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Preface

The 16th Annual Symposium on Combinatorial Pattern Matching was held
on Jeju Island, Korea on June 19–22, 2005. Previous meetings were held in
Paris, London, Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus,
Piscataway, Warwick, Montreal, Jerusalem, Fukuoka, Morelia, and Istanbul over
the years 1990–2004.

In response to the call for papers, CPM 2005 received a record number of
129 papers. Each submission was reviewed by at least three Program Committee
members with the assistance of external referees. Since there were many high-
quality papers, the Program Committee’s task was extremely difficult. Through
an extensive discussion the Program Committee accepted 37 of the submissions
to be presented at the conference. They constitute original research contributions
in combinatorial pattern matching and its applications.

In addition to the selected papers, CPM 2005 had three invited presentations,
by Esko Ukkonen from the University of Helsinki, Ming Li from the University
of Waterloo, and Naftali Tishby from The Hebrew University of Jerusalem.

We would like to thank all Program Committee members and external ref-
erees for their excellent work, especially given the demanding time constraints;
they gave the conference its distinctive character. We also thank all who sub-
mitted papers for consideration; they all contributed to the high quality of the
conference.

Finally, we thank the Organizing Committee members and the graduate stu-
dents who worked hard to put in place the logistical arrangements of the con-
ference. It is their dedicated contribution that made the conference possible and
enjoyable.

June 2005 Alberto Apostolico, Maxime Crochemore, and Kunsoo Park
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Sharper Upper and Lower Bounds
for an Approximation Scheme

for Consensus-Pattern

Broňa Brejová, Daniel G. Brown, Ian M. Harrower,
Alejandro López-Ortiz, and Tomáš Vinař

School of Computer Science, University of Waterloo
{bbrejova,browndg,imharrow,alopez-o,tvinar}@cs.uwaterloo.ca

Abstract. We present sharper upper and lower bounds for a known
polynomial-time approximation scheme due to Li, Ma and Wang [7] for
the Consensus-Pattern problem. This NP-hard problem is an abstrac-
tion of motif finding, a common bioinformatics discovery task. The PTAS
due to Li et al. is simple, and a preliminary implementation [8] gave rea-
sonable results in practice. However, the previously known bounds on its
performance are useless when runtimes are actually manageable. Here,
we present much sharper lower and upper bounds on the performance
of this algorithm that partially explain why its behavior is so much bet-
ter in practice than what was previously predicted in theory. We also
give specific examples of instances of the problem for which the PTAS
performs poorly in practice, and show that the asymptotic performance
bound given in the original proof matches the behaviour of a simple
variant of the algorithm on a particularly bad instance of the problem.

1 Introduction

Bioinformaticists often find themselves with several different DNA or protein
sequences that are known to share a particular function, but where the origin
of the function in the sequence is unknown. For example, suppose one has the
DNA sequence of the region surrounding several genes, known to be regulated
by a particular transcription factor. Here, the shared regulatory behavior may
be caused by a sequence element common to all, to which the transcription
factor binds. Discovering this experimentally is very expensive, so computational
approaches can be helpful to limit searches.

The motif discovery problem is an abstraction of this problem. In it, we
are given n sequences, all of length m, over an alphabet Σ. We seek a single
motif, of length L that is found approximately as a substring of all sequences.
Several variants of this problem exist. One can seek to minimize the maximum
Hamming distance between the motif and its instances in all strings (e.g. [2, 10]),
maximize the information content (minimize the entropy) of the chosen motif
instances (e.g. [1, 3, 6]), or minimize the total of the Hamming distances between
the motif and its instances [7]. This latter problem can be formally defined as
follows:

A. Apostolico, M. Crochemore, and K. Park (Eds.): CPM 2005, LNCS 3537, pp. 1–10, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 Broňa Brejová et al.

Definition 1 (Consensus-Pattern). Given: n sequences s1, . . . , sn, each of
length m and over an alphabet of size A. Find a substring ti of a given length
L in each of the sequences and a median string s of length L so that the total
Hamming distance

∑
i dH(s, ti) is minimized.

Li, Ma and Wang [7] give a very simple polynomial-time approximation
scheme (PTAS) for this combinatorial motif problem. For a given value of r,
consider all choices of r substrings of length L from the n sequences. We note
explicitly here that the sampling is made with replacement, so that the same
substring may occur multiple times. For each such collection C of substrings, we
compute its consensus by identifying the most common letter in the first position
of each chosen substring, the second position, and so on, producing a motif MC .
It is easy to identify for a given motif MC its closest match in each of the n se-
quences, and thus its score. We do this for all nr(m−L+1)r possible collections
of r substrings, and pick the collection with the best score. The algorithm has
O(L(nm)r+1) running time, and thus runs in polynomial time for any particular
value of r. Li et al. also give an upper bound on the worst-case approximation
ratio of this algorithm for r ≥ 3:

1 +
4A− 4

√
e
(√

4r + 1− 3
) , (1)

where A is the alphabet size. For example, if r = 3, this approach gives an
algorithm that runs in O(L(nm)4) runtime, but whose approximation guarantee
for DNA sequences (where A = 4) is approximately 13. To achieve a reasonable
approximation ratio, 2, we would have to use r ≥ 8 for DNA sequences, or r ≥ 27
for protein sequences (A = 20), giving hopelessly large running times. The high
value of the proven bound would seem to suggest that the algorithm will be
useless in practice.

However, many successful combinatorial motif finders do work by generaliz-
ing from small samples in this way, such as SP-STAR [10] and CONSENSUS
(samples of 1) [3], COMBINE (samples of 2 to 3) [9], COPIA (samples of arbi-
trary size) [8]. Here, focusing on Li et al.’s PTAS, we show tighter bounds on its
performance that are much closer to reasonable numbers for practical values of r.
We also provide the first substantial lower bounds on the PTAS’s performance,
by identifying specific examples of the problem for which the algorithm performs
poorly. In the general case, for a binary alphabet, we find that the variant of
the algorithm that works by sampling without replacement performs poorly on a
particular bad example, and we conjecture that our example will also be difficult
for the original Li et al. algorithm that samples with replacement.

Our results are summarized in Table 1.

2 Basic Observations

We begin our discussion of the algorithm by noting that it is sufficient to look
at the performance of the PTAS when run on the actual instances of the motif
(which are sequences of length L), rather than on the m-letter input strings.
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Table 1. Overview of the results.

New results Previous
Condition Lower bound Upper bound upper bound

r = 1 2 2 N/A

r = 3 1.5 ≈ 1.528 ≈ 1 + 4.006 · (A − 1)

general r 1 + Θ(1/r2) 1 + Θ(1/
√

r)
binary alphabet conjecture: 1 + Θ(1/

√
r)

(proved for sampling without
replacement)

general r 1 + Θ(1/r2) 1 + Θ(A/
√

r)
general alphabet conjecture: 1 + Θ(1/

√
r)

(proved for sampling without
replacement)

Lemma 1. Suppose that the PTAS of Li et al. achieves approximation ratio α
for a given set s1 . . . , sn of input sequences, motif length L and sample motif size
r. Suppose also that the instance of the optimal motif in sequence si is ti. Then
the PTAS, if run only on the sequences t1, . . . , tn, would achieve approximation
ratio at least α.

Proof. We begin by noting that if m = L, the actual problem is trivial: the
optimal motif s∗ is the consensus of all of the input strings.

However, the PTAS still is well defined in this case, even though the actual
optimization problem is trivial. It examines all sets C of r strings, including ones
where the same string is chosen multiple times, and for each of them, computes
its consensus MC. Then, the central motif MC∗ with smallest total Hamming
distance to all si is chosen as the motif center.

This motif center can be no better than the one found by the PTAS when run
on the entire m-letter strings, because the set of substrings we have considered
in the truncated problem is a subset of the set of substrings we would have
examined in the full problem. As such, if the original algorithm would have
found a solution whose approximation ratio is α, we can only have done as well
or worse in the truncated problem.

This lemma is useful because if we can show that, for given values of L,
n and r, and when run only on the optimal motif instances, the PTAS has
approximation ratio at most β, then its approximation ratio on longer strings
can still be no worse than β.

To simplify notation, we assume that the alphabet is {0, 1, . . . , A−1}. In the
special case we focus on, where m = L, we also always renumber the characters
in each column, so the consensus for that column is 0. This causes the overall
optimal motif to be s∗ = 0L. This transformation only works when m = L; it
does not work when m > L.

Finally, we can encounter the problem of ties, that is, a situation when the
consensus string u of some collection C is not unique. Consider for example r = 3
and input strings 01, 02, 10, and 20. The optimal motif is 00, with cost 4. If C
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contains the first three strings, the consensus MC can be any of the strings 00,
01, and 02. The first of them is optimal, but the latter two have cost 5.

It is not realistic to assume that the PTAS will always guess the best of all
possible consensus strings; their number can be exponential in L. For simplicity,
we assume that the PTAS will choose the worst consensus string, and study the
performance of this “unlucky” motif finding algorithm, which in our example
would choose either 01 or 02.

3 Upper Bounds

In this section, we give better worst-case bounds on the approximation guarantee
of the algorithm in the cases where r = 1 or r = 3, corresponding to algorithms
with quadratic or quartic bounds on their runtime.

Theorem 1. The approximation ratio of the PTAS is at most 2 for all values
of r, including r = 1, and for any alphabet size A.

Proof. Let c be the cost of the optimal motif 0L, that is, the total number of
non-zero elements in all sequences. Let ai be the number of non-zero elements
in sequence si. If the PTAS chooses sequence si as the motif (which will happen
when the r samples from the n sequences are all of si), the cost will increase
by at most n for every column where si has non-zero element. Therefore the
cost will be at most c + nai. The sum of this quantity over all sequences si is
nc + n

∑n
i=1 ai = 2nc. Since the sum of costs for n different potential motifs

si is at most 2nc, at least one of these has cost at most 2c, which means the
approximation ratio is at most 2.

Theorem 2. The approximation ratio of the PTAS for r = 3 is at most (64 +
7
√

7)/54 ≈ 1.528 regardless of the size of the alphabet.

Proof. Let p be the proportion of zeroes and q = (1 − p) be the proportion of
non-zeroes in the input sequences. The optimal cost is therefore qnL. Let bj be
the number of non-zeroes in column j.

The algorithm will examine all possible samples consisting of 3 rows, choosing
the one with the best consensus string. To get an upper bound, we will consider
the expected cost of the consensus string obtained by sampling 3 rows uniformly
at random.

For each column, we can estimate the expected cost of the column. The
consensus in a particular column will only be non-zero if two or three of the
chosen rows contain non-zero entries. If the column contains b non-zero entries,
there are b3 + 3b2(n− b) such samples. Each of these samples will incur cost of
at most n in this column. The consensus will be zero for samples with two or
three zeroes (their number is (n − b)3 + 3(n− b)2b). Each of these samples will
incur cost b in this column.

Thus the expected cost E(b) for a column with b non-zeroes is at most
C(b)/n3, where C(b) is the sum of costs over all triples of rows:

C(b) = [b3+3b2(n−b)]n+[(n−b)3 +3(n−b)2b]b = 2b4−5b3n+3b2n2+bn3. (2)
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From linearity of expectation, the expected cost over all columns is

E(b1, . . . , bL) =
L∑

j=1

E(bj) =
1
n3
·

L∑
j=1

C(bj). (3)

There must exist a sample with cost at most E(b1, . . . , bL). Such a sample
achieves approximation ratio E(b1, . . . , bL)/qnL.

We will prove by induction on L that E(b1, . . . , bL) ≤ HqnL, where H =
(64 + 7

√
7)/54. This implies that H ≈ 1.528 is an upper bound on the approxi-

mation ratio for r = 3.
For L = 1, the approximation ratio is

E(qn)/qnL = 2q3 − 5q2 + 3q + 1. (4)

The maximum of this ratio, which is equal to H , is reached when q = 5−
√

7
6 .

Now, assume that the induction hypothesis is true for L − 1. We will prove
that it is also true for L. The expected cost of the first column is E(b1), which can
be computed with Equation 2 above. By our induction hypothesis, the expected
cost of the remaining L−1 columns is at most (qnL−b1) ·H . Note that qnL−b1

is the optimal cost for the remaining L− 1 columns. Therefore:

E(b1, . . . , bL) ≤ E(b1) + (qnL− b1) ·H

=
2b4 − 5b3n + 3b2n2 + (1−H)bn3

n3︸ ︷︷ ︸
(∗)

+HqnL (5)

We want to prove, that (*) is never positive for b in the range 0 ≤ b ≤ n.
Indeed, (*) can be simplified as (b/(108n3)) ·(6b−(5+2

√
7)n) ·(6b−(5−

√
7)n)2.

The first and third factors are always non-negative, and the second factor is
non-positive for all b < n. Therefore the whole term (*) is never positive on the
interval.

It is, in fact, possible to easily characterize the “worst-case” scenario that
maximizes E(b1, . . . , bL): this is achieved when the non-zero elements are dis-
tributed equally among a subset of the columns as follows.

Lemma 2. For a given q, n, and L, E(b1, . . . , bL) is maximized, when for some
k ≤ L, b1, . . . , bk = 0, and bk+1 = bk+2 = . . . = bL ≤ n (if we allow b1, . . . , bL to
be non-integral).

Proof. (by induction on L). For L = 1, the hypothesis holds trivially.
Let us assume that the hypothesis holds for all L′ < L. Without loss of

generality, we assume that the columns are sorted by bj . If b1 = 0, the hypothesis
holds trivially from the induction hypothesis. Let b1 > 0. Then, by the induction
hypothesis, all the rest of the columns must by distributed equally (there are no
columns with bi = 0, since b1 is the smallest). The cost will be therefore:

C(b1) + (L− 1) · C
(

qnL− b1

L− 1

)
, (6)
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where nL(q−1)+n ≤ b1 ≤ qn, and b1 > 0. This is indeed maximized for b1 = qn,
as can be shown by straightforward algebraic manipulation.

4 Lower Bounds

In this section, we present examples of inputs for which the Li et al. PTAS
performs poorly. These examples give lower bounds on the approximation guar-
antee. For small values of r, we are able to give lower bounds which almost match
our upper bounds the from previous section. For general values of r, we show
an example where the PTAS has approximation ratio 1 + Θ(1/r2). Finally, we
conjecture that lower bound on approximation ratio matches asymptotically the
upper bound 1+Θ(1/

√
r) for a constant-size alphabet; to support this claim, we

present an example for which a slightly modified algorithm has approximation
ratio at least 1 + Θ(1/

√
r).

Theorem 3. For r = 1, the approximation ratio is at least 2, even for binary
inputs.

Proof. We set L = n. The input will be the n× n identity matrix In, with ones
on the diagonal and zeroes everywhere else. The cost of the optimal solution is
n. The result of the PTAS for r = 1 will be one of the matrix rows, with cost
2n− 2. The approximation ratio is therefore 2− 2/n, which converges to 2 as n
grows without bound. This shows that the upper bound 2 is tight for r = 1.

Theorem 4. For r = 3, the approximation ratio is at least 3/2.

Proof. For given k, consider the input with n = 2k, L = 2 containing for every
i = 1, 2, . . . , k strings 0i and i0. For example for k = 2 the input will be the
following:

0 1
0 2
1 0
2 0

The optimal solution is 00, with cost 2k. However, assuming that the PTAS
breaks ties in the worst possible way, it will find motif 0x or x0, with cost 3k−1.

Theorem 5. The approximation ratio of the PTAS is at least 1+Θ(1/r2).

Proof. For any odd r, we create n = r+2 sequences, each of length L = (r+5)/2.
The first L− 1 columns of the first L− 1 sequences will be an inverted identity
matrix, with zeroes on the diagonal and ones everywhere else. The last column of
these sequences contains zeroes. The remaining n−L + 1 sequences have zeroes
in the first L− 1 columns and one in the last column. For example for r = 5 we
have the following input:
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0 1 1 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

The optimal solution 0L has cost c = (r + 1)(r + 5)/4. Any solution that has
a single one in it will have cost c + 1, and it is clear that by choosing the last
row r times, the algorithm will find a motif at least as good as 0L−11. We show
that the PTAS cannot find the optimal solution.

Assume that the PTAS can obtain the optimal solution 0L. Then there must
be some collection C of strings such that each column has more than r/2 zeroes.
In particular, for the last column, more than half of these strings are chosen from
the first L− 1 sequences of the input. Thus, to achieve more than r/2 zeroes in
any other column i < L, we have to include at least one copy of sequence i (less
than r/2 copies of the last n − L + 1 sequences are included). That means we
need to include each of the first L− 1 sequences. But then all of the first L− 1
columns contain at least L− 2 = (r +1)/2 ones, and we will not find the correct
motif. This is a contradiction. Therefore the PTAS cannot achieve the optimal
solution.

Therefore the approximation ratio is (c + 1)/c = 1 + 4/[(r + 1)(r + 5)] =
1 + Θ(1/r2).

We were unable to obtain a lower bound matching the original upper bound
of 1+Θ(A/

√
r) of Li et al. [7]. However, we conjecture this upper bound is tight

for a constant-size alphabet; to support this conjecture, we offer a lower bound
of 1 + Θ(1/

√
r) for a modified algorithm.

In the original PTAS, the samples from which the possible motifs are gen-
erated are performed with replacement, so that a given substring can be chosen
multiple times. Here, we will consider a variation of this, which requires that the
same substring be chosen only once. In our context, where L = m, this means we
will choose all subsets of size r of the n input strings, compute their consensus
sequences, and take the best of these possible choices. Note that this modified
algorithm will always give the same or worse results as the original PTAS.

We conjecture that this algorithm also forms a PTAS with similar bound
to the original, and we conjecture that bad examples of the problem for this
algorithm will also be bad examples of the problem for the Li et al. PTAS, with
similar lower bounds.

Theorem 6. Consider a modification of the PTAS, where we allow only a single
sample from each input sequence. This modified algorithm has approximation
ratio at least 1 + Θ(1/

√
r), even for a binary alphabet.

Proof. We will give instances that give this bound in the limit as r goes to
infinity. Let r be of the form (2k + 1)2, and let n = 2r. Our problem instance
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will have L =
(

2r
r+

√
r

)
columns: all possible columns with r−

√
r ones and r+

√
r

zeros. The optimal solution 0L will have score L · (r −
√

r).
The modified PTAS will examine all possible subsets of r sequences (sampling

without replacement). Note that in this particular example, any combination of
r rows will give rise to a consensus string with the same cost. This is because
any combination of r rows can be transformed to any other such combination
by rearranging columns. Therefore every combination gives a consensus string
with the same number of ones.

Since all samples are equivalent, we could as easily study a random sample
of size r chosen from the 2r sequences, and identify the expected number of ones
in the consensus string. Considering a single column, let pr be the probability
that the consensus for this column will is 1. That is, pr is the probability that a
random sample without replacement of size r from the population of r−

√
r ones

and r +
√

r zeros will contain more than r/2 ones. By linearity of expectation,
the expected number of ones in the consensus string will then be L · pr.

Since the symmetry argument shows that all solutions have the same value,
all samples will identify a consensus string with L · pr ones, and so will the
algorithm. Thus, the modified PTAS will give a solution with value L · pr ·
(r +

√
r) + L · (1 − pr)(r −

√
r). Since the optimum has value L · (r −√r), the

approximation ratio is 1 + 2pr
√

r
r−

√
r

> 1 + 2pr/
√

r. Thus, if we can show that, as
r → ∞, pr is greater than some constant ε, this will suffice to prove that the
algorithm has approximation ratio at least 1 + Θ(1/

√
r).

We prove this by using the Central Limit Theorem for Finite Populations
(e.g. [11, Section 3.4]). This is the variation on the Central Limit Theorem for
sampling from finite populations without replacement. Specifically, it implies
that if we sample r times from a population of r +

√
r zeros and r − √r ones,

then as r → ∞, the number of ones picked converges to a normal distribution,
with mean μ = 1/2(r −

√
r) and variance σ2 = r/8− 1/8 ≥ r/16 1.

We are interested in the probability pr that the number of ones in the sample
is at least r/2. Note, that in the normal distribution N(μ, σ), r/2 ≤ μ + 2σ, and
therefore, for r above some threshold,

pr ≥ Pr(N(μ, σ) ≥ μ + 2σ) = Pr(N(0, 1) ≥ 2) ≈ 0.023,

as r → ∞. Therefore pr has a constant lower bound, which is what we wanted
to show.

The expected cost of the consensus can be computed using similar method for
the original PTAS as well. However, the symmetry argument does not hold any
more, and therefore there might be samples with cost lower than the expected
1 There is a technical condition required for the theorem to hold, which is that

lim
N→∞

M(N − M)S(N − S)

N3
= ∞,

where N is the size of the population, M is the number of ones in the population,
and S is the size of the sample. This condition holds trivially in our case.
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cost. Thus the proof presented above cannot be directly extended to the original
PTAS.

5 Conclusion and Open Problems

We have given lower and upper bounds for the performance of an extremely sim-
ple polynomial-time approximation scheme due to Li et al. [7] for the Consensus-
Pattern problem, which is an abstraction of a common biological sequence
motif detection problem. The PTAS examines all choices of r substrings of the
input sequences, computes the consensus sequence of the substrings, and then
finds the best matches to this consensus in all strings. After examining all pos-
sible choices, it chooses as the motif the consensus substring chosen with best
overall performance.

Our bounds give a partial explanation for why algorithms based on sampling
substrings of the input give good performance in practice. While they do not
improve the upper bounds on the approximation ratio for large sample sizes,
they do show that, for small sample sizes r, such as 3, the extremely simple
PTAS can guarantee performance ratios of at most 1.528, as compared with
bounds much larger with the original Li et al. proof.

We have also given new lower bounds on the best possible approximation ratio
of the PTAS, by showing examples for which the PTAS has poor performance. In
the case of 1-substring samples, our bad example gives an approximation ratio
converging to 2, which matches our upper bound. In the case of 3-substring
samples, we show that the best approximation ratio is at least 1.5, which is very
close to our upper bound of 1.528. In the more general case of a binary input
alphabet and arbitrary sample size r, we show an instance with lower bound
1 + Θ(1/r2). We also show that the slight variation on the PTAS that does not
allow sampling with replacement, but only without replacement can only achieve
ratios of at least 1 + Θ(1/

√
r), by applying limit theorems for samples of finite

populations. We conjecture that this bound, which asymptotically matches the
proven upper bound due to Li et al. for the original PTAS, also applies when
sampling is allowed with replacement.

We should note that our worst-case bounds may have little applicability to
real instances of motif-finding problems in practice. Indeed, in a quite different
direction than we have gone in this work, many authors (e.g. [4, 5]) have focused
on probabilistic models of sequences, and on the information content of sub-
tle motifs, to identify the probability that a particular algorithm will correctly
identify a motif implanted in them. In particular, these authors have focused on
the probability of identifying weak motifs, whose score is not much higher than
“decoys” in the sequence. Our results, which show that decoys are certain to
be found by the PTAS, are for similarly weak motifs, but with no probabilistic
basis.

Open problems. Numerous open problems still remain in this area. We would be
interested in developing sharper bounds for the case of larger input alphabets.
While our bounds on binary alphabets naturally carry to the case of larger
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alphabets, the upper bound grows with the size of the alphabet. It is possible
that the true upper bound does not depend on the alphabet size, rather than
that the current lower bound is too small. This is also supported by our upper
bound for r = 3 of 1.528 regardless of the size of the alphabet (in fact, this upper
bound also holds for all values of r greater than 4).

The other open problem we would suggest is to determine whether the algo-
rithm based on sampling without replacement needed for the proof of Theorem
6 can be proven to be a PTAS with the same guarantee, or whether our bad
example or one like it can be used to prove an analogous lower bound for the
original PTAS.
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Abstract. The longest common subsequence problem (LCS) and the
closest substring problem (CSP) are two models for the finding of com-
mon patterns in strings. The two problem have been studied extensively.
The former was previously proved to be not polynomial-time approx-
imable within ratio nδ for a constant δ. The latter was previously proved
to be NP-hard and have a PTAS. In this paper, the longest common
rigid subsequence problem (LCRS) is studied. LCRS shares similarity
with LCS and CSP and has an important application in motif finding
in biological sequences. LCRS is proved to be Max-SNP hard in this
paper. An exact algorithm with quasi-polynomial average running time
is also provided.

1 Introduction

The finding of common patterns shared by many sequences is an important
computational problem that has been extensively studied in the literature. In
different applications, this problem has different versions.

Suppose m sequences s1, s2, . . . , sm are given. Each si is of length n. The
longest common subsequence problem (LCS) seeks for a sequence s that is a
subsequence of each si. This problem was first shown to be NP-hard [10] and
later shown to be hard to be approximated [3]. More specifically, Jiang and Li
showed in their paper [3] that there exists a constant δ > 0 such that, if longest
common subsequence problem has a polynomial time approximation algorithm
with performance ratio nδ, then P = NP. In the same paper [3], they proved that
a simple greedy algorithm can approximate LCS by an expected additive error
O(n

1
2+ε). Because the expected LCS length of n random sequences of length n

is n
k ± n

1
2+ε [3], this showed that the average performance of an approximation

algorithm can be very good, despite that the worst case performance is bad.
Clearly, the difficulty of LCS comes from the exponential number of subse-

quences of a given string. If the subsequence is replaced by substring and the
longest common substring of all si is sought for, the problem can be trivially
solved by examining every substring of s1. However, the problem of finding a
string t of a given length L that matches a substring of every si with the smallest
errors becomes NP-hard again under several different error measurements [5, 6].

A. Apostolico, M. Crochemore, and K. Park (Eds.): CPM 2005, LNCS 3537, pp. 11–20, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Approximation algorithms were also studied [5–9]. Specifically, when dH is the
Hamming distance, [8, 9] studied the closest substring problem (CSP), which is
to find a length-L string t and a substring ti of every si, so that maxi dH(t, ti) is
minimized. The closest substring problem is NP-hard and polynomial time ap-
proximation schemes (PTAS) was provided in [8, 9]. Other error measurements
were also studied in [5–9].

We note that both LCS and CSP are generalization of the trivial longest
common substring problem. In LCS, substrings are generalized to subsequences.
Whereas in CSP, an exact substring is generalized to be a substring with small
errors. It was these two generalizations that changed the trivial longest common
substring problem to be hard problems, respectively.

In this paper, we study another generalization of the longest common sub-
string problem. We call the new problem longest common rigid subsequence
(LCRS) and it is useful for motif findings in proteins.

Let Σ be an alphabet. Suppose s = s[1]s[2] . . . s[n] is a string over Σ. A
rigid subsequence of s is a subsequence of s and the relative positions of the
letters. More precisely, a rigid subsequence has the form 〈t, P 〉, where t =
s[i1]s[i2] . . . s[ik] and P = (i2− i1, i3− i1, . . . , ik− i1) for 1 ≤ i1 < i2 < . . . < ik ≤
n. We call P by the shape of this rigid subsequence. A common rigid subsequence
of several strings s1, . . . , sm is a pair 〈t, P 〉 that is a rigid subsequence of every
si. The longest common rigid subsequence problem (LCRS) asks for the common
rigid sequence 〈t, P 〉 that maximizes the length of t.

Compared to LCS, LCRS is more restricted in the sense that the common
subsequence now must appear in every si with the same shape. If compared
with CSP, on one hand LCRS is more generalized because a shape needs to be
computed; on the other hand LCRS is more restricted because it does not allow
errors. Since the computational complexities of both LCS and CSP have been
well-studied, it is of theoretical interest to ask about the complexity of LCRS.

In the context of computational biology and bioinformatics, LCRS has been
used in the motif finding problem. In biochemistry, a motif is a recurring pattern
in some DNA or protein sequences. Usually a motif is a short substring on the
sequence but not all the positions on the substring are of the same importance.
For example, by examining nine different protein sequences that bind to the SH3
domain, a consensus sequence, RPLPXXP, was revealed as the SH3 domain-
binding motif [1]. The letter X in the sequence is a wildcard that can match any
amino acids, which indicates that the amino acids at the two X-positions are not
important to the biochemical function of the motif. Obviously, such a motif can
be represented by a common rigid subsequence, 〈RPLPP, (1,1,1,3)〉.

Although different notations were used, for the finding of the motifs, [15]
proposed a problem that is slightly more generalized than LCRS. Their problem
requires to find the longest common rigid subsequences that occur in at least K
of the n given sequences for a given number K. When K = n, this problem is
exactly the LCRS problem. Exponential time algorithm was given in [15]. Later
on, [13, 14] developed more efficient exponential time algorithms to the problem
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and variants. However, it was not shown in [13–15] whether this problem is
NP-hard, though it was believed so.

In this paper, we answer the complexity of the LCRS problem by proving
that LCRS is Max-SNP hard. In addition, we show that the problem can
be solved with average quasi-polynomial running time O(nO(log|Σ| n)), which is
asymptotically better than the exponential time.

2 Hardness Result

In this section we prove that LCRS is Max-SNP hard. If a problem is Max-
SNP hard, then there is a constant δ > 0, such that the polynomial time
approximation to that problem within ratio 1 + δ will yield that NP = P [12].
It was shown that the Max-Cut problem, among other problems, is Max-SNP
hard [12].

Max-Cut Given a graph G = 〈V, E〉. A cut of the graph is two disjoint vertex
sets V1 and V2 such that V1 ∪ V2 = V . The Max-Cut problem is to find the cut
that maximizes the number of edges whose two vertices are in the two different
sets V1 and V2.

We will prove that LCRS is also Max-SNP hard by an L-reduction from
Max-Cut. More material about L-reduction can be found in [12].

Theorem 1. LCRS is Max-SNP hard.

Proof. The reduction is from Max-Cut. The alphabet used by our construction
has four letters a, b, c, and d.

Suppose the instance of Max-Cut G = 〈V, E〉 has m vertices and n edges. In
our construction, each vertex vi ∈ V (i = 1, 2, . . . , m) corresponds to a string si

of the following form:

si = xxx

6(n2+1)︷ ︸︸ ︷
ccc . . .c xxx

6(n2+2)︷ ︸︸ ︷
ccc . . . c xxx . . .

6(n2+n−1)︷ ︸︸ ︷
ccc . . .c xxx

where the xxx are three letters to be determined later in the proof. Let

s0 = aaa

6(n2+1)︷ ︸︸ ︷
ddd . . .d aaa

6(n2+2)︷ ︸︸ ︷
ddd . . . d aaa . . .

6(n2+n−1)︷ ︸︸ ︷
ddd . . .d aaa

For the presentation purpose we put s1, . . . , sm and s0 together as follows

s0 : aaa

6(n2+1)︷ ︸︸ ︷
ddd . . . d aaa

6(n2+2)︷ ︸︸ ︷
ddd . . . d aaa . . .

6(n2+n−1)︷ ︸︸ ︷
ddd . . .d aaa

s1 : xxx ccc . . . c xxx ccc . . . c xxx . . . ccc . . .c xxx
...

. . .
...

sm : xxx ccc . . . c xxx ccc . . . c xxx . . . ccc . . .c xxx
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The letters c and d stand in our construction as delimiters. The other columns
are separated by the delimiters into blocks of 3-columns. There are in total n
such blocks, each corresponding to an edge in E. For the block corresponding
to the edge 〈vi, vj〉 such that i < j, the three letters xxx in si is aba, the three
letters in sj is bab, and the three letters in the other strings are aaa, as follows:

s0 . . . aaa . . .
. . . . . . . . . . . .
si−1 . . . aaa . . .
si . . . aba . . .
si+1 . . . aaa . . .
. . . . . . . . . . . .
sj−1 . . . aaa . . .
sj . . . bab . . .
sj+1 . . . aaa . . .
. . . . . . . . . . . .
sm . . . aaa . . .

Now we have an instance of LCRS. Next we prove that the solutions of this
instance correspond to solutions of the Max-Cut.

Lemma 1. A common rigid sequence of the instance constructed above does not
contain any letter c and d.

Proof. This is because s0 does not have letter d and the other sequences do not
have letter c. �

Lemma 2. Suppose a common rigid subsequence z has length r, and the r letters
are from k1, k2, . . . , kr blocks of s0, respectively (k1 ≤ k2 ≤ . . . ≤ kr). Then z
uses letters from the k1, k2, . . . , kr blocks of si for every i.

Proof. Suppose z uses letters from the k′
1, k

′
2, . . . , k

′
r blocks of si for some i. Let

d be the distance between letters j and j + 1 of z. By a simple counting in s0,
we can get

d− 6 <

kj+1−1∑
k=kj

6(n2 + k) + 3(kj+1 − kj − 1) < d

That is,

d− 6 < 6n2(kj+1 − kj) + 3(kj+1 + kj − 1)(kj+1 − kj + 1) < d (1)

Similarly, by counting in si, we get

d− 6 < 6n2(k′
j+1 − k′

j) + 3(k′
j+1 + k′

j − 1)(k′
j+1 − k′

j + 1) < d (2)

Because kj , kj+1, k
′
j , k

′
j+1 are all integers and 3(kj+1+kj−1)(kj+1−kj +1) =

3k2
j+1−3(kj−1)2 ≤ 3n2, by subtracting (2) from (1), we can first conclude that

k′
j+1−k′

j = kj+1−kj and then conclude that k′
j+1 +k′

j = kj+1 +kj . As a result,
kj = k′

j and kj+1 = k′
j+1. �
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Notice that the LCRS problem can be regarded as an equivalent problem
which aligns the sequences si together by only adding gaps to the two ends of
si. No insertion/deletion is allowed in the middle of the sequences. We call such
an alignment an ungapped alignment. Then the a common rigid subsequence is
equivalent to the columns where all the si have the same letter (the consensus
columns). In such a view, Lemma 2 demonstrates that if the common rigid
subsequence has more than one letters, then the corresponding blocks of all the
strings are aligned together. Therefore, the shift (difference between the numbers
of leading spaces in the two sequences) between two sequences can be at most
two. The following lemma shows that the shift is actually smaller.

Lemma 3. For each alignment, without reducing the number of consensus
columns, we can modify the alignment so that the shift between any two sequences
is at most one.

Proof. The algorithm we use to modify the alignment is very simple, as follows.
Let si and sj be two sequences whose shift to each other is two. Without loss
of generality, assume si has two more spaces at the left end than sj . We simply
add two more spaces at the left of sj . This will reduce the shifts between si and
sj to 0.

Now we prove that this step of modification will not reduce the number of
consensus columns. For each block, there are only three possible three-mer for
each sequence. They are aaa, aba, and bab. Because there are always sequences
with aaa in each block, if the block contains a consensus column, the consensus
must not be letter b.

Furthermore, because si and sj have shift 2, if one of si and sj has bab at
a block, it can be easily verified that the block does not contain a consensus
column. Therefore, our modification will not reduce the consensus column at
such a block. If none of si and sj is bab, then there are only the following four
cases (A), (B), (C), and (D).

si : ccaaa ccaaa ccaba ccaba
sj : abacc aaacc aaacc abacc

(A) (B) (C) (D)

It is easy to see that in each of the four cases, the only possible consensus column
is the column that has letter a in both si and sj . Our modification will slide
sj to the right by two columns, which still preserve the match at that column.
Therefore, our modification will not destroy any consensus column in the original
alignment.

Let si be the sequence with the most leading spaces in the alignment. Apply-
ing the above mentioned modification to every sj which has two-column shifts
to si, we will get the desired alignment. �

Because of Lemma 3, the sequences s1, . . . , sm are divided into two groups.
One group of sequences have one more leading space than the other group. It
is easy to see that in the block corresponding to an edge 〈vi, vj〉, a consensus
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column exists if and only if si and sj are separated into the two groups. In this
case, the letter a in bab matches one of the two a-letters in aba. All the other
sequences are aaa in the same block and therefore they can always provide a
letter a to the consensus column.

Thus, a cut of the vertices V corresponds to an alignment of s1, . . . , sm. And
the number of cut edges is equal to the number of consensus columns of the
alignment, which is then equal to the length of the common rigid subsequence.
So, Max-Cut is L-reduced to the LCRS problem. Because Max-Cut is Max-SNP
hard, LCRS is Max-SNP hard too. �

3 An Algorithm with Quasi-polynomial Average
Running Time

In this section we present an algorithm with O(nO(log|Σ| n)) average time com-
plexity. We note that nO(log|Σ| n) = |Σ|O(log2

|Σ| n), which is better than exponen-
tial time.

The idea of the algorithm is simple. For a random instance, the probability
of that a long rigid subsequence is common to all the input strings is small.
Therefore, we do not expect to have too many long common rigid subsequences
of the given strings. The question is how to enumerate these common rigid subse-
quences cleverly. A careless algorithm may spend too much time on eliminating
the rigid subsequences that are not common in all the input strings.

Let Si be the set of all the length-i common rigid subsequences of the input
strings. Obviously, a rigid subsequence in Si can be obtained by adding one more
letter/position to some rigid subsequence in Si−1. Our algorithm uses this idea
to computes Si from Si−1, as in Figure 1.

Algorithm Grow.
1. Let S0 = {null string}.
2. For i from 1 to n
3. For the next rigid subsequence s in Si−1

4. For every rigid subsequence t that contains s but one letter longer
5. if t is contained by all the strings
6. add t to Si.
7. Output the longest rigid subsequence in all Si.

Fig. 1. Algorithm Grow.

Theorem 2. For random instances, Algorithm Grow runs in O(nO(log|Σ| n))
time on average.

Proof. Without loss of generality, we assume that m > 2 log|Σ| n + 1 because
otherwise the problem can be solved in the desired time by trying all possible
ungapped alignments of the m sequences.
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In line 4, every rigid subsequence s has at most O(n) ways to extend to a
one-letter-longer subsequence t. And each such t takes O(nmi) time to verify
whether the condition in line 5 is true. Therefore, the time complexity of the
algorithm is bounded by

O(n2m×
n∑

i=1

i× |Si|).

In order to prove the theorem, we only need to prove that there are on average
O(nO(log|Σ| n)) elements in each Si.

Si contains all the length i common rigid subsequences. For each length-
i rigid subsequence, the probability that it occurs at a given position of one
random string is |Σ|−i. Therefore, the probability that a length-n random string
contains the rigid subsequence is less than n × |Σ|−i. The probability that the
rigid subsequence is common to all of the m given strings is therefore no more
than min{1, (n× |Σ|−i)m} = min{1, nm × |Σ|−im}.

There are no more than
(
n
i

)
× |Σ|i length-i rigid subsequences. Therefore,

the expected number of subsequences in Si is upper-bounded by(
n

i

)
× |Σ|i ×min{1, nm × |Σ|−im} (3)

If i ≤ 2 log|Σ| n, then(
n

i

)
× |Σ|i ×min{1, nm × |Σ|−im} ≤ ni × |Σ|i ≤ n2+2 log|Σ| n

If i > 2 log|Σ| n, because m > 2 log|Σ| n + 1,(
n

i

)
× |Σ|i ×min{1, nm × |Σ|−im} ≤ ni × |Σ|i × nm × |Σ|−im

= |Σ|(i log|Σ| n)+i+(m log|Σ| n)−im

< 1.

The two cases discussed above indicate that there are at most O(nO(log|Σ| n))
expected elements in each Si. Therefore, the theorem is proved. �

It is noteworthy that in the real motif finding situations, the input strings
are not independent. They usually share a long motif. Let the length of the motif
be L. Then Si in Algorithm Grow will have at least

(
L
i

)
elements, which can be

an exponential number. To overcome this problem, we modify the algorithm a
little bit by merging those elements that can form a longer rigid subsequence.
By doing this, we eliminate the exponential number of shorter subsequences of
a long rigid subsequence.

Let s be a rigid subsequence. As discussed in the proof of Theorem 1, the
consensus columns of an ungapped alignment of the input strings correspond to
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Algorithm Grow-Merge.
1. Let Si = {nullstring} for i = 1 . . . n; T = ∅.
2. For k from 1 to n
3. For the next rigid subsequence s in Sk−1

4. If there are only several ungapped alignments that conform s
5. For each of the s-conforming ungapped alignments A
6. Put the rigid subsequence x corresponding to A in T
7. Delete all the A-conforming subsequences from Sk−1.
8. else
9. For every spaced string t that contains s but one letter longer
10. if t is contained by all the strings
11. add t to Sk.
12. Output the longest substring in T .

Fig. 2. Algorithm Grow-Merge.

a rigid subsequence. If s is a part of the rigid subsequence of an ungapped align-
ment, we say that the ungapped alignment conforms s. Our modified algorithm
is given in Figure 2.

Because of the existence of lines 4-7, the very long common rigid subsequence
is more likely to be discovered in line 6, and its subsequences are deleted in line
7. Therefore, the exponential time as discussed above will less likely happen.
It is also easy to see that the adding of lines 4-7 will not affect the asymp-
totical average time complexity of the algorithm on random instances. That is,
Algorithm Grow-Merge still runs in average time O(nO(log|Σ| n)).

4 Discussion

We proved that the longest common rigid subsequence problem (LCRS) is Max-
SNP hard. LCRS is similar to the longest common subsequence problem and the
closest substring problem. Because the complexities of the other two problems
were well studied, it is of theoretical interest to study the complexity of LCRS.

Also, LCRS is useful in finding motifs in protein sequences. Although different
notations were used, [13–15] modeled the motif finding problem into a problem
that is very like LCRS. The only difference is that they only require the rigid
subsequence to be common to K of the n input strings for a given K. When K =
n, their problem is identical to LCRS. We note that our Max-SNP hardness
result implies that their problem is also Max-SNP hard. Also, without giving
the proofs, we note that Algorithm Grow and Algorithm Grow-Merge can be
modified to solve their problem as well in O(nlog|Σ|(nm)) average running time.
For example, the only necessary modifications to Algorithm Grow are to change
the definition of Si to be “the set of rigid sequences that are common in K of
the n input strings”, and to change line 5 of the algorithm accordingly.

Motifs in biological sequences often do not require exact matches. Small errors
are allowed in the match between the motif and the sequences. The LCRS model
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of motif finding does not represent the errors. Researches that model the errors
can be found, for example, in [2, 4, 7, 11, 16].
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Abstract. In this paper we address the problem of constructing an in-
dex for a text document or a collection of documents to answer various
questions about the occurrences of a pattern when allowing a constant
number of errors. In particular, our index can be built to report all oc-
currences, all positions, or all documents where a pattern occurs in time
linear in the size of the query string and the number of results. This
improves over previous work where the lookup time is not linear or de-
pends upon the size of the document corpus. Our data structure has size
O(n logk n) on average and with high probability for input size n and
queries with up to k errors. Additionally, we present a trade-off between
query time and index complexity that achieves worst-case bounded index
size and preprocessing time with linear lookup time on average.

1 Introduction

A text index is a data structure prepared for a document or a collection of doc-
uments that facilitates efficient queries for the occurrences of a pattern. Text
indexing is becoming increasingly important. The amount of textual data avail-
able, e.g., in the Internet or in biological databases, is tremendous and growing.
The sheer size of the textual data makes the use of indexes for efficient online
queries vital. On the other hand, the nature of the data frequently calls for
error-tolerant methods: data on the Internet is often less carefully revised and
contains more typos than text published in classical media with professional edi-
torial staff; biological data is often erroneous due to mistakes in its experimental
generation. Moreover, in a biological context, matching with errors is useful even
for immaculate data, e.g., for similarity searches. For online searches, where no
preprocessing of the document corpus is done, there is a variety of algorithms
available for many different error models (see, e.g., the survey [22]). Recently,
some progress has been made towards the construction of error-tolerant text
indexes [2, 6, 10], but in general the problem remains open.

When indexing a document (collection C of documents) of total size n and
performing a query for a pattern of length m allowing k errors, the relevant pa-
rameters are the index size, the index construction time, the lookup time, and the
error model. Usually, the least important of these parameters is the preprocess-
ing time. Depending on the application, either size or query time dominates. We
� Research supported in part by DFG,grant Ma 870/5-1 (Leibnizpreis Ernst W. Mayr)
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consider output-sensitive algorithms here, i.e., the complexity of the algorithms
is allowed to depend on an additional parameter occ counting the number of oc-
currences of a pattern. The natural lower bound, linear Θ(n) size (preprocessing
time) and linear Θ(m + occ) lookup time, can be reached1 for exact matching
(e.g., [19, 31, 32]). For edit or Hamming distance, no index with lookup time
O(m + occ) and size O(n logl n) for l = O(1) even for a small number of errors
is known. In all reasonable-size indexes the lookup time depends on n or is not
linear in m.

2 Our Results

There appear various definitions of approximate text indexing in the literature.
The broader definition just requires the index to “speed up searches” [24], while a
stricter approach requires to answer on-line queries “in time proportional to the
pattern length and the number of occurrences” [2]. Our algorithm satisfies even
the latter definition. We present and analyze a new index structure for approxi-
mate pattern matching problems allowing a constant number of k = O(1) errors.
The method works for various problem flavors, e.g., approximate text indexing
(full text indexing), approximate dictionary lookup indexing (word based index-
ing), and approximate document collection indexing (see below). For all of these
problems we achieve an optimal worst-case lookup time of O(m + occ) employ-
ing an index that uses O(n logk n) additional space and requires preprocessing
time O(n logk+1 n), both on average and with high probability. For approximate
dictionary lookup these bounds even improve to O(|C| logk |C|) additional space
and O(|C| logk+1 |C|) preprocessing time, where |C| is the number of documents
in the collection. Our data structure is based on a compact trie representation of
the text corpus. This can either be a compact trie, a suffix tree, or a generalized
suffix tree. From this tree further error trees are constructed. For the efficient
retrieval of results, range queries are prepared on the leaves of the trees. The
average case analysis is based on properties of mixing ergodic stationary sources
which encompass a wide range of probabilistic models such as stationary ergodic
Markov sources (see, e.g., [28]). To our knowledge, this yields the first reasonable
sized indexes achieving optimal lookup time. Additionally, we present a trade-off
between query time and index complexity, achieving worst-case bounded index
size O(n logk n) and preprocessing time O(n logk+1 n) while having linear lookup
time O(m + occ) on average.

3 Related Work

A survey on text indexing is given by Navarro et al. [24]. For the related near-
est neighbor problem see the survey by Indyk [15]. For approximate dictionary
indexing with a set of n strings of length m, one can construct a data structure
that supports queries in O(m) and has size O(nm) [5]. For text indexing (on a
single text of length n) we summarize the results in Table 1.
1 We assume a uniform cost model throughout this work.
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Table 1. Previous work on text indexing. (Results marked “avg” are achieved on
average and results marked “whp” are achieved with high probability.)

Errors Model Query Time Index Size and Preparation
Time (if different)

Literature

none exact O(m+occ) O(n) Weiner 1973 [32]

1 edit O(m log n log log n+occ) O(n log2n) Amir et al. 2000[2]
1 edit O(m log log n+occ) O(n log n) Buchsbaum et al. 2000 [6]

1 Ham. O(m+occ) O(n log n), O(n log2n)
(avg,whp)

N 2004 [25]

1 edit O(m+occ) O(n log n), O(n log2n)
(avg,whp)

MN 2004 [18]

O(1) edit O(m min{n, mk+1}+occ) O(min{n, mk+1}+n) Cobbs 1995 (Ukkonen
1993) [9, 30]

O(1) edit O(knε log n) O(n) Myers 1994 [21]
O(1) edit O(nε) O(n) Navarro et al. 2000 [23]

O(1) edit O(m log2 n+m2+occ)
(avg)

O(n log n), O(n log2 n)
(avg)

Chávez et al. 2002 [8]

O(1) edit O(m+logkn log log n+occ) O(n logkn) Cole et al. 2004 [10]

O(1) Ham. O(logk+1n) (avg) O(n), O(n) M 2004 [16]

O(1) edit O(m+occ) O(n logkn), O(n logk+1n)
(avg,whp)

This paper

O(1) edit O(m+occ) (avg,whp) O(n logkn), O(n logk+1n) This paper

k mismatches O(m+occ) (avg) O(n logln) (avg) Gabriele et. al 2003 [13]
in a window
of length r

Due to the limited space, the most proofs are omitted. The interested reader
is referred to [17] for more details and proofs.

4 Preliminaries

Let Σ be any finite alphabet and let |Σ| denote its size. We consider |Σ| to
be constant. The set of all strings including the empty string ε is denoted by
Σ∗. Let t = t[1] · · · t[n] ∈ Σn be a string of length |t| = n. If t = uvw with
u, v, w ∈ Σ∗, then u is a prefix, v a substring, and w a suffix of t. We define
t[i. .j] = t[i]t[i+1] · · · t[j], prefk(t) = t[1. .k], and suffk(t) = t[k. .n] (with t[i. .j] =
ε for i > j). For u, v ∈ Σ∗ we let u �pref v denote that u = pref|u|(v). For
S ⊆ Σ∗ and u ∈ Σ∗ we let u ∈pref S denote that there is v ∈ S such that
u �pref v. Let u ∈ Σ∗ be the longest common prefix of two strings v, w ∈ S. We
define maxpref(S) = |u|. The size of S is defined as

∑
u∈S |u|.

We use the well-known edit distance (Levenshtein distance) to measure dis-
tances between strings. The edit distance of two strings u and v, d(u, v), is defined
as the minimum number of edit operations (deletions, insertions, and substitu-
tions) that transform u into v. We restrict our attention to the unweighted model,
i.e., every operation is assigned a cost of one. The edit distance between two
strings u, v ∈ Σ∗ is easily computed using dynamic programming in O(|u||v|).
It can also be defined via the operators del, ins, and sub of type Σ∗ → Σ∗. If
for two strings u, v ∈ Σ∗ we have distance d(u, v) = k, then there exist one or
more sequences of operations (op1, op2, . . . , opk), opi ∈ {del, ins, sub}, such that
v = opk(opk−1(· · · op1(u) · · · )). We call a sequence ρ(u, v) = (op1, op2, . . . , opk)
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of edit operations an ordered edit sequence if the operations are applied from left
to right. In this light, Hamming distance is only a simplified version of edit dis-
tance, so we focus our attention on edit distance (Hamming distance is simpler
and might help the intuition, especially for the next definition). The minimal
prefix of a string u that contains all errors with respect to comparison to a
string v plays an important role. For two strings u, v ∈ Σ∗ with d(u, v) = k,
we define the k-minimal prefix length minprefk,u(v) as the minimal value l
for which d(prefl(u), prefl+|v|−|u|(v)) = k and suff l+1(u) = suffl+1+|v|−|u|(v).
In other words, all errors between u and v are located in a prefix of length
minprefk,u(v) of u.

For fast lookup, strings can be stored in a trie. A trie T (S) for a set of
strings S ⊂ Σ∗ is a rooted tree with edges labeled by characters from Σ. All
outgoing edges of a node are labeled by different characters (unique branching
criterion). Each path from the root to a leaf can be read as a string from S. Let
u be the string constructed from concatenating the edge labels from the root
to a node x. We define path(x) = u. The string depth of node x is defined by
|path(x)|. The word set of T denoted words(T ) is the set of all strings u, such that
u �pref path(x) for some x ∈ T . For a node in x ∈ T we define Tx to be the sub-
trie rooted at x. For convenience we also denote Tu = Tpath(x) = Tx. The string
height of T is defined as height(T ) = max{|path(x)| | x is an inner node of T }
which is the same as maxpref(words(T )).

A compact trie is a trie where nodes with only one outgoing edge have been
eliminated and edges are labeled by strings from Σ+ (more precisely, they are
labeled by pointers into the underlying strings). Eliminated nodes can be rep-
resented by virtual nodes, i.e., a base node, the character of the outgoing edge,
and the length (compare the representation in [31]). Thus, all previous defini-
tions for tries apply to compact tries as well, possibly using virtual instead of
existing nodes. We only use compact tries, and we denote the compact trie for
the string set S by T (S).

If a (compact) trie is never searched deeper than string depth l, i.e., below
string depth l we only need to enumerate leaves, then we can drop the unique
branching criterion on outgoing edges below this level. Weak tries are needed to
bound the preprocessing time and space in the worst case in Section 7.

Definition 1 (Weak Trie). For l > 0, the l-weak trie for a set of strings
S ⊂ Σ∗ is a rooted tree with edges labeled by characters from Σ. For any node
with a depth less than l, all outgoing edges are labeled by different characters,
and there are no branching nodes with a depth of more than l. Each path from
the root to a leaf can be read as a string from S.

Up to level l, all previous definitions for (compact) tries carry over to (compact)
weak tries. The remaining branches (in comparison to a compact trie) are all at
level l. By Wl(S) we denote a compact l-weak trie for the set of strings S. Note
that Wmaxpref(S)(S) = T (S).

A basic tool needed for our algorithm are range queries. The following range
queries are used to efficiently select the correct occurrences of a pattern de-
pending on the problem type. The following range queries all operate on arrays



Text Indexing with Errors 25

containing integers. The goal is to preprocess these arrays in linear time so that
the queries can be answered in constant time. Assume that A of size n is an
array containing integer values (indexed 1 through n). A bounded value range
query (BVR) for the range (i, j) with bound k on array A asks for the set of
indices L in the given range where A contains values less than or equal to k. The
set is given by L = {l | i ≤ l ≤ j and A[l] ≤ k}. A colored range query (CR)
for the range (i, j) on array A asks for the set of distinct elements in the given
range of A. These are given by C = {A[k] | i ≤ k ≤ j}. BVR queries can be
answered with O(n) preprocessing time and space and O(|L|) query time [20],
based on the well-known range minimum query (RMQ) problem which can be
solved with O(n) preprocessing and O(1) query time [12]. CR queries can also
be solved with O(n) preprocessing time and space and O(|C|) query time [20].

There are many different text indexing problems. We focus on the case where
a single pattern P is to be found in a database consisting of a text T or a col-
lection of texts C. The database is considered static and can be preprocessed to
allow fast dynamic, on-line queries. When matching a pattern allowing k errors
against the text database, we can report occurrences (i.e., the exact starting
and ending points of a matching substring), positions (only the starting points),
or – if we have more than one text – documents (in which the pattern can be
matched). The number of outputs decreases from occurrence to position to docu-
ment reporting. To ease further exposition, we take a unified view by considering
our text database to be a set S of n strings, called the base set. The indexing
problems handled by our approach are named by the structure of strings in the
base set S. If S is the set of suffixes of a string T , we have the k-Approximate
Text Indexing (k-ATI) problem. If S is a collection of independent strings, we
have the k-Approximate Dictionary Indexing (k-ADI) problem. Finally, if S is
the set of suffixes of a collection of documents, we have the k-Approximate Dic-
tionary Indexing (k-ADI) problem. Note that in addition to the three types of
reported outputs, for the (k-ADI) problem, it also makes sense to report only
documents completely matched by the pattern, called full hits. Observe that in
all instances in addition to the size of the (originally) given strings a (compact)
trie for the underlying collection consumes O(n) space by using pointers into
strings instead of substrings.

