) has L∞-norm at least 1/3.
Hence iterated rounding achieves approximation ratio 3 for the supermodular
directed cut problem.

Consider an arbitrary extreme point x to (LP ). By definition the m com-
ponents of x are uniquely determined by some set of m constraints that have
been changed to equalities. Let F be the set of edges that are not determined
by their bounds, F = {e : xe /∈ {le, ue}}. The vector xF is determined by the
degree constraints. Melkonian and Tardos showed these constraints come from
a laminar family:

Lemma 1 ([10]). There is a laminar family of sets L = I ∪O such that xF is
the unique solution for yF in the linear system

yF · ρ(S) = i(S) S ∈ I
yF · δ(S) = o(S) S ∈ O (1)

where each right-hand side i(S), o(S) is a positive integer.

It may help to remind the reader how the system (1) comes about: xF is
determined by degree constraints of (LP ), x·ρ(S) = f(S), when we fix the values
xe, e /∈ F to their appropriate bound le, ue. This directly gives the constraint
of (1) for a set S ∈ I. Thus i(S) is f(S) decreased by the fixed (integral)
values xe with e entering S. The constraint for a set S ∈ O comes from the
equation for V −S, and o(S) is f(V −S) decreased by the fixed values xe with e
leaving S. We note that a set may belong to both I and O. Finally in applying
Lemma 1 we will assume the system (1) is minimal. So the number of constraints
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equals the number of unknowns, i.e., |I|+ |O| = |F |, and the constraint vectors
{ρ(S) : S ∈ I} ∪ {δ(S) : S ∈ O} are linearly independent.

We will use the terms I-set and O-set with the obvious meaning. Now we
define a rooted forest F that represents the laminar family L. The nodes of F
are partitioned into two sets IF and OF , representing the I-sets and O-sets of
L respectively. Thus F has |I| + |O| nodes. A set belonging to I ∩ O gives rise
to two nodes.

Throughout the discussion we identify each forest node and its set. This may
cause slight ambiguities but they will be resolved from the context. For instance
if S is a node of F , saying S ∈ IF means that S is being treated as a node while
saying S ∈ I means S is being treated as a set.

If S is a set in I ∩O let Sp and Sc denote its two corresponding nodes. Define
Sp to be the parent of Sc in F . It is irrelevant which of the nodes Sp, Sc belongs
to IF and which belongs to OF .

We complete the definition of F by specifying the remaining parent-child
relations: The children of a node S are the nodes T corresponding to the maximal
proper subsets of S in L. In this definition replace S by Sc if S ∈ I ∩ O, and
similarly replace T by Tp if T ∈ I ∩ O.

A node of F is a leaf, chain node or branching node depending on whether it
has 0, 1 or > 1 children, respectively. Chain nodes have a further classification:
A chain node is a 1-node if it belongs to the same family IF , OF as its (unique)
child. If not (its child belongs to the opposite family) it is a 2-node. For example
if S ∈ I ∩ O then Sp is necessarily a 2-node; Sc may be any type of node.

The overall proof strategy is Jain’s [7, 12]: Assume for the sake of contradic-
tion that no edge has value ≥ 1/3, i.e., 0 < xe < 1/3 for every edge e. (We can
discard edges with xe = 0 from the problem.) We will assign two ends of an edge
to each node of F . Each end will be assigned at most once, and at least two
ends will remain unassigned. This contradicts the fact that the number of edges
equals the number of nodes of F (by Lemma 1).

We will define a notion of “availability” to guide our assignment of ends.
Each node of F will be assigned ends that are available to it. Intuitively we will
show that ends available to the leaves of F pay for the leaves and the branching
nodes, while ends available to the 1-nodes pay for themselves. The 2-nodes pay
for themselves, but their available ends can come from other 2-nodes or from
branching nodes. The most involved part of the argument is the analysis of 2-
nodes. For this reason we postpone all details concerning 2-nodes and begin by
discussing the other types of nodes.

Consider a chain node S with unique child A. Let e be an edge with an end in
S−A. We’ll call e “p-directed” (for “parent-directed”) if it’s oriented consistent
with S’s family (I or O) and “c-directed” (for “child-directed”) if it’s oriented
consistent with A’s family. (See Fig.1.) In precise terms e is p-directed if either

(i) S ∈ IF and e enters S or A, or
(ii) S ∈ OF and e leaves S or A.
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(b)

(a)

(c)

Fig. 1. Chain nodes with their unique child. Circles represent I-sets and squares rep-
resent O-sets. The chain node is outermost and drawn heavy. (a) 1-nodes and their
available edge ends. The edges are both p-directed and c-directed. (b)–(c) 2-nodes and
their corresponding available edges, when the 2-node is (b) the root, (c) a leaf. In (b)
the edges are p-directed and in (c) the edges are c-directed

Similarly e is c-directed if either

(i) A ∈ IF and e enters S or A, or
(ii) A ∈ OF and e leaves S or A.

Note that in (i) only one of the two possibilities holds, i.e., e cannot enter both
S and A, since it has an end in S − A. Similarly in (ii). Also for a 1-node the
notions of p-directed and c-directed are identical, while for a 2-node they are
opposites.

Let vertex v be an end of edge e and let S be a node of F . Below we define
when v, as an end of e, is available to S. For simplicity we will abbreviate this to
“v is available to S” except when it is necessary to refer to e. The definition for
1-nodes is illustrated in Fig.1(a). Availability to 2-nodes will be defined later,
here we give the definition for all the other cases.

Definition 1. End v of edge e is available to node S of F if (i) or (ii) holds:
(i) When S is a leaf, v ∈ S, and e is directed consistent with S’s family, i.e.,

either S ∈ IF and e enters S or S ∈ OF and e leaves S.
(ii) When S is a 1-node, v ∈ S −A for A the child of S, and e is p-directed

(equivalently, c-directed).

Clearly laminarity implies that v, as an end of e, is available to at most one
node.

Lemma 2. The number of ends available to leaves of F exceeds twice the number
of leaves and branching nodes.
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Proof. A leaf S ∈ IF is entered by ≥ 4 fractional edges. (If not, x·ρ(S) a positive
integer makes xe ≥ 1/3 for some entering edge e.) Let F have � leaves. Hence
≥ 4� edge ends are available to the leaves. F has < � branching nodes, since
any rooted forest has fewer branching nodes than leaves. The lemma amounts
to 4� = 2(2�).

The rest of the proof is based on the linear independence of the vectors
{ρ(S) : S ∈ I} ∪ {δ(S) : S ∈ O} (Lemma 1).

Lemma 3. Each 1-node has at least two available ends.

Proof. Consider a 1-node S with child A, where wlog S,A ∈ IF . The vector
a = ρ(S) − ρ(A) has entries 0,±1. Every edge e with ae = ±1 has an end
available to S: If ae = 1 then e enters S but not A. If ae = −1 then e enters A
but not S. In both cases e is p-directed and has an end in S −A available to S.

Now we need only show a has ≥ 2 nonzero entries. a 	= 0 by linear indepen-
dence. x ·a is a signed sum of fractions xe that is an integer (Lemma 1) so there
cannot be only 1 nonzero ae.

We turn to the 2-nodes. From Lemmas 2–3 it suffices to show the 2-nodes
pay for themselves. We begin with two simple facts that form the core of the
proof:

Proposition 1. (i) For any sets A ⊆ S ⊆ V , δ(S) = δ(A) + δ(S−A, V −S)−
δ(A,S −A). Similarly for ρ(S).

(ii) For any S ⊆ V partitioned into sets Ai, i = 1, . . . , r, δ(S) − ρ(S) =∑r
i=1 δ(Ai) − ρ(Ai).

For each node S of F define FS to be the minimal subtree of F having S as
its root and each leaf either a leaf of F or a 2-node. As a simple example, FS is
the single node S when S is a leaf or a 2-node.

For each 2-node S we define a second subtree F∗
S . F∗

S is defined like FS except
S must be interior. More precisely F∗

S is the minimal subtree of F having S as
its root and each leaf either a leaf of F or a 2-node other than S.

The various trees F∗
S can overlap: A 2-node S occurs at the root in F∗

S , and
also as a leaf in F∗

T for T the first 2-node that is a proper ancestor of S (if such
an ancestor exists). It is easy to see these are the only possible overlaps.

We now complete the definition of availability. See Fig.1(b)–(c).

Definition 2. End v of edge e is available to the 2-node S if

(i) v (as the end of e) is not available to any leaf or 1-node;
(ii) the deepest node of F that contains v, say X, belongs to F∗

S;
(iii) if X is a 2-node then either X = S and e is p-directed, or X 	= S and

e is c-directed.

An end v of edge e is available to at most one node S of F . This is clear unless
X belongs to two trees F∗

S . In that case X is a 2-node and the trees are F∗
X and

F∗
S for some S 	= X. Since X is a 2-node edge e cannot be both p-directed and

c-directed (as in Fig.1(b)–(c)). Hence (iii) makes v available to only one of X
and S.
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The analysis of 2-nodes uses Proposition 1 to derive a nontrivial linear equa-
tion for ρ(S) (δ(S)) when S is a 2-node in IF (OF ). We call this equation the
“r-expansion” of ρ(S) (δ(S)), since it is used at the root of F∗

S . The r-expansion
will immediately give the two edge ends that pay for S. We derive the r-expansion
from similar equations for the other nodes of F∗

S . More precisely we use similar
equations for δ(S) (ρ(S)) when S is an arbitrary node in IF (OF ). We call these
equations the “n-expansion” of δ(S) (ρ(S)) since they are used at the nonroots
of F∗

S . Notice the switch, e.g., when S is a 2-node in IF the r-expansion is for
ρ(S) and the n-expansion is for δ(S). We will now give a precise definition of
r-expansions. After that we’ll give the modifications needed for n-expansions.

We use this additional notation: If T is a subtree of F then T denotes the
tree T extended by including the (unique) child of each 2-node leaf of T . For
instance Fig.1(b) illustrates FS for a 2-node S.

Definition 3. Let S be a 2-node. If S ∈ IF (OF) an r-expansion for ρ(S)
(δ(S)) is an equation whose left-hand side is ρ(S) (δ(S)) and whose right-hand
side is ∑

A∈O

σAδ(A) +
∑
B∈I

σBρ(B) +
∑

e∈AV

σee (2)

where

(i) σA, σB and σe are integers;
(ii) O (I) is a set of nodes contained in F∗

S ∩ OF − S (F∗
S ∩ IF − S);

(iii) AV is a set of edges, each having an end that is available to S.

It can be proved that in our derivation all σ factors are actually just signs,
±. Our main result only requires the σ’s to be integral. So this paper will ignore
this special property.

Example 1. Consider three chain nodes, O,O′ ∈ OF , I ∈ IF , with I the unique
child of O and O′ the unique child of I. Clearly O and I are 2-nodes. It is possible
that I represents the same set as O or O′. The tree F∗

O consists of root O and
leaf I; F∗

O consists of O, I and leaf O′. The r-expansion of δ(O) will derive from
Proposition 1(i) and have the form δ(O) = δ(O′) +

∑
σee.

To extend Definition 3 to n-expansions let S be an arbitrary node (possibly a
2-node). Let Ŝ be the first proper ancestor of S that is a 2-node, if such exists. If
S ∈ IF (S ∈ OF ) an n-expansion for δ(S) (ρ(S)) is defined just like Definition
3 changing (ii)–(iii) to the following:

(ii ′) O ⊆ FS ∩ OF and I ⊆ FS ∩ IF ;
(iii ′) AV is a set of edges, each having an end that is available to Ŝ.
The following is our main lemma.

Lemma 4. Consider a node S ∈ IF . δ(S) has an n-expansion, and if S is a
2-node then ρ(S) has an r-expansion. Symmetrically for a node S ∈ OF .

Proof. The proof is by induction on the height of S in F . The inductive assertion
consists of the equation for δ(S) or ρ(S) with right-hand side (2), plus properties



On the L∞-Norm of Extreme Points 401

(i) –(ii) below. The two properties simply restate the remaining restrictions from
Definition 3 and its extension.

The notation Ŝ was introduced for n-expansions as the first proper 2-node
ancestor of S. To unify the two cases take Ŝ to be S for r-expansions.

Consider any vector e occuring in (2), i.e., e ∈ AV . We restate properties
(iii) and (iii ′) of the definitions:

(i) Edge e has an end v available to Ŝ.

Next we treat (ii) of Definition 3 and (ii ′). These statements are essentially
syntactic and require no explicit verification, except for excluding the term ρ(S)
in an r-expansion for ρ(S): In the following O and I refer to the sets of (2).

(ii) In an r-expansion for S, S /∈ O ∪ I.

We organize the induction in three cases corresponding to the node types leaf,
chain, and branching respectively. We always assume that we seek an expansion
(r- or n-) for δ(S). This implies S ∈ IF for an n-expansion and S ∈ OF for an
r-expansion. The argument for an expansion for ρ(S) is symmetric.

Case 1. S is a leaf of F . A leaf only has an n-expansion, so this case makes
S ∈ IF . FS consists of the single node S. The desired equation is

δ(S) =
∑

e

where e ranges over all edges leaving S. Property (i) holds since the tail of an
edge leaving S is not available to S (as S ∈ IF ) and so the tail is available to
Ŝ. (ii) is vacuous.

Case 2. S is a chain node. Let A be the unique child of S. We will sometimes
break the analysis into three subcases. Since we seek an expansion of δ(S) the
following subcases exhaust all possibilities:

(a) S is a 1-node. So A,S ∈ IF and we seek an n-expansion. Clearly Ŝ 	= S.
(b) S is a 2-node in IF . So A ∈ OF and again we seek an n-expansion. The

subtree FS consists of the single node S. Also Ŝ 	= S.
(c) S is a 2-node in OF . So A ∈ IF and we seek an r-expansion. The subtree

of interest is F∗
S , and Ŝ = S.

Proposition 1(i) applies to any chain node S and gives

δ(S) = δ(A) +
∑

±e (3)

where
∑

±e has e ranging over all edges with coefficient 1 in δ(S − A, V − S)
or δ(A,S −A).

We show the sum
∑

±e satisfies property (i) for v chosen as the end of e in
S − A: First suppose S is a 1-node. End v of e is not available to the 1-node S
(e is not p-directed since S ∈ IF ). Clearly this implies v is not available to any
leaf or 1-node. This makes v available to Ŝ.
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If S is a 2-node then obviously v is not available to any leaf or 1-node. If
S ∈ IF then S 	= Ŝ and e is c-directed (Fig.1(c)), so v is available to Ŝ. If
S ∈ OF then S = Ŝ and e is p-directed (Fig.1(b)), so again v is available to Ŝ.
This establishes (i).

We complete the analysis of Case 2 in two subcases. First suppose S is a 2-
node in IF . Then (3) is the desired n-expansion for S. The term δ(A) is allowed
in the expansion since A ∈ FS ∩ OF . (If S ∈ I ∩ O and A represents the same
set as S, our n-expansion is δ(S) = δ(A), i.e., δ(S) = δ(S). That’s fine.)

The remaining possibilities are that S is a 1-node, or a 2-node in OF . Both
alternatives have A ∈ IF . To get the desired n-expansion for δ(S), take (3) and
replace δ(A) by its n-expansion given by induction. (This expansion exists since
A ∈ IF .)

Property (i) holds by induction. For (ii) suppose S is a 2-node in OF . The
right-hand side of the expansion of δ(A) contains boundary vectors δ(C), ρ(C)
only for nodes C ∈ FA. Clearly C is not node S. (Note that if A represents the
same set as S, we have ρ(A) ≡ ρ(S) on the right-hand side of the expansion.
That’s fine.)

Case 3. S is a branching node. A branching node only has an n-expansion so
this case has S ∈ IF . Let the children of S be Ai, i = 1, . . . , r (r > 1). Each Ai

may belong to IF or OF . Define A0 to be the set S−
⋃r

i=1 Ai. It is possible that
A0 is empty, and of course A0 does not belong to L.

Proposition 1(ii) applied to the partition Ai, i = 0, 1, . . . , r gives

δ(S) = ρ(S) +
r∑

i=1

δ(Ai) − ρ(Ai) +
∑

±e (4)

where
∑

±e has e ranging over all edges incident to A0. This sum satisfies (i):
Let v be the end of e in A0. Clearly v is not owned by any leaf or 1-node, so v
is available to Ŝ.

To get the desired expansion for S, start with (4). Then for i = 1, . . . , r, if
Ai ∈ IF (Ai ∈ OF ) replace δ(Ai) (ρ(Ai)) by its n-expansion, respectively.

Note that property (i) continues to hold by induction. (ii) is vacuous. This
completes the induction.

Observe from the proof that each vector e in an expansion has |σe| ≤ 2. This
follows since e can be introduced into the expansion at most twice, once for each
of its ends.

Now we prove our goal, that each 2-node S has 2 available ends. By symmetry
assume S ∈ OF . In the r-expansion of δ(S) each boundary vector is either δ(C)
for C an O-set distinct from S, or ρ(C) for C an I-set. Since the boundary
vectors for L are linearly independent, the expansion involves ≥ 1 edge vector
term e. (If S ∈ OF corresponds to the same set of L as its child A ∈ IF then
ρ(A) ≡ ρ(S) may occur in the expansion. That’s fine.)

Finally suppose the expansion has exactly 1 term e. Multiplying the expan-
sion by x, all terms from boundary vectors (e.g., x · δ(S)) are integral. Thus
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σexe is integral. Now |σe| ≤ 2 implies xe is half-integral, contradicting xe < 1/3.
We conclude there are ≥ 2 terms e. This gives S 2 available ends. The analysis
of the charging scheme is complete.

4 Tight Example

This section summarizes the proof of:

Theorem 2. For any integer k ≥ 1, an infinite family of instances of the mini-
mum cost directed k-EC augmentation problem has (1/3, . . . , 1/3) as the unique
optimum solution to (LP ). Round-the-highest has approximation ratio 3 on these
instances (for both mincost k-EC augmentation and mincost k-ECSS).

A B A’ B’C

a’a

α

A B A’ B’C

β

γ

a’a

α

β

γ

(a)

A B

A B C

C

(c)

A’ B’

A’ B’

X

BA C A’ B’ BA C A’ B’

BA C A’ B’

(b)

X

BA C A’ B’

BA C A’ B’ BA C A’ B’

Fig. 2. Generic example. Every module has five incident edges A, B, C, A′, B′, all drawn
dashed. (a) Elementary modules of type O (left) and I (right). (b) Compound modules
of type O (left) and I (right). (c) Root modules
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w v’ w’v

C

C

(e)(d)

X

X1 X2
(c)

X

X1 X2 X2

X1

Fig. 3. k-ECSS graph for a generic example. (a) Subgraph for elementary O-module
and its parent vertex X. X is drawn hollow as it is in a different module. (b) Subgraph
for elementary I-module and its parent. (c) Subgraph for compound O-module with
two compound children. The X vertex of the compound module, and the X vertex
of the two children, are X, X1, X2 respectively. (d) Subgraph for compound I-module
with two compound children. (e) Subgraph for the root modules. The X vertex of the
two modules are X1, X2 respectively. The generic edges for elementary modules are
in the right graphs of (a) and (b); generic edges for compound modules and the root
modules are in Fig.2(b)–(c). All generic edges have multiplicity 1. Base edges are in the
left graphs of (a) and (b), and in (c)–(e). Base edges have multiplicity either k (drawn
solid) or k − 1 (drawn dashed)
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The proof begins with a “generic” example – a laminar family L, each set
having degree requirement exactly 1, along with a collection of edges such that
(1/3, . . . , 1/3) is the unique solution.

A generic example is constructed by starting with a number of elementary
modules (Fig.2(a)). A compound module is formed by combining two elementary
or compound modules (Fig.2(b)). The complete example (Fig.2(c)) is formed by
combining two compound modules, each called a root module.

Especially important is the asymmetry in the two halves of an elementary
module – without it the degree requirements become linearly dependent and we
lose uniqueness.

Uniqueness of the solution for L follows from the following lemma, which
indicates how the constraints flow up to the root modules and then back down
again. For simplicity we write A instead of xA, etc.

Lemma 5. Consider any set of edge weights satisfying all degree requirements
of a generic example.

(i) Any elementary module has A = B′ and B = A′. Furthermore each of the
five internal edges has the same weight as an external edge, A, B or C.

(ii) Any compound module has A = B′ and B = A′. Furthermore each of the
four internal edges has the same weight as an external edge, A, B or C.

(iii) Every edge incident to a root module has weight 1/3. Hence every edge
of the entire generic example has weight 1/3.

Next we show that for any k ≥ 1 the mincost k-ECSS problem can generate
any generic example as the system given by Lemma 1. The graph G for the k-
ECSS problem will consist of “base edges” and “generic edges”, the latter being
the edges of the generic example. The optimum extreme point x will have xe

equal to its upper bound (i.e., its multiplicity in G) for the base edges and equal
to 1/3 for the generic edges.

An elementary module plus vertex X of its parent module (Fig.2(a)–(b)) gives
rise to the subgraph of G illustrated in Fig.3(a) or (b). Each compound module
(Fig.2(b)) with two compound children gives rise to the subgraph of Fig.3(c)–(d).
The two root modules (Fig.2(c)) give rise to the subgraph of Fig.3(e).

In addition to the above vector x we define an integral vector y feasible
to (LP ), which will be a mincost k-ECSS: ye equals the upper bound on all
base edges and on all A,B,A′, B′, C ′ edges; ye equals 0 on the remaining edges
(a, a′, α, β, γ).

5 Mixed Graphs

Any algorithm with approximation ratio r for directed supermodular cut gives an
approximation ratio of ≤ 2r on mixed graphs if we apply the obvious reduction.
Applying iterated rounding directly produces inferior results:

Theorem 3. For any integer k > 1, an infinite family of instances of the min-
imum cost k-EC augmentation problem on mixed graphs has (2/n, . . . , 2/n) as
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the unique optimum solution to (LP ). On these instances round-the-highest has
approximation ratio n/2.

The example starts with a generic construction as in Section 4.
The theorem omits the case k = 1. In fact here iterated rounding does better:

Theorem 4. For any minimum cost 1-EC augmentation or internal augmenta-
tion problem on mixed graphs, any extreme point to (LP ) has L∞-norm ≥ 1/4.
This bound is tight on an infinite family of instances.

We finally note that when the given graph G is undirected, Jain’s algorithm
[7] provides a 2-approximation. This is because the given crossing supermodular
function can be replaced by a weakly supermodular function.
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Abstract. A basic question in Virtual Private Network (VPN) design is
if the symmetric version of the problem always has an optimal solution
which is a tree network. An affirmative answer would imply that the
symmetric VPN problem is solvable in polynomial time. We give an
affirmative answer in case the communication network within which to
create the VPN is a circuit. This seems to be an important step towards
an answer to the general question. The proof relies on a dual pair of linear
programs and actually implies an even stronger property of VPNs. We
show that this property also holds for some other special cases of the
problem.

1 Introduction

In this paper, we consider a problem that is known as the symmetric
virtual private network (VPN) problem, a problem emerging in telecommuni-
cation. Think of a large communication network represented by an undirected
graph G = (V,E), with a vertex for each user, and an edge for each link in the
network. Within this network, a subgroup W ⊆ V of the users, wishes to re-
serve capacity on the links of the network for communication among themselves:
they wish to establish a virtual private network. Vertices in W are also called
Terminals.

On each link, capacity (bandwidth) has a certain price per unit, c : E → R+.
The problem is to select one or more communication paths between every pair
{i, j} of users in W and to reserve enough capacity on the edges of the selected
paths to accommodate any possible communication pattern amongst the users
in W . Possible communication patterns are defined through an upper bound
on the amount to be communicated (transmitted and received) for each node
in W , specified by b : W → R+. More precisely, a communication scenario
for the symmetric VPN problem can be defined as a symmetric matrix D =
(dij){i,j}⊆W with zeros on the diagonal, specifying for each unordered pair of
distinct nodes {i, j} ⊆ W the amount of communication dij ≥ 0 between i and j.
A communication scenario D = (dij){i,j}⊆W is said to be valid if

∑
j∈W\{i} dij ≤

b(i), ∀i ∈ W . We denote the collection of valid communication scenarios by D.

M. Jünger and V. Kaibel (Eds.): IPCO 2005, LNCS 3509, pp. 407–421, 2005.
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A network consisting of the selected communication paths with enough capac-
ity reserved on the edges to accommodate every valid communication scenario
we call a feasible VPN. The (symmetric) VPN problem is to find the cheapest
feasible VPN.
There are several variants of the problem emerging from additional routing re-
quirements.

SPR Single Path Routing: For each pair {i, j} ⊆ W , exactly one path Pij ⊆ E is
to be selected to accommodate all traffic between i and j. The problem is then to
choose the paths Pij such as to minimize {

∑
e∈E cexe | xe ≥

∑
{i,j}:e∈Pij

dij ,∀e ∈
E ∀D ∈ D}.
TTR Terminal Tree Routing: This is single path routing with the additional
restriction that ∪j∈WPij should form a tree in G for all i ∈ W .
TR Tree Routing: This is SPR with the extra restriction that ∪{i,j}⊆WPij is a
tree in G.
MPR Multi-Path Routing: For each pair {i, j} ⊆ W , and for each possible path
between i and j the fraction of communication between i and j to be routed
along that path has to be specified.