5 The Basic Index Data Structure

In each of our indexing problems, in order to answer a query we have to find
prefixes of strings in the base set S that match the search pattern P with k
errors. We call s ∈ S a k-error, length-l occurrence of P if d(prefl(s), P ) = k.
We then also say that P “matches” s up to length l with k errors. To solve the
various indexing problems defined in the previous section, we need to be able to
find all k-error occurrences of P efficiently.

The basic idea of our index for k errors is to make k + 1 case distinctions on
the position of the first i errors between the pattern P and a k-error match. If
P matches a prefix t �pref s of a string s ∈ S, we first look whether there is an
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exact match of a prefix of t and P that is larger than the height h0 of the trie
T for S. There can be at most one such string, and we check it in time O(|P |)
(we can check for an i-error match in time O(i|P |), see, e.g., [29]). Otherwise,
there is at least one error before h0. We build a trie T ′ of all strings that contain
one error before h0 and search again for a prefix of P that extends above the
height h1 of T ′. If it exists, we check the corresponding string in time O(|P |).
Otherwise, there is at least another error before h1, and we build the next trie
T ′′ by including the errors before h1. We continue this case distinction until
we have either reached the k-th trie or we can match the complete pattern. In
the latter case, all leaves in the subtree below P are matches if all errors with
the original string are in a prefix of the length of the pattern. We select the
appropriate leaves using range queries on the i-minimal prefix lengths. Thus, we
either check a single string in the i-th trie in time O(i|P |), or we select a number
of matches with range queries in time O(|P |+ occ).

More generally, we use the parameters h0, . . . , hk to control the precomput-
ing. The key property of the following inductively defined sets W0, . . . , Wk is
that we have at least one error before h0 + 1, two errors before h1 + 1, and so
on until we have k errors before hk−1 +1 in Wk. The partitioning into k +1 sets
allows searching with different error bounds up to k and enables the efficient
selection of occurrences.

Definition 2 (Error Sets). For 0 ≤ i ≤ k, the error set Wi are defined induc-
tively. The first string set W0 is defined by W0 = S. The other sets are

Wi = Γhi−1(Wi−1) ∩ Si , (1)

where the operator Γl is defined by Γl(A) = {op(u)v | uv ∈ A, |op(u)| ≤
l + 1, op ∈ {del, ins, sub}} on sets of strings A ⊂ Σ∗, Si is defined as Si =
{r | there exists s ∈ S such that d(s, r) = i} (i.e., the strings within distance i
of S), and hi are integer parameters (that may depend on Wi).

The set Wi may consist of independent strings and of suffixes of independent
strings. We assume that independent strings do not match prefixes of each other
with 2k or less errors, i.e., for any s �= t ∈ S and any prefixes u �pref s we have
d(u, t) > 2k. This can be achieved by adding sentinels at the end of each string.
Suffixes of the same strings can match each other, but there can be at most
2k + 1 suffixes from the same string that match any string of length l.

Lemma 1 (String Set Sizes). The size of the string sets Wi is bounded by
|Wi| = O(hi−1|Wi−1|).
To search the error sets efficiently, while not spending too much time in prepro-
cessing, we use weak tries, which we call error trees.

Definition 3 (Error Trees). The i-th error tree eti(S) is defined as eti(S) =
Whi(Wi). Each leaf x in eti(S) is labeled (id s, l) if ids is an identifier for s ∈ S,
d(s, path(x)) = i, and l = minprefi,path(x)(s).

The correctness of our approach derives from the proof of the following three
key properties (assuming either hi > maxpref(Wi) or P ≤ hi):
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1. Let t be a prefix of s ∈ S and assume l = minprefi,t(P ). If
(i) t matches P with i errors, i.e., d(t, P ) = i, and
(ii) there exists an ordered edit sequence such that minprefj,tj

(t) ≤ hi−1 +
1, where for all 0 ≤ j ≤ i, tj = opj(· · · op1(t) · · · ) are the edit stages,

then there is a leaf x labeled (id s, l) in eti(S)P . In other words, if the first i
edit operations occur before the bounds hj + 1, then the i-error occurrence
is covered by precomputing.

2. Let x be a leaf in eti(S)P with label (id s, l) corresponding to a string s ∈ S.
There exists t �pref s with d(t, P ) = i if and only if l ≤ |P |. Thus, not all
leaves found in eti(S)P correspond to i-error occurrences of P . To locate the
correct leaves, we use range queries, see Section 6.

3. Finally, if P matches a prefix t of some string s ∈ S with exactly i errors,
then there is a dichotomy. Let ρ(P, t) = (op1, op2, . . . , opi) be an ordered
edit sequence.
Case A Either P can be matched completely in the i-th error tree eti(S)

and a leaf x labeled (id s, l) can be found in eti(S)P , or
Case B there exists an edit operation in ρ(P, t) that occurs after some hj ,

i.e., a prefix p �pref P of length |p| > hj is found in etj(S) and
etj(S)p contains a leaf x with label (id s, l).

To capture the intuition first, it is easier to assume that we set hi = maxpref(Wi),
where the error trees become compact tries. Note that a leaf can have at most
2k+1 labels. The search algorithms are applications of these key properties. The
basic search data structure consists of the k + 1 error trees et0(S), . . . , etk(S).
The elementary step is to match P in each of the k + 1 error trees eti(S) for
0 ≤ i ≤ k. Property 3 gives two relevant cases that must be handled.

6 Text Indexing with Worst-Case Optimal Search-Time

To achieve worst-case optimal search-time, we set hi in Definitions 2 and 3 to
the string height of the error tree hi = maxpref(Wi). It immediately follows
that Case B does not contribute to the main search complexity, since each leaf
represents at most 2k + 1 different strings from the base set S. We have k + 1
error trees, thus, for constant k, the total search time spent for Case B is O(m).

The more difficult part is Case A. Some of the leaves in the subtree eti(S)P

may not correspond to i-error matches (i.e., not satisfying the second property
above), we cannot afford to traverse the complete subtree. Let ni be the number
of leaf labels in eti(S). We create an array Ai of size ni containing pointers to
the leaves of eti(S). At each inner node x we store pointers left(x) and right(x)
to the left-most and right-most index in Ai of the leaves in the subtree rooted
at x. Depending on the desired output, we create additional arrays Bi from the
leaf labels of each error tree eti(S) and prepare them for CR or BVR queries to
select a desired subset in output optimal time. This takes time and space O(ni).
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Theorem 1 (Worst-Case Search Times). Let m be the length of the pattern
P and occ be the number of outputs. Using k + 1 error trees and additional data
structures linear in the size of the error trees, we can solve the problems k-ATI,
k-ADI, k-ADCI with a worst-case lookup time of O(m + occ).

Proof (Sketch). Case B takes time O(m). Observe that for leaf label (id s, l) in
eti(S)P , a prefix of s matches P with at most i errors. Depending on the type
of indexing problem we create the arrays Bi and prepare range queries on the
array. For each indexing problem, we have different string identifiers, e.g., for
k-ADCI id s is a combination of the string number and the suffix number of the
string. We use this and the annotated k-minimal prefix length l to prepare the
range queries. For example, to report occurrences, we set Bi[j] = l if the leaf
stored in A[j] has label (ids, l). From the root x of eti(S)P we then perform a
BVRQ (left(x), right(x), |P |) on Bi, which yields exactly the indexes of the leaves
representing occurrences. Note that the structure of eti(S)P (whether it is a trie
or not) has no effect on the complexity. The pattern P is searched k times, and
range queries are linear in their output, so the running time is O(m + occ). �

Compact (weak) tries with n leaves can be implemented in size O(n) plus the size
of the underlying strings. The index size is bounded in the following theorem.

Theorem 2 (Data Structure Size and Preprocessing Time). Let n be the
number of strings in S, and let h = max0≤i≤k hi.Then, for constant k, the total
size of the data structures is O(nhk) and the preprocessing time is O(nhk+1).

Proof (Sketch). By Lemma 1, the size of the k-th error tree dominates the total
size. The total number of leaves of all error trees is O(nh0· · ·hk−1), which also
bounds the size of the range query data structures and time to build them.
Each error tree is built naively, copying with errors from the preceding tree. To
eliminate duplicates, strings are merged up to h + k so that no errors occur in
the remaining suffixes. Duplicates can than be eliminated using O(|S|k) buckets
to sort the strings with a common prefix of length h + k in linear time by their
string identifier in S and the suffix length in {h, . . . , h + 2k}. In the error tree,
strings are merged up to depth hk only. �

Note that in the worst-case hi = Ω(n). The average-case is fortunately much
better for a wide range of probabilistic models, and it occurs with high probabil-
ity. The maximal string depth of any error tree is O(log n) on average and with
high probability for a wide range of probabilistic models. For the analysis, we as-
sume that all strings are generated independently and identically distributed at
random by a stationary ergodic source satisfying the mixing condition (see, e.g.,
[28]). Let Fm

n be the σ-field generated by {Xk}mk=n for n < m, then {Xk}∞k=−∞
satisfies the mixing condition, if there exist constants c1, c2 ∈ IR and d ∈ IN such
that for all −∞ ≤ m ≤ m + d ≤ n and for all A ∈ Fm

−∞, B ∈ F∞
m+d, we have

c1Pr{A}Pr{B} ≤ Pr{A ∩ B} ≤ c2Pr{A}Pr{B}. Note that this model includes
independent trials and stationary ergodic Markov chains. In this model, one can
prove that the probability that there is a repeated substring of length (1+ ε) lnn

r2
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in any string of length n is bounded by cn−ε lnn (where c and r2 are constants
with r2 depending on the probability distribution) [27]. Using results from [26],
it is possible to prove that the probability that there is a common substring of
length (1 + ε) l

r2
between the prefixes of length l′ of any two strings in a set of

n independent strings is bounded by cn2l′2e−2(1+ε)l. Thus, the probability of
a repeated substring of length (1 + ε) lnn

r2
in a prefix of length c′(1 + ε) lnn is

bounded by c′n−2ε ln2 n.
If the height of the k-th error tree is h, then there are two prefixes of strings

in S within distance 2k. Thus, there exists a common substring between this
strings of length Ω( h

2k ). Therefore, if the strings are independent, we find that
for constant k the expected height cannot exceed O(log n). To handle the case
that both prefixes belong to suffixes of the same string, we have to prove that
there is actually a repeated substring of length Ω( h

2k ). The idea for this proof is
as follows: We assume that the height of the i-th error tree is larger than ci logn
and prove that either there is such a substring, or that the size of the height of
the (i−1)-th error tree is larger than c(i−1) log n. Note that completely identical
strings are joined since Wi are sets. Together this yields the following theorem.

Theorem 3 (Average Data Structure Size and Preprocessing Time).
Let n be the number of strings in S. Then, for any constant k, the average
total size of the data structures used is O(n logk n) and the average time for
preprocessing is O(n logk+1 n). Furthermore, these complexities are achieved with
high probability 1− o(n−ε) (for ε > 0).

7 Bounded Preprocessing Space

In the previous section, we achieved a worst-case guarantee for the search time. In
this section, we describe how to bound the index size in the worst-case in trade-
off to having an average-case lookup time. Therefore, we fix hi in Definitions 2
and 3 to hi = h + 1 = c logn + i. By Theorem 2, the size of all trees is then
O(n logk n). For patterns P of length |P | < h, we use the same data structures
and algorithms as described in the previous Section. Note that Case B never
occurs. Since |P | < h, all errors must have occurred before h in the respective
error tree and are thus accounted for. This yields the following corollary.

Corollary 1 (Small Patterns). Let P be a pattern of length m < c log n for
some constant c, and let occ be the number of outputs. The problems k-ATI,
k-ADI, and k-ADCI can be solved with an index of size O(n logk n) which is
built in time O(n logk+1 n) and with lookup time O(m + occ).

For larger patterns we need an auxiliary structure, which is a generalized
suffix tree (see, e.g., [14]) for the complete input, i.e., all strings in S. The gen-
eralized suffix tree G(S) is linear in the input size and can be built in linear time
(e.g., [19, 31]). We keep the suffix links that are used in the construction process.
A suffix link is an auxiliary edge that points from a node x with path(x) = av
to a node y with path(y) = v, thus, allowing to “chop off” characters at the
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front of the current search string. For any pattern P of length m this allows to
find all nodes x such that path(x) represents a right-maximal substring P [i. .j]
of P in time O(m) (see, e.g., the computation of matching statistics in [7]). The
pattern P can match a string s ∈pref S with k errors only if a substring P [i. .j]
of length m

k+1 − 1 matches a substring of s exactly. Thus, we find all positions of
such substrings and check in time ckm2 whether there is an occurrence within
m characters of each position. Assuming that P is generated by an ergodic sta-
tionary source satisfying the mixing condition, we can prove that there are only
very few positions and get the following theorem.

Theorem 4 (Large Patterns). Let P be a pattern of length m and let occ
be the number of outputs. Let n be the cardinality of S. The problems k-ATI,
k-ADI, and k-ADCI can be solved with an index of size O(n logk n) which is
built in time O(n logk+1 n) and with lookup time O(m + occ) on average and
with high probability.

Proof (Sketch). We set h to c(k + 1) logn + 2k and handle all small pattern
by Corollary 1. The probability that a substring of P of length at least l is
found can be bounded by nm2e−rmaxl (where rmax is a constant depending on
the probability distribution [26]). Therefore, the probability to to perform any
work is bounded by m2n1−rmax(c) = n−ε for suitably chosen c. Thus, the total
expected work for large patterns is O(1). �

8 Conclusion and Open Problems

In the context of text indexing, our data structure and search algorithm works
best for small patterns of length O(log n). The average-case analysis shows that
these also contribute most. On the other hand, in the worst-case there are more
efficient methods for larger strings. The method of Cole et al. [10] starts being
useful for large strings of length ω(log n) (the k-error neighborhood for strings
of length O(log n) has size O(logk n)). The method is linear if m = Ω(logk n).
For worst-case text indexing, significant progress depends upon the discovery
of a linear-time-lookup method for medium to large patterns of size Ω(log n) ∩
O(logk n).

Our work together with [10] and [16] seems to indicate that – compared to
exact searching – an additional complexity factor of logk n is inherent. Regarding
the index space, a linear lower bound has been proven for the exact indexing
problem [11]. However, for the approximate indexing problem, lower bounds do
not seem easy to achieve. Using asymmetric communication complexity some
bounds for nearest neighbor search in the Hamming cube can be shown [3, 4],
but these do not apply to the case where a linear number (in the size of the
pattern) of probes to the index is allowed. The information theoretic method
of [11] also seems to fall short because approximate lookup does not improve
compression and there is no restriction on the lookup time.

Another direction for further research concerns the practical applicability.
Although we believe that our approach is fairly easy to implement, we expect
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the constant factors to be rather large. Therefore, it seems very interesting to
study whether the error sets can be thinned out by including less strings. For
example, it is not necessary to include errors which “appear” on leaf edges of
the preceding error tree. An even more practical question is, whether an efficient
implementation without trees based on arrays is possible. Arrays with all leaves
are needed anyway for the range minimum queries. Secondly, efficient array
packing and searching is possible for suffix arrays [1]. For practical purposes a
space efficient solution for k ≤ 3 is already desirable.
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Abstract. The compressed suffix array and the compressed suffix tree
for a given string S are full-text index data structures occupying
O(n log |Σ|) bits where n is the length of S and Σ is the alphabet from
which symbols of S are drawn. When they were first introduced, they
were constructed from suffix arrays and suffix trees, which implies they
were not constructed in optimal O(n log |Σ|)-bit working space. Recently,
several methods were developed for constructing compressed suffix arrays
and compressed suffix trees in optimal working space. By these methods,
one can construct compressed suffix trees supporting the pattern search
in O(m′|Σ|) time where m′ = m logε n, m is the length of a pattern, and
logε n is the time to find the ith smallest suffix of S from the compressed
suffix array for any fixed 0 < ε ≤ 1. However, compressed suffix trees
supporting the pattern search in O(m′ log |Σ|) time are not constructed
by these methods.
In this paper, we present a new compressed suffix tree supporting
O(m′ log |Σ|)-time pattern search and its construction algorithm using
optimal working space. To obtain this result, we developed a new suc-
cinct representation of the suffix trees, which is different from the classic
succinct representation of parentheses encoding of the suffix trees. Our
succinct representation technique can be generally applicable to succinct
representation of other search trees.

1 Introduction

A full-text index data structure for a text incorporates the indices for all the
suffixes of the text. Two fundamental full-text index data structures are suffix
trees [26, 31] and suffix arrays [10, 25], and many efficient algorithms have been
developed for constructing suffix trees [6, 26, 31] and suffix arrays [18, 19, 22, 23].
They are used in numerous applications [14], which are exact string matching,
computing matching statistics, finding maximal repeats, finding longest common
substrings, and so on.
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There have been efforts to develop a full-text index data structure that has
the capabilities of both suffix trees and suffix arrays without requiring much
space. The enhanced suffix array due to Abouelhoda et al. [1, 2] is such an index
data structure. It consists of a pos array (suffix array), an lcp array, and a child
table. The child table stores the parent-child relationship between nodes in a
given suffix tree. Thus, on the enhanced suffix array, every algorithm developed
either on suffix trees or suffix arrays can be run with a small and systematic
modification. The only drawback of the enhanced suffix array is that the child
table supports O(m|Σ|)-time pattern search where m is the length of a pattern
and Σ is an alphabet. Recently, Kim et al. [20, 21] developed a new child table
supporting O(m log |Σ|)-time pattern search. They called the enhanced suffix
array with the new child table linearized suffix tree.

Although many useful full-text index data structures are developed, their
space consumption (O(n log n) bits for a string of length n) motivates researchers
to develop more space efficient one. Compressed suffix arrays and compressed suf-
fix trees are space efficient full-text index data structures that consume
O(n log |Σ|) bits. Munro et al. [28] developed a succinct representation of a
suffix tree topology under the name of space efficient suffix trees. Grossi and
Vitter [12, 13] developed compressed suffix arrays, which takes O(logε n) time to
find the ith lexicographically smallest suffix in the compressed suffix array for
any fixed 0 < ε ≤ 1. Ferragina and Manzini [7, 8] suggested opportunistic data
structures under the name of FM-index. Sadakane [30] modified the compressed
suffix array so that it acts as a self-indexing data structure. The compressed
suffix array and the FM-index can be further compressed by using high-order
empirical entropy of the text [9, 11].

When compressed suffix arrays and compressed suffix trees were first intro-
duced, they were constructed from suffix arrays and suffix trees, which implies
they were not constructed in optimal O(n log |Σ|)-bit working space. For con-
structing compressed suffix arrays in optimal working space, Lam et al. [24]
developed an O(n log n)-time algorithm and Hon et al. [16] developed two algo-
rithms one of which runs in O(n log log |Σ|) time and the other runs in O(n logε n)
time. For constructing compressed suffix trees, Hon et al. [15, 16] proposed an
O(n logε n)-time algorithm in optimal working space. By this method, one can
construct a compressed suffix tree supporting pattern search in O(m′|Σ|) time
where m′ = m logε n. However, compressed suffix trees supporting pattern search
in O(m′ log |Σ|) time cannot be constructed by this method.

In this paper, we present a new compressed suffix tree supporting
O(m′ log |Σ|)-time pattern search and its construction algorithm running in
O(n logε n) time using optimal O(n log |Σ|)-bit working space.

– Our compressed suffix tree consists of a compressed suffix array, a succinct
representation of lcp information, and a succinct representation of a suffix
tree topology. The compressed suffix array is the same as the one developed
by Grossi and Vitter [13] and the succinct representation of lcp information
is the same as the one developed by Sadakane [29, 30]. Our main contribution
is to present a new succinct representation of a suffix tree topology which
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is different from the classic succinct representation of parentheses encoding
of a suffix tree topology. The key idea of our succinct representation is to
succinctly represent the child table presented by Kim et al. [20, 21] that stores
the parent-child relationship between nodes in a suffix tree. The compressed
child table can be generally applicable to succinct representation of other
search trees.

– Our construction algorithm consists of procedures EXTLCP and CHILD.
Procedure EXTLCP computes the depth array that plays an important role
in constructing our compressed suffix trees. Procedure CHILD constructs the
compressed suffix trees from the succinct representation of lcp information
and the depth array.

2 Preliminaries

Consider a string S of length n over an alphabet Σ. Let S[i] for 1 ≤ i ≤ n
denote the ith symbol of S. We assume that S[n] is a special symbol # which
is lexicographically larger than any other symbol in Σ. We denote by S[i..j]
the substring of S that starts at the ith symbol and ends at the jth symbol.
Accordingly, a prefix (resp. suffix) of S is denoted by S[1..k] (resp. S[k..n]) for
some 1 ≤ k ≤ n. The suffix starting at the ith symbol, i.e., S[i..n], is called the
ith suffix of S.

The suffix array of S consists of a pos[1..n] array and an lcp[1..n] array.
The pos[1..n] array is basically a sorted list of all the suffixes of S. We store
in pos[i], 1 ≤ i ≤ n, the starting position of the ithe smallest suffix of S. The
lcp[1..n] array due to Kasai et al. [17] stores the lengths of the longest common
prefix of two adjacent suffixes in the pos array. Specifically, we store in lcp[i],
2 ≤ i ≤ n, the length of the longest common prefix of pos[i− 1] and pos[i], and
we store −1 in lcp[1] to indicate lcp[1] is undefined. The suffix array of string
caggtcagtcacggtatca# is shown in Fig. 1 (b).

Grossi and Vitter [13] developed the compressed suffix array that stores the
same information as the pos array in O(n) bits but it takes O(logε n) time for
any fixed 0 < ε ≤ 1 to get an element pos[i] from the compressed suffix array. In
addition, Sadakane [29] developed a succinct representation of the lcp array that
requires O(n) bits and from which we can get an element lcp[i] in O(logε n) time.
The compressed suffix array and the succinct representation of the lcp array can
be constructed in O(n logε n) time using optimal O(n log |Σ|)-bit working space
due to Hon et al [16] and Hon and Sadakane [15], respectively.

The suffix tree of S is the compacted trie on the set of all suffixes of S. It
has n leaves, each of which corresponds to a suffix of S. We denote the leaf
corresponding to the ith suffix by leaf i. Figure 1 (c) shows the suffix tree of
string caggtcagtcacggtatca#. Each edge in the suffix tree of S has a label that
is a substring of S, which is normally represented by the starting position and
the ending position of the substring in S. Each node x also has a label, denoted
by label(x), that is the concatenation of the labels of the edges in the path from
the root to the node.
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Fig. 1. The suffix array, the suffix tree, and the lcp-interval tree for caggtcagtcac
ggtatca#.

The lcp-interval tree of S is a modification of the suffix tree of S such that
each node x is replaced by the interval [i..j] such that pos[i..j] stores the suffixes
in the subtree rooted at x. (Note that the suffixes in the subtree rooted at a node
x are stored consecutively in the pos array because all of them have the same
prefix.) The lcp-interval tree of string caggtcagtcacggtatca# is shown in Fig. 1
(d). Consider the node whose label is ca in Fig. 1 (c). The suffixes in the subtree
of the node are stored in pos[6..9] and thus the node is replaced by interval [6..9]
in Fig. 1 (d). The intervals in the lcp-interval tree are called lcp-intervals. We
introduce a useful property of lcp-interval trees without proofs.

Lemma 1. Let cr, 1 ≤ r ≤ k, denote the first index of the rth child of an
lcp-interval [i..j] where k is the number of children of [i..j]. The first indices
c2, c3, . . . , ck correspond to the indices of the smallest value in lcp[i + 1..j].

Consider the lcp-interval [1..20] in Fig. 1 (d). In lcp[2..20], the smallest value 0
is stored in lcp[6], lcp[11], lcp[16], and lcp[20]. The indices 6, 11, 16, and 20
correspond to the first indices of the children [6..10], [11..15], [16..19] and [20],
respectively.

3 The Linearized Suffix Tree

The linearized suffix tree consists of a pos[1..n] array, an lcp[1..n] array and
a child table cldtab[1..n − 1]. Since we already introduced the pos and lcp
arrays, we only describe the child table. The child table cldtab[1..n− 1] stores
the parent-child relationship between the lcp-intervals in the modified lcp-interval
tree whose data structure for node branching is the complete binary tree.
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string
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Fig. 2. The modified lcp-interval tree and the linearized suffix tree for caggtcagtcac
ggtatca#. In Fig. 2 (a), for every index i in a circle, cldtab[i] stores the first index of
the lcp-interval its arrow points to. Note that there are 19 circles and any two indices
in circles are not the same and thus each entry of cldtab[1..19] stores only one element.

We first describe the shape of the complete binary tree for the children of an
lcp-interval [a..b]. In this complete binary tree, the interval [a..b] is the root, all
the children of [a..b] are leaves, and the other internal nodes are appropriately
generated to form the complete binary tree. Let k denote the number of children
of [a..b]. Let d and k′ be integers such that k = 2d + k′ for some 1 ≤ k′ ≤ 2d.
We generate a complete binary tree of depth d + 1 having 2k′ leaves in level 0.
Each ith (1 ≤ i ≤ 2k′) child of [a..b] is the ith leftmost leaf in level 0 and the
ith (2k′ +1 ≤ i ≤ 2d + k′) child of [a..b] is the (i− k′)th leftmost node in level 1.

Example 1. Consider the lcp-interval [1..20] in Fig. 1 (d). The lcp-interval [1..20]
has five children [1..5], [6..10], [11..15], [16..19], and [20]. Since 5 = 22 + 1, we
construct the complete binary tree of depth 3 (Fig. 2 (a)). The first two children
[1..5] and [6..10] are the leaves in level 0. The other three children [11..15],
[16..19], and [20] are the leaves in level 1. Three internal nodes [1..10], [1..15],
and [16..20] are newly created.

We show how to store a modified lcp-interval tree in a child table. For each
internal lcp-interval [i..j], we store the first index of its right child in the child
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table. (Note that every internal lcp-interval in a modified lcp-interval tree has
two children and we can enumerate the children of [i..j] by storing the first index
of its right child.) Let child(i, j) denote the first index of the right child of [i..j].
The child table stores child(i, j) in the following way.

– If [i..j] is the right child or the root, we store child(i, j) in cldtab[i].
– Otherwise, we store child(i, j) in cldtab[j].

In Fig. 2, we store child(1, 20)(= 16) in cldtab[1] because [1..20] is the root,
and we store child(1, 15)(= 11) in cldtab[15] because [1..15] is the left child.
Since the number of internal lcp-intervals in the modified lcp-interval tree is n−1,
we can store child(i, j) for every internal lcp-interval [i..j] in cldtab[1..n − 1]
without conflicts. The formal proof is given in [21].

4 A New Compressed Suffix Tree

4.1 Definition

Our compressed suffix tree consists of a compressed suffix array due to Grossi and
Vitter [13], a succinct representation of lcp information due to Sadakane [29, 30],
and a compressed child table. We only describe the compressed child table.
Before describing the compressed child table, we first introduce a difference child
table. The difference child table differs from the child table in that it stores
the minimum of (child(i, j) − i) and (j − child(i, j)) instead of child(i, j). The
difference child table consists of a diff[1..n−1] array and a sign[1..n−1] array
and it is defined as follows.

– Case 1: If [i..j] is the right child or the root, we store min{child(i, j)− i, j−
child(i, j)} in diff[i]. If child(i, j)−i is stored in diff[i], we store 0 in sign[i]
and we store 1, otherwise.

– Case 2: Otherwise, we store min{child(i, j)− i, j− child(i, j)} in diff[j]. We
store 0 or 1 in sign[j], similarly.

Example 2. Recall that we store child(1, 20) (= 16) in cldtab[1] in Fig. 2 (b).
For the case of difference child table, we first compute child(1, 20)− 1 = 15 and
20 − child(1, 20) = 4. Since 4 is smaller than 15, we store 4 in diff[1] and 1 in
sign[1] in Fig. 3.

1100 0 1 0 0 0 1 0 0 0 0 110100 0 10 100C array

D array 1100 1 1 1 1 1 1 1 1 1 1 110100 1 11 100
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Fig. 3. The difference child table and its succinct representation.
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The compressed child table consists of a compressed diff array and a sign array.
Let bi denote the length of bits needed to represent diff[i], i.e., if diff[i] �= 0,
bi = �log(diff[i] + 1)� and bi = 1 otherwise. The main idea of compressing the
diff is that we only use bi bits to store diff[i]. Let si denote Σi

k=1bk. The
compressed diff array is composed of two bit arrays C and D of length sn−1.
We denote the jth bits of the arrays by C[j] and D[j], respectively. The C array
is basically a concatenated bit string of the integers stored in diff[1..n − 1]
where each diff[i] is represented by bi bits. Specifically, C[si−1 + 1..si] is the
binary representation of diff[i] using bi bits. In Fig. 3 (c), the first 5 bits in
the C array are 10001, which is the concatenation of the binary representation
of 4, 0, and 1. We define the D array. All the bits in D are 0 except the D[j]
such that j = sk + 1 for some k, 0 ≤ k ≤ n− 2, i.e., the D[j] such that C[j] is
the most significant bit (MSB) of some integer diff[k]. In Fig. 3 (c), D[1] is 1
because C[1] is the MSB of 4 that is in diff[1]. The D[2] and D[3] are all 0’s
because they are not the MSB’s of any integers in diff.

We can compute child(a, b) for an lcp-interval [a..b] in O(1) time from C,
D, sign arrays, and a data structure for computing function select in D [27].
We can compute child(a, b) from either diff[a], sign[a], a, and b, (Case 1) or
diff[b], sign[b], a, and b, (Case 2). We have only to show how to obtain diff[i],
1 ≤ i ≤ n− 1. we first compute select(i) and select(i+ 1) on D. Then diff[i] is
stored in C[select(i)..select(i + 1)− 1] by definition of C and D arrays.

We show that C, D, and the sign arrays consume 5n or less bits. It is clear
the sign array consumes n − 1 bits. Since the length of C array is that of D
array, we only show the length of C array is 2n or less bits. By definition of C
array, the length S(n) of C array for a string of length n can be represented by
the recurrence relation below.

S(n) = max{ n−1
max
k=1
{S(k) + S(n− k) + min{�log(k + 1)�, �log(n− k + 1)�}},

S(n− 1) + 1}
= max{	n/2


max
k=1
{S(k) + S(n− k) + �log(k + 1)�}, S(n− 1) + 1}.

We can show that S(n) < 2n using the fact that the right side of the equation is
maximized when k = n−2d−1 such that 2d−1 < n ≤ 2d. The proof of S(n) < 2n
is omitted. Since the data structure for select consumes o(n) bits, we get the
following theorem.

Theorem 1. The compressed child table consumes 5n + o(n) bits, and one can
compute cldtab[i], 1 ≤ i ≤ n−1, in O(1) time using the compressed child table.

4.2 Pattern Search

We first describe the pattern search in a linearized suffix tree, which is the same
as the pattern search in an lcp-interval tree except for finding the child of an lcp-
interval [i..j] whose incoming edge label starts with a symbol of a pattern. We
find such child by traversing the complete binary tree rooted at [i..j]. We show
how to obtain the first symbol of the incoming edge label of an lcp-interval [a..b]
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in the complete binary tree when we are to compare it with the kth symbol of
the pattern. Since we are traversing the modified lcp-interval tree from the root
(of the modified lcp-interval tree) using the pattern, S[pos[i]+(k−1)] stores the
first symbol of the incoming edge label of [a..b] by definition of the pos array.

Example 3. Consider finding the child of [1..5] whose incoming edge label starts
with g, when we search a pattern ag in the modified lcp-interval tree in Fig. 2
(a). First, we compare g with S[pos[4] + 1] that is t. Since g is smaller than t,
we move to [1..3]. Then, we compare g with S[pos[2] + 1] that is g. Since g is
the same as S[pos[2] + 1], we move to [2..3].

It should be noted that we do not know the depth of the complete binary tree
during the pattern search. Instead, we can determine whether we arrives a leaf
or not using the lcp array. Let [a..b] be an lcp-interval in the complete binary
tree. If [a..b] is the left child, it is not a leaf if lcp[a] = lcp[cldtab[b]] and it is a
leaf, otherwise. If [a..b] is the right child, it is not a leaf if lcp[cldtab[a]] = lcp[b]
and it is a leaf, otherwise.

We consider finding a pattern P of length m in the linearized suffix tree.
Since the complete binary tree is of depth log |Σ| in the worst case, we can find
an lcp-interval [p..q] that stores all the suffixes including P in O(m log |Σ|) time.
Thus, we can count the number of occurrences of P (which is q − p + 1) in
O(m log |Σ|) time and enumerate all the occurrences in O(m log |Σ|+ occ) time
where occ is the number of occurrences.

The pattern search in the compressed suffix tree is the same as the pattern
search in the linearized suffix tree except that each access to an element of pos,
lcp, and cldtab (O(1) time respectively) is replaced by an access to an element
of a compressed suffix array (O(logε n) time), a succinct representation of lcp
information (O(logε n) time), and our compressed suffix tree (O(1) time). Hence,
we get the following theorem.

Theorem 2. Our compressed suffix tree can answer a counting query in
O(m′ log |Σ|) time and an enumeration query in O(m′ log |Σ|+ occ logε n) time
for a pattern of length m where m′ = m logε n.

5 Construction of the Compressed Child Table

We show that we can construct the compressed suffix tree from the lcp array. We
first introduce a depth array, which is a temporary array used to construct the
compressed child table. The depth[1..n− 1] array is defined as follows. Consider
the complete binary tree rooted at an interval [a..b]. Let c1, c2, ..., ck denote the
first indices of the children of [a..b]. Then, we store in depth[ci] (2 ≤ i ≤ k) the
depth of the lowest common ancestor of two adjacent child intervals [ci−1..ci−1]
and [ci..ci+1 − 1] in the complete binary tree.

Example 4. In Fig. 4, the lowest common ancestor of [2..3] and [4] is [1..5] whose
depth is 0 and thus we store 0 in depth[4]. Similarly, we store 1 in depth[2] and
depth[5].
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0
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depth
lcp

1 2 4 53

01 1

extlcp 5 54

Fig. 4. The extended lcp array when |Σ| = 16.

Procedure EXTLCP
1: ranking[1..n − 1] = 1;
2: numchild[1..n − 1] = 0;
3: push(1);
4: for i := 2 to n do
5: while lcp[i] < lcp[top()] do
6: lastIndex := pop();
7: numchild[lastIndex] := ranking[lastIndex] + 1;
8: if lcp[i] = lcp[top()] then
9: ranking[i] := ranking[pop()] + 1;
10: push(i)
11: push(n);
12: for i := n − 1 downto 1 do
13: while lcp[i] < lcp[top()] do
14: pop();
15: if lcp[i] = lcp[top()] then
17: numchild[i] := numchild[pop()];
18: ComputeDepth(ranking[i], numchild[i]);
19: push(i)
end

Fig. 5. Procedure EXTLCP.

Each element of the depth array can be stored in �log log |Σ|� bits because
the largest value that depth[i], 1 ≤ i ≤ n, may store is �log |Σ|�−1 due to the fact
that a complete binary tree may have at most |Σ| leaves. The extended lcp array
(i.e., the lcp array and the depth array) reflects the structure of the modified
lcp-interval tree. The child(i, j) of [i..j] is the index k, i+1 ≤ k ≤ j, minimizing
lcp[i]‖depth[i]. We will denote lcp[i]‖depth[i] by extlcp[i]. In Fig. 4, child(1, 5)
is 4 and 4 is the index that minimizing extlcp[i] because extlcp[4] = 4 and
extlcp[2] = extlcp[5] = 5.

Now, we show how to construct the compressed child table. Construction of
the compressed child table consists of two following procedures.

1. Procedure EXTLCP (Fig. 5): For each lcp-interval [a..b], we first compute
the ranking of each child and the number k of children of [a..b] (lines 1-10).
Then, we compute depth[ci] for 2 ≤ i ≤ k (lines 11-19) where ci is the first
index of the ith child of [a..b].
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Procedure CHILD
1: lastIndex := −1;
2: CF = CB = DF = DB := NULL;
3: push(1);
4: for i := 2 to n + 1 do
5: while extlcp[i] < extlcp[top()] do
6: lastIndex := pop();
7: if lastIndex �= −1 then
8: diff = min{i − lastIndex, lastIndex − top()};
9: CF := CF ‖diff ; // Append the bit representation of diff at the end of CF .
10: DF := DF ‖10 · · · 0; // Append 1 followed by k − 1 number of 0’s
11: lastIndex := −1; where k is the bit length of diff.
12: else
13: CF := CF ‖00; DF := DF ‖10; // Append ‘00’ to indicate diff is
14: push(i) not computed in this for loop.
15: lastIndex := −1; Note that the bit representation
16: push(n); of diff cannot be ‘00’.
17: for i := n − 1 downto −1 do
18: while extlcp[i] < extlcp[top()] do
19: lastIndex := pop();
20: if lastIndex �= −1 then
21: diff := min{lastIndex − i, top() − lastIndex};
22: CB := diff ‖CB ;
23: DB := 10 · · · 0‖DB ; // Append 1 followed by k − 1 number of 0’s
24: lastIndex := −1; where k is the bit length of diff.
25: else
26: CB := 00‖CB ; DB := 10‖DB ;
27: push(i)
28: C = merge(CF , CB); D = merge(DF , DB);
end

Fig. 6. Procedure CHILD. Procedure CHILD assumes a sentinel value -2 is stored in
lcp[0] and lcp[n + 1].

We describe how the function ComputeDepth computes depth[ci], given
i and k (ranking[i] and numchild[i] in line 18) when k = 2d for some d.
(Computation of depth[ci] when k �= 2d for any d is slightly different.) Recall
that depth[ci] (2 ≤ i ≤ k) stores the depth of the lowest common ancestor
of two adjacent child intervals [ci−1..ci−1] and [ci..ci+1−1]. Since the depth
of the lowest common ancestor is d − Li where Li is the level of the lowest
common ancestor, we describe how to compute Li. The Li corresponds to
the number of tailing 0’s in the bit representation of i. For example, every
odd numbered child has no tailing 0’s and thus the level of it is 0.

We consider the running time of computing depth[ci] for 2 ≤ i ≤ k. To
compute them, we have to scan the bit representation from the right until we
reach the rightmost 1 for all integers 2, ..., k. One can show this takes O(k)
time overall by resorting to the amortized analysis which is very similar to
the one used to count the bit-flip operations of a binary counter [3]. Overall,
this procedure takes O(n logε n) time.
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2. Procedure CHILD (Fig. 6): We first compute CF and DF for Case 2 of the
difference child table (lines 3-14) and then CB and DB for Case 1 of the
difference child table (lines 15-27). Then, we compute C by merging CF and
CB and D by merging DF and DB. Overall, this procedure takes O(n logε n)
time.

We consider the working space of procedures EXTLCP and CHILD. Proce-
dure EXTLCP uses ranking[1..n] and numchild[1..n] arrays. Since the largest
value each element of them may store is |Σ|, they require O(n log |Σ|) bits. Pro-
cedure CHILD uses extlcp which is lcp‖depth. The succinct representation
of lcp requires O(n) bits and depth[1..n− 1] requires O(n log log |Σ|) bits. We
consider the space required by stacks used by procedures EXTLCP and CHILD.
Since the values in the stacks are monotone, we first encode them by the differ-
ence between adjacent numbers and then represent them by δ-code [4, 5]. Then,
the space requirement of the stacks is O(n) bits. Hence, we get the following
theorem.

Theorem 3. The compressed child table can be constructed in O(n logε n) time
using optimal O(n log |Σ|)-bit working space.
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Abstract. A succinct full-text self-index is a data structure built on a
text T = t1t2 . . . tn, which takes little space (ideally close to that of the
compressed text), permits efficient search for the occurrences of a pattern
P = p1p2 . . . pm in T , and is able to reproduce any text substring, so the
self-index replaces the text. Several remarkable self-indexes have been
developed in recent years. They usually take O(nH0) or O(nHk) bits,
being Hk the kth order empirical entropy of T . The time to count how
many times does P occur in T ranges from O(m) to O(m log n).

We present a new self-index, called run-length FM-index (RLFM index),
that counts the occurrences of P in T in O(m) time when the alphabet
size is σ = O(polylog(n)). The index requires nHk log2 σ + O(n) bits of
space for small k. We then show how to implement the RLFM index in
practice, and obtain in passing another implementation with different
space-time tradeoffs. We empirically compare ours against the best ex-
isting implementations of other indexes and show that ours are fastest
among indexes taking less space than the text.

1 Introduction

The classical problem in string matching is to determine the occ occurrences of
a short pattern P = p1p2 . . . pm in a large text T = t1t2 . . . tn. Text and pattern
are sequences of characters over an alphabet Σ of size σ. Actually one may want
to know the number occ of occurrences (this is called a counting query), the
text positions of those occ occurrences (a locating query), or also a text context
around them (a context query). When the same text is queried several times with
different patterns, the text can be preprocessed to build an index structure that
speeds up searches.
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To allow fast searches for patterns of any size, the index must allow access to
all suffixes of the text (the ith suffix of T is titi+1 . . . tn). These kind of indexes
are called full-text indexes. The suffix tree [24] is the best-known full-text index,
requiring O(m) time for counting and O(occ) for locating.

The suffix tree, unfortunately, takes O(n log n) bits of space, while the text
takes n log σ bits1. In practice the suffix tree requires about 20 times the text
size. A smaller constant factor, close to 4 in practice, is achieved by the suffix
array [16]. Yet, the space complexity is still O(n log n) bits.

Many efforts to reduce these space requirements have been pursued. This has
evolved into the concept of a self-index, a succinct index that contains enough
information to reproduce any text substring. Hence a self-index replaces the text.
Several self-indexes that require space proportional to the compressed text have
been proposed recently [3, 5, 8, 10, 19, 22].

Some structures [5, 8] need only nHk + o(n) bits of space, which is cur-
rently the lowest asymptotic space requirement that has been achieved. Here Hk

stands for the kth order entropy of T [17]. Using a recent sequence representa-
tion technique [6], the structure in [5] supports counting queries in O(m) time
on alphabets of size O(polylog(n)). Other self-indexes require either more time
for counting [5, 8, 19, 22], or O(nH0) bits of space [23].

In this paper we describe how run-length encoding of Burrows-Wheeler trans-
formed text [1], together with the backward search idea [3], can be used to
obtain a self-index, called RLFM index for “run-length FM-index”, requiring
nHk log σ + O(n) bits of space, which answers counting queries in O(m) time
on alphabets of size O(polylog(n)). Just as for other indexes [5, 8], the space
formula is valid for any k ≤ α logσ n, for any constant 0 < α < 1. The index is
interesting in practice as well. We give several considerations to implement the
RLFM index, which are of interest by themselves and also yield an implementa-
tion for a simpler index, which we call SSA for “succinct suffix array”. We show
experimentally on an English text collection that the RLFM index and the SSA
take less space than the text, and among such indexes, they are the fastest in
counting queries.

The RLFM index motivated the work in [5, 6]. The latter supersedes our
original idea [15] in theory, yet in practice the RLFM index is still appealing.

2 Basic Concepts

We denote by T = t1t2 . . . tn our text string. We assume that a special endmarker
tn = $ has been appended to T , such that “$” is smaller than any other text
character. We denote by P = p1p2 . . . pn our pattern string, and seek to find
the occurrences of P in T . For clarity, we assume that P and T are drawn over
alphabet Σ = {$, 1, . . . , σ}.

Empirical kth Order Entropy. Let nc denote the number of occurrences in
T of character c ∈ Σ. The zero-order empirical entropy of string T is H0(T ) =
1 By log we mean log2 in this paper.
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−
∑

c∈Σ
nc

n log nc

n , where 0 log 0 = 0. If we use a fixed codeword for each character
in the alphabet, then nH0(T ) bits is the smallest encoding we can achieve for
T . If the codeword is not fixed, but it depends on the k characters that precede
the character in T , then the smallest encoding one can achieve for T is nHk(T )
bits, where Hk(T ) is the kth order empirical entropy of T . This is defined [17]
as

Hk(T ) =
1
n

∑
W∈Σk

|WT |H0(WT ),

where WT is the concatenation of all characters tj such that Wtj is a substring
of T . String W is the k-context of each such tj . We use H0 and Hk as shorthands
for H0(T ) and Hk(T ).

The Burrows-Wheeler Transform (BWT). The BWT [1] of a text T pro-
duces a permutation of T , denoted by T bwt. Recall that T is assumed to be
terminated by the endmarker “$”. String T bwt is the result of the following
transformation: (1) Form a conceptual matrix M whose rows are the cyclic
shifts titi+1 . . . tnt1t2 . . . ti−1 of the string T , call F its first column and L its last
column; (2) sort the rows ofM in lexicographic order; (3) the transformed text
is T bwt = L.

The main step to reverse the BWT is to compute the LF mapping, so that
LF (i) is the position of character L[i] in F . This is computed as LF (i) =
C[L[i]] + Occ(L, L[i], i), where C[c] is the number of occurrences of characters
{$, 1, . . . , c−1} in T , and Occ(L, c, i) is the number of occurrences of character c
in the prefix L[1, i]. Then T can be obtained backwards from T bwt by successive
applications of LF .

We note that matrixM is essentially the suffix array A[1, n] of T , as sorting
the cyclic shifts of T is the same as sorting its suffixes, given the endmarker “$”:
A[i] = j if and only ifM[i] = tjtj+1 . . . tn−1$t1 . . . tj−1.

The FM-Index. The FM-index [3, 4] is a self-index based on the Burrows-
Wheeler transform. It solves counting queries by finding the interval of A that
contains the occurrences of pattern P . The FM-index uses the array C and
function Occ(L, c, i) defined before. Figure 1 shows the counting algorithm. It
maintains the invariant that, at the ith phase, variables sp and ep point, respec-
tively, to the first and last row ofM prefixed by P [i, m].

Note that while array C can be explicitly stored in little space, implementing
Occ(T bwt, c, i) is problematic. The first solution [3] implemented Occ(T bwt, c, i)
by storing a compressed representation of T bwt plus some additional tables.
With this representation, Occ(T bwt, c, i) could be computed in constant time
and therefore the counting algorithm required O(m) time.

The representation of T bwt required O(nHk) bits of space, while the addi-
tional tables required space exponential in σ. Assuming that σ is constant, the
space requirement of the FM-index is 5nHk + o(n). In a practical implementa-
tion [4] this exponential dependence on σ was avoided, but the constant time
guarantee for answering Occ(T bwt, c, i) was no longer valid.
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Algorithm FMcount(P [1, m],T bwt[1, n])
(1) i ← m;
(2) sp ← 1; ep ← n;
(3) while (sp ≤ ep) and (i ≥ 1) do
(4) c ← P [i];

(5) sp ← C[c] + Occ(T bwt, c, sp − 1)+1;
(6) ep ← C[c] + Occ(T bwt, c, ep);
(7) i ← i − 1;
(8) if (ep < sp) then return “not found”

else return “found (ep − sp + 1) occurrences”.

Fig. 1. FM-index algorithm for counting the occurrences of P in T .

The method to locate pattern occurrences or to show contexts around them
also employs the Occ() function, but we omit the details here.

Succinct Data Structures for Binary Sequences. Given a binary sequence
B = b1b2 . . . bn, we denote by rankb(B, i) the number of times bit b appears in the
prefix B[1, i], and by selectb(B, i) the position in B of the ith occurrence of bit b.
By default we assume rank(B, i) = rank1(B, i) and select(B, i) = select1(B, i).
There are several results [2, 12, 18] that show how B can be represented using
n + o(n) bits so as to answer rank and select queries in constant time. The
best current results [20, 21] answer those queries in constant time using only
nH0(B) + o(n) bits of space.

Wavelet Trees. Sequences S = s1s2 . . . sn on general alphabets of size σ can
also be represented using nH0(S) + o(n log σ) bits by using a wavelet tree [8].
This tree retrieves any si in O(log σ) time. Within the same time bounds, it also
answers generalized rank and select queries.

The wavelet tree is a perfectly balanced binary tree where each node corre-
sponds to a subset of the alphabet. The children of each node partition the node
subset into two. A bitmap Bv at the node v indicates to which children does
each sequence position belong. Each child then handles the subsequence of the
parent’s sequence corresponding to its alphabet subset. The leaves of the tree
handle single alphabet characters and require no space.

To answer query rankc(S, i), we first determine to which branch of the root
does c belong. If it belongs to the left, then we recursively continue at the left
subtree with i← rank0(Broot, i). Otherwise we recursively continue at the right
subtree with i← rank1(Broot, i). The value reached by i when we arrive at the
leaf that corresponds to c is rankc(S, i). The character si is obtained similarly,
this time going left or right depending on whether Bv[i] = 0 or 1 at each level,
and finding out which leaf we arrived at. Query selectc(S, i) is answered by
traversing the tree bottom-up.
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If every bitmap in the wavelet tree is represented using a data structure
that takes space proportional to its zero-order entropy, then it can be shown
that the whole wavelet tree requires nH0(S) + o(n log σ) bits of space [8]. When
σ = O(polylog(n)), a generalization of wavelet trees takes nH0(S) + o(n) bits
and answers all those queries in constant time [6].

3 RLFM: A Run-Length-Based FM-Index

We studied in [14] the relationship between the runs in the Burrows-Wheeler
transformed text and the kth order entropy. We summarize the main result in
the following.

Theorem 1. The length nbw of the run-length encoded Burrows-Wheeler trans-
formed text T bwt[1, n] is at most n min(Hk(T ), 1)+σk, for any k ≥ 0. In partic-
ular, this is nHk(T ) + o(n) for any k ≤ α logσ n, for any constant 0 < α < 1 2.

We aim in this section at indexing only the runs of T bwt, so as to obtain
an index, called run-length FM-index (RLFM), whose space is proportional to
nHk. We exploit run-length compression to represent T bwt as follows. An array
S contains one character per run in T bwt, while an array B contains n bits and
marks the beginnings of the runs.

Definition 1. Let string T bwt = c�1
1 c�2

2 . . . c
�nbw
nbw consist of nbw runs, so that

the ith run consists of �i repetitions of character ci. Our representation of T bwt

consists of the string S = c1c2 . . . cnbw
of length nbw, and of the bit array B =

10�1−110�2−1 . . . 10�nbw
−1.

It is clear that S and B contain enough information to reconstruct T bwt:
T bwt[i] = S[rank(B, i)]. Since there is no useful entropy bound on B, we assume
that rank is implemented in constant time using some succinct structure that
requires n + o(n) bits [2, 18]. Hence, S and B give us a representation of T bwt

that permit us accessing any character in constant time.
The problem, however, is not only how to access T bwt, but also how to com-

pute C[c]+Occ(T bwt, c, i) for any c and i (recall Figure 1). This is not immediate,
because we want to add up all the run lengths corresponding to character c up
to position i.

In the following we show that the above can be computed by means of a
bit array B′, obtained by reordering the runs of B in lexicographic order of the
characters of each run. Runs of the same character are left in their original order.
The use of B′ will add other n+ o(n) bits to our scheme. We also use CS , which
plays the same role of C, but it refers to string S.
2 The original analysis [14] has constant 2 multiplying nHk(T ). We later noticed that

the analysis can be tightened to give constant 1. This comes from showing that
−(x/(x + y)) log(x/(x + y)) − (y/(x + y)) log(y/(x + y)) ≥ 2x/(x + y) for any
x, y ≥ 0, while in Eq. (4) of [14] the expression at the right of the inequality was
x/(x + y).
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Definition 2. Let S = c1c2 . . . cnbw
of length nbw, and B = 10�1−110�2−1 . . .

10�nbw
−1. Let d1d2 . . . dnbw

be the permutation of [1, nbw] such that, for all 1 ≤
i < nbw, either cdi < cdi+1 , or cdi = cdi+1 and di < di+1. Then, bit array B′ is
defined as B′ = 10�d1−110�d2−1 . . . 10�dnbw

−1. Let also CS [c] = |{i, ci < c, 1 ≤
i ≤ nbw}|.

We now prove our main results. We start with two general lemmas.

Lemma 1. Let S and B′ be defined for a string T bwt. Then, for any c ∈ Σ it
holds

C[c] + 1 = select(B′, CS [c] + 1).

Proof. CS [c] is the number of runs in T bwt that represent characters smaller than
c. Since in B′ the runs of T bwt are sorted in lexicographic order, select(B′, CS [c]+
1) indicates the position in B′ of the first run belonging to character c, if any.
Therefore, select(B′, CS [c]+1)−1 is the sum of the run lengths for all characters
smaller than c. This is, in turn, the number of occurrences of characters smaller
than c in T bwt, C[c]. Hence select(B′, CS [c] + 1)− 1 = C[c].
Lemma 2. Let S, B, and B′ be defined for a string T bwt. Then, for any c ∈ Σ
and 1 ≤ i ≤ n, such that i is the final position of a run in B, it holds

C[c] + Occ(T bwt, c, i) = select(B′, CS [c] + 1 + Occ(S, c, rank(B, i))) − 1.

Proof. Note that rank(B, i) gives the position in S of the run that finishes
at i. Therefore, Occ(S, c, rank(B, i)) is the number of runs in T bwt[1, i] that
represent repetitions of character c. Hence it is clear that CS [c] < CS [c] + 1 +
Occ(S, c, rank(B, i)) ≤ CS [c + 1] + 1, from which follows that select(B′, CS [c] +
1 + Occ(S, c, rank(B, i))) points to an area in B′ belonging to character c, or
to the character just following that area. Inside this area, the runs are ordered
as in B because the reordering in B′ is stable. Hence select(B′, CS [c] + 1 +
Occ(S, c, rank(B, i))) is select(B′, CS [c] + 1) plus the sum of the run lengths
representing character c in T bwt[1, i]. That sum of run lengths is Occ(T bwt, c, i).
The argument holds also if T bwt[i] = c, because i is the last position of its
run and therefore counting the whole run T bwt[i] belongs to is correct. Hence
select(B′, CS [c] + 1 + Occ(S, c, rank(B, i))) = select(B′, CS [c] + 1) + Occ(T bwt,
c, i), and then, by Lemma 1, select(B′, CS [c] + 1 + Occ(S, c, rank(B, i))) − 1 =
C[c] + Occ(T bwt, c, i).

We now prove our two fundamental lemmas that cover different cases in the
computation of C[c] + Occ(T bwt, c, i).

Lemma 3. Let S, B, and B′ be defined for a string T bwt. Then, for any c ∈ Σ
and 1 ≤ i ≤ n, such that T bwt[i] �= c, it holds

C[c] + Occ(T bwt, c, i) = select(B′, CS [c] + 1 + Occ(S, c, rank(B, i))) − 1.
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Proof. Let i′ be the last position of the run that precedes that of i. Since
T bwt[i] �= c in the run i belongs to, we have Occ(T bwt, c, i) = Occ(T bwt, c, i′)
and also Occ(S, c, rank(B, i)) = Occ(S, c, rank(B, i′)). Then the lemma follows
trivially by applying Lemma 2 to i′.

Lemma 4. Let S, B, and B′ be defined for a string T bwt. Then, for any c ∈ Σ
and 1 ≤ i ≤ n, such that T bwt[i] = c, it holds

C[c] + Occ(T bwt, c, i) = select(B′, CS [c] + Occ(S, c, rank(B, i)))
+ i − select(B, rank(B, i)).

Proof. Let i′ be the last position of the run that precedes that of i. Then, by
Lemma 2, C[c] + Occ(T bwt, c, i′) = select(B′, CS [c] + 1 + Occ(S, c, rank(B, i′)))
−1. Now, rank(B, i′) = rank(B, i) − 1, and since T bwt[i] = c, it follows that
S[rank(B, i)] = c. Therefore, Occ(S, c, rank(B, i′)) = Occ(S, c, rank(B, i)−1) =
Occ(S, c, rank(B, i))−1. On the other hand, since T bwt[i′′] = c for i′ < i′′ ≤ i, we
have Occ(T bwt, c, i) = Occ(T bwt, c, i′) + (i− i′). Thus, the outcome of Lemma 2
can now be rewritten as C[c] + Occ(T bwt, c, i) − (i − i′) = select(B′, CS [c] +
Occ(S, c, rank(B, i))) − 1. The only remaining piece to prove the lemma is that
i− i′ − 1 = i− select(B, rank(B, i)), that is, select(B, rank(B, i)) = i′ + 1. But
this is clear, since the left term is the position of the first run i belongs to and
i′ is the last position of the run preceding that of i.

Since functions rank and select can be computed in constant time, the only
obstacle to complete the RLFM using Lemmas 3 and 4 is the computation of
Occ over string S. This can be done in constant time using a new sequence
representation technique [6], when the alphabet size is O(polylog(n)). This needs
a structure of size |S|H0(S) + o(|S|). Using Theorem 1, this is no more than
nHkH0(S) + o(n) for k ≤ α logσ n, for constant 0 < α < 1 3.

The representation of our index needs the bit arrays B and B′, plus the
sublinear structures to perform rank and/or select over them, and finally the
small array CS . These add 2n + o(n) bits, for a grand total of n(Hk(H0(S) +
o(1)) + 2) + o(n) bits. As Hk actually stands for min(1, Hk),and H0(S) ≤ log σ,
we can simplify the space complexity to nHk log σ + O(n) bits.

Theorem 2. The RLFM index, of size n min(Hk, 1) log σ + 2n + o(n) = nHk

log σ + O(n) bits for any k ≤ α logσ n, for any constant 0 < α < 1, can be built
on a text T [1, n] with alphabet size σ = O(polylog(n)), so that the occurrences of
any pattern P [1, m] in T can be counted in time O(m).

The RLFM index can easily be extended to support reporting and context
queries. We defer the details to the journal version of this paper.

3 This can also be solved in nHkH0(S)+O(n) space, with the same restrictions, using
older techniques [23]. The final complexity changes only in small details.
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4 Practical Considerations

The most problematic aspect to implement our proposal is the use of a technique
to represent sequences in a space proportional to its zero-order entropy [6]. This
technique has not yet been implemented, and this will require considerable addi-
tional effort. The same is true with the alternative technique that could be used
[23] to obtain similar time and space complexity.

Yet, previous structures supporting rank on binary sequences in n+o(n) bits
[2, 18] are very simple to implement. So an alternative is to use a wavelet tree
built on the S string of the RLFM index (that is, the run heads). The wavelet
tree is simple to implement, and if it uses structures of n+o(n) bits to represent
its binary sequences, it requires overall |S| log σ(1 + o(1)) = nHk log σ(1 + o(1))
bits of space to represent S. This is essentially the same space we achieved using
the theoretical approach.

With the wavelet tree, the O(1) time to compute Occ(S, c, i) = rankc(S, i),
becomes O(log σ). Therefore, a RLFM index implementation based on wavelet
trees counts in O(m log σ) time.

The same idea can also be applied without run-length encoding. Let us call
SSA (for “succinct suffix array”) this implementation. We notice that the SSA
can be considered as a practical implementation of a previous proposal [23]. It
has also been explicitly mentioned as a simplified version in previous work [5],
with the same O(m log σ) time complexity.

We propose now another simple wavelet tree variant that permits us repre-
senting the SSA using n(H0 + 1)(1 + o(1)) bits of space, and obtains on average
O(H0) rather than O(log σ) time for the queries on the wavelet tree. Instead
of a balanced binary tree, we use the Huffman tree of T to define the shape of
the wavelet tree. Then, every character c ∈ Σ, of frequency nc, will have its
corresponding leaf at depth hc, so that

∑
c∈Σ hcnc ≤ n(H0 + 1) is the number

of bits of the Huffman compression of T .
Consider the size of this tree. Note that each text occurrence of each character

c ∈ Σ appears exactly in hc bit arrays (those found from the root to the leaf that
corresponds to c), and thus it takes hc bits spread over the different bit arrays.
Summed over all the occurrences of all the characters we obtain the very same
length of the Huffman-compressed text,

∑
c∈Σ hcnc. Hence the overall space is

n(H0 + 1)(1 + o(1)) bits.
Note that the time to retrieve T bwt[i] is proportional to the length of the

Huffman code for T bwt[i], which is O(H0) if i is chosen at random. In the case
of Occ(T bwt, c, i) = rankc(T bwt, i), the time corresponds again to T bwt[i] and is
independent of c. Under reasonable assumptions, one can say that on average
this version of the SSA counts in O(H0m) time.

Finally, we note that the Huffman-shaped wavelet tree can be used for the
RLFM index. This lowers its space requirement again to nHkH0(S), just like
the theoretical version. It also reduces the average time to compute rankc(S, i)
or S[i] to O(H0(S)), which is no worse than O(log σ).
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5 Experiments

We compare our SSA and RLFM implementations against others. We used an 87
MB text file (ziff collection from trec-3) and randomly chose 10,000 patterns
of each length from it. We compared counting times against the following in-
dexes/implementations: FM [4] (0.36), Navarro’s implementation of FM-index,
FM-Nav [19] (1.07), CSA [22] (0.39-1.16), LZ [19] (1.49), CompactSA [13] (2.73),
CCSA [14] (1.65), our n�log n�-bits implementation of the suffix array, SA [16]
(4.37), and our implementation of a sequential search algorithm, BMH [11] (1.0).
The last three, not being self-indexes, are included to test the value of compressed
indexing. The values in parentheses tell the space usage of each index as a frac-
tion of the text size. Our indexes take SSA (0.87) and RLFM (0.67). We applied
the ideas of Section 4, and also optimized rank/select implementations [7] for
all the indexes. The codes for FM-Nav, CSA, and LZ indexes are available at
http://www.dcc.uchile.cl/~gnavarro/software and the codes for the other
indexes at http://www.cs.helsinki.fi/u/vmakinen/software.

Only the CSA has a tradeoff in counting time and space usage. We denote
by CSAX the tradeoffs (X is the sampling rate for absolute Ψ -values). The
sizes of CSA10, CSA16, CSA32, and CSA256, are 1.16, 0.86, 0.61, and 0.39,
respectively. Figure 2 shows the times to count pattern occurrences of length
m = 5 to m = 60. We omit CSA10 and CSA16, whose performance is very
similar to CSA32. It can be seen that FM-Nav is the fastest self-index, but it
is closely followed by our SSA, which needs 20% less space (0.87 times the text
size). The next group is formed by our RLFM and the CSA, both needing space
around 0.6. Actually RLFM is faster, and to reach its performance we need
CSA10, which takes space 1.16. For long patterns CCSA becomes competitive
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Fig. 2. Query times (msec) for counting the number of occurrences.



54 Veli Mäkinen and Gonzalo Navarro

in this group, yet it needs as much space as 1.65 times the text size. Compared
to non-self-indexes (that take much more space), we see that self-indexes are
considerably fast for counting, especially for short patterns. For longer ones,
their small space consumption is paid in a 10X slowdown for counting. Yet, this
is orders of magnitude faster than a sequential search, which still needs more
space as the text has to be in uncompressed form for reasonable performance.
Figure 3 illustrates the space/time tradeoff, for m = 30.
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Fig. 3. Space/time tradeoff for counting the number of occurrences.

Finally, we notice that SSA gives a good estimate for the efficiency obtainable
with the more succinct index in [5]. That index has potential to be significantly
more space-efficient, but needs a more careful wavelet tree implementation (in
terms of constant terms in space usage) than what we have currently in SSA. This
is needed in order to gain advantage of the compression boosting mechanism.
Also, implementing the sequence representation developed in [6] will probably
improve in practice the performance of the index in [5], as well as that of the
SSA and RLFM index.

6 Conclusions

Inspired by the relationship between the kth order empirical entropy of a text
and the runs of equal characters in its Burrows-Wheeler transform, we have
designed a new index, the RLFM index, that answers counting queries in time
linear in the pattern length for any alphabet whose size is polylogarithmic on
the text length. The RLFM index was the first in achieving this.
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We have also considered practical issues of implementing the RLFM index,
obtaining an efficient implementation. We have in passing presented another in-
dex, the SSA, that is larger and faster than the RLFM index. We have compared
both indexes against the existing implementations, showing that ours are com-
petitive and obtain practical space-time tradeoffs that are not reached by any
other implementation.

References

1. M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

2. D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.
3. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In

Proc. FOCS’00, pp. 390–398, 2000.

4. P. Ferragina and G. Manzini. An experimental study of an opportunistic index.
In Proc. SODA’01, pp. 269–278, 2001.
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Arrays Using o(n log n)-Bit Working Space

for Large Alphabets�
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Abstract. The suffix array is a fundamental index data structure in
string algorithms and bioinformatics, and the compressed suffix array
(CSA) and the FM-index are its compressed versions. Many algorithms
for constructing these index data structures have been developed. Re-
cently, Hon et al. [11] proposed a construction algorithm using O(n ·
log log |Σ|) time and O(n log |Σ|)-bit working space, which is the fastest
algorithm using O(n log |Σ|)-bit working space.
In this paper we give an efficient algorithm to construct the index data
structures for large alphabets. Our algorithm constructs the suffix array,
the CSA, and the FM-index using O(n) time and O(n log |Σ| log α

|Σ| n)-
bit working space, where α = log3 2. Our algorithm takes less time and
more space than Hon et al.’s algorithm. Our algorithm uses least working
space among alphabet-independent linear-time algorithms.

1 Introduction

Given a string T of length n over an alphabet Σ, the suffix array due to Man-
ber and Myers [16] and independently due to Gonnet et al. [6] is basically a
sorted list of all the suffixes of T . The suffix array requires O(n log n)-bit space.
Manber and Myers [16] and Gusfield [9] proposed O(n log n)-time algorithms for
constructing the suffix array. Recently, almost at the same time, Kim et al. [13],
Kärkkäinen and Sanders [12], and Ko and Aluru [14] developed algorithms to
directly construct the suffix array in O(n) time and O(n log n)-bit space. These
algorithms are based on similar recursive divide-and-conquer schemes.

As the size of data such as DNA sequences increases, compressed versions of
the suffix array such as the compressed suffix array (CSA) [7, 8] and the FM-
index [5] were proposed to reduce the space requirement of suffix arrays. Lam et
al. [15] first developed an algorithm to directly construct the CSA, which uses
O(|Σ|n log n) time and O(n log |Σ|) bits. Hon et al. [10] improved the construc-
tion time to O(n log n), while maintaining the O(n log |Σ|)-bit space complexity.

It had been an open problem whether the index data structures such as
the suffix array, the CSA, and the FM-index, can be constructed in o(n log n)
time and o(n log n)-bit working space. Recently, it was solved by Hon et al. [11].
� This work was supported by the MOST Grant M6-0203-00-0039.
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They proposed an algorithm for constructing the index data structures using
O(n log log |Σ|) time and O(n log |Σ|)-bit working space. This algorithm followed
the odd-even scheme (i.e., 1

2 -recursion), which was used in Farach’s algorithm [3,
4] and Kim et al.’s algorithm [13].

In this paper we give another algorithm for constructing the index data
structures in o(n log n) time and o(n log n)-bit working space. Our algorithm con-
structs the suffix array, the CSA, and FM-index using O(n) time and O(n log |Σ|·
log α

|Σ| n)-bit space, where α = log3 2. The time complexity of our algorithm is
independent of the alphabet size. Hence, our algorithm is the first alphabet-
independent linear-time algorithm for constructing the index data structures
using o(n log n)-bit space.

The framework of our algorithm follows Kärkkäinen and Sanders’s skew
scheme [12] (i.e., 2

3 -recursion). The merit of our algorithm due to the skew
scheme [12] is that the merging step is simple compared with Hon et al.’s al-
gorithm [11]. As in Hon et al.’s algorithm [11], moreover, our algorithm don’t
need the encoding step, which is the most complex and time-consuming step in
the skew scheme.

It remains an open problem to construct the suffix array, the CSA, and the
FM-index optimally, i.e., using O(n) time and O(n log |Σ|)-bit working space.

2 Preliminaries

In this section we give some basic notations and definitions including the Ψ
function of the Compressed Suffix Array (CSA) [7], the array C of the Burrows-
Wheeler Transformation (BWT) [1], and the Ψ ′ function, which is similar to Ψ
and the core of our algorithm.

Let T be a string of length n over an alphabet Σ. For simplicity, we assume
that n is a multiple of 3. We denote the ith character by T [i] and the substring
T [i]T [i + 1] · · ·T [j] by T [i..j]. We assume that T [n] = $ is a unique terminator
which is lexicographically smaller than any other character in Σ. For 1 ≤ i ≤ n,
T [i..n] is a suffix of T and T [i..n]T [1..i− 1] is a circular string of T . We denote
circular string T [i..n]T [1..i− 1] by T 〈i〉.

For 1 ≤ i ≤ n/3, a suffix T [3 · i − 2..n], a suffix T [3 · i − 1..n], and T [3 ·
i..n] are called a residue-1 suffix, a residue-2 suffix, and a residue-3 suffix of
T , respectively. Let T [i..n] be lexicographically the kth smallest suffix of T .
Then, the rank of T [i..n] in the suffixes of T is k. The suffix array of T is a
lexicographically sorted array of the suffixes of T . Formally, the suffix array
SA[1..n] of T is an array of integers such that SA[k] = i, where k is the rank of
T [i..n] in the suffixes of T . See Figure 1 for an example.

2.1 Ψ Function and C Array

We define the ΨT function [7, 11], or simply Ψ . Let T [k..n] be the suffix stored in
the ith entry of SA. Then, Ψ [i] is a position in SA where T [k + 1..n] are stored.
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i C[i] SA[i] Ψ [i]

1 a 9 8 $

2 b 8 1 a$

3 b 4 5 aabba$

4 b 2 7 abaabba$

5 a 5 9 abba$

6 b 7 2 ba$

7 a 3 3 baabba$

8 $ 1 4 babaabba$

9 a 6 6 bba$

Fig. 1. The suffix array SA, Ψ function, and C array of S = babaabba$.

More formally,

Ψ [i] =
{

SA−1[SA[i] + 1] (if SA[i] �= n)
SA−1[1] (if SA[i] = n)

See Figure 1 for an example. The Ψ function is piece-wise increasing. Thus, the Ψ
function can be encoded using O(n log |Σ|) bits in the form T [SA[i]]×n+Ψ [i]−1,
which is an increasing sequence, so that each Ψ [i] can be retrieved in constant
time [2, 8, 17].

Lemma 1. [11] Given T and the Ψ function, the suffix array and the compressed
suffix array can be constructed in O(n) time and O(n log |Σ|)-bit working space.

The C[1..n] array is defined as

C[i] =
{

T [SA[i]− 1] (if SA[i] �= 1)
T [n] (if SA[i] = 1)

See Figure 1 for an example.

Lemma 2. [11] Given the C array of T , the FM-index can be constructed in
O(n) time and O(n log |Σ|)-bit working space.

It is known that Ψ and C are one-to-one corresponding and the transforma-
tion between them can be done in linear time using O(n log |Σ|) bits.

Lemma 3. [11] Given C[1..n], we can compute Ψ [1..n] in O(n) time and
O(n log |Σ|) bits.

Lemma 4. [11] Given Ψ [1..n] and T , we can construct C[1..n] in O(n) time
and O(n log |Σ|) bits.

2.2 Ψ ′ Function

Let T1, T2 and T3 be the strings of length n/3 over the alphabet Σ3, which
are formed by merging every 3 characters in T 〈1〉, T 〈2〉 and T 〈3〉, respectively.
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S12 = bab aab ba$ aba abb a$b

i P C′
12 SA12 Ψ ′

S12
F12

1 0 b 6 1 a $b

2 1 b 2 4 a ab ba$

3 0 b 4 2 a ba abb a$b

4 0 a 5 3 a bb a$b

5 1 b 3 1 b a$

6 1 $ 1 3 b ab aab ba$

(a) P , SA12, Ψ ′
S12

, F12 and C′
12

S3 = baa bba $ba

i C′
3 SA3 Ψ ′

S3
F3

1 a 3 6 $ ba

2 a 1 2 b aa bba $ba

3 a 2 5 b ba $ba

(b) SA3, Ψ ′
S3

, F3 and C′
3

Fig. 2. P array, Ψ ′ function, F array and C′ array for S = babaabba$. F and C′ are
defined in Section 5.

Then, the residue-1, residue-2, and residue-3 suffixes of T correspond one-to-one
to the suffixes of T1, T2 and T3, respectively. Note that the last characters of T1,
T2, and T3 is unique. We denote the concatenation T1 and T2 by T12. Let SA12

and SA3 be the suffix array of T12 and T3, respectively.

Fact 1 Consider a suffix T12[i..2n/3] (= T [3i−2..n]T [2..n]T [1]) for 1 ≤ i ≤ n/3.
Because the last character of T1 is unique, the rank of this suffix is determined
by T [3i− 2..n]. Thus, T [3i− 2..n] can be regarded as the suffix stored in the kth
entry of SA12, where k = SA−1

12 [i].

We divide SA12 into two parts. Part 1 and 2 store the suffixes of T1 and T2,
respectively. Formally, the ith entry of SA12 belongs to Part 1 if 1 ≤ SA12[i] ≤
n/3, and it belongs to Part 2 otherwise. The part array P [1..2n/3] of SA12 is
a bit-array representing which part the ith entry of SA12 belongs to. We set
P [i] = 1 if the ith entry of SA12 belongs to Part 1, and P [i] = 0 otherwise.

Lemma 5. Given T , ΨT12 , and SA−1
12 [1], we can construct P [1..2n/3] in O(n)

time and O(n) bits.

Proof. For simplicity of notations, we denote ΨT12 by Ψ . Let t = SA−1
12 [1]. For

1 ≤ i < 2n/3, SA12[Ψ i[t]] = i + 1. By definition, SA12[Ψ [i]] = SA[i] + 1. Thus,
SA12[Ψ i[t]] = SA12[Ψ i−1[t]] + 1 = · · · = SA12[Ψ [t]] + i− 1 = SA12[t] + i = i + 1.

Hence, we have P [t] = P [Ψ i[t]] = 1 for 1 ≤ i < n/3. We set P [t] = 1 and
initialize P [j] = 0 for j �= t. And we iteratively compute Ψ i[t] and set P [Ψ i[t]] = 1
for 1 ≤ i < n/3. The total time required is O(n), and the space is O(n) bits
for P .

We define Ψ ′ of T which plays a central role in our algorithm. Intuitively, the
Ψ ′ function is just like Ψ , but Ψ ′ is defined in SA12 and SA3. The Ψ ′ function
consists of Part 1 and Part 2 of Ψ ′

T12
, and Ψ ′

T3
. The definition of Ψ ′ is as follows:

• Part 1 of Ψ ′
T12

[i]:
Let T [3k − 2..n] be a suffix stored in the ith entry of SA12, which belongs to
Part 1. Then, Ψ ′

T12
[i] is the position in SA12 (which belongs to Part 2) where

T [3k − 1..n]T [1] is stored.
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For example, consider Ψ ′
T12

[2] in Figure 2. The suffix stored in the 2nd entry
of SA12 is T [4..9] (=aabba$). T [5..9]T [1] (=abba$b) is stored in the 4th entry
of SA12. Therefore, Ψ ′

T12
[2] = 4.

• Part 2 of Ψ ′
T12

[i]:
Let T [3k− 1..n]T [1] be a suffix stored in the ith entry of SA12, which belongs
to Part 2. Then, Ψ ′

T12
[i] is the position in SA3 where T [3k..n]T [1..2] is stored.

For example, consider Ψ ′
T12

[4] in Figure 2. The suffix stored in the 4th entry of
SA12 is T [5..9]T [1] (=abba$b). T [6..9]T [1..2] (=bba$ba) is stored in the 3rd
entry of SA3. Therefore, Ψ ′

T12
[4] = 3.

• Ψ ′
T3

[i]:
Let T [3k..n]T [1..2] be a suffix stored in the ith entry of SA3. Then, Ψ ′

T3
[i] is

a position in SA12 (which belongs to Part 1) where T [3k + 1..n] is stored (we
assume that when 3k = n, T [3k + 1..n] is T [1..n]).
For example, consider Ψ ′

T3
[3] in Figure 2. The suffix stored in the 3rd entry of

SA3 is T [6..9]T [1..2] (=bba$ba). T [7..9] (=ba$) is stored in the 5th entry of
SA12. Therefore, Ψ ′

T3
[3] = 5.

More formally,

Ψ ′
T12

[i] =

{
SA−1

12 [SA12[i] + n/3] if 1 ≤ SA12[i] ≤ n/3 (Part 1)

SA−1
3 [SA12[i]− n/3] if n/3 < SA12[i] ≤ 2n/3 (Part 2)

Ψ ′
T3

[i] =

{
SA−1

12 [1] if SA3[i] = 3/n

SA−1
12 [SA3[i] + 1] othersiwe.

Similarly to Ψ , the Ψ ′ function can be encoded in O(n log |Σ|) bits, so that
each Ψ ′

T12
[i] and Ψ ′

T3
[i] can be retrieved in constant time. Part 1 of Ψ ′

T12
is

piece-wise increasing. Thus, we encode Part 1 of the Ψ ′
T12

function in the form
T [3SA12[i] − 2] · n + Ψ ′

T12
[i] − 1, which is an increasing sequence. Similarly, we

can encode Part 2 of Ψ ′
T12

and Ψ ′
T3

.

3 Framework

We will describe how to construct the Ψ function and the C array of T in O(n)
time. Then, we can construct the suffix array, the compressed suffix array, and
the FM-index in O(n) time and O(n log |Σ|)-bit working space using T , the Ψ
function, and the C array by Lemmas 1 and 2.

For simplicity, we assume that the length of T is a multiple of 3�log3 log|Σ| n�+1.
Let h be �log3 log|Σ| n�. We denote T 〈a1, . . . , ap〉 to be the string formed by
concatenating circular strings T 〈a1〉, . . . , T 〈ap〉 in order. For any string S over
Σ, we define S(k) to be the string over the alphabet Σ3k

, which is formed by
concatenating every 3k characters in S to make one character. By definition,
S(0) = S. For 1 ≤ k ≤ h, we recursively define a string T k over Σ3k

as follows.
We define T 0 as T 〈1〉(0) (= T ). Let T k−1 = T 〈a1, . . . , a2k−1〉(k−1). Then,

T k = T 〈a1, . . . , a2k−1 , a2k−1+1, . . . , a2k〉(k)

= T 〈a1〉(k)
. . . T 〈a2k〉(k)

,
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←→ 3k−1 characters over Σ

T k 1 2 3 4 5 6 7 ··

T k+1 1 2 3 4 5 6 7 ·· 2 3 4 5 6 7 ·· 1
←−−−−→

3k characters over Σ

Fig. 3. The relationship between T k and T k+1.

where a2k−1+i = ai + 3k−1 for 1 ≤ i ≤ 2k−1. That is, T 1 = T 〈1, 2〉(1), T 2 =
T 〈1, 2, 4, 5〉(2), T 3 = T 〈1, 2, 4, 5, 10, 11, 13, 14〉(3), and so on. The length of T k is
(2/3)kn.

Fact 2 For 1 ≤ i < j ≤ 2k, ai < aj.

Lemma 6. For 1 ≤ i ≤ 2k, the last character of T 〈ai〉(k) is unique in T k.

Proof. We first prove that a2k ≤ 3k by induction. When k = 0, a20 = 1 = 30.
Supposing that a2k−1 ≤ 3k−1, a2k = a2k−1 + 3k−1 ≤ 3k−1 + 3k−1 < 3k.

Because T 〈ai〉[n − ai + 1] = $ and ai ≤ 3k, $ is contained only in the last
character of T 〈ai〉(k). By Observation 2, the position of $ in T 〈ai〉 is different
from that in T 〈aj〉 for any j �= i. Therefore, the last character of T 〈ai〉(k) is
unique in T k.

Consider the relationship between T k and T k+1. See Figure 3. Let S[1..m] be
string T k. Roughly speaking, T k+1 is the string of length 2m/3, which is formed
by merging every 3 characters in S〈1〉S〈2〉 (= T k〈1, 2〉(1)). In other words, the
suffixes of T k+1 correspond to the residue-1 and residue-2 suffixes of T k, i.e.,
T k’s are essentially the same as the strings made by Kärkkäinen and Sanders’s
2
3 -recursion [12].

Lemma 7. The suffix array of T k+1 is the same as the suffix array of T k〈1, 2〉(1).

Proof. We compare the characters of T k+1 and T k〈1, 2〉(1). Let m = 2k and
Xi[1..p] = T 〈ai〉(k), where p must be a multiple of 3. Let X be X1[1..p]X2[1..p]
. . . Xm[1..p], i.e., T k = X . Let

P = X1[2..p] X1[1] X2[2..p] X2[1] . . .Xm[2..p] Xm[1], and
Q = X1[2..p] X2[1] X2[2..p] X3[1] . . .Xm[2..p] X1[1].

Then, T k+1 = X(1) · P (1) and T k〈1, 2〉(1) = X(1) ·Q(1).
Consider the (p

3 · i)th characters of P (1) and Q(1), for 1 ≤ i ≤ m.

P (1)[p · i/3] = Xi[p− 1] Xi[p] Xi[1] and
Q(1)[p · i/3] = Xi[p− 1] Xi[p] Xi+1[1].
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That is, only the 3rd components of these characters are different. However, the
3rd components of these characters don’t affect the order of suffixes of T k+1 and
T k〈1, 2〉(1) because Xi[p] is unique by Lemma 6. The other characters of T k+1

and T k〈1, 2〉(1) are the same. Therefore, we get the lemma.

Corollary 1. The Ψ function of T k+1 is the same as the Ψ function of
T k〈1, 2〉(1).

The basic framework to construct ΨT (= ΨT 0) goes bottom-up. That is, we
construct ΨT k for k = h down to 0. The algorithm is divided into two phases.
Phase 1 consists of step h and Phase 2 consists of the remaining h steps. The
details of each phase are as follows.

For Phase 1, we construct ΨT h by first building the suffix array of T h using
any linear-time construction algorithm [4, 12–14], and then converting it to ΨT h .

In step k of Phase 2, we construct ΨT k from ΨT k+1 . Recall that T k〈1, 2〉(1)

and T k〈3〉(1) are denoted by T k
12 and T k

3 , respectively. We first compute Ψ ′
T k
12

and

Ψ ′
T k
3

using T k and ΨT k+1 . Then, we construct ΨT k by merging Ψ ′
T k
12

and Ψ ′
T k
3
.

In Sections 4 we describe how to compute Ψ ′
T k
12

and Ψ ′
T k
3

from T k and ΨT k+1

(= ΨT k
12

by Corollary 1) in O(|T k|+|Δ|) time and O(|T k| log |Δ|+|Δ|)-bit space,
where Δ is the alphabet of T k. In Sections 5 we describe how to merge Ψ ′

T k
12

and

Ψ ′
T k
3

in O(|T k|) time and O(|T k| log |Δ|)-bit space.

Theorem 1. The Ψ function of T can be constructed in O(n) time and
O(n log |Σ| · log α

|Σ| n)-bit space, where α = log3 2.

Proof. For Phase 1, we first construct the suffix array for T h whose size is
n(2/3)log3 log|Σ| n ≤ n(log|Σ| n)α−1. This requires O(n) time and O(n log |Σ| ·
log α

|Σ| n)-bit space by using any linear-time construction algorithm [4, 12–14].
Then ΨT h can be constructed in O(n) time and O(n log |Σ| · log α

|Σ| n)-bit space.
Thus, Phase 1 takes O(n) time and O(n log |Σ| · log α

|Σ| n)-bit space.
For every step i in Phase 2, we construct ΨT i . Let Δi be the alphabet of T i.

For the space, each step requires O(|T i| log |Δi| + |Δi|) bits. Note that |T i| =
(2/3)in and |Δi| ≤ |Σ|3

i ≤ n, so |T i| log |Δi| = (2/3)in log |Σ|3i

= 2in log |Σ| ≤
n log |Σ| · log α

|Σ| n. Therefore, the space for Phase 2 is O(n log |Σ| · log α
|Σ| n) bits.

The time of each step is O((|T i|+ |Δi|). The total time of Phase 2 is

�log3 log|Σ| n�−1∑
i=1

O

(
n

(
2
3

)i

+ |Σ|3i

)
= O(n).

Finally, consider the space storing T i = T 〈a1, . . . , a2i〉(i). We don’t store T i

explicitly but the values of aj (1 ≤ j ≤ 2i ). We can get a character of T i in
constant time using the values of aj and T . The circular strings of T which
compose T h include all those which compose T i. Therefore, we just store 2h

integers of size log n for the whole algorithm. The space is log n · log α
|Σ| n bits.
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Xii P
x[i] S12[SA12[i]..m/3] S[1..2]

1 0 · · ·
2 1 b aa bba $ ba

3 0 · · ·
4 0 · · ·
5 1 b ba $ ba

6 1 $ ba

(a) x[i] and Xi

k sorted x i → Ψ ′
S3

1 $ 6
2 b 2
3 b 5

(b) x[i] and index i after stable sorting on x

Fig. 4. Consider S = babaabba$. For comparison, see Figure 2.

4 Constructing Ψ ′

Let S[1..m] be T k. We define S12 and S3 just as T k
12 and T k

3 , respectively. We
denote the suffix arrays of S12 and S3 by SA12 and SA3, respectively. Let Δ be
the alphabet of S, and P be the part array of SA12. We assume S[0] = S[m].

Given S[1..m], ΨS12 , and SA−1
12 [1], we will describe how to construct Ψ ′

S12

and Ψ ′
S3

. The algorithm consists of three parts: Constructing Ψ ′
S3

using Part 1
of ΨS12 , constructing Part 2 of Ψ ′

S12
using Ψ ′

S3
, and constructing Part 1 of Ψ ′

S12

using Part 2 of ΨS12 . We describe only how to construct Ψ ′
S3

using Part 1 of ΨS12 .
Part 1 and 2 of Ψ ′

S12
can be constructed similarly.

We define x[1..2m/3] as an array of characters such that x[i] = S[3SA12[i]−3]
if P [i] = 1, and x[i] isn’t defined otherwise. For i with P [i] = 1, let Xi be
the string x[i]S12[SA12[i]..m/3]S[1..2] if SA12[i] �= 1, and the string x[i]S[1..2]
(= S[n]S[1..2]) otherwise. For i with P [i] = 0, Xi isn’t defined. See Figure 4
(a) for an example. From now on, we consider only x[i]’s and Xi’s such that
P [i] = 1. Let X be the set {Xi | P [i] = 1, 1 ≤ i ≤ 2m/3}. Then, Xi is a suffix of
S3 and X is the same as the set of suffixes of S3.

Lemma 8. The stable sorting order of x[i] is equal to the rank of Xi in X.

Proof. Let Xp be the element of X such that SA12[i] = 1. By omitting the first
characters of every Xk’s except Xp, they are of the form S12[SA12[i]..m/3]S[1..2],
which are already sorted in SA12 (note that S[1..2] does not affect the order
because S12[m/3] is unique). The first character of Xp (= S[m]) is unique. Thus,
the rank of Xi is equal to the stable sorting order of x[i].

Lemma 9. Let k be the stable sorting order of x[i] with P [i] = 1. Then Ψ ′
S3

[k] =
i.

Proof. Let S[p..n] be the suffix stored in the ith entry of SA12. Then, x[i] is
S[p − 1] and the rank of Xi (= S[p − 1..n]S[1..2]) is k in X by Lemma 8.
By definition, Ψ ′

S3
[k] is a position in SA12 where S[p..n] is stored. Therefore,

Ψ ′
S3

[k] = i. See Figure 4 (b).

Lemma 10. Given S, ΨS12 , and SA−1
12 [1], Ψ ′

S3
can be constructed in O(m+ |Δ|)

time and O(m log |Δ|+ |Δ|)-bit space.
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Procedure Const C array

begin
i ← 1; j ← 1;
for k = 1 to m

rval ← Compare suffix(i, j );
if rval > 0 then

C[k] ← C′
12[i];

i ← i + 1;
else

C[k] ← C′
3[j];

j ← j + 1;
end

Function Compare suffix(i, j )
begin

if P [i] = 1 then
x ← ( F12[i], Ψ ′

S12 [i] );
y ← ( F3[j], Ψ ′

S3
[j] );

else
x ← ( F12[i], F3[Ψ

′
S12 [i]], Ψ ′

S3 [Ψ
′
S12 [i]] );

y ← ( F3[j], F12[Ψ
′
S3

[j]], Ψ ′
S12

[Ψ ′
S3

[j]] );
if x < y then

return 1;
else return -1;

end

Fig. 5. Constructing the C array of S.

Proof. Given S, ΨS12 , and SA−1
12 [1], we first construct x in O(m) time and

O(m log |Δ|) bits using a method similar to that in Lemma 5.
Then, for i = 1 to 2m/3 with P [i] = 1, we iteratively compute the stable

sorting order k of x[i] and set Ψ ′
S3

[k] = i. The total iteration of the stable sorting
can be performed in O(m + |Δ|) time using O(m log |Δ|+ |Δ|) bits [11].

Similarly, we can construct Part 2 of Ψ ′
S12

using Ψ ′
S3

and Part 1 of Ψ ′
S12

using
Part 2 of ΨS12 . Thus, we get the following lemma.

Lemma 11. Given S, ΨS12 , and SA−1
12 [1], we can construct Ψ ′

S12
and Ψ ′

S3
in

O(m + |Δ|) time and O(m log |Δ|+ |Δ|)-bit space.

5 Merging Ψ ′
S12

and Ψ ′
S3

In this section we will describe how to construct ΨS by merging Ψ ′
S12

and Ψ ′
S3

.
We first construct the C array of S by merging Ψ ′

S12
and Ψ ′

S3
. Merging Ψ ′

S12
and

Ψ ′
S3

is similar to Kärkkäinen and Sanders’s algorithm [12], which merge SA12

and SA3 in O(m) time. Then, we convert C to ΨS by Lemma 3.
Let F12[1..2m/3] and F3[1..m/3] be arrays of the first characters, over Δ,

of the suffixes in SA12 and S3, respectively. That is, F12[i] = S[3SA12[i] − 2] if
P [i] = 1, and F12[i] = S[3(SA12[i]−m/3)− 1] otherwise, and F3[i] = S[3SA3[i]].
Similarly, let C′

12[1..2m/3] and C′
3[1..m/3] be arrays of the characters preceding

F12 and F3 in S, respectively. That is, C′
12[i] = S[3SA12[i]− 3] if P [i] = 1, and

C′
12[i] = S[3(SA12[i] − m/3) − 2] otherwise, and C′

3[i] = S[3SA3[i] − 1]. Note
that characters in C′

12 and C′
3 compose C. See Figure 2 for an example. We can

construct these arrays in O(m) time and O(m log |Δ|) bits as in Lemma 5.
We construct the C array by merging SA12 and SA3. This merging is similar

to merging two sorted arrays of integers. Figure 5 shows Procedure Const C
array, which constructs the C array. Procedure Const C array consists of m
iterations. Let S[p..m] be the suffix in the ith entry of SA12 and S[q..m] be the
suffix in the jth entry of SA3 (note that we ignore characters following S[m]
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in SA12 and S3 because these characters do not affect the order of suffixes). In
the kth iteration, we determine which suffix is lexicographically the kth smallest
by comparing S[p..m] with S[q..m], and thus we can compute C[k]. During the
merging stage, we can get SA−1[1] which will be used in the next step.

Function Compare suffix(i, j ) compares S[p..m] and S[q..m] using the Ψ ′

function and arrays F12 and F3. We have two cases according to the values
of P [i]. Consider the case of P [i] = 1. Then, S[p..m] is a residue-1 suffix and
S[q..m] is a residue-3 suffix. We first compare S[p] (= F12[i]) with S[q] (= F3[j]).
If S[p] = S[q], we compare S[p + 1..m] with S[q + 1..m]. Because S[p + 1..m]
and S[q + 1..m] are residue-2 and residue-1 suffixes, respectively, Ψ ′

S12
[i] and

Ψ ′
S3

[j] represent the ranks of S[p + 1..m] and S[q + 1..m] in SA12, respectively.
Therefore, we can determine which suffix is smaller by comparing one pair of
characters and one pair of integers. Similarly, we can do by comparing two pairs
of characters and one pair of integers in case of P [i] = 0.

Function Compare suffix(i, j ) takes constant time and so Procedure Const
C array takes O(m) time. The space for arrays and Ψ ′ function is O(m log |Δ|)
bits. By Lemma 3, we convert C to ΨS in O(m) time and O(m log |Δ|) bits.
Hence, we get the following lemma.

Lemma 12. Given S, Ψ ′
S12

, Ψ ′
S3

, and SA−1
12 [1], we can compute ΨS and SA−1[1]

in O(m) time and O(m log |Δ|)-bit space.
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Abstract. We present new faster algorithms for the problems of δ and
(δ, γ)-matching on numeric strings. In both cases the running time of the
proposed algorithms is shown to be O(δn log m), where m is the pattern
length, n is the text length and δ a given integer. Our approach makes
use of Fourier transform methods and the running times are indepen-
dent of the alphabet size. O(n

√
m log m) algorithms for the γ-matching

and total-difference problems are also given. In all the above cases, we
improve existing running time bounds in the literature.

1 Introduction

This paper focuses on a set of string pattern-matching problems that arise in
musical analysis, and especially in musical information retrieval. A musical score
can be viewed as a string: at a very rudimentary level, the alphabet could simply
be the set of notes in the chromatic or diatonic notation, or the set of intervals
that appear between notes (e.g. pitch may be represented as MIDI numbers and
pitch intervals as number of semitones). Approximate repetitions in one or more
musical works play a crucial role in discovering similarities between different
musical entities and may be used for establishing “characteristic signatures”
(see [12]). Such algorithms can be particularly useful for melody identification
and musical retrieval.

Both exact and approximate matching techniques have been used for a vari-
ety of musical applications (see overviews in [5, 6, 12, 16]). The specific problem
studied in this paper is pattern-matching for numeric strings where a certain tol-
erance is allowed during the matching procedure. This type of pattern-matching
has been considered necessary for various musical applications and has been
used by some researchers (see e.g. [10]). A number of efficient algorithms will be
presented in this paper that tackle various aspects of this problem.

Most computer-aided musical applications adopt an absolute numeric pitch
representation (most commonly MIDI pitch and pitch intervals in semitones; du-
ration is also encoded in a numeric form). The absolute pitch encoding, however,
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may be insufficient for applications in tonal music as it disregards tonal quali-
ties of pitches and pitch-intervals (e.g. a tonal transposition from a major to a
minor key results in a different encoding of the musical passage and thus exact
matching cannot detect the similarity between the two passages). One way to
account for similarity between closely related but non-identical musical strings
is to use what will be referred to as δ-matching. In δ-matching, equal-length
patterns consisting of integers match, if each corresponding integer differs by
not more than δ, e.g. a C-major {60, 64, 65, 67} and a C-minor {60, 63, 65, 67}
sequence can be matched if a tolerance δ = 1 is allowed in the matching process.

An important class of problems can be specified in terms of a text string
t = t1 · · · tn and a pattern string p = p1 · · · pm over an alphabet Σ. The classical
string-matching problem is to find all occurrences of the pattern p in the text
t, in other words to find all indices i such that p and the substring t[i, m] :=
ti · · · ti+m−1 are identical. In the case of the δ-matching, γ-matching and (δ, γ)
matching problems, the input is a pattern p, the text t and integers δ and γ, while
the alphabet is assumed to be an interval of integers. Informally, the δ-matching
problem is to find all indices i such that the maximum of |pj− ti+j−1| over all j’s
is no larger than δ. For γ-matching the problem is to find all indices i such that
the sum of |pj − ti+j−1| is no larger than γ. The (δ, γ)-matching problem is to
find all indices i such that the maximum of |pj − ti+j−1| over all j’s is bounded
by δ and that the sum of the absolute differences is no larger than γ. Other
natural measures of dissimilarity are the total difference,

∑m
j=1 |pj− tj |; the total

squared difference,
∑m

j=1(pj−tj)2; and the maximum difference, maxm
j=1 |pj−tj|.

These are respectively the L1 distance, the square of the L2 distance and the
L∞ distance between two vectors p[1, m] and t[1, m].

1.1 Previous Work

An o(nm) solution for δ-matching can be derived by a reduction to the less-than-
matching problem [3]. In less-than-matching the task is to find all i such that
every value in p is less than or equal to its corresponding value in t[i, m]. The
problem of δ-matching can be solved using two instances of less-than-matching
giving an overall time complexity of O(n

√
m log m) using FFTs [2]. An alterna-

tive approach is given in [9], where an instance of δ matching is reduced to at
most 2δ + 1 instances of exact matching with wild cards. Using FFTs again, the
total time required is therefore O(δn log m). For many applications, including
musical ones, δ does not depend on the size of the input and can be assumed
to be small. A number of heuristics and bit-parallel techniques have also been
developed for δ, γ and (δ, γ)-matching but all have worst case time complexity
of O(nm) (see e.g. [6, 12]). Very recently it has been shown that for integer
alphabets only, γ-matching can be performed in O(n

√
γ log (γ)) time [4]. The

observation that L2 matching can be performed simply in O(n log m) time was
made at least as early as 2001 [15]. There have also been recent improved results
on the related problem of finding the closest pair in very high dimensions using
the L1 and L∞ norms [14].
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1.2 Our Results

We present a different and direct O(δn log m) solution to δ-matching on inte-
ger valued data. This method is asymptotically faster than a reduction to less-
than matching, when δ is o(

√
m/ logm). For (δ, γ)-matching, we give a similar

O(δn log m) solution which is faster than the current known O(nm) bound, if δ
is o(m/ logm).

An o(nm) solution for γ-matching, for arbitrary γ, can be derived from the
total-difference problem. We will show that the total-difference problem can
be solved in O(n

√
m log m) running time for integer and real valued data. Our

method is based on the divide and conquer approach introduced by Abrahamson
and developed by Amir [1, 3].

The paper is organized as follows. In Section 2 we give a simple illustration
of our approach to δ-matching for the case δ = 1. In Sections 3 and 4 we solve
the δ-matching and (δ, γ)-matching problems in O(δn log m) time. In Section
5, we show that Abrahamson’s method can be used to calculate γ-matches for
arbitrary values of γ in O(n

√
m log m) time. Finally, in Section 6 we conclude

and state some open problems.

2 Fast Fourier Transform and 1-Matching

Fast Fourier transforms (FFT) were first applied to string matching by Fischer
and Paterson in 1974 [13]. Since then FFTs have been the basis of several fast
algorithms for different forms of approximate matching. The most important
property of the FFT is that, for numerical strings, all the inner-products,

p · t[i, m] def=
m∑

j=1

pjti+j−1, 1 ≤ i ≤ n−m + 1,

can be calculated accurately and efficiently in O(n log m) time (see e.g. [11],
Chapter 32).

The basic idea when using FFTs to tackle approximate matching problems is
to express the dissimilarity measure in terms of an inner-product. For example,
since (x − y)2 = x2 − 2xy + y2, we can express the total squared difference
between p and t[i, m] as

m∑
j=1

(pj − ti+j−1)
2 =

m∑
j=1

p2
j − 2p · t[i, m] +

m∑
j=1

t2i+j−1 .

The first and last terms can be calculated in O(n + m) time and the middle
terms can be calculated in O(n log m) time using the FFT. The exact matching
problem is then solved immediately since there is an exact match at all values of
i where the total squared difference is zero. Of course a similar argument can be
made for any dissimilarity measure which is zero when there is an exact match
and bounded away from zero otherwise. By using a score of x/y+y/x−2 = (x−
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y)2/xy, Cole and Hariharan [7] show that FFT methods can also solve the exact
matching problem with wild cards in O(n log m) time, effectively independent of
|Σ|.

Our algorithms for δ-matching and (δ, γ)-matching build on the ideas in [7].
We construct a function that is zero when there is a match between two symbols
and larger than some fixed positive value otherwise. We then show how the
function can be computed efficiently using FFTs. The main innovation is in the
use of even periodic functions and their discrete cosine expansions to achieve
this goal.

As a simple illustration, consider the δ-matching problem, with δ = 1. First
notice that the periodic function 1

2 −
1
2 (−1)x takes the value 0, when x is even,

and 1 when it is odd. If we define g(x) = x2 + 1
2 (−1)x − 1

2 , it follows that
g(x− y) = 0 when |x− y| ≤ 1 and g(x− y) ≥ 4 otherwise. But we can write

g(x− y) = x2 − 2xy + y2 + 1
2 (−1)x(−1)y − 1

2 ,

since x + y has the same parity as x − y. This is the key idea. We now define
new strings ε(t) and ε(p) where the jth element of ε(t) is 1 if tj is even and
−1 otherwise and similarly for ε(p). It follows that

∑m
j=1 g(pj − ti+j−1) can be

expressed in terms of two inner-products p · t[i, m] and ε(p) · ε(t[i, m]), both of
which can be calculated in O(n log m) time, plus other terms that are calculable
in O(n + m) time. The δ-matching problem is then solved since, provided that
the FFT is carried out to sufficient precision, we can identify indices where∑m

j=1 g(pj−ti+j−1) = 0. In this case and the ones to follow, we need only enough
precision to be able to distinguish 0 from any number greater than or equal to
1. The relative error of the Cooley-Tukey FFT method, for example, is λ log n
where λ is the machine floating-point precision (the smallest positive number
such that 1+λ is distinguishable from unity in the floating point representation
employed). Therefore, for any realistic size of input, non integer values resulting
from the FFT calculation can simply be rounded to the nearest whole number
without fear of mistake. See [17] for a more in depth discussion of FFT accuracy
under different measures of error.

3 An Algorithm for δ-Matching

Given a text t of length n, a pattern p of length m and an integer δ, the δ-
matching problem is to determine Iδ, where

Iδ = {i : max
j=1..m

∣∣pj − ti+j−1

∣∣ ≤ δ}. (3.1)

In other words, the problem is to find all indices i in t such that the maximum
difference between pj and ti+j−1 is no larger than δ for all j. We say that we
have a δ-match at each i ∈ Iδ.

We start by generalising the arguments that were used in Section 2 to tackle
the δ-matching problem for the special case δ = 1. The idea is essentially the
same, namely to modify the squared difference by subtracting a periodic function
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thereby obtaining a function that is zero over a range of differences. We start
with a few definitions and basic results about vector spaces.

A real-valued function f(x) defined on Z, the set of integers, is even and
periodic with period 2δ, if

f(x) = f(−x) and f(x) = f(x + k2δ) for all x, k ∈ Z

Using standard properties of the discrete cosine transform [11] a convenient basis
for the space of these functions is the set of functions

hk(x) = r(k) cos(xkπ/δ), k = 0, . . . , δ,

where r(k) = 1/
√

2δ, if k mod δ = 0 and r(k) = 1/
√

δ, otherwise. These
functions are orthonormal in the sense that

∑δ
x=1−δ hj(x)hk(x) = 0 when j �= k

and
∑δ

x=1−δ h2
k(x) = 1. Consequently, any even function f(x) with period 2δ

can be written as

f(x) =
δ∑

k=0

αkhk(x),

where the coefficients are given by

αk =
δ∑

x=1−δ

f(x)hk(x).

We will be interested in two special cases of such functions, f [1] and f [2], where

f [1](x) = |x| and f [2](x) = x2 for |x| ≤ δ.

Both f [1](x) and f [2](x) are even and periodic and so defined over the whole of Z.
We denote the coefficients of these functions by {α[1]

k } and {α[2]
k }, respectively.

To tackle the δ-matching problem, consider the function

g(x) = x2 − f [2](x).

By construction, this is an even function with the property that g(x) = 0 for
|x| ≤ δ and g(x) ≥ 1, otherwise. Figure 1 shows the functions x2 and f [2] and
the result after subtraction. The following lemma follows immediately.

Lemma 1. There is a δ-match of pattern p at position i of t, for some i ∈
{1..n−m + 1}, if and only if

m∑
j=1

g(pj − ti+j−1) = 0
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Fig. 1. The functions x2, f [2](x) and g(x) = x2 − f [2](x): δ = 2

The important point is that

g(x− y) = x2 + y2 − 2xy − α
[2]
0 r(0)

−
δ∑

k=1

α
[2]
k r(k)ck(x)ck(y)

−
δ−1∑
k=1

α
[2]
k r(k)sk(x)sk(y)

where

ck(x) = cos(xkπ/δ)
sk(x) = sin(xkπ/δ),

and we have used the fact that s0(x) = sδ(x) = 0 and c0(x) = 1. In other words,
g(x− y) involves a total of 2δ product terms, so the dissimilarity measure based
on g can be expressed in terms of 2δ inner-products.

Theorem 1. Given a text t of length n, a pattern p of length m and an inte-
ger δ, we can compute all δ-matches in O(δn log m) time following the steps in
Algorithm 1.

Proof. The α
[2]
k need only be computed once for the particular value of δ that is

of interest since they do not depend on the input pattern or text. Each coefficient
requires O(δ) multiplications and additions to compute and so the total time to
compute all α

[2]
k for a given δ is O(δ2). The arrays A and B can be calculated

simply in linear time. C can be calculated with a single inner-product calculation
in O(n log m) time using FFTs. The arrays D and E require δ and δ − 1 inner-
product calculations respectively taking a total of O(δn log m) time to compute.
It follows that δ-matching can be carried out with 2δ inner product calculations
in O(δn log m) time. �
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Algorithm 1: The δ-matching algorithm
Data: Numeric strings p and t and an integer δ
Result: Array Gi =

∑m
j=1 g(pj − ti+j−1) for 1 ≤ i ≤ n − m + 1

α
[2]
k =

∑δ
x=1−δ x2hk(x);

A =
∑m

j=1 p2
j and Bi =

∑m
j=1 t2i+j−1 for 1 ≤ i ≤ n − m + 1;

Ci = p · t[i, m] for 1 ≤ i ≤ n − m + 1;
for k ∈ {1, . . . , δ} do

Construct a pair of arrays p′
j = α

[2]
k r(k)ck(pj) and t′j = ck(tj);

Construct an array Di(k) = p′ · t′[i, m] for 1 ≤ i ≤ n − m + 1;
end
for k ∈ {1, . . . , δ − 1} do

Construct a pair of arrays p′
j = α

[2]
k r(k)sk(pj) and t′j = sk(tj);

Construct an array Ei(k) = p′ · t′[i, m] for 1 ≤ i ≤ n − m + 1;
end

Gi = A + Bi − 2Ci − α0r(0)m −
∑δ

k=1 Di(k) −
∑δ−1

k=1 Ei(k);

4 An Algorithm for (δ, γ)-Matching

Given a text t of length n, a pattern p of length m and integers δ, γ, the (δ, γ)-
matching problem is to determine Iδ,γ , where

Iδ,γ = {i : max
j=1..m

∣∣pj − ti+j−1

∣∣ ≤ δ and Σm
j=1

∣∣pj − ti+j−1

∣∣ ≤ γ}.

In other words, for (δ, γ)-matching, we require both that the maximum difference
between pj and ti+j−1 over all j’s is bounded by δ and that the sum of differences
is no larger than γ. We say that we have a (δ, γ)-match at each i ∈ Iδ,γ .

For (δ, γ)-matching, we make use of the set of locations Iδ, where the δ-
matches occur (see (3.1))

Now consider the even periodic function f [1](x). Recall that this is the same
as |x| when |x| ≤ δ. We define the periodic total difference between p and t[i, m]
to be

Δi =
m∑

j=1

f [1]
(
pj − ti+j−1

)
,

for i = 1, . . . , n−m + 1.
Since f [1](x − y) can expressed as a linear combination of 2δ − 1 product

terms, i.e.

f [1](x− y) = α
[1]
0 r(0)

+
δ∑

k=1

α
[1]
k r(k)ck(x)ck(y)

+
δ−1∑
k=1

α
[1]
k r(x)sk(y)sk(y),
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it follows that all the periodic differences can be calculated in (2δ−1)O(n logm)
time using FFTs. In particular, we can identify

J ∗
γ = {i : Δi ≤ γ},

the set of locations where the periodic total difference is no larger than γ.
The (δ, γ)-matching problem is now solved. Locations that are in the intersec-

tion Iδ ∩ J ∗
γ will meet both the δ-matching and γ-matching criteria since total

differences are correctly calculated for all locations in Iδ. The final algorithm
requires 4δ − 1 inner-product calculations and takes O(δn log m) time overall.