The following lemma summarizes the rather obvious relations between the op-
timal solution values of these variants. By OPT (SPR) we denote the cost of an
optimal solution for the SPR variant of the VPN problem. Similar notation is
used for the other optimal values.

Lemma 1.

OPT (MPR) ≤ OPT (SPR) ≤ OPT (TTR) ≤ OPT (TR).

Proof. SPR is the MPR problem with the extra restriction that all fractions
must be 0 or 1. The other inequalities are similarly trivial. �

A prominent open question in VPN design is if SPR is polynomially solvable
(SPR ∈ P ), cf. Italiano et al. [8]. This question would be answered affirmatively if
one could prove that OPT (SPR) = OPT (TR), since Gupta et al. [6] have shown
that TR ∈ P (see also [9]). Gupta et al. [6] show that OPT (TR) = OPT (TTR)
and that OPT (TR) ≤ 2OPT (MPR). Erlebach and Rüegg [3] proved that MPR
∈ P , which also follows from our LP-formulation in Section 2. They also mention
that no VPN instance has been found so far for which even OPT (MPR) <
OPT (TR). Indeed, our conjecture is that OPT (MPR) = OPT (TR), from which
SPR ∈ P would follow. OPT (SPR) = OPT (TR) was not known to be true for
any class of graphs other than trees. It seems to be a crucial step forward to
prove it for circuits, which is implied by the main result in this paper.

Theorem 1. Let G = (V,E) be a circuit. Then OPT (MPR) = OPT (TR).

This theorem is proved in Section 3. The proof boils down to showing that the
cost of an optimal solution to TR equals the value of an optimal dual solution
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in a formulation of MPR as a linear program (LP). The LP for MPR is given in
Section 2, where the conjecture OPT (MPR) = OPT (TR) is restated in terms
of this LP.

In Section 4, we proceed to prove our conjecture, OPT (MPR) = OPT (TR),
for some other special cases. We prove it for any graph G and any cost function
c, if the communication bound of some terminal is larger than the sum of the
bounds of the other terminals. We also prove it for any graph on at most 4
vertices, and for any complete graph if the cost function c is identical to 1. We
also prove that the property OPT(TR)=OPT(MPR) is preserved under taking
1-sums of graphs, implying a common generalization of all the aforementioned
results.

The model of the VPN problem presented above was proposed for the first
time by Fingerhut et al. [4], and later independently by Duffield et al. [2]. They
also formulated the asymmetric version of the problem in which for each node
there is a distinction between a bound b− : W → R+ for incoming communica-
tion and a bound b+ : W → R+ for outgoing communication. Gupta et al. [6]
prove that even the TR problem is NP-hard for the VPN problem with asymmet-
ric communication bounds. However, the TR problem is solvable in polynomial
time if b−(v) = b+(v) for all v ∈ W . Italiano et al. [8] show that this is true
already if

∑
v∈W b−(v) =

∑
v∈W b+(v). The polynomial time algorithm for MPR

by Erlebach and Rüegg [3] has been derived for the asymmetric problem. Altin
et al. [1] present an LP-formulation of the general MPR VPN problem of poly-
nomial size, immediately implying polynomial solvability of this problem. We
devised a similar formulation independently, which we report in a full version of
the paper. Gupta et al. [6] and [7] study approximation algorithms for NP-hard
versions of the VPN problem.

The challenge remains to prove or disprove that SPR is polynomially solvable
on any graph.

2 A Linear Programming Formulation

Let G = (V,E) be a graph, W ⊆ V a set of terminals, b : W → R+ communica-
tion upper bounds, and c : E → R+ unit edge costs. Actually, we will regard b
as a function on V rather than on W (defining b(v) = 0 for v /∈ W ) and simply
identify W with the set of vertices {v ∈ V | b(v) > 0}. Thus, the triple (G, b, c)
defines an instance of the MPR or SPR or TR problem. We also use the notation
bv for b(v) and ce for c(e).

The set of all paths between vertices i and j in W is denoted by Pij . Let
P = ∪{i,j}⊆WPij . We introduce the variable xp for each p ∈ P. In the MPR
VPN problem we are to give (fractional) values to xp, for all p ∈ P, such that∑

p∈Pij
xp = 1 for all {i, j} ⊆ W .

Given values for xp, p ∈ P, computing capacity to be reserved on the edges,
ze, e ∈ E, is formulated as follows, where αe

p = 1 if edge e is on path p, and 0
otherwise:
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ze = max
∑

{i,j}⊆W

∑
p∈Pij

αe
pxpdij ,

s.t.
∑

j∈W dij ≤ bi, ∀ i ∈ W,

dij ≥ 0, ∀ {i, j} ⊆ W,

which, by strong duality, is equal to

ze = min
∑

i∈W biy
e
i ,

s.t. ye
i + ye

j ≥
∑

p∈Pij
αe

pxp, ∀ {i, j} ⊆ W,

ye
i ≥ 0, ∀ i ∈ W.

The MPR problem is to make a feasible choice for the variables xp such as to
minimize total reservation costs

∑
e∈E ceze, which by the above can be formu-

lated as

min
∑

e∈E ce

∑
i∈W biy

e
i ,

s.t. ye
i + ye

j −
∑

p∈Pij
αe

pxp ≥ 0, ∀ {i, j} ⊆ W, ∀ e ∈ E,∑
p∈Pij

xp = 1, ∀ {i, j} ⊆ W,

ye
i ≥ 0, ∀ i ∈ W, ∀ e ∈ E,

xp ≥ 0, ∀ p ∈ P.

(1)

MPR is the LP-relaxation of the SPR problem, in which all variables xp are
restricted to be 0 or 1. The dual of MPR is given by

max
∑

{i,j}⊆W μij ,

s.t.
∑

j∈W λe
ij ≤ cebi, ∀ i ∈ W, ∀ e ∈ E,

μij −
∑

e∈E αe
pλ

e
ij ≤ 0, ∀ {i, j} ⊆ W, ∀ p ∈ Pij

λe
ij ≥ 0, ∀ {i, j} ⊆ W, ∀ e ∈ E.

(2)

At this point, let us note that the separation problem over the dual polytope can
be solved in polynomial time. There is only a polynomial number of constraints
of the first type. For the second set of constraints, suppose we are given λe

ij

∀ {i, j} ⊆ W, ∀ e ∈ E, and μij ∀ {i, j} ⊆ W . Take for any pair {i, j} ⊆ W the
constraints for all p ∈ Pij together. To check if they are satisfied is a matter of
computing a shortest path between i and j in W , where each edge e ∈ E has
weight λe

ij . There are only polynomially many i, j pairs in W . It follows, using
the ellipsoid method (see [5]), that MPR can be solved in polynomial time, which
was also proved in [3].
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We proceed with investigating some properties of the problem. A tree solution
for the instance (G, b, c) is a solution to the TR problem, i.e., a tree in G spanning
the set of terminals W = {v ∈ V | b(v) > 0}, together with optimal capacity
reservations on the edges of the tree. It is rather straightforward to give an
explicit expression for the cost of a tree solution (cf. [6]). Given a tree T and
some edge e ∈ T let Le and Re be the two components of T − e. Then the
capacity required on e is min{b(Le), b(Re)}, whence the cost of the tree is given
by ∑

e∈T

min{b(Le), b(Re)}c(e). (3)

In [6] another expression is derived, based on which polynomial time solvability
of TR is concluded.

By weak duality and OPT (MPR) ≤ OPT (TR) the following conjecture is
equivalent to the conjecture that OPT (MPR) = OPT (TR).

Conjecture 1. For any instance (G, b, c), the cost of an optimal tree solution
equals the value of an optimal solution of the dual problem (2).

In this paper, we show that Conjecture 1 holds in several special cases, most
notably in case G is a circuit, and b and c are arbitrary.

We finish this section with some useful properties. We defer the proofs of
the following lemmas, which are in fact all rather easy, to the full version of the
paper.

Lemma 2. Let G be a fixed graph. If for any rational vectors b and c the cost of
an optimal tree solution to (G, b, c) equals the value of an optimal dual solution,
then the same is true for any instance (G, b, c) where b and c are real vectors. �

Lemma 3. For any β ∈ R+, the instance (G, βb, c) has a feasible dual solu-
tion of value βK if and only if the instance (G, b, c) has a feasible dual solution
of value K. Moreover, (G, βb, c) has a tree solution of cost βK if and only if
(G, b, c) has a tree solution of cost K. A similar statement holds if c is scaled
instead of b. �

The next lemma claims that edges of zero cost may be contracted or decontracted
when proving Conjecture 1. Contraction of e = {u′, v′}, by identifying the two
vertices u′ and v′ with one new vertex w′, transforms G into G/e = (V \{u′, v′}∪
{w′}, E′), with E′ := {{u, v} ∈ E | {u, v} ∩ {u′, v′} = ∅} ∪ {{w′, v} | {u′, v} ∈
E, v 	= v′} ∪ {{w′, v} | {v′, v} ∈ E, v 	= u′}. By the contraction of e in the
instance (G, b, c) we mean the instance (G′, b′, c′), where G′ = G/e, b′(v) = b(v)
for v 	= u′, v′, and b′(w′) = b(u′) + b(v′), and moreover c′({u, v}) = c({u, v}), if
w′ 	∈ {u, v} ∈ E′, and c′({w′, v}) = c({u′, v}) or c({v′, v}), or both values occur,
in case parallel edges arise (edges in G′ can be identified with those in E \ {e}).
We will denote this contraction (G′, b′, c′) by (G, b, c)/e.
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Lemma 4. Let (G = (V,E), b, c) be an instance, where e ∈ E has c(e) = 0.
Then (G = (V,E), b, c) has a dual solution of value K if and only if the contrac-
tion (G, b, c)/e has a dual solution of value K. Moreover, (G, b, c) has an optimal
tree solution of cost K if and only if (G, b, c)/e has an optimal tree solution of
cost K. �

The last lemma says that vertices with a communication bound of 0 and degree
2 in an instance (G = (V,E), b, c) can be neglected in proving Conjecture 1.
Suppose v′ ∈ V has degree 2 in V , and e1 = {u, v′}, e2 = {v′, w} are the two
edges incident with v′. Then shortcutting v′ results in the instance (G′, b′, c′),
where G′ = (V − v′, E \ {e1, e2} ∪ {u,w}), b′(v) = b(v),∀v ∈ V − v′, and
c′({u,w}) = c(e1) + c(e2), c′(e) = c(e), ∀e ∈ E \ {e1, e2}.
Lemma 5. Let (G = (V,E), b, c) be an instance, and v ∈ V a vertex of degree 2
in G with b(v) = 0. Denote the instance obtained from (G, b, c) by shortcutting
v by (G′, b′, c′). Then (G′, b′, c′) has a dual solution of value K, if and only if
(G, b, c) has a dual solution of value K. Moreover, (G′, b′, c′) has a tree solution
of cost K, if and only if the same holds for (G, b, c). �

3 The Circuit

In this section, we prove Conjecture 1 for circuits. We use the lemmas from
the previous section to prove that we may restrict ourselves to even circuits, i.e.,
circuits with an even number of vertices, in which each vertex has communication
bound 1.

Lemma 6. If Conjecture 1 holds for every instance (G, b, c) where G is an even
circuit and b ≡ 1, then it holds for every instance (G, b, c) where G is a circuit
and b is arbitrary.

Proof. Consider a general circuit instance (G = Cn, b, c). By Lemmas 5 and 2 we
can concentrate on instances with rational b(v) > 0, ∀v ∈ V . By Lemma 3 we may
divide b by gcd{1

2b(v)|v ∈ V }, making each b(v) a positive even integer. Finally,
by Lemma 4, we may substitute each path u, v, w by a path u, v1, v2, . . . , vN , w,
where N = b(v), setting b(v1) = . . . = b(vN ) = 1, and c({u, v1}) = c({u, v},
c({vk, vk+1}) = 0, c({vN , w}) = c({v, w}). Thus, we arrive at an even circuit
with b ≡ 1. �

From now on consider an even circuit G = C2n = (V,E) on which all vertices
have communication bound 1. We number the vertices starting at some vertex
and following the circuit in counterclockwise direction 0, 1, 2, . . . , 2n − 1. All
vertex and edge labels are taken modulo 2n. The edge {i−1, i} is denoted by ei,
or by i in case we use it as an index and no confusion with vertices is possible,
i = 0, . . . , 2n − 1. E.g., we will write ck for the unit cost c(ek) of edge ek. On
even circuits each edge ek has an opposite edge ek+n.

The cost of the tree solution obtained from the circuit by deleting the edge
ek is denoted by C(ek; c); we explicitly indicate dependence on c as the unit
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edge cost function, since we will use other unit cost functions later. Applying (3)
yields C(ek; c) =

∑n−1
i=1 i(ck−i + ck+i) + nck+n, which, by regrouping of terms,

can be written as

C(ek; c) =
k+n−1∑

j=k

j+n∑
i=j+1

ci =
k+n−1∑

j=k

H(j; c), (4)

where H(j; c) :=
∑j+n

i=j+1 ci is the so-called half-sum for vertex j, i.e., the sum of
the unit costs of the n edges on the path starting in j and ending with the edge
opposite to ej . From this expression the following equations are easily derived.

C(ek; c) − C(ek+1; c) = H(k; c) −H(k + n; c), ∀k = 0, 1, . . . , 2n− 1; (5)
H(j; c) −H(j − 1; c) = cj+n − cj , ∀j = 0, 1, . . . , 2n− 1. (6)

Now suppose that the tree obtained by deleting edge ek has minimum cost among
all spanning trees of the circuit, in other words C(ek; c) = mine∈E C(e; c). Then,
using (5), we have

H(k; c) −H(k + n; c) = C(ek; c) − C(ek+1; c) ≤ 0, and (7)
H(k − 1; c) −H(k + n− 1; c) = C(ek−1; c) − C(ek; c) ≥ 0. (8)

Subtracting (8) from (7) and applying (6) yields

2ck+n − 2ck = H(k; c) −H(k + n; c) −H(k − 1; c) + H(k + n− 1; c)
= 2C(ek; c) − C(ek+1; c) − C(ek−1; c) ≤ 0. (9)

Consequently, if ck = 0 then ck+n = 0 and 2C(ek; c)−C(ek+1; c)−C(ek−1; c) = 0.
Hence,

ck = 0 ∧ C(ek; c) = min
e∈E

C(e; c)

⇒ C(ek+1; c) = C(ek−1; c) = C(ek; c) = min
e∈E

C(e; c), (10)

i.e., if ek minimizes C(e; c) and ck = 0, then ek−1 and ek+1 also minimize C(e; c).
In the case of an even circuit with b ≡ 1, the constraints of the dual linear
program (2) reduce to the following. (In a circuit there are only two possible
paths between any pair of vertices.)∑

j∈V \{i} λe
ij ≤ ce, ∀ i ∈ V, ∀ e ∈ E,

μij ≤
∑j

l=i+1 λel
ij , ∀ {i, j} ⊆ V,

μij ≤
∑i

l=j+1 λel
ij , ∀ {i, j} ⊆ V,

λe
ij ≥ 0, ∀ {i, j} ⊆ V, ∀ e ∈ E.

(11)

Given a cost function c : E → R+, we call the set of edges with non-zero unit
cost the support of c, i.e. supp(c) = {e ∈ E|ce > 0}. The following lemma is
crucial to the main result.



414 C.A.J. Hurkens, J.C.M. Keijsper, and L. Stougie

Lemma 7. Let G = (V,E) = C2n be an even circuit, with b ≡ 1. Let F ⊂ E,
F 	= ∅. Then there exists ĉ : E → R+, not identical to 0, with supp(ĉ) ⊆ F , such
that for all f ∈ F , C(f ; ĉ) = mine∈E C(e; ĉ) = K for some K ≥ 0. Moreover,
a dual solution (λ̂, μ̂) for the problem with cost function ĉ exists with objective
value K.

Proof. The proof is by induction on |F |. For |F | = 1, suppose F = {ek}. Setting
ĉk = 1 and ĉi = 0, ∀i 	= k. gives mine∈E C(e; ĉ) = C(ek; ĉ) = 0. A feasible dual
solution with objective value 0 is λ̂e

ij = μ̂ij = 0, ∀e ∈ E, ∀{i, j} ⊆ V . For the
case |F | > 1 we distinguish three cases.
Case 1: There exists a k such that ek ∈ F and its opposite ek+n ∈ F . In this
case we call F singular. See Figure 1.

a

b

Fig. 1. Example of a singular subset, depicted by bold lines

Consider the cost function ĉ : E → R+ defined by ĉk = ĉk+n = 1 and ĉi = 0
otherwise. It satisfies C(e; ĉ) = n, for all e ∈ E. The following dual solution is
feasible with respect to this cost function ĉ (see (10)) and has objective value∑

i<j μ̂ij = n:

λ̂ek
i,i+n = λ̂

ek+n

i,i+n = μ̂i,i+n = 1, ∀ i = 0, 1, . . . , n− 1,

λ̂e
ij = μ̂ij = 0, otherwise.

Case 2: F is not singular and there exist k and m, k < m < k + n, such that
ek ∈ F , em ∈ F , el /∈ F , ∀k < l < m, and el /∈ F , ∀k + n ≤ l ≤ m + n. See
Figure 2 with e = ek and f = em.
We contract the paths ek, . . . , em and ek+n, . . . , em+n to single edges e′ = (k −
1,m) and ē′ = (k − 1 + n,m + n), respectively, arriving at a new even cy-
cle (V ′, E′) with V ′ = {m,m + 1, . . . , k − 1 + n,m + n, . . . , k − 1} and E′ =
{em+1, . . . , ek−1+n, ē

′, em+n+1, . . . , ek−1, e
′}. Note that |V ′| = |E′| = 2(n−m−k)

and that edges that were opposite before contraction remain opposite after con-
traction. Also, the new edges e′ and ē′ are opposite.

Consider the subset of edges F ′ = F\{ek, em} ∪ {e′}. As 0 < |F ′| < |F | the
induction hypothesis tells us that there exists c′ : E′ → R+, not identical to 0,
with supp(c′) ⊆ F ′, a constant K ′ = mine∈E′ C(e; c′) = C(f ; c′),∀f ∈ F ′, and a
dual solution (λ, μ), with value K ′. Since e′ is a minimizer of C(e; c′), using (9)
and the fact that c′(ē′) = 0, we have
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f

e

Fig. 2. Contracting the circuit to a smaller one. F depicted by bold lines

c′(e′) = 1
2 (H ′(m + n; c′) −H ′(m; c′)) + 1

2 (H ′(k − 1; c′) −H ′(k + n− 1; c′)),

where H ′(j; c′) is the half-sum for vertex j on the smaller, contracted, circuit
with its corresponding cost function c′. Now we define the cost ĉ : E → R+ from
c′ as follows:

ĉm := 1
2 (H ′(m + n; c′) −H ′(m; c′)),

ĉk := 1
2 (H ′(k − 1; c′) −H ′(k + n− 1; c′)),

ĉi := c′
i, ∀{i− 1, i} ∈ F, i 	= k,m,

ĉi := 0, ∀{i− 1, i} ∈ E\F.

Note that ĉk + ĉm = c′(e′) and

ĉk + H ′(k + n− 1; c′) = ĉm + H ′(m; c′) = 1
2

∑
e∈E′ c′

e = 1
2

∑
f∈F ′ c′

f

= 1
2

∑
f∈F ĉ(f) = 1

2

∑
e∈E ĉ(e).

Hence, for the half-sums in the larger circuit, we have

H(j; ĉ) = ĉm + H ′(m; c′) = 1
2

∑
e∈E ĉ(e), j = k, . . . ,m− 1,

H(j; ĉ) = ĉk + H ′(k + n− 1; c′) = 1
2

∑
e∈E ĉ(e), j = k + n, . . . ,m− 1 + n,

H(j; ĉ) = H ′(j; c′), otherwise.

Using this in (4) yields C(ek; ĉ) = C(em; ĉ), and C(ek; ĉ) −C(f ; ĉ) = C(e′; c′) −
C(f ; c′), for all f ∈ F ′. Hence, C(f ; ĉ) = mine∈E C(e; ĉ) = K,∀f ∈ F , with
K = K ′ + 1

2 (m− k)
∑

e∈E ĉ(e).

To define the dual feasible solution with value K we represent V as V = V ′∪Ve′∪
Vē′ , with Ve′ = {k, k + 1, . . . ,m− 1} and Vē′ = {k +n, k +n+ 1, . . . ,m+n− 1}.
Again we construct the dual solution (λ̂, μ̂) for (V,E, ĉ) from the dual (λ, μ)
associated with (V ′, E′, c′):
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λ̂e
ij := λe

ij , for e ∈ F \ {ek, em}, {i, j} ⊆ V ′,

λ̂ek
ij := λe′

ij ĉk

c′(e′) , for {i, j} ⊆ V ′,

λ̂em
ij := λe′

ij ĉm

c′(e′) , for {i, j} ⊆ V ′,

λ̂e
ij := ĉ(e), for e ∈ E, i ∈ Ve′ , j = i + n,

λ̂e
ij := 0, otherwise,

μ̂ij := μij , for {i, j} ⊆ V ′,

μ̂ij := 1
2

∑
e∈E ĉ(e), for i ∈ Ve′ , j = i + n,

μ̂ij := 0, otherwise.

Case 2 is settled by verifying that (λ̂, μ̂) satisfies the dual constraints (11), and
has value∑

i,j∈V,i<j

μ̂ij =
∑

i,j∈V ′,i<j

μij +
∑

i∈Ve′

μ̂i,i+n = K ′ +
1
2
(m− k)

∑
e∈E

ĉ(e) = K.

Case 3: F is not singular and between each pair of consecutive edges from F
there is exactly one edge that is opposite to some other edge in F . See Figure 3.

0

1

2

3

4

Fig. 3. Example of an edge set with alternating edges and opposites

F consists of an odd number of edges, 2k+1 say, such that these edges and their
opposites are perfectly alternating. As a consequence, an edge e ∈ F and its
opposite ē /∈ F , split the other edges of F into two groups of size k. We call this
a uniform configuration. Let F = {f0, f1, . . . , f2k}, be numbered counterclock-
wise, with fi = (mi−1,mi). Denote the number of nodes between the consecutive



VPN Design: A Proof of the Tree Routing Conjecture on Ring Networks 417

edges fi and fi+1 by νi: i.e., νi := (mi+1 − mi) mod 2n and
∑2k

i=0 νi = 2n. We
note that subscripts i for ν, f etc. are taken modulo 2k + 1. Define

τi :=
k∑

j=0

νi+j −
2k∑

j=k+1

νi+j = 2(mi+k+1 −mi) mod 2n, i = 0, 1, . . . , 2k.

By uniformity,
∑k

j=0 νi+j >
∑2k

j=k+1 νi+j , whence τi > 0, i = 0, . . . , 2k. More-
over, 1

2τi equals the number of nodes between f̄i and fi+k+1 (or equivalently
between fi and f̄i+k+1).

We propose the following cost function ĉ. In the definition we use that νi+k =
1
2 (τi + τi+k).

ĉ(fi) :=
νi+k

τiτi+k
= 1

2 (
1
τi

+
1

τi+k
), i = 0, 1, . . . , 2k; ĉ(e) := 0, e /∈ F.

Observe the following identity, for i = 0, 1, . . . , 2k,

i+k∑
j=i

ĉ(fj) −
i+2k∑

j=i+k+1

ĉ(fj) =
i+k−1∑

j=i

(ĉ(fj) − ĉ(fj+k+1)) + ĉ(fi+k)

= 1
2

⎛⎝i+k−1∑
j=i

(
(

1
τj

+
1

τj+k
) − (

1
τj+k+1

+
1
τj

)
)

+ (
1

τi+k
+

1
τi+2k

)

⎞⎠
=

1
τi+k

> 0.

As a consequence, we have that consecutive edges from F yield the same cost,
as

C(fi; ĉ) − C(fi+1; ĉ) = C(fi; ĉ) − C(f̄i+k+1; ĉ) + C(f̄i+k+1; ĉ) − C(fi+1; ĉ)

= 1
2τi(ĉ(fi+1) + . . . + ĉ(fi+k) − ĉ(fi+k+1) − . . .− ĉ(fi+2k+1))

+ 1
2τi+k+1(ĉ(fi+1) + . . . + ĉ(fi+k+1) − ĉ(fi+k+2) − . . .− ĉ(fi+2k+1))

= 1
2τi(− 1

τi
) + 1

2τi+k+1
1

τi+k+1
= 0.

Using (10), we conclude that C(fi; ĉ) = mine∈E C(e; ĉ), for all fi ∈ F .

We now define a feasible dual solution by setting the λ̂-vector to

λ̂e
st :=

⎧⎪⎪⎨⎪⎪⎩
τi/2

νiνi+k
ĉ(e)

(
1 ± 1

τi

1∑
j ĉ(fj)

)
,
∀e ∈ E ∀i = 0, 1, . . . , 2k
∀s, t : mi ≤s < mi+1,mi+k ≤ t< mi+k+1,

0, otherwise,

μ̂st :=
∑

e:s<e≤t λ̂
e
st, ∀{s, t} ⊆ V.
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with + in the definition of λ̂e
st if fi < e ≤ fi+k and − if fi+k < e ≤ fi+2k+1.