Theorem 2. Given a text t of length n, a pattern p of length m and integers
δ, γ we can compute all (δ, γ)-matches in O(δn log m) time.

5 Total-Difference and γ-Matching

Given a text t of length n, a pattern p of length m, the problem of total-difference
is to determine the sum of differences

Mi =
m∑

j=1

∣∣pj − ti+j−1

∣∣, for 1 ≤ i ≤ n−m + 1.

A naive algorithm for the total difference problem involves O(n) successive
calculations each of length O(m) and therefore runs in O(nm) time. For the
canonical case, n = 2m, this implies that the running time is quadratic in m. In
[8] the question of whether the problem can be solved in subquadratic time is
raised. We will give a subquadratic algorithm, running in O(m

√
m log m) time for

the canonical problem and hence by the usual argument in time O(n
√

m log m)
for text of length n.

Given a text t of length n, a pattern p of length m, the problem of γ-matching
is to determine Jγ , where

Jγ = {i :
m∑

j=1

∣∣pj − ti+j−1

∣∣ ≤ γ}.

For γ-matching, the problem is to find all indices i such that the total differ-
ence between p and t[i, m] is no larger than γ. A solution to the total difference
problem immediately gives a solution to the γ-matching problem.

The essence of the method is firstly to solve an incomplete version of the
problem using FFTs and then tidy up loose ends afterwards by straightforward
calculations.

We start by observing that the difference between two numbers x and y can
be calculated as the sum of four products

|x− y| = xIxJy − IxyJy + JxyIy − xJxIy,
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where Ia = 1 if a > θ and Ia = 0 otherwise and Ja = 1 − Ia, provided x and y
are on opposite sides of some arbitrary value θ. When this is not the case the
right hand side is 0. This observation forms the basis of the algorithm. In other
words contributions to Mi from pairs of values (pj , ti+j−1) on opposite sides of
specific thresholds are accumulated first. The remaining terms are collected in
the second stage of the algorithm.

The total-Difference Algorithm
Assume n = 2m.
1. Partition
Sort the values in the set {p1, p2, . . . , pm} in increasing order and let A be the
associated array of indices of the sorted p-values. Now partition A from left
to right into b successive arrays each of length m/b. Denote the kth of these
arrays by Ak and let θk be its largest element. For notational convenience define
θ0 = −∞.

Next consider the set {t1, t2, . . . , t2m}. By sorting this set in increasing order,
obtain a corresponding collection of arrays {Bk : k = 1, 2, . . . , b}, where Bb

contains all the indices j, such that tj > θb−1 and Bk contains all the indices j,
such that θk−1 < tj ≤ θk for k < b. The end result is that we can associate each
entry tj in the text with m/b entries in the pattern, since j must belong to one
of the arrays Bk and there are m/b members of the array Ak.

2. Fast Fourier Transform
For k = 1, . . . , b and x a real number define two functions:

Ik(x) =

{
1 if x > θk

0 otherwise,
and Jk(x) =

{
1 if θk−1 < x ≤ θk

0 otherwise.

For each k, create four new text strings εk1(t), εk2(t), εk3(t) and εk4(t) with
jth elements that are respectively tjIk(tj), Ik(tj), Jk(tj) and tjJk(tj). Corre-
spondingly, create four new pattern strings νk1(p), νk2(p), νk3(p) and νk4(p) with
jth elements that are respectively Jk(pj), −pjJk(pj), pjIk(pj) and −Ik(pj). With
this construction

m∑
j=1

|pj − ti+j−1| =
b∑

k=1

4∑
�=1

νk�(p) · εk�(t[i, m]) + remainder,

where the remainder contains terms from pairs of values (pj , ti+j−1) where pj ∈
Ak and ti+j−1 ∈ Bk for some k.

3. The Remaining Cases
Now deal with the omitted cases, i.e. pairs of text and pattern elements that lie
in associated arrays (Ak, Bk) for some k. Working through each of the arrays Bk,
for each element of the text the number of associated elements in the pattern is
m/b. The total number of such pairs considered is then 2m×m/b. For these cases,
the contributions to the total differences can be calculated in the straightforward
manner in O(m2/b) time.
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Theorem 3. Given a text t of length n and a pattern p of length m, we can
compute all sums of differences in O(n

√
m logm) time.

Proof. The running time for Step 1 is O(m log m). The running time for Step 2
is 4bO(m log m), since 4b FFTs have to be calculated. The running time for
Step 3 is O(m2/b), so the total time is O(m2/b + 4bm logm). Taking b =√

m/ logm, the running time is then O(m
√

m logm) for the case n = 2m and
hence O(n

√
m logm) in general. �

6 Conclusion and Open Problems

We have given new faster solutions to approximate matching problems on numer-
ical strings. In particular, we have presented an algorithm for computing L1 dis-
tances in O(n

√
m log m) time (the total difference problem) and an O(δn log m)

for δ and (δ, γ)-matching. A number of questions remain unresolved. For exam-
ple, is it possible to calculate all L∞ distances in o(nm) time? Can Abrahamson’s
method be extended to the general Lp class of vector norms? Finally, our meth-
ods for δ and (δ, γ)-matching rely on the data being integer valued. Is it possible
to find o(nm) algorithms for these problems for real valued data?
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Abstract. Approximate string matching is a fundamental and challeng-
ing problem in computer science, for which a fast algorithm is highly
demanded in many applications including text processing and DNA se-
quence analysis. In this paper, we present a fast algorithm for approxi-
mate string matching, called FAAST. It aims at solving a popular variant
of the approximate string matching problem, the k-mismatch problem,
whose objective is to find all occurrences of a short pattern in a long text
string with at most k mismatches. FAAST generalizes the well-known
Tarhio-Ukkonen algorithm by requiring two or more matches when cal-
culating shift distances, which makes the approximate string matching
process significantly faster than the Tarhio-Ukkonen algorithm. Theoret-
ically, we prove that FAAST on average skips more characters than the
Tarhio-Ukkonen algorithm in a single shift, and makes fewer character
comparisons in an entire matching process. Experiments on both simu-
lated data sets and real gene sequences also demonstrate that FAAST
runs several times faster than the Tarhio-Ukkonen algorithm in all the
cases that we tested.

1 Introduction

Approximate string matching is a fundamental and challenging problem in com-
puter science. It is an operation that usually costs a large amount of compu-
tational resources. Therefore, a fast algorithm for approximate string matching
is highly demanded in many applications including text processing and gene
sequence analysis. There are two important variants of the approximate string
matching problem: the k-mismatch problem and the k-difference problem. In
both, we are given a short pattern string P = p1p2 · · · pm and a long text string
T = t1t2 · · · tn over an alphabet Σ, and an integer k. The k-mismatch problem is
to find all occurrences of the pattern P in the text T with at most k mismatches
(i.e., substitutions) allowed, whereas the k-difference problem finds all substrings
of T with edit distance at most k to P . We are interested in the former problem
in this paper.

There are many various algorithms dealing with the k-mismatch problem
in the string matching literature. In 1992, Baeza-Yates and Gonnet [1] first
proposed the Shift-Add algorithm for exact string matching, and then naturally
generalized it to handle mismatches. El-Mabrouk and Crochemore [5] tackled

A. Apostolico, M. Crochemore, and K. Park (Eds.): CPM 2005, LNCS 3537, pp. 79–90, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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the k-mismatch problem by incorporating the Boyer-Moore technique [3] into the
Shift-Add algorithm. Two algorithms that are the most relevant to ours are those
proposed by Tarhio and Ukkonen [9] and by Baeza-Yates and Gonnet [2]. Both
can be considered as generalizations of the Boyer-Moore algorithm [3] for exact
string matching, but they employ different methods to calculate shift distances.
A basic principle of these algorithms is to skip as many characters as possible
while not missing any pattern occurrence. The Baeza-Yates-Gonnet algorithm
takes advantage of the good suffix rule. If the shifted pattern matches the pattern
of the previous alignment with at most 2k mismatches, further comparisons are
needed to check a possible match at the shifted position. Therefore, the shift
distance is the minimum distance (> 0) so that the shifted pattern matches
this pattern at the previous alignment with at most 2k mismatches. The Tarhio-
Ukkonen algorithm instead takes advantage of the bad character rule. When more
than k mismatches occur, the last k + 1 characters of the text in the current
alignment need have at least one match after the pattern is shifted to the right.
The shift distance is thus calculated as the minimum distance (> 0) so that the
shifted pattern has at least one match to the last k + 1 characters of the text in
the previous alignment.

In this paper, we present a fast approximate string matching algorithm, called
FAAST, which further generalizes the Tarhio-Ukkonen algorithm. Instead of
requiring at least one match in the last k + 1 characters of the text in the
previous alignment, the new algorithm requires at least x matches in the last
k + x characters when calculating shift distances, where x is a small integer
value (typically 2 or 3 in our experiments). Apparently, the new algorithm will
be the Tarhio-Ukkonen algorithm if we define x = 1. Although it seems a trivial
modification, FAAST could run significantly faster than the Tarhio-Ukkonen
algorithm, as demonstrated in our experiments.

In the ongoing Oligonucleotide Fingerprinting Ribosomal Genes (OFRG)
project [10], we have applied the FAAST algorithm to the gene sequence acqui-
sition problem. The problem of gene sequence acquisition is, given a collection
of gene DNA sequences and a primer, how to extract all the gene sequences
that contain the primer sequence (allowing a few mismatches). From the com-
putational point of view, it is equivalent to the k-mismatch problem. In some
cases, however, there are degenerate characters (i.e., representing more than one
character in an alphabet) in the primer sequence. This problem has traditionally
been tackled by constructing a nondeterministic finite automata (NFA) [7, 8],
which unfortunately requires a long preprocessing time and a large amount of
memory space. In this paper, we will propose a simple approach to deal with
degenerate characters based on the FAAST algorithm.

The rest of the paper is organized as follows. The next section reviews the
Tarhio-Ukkonen algorithm. In Section 3, we focus on discussing our new al-
gorithm FAAST. Experiments on simulated data and real gene sequences are
presented in Section 4, and some concluding remarks are given in Section 5.



A Fast Algorithm for Approximate String Matching on Gene Sequences 81

2 The Tarhio-Ukkonen Algorithm

Based on the Boyer-Moore-Horspool (BMH) algorithm [6], the Tarhio-Ukkonen
algorithm [9] generalizes both the right-to-left scanning of the pattern and the
computation of shift distances to allow string matching with k-mismatches. The
BMH algorithm always tries to match the text character above the rightmost
character of the pattern no matter where a mismatch occurs during an alignment.
Similarly, when there are more than k mismatches occur, the Tarhio-Ukkonen
algorithm shifts the pattern to a position such that the rightmost k + 1 text
characters in the previous alignment have at least one match. The shift distance
is defined as the minimum one that satisfies the above condition.

Assume a substring tj−k...tj of the text is aligned with the rightmost k + 1
characters pm−k...pm of P , and a shift is needed. For each i ∈ [m − k, m] and
each a ∈ Σ, we denote by dk[i, a] the minimum distance between pl and pi such
that pl = a and l < i. Precisely, for a given i, dk[i, a] is initially set as m− k and
then updated if a smaller distance value is found, that is

dk[i, a] = min{{m− k} ∪ {s|pi−s = a, s ∈ [1, i− 1], a ∈ Σ}} (1)

Similarly, denote by d[tj−k...tj ] the minimum distance to shift the pattern to a
position so that there is at least one match in the text substring above pm−k...pm.
Then, we have

dk[tj−k, tj−k+1, ..., tj ] = min{dk[m− i, tj−i], i ∈ [0, k]} (2)

The Tarhio-Ukkonen algorithm can solve the k-mismatch problem in ex-
pected time O(kn(1/m−k+k/c)), where c is the alphabet size [9]. In the follow-
ing, we give a simple example to illustrate, how the Tarhio-Ukkonen works in an
approximate string matching process. The example uses pattern P = AAGTCG-
TAAC and text T = AACTGTTAACTTGCGACTAG, with k = 2. The Tarhio-
Ukkonen algorithm constructs a shift table of dk[i, a] for P by (1), as shown in
Table 1. The first two shifts in the approximate matching process is detailed in
Table 2.

3 Our Algorithm

FAAST – a fast algorithm for approximate string match – can find all occurrences
of a pattern P = p1...pm in a text string T = t1...tn with up to k mismatches.
In this section, we first describe the idea and implementation of the FAAST

Table 1. A shift table of dk[i, a] (k = 2, m = 10, n = 20)

position A C G T

8 6 3 2 1

9 1 4 3 2

10 1 5 4 3
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Table 2. An example of running Tarhio-Ukkonen algorithm(k = 2, m = 10, n = 20)

Text: AACTGTTAACTTGCGACTAG
Pattern: AAGTCGTAAC (Shift 1)

AAGTCGTAAC (Shift 2)
AAGTCGTAAC

Shift 1: The 3rd mismatch occurs at the 3rd position of the pattern string. The
shift distance is calculated based on the last 3 characters of the aligned
text, i.e., AAC. dk[AAC] = min{dk[8, A], dk[9, A], dk[10, C]} = 1

Shift 2: The 3rd mismatch occurs at the 7th position of the pattern string. The
shift distance is calculated based on the last 3 characters of the aligned
text, i.e., ACT. dk[ACT ] = min{dk[8, A], dk[9, C], dk[10, T ]} = 3

algorithm. Then, its correctness and efficiency are proved and analyzed. Finally,
a special consideration is taken in FAAST to enable it to work for patterns with
degenerate characters.

3.1 Algorithm Description

Note that, in the Tarhio-Ukkonen algorithm, the shift distance is calculated as
the minimum one such that there exists at least one match when aligning the
rightmost k + 1 text characters in the current alignment with the pattern after
a shift. In order to achieve faster matching process, FAAST instead calculates
the shift distance as the minimum one such that the rightmost k + x characters
of the current aligned text will have at least x matches after the shift. Here, x
generally takes a small integer value, e.g., two or three. An example will be given
at the end of this subsection to demonstrate that FAAST generally skips more
characters than the Tarhio-Ukkonen algorithm in a shift.

FAAST consists of a preprocessing step and a matching step, as the Tarhio-
Ukkonen does. In the preprocessing step, FAAST will calculate the shift distances
of all possible strings of length k + x in the alphabet Σ and tabulate them in a
table dkx, as follows. First, given a pattern string P = p1p2 · · · pm and a position
i (i ∈ [m − k − x + 1, m]), we denote by Ukx[i, a] a set of distances between pi

and all occurrences of the character a to the left of pi in P . That is,

Ukx[i, a] = {s|pi−s = a, s ∈ [1, i− 1], a ∈ Σ} (3)

Then, given a string tj−k−x+1 · · · tj of length k + x and a shift distance l (l ∈
[1, m− k]), we define a set as

Vkx[tj−k−x+1 · · · tj , l] = {i|l ∈ Ukx[m− i, tj−i], i ∈ [0, k + x− 1]} (4)

In Vkx[tj−k−x+1 · · · tj , l], we store the position offsets (relative to tj) of all char-
acters in tj−k−x+1 · · · tj that will be matched after shifting the pattern to the
right by l characters. For example, if only tj and tj−2 are matched after shifting
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Algorithm 1: Computation of table dkx

1. for a in Σ
2. for i := m downto m − k − x + 1
3. Ukx[i, a] := {m − k}; {Set initialization}
4. for i := m downto m − k − x + 1
5. for s := i − 1 downto 1
6. if i − s < m − k then
7. Ukx[i, ps] := Ukx[i, ps] ∪ {i − s}; {Set union}
8. for each string tj−k−x+1 · · · tj in Σ
9. for l := 1 to m − k

10. |Vkx[tj−k−x+1 · · · tj , l]| := 0; {Set size initialization}
11. for l := 1 to m − k
12. for i := m downto m − k − x + 1
13. if l ∈ Ukx[i, tj−m+i] then
14. |Vkx[tj−k−x+1 · · · tj , l]| := |Vkx[tj−k−x+1 · · · tj , l]| + 1;
15. if |Vkx[tj−k−x+1 · · · tj , l]| ≥ min[x, m − k − l]
16. dkx[tj−k−x+1 · · · tj ] := l;
17. break; {Go to step 8}

the pattern to the right by l characters, the value of Vkx[tj−k−x+1 · · · tj , l] would
be {0, 2}. Finally, the shift distance dkx[tj−k−x+1 · · · tj ] can be calculated using
the following formula, where | · | is the size of a set:

dkx[tj−k−x+1 · · · tj ]

= min{l||Vkx[tj−k−x+1 · · · tj , l]| ≥ min{x, m− k − l}, l ∈ [1, m− k]} (5)

This formula guarantees that the minimum l distance is made such that either
the current aligned rightmost k+x text characters have at least x matches in the
next alignment when all these text characters are aligned with the pattern after
the shift, or the current aligned rightmost k + x text characters have at least
m− l − k (< x) matches in the next alignment when only m− l (< k + x) text
characters are aligned with the pattern after the shift. Both cases requires no
more than k mismatches in the new alignment between the k+x text characters
and the shifted pattern.

The details of the preprocessing algorithm are provided in pseudocode as
Algorithm 1: Step 1-7 describes the construction of set Ukx[i, a]. The details of
the size calculation for set Vkx[tj−k−x+1 · · · tj , l] is covered in step 9-14, and the
rest part of Algorithm 1 fills out the table dkx[tj−k−x+1 · · · tj ]. Note that the
calculation of dkx uses a pattern as input, but does not depend on any text.

In the matching step, we compare a pattern P with a text string T . We
denote by h the index of a character that is currently scanned in T and by i the
index of the corresponding character in P . tj−k−x+1...tj refers to the text string
that is aligned above pm−k−x+1...pm. The matching process remains similar to
that in the Tarhio-Ukkonen algorithm except that, when there are more than k
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mismatches occur, we look up a different table for shift distances. The details of
this step are provided in pseudocode as Algorithm 2:

Algorithm 2: Approximate string matching

1. j := m;
2. while j ≤ n do begin
3. h := j; i := m; e := 0; {e: the number of mismatches}
4. while i > 0 and e ≤ k do begin
8. if th �= pi then
9. e := e + 1;
9. i := i − 1; h := h − 1;

10. end of while
11. if e ≤ k then
12. record the occurrence position j;
13. j := j + dkx[tj−k−x+1 · · · tj ];
14. end of while.

An example is given to illustrate how a shift table dkx is calculated and
how an approximate string matching proceeds. We use the same pattern and
text as those used in the previous section for the Tarhio-Ukkonen algorithm.
The set of shift distances, i.e., Ukx, is listed in Table 3 and a part of the table
Vkx[tj−k−x+1 · · · tj , l] is listed in Table 4. The first two shifts in the approximate
matching process is detailed in Table 5. As we have seen earlier, distances of
the first two shifts made by the Tarhio-Ukkonen algorithm are 1 and 3, whereas
they are 7 and 7 by FAAST, respectively. Therefore, our algorithm FAAST can
generally skip many more characters than the Tarhio-Ukkonen algorithm in a
single shift. As a result, FAAST could significantly speed up the approximate
string matching process, as proved theoretically in the next subsection.

Table 3. A set of shift distances of Ukx (k = 2, x = 3, m = 10, n = 20)

position A C G T

6 4,5 1 3 2

7 5,6 2 1,4 3

8 6,7 3 2,5 1,4

9 1,7,8 4 3,6 2,5

10 1,2,8,9 5 4,7 3,6

3.2 Algorithm Analysis

In this section, we discuss in detail the correctness of FAAST, its time and space
complexity, the average shift distance, and the total character comparisons.

Correctness. We establish the correctness of FAAST by the following theorem.
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Table 4. An example of Vkx[tj−k−x+1 · · · tj , l] (k = 2, x = 3, m = 10, n = 20, l = [1..8])

l 1 2 3 4 5 6 7 8

AAAAA 0,1 0 4 3,4 2,3 1,2 0,1

...

GCGAC 1 2,3 4 0,2 1 1

...

GTCGT 0,1,2,3,4 0,1

...

TTAAC 0 4 3 0 2 1,2 1

...

TTTTT 2 1,4 0,3 2 1 0

Table 5. An example of running FAAST(k = 2, x = 3, m = 10, n = 20)

Text: AACTGTTAACTTGCGACTAG
Pattern: AAGTCGTAAC (Shift 1)

AAGTCGTAAC (Shift 2)
AAGTCGTAAC

Shift 1: The 3rd mismatch occurs at the 3rd position of the pattern string.
The shift distance is calculated based on the last 5 characters of
the aligned text, i.e., TTAAC. dkx[TTAAC] = 7

Shift 2: The 3rd mismatch occurs at the 5th position of the pattern string.
The shift distance is calculated based on the last 5 characters of
the aligned text, i.e., GCGAC. dkx[GCGAC] = 7

Theorem 1. Given any alignment between P and tj−m+1...tj in T , P can be
shifted by dkx[tj−k−x+1 · · · tj ] characters to the right without passing by any ap-
proximate occurrences of P in T .

Proof. Denote by pi−k−x+1...pi the substring of P that is aligned below tj−k−x+1

. . . tj after shifting dkx[tj−k−x+1 · · · tj ] characters to the right. Note that P may
be aligned with only a part of tj−k−x+1...tj , and we omit such cases in our proof
just for simplicity. Assume that an occurrence of P is passed by during the shift.
When aligning this occurrence with P , we have a substring of P , denoted by
pi′−k−x+1...pi′ , that is aligned below tj−k−x+1...tj , such that there are at most
k mismatches in the alignment of pi′−k−x+1...pi′ with tj−k−x+1...tj , and i < i

′
.

These lead to a contradiction to the definition of dkx[tj−k−x+1 · · · tj ], and the
theorem thus follows. �

Time and space complexity. In the preprocessing part, calculation of Ukx

takes time O(m(k + x)) and space O((m − k)(k + x)c), where c is the alphabet
size of Σ, which is 4 for DNA sequences. Meanwhile, it takes time O(ck+x(m−
k)(k + x)) and space O(ck+x) to tabulate dkx. Therefore, the total time spent
on preprocessing is O((k +x)((m−k)ck+x +m)) and space is O(ck+x + c(m−k)
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(k +x))). In the matching part, it needs O(mn) time in the worst case. Instead,
we are more interested in its performance in the average case.

Average shift distance. The average shift distance refers to the number of
characters in the text that the pattern is expected to skip in one shift. Intuitively,
the larger the average shift distance is, the faster the approximate matching, and
thus the better the algorithm performs.

We use the random string assumption in our analysis. It assumes that each
character in P and T is independently chosen at random from the alphabet set
Σ. Also, we assume that the probability that two characters give rise to a match
is p. Under this assumption, we have

Lemma 1. The probability Pkx for the last k + x characters of P to have at
least x matches in an alignment with T is Pkx = 1−

∑x−1
i=0 Ci

k+x(1− p)k+x−ipi.

Proof. Note that the probability, denoted as Pkx,i, of k + x characters having
exactly i matches in an alignment forms a binomial distribution, i.e.,

Pkx,i = Ci
k+x(1− p)k+x−ipi (6)

By summing up Pk+x,i with i from 0 to x− 1, we obtain

Pkx = 1−
x−1∑
i=0

Ci
k+x(1− p)k+x−ipi (7)

�
We simplify the calculation of the average shift distance, without taking

into account the effect of the limit length of a pattern. Therefore, the shift
distance can take a value up to the infinity in the calculation, which provides an
approximation to the real average shift distance.

Theorem 2. The average shift distance Ed
kx of the algorithm is Ed

kx ≈ 1/Pkx.

Proof. We denote by Ps,kx the probability that the shift distance s is taken.
Then,

Ps,kx = (1− Pkx)s−1Pkx, s > 0 (8)

Therefore, we have

Ed
kx ≈

∞∑
s=1

sPs,kx =
∞∑

s=1

s(1− Pkx)s−1Pkx = 1/Pkx (9)

�
In the following, k is set to be 3, as used in our gene sequence analysis

application [10]. We plot the curves of the average shift distances against the
character matching probability p, in Fig. 1(a). Different values of x are employed,
including one, which is used in the Tarhio-Ukkonen algorithm. As shown in the
figure, the average shift distances become much larger as we increase x from 1 to
3, for small values of p. Therefore, FAAST can provide a very fast approximate
matching process, in particular for gene DNA sequences where p is about 0.25
(the alphabet size is 4).
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Fig. 1. (a) Comparison of average shift distances under different numbers of matches
in the last k + x characters, where k = 3. (b) The expected total number of character
comparisons under different numbers of matches in the last k + x characters, where
k = 3

Total character comparisons. The total number of character comparisons
made in an entire matching process is proportional to the running time of the
program. Therefore, it is a very useful criterion to measure the performance of
a string matching algorithm. Here, we again use the random string assumption
and ignore the effect of the limit length of a pattern, as discussed above, to
simplify our calculations.

Lemma 2. The expected number Ec
kx of comparisons made between two succes-

sive shifts, is Ec
kx ≈ (k + x)/(1− p).

Proof. Note that the matching process between two successive shifts does not ter-
minate until we find the (k+1)th mismatch in an alignment. As discussed in [9],
the distribution of Ec

kx − (k + x) converges to a negative binomial distribution
when the pattern size increases to infinity. The expected value of Ec

kx − (k + x)
under this distribution is (k+x)p/(1−p). That is, Ec

kx−(k+x) ≈ (k+x)p/(1−p),
and thus the lemma follows. �

By the above lemma and Theorem 3, we can easily obtain

Theorem 3. The expected total number TEc
kx of character comparisons made

for a text of length n is TEc
kx ≈ nPkx(k + x)/(1 − p).

Fig. 1(b) shows the expected total number of comparisons TEc
kx made under

different values of x and p. We can see that, if more matches are required in the
calculation of shift distances and if the character matching probability is p < 0.5,
a large amount of comparisons could be saved in a string matching process. For
example, given a gene DNA sequence of length n and p = 0.25, a total of 2.29n
character comparisons will be saved as x increases from 1 to 3.

3.3 Degenerate Characters

In many applications, we need to find in a text all occurrences of a pattern
string that contains degenerate characters. For example, in the gene sequence
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acquisition problem, degeneracy in a DNA sequence refers to the phenomenon
that one character may represent several nucleotide bases. In the official IUPAC-
IUB single-letter base codes [4], R stands for G/A, Y for T/C, and H for A/C/T,
etc. A naive method treats the pattern string with degeneracy as a set of multiple
patterns, which makes string matching several times slower.

Degeneracy brings up two new issues for the FAAST algorithm. One is the
new definition of match, and the other occurs in the calculation of shift dis-
tances. We consider two degenerate characters as a match if they share a com-
mon non-degenerate character, e.g., R and H is a match when aligning them.
When calculating shift distances, FAAST treats a degenerate character as any
of its corresponding non-degenerate characters, and takes the minimum shift
distance given by these non-degenerate characters as the shift distance of the
degenerate character. The procedure in the matching step of FAAST remains
unchanged. We notice that, in this way, FAAST will not miss any occurrence
of pattern with at most k mismatches. Experiments on strings with degenerate
characters are presented in the next section.

4 Experimental Results

We have tested FAAST on both simulated data sets and real DNA gene sequence
data on a PC with Intel Pentium CPU (2.8GHz and 1G memory), and compared
its performance with that of the Tarhio-Ukkonen algorithm [9].

To produce simulated data sets, we used a random generator to select four
DNA bases {A, C, G, T} randomly with equal probabilities. Text sequences we
tested are 2M (i.e., two millions) bases long, and a pattern with 39 bases. We
listed in Table 6 the average shift distances, total numbers of character com-
parisons, preprocessing time, and the total running time. The results show a
clear tendency that, as x increases from one to seven, FAAST can shift by larger
distances on average and make fewer comparisons. Though the preprocessing
time is increasing, the total running time is consistently decreasing. For exam-
ple, FAAST needs only 11.2 seconds with x = 5, whereas the Tarhio-Ukkonen
algorithm (i.e., x = 1) takes 210.2 seconds, which is about 18 times slower.

Table 6. The average shift distances, total character comparisons, preprocessing time,
and total running time of FAAST on simulated DNA sequences of 2M bases. The
pattern size is 39, and k = 3

x 1 2 3 4 5 6 7

Average shift distance 1.41 2.76 5.59 16.38 31.31 37.77 38.87

Total Comparisons(×2M) 6.70 3.68 1.86 0.65 0.34 0.28 0.27

Total running time(sec) 210.2 114.4 58.1 20.6 11.2 10.8 16.7

Preprocessing time(sec) 0.01 0.01 0.03 0.08 0.36 1.58 6.90

To test the performance of our algorithm on real gene DNA sequence data,
we downloaded 18,491 18S ribosomal fungal DNA sequences and 81,343 16S ri-
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bosomal bacterial DNA sequences from the NCBI DNA sequence database. We
randomly picked 150 sequences to form a test set and compared the preprocess-
ing time, string matching time and total running time of the Tarhio-Ukkonen
algorithm with our generalized algorithm FAAST. This was repeated 5 times
and the average result was reported. The bacterial sequence set includes totally
170K bases and the fungal sequence set includes 179K bases. The detailed results
are shown in Table 7 and Table 8 for bacterial sequences and fungal sequences,
respectively. For 150 random bacterial sequences, if we choose x as 5, our algo-
rithm needs a total running time of 2.63 seconds whereas the Tarhio-Ukkonen
algorithm (i.e., x = 1) needs 18.78 seconds. Similarly, for 150 random fungal
sequences, our algorithm needs only 5.62 seconds but the Tarhio-Ukkonen al-
gorithm needs 16.45 seconds. Therefore, our algorithm with x = 5 runs about
7 times and 3 times faster than the Tarhio-Ukkonen algorithm on the bacterial
and fungal sequences that we tested, respectively.

Table 7. The total running time, preprocessing time, and string matching time of
FAAST on 150 bacterial DNA sequences with different x values and k = 3. The pattern
used is AGRRTTTGATYHTGGYTCAG

x 1 2 3 4 5 6 7

Total running time(sec) 18.78 13.05 7.74 3.84 2.63 3.21 8.55

Preprocessing time(sec) 0.01 0.01 0.02 0.09 0.35 1.57 6.96

String matching time(sec) 18.77 13.04 7.72 3.75 2.28 1.64 1.59

Table 8. The total running time, preprocessing time, and string matching time of
FAAST on 150 fungal DNA sequences with different x values and k = 3. The pattern
used is TTAGCATGGAATAATRRAATAGGA

x 1 2 3 4 5 6 7

Running time(sec) 16.45 11.43 9.24 6.78 5.62 8.24 26.48

Preprocessing time(sec) 0.02 0.03 0.08 0.32 1.34 5.77 23.86

String matching time(sec) 16.43 11.40 9.16 6.46 4.28 2.47 2.62

5 Conclusion

FAAST has been embedded in a web-based system to enable biologists to build
their own gene sequence databases. The whole system has been successfully used
in the OFRG project [10]. The algorithm is designed especially for gene DNA
sequences with an alphabet of size 4, to solve the gene sequence acquisition
problem. As the alphabet size and the x value get large, we notice that the time
and memory required for the shift distance calculation increase quickly, which in
turn deteriorates the performance of FAAST. We plan to look into this problem
in the future.
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Abstract. Approximate matching is one of the fundamental problems
in pattern matching, and a ubiquitous problem in real applications. The
Hamming distance is a simple and well studied example of approximate
matching, motivated by typing, or noisy channels. Biological and image
processing applications assign a different value to mismatches of different
symbols.
We consider the problem of approximate matching in the L1 metric –
the k-L1-distance problem. Given text T = t0, ..., tn−1 and pattern P =
p0, ..., pm−1 strings of natural number, and a natural number k, we seek
all text locations i where the L1 distance of the pattern from the length m
substring of text starting at i is not greater than k, i.e.

∑m−1
j=0 |ti+j−pj | ≤

k.
We provide an algorithm that solves the k-L1-distance problem in time
O(n

√
k log k). The algorithm applies a bounded divide-and-conquer ap-

proach and makes novel uses of non-boolean convolutions.

1 Introduction

One of the famous “open problems in stringology” [11] was the k-mismatches
problem whose input is a text string T = t0, ..., tn−1, pattern string P = p0, ...,
p−1m, where pi, tj ∈ Σ, i = 0, ..., m− 1; j = 0, ..., n− 1, and natural number
k. The required output is all locations in T where the pattern matches with no
more than k mismatches. A year later, Landau and Vishkin [15] developed an
algorithm that solved the problem in time O(kn). That result was achieved via a
different algorithm by Galil and Giancarlo [12]. Amir, Lewenstein and Porat [6]
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showed an algorithm whose time bounds are O(n
√

k log k). Karloff [14] showed
that the Hamming distance (the number of mismatches at every text location)
can be approximately computed in time O(n log m).

The number of mismatches was an important measure as part of an edit
distance between typed strings. Advances in Multimedia, Digital Libraries and
Computational Biology have shown that a much more generalized theoretical
basis of string matching could be of tremendous benefit [20, 21]. To this end,
string matching has had to adapt itself to increasingly broader definitions of
“matching”, as well as different distance measures.

In computer vision, for example, it does not make sense to say that a pat-
tern pixel with a close grey level to the text pixel should generate the same
error penalty as, say, a white pattern pixel being matched to a black text pixel.
Similarly in biology, the energy level for bonding different proteins is different,
suggesting that not all “mismatches” should be counted equally. In various other
applications, such as earthquake prediction [18], stock market analysis [17], and
music retrieval [22], the distance measure used is the Minkowsky L1 norm. The
L1 norm is of particular importance also due to the fact that strings can be
embedded in the L1 space and the distance between their associated vectors
approximates the edit distance with moves of the strings [9].

We also show some results on computing the distance between the pattern
and every text location under different metrics [16]. In this paper we are con-
cerned with text and pattern composed of natural numbers. We seek all text
locations where the L1 distance between the pattern and text is bounded by an
input value. Formally, our problem is the following.

Definition 1.

1. Let X = x0x1...xn−1 and Y = y0y1...yn−1 be two strings over alphabet Σ.
Then the L1 distance between X and Y (d1(X, Y )) is defined as

d1(X, Y ) =def
n−1∑
i=0

|xi − yi|.

2. The k-L1-distance problem is defined as follows.
INPUT: Text string T = t0, ..., tn−1, pattern string P = p0, ..., pm−1, where
pi, tj ∈ N, i = 0, ..., m− 1; j = 0, ..., n− 1, and natural number k.
OUTPUT: All text locations i where d1(P, T (i)) ≤ k, where T (i) = titi+1...
ti+m−1 (i.e.

∑m
j=0 |ti+j − pj | ≤ k).

Lipsky [16] showed that the L1-distance between the pattern and all text loca-
tions can be computed in time O(n

√
m logm). There is no algorithm that solves

the k-L1-distance problem faster than that, when k is smaller, the equivalent
version to Galil’s problem for k-mismatches. We show a O(n

√
k log k) algorithm

for the k-L1-distance problem. Our algorithm employs the bounded divide-and-
conquer approach, that has proven successful in solving a number of pattern
matching problems (e.g. [1, 5, 6]). However, a non-trivial divide-and-conquer ap-
proach was necessary. In addition, we make use of non-boolean convolutions, a
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technique that was pioneered only in the last few year. This technique has proven
useful in surprising solutions to some interesting problems in the recent past [2–
4, 8]. We also use counting arguments for filtration. For the sake of completeness
we include the algorithms for L1, Lp (for even p) and L∞ matching.

The paper is constructed as follows. In Section 2 we present the algorithms
for L1, L2 and L∞ matching. Section 3 gives an immediate and easy O(nk)
algorithm, that will serve as a building block for our more efficient algorithm.
In section 4 we give an efficient algorithm for a special case, where the pattern
has a small alphabet. This will also serve as a subroutine for one of our cases.
In section 5 we present the bounded divide-and-conquer algorithm. We conclude
with a short discussion and open problems.

2 Matching Algorithms for the L1, L2 and L∞ Metrics

2.1 An L1 Matching Algorithm

We present here an O(n
√

m log m)-time algorithm that solves the L1 Matching
problem. In fact, we design an O(n

√
n logn)-time algorithm, but we can cut the

text into n/m overlapping segments of length 2m, run the algorithm for each of
this segments, and concatenate the results to be the result of our problem, thus
achieve an O( n

mm
√

m log m) = O(n
√

m logm)-time algorithm. since we use this
method of cutting the text, we can assume in our algorithm that n ≤ 2m. Our
algorithm is based on the “high/low-frequency” pattern matching technique of
Abrahamson [1]. This technique was introduced in the context of counting mis-
matches (also known as the String matching with mismatches problem). The
technique consists of three steps: First, the alphabet is divided into frequent and
non-frequent symbols where non-frequent symbols are grouped together and re-
placed by “frequent” representatives. Next, an O(n|Σ| log m) algorithm is used.
Finally corrections are done for the error caused by using representatives instead
of original symbols. We will further extend this technique to adapt the L1 match-
ing problem. Note that instead of alphabet symbols, we now have numbers, since
Σ ⊂ �.

Algorithm Stages
Let n = |t|, m = |p| and k =

√
m/ log m (we can assume n ≤ 2m).

1. Dividing the alphabet numbers into O(k) intervals.
2. Computing distances of numbers of different intervals.
3. Computing distances of numbers within the same interval.

We discuss each stage in details.
The alphabet numbers are divided into O(k) intervals in the following way:

we start by sorting the numbers of both text and pattern into one sorted sequence
s. Next we mark each subsequence of a “frequent” number f as an interval [f, f ],
where frequent defined to be a number that appears in s at least (n+m)/k times.
Now, we are left with only non-frequent numbers unmarked. Since there are at
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most k frequent elements, the unmarked numbers are scattered into, at most,
k +1 sorted continuous pieces of s. We divide each such piece as follows: as long
as there are more than (n + m)/k unmarked numbers in this piece, we mark the
smallest (n + m)/k numbers as an interval [min, max] (where min and max are
the smallest and largest numbers of those (n+m)/k numbers, respectively), and
we mark all other instances of max to belong this interval as well. After iterating
this step on a continuous piece, either all numbers in this piece are marked into
intervals, or at most (n+m)/k numbers are left unmarked. in the latter case we
mark those numbers into one interval [min, max], similarly to the others.

Our algorithm analysis is a result of the folowing claims. Their proofs will
be presented in the journal version of this paper and can also be found in [16].
Claim 1 At the end of the above described process we have the alphabet numbers
divided into O(k) disjoint intervals.

Claim 2 After dividing the alphabet numbers into O(k) intervals as described
above, for each interval which is not of the form [x, x], there are at most O(m/k)
numbers which belong to this interval.

The purpose is to compute L1[i] =
∑m

j=1 |ti+j−1−pj| for every i = 1, 2, . . . , n−
m+1. In the second stage we compute a part of it. We ignore all the cases where
ti+j−1 and pj are in the same interval and compute the L1 distance only for
numbers from different intervals. Formally, we compute ∀i ∈ {1, . . . , n − m +
1}Stage2[i] =

∑m
j=1 |ti+j−1−pj |χinterval(ti+j−1, pj), where χinterval(x, y) = 1 if

x and y are within the same interval, and 0 otherwise. This computation is done
by two simple convolutions for each interval. In the first convolution we add the
p numbers, each as negative ,zero or positive (dependent on its being smaller
than the interval numbers, within the interval or greater, respectively), and in
the second convolution we do similarly with the text numbers. This is done by
O(k) convolutions, one for each interval.
Claim 3 At the end of the second stage,

Stage2[i] =
m∑

j=1

|ti+j−1 − pj |χinterval(ti+j−1, pj).

Now, we only need to add to the results of Stage2 the distances caused by
numbers from the same interval. This is done in a straight forward way. The
steps are as follows:
1. Initialize Stage3[i] = 0 for i = 1, 2, . . . , n−m + 1.
2. For every interval Ir (which is not of the form of [x, x])

(a) For every ti, pj ∈ Ir ,
if j ≤ i ≤ n then Stage3[i− j + 1]← Stage3[i− j + 1] + |ti − pj |.

Claim 4 At the end of the third stage

Stage3[i] =
m∑

j=1

|ti+j−1 − pj |χinterval(ti+j−1, pj).
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Finally, from claim 3 and claim 4 it follows that summing up Stage2 and
Stage3 vectors will give us the solution.
Time: Note that we have n ≤ 2m. The time that is needed for the first stage is
the time needed to sort the numbers, O(m log m), and linear time steps. Next, the
second stage consists of 2k convolutions; thus taking O(km log m) time. Finally,
the third stage, that runs for each of the O(k) intervals in quadratic time. Now,
using claim 2 this stage is bounded by O(k(m

k )2) = O(m2/k). combining all those
bounds, and choosing k =

√
m/ logm yields an O(m

√
m log m)-time algorithm.

If n > 2m we use the technique of cutting the problem into n/m problem
instances of text size 2m, and concatenate the results. The total time, therefore,
is O( n

mm
√

m log m) = O(n
√

m log m).

2.2 L2 Matching and Convolution Equivalence

We show here that the time needed for the convolution computation of the
text string with the pattern string is equal to the time needed to solve the L2

matching problem. The current best time for this convolution computation is
O(n log n), using FFT as described in [10]. Thus, this is also the time needed
to compute the L2 matching. We can slightly improve the L2 matching time
by using the trick of cutting the text into 2m consecutive overlapping pieces in
order to obtain O(n log m) instead of O(n log n).

Observation 1 Let L2[1, . . . , n−m+1] be the result vector of the L2 matching
computation. we observe that:

L2[i]2 =
m∑

j=1

|ti+j−1 − pj |2 =
m∑

j=1

t2i+j−1︸ ︷︷ ︸+
m∑

j=1

p2
j︸ ︷︷ ︸ − 2t⊗ p[i]︸ ︷︷ ︸

(1) (2) (3)

It is clear that (for all i′s) computing (1) and (2) elements can be done in
linear time. (3) is one convolution that can be computed in time O(n log m).
Then if the values of L2[i] are computed we can extract (in linear time) the
values of t⊗ p and vice versa.

2.3 String Matching with L∞ Distance

This problem differs from the problems of L1 and L2 Matching in the fact that
here the distance function defined between strings is not the sum of distances
between symbols, but defined on all pairs of symbols. We first construct an
O(n|Σ| log n) time algorithm, and then construct an algorithm that approxi-
mates L∞ Matching up to a factor of 1 + ε and works in time of O(1

εn log m
log |Σ|).
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O(n|Σ| log(m + |Σ|)) Algorithm:
The method in this algorithm is encoding the text and the pattern in such a way
that in one convolution, and linear time pass on the convolution result we find
the results.

Key Idea: If we look at one text number, t, and one pattern number p. We
encode both of them to a |Σ| long binary strings. The encoding of t is all 0’s
except the t-th bit which is 1, and similarly with p, which is encoded to all 0’s
except the p-th bit. Let c(i) denote the encoded i. Now, we start by c(p) aligned
below c(t) and start at position −|Σ| (where c(t) fixed to start at position 1). We
move c(p) to the right till both 1-bits are one below the other. At this position,
the distance between the starting position of c(t) and the starting position of
c(p) equals to the difference |t−p|, an example is given in Figure 1. If we look at
r = c(t)⊗ c(p) we will have either r[−|t−p|] = 1 or r[|t−p|] = 1. Extending this
idea to encoding strings of numbers requires adding leading (or tracing) zeros
between the encoded numbers.

Algorithm Steps

1. Construct ct(T ) = ct(t1) · · · ct(tn)
2. Construct cp(P ) = cp(p1) · · · cp(pm)
3. Compute R = ct(T )⊗ cp(P )
4. For i = 1, . . . , n−m + 1

O[i]← max|Σ|
s=−|Σ| χ =0(R[(2i− 1)|Σ|+ 1 + s])|s|

Claim 5 At the end of the algorithm O[i] = maxm
j=1 |ti+j−1 − pj |.

Time: The time needed to convolve 2 strings of size n|Σ| and m|Σ| is
O(n|Σ| log n). The computation of O[i] takes 2|Σ| steps , and i = 1, 2, . . . , n −
m+1 so this step takes O(n|Σ|).Both steps together take O(n|Σ| log n). We can
slightly improve the time by using the technique of cutting the text into n/m
overlapping segments, each of length 2m to a total time of O(n|Σ| log(m+ |Σ|)).

In [16] an algorithm is presented that approximates the L∞ Matching up to
a factor of 1 + ε. If ε is taken to be 1 then we can mark all locations where the
error is greater than 2k and then reduce the alphabet to a cyclic alphabet of size
4k. Using the above algorithm we get an O(nk log m) algorithm.

3 The Constant-Time Jump Algorithm

We begin by reviewing the Landau-Vishkin k-mismatches algorithm.

1. Let a, b ∈ Σ. Define

neq(a, b) =def

{
1, if a �= b;
0, if a = b.
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2. Let X = x0x1...xn−1 and Y = y0y1...yn−1 be two strings over alphabet Σ.
Then the hamming distance between X and Y (ham(X, Y )) is defined as

ham(X, Y ) =def
n−1∑
i=0

neq(xi, yi).

3. The The String Matching with k Mismatches Problem is defined as follows:
INPUT: Text T = t0...tn−1, pattern P = p0...pm−1, where ti, pj ∈ Σ, i =
0, ...n− 1; j = 0, ..., m− 1, and a natural number k.
OUTPUT: All pairs 〈i, ham(P, T (i))〉, where i is a text location for which
ham(P, T (i)) ≤ k, where T (i) = titi+1...ti+m−1.

Landau and Vishkin [15] introduced a method of using suffix trees (see
e.g. [19, 23]) and Lowest Common Ancestor (see e.g. [7, 13]) in order to al-
low constant-time “jumps” over equal substrings in the text and pattern. Since
we are interested only in locations with at most k errors, we can simply start at
each text location, and check how many mismatches there are. Every mismatch
takes time O(1), since we cover the longest equal substring and land on the next
mismatch. If a location has more than k mismatches, we stop. Thus, verification
of every location takes time O(k) for a total of O(nk).

The following observation is crucial to our algorithm.

Observation 2 ham(P, S) ≤ d1(P, S).

Proof: Since the alphabet of our strings is N, any two elements pi, sj that are
not equal have |pi − sj | ≥ 1. �

The above observation, coupled with Landau and Vishkin’s method of al-
lowing, for every text location, an O(1) time jump from mismatch to mismatch,
gives the following simple algorithm for computing the k-L1-distance problem.
Call it the Constant-Time Jump Algorithm. The idea is to add the absolute val-
ues of the difference between text and pattern symbol at all mismatches, until
the value of k is exceeded (no match) or the pattern is covered (match).

C.1. for every text location i:
initialize D ← 0.
while D < k do:

jump to next mismatch location i + 

if i + 
 = i + m + 1 {no mismatches till end of pattern} then end while-loop
D ← D + |ti+� − p�|

endwhile
endfor

Time: Observation 2 guarantees that there will be at most k + 1 necessary
jumps, and a “jump” takes time O(1), thus the while-loop takes O(k) time per
text location i. The for-loop is the length of the text O(n). The total time is,
therefore, O(nk).

The Constant-Time Jump Algorithm can prove very useful if we succeed in
quickly filtering out locations where there can be no pattern match and leaving
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for verification a relatively small number of potential candidates. Suppose that
number is s. Then the total verification time becomes O(sk). We will show a
case where s = O( n√

k
). The total verification time is then O(n

√
k).

4 The Small Alphabet Case

We now consider the case where P has a very small alphabet, e.g. less than u
different alphabet symbols. We will use convolutions, as introduced by Fischer
and Paterson [10]. We need some definitions first.

Define

χσ(x) =
{

1 if x = σ
0 if x �= σ

If X = x0 . . . xn−1 then χσ(X) = χσ(x0) . . . χσ(xn−1). For string S = s0...sn−1,
SR is the reversal of the string, i.e. sn−1...s0.

Define D1
σ(x) = |x − σ|, and for X = x0 . . . xn−1, D1

σ(X) = D1
σ(x0) . . .

D1
σ(xn−1).

We return to the L1 distance problem for small alphabets. The product
D1

σ(T ) by χσ(PR) is an array where the number in each location is the part
of the L1 distance contributed by the symbol σ in the pattern, i.e. the sum
of the absolute value of the difference between every σ in the pattern and its
corresponding text element. If we multiply D1

σ(T ) by χσ(P )R, for every σ ∈ Σ,
and add the results, we get the total L1 distance. Since polynomial multiplication
can be done in time O(n log m) using FFT, and we do |Σ| = u multiplications,
the total time for finding all mismatches using this scheme is O(un log m).

In our divide-and-conquer algorithm, we will reduce to a case where the al-
phabet size is O(

√
k/ logm), so the problem will be solved in time O(n

√
k log m).

5 The Algorithm

We are now ready to present the general algorithm.

Definition 2. A symbol that appears in the pattern at least 2
√

k log m times is
called frequent. A symbol that is not frequent is called rare.

We consider two cases, where there exist at least
√

k/ logm frequent symbols,
and where the number of frequent symbols is smaller than

√
k. We begin with

the large number of frequent symbols.

5.1 Many Frequent Symbols

Lemma 1. Let {a1, ...., a√k/ log m
} be frequent symbols. Then there exist in the

text at most 2n
√

log m√
k

locations where there is a pattern occurrence with no more
than k mismatch errors.
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Proof: By counting. Choose 2
√

k log m occurrences of every frequent symbol and
call them the relevant occurrences. For every text element ti, mark all locations
where a pattern occurrence would match ti, in case ti is one of the frequent
symbols {a1, ..., a√k/ log m

} and the match is one of the relevant occurrences. In

other words, we mark all locations i− j where ti = pj , ti ∈ {a1, ..., a√k/ log m
},

and pj is a relevant occurrence of ti.
The total number of marks we made is at most n2

√
k log m. The only cases

that interest us are those where no more than k errors occur. Consider a fixed
text location as a start of a pattern occurrence. If more than k of our

√
k/ logm

frequent symbols and their 2
√

k log m relevant occurrences are mismatches, then
there clearly does not exist a pattern occurrence with less than k mismatches.
Thus, any text location with less than k marks, can not be a pattern occurrence.

Since the total number of marks is n2
√

k log m and each potential pattern
occurrence must have at least k marks, it leaves us with at most n2

√
k log m
k =

2
√

log mn√
k

candidates. �
Because of Observation 2, we know that every location that has been dis-

carded for having more than k mismatch errors, can certainly not have L1 dis-
tance less than k. Thus we only need to verify the remaining O(n

√
log m√

k
) loca-

tions.
Verification: Each of the remaining O(n

√
log m√

k
) potential locations can be veri-

fied in time O(k) per location by the Constant-Time Jump Algorithm described
in section 3 for a total O(n

√
k log m) time.

Finding the Potential Locations: The 2n
√

log m√
k

potential pattern starts can
be found in time O(n

√
k log m) as shown in [6].

5.2 Few Frequent Symbols

We are left with the case of few frequent symbols (less than O(
√

k/ logm)). We
show how to count the L1 distance contributed by the frequent symbols, and
how to count the L1 distance contributed by the rare symbols.

The L1 distance of the frequent symbols can be computed using the algorithm
in Section 4. The only remaining task is to show that the total L1 distance
contribution of all the rare symbols can be computed fast.

We handle the rare cases differently depending on the following two situa-
tions:

1. The total number of occurrences of rare symbols in the pattern is not greater
than 2k.

2. The total number of occurrances of rare symbols in the pattern is greater
than 2k.

Few Rare Symbols. We show a reduction of the k-L1 distance problem to
convolutions. Recall that the case we are considering is where we have at most 2k
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occurrences of rare numbers, where each rare number occurrs at most 2
√

k log m
times.
Algorithm Outline:
Sort all 2k occurrences of rare elements, and divide them into O(

√
k/logm)

consecutive blocks, each of size between 2
√

k log m and 4
√

k log m, such that all
occurrences of every symbol appear in a single block. We are guaranteed that
such a division can be achieved since no symbol appears more than 2

√
k log m

times.
For every one of the O(

√
k/ log m) blocks two convolutions. These convolu-

tions compute the L1 distance of the elements of the block with all text elements
greater than the elements in the block, as well as the L1 distance of the elements
of the block with all text elements smaller than the block symbols.

Adding the L1 distances of all blocks provides the L1 distance of the pattern
at every text location.

We now compute the L1 distance of every text element with all block symbols
in whose range it is.

Adding the above two values we get the L1 distance of the block symbols
with the text.
Algorithm Time: Each convolution takes O(n log m) time. Two convolutions
are done for each of the O(

√
k/ log m) blocks, for a total of O(n

√
k log m time.

We will show that the L1 distance of the block with all text elements whose
range is the same as the block symbols can be done in time O(n

√
k log m) for a

total time of O(n
√

k log m)
Details of Convolutions:
Consider block B whose smallest number is a and whose largest number is b.
Define

χB(x) =
{

1 if a ≤ x ≤ b
0 otherwise

For X = x0 . . . xn−1, let χB(X) = χB(x0) . . . χB(xn−1).
Let

DiffB(x) =

⎧⎨⎩
−x if x < a
0 if a ≤ x ≤ b
x if x > b

For X = x0 . . . xn−1, let DiffB(X) = DiffB(x0) . . . DiffB(xn−1).
The convolution DiffB(T ) ⊗ χB(PR) adds the correct contribution of the

text element to the absolute value of the difference with the corresponding pat-
tern symbol, since we subtract the text number if it is smaller than the pattern
number, and add it if it is bigger. We now need to add the appropriate pat-
tern part (add if it is bigger than the corresponding text number and subtract,
otherwose). This is done by the following convolution:

Define

IB(x) =
{

x if a ≤ x ≤ b
0 otherwise

For X = x0 . . . xn−1, let IB(X) = IB(x0) . . . IB(xn−1).
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Let

SignB(x) =

⎧⎨⎩
1 if x < a
0 if a ≤ x ≤ b
−1 if x > b

For X = x0 . . . xn−1, let SignB(X) = SignB(x0) . . . SignB(xn−1).
The convolution SignB(T ) ⊗ IB(PR) adds the correct contribution of the

pattern element to the absolute value of the difference with the corresponding
text symbol, since we subtract the pattern number if it is smaller than the text
number, and add it if it is bigger.
Details of the Block Distance to Text Numbers in its Range:
We have not computed the L1 distance of the numbers in block B, with any text
number x within its range, i.e. a < x < b, where a is the smallest and b is the
largest number in block B.