Verifying that this solution satisfies the dual constraints (11) and that its value is
mine∈E C(e; ĉ) is deferred to the full version of the paper. It is a matter of basic
algebraic manipulations but not as easy as verifying feasibility in the previous
two cases. �

Theorem 2. Let G = (V,E) be an even circuit, c : E → R+, and b(i) = 1,
∀ i ∈ V . Then the cost of an optimal tree solution equals the value of an optimal
dual solution.

Proof. The proof is by induction on |supp(c)|. The theorem is clearly true if
|supp(c)| = 1, when deleting the only edge with positive unit cost yields a tree
solution with total cost 0. Setting all dual variables to 0 is feasible and yields
value 0.

Now suppose |supp(c)| > 1. Lemma 7 tells us that there exist a non-negative
non-zero cost function ĉ, such that C(f ; ĉ) = mine∈E C(e; ĉ), ∀f ∈ supp(c), and
a dual solution (λ̂, μ̂) w.r.t. ĉ with the same objective value. Define cost vector
c′ as c′ := c− σĉ, where σ is a scalar chosen such that c′ is non-negative and at
least one f ∈ supp(c) has c′(f) = 0. Such a scalar exists, since supp(ĉ) ⊆ supp(c)
and supp(ĉ) 	= ∅.

Let C(e∗; c′) = mine∈E C(e; c′). By (10), we can assume that e∗ ∈ supp(c′) ⊂
supp(c). Since |supp(c′)| < |supp(c))|, the induction hypothesis may be applied
to c′, giving a feasible dual (λ′, μ′) w.r.t. c′ of value

∑
μ′

vw = C(e∗, c′). The
solution (λ, μ) := (λ′, μ′) + σ(λ̂, μ̂) is feasible w.r.t. c, as c = c′ + σĉ. Its value is
equal to C(e∗; c′) + σC(e∗; ĉ) = mine∈E C(e; c). �

This theorem together with Lemma 6 implies our main result, Theorem 1.

4 Other Cases Where the Conjecture Holds

In this section we present more classes of instances of VPN for which Conjecture
1 holds. We just give short comments on the proofs of the results here, necessarily
deferring full proofs to the full version of the paper.

The following lemma provides a useful tool.

Lemma 8. Let G = (V,E), b : V → R+, c : E → R+ be given. Let H = (V, F )
be the complete graph on V . Define c′({u, v}) for {u, v} ∈ F as the length of a
shortest path between u and v with respect to the length function c. If Conjecture
1 is true for the instance (H, b, c′) and the optimal tree solution has value K,
then it is also true for the instance (G, b, c) with the same optimal tree solution
value K. �

This lemma, the proof of which is rather straightforward, says that we may
concentrate on complete graphs and unit costs functions that are metrics, i.e.,
satisfy the triangle inequality. It is the key to prove Conjecture 1 for a class
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of instances, which in itself is not very significant, but the result allows for
developing further proof tools presented directly hereafter.

Lemma 9. For any instance (G = (V,E), b, c) such that u ∈ V exists with
b(u) ≥

∑
v �=u b(v), the cost of an optimal tree solution equals the value of an

optimal dual solution. �

The proof of this lemma is obtained by proposing the shortest path tree, with
respect to the length function c on G, from the “dominant” vertex as the optimal
tree solution and defining an appropriate dual solution.

The next lemma shows that the property that Conjecture 1 holds is preserved
under taking 1-sums. A 1-sum of two graphs is the graph obtained by identifying
a vertex of one graph with a vertex of the other graph. More precisely, let
G1 = (V1, E1) and G2 = (V2, E2) be disjoint graphs, take any v1 ∈ V1 and
v2 ∈ V2 and identify them, creating a vertex z, which is then the only vertex
common to V1 and V2, i.e., V1 ∩ V2 = {z}. The 1-sum of G1 and G2 in z is then
the graph G = (V1 ∪ V2, E1 ∪ E2).

Lemma 10. Let G = (V,E) be the 1-sum of G1 = (V1, E1) and G2 = (V2, E2)
in a vertex z. Let b : V → R+, and c : E → R+ be given. Then the cost of an
optimal tree solution equals the value of an optimal dual solution for the instance
(G, b, c) if the same holds for every instance of the form (G1, b1, c|E1) (where
b1 : V1 → R+ is arbitrary) and for every instance of the form (G2, b2, c|E2)
(where b2 : V2 → R+ is arbitrary), where c|Ei

denotes the restriction of c to Ei,
i = 1, 2.

The idea behind the proof is to create an optimal tree solution for G1 with all
demand of G2 concentrated in z, and similarly an optimal tree solution for G2.
The union is a tree solution in G, and an appropriate dual solution is formulated
to show optimality of this tree solution.

The next lemma states preservation of the property that Conjecture 1 holds
under insertion of edges, with the restriction that the unit cost on an inserted
edge is equal to the length of a shortest path between its endpoints. It provides
a kind of converse to Lemma 8.

Lemma 11. Suppose for the instance (G = (V,E), b, c) a tree solution of value
K and a feasible dual solution of value K exist, and suppose e := {u, v} /∈ E
for u, v ∈ V . Then for the instance (G′, b, c′) a tree solution with value K and a
feasible dual solution of value K exist, where G′ := (V,E ∪ {e}), c′|E = c, and
c′(e) is equal to shortest path distance in G between u and v with respect to the
length function c. �

This lemma, the proof of which is rather straightforward, implies that if c is a
tree metric or a circuit metric on G (meaning that it is completely determined
by its value on the edges of, respectively, a tree or a circuit in the graph), then
Conjecture 1 holds. This follows from the fact that Conjecture 1 is obviously
true for trees, and by Theorem 1 for circuits.

Our last proof tool is a way of rephrasing Conjecture 1. Let Φ(b, c) denote the
minimum value of the LP (1) as a function of b and c. For proving Conjecture 1,
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by Lemmas 3 and 8, we can concentrate on complete graphs and metrics c scaled
such that the optimal tree solution has value 1. Therefore, Conjecture 1 follows
from the statement that the minimum over all b and c of Φ(b, c) subject to the
following restrictions is 1:

min Φ(b, c)

s.t. bv ≥ 0, ∀v ∈ V,∑
v �=s bvcsv ≥ 1, ∀s ∈ V,

ce ≥ 0, ∀e ∈ E,

cuw ≤ cuv + cvw, ∀u, v, w ∈ V.

(12)

Here, we use cuv as shorthand for c{u,v}. The formulation (12), as well as the
Lemmas 4, 9, and 11 are used in the proof of the following result. It is a technical
proof which involves checking that Conjecture 1 holds, when b is fixed, for vertices
c of the polyhedron defined by (12). For graphs on 5 or more vertices, the number
and complexity of the cases to check grows enormously, and we have not been
able to extend the proof to such graphs.

Theorem 3. For any instance (G = (V,E), b, c) with |V | ≤ 4, the cost of an
optimal tree solution equals the value of an optimal dual solution. �

A similar approach, now studying vertices b of (12) for fixed c, is used to prove
Conjecture 1 for complete graphs with a cost function which takes the same
value on all edges.

Theorem 4. For any instance (G, b, c) with G a complete graph and c(e) = 1,
∀e ∈ E, the cost of an optimal tree solution equals the value of an optimal dual
solution. �

The lemmas and theorems presented above are combined in the following corol-
lary.

Corollary 1. Suppose G = (V,E) is a graph and c : E → R+ is a cost func-
tion such that every 2-connected component H = (V ′, E′) of G endowed with
the cost function c|′E is either a circuit, or a graph on at most 4 vertices, or
a complete graph with all edge costs equal. Then the cost of an optimal tree
solution equals the value of an optimal dual for the instance (G, b, c), for any
b : V → R+. �
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under traffic uncertainty, Proceedings of CTW04, 2004, pp. 24–27, extended version
at http://www.elet.polimi.it/upload/belotti/.



VPN Design: A Proof of the Tree Routing Conjecture on Ring Networks 421

2. N.G. Duffield, P. Goyal, and A Greenberg, A flexible model for resource management
in virtual private networks, ACM SIGCOMM Computer Communication Review 29
(1999), no. 4, 95–108.
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Abstract. The minimum cardinality 2-connected spanning subgraph
problem is considered. An approximation algorithm with a performance
ratio of 9/7 ≈ 1.286 is presented. This improves the previous best ratio
of 4/3 for the problem. An approximation algorithm with a performance
ratio of 5/4 in graphs with a minimum-degree of three at every node is
also presented. This class includes all 3-connected graphs.

1 Introduction

We study the minimum-cardinality 2-connected spanning subgraph (2-VCSS)
problem. In this paper, connectivity refers to vertex connectivity. When referring
to edge-connectivity, we will state so explicitly, and the analogous problem is
known as 2-ECSS. A graph is 2-connected if the deletion of any vertex, with its
incident edges, leaves a connected graph. A graph is said to be 2-edge-connected
if the deletion of any single edge does not disconnect it. Finding a minimum-
cardinality subset of edges, spanning all the vertices, that is 2-connected (or
2-edge-connected) is NP-hard.

Khuller and Vishkin [12] gave elegant algorithms for 2-VCSS and 2-ECSS
with ratios 5/3 and 3/2, respectively. Their paper introduced the idea of using
depth-first search (DFS) to solve the problem, and all subsequent papers have
used a similar framework. Developing on this work further, Garg, Santosh and
Singla [7] gave an improved algorithm for 2-VCSS whose performance ratio is
3/2. Cheriyan, Sebő and Szigeti [1] improved the approximation ratio to 17/12
for 2-ECSS using an ear decomposition of the graph in which the number of
odd-length ears is maximal.

Vempala and Vetta [15] designed new algorithms for both 2-ECSS and 2-
VCSS problems, with approximation ratios of 4/3 for both. The following key
concepts introduced by them have paved the way to design better algorithms.
They introduced the novel concept of a beta-structure to avoid hard configu-
rations. They also preprocessed the graphs to remove cut vertices and adjacent
degree two nodes. In addition, they used a solution to the “D2 problem” (minimal
subgraph in which each vertex is incident to at least two edges) as the starting
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point instead of an arbitrary DFS tree. Krysta and Kumar [13] improved the
ratio for 2-ECSS to about 1.3326 by employing a smart charging scheme. Jothi,
Raghavachari and Varadarajan [10] improved the ratio for 2-ECSS further to
5/4. They also claimed the same ratio for 2-VCSS, but did not provide any
details. Later, their claim for 2-VCSS has been withdrawn.

1.1 Our Contributions

We present an improved algorithm, and decrease the best-known approximation
ratio from 4/3 [15] to 9/7 for the 2-VCSS problem. We show that even better
ratios are possible in graphs in which the minimum degree of each vertex is
at least three. We present an algorithm that obtains a ratio of 5/4. There are
examples to show that our ratios are tight for the latter case.

2 Definitions

Let G = (V,E) be the given graph, with |V | = n. Let Opt be an optimal 2-VCSS
of G. We will also use Opt to denote the cardinality of an optimal 2-VCSS of
G, and this should cause no confusion. A node v is called a beta vertex if the
removal of some two nodes x and y from G (along with their incident edges)
results in at least three connected components with one of them containing just
v. This definition extends to the concept of a beta pair. A subgraph H = (V,E′)
with E′ ⊆ E is called D2 if the degree of each node is at least 2. A 2-matching
is a subgraph, all of whose nodes have degree 2 or less. It is easily shown that
the minimal D2 and the maximal 2-matching problems are closely related, and
a solution for one can be easily converted into a solution for the other. Both
problems are solved using algorithms for matching.

Vempala and Vetta [15] showed that there is no loss of generality in assuming
that G has neither beta vertices or pairs, nor adjacent degree-2 nodes. We will
use their preprocessing steps and apply our algorithm only on such preprocessed
graphs. In addition, as in [10], we will start with a minimal 3-cycle-free D2,
or equivalently, a maximal 3-cycle-free 2-matching. It is easy to convert any
minimal D2 into a maximal 2-matching by deleting all but two edges at every
node whose degree is more than 2, and a similar transformation in the other
direction is also possible.

A set of vertices W is defined to be a witness if its removal with its incident
edges from the graph results in more components than |W |. In any 2-VCSS, there
must be at least two edges that connect each component to vertices outside it.
Therefore if there are x components when W is removed, there are at least 2x
edges incident to W in any 2-VCSS. Since x > |W |, the sum of the degrees of
nodes in W is at least 2|W |+2. We will show that |V | plus the number of disjoint
witness sets in the graph is a lower bound on a 2-VCSS.

A pair of vertices is called a nontrivial 2-cut if its removal from the graph
results in at least two components that are not singleton vertices. We will show
that the 2-VCSS problem in graphs with nontrivial 2-cuts can be solved using
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divide-and-conquer, by splitting the graph into two parts, finding 2-connected
subgraphs for each and then combining the solutions to generate a 2-VCSS for
the given graph.

3 New Techniques and Lower Bounds: How to Break the
4/3 Barrier

3.1 The Degree Lower Bound

We defined a ’witness’ earlier, as a set of vertices whose removal generates more
components than its cardinality. Vempala and Vetta [15] used the D2 lower
bound, which is the minimum number of edges in a subgraph (not necessarily
connected) in which each vertex has degree greater than or equal to 2. We
show an example in which none of the previous methods can guarantee a ratio
better than 4/3. We show that a collection of disjoint witness sets gives a new
lower bound on an optimal 2-VCSS, and use it to improve the approximation
ratio to 9/7 ≈ 1.286. Let the number of paths in a maximum cardinality 2-
matching of G be denoted by p. Jothi, Raghavachari and Varadarajan [10] proved
that Opt ≥ n + p. If the number of disjoint witness sets in the graph is w, we
show that Opt ≥ n + w. We can combine the two lower bounds and write it as
Opt ≥ n + max{w, p}. We have examples where this new lower bound allows
us to prove better ratios than just the D2 lower bound. Using this new lower
bound, we are able to tackle some of the tough configurations. The graph in
Fig. 1 demonstrates the use of a witness. Previous algorithms for 2-VCSS do not
use the witness lower bound, and therefore would get only a 4/3 ratio for this
example.

1 2 3 4 6 8 9 10 11 13 14 15 16 17 18 19 2070 5 12

c1 c7 c13

c10c4 c16

c19

Fig. 1. This example demonstrates the use of improved lower bound. The set
{v1, v3, v4, v6} forms a witness since the deletion of vertices in this set results in five
components: i.e., {v0}, {v2}, {v5}, {c1} and {v7 . . .}

Proposition 1. Let G = (V,E) be a graph defined on n ≥ 4 vertices. Let w be
the number of disjoint witness sets in a graph and Opt be the cardinality of an
optimal 2-VCSS of G, then Opt ≥ n + w.

Proof. Every vertex has a degree greater than or equal to 2 in any 2-VCSS of G,
including an optimal solution. This can be viewed as the “degree lower bound”
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on Opt. In addition, each witness W contributes an extra 2 to the degree lower
bound because the removal of W generates more components than its cardinality.
Since each of these components have at least 2 edges connecting them to W in any
2-VCSS, there are at least 2|W |+ 2 edges incident to W in it. Since the witness
sets are disjoint, the lower bounds on their degrees are cumulative. Therefore the
sum of the degrees of all vertices in Opt is at least 2(n + w), and Opt ≥ n + w.

3.2 Charging Strategy

Jothi, Raghavachari and Varadarajan [10] proved that Opt ≥ n + p, where p
is the number of paths in maximal 3-cycle free 2-matching. If the number of
disjoint witness sets in the graph is w, we showed that Opt ≥ n + max{w, p}.
Therefore, if our target ratio is α ≥ 1, we can use up to α(n+max{w, p}) edges.
We account for the edges in our solution by distributing “charges” to different
objects (such as vertices, paths and witness sets), such that the total charge is
at most α(n + max{w, p}). In each step of the algorithm, as edges are added
to our solution, we pay for the edges using the charges available to the objects
involved. Each vertex is allocated a “vertex charge” of α. Each path in the initial
2-matching is assigned a “path charge” of (2α− 2), and each witness is assigned
(2 − α) as “witness charge”.

Proposition 2. If the goal is to obtain an α-approximation algorithm, we can
always assign (2α− 2) charge to each witness and (2 − α) charge to each path.

Proof. We know that Opt ≥ n+p, where p is the number of paths in an optimal
(maximum) 2-matching. Also Opt ≥ n + w, where w is the number of disjoint
witness sets. So, opt ≥ n + max{w, p}. If each witness is assigned (2α − 2)
charge, total charge assigned to all witnesses in the graph is (2α − 2)w. If each
path is assigned (2 − α) charge, total charge assigned to all paths in the graph
is (2 − α)p. So, the total charge assigned to both paths and witnesses is (2α −
2)w + (2−α)p ≤ (2α− 2)max{w, p}+ (2−α)max{w, p} = α max{w, p}. Since
opt ≥ n+max{w, p}, we can distribute α max{w, p} to the paths and witnesses
as stated in this proposition, when our goal is to obtain an α-approximation
algorithm.

3.3 Decomposition Techniques

In this subsection, we present decomposition techniques that allow us to focus
on graphs with a simplified structure. We use this decomposition procedure after
the graph has been preprocessed to remove beta vertices, beta pairs and adjacent
degree-2 vertices [15].

Nontrivial 2-Cuts. We defined a pair of vertices to be a nontrivial 2-cut if when
removed from the graph, the remaining graph has at least two components that
are not singleton vertices (see Fig. 3). We show that if the input graph has a
nontrivial 2-cut, it can be partitioned into 2 graphs, and the 2-VCSS problem
can be solved independently in these two graphs. If any of these graphs has less
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1 2 3 4 6 8 9 10 11 12 13 14 15 16 17 18 19 2070 5

Fig. 2. This example demonstrates the use of a nontrivial 2-cut. There are several
nontrivial 2-cuts in this example. {v4, v7} is one of them. This is one of the tough
configurations. We would preprocess the graph for nontrivial 2-cuts and apply our
algorithm on decomposed graphs as explained below. So, our algorithm does not have
to deal with this configuration

than 10 nodes, the 2-VCSS problem on it is solved optimally. Otherwise, we
show that an approximation algorithm that outputs a solution that uses at most
αOpt−4(α−1) edges for graphs without nontrivial 2-cuts can be used to find an
αOpt − 4(α − 1) approximation algorithm for arbitrary graphs. We decompose
the given graph using the procedure described below until each graph has no
nontrivial 2-cuts. Then we find approximate solutions for each of these graphs,
and then combine the solutions to generate a solution to the original graph. The
graph in Fig. 2 demonstrates the use of 2-cut. On this example, the previous
algorithms find only a 4/3 approximation. Since it has a nontrivial 2-cut, our
algorithm decomposes the graph into two parts and solves them separately.

We assume now that we have an approximation algorithm for 2-VCSS in
graphs with out non trivial 2-cuts that finds a solution containing at most αOpt−
4(α − 1) edges. Suppose we are given a graph that has nontrivial 2-cuts. We
find a 2-VCSS in it using the following recursive algorithm. Let C1 and C2 be
two components, that are not singleton vertices, resulting from the given graph
G = (V,E) when a nontrivial 2-cut {u, v} is deleted. Let G1 be the graph that

C2

C1

vu

G2

c1

C2

u v

G1
G(V,E)

C1

u v

c2

Fig. 3. {u, v} is a nontrivial 2-cut in this picture. C1 and C2 are components that are
not singleton nodes. G1 and G2 are also shown
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results from G after contracting C2 in to a single node, and let G2 be the graph
resulting from G after contracting C1 in to a single node (see Fig. 3). We now
find an approximate 2-VCSS in each of G1 and G2 recursively, and combine the
solutions, dropping the edges incident to the contracted nodes (see Fig. 3). We
will describe an algorithm later that finds an approximate 2-VCSS of G with
at most αOpt − 4(α − 1) edges if G has no nontrivial 2-cuts. We first show in
the following proposition that the divide-and-conquer scheme above combines
approximate solutions to G1 and G2 to get an approximate 2-VCSS of G with
at most αOpt− 4(α− 1) edges.

Proposition 3. Consider a graph G = (V,E) with |V | = n ≥ 4 vertices. Let C1

and C2 be some components that are not singleton vertices in G when vertices
{u, v} are deleted with their incident edges. Let G1 be the graph resulting from
G after C2 is contracted to a single node, and let G2 be the graph G that results
after contracting C2 to a single node (see Fig. 3). If both G1 and G2 have more
than 9 nodes in each of them, we can combine αOpt− 4(α− 1) approximate 2-
VCSS solutions to G1 and G2 to obtain an αOpt−4(α−1) approximate 2-VCSS
solution of G. If G1 has less than 10 nodes, we can combine optimal 2-VCSS
solution of G1 and αOpt−4(α−1) approximate 2-VCSS solution of G2 to obtain
an αOpt− 4(α− 1) approximate 2-VCSS solution of G.

Proof. Let the contracted node in G1 be c2 and the contracted node in G2

be c1. Consider an optimal 2-VCSS of G. Let the number of its edges contained
entirely within C1∪{u, v} be Opt1, and the number of its edges contained within
C2 ∪{u, v} be Opt2. Observe that Opt = Opt1 +Opt2, since an optimal solution
will not have an edge between u and v (because it would not be critical to its
2-connectivity).

Let OPT (G1) and OPT (G2) be the cardinalities of optimal 2-VCSS solutions
of G1 and G2 respectively. By construction, c1 and c2 are degree-2 nodes in G2

and G1 respectively. Observe that OPT (G1) = Opt1+2 and OPT (G2) = Opt2+2
as the combination of 2-VCSS solutions of G1 and G2 with out the nodes c1 and
c2 and the edges on them gives the 2-VCSS solution for G and any 2-VCSS
solution for G can be decomposed in the solutions for G1 and G2 by contraction
C2 and C1 respectively.

Consider the case when G1 and G2 have more than 9 nodes in each of them.
We are given αOpt − 4(α − 1) approximate 2-VCSS solutions to G1 and G2.
We delete c2 and two edges incident on it from G1’s solution and c1 and two
edges incident on it from G2’s solution and combine it to get a solution for G. So,
solution for graph G would incur αOPT (G1)−4(α−1)+αOPT (G2)−4(α−1)−4
edges. i.e., α(Opt1 + 2)− 4(α− 1) + α(Opt2 + 2)− 4(α− 1)− 4 This is equal to
αOpt− 4(α− 1).

Consider the case when G1 has less than 10 nodes. In this case, we find an
optimal 2-VCSS of G1, and a 2-VCSS of G2 that uses at most αOpt− 4(α− 1)
edges, We delete c2 and two edges incident on it from G1’s solution, and also
delete c1 and two edges incident on it from G2’s solution, and take the union
of the two solutions and return it as a solution for G. So, solution for graph
G would incur OPT (G1) + αOPT (G2) − 4(α − 1) − 4 edges. i.e., (Opt1 + 2) +
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α(Opt2 + 2) − 4(α − 1) − 4. This is at most αOpt− (α − 1)(2 + Opt1). We can
see that (α − 1)(2 + Opt1) ≥ 4(α − 1) as Opt1 ≥ 2 (since components are not
singleton nodes).

3.4 Plunder

The operation in which we replace an edge with a path in an ear is plunder. It has
an effect of adding at least one edge to the ear. The graph in Fig. 4 demonstrates
the use of plunder operation. Nodes v0 and v1 together represent the current 2-
connected component, with v1 as hinging node for the remainder of the path.
Node c1 is a child of v1 that heads a path. Here, the graph is Hamiltonian, and
the 2-matching consists of all 6-cycles. The previous algorithms find only a 4/3
approximation, because they can add only 3 new nodes for each ear. We use
plunder operation and add at least 7 new nodes with 2 ears. The two ears we
choose are v1v7v6v5v4v3v0 and v1v2v3. But with there ears, we added only 6 new
nodes. Now we use plunder operation to replace the edge (v1, v7) with a path
v1c1 . . . v7. So, we added at least 7 new nodes with two ears. Plunder seems to
be necessary to get a 9/7 approximation in this example.

1 2 4 6 8 9 10 11 12 13 14 15 16 17 18 19 200 753

c1 c7 c13

c10c4

c19

c16

Fig. 4. This example demonstrates the use of the plunder operation. Here, the graph
is Hamiltonian, and the 2-matching consists of all 6-cycles. Plunder operation helps
us to get 9/7 approximation in this example. The previous algorithms find only a 4/3
approximation, because they can add only 3 new nodes for each ear. The plunder
operation seems to be necessary to get a 9/7 approximation in this example

3.5 Expendable Edge

An expendable edge is an edge that is not included in some optimal 2-VCSS
of the graph. In general, identifying whether an edge is expendable is NP-hard.
This can be argued as follows. If we have a polynomial time subroutine to find all
the expendable edges, we can use that as a subroutine to find an optimal solution
by finding all the expendable edges in the given graph and deleting them. When
there are no expendable edges. we are left with an optimal solution.