This can be computed simultaneously for all blocks if we view the problem
from the text side. Simply scan all text elements and for each one compute the
appropriate L1 distance with all pattern numbers in block B. Since the block
size is O(

√
k log m), the total time for this step is O(n

√
k log m).

Many Rare Symbols. The final case we need to consider is where we have
more than 2k occurrences of rare numbers, where each rare number occurrs at
most 2

√
k log m times.

We construct a new pattern, where we choose 2k occurrences of rare numbers
in the pattern, and ignore all others. For these occurrences we compute the
L1 distance using the algorithm in Subsection 5.2. Any text location whose
computed (partial) L1 distance exceeds k can be discareded immediately. For
each of the remaining candidate locations, we employ the Constant-Time Jump
Algorithm of section 3. The following lemma shows that the number of locations
where the L1 distance is less than k is small.

Lemma 2. Assume the partial L1 distance was computed for the 2k rare symbols
in the pattern. Then there exist in the text at most 2n

√
log m√
k

locations where the
L1 distance is less than k.

Proof: By counting. Assume that for every text element ti, we had marked all
locations where a pattern occurrence would match ti. In other words, we mark
all locations i − j where ti = pj, where pj is one of the considered 2k pattern
symbols.

For reason similar to those in Lemma 1, there are at most 2n
√

log m√
k

locations
where there are more than k matches. However, every location where there are
not k matches has more than k mismatches and, by Observation 2, has L1

distance greater than k. Consequently, every location with L1 distance less than
k has at least k matches. So the total number of locations with L1 distance less
than k does not exceed 2n

√
log m√
k

. �

Verification: Each of the remaining O(n
√

log m√
k

) potential locations can be veri-
fied in time O(k) per location by the Constant-Time Jump Algorithm described
in section 3 for a total O(n

√
k log m) time.
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6 Discussion and Open Problems

It should be remarked that for k > m the algorithm to be used is that of
Lipsky [16] for a time of O(n

√
m log m). We should also explain the discrepancy

between our promissed time of O(n
√

k log k) and delivered time of O(n
√

k log m).
The reason is that our algorithm is intended for use only in case of m1/3 < k < m,
where log m = O(log k). For smaller k, we can adapt the algorithm of [6] to find
the L1 distance in time O((n + nk3

m ) log k). Details of this adaptation are left for
the journal version of this paper.

We believe that it is important to develop efficient algorithms for approximate
matching using various Minkowsky metrics as distance functions. We showed
here and algorithm for the L1 metric. A challenge would be an approximate
matching algorithm for the L∞ metric.
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Abstract. Indexing methods for the approximate string matching prob-
lem spend a considerable effort generating condensed neighborhoods.
Here, we point out that condensed neighborhoods are not a minimal
representation of a pattern neighborhood. We show that we can restrict
our attention to super condensed neighborhoods which are minimal. We
then present an algorithm for generating Super Condensed Neighbor-
hoods. The algorithm runs in O(mm/w�s), where m is the pattern size,
s is the size of the super condensed neighborhood and w the size of the
processor word. Previous algorithms took O(mm/w�c) time, where c is
the size of the condensed neighborhood. We further improve this algo-
rithm by using Bit-Parallelism and Increased Bit-Parallelism techniques.
Our experimental results show that the resulting algorithm is very fast.

1 Introduction

Approximate string matching is useful in areas of computer science as text
searching, pattern recognition, signal processing and computational biology. The
problem is to retrieve all segments, of a large text string whose edit distance to
a shorter pattern string is at most k. If the text is large enough, an efficient
algorithm must preprocess the text. This approach has been actively researched
in recent years [1, 3, 8, 10, 14, 16, 17]. Hybrid algorithms that divide their time
into a neighborhood generation phase and a filtration phase are the current state
of the art.

In this paper we focus our attention on improving the neighborhood genera-
tion phase of such algorithms.

2 Basic Concepts and Notation

2.1 Strings

Definition 1. A string is a finite sequence of symbols taken from a finite al-
phabet Σ. The empty string is denoted by ε. The size of a string S is denoted by
|S|.
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By S[i] we denote the symbol at position i of S and by S[i..j] the substring
from position i to position j or ε if i > j. Also we denote by S〈i〉 the point1 in
between letters S[i− 1] and S[i]. S〈0〉 represents the first point and S〈i− 1..j〉
denotes S[i..j].

2.2 Computing Edit Distance

Definition 2. The edit or Levenshtein distance between two strings ed(S, S′)
is the smallest number of edit operations that transform S into S′. We consider
as operations insertions (I), deletions (D) and substitutions (S).

For example: D S I
abcd

ed(abcd, bedf) = 3 bedf

The edit distance between strings S and S′ is computed by filling up a dy-
namic programming table D[i, j] = ed(S〈0..i〉, S′〈0..j〉), constructed as follows:

D[i, 0] = i, D[0, j] = j
D[i + 1, j + 1] = D[i, j], if S[i + 1] = S′[j + 1]

1 + min{D[i + 1, j], D[i, j + 1], D[i, j]}, otherwise
Table 1 is an example of the dynamic programming table D. According to

the definition,
ed(abbaa, ababaac) = ed(S, S′) = D[|S|, |S′|] = D[5, 7] = 2.

Table 1. Table D[i, j] for abbaa and ababaac.

col 0 1 2 3 4 5 6 7
row a b a b a a c

0 0 1 2 3 4 5 6 7

1 a 1 0 1 2 3 4 5 6

2 b 2 1 0 1 2 3 4 5

3 b 3 2 1 1 1 2 3 4

4 a 4 3 2 1 2 1 2 3

5 a 5 4 3 2 2 2 1 2

2.3 Finding Approximate Matches

For the purpose of finding matches, a useful variation of this table is table
D′[i, j] = min0≤l≤j{ed(S〈0..i〉, S′〈l .. j〉)}, computed as table D but setting
D[0, j] = 0, as shown in table 2.

According to the definition, line D′[|S|, j] stores the smallest edit distance
between S and a substring of S′ starting at some point l and ending at j. Suppose
1 The notion of point is superfluous but it helps in the definition of a simple and

coherent notation.
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Table 2. (Left)Table D′[i, j] for abbaa and ababaac. (Section 3) Improper canonical
paths are indicated by arrows, (Section 4) improper cell bits are indicated on trace-
backs. (Right) Binary representation of column 1.

col 0 1 2 3 4 5 6 7 V AL
row a b a b a a c 2 1 0
0 0 0 0 0 0 0 0 0

a ↑0 ↖0 1
... 1

. . . 1
... 1

. . . 1
. . . 1

...
1 1 0 1 0 1 0 0 1 0 0 0

b ↑0 0 ↑ ↖0 1
... 1

. . . 1
... 1

... 1
. . .

2 2 1 0 1 0 1 1 1 0 0 1

b ↑0 0 ↑ 0 ↑ ↖0 1
... 1

. . . 1
... 1

...

3 3 2 1 1 1 1 2 2 0 1 0

a ↑0 0 ↑ 0 ↑ ↖0 1
... 1

. . . 1
. . . 1

4 4 3 2 1 2 1 1 · · · 2 0 1 1

a ↑0 0 ↑ 0 ↑ 0 ↑ ↖0 1
... 1

. . . 1
. . .

5 5 4 3 2 2 2 1 2 1 0 0

we want to find all occurrences of abbaa in ababaac with at most one error. By
looking at row D′[5, j] we find out that such occurrences can end only in point
6. In particular there are two such occurrences ababaa and abaa.

Definition 3. A cell in D or D′ is active iff its value is smaller than k.

Take k = 1 for our example. In tables 1 and 2 inactive cells are shaded.
A complete up to date survey on this problem has been presented by Navarro

[12].

3 Indexed Approximate Pattern Matching

3.1 Overview

If we wish to find the occurrences of P in T in sub-linear time, i.e. O(|T |α) for
α < 1, we can use an index structure for T . Suffix arrays [13] and q-grams have
been proposed in the literature [8, 10].

These algorithms are hybrid in the sense that they find a tradeoff between
neighborhood generation and filtration techniques.

3.2 Neighborhood Generation

A first and simple-minded approach to the problem consists in generating all the
words at distance k from P and looking them up in the index.
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Definition 4. The k-neighborhood of S is Uk(S) = {S′ ∈ Σ∗ : ed(S, S′) ≤ k}

Since Uk(S) turns out to be quite large (|Uk(S)| = O(|S|k|Σ|k)) [15], we
restrict our attention to the condensed k-neighborhood.

Definition 5. The condensed k-neighborhood of S, CUk(S) is the largest subset
of Uk(S) whose elements S′ verify the following property: if S′′ is a proper prefix
of S′ then ed(S, S′′) > k.

Algorithm 1 generates CUk(P ) [2]2.

Algorithm 1 Condensed Neighborhood Generator Algorithm.
1: procedure Search(Search State s, Current String v)
2: if Is Match State(s) then
3: Report(v)
4: else if Extends To Match State(s) then
5: for z ∈ Σ do
6: s′ ← Update(s, z)
7: Search(s′, v.z)
8: end for
9: end if

10: end procedure
11: Search(〈0, 1, . . . , |P |〉, ε)

The search state (s) is a dynamic programming column of D associated to
P . The Is Match State predicate checks whether the last cell is active. The
Extends To Match State predicate checks whether there are active cells in
s. The Update procedure computes the dynamic programming column that
results from applying a to s.

For example, if s is column 5 of table 1, then the Is Match State predicate
returns false, since cell D[5, 5] is inactive. The Extends To Match State,
on the other hand, returns true, since cell D[4, 5] is active. The Update pro-
cedure computes column 6 from column 5 and a. When s is column 6, the
Is Match State evaluates to true and the algorithm reports ababaa as be-
ing at distance 1 from abbaa. This way column 7 never gets evaluated. Let us
skip line 5 for z = b. If z = c and s is column 5 then the Update proce-
dure returns 〈6, 5, 4, 3, 2, 2〉. In this case both the Is Match State and the
Extends To Match State predicates fail and the search backtracks.

The reason why the condensed neighborhood is important is that it represents
the k-neighborhood.

Lemma 1. If S ∈ Uk(S′) then some prefix of S is in CUk(S′).

2 We can shortcut the generate and search cycle by running algorithm 1 on the index
structure. For example in the suffix tree this can be done by using a tree node instead
of v.
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We can generalize the idea and think of representing Uk by substrings instead
of only by prefixes. This leads to the notion of super condensed neighborhood.

Definition 6. The super condensed k-neighborhood of S, SCUk(S) is the
largest subset of Uk(S) whose elements S′ verify the following property:

if S′′ is a proper substring of S′ then ed(S, S′′) > k.

The super condensed neighborhood represents the k-neighborhood as follows:

Lemma 2. If S ∈ Uk(S′) then some substring of S is in SCUk(S′).

In our example ababaa and abaa are in the condensed neighborhood of abbaa,
but only abaa is in the super condensed neighborhood.

It is easy to see that the Super Condensed k-neighborhood is minimal, since
any subset of Uk(P ) that represents it (as in lemma 2) must contain SCUk(P ),
for a word in SCUk(P ) can only be represented by itself.

Definition 7. A traceback is a pointer from cell D′[i, j] to a predecessor neigh-
bor cell, given by the following conditions:

vertical D′[i + 1, j]→ D′[i, j] iff D′[i + 1, j] = 1 + D′[i, j]
diagonal D′[i + 1, j + 1]→ D′[i, j] iff

D′[i + 1, j + 1] = 1 + D′[i, j] or S[i + 1] = S′[j + 1]
horizontal D′[i, j + 1]→ D′[i, j] iff D′[1, j + 1] = 1 + D′[i, j]

A canonical traceback for D′[i, j] is the first traceback that D′[i, j] has in the
ordering above.

A canonical path is a path in D′ made of canonical tracebacks. We refer to
a canonical path as improper if it ends in D[0, 0] (see table 2). The idea behind
canonical paths is that they always show the rightmost position of a minimal
match between S and a substring of S′.

Definition 8. A cell D′[i, j] is improper iff its canonical path is improper.

The denomination improper is motivated by the following lemma.

Lemma 3. If D′[i, j] is an improper cell then D[i, j] = D′[i, j].

This is a a direct consequence from the observation that improper cells start
matching from point 0 just like the cells in D. In fact the converse of the lemma
is also true.

Computing the super condensed neighborhood can also be done by algorithm 1
but we change our states to columns of D′ and restrict our attention to improper
active cells.

Observe that, in this version of the algorithm, the string ababaa is no longer
reported. In fact it can be seen that in column 4 of table 2 there are no active
improper cells and hence neither column 5 nor column 6 get evaluated.

A theoretical time analysis shows that this new algorithm runs in O(m2

|SCUk(P )|), while the previous algorithm takes O(m2|CUk(P )|).
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In [10] Myers proved that |CUk(P )| = O(|P |pow(|P |/k)), where:
pow(α) = log|Σ|

(α−1+
√

1+α−2)+1

(α−1+
√

1+α−2)−1
+ α log|Σ|(α−1 +

√
1 + α−2) + α

It is hard to improve on this bound for the super condensed neighborhood so
|SCUk(P )| = O(|P |pow(|P |/k)). However there is a clear practical improvement,
as we show in the results section.

4 Bit Parallel Implementation

Myers presented a way to parallelize the computation of D and D′ [11] that re-
duces the complexity of computing a dynamic programming table to O(m�m/w�)
were w is the size of the computer word. In our aplication the �m/w� tipicaly
takes the value 1 since m = Θ(logσ n) for hybrid algorithms.This leads to a
complexity of O(m).

Heikki Hyrrö presented a modification of Myers algorithm [5] that we will
now describe and extend to solve our problem.

Ukkonen was the first to notice the following properties of D and D′ [15]:

Diagonal Property D[i + 1, j + 1]−D[i, j] = 0 or 1
Vertical Adjacency Property D[i + 1, j]−D[i, j] = -1, 0 or 1
Horizontal Adjacency Property D[i, j + 1]−D[i, j] = -1, 0 or 1

The following bit-vectors can then be used to represent and compute columns
of D′.

Vertical Positive V P [i + 1, j] = 1 iff D[i + 1, j]−D[i, j] = 1
Vertical Negative V N [i + 1, j] = 1 iff D[i + 1, j]−D[i, j] = −1
Horizontal Positive HP [i, j + 1] = 1 iff D[i, j + 1]−D[i, j] = 1
Horizontal Negative HN [i, j + 1] = 1 iff D[i, j + 1]−D[i, j] = −1
Diagonal Zero D0[i + 1, j + 1] = 1 iff D[i + 1, j + 1] = D[i, j]
Pattern Match Vectors PMz[i] = 1 iff P [i] = z, for each z ∈ Σ

The above bit-vectors are packed in computer words along i, i.e. by columns.
In algorithm 2 we show how to compute a column of D′.

The procedure Update of algorithm 2 is essentially the algorithm explained
in the original work on bit parallelism [5, 11].

We will now show how the Update Proper Cells procedure works. We
define an improper cell vector CP1 to account for improper cells.

Improper Cells CP1[i, j] = 1 iff D′[i, j] is a proper cell.

Table 2 shows an example of this computaion. Since we assume the bit vectors
are of size m we can’t store this information for the cells in row 0. This is not a big
problem since apart, except for cell D′[0, 0], all other D′[0, j] cells are inactive.
Special care must hence be taken to update the proper cells of column 1. This
can be done by suffices changing the 1 in line 26 for V P &1.

The single purpose of line 23 is to discover whether the first improper cell in a
column will became proper in the next column. For example, in table 2, the first
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Algorithm 2 Bit-Parallel Algorithm, bitwise operations in C-style.
1: procedure Initialize(Pattern P )
2: V P ← (1m)2
3: V N ← (0m)2
4: For z ∈ Σ Do PMz ← (0m)2
5: For 1 ≤ i ≤ m Do PMP [i]| ← 2i−1

6: CP1 ← 0
7: V AL0 ← (10101010 . . . )2
8: V AL1 ← (01100110 . . . )2

9:
...

10: return V P, V N, CP1, V AL0, . . . , V AL�log m�−1

11: end procedure
12: procedure Update( Previous Column (V P, V N, CP1, V AL0, . . . ,

V AL�log m�−1), Letter z)
13: D0 ← (((PMz & V P ) + V P )∧V P )|PMz|V N
14: HP ← V N | ∼ (D0|V P )
15: HN ← V P & D0
16: V AL0, . . . , V AL�log m� ← Carry Effect( HP, HN, V AL0, . . . ,

V AL�log m�−1)
17: V P ← (HN << 1)| ∼ (D0|(HP << 1))
18: V N ← (HP << 1) & D0
19: CP1 ← Update Proper Cells(CP1, PMz, HN, V N, V P )
20: return V P, V N, CP1, V AL0, . . . , V AL�log m�−1

21: end procedure
22: procedure Update Proper Cells(CP1, PM, HN, V N, V P )
23: CP1 ← ((PM |HN | ∼ V N) & ((CP1 << 1)|1))|CP1
24: CP1| ← V P
25: CP1 ← (CP1 >> 1)
26: CP1 ← (CP1 + 1)∧CP1
27: return CP1
28: end procedure
29: procedure Carry Effect(HP, HN, V AL0, . . . , V AL�log m�−1)
30: carry ← HP | HN
31: V AL0 ← carry∧V AL0

32: carry & ← HN∧V AL0

33: V AL1 ← carry∧V AL1

34: carry & ← HN∧V AL1

35:
...

36: V AL�log m�−1 ← carry∧V AL�log m�−1

37: end procedure

improper cell of column 3 is D′[3, 3]. What line 1 does is to check whether the
canonical traceback of D′[3, 4] is non-horizontal. An horizontal canonical trace-
back respects the condition ∼ PM& ∼ HN&V N , (see cells D′[3, 6], D′[3, 7],
D′[4, 6] and D′[4, 7]).
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Line 24 of algorithm 2 adds the vertical dependences to the list of improper
cells since, if a cell has a vertical canonical traceback to a proper cell, then it
is also proper. By introducing vertical dependencies line 24 also activates some
unnecessary bits. In order to determine which bits actually represent improper
cells we shift CP1 (line 25) and send a carry through it (line 26). The carry
stops in the last improper cell. Finally we clean up the unnecessary bits and
restore the ones eliminated by the carry by doing a xor with the previous CP1
(line 26). The ∼ CP1 provides a mask of improper cells.

Keeping track of which cells are active can be done in several ways.

WHILE Keeping a pointer to the lowest active cell and moving upwards.
NFA Using a bit parallel implementation of an NFA for approximate pattern

matching [17] similar to [13].
CARRY Storing the values of D′ in computer words.

The pointer solution is as far as we know the standard solution to this problem.
If k is small the NFA solution becomes viable since it uses k state vectors, i.e.
computer words.

The idea of the CARRY solution is to store the values of D′ in an unorthodox
way. Values are stored across computer words instead of in a single one. This so-
lution requires �log |P |� computer words, the VAL vectors. We define V ALk[i, j]
as the (k + 1) digit in the binary representation of D′[i, j]. For an example, see
table 2.

Updating the VAL vectors is a matter of simulating the carry effect of the
ALU. This is implemented in the Carry Effect procedure. We propagate the
addition and subtraction carries in the same word.

It is enough to identify active cells whose value is k. In our example this can
be done by evaluating ∼ VAL0 & VAL1 & ∼ VAL2.

A final improvement is to adapt the previous algorithm so that it works in
an increased bit-parallelism fashion [7]. The idea of increased bit parallelism is
to tile the computer word with more than one D′ column and compute more
than one D′ column per instruction. In this approach the algorithm that is used
is essentially the same but one must redefine the “+”, “>>”, “<<” operations
to respect the column boundaries. The 1’s must also be replaced accordingly.

Our approach was to move the instruction 6 of algorithm 1 to the exterior of
the for cycle (instruction 5). In this case we had to make the Update procedure
update the column for all the letters of Σ. This was done by concatenating all
the PMz vectors into a single PM vector. We also had to copy the values of the
D′ column |Σ| times into the computer word just before instruction 7. This was
done by >> and | operations.

5 Experimental Results

We investigated the ratio between the average size of the condensed neighbor-
hood versus the size of super condensed neighborhood (figure 1). This was done
by generating the neighborhoods of 50 random patterns.
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Next we verified that this ratio among averages translated into the time
performance of the algorithm for patterns of size 16 where no partition occurs
(table 3). This was done by comparing Myers implementation with ours. For this
we tested 1000 random patterns on random text. These implementations do not
yet resort to bit-parallelism.

These tests were performed in a 2.40 Ghz Intel Xeon processor, 4 GB RAM,
Linux OS 2.4.20-28.7smp and gcc 2.96.

Fig. 1. Average size of the condensed neighborhood versus the super condensed neigh-
borhood for |P | = 16 and |Σ| = 2 (left), |P | = 6 and |Σ| = 16 (right).

Table 3. Average time of Myers algorithm for |P | = 16 and |Σ| = 2.

Errors 1 2 3 4 5 6 7 8

CU − time(ms) 1.31 1.59 3.24 7.95 13.15 11.71 7.15 4.21

SCU − time(ms) 1.28 1.54 2.38 3.28 3.59 3.27 2.98 2.41

Finally we tested the bit-parallel version and the increased bit-parallel version
for patterns of size 8 using a 800MHz PowerPC G3 processor with 512K level 2
cache 640MB SDRAM, Mac Os X 10.2.8 and gcc 3.3. The results are shown in
Table 43.

The first row shows the times needed to generate Condensed Neighborhoods
while the next three rows show the times needed to generate Super Condensed
Neighborhoods with our three alternatives. The three final rows show the times

3 Please note that some of the results in table 4 are out of the sub-linear region of the
index. This will be corrected by extending our prototype to larger |Σ|. The graphics
in figure 1 show that this should produce even better results.
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Table 4. Bit-parallel and increased bit-parallel algorithms in milliseconds.

|Σ| = 2 |Σ| = 4
k = 2 k = 4 k = 2 k = 4

CUk 0.036 0.013 1.038 20.459

SCUk-WHILE 0.013 0.005 0.378 0.356
SCUk-NFA 0.012 0.008 0.293 0.566
SCUk-CARRY 0.012 0.004 0.297 0.312

SCUk-INC-WHILE 0.011 0.004 0.254 0.225
SCUk-INC-NFA 0.009 0.006 0.132 0.249
SCUk-INC-CARRY 0.009 0.003 0.125 0.142

needed to generate Super Condensed Neighborhoods using increased bit paral-
lelism.

Tables 4,3 and the graphics in Figure 1 show clearly the advantages of the
techniques described in this work, both in terms of the neighborhood size and
the speedup obtained by the bit parallel algorithms.

6 Conclusions and Future Work

In this work, we propose to address the problem of indexed approximate pattern
matching by restricting our attention to super condensed neighborhoods. We
have shown that this entailed a significant time improvement that was verified
by experimental results.

Arguments of the same nature have been used before. In fact an early exploit
of the Super Condensed Neighborhood idea was an heuristic used in [13]. The
idea was that it is enough to find those matches to P that begin by matching one
of its first k + 1 characters. The condition obviously guarantees that in column
1 there will be no improper active cells. A refinement of this idea has also been
presented in [6]. Our algorithm generalizes all these cases.

More recently the authors of [8] presented the notion of artificial prefix-
stripped length-q neighborhood, that modifies the condensed neighborhood in
a way that adapts to Myers algorithm but that it not minimal. The notion
of super condensed neighborhood had in fact been considered by the previous
authors4 and also in [4].

We proposed an algorithm for generating super condensed neighborhoods
that adapts very well to a bit-parallel and increased bit-parallel approaches.
To achieve this we proposed a new way of managing the active cells that clearly
outperformed previous methods and adapted much better to increased bit-par-
allelism.

The results show that the use of Super Condensed Neighborhood speeds up
the generation of the neighborhood by a significant factor that increases with
the alphabet size and the error level.

4 Personal communication.
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Finally we would like to point out that this work is by no means finished.
Our prototype must be extended to deal with larger |Σ| and tested on the hybrid
index [13]. The algorithm should also benefit greatly from an improvement like
the one proposed in [9], specially since our binary representation is suitable
for the necessary test predicates and this reduces the theoretical complexity
truly to O(ms). This would minimize the effect of the copy phase. Additionally
our approach to increased bit-parallelism is still a bit naive. In particular we
believe that there should be a way to squeeze more bits into the computer word,
eventually by altering the copy phase.
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Abstract. In the median problem, we are given a distance or dissim-
ilarity measure d, three genomes G1, G2, and G3, and we want to find
a genome G (a median) such that the sum

∑3
i=1 d(G, Gi) is minimized.

The median problem is a special case of the multiple genome rearrange-
ment problem, where one wants to find a phylogenetic tree describing
the most “plausible” rearrangement scenario for multiple species. The
median problem is NP-hard for both the breakpoint and the reversal
distance [5, 14]. To the best of our knowledge, there is no approach yet
that takes biological constraints on genome rearrangements into account.
In this paper, we make use of the fact that in circular bacterial genomes
the predominant mechanism of rearrangement are inversions that are
centered around the origin or the terminus of replication [8, 10, 18]. This
constraint simplifies the median problem significantly. More precisely, we
show that the median problem for the reversal distance can be solved in
linear time for circular bacterial genomes.

1 Introduction

During evolution, the genomic DNA sequences of organisms are subject to
genome rearrangements such as transpositions (where a section of the genome
is excised and inserted at a new position in the genome, without changing ori-
entation) and inversions (where a section of the genome is excised, reversed in
orientation, and re-inserted). In unichromosomal genomes, the most common re-
arrangements are inversions, which are usually called reversals in bioinformatics.
In the following, we will focus on unichromosomal genomes and use the terms
“inversion” and “reversal” synonymously. The study of genome rearrangements
started more than 65 years ago [7], but interest on the subject has flourished in
the last decade because of the progress in large-scale sequencing. In the context
of genome rearrangement, a genome G is typically viewed as a signed permuta-
tion, where each integer corresponds to a unique gene and the sign corresponds
to its orientation. A + (−) sign means that the gene lies on the leading (lagging)
DNA strand.

Consider two genomes G1 = (π1, . . . , πn) and G2 = (γ1, . . . , γn) on the same
set of genes {1, . . . , n}. Two adjacent genes πi and πi+1 in G1 determine a
breakpoint in G1 w.r.t. G2 if and only if neither πi precedes πi+1 in G2 nor

A. Apostolico, M. Crochemore, and K. Park (Eds.): CPM 2005, LNCS 3537, pp. 116–127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Genome (+1,−2, +3, +4,−5, +6,−7,−8) before and after the inversion ρ(3, 6).

−πi+1 precedes −πi in G2. The breakpoint distance bd(G1, G2) between G1 and
G2 is defined as the number of breakpoints in G1 w.r.t. G2 [13, 19]. This is
clearly equal to the number of breakpoints in G2 w.r.t. G1. In other words, the
breakpoint distance between G1 and G2 is the smallest number of places where
one genome must be broken so that the pieces can be rearranged to form the
other genome.

Given a genome G = (π1, . . . , πi−1, πi . . . , πj , πj+1, . . . , πn), a reversal ρ(i, j)
applied to G reverses the segment πi, . . . , πj and produces the permutation
Gρ(i, j) = (π1, . . . , πi−1,−πj ,−πj−1, . . . ,−πi+1,−πi, πj , πj+1, . . . , πn) (see Fig-
ure 1 for an illustration). Given two genomes G1 and G2, the reversal distance
rd(G1, G2) between them is defined as the minimum number of reversals required
to convert one genome into the other. (The phrase sorting by reversals refers to
the equivalent problem of finding the minimum number of reversals required to
convert a permutation π into the identity permutation.) The study of the rever-
sal distance was pioneered by Sankoff [15] and has received increasing attention
in recent years. There are dozens of papers on the subject; see e.g. [1, 2, 9, 11]
and the references therein.

As already mentioned, the median problem is NP-hard for both the break-
point and the reversal distance [5, 14]. That is the reason why researchers de-
veloped heuristics to solve the median and the multiple genome rearrangement
problem. For the breakpoint-based multiple genome rearrangement problems
very good heuristics exist [3, 16]. These rely on the ability to solve the breakpoint
median problem by reducing it to the Traveling Salesman Problem. Solutions to
the reversal median problem can be found in [4, 6, 12, 17]. There is a dispute
about the “right” distance in multiple genome rearrangement problems. While
[3, 16] argue that the breakpoint distance is the better choice, [12] conjecture that
the usage of the reversal distance yields better phylogenetic reconstructions. Fur-
thermore, [4] discusses some advantages of the reversal distance approach over
the breakpoint distance approach.

2 Inversions Around the Origin of Replication

In this paper, we study the median problem (unless stated otherwise, the term
median problem refers to the reversal median problem) for circular bacterial
genomes. As mentioned earlier, it has been observed [8, 10, 18] that inversions
within circular bacterial genomes are centered around the origin or the terminus
of replication. That is, the genes keep their distance to the origin O and the
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Fig. 2. Left: A cartoon representation of a circular bacterial genome. Of course, bacteria
have hundreds, or even thousands, of genes. Moreover, a bacterial genome does not have
long stretches of DNA without genes. Right: The same genome after the inversion ρ(4).

terminus T of replication under a reversal, but they are translocated to the
opposite DNA strand and thus change their orientation.

As usual in the comparison of genomes on the gene level, we assume that
the genomes have the same set {1, . . . , n} of unique genes and that inversions
do not cut genes. As a consequence, genes may neither overlap on the same
DNA strand nor on different DNA strands. In our model, in which inversions
around the origin/terminus of replication are the predominant mechanism of
rearrangement, it is further assumed that in each genome, these n genes occur
in the same order w.r.t. the distance to the origin of replication.

Because the genes keep their distance to O, we enumerate them in increas-
ing distance to the origin. That is, starting with the origin of replication, we
simultaneously traverse both DNA strands of the circular genome in clockwise
and counterclockwise order. This process ends when the terminus of replication
is reached and it divides the circular genome into two halves. The clockwise
traversal yields the right half and the counterclockwise traversal yields the left
half. A gene encountered gets the next number (the first gene gets number 1).
If this gene is lying on the leading strand, it is labeled with a + sign, otherwise
it gets a − sign. If it was encountered in the clockwise (resp. counterclockwise)
direction, its labeled number is put to the right (resp. left) of the origin O and a
0 to the left (resp. right) of O, which for better readability will be denoted by the
symbol |. For example, if the first gene is encountered in the counterclockwise
direction and is lying on the leading strand, then this yields (+1 | 0).

(+10, 0, 0, 0, +6,−5, 0, 0,+2, 0 | +1, 0,−3,−4, 0, 0,−7,−8, +9, 0) is a more
complex example, which is shown in Figure 2.

In what follows, ρ(i) denotes an inversion centered around the origin of repli-
cation that acts on the ith nearest genes of O. Furthermore, we will use postfix
notation to denote the application of a reversal to a genome. For example,
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(+10, 0, 0, 0, +6,−5, 0, 0, +2, 0 | +1, 0,−3,−4, 0, 0,−7,−8,+9, 0) ρ(4)
= (+10, 0, 0, 0, +6,−5, +4, +3, 0,−1 | 0,−2, 0, 0, 0, 0,−7,−8, +9, 0)

Similarly, ρ(i) denotes an inversion centered around the terminus of replication
that acts on the ith nearest genes of T . As an example consider

(+10, 0, 0, 0, +6,−5, 0, 0, +2, 0 | +1, 0,−3,−4, 0, 0,−7,−8,+9, 0) ρ(2)
= (0,−9, 0, 0, +6,−5, 0, 0, +2, 0 | +1, 0,−3,−4, 0, 0,−7,−8, 0,−10)

Next, we will simplify the above representation without loosing any informa-
tion. (+10, 0, 0, 0, +6,−5, 0, 0, +2, 0 | +1, 0,−3,−4, 0, 0,−7,−8,+9, 0), for exam-
ple, will be represented by the bit vector (1, 0, 1, 1, 0, 0, 1, 1, 1, 0) and the orien-
tation vector (+,−,−,−, +,−,−,−, +,−). In the bit vector, a 1 (resp. 0) at
position p means that the gene with number p is located in the right (resp. left)
half of the circular bacterial genome. Furthermore, a + (resp. −) sign in the
orientation vector at position p means that the gene lies on the leading (resp.
legging) strand if it is in the right half (i.e., if there is a 1 at position p in the
bit vector). Otherwise, if the gene is in the left half (i.e., there is a 0 at position
p in the bit vector), a + (resp. −) sign at position p means that the gene lies on
the legging (resp. leading) strand. With this definition, the orientation vector is
invariant (i.e., it does not change) under inversions around O and T . In the fol-
lowing, the orientation vector will hence not be mentioned explicitly. Therefore,
the preceding inversions are modeled by

(1, 0, 1, 1, 0, 0, 1, 1, 1, 0) ρ(4) = (0, 1, 0, 0, 0, 0, 1, 1, 1, 0)

(1, 0, 1, 1, 0, 0, 1, 1, 1, 0) ρ(2) = (1, 0, 1, 1, 0, 0, 1, 1, 0, 1)

Lemma 1. The composition of inversions is commutative and associative.

Proof. Let ρ1, ρ2, and ρ3 be inversions. We have ρ1 ·ρ2 = ρ2 ·ρ1 (commutativity)
and (ρ1 · ρ2) · ρ3 = ρ1 · (ρ2 · ρ3) (associativity) because every gene is inverted the
same amount of times on either side of the respective equation.

An important consequence of the preceding lemma is that reordering any
sequence of inversions does not change the result.

Note that every reversal ρ has an inverse, viz. ρ itself because ρ · ρ = id.

Lemma 2. Let ρ1, ρ2, . . . , ρk be reversals. Then Gρ1 · ρ2 · · · ρk = G′ if and only
if G′ρ1 · ρ2 · · · ρk = G.

Proof. For k = 1, this follows from Gρ1 = G′ ⇔ Gρ1 · ρ1 = G′ρ1 ⇔ G = G′ρ1.
Now the claim follows by induction on k in conjunction with Lemma 1.

The inverse inv(G) of a genome G is defined by inv(G) := Gρ(n), where
ρ(n) := ρ(n) = ρ(n). Given reversal ρ, a reversal σ satisfying ρ(n) · ρ = σ is
called the complementary reversal of ρ.

Lemma 3. Every reversal ρ has a (unique) complementary reversal σ.

Proof. If ρ = ρ(i), then σ = ρ(n − i) because ρ(n) · ρ(i) = ρ(n− i). Otherwise,
if ρ = ρ(i), then σ = ρ(n− i) because ρ(n) · ρ(i) = ρ(n− i).
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Fig. 3. Breakpoints between two genomes, here depicted by colons.

3 The Reversal Distance

Let (b1, b2, b3, . . . , bn) be the bit vector representation of a circular bacterial
genome G. In the rest of the paper, we will just speak of genome G, that is,
we omit the phrase “circular bacterial”. Furthermore, we will use the following
notations for 1 ≤ i ≤ j ≤ n: G[i] = bi and G[i..j] = (bi, . . . , bj).

Given two genomes G and G′, we fix one of the genomes, say G′, and try to
transform G into G′ by as few inversions as possible.

Definition 4. Let G = (b1, b2, b3, . . . , bn) and G′ = (b′1, b
′
2, b

′
3, . . . , b

′
n) be two

circular genomes.

1. An interval [i..j] of indices (where 1 ≤ i ≤ j ≤ n) is called a strip if bk = b′k
for all i ≤ k ≤ j, bi−1 �= b′i−1 if i �= 1, and bj+1 �= b′j+1 if j �= n.

2. If [i..j] is a strip, then (i − 1, i) (if i �= 1) and (j, j + 1) (if j �= n) are
breakpoints between G and G′.

Figure 3 shows two genomes G and G′ with three breakpoints. Note that if
G = inv(G′), then there is no strip, hence no breakpoint between them. Thus,
if there is no breakpoint between G and G′, then either G = G′ or G = inv(G′).

Lemma 5. Let G, G′ and ρ(i) with 1 ≤ i ≤ n− 1 be given.

1. For all (j, j + 1) with either 1 ≤ j < i or i < j < n we have: (j, j + 1) is a
breakpoint between G and G′ if and only if (j, j + 1) is a breakpoint between
Gρ(i) and G′.

2. (i, i + 1) is a breakpoint between G and G′ if and only if (i, i + 1) is not a
breakpoint between Gρ(i) and G′.

Proof. (1) If i < j < n, then there is nothing to show because ρ(i) has no effect
on the genes j and j + 1. Suppose 1 ≤ j < i. The following equivalences hold:

(j, j + 1) is a breakpoint between G and G′

⇔ either (bj = b′j and bj+1 �= b′j+1) or (bj �= b′j and bj+1 = b′j+1)
⇔ either (inv(bj) �= b′j and inv(bj+1) = b′j+1)

or (inv(bj) = b′j and inv(bj+1) �= b′j+1)
⇔ (j, j + 1) is a breakpoint between Gρ(i) and G′

(2) This case follows by a similar reasoning as in (1).

Of course, a similar statement holds when ρ(i) is replaced with ρ(i). This is
also true for the following corollary, which follows from the preceding lemma.



The Median Problem for the Reversal Distance 121

Corollary 6. Let G, G′ and ρ(i) with 1 ≤ i ≤ n− 1 be given.

1. If (i, i+1) is a breakpoint between G and G′, then the number of breakpoints
between Gρ(i) and G′ is one less than the number of breakpoints between G
and G′.

2. If (i, i + 1) is not a breakpoint between G and G′, then the number of break-
points between Gρ(i) and G′ is one more than the number of breakpoints
between G and G′.

First, we consider the case in which only inversions around the origin of
replication are allowed. The following simple procedure rd O(G, G′) returns the
reversal distance between two genomes G and G′, using inversions around O
only. (The procedure rd T (G, G′) that returns the reversal distance between G
and G′ using inversions around T only is defined similarly.)

procedure rd O(G, G′)
determine the breakpoints (i1, i1 + 1), . . . , (ik, ik + 1) between G and G′

if Gρ(i1) · · · ρ(ik) = G′ then return k else return k + 1

The correctness of procedure rd O(G, G′) is a direct consequence of Corollary
6. Each reversal ρ(i1), . . . , ρ(ik) removes one breakpoint, so that there is no
breakpoint between Gρ(i1) · · · ρ(ik) and G′. Hence, we have Gρ(i1) · · · ρ(ik) = G′

or Gρ(i1) · · · ρ(ik) = inv(G′). In the latter case, k must be incremented by 1
because ρ(n) has to be applied to make the genomes equal. It is easy to see that
in both cases the algorithm returns the minimum number of inversions needed
to transform G into G′.

Since the breakpoints (i1, i1 + 1), . . . , (ik, ik + 1) between G and G′ can be
determined in O(n) time and also the test as to whether two genomes are equal
requires O(n) time, the worst case running time of the procedure is O(n).

Next, we consider the general case in which both inversions around the origin
and the terminus of replication are allowed.

procedure rd(G, G′)
if G and G′ do not have a breakpoint then

if G = G′ then return 0 else return 1
else

choose a strip [i..j]
kl := rd O(G[1..i− 1], G′[1..i− 1])
kr := rd T (G[j + 1..n], G′[j + 1..n])
return (kl + kr)

Procedure rd(G, G′) returns the minimum number of inversions needed to
transform G into G′ because each inversion removes one breakpoint. The trans-
formed genome must be equal to G′ (i.e., it cannot be inv(G′)) because the
chosen strip is not changed by the inversions. Furthermore, procedure rd(G, G′)
runs in linear time because the procedures rd O and rd T do so.
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4 The Median Problem for the Reversal Distance

Recall that in the median problem we want to find a genome G (a median)
such that

∑3
i=1 rd(G, Gi) is minimized. In the following, let dm(G1, G2, G3) =

min{
∑3

i=1 rd(G, Gi) | G is a genome}. Furthermore, for b1, b2, b3 ∈ {0, 1} let

majority(b1, b2, b3) =
{

1 if
∑3

j=1 bj ≥ 2
0 otherwise

Again, we first consider the case in which only inversions around the origin of
replication are allowed. In this case, the following procedure median O returns
a median, as shown in Theorem 7. (The procedure median T that returns a
median using inversions around T only is defined analogously.)

procedure median O(G1, G2, G3) / � where Gj = (bj
1, b

j
2, b

j
3, . . . , b

j
n) � /

d := 0
for i := n downto 1 do

b := majority(b1
i , b

2
i , b

3
i )

if there is a j, 1 ≤ j ≤ 3, such that bj
i �= b then

Gj := Gjρ(i)
d := d + 1

return (G1, d)

If we would really apply the reversals to the genomes (in line 5 of the proce-
dure), then median O(G1, G2, G3) would take quadratic time. However, a linear
time implementation is possible by simply counting the number of times a gene
i was inverted in genome Gj . If it was flipped an even number of times giving
G′

j , then G′
j [1..i] = Gj [1..i]. Otherwise, if it was flipped an odd number of times,

then G′
j [1..i] = inv(Gj [1..i]).

Theorem 7. If procedure median O(G1, G2, G3) returns the pair (G, d), then
G is a median of the three genomes Gj = (bj

1, b
j
2, b

j
3, . . . , b

j
n), 1 ≤ j ≤ 3, using

inversions around O only, and d is the number of required reversals.

Proof. We proceed by induction on the length n of the genomes. The case
n = 1 is trivial. According to the inductive hypothesis, procedure median O
returns a median of three genomes of size n − 1. For 1 ≤ j ≤ 3, let G′

j =
(bj

1, b
j
2, b

j
3, . . . , b

j
n−1). If b1

n = b2
n = b3

n, then an application of the inductive hy-
pothesis to G′

1, G
′
2, and G′

3 proves the theorem. Otherwise, there is a bit, say
b3
n, such that b1

n = b2
n �= b3

n. Hence procedure median O first applies ρ(n) to
G3, i.e., it inverts G3, and then computes a median G′ = (b̂j

1, b̂
j
2, b̂

j
3, . . . , b̂

j
n−1)

of G′
1, G

′
2, and inv(G′

3). Let d′ = rd(G′, G′
1) + rd(G′, G′

2) + rd(G′, inv(G′
3)) and

G = (b̂j
1, b̂

j
2, b̂

j
3, . . . , b̂

j
n−1, b

1
n). Clearly,

∑3
j=1 rd(G, Gj) = d′ + 1.

In order to prove that G is a median of G1, G2, and G3, it suffices to show
that the bit representation of nth gene of a median cannot be b3

n. For an indirect
proof, suppose the contrary. Then, in an optimal sequence of inversions that
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transforms G1 (G2) into a median, there must be one that inverts the whole
genome. According to Lemma 1, we may assume that this inversion is the first
in the sequence. Procedure median O applied to inv(G′

1), inv(G′
2), and G′

3 gives
a median G̃′ = (b̃j

1, b̃
j
2, b̃

j
3, . . . , b̃

j
n−1) of these. It is not difficult to see that

rd(G̃′, inv(G′
1)) + rd(G̃′, inv(G′

1)) + rd(G̃′, G′
3) = d′

because the two problems under consideration are equivalent (inverting all genes
in one problem yields the other problem). G̃ = (b̃j

1, b̃
j
2, b̃

j
3, . . . , b̃

j
n−1, b

3
n) cannot

be a median of G1, G2, and G3 because
∑3

j=1 rd(G̃, Gj) = d′ + 2 > d′ + 1 =∑3
j=1 rd(G, Gj). This contradiction shows that the bit representation of the nth

gene of a median cannot be b3
n.

Next, we consider the median problem in which both inversions around the origin
and the terminus of replication are allowed. We distinguish between two cases:
(a) G1, G2, and G3 have a common bit and (b) G1, G2, and G3 do not have a
common bit.

Definition 8. We say that i is a common bit of the genomes G1, G2, and G3

if G1[i] = G2[i] = G3[i].

Lemma 9. Suppose G′ρ1 ·ρ2 · · · ρk = G and G′[i] = G[i], that is, i is a common
bit of G and G′. Then there are inversions ρ′1 ·ρ′2 · · · ρ′k such that G′ρ′1 ·ρ′2 · · · ρ′k =
G and each ρ′j does not invert the ith gene.

Proof. If there is an inversion that inverts the ith gene, then there must be
an inversion that inverts it back. If both are inversions around O (a similar
statement holds if both act around T ), say ρ(p) and ρ(q), then they can be
replaced by the inversions ρ(n− p) and ρ(n− q) around T . These do not invert
the ith gene; see Figure 4.

If one is an inversion around O, say ρ(q), and the other is an inversion
around T , say ρ(p), then they can be replaced with the inversions ρ(n− p) and
ρ(n− q). These do not invert the ith gene; see Figure 4. Now the lemma follows
by induction on the number of inversions in ρ1 ·ρ2 · · · ρk that invert the ith gene.

If G1, G2, and G3 have a common bit, the following procedure computes a
median; see Theorem 10.

procedure median cb(G1, G2, G3)
determine a common bit i of G1, G2, and G3

(Gl, dl) := median O(G1[1..i− 1], G2[1..i− 1], G3[1..i− 1])
(Gr, dr) := median T (G1[i + 1..n], G2[i + 1..n], G3[i + 1..n])
return (GlG1[i]Gr, dl + dr)

Procedure median cb(G1, G2, G3) runs in linear time because the procedures
median O and median T do so.
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ρ(q)

TO
i

ρ(n − q)

ρ(n − p)

TO
i

ρ(p)

ρ(n − q)

ρ(p)

ρ(q)

ρ(n − p)

O

O T
i

T
i

Fig. 4. Left: Two inversions around the origin of replication inverting the same gene
i can be replaced by two inversions around the terminus, both not changing gene i.
Right: Two inversions (one around the origin and the other around the terminus) that
both invert the same gene i can be replaced by two different inversions (again one
around the origin and the other around the terminus) that both do not invert gene i.

Theorem 10. If G1, G2, and G3 have a common bit, then median cb(G1, G2,
G3) returns a pair (G, d) such that G is a median of the three genomes and
d = dm(G1, G2, G3).

Proof. We claim that if there is a median G′ of G1, G2, and G3, such that
G′[i] �= G1[i] = G2[i] = G3[i], then there is another median G such that G[i] =
G1[i] = G2[i] = G3[i].

Let G′ be such a median of G1, G2, and G3. Then, for 1 ≤ j ≤ 3, there are
inversions such that Gjρ

j
1 · ρ

j
2 · · · ρ

j
�j

= G′ and �1 + �2 + �2 is minimal. Because

G′[i] �= G1[i] = G2[i] = G3[i], in each Gjρ
j
1 · ρ

j
2 · · ·ρ

j
�j

= G′, 1 ≤ j ≤ 3, the ith

gene must have been inverted. By Lemma 1, we may assume that ρj
�j

inverts
the ith gene. Moreover, according to Lemma 9, we may assume that none of the
other inversions inverts the ith gene.

(a) Suppose that ρ1
�1

, ρ2
�2

, and ρ3
�3

all act around O, say ρj
�j

= ρ(lj) (for T ,
the reasoning is verbatim the same). Then inverting the complementary regions
yields a median G with G[i] = G1[i] = G2[i] = G3[i]; see Figure 5. To be precise,
G = Gjρ

j
1 · ρ

j
2 · · · ρ

j
�j−1 · ρ(n− lj) for every j with 1 ≤ j ≤ 3.

(b) Suppose that ρ1
�1

, ρ2
�2

, and ρ3
�3

do not act around the same spot, say
ρ1

�1
= ρ(l1) and ρ2

�2
= ρ(l2) act around O, but ρ3

�3
= ρ(r3) acts around T . Again,

inverting the complementary regions yields a median G with G[i] = G1[i] =
G2[i] = G3[i]; see Figure 5. More precisely, G = Gjρ

j
1 · ρ

j
2 · · · ρ

j
�j−1 · ρ(n− lj) for

1 ≤ j ≤ 2 and G = G3ρ
3
1 · ρ3

2 · · · ρ3
�3−1 · ρ(n− r3).

Thus, there is also a median G of G1, G2, and G3 such that G[i] = G1[i] =
G2[i] = G3[i]. Then, according to Lemma 9, Gj can be converted to G by (the
same number of) inversions that do not invert the ith gene. That is, some of
the inversions act only on the genes left to index i, while the others act only
on the genes right to index i. In other words, G = GlG1[i]Gr, where Gl (Gr)
is a median of G1[1..i− 1], G2[1..i− 1], and G3[1..i− 1] obtained by inversions
around O (G1[i + 1..n], G2[i + 1..n], and G3[i + 1..n] obtained by inversions
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O

i

T
l3 n − l3

l1
l2

n − l1
n − l2

r3

l1
l2
n − r3

n − l1
n − l2

i

O T

Fig. 5. Left: Case (a) of the proof of Theorem 10. Right: Case (b) of that proof.

around T ). Therefore, the correctness of procedure median cb is a consequence
of the correctness of the procedures median O and median T .

Now we consider the last case, in which G1, G2, and G3 do not have a common
bit. It can be shown (see Theorem 13) that in this case the following procedure
median ncb(G1, G2, G3) returns a median of the three genomes. Moreover, the
procedure runs in linear time because the procedures median cb and rd do so.

procedure median ncb(G1, G2, G3)
if two genomes coincide, say Gi = Gj with i �= j then return (Gi, 1)
else if one of the genomes is the inverse of another, say Gi = inv(Gj) with i �= j

then return (Gi, 1 + rd(Gi, Gk)) where k ∈ {1, 2, 3} \ {i, j}
else / � Gi �= Gj and Gi �= inv(Gj) for all i �= j � /

(G′, d′) := median cb(inv(G1), G2, G3)
d′
1 := rd(inv(G1), G2) + rd(inv(G1), G3)

if d′
1 = d′ then return (G1, d

′)
else return (G′, d′)

Due to space limitations, the proofs of the following lemmata are omitted.

Lemma 11. If G and G′ are two genomes such that neither G = G′ nor
inv(G) = G′, then rd(G, G′) = rd(inv(G), G′).

Lemma 12. Let G1, G2, and G3 be genomes such that Gi �= Gj and Gi �=
inv(Gj) for all i �= j. Then the following statements are equivalent for {i, j, k} =
{1, 2, 3}:

1. dm(inv(Gi), Gj , Gk) = rd(inv(Gi), Gj) + rd(inv(Gi), Gk)
2. inv(Gi) is a median of inv(Gi), Gj, and Gk

3. Gi is a median of Gi, Gj , and Gk.

Theorem 13. If the three genomes G1, G2, G3 do not have a common bit, then
procedure median ncb(G1, G2, G3) returns a pair (G, d) such that G is a median
of the three genomes and d = dm(G1, G2, G3).

Proof. As in the procedure, we proceed by case analysis.
if-statement: If two genomes coincide, say Gi = Gj with i �= j, then it follows
Gi = inv(Gk) where k ∈ {1, 2, 3}\{i, j}. Clearly, inverting Gk yields the median
Gi.
else if-statement: Suppose G1, G2, and G3 are pairwise distinct but one of the
genomes is the inverse of another, say Gi = inv(Gj) with i �= j. Let k ∈ {1, 2, 3}\
{i, j}. Because Gi, Gj , and Gk are pairwise distinct and Gi = inv(Gj), Lemma 11
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implies that rd(Gi, Gk) = rd(Gj , Gk). Thus, for di := rd(Gi, Gi) + rd(Gi, Gj) +
rd(Gi, Gk), we have di = 1 + rd(Gj , Gk).

We must show that Gi is a median of the three genomes. For an indirect
proof, suppose that Gi is not a median. Let G be a median of Gi, Gj , and Gk,
i.e., there are reversals such that

Giρ
i
1 · ρi

2 · · ·ρi
�i

= G, Gjρ
j
1 · ρ

j
2 · · ·ρ

j
�j

= G, and Gkρk
1 · ρk

2 · · ·ρk
�k

= G

It follows from the last two equations in combination with Lemma 2 that Gjρ
j
1 ·

ρj
2 · · · ρ

j
�j
· ρk

1 · ρk
2 · · ·ρk

�k
= Gk. Consequently, rd(Gj , Gk) ≤ �j + �k. On the other

hand, since G is a median and Gi is not, we have �i+�j+�k < di = 1+rd(Gj , Gk)
and hence �i + �j + �k < 1 + �j + �k. We conclude that �i = 0, that is, G = Gi.
This contradiction proves that Gi is a median of the three genomes.

else-statement: We have Gi �= Gj and Gi �= inv(Gj) for all i �= j. This implies
that inv(G1), G2, G3 have a common bit, as can be seen as follows. If both
G1, G2, G3 and inv(G1), G2, G3 would not have a common bit, then it would
follow that G2[�] = G3[�] for all 1 ≤ � ≤ n. In other words, G2 = inv(G3). This
contradiction shows that inv(G1), G2, G3 must have a common bit. Therefore,
we can apply procedure median cb to compute a median G′ of inv(G1), G2, and
G3. Let d′1 = rd(inv(G1), G2)+ rd(inv(G1), G3). If d′1 = d′, then G1 is a median
of G1, G2, and G3 by Lemma 12. We will show that d′1 �= d′ (or, equivalently,
d′1 > d′) implies that G′ is also a median of G1, G2, and G3. According to Lemma
12, neither is G1 a median of G1, G2, and G3 nor is inv(G1) a median of inv(G1),
G2, and G3. Since G′ is a median of inv(G1), G2, and G3, there are reversals such
that inv(G1)ρ′11 · ρ′12 · · · ρ′1�′1 = G′, G2ρ

′2
1 · ρ′22 · · · ρ′2�′2 = G′, G3ρ

′3
1 · ρ′32 · · · ρ′3�′3 = G′,

and d′ = �′1 + �′2 + �′3. Moreover, �′1 > 0 because inv(G1) �= G′. It follows from
inv(G1)ρ′11 · ρ′12 · · · ρ′1�′1 = G1ρ(n)ρ′11 · ρ′12 · · ·ρ′1�′1 in conjunction with Lemma 3 that
there is an inversion σ1 such that G1σ

1 · ρ′12 · · · ρ′1�′1 = G′. Therefore, d ≤ d′,
where d := dm(G1, G2, G3). We show that d < d′ is impossible. For an indirect
proof, suppose that d < d′ holds. Let G be a median of G1, G2, and G3, i.e.,
there are reversals such that G1ρ

1
1 · ρ1

2 · · · ρ1
�1

= G, G2ρ
2
1 · ρ2

2 · · ·ρ2
�2

= G, G3ρ
3
1 ·

ρ3
2 · · · ρ3

�3
= G, and d = �1+�2+�3. Since G �= G1, we have �1 > 0. It follows from

inv(G1)ρ(n)·ρ1
1 ·ρ1

2 · · ·ρ1
�1

= G1ρ
1
1 ·ρ1

2 · · · ρ1
�1

= G that there is an inversion σ such
that inv(G1)σ · ρ1

2 · · · ρ1
�1

= G. Thus, rd(G, inv(G1)) + rd(G, G2) + rd(G, G3) ≤
�1+�2+�3 = d < d′. This contradicts the definition of d′ = min{rd(G, inv(G1))+
rd(G, G2)+rd(G, G3) | G is a genome}. In conclusion, d′ = d, i.e., G′ is a median
of G1, G2, and G3.
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Abstract. Permutations on strings representing gene clusters on
genomes have been studied earlier in [3, 12, 14, 17, 18] and the idea
of a maximal permutation pattern was introduced in [12]. In this paper,
we present a new tool for representation and detection of gene clus-
ters in multiple genomes, using PQ trees [6]: this describes the inner
structure and the relations between clusters succinctly, aids in filtering
meaningful from apparently meaningless clusters and also gives a nat-
ural and meaningful way of visualizing complex clusters. We identify a
minimal consensus PQ tree and prove that it is equivalent to a maxi-
mal πpattern [12] and each subgraph of the PQ tree corresponds to a
non-maximal permutation pattern. We present a general scheme to han-
dle multiplicity in permutations and also give a linear time algorithm to
construct the minimal consensus PQ tree. Further, we demonstrate the
results on whole genome data sets. In our analysis of the whole genomes
of human and rat we found about 1.5 million common gene clusters but
only about 500 minimal consensus PQ trees, and, with E Coli K-12 and
B Subtilis genomes we found only about 450 minimal consensus PQ trees
out of about 15,000 gene clusters. Further, we show specific instances of
functionally related genes in the two cases.

Keywords: Pattern discovery, data mining, clusters, patterns, motifs,
permutation patterns, PQ trees, comparative genomics, whole genome
analysis, evolutionary analysis.

1 Introduction
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extracting all common intervals of two permutations, where K(≤
(
n
2

)
) is the

number of common intervals. Heber and Stoye [14] extended this result to k
sequences and presented an O(nk+K) time algorithm for extracting all common
intervals of k permutations. The characters here represent genes and the string of
characters represent the genome. Bergeron, Corteel and Raffinot [3] relaxed the
“consecutive” constraint by introducing gene teams - allowing genes in a cluster
to be separated by gaps that do not exceed a fixed threshold, and presented an
O(kn log2 n) time algorithm for finding all gene teams.

A common technique of deciding whether two genes are similar is using the
biological concept of orthologs and paralogs. Two genes are matched if they
are either orthologous (appear in different organisms, but have the same evo-
lutionary origin and are generated during speciation) or paralogous (appear in
the same organism and caused by the duplication of ancestor genes). A slightly
modified model of a genome sequence, that allows paralogs, was introduced by
Schmidt and Stoye [17]. They extended the previous model of [14] by repre-
senting genomes as sequences rather then permutations, and devised a Θ(n2)
algorithm for extracting all common intervals of two sequences. He and Gold-
wasser [13] extended the notion of gene teams [3] to COG teams by allowing any
number of paralogs and orthologs, and devised an O(mn) time algorithm to find
such COG teams for pairwise chromosome comparison (where m and n are the
number of orthologous genes in the two chromosomes).

In [12], pattern discovery was formalized as the πpattern problem. Let the
pattern P=p1, p2, . . . , pm and the string S=s1, s2, . . . , sn be both sequences of
characters (with possible repeats) over a given alphabet Σ (in our case genes). P
appears in location i in S iff (p1, p2, . . . , pm) is a permutation of (si, . . . , si+m−1).
P is a πpattern if it appears at least K times in S for a given K. A nota-
tion for maximal πpatterns was introduced as a model to filter meaningful
from apparently meaningless clusters. A πpattern p1 is non-maximal with re-
spect to πpattern p2, if each occurrence of p1 is covered by an occurrence of p2

and each occurrence of p2 covers an occurrence of p1. The algorithm presented
in [12] works in two stages: In stage 1, all πpatterns of sizes ≤ L are found in
O(Ln log |Σ| log n) time, where n is the total length of all the sequences. For
every πpattern found the algorithm stores a list of all the locations where the
pattern appears, i.e, location list. In stage 2, a straightforward comparison of
every two location lists is used to extract the maximal πpatterns out of all the
πpatterns found in stage 1. Assume stage 1 outputs p πpatterns, and the max-
imum length of a location list is �, stage 2 runs in O(p2�) time. Integrating the
two stages to produce only the maximal πpatterns was introduced as an open
problem.

The common approach in practice is to output all the found patterns as sets
of genes. This approach provides no knowledge of the ordering of the genes in
each appearance of the pattern, and also outputs meaningless clusters. In this
paper we use the PQ tree data structure [6] to devise a new tool for obtaining
the maximal notation of the appearances of a pattern in linear time. A formal
definition of the maximal notation is given in [12]:
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Definition 1. Maximal notation: Given k permutations on an alphabet Σ,
representing k occurrences of a pattern. The maximal notation is obtained by
using a ‘-’ between two groups of one or more genes to denote that these groups
appear as immediate neighbors in all the k permutations, and using a ‘,’ other-
wise.

Example. Consider the pattern {a, b, c, d, e, f} appearing once as abcdef and once
as bdacfe, then the maximal notation of this pattern is ((a, b, c, d)− (e− f)).

There are two main reasons for obtaining the maximal notation: (1). This
notation provides knowledge of the inner structure of a pattern. ((a, b, c, d) −
(e−f)) shows that e appears always adjacent to f , and they both appear always
adjacent to the group {a, b, c, d}. (2) This notation provides knowledge of the
non-maximal relations between patterns, and can be used to filter meaningful
from apparently meaningless clusters (non-maximal). ((a, b, c, d)−(e−f)) shows
that the patterns π1 = {e, f} and π2 = {a, b, c, d} are non-maximal w.r.t the
pattern π3 = {a, b, c, d, e, f}. Thus ((a, b, c, d)− (e−f)) holds all the information
of patterns π1, π2 and π3.

Results. Our main theoretical results are: (a) we prove that a minimal consensus
PQ tree is equivalent to a maximal πpattern [12] and each subgraph of the
PQ tree corresponds to a non-maximal permutation pattern, and (b) give an
algorithm that obtains the maximal notation of a πpattern p in O(nk) time,
where k is the number of appearances of p and n is the number of characters
in p (we assume all the characters in p are distinct. In section 5 we suggest a
solution for patterns containing repeats of characters). We present several uses
of this algorithm: (1) In the genome model that allows only orthologous genes
(all k sequences are permutations of {1, 2, . . . , n}), we can use this algorithm to
obtain the maximal notation of the entire πpattern {1, 2, . . . , n}. (2) In the most
general genome model that allows orthologous and paralogous genes (a gene
may appear any number of times in a sequence, and may appear in only some
of the sequences) we assume some other gene clustering algorithm found the
πpattern p. We use our tool to obtain the maximal notation of p. (3) We modify
this algorithm to an O(nk2) time algorithm that finds all maximal πpatterns
in the genome model that allows orthologous genes as well as genes that do
not appear in all the sequences. We present experimental results for the various
types of data (Section 6). Our main practical results are the use of the tool on
whole genome data sets: (1) human and rat genomes and (2) E Coli K-12 and
B Subtilis genomes. In both we show that the PQ trees help reduce the number
of clusters to be analyzed as well as help in visualizing the internal structures
of the clusters. We also hypothesize the function of an unknown gene in E Coli
based on the permutation pattern.

Roadmap. We begin with an introduction to the PQ tree data structure in Sec-
tion 2 and show that the minimal consensus PQ tree is indeed the maximal nota-
tion of a permutation pattern in Section 3. We present an O(kn) time algorithm
to obtain the minimal consensus PQ tree in Section 4 and present variations of
this algorithm for the different genome models in Section 5. We conclude with
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experimental results in Section 6. The proofs of the theorems and lemmas are
omitted and will appear in the full version of this paper.

2 Preliminaries – PQ Tree

In this section we present the PQ tree data structure and definitions as in-
troduced by Booth and Leuker [6], as a tool to solve the general consecutive
arrangement problem. The general consecutive arrangement problem is the fol-
lowing: Given a finite set X and a collection I of subsets of X, does there exist
a permutation π of X in which the members of each subset I ∈ I appear as a
consecutive substring of π? Booth and Leuker introduced an efficient algorithm
(linear in the length of the input, O(n2) in our terms) that solves this problem
using a PQ tree. A PQ tree is a rooted tree whose internal nodes are of two
types: P and Q. The children of a P -node occur in no particular order while
those of a Q-node appear in a left to right or right to left order. We designate
a P -node by a circle and a Q-node by a rectangle. The leaves of T are labeled
bijectively by the elements of X . The frontier of a tree T , denoted by F (T ), is
the permutation of X obtained by reading the labels of the leaves from left to
right.

Definition 2. Equivalent PQ trees: Two PQ trees T and T ′ are equivalent,
denoted T ≡ T ′, if one can be obtained from the other by applying a sequence
of the following transformation rules: (1) Arbitrarily permute the children of a
P -node, and (2) Reverse the children of a Q-node.

Any frontier obtainable from a tree equivalent with T is considered consistent
with T , and C(T ) is defined as follows: C(T ) = {F (T ′)|T ′ ≡ T }. These last
definitions are illustrated in Figure 1. We accordingly define the number of fron-
tiers obtainable from a tree equivalent with T to be |C(T )|. Clearly the equiva-
lence relation is reflexive, symmetric and transitive. To make it computationally
straightforward, we use a slightly stricter version of a PQ tree called the canon-
ical PQ tree.

Definition 3. Canonical PQ tree: A PQ tree that has no node with only one
child and no P node with only two children.

   

T                                                                              T’

  d              e e              d             a     b     c a      b   c

FRONTIER(T) = abcde FRONTIER(T’) = edabc

X = { a,b,c,d,e }

Fig. 1. Two equivalent PQ trees, T ′ ≡ T and their frontiers. Note that C(T ) = C(T ′) =
{abcde, abced, cbade, cbaed, deabc, decba, edabc, edcba}.
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Note that it is straightforward to convert any PQ tree to its canonical form: a
node with a single child is merged with its immediate predecessor. This process
is continued until no such node remains. Further, any P node with exactly two
children is changed to a Q node. Through the rest of the paper, we assume a
PQ tree is a canonical PQ tree. Some PQ trees are given special names: Given
a finite set X , the PQ tree consisting of a single P node with |X | children that
are all leaves is called the universal PQ tree. We denote the universal tree as
TU . Another important PQ tree is the null tree, which has no nodes at all. By
convention the null tree has no frontier and it’s set of consistent permutations is
empty. The most important contribution of [6] is an efficient algorithm for the
REDUCE() function defined below.

Definition 4. REDUCE(I,T ′): Given a collection I of subsets of
N = {1, 2, . . . , n} and a PQ tree T ′ whose leaves are {1, 2, . . . , n}, the function
REDUCE(I,T ′) builds a PQ tree T such that f ∈ C(T ) iff f ∈ C(T ′) and every
i ∈ I appears as a consecutive substring of f .

The procedure REDUCE(I,T ′) will return the null tree if no frontier f ∈ C(T ′)
is such that every i ∈ I appears as a consecutive substring of f . Note that
if TU is the universal PQ tree, then REDUCE(I,TU ) builds a PQ tree T such
that f ∈ C(T ) iff every i ∈ I appears as a consecutive substring of f . By [6], if
the number of subsets in I ≤ n, as in our case (see Section 4), then the time
complexity of REDUCE(I,TU ) is O(n2). In Section 4.1 we present an O(n) time
complexity algorithm for the REDUCE function when I is a set of at most n
intervals, based on a data structure presented in [14].

The following observation is immediate from the definition of the REDUCE()
function. Informally, it says that if T is the PQ tree returned by REDUCE(I,TU )
then if we add more subsets of N to I then |C(T )| gets smaller.

Observation 1. Given two collections I1, I2 of subsets of N , if I1 ⊆ I2 and
T1=REDUCE(I1,TU) and T2=REDUCE(I2,TU) then C(T2) ⊆ C(T1).

3 The Minimal Consensus PQ Tree

In this section we define a minimal consensus PQ tree as a representation of the
maximal notation of the k occurrences of a πpattern. Through the rest of this
paper we define Π to be a set of k permutations π1, π2, . . . , πk representing k
occurrences of a πpattern N = {1, 2, . . . , n}.

Definition 5. Notation of a PQ tree: The notation of a PQ tree is obtained
by writing the PQ tree as a parenthesized string with different symbols encoding
P (comma separators) and Q (dash separators) nodes.

For example in Figure 1, T is denoted as ((a− b− c), (d, e)) and the PQ tree in
Figure 2 is denoted as (g− (e− (a− b− c)−d)− f). Given Π , our main goal is to
construct a PQ tree T from Π , such that the notation of T is the maximal notation
of Π . We would like to construct a PQ tree T such that C(T ) = {π1, π2, . . . , πk}
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however, this is not always possible. Consider a πpattern {a, b, c, d, e} appearing
four times as abcde, abced, cbade, edabc, the PQ tree T in Figure 1 is the one that
best describes these appearances. However, edcba ∈ C(T ) although the πpattern
never appeared as edcba. On the other hand, notice that the universal PQ tree
over Σ, TU ,is such that {π1, π2, . . . , πk} ⊆ C(TU ). Hence the idea of minimal is
introduced. In section 3.2 we suggest a way of reducing the redundant frontiers
from the minimal consensus PQ tree. We next present a way of relating a set of
permutations to a PQ tree.

Definition 6. Minimal consensus PQ tree: Given Π, A consensus PQ tree
T of Π is such that Π ⊆ C(T ) and the consensus PQ tree is minimal when there
exists no T ′ �≡ T such that Π ⊆ C(T ′) and |C(T ′)| < |C(T )|.

ba

e d

g f

c

(1) Consensus Trees: If TU is the universal PQ tree, note that
π1, π2 ∈ C(T ) ⊆ C(TU). Thus the consensus of two strings need
not give rise to a unique PQ tree.
(2) PQ tree expression power: Consider π3 = gdcbaef , clearly
π3 �= π1 and π3 �= π2, however π3 ∈ C(T ).
(3) Height of the PQ tree: A consensus PQ tree of only two
strings (permutations) of length L can possibly be of height
O(L).

Fig. 2. Let π1 = geabcdf and π2 = fecbadg. The PQ tree T in the figure is a minimal
consensus PQ tree of {π1, π2}. We use this example to illustrate three different ideas
as shown on the right.

Figure 2 illustrates the motivation for the definition of minimal consensus. By
defining the minimal consensus PQ tree, the problem now is to devise a method
to construct the minimal consensus PQ tree given Π . Later we show that the
notation of the minimal consensus PQ tree of Π is the maximal notation of Π .
We use the following definition from [18]:

Definition 7. Common Interval (CΠ): Given Π, w.l.o.g we assume that
π1 = idn := (1, 2, . . . , n). An interval [i, j] (1 ≤ i < j ≤ n) is called a common
interval of Π iff the elements of the set {i, i + 1, . . . , j} appear as a consecutive
substring in every πi ∈ Π (i = 1, 2, . . . , k). The set of all common intervals of
Π is denoted CΠ .

See Figure 3 for an example of common intervals and a minimal consensus PQ
tree. Next we state some theorems leading up to the uniqueness of a minimal
consensus tree.

Theorem 2. Given Π, TC=REDUCE(CΠ ,TU ) is a minimal consensus PQ tree
of Π.
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                    2               3             1

             5             6             4

             7

             8

             9       
      The tree on the left is the minimal consen-

sus PQ tree of Π = {π1, π2, π3} where π1 =
(1, 2, 3, 4, 5, 6, 7, 8, 9), π2=(9,8,4,5,6,7,1,2,3),
and π3=(1,2,3,8,7,4,5,6,9).
CΠ = {[1,2],[1,3],[1,8],[1,9],[2,3],[4,5],[4,6],
[4,7],[4,8],[4,9],[5,6]}. The maximal pattern
whose three occurrences are given by
π1, π2, π3 is ((1-2-3)-(((4-5-6)-7)-8)-9).

Fig. 3. Maximal notation of a πpattern and the corresponding minimal consensus PQ
tree.

The following corollary is immediate from the proof of Theorem 2.

Corollary 1. If T1 and T2 are two minimal consensus PQ trees of Π, then
C(T1) = C(T2).

Theorem 3. For two PQ trees T1 and T ′
2, if C(T1) = C(T ′

2), then T1 ≡ T ′
2.

The following lemma is straightforward to verify.

Lemma 1. Given Π, the minimal consensus PQ tree T of Π is unique (up to
equivalence).

The minimal consensus PQ tree is not necessarily unique when a character can
appear more than once in a πpattern. We handle this problem in Section 5.

3.1 Identifying Maximal πpatterns
in the Minimal Consensus PQ Tree

In this section we describe a PQ subtree as a method for identifying non-maximal
permutation patterns, and we make the simplifying assumption that there are
no multiplicities in the πpatterns, this problem is addressed in Section 5.

Definition 8. PQ subtree: Given a PQ tree T , the variant v′ of a node v is
defined as follows: (1) If v is a P node then it’s only variant v′ is the P node
itself. (2) If v is a Q node with k children, then a variant v′ of v is a Q node
with any k′ ≤ k consecutive children of v. A PQ subtree is rooted at a variant v′

of node v and includes all its descendants in the PQ tree T .
Let L(v′) denote the set of the labels of the leafnodes reachable from v′. Fur-

ther, given the leafnode labels p = {α1, α2, . . . , αn}, the least common ancestor
(LCA) of p is that variant v′ of a node v satisfying the following: (1) p ⊆ L(v′)
and (2) there exists no variant v′′ of v or any other node such that p ⊆ L(v′′)
and |L(v′′)| < |L(v′)|.

Recall that a πpattern p1 is non-maximal with respect to πpattern p2, if
each occurrence of p1 is covered by an occurrence of p2 and each occurrence
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of p2 covers an occurrence of p1 (notice that p1 ⊆ p2). Through the rest of
this section we assume p1 = {α1, α2, . . . , αn} and p2 are πpatterns such that
p1 is non-maximal with respect to p2. We denote Ti as the minimal consensus
PQ tree of the appearances of πpattern pi, and CΠi as the set of all common
intervals of the occurrences of pi. The following definition will aid in describing
the connection between PQ subtrees and non-maximal πpatterns (Theorem 4).

Definition 9. T
pj

i : Given a PQ tree Ti, and pj = {α1, α2, . . . , αn}, let v′ be the
LCA of pj in Ti. Then T

pj

i is the PQ subtree rooted at v′.

Theorem 4. Given πpatterns p1, p2 on some S, if p1 is non-maximal w.r.t p2

then T p1
2 ≡ T1.

Notice that the converse of Theorem 4 is true only if every occurrence of p1 is
covered by an occurrence of p2. The following theorem proves that given Π , the
problem of obtaining the maximal notation of Π is equivalent to the problem of
constructing the minimal consensus PQ tree of Π .

Theorem 5. The notation of the minimal consensus PQ tree of a πpattern is
the maximal notation of the πpattern.

3.2 Specializing the PQ Tree

Given Π , we would like to construct a PQ tree T such that C(T ) = Π . However,
as shown earlier this is not always possible using a PQ tree. This requires more
precise definitions of the P and the Q node. Adding restrictions to the PQ
tree will help solve the problem. We suggest the following: (1) Assigning a bi-
directional annotation to the Q node as⇔ only when the children appear in both
directions in the strings and un-annotated otherwise. (2) The exact permutations
appearing in the strings for the P node. For example if a P node has 7 children
and the annotation is (3162574,5142736), then this implies that the P node has
three possible permutations on it’s children as 1234567, 3162574 and 5142736.
Note that the children are not necessarily leaf nodes. See Figure 4 for an example.
The advantage of this is that the PQ tree remains the same and the annotations
simply help remove the extra frontiers, C(T ) \Π , where T is the un-annotated
PQ tree.

1 2 3 4

5 6

Consider Π = {123456, 241356}. The PQ tree on
the left is the minimal consensus PQ tree of Π .
Consider the following restrictions: (1) The Q node
is un-annotated (2) The exact permutations of the
P node is (2413). The restricted PQ tree is such
that C(T ) = Π .

Fig. 4. The restricted PQ tree.
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4 Constructing a Minimal Consensus PQ Tree
in O(kn) Time

In this section we devise new algorithms for computing the minimal consensus
PQ tree. The first algorithm runs in O(kn + n2) time. We then improve this
algorithm to O(kn) time, which is optimal since the length of the input is kn.

We first find a subset of CΠ of size O(n) that holds sufficient information
about the k permutations. For example, consider the πpattern {1, 2, 3} appear-
ing twice as Π = {123, 321}, then CΠ = {[1, 2], [2, 3], [1, 3]}. In Theorem 2 we
proved that the minimal consensus PQ tree T is such that in every f ∈ C(T )
the sets {1, 2}, {2, 3} and {1, 2, 3} appear as a consecutive substring. Notice
that the common interval [1, 3] is redundant in the sense that if the sets {1, 2}
and {2, 3} appear as a consecutive substring in every f ∈ C(T ), then {1, 2, 3}
must also appear as a consecutive substring in every f ∈ C(T ). The common
interval [1, 3], which is the union of [1, 2] and [2, 3], is therefore not necessary
for constructing T . We next show that the set of common intervals that are
necessary for constructing T is the set of irreducible intervals as defined in [14]:
Given Π , without loss of generality, we assume that π1 = idn := (1, 2, . . . , n).
Two common intervals c1, c2 ∈ CΠ have a non-trivial overlap if c1 ∩ c2 �= ∅ and
they do not include each other. A list p = (c1, c2, . . . , c�(p)) of common intervals
c1, c2, . . . , c�(p) ∈ CΠ is a chain (of length �(p)) if every two successive intervals
in p have a non-trivial overlap. A chain of length one is called a trivial chain. A
common interval I is called reducible if there is a non-trivial chain that generates
it (I is the union of all elements in all the intervals of the chain), otherwise it
is called irreducible. This partitions the set of common intervals CΠ into the set
of reducible intervals and the set of irreducible intervals, denoted IΠ . Obviously,
1 ≤ |IΠ | ≤ |CΠ | ≤

(
n
2

)
[14]. The set of irreducible common intervals of Π from

the example in Figure 3 is: IΠ = {[1, 2], [1, 8], [2, 3], [4, 5], [4, 7], [4, 8], [4, 9], [5, 6]}
and their chains are illustrated in Figure 5.

The Algorithm. The following algorithm takes advantage of the fact that the
irreducible intervals hold as much information as CΠ .

Algorithm PQ-Construct:
Input: Π .
Output: The minimal consensus PQ tree T of Π .

1. Compute IΠ using the algorithm described in [14].
2. Compute T=REDUCE(IΠ ,TU ) using the algorithm

described in [6].
3. Return T .

In Theorem 2 we proved that TC=REDUCE(CΠ ,TU ) is the minimal consen-
sus PQ tree of Π . In the following lemma we prove that if TI=REDUCE(IΠ ,TU )
then TC=TI , thus proving the correctness of the algorithm.
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Lemma 2. Given Π, TI=REDUCE(IΠ ,TU ) is the minimal consensus PQ tree
of Π.

Time complexity of the algorithm. Given k permutations each of length n,
by [14], |IΠ | < n and further, IΠ can be computed in O(kn) time. By [6],
computing T=REDUCE(IΠ ,TU ) takes O(n2) time. The minimal consensus PQ
tree can therefore be computed in O(kn + n2) time.

4.1 Computing REDUCE(IΠ ,TU) in Linear Time

In this section we modify step 2 of the PQ-Construct algorithm to run in O(n)
time. In [14] a data structure S was used to obtain the irreducible intervals. For
each chain of non-trivially overlapping irreducible intervals, S contains a doubly-
linked list that holds the intervals of that chain in left-to-right order. Moreover,
intervals from different lists with the same left or right end are connected by
vertical pointers yielding for each index x ∈ N a doubly-linked vertical list.
The final data structure S of the example in Figure 3 is shown in Figure 5.
We next describe a new algorithm called REPLACE that transform S to the
minimal consensus PQ tree. The general idea is to replace every chain by a Q
node where the children of the Q node are the roots of subtrees with leaves
induced by the intersection between the intervals of the chain. For example, in
Figure 5 the chain ([1, 8], [4, 9]) is replaced by a Q node of three children where
each child is the root of a subtree containing the leaves {1, 2, 3}, {4, 5, 6, 7, 8}
and {9} respectively. Then, every element that is not a leaf or a Q node and is
pointed by a vertical link is replaced with a P node. For example, in Figure 5 the
vertical links from [4, 8] to [4, 7] and 8 implies that [4, 8] is replaced by a P node
with two children where each child is the root of a subtree containing the leaves
{4, 5, 6, 7} and {8} respectively. Finally, a P node with 2 children is replaced by
a Q node. The PQ tree obtained by REPLACE on S is illustrated in Figure 3.

[1,2] [2,3] [4,5] [5,6]

[4,7]

        [4,8]

[1,8] [4,9]

1 2 3 4 5 6   7 8 9

Fig. 5. Sketch of the data structure S of the example in Figure 3. The chains
of non-trivially overlapping irreducible intervals are: ([1, 2], [2, 3]), ([4, 5], [5, 6]) and
([1, 8], [4, 9]).
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A similar idea, for the case of conserved intervals [2] (as opposed to irreducible
intervals) is discussed in [2, 4, 5].

The following theorem proves that we obtain the minimal consensus PQ tree
using REPLACE.

Theorem 6. If T ′ is the PQ tree obtained from S by REPLACE and
T=REDUCE(IΠ,TU ) then T ≡ T ′.

Time complexity of the algorithm. By [14], IΠ and S can be computed in
O(kn) time. REPLACE can be performed by a simple bottom up traversal of
S, therefore in O(n) time. The minimal consensus PQ tree can therefore be
computed in O(kn) time.

5 Algorithms for Various Genome Models

We next present three different genome models that use the PQ tree tool to
detect and represent the maximal patterns as PQ trees. The first model allows
only orthologous genes [18] (all the k sequences are permutations of the same
n genes, thus, every gene appears exactly once in every sequence). The second
model allows both orthologous and paralogous genes (a gene may appear any
number of times in a sequence, and may appear in only some of the sequences).
The third allows orthologous genes as well as genes that do not appear in all the
sequences (a gene can appear at most once in a sequence).

(1) Genomes as Permutations with No Multiplicity. This model is
ideal for our tool. Since the k sequences are permutations of Σ with no multi-
plicity, Σ is a πpattern (common interval) of size n. Furthermore, it is the only
maximal πpattern in the sequences. We construct the minimal consensus PQ
tree, T , of the set of sequences and obtain the maximal notation of the only
maximal πpattern in O(kn) time. Notice that by traversing T we can output
all the πpatterns (common intervals) of the sequences (every subtree of T is a
πpattern) in O(K) time, where K(≤

(
n
2

)
) is the number of πpatterns. There-

fore, in O(nk + K) time we can output all the non-maximal πpatterns, exactly
like Heber and Stoye [14] do, but we also present the maximal notation of ev-
ery πpattern found, and present the non-maximal relations between them. We
introduce experimental results of human and rat whole genome comparison for
this type of data in Section 6.

(2) Genomes as Strings with Multiplicity. In this case the input is a
set of k sequences of n genes, where a gene can appear K ≥ 0 times.

A string that has at least one character that appears more than once is termed
as a string with multiplicity. For example if p1 = abcegd and p2 = acgcab, then
p1 has no multiplicity. However that is not the case with p2 where a and c each
appear more than once.

Consider a pattern p with occurrences as acbdefc and cdabfec. Clearly p has
a unique minimal consensus PQ tree corresponding to acbdefc′ and cdabfec′ and
treating c′ as a distinct character. However, the minimal consensus PQ tree is not
necessarily unique when a character can appear more than once in a πpattern.
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This is illustrated in an example in Figure 6. We handle multiplicity by reporting
the multiple minimal consensus PQ trees. This is explained using the example
of Figure 6. Each character is labeled with a distinct integer in the reference
sequence and the remaining sequences are treated as multi-sets (strings of sets
of characters). In the example, p1 = deabcxc = 1234567 and, p2 = cdeabxc =
[57]12346[57] and p3 = cxcbaed = [57]6[57]4321. If Π1 and Π2 are two choices
such that CΠ2 ⊂ CΠ1 , then clearly the choice of Π1 is made over Π2. Continuing
the example, the two choices for p2 are (1) p2 = 5123467, hence p3 = 5674321 or
p3 = 7654321 so that [6, 7] ∈ CΠ and (2) p2 = 7123465, hence p3 = 5674321 or
p3 = 7654321 so that [5, 6] ∈ CΠ . See Figure 6 for the corresponding PQ trees.
We present an experimental result for this type of data, of a pairwise comparison
between the genomes of E Coli K-12 and B Subtilis in Section 6. We used the
algorithm described in [12] to find the πpatterns and our tool to present the
maximal patterns as PQ trees (thus automatically filtering out the non-maximal
patterns).

(3) Genomes as Strings with No Multiplicity. In this case the input is a
set of k sequences of n genes, where a gene can appear K ≤ 1 times. We present

         
T4

         
T2T1,3

         

 c

d e a b

 cx

 c

cx

d e a bd e a b

 c

 cx

Let p1=deabcxc, p2=cdeabxc and p3=cxcbaed. Then p1 = deabcxc = 1234567
and, p2 = cdeabxc = [57]12346[57] and p3 = cxcbaed = [57]6[57]4321. The two
choices for p2 are (1) p2 = 5123467, hence p3 = 5674321 or p3 = 7654321 and
(2) p2 = 7123465, hence p3 = 5674321 or p3 = 7654321. Thus the four cases are

p1 p2 p3

(1) 1234 5 67 5 1234 67 5 67 1234

(2) 1234 5 67 5 1234 67 76 5 1234

(3) 1234 56 7 7 1234 65 56 7 1234

(4) 1234 56 7 7 1234 65 7 65 1234

The trees above represent the four cases: T1,3 represents the first and third cases,
T2 and T4 represent the second and fourth cases respectfully. Notice that T2 and
T4 are both minimal consensus PQ trees of {p1, p2, p3} since |C(T2)| = |C(T4)| = 8.

Fig. 6. πpatterns with multiplicity.
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an O(nk2) time algorithm that finds all maximal πpatterns in the sequences
(notice that there can now be more then one maximal πpattern). The idea is
to transform the sequences into permutations of the same set, and then build
the minimal consensus PQ tree of these permutations. Consider the following
example where there are two sequences, 1234567 and 1824376. First we go over
the sequences and tag the genes that do not appear in all the sequences, we get
12345′67 and 18′24376. Then, for every tagged gene g′ we replace it with g′g′′ in
the sequences where g′ appears, and in the sequences where g′ doesn’t appear
we add g′ in the beginning of the sequence and g′′ in the end of the sequence.
After doing that we get 8′12345′5′′678′′ and 5′18′8′′243765′′. Now the tagged
sequences are permutations of the same set, and furthermore, every πpattern
that appeared in all the original sequences, appears in the tagged sequences, and
every πpattern that appears in the tagged sequences but doesn’t appear in the
original sequences must contain a tagged element (this is achieved by splitting the
tagged and double tagged elements). Next we construct the minimal consensus
PQ tree T , of the tagged sequences. Notice that if a subtree Ti of T has no
tagged leaves and there is no subtree Tj of T such that Ti is a subtree of Tj and
Tj has no tagged leaves, then Ti represents a maximal πpattern. The minimal
consensus PQ tree of the set of tagged sequences created from our example is
shown in Figure 7.

8’         1              2

5’ 8’’

5’’    6       7

3         4

Consider two sequences 1234567 and
1824376, after tagging and adding charac-
ters as explained we get the two permuta-
tions 8′12345′5′′678′′ and 5′18′8′′243765′′ ,
their minimal consensus PQ tree is illus-
trated above. The subtrees that have no
tagged elements (notated (2− (3 − 4)) and
(6 − 7)) are the only maximal πpatterns of
the original sequences.

Fig. 7. An example illustrating the use of tagged sequences.

Time complexity of the algorithm. There are initially k sequences of length
n each. It takes O(nk2) time to tag and add the elements as needed and we
get k tagged sequences of the same length (which is at most 2nk if every gene
appears in only one sequence, which rarely happens). The minimal consensus PQ
tree construction of the tagged sequences takes O(nk2) time using the O(nk)
algorithm presented in Section 4. Therefore, the algorithm takes O(nk2) time.

We present an experimental result for this type of data, of a comparison
between eight chloroplast genomes in the full version of this paper.

6 Experimental Results

Human and Rat Genomes. In order to build a PQ tree for human and rat
whole genome comparisons we used the output of a program called SLAM [1,
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7, 8], SLAM is a comparative-based annotation and alignment tool for syntenic
genomic sequences that performs gene finding and alignment simultaneously
and predicts in both sequences symmetrically. When comparing two sequences,
SLAM works as follows: Orthologous regions from the two genomes as specified
by a homology map are used as input, and for each gene prediction made in the
human genome there is a corresponding gene prediction in the rat genome with
identical exon structure. We used the results from SLAM of comparing human
(NCBI Build 31, November 2002) and rat (RGSC v2, November 2002) genomes,
sorted by human chromosomes. The data in every chromosome is presented as
a table containing columns: Gene name, rat coords, human coords, rat coding
length, human coding length and # Exons.

There were 25,422 genes predicted by SLAM, each gene appears exactly once
in each of the genomes. We mapped every one of the 25,422 genes to an integer,
thus, the human genome becomes the identity permutation (1, 2, 3, . . . , 25422),
and the rat genome becomes a permutation of {1, 2, 3, . . . , 25422} obtained from
the SLAM output table. The full mapping can be found in our web page:
http://crilx2.hevra.haifa.ac.il/∼orenw/MappingTable.ps.

Ignoring the trivial permutation pattern involving all the genes, there were
only 504 interesting maximal ones out of 1,574,312 permutation patterns in
this data set (we only consider patterns that do not cross chromosomes). In
Figure 8 we present a subtree of the Human-Rat whole genome PQ tree. This
tree corresponds to a section of 129 genes in human chromosome 1 and in rat
chromosome 13. By our mapping, these genes appear in the human genome as
the permutation: (1997-2125) and in the rat genome as the permutation: (2043-
2041, 2025-2018, 2123-2125, 2122-2044, 2040-2026, 2017-1997). Figure 8 is the
minimal consensus PQ tree of these two permutations.

Another subtree of the Human-Rat whole genome PQ tree, corresponding
to a section of 156 genes in human chromosome 17 and in rat chromosome 10
is ((21028-21061)-(21019-21027)- (21018-20906)). The neighboring genes PMP22
and TEKTIN3 (corresponding to 21014 and 12015) are functionally related genes
as explained in [10].
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Fig. 8. A PQ subtree of the minimal consensus PQ tree of the human and rat orthol-
ogous genes, as predicted by SLAM.
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E Coli K-12 and B Subtilis Genomes. Here we present a simple, yet interesting
PQ tree obtained from a pairwise comparison between the genomes of E Coli
K-12 and B Subtilis. The input data was obtained from NCBI GenBank, in the
form of the order of COGs (Clusters Of Orthologous Groups) and their location
in each genome.
The data can be found in http://euler.slu.edu/∼goldwasser/cogteams/data as
part of an experiment discussed by He and Goldwasser in [13], whose goal was
to find COG teams. They extracted all clusters of genes appearing in both se-
quences, such that two genes are considered neighboring if the distance between
their starting position on the chromosome (in bps) is smaller than a chosen pa-
rameter δ > 0. One of their experimental results, for δ = 1900 was the detection
of a cluster of only two genes: COG0718, whose product is an uncharacterized
protein conserved in bacteria, and COG0353, whose product is a recombinational
DNA repair protein. They conjecture that the function of COG0353 might give
some clues as to the function of COG0718 (which is undetermined).

In our experiment we built PQ trees of clusters of genes appearing in both
sequences, such that two genes are considered neighboring if they are consecutive
in the input data irrespective of the distance between them. There were 450 max-
imal permutation patterns out of 15,000 patterns discovered by our tool. Here
we mention a particularly interesting cluster: (COG2812-COG0718-COG0353).
The product of COG2812 is DNA polymerase III, which according to [9] is also
related to DNA repair. The PQ tree clearly shows that COG0718, whose function
is undetermined is located between two genes whose function is related to DNA
repair. This observation further contributes to the conjecture that the function
of COG0718 might be also related to DNA repair. Note that the reason that
COG2812 was not clustered with COG0718 and COG0353 in [13] is because the
distance between COG2812 and COG0718 is 1984 (> δ = 1900).
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Abstract. Speeding up approximate pattern matching is a line of re-
search in stringology since the 80’s. Practically fast approaches belong
to the class of filtration algorithms, in which text regions dissimilar to
the pattern are excluded (filtered out) in a first step, and remaining re-
gions are compared to the pattern by dynamic programming in a second
step. Among the necessary conditions used to test similarity between
the regions and the pattern, many require a minimum number of com-
mon substrings between them. When only substitutions are taken into
account for measuring dissimilarity, it was shown recently that counting
spaced subwords instead of substrings improve the filtration efficiency.
However, a preprocessing step is required to design one or more patterns,
called gapped seeds, for the subwords, depending on the search param-
eters. The seed design problems proposed up to now differ by the way
the similarities to detect are given: either a set of similarities is given in
extenso (this is a “region specific” problem), or one wishes to detect all
similar regions having at most k substitutions (general detection prob-
lem). Several articles exhibit exponential algorithms for these problems.
In this work, we provide hardness and inapproximability results for both
the region specific and general seed design problems, thereby justifying
the exponential complexity of known algorithms. Moreover, we introduce
a new formulation of the region specific seed design problem, in which
the weight of the seed (i.e., number of characters in the subwords) has to
be maximized, and show it is as difficult to approximate than Maximum
Independent Set.

1 Introduction

A routine task in computational genomics is to search among all known se-
quences those being similar to a sequence of interest. “Similar” means that can
be aligned over reasonably long portions. The similarity in sequence helps in the
annotation of the sequence of interest as it may reveal, e.g., if it is a gene, a
similarity in function, in regulation, in its interaction with other molecules, in
three dimensional structure of the protein product, or a common origin. This
task is known as sequence similarity search. Since the 90’s, heuristic algorithms
[1] are preferred to the direct application of dynamic programming schemes,
which require quadratic time. In practice, as the size of the sequence databases
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grows exponentially, efficiency is achieved by filtration. The underlying principle
of filtration is to exclude in a first step regions of the sequence database that are
surely not similar to the query sequence by testing a simple necessary condition.
The second step performs an alignment procedure by dynamic programming
with the few remaining regions. Application of filtration occurs in software like
FLASH [5] or QUASAR [3].

Usual necessary conditions rely on counting common contiguous subwords
to the query and the database sequence. Recently, several authors research have
emphasized that the shape of the subwords plays a key role in filtration efficiency,
and proposed to use “carefully chosen arbitrary shapes” for the subwords [4, 11–
14]. The shape of the subwords is given by a gapped seed, e.g., a pattern like
##-##--# where the # symbol indicates which position should match between
the query’s and database sequence’s subword, and the - are don’t care positions.
One central problem is to choose such a seed to optimize the filtration efficiency.
Given a set of similarities (alignments) of interest, the goal is to find the best
seed or family of seeds. The problem has been declined in several formulations,
either as a decision or a maximization problem. In the former, one searches
for a seed that detects all similarities, in the latter for a seed that detects all
similarities and maximizes, e.g., the number of # (its weight). Several algorithms
whose complexity depends exponentially on the length of the seed have been
proposed to solve these problems, but it is not known to which complexity class
the simplest forms of the seed design problem belong. Our article answer these
questions by showing these problems are NP-hard, or even worse, difficult to
approximate.

In [12], the case of lossy filtration is investigated. The authors show that
computing the hit probability of set of seeds is NP-hard, but can be approximated
(admits a PTAS). They also prove the NP-hardness and the inapproximability of
a region specific multiple seeds design problem, where both the set of similarities
and the weight of the seeds are constrained (see problem RSOS below).

In this abstract, we consider both lossy and lossless filtrations. We improve on
the results of [12] by showing the inapproximability of RSOS even in the case of a
single seed (Section 4). Moreover, we prove the hardness of a general seed design
problem: Non Detection as defined in [11] (Section 2). In this problem, one
considers the set of all similarities at a given Hamming distance from the query
(this is independent on the query). The problem is more general than RSOS.
As by-product of our proof, we introduce and classify a tiling problem (SSC).
Several works [4, 7, 11] give empirical and theoretical evidences that support the
correlation between the weight of the seed and filtration efficiency. Building on
this idea, we propose an optimization problem MWLS in which the weight of
the designed seed has to be maximized. We provide a proof of NP-hardness and
of inapproximability for MWLS (Section 3).

In the remaining of this section, we introduce a notation, define the investi-
gated problems, and survey known results. Sections 2, 3, and 4 are each dedicated
to a problem as listed above and are independent of each other.
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1.1 Definitions and Problems

Let Z denote the set of all integers and for any a, b ∈ Z, let [a, b] be the set of all
x ∈ Z satisfying a ≤ x ≤ b. For any finite set X , we denote by #X the cardinality
of X . An alphabet Σ is a finite set of letters. A word or string over Σ is a finite
sequence of elements of Σ. The set of all words over Σ is denoted by Σ�. For
a word x, |x| denotes the length of x. Given two words x and y, we denote by
xy the concatenation of x and y. For every 1 ≤ i ≤ j ≤ |x|, x[i] denotes the
i-th letter of x, and x[i ; j] denotes the substring x[i]x[i + 1] . . . x[j]. For every
letter a, |x|a := # {i ∈ [1, |x|] : x[i] = a} denotes the number of occurrences of
the letter a in x. For every integer n ≥ 0, xn denotes the concatenation of n
copies of x.

Definition 1 (Weight, seed). The weight of a word w ∈ {#, -}�, denoted ‖w‖,
is the number of occurrences of the symbol # in w. A seed is a non empty word
over the alphabet {#, -} and whose first and last letter is a # ( i.e., an element
of # {#, -}� # ∪ {#}).

Definition 2 (Similarity). A similarity is a word over {0, 1}. Let m, k be two
integers such that 0 ≤ k ≤ m. An (m, k)-similarity is a similarity of length m
with k occurrences of the symbol 0 and m− k occurrences of the symbol 1 ( i.e.,
an element of {s ∈ {0, 1}m : |s|0 = k}).

Definition 3 (Detection). Let g be a word over {#, -}, Γ a set of words over
{#, -}, and s a similarity. Let i ∈ [0, |s| − |g|]. We say that g detects s at position
i if, for all j ∈ [1, |g|], s[i + j] = 1 whenever g[j] = #. We say that g detects s
whenever there exists i ∈ [0, |s| − |g|] such that g detects s at position i. Moreover,
Γ detects s if there is g ∈ Γ that detects s.

Note that in the previous definition, g (resp. Γ ) may be a seed (resp. a set of
seeds). In the sequel, ε denotes an arbitrarily small positive real number.

We study the complexity of three problems. In Section 2, we consider the
decision problem [11]:

Name: Non Detection
Instance: A seed g, two integers m and k satisfying 0 ≤ k ≤ m.
Question: Does it exist an (m, k)-similarity not detected by g?

We show that Non Detection is NP-complete (Theorem 2). Note that we
assume that any instance (g, m, k) has size O(|g|+ m), i.e., that the integers m
and k are encoded in unary. If encoded in binary (as usual), (g, m, k) would have
size only O(|g|+ log m). In other words, we demonstrate that Non Detection
is strongly NP-complete.

In Section 3, we investigate the difficulty to approximate the maximization
problem:

Name: region specific Maximum Weight Lossless Seed (MWLS)
Instance: A finite set S of similarities.
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Solution: A seed g that detects all similarities of S.
Measure: The weight of g.

Theorem 3 proves it does not exist a polynomial time approximation algorithm
for MWLS with bound (#S)0.25−ε unless P = NP.

In Section 4, we study the maximization problem [12]:

Name: Region Specific Optimal Seeds (RSOS)
Instance: Two integers d and p, a finite set S of similarities.
Solution: A set Γ of seeds satisfying #Γ = d and ‖g‖ = p for any g ∈ Γ .
Measure: The number of similarities in S detected by Γ .

Theorem 4 states that, even when restricted to instances (d, p, S) such that
d = 1, it does not exist a polynomial time approximation algorithm for RSOS
with bound e

e−1 − ε.

We need additional definitions on hypergraphs. A hypergraph is a pair H :=
(V, E) where V is a finite set of vertices and E is a set of subsets of V . The
elements of E are called hyperedges. An independent set I of H is a subset of V
such that for any E ∈ E , one has E �⊆ I. Let r ≥ 2 be an integer. H is said to
be r-uniform when for any E ∈ E , #E = r. A 2-uniform hypergraph is a graph
and its hyperedges are simply called edges.

1.2 Related Works

Concerning Non Detection. Let m and k be two integers such that 0 ≤ k ≤
m. Let us denote by

– U(Γ, m, k) the number of (m, k)-similarities left undetected by the set of
seeds Γ ,

– T(Γ, m, k) the largest integer t ≥ 0 satisfying: for any (m, k)-similarity s,
there are t distinct pairs (i1, g1), (i2, g2), . . . , (it, gt) such that for any
j ∈ [1, t] one has gj ∈ Γ , ij ∈ [0, |s| − |gj|] and gj detects s at position
ij . Informally, T(Γ, m, k) is the minimal number of positions at which any
(m, k)-similarity is detected by Γ .

In [11], one finds dynamic programming algorithms to compute U(Γ, m, k) and
T(Γ, m, k) in time proportional to

m×
k∑

j=0

(
λ
j

)
(k − j + 1) + (#Γ )×

k∑
j=0

(
λ
j

)
with λ := max

g∈Γ
|g| .

A simple bound [4] guarantees that these algorithms have complexities in O
(
2λ×

(mk + #Γ )
)
, and are thus Fixed Parameter Tractable (FPT) for parameter λ

(see [6] for details on parameterized complexity). The algorithm that computes
T(Γ, m, k) described in [11] generalizes to a family of seeds the one for the case
of a single seed given in [4, Section 4].
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Solving Non Detection for an instance (g, m, k) means to decide whether
U({g}, m, k) differs from zero (resp. if T({g}, m, k) equals zero). Theorem 2
implies that, even if we restrict ourselves to the case of a single seed (#Γ =
1), any algorithm computing U(Γ, m, k) (resp. T(Γ, m, k)) requires in the worst
case exponential time. Thus, the algorithms given in [4, 11] have the best time
complexities one can hope.

Concerning MWLS and RSOS. It is shown in [12] that the decision version
of RSOS is NP-hard, even when searching for a single seed instead of a family
of seeds. The authors of [12] also prove that RSOS does not admit a polynomial
time approximation algorithm with bound e

e−1 − ε unless P = NP. Theorems 3
and 4 improve on these results.

2 Hardness of Non Detection

To show the hardness of Non Detection, we introduce an intermediate prob-
lem:

Name: Soapy Set Cover (SSC)
Instance: A finite subset G ⊆ Z, two non-negative integers N and q.
Question: Does it exist a subset T ⊆ Z of cardinality q such that G + T

contains at least N consecutive integers?

It is related to tiling problems. We assume that any instance (G, N, q) of SSC
has size O(max G−min G+N + q). In other words, we assume that the integers
N and q are encoded in unary, and that the set G is encoded by a bit-vector.

First in Theorem 1, we reduce Exact Cover by 3-Sets (X3C) to SSC.
In X3C, we are given a 3-uniform hypergraph (V, E) and search for a subset of
E that partitions V . X3C is NP-hard [9] (it can be seen as a generalization of
3D-Matching). Then, in Theorem 2 we reduce SSC to Non Detection.

Theorem 1. SSC is NP-complete.

Proof. SSC is in NP, since for any positive instance (G, N, q) of SSC, a subset
T ⊆ [1−maxG, N −min G] of cardinality at most q satisfying [1, N ] ⊆ G+T is
a polynomial certificate for SSC on (G, N, q). Let us now reduce X3C to SSC.

Let (V, E) be an instance of X3C. If 3 does not divide #V then (V, E) is a
negative instance of X3C that we transform into (∅, 1, 0), a negative instance of
SSC. Without loss of generality, we can now suppose that after numbering the
elements of V , V = [q + 1, 4q] where q := #V

3 . Let us also number the elements
of E : set m := #E and write E = {E1, E2, . . . , Em}.

Let N := 2q2 + 4q. For any i ∈ [1, m] and any j ∈ [1, q], let:

Fj := [(j − 1)(2q − 1) + 4q + 1, j(2q − 1) + 4q] ,

Gi,j := {j} ∪ Ei ∪ Fj ∪ {N − j + 1} , τi,j := 2N((i− 1)q + j − 1) ,

and set G :=
m⋃

i=1

q⋃
j=1

(Gi,j + τi,j).
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We obtain an instance (G, N, q) of SSC. One can easily check that this trans-
formation takes polynomial time.

Let us first explain the gadget of the proof. The sets Gi,j (for (i, j) ∈ [1, m]×
[1, q]) are subsets of [1, N ], and the τi,j ’s are the mq multiples of 2N comprised
between 0 and 2N(mq − 1). Thus, G is a subset of [1, 2Nmq]. Moreover, each
of the mq intervals of length 2N partitioning [1, 2Nmq] (that is to say, the
[2N(k − 1) + 1, 2Nk]’s for k ∈ [1, mq]) contain a unique Gi,j + τi,j in their left
half and no element of G in their right half.

Let us now dwell on the Gi,j : the cardinality of Gi,j is 2q +4 since Gi,j is the
disjoint union of the hyperedge Ei whose cardinal is 3, of the segment Fj whose
cardinality equals 2q − 1, and of two singletons.

Let F := [4q + 1, N − q] =
[
4q + 1, 2q2 + 3q

]
. The four segments [1, q],

[q + 1, 4q], F , and [N − q + 1, N ] have length q, 3q, 2q2 − q, and q, respectively.
They form a partition of [1, N ]. Each contributes to Gi,j : the singleton {j} is
included in [1, q], the hyperedge Ej is included in [q + 1, 4q] = V , Fj is included
in F , and the singleton {N − j + 1} in [N − q + 1, N ]. Besides, {F1, F2, . . . , Fq}
is the unique partition of F in segments of length 2q − 1.

Lemma 11. If (V, E) is a positive instance of X3C then (G, N, q) is a positive
instance of SSC.

Proof. Suppose there exists C ⊆ E that is a partition of V . Then, C has car-
dinality #V/3 = q and thus, there are i1, i2, . . . , iq ∈ [1, m] such that C =
{Ei1 , Ei2 , . . . , Eiq}. Let us set T :=

{
−τi1,1,−τi2,2, . . . ,−τiq,q

}
.

By construction, T has cardinality q and for any j ∈ [1, q], one has

Gij ,j = (Gij ,j + τij ,j)− τij ,j ⊆ G− τij ,j ⊆ G + T

therefore G + T includes
q⋃

j=1

Gij ,j =
q⋃

j=1

{j} ∪
q⋃

j=1

Eij ∪
q⋃

j=1

Fj ∪
q⋃

j=1

{N − j + 1}

= [1, q] ∪ V ∪ F ∪ [N − q + 1, N ] = [1, N ] .

It follows that (G, N, q) is a positive instance of SSC. �

It remains to show that whenever (G, N, q) is a positive instance of SSC,
(V, E) is a positive instance of X3C. For this, we need the following lemma.

Lemma 12.

∀t ∈ Z ∃(i, j) ∈ [1, m]× [1, q] (G + t) ∩ [1, N ] ⊆ Gi,j + τi,j + t .

Proof. Let t ∈ Z. G + t can be written as the union of the sets Gi,j + τi,j + t
with (i, j) ∈ [1, m]× [1, q]. Now by construction, the Gi,j + τi,j ’s, and thus, the
Gi,j + τi,j + t’s, are distant from each other of at least N positions. It follows
that the intersection of G + t with [1, N ] cannot contain some elements of two
distinct Gi,j + τi,j + t’s. �
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Now assume that (G, N, q) is a positive instance of SSC. There is T ⊆ Z satis-
fying #T = q and [1, N ] ⊆ G + T .

Lemma 13. There are (i1, j1, u1), (i2, j2, u2), . . . , (iq, jq, uq) ∈ [1, m]×[1, q]×Z

such that the sets Gi1,j1 + u1, Gi2,j2 + u2, . . . , Giq,jq + uq are pairwise distinct
and form a partition of [1, N ].

Proof. Let us number arbitrarily the elements of T : T := {t1, t2, . . . , tq}.
Lemma 12 guarantees that, for each k ∈ [1, q], there are ik ∈ [1, m] and jk ∈ [1, q]
satisfying (G + tk) ∩ [1, N ] ⊆ Gik,jk

+ τik,jk
+ tk.

Let uk := τik ,jk
+ tk. Since [1, N ] ⊆ G + T =

⋃q
k=1(G + tk), it follows that

[1, N ] ⊆
⋃q

k=1(G+ tk)∩ [1, N ] ⊆
⋃q

k=1(Gik ,jk
+uk). So, [1, N ], whose cardinality

is N = q × (2q + 4), is covered by the Gik,jk
+ uk’s (for k ∈ [1, q]), which are at

most q and have each cardinality 2q + 4. This requires that the Gik,jk
+ uk’s are

pairwise distinct and partition [1, N ]. �

Proving that u1 = u2 = · · · = uq = 0 will enable us to deduce from Lemma 13
that the Gik,jk

’s (for k ∈ [1, q]) are pairwise disjoint, and so will the q hyperedges
Ei1 , Ei2 , . . . , Eiq (be pairwise disjoint). This will mean that

{
Ei1 , Ei2 , . . . , Eiq

}
is a partition of V , and (V, E) a positive instance of X3C.