However, there are instances when we can identify that some edge in the
graph is expendable using a polynomial time algorithm, and in these cases, we
can safely delete that edge from the graph and run the 2-VCSS algorithm on
the remaining graph. This will not affect the performance of the algorithm since



Approximation Algorithms for the Minimum Cardinality 2-VCSS Problem 429

V1
V5

V3

V2

V4

A B

Fig. 5. Example that shows an expendable edge. In this example, if edge(A, B) exists,
(v1, v5) is an expendable edge. Otherwise, v2 is a beta vertex. i.e, removal of v3 and v1

results in three components and one of them is just v2

deleting an expendable edge does not change the cardinality of Opt. Deleting
expendable edges helps in avoiding some tough configurations. We define a spe-
cific configuration with an expendable edge and prove that it is not there in
at least one optimum solution in the following proposition. We delete all such
expendable edges in the given graph before applying the our algorithm to the
graph. So, our algorithm assumes there are no expendable edges in the graph
as in Proposition 4. The graph in Fig. 5 has an expendable edge (V1, V5) if edge
(A,B) exists. Otherwise, v2 is a beta vertex, i.e, removal of v3 and v1 results in
three components and one of them is just v2.

Proposition 4. Consider a graph G = (V,E) with 6 or more nodes without
beta vertices, beta pairs and 2-cuts. Let v1v2v3v4v5 be a path in the graph. Let v2

and v4 be degree-2 vertices. Then, the edge (v1, v5) is an expendable edge, i.e.,
there exists an optimal 2-VCSS that does not include (v1, v5).

Proof. We will prove this lemma by contradiction. Suppose all optimal 2-VCSS
solutions have the edge (v1, v5). Let G′ = (V,E′) be one such optimal solution.
Since v2 and v4 are degree-2 vertices, all their incident edges must be in E′.
With the addition of the edge (v1, v5) to these edges, there are two vertex disjoint
paths between v1 and v5 in G′: v1v5 and v1v2v3v4v5. Therefore there are no other
vertex-disjoint paths between v1 and v5 in G′, because otherwise edge (v1, v5)
will not be critical in G′ for 2-connectivity, contradicting the assumption that it
is an optimal 2-VCSS.

Let S be a set of all vertices except v3 and v2 that have to go through either
v1 or v3 to reach v5 in G′. Let D be the set of all vertices except v3 and v4 that
have to go through either v3 or v5 to reach v1 in G′. Then, v1 is a member of
set S and v5 is a member of set D. If edge (u, v) exists such that u ∈ S and
v ∈ D and (u, v) 	= (v1, v5) in graph G, we can add that edge and delete (v1, v5)
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in G′. The resulting graph is also an optimal 2-VCSS, which does not include
(v1, v5). This contradicts the assumption that (v1, v5) is in all optimal solutions.
Therefore, G has no edges connecting a vertex in S with a vertex in D other
than (v1, v5).

If there is no such edge in graph G, there are three cases to consider. The
first case is when both S and D include nodes other than v1 and v5, respectively.
Removal of v1 and v3 generates three components: {v2}, S, and D∪{v4}, which
makes v2 a beta vertex. This is a contradiction, because G has no beta vertices.

The second case to consider is S has only one member in it, v1. Removal of
v3 and v5 generates three components: {v4} {v2, v1} and D, which makes v4 a
beta vertex. This is also a contradiction. The third case is when D has only one
member in it, v5. This case is dealt similar to the second case as it is symmetric.
Hence the claim is proved.

4 Overview of the Algorithm

We start with the same preprocessing steps used by Jothi et al. [10]. In addition,
we look for 2-cuts, expendable edges and decompose the graph as described in the
previous section. We will assume that the graph G has already been preprocessed
to ensure that it has no beta nodes and pairs, 2-cuts, expendable edges (as in
Proposition 4), and adjacent degree-2 nodes.

Algorithm VertexConnect(G)

1. We use Hartvigsen’s algorithm [8] to find, in polynomial time, a maximal
3-cycle-free 2-matching (maximal subgraph without 3-cycles, in which each
vertex is incident to at most two edges). Let the 2-matching that we obtain
be a collection of cycles C and a set of paths P .

2. BuildDFS; We elaborate this procedure in the next section.
3. For each DFS path Di, twoConnectDfsPath(Di); We elaborate this proce-

dure later.

Some useful propositions are stated here. Procedures BuildDFS and twoCon-
nectDfsPath are elaborated later.

Proposition 5. Let G = (V,E) be a 2-connected graph defined on n ≥ 4 ver-
tices. An optimal 2-VCSS of G has no 3-cycles.

Proposition 6. Let C and P be a set of cycles and paths in a maximal 3-cycle-
free 2-matching. There is no loss of generality in assuming that for each path
A ∈ P , each end vertex of A has a neighbor in G outside A.

Proof. If an end vertex u of A is connected only to nodes of A, then A can be
split into a cycle and a smaller path using an edge from u to the farthest vertex
in A to form a cycle. This operation yields another 2-matching with the same
number of edges. If the split results in a 3-cycle, then u is a degree-2 node with



Approximation Algorithms for the Minimum Cardinality 2-VCSS Problem 431

neighbors v and w. By Proposition 5, edge (v, w) is not in Opt and therefore we
delete it from G, making u and internal node of A. Repeating the above steps
finally yields a maximal 3-cycle-free 2-matching that satisfies the proposition.

4.1 BuildDFS Procedure

With C and P (cycles and paths in a maximum 2-matching) on hand, we build
a DFS tree of G using the following strategy. When the first node x1 of a cycle
X ∈ C, where X = {x1, x2, . . . , xk}, is discovered, we will make the DFS go
through the nodes of the cycle in sequence until it reaches the end of the cycle.
Upon reaching a leaf node, we take the subgraph induced by the last 9 nodes and
see if there is a different way of traversing them such that the new leaf vertex
is adjacent to an unvisited vertex. If such a reorganization is possible, we do so,
and the DFS is able to continue further. As a consequence, if xk is a leaf node in
the DFS tree, then all neighbors of x2 and xk in G are ancestors of xk. In other
words, these nodes do not have neighbors in G that are unexplored when X is
discovered by DFS.

When a path Y ∈ P is encountered by DFS, it is not necessary that the
initial node encountered be an end vertex of the path. We use the following idea
from [13] to handle paths. If DFS enters Y at one of its end vertices, then it goes
through the vertices of the path in that sequence. On the other hand, if a node
in the middle of Y is encountered, we continue along the longer segment of Y .
We have some exceptions to this rule like when we hit a 4-path in the middle,
we do not take the longer route. Instead, we take two nodes with the DFS path
and leave 2 nodes. Also, we do not further break a 3-path in to 2-path and a
single node path. Instead, we 2-connect it using the vertex charges and the path
charge it has been allocated. We could not provide all the details here due to
space restrictions. The proof of the following proposition involves describing all
these exceptions. We allocate the path charge of (2 − α) received by paths in P
to their smaller segments as follows:

Proposition 7. If α ≥ 5/4, the path charge of (2 − α) available to each path
can be assigned as follows: 3-node segments of a path receive at least 2−α each,
2-node segments receive at least 3−2α each, and 1-node segments receive at least
2 − α each.

We break the DFS tree into a sequence of paths in a natural way. The first
path starts at the root and goes down to the first leaf encountered. Every time
the DFS finds an unvisited vertex and starts a new search, we start building a
new path that extends up to the first leaf node encountered by it. Let these DFS
paths be D1, D2, . . . , Dp.

4.2 Two-Connecting the DFS Paths

We first start by 2-connecting D1, the first path in the DFS tree. We will try
to build an open ear decomposition of the nodes of D1, starting from the leaf.
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Once the ear decomposition reaches the root vertex, all vertices of D1 are two-
connected, which we will call as the “core”. We then proceed iteratively as fol-
lows. Out of the remaining paths, we select the path D whose head is visited
earliest by DFS and 2-connect their nodes to the core using the same ideas. Since
there are no cross edges with respect to a DFS tree, we are able to 2-connect
them one path at a time. At the end of the sequence, we get a solution that
is 2-connected and, in fact, we compute an ear decomposition of the solution
in which most ears contain at least 4 new nodes. There may be a few smaller
ears generated by residual segments with three or fewer nodes, and we account
for their edges by combining vertex charges, path charges and witness charges.
Since the paths D are generated by DFS, non-tree edges of G are all back edges.

If the graph under consideration has degree 3 or more at all vertices, and the
length of the DFS path is less than 8, we invoke procedure SmallPathsforDegree-
3. Otherwise, we 2-connect the DFS path in three steps. i.e., basis step, induction
step and final step. In general graphs, if the length of the DFS path is less than
11, we call procedure 2-connectSmallPaths. Otherwise, we 2-connect the DFS
path in three steps as before: basis step, induction step and final step.

Algorithm twoConnectDfsPath(Di)

1. If the given graph has degree three or more at all nodes and |Di| ≤ 7, call
procedure SmallPathsforDegree-3 and return.

2. Otherwise if |Di| ≤ 10, call 2-connectSmallPaths and return.
3. Basis step: find a cycle, starting from the leaf node.
4. Induction step: extend the open ear decomposition of Di by adding an ear

that consumes additional nodes of the path.
5. Finishing step: connect the ear decomposition of Di to the core, without

generating any cut vertices.

4.3 Two Connecting Small Paths

We will show that we can 2-connect each small path using the vertex charge
of α received by each vertex, path charge it may have been allocated and the
witness charge it may have been allocated. Paths with fewer than 4 nodes do not
have enough vertex charge available to pay for the edges needed to 2-connect
them. Since each cycle in C has at least four edges, a path Di with three or
fewer nodes must be a segment of a path in P . So they have path charge on
them. We 2-connect these paths and pay for the edges by combining their vertex
charge and path charge. Two connecting small paths with more than or equal
to 4 nodes is explained in the following paragraphs.

Degree-3 Graphs. If 4 ≤ |Di| ≤ 7, a single open ear that extends from the
core through all the vertices of Di is constructed. Edges of the ear are paid by
vertex charges, path charges that may have been allocated and witness charges
that may have been allocated. Details are given in full paper.
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General Graphs

1. If 4 ≤ |Di| ≤ 6, a single open ear that extends from the core through all the
vertices of Di is constructed. Edges of the ear are paid by vertex charges,
path charges that may have been allocated and witness charges that may
have been allocated. Details are given in full paper.

2. If 7 ≤ |Di| ≤ 10, Di is 2-connected to the core using two open ears. Edges
of the ears are paid by vertex charges, path charges that may have been
allocated and witness charges that may have been allocated. Details are
given in full paper.

4.4 Basis Step

In general, our strategy is to try to construct long cycles starting at a leaf. If we
find a long enough cycle starting from the leaf, we will generate enough surplus
charge to pay for the finishing step.

Degree-3 Graphs. In this case, we prove a ratio of α = 5/4. Therefore, each
vertex has a charge of 5/4 at each vertex, and a charge of 1/2 is available for
each witness. We show that when the path is long enough, either we can find
a 8-cycle, or we can find a 6 or 7-cycle with a witness. If we found an 8-cycle,
the nodes have a total charge of 10 available, and we pay for the 8-cycle, and
we have an excess charge of 2. On the other hand, we find a witness which has
an extra charge of 1/2 available, and including it, there is an extra charge of 2.
Therefore, we are able to generate a surplus charge of 2, and this will be utilized
by the finishing step.

General Graphs. Here, our target ratio is α = 9/7. Therefore each vertex has
a charge of 9/7, and a charge of 4/7 is available to each witness. In the basis
step, if the path is long enough, we show that we can always find one of the
following: (i) 7-cycle, or (ii) 6-cycle with a witness or (iii) 2 ears to two connect
first 11 nodes. Outline of the basis step is the following. We prove that we can
always find a 5 or longer cycle in general graphs. Then, we can either extend the
5-cycle to 6 or longer cycle or find an expendable edge. If we find an expendable
edge, we delete it and restart the algorithm. Otherwise, we find a 6-cycle and
show that we can either extend it to a 7 or longer cycle or find two ears to two
connect first 11 nodes starting from the leaf. In all cases, it can be verified that
we generate a surplus charge of 2, which is sufficient to pay for the finishing step.

4.5 Induction Step

After finding a first long cycle starting at the leaf, we assume that a 2-connected
component is hanging at the bottom of a DFS path. Now we try to find an
open ear that has two end points in the component and that includes several
contiguous new nodes which can pay for the edges of the ear. This step is called
induction step. With each step, the size of the 2-connected component hanging
at the bottom increases and the number of nodes needed to be 2-connected in a
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DFS path decreases. We continue performing induction step until the final step
in which we 2-connect the DFS path to the core. We will discuss the final step
in the next section.

If every node in the graph has degree three or more, we prove a lemma that
guarantees that either an open ear can be added that includes 4 or more new
nodes, or two open ears that include 8 or more new nodes. This is called as the
induction step for degree-3 graphs. For general graphs, we prove a lemma that
guarantees that either an open ear can be added that includes 4 or more new
nodes, or two open ears that include 7 or more new nodes. This is called induction
step for general graphs. We mention the induction lemma’s here. Proof’s for these
lemma’s are provided in the full paper.

Lemma 1 (Induction Step for Degree-3 Graphs). Consider a graph in
which each vertex has degree three or more. Let D be a DFS path whose vertices
are labeled v0, v1, v2, v3, ..., vq starting from the leaf vertex. Nodes v0 and v1 to-
gether represent the current 2-connected component, with v1 as the hinging node
for the remainder of the path. If there is a DFS path headed by v1’s child, let the
DFS path be D1. It is possible to do one of the following:

1. Find an ear with two end vertices v0 and v1 that includes all vertices in
{v0, v1, v2, . . . , vk} for some k ≥ min(q, 5).

2. If D1 has four vertices, (say vA, vB , vC , vD) find two ears that includes all
vertices in {v0, v1, v2, . . . , vk} for some k ≥ min(q, 5) and {vA, vB , vC , vD}
such that one ear’s end vertices are v0 and v1.

The ear may include plundered segments from the heads of unprocessed paths.
But, we do not plunder nodes from a DFS path that has exactly four vertices.

Lemma 2 (Induction Step for General Graphs). Let D be a DFS path
whose vertices are labeled v0, v1, v2, v3, ..., vq starting from the leaf vertex. Nodes
v0 and v1 together represent the current 2-connected component, with v1 as the
hinging node for the remainder of the path. It is possible to do one of the follow-
ing:

1. Find an ear with two end vertices v0 and v1 that includes all vertices in
{v0, v1, v2, . . . , vk} for some k ≥ min(q, 5).

2. Find two ears that includes all vertices in {v0, v1, v2, . . . , vk} for some k ≥
min(q, 8) such that one ear’s end vertices are v0 and v1.

The ear may include plundered segments from the heads of unprocessed paths.

4.6 Finishing Step: Connecting to the Core

In the 2-ECSS problem, the core can be treated as an extra vertex, but one that
does not have any vertex charge. But, in 2-VCSS, we have to ensure that the ear
decomposition that we find hinges to the core at two different nodes. Therefore,
we have to handle the last step with more care.

When 2-connecting a path to the core, if the algorithm reaches a stage when
the last ear reaches the core, but leaves a cut vertex in it, we can add an extra



Approximation Algorithms for the Minimum Cardinality 2-VCSS Problem 435

edge to cross it, and the extra edge can be paid with the charge we saved in the
basis step. If there are up to 2 extra nodes between the current component and
the core, we can show that the final ear can be completed without creating a
cut vertex. Again, the first ear (basis step) generates a surplus charge of 2 and
this pays for the extra edges needed. If there are three extra nodes between the
core and the component, we show that either the final ear is completed without
generating a cut vertex in the core or we find a witness. Since a witness set has
an extra charge of (2α−2), three nodes have extra charge of 3(α−1), we can pay
for the additional edge needed to 2-connect it to core. We mention the finishing
step lemma here. Proof is provided in the full paper.

Lemma 3 (Finishing Step). Let O be the core and O′ be the component.
v1, v2, v3 are the vertices between core and component. We can 2-connect O,
O′ and the three vertices in between using five edges or we can find a wit-
ness.

In the finishing step we assume that core does not have any charge. This is
true in all cases exept the case when core is just a node because the node has
vertex charge. The case where core is a singleton node happens only once in
the execution of the algorithm. This vertex charge is never used in the course
of the algorithm and we save 4(α − 1) from that vertex charge to find to find
αOpt− 4(α− 1) approximation algorithm.

5 Summary

In summary, we preprocess the graph to remove beta nodes, beta pairs, adjacent
degree-2 nodes and nontrivial 2-cuts and apply our algorithm. Our algorithm
uses a 3-cycle-free maximal 2-matching to select a suitable depth-first search
tree of the graph. The DFS tree is broken into a collection of paths and we
2-connect the paths one at a time. We account for edges by a charging method
where we try to pay using vertex charges whenever possible and show that when
we need extra, path charges or witness charges are available to cover the deficit.
Our algorithm finds a solution that uses at most 9

7 (n+max{|P |, |w|}) in general
graphs and 5

4 (n + max{|P |, |w|}) in graphs with a minimum-degree of three at
every node where |P | is the number of paths and |w| is the number of witness
es in the given graph.

Theorem 1. Given a 2-connected, undirected graph G = (V,E), there is a
polynomial-time algorithm that returns a 2-VCSS of G that is within 9/7 ≈ 1.286
of an optimal 2-VCSS.

Theorem 2. Given a 2-connected, undirected graph G = (V,E) in which each
node has degree at least 3, there is a polynomial-time algorithm that returns a
2-VCSS of G that is within 5/4 = 1.25 of an optimal 2-VCSS.
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Abstract. Local search heuristics are among the most popular ap-
proaches to solve hard optimization problems. Among them, Very Large
Scale Neighborhood Search techniques present a good balance between
the quality of local optima and the time to search a neighborhood. We
develop a language to generate exponentially large neighborhoods for
sequencing problems using grammars. We develop efficient generic dy-
namic programming solvers that determine the optimal neighbor in a
neighborhood generated by a grammar for sequencing problems such as
the Traveling Salesman Problem or the Linear Ordering Problem. This
framework unifies a variety of previous results on exponentially large
neighborhood for the Traveling Salesman Problem and generalizes them
to other sequencing problems.

1 Introduction

Very large scale neighborhood search has been used in a variety of contexts
and employs a variety of techniques. For survey papers, see Ahuja et al [1] and
Děıneko and Woeginger [12]. Děıneko and Woeginger [12] described a variety of
techniques used to search exponential neighborhoods for the TSP in polynomial
time. Other closely related papers include Burkard et al [7] and Ergun and Orlin
[13]. Many of the efficient search techniques rely on dynamic programming recur-
sions. In this paper, we unify these disparate results into a unifying framework
based on context free grammars. We also provide a generic dynamic program-
ming algorithm for finding the best tour in a grammar-induced neighborhood.
When specialized to the neighborhoods given in Děıneko and Woeginger [12],
our generic algorithm achieves the same running time as the special purpose
dynamic programs, except for the twisted sequence neighborhood. In that case,
our generic DP improves upon the previous best bound by a factor of n. The
framework developed for generating neighborhoods for TSP and the dynamic
programming solver applies to other sequencing problems including the linear
ordering problem.
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For successful development of VLSN search, it will become increasingly im-
portant to find effective ways of describing the exponentially large neighborhood
efficiently via a computer language. Here we have made substantial progress to-
wards that goal in the case of sequencing problems.

1. We develop the first language for compactly generating exponentially large
neighborhoods for sequencing problems. In fact, it is the first language for
compactly generating exponentially large neighborhoods.

2. We develop the mathematical foundation for using regular grammars and
context free grammars to describe very large neighborhoods for sequencing
problems.

3. We develop a dynamic programming solver for the TSP that determines an
optimum neighbor in time polynomial in the size of the problem and the
number of rules. The solver uses the rules of the grammar as input as well
as the TSP instance and current solution.

4. We develop dynamic programming solvers for other sequencing problems,
such as the Linear Ordering Problem or the Minimum Latency Problem,
that determine an optimum neighbor in time polynomial in the size of the
problem and the number of rules. The solvers use the rules of the grammar
as part of its input.

5. We provide efficient algorithms for enumerating the size of neighborhoods
and for deciding whether two neighborhoods are distinct in the case that the
generating grammars are context free and unambiguous.

The rest of the paper is organized as follows. In Section 2, we establish the
notation and terminology for TSP, local search algorithms and grammars we
use throughout the paper. In Section 3, we present neighborhoods defined in the
previous literature and their description using grammars. In Section 4, we state
the generic dynamic programming solver for finding the best tour in a grammar
induced neighborhood, and we present algorithms to solve other problems for
grammar based neighborhoods. In Section 5, we extend these results to a list of
sequencing problems. Finally, we present our conclusions in Section 6.

2 Notation and Terminology

Traveling Salesman Problem. The Traveling Salesman Problem is to find
the minimum distance tour on n cities 1, . . . , n. The distance from city i to city
j is cij . We represent a tour using a permutation π ∈ Sn, where Sn is the set
of permutations of {1, . . . , n}. The permutation π = (π(1), . . . , π(n)) refers to
the tour in which the first city visited is π(1), the next city visited is π(2), and
so on. We will also refer to π as a tour. The cost of the tour π is denoted as
c(π) =

∑n−1
i=1 cπ(i)π(i+1) + cπ(n)π(1).

Neighborhoods. We describe neighborhoods for traveling salesman problems
with n cities. For tour π, and permutation σ, we associate another tour
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π ◦ σ = π(σ), which is formed by composing permutations π and σ. For ex-
ample, if π = (3, 2, 4, 1, 5) and if σ = (2, 1, 3, 5, 4) then π ◦ σ = (2, 3, 4, 5, 1).

For a given subset N of tours and for a tour π, we let N(π) = {π◦σ : σ ∈ N},
which is the neighborhood of tours π.

In the case that we are treating neighborhoods for different sized TSPs, let
Nn denote the neighborhood set for problems with n cities. In the case that
the number of cities is obvious from context, we drop the index, and denote the
neighborhood set as N . In general, we assume that the identity permutation is
in Nn, that is (1, 2, . . . , n) ∈ Nn.

Very Large Scale Neighborhood Search. A neighborhood search algorithm
starts with a feasible solution of the optimization problem and successively im-
proves it by replacing it by an improved neighbor until it obtains a locally optimal
solution. For many neighborhoods, an improving neighbor is determined by ex-
haustively enumerating all of the neighbors. We refer to a neighborhood as very
large scale if the neighborhood is too large to be searched exhaustively and is
searched using some more efficient search procedure.

In this paper, we are primarily (but not entirely) focused on neighborhoods
with the following two properties, also given in Děıneko and Woeginger [12].

1. Exponential Size Property. The neighborhood set Nn is exponentially large in
n. That is, there is no polynomial function f(n) such that |Nn| = O(f(n)).

2. Polynomially Searchable Property. The neighborhood Nn may be searched
in polynomial time. That is, there is an Algorithm A and a polynomial f()
such that for every tour π ∈ Sn, Algorithm A can find the minimum distance
neighbor in Nn(π) with respect to any cost function in time O(f(n)).

Any neighborhood with the first property is referred to as an exponential neigh-
borhood. Any neighborhood with the second property is said to be searchable in
polynomial time.

Grammar Terminology. Roughly speaking, a grammar is a set of rules for
how to compose strings in a language. In this subsection, we define the concepts
from the theory of languages that are relevant in our work. We refer to the book
by Hopcroft and Ullman [15] for more information on languages and grammars.
We let G = (VNT , VT , P, S) denote a grammar. VNT is the set of variables or
non-terminals, VT is the set of terminals. We assume that VNT , VT are disjoint,
and we let V = VNT ∪ VT . A string α is a finite sequence of terminals and non-
terminals. We let V ∗ be the set of all strings on V . The non-terminal S ∈ VNT

is the start symbol. P is the set of production rules. A production rule p ∈ P
has the form

1. A → a1 . . . akB1 for some k ≥ 1,
2. A → B1a1 . . . ak for some k ≥ 1,
3. A → B1B2 . . . Bk for some k ≥ 1,
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4. A → a1 . . . ak for some k ≥ 1,
5. α1Aα2 → α1βα2,

with A,B1, . . . , Bk ∈ VNT , a1, . . . , ak ∈ VT and α1, α2, β ∈ V ∗.
A grammar with production rules of this form is a context-sensitive grammar.

A grammar with production rules of the form 1,2,3,4 is a context-free grammar.
A grammar with production rules of the form 1 and 4 (2 and 4) is a right (left)
regular grammar. A grammar with production rules of the form 1, 2, 3, 4 with
at most two nonterminals on the right hand side is in normal form. A grammar
with production rules of the form 1, 2, 4 is in extended normal form. We will
not use production rules of the form 5, since a context-sensitive grammar is ”too
powerful”. In particular, there is a way of generating all tours of n cities using
n12 production rules in a context-sensitive grammar. One cannot search this
neighborhood in polynomial time unless P = NP.

The language generated by G, denoted L(G), is the set of strings, consisting
solely of terminals, that can be derived from S.

Example 1. Let G = (VNT , VT , P, S) be the grammar where VNT = {S,B},
VT = {a, b} and P = {S → aB, S → ab,B → Sb}. Then the language generated
by G is L(G) = {ab, aabb, aaabbb, . . .}.

A grammar is ambiguous if one can generate the same string in two dis-
tinct ways using production rules. It is unambiguous otherwise. Example 1 is
unambiguous.