Let us first show that

∀k ∈ [1, q] − q < uk < q . (1)

The integers j and N − j + 1 are respectively the smallest and largest elements
of Gi,j . Then for any k ∈ [1, q], one has:

min(Gik,jk
+ uk) = jk + uk and max(Gik,jk

+ uk) = N − jk + 1 + uk .

As Gik,jk
+ uk is included in [1, N ] (Lemma 13), it yields 1 ≤ jk + uk and

N − jk + 1 + uk ≤ N , which implies 1 − jk ≤ uk ≤ jk − 1. As jk is at most q,
one gets 1− q ≤ uk ≤ q − 1, what we wanted.

Second, let us prove
{j1, j2, . . . , jq} = [1, q] . (2)

By definition of jk (Lemma 13), one has {j1, j2, . . . , jq} ⊆ [1, q]. Thus, it suffices
to show that the jk’s (k ∈ [1, q]) are pairwise distinct. The proof relies on the
following claim:

Claim 11. If S is a segment of length 2q − 1 and if u is an integer satisfying
−q < u < q then the center of S ( i.e., (maxS + min S)/2) belongs to S + u.

Assume there are k, l ∈ [1, q] satisfying k �= l and jk = jl. By (1), one has
−q < uk, ul < q, and so, by Claim 11, both Fjk

+ uk and Fjl
+ ul contain the

center of Fjk
= Fjl

. This contradicts the fact that Gik,jk
+uk and Gil,jl

+ul are
disjoint (by Lemma 13) and thus, we have shown (2).
Equation (2) allows to renumber the triples (ik, jk, uk) (for k ∈ [1, q]) in such a
way that jk = k for all k ∈ [1, q].

Now, assume the set K := {k ∈ [1, q] : uk �= 0} is non-empty, and set κ :=
min K. The following claim will lead to a contradiction.
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Claim 12. Let S ⊆ Z and X ⊆ S such that min X = min S and maxX =
maxS. Then X is the unique translate of X included in S ( i.e., for any u ∈ Z,
X + u ⊆ S implies u = 0).

For any j ∈ [1, κ− 1], the set Gij ,j + uj

– contains j and N− j+1 (since j /∈ K requires uj = 0 and Gij ,j = Gij ,j +uj)
– and, has an empty intersection with Giκ,κ + uκ (by Lemma 13).

Thus, none of j and N−j+1 belongs to Giκ,κ +uκ. As by Lemma 13, Giκ,κ +uκ

is a subset of [1, N ], one gets Giκ,κ + uκ ⊆ [κ, N − κ + 1]. Applying Claim 12
with X := Giκ,κ and S := [κ, N − κ + 1] yields uκ = 0, which contradicts κ ∈ K.

We have then demonstrated that K = ∅, i.e., that u1 = u2 = · · · = uk = 0.
This concludes the proof of Theorem 1. �
Theorem 2. Non Detection is NP-complete.

Proof. Non Detection is in NP, since for any positive instance (g, m, k) of Non
Detection, an (m, k)-similarity not detected by g is a polynomial certificate
for Non Detection on (g, m, k). Hence, to obtain the NP-completeness of Non
Detection, it suffices to reduce SSC to Non Detection (Theorem 1).

Let (G, N, q) be an instance of SSC. If needed, we may translate G such that
min G = 0; from now on we make this assumption. Thus, we have G ⊆ [0, maxG].
Let g be the word over {#, -} of length maxG + 1 defined by: for all j in [1, |g|],
g[j] = # iff |g| − j ∈ G.

One has |g| − 1 = maxG ∈ G and |g| − |g| = 0 ∈ G; thus, g[1] = g[|g|] = #,
i.e., the first and last letters of g are #. Let m := N−1+ |g| and k := min{m, q}.
We obtain an instance (g, m, k) of Non Detection in a time polynomial in
function of (G, N, q).

Additionally, one has N − 1 = m− |g| and thus,

[0, N − 1] = [0, m− |g|] . (3)

• Assume (g, m, k) is a positive instance of Non Detection.
There is an (m, k)-similarity s that is not detected by g. Let us set T :=

{j ∈ [1, m] : s[j] = 0}− |g| . On one hand, T is a translate of a set of cardinality
k (by Definition 2) and has itself cardinality k ≤ q. Let i ∈ [0, N − 1]. On the
other hand by Equation (3), one has i ∈ [0, m− |g|] and then, by hypothesis,
g does not detect s at position i. Therefore, there exists j ∈ [1, |g|] satisfying
g[j] = # and s[i + j] = 0. So, one gets |g| − j ∈ G and i + j − |g| ∈ T , and this
yields i = (|g| − j) + (i + j − |g|) ∈ G + T . We have thus shown that G + T
includes [0, N − 1], from which we deduce that (G, N, q) is a positive instance of
SSC.
• Conversely, let (G, N, q) be a positive instance of SSC.

Then, there exists T ⊆ Z having cardinality q and such that [0, N − 1] ⊆
G + T . Let s ∈ {0, 1}m be defined by: for all i ∈ [1, m], s[i] = 0 iff i ∈ T + |g|.

Let i ∈ [0, m− |g|]. By Equation (3), one has i ∈ [0, N − 1] and then, by
hypothesis, there are γ ∈ G and t ∈ T such that i = γ + t. Setting j := |g| − γ,
one gets g[j] = # since |g| − j = γ ∈ G. It follows that
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i + j = (γ + t) + (|g| − γ) = t + |g| ∈ T + |g|

and thus, that s[i + j] = 0. It implies that g cannot detect s at position i. As i
can be chosen arbitrarily in [0, m− |g|], g does not detect s.

Now, it is true that |s|0 ≤ |s| = m and |s|0 ≤ #(T + |g|) = #T = q, and
so |s|0 ≤ min{m, q} = k. By replacing enough 1 in s by 0’s, one obtains an
(m, k)-similarity that is undetected by g. It follows that (g, m, k) is a positive
instance of Non Detection and this concludes the proof of Theorem 2. �

3 Hardness and Inapproximability of MWLS

In order to demonstrate the inapproximability of MWLS, we reduce Maximum
Independent Set (MIS) to it. In MIS, given a graph G = (V, E), one searches
for the largest independent set I of G. It is known [10] that MIS cannot be
approximated within bound (#V )0.5−ε unless P = NP.

Let n ≥ 1 be an integer. Let us set δn
i := (i − 1)n2 + i2 for any i ∈ [1, n].

Recall that a Golomb ruler is a set of integers such that the difference between
any two distinct points in this set characterizes these two points [2].

Lemma 1. The set {δn
1 , δn

2 , . . . , δn
n} is a Golomb ruler with n marks computable

in polynomial time in n.

Proof. It is clear that the set {δn
1 , δn

2 , . . . , δn
n} is computable in polynomial time

in n. Let i1, j1, i2, j2 ∈ [1, n] satisfying i1 < j1 and i2 < j2. It remains to show
that our set is a Golomb ruler, i.e., that δn

j1
− δn

i1
= δn

j2
− δn

i2
implies i1 = i2 and

j1 = j2.
For any α ∈ {1, 2}, set Nα := δn

jα
− δn

iα
, qα := jα − iα, and rα := j2

α − i2α.
One has Nα = qαn2 + rα and 0 ≤ rα < n2, and so qα and rα are respectively the
quotient and the remainder of the Euclidean division of Nα by n2. Moreover, iα
and jα can be written in function of qα and rα:

iα =
(
rαq−1

α − qα

)
/2 and jα =

(
rαq−1

α + qα

)
/2 . (4)

Assume δn
i1 − δn

j1 = δn
i2 − δn

j2 . One gets N1 = N2, and by the uniqueness of the
quotient and remainder of a division, one obtains q1 = q2 and r1 = r2. So, one
deduces from (4) that i1 = i2 and j1 = j2. �

Definition 4 (Gadgets). Let X ⊆ [1, n]. Let wn
X denote the word over {#, -}

satisfying: |wn
X | = n3 +n2, ‖wn

X‖ = #X, and wn
X [δn

x ] = # for any x ∈ X. Let gn
X

denote the seed obtained from wn
X by deleting the leading and trailing - symbols.

Next Lemma means that the gn
X (for X ⊆ [1, n]) are in one-to-one correspon-

dence with the subsets of [1, n]. It builds on Lemma 1.

Lemma 2. Let X1 and X2 be two subsets of [1, n] having cardinality at least 2.
Then, gn

X1
= gn

X2
if and only if X1 = X2.
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Proof. For any α ∈ {1, 2}, let us set gα := gn
Xα

and wα := wn
Xα

. There exists

pα ∈
[
0, n3 + n2 − |gα|

]
such that wα = (-)pαgα(-)n3+n2−|gα|−pα .

Assume g1 = g2 and let us show that X1 = X2. Notice that Xα = {x ∈
[1, n] : wα[δn

x ] = #}, so Xα is completely determined by wα; therefore, it suffices
to show that w1 = w2 or equivalently that p1 = p2.

One has |gα| ≥ ‖gα‖ = #Xα ≥ 2, and for any i ∈ [1, |gα|], wα[pα + i] = gα[i].
Especially, if i = 1, one gets wα[pα + 1] = gα[1] = #; so, there exists iα ∈ Xα

such that pα +1 = δn
iα

. Also, if i = |gα|, one obtains wα[pα + |gα|] = gα[|gα|] = #
and thus, there is jα ∈ Xα satisfying pα + |gα| = δn

jα
.

On one hand, one has δn
jα

= pα + |gα| ≥ pα + 2 > pα + 1 = δn
iα

. On the other
hand, one also has δn

j1 − δn
i1 = |g1| − 1 = |g2| − 1 = δn

j2 − δn
i2 . Then Lemma 1

ensures that δn
i1

= δn
i2

, from which we deduce p1 = δn
i1
− 1 = δn

i2
− 1 = p2. �

Definition 5 (Some more gadgets). Let v ∈ [1, n]. Let σn
v denote the simi-

larity satisfying: |σn
v | = n3 +n2, |σn

v |1 = n− 1, and σn
v [δn

x ] = 1 for any x ∈ [1, n]
such that x �= v.

Next Lemma explains the role of the σn
v ’s (for v ∈ [1, n]). Combined with

the preceding lemma, it implies that the seeds detecting σn
v are in one-to-one

correspondence with the gn
X ’s (for X ⊆ [1, n], v /∈ X), as well as with the subsets

of [1, n] that do not contain v.

Lemma 3. Let v ∈ [1, n] and let g be a seed. Then, g detects σn
v if and only if

there exists X ⊆ [1, n] such that v /∈ X and g = gn
X .

Proof. • Assume there is X ⊆ [1, n] such that v /∈ X and g = gn
X . As gn

X is
a substring of wn

X , it is enough to show that wn
X detects σn

v at position 0. Let
i ∈

[
1, n3 + n2

]
such that wn

X [i] = #. There exists x ∈ X such that i = δn
x . Since

v /∈ X , one has x �= v so, σn
v [i] = σn

v [δn
x ] = 1, what we wanted.

• Conversely, suppose g detects σn
v . Let p ∈ [0, |σn

v | − |g|] such that g detects
σn

v at position p. Then, w := (-)p
g(-)n3+n2−|g|−p detects σn

v at position 0. Let
us set X := {x ∈ [1, n] : w[δn

x ] = #}. First, note that σn
v [δn

v ] = 0; consequently,
w[δn

v ] = - and thus, v /∈ X . Moreover, since w detects σn
v and has the same

length as σn
v , it is easy to see that w = wn

X and thus, g = gn
X . �

Theorem 3. MWLS is NP-hard. Moreover, if MWLS admits a polynomial time
approximation algorithm with bound (#S)0.25−ε then P = NP.

Proof. We reduce MIS to MWLS in such a way that it preserves the approx-
imation properties. Let G = (V, E) be a graph; G is an instance of MIS. Let
n := #V . After numbering the vertices of G, we can assume V = [1, n] and
thus, for any edge E ∈ E , we have E = {min E, max E}. We build the set of
similarities SG := {1n3+n2} ∪ {sn

E : E ∈ E} where sn
E := σn

min E0
n3+n2

σn
max E for

any egde E ∈ E . SG is an instance of MWLS that can be constructed from G in
polynomial time. Next two Lemmas guarantee that our reduction preserves the
approximation.
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Lemma 31. For any independent set I of G, there is a seed of weight #I that
detects all similarties in SG.

Proof. Let I be an independent set of G. Clearly, gn
I is a seed of weight #I

detecting 1n3+n2
. Moreover, any edge E ∈ E admits an extremity v such that

v /∈ I. Hence, by Lemma 3, gn
I detects σn

v and, all the more reason for gn
I to

detect its superstring sn
E. �

Lemma 32. For any seed g of weight at least 2 detecting all similarities in SG,
there is an independent set I of G whose cardinality equals ‖g‖. Moreover, I is
computable in polynomial time in function of g.

Proof. Let E ∈ E . Let fE be a substring of sn
E detected by g with the same length

as g. Since g starts and ends by a #, fE starts and ends by a 1. Moreover, the
presence of 1n3+n2

in SG implies |fE | = |g| ≤ n3 + n2. Hence, the block 0n3+n2

that lies between σn
min E and σn

max E in sn
E is longer than fE. This requires fE to be

fully included in σn
min E or σn

max E . Thus, there exists vE ∈ {min E, maxE} such
that g detects σn

vE
and, by Lemma 3, this garantees the existence of XE ⊆ [1, n]

such that g = gn
XE

and vE /∈ XE .
Since #XE = ‖g‖ ≥ 2, Lemma 2 implies that the XE ’s (with E ∈ E)

are all equal to each other, and thus, their common value, denoted I, is an
independent set of G of cardinality ‖g‖. Besides, it is easy to see that I =
{x ∈ [1, n] : g[δn

x ] = #} can be computed in polynomial time from g. �
One has #SG = #E + 1 ≤ (#V )2; so, if there exists an approximation

algorithm for MWLS with bound (#S)0.25−ε, Lemmas 31 and 32 would allow
to design an approximation algorithm for MIS whose bound is (#SG)0.25−ε ≤(
(#V )2

)0.25−ε = (#V )0.5−2ε. But, this is possible only if P = NP [10]. This
concludes the proof of Theorem 3. �

4 Hardness and Inapproximability of RSOS

We obtain the result on the hardness to approximate RSOS by reducing Maxi-
mum Coverage (MC) to RSOS. Our reduction is different than the one in [12]
since it works even for a single seed. We use an alternative formulation of MC:
given a hypergraph (V, E) and an integer k ≥ 0, search for a subset C ⊆ V of car-
dinality k that maximizes the number of hyperedges E ∈ E satisfying C∩E �= ∅.
This problem is not approximable within e

e−1 − ε unless P = NP [8]. Actually,
we obtain a stronger result that is the pendant to the one of Feige [8] for MC:
unless P = NP, it does not exist a polynomial algorithm that, for any instance
of RSOS, returns not a solution, but only an approximate value of the optimal
solution within bound e

e−1 − ε of the optimal.

Theorem 4. Even if restricted to instances (d, p, S) such that d = 1, RSOS
does not admit a polynomial time approximation algorithm with bound e

e−1 − ε
unless P = NP.

Due to lack of space, the proof of Theorem 4 is not included in this extended
abstract.
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Abstract. Weighted Directed Word Graph is a new text-indexing struc-
ture which is based on a new compaction method on DAWG. WDWGs
are basically cyclic, means that they may accept infinite strings. But by
assigning weights to the edges, the acceptable strings are limited only to
the substrings of input strings. The size of WDWGs is smaller than that
of DAWGs both in theory and practice. A linear-time on-line construc-
tion algorithm for WDWGs is also presented.

1 Introduction

Index structures, such as Directed Acyclic Word Graph (DAWG)[1, 4], suffix
trees[5], play an important role in many applications such as pattern matching,
intrusion detection systems and computational biology. A major drawback that
limits the applicability of indexes is their space complexity. In this paper, we
introduce the Weighted Directed Word Graph (WDWG), a new index structure
that is as efficient as the DAWG, but more space economical. We compact the
DAWG in a new way that merges states to fewer state sets and the edges that
emit from state set to fewer weighted edges. As a result, we obtain a family of
weighted automata that can be seen as an alternative to suffix trees and DAWGs.
We demonstrate that for a given word w, the WDWG of w has at most |w| + 1
states and 2|w| − 1 transition edges. On-line algorithm to build WDWG from
input word in liner time is also given.

2 Basic Definitions

Let Σ be a nonempty alphabet and Σ∗ the set of words over Σ, with ε as the
empty word. Let w be a word in Σ∗, |w| denotes its length, w[i] its ith letter,
and w[i : j] its factor(subword) that begins at position i and ends at position j.
If w = xyz with x, y, z ∈ Σ∗, then x, y and z denotes some subwords of w, x is
a prefix of w, and z is a suffix of w. Denote wr the reverse word of w. Pref(w)
denotes the set of all prefixes of w, Suff(w) denotes the set of all suffixes of
w and Fact(w) the set of its factors. Let S ⊂ Σ∗. For any string u ∈ Σ∗,
� Supported by National Natural Science Foundation of China No.90204014 and Nat-

ural Science Foundation of Science and Technology Department of Jilin Province
No.20030516

A. Apostolico, M. Crochemore, and K. Park (Eds.): CPM 2005, LNCS 3537, pp. 156–167, 2005.
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let u−1S = {x|ux ∈ S}. The syntactic congruence associated with Suff(w) is
denoted by ≡Suff(w) and is defined, for x, y, w ∈ Σ∗, by

x ≡Suff(w) y ⇐⇒ x−1Suff(w) = y−1Suff(w).

We call classes of factors the congruence classes of the relation ≡Suff(w). Let
[u]w denote the congruence class of u ∈ Σ∗ under ≡Suff(w). The longest element
in the equivalence class [u]w is called its representative.

Definition 1 The DAWG of w is a directed acyclic graph with set of states
{[u]w|u ∈ Fact(w)} and set of edges {([u]w, a, [ua]w)|u, ua ∈ Fact(w), a ∈ Σ}.
Denoted by DAWG(w).The state [ε]w is called the root of DAWG(w).

Denote the state set of DAWG(w) by SD(w), the edge set by ED(w). An
edge labeled by a is called an a-edge. The edges of the DAWG are divided into
two categories. The edge ([u]w, a, [ua]w) is called soild if ua is the representative
of [ua]w, otherwise it is called secondary. With each node [u]w we associate a
number depth([u]w) defined as the depth of [u]w in the tree of solid edges. Let
p be a state of DAWG(w), different from root, and u be the representative
of p. The suffix link of p, denoted by fail(p), is the state whose representa-
tive v is the longest suffix of u such that v not ≡Suff(w) u. Then the sequence
(p, fail(p), fail2(p), . . .) is finite and ends at the root of DAWG(w). This se-
quence is called the suffix chain of p, denoted by SC(p).

Definition 2 Let w ∈ Σ∗, ε is a prime prefix of w; Let t be a prefix of w, if t
is not a suffix of any prefix of w, then t is a prime prefix of w. The set of prime
prefixes of w is denoted by pp(w).

Prime prefixes of w are in one to one correspondence with the leaves of
implicit suffix tree [5] of wr. It is clear that w is a prime prefix of itself. For wa,
any prime prefix of w, which is not a suffix of wa, is a prime prefix of wa.

3 Weighted Directed Word Graph

The nodes and suffix links of DAWG(w) form the suffix tree of reverse string
of w [1]. Let p be a prime prefix of w, SC([p]w) = (s1, s2, . . . , sm) where s1 =
[p]w, sm = [ε]w. Let si be the first state in SC([p]w) that has an a-edge, then
all the states in SC(si) have an edge labeled by a. Let the destinations of these
edges be d1, d2, . . . , dm−i+1, then by deleting reduplicate states this sequence
is the suffix chain of d1 omitted [ε]w. For j ≥ i, let the subword set I(p, j) =
s1 ∪ s2 ∪ . . . ∪ sj , J = d1 ∪ d2 ∪ . . . ∪ dj . For ∀t ∈ I(p, j), if |t| ≤ depth(si),
then ta ∈ J . This implies that the set I(p, j), j ≥ i, has an edge (I(p, j), J, a, L)
labeled by a with a weight L = depth(si) which demarcates I(p, j).

Through the observation above, we find, by certain rules, we can merge the
states along suffix chains into a series of state sets. And the states, which are
destinations of edges labeled by the same letter emitted from states in one set,
are just merged into one set. The sets and the weight edges form a new index
structure with less states and edges. An example of WDWG is displayed in Fig.1.
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Fig. 1. w = ababbaa. Graphics upset are suffix trie for w, DAWG(w) and a possible
WDWG for w. Undersides are corresponding trees formed by suffix links and nodes of
each structure upset. The digital after the letter on some WDWG edges is the weight
of the edge, weight of the edge with no digital is the depth of the state emits the edge.

We now give some important notions that are bases of the new structure.
For state s of DAWG(w) , denote Fs(s) the set of states whose suffix links
are s, called fail set of s. Give function min: SD(w) → SD(w), for state s, if
Fs(s) = Φ or s = [ε]w, then min(s) is undefined; else min(s) is a state selected
from Fs(s). Function min is called an order function of DAWG(w) and min(s)
is called the electee child of s.

Definition 3 Let M be an order function of DAWG(w). A partial order ≤M

can be derived from M as follow: for t ∈ Fs(s), if t �= M(s), then M(s) ≤M t;
for state r, t, if there exists r′ ∈ SC(r) and t′ ∈ SC(t), such that r′ ≤M t′, then
r ≤M t. The partial order ≤M is called a backdating order of w.

We define the interval and partition by backdating order as following:

Definition 4 Let p ∈ pp(w), ≤M be a backdating order of w. The state sc, which
is the first state in SC([p]w) such that sc �= M(fail(sc)) or fail(sc) = [ε]w, is
called the terminal point of backdating path of p under ≤M . The set, includes
all the subwords belong to the states in suffix chain from [p]w to sc, is denoted
by [p]Mw , called the interval of p under M. The interval set IM (w) = {[p]Mw |p ∈
pp(w)} is called a partition of Fact(w) by M .

For a partition of Fact(w), it is clear that any subword of w belongs to just
one interval. For an interval I of a partition, any subword in I is a suffix of the
longest subword in I. Denote the longest subword u in I by end(I), the shortest
one v by short(I), and denote I by [v, u]. short(I) is called the starting position
of I. Denote the length of I by length(I) = |u| − |v| + 1. Let v′ be the suffix
of v that |v′| = |v| − 1, then I can also be denoted by (v′, u]. Denote the set
Ia ∩ Fact(w) by Ia/w.
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An interval may contain several states of DAWG(w). The new index struc-
ture ensures that the states, which are destinations of edges emitted from states
in an interval, are merged into one interval. This property is defined as follow.

Definition 5 The pair (I, α) ∈ IM (w)×Σ is called a consistent pair, if there
is one and only one interval in IM (w), say J , that Iα/w ⊆ J . If any (I, α) ∈
IM (w) × Σ is consistent pair, then IM (w) is called a consistent partition of
w. The partition order ≤M is called a consistent partial order of w.

For an order function M of DAWG(w), IM (w) is not always a consistent
partition. Fig.2 illustrates an inconsistent partition and a consistent one.
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Fig. 2. The left figure is an inconsistent partition of Fact(ababbaa) and the right is a
consistent one. Dotted edges are suffix links of intervals, that will be defined later. The
set [b, ababb]a is scattered to [a, aba] and [bba, ababba] in left figure, but keeps integrity
in the right figure.

Taking advantage of consistent partition, we define the new index structure.

Definition 6 The Weighted Directed Word Graph (WDWG) for w under
a consistant partition IM (w) is a weighted directed graph with node(state) set
IM (w), and edge set {(I, J, a, L)|I, J ∈ IM (w), Ia/w �= Φ and Ia/w ⊆ J , ∀t ∈ I,
if |t| ≤ L, then ta ∈ J , else ta is not a subword of w}. Denoted by WDWGM (w).
[ε]Mw is called the root of WDWGM (w).

WDWGs is not always acyclic as DAWGs. In some cases, the source and
destination of an edge may be the same interval. So we delete “acyclic” from the
name of the structure. For an edge e = (p, q, a, L) of a WDWG, we say that p has
an edge emits from L. According to L, the interval p is divided into two parts:
A = {t|t ∈ p and |t| ≤ L}; B = {t|t ∈ p and |t| > L}. Any subword t in A, ta
is a subword of w. Any subword t in B, ta is not a subword of w. As in DAWG,
edges in WDWG are divided into two groups: solid edges and non-solid edges. If
end(q) = L + 1, an edge (p, q, a, L) is solid, otherwise it is non-solid. Define the
suffix link of an interval I as follow: fail(I) = J , where the suffix of short(I)
with length |short(I)| − 1 is in J . The suffix links of WDWG are also weighted.
The weight of suffix link (I, J) is |short(I)|. |short(I)| is called the attach point
of I on fail(I). The sequence (I, fail(I), fail2(I), . . . , [ε]Mw ) is called the suffix
chain of I , denoted by SC(I). For each interval I of WDWGM (w), denote the
set of intervals whose fail links are I by Fs(I). The intervals and suffix links of
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WDWG of w form a structure similar to suffix cactus [6] of wr . The relationship
between WDWG of w and suffix cactus of wr has an analogy with that between
factor automaton [1] and suffix tree of wr .

Define automaton ST (Q, E, T, i) based on WDWGM (w) as following: Q =
{(q, l)|q ∈ S(WDWGM (w)), |short(q)| ≤ l ≤ |end(q)|}, E = {(p, l), a, (q, l +
1)|(p, l), (q, l + 1) ∈ Q, a ∈ Σ, ∃(p, q, a, L) ∈ E(WDWGM (w)), l ≤ L}, T = Q
and i = ([ε]Mw , 0). Apparently, the automaton is equivalent to suffix trie of w. By
this automaton, WDWGM (w) provides an index on Fact(w).

4 Size of WDWG

The bounds on the maximum number of states and edges in WDWGM (w) in
terms of the length of w are derived in this section. According to the definition
of WDWG, the states in WDWGM (w) are in one to one correspondence with
prime prefixes of w. For the number of prime prefixes of w is not greater than
|w|+ 1, the bound on the number of states is:

Lemma 1 For w ∈ Σ∗, WDWGM (w) has at most |w|+ 1 states.

For the bound on the number of edges, we have:

Lemma 2 For w ∈ Σ∗, WDWGM (w) has at most 2|w| − 1 edges.

Proof. Each edge of DAWG(w) can be mapped to an edge of WDWGM (w)
through the mapping σ defined as following:

σ((s, a, t))=(I, J, a, L)

where (s, a, t) is an edge of DAWG(w), (I, J, a, L) is an edge of WDWGM (w),
s ⊆ I, t ⊆ J . According to the definition of WDWG, for any edge e of DAWG(w),
σ(e) is unique. Edges labeled by a, which emit from DAWG states that belong
to I, are mapped to (I, J, a, L). So σ is an injective mapping.

Let p �= ε be a prime prefix, nc(p) denote the number of DAWG(w) states in
[p]Mw , (s1 = [p]w, . . . , snc(p)) is the backdating path of p under ≤M . For p occurs
in w just once, this means for p �= w, [p]w has only one edge. For p �= w, if
the only solid edge of [p]w is labeled by a, then all the states on suffix chain of
[p]w have an edge labeled by a. So the nc(p) edges labeled by a emitted from
s1, . . . , snc(p) are mapped to one weighted edge. If p = w, [w]w has no edge.

If fail([w]w) = [ε]w, then nc(w) = 1 and 0 edge is mapped to 0 weighted
edge. Let ED denote the number of edges of DAWG(w) and ER denote that of
WDWGM (w), SD denote the number of states of DAWG(w) and SR denote
that of WDWGM (w). For σ is an injective mapping, we have ED − ER ≥
(Σp∈pp(w)nc(p)− 1)− (SR − 1). Therefore ED − ER ≥ SD − SR and

ER ≤ ED − SD + SR.

By lemma 1.6 in [1], there is: ED − SD ≤ |w| − 2. By lemma1, there is
SR ≤ |w|+ 1, so:
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ER ≤ 2|w| − 1.

If fail([w]w) �= [ε]w, then states on suffix chain of fail([w]w) have edges
labeled by a which one of edges of fail([w]w) is labeled by. So the nc(w)−1 edges
labeled by a emitted from s1 = [w]w, . . . , snc(w) are mapped to one weighted
edge. For σ is an injective mapping, we have ED −ER ≥ (Σp∈pp(w)nc(p)− 2)−
(SR− 1). Therefore ER ≤ ED −SD + SR + 1. By lemma 1 and lemma 1.6 in [1],
we have

ER ≤ 2|w|.

For ED − SD is the number of non-solid edges, if ED − SD reaches its maxi-
mum, there are maximum number of non-solid edges. In this case, each non-solid
edge (p, a, q) is associated with the suffix uav of w as follows: u is the label of
the longest path from initial state to p, and v is the label of the longest path
from q to a terminal state [1, 3]. If fail([w]w) �= [ε]w, then any suffix of w that
belongs to fail([w]w) will not be associated with any non-solid edges, because
those suffixes that are not included in terminal state. So ED − SD < |w| − 2.
Therefore we have ER ≤ 2|w| − 1. So in both cases, ER ≤ 2|w| − 1.�

The following theorem is the direct consequence of Lemma 1 and Lemma 2.

Theorem 1 For w ∈ Σ∗, a Weighted Directed Word Graph for w has at most
|w|+ 1 states and 2|w| − 1 edges.

5 On-Line Construction of WDWG

The on-line construction algorithm of WDWG processes the letters of w from
left to right. At each step of construction, a WDWG of the prefix of w that
has been processed is created correctly. The main works of the algorithm are to
convert the current partition to a new consistence partition.

w and a consistent order function M of w are the only two parameters that
determine the WDWGM (w). When a letter, say a, is inputted, the algorithm
selects a consistent order function of wa, say M ′, based on M . In this process,
there is at most one DAWG(w) state whose electee child is changed. Now we
demonstrate how the process works. First, define tail(w) as the longest suffix of
w that occurs more than once in w. In the construction of DAWG, during the
process of converting DAWG(w) to DAWG(wa), there are two cases:

(a) If the state represented by tail(wa) already exists in DAWG(w), then
the DAWG construction creates a new state [wa]wa;

(b) Else two states are created: [wa]wa, [tail(wa)]wa.
In (a), the state, whose electee child is likely to be changed by the WDWG

construction algorithm, is [tail(wa)]w = [tail(wa)]wa. In case (b), let x be a
substring such that x ∈ [tail(wa)]w and x /∈ [tail(wa)]wa. Then, [tail(wa)]w is
split to two state: [tail(wa)]wa and [x]wa. Fs([tail(wa)]wa) = {[x]wa, [wa]wa}. A
state in Fs([tail(wa)]wa) is selected as the electee child of [tail(wa)]wa. Electee
children of all the states of DAWG(w) are hold fixed. In both cases, the only
state whose electee child is likely to be changed is [tail(wa)]wa.
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In case(a), if tail(wa) = ε, then letter a doesn’t occur in w, the interval
of wa is set to [a, wa]. For Fs([wa]wa) = Φ, so M ′([wa]wa) is undefined and
M ′ = M . Let the interval set S = {I ∈ IM ′ (wa)|Ia/wa �= Φ}. Intervals in S
are in one to one correspondence with the intervals on SC([w]Mw ), and for any
I ∈ S, there is Ia/wa ⊆ [wa]M

′
wa . For IM is a consistent partition of DAWG(w),

so IM ′ = IM ∪ [a, wa] is a consistent partition too. Then we get:

Lemma 3 Let IM (w) be a consistent partition of w. If tail(wa) = ε, then
IM ′ (wa) = IM (w) ∪ [a, wa] is a consistent partition.

In case (a), if tail(wa) �= ε, then the algorithm selects the electee child of
[tail(wa)]wa from [wa]wa and M([tail(wa)]w). In case (b), the algorithm se-
lects the electee child of [tail(wa)]wa from [wa]wa and q = [r, t] which is the
WDWGM (w) interval that tail(wa) belongs to. According to the electee child
selected, there are three operations to convert a partition of w to that of wa.

If [wa]wa is selected as M ′([tail(wa)]wa), then there are

– split(q, wa) creates [wa]M
′

wa = [r, wa], sets q = (tail(wa), t], holds other in-
tervals fixed, that is IM ′ (wa) = IM (w) ∪ {[r, wa]} ∪ {(tail(wa), t]} − {q};

– prolong(q, wa) if t = tail(wa), then it sets q to [r, wa], [wa]M
′

wa = q, holds
other intervals fixed, that is IM ′ (wa) = IM (w) ∪ {[r, wa]} − {q}.

If q is selected as M ′([tail(wa)]wa), then there is

– attach(q, wa) creates [wa]M
′

wa = (tail(wa), wa], holds other intervals fixed,
that is IM ′(wa) = IM (w) ∪ {(tail(wa), wa]}.

The first interval I in SC([w]Mw ) that Ia/w �= Φ is denoted by fail([w]Mw , a),
which is the first interval in SC([w]Mw ) that has an a-edge. The following lemma
summarizes the modification that must be made to update a consistent partition
of w to that of wa.

Lemma 4 Let IM (w) be a consistent partition of w and tail(wa) �= ε, v be the
longest suffix of w in p = fail([w]Mw , a), u be the longest word in p that ua is
a factor of w, and q = [r, t] be the interval that tail(wa) belongs to. Transform
IM (w) to IM ′ (wa) as the following:

(i) if |v| > |u|, then set M ′([tail(wa)]wa) = [wa]wa,
a) if pa/w = q, then IM ′(wa) = IM (w) ∪ {[r, wa]} − {q},
b) else IM ′ (wa) = IM (w) ∪ {[r, wa]} ∪ {(tail(wa), t]} − {q};

(ii) if |v| < |u|, then select the state in Fs([tail(wa)]wa) which is not [wa]wa

as the electee child of [tail(wa)]wa, IM ′(wa)=IM (w) ∪ (tail(wa), wa];
(iii) if |v| = |u|, then set the electee child of [tail(wa)]wa optionally, that trans-

form IM (w) to IM ′ (wa) according to (i) or (ii) optionally.

Then the partition IM ′ (wa) is a consistent partition of wa.

Proof. Let p = fail([w]Mw , a) = [x, y], [w]Mw be the current active state.
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(i) |v| > |u|
In IM (w), [x, u]a is a sub-interval of q, but (u, v]a is not. To ensure the consistence
of IM ′ (wa), the interval pa/wa = [x, v]a should be in one interval in IM ′ (wa).
Then the operation split(q, wa) is employed to reach this goal. We get IM ′ (wa),
in which [wa]M

′
wa = [r, wa], q = (tail(wa), t], and pa/wa ⊆ [wa]M

′
wa .

Now we check the consistence of IM ′(wa). Let set Sp = {I ∈ IM (w)|Ia/w =
Φ and Ia/wa �= Φ}. For each I ∈ Sp, Ia/wa ∈ (va, wa], because (va, wa] ⊆
[wa]M

′
wa , therefore (I, a) is a consistent pair. Let IP ∈ IM ′(wa), that [x, v] ⊆ IP ,

then IPa/wa = [x, v]a ⊆ [wa]M
′

wa , therefore (IP, a) is a consistent pair. Let
interval set S1 = {I ∈ IM (w)|Ia/w �= Φ and Ia/w ⊆ q and |short(I)| >
|short(IP )|}. For each I ∈ S1, Ia/wa ∈ (tail(wa), t] = q. Therefore, any pair
(I, a) where Ia/wa ⊆ q or Ia/wa ⊆ [wa]M

′
wa is consistent. So all the pair (I, a) ∈

IM ′ (wa) × Σ where Ia/wa �= φ are consistent, then IM ′(wa) is a consistent
partition of wa. If t = tail(wa), then prolong(q, wa) is employed, q = [r, wa],
[wa]M

′
wa = q, other intervals are held fixed. It is clear that IM ′(wa) is consistent.

Case(i) is illustrated in Fig.3.
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Fig. 3. Two cases in updating IM (w) to IM′(wa). The figures upset are sketches of
IM (w), undersides are sketches of IM′(wa). Dashed edges are suffix links, the solids
are edges of WDWG. In the figures, |v| = Lp and |u| = L.

(ii) |v| < |u|
[x, u] is the longest sub-interval of p that [x, a] ⊆ Fact(w). To ensure the consis-
tence of IM ′ (wa), the interval [x, u]a should be in one interval in IM ′ (wa), then
the operation attach(q, wa) is employed to reach this goal. For ∀(I, a) ∈ IM (w)×
Σ, Ia/w �= Φ, because all the intervals in IM (w) are preserved in IM ′ (wa), then
(I, a) is a consistent pair in IM ′(wa). Let set Sp = {I ∈ IM (w)|Ia/w = Φ and
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Ia/wa �= Φ}, which is the suffix chain of [w]Mw ended at interval whose suffix
link is p. For each I ∈ Sp, there is Ia/wa ⊆ (tail(wa), wa], therefore (I, a) is a
consistent pair. So any pair (I, a) ∈ IM ′ (wa) ×Σ that Ia/wa �= Φ is consistent
pair, then IM ′ (wa) is a consistent partition of wa. This is illustrated in Fig. 3.
(iii) |v| = |u|

This case is the degenerate case of (i) or (ii). So either employ the split(q, wa)
or attach(q, wa), the IM ′ (wa) generated is a consistent partition of wa. �

The operations on set Fs of each interval are critical in proving the linear
time of construction of WDWG. To achieve the linear time, we implement the
set Fs(q) by adjacency lists, named fail list of q. First, attach to each interval
q a fail list node, named shadow of q, denoted by sh(q). q is called the master
of sh(q). Intervals in Fs(q) are put into several groups according to starting
position. Within each group, the intervals have the same starting position and
an interval’s shadow is selected as the representative of the group. Fail list of q is
the list of representatives of groups in Fs(q) ordered by the starting position in
incremental order. The next group pointer of representative points to the next
representative in fail list, while the next group pointer of non-representative
shadow points to the representative of the group it belongs to.

Array FS is employed to store the header of each interval’s fail list. Array
SHORT is employed to store the length of the shortest word in each interval,
array Fail stores the fail values of intervals. Function Insert(h, q) inserts the
shadow of interval q into a fail list h. Function Divide&Redirect(h, L, q) di-
vides fail list h into two fail lists, the first includes groups of h, whose starting
positions are not less than L, the second is the list of other groups. Function
Divide&Redirect also redirects suffix link of master of each shadow in first list
to q. Function CrtState(L, q) creates a new interval p with SHORT [p] = L,
Fail[p] = q. In construction, only the Fail value of representative’s master in-
terval is correct, to get the other interval’s suffix link, we must fetch the Fail of
representative interval.

The construction algorithm includes three procedures: Build WDWG,
Update, and split. Build WDWG is the main procedure. For a new letter,
Build WDWG updates the current WDWG by calling Update.

x is input word with length len.
Build WDWG(x, len)

1 root ← CrtState(0, NULL)
2 active← root; i← 0
3 while i < len do
4 active← Update(x, i, active)
5 i← i + 1
6 end while

Let w = x[0 : i − 1], x[i] = a, Update transforms the WDWGM (w) to
WDWGM ′(wa). The main works of Update include three parts: (1) Creating
IM ′ (wa) from IM (w) according to lemma 3 and lemma 4; (2) Inserting new
edges; Redirecting edges; (3) Adjusting suffix links. First, Update backdates the
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suffix chain of active = [w]Mw , until a state that already has an a-edge is found.
Let the state be p = [x, y] and the state the a-edge leads to be q, the length of
the longest common suffix of w and y be Lp, the length of a-edge be L.

If Lp ≤ L and the a-edge is solid, then active is set to q, the a-edge is
marked as non-solid; else procedure split is called to deal this case. If Lp > L,
then Update creates partition qn = [wa]M

′
wa = (tail(wa), wa], holds other inter-

vals fixed and sets Fail[qn] = q, adds qn to FS[q]. If no state with an a-edge
is encountered, then according to lemma 3, create qn = [wa]M

′
wa = [a, wa], set

Fail[qn] = fail(qn) = root. At last, Update traverse the SC([w]Mw ) not include p
and the subsequent and puts new a-edges from each state to [wa]M

′
wa . The length

of each new edge ([u]M
′

wa , [wa]M
′

wa , a, L) is set to the length of longest common
suffix of u and w. For the address of new active state is not predictable, Update
doesn’t add new a-edges in walking up the SC([w]Mw ) for the first time .

Update(x, i, active)

1 a← x[i]
2 p← r ← oactive← active
3 fl← L← Lp← i
4 while TRUE do
5 if p has an a-edge e = (p, q, a, L)

then
6 if L < Lp then
7 if e is solid and L = Lp

then
8 active← q
9 Mark e as non-solid

10 else
11 (qn, p, q, active) ←

split(p, q, L, a)
12 end if
13 else
14 active ← CrtState(Lp +

2, q)
15 Insert(FS[q], active)
16 end if

17 break
18 else
19 Lp← SHORT [p]− 1
20 p← fail(p)
21 if p = NULL then
22 active← CrtState(1, root)
23 Insert(FS[root], active)
24 break
25 end if
26 end if
27 end while
28 while r �= p do do
29 E ← E+{(oactive, active, a, f l)}
30 if r = oactive then
31 Mark (r, active, a, f l) as solid
32 end if
33 fl← SHORT [r]− 1
34 r ← fail(r)
35 end while
36 return active

Procedure split creates qn = [wa]M
′

wa = [short(q), wa], sets q = (tail(wa), t],
holds other intervals fixed and adjusts all affected suffix links and edges. First,
let qn inherit all edges of q, set the length of edges whose length are greater than
|tail(wa)| to |tail(wa)| and delete the edges that no longer belong to q. Second, by
the aid of table FS[q], suffix links that point to q, which emit from intervals whose
attach point on q is greater than |tail(wa)|, are redirected to qn. During the
redirection, FS[q], FS[fail(q)] and FS[qn] are updated simultaneously. Third,
all a-edges, emit from SC(p), that points to q are redirected to qn.
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split(p, q, lim, a)

1 qn ← CrtState(SHORT [q],
fail(q))

2 Insert(FS[fail(q)], qn)
3 r ← p
4 for each edge (q, q′, a, x) of q do
5 if x ≤ lim + 1 then
6 E ← E + {(qn, q′, a, x)} −

{(q, q′, a, x)}
7 else
8 E ← E + (qn, q′, a, lim + 1)
9 end if

10 end for
11 SHORT [q]← lim + 2
12 (FS[qn], FS[q]) ← Divide&

Redirect (FS[q], SHORT [q], qn)
13 Insert(FS[qn], q)
14 while r �= NULL do

15 if r has a-edge (r, r′, a, x) then
16 if r′ = q then
17 E ← E + {(r, qn, a, x)} −

{(r, r′, a, x)}
18 else
19 break
20 end if
21 else
22 r ← fail(r)
23 end if
24 end while
25 if p = q then
26 return(qn, fail(p), qn, qn)
27 else
28 return(qn, p, q, qn)
29 end if

Theorem 2 Let w ∈ Σ∗, the WDWG for w under a consistent order function
M can be built in linear time in the length of w.

The proof of liner time complexity of construction of WDWG can be found in
[8]. For every prefix of $x is a prime prefix of $x, there are no prolong operations
during the construction of WDWG of $x. Therefore the appending of new edges
and searching for a-edge can be done simultaneity, for the new active is always
the interval newly created. The construction of $x is neater than that of x. The
relationship between WDWG of x and that of $x has an analogy with that
between factor automaton [1] and DAWG.

6 Implement and Experiments

During the construction, WDWG can be implemented by data structures such
as adjacency list. After construction, by processing the WDWG constructed,
we implement WDWG in a more space-economical way. In this implementation
intervals are stored in continuous memory. Each interval I includes three parts:
the number of its edges, the last letter of end(I) and the edge set of I which is
stored in continuous memory ordered by label of edge. Each edge includes two
part: address of destination interval and weight. Only the non-solid edges need to
be stored, for solid edges are in the form of ([x[0 : i]]Mx , [x[0 : i+1]]Mx , x[i+1], i+1).
The label of edge needs not be stored. For edges that point to interval I, the label
of these edges is the last letter of end(I). In the implementation, the number of
edges takes 1 byte, weight and address take 4 bytes, character take 1 byte.

Table 1 compares the size of WDWGs and DAWGs for different sequences.
DNA sequences are segments from Homo sapiens chromosome 21. English texts
are excerpted from “Liberty and Liberalism” (www.econlib.org). Chinese texts
are from essays of Steven Cheung, that are read in byte by byte.
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Table 1. Size Statistic of DAWG and WDWG.

DAWG WDWG
source |Σ| |x| Number of

states
Number of
edges

Number of
states

Number of
edges

Bytes per
character

DNA1 4 500000 844244 1235805 499978 792996 6.68

DNA2 4 500000 829619 1259255 499993 797433 6.75

Random 4 500000 881696 1181151 499910 729621 5.68

English1 71 100000 153044 214086 99996 155982 6.68

English2 71 100000 152753 215485 99995 157529 6.60

Chinese 256 20000 25445 45417 19998 39511 9.81

Chinese 256 30000 37795 67760 29998 59173 9.78

7 Conclusions and Further Researches

We have described the WDWG and its on-line linear construction in this paper.
There are still many interesting issues, such as finding the consistent orders that
yield WDWGs with minimum number of edges. The combination of merging and
compaction of suffix trie implies a new kind of index structures that are smaller
than CDAWGs [2, 4, 7]. There are works to be done to reveal this structure and
its construction.
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Abstract. We present a new simple algorithm that constructs an Aho
Corasick automaton for a set of patterns, P , of total length n, in O(n)
time and space for integer alphabets. Processing a text of size m over an
alphabet Σ with the automaton costs O(m log |Σ| + k), where there are
k occurrences of patterns in the text.

1 Introduction

The exact set matching problem [7] is defined as finding all occurrences in a
text T of size m, of any pattern in a set of patterns, P = {P1, P2, ..., Pq}, of
cumulative size n over an alphabet Σ. The classic data structure solving this
problem is the automaton proposed by Aho and Corasick [2], which is con-
structed in O(n log |Σ|) preprocessing time and O(m log |Σ| + k) search time,
where k represents the number of occurrences of patterns in the text. This so-
lution is suitable especially for applications in which a large number of patterns
is known and fixed in advance, while the text varies. We will explain the data
structure in detail in Section 2.

The suffix tree of a string is a compact trie of all the suffixes of the string. Sev-
eral algorithms construct it in linear time for a constant alphabet size [14, 16, 17].
Farach [5] presented a linear time algorithm for integer alphabets. Generalized
suffix trees for a set of strings, as defined in [7], are also constructed in time
linear to the cumulative length of the strings. Lately, much attention has been
paid to the suffix array [6, 13], a sorted enumeration of all the suffixes of a string.
The algorithm in [13] constructed this space-efficient alternative to suffix trees in
O(n log n) time, but recently a few O(n) algorithms were suggested [8, 10, 12].
New developments suggest further refinements; the enhanced suffix array can
entirely replace the suffix tree [1] with the same incurred complexities [9]. In [9],
a history of the evolution of suffix trees and arrays was relayed.

The linear time construction of the suffix tree and suffix array for integer
alphabets was achieved after years of research. It is only natural to extend this
� Partially supported by the Israel Science Foundation grant 282/01.

A. Apostolico, M. Crochemore, and K. Park (Eds.): CPM 2005, LNCS 3537, pp. 168–177, 2005.
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development to the third “member” of this data structure family – the Aho
Corasick automaton. We answer this challenge and present a new algorithm
which constructs the Aho Corasick automaton in O(n) preprocessing time for
integer alphabets. The search time remains as it was, O(m log |Σ|+ k).

At the heart of our algorithm lies the observation of a close connection be-
tween the Aho Corasick Failure function and the index structure of the reversed
patterns, be it a suffix tree or an enhanced suffix array. This connection is ex-
plained in detail in Section 3.2.

Our algorithm uses the new linear time algorithms to construct suffix ar-
rays and suffix trees for integer alphabets. In this paper, we handle three issues:
constructing the Goto trie for all patterns, using the linear time construction of
suffix arrays; constructing the Failure function for all pattern prefixes by build-
ing a generalized suffix tree, using the linear time construction of suffix trees;
and finally, keeping logarithmic search time in each node, using conventional
methods.

The paper is organized as follows: in Section 2 we define the Aho Corasick
automaton. In Section 3 we describe the construction of the automaton in several
steps: the Goto function (Section 3.1), the Failure function (Section 3.2), and the
combination of the two (Section 3.3). The original Output function, which we
have not changed, is mentioned briefly in Section 3.4, and the entire algorithm
is outlined in Section 3.5. We show how to maintain the O(m log |Σ|+ k) bound
on query processing in Section 4, and summarize our results in Section 5.

2 Preliminaries

The exact set matching problem [7] is defined as finding all occurrences in a text,
T , of any pattern in a set of patterns, P = {P1, P2, ..., Pq}. This problem was
first solved by Aho and Corasick [2] by creating a finite state machine to match
the patterns with the text in one pass. In other words, their method defined the
following functions (slightly redefined in [7]):

– Goto function: an uncompressed trie representation of the set of patterns.
Let L(v) denote the label along the path from the root to node v. Then, for
each node v, L(v) represents the prefix of one or more patterns; for each leaf
u, L(u) represents a pattern. The Goto function is also known as a keyword
tree [2, 7].

– Failure function: based on a generalization of the Knuth-Morris-Pratt algo-
rithm [11], the function is defined in two parts:
• The Failure function of a string s (which is a prefix of a pattern) is the

longest proper suffix of s that is also a prefix of some pattern [2, 7].
• The Failure link, v1 "→ v2, between two nodes in the Goto trie, links v1

to a (unique) node v2 such that the Failure function of L(v1) is L(v2) [7].
– Output function: for a node v, the Output function is defined as all patterns

which are suffixes of L(v), i.e., end at this node. As shown in the original ar-
ticle [2] and embellished in [7], the Output function for each node v1 consists
of two parts:
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• L(v1), if it equals a pattern.
• Output(v2), where v1 "→ v2 is a Failure link. Note that this is a recursive

construction.

These three functions, Goto, Failure and Output, completely define an Aho
Corasick automaton, which is no longer an automaton or a state machine in the
classic sense. When a text is processed, we attempt to traverse the trie using the
Goto function. For a given character, if no appropriate child exists in the current
node, the Failure links are traversed instead, until we find such a node or reach
the root. Whenever a node with a non-empty output is reached, all output words
must be found. Figure 1 shows an example of an Aho Corasick automaton for a
set P .

3 Building the Aho Corasick Automaton

Our algorithm to construct the Aho Corasick automaton consists of three main
steps: constructing the Goto function, constructing the Failure function and
links, and merging the two. We will now explain each step in detail. We will
often use a notation SP for the concatenation of the patterns in P , with unique
endmarkers separating them: SP = $0 P1 $1 P2 $2... $q−1 Pq $q.

3.1 Building the Goto Function

The Goto function is constructed in two steps: sorting the patterns in P and
building the trie that represents them.

The patterns can be sorted using suffix arrays, by constructing the suffix
array for SP , thus sorting all suffixes of SP ; out of these, we can filter only the
complete words and receive their sorted order. Alternatively, a two-pass radix
sort can be employed to sort the strings [3, 15].

Once the patterns are sorted, the trie is built simply by traversing and ex-
tending it for each pattern in the sorted order. We keep a list of children for each
node, with the invariant that they are ordered alphabetically. For each pattern
in turn, we will attempt to traverse the trie, knowing that if the next character
exists, it will be at the tail of the list of children in the current node. If not,
we may create it and insert it to the tail, thus keeping the invariant. Once a
character was not found, we can extend the trie for the rest of the pattern from
this point on. This is nearly identical to the original method employed by Aho
and Corasick [2], with the sole difference that they kept arrays in each node,
whereas we keep sorted lists.
Time Complexity. Sorting takes O(n) time for integer alphabets using a suffix
array for SP [8]. As for the trie, the work for each character is either traversing
a link at a known position or creating a new node; both take up O(1). The work
for each pattern is proportional to its length, so for the entire set it will be O(n).
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3.2 Building the Failure Function

Having constructed the trie representing the Goto function for P , we turn to
construct the Failure links on top of it. We chose to describe the algorithm using
a suffix tree for simplicity, but an enhanced suffix array can easily replace it [1, 9].

We have defined SP as the string representing the patterns in P . We define
T R to be the suffix tree of the reverse of this string, that is, the suffix tree of
(SP )R. The properties of trees for reverse strings were discussed in [4]. Also,
Gusfield [7] has discussed generalized suffix trees for a set of strings. In Section
6.4 of [7], he showed how to construct this tree without creating synthetic suffixes
that combine two or more patterns. Therefore, $ signs never appear in the middle
of edges of the suffix tree, and only mark the end of a label.

e h i t

ey he ir this
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iris thei

theirAho-Corasick Automaton:

Goto Function (trie)

Failure Function

Nodes with output her P = {her, their, eye, iris, he, is}
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Fig. 1. An Aho Corasick automaton for the set P . The dotted arrows represent Failure
links. For brevity’s sake, we did not include Failure links that point to the root. Nodes
that have a non-empty output are emphasized.

Observe the tree in Figure 2. This is T R for the same patterns seen in Figure 1.
The following properties of T R are relevant to our discussion:

– For each node v in the trie representing the Goto function, there exists a
unique node u in T R which represents its reverse label, that is, L(v) = L(u)R.
For example, in Figure 1, node 16, labeled “their”, has its match in Figure 2,
with node m, labeled “rieht”.

– When considering a node u1 and its ancestor u2 in T R, the label of u2 is a
prefix of the label of u1. Since these are reverse labels of the original string,
the original label of u2 is a suffix of the original label of u1.
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Fig. 2. T R for the patterns of Figure 1. Since the labels are reversed, we included the
original label in parenthesis. For example, node c representing “eht” in T R corresponds
to node 14 representing “the” in the trie of Figure 1. The endmarker, $, marks one of
two options: for a leaf, its label ends with a $; for an internal node, it has a son which
represents this label ending with a $. If we treat an internal node as marked by a $,
this is actually shorthand for noting the second case.