TSP Grammar. Let G = (VNT , VT , P, S) be a regular or context-free grammar
that generates a finite language. We refer to G as a traveling salesman tour
grammar on n cities if every string of terminals generated by the grammar
corresponds to a TSP tour. For regular and context free grammars, the generic
TSP grammar has the following properties: The set of terminals contains n
symbols (i.e., VT = {a1, . . . , an}), each nonterminal on the right-hand side of a
production rule appears on the left-hand side of some production rule and there
exists a function Cities : VNT ∪ VT → 2{1,...,n} that assigns a subset of cities to
each element of V with the following properties:

1. Cities(S) = {1, . . . , n},
2. Cities(A) = ∪k

j=1Cities(Rj) for each production rule A → R1R2 . . . Rk,
3. Cities(Ri) ∩ Cities(Rj) = ∅ for each production rule A → R1R2 . . . Rk, for

1 ≤ i < j ≤ k,
4. Cities(aj) = {j} for every terminal aj ∈ VT .

We extend the definition of Cities to strings generated by G. We observe that
Cities(α) is uniquely defined for any string α. We observe that a unique subtour
(i1, i2, . . . , ir) is associated to each string of terminals α = ai1 . . . air

generated
by G. We refer to any grammar satisfying the above properties as a canonical
TSP grammar.

Proposition 1. A canonical TSP Grammar generates a non-empty language.
Every element of the language is a tour on n cities.
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Typically we will omit the word canonical and just say TSP grammar. The
neighborhood set N generated by the TSP grammar G is the language L(G). The
neighborhood set of tour π generated by G, is the set N(π) = {πα : α ∈ L(G)}.

We extend the definition of ambiguity to TSP grammars. We distinguish
permutations that are different even if they represent the same tour.

Definition 1. A TSP grammar (G, Cities) is ambiguous if one can generate the
same permutation in two distinct ways using production rules. It is unambiguous
otherwise.

3 Neighborhoods Generated by TSP Neighborhoods
Grammars

Any neighborhood with K neighbors is trivially generated using K production
rules. We are primarily interested when the size of the neighborhood is exponen-
tial in the number of rules.

3.1 Exponential Neighborhoods

We next describe a number of exponential neighborhoods for the TSP. Most
of them are covered in the survey paper by Děıneko and Woeginger [12] and
the papers by Burkard et al [7] and Ergun and Orlin [13]. Their common fea-
ture is that they can be optimized efficiently using a Dynamic Programming
approach. In the following subsection we give polynomial length descriptions of
these neighborhoods using grammars.

Pyramidal Neighborhood. The Pyramidal neighborhood consists of pyrami-
dal permutations, where the city labels increase monotonically to n and then
decrease. That is,

NP =
{
σ :

σ(1) < σ(2) < . . . < σ(k) = n,
σ(k + 1) > σ(k + 2) > . . . > σ(n) for some k ≥ 1

}
.

For example, (1, 3, 4, 6, 5, 2) is a pyramidal permutation whereas (1, 3, 6, 2, 4, 5)
is not.

Klyaus [16] gave an O(n2) dynamic programming algorithm for finding the
best pyramidal tour. See also Gilmore, Lawler, and Schmoys [14]. Sarvanov and
Doroshko [18] employed the concept of pyramidal tours for use in very large scale
neighborhood search. Carlier and Villon [9] combined the pyramidal tour neigh-
borhood with a cyclic shift neighborhood in very large scale neighborhood search.
They determined empirically that this composite neighborhood performed far
better than 2-opt.

Permutation Tree Neighborhood. We give the description by Děıneko and
Woeginger [12]. A permutation tree T over {1, . . . , n} is a rooted, ordered tree
that satisfies the following.
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1. There is a bijective mapping between leaves of T and cities.
2. An interior node has at least two sons.
3. An interior node i with d sons has associated a set of permutations Φi ⊆ Sd

A permutation tree T defines a set of permutations NT as follows. For each
node i ∈ T , let Ti be the subtree of T rooted at i. We associate the set NTi

of
sequences of cities to each subtree Ti. If i is a leaf of T then NTi

= {i}. If i is an
interior node of T with d sons i1, . . . , id then NTi

= ∪φ∈Φi
NTiφ(1)

, . . . , NTiφ(d)
.

The set of permutations NT is the set NTr
defined by the root node r ∈ T .

Booth and Lueker [6] analyzed a special case of permutation trees that they
called PQ-trees. Burkard, Děıneko, and Woeginger [8] investigated finding the
best tour in the PQ- tree neighborhood, which was later generalized by Děıneko
and Woeginger [12] to include all permutation trees. They also pointed out that
pyramidal tours are a special case of permutation trees.

Twisted Sequences. Aurenhammer [2] described permutations in terms of
possible derivations from permutation trees. A permutation tree T is a twisted
tree if it satisfies the following conditions.

1. The identity sequence idn = (1, . . . , n) ∈ NT .
2. Every interior node i with d sons has associated a set of permutations Φi =

{idd, id−
d }, where id−

d is the identity permutation in reverse order.

A permutation σ is a twisted sequence if it is generated by a twisted tree.
That is, NTwisted = {σ : σ ∈ NT for some twisted tree T}.

For example, (3, 2, 4, 1) is a twisted sequence whereas (1, 3, 5, 2, 4, 6) is not.

Dynasearch Neighborhood. Potts and van de Velde [17] defined this class of
neighborhoods. A Dynasearch Neighborhood is obtained by combining a set of
independent simple moves such as 2-exchanges, swaps, or insertions. Two moves
on the TSP are said to be independent if the subpaths they are modifying contain
no common edges. For example, consider two 2-exchange moves affecting sub-
paths i, i + 1, . . . , j and k, k + 1, . . . , l by breaking edges (i, i + 1), (j − 1, j) and
(k, k + 1), (l− 1, l) and adding edges (i, j − 1), (i + 1, j) and (k, l− 1), (k + 1, l).
These two moves are independent if and only if either j < k or l < i. Based on
2-exchange moves, the sequence (1, 5, 3, 4, 2, 6, 9, 8, 7) is a Dynasearch sequence,
whereas (1, 5, 9, 4, 2, 6, 7, 8, 3) is not. Based on 2-exchange the following

Balas and Simonetti Neighborhood. Balas and Simonetti [4] investigated
a very large scale neighborhood for the TSP which we denote by Nk

BS . We
note that in their paper they define a solution of the TSP as a permutation of
places instead of permutation of cities. We give the definition of Nk

BS in terms of
permutation of cities. Let k be a parameter. They consider all tours such that city
1 is visited first and that city i precedes city j whenever i+k ≤ j for some fixed
parameter k. That is, Nk

BS = {σ : σ(1) = 1 and σ−1(i) < σ−1(j) for i + k ≤ j}.
When k = 3, the sequence (1, 4, 2, 5, 3, 6) belongs to N3

BS whereas (1, 6, 2, 3, 4, 5)
does not.
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3.2 Exponential Neighborhoods as TSP Neighborhood Grammars

In this subsection we give grammars with a polynomial number of rules that
yield the exponential sized neighborhoods of Subsection 3.1. In each case, we
state the correspondence without proof. In each case we will state the values for
Cities(); however that is for the value of the reader and is not a formal part of
the grammar.

Pyramidal Tours. The following traveling salesman tour grammar generates
the Pyramidal Neighborhood.

VNT = {S}∪{Aj,n : 1 ≤ j ≤ n}, VT = {1, . . . , n}. The value of Cities on each
terminal and non-terminal is Cities(S) = {1, . . . , n}, Cities(Aj,n) = {j, . . . , n}
for 1 ≤ j ≤ n, Cities(j) = {j} for 1 ≤ j ≤ n. Its production rules are

The Pyramidal Neighborhood Grammar
S → A1,n,
Aj,n → j, Aj+1,n, for 1 ≤ j ≤ n− 1
Aj,n → Aj+1,n, j, for 1 ≤ j ≤ n− 1
An,n → n.

Permutation Trees and Their Grammars. A TSP neighborhood grammar
G is tree-based if for any non-terminals A,B then either

– Cities(A) ∩ Cities(B) = ∅, or
– Cities(A) ⊂ Cities(B), or
– Cities(B) ⊂ Cities(A).

We can represent any tree-based grammar as a tree, where each non-terminal is
an internal node of the tree; each terminal is a leaf of the tree. Also, there is an
arc from R to R′ if Cities(R) ⊂ Cities(R′) and there is no other non-terminal R′′

with Cities(R) ⊂ Cities(R′′) ⊂ Cities(R′). Such a tree is called a permutation
tree, as per Děıneko and Woeginger [12].

Twisted Sequence Neighborhood. We describe a simply stated grammar
that generates all twisted sequences. Let the set of non-terminals and the set of
terminals be VNT = {S} ∪ {Ai,j : 1 ≤ i ≤ j ≤ n}, VT = {1, . . . , n} respectively.
The value of Cities on each terminal and non-terminal is Cities(S) = {1, . . . , n},
Cities(Ai,j) = {i, . . . , j} for 1 ≤ i ≤ j ≤ n, Cities(j) = {j} for 1 ≤ j ≤ n. Its
production rules are

Twisted Sequence Neighborhood Grammar
S → A1,n,
Ai,j → i, . . . , j for 1 ≤ i ≤ j ≤ n,
Ai,j → Ai,k, Ak+1,j for 1 ≤ i ≤ k < j ≤ n,
Ai,j → Ak+1,j , Ai,k for 1 ≤ i ≤ k < j ≤ n.

Restricted Dynamic Programs. We next describe a TSP neighborhood gram-
mar for generating all the permutations whose initial city is city 1, which we refer
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to as the ”complete TSP neighborhood grammar”. This particular grammar has
n2n−1 different production rules, and generates (n− 1)! permutations. We then
give polynomially bounded subsets of the grammar in which the neighborhood
is exponential.

Complete TSP Neighborhood Grammar
S → A{1,...,n},
AR → AR\j , j for each j ∈ R\1, and for each R ⊆ {1, . . . , n} with 1 ∈ R,
A{1} → 1.

The value of Cities on each terminal and non-terminal is as follows. Cities(S) =
{1, . . . , n}, Cities(AR) = R for each subset R ⊆ {1, . . . , n} with 1 ∈ R, Cities(j) =
{j} for 1 ≤ j ≤ n.

In the following, let S be any collection of subsets of {1, . . . , n} with the
property that for each R ∈ S, 1 ∈ R. We now create a subset of the Complete
TSP grammar, by restricting production rules to involve only non-terminals cor-
responding to sets in S.

Restricted TSP Neighborhood Grammar
S → A{1,...,n},
AR → AR\j , j for each R ∈ S, and for each j ∈ R such that R\j ∈ S,
A{1} → 1.

Balas and Simonetti Neighborhood. Let SBS := {R ⊆ {1, . . . , n} : if i ∈
R and j /∈ R, then i − k < j}. The Balas-Simonetti neighborhood corresponds
to the restricted TSP Neighborhood grammar with S replaced by SBS .

Dynasearch Neighborhoods. The following Dynasearch neighborhood is
based on 2-exchange. The value of Cities on each terminal and non-terminal is as
follows. Cities(S) = {1, . . . , n}, Cities(Ai,j) = {i, . . . , j} for 1 ≤ i ≤ j−1 ≤ n−1,
Cities(j) = {j} for 1 ≤ j ≤ n.

The Dynasearch 2-exchange Neighborhood Grammar
S → A1,n,
A1,j → A1,i−1, Ai,j for 2 ≤ i ≤ j ≤ n,
Ai,j → i, . . . , j for 1 ≤ i ≤ j − 1 ≤ n− 1,
Ai,j → i, j − 1, j − 2, . . . , i + 2, i + 1, j for 1 ≤ i ≤ j − 3 ≤ n− 1.

3.3 Compounded Neighborhoods

Two grammars G = (VNT , VT , P, S) and G′ = (V ′
NT , V ′

T , P ′, S) can be combined
to generate a compounded grammar G∪G′ := (VNT ∪ V ′

NT , VT ∪ V ′
T , P ∪ P ′, S).

The number of production rules of the compounded grammar is at most the
sum of the number of production rules of G,G′. The neighborhood generated by
the compounded grammar includes the neighborhood generated by G and G′,
and possibly much more. It can be searched efficiently, as Theorem 1 shows. As
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an example, we describe the neighborhood obtained by compounding Pyramidal
and Dynasearch grammars.

Pyramidal and Dynasearch Compounded Neighborhoods. The follow-
ing neighborhood is obtained by compounding the Pyramidal and the Dynasearch
2-exchange grammars. The value of Cities on each terminal and non-terminal
is Cities(S) = {1, . . . , n}, Cities(Ai,j) = {i, . . . , j} for 1 ≤ i ≤ j − 1 ≤ n − 1,
Cities(j) = {j} for 1 ≤ j ≤ n.

The Pyramidal and Dynasearch 2-exchange
Neighborhood Compounded Grammar
S → A1,n,
Aj,n → j, Aj+1,n, for 1 ≤ j ≤ n− 1
Aj,n → Aj+1,n, j, for 1 ≤ j ≤ n− 1
A1,j → A1,i−1, Ai,j for 2 ≤ i ≤ j ≤ n,
Ai,j → i, . . . , j for 1 ≤ i ≤ j − 1 ≤ n− 1,
Ai,j → i, j − 1, j − 2, . . . , i + 2, i + 1, j for 1 ≤ i ≤ j − 3 ≤ n− 1.

4 Algorithms

4.1 A Generic Solution Procedure Using Dynamic Programming

We present a dynamic programming algorithm for finding the best tour in a
neighborhood generated by a grammar G. The initial tour is π = (π(1), . . . , π(n)).
We denote by f(i, j) the arc cost cπ(i),π(j). We introduce some additional nota-
tion. Given a terminal or non terminal R and cities i, j ∈ Cities(R), we denote by
V (i, R, j) the minimum cost path from π(i) to π(j) passing through all the cities
of π(Cities(R)) as generated by the grammar. Given a terminal or non terminal
R and cities i ∈ Cities(R), j /∈ Cities(R) we denote by V̄ (i, R, j) the minimum
cost path from π(i), passing through all the cities of π(Cities(R)) as generated
by the grammar, and ending at city π(j). Similarly, given a production rule
p : A → R1R2 . . . Rr and cities i, j ∈ Cities(A), we denote by V (i, p, j) the min-
imum cost path from π(i) to π(j) passing through all the cities of π(Cities(A))
as generated by p.

The best tour generated by the grammar has value mini,j{V (i, S, j)+f(j, i)}.
The following is a dynamic programming recursion for computing the best tour
in a TSP Neighborhood grammar.

1. If a is a terminal with Cities(a) = {k}, then V (k, a, k) = 0.
2. Suppose p is the production rule A → a1a2 . . . arB. Let Cities(ak) = {ik}

for 1 ≤ k ≤ r. Then, for j ∈ Cities(B) :
V (i1, p, j) = min{

∑r−1
k=1 f(ik, ik+1) + f(ir, t) + V (t, B, j) : t ∈ Cities(B)}.

3. Suppose p is the production rule A → R1, R2, . . . , Rr.
Then, for k = 2 to r and for i ∈ Cities(R1), j ∈ Cities(Rk):
V (i, R1, R2, . . . , Rk, j) =
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min{V̄ (i, R1, R2, . . . , Rk−1, t) + V (t, Rk, j) : t ∈ Cities(Rk)},
For k = 1 to r − 1 and for i ∈ Cities(R1), j ∈ Cities(Rk+1):
V̄ (i, R1, R2, . . . , Rk, j) =
min{V (i, R1, R2, . . . , Rk, s) + f(s, j) : s ∈ Cities(Rk)},
For i, j ∈ Cities(A) :
V (i, p, j) = V (i, R1, R2, . . . , Rr, j)

4. If R is a non-terminal, then
For i, j ∈ Cities(R):
V (i, R, j) = min{V (i, p, j) : p is a production rule and p applies to R}.

Proposition 2. Suppose that p is the production rule p : A → R1R2 . . . Rr.
Then the time to compute V (i, p, j) for all i, j ∈ Cities(A) from the values for
R1, R2, . . . , Rr is O(n3).

The proof of the following theorem follows from this proposition.

Theorem 1. Let K be the number of production rules of a TSP neighborhood
grammar for a problem with n cities. Then the time to compute the best neighbor
generated by the grammar is O(Kn3). If the grammar is in extended normal
form, the time is O(Kn2).

With further analysis in special cases, the running time can sometimes be im-
proved. When specialized to the neighborhoods defined in Section 3, the running
time of the generic DP algorithm matches the running times from the literature.
It also improves by a factor of n the running time to solve the Twisted Neigh-
borhood given in [12]. Table 1 shows the running times on these neighborhoods.

Table 1. Running times on TSP grammars for the generic dynamic programming
algorithm

TSP Neighborhood Grammar Running time

2-opt Neighborhood O(n2)
Pyramidal Tour Neighborhood O(n2)
Tree-based grammars with at most
F production rules per non-terminal O(F n3)
Twisted Sequence Neighborhood O(n6)
Complete Neighborhood O(n22n)
Balas-Simonetti Neighborhood O(k2kn)
Dynasearch Neighborhoods O(n2)

4.2 Counting the Neighbors and Complexity Questions

We address the following questions for unambiguous TSP grammars:

1. Can we count the number of tours in the neighborhood?
2. Given two TSP grammars, do they generate different neighborhoods?
3. Is a TSP grammar symmetric (i.e., π′ ∈ N(π) iff π ∈ N(π′))?
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In order to answer these questions, we associate a polynomial to a TSP gram-
mar G, defined as follows. For each 1 ≤ i, j ≤ n, a variable Yi,j is associated
to the placement of city j in the i-th position. Let Y denote the vector of vari-
ables Yi,j . Each permutation σ = (σ(1), . . . , σ(n)) has associated the monomial
gσ(Y ) =

∏n
i=1 Yi,σ(i), and each TSP grammar G has associated the polyno-

mial gG(Y ) =
∑

σ∈L(G) gσ(Y ). When the TSP grammar is unambiguous, this
polynomial can be evaluated efficiently on any vector Y by means of recursive
formulas. The polynomial gG(Y ) satisfies a number of properties. The size of the
neighborhood generated by G is equal to gG(1). The associated polynomials of
different grammars are different, and they give different results with high prob-
ability when evaluated in a random point (see Schwartz [19]). The following two
theorems hold.

Theorem 2. Given an unambiguous TSP grammar G with n cities and K pro-
duction rules, we can compute |L(G)| in O(Kn2) time. Given two unambigu-
ous TSP grammars G1, G2 with n cities and K1,K2 production rules respec-
tively, there exists a Monte Carlo algorithm that checks if L(G1) 	= L(G2) in
O((K1 + K2)n2) time. That is, if L(G1) = L(G2) the algorithm answers cor-
rectly. If L(G1) 	= L(G2) the algorithm answers correctly with probability greater
than 1/2.

Theorem 3. Given an unambiguous TSP grammar G with n cities and K pro-
duction rules, there exists a Monte Carlo algorithm that checks if L(G) is sym-
metric. That is, if L(G) is symmetric the algorithm answers correctly. If L(G)
is not symmetric the algorithm answers correctly with probability greater than
1/2. It runs in O(Kn2) time.

5 Extensions to Sequencing Problems

The neighborhoods defined by grammars can be used in other sequencing prob-
lems. In this section we describe the Linear Ordering Problem, the Minimum
Latency Problem, and a Weighted Bipartite Matching Problem with Side Con-
straints, for which the neighborhoods generated by grammars can be searched
efficiently.

Linear Ordering Problem. The cost of a permutation π ∈ Sn is
∑

i<j cπ(i)π(j).
The Linear Ordering Problem is to find the permutation π ∈ Sn with minimum
cost. This problem has applications in voting and economics.

We next describe the dynamic programming algorithm to find the optimal
solution in a grammar-based neighborhood. The initial permutation is π =
(π(1), π(2), . . . , π(n)). We denote by f(i, j) the cost cπ(i),π(j). Given a terminal
or non terminal R, we denote by V (R) the value min{

∑
i,j∈R:i<j f(σ(i), σ(j)) :

σ ∈ L(G)} that corresponds to the best ordering of elements in R as generated
by the grammar. Similarly, given a production rule p : A → R1R2 . . . Rr we
denote by V (p) the cost of the best ordering of elements in R as generated by
the grammar. The following is a dynamic programming recursion for computing
the best permutation in a Neighborhood grammar.
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1. If a is a terminal, then V (a) = 0.
2. Suppose p is the production rule A → R1, R2, . . . , Rr.

Then, V (p) =
∑

1≤t1<t2≤r

∑
i∈Rt1 ,j∈Rt2

f(i, j) +
∑r

k=1 V (Rk)
3. If R is a non-terminal, then

V (R) = min{V (p) : p is a production rule and p applies to R}.

The following theorem states the complexity of searching a neighborhood for
the Linear Ordering Problem.

Theorem 4. Let K be the number of production rules of a neighborhood gram-
mar for a linear ordering problem with n elements. Then the time to compute
the best neighbor generated by the grammar is O(Kn2).

Minimum Latency Problem. The Minimum Latency Problem is to find a
tour through n customers (cities) with minimum latency time. To be more pre-
cise, a permutation π ∈ Sn represents a tour through n cities. For a given tour
π, each city π(i) experience a latency c(π(i)) :=

∑i−1
k=1 cπ(k),π(k+1). The cost of

a permutation π ∈ Sn of cities is the sum of costs that each city experiences:
c(π) :=

∑n−1
k=1 c(π(k)) =

∑n−1
k=1(n− k)cπ(k)π(k+1). The Minimum Latency Prob-

lem is to find a permutation π ∈ Sn with minimum cost (see Blum et al [5]).
The initial tour is π = (π(1), π(2), . . . , π(n)). We denote by f(i, j) the arc

cost cπ(i),π(j). Given a subsequence of cities ab, . . . , ae located in positions b, b+
1, . . . , e, we denote by V (b, ab, . . . , ae) =

∑e
k=b(n−k+1)cak,ak+1 the latency cost

associated to it. Given a terminal or non terminal R, cities i, j ∈ Cities(R), and
an initial position 1 ≤ b ≤ n, we denote by V (b, i, R, j) the minimum latency
cost of a path that starts from π(i) in position b, ends in city π(j) and visits
all the cities of π(Cities(R)), as generated by the grammar. Given a terminal
or non terminal R, cities i ∈ Cities(R), j /∈ Cities(R), and an initial position
1 ≤ b ≤ n, we denote by V̄ (b, i, R, j) the minimum latency cost of a path that
starts from π(i) in position b, visits all the cities of π(Cities(R)) as generated by
the grammar, and ends in city π(j). Similarly, given a production rule p : A →
R1R2 . . . Rr, cities i, j ∈ Cities(A), and an initial position 1 ≤ b ≤ n, we denote
by V (b, i, p, j) the minimum cost path that starts from city π(i) in position b,
ends in city π(j) and visits all the cities of π(Cities(A)) as generated by p.

The best tour generated by the grammar has value mini,j{V (1, i, S, j)}. The
following is a dynamic programming recursion for computing the best tour in a
Minimum Latency Problem Neighborhood grammar.

1. If a is a terminal with Cities(a) = k, then for 1 ≤ b ≤ n,
V (b, k, a, k) = 0.

2. Suppose p is the production rule A → a1a2 . . . arB. Let Cities(ak) = {ik}
for 1 ≤ k ≤ r. Then, for j ∈ Cities(A), 1 ≤ b ≤ n :
V (b, i1, p, j) = min{

∑r−1
k=1(n+ 1− b− k)f(ik, ik+1) + (n+ 1− b− r)f(ir, t) +

V (b + r, t, B, j) : t ∈ Cities(B)}.
3. Suppose p is the production rule A → R1, R2, . . . , Rr.

Then, for k = 2 to r and for i ∈ Cities(R1), j ∈ Cities(Rk), 1 ≤ b ≤ n:
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V (b, i, R1, R2, . . . , Rk, j) =
min{V̄ (b, i, R1, R2, . . . , Rk−1, t)+V (b+

∑k−1
l=1 |Rl|, t, Rk, j) : t ∈ Cities(Rk)},

For k = 1 to r − 1 and for i ∈ Cities(R1), j ∈ Cities(Rk+1), 1 ≤ b ≤ n:
V̄ (b, i, R1, R2, . . . , Rk, j) =
min{V (b, i, R1, R2, . . . , Rk, s)+(n−b−

∑k
l=1 |Rl|+1)f(s, j) : s ∈ Cities(Rk)},

For i, j ∈ Cities(A), 1 ≤ b ≤ n :
V (b, i, p, j) = V (b, i, R1, R2, . . . , Rr, j)

4. If R is a non-terminal, then
For i, j ∈ Cities(R), 1 ≤ b ≤ n:
V (b, i, R, j) = min{V (b, i, p, j) : p is a production rule and p applies to R}.

The following theorem holds.

Theorem 5. Let K be the number of production rules of a grammar for the
minimum latency problem with n cities. The time to compute the best neigh-
bor generated by the grammar is O(Kn4). The running time on Left Regular
Grammars is O(Kn2).

Weighted Bipartite Matching Problem with Side Constraints. We de-
scribe the following timetabling problem. Let L = {1, . . . , n} be a set of lessons,
and for each l ∈ L, let bl be the number of consecutive time slots lesson l needs.
Let T = {t1, . . . , tm} be the set of available time slots. A time slot can be used
by at most one lesson. For each lesson l and each time slot t, let clt be the cost
of assigning time slots t, t + 1, . . . , t + bl − 1 to lesson l. The Weighted Bipar-
tite Matching Problem with side constraints (WBMPSC) is to find a feasible
matching with minimum cost. If bl = 1 for all lesson l then the problem is a
(regular) weighted matching and thus is solvable in polynomial time. However,
even if bl ≤ 2 the problem becomes NP−hard (see ten Eikelder and Willemen
[20]).

If one knows the sequence of lessons, one can directly compute the objective
value. So, the WBMPSC is another sequencing problem.

Theorem 6. Let K be the number of production rules of a grammar for the
WBMPSC, with n lessons and m time slots. Then the time to compute the best
neighbor generated by the grammar is O(Knm3).

6 Conclusions

We present a language to generate exponentially large neighborhoods for se-
quencing problems using grammars. This is the first language proposed for gen-
erating exponentially large neighborhoods. We develop generic dynamic pro-
gramming solvers that determine the optimal neighbor in a neighborhood gen-
erated by a grammar for the Traveling Salesman Problem, the Linear Ordering
Problem, the Minimum Latency Problem, or a Weighted Bipartite Matching
Problem with Side Constraints, in time polynomial in the size of the problem
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and the number of rules of the grammar. Using this framework we unify a va-
riety of previous results in defining and searching efficiently exponentially large
neighborhoods for the traveling salesman problem. We also present efficient al-
gorithms for enumerating the size of neighborhoods and for deciding whether
two neighborhoods are distinct in the case that the generating grammars are
context free and unambiguous.
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A Study of Domino-Parity and k-Parity
Constraints for the TSP

William Cook, Daniel Espinoza, and Marcos Goycoolea

ISYE, Georgia Institute of Technology

Abstract. Letchford (2000) introduced the domino-parity inequalities
for the symmetric traveling salesman problem and showed that if the sup-
port graph of an LP solution is planar, then the separation problem can
be solved in polynomial time. We generalize domino-parity inequalities
to multi-handled configurations, introducing a superclass of bipartition
and star inequalities. Also, we generalize Letchford’s algorithm, prov-
ing that for a fixed integer k, one can separate a superclass of k-handled
clique-tree inequalities satisfying certain connectivity characteristics with
respect to the planar support graph. We describe an implementation of
Letchford’s algorithm including pruning methods to restrict the search
for dominoes, a parallelization of the main domino-building step, heuris-
tics to obtain planar-support graphs, a safe-shrinking routine, a random-
walk heuristic to extract additional violated constraints, and a tightening
procedure to allow us to modify existing inequalities as the LP solution
changes. We report computational results showing the strength of the
new routines, including the optimal solution of the TSPLIB instance
pla33810.

1 Introduction

Let G = (V,E) be a complete graph with edge costs (ce : e ∈ E). The symmetric
traveling salesman problem, or TSP, is to find a minimum-cost tour in G, that is,
a Hamiltonian cycle of minimum total edge cost. A tour can be represented as a
0-1 vector x = (xe : e ∈ E), where xe = 1 if edge e is used in the tour and xe = 0
otherwise. In the Dantzig, Fulkerson, and Johnson [7] cutting-plane method for
the TSP, a linear programming (LP) relaxation is created by iteratively finding
linear inequalities that are satisfied by all tour vectors. This approach has been
the most successful exact solution procedure proposed to date for the TSP;
surveys of the large body of literature on the approach can be found in Jünger,
Reinelt, and Rinaldi [12] and Naddef [14].

For any S ⊆ V , let δ(S) denote the set of edges with exactly one end in S
and let E(S) denote the set of edges having both ends in S. For disjoint sets
S, T ⊆ V , let E(S : T ) denote the set of edges having one end in S and one end
in T . For any set F ⊆ E, define x(F ) :=

∑
(xe : e ∈ F ).

Every tour of G satisfies the subtour constraints x(δ(S)) ≥ 2 ∀ ∅ 	= S � V .
An important property of these constraints is that the corresponding separa-

M. Jünger and V. Kaibel (Eds.): IPCO 2005, LNCS 3509, pp. 452–467, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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tion problem can be solved efficiently, that is, given a non-negative vector x∗ a
violated constraint can be found in polynomial time, provided one exists.

Much of the TSP literature is devoted to the study of classes of inequali-
ties that are valid for the TSP, extending the subtour constraints in different
ways. Many properties of these classes of inequalities are known, but for the
most part polynomial-time separation algorithms have proven to be elusive. A
notable exception is the separation algorithm for blossom-inequalities by Pad-
berg and Rao [17]; variations of the Padberg-Rao algorithm are included in most
current codes for the TSP. The absence of other efficient separation algorithms
has lead to the use of various heuristic methods for handling TSP inequalities
within cutting-plane algorithms. The heuristics are effective in many cases (see
Padberg and Rinaldi [18], Applegate et al. [1], and Naddef and Thienel [16]), but
additional exact methods could be critical in pushing TSP codes on to larger
test instances.

An interesting new approach to TSP separation problems was adopted by
Letchford [13], building on earlier work of Fleischer and Tardos [8]. Given an
LP solution vector x∗, the support graph G∗ is the subgraph of G induced by
the edge-set E∗ = {e ∈ E : x∗

e > 0}. Letchford [13] introduced a new class of
TSP inequalities, called domino-parity constraints, and provided a separation
algorithm in the case where G∗ is a planar graph. An initial computational
study of this algorithm by Boyd et al. [4], combining a computer implementation
with by-hand computations, showed that the method can produce strong cutting
planes for instances with up to 1,000 nodes.

In this paper we present a further study of Letchford’s algorithm. We begin
by describing a generalization of domino-parity inequalities and Letchford’s al-
gorithm to include certain multi-handled configurations. We also include a range
of procedures for improving the practical performance of the separation routines,
together with computational testing of large TSPLIB instances.

2 The k-Parity Inequalities

Definition 1. Consider a family of sets (T1, T2, . . . , Tk;T ) satisfying ∅ 	= Ti �

T � V, ∀i ∈ Ik ≡ {1, . . . , k}. We call this family a regular k-domino if for any set
∅ 	= K ⊆ Ik, the edges

⋃
{E(Ti : T \ Ti) : i ∈ K} define a |K|+1 (or greater) cut

in the subgraph of G induced by T . The family is called a degenerate k-domino if
(T1, . . . , Tk) defines a partition of T . We refer to the k−domino (T1, . . . , Tk;T )
as T and define βT as 1 if T is regular and as k

k−1 if T is degenerate. In general,
we say that the sets T1, . . . , Tk are the halves of T . Finally, if T is a k-domino,
we say that κ(T ) = k.

Lemma 1. Let T = (T1, T2, . . . , Tk;T ) be a k−domino. If x satisfies all subtour
constraints, then

βT

2
(x(δ(T )) − 2) +

k∑
i=1

x(E(Ti : T \ Ti)) ≥ k.
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Proof. Assume x satisfies all subtour constraints. Let B1, B2, . . . , Br correspond
to the partition of T obtained by removing the edge sets E(T1 : T \ T1), E(T2 :
T \ T2), . . . , E(Tk : T \ Tk). Then

r∑
i=1

x(δ(Bi)) = x(δ(T )) +
r∑

i=1

x(E(Bi : T \Bi)).

It follows that

βT

2
(x(δ(T )) − 2) =

βT

2

(
r∑

i=1

(x(δ(Bi)) − x(E(Bi : T \Bi))) − 2

)
. (1)

However, note that if T is regular, then βT = 1 and

r∑
i=1

x(E(Bi : T \Bi)) ≤ 2
k∑

i=1

x(E(Ti : T \ Ti)).

On the other hand, if T is degenerate, then βT ≤ 2 and each Ti can be assumed
equal to Bi. Thus, in either case we have

βT

2

r∑
i=1

x(E(Bi : T \Bi)) ≤
k∑

i=1

x(E(Ti : T \ Ti)). (2)

Finally, note that if T is regular, then r > k and βT = 1. Likewise, if T is
degenerate then r = k and βT = k/(k−1). Thus, in either case, βT (2r−2)/2 ≥ k,
and

βT

2

(
r∑

i=1

x(δ(Bi)) − 2

)
≥ βT

2
(2r − 2) ≥ k (3)

Putting together (1), (2), and (3) we get the desired result. 
�

Definition 2. Consider a family of teeth T and a family of handles H, where
each T ∈ T is a κ(T )-domino (with κ(T ) ≤ |H|)and each H ∈ H is a proper
subset of V . We say that Λ defines a proper tooth-handle relationship on T
and H if we have the following (symmetric) associations. Each tooth T ∈ T is
associated with exactly κ(T ) handles H ∈ H, call this set Λ(T ), and each handle
H ∈ H is associated with an odd number of dominoes T ∈ T , call this set Λ(H).
For ease of notation, we index the halves of T according to the handle to which
they are associated, that is, the halves of T are labeled {TH}H∈Λ(T ).

Definition 3. Let F= {E1, E2, . . . , Ek}, where Ei ⊆ E for all i ∈ Ik, and define
μe := |{F ∈ F : e ∈ F}| for each e ∈ E. Following Letchford [13], the family F
is said to support the cut δ(H) if δ(H) = {e ∈ E : μe is odd}.
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Theorem 1. Suppose that Λ defines a proper tooth-handle relationship on T
and H. For each H ∈ H let FH ⊆ E be such that {FH , {E(TH : T \TH)}T∈Λ(H)}
supports the cut δ(H) in G and define μH accordingly. Then the inequality∑

H∈H
μHx +

∑
T∈T

βTx(δ(T )) ≥
∑

H∈H
|Λ(H)| + 2

∑
T∈T

βT + |H| (4)

is satisfied by all tours.

Proof. We use induction on |H|, the case |H| = 0 following from the validity of
the subtour constraints. Let xc be the incidence vector of a tour. If there exists
Ho ∈ H such that μHoxc > |Λ(Ho)| − 1, then, since μHoxc is even valued (see
Letchford [13]), we have μHoxc ≥ |Λ(Ho)|+1. Note also that for each T ∈ Λ(Ho)
the family {TH : H ∈ Λ(T )\Ho;T} defines a regular (|Λ(T )|−1)−domino. Thus,
by induction, the inequality obtained by removing Ho and redefining β′

T = βT

for T ∈ T \ Λ(Ho) and β′
T = 1 for T ∈ Λ(Ho)∑

H∈H\Ho

μHx +
∑
T∈T

β′
Tx(δ(T )) ≥

∑
H∈H\Ho

|Λ(H)| + (|H| − 1) + 2
∑
T∈T

β′
T

is valid. Then (4) follows since (βT − β′
T )xc(δ(T )) ≥ (βT − β′

T )2, and μHoxc ≥
|Λ(Ho)| + 1.

So we can now assume that μHxc ≤ |Λ(H)|−1 for each H ∈ H. From Lemma
1 we have for each T ∈ T

βT (xc(δ(T )) − 2) ≥ 2|Λ(T )| − 2
∑

H∈Λ(T )

xc(E(TH : T \ TH)).

Hence,∑
T∈T

βT (xc(δ(T )) − 2) ≥ 2
∑
T∈T

|Λ(T )| − 2
∑
T∈T

∑
H∈Λ(T )

xc(E(TH : T \ TH))

≥ 2
∑

H∈H
|Λ(H)| − 2

∑
H∈H

μHxc

=
∑

H∈H
|Λ(H)| +

∑
H∈H

(
|Λ(H)| − μHxc

)
−

∑
H∈H

μHxc

≥
∑

H∈H
|Λ(H)| + |H| −

∑
H∈H

μHxc.


�

We refer to the constraints (4) as k-parity inequalities, when |H| = k. When
k = 1 this class is precisely the domino-parity inequalities of Letchford [13]. It is
easy to see that not all k-parity inequalities define facets of the TSP polytope, but
the class does provide a common framework for possibly extending Letchford’s
algorithm to superclasses of other inequalities that have proven to be effective in
TSP codes. In particular, k-parity inequalities generalize clique-tree inequalities
(Grötschel and Pulleyblank [10]) in the same way as domino-parity inequalities
generalize combs.
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Definition 4. Families H and T are said to define a clique-tree if:

(i) H is a family of pairwise disjoint proper subsets of V .
(ii) T is a family of pairwise disjoint proper subsets of V .
(iii) No T ∈ T is contained in

⋃
(H : H ∈ H).

(iv) For each H ∈ H let Λ(H) = {T : T ∩H 	= ∅}. |Λ(H)| must be odd.
(v) The intersection graph defined by the families H and T is a tree.

In this context, the sets H ∈ H are called handles and the sets T ∈ T are called
teeth. If the intersection graph defined by the families H and T is a forest, we say
that H and T define a clique-forest. Note that if H and T define a clique-forest,
then it is possible to define a |H|-parity constraint as follows. For each T ∈ T
define Λ(T ) = {H ∈ H : T ∈ Λ(H)}, and TH = T∩H, ∀H ∈ Λ(T ). Clearly (TH :
H ∈ Λ(T );T ) defines a |Λ(T )|-domino and (H, T , Λ) defines a proper tooth-
handle relationship. Thus, Theorem 1 implies that the well-known clique-tree
(forest) constraint is valid

∑
H∈H

x(δ(H))+
∑

T∈T
x(δ(T )) ≥ 2|T |+|H|+

∑
H∈H

|Λ(H)|

where
∑

(|Λ(H)| : H ∈ H) is commonly written as |T | + |H| − 1. Clique-tree
inequalities generalize combs inequalities, which are clique trees having a single
handle.

We will focus on special cases of clique trees in the next section, but we
would like to point out that k-parity inequalities also generalize several other
well-known classes of TSP constraints.

Proposition 1. The family of k−parity inequalities generalizes the family of
bipartition inequalities and the family of star inequalities.

3 Planar Separation with Multiple Handles

Throughout this section we assume that the LP solution x∗ satisfies all subtour
constraints. Also, for any set F ⊆ E, we define F ∗ = {e ∈ F : x∗

e > 0}.
Definition 5. For a given x∗∈SEP (n), We say that a k-domino (T1, . . . , Tk;T )
is super-connected if:

(i) T and V \ T are connected in G∗.
(ii) Ti and T \ Ti are connected in G∗ for all i ∈ Ik.
(iii) x∗(E(Ti : V \ T )) > 0 and x∗(E(T \ Ti : V \ T )) > 0 for all i ∈ Ik.
We say that a k-parity constraint having teeth T is super-connected, if every
tooth T ∈ T is super-connected.

While as of yet it is an open problem whether or not the class of k-parity
inequalities can be separated in polynomial time, we extend the ideas of Letch-
ford [13] so as to separate, for fixed k, a subclass of k-parity inequalities which
contains all super-connected clique-trees with k handles or less, under the as-
sumption that the support graph G∗ is planar.

For this we proceed in three steps. First, we characterize violated k-parity
inequalities. Second, we characterize violated k-parity inequalities under the ad-
ditional assumptions that the support graph G∗ is planar, and that teeth are



A Study of Domino-Parity and k-Parity Constraints for the TSP 457

super-connected. Finally, we outline an algorithm for separating a subclass of
k-parity inequalities when G∗ is planar; this subclass (defined with respect to an
LP solution x∗) contains all super-connected clique-tree inequalities which have
k handles or less.

The following two Propositions (the proofs of which are to be included in
a future paper) are not used throughout the following sections. However, they
serve as a motivation for separating classes of super-connected constraints.

Proposition 2. Let x∗ be an LP solution and consider a violated clique-tree
constraint on k handles, having teeth T . Let (T1, T2, . . . , Tq;T ) ∈ T . If all clique-
tree constraints having less than k handles are satisfied by x∗, then (a) T is
connected, (b) Ti is connected for all i ∈ Iq, (c) x∗(E(Ti : V \ T )) > 0 and
x∗(E(T \ Ti : V \ T )) > 0 for all i ∈ Iq.

Proposition 3. If all subtour inequalities are satisfied, then there exists a max-
imally violated (if any) comb inequality which is super-connected. If all subtour
and comb inequalities are satisfied, then there exists a maximally violated (if any)
clique-tree inequality on two handles which is super-connected.

Proposition 2 indicates that when clique-tree inequalities on k handles are sat-
isfied, then all violated clique-trees on k+1 handles are almost super-connected.
Proposition 3 shows that once comb inequalities are effectively separated, we
may assume for exact separation purposes that two handled clique-trees are
super-connected.

3.1 Characterizations of Violated k-Parity Constraints

Definition 6. Define the weight of k-domino (T1, T2, . . . , Tk;T ) to be w(T ) :=
βT (x(δ(T )) − 2) +

∑k
i=1 x(E(Ti : T \ Ti)) − k.

Lemma 2. The slack of a k-parity inequality is
∑

T∈T
w(T ) +

∑
H∈H

x(FH) − |H|.

Note that Lemma 1 and Lemma 2 together imply that a violated k-parity con-
straint must satisfy

0 ≤ βT

2
(x(δ(T )) − 2) ≤ w(T ) ≤ |H| ∀T ∈ T . (5)

Definition 7. Consider a family of teeth T , where each T ∈ T satisfy κ(T ) ≤ k.
We say that Φ defines an abstract tooth-handle relationship over T and Ik if
(i) Φ(T ) ⊆ Ik and |Φ(T )| = κ(T ) for all T ∈ T , (ii) Φ(i) ⊆ T and |Φ(i)| is odd,
for all i ∈ Ik, and (iii) T ∈ Φ(i) iff i ∈ Φ(T ) for all i ∈ Ik, T ∈ T .

Lemma 3. There exists a violated k-parity inequality iff there exist (T , Φ) defin-
ing an abstract tooth-handle relationship, and sets Ri ⊆ E∗ for all i ∈ Ik such
that:
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(i) {E∗(Ti : T \ Ti)}T∈Φ(i) and {Ri} support a cut in G∗ for all i ∈ Ik.
(ii)

∑
i∈Ik

x∗(Ri) +
∑

T∈T
w(T ) − k < 0.

Proof. From Theorem 1 and Lemma 2, a k-parity inequality is violated iff there
exist (H, T , Λ) defining a proper tooth-handle relationship, and sets FH ⊆ E for
H ∈ H such that:

(a) {E(TH : T \TH)}T∈Λ(H) and {FH} support the cut δ(H) in G for all H ∈ H
(b)

∑
H∈H

x∗(FH) +
∑

T∈T
w(T ) − |H| < 0

We first prove necessity. Assume that (H, T , Λ) defines a violated k-parity in-
equality. We know that there exists FH ⊆ E for H ∈ H satisfying (a)-(b). Assume
H = {Hi : i ∈ Ik}. For each i ∈ Ik define Φ(i) = Λ(Hi), Φ(T ) = {i : Hi ∈ Λ(T )}
and Ri = FHi

∩ E∗. Note that Φ and T define an abstract tooth-handle rela-
tionship, and |H| = k. Hence, conditions (a)-(b) imply (i)-(ii).

We next prove sufficiency. Assume that T , Φ define an abstract tooth-handle
relationship, and sets Ri ⊆ E∗, i ∈ Ik are such that (i) and (ii) hold. For each
i ∈ Ik let Hi ⊆ V be one shore of the cut supported by {E∗(Ti : T \ Ti)}T∈Φ(i)

and Ri, and let Λ(Hi) = Φ(i). Likewise, for T ∈ T define Λ(T ) = {Hi : i ∈
Φ(T )}. Note that Λ define a proper tooth-handle relationship on T ,H. Define
FHi

⊆ Ri∪{e ∈ δ(Hi) : xe = 0} such that (a) holds. Thus (b) must also hold. 
�

For the remainder of this section, assume that G∗ is a planar graph and let
Ḡ∗ denote the planar dual of G∗. For any subset F ⊆ E(G∗), denote by F̄ the
corresponding edges in Ḡ∗ . For each ē ∈ Ḡ∗ let x∗

ē = x∗
e.

Definition 8. A graph H is called Eulerian if every node has even degree. (As
in Letchford [13], we do not require that H be connected.)

Definition 9. Let r be a positive integer and suppose that E1, . . . , Er are edge-
sets satisfying Ei ⊆ E∗, i ∈ Ir. The collection {Ēi : i ∈ Ir} is said to support
an Eulerian subgraph in Ḡ∗ if the edges ē for which μe is odd form an Eulerian
subgraph in Ḡ∗ .

This definition implies that {Ēi : i ∈ Ir} supports an Eulerian subgraph in
Ḡ∗ iff {Ei : i ∈ Ir} supports a cut in G∗. Hence we have the the following dual
version of Lemma 3.

Lemma 4. A k-parity inequality is violated iff there exist T , Φ defining an ab-
stract tooth-handle relationship, and sets R̄i ⊆ Ē∗ for i ∈ Ik such that:

(i) {E∗(Ti : T \ Ti)}T∈Φ(i) and {R̄i} support an Eulerian subgraph in Ḡ∗ for all
i ∈ Ik.

(ii)
k∑

i=1

x∗(R̄i) +
∑

T∈T
w(T ) − k < 0
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Lemma 5. A k-domino (Ti : i ∈ Ik;T ) is super-connected iff (a) C(T ) = δ∗(T )
is a simple cycle in Ḡ∗ , (b) for each i ∈ Ik the edges Pi(T ) = E∗(Ti : T \ Ti)
define a simple path in Ḡ∗ with end-points {sT

i , tTi } in C(T ) (where sT
i 	= tTi )

and all other nodes not in C(T ), and (c) all of the paths Pi(T ) are in the same
side of the cycle C with respect to the planar embedding.

Definition 10. Consider two distinct super-connected k-dominoes T and L. If
the end-points of Pi(T ) and Pi(L) are the same for i ∈ Ik and w(T ) < w(L) we
say that T dominates L.

Lemma 6. Consider two distinct super-connected k-dominoes T and L. If T
dominates L, and if L is used in some violated k-parity constraint, then L may
be replaced by T to obtain another violated k-parity constraint has less slack.

Proof. By removing each path Pi(L) and replacing it with Pi(T ) for i ∈ Ik,
condition (i) of Lemma 4 is not changed, and w(T ) < w(L) implies condition
(ii) is not changed - in fact, the violation, given by (ii), will improve from the
substitution. 
�

From Lemma 6 it follows that a maximally violated super-connected k-parity
constraint will only have non-dominated teeth.

3.2 Separating Super-Connected Clique Tree Constraints

Given a fixed k ∈ Z+ and a fractional LP solution x∗ satisfying all subtour
constraints, the algorithm proceeds in two steps. First, a minimal family of
non-dominated teeth is generated. Next, a violated super-connected k-handle
constraint is generated (if such exists) by solving an odd Eulerian subgraph
problem in an appropriate graph.

In order to describe the tooth generation procedure, it is important to estab-
lish two results.

Lemma 7. Every tooth T in a violated k-handle clique-tree constraint must sat-
isfy 2 ≤ x∗(δ(T )) < 2(k + 1).

Proof. Follows from (5), the subtour constraints, and the fact that clique-trees
have no degenerate teeth. 
�

Lemma 8. Consider a violated super-connected k-handled clique-tree constraint
with tooth set T . Let (Ti : i ∈ Iκ(T );T ) be a κ(T )-domino in T , and define Pi to
be the path E(Ti : T \ Ti) for all i ∈ Iκ(T ). Then,
(i) Paths Pi and Pj don’t cross with regards to the dual embedding, for i 	= j ∈

Iκ(T ).
(ii) Paths Pi and Pj can’t have the same end-points, unless κ(T ) = 2 for i 	=

j ∈ Iκ(T ).
(iii) If paths Pi and Pj have the same end-points, then Pi 	= Pj, for i 	= j ∈ Iκ(T ).
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Proof. For (i) If paths Pi and Pj cross, then halves Ti and Tj must intersect.
For (ii) assume that Pi and Pj have the same end-points. If there exists a path
Pk with k 	= i, j, given that it can’t intersect paths Pi or Pj , it must either
run between Pi and Pj , or must run the side of either Pi or Pj . In either case,
this implies that Tk intersects Ti or Tj . For (iii) if Pi and Pj have the same
end-points and the paths coincide, then the tooth must be degenerate. However,
this is contradictory with the definition of clique-trees. 
�

Lemma 7 and Lemma 8 suggest a natural algorithm by which to enumer-
ate a minimal set of teeth for a violated super-connected k handle clique-tree
constraint. First, enumerate all connected sets T ⊆ V which satisfy the con-
dition in Lemma 7 using an algorithm such as that of Nagamochi et. al [15].
Keep those sets T for which V \ T is connected. Let C = δ(T ). Choose a side
of C with regard to the planar embedding, and let W represent the nodes of
that side minus the nodes in C. Next, for each pair of nodes u, v ∈ C com-
pute the shortest path and second-shortest path from u to v in W . Choose
q ∈ Ik and a set of end-points {(si, ti) : i ∈ Iq} in C. Check that that no
two pairs of end-points are crossing (that is, such that it is impossible to take
a path from si to ti without crossing a path from sj to tj). If q = 2 and
s1 = s2 = s, t1 = t2 = t, let P1 be the shortest s to t path, and let P2

be the second-shortest s to t path. Otherwise, define P̂i as the shortest si to
ti path for i ∈ Iq. If the paths P̂1, . . . , P̂q cross each other, un-cross them so
as to define paths Pi, i ∈ Iq. At this stage, C and the paths Pi, i ∈ Iq,
define a q-domino. If the weight is larger than k, or, if there is another q-
domino which dominates it, discard the tooth. Keep iterating until all possi-
ble combinations of end-points, sides of the cycle, and sets T have been ex-
hausted. It is not difficult to see that this algorithm is polynomial, and that
it enumerates a minimal set of non-dominated teeth (which is polynomially
sized).