– When a node u in T R is marked by a $, this means that its original label
begins with a $; i.e., the reverse label of u is a prefix of some pattern in P .

– In Lemma 1 we will show that all nodes in T R which are marked by a $, and
only those, have a corresponding node in the trie.

Observe the Failure links in Figure 1. For example, the Failure function of
node 10, “iris”, is node 11, “is”, as seen by the dotted arrow between the two
nodes. Now, let us turn our attention to their corresponding nodes in T R. Here,
node n, “si” (the reverse of “is”), is the nearest ancestor of node o, “siri” (the
reverse of “iris”), and it is also marked by a $. In other words, “is” is the longest
proper suffix of “iris” which is also a prefix of some pattern: exactly the definition
of the Failure function. Also, notice node 8, labeled “ir”, which corresponds to
node l, “ri”, in T R. The Failure function of “ir” is not “r”, since “r” is not a
prefix of any pattern. Indeed, node j representing “r” in T R is not marked by
a $ sign, and additionally, there is no node in the original trie representing “r”.
Therefore the Failure function of “ir” is φ (node z), its nearest ancestor in T R

with a $ sign.

Definition 1. Consider node u1 in T R. We define the proper ancestor of u1,
u2 = PA(u1), as the closest ancestor of u1 in TR which is marked by a $.



Construction of Aho Corasick Automaton 173

PA can be computed for every node in T R by a simple preorder traversal of
T R.

Now, consider nodes v1 and v2 in the trie, so that there exists a Failure link
v1 "→ v2. Let u1, u2 be the corresponding nodes in T R. Then u2 = PA(u1). Our
algorithm is based on this property. Now that we’ve found this information in
T R, we would like to relay it to the nodes in the trie. Each node in the trie
must be connected to its corresponding node in T R, and we will handle this in
Section 3.3.
Time Complexity. The suffix tree T R built in this step can be constructed in
linear time, either using Farach’s algorithm [5], or indirectly using suffix arrays
and Longest Common Prefix values [5, 8]. The tree is then traversed once in
order to find PA, but in a preorder fashion and not as a search, therefore the
traversal is also linear.

3.3 Integrating Failure with Goto

We have shown how to obtain PA(x) for each node in T R, but we must integrate
this information with the trie representing the Goto function. We do this once,
during construction, recording the Failure links in the trie nodes, so that the trie
is a self-contained Aho Corasick automaton. The integration is based upon the
ability to infer, for each node in the trie, its corresponding $-marked node in T R,
and vice versa. This is achieved through the actual string SP , in the following
steps:

– During or after construction of the Goto function, we compute the following:
for each character in SP , we will keep a pointer to its representative node in
the trie – the one visited or constructed when this character was dealt with.
An example of this is shown in Figure 3(a).

– As part of the construction of any suffix tree, and so of T R, each node records
the first and last indices of one of the appearances of its label in the string,
(SP )R in our case. From these indices we can compute the corresponding
appearance of the original label in SP : for $-marked nodes, the label’s last
index in SP represents a prefix of some pattern. An example of this appears
in Figure 3(b) and (c).

– Combining the information we have about SP , we map a trie node for each
$-marked node in T R and vice versa. Lemma 1 below shows that this is a
one-to-one mapping, as shown also in Figure 3(d).

– We use this mapping to record the information of PA, garnered from T R,
among nodes in the trie as Failure links. For each node v1 in the trie, we:
• Find node u1 in T R which corresponds to v1.
• Find u2 = PA(u1).
• Find node v2 in the trie which corresponds to u2.
• Create a Failure link, v1 "→ v2, among the trie nodes.

Lemma 1. There exists a one-to-one mapping between $-marked nodes in T R

and nodes in the trie.
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Fig. 3. Integrating the Goto and Failure functions shown in Figures 1 and 2. (a) SP and
the trie nodes corresponding to each character. (b) (SP )R and corresponding indices in
SP . (c) T R nodes and the indices in SP corresponding to their labels. The first index
is always a $, and the last index (in bold) is the relevant one. A label may appear more
than once in the string, e.g. node b representing “he” has two possible mappings to the
string. (d) T R nodes and their corresponding trie nodes, computed from parts (a) and
(c) combined. For example, the label “thei”, which is a prefix of the pattern “their”,
spans indices 4-8 in SP (including $); its last index, 8, maps to trie node 15 as shown
in (a). Its reverse label, “ieht”, is represented by node h, as shown in (c); combining
these, we map node 15 to node h in (d). Note that even if several options exist in (c),
they all map to the same trie node. Also note that node j, which is not marked by a
$, has no corresponding node in the trie.

Proof. Any $-marked node u in T R represents a prefix of some pattern in SP ,
and thus has a unique corresponding node v in the trie. Now we prove the other
direction: a label of any node v in the trie represents a prefix of a pattern.
Hence, in SP the label is preceded by a $, meaning that its reversed label in
(SP )R is followed by a $. Therefore, there is a single $-marked node u in T R

corresponding to v. Note that there can be $ signs only at the end of a node’s
label in a generalized suffix tree [7].

Time Complexity. Constructing the mapping takes constant time for each node,
and the creation of Failure links consists of a traversal of the trie. The entire
phase takes O(n) time.
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3.4 Building the Output Function

The Output function can be computed, just as in [2], during the computation of
the Goto and Failure functions, with a traversal on the trie. Gusfield refines these
computations and explains them in detail in Section 3.4.6 of [7]. The recursive
manner of the Output function is exemplified in Figure 1, where node 14 labeled
“the” has an output of “he”, due to its Failure link to node 5.
Time Complexity. Computing the Output function consists of some constant-
time processing during the construction of the Goto function, and a traversal of
the trie with the Failure links, so it costs O(n) time.

3.5 Algorithm: Constructing an Aho Corasick Automaton

The complete algorithm for constructing an Aho Corasick automaton in linear
time is outlined below, along with the sections in which each part was described.
As mentioned earlier, the suffix tree T R can be entirely replaced by an enhanced
suffix array ER with the same complexity [1, 9].

1. Construct the Goto function (a trie) for P :
(a) Sort the patterns using a suffix array for SP . (Section 3.1)
(b) Construct a trie for the sorted patterns, in which each node will

hold its sons in a sorted list. (3.1)
(c) Connect the Goto function to SP . (3.3)

2. Construct the Failure function for P :
(a) Construct T R, the suffix tree of (SP )R. (3.2)
(b) Compute PA for each $-marked node. (3.2)
(c) Connect the Failure function to SP . (3.3)

3. Combine the Failure and Goto functions:
(a) Through SP , connect each node in the trie with its corresponding

$-marked node in T R. (3.3)
(b) Transfer the information from PA in T R to the trie nodes and

construct all Failure links. (3.3)
4. Construct the Output function. (3.4)

Once these steps are completed, one can discard T R entirely. The ensuing
data structure will hold any information needed for query processing on an Aho
Corasick automaton.

4 Processing Queries

It is a generally accepted fact that, for non-negligible alphabets, there exists a
tradeoff between the space consumed and the time required to search in each
node, depending on the branching method in the nodes [7, 9]. If an array of
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size |Σ| is used in each node, the time to search will be constant. If only a list
of actual sons is held, the cumulative space for the tree will be proportional to
the number of nodes, but search time in each node will rise to O(|Σ|). Finally,
the generally accepted, heavy-duty solution, is to hold a balanced search tree
in each node, thus limiting the space needed in the tree overall, but increasing
both insertions and search time to the tree by a factor of log |Σ|.

Constructing the Goto trie as described above will yield a linked list of sons
in each node, allowing for O(|Σ|) search time spent in each node in the worst
case. But notice that this list is alphabetically ordered, and its size is known.
Hence, one of several simple procedures known in folklore can be applied at any
time after the trie’s construction to reduce the query time to O(log |Σ|) at each
node.

We visit every node and allocate an array in size proportional to the number
of its sons, then transfer the list of sorted sons to this array, in O(n) total time.
The array of sons can then be searched in O(log(#ofsons)) = O(log |Σ|). This
step can be further augmented, if needed, to create a balanced search tree in
each node, still with O(n) time and O(log |Σ|) search in each node.

The Output function allows a constant time spent for each occurrence of any
pattern in the text.
Time Complexity. Traversing the automaton costs O(m log |Σ|) time for a text of
length m. Finding the output patterns will cost O(k), where k denotes the num-
ber of occurrences of patterns from P in the text. Hence, the entire complexity
of query processing is O(m log |Σ|+ k).

5 Summary

We have presented a new algorithm, which is simple to understand and imple-
ment, that constructs the Aho Corasick automaton in O(n) time. This algorithm
is the third addition to a growing group of linear algorithms for string problems
over integer alphabets.

In addition, we have brought forth an interesting observation regarding the
Failure function of the Knuth-Morris-Pratt algorithm [11], generalized to a set of
patterns in the Aho Corasick automaton [2]. This Failure function is intimately
connected with the generalized suffix tree of the patterns, and this has provided
the basis for our algorithm.
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Abstract. We introduce a generalization of the Burrows-Wheeler Trans-
form (BWT ) that can be applied to a multiset of words. The extended
transformation, denoted by E, is reversible, but, differently from BWT ,
it is also surjective. The E transformation allows to give a definition of
distance between two sequences, that we apply here to the problem of the
whole mitochondrial genome phylogeny. Moreover we give some conside-
ration about compressing a set of words by using the E transformation
as preprocessing.

1 Introduction

Michael Burrows and David Wheeler introduced in 1994 (cf. [1]) a reversible
transformation on words (BWT from now on) that arouses considerable interest
and curiosity in the field of Data Compression.

Very recently some combinatorial aspects of this transform have been inves-
tigated (cf. [11, 12]). For instance, by using the Burrows-Wheeler transform, one
can derive a further characterization of Standard words, that are very important
objects in the field of Combinatorics on Words (cf. [11]).

Moreover it has been remarked (cf. [4]) that there exists a close relation
between BWT and a technique, used by Gessel and Reutenauer in [6] for stating
a correspondence between finite words and a set of permutations with a given
cyclic structure and a given descent set (cf. also Chapter 11 of [9]).

The main contribution of this paper consists in defining an extension of the
Burrows-Wheeler transform (denoted by E) applied to a multiset of words, that
is inspired by the Gessel and Reutenauer result. This transformation involves a
new order relation between words, different from the lexicographic one. In the
sorting process derived from such an order relation we make use of the Fine and
Wilf Theorem.

We apply our transformation in order to define a new method for comparing
sequences. In particular, we introduce a new distance between two sequences (or
between two set of sequences) that, intuitively, takes into account that the more
similar two sequences are, the more symbols coming form each sequence are
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shuffled in the output of E. Moreover we report the results obtained by applying
our method to the problem of the whole mitochondrial genome phylogeny.

We also show another application of the extended transformation to text
compression. We observe that the simultaneous compression of a set of k words
{x1, . . . , xk} by using the transformation E as preprocessing, is better than com-
pressing each word xi separately. In particular, most BWT -based compressors
divide the text into blocks, compress each block separately and then concatenate
the compressed blocks. We experimentally verify that our method provides an
improvement of such a technique.

2 Preliminaries

The Burrows-Wheeler transform represents an extremely useful tool for textual
lossless data compression. The idea is to apply a reversible transformation in
order to produce a permutation BWT (w) of an input word w, defined over an
alphabet A, so that the word becomes easier to compress. Actually the trans-
formation leads to group characters together so that the probability of finding
a character close to another instance of the same character is substantially in-
creased. BWT transforms a word w = w0w1 · · ·wn by constructing all n cyclic
rotations of w, sorting them lexicographically and extracting the last character
of each rotation. The word BWT (w) consists of the sequence of these characters.
Moreover the transformation computes the index I, that is the row containing
the original word in the sorted list of rotations.

For instance, suppose we want to compute BWT (w) where w = abraca. In
Figure 1 we show the matrix that consists of all cyclic shifts of w, lexicographi-
cally sorted.

F L
↓ ↓

1 a a b r a c
I → 2 a b r a c a

3 a c a a b r
4 b r a c a a
5 c a a b r a
6 r a c a a b

Fig. 1. The matrix of all cyclic rotations of the word w = abraca.

The last column L of the matrix represents BWT (w) = caraab and I = 2
since the original word w appears in row 2. The first column F , instead, contains
the sequence of the characters of w lexicographically sorted.

Remark 1. Recall that the Burrows-Wheeler transform is reversible, in the sense
that given BWT (w) and the index I, it is possible to recover the original word
w. Notice however that the BWT , considered as an application from A∗ to
itself, is not surjective, that is, there exist some words in A∗ that are not image
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of any word by the Burrows-Wheeler transform. For instance, let us consider
the word u = bccaaab. It is easy to see that there exists no word w such that
BWT (w) = u.

3 An Extension of the BWT to k Words

In a recent paper ([4]), Crochemore, Désarménien and Perrin remarked that the
Burrows-Wheeler transform is closely related to a special case of a result on
combinatorics on permutations, given by Gessel and Reutenauer (cf. [6]). In this
section we define a transformation, denoted by E, inspired by the Gessel and
Reutenauer work, that extends the BWT to k words, with k ≥ 1.

As we remarked in the previous section, the BWT is not surjective over A∗.
On the contrary, the new extended transformation, that we are going to define,
establishes a bijective correspondence between the multisets of conjugacy classes
of primitive words in A∗ and the set of all words over an alphabet A.

In order to define the new transformation we need to introduce a new order
relation between words that differs from the usual lexicographical order when
one word is a prefix of the other one.

3.1 A New Order Relation Between Words

Let A be a finite ordered alphabet. We denote by A∗ the set of words over A.
We say that two words x, y ∈ A∗ are conjugate if x = uv and y = vu for some
u, v ∈ A∗. A word v ∈ A∗ is primitive if v = un implies v = u and n = 1.
Recall that (cf. [8]) every word v ∈ A∗ can be written in a unique way as a
power of a primitive word, i.e. there exists a unique primitive word w and a
unique integer k such that v = wk. We denote w by root(v) and k by exp(v).
If u is a word in A∗, we denote by uω the infinite word obtained by infinitely
iterating u, i.e. uω = uuuuu . . .. Remark that uω = vω if and only if u and v are
power of the same word. On infinite words is naturally defined the lexicographic
ordering, that is, taken two infinite words x = x1x2 . . . and y = y1y2 . . ., with
xi, yi ∈ A, we say that x <lex y if there exists an index j ∈ N such that xi = yi

for i = 1, 2, . . . , j − 1 and xj < yj. Note that if x = y, the relation <lex is not
defined. Remark that uω = vω if and only if root(u) = root(v).

Definition 1. Let u, v be two words over a finite alphabet A. We say that

u #ω v ⇐⇒
{

exp(u) ≤ exp(v) if root(u) = root(v)
uω <lex vω otherwise

It is easy to verify that #ω is a total order. We also remark that this order
relation is different from the lexicographic one. In fact for instance ab <lex aba
but aba #ω ab. Although when root(u) �= root(v) the #ω order of u and v
is defined by using infinite words, the following proposition shows that it is
possible to decide their mutual #ω-ordering by extending them up to the length
|u|+ |v| − gcd(|u|, |v|). Such a bound is a consequence of a well known result of
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Periodicity on Words, the Fine and Wilf theorem. For a given finite or infinite
word w, we denote by prefk(w) the prefix of w of length k.

Proposition 1. Given two words u and v, with root(u) �= root(v),

u #ω v ⇐⇒ prefk(uω) <lex prefk(vω),

where k = |u|+ |v| − gcd(|u|, |v|).

The bound given in Proposition 1 is tight: this is a consequence of the tight-
ness of such a bound in the Fine and Wilf Theorem.

Example 1. We can consider the words u = abaab and v = abaababa. One can
see that v #ω u and uω and vω differ for the character in position 12=5+8-1.
However remark that u <lex v.

u︷ ︸︸ ︷
abaab

u︷ ︸︸ ︷
abaab

u︷ ︸︸ ︷
ab · · ·

abaababa︸ ︷︷ ︸
v

abaa · · ·︸ ︷︷ ︸
v

3.2 The Extended Transformation

In this subsection, the transformation E is introduced under the hypothesis that
the words considered are primitive. This is not actually a restrictive hypothesis,
since in practice almost all the processed texts are primitive (or become primitive
by adding an end-of-string symbol). Let S = {u1, . . . uk} be a multiset of k
primitive words of A∗. We define the transformation E(u1, . . . , uk) as follows:

– Let w1, w2, . . . , wm be the sequence of conjugates of elements of S, sorted
according to the order #ω, that is wi #ω wj for 1 ≤ i < j ≤ m.

– We denote by I the set of indices representing the positions in the sequence
{wi}mi=1 of the original words in S.

– We denote by L[i] (resp. F [i]) the last (resp. first) character of the word wi,
for i = 1, . . . , m. Then we define

L = L[1]L[2] . . . L[m], F = F [1]F [2] . . . F [m].

– The output of E(u1, . . . uk) is the couple (L, I),

If we arrange the sorted sequence of the conjugates of elements of S in a
table, the word L is obtained by concatenating the last elements of each row in
the table.

Notice that in case of k = 1, that is S = {u} the output of E(S) is equal to
the BWT (u).

Example 2. Let S = {abac, cbab, bca, cba}. We represent in Figure 2 on the left
side the <lex-ordered list of all wω, where the w’s are the conjugates of elements
in S, and on the right side the final table with the #ω-ordered rows:
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a b a c a b · · ·
a b c a b c · · ·
a b c b a b · · ·
a c a b a c · · ·
a c b a c b · · ·
b a b c b a · · ·
b a c a b a · · ·
b a c b a c · · ·
b c a b c a · · ·
b c b a b c · · ·
c a b a c a · · ·
c a b c a b · · ·
c b a b c b · · ·
c b a c b a · · ·

=⇒

1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c
9 b c a
10 b c b a
11 c a b a
12 c a b
13 c b a b
14 c b a

Fig. 2. The output of E(S) is the couple (L, I) where L = ccbbbcacaaabba and I =
{1, 9, 13, 14}.

Proposition 2. Let S be a multiset of primitive words and let (L, I) = E(S).
The following properties hold:

1. For every i �∈ I, F [i] follows L[i] in one of the words in S.
2. For a given character a, its occurrences in F appear in the same order as in

L, i.e. its i-th instance in F corresponds to its i-th instance in L.

We show that the transformation described above is reversible. Let (L, I) =
E(S) be the extended transform of a multiset of some primitive words S. We can
obtain F by alphabetically sorting the characters of L. It is possible to define
a permutation θ on {1, . . . , |L|} as follows: θ(i) = j if F [i] and L[j] correspond
to the same character in a word of S, according to Item 2 of Proposition 2. In
other words, if F [i]z is a conjugate of a word u ∈ S, for some z ∈ A∗, then the
permutation θ associates it to the other conjugate zF [i] = zL[j].

Example 3. Given the word L = ccbbbcacaaabba obtained in Example 2, one can
construct F

F = aaaaabbbbbcccc
L = ccbbbcacaaabba

and define the permutation

θ =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14
7 9 10 11 14 3 4 5 12 13 1 2 6 8

)
.

We can consider the decomposition of θ into disjoint cycles, θ = σ1σ2 · · ·σk.
From Item 1 of Proposition 2 one can derive that k is equal to the cardinality
of S and each σi corresponds to a conjugacy class of a word in S. Moreover,
because of primitivity of words in S, for every j = 1, . . . , k, there exists a unique
index, say Ij , that is moved by σj . So, one can reconstruct each word in S by
using Item 2 of Proposition 2:
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w1 = F [I1]F [θ(I1)]F [θ2(I1)] · · ·F [θl1(I1)],
w2 = F [I2]F [θ(I2)]F [θ2(I2)] · · ·F [θl2(I2)],

· · ·
wk = F [Ik]F [θ(Ik)]F [θ2(Ik)] · · ·F [θlk(Ik)],

where l1, l2, . . . , lk are the length of the cycles σ1, σ2, . . . , σk, respectively.

Example 4. Given the permutation found in Example 3, its cyclic decomposition
is the following:

θ = (1 7 4 11)(2 9 12)(3 10 13 6)(5 14 8).

By starting from the indices 1, 9, 13, 14, we get respectively the words

w1 = F [1]F [7]F [4]F [11] = abac, w2 = F [9]F [12]F [2] = bca,
w3 = F [13]F [6]F [3]F [10] = cbab, w4 = F [14]F [8]F [5] = cba.

From above considerations the following theorem holds:

Theorem 1. LetM be the family of finite multisets of primitive words over A∗

and let N the family of finite subsets of N. The transformation E :M→ A∗×N
such that S "→ (L, I), is injective.

Differently from what we observed in Remark 1, for any word L ∈ A∗, there
exists a multiset S of primitive words and a set I of indices such that E(S) =
(L, I). Moreover if we don’t care about the indices, we can associate to each word
L ∈ A∗ a unique multiset of conjugacy classes of primitive words in A∗ (see next
Example 5). This result, that plays an important role both in Combinatorics
on Words and in the study of Free Lie Algebras, was firstly synthesized in a
theorem, due to Gessel and Reutenauer (cf [6]), and reported below.

Theorem 2. There exists a bijection between A∗ and the family of multisets of
conjugacy classes of primitive words in A∗.

Example 5. Let w = bccaaab as in Remark 1. It is easy to verify that w is the
word obtained by applying E to the conjugacy classes of ab and abcac.

4 Comparing Sequences by the Extended Transformation

In this section we apply our transformation in order to introduce a new method
for comparing sequences. The new distance between words here defined is sim-
ple and efficient to compute, and it is particularly advantageous in the case of
multiple sequences comparison. We remark that our distance is not based on se-
quence alignment. Several alignment-free distance measures have recently been
introduced (see for instance [5, 7, 14, 15] and references therein) since they better
fit with the problem of comparing genomic sequences than the methods based
on sequence alignment. In fact, such methods compare sequences by considering
only local edit operations on their fragments. Instead, the recent developments
in genome sequences technologies have allowed to handle the complete genome of
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many different species, and have highlighted that, in order to capture evolution-
ary and functional mechanisms of different species, we need to consider a new set
of sequence modifications, that involve recombination or shuffling of segments
of genome. The distance we define takes into account such kind of modifications
and therefore it can be successfully applied to compare genomic sequences, as
shown in Subsection 4.3.

4.1 A New Distance Between Two Sequences

We define a new notion of distance between two sequences. Such a notion is
based on the following intuitive idea. Given two sequences u and v, we consider
the sorted list w1, w2, . . . , wm of the conjugates of u and v, obtained in the first
step of the computation of E({u, v}). If the same segment s appears both in u
and v, then the conjugates of u and v starting with s are likely to be close in the
above list. The greater is the number of segments shared by the two sequences
u and v, the greater is the number of alternations in the above list between the
elements coming from u and those coming from v. Thus, we define a distance
that takes into account the alternation of the symbols coming from different
sequences in the output of the transformation E.

More formally, let S = {u, v} and let w1, w2, . . . , wm be the sorted list of
conjugates of u and v obtained in the first step of the computation of E({u, v}).
Consider the new alphabet Σ = {U, V } and the map γ that associates to each
sequence wi in the list, a symbol of Σ as follows:

γ(wi) =
{

U if wi is a conjugate of u
V if wi is a conjugate of v

Denote by Γ (u, v) the sequence γ(w1)γ(w2) · · · γ(wm).

Example 6. Let us consider the sequences u = bcaa and v = ccbab. The sorted
list of conjugates of u and v is the following.

a a b c U
a b c a U
a b c c b V
b a b c c V
b c a a U
b c c b a V
c a a b U
c b a b c V
c c b a b V

In this case Γ (u, v) = U2V 2UV UV 2.

Definition 2. Let u, v ∈ A∗ be two sequences and Γ (u, v) = Un1V n2Un3 · · ·V nk .
We define the measure δ(u, v) as follows:

δ(u, v) =
k∑

i=1,
ni =0

(ni − 1)
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Example 6 (continued). It is easy to compute that δ(u, v) = 3.

Remark 2. One can verify that

1. δ(u, v) = δ(v, u), i.e. the distance measure δ is symmetric.
2. If u and v are conjugate then δ(u, v) = 0. In fact in this case Γ (u, v) =

(UV )|u|, hence for every i = 1, . . . , k one has that ni = 1.
3. If u′ is a conjugate of u and v′ is a conjugate of v, then δ(u, v) = δ(u′, v′).

Therefore δ is a distance measure for conjugacy classes.
4. δ(u, v) = 0 does not imply that u and v are conjugates, as shown in next

example.

Example 7. Let u = aabc and v = abbc. Although the two sequences are not
conjugate, δ(u, v) = 0 since Γ (u, v) = (UV )4.

As common usage, we refer to δ as a “distance” when in fact neither it has
to obey the triangle inequality (see Example 8) nor the condition δ(u, v) = 0⇒
u = v holds.

4.2 Multiple Sequence Comparison

A particular feature of our method is that it can also be applied to a set of k
different sequences, with k > 2. More formally, let S = {u1, u2, . . . , uk} be a set
of sequences and let w1, w2, . . . , wm be the sorted list of the conjugates of the
elements of S obtained in the first step of the computation of E(S). Consider
the new alphabet Σ = {U1, U2, . . . , Uk} and the map γ that associates to each
sequence wi in the list, a symbol of Σ as follows:

γ(wi) = Uj if wi is a conjugate of uj

Denote by Γ (u1, u2, . . . , uk) the sequence γ(w1)γ(w2) · · · γ(wm).
It is easy to see that for each pair i, j = 1, . . . , k, Γ (ui, uj) can be obtained

from Γ (u1, u2, . . . , uk) by deleting all symbols Uh with h �= i, j. Conversely it
is possible to prove ([8, Lemma 6.2.19]) that Γ (u1, u2, . . . , uk) can be uniquely
recovered from the set {Γ (ui, uj) | i, j = 1, . . . , k}.

Example 8. Consider the set of sequences S = {u1 = abaab, u2 = babab, u3 =
abbba}. We have that:

Γ (u1, u2, u3) = U1U3U
2
1 U2

2 U3U1U3U1U
2
2 U3U2U3

From previous remark, we can get from Γ (u1, u2, u3) the following:

Γ (u1, u2) = U3
1 U2

2 U2
1 U3

2 ,
Γ (u2, u3) = U3U

2
2 U2

3 U2
2 U3U2U3,

Γ (u1, u3) = U1U3U
2
1 U3U1U3U1U

2
3 .

Such sequences show that δ does not satisfy the triangle inequality. In fact
δ(u1, u2) = 6, δ(u2, u3) = 3 and δ(u1, u3) = 2.
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Previous example shows how we can compute the distance δ of all pairs
taken out of a set S of k sequences of length n by simultaneously applying
the transformation E to the entire set S. Such a technique is very useful from a
computational point of view for instance in order to construct phylogenetic trees
(see Subsection 4.3). Actually, in order to obtain the k × k distance matrix, we
can compute Γ (S) by performing a single sorting of k× n sequences of length n
instead of O(k2) sortings of 2n sequences of length n.

From a theoretical point of view, such a method allows to define, in a natural
way, a notion of distance between sets of sequences. Actually, given two sets S
and T , we denote by w1, w2, . . . , wm the sorted list of the conjugates of the
elements of S and T obtained in the first step of the computation of E(S ∪ T ).
We can consider the new alphabet Σ = {U, V } and the map γ that associates
to each sequence wi in the list, a symbol of Σ as follows:

γ(wi) =
{

U if wi is a conjugate of an element of S
V if wi is a conjugate of an element of T

Denote by Γ (S, T ) the sequence γ(w1)γ(w2) · · · γ(wm).
If Γ (u, v) = Un1V n2Un3 · · ·V nh , we can define the distance between S and

T as follows:

δ(S, T ) =
h∑

i=1,
ni =0

(ni − 1)

Such a measure provides a further tool for cluster analysis and data classifi-
cation.

4.3 Experimental Validation on Biological Sequences

The distance introduced in this paper measures the dissimilarity between two
cyclic sequences (cf. Point 3 of Remark 2)1. So, in order to test our method,
in this subsection we describe the results of the application of the normalized
version of our distance to the whole mitochondrial genome phylogeny, since the
mitochondrial DNA can be considered as a cyclic sequence. Actually, in the ex-
periment of this subsection we construct a phylogeny of the Eutherian orders
using complete unaligned mitochondrial genomes. We choose our group of se-
quences by using the mtDNA genomes of 20 mammals from GenBank, as listed
in Figure 3. Such a set of species contains placental mammals, marsupials and
monotremes. As shown in the dendrogram obtained by using a single linkage
clustering (see Figure 3), our method allows to classify the analyzed species into
Primates, Ferungulates, Rodents, Marsupial and Monotremes. Moreover we ob-
tain a phylogeny that is very close to the ones described in most of the papers in
which the species considered are almost the same (cf. [2, 3, 7, 14]). Our resulting
phylogeny proposes the following grouping of the placental mammals: (Primates,

1 Recall that in order to consider not cyclic sequences, it suffices to add an end-of-
string symbol # to the sequences.
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Fig. 3. The evolutionary tree built from complete mammalian mtDNA sequences of
the 20 species analyzed in (Cao et al., 1998).

(Ferungulates, Rodents)). A more detailed analysis and further experiments can
be found in [10].

Nevertheless, the goal of this experiment is not to confirm or refute previous
phylogenetic studies but rather to show that the method here introduced can be
a helpful tool for the comparative genomics research community.

5 Simultaneous Compression of a Set of k Texts

Recall that the Burrows Wheeler transform has been introduced as a tool to
preprocess a word to be compressed, in order to get a word easier to compress.
Actually the transformation leads to group characters together so that the pro-
bability of finding a character close to another instances of the same character is
substantially increased. Moreover the reversibility of the BWT allows to recover
the original word. We have introduced a transformation that extends the BWT
to a (multi)set of k primitive words having similar features than BWT . So one
can think to use the transformation E as a preprocessing for the simultaneous
compression of k different texts. We denote by C a compressor that uses the
transformation E as preprocessing. If x1, . . . , xk is a multiset of words, we denote
by C(x1, . . . , xk) the word obtained by applying the compressor C to the output
of the transformation E over the set {x1, . . . , xk}. Since E is a transformation
that acts on multisets of words, it is easy to see that if π is a permutation on
{1, . . . , k}, then C(x1, . . . , xk) = C(xπ(1), . . . , xπ(k)). The interest of our approach
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is based on the intuitive idea that the more similar two texts x and y are, the
more effective is their simultaneous compression with respect to compressing
each text separately.

Such a fact has several interesting application. For example, most BWT -
based compressors process the input file x of length n by parsing it into blocks
of size M . A single block is read, compressed and written to the output file before
the next one is considered (cf. [13] and references therein). In this section we use
the notion of simultaneous compression in order to define an E-based compressor
that divides the input text into blocks of length M and then compress them
simultaneously. Some preliminary experiments (see the Table 1) show that our
method gives a better compression ratio than BWT -based method mentioned
above, when applied to the same blocks. Moreover our method allows to compress
the files with an asymptotically comparable time complexity and smaller memory
requirement than the ones required for compressing the whole text at once with
a BWT -based compressor.

Indeed we can note that the transformation of the whole text x involves a
sorting of n words of length n; our method involves a sorting of n words of
length M . This requires still an O(n) time complexity, but reduces the size of
the memory used to O(n) instead of O(n2).

We test our method on some files of the Calgary Corpus. We use a compressor
C that divides the text of size N into blocks of size M , preprocesses such a set
of blocks by the transformation E and then applies to the output of E the Move
to Front algorithm (MTF ) followed by the Huffman Coding. Recall that MTF
encodes an instance of the character x by an integer that counts the number of
distinct symbols seen after the latest occurrence of x.

The results of our experiment, synthesized in Table 1, show that our method
is more effective than the technique used by a BWT -based compressor (here
denoted by A) that divides the text into blocks of size M , preprocesses by
BWT and compresses (by MTF and the Huffman Coding) each block separately,
and finally concatenates the outputs. In particular, in the Table 1, for each

Table 1. The effect of varying the block size on compression of some files from the
Calgary Corpus.

File Size Alg. M = 16K M = 64K M = N
(in bytes)

bib 111261 C 2.547 2.461 2.425
A 3.204 2.634

obj1 21504 C 4.743 – 4.740
A 5.076 –

paper2 82199 C 2.805 2.786 2.779
A 3.330 2.917

progl 71646 C 2.145 2.138 2.131
A 2.440 2.200

trans 93695 C 2.064 1.978 1.950
A 2.667 2.123



An Extension of the Burrows Wheeler Transform and Applications 189

input block size M and for each file of the considered dataset, we compare the
compression ratios (expressed as output bits per input character) obtained by
applying the compressor C and A, respectively.

We remark that, in order to decompress the text, we need to encode also,
during the compression step, the set I of indices produced by transformation E,
according to the order in which the blocks of length M appear in the original
text.
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Abstract. Standard compression algorithms are not able to compress
DNA sequences. Recently, new algorithms have been introduced specifi-
cally for this purpose, often using detection of long approximate repeats.
In this paper, we present another algorithm, DNAPack, based on dy-
namic programming. In comparison with former existing programs, it
compresses DNA slightly better, while the cost of dynamic programming
is almost negligible.

1 Introduction

DNA sequences contain only four bases {A, C, T, G}. Thus, each base (symbol)
can be represented by two bits. However, the standard text compression tools,
such as compress, gzip and bzip2, cannot compress these DNA sequences; the
size of the files encoded with these tools is larger than two bits per symbol.
Consequently, DNA sequences compression has recently become a challenge.

Some characteristics of DNA sequences show that they are not random se-
quences. If these sequences were totally random, the most efficient and logical
way to store them would be using two bits per base. However, DNA is used for
the expression of proteins in living organisms, and thus must contain some log-
ical organization. Moreover, approximate repeats (repeats with mutations) and
complementary palindromes (reversed repeats, where A and C are respectively
replaced by T and G, and reciprocally) are well-known to frequently appear
inside long DNA sequences.

Based on these characteristics, several algorithms have been proposed for the
compression of DNA sequences. However, even if these algorithms obtain much
better results than standard universal compression algorithms, the compression
ratios are not very high. We briefly discuss some of the existing algorithms in
the order of their introduction (from the oldest to the most recent ones):

Biocompress [7], and its second version Biocompress-2 [8], were the first
DNA-specific compression algorithms. They are similar to the Ziv-Lampel data
compression method. Biocompress-2 detects exact repeats and complementary
palindromes located in the already encoded sequence, and then encodes them
by the repeat length and the position of a previous repeat occurrence. When
no significant repetition is found, Biocompress-2 uses order-2 arithmetic coding
(Arith-2).

A. Apostolico, M. Crochemore, and K. Park (Eds.): CPM 2005, LNCS 3537, pp. 190–200, 2005.
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The Cfact algorithm [13] looks for the longest exact matching repeat. For this
purpose, it uses a suffix tree on the entire sequence. Using two passes, repetitions
are encoded this way when the gain is guaranteed, otherwise the two-bits-per-
base (2-Bits) encoding is used.

The GenCompress algorithm [3, 4, 9] yields to a significantly better com-
pression ratio than the previous algorithms. The idea is to use approximate
(and not exact) repetitions. It exists in two variants: GenCompress-1 uses the
Hamming distance (only substitutions) for the repeats while GenCompress-2
uses the edition distance (deletion, insertion and substitution) for the encoding
of the repeats.

CTW+LZ [10] is another algorithm, based on the context tree weighting
method. It combines a LZ-77 type method like GenCompress and the CTW al-
gorithm. Long exact/appoximate repeats are encoded by LZ77-type algorithm,
while short repeats are encoded by CTW . Although they obtain good compres-
sion ratios, its execution time is too high to be used for long sequences.

DNACompress [5] is a DNA compression tool, which employs the Ziv-
Lampel compression scheme as Biocompress-2 and GenCompress. It consists
of two phases: during the first phase, it finds all approximate repeats including
complementary palindromes, using a specific software, PatternHunter [11]. Then
the approximate repeats and the non-repeat regions are encoded. In practice, the
execution time of DNACompress is much less than GenCompress.

DNAC [6] is another DNA compression tool, working in four phases: during
the first phase, it builds a suffix tree to locate exact repeats. During the second
phase, all the exact repeats are extended into approximate repeats by dynamic
programming. In the third phase, it extracts the optimal non-overlapping repeats
from the overlapping ones, and in the last phase, it encodes all the repeats.

DNASequitur is a grammar-based compression algorithm for DNA sequences
which infers a context-free grammar to represent the input data. Even if the
algorithm is elegant, the practical results show that other methods achieve better
compression ratios.

Some DNA compression methods are based only on the exact matches [2, 12].
However the exection times stated in [12] are better than other compressors but
the compression ratios are generally worse than the best existing compressors.

In this paper, we propose a new algorithm, DNAPack, which uses Hamming
distance for the repeats and complementary palindromes, and either CTW or
Arith-2 compression for the non-repeat regions. Unlike the above algorithms,
DNAPack does not choose the repeats by a greedy algorithm, but uses a dynamic
programming approach instead.

The content of the paper is organized as follows: in section 2, we describe the
different techniques and concepts used in our algorithm. In section 3, we present
the algorithm we use to find a semi-optimal decomposition of the file, and the
encoding of the compressed file is presented in section 4. Finally, in section 5, we
compare our results on a standard set of DNA sequences with results published
for the other algorithms.
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2 Useful Techniques

Our algorithm like all of the other DNA-oriented algorithms is based on parti-
tioning the sequence into two kinds of segments: the repeat segments (or copied)
and the non-repeat segments. The repeat segments are either approximate direct
repeats (repeats with some substitutions) or the approximate complementary
palindrome repeats (reversed repeats where bases are replaced by their com-
plementary base). In order to achieve the best results in compression, several
techniques are used for encoding the different kinds of segments. In this section,
we describe a set of techniques and methods which we use in our algorithm.

2.1 Encoding of Non-repeat Regions

For the encoding of the non-repeat regions, we need to compress arbitrary se-
quences of bases without long repeats. Two different techniques have been shown
to be efficient on these regions:

Order-2 Arithmetic Coding. In comparison to the Huffman Coding algo-
rithm, Arithmetic Coding overcomes the constraint that the symbol to be en-
coded has to be coded by a round number of bits. This leads to higher efficiency
and a better compression ratio in general. The adaptive arithmetic coding of
order 2 has the best compression ratio on the DNA sequences; in this arithmetic
encoding the adaptive probability of a symbol is computed from the context
after which it appears. The best ratio for DNA is obtained for order-2 (contexts
are the last two symbols), which seems to correspond to the amino-acid codons,
i. e. groups of three bases coding an amino-acid in a protein.

Context Tree Weighting Coding. The probabilities in an arithmetic coding
can be computed in different ways. Willems et al. in [14] proposed a univer-
sal compression algorithm denoted by Context Tree Weighting (CTW) method
which has on average a good compression ratio for an unknown model. The CTW
encoder consists of two parts: a source modeler which is the actual CTW algo-
rithm, which receives the uncompressed data and estimates the probability of the
next symbol and an arithmetic encoder which uses the estimated probabilities
to compress the data.

One important concept in the the CTW algorithm is the context tree which
is built dynamically during encoding/decoding process. All of the already visited
substrings of shorter size than a fixed bound (the height of the tree), exist as
a path in the tree. Each node of the tree contains a probability. In order to
encode a given bit, the following steps are performed: the path in the context
tree which coincides with the current context is searched and if needed extended.
For every node in this context path, an estimated probability of the next symbol
is computed using the data stored in the node. Then a weighted probability is
computed using a weighting function on all the estimated probability values. The
idea here is that if good coding distributions for two different texts are weighted
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then the weighted distribution is a good coding distribution for both sources.
Finally the weighted probability is sent to the arithmetic encoder which encodes
the symbol, and the encoder goes to the next symbol.

2.2 Encoding of Numbers

Different integer numbers have to be encoded in our algorithm. For example,
the segments have not a fixed length, so this length has to be encoded. For any
repeat segment, the position of the reference substring of the input, from which
we copy this segment, should be encoded. When the copies are approximate
(and not exact) the positions of the modifications should be encoded. There is
no bound on any of these numbers, so these integers should be encoded in a self-
delimited way rather than being encoded in a fix number of bits. For encoding
the reference position, encoding the relative difference of position of the reference
and the copy itself is preferable.

Fibonacci Encoding. An efficient self-delimited representation of arbitrary
numbers is the Fibonacci encoding [1]. The Fibonacci encoding is based on the
fact that any positive integer n can be uniquely expressed as the sum of distinct
Fibonacci numbers, so that no two consecutive Fibonacci numbers are used in the
representation. This means that if we use binary representation of a Fibonacci
encoding of a number, there are no two consecutive 1 bits. So by adding a 1 after
the 1 corresponding to the biggest Fibonacci number in the sum, the representa-
tion becomes self-delimited. The Fibonacci representation of some numbers are
given in the Table 1.

Shifted Encoding. Although Fibonacci encoding is a good coder for an un-
known set of numbers, one can construct better codes if we have some informa-
tion about the numbers. For example, if there are many small numbers and not
a lot of large numbers to encode, Fibonacci encoding can be improved by using
a shifted version. We define a k-shifted Fibonacci encoding as a coding where all
the numbers in the range [1..2k− 1] into their normal binary representation and
codes all the other numbers 0k followed by the Fibonacci encoding of n−(2k−1).
In Table 1, k-shifted representation of some numbers for k = 1 and k = 3 are
given.

Table 1. Fibonacci and shifted fibonacci representation of some numbers; depending
on the distribution of the numbers to be encoded one method can be preferred to the
others.

1 2 3 4 8 18

Fibonacci 11 011 0011 1011 000011 0001011

1-Shifted Fibonacci 1 011 0011 00011 001011 01010011

3-Shifted Fibonacci 001 010 011 100 00011 00001011



194 Behshad Behzadi and Fabrice Le Fessant

2.3 Hamming-Based Transcription

Suppose a substring v is an approximate repeat of substring u of the same size.
To encode v, we first encode the relative position of its already visited repeat u
(the pattern to be copied). Then we need to encode the edit transcription which
transforms u to v. We use three types of instructions: the first instruction is
Copy(l) which indicates that the next l symbols of the two substrings are the
same. Replace(x) indicates that the symbol in the current position of u should
be replaced by x in order to generate v. The last instruction is the Finish in-
struction which indicates that v is completely generated. Using this termination
instruction is a way to prevent encoding the size of the string v.

One important remark is that we use Hamming distance, i.e. approximation
is done only by substitutions, whereas some other compressors use the Edit
distance, where approximation can also be done by deletions and insertions.
Although we didn’t experiment with it, previously published results have shown
that the benefit in compression ratio [3] is not worth the increased complexity
and computation time.

3 The Algorithm

In this section firstly we explain our method which is based on dynamic program-
ming. Then we comment about the optimizations which makes our algorithm
working in a reasonably good time.

3.1 Dynamic Programming vs. Greedy Algorithms

DNACompress, GenCompress and CTWLZ obtain the best results among the
existing algorithms. Both GenCompress and DNACompress use the greedy ap-
proach for selection of the repeat segments. GenCompress selects the best prefix
of the region which is not yet encoded to be coded at the next step. As shown
in figure 1(a), the greedy selection of the segment A, prevents the possibility of
selecting the longer segment B. DNACompress has a different greedy scheme. In
each step, it chooses the most profitable segment which does not intersect with
the already chosen segments. Figure 1(b) shows how, by this greedy selection,
the algorithm may be prevented from choosing the best set of segments.

CTW+LZ tries to solve the problem of GenCompress by using some heuristics
which are unfortunately very time-consuming without yielding to real improve-
ments. Moreover, they cannot be applied to long sequences, because of their time
consumption.

In our algorithm, DNAPack, we use a dynamic programming approach for se-
lection of the segments, therefore solving the problem of greedy selection. We use
a set of optimizations which make the running time of our algorithm, reasonably
small, so it can be applied to very long sequences.

Let s be the input DNA sequence. Let BestComp[i] be the smallest com-
pressed size of the prefix s[1..i]. The following simple recurrence is the general
scheme of our dynamic programming.
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A : size = 9

B : size = 6 C : size =7

B : size = 16

A : size = 6

Fig. 1. (a) On the left-hand side, choosing the first segment as gencompress does is
not optimal. (b) On the right-hand side, choosing the biggest segment and discarding
overlapping segments is also non-optimal.

Initialization: BestComp[0] = 0
Recurrence:

∀i > 0 BestComp[i] = min

⎧⎨⎩
BestComp[j] + CopyCost(j, i, k) ∀k ∀ 0 < j < i
BestComp[j] + PalinCopyCost(j, i, k) ∀k ∀ 0 < j < i
BestCopy[j] + MinCost(j + 1, i) ∀ 0 < j < i

Fig. 2. Dynamic Programming scheme for finding the best compression.

CopyCost(j, i, k) is the number of bits needed to encode the substring of size
k starting at position i if it is an approximate repeat of the substring of size
k starting at j. The PalinCost is similarly defined for reverse complementary
substrings. The function MinCost(j + 1, i) is the number of bits needed for
compression of the segment s[j + 1, i]. It depends on the size of the substring
(for the size of the Fibonacci encoding) as well as the compression ratio obtained
for the algorithm by arithmetic coding or CTW. MinCost allows us to create a
repeat segment only if it would yield a benefit in the compression ratio. These
three functions are estimations of the real cost, since the efficiency of some
optimizations done during the encoding cannot be computed at this point.

3.2 Reducing Execution Time

A direct implementation of this algorithm has a complexity of O(n3), which is
much too high for long DNA sequences. Therefore, we use several techniques to
reduce the execution time in practice. First, we authorize only the repeats which
have a common seed. The seed is a small string of size l (a parameter of our
program), whose already found positions are stored in a hash table. To find a
repeat, we need only to find the positions of its seed in the hash table, and try
to increase their sizes.

In the third line of the recurrence, we do not really need to examine all the
j’s. A careful observation shows that we only need to compute MinCost(j+1, i)
for a j which is the end of a repeat segment, since there is no gain in creating
two consecutive non-repeat segments: each non-repeat segment contains its size
in Fibonacci encoding, and the size of two small encoded numbers is greater
than the size of one big encoded number. In fact, we can even narrow this search
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among all of the j’s which BestComp[j+1] is not optimized by copying a segment
from the same position as BestComp[j].

In the case of repeats, if s[i − 1] = s[j − 1] then there is no need to check
the different values of k; one can verify that BestComp[j − 1] + CopyCost(j −
1, i, k + 1) ≤ BestComp[j] + CopyCost(j, i, k).

Similar observation can be made for the case of the reverse repeat (2nd line
of the recurrence). As a result of these optimizations, the number of possible j
and k to search in our dynamic programming will be reduced enormously such
that it is possible to execute the algorithm on large sequences in a few seconds
(in our experimentations for example, MinCost(j + 1, i) is only computed for 2
or 3 different j for every i).

4 Practical Encoding

As written in the introduction, the encoding of bases on two bits already gives a
good compression ratio, which can be hard to beat if we don’t pay enough inten-
tion to the encoding scheme used for the approximate repeats. Indeed, previous
compression algorithms for DNA in the literature mainly focus on the algorithm
used to find the repeats, unfortunately forgetting to discuss the various ways
of encoding them, and thus, leading the not so good compressors. As a conse-
quence, we discuss here the choice we did in our implementation to efficiently
encode the various compression operations.

The encoding function takes as input a sequence of segments, where each
segment is either a sequence of bases, or a repeat of a preceding sequence of
bases. It outputs a file containing the same data in a compact representation.

4.1 The Structure of the Compressed File

The compressed file consists of three different regions: HEADER, CODE and
BASES.

The HEADER contains all the information that must be known to decode the
CODE and BASES regions. For example, it contains:

– The type of compression used for sequences of bases (it is either Arithmetic-2
Coding, CTW or None), on 2 bits.

– The number of segments in the CODE part.
– The minimum size of the first Copy operation in the repeats.
– The most frequent base substituted for another base in a repeat substitution.

The CODE region consists of two different types of segments: repeats and non-
repeats. For the non-repeats segments, the CODE region only contains the length
of the segment, encoded in Fibonacci encoding, whereas all the bases are put in
the BASES region. When all the non-repeats have been processed, the complete
BASES region is compressed using either Arithmetic-2 Coding, Context-Tree
Weighted Coding or 2-bits Coding, whichever gives the best compression ratio.
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Since |FibEncode(a + b)| ≤ |FibEncode(a)| + |FibEncode(b)|, the CODE
region never contains two consecutive non-repeats segments, as they would more
efficiently be encoded as a single segment. Consequently, we use the following
encoding to describe the type of the segments:

– - an empty code for the first segment of the gene, which is always a non-
repeat.

– 0 for a non-repeat segment after a repeat segment.
– 1 for a repeat segment after a repeat segment.
– - an empty code for a repeat segment after a non-repeat segment.

4.2 The Encoding of Repeats

A repeat segment must contain the following information:

– The type of repeat: direct repeat or complement-palindrome repeat. We only
need one bit for this information.

– The offset to the origin of the repeat (increased by one for complement-
palindrome repeats to avoid zeroes). We simply encode this offset in Fi-
bonacci encoding.

– The sequence of operations to repeat the segment, containing either copies
or mutations.

In this first implementation, we force the sequence of operations to always
finish with a Copy. Thanks to this simplification, a single bit can be used per
operation to distinguish between copies and Replaces:

– - an empty code for the first operation, which is always a Copy, since our
algorithm to find repeats looks for repeats with at least l characters in com-
mon.

– 0 for the end of the repeat after a Copy.
– 1 for a Replace after a Copy.
– 0 for a Copy after a Replace.
– 1 for a Replace after a Replace.

4.3 The Encoding of Operations Arguments

A Copy operation requires only one argument, the number of bases to be copied
from the original segment. Although we cannot optimize the representation of
this length in the general case, our algorithm guarantees that at least the first l
bases (called seed) will be similar between the two substrings. Thus, we compute
the minimal length of the first Copy of each repeat-segment, and we always
encode the first Copy of a segment after removing this minimum. With hundreds
of repeats in each gene, 4 or 5 bits saved per repeat, this simple optimization
finally saves a few thousands bits.

For each Replace operation, we need to supply the base to replace the former
base of the original segment. However, since we know that former base, the new
base can only be one of the 3 other bases. Therefore, we can represent it more
efficiently:
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– 0 for the most probable base.
– 10 and 11 for the two other bases.

Instead of using probabilities, our first implementation simply computes the
most frequent substitution for every former base, and store it in the HEADER
region of the file.

5 Experimental Results

To experiment our algorithm, we tried to compress a standard set of DNA se-
quences with our algorithm, and we compare with results published for other
efficient DNA compressors. This standard test sequences contains different se-
quences of mithocondry DNA, viruses and parts of human genome. The results
are displayed on table 2. The table shows that our program, DNAPack, performs
slightly better than other programs, except DNACompress in a few cases.

During our experiments, we tried to compress all the sequences while varying
a few parameters used by our algorithm:

– l, the size of the exact prefix that two repeats must have in common to be
compared.

– compressions, the set of compressions algorithms used to compress BASES,
ranging in {Arith− 2, CTW, 2−Bits}.

– approx, the estimation of the compression ratio that will probably be ob-
tained on the BASES region, used during the dynamic programming phase.

Due to space constraints, we cannot display all these results, but we can
briefly summarize them1: a big l gives very short execution time, without de-
creasing too much the compression ratio (in the table we have considered only
two different values for the value of l: the three first genes are compressed with
l = 30 and for the others l = 8; all results are obtained in less than 15 seconds,
except for MPOMTCG and VACCG which were produced in around 1 minutes).
The two different compressions of BASES are also important: among the 11 genes
compressed, 7 were compressed using CTW, 4 using Arith-2. For some genes,
2-Bits was more efficient than Arith-2. Finally, having the most accurate value
of approx also impacts a lot on performances, especially for small values of l,
where a lot of choices between small repeats and non-repeats must be done.

6 Conclusion

We have presented a new algorithm to compress DNA sequences. As most other
DNA compressors, our algorithm works by finding approximate repeats and try-
ing to optimally encode them. The first version of our implementation has results
1 The best compressions ratios as well as the details of the effects of the different

parameters on the compression ratios and the running times can be found on the
DNAPack page at URL: http://yquem.inria.fr/~lefessan/src/dnapack/
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Table 2. Comparison of compression ratios for different algorithms (bits/base).

sequence length BioCompress-2 GenCompress CTW-LZ DNACompress DNAPack

CHMPXX 121024 1.6848 1.6730 1.6690 1.6716 1.6602

CHNTXX 155844 1.6172 1.6146 1.6120 1.6127 1.6103

HEHCMVCG 229354 1.8480 1.8470 1.8414 1.8492 1.8346

HUMDYSTROP 33770 1.9262 1.9231 1.9175 1.9116 1.9088

HUMGHCSA 66495 1.3074 1.0969 1.0972 1.0272 1.039

HUMHBB 73308 1.8800 1.8204 1.8082 1.7897 1.7771

HUMHDABCD 58864 1.8770 1.8192 1.8218 1.7951 1.7394

HUMHPRTB 56737 1.9066 1.8466 1.8433 1.8165 1.7886

MPOMTCG 186609 1.9378 1.9058 1.9000 1.8920 1.8932

PANMTPACGA 100314 1.8752 1.8624 1.8555 1.8556 1.8535

VACCG 191737 1.7614 1.7614 1.7616 1.7580 1.7583

Average — 1.7837 1.7428 1.7389 1.7254 1.7148

which on average are slightly better than former algorithms. It is mainly due to
the benefits of dynamic programming, and the careful choice of the encoding of
the repeats. We are now working on different aspects of our compressor: first,
we are tuning the different parameters to improve the compression ratio while
decreasing the computation time; we are experimenting it on larger genes (chro-
mosomes contain at least twenty million bases on average), and finally, we are
trying to find a better compression method for some sequences, where approx-
imate repeats are unfrequent (HUMDYSTROP for example), who failed to be
compress efficiently by all the known compressors.

The future works will be more bioinformatics related. The reliabity of mea-
suring the relatedness of the different organisms by comparing their compresion
ratios, the reason why the genes compress with different ratios are interesting
questions to be studied.
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Abstract. Gene structure prediction is one of the most important prob-
lems in computational molecular biology. A combinatorial approach to
the problem, denoted Gene Prediction via Spliced Alignment, was in-
troduced by Gelfand