For the specific case in which k = 1, a faster tooth generation procedure
is presented in Letchford [13]. First, if k = 1, it is shown that a tooth T is
super-connected iff δ(T ) and E(T1 : T \ T1) define three node-disjoint paths in
Ḡ∗ . In order to construct the teeth, a network N is constructed from the graph
Ḡ∗ so that the nodes of N and Ḡ∗ coincide. Then, for each edge in Ḡ∗ , two arcs
(one in each direction) of capacity one are added to N . By solving the min-
cost three-unit flow problem between each pair of nodes in N , it is possible to
generate a minimal set of non-dominated teeth. The fact that paths in a solution
may possibly cross is not a problem, for it is shown that if an optimal solution
is crossing, then for the given pair of nodes there can be no tooth satisfying
condition (5). In our implementation of Letchford’s algorithm we use this idea,
which will be further discussed in Section 4. This brings us to our main result.

Theorem 2. Suppose G∗ is planar and x∗ satisfies all subtour constraints. Con-
sider a fixed integer k ≥ 1. It is possible to separate in polynomial time a subclass
of k-parity constraints which contains all violated super-connected clique-tree in-
equalities on k handles.
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The sketch of the proof of this theorem consists of two parts. First we outline
a two-stage algorithm which runs in polynomial time, and then we enunciate
an algorithm that separates a subclass of k-parity constraints which contains all
violated super-connected clique-tree inequalities.

The two steps of the algorithm are as follows:

(i) Construct a minimal non-dominated family of teeth L.
(ii) Construct a graph M [k] using L and Ḡ∗ . Solve the min-weight 1k-Eulerian

Subgraph problem in M [k].

Given G = (V,E), edge weights w : E → R+, and edge parities p : E →
{0, 1}k, the min-weight 1k-Eulerian Subgraph problem asks for an Eulerian sub-
graph M∗ of G of minimum weight with parity p(M∗) :=

∑
(p(e) : e ∈ M∗) = 1k

mod 2. If we obtain a solution in step (ii) having weight less than k, then we have
found a violated k-parity constraint. The intuition of the algorithm is as follows:
From Lemma 4 we know that a violated k-parity inequality can be characterized
by a set of Eulerian-subgraphs of G∗, one for each handle, and each utilizing an
odd number of teeth. For every path Pi(T ) = E∗(Ti : T \ Ti) define an odd edge
whose end-points coincide with the end-points of Pi(T ), and whose weight coin-
cides with the weight of the tooth. Thus, the problem can be modeled as that of
searching for a set of odd Eulerian subgraphs (those that use an odd number of
odd edges), one for each handle, whose combined weight is minimized, subject
to side constraints (defined by the teeth) which link these subgraphs to each
other. The side constraints would impose that either all of the paths associated
to a tooth are used (in different handles), or none at all. The proposed algorithm
works by defining a graph M [k] which contains the Cartesian product of k copies
of Ḡ∗ ; the idea being that any path in M [k] corresponds to k individual paths
in Ḡ∗ , one in each of the components (or layers) which make up the Cartesian
product. By defining special edges in M [k] associated to teeth in L, it is possible
to associate certain Eulerian subgraphs in M [k] to k-parity inequalities defined
in Ḡ∗ . Note that M [1] coincides with the graph M∗ as defined in Letchford
[13]; in this case Letchford proved that the condition of being Eulerian can be
replaced by the condition of being a simple cycle.

4 Implementation and Computational Results

In this section we briefly describe our computational tests. First we discuss
the implementation of Letchford’s algorithm for separating domino-parity con-
straints, emphasizing the techniques we adopted to improve its practical perfor-
mance, and presenting some computational results. Next, we discuss the imple-
mentation of a simple heuristic for separating 2-parity constraints.

4.1 Domino-Parity Constraints

Domino Searching. Teeth were generated by using the network flow approach
described in Section 3.2 and Letchford [13]. To find the min-weight node-disjoint
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paths between pairs s, t ∈ V (Ḡ∗ ) we used the augmenting-shortest-path network-
flow algorithm (See Ahuja et al [3] for details). For this, we build a network N
for the graph Ḡ∗ defining two arcs for each edge (one in each direction), as-
signing a capacity of one to each. This algorithm computes the s − t flow by
solving three successive s − t shortest path problems on reduced capacity net-
works successively derived from N . Using this algorithm several speed-ups were
possible. Firstly, for fixed s ∈ V (Ḡ∗ ) the first s − t flow for all nodes t can be
obtained by solving a single Dijkstra algorithm in N rooted at s. The additional
shortest-path computations need only be computed for nodes t at distance not
greater than 4/3 from s. Finally, when computing the s− t three-flow in N , one
only need consider intermediary nodes at distance not greater than 2 from s and
t. This follows from the fact that every cycle in Ḡ∗ corresponds to a cut in G∗,
and hence, has weight at least 2 (due to subtour constraints). Thus, if a node is
used which has distance at least 2, since the other two paths will define a cycle,
the bound of 4 would be exceeded. A useful heuristic idea is to further restrict
the set of intermediary nodes to those of distance no greater than 2α for some
α < 1; this restriction can cause the algorithm to miss violated DP-cuts, but it
greatly improves the speed and appears to work well in practice (we have set
α = .55 in our tests).

Parallelization. Dominoes may be computed in parallel. In fact, one may divide
the nodes s ∈ V (Ḡ∗ ) among different machines so that each one computes all of
the (s, t) three-disjoint paths. We found the domino-computation stage to be (by
far) the most time consuming part of the algorithm, making this parallelization
crucial for obtaining acceptable running times on large instances when using
α = 1. Our parallel implementation is a master–worker system based on message
passing.

Random Walk. The algorithm as formally defined in Letchford [13] computes
exactly one constraint. In practice, one would like the algorithm to compute as
many violated constraints as possible. To achieve this, instead of just solving the
shortest odd-cycle problem in M∗ we additionally run a random walk algorithm
that attempts to find small-weight odd cycles. This algorithm is fast, easy to
implement, and in our tests generally produced a large number of additional
cuts, only the best of which were kept.

Safe Shrinking. The size of the graph G∗ has a dramatic impact on the running
time of our implementation. Following the work of Padberg and Rinaldi [18],
we attempt to reduce the size of G∗ by contracting edges in G∗, redefining the
vector x∗, and solving the separation problem in the new, smaller, graph. In this
shrinking process, a contraction is called safe if we know that the existence of a
violated DP-inequality implies the existence of one in the graph we obtain after
the contraction. Although it is not always the case that shrinking is safe, it is
possible to give conditions under which it will be.

Theorem 3. Consider x∗ satisfying all subtour constraints, a DP-inequality
ax ≤ b satisfying ax∗ > b, and nodes u, v, t ∈ V (G∗) such that x∗

uv = 1, and
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x∗
ut + x∗

vt = 1. If au,v 	= 0 there exists another DP-inequality a′x ≤ b′ such that
a′

u,v = 0 and (a′x∗−b′) ≥ (ax∗−b). Thus, we can contract edge {u, v} and ensure
the existence of a maximally violated DP inequality with zero {u, v} coefficient.

As a pre-processor to our implementation, we repeatedly contract edges {u, v}
while there exist nodes u, v, t satisfying the conditions of Theorem 3.

Planarity. The safe-shrinking procedure can greatly reduce the size of the graph
over which we work, but if the original graph G∗ is non-planar then the shrunk
may too be non-planar. If this is the case, our implementation does non-safe
shrinks until a planar graph is obtained, as in Boyd et al. [4]. If G∗ is not planar,
we identify a forbidden K3,3 or K5 minor M ⊆ E(G∗). We then take two nodes
in the minor with degree at least 3 and contract them (and thus eliminating the
minor), iterating until a planar graph is obtained. An alternative is to eliminate
an edge e ∈ M from G∗, iterating until a planar graph is obtained. There are
several ways in which M and e ∈ M may be selected, and we found that the
way in which the selection is made can make an important difference in the
performance of the algorithm.

Tightening. After adding a cutting plane to an LP and re-solving, it is possible
that we may obtain another fractional solution that differs very little from the
one just separated. In this case, rather than generating new cuts all over again,
it may be desirable to attempt to “fix up” some tight constraints currently in
the LP or in the cut-pool by slightly modifying them in such a way as to make
the new fractional point infeasible (or make an already violated constraint more
violated). This is certainly much faster than separating from scratch, and also
does not require G∗ to be planar. This type of approach has been very successful
on other classes of inequalities (see Applegate et al. [2]) and it had a great impact
in our computational results.

To formalize this notion of simple modifications for DP-inequalities, recall
that every DP-inequality is completely defined by a family of dominoes
{Ai, Bi}k

i=1 and a handle H. Thus, adding and/or deleting a node from any
of those sets will result in slight changes of the constraint which potentially
could result in a new, violated cut.

In our implementation we consider the following set of simple modifications.
Given a node in G∗, we can (i) add it/remove it from a domino; (ii) have it
switch sides in a domino; (iii) add it/remove it from the handle; (iv) do some
combinations of the previous modifications. We implemented a greedy heuristic
which computes the best move for every relevant node1, and while the best move
(among all nodes) reduces the slack of the constraint, perform the move, and
update the best move for the relevant nodes in the graph. If all remaining best
moves are zero-valued (that is, they do not change the slack), we first do moves
that enlarge either the handle or a domino, then do moves that flip elements

1 A node u is relevant in the heuristic if ∃e ∈ δ(u) such that it has a non-zero coefficient
in the DP-inequality.
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within a domino and then do moves that shrink a domino or a handle. We
repeat this until some improving move is found or until we cannot make any
more moves.

TSPLIB Tests. In Tables 1, 2, and 3 we report on a set of tests on all instances
from the TSPLIB having at least 3,000 cities. The computations were performed
on a single processor of a dual 2.66 GHz Intel Xeon Linux workstation. The LP
solver used was ILOG CPLEX 6.5. The algorithm used for planarity testing was
Boyer and Myrvold2 [5].

Table 1. DP-Cuts on TSPLIB Instances

Name Optimal Concorde DP Gap Δ Concorde Hours DP Hours
pcb3038 137694 137660 137687 79% 24.9 8.6
fl3795 28772 28697 28772 100% 21.2 8.2
fnl4461 182566 182555 182559 36% 7.9 3.4
rl5915 565530 565384 565482 67% 103.7 46.1
rl5934 556045 555929 556007 67% 17.5 48.3
pla7396 23260728 23255280 23259532 78% 133.7 106.9

Table 2. DP-Cuts on Larger TSPLIB Instances

Name Optimal Concorde Concorde+DP Gap Δ Concorde Hours DP Hours
usa13509 19982859 19979209 19981173 54% 81.2 72.0
brd14051 469385 469321 469352 48% 53.2 72.0
d15112 1573084 1572853 1572956 45% 114.0 72.0
d18512 (645238) 645166 645193 38% 74.0 72.0

Table 3. DP-Cuts on Largest TSPLIB Instances

Name Optimal Concorde (with pool) Concorde+DP (with pool) Gap Δ

pla33810 66048945 66018619 66037858 63%
pla85900 (142382671) 142336550 142354693 39%

In the tests in Tables 1 and 2, we used the Concorde command line option
-mC48 to allow Concorde to repeatedly call the local-cuts routine up to size
48 (see Applegate et al. [2]); this setting requires additional CPU time over the
default version of Concorde, but it allows Concorde to obtain substantially better
lower bounds. For each instance in Table 2 we also ran Concorde together with
the DP-cut code starting from Concorde’s final LP (cutting off the runs after
72 hours), while for each instance in Table 1 we ran Concorde with the DP-cut
code starting from scratch.

2 We give special thanks for J.M. Boyer for allowing us to use his implementation of
the planarity testing algorithm.
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In Table 3 we consider the two largest examples in the TSPLIB. Rather
than working from scratch on these instances, we study the effectiveness of DP-
cuts in improving the best available LP relaxations. In each instance, we begin
with an LP found by Applegate et al. by gathering cuts into a pool during a
sequence of 3 branch-and-cut runs (stopping each run after it reached 1,000
active subproblems). The LP was then improved by applying DP-cuts, with new
cut pools gathered using 2 branch-and-cut runs for pla33810 and a single short
run (to 75 active subproblems) for pla85900.

As a case-study, starting from the 66,037,858 LP, we have established the op-
timal value of 66,048,945 for pla33810. The optimal tour is a slight improvement
on the best reported tour of value 66,050,499, found by Helsgaun [11] with a vari-
ant of his LKH heuristic. The branch-and-cut run that solved the instance used
577 subproblems (given the upper bound of 1 larger than Helsgaun’s LKH tour).
We also solved the instance a second time starting with a 66,037,858 LP (ob-
tained using the cuts from the earlier run) and an upper bound of 1 greater than
the optimal value; the branch-and-cut run in this case used 135 subproblems.

Our solution of pla33810 should be viewed only as evidence of the potential
strength of the new procedures; the computational study was made as we were
developing our code and the runs were subject to arbitrary decisions to terminate
tests as the code improved. The total CPU time used in the solution of pla33810
was approximately 15.7 CPU years (the additional branch-and-cut run of 135
nodes took 86.6 days).

The two remaining open problems in the TSPLIB are d18512 and pla85900;
the tour values reported in our tables for these instances were obtained by
Tamaki [19] and Helsgaun [11], respectively.

4.2 2-Parity Constraints

To test the efficacy of 2-parity constraints, we developed a heuristic that works by
taking tight (or almost tight) domino-parity constraints, and attempts to grow
a second handle. For this, consider a super-connected domino-parity constraint
with teeth T . The heuristic works in two stages. First, for every tooth T ∈ T
shortest paths are computed between pairs of nodes in δ(T ). Then, in a second
stage, the algorithm attempts to connect an odd number of these paths into a
simple cycle with edges in Ḡ∗ , by using a random-walk which gives preference
to edges having small weight (with regard to the values given by the fractional
vector x) and which forbids taking two different paths associated to a same
tooth T ∈ T . It is not difficult to see from Lemma 3 that such a structure in
Ḡ∗ corresponds to a 2-parity cut.

In Table 4 we report results using an implementation of the 2-parity sep-
aration heuristic on a selection of small TSPLIB instances that are not easily
solvable at the root node. The “DP” column gives the LP value using Concorde
with DP-cuts and with local cuts of size 32; the “DP+2P” column reports the
LP value obtained by starting with the “DP” LP and running Concorde with
the 2P-cut separator. The improvement in the LP gap varied widely, but it is
promising that 2P-cuts can often strengthen these already very good LP bounds.
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Table 4. 2-Parity Cuts on TSPLIB Instances

Name Optimal DP DP+2P Gap Δ

pcb442 50778 50765 50765 0%
att532 27686 27685 27686 100%
dsj1000 18660188 18659299 18660093 89%
u1060 224094 224044 224054 20%

vm1084 239297 239294 239297 100%
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Abstract. The graphical traveling salesman problem (GTSP) has been
studied as a variant of the classical symmetric traveling salesman prob-
lem (STSP) suited particularly for sparse graphs. In addition, it can be
viewed as a relaxation of the STSP and employed for solving the latter to
optimality as originally proposed by Naddef and Rinaldi. There is a close
natural connection between the two associated polyhedra. Until now, it
was not known whether there are facets in TT-form of the GTSP poly-
hedron which are not facets of the STSP polytope as well. In this paper
we give an affirmative answer to this question for n ≥ 9 and provide a
general method for constructing such facets.

Keywords: Graphical Traveling Salesman Problem, Symmetric Trav-
eling Salesman Problem, facets, polyhedral combinatorics, polyhedral
computation.

1 Introduction

The Symmetric Traveling Salesman Polytope, STSP(n), is the convex hull of
all incidence vectors of edge sets of Hamiltonian cycles of the complete graph
Kn = (Vn, En), where Vn := {0, . . . , n− 1} and En is the set of all two-element
subsets of Vn.

The Graphical Traveling Salesman Polyhedron, GTSP(n), is equal to the con-
vex hull of all non-negative integral vectors (xe)e∈En

satisfying the properties
that the graph with node set Vn and edge set {e | xe 	= 0} is connected and that
the number x(δ(u)) is even for all u ∈ Vn. Here, for a set U ⊂ Vn, we denote by
δ(U) the set of all edges of Kn with precisely one end node in U , and we define
δ(u) := δ({u}). We also write x(F ) :=

∑
e∈F xe for a set of edges F .

The Symmetric Traveling Salesman Polytope is at the heart of the well-
known cutting-plane method to solve the Symmetric Traveling Salesman Prob-
lem [13]. The study of the Graphical Traveling Salesman Polyhedron originates
from the attempt to take advantage of the situation when the TSP is defined on
non-complete graphs [12, 14]. This line of research is gaining momentum again.
In their seminal papers, Naddef and Rinaldi proposed viewing the polyhedron
GTSP(n) as a relaxation of STSP(n), the graphical relaxation [17, 18]. The moti-
vation for the attempt to use a relaxation instead of the polytope itself is quite
obvious in the case of STSP(n) and GTSP(n): while STSP(n) is not even full-
dimensional, GTSP(n) is of blocking type and has a number of nice (non-trivial)

M. Jünger and V. Kaibel (Eds.): IPCO 2005, LNCS 3509, pp. 468–482, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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properties discovered by Naddef and Rinaldi. The observation that STSP(n) is
a face of GTSP(n) which is defined by forcing the so-called degree inequalities
x(δ(u)) ≥ 2 to equations is fairly obvious. But Naddef and Rinaldi revealed
some surprisingly close connections between the two polyhedra, and raised the
following question:

Is every TT-form inequality which is facet-defining for GTSP(n)
also facet-defining for STSP(n)? (∗)

Note that almost all GTSP(n)-facets are defined by TT-form inequalities. To
be precise, there are only n(n + 1)/2 facets which are not defined by TT-form
inequalities, namely the n degree-facets (the facets defined by the degree in-
equalities), and the

(
n
2

)
non-negativity facets defined by xe ≥ 0, e ∈ En. But it

is known that the total number of facets of, for example, GTSP(10), is at least
51,043,900,866 [1, 11].

Naddef and Rinaldi did not conjecture the answer of (∗) to be yes, but
recently others have [7]. Being theoretical in origin, in the recent years the issue
has increasingly gained practical importance. In [6, 7], a method for separating
cuts for the Symmetric TSP is introduced. The inequalities which the method
produces define facets of GTSP(n), and in [7] it is conjectured that this implies
that they also define facets of STSP(n). In [2, 3, 4], Applegate et al. propose a
new method for generating cuts for the Symmetric TSP. In [3], they give an
argument supporting the assumption that the resulting cuts are not too weak.
Referring to [18], they state that ‘it could hardly be better: there is no known
counterexample to the conjecture (implicit in Naddef and Rinaldi).’

The outline of this paper is as follows. After explaining some necessary termi-
nology in the next section, we describe a way to prove the existence of TT-type
facets of GTSP(n) which do not induce facets of STSP(n) in Section 3. In Sec-
tion 4, we explain this construction on an example for n = 9. In the following
section, we explain how this implies that there exist non-NR-facets for all n ≥ 9.
Section 6 contains the computational part of our paper. We explain how we
were able to verify computationally that the conjecture is true for n = 6, 7, 8,
argue why we think that the counterexample we describe is (modulo reordering
of nodes) the only one for n = 9 and give some facts about counterexamples we
found for n = 10. Section 7 explains an algorithmic consequence of our results
and possible directions of future work.

2 Preliminaries

We assume knowledge of the basics of polyhedral theory (as outlined in e.g. [19])
and also need elementary facts for blocking type polyhedra. We recall that for
a polyhedron P ⊂ m of blocking type, the blocking polyhedron is denoted by
B(P ) := {a ∈ m

+ | ax ≥ 1 ∀x ∈ P}.
For a ∈ m, α ∈ we denote the inequality ax ≥ α by (a, α). We write χF

for the incidence vector of F of appropriate length, i.e., χF
e = 1, if e ∈ F , and

χF
e = 0, otherwise. We abbreviate χ{f} by χf .
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Let P be a polyhedron of dimension d in m. A face of dimension d − 2 is
called a ridge. A ridge is contained in precisely two facets. Two facets of P are
said to be adjacent on P , if their intersection is a ridge. A face of dimension
one is called an edge and a face of dimension zero is called a vertex of P . Now
let P ⊂ m

+ be a polyhedron of blocking type. The mapping (a, 1) "→ a defines
a canonical bijection from the facet-defining inequalities of P which are not
equivalent to non-negativity inequalities (χj , 0) to the vertices of the blocking
polyhedron B(P ) := {a ∈ m

+ | ∀x ∈ P : ax ≥ 1} of P . It also maps valid
inequalities defining ridges of P which are not contained in non-negativity facets
to points on bounded edges of B(P ).

Let E(n) denote the set of vertices of the graphical TSP polyhedron GTSP(n).
It is well-known that GTSP(n) is of blocking type (e.g. [16]). We write E 0(n) for
the set of vertices of GTSP(n) which represent Hamiltonian cycles. These are
precisely the vertices of STSP(n), and satisfy |x|1 :=

∑
e xe = n. Further we

write E 1(n) for the set of vertices x of GTSP(n) with |x|1 = n + 1 (called almost
Hamiltonian cycles in [18]), and E ≤1(n) := E 0(n) ∪ E 1(n). From now on, we
abbreviate m :=

(
n
2

)
.

Let a ∈ En . For a node u ∈ Vn and an edge e = {v1, v2} which forms a
triangle with u (i.e., u 	∈ e), we define the shortcut σu,e := χ{v1,v2} − χ{u,v1} −
χ{u,v2} and tu,e(a) := −a σu,e = a{u,v1} + a{u,v2} − a{v1,v2}. Following [18], we
define the TT-set Δa(u) := {e 	# u | tu,e(a) = 0} for all u ∈ Vn. In other words,
the TT-sets can be seen as the sets of shortcuts which are orthogonal to a. A
vector a is called metric, if its coefficients satisfy the triangle inequality, i.e., if
t(a) ≥ 0, and it is said to be tight triangular or in TT-form, if for every node u
the TT-set Δa(u) is non-empty. Using this, Naddef and Rinaldi [18] proved that
the facets of GTSP(n) fall into three categories:

1. non-negativity facets induced by (χe, 0), e ∈ En,
2. degree-facets induced by (χδ(u), 2), u ∈ Vn,
3. facets induced by TT-form inequalities.

We call the facets of the third category TT-type facets. We call a TT-type facet
of GTSP(n) a Naddef-Rinaldi facet or NR-facet, if its intersection with STSP(n)
is a facet of STSP(n). The question (∗) can be restated as: Is every TT-type facet
of GTSP(n) an NR-facet? We call a TT-type facet F which is not an NR-facet,
i.e., for which dim(STSP(n)∩F ) < dim STSP(n)−1 = m−n−1 a non-NR-facet.

Since the TT-sets Δa are invariant under scaling of a with a strictly positive
scalar, we can speak of the TT-sets ΔF of a facet. Let F and G be TT-type
facets of GTSP(n). For a node u we say that F and G are TT-disjoint in u, if
ΔF (u) ∩ΔG(u) = ∅. We say that F and G are nowhere TT-disjoint, if there is
no node in which they are TT-disjoint.

For a ∈ m and u ∈ Vn we let λ̄u(a) := 1
2 mine��u tu,e(a). The vector a

is metric if and only if the vector λ̄(a) ≥ 0 and it is in TT-form if and only
if λ̄(a) = 0. By Lemma 2.7 of [18] the vector a −

∑
u λ̄u(a)χδ(u) is in TT-

form. For an inequality (a, α), we call (a, α) −
∑

u λ̄u(a) (χδ(u), 2) its TT-form
representative. Naddef and Rinaldi [18] proved the following facts.
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a. The degree equations x(δ(u)) = 2, u ∈ Vn form a complete system of equa-
tions for STSP(n). (Therefore, if two inequalities differ by a linear combina-
tion of degree equations, they are equivalent.)

b. If an inequality defines a facet of STSP(n), then either it is equivalent to
a non-negativity inequality or its TT-form representative defines a facet of
GTSP(n).

c. Every facet of STSP(n) which is not defined by a non-negativity inequality
is contained in precisely n+1 facets of GTSP(n), namely the n degree facets
and one NR-facet.

d. Let F be a TT-type facet of GTSP(n). For every e ∈ En, there exists x ∈
E 0(n) with x ∈ F and xe = 1.

Item (b) answers the reverse direction of the question (∗). Item (c) shows that
the relation between the polyhedra GTSP(n) and STSP(n) is very close.

We end this section by citing a result of [18].

Proposition 1 (Corollary 2.6 in [18]). Let F be a TT-type facet of GTSP(n).
For every e ∈ En, there exists a x ∈ E 0(n) ∩ F with xe = 1.

In other words, the intersection of a TT-facet with STSP(n) is never contained
in a non-negativity facet.

3 A Construction for the Graphical TSP

In this section we present the main result of this paper. We start with an obser-
vation which motivates our considerations.

Corollary 1. Let (c, γ) define a TT-type facet F of GTSP(n) which is non-NR.
Let k := dimSTSP(n)−dim(STSP(n)∩F ) denote the co-dimension of STSP(n)∩
F in STSP(n). There exist inequalities (a1, α1), . . . , (ak, αk) defining facets of
GTSP(n) and STSP(n) (i.e., NR-facets), and μ1, . . . , μk ≥ 0 such that

(c, γ) =
k∑

j=1

μj(aj , αj) −
n−1∑
u=0

λ̄u · (χδ(u), 2), (1)

where we abbreviate λ̄ := λ̄
(∑k

j=1 μjaj

)
. In other words, (c, γ) is the TT-form

representative of
∑k

j=1 μj(aj , αj). The vector λ̄ is non-negative, and there exists
u with λ̄u > 0. If k = 2, then the (ai, α) are unique up to scaling.

This is an easy corollary of Proposition 1: Since the face F ∩ STSP(n) is not
contained in a non-negativity inequality, any inequality defining the face must
be a sum of NR-facet-defining inequalities and degree equations. The degree
equations occur with negative coefficient because the weighted sum of the aj is
metric.

Now we describe a construction which allows us to produce non-NR-facets
from NR-facets. The basic idea is the following. If two NR-facets G and H are
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adjacent on STSP(n), i.e., the face STSP(n) ∩G ∩H is a ridge of STSP(n), then
it can be seen from the TT-sets of G and H whether they are adjacent on
GTSP(n). If they are not, then there exists a non-NR-facet adjacent to G (and,
by symmetry, one which is adjacent to H, but the two may be equal). Therefore,
in a certain sense, if G and H are not adjacent on GTSP(n), then there is a
“hole” between them which is filled by at least one non-NR-facet.

Let (a, α) and (b, β) define NR-facets G and H respectively. Suppose that
STSP(n) ∩G ∩H is a ridge of STSP(n). For μ = (μ1, μ2) ≥ 0, we let

(cμ, γμ) := μ1(a, α) + μ2(b, β) −
n−1∑
u=0

λu(μ) (χδ(u), 2), (2)

where λ(μ) := λ̄
(
μ1(a, α) + μ2(b, β)

)
. Because of the remarks in the previous

section, c is tight triangular. Note that, for all u, if λu(μ) 	= 0 then G and H are
TT-disjoint in u (the converse is true for μ1, μ2 > 0).

Theorem 1. Let (a, α) and (b, β) define the NR-facets G and H respectively of
GTSP(n). If G and H are adjacent on STSP(n) and TT-disjoint at at least one
node, then there exists a μ > 0 for which (cμ, γμ) defines a non-NR-facet F of
GTSP(n). Moreover, μ can be chosen in such a way that F is adjacent to G (or,
by symmetry, in such a way that it is adjacent to H).

The proof is geometric and fills the remainder of this section. First we will
show that the inequality (cμ, γμ) is valid for GTSP(n) and defines a face of
dimension at least m − 2 of GTSP(n). Then we will prove that if G and H are
TT-disjoint in at least one node then there exists μ such that (cμ, γμ) defines
a facet F of GTSP(n) which is adjacent to G. Clearly, by construction, the
inequality does not define a facet of STSP(n), because it is dominated by (a, α)
and (b, β). Hence, F is a non-NR-facet.

Lemma 1. The inequality (cμ, γμ) is valid for GTSP(n).

Proof. Since cμ is metric, the validity of (cμ, γμ) for GTSP(n) follows from its
validity for STSP(n), which is given because it is a sum of valid inequalities.

Let Rμ denote the face of GTSP(n) defined by (cμ, γμ).

Proposition 2. Rμ is “at least a ridge”, i.e., dimRμ ≥ dimGTSP(n) − 2.

The argument we use is the same as that in the proof of Theorem 2.11 of [18].

Proof. First note that STSP(n)∩G∩H ⊂ Rμ, and choose an affinely independent
subset x1, . . . , xm−n−2 of E 0(n)∩G∩H. Now let u ∈ Vn and e ∈ Δcμ

(u). Because
STSP(n)∩G∩H is a ridge of STSP(n), it is not contained in the non-negativity
facet defined by (χe, 0). Thus there exists an x ∈ E 0(n) ∩ G ∩ H with xe = 1.
Then zu := x− σu,e ∈ Rμ.

We now have constructed m − 2 vectors, and it remains to be shown that
they are affinely independent. For this, let ξ1, . . . , ξm−n−2 and ζ0, . . . , ζn−1 be
given in such a way that

∑
j ξj +

∑
u ζu = 0 and
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m−n−2∑
j=1

ξjx
j +

n−1∑
u=0

ζuz
u = 0.

Let v ∈ Vn. By applying δ(v) to both sides of the equation we obtain

0 = 2
m−n−2∑

j=1

ξj + 2
n−1∑
u=0

ζu + 2ζv,

which implies ζv = 0. Since the xj are affinely independent, it follows from ζv = 0
for all v that ξj = 0 for all j. This completes the proof of the proposition.

As a consequence of this proposition we obtain the following corollary.

Corollary 2. If G and H are NR-facets which are adjacent on STSP(n), then
they are adjacent on GTSP(n) if and only if they are nowhere TT-disjoint.

Proof. It is easy to see that if G and H are TT-disjoint at a node u then the
degree facet for u contains G ∩ H, whence G and H cannot be adjacent. If, on
the other hand, G and H are TT-disjoint, then we have λ = 0 in (2). Therefore,
by the proposition, with μ := (1

2 ,
1
2 ), G ∩H = Rμ, is a ridge.

To this point we have not made any restrictions concerning the TT-sets of G
and H. But now we will require that G and H must be TT-disjoint in at least
one node, i.e., ∀μ : λ(μ) 	= 0.

Lemma 2. γμ never vanishes, i.e., for all μ ≥ 0 we have γμ > 0.

Proof. From [17] (or from the fact that GTSP(n) is of blocking type) it is known
that the only facets of GTSP(n) which are defined by inequalities whose right
hand side vanishes, are the non-negativity facets. Hence, if γμ = 0 for a μ, then
Rμ is the intersection of the non-negativity facets on the edges e on which cμ

is non-zero (this may be none at all). Consequently, STSP(n) ∩ G ∩ H is the
intersection of degree facets and non-negativity facets, which is a contradiction.

We now come to the heart of our geometric existence argument. With the
abbreviation μ(s) := (1−s, s) and because of the previous lemma, we can define
the following mapping:

φ : [0, 1] → En : s "→ 1
γμ(s)

· cμ(s).

Lemma 3. φ is continuous.

Proof. The mappings μ "→ tu,e(μ1a + μ2b) for e 	# u are continuous. Thus μ "→
λ(μ) is continuous as a minimum of continuous mappings. Invoking Lemma 2,
φ is also continuous.

Now we are ready to complete the proof of the main result of this paper.
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G ∩ STSP(n) H ∩ STSP(n)

G
φ

H

In STSP(n):

In GTSP(n):

Fig. 1. Curve on the boundary of B(GTSP(n)) defined by adjacent facets of STSP(n)

Proof (of Theorem 1). The mapping φ defines a curve on the boundary of the
blocking polyhedron B(GTSP(n)). The fact that (φ(s), 1) defines a face of dimen-
sion at least m− 2 of GTSP(n) which is not contained in a non-negativity face is
equivalent to the fact that the image φ(s) is always contained in a bounded edge
of B(GTSP(n)). The curve starts in the vertex of B(GTSP(n)) corresponding to
G and ends in the vertex corresponding to H. Because G and H are not adjacent
on GTSP(n), these vertices are not adjacent in the graph of B(GTSP(n)). Since
φ is continuous, it must traverse a third vertex of B(GTSP(n)). This proves that
there exists an s for which (φ(s), 1) defines a facet of GTSP(n). The facet defined
by the smallest such s is adjacent to G. This completes the proof of Theorem 1.

For an illustration, see Fig. 1. The facets H ∩ STSP(n) and G ∩ STSP(n) are
adjacent on STSP(n). In the case of GTSP(n), φ is a curve on the boundary
of B(GTSP(n)), which connects G to H and walks along edges of the blocking
polyhedron. The points represent vertices of B(GTSP(n)). In the hollow points,
(φ(s), 1) defines a non-NR-facet of GTSP(n).

4 An Example

We have not yet shown that there exists a non-NR-facet, but now we know how
to search for one. In this section we will explain the construction on an example.
This example satisfies a certain condition, which makes the geometry particularly
nice. The continuous curve φ on the boundary of the blocking polyhedron can
be visualized as continuously “tilting” a valid halfspace. We will see that the
condition (3) below implies the existence of " for which the intersection of the
halfspace with GTSP(n) is contained in G if μ1/μ2 < " and in H if μ1/μ2 > ".
For μ1/μ2 = ", the halfspace defines a face of GTSP(n) which contains two ridges:
a facet.

Let (ȧ, 18) and (ḃ, 28) be the two inequalities whose coefficients are displayed
in Table 1. They are taken from the list of facets of STSP(n), n = 6, . . . , 10
(see [10]). Since they are in TT-form, they define NR-facets by item (b) in
Section 2. By enumerating all x ∈ E 0(9) it is easy to see that they are adjacent
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Table 1. Two inequalities defining Naddef-Rinaldi-facets

1 2 3 4 5 6 7 8
0 4 3 3 2 3 5 1 2
1 1 3 2 5 3 3 2
2 2 3 4 4 2 3
3 1 4 4 2 3
4 3 5 3 4
5 2 4 5
6 4 3
7 1 ≥18

1 2 3 4 5 6 7 8
0 6 4 4 6 4 6 2 3
1 2 6 4 6 4 4 3
2 4 6 8 6 6 5
3 2 8 6 6 5
4 6 8 6 7
5 2 4 5
6 4 3
7 1 ≥28

on STSP(9). They are TT-disjoint in node 0 but nowhere else. The results of the
previous section now imply the existence of a non-NR-facet for GTSP(9).

We want to construct this counterexample explicitly. By inserting the defini-
tion of λ and λ̄ in (2), and using the fact that t(·) is linear, we have

(cμ, γμ) = μ1(ȧ, 18) + μ2(ḃ, 28) − 1
2 min

e��0

(
μ1t0,e(ȧ) + μ2t0,e(ḃ)

)
· (χδ(0), 2).

Looking at the integers t0,e(ȧ) and t0,e(ḃ) for e 	# 0, we find that they are all
either zero or ≥ 2 and that min{t0,e(ȧ) | e 	# 0, t0,e(ḃ) = 0} = 2 (and the same
holds when ȧ and ḃ are exchanged in the formula). But this immediately implies
the following relation for a := ȧ, b := ḃ and u := 0

mbtu,e(a) + matu,e(b) ≥ mamb for all e 	# u (3)

where, for arbitrary a and b the number ma is defined as

ma := min{tu,e(a) | e 	# u, tu,e(b) = 0},

m
b t

1 +
m

a t
2 =

m
am

b

ma

mb

t1 := tu(a)

t2 := tu(b)

Fig. 2. Graphical illustration of relation (3)
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and mb symmetrically. See Fig. 2 for an illustration of this relation. In this figure,
the black dots represent the points (t1, t2) := (tu,e(a), tu,e(b)), e 	# u. For this
situation we can give the following general result.

Proposition 3. Let (a, α) and (b, β) be as in Theorem 1, but TT-disjoint in
precisely one node u. Define " := mb/ma. If (3) holds, then (cμ, γμ) defines a
facet of GTSP(n) if and only if μ1/μ2 = ". This facet is adjacent on GTSP(n) to
both G and H.

Proof. The proof is in three steps. 1.) First we show that, for all μ ≥ 0 with
μ1/μ2 > ", if the minimum value over e of μ1tu,e(a) + μ2tu,e(b) is attained in f
then tu,f (a) = 0. To see this, consider the set of points S :=

{
(tu,e(a), tu,e(b)) |

e 	# u
}

in 2
+. The relation (3) means that no point is below the line defined

by mbt1 + mat2 = mamb (cf. Fig. 2). But, by definition of ma and mb, the
points (ma, 0) and (0,mb) are in S and on the line. Minimizing a linear function
(μ1, μ2) over the set S will give either the unique point (ma, 0), if μ1/μ2 < ", or
the unique point (0,mb), if μ1/μ2 > ", or all points of S on the line, if μ1/μ2 = ".

2.) Second, we show that if μ1/μ2 > ", then Rμ ⊂ G holds. Namely, we
prove that x ∈ E(n) ∩ Rμ implies x ∈ G, and we do this by induction on
|x|1. If |x|1 = n, i.e., if x is a Hamiltonian cycle, the claim is true, because
Rμ ∩STSP(n) = G∩H ∩STSP(n). For the induction step, let x ∈ Rμ be a vertex
of GTSP(n) with |x|1 ≥ n + 1. From Lemma 2.5 of [18], it is known that there
exists a y ∈ Rμ with |y|1 = |x|1−1 and such that y−x is a shortcut σv,f . We can
conclude that f ∈ Δv(cμ). If we can show that f ∈ Δv(a), then x ∈ G implies
y ∈ G. In the case v 	= u we clearly have f ∈ Δv(a) ∩Δv(b). In the case v = u,
the minimum value over e of μ1tu,e(a) + μ2tu,e(b) is attained in f , and thus, by
1., we have tu,f (a) = 0, whence the claim is established.

G

H

G
H

F
Rμ

In STSP(n) In GTSP(n)

{x | cμx = γμ}

Fig. 3. Tilting a hyperplane
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1 2 3 4 5 6 7 8
0 9 6 6 7 6 10 2 4
1 3 9 6 11 7 7 5
2 6 9 12 10 8 8
3 3 12 10 8 8
4 9 13 9 11
5 4 8 10
6 8 6
7 2

Fig. 4. Counterexample to the conjecture (∗) that every TT-type facet of GTSP(n)
induces a facet of STSP(n) for n = 9

3.) Now we can conclude that (cμ, γμ) defines a hyperplane which is tilted
continuously. For μ1/μ2 > " its intersection with GTSP(n) is a ridge contained
in G, for μ1/μ2 < " the intersection is a ridge contained in H. Since it is moved
continuously, the intersection contains both ridges for μ1/μ2 = ", which implies
that it must be a facet. See Fig. 3 for an illustration. In this figure, the image
on the left shows the situation on STSP(n): the two facets G ∩ STSP(n) and
H∩STSP(n) are adjacent. The image on the right shows how the valid hyperplane
(dotted rectangle) intersects GTSP(n) in a ridge Rμ linking G and the non-NR-
facet F . If the hyperplane is tilted, the intersecion with GTSP(n) will be equal
to the non-NR-facet F before it is the ridge linking F and H. With this, the
proof of the proposition is completed.

As a consequence of this proposition, with " = 1 and μ1 = μ2 = 1 the
inequality (ȧ, 18) + (ḃ, 28) − (χδ(u), 2) is the non-NR-facet for n = 9 we were
looking for. It is displayed in Fig. 4. In this figure, the remaining edges have
coefficients which are equal to the lengths of the shortest paths. The right hand
side is 44.

5 Existence of Non-NR-Facets for n ≥ 9

In the previous section we have deployed a non-NR-facet for n = 9 based on the
technique introduced in Section 3. We will now conclude the theoretical part of
this paper by proving that there exist non-NR-facets for all n ≥ 9. For this we
use 0-node lifting, as defined in [17, 18].
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Let a ∈ Vn and w ∈ Vn. We define a◦ ∈ Vn+1 as follows:

a◦
e =

⎧⎪⎨⎪⎩
ae, if n 	∈ e

a{u,w}, if e = {u, n} and u 	= w

0 if e = {w, n}.

In [17, 18], it is shown that if (a, α) defines a TT-type facet of GTSP(n), then
(a◦, α) defines a TT-type facet of GTSP(n + 1). We call (a◦, α) the inequality
obtained by 0-node-lifting at node u.

Theorem 2. For all n ≥ 9 there exists a non-NR-facet of GTSP(n).

Proof. We have just displayed the case n = 9. For n ≥ 10, we use induction
based on 0-node lifting. Let (c, γ) = μ1(a, α)+μ2(b, β)−

∑n−1
u=0 λu(χδ(u), 2), and

w ∈ Vn with λw = 0. Denote by (c◦, γ) the inequality obtained from (c, γ) by
0-node lifting at w.

Claim: If (c, γ) defines a non-NR-facet, then so does (c◦, γ).
From the claim the statement of the theorem follows, because the non-NR-

facet described in the previous section is of this form.
Proof of the claim. As mentioned above, (c◦, γ) defines a TT-type facet of

GTSP(n + 1). It is not a NR-facet, because on STSP(n + 1) it is dominated by
the inequalities (a◦, α) and (b◦, β), i.e., by the inequalities obtained from (a, α)
and (b, β) respectively by 0-node lifting at node w. This completes the proof of
the theorem.

6 Computational Findings and the Case n ≤ 8

In this section we describe how we verified computationally that for n ≤ 8 there
is no non-NR-facet of GTSP(n), and how we “confirmed” the theoretical results
of Sections 3 to 5 for n = 9, 10.

It follows from [15] that the answer to (∗) is yes for n ≤ 5. We applied the
facet enumeration software PORTA [9] in a standard way to check the correctness
of the conjecture for n = 6 by computing all facets of GTSP(6). However, the
computation did not terminate within 50 days and we had to give up. The
numbers of vertices of the GTSP(n) polyhedra for n = 3, . . . , 10, as shown in
Table 2, indicate that any naive attempt in this direction is likely to fail (the
middle column in the table refers to Lemma 4).

We do not know of any result on complete descriptions for GTSP(n) for n ≥ 6,
either theoretically or computationally. The complete description of STSP(n) for
n = 6, 7 was proven in [5], for n = 8 it was computed in [8], and for n = 9 it was
computed in [11]. For n = 10 the same system of inequalities was produced in
[1, 11], and it is conjectured to be complete in [11].

We used the following method to verify computationally that every TT-type
facet of GTSP(n) is an NR-facet for n = 6, 7, 8. As mentioned in [18], every
TT-type facet contains an x ∈ E 0(n). By reordering the nodes, we may fix one
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Table 2. Number of vertices of STSP(n) and GTSP(n)

STSP GTSP
n

∣∣E 0(n)
∣∣ ∣∣E ≤1(n)

∣∣ ∣∣E(n)
∣∣

3 1 4 4
4 3 15 31
5 12 87 362
6 60 600 5676
7 360 4770 111982
8 2520 42840 ≥2669752
9 20160 428400 ≥74896444

10 181440 4717440 ≥2388208240

x0 ∈ E 0(n), and consider the cone C defined by the rays x− x0 where x ∈ E(n).
Every TT-facet is an NR-facet if and only if this cone is equal to the cone C ′

described by the TT-form inequalities defining facets of STSP(n) for which x0 is
satisfied with equality, plus appropriate non-negativity and degree inequalities.
The system of inequalities for C ′ was computationally tractable for n = 6, 7, 8:
the computer program PORTA produced a complete list of extreme rays of C ′.
After appropriately scaling the rays and adding them to x0, we obtained points
in GTSP(n). Hence, C ′ ⊂ C holds. From item (b) in Section 2 it follows that
every facet of C ′ is also a facet of C. This implies C = C ′. Therefore, as a result
of our computations, we gain the following proposition.

Proposition 4. For n ≤ 8 every TT-type facet of GTSP(n) is an NR-facet.

Since for n = 9 the cone C ′ has about 88000 facets, we tried a refinement
of this idea. It is easy to see that every TT-facet must contain an element of
E 1(n). There are precisely four non-isomorphic members of E 1(n). The four cones
defined analogously to C ′ above had between 500 and 8000 facets. Only the cone
with the smallest number of facets was tractable, but all four would have to be
screened. Therefore we had to give up on this method for n = 9.

How else can we look for non-NR-facets computationally? Of course—one
possibility is to compute TT-type facets of GTSP(n) and check the dimension
of the intersection with STSP(n). The complete outer description of STSP(n) is
known for n ≤ 9 and conjectured for n = 10 [11]. With it we know all NR-
facets of GTSP(n), n ≤ 9 and many of GTSP(10). This suggests that we identify
the facets adjacent to these NR-facets on GTSP(n), n ≤ 10 using the adjacency
decomposition technique described in [11]. This technique uses the fact that
the facets of GTSP(n) which are adjacent to G can be derived from the facets
of G (which we computed using PORTA) by sequential lifting. To reduce the
computational effort, the following lemma turned out to be helpful, the proof of
which we omit.

Lemma 4. Let P := conv E ≤1(n) + m
+ . If G and H are two adjacent facets of

GTSP(n), then G ∩ P and H ∩ P are adjacent facets of P .
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A consequence of the lemma is that, computing the outer description of G,
it is sufficient to use the polyhedron P , which has many fewer vertices than
GTSP(n) on G. See Table 2, where the middle column gives the number of
vertices of the polyhedron P .

For n = 9, using the adjacency decomposition described above, we have found
precisely one class of non-NR-facets, namely the one described in Section 4. The
class of a facet consists of all facets arising from one by renumbering the nodes
arbitrarily. We managed to compute the neighbors of 189 out of 192 classes of
NR-facets of GTSP(9). Only the three facet-classes induced by subtour inequali-
ties (δ(U), 2) where U � V9, 2 ≤ |U | ≤ 4, remain. Since the results of Sections 3
and 4 relate the inequalities (ai, α) of (1) to adjacency on GTSP(n), and it is
possible to show that no non-NR-facet can be written in the form (1) by sub-
tours only, we conjecture that we have produced the only non-NR-facet class
(and thus a complete description of GTSP(9)).

For n = 10 we found 49 classes of non-NR-facets. In almost all cases the
intersection of the non-NR-facets with STSP(10) defines a ridge of STSP(10),
conforming to the construction of Section 3.

We have also found three classes of non-NR-facets (all with n = 10) where
the dimension of the intersection with STSP(10) falls below the dimension of
a ridge. More precisely, in each of the three cases the dimension is 32 while
dim STSP(10) = 35 and the dimension of a ridge is 33. But we assume that there
are further non-NR-facets where this gap to the dimension of STSP(n) is even
bigger than three.

7 Conclusion and Outlook

We note that the result of this paper shows that the degree constraints can
affect the value of an LP-relaxation even if the cost function satisfies the triangle
inequality. This answers a question posed by Goemans [16].

As mentioned in the introduction, the so-called local-cuts method of [3, 4]
produces valid inequalities for Symmetric Traveling Salesman Polytopes. They
define facets of GTSP(n) for a small n (up to about 30), and are then “lifted”. In
[3], the formulation of the conjecture is stronger than the formulation (∗). This
is mainly so because only a subset of vertices of GTSP(n) are considered, namely
the set of vectors which are called strongly constrained tangled tours in [3, 4]. The
set of strongly constrained tangled tours is defined by a fractional vector. It can
be seen that our non-NR-facet for n = 9 (Fig. 4) defines a facet of the convex
hull of all strongly constrained tangled tours which are defined by the fractional
vector displayed in Fig. 5. This implies that the local-cuts method may produce
inequalities which are not facet-defining for STSP(n) even for n = 9. Given that
the number of non-NR-facets increases with n, it would be very interesting to
know if the local-cuts method produces many non-facet-defining inequalities for
the Symmetric Traveling Salesman Polytope.

It would also be interesting to know how big the co-dimension dim STSP(n)−
dim(STSP(n)∩F ) can be for a facet F of GTSP(n). While we have no theoretical
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Fig. 5. Fractional vector satisfying all STSP(9)-facet-defining inequalities and the de-
gree equations for all nodes except 0

insights which would support such a conjecture, looking at the examples we have,
one would be tempted to guess that

gn := max
{
dim STSP(n) − dim(STSP(n) ∩ F ) | F facet of GTSP(n)

}
≤ n + 1.

The next step in the investigation of the graphical relaxation will be to check
another open question raised in [18], which is concerned with the 0-node-lifting
operation. As noted above, Naddef and Rinaldi [18] showed that 0-node-lifting
preserves the facet-defining property for GTSP. The question which remains open
to this date is: Does 0-node-lifting preserve NR-facets? If the answer to (∗) had
been yes, then the 0-node-lifting question would have had a positive answer, too.
Hence, after the findings of this paper, this has become less likely. The 0-node-
lifting question is of high relevance both in theory and in practice. To answer it,
a characterization of NR-facets will be required.
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Hoàng, Ch́ınh T. 265
Hurkens, Cor A.J. 407

Iwata, Satoru 236, 335
Iyengar, Garud 152

Kakimura, Naonori 236
Keijsper, Judith C.M. 407
Kortsarz, Guy 349

Lau, Lap Chi 362
Laurent, Monique 136

Levi, Retsef 111, 306
Locatelli, Marco 377
Lodi, Andrea 12

Mirrokni, Vahab S. 349
Monaci, Michele 377
Morris, Walter D. 210

Nemhauser, George L. 23
Nutov, Zeev 349

Oriolo, Gianpaolo 291
Orlin, James B. 437
Oswald, Marcus 468

Pál, Martin 306
Pap, Gyula 66
Phillips, David J. 152

Raghavachari, Balaji 422
Ravi, R. 321
Reed, Bruce 35
Reinelt, Gerhard 468
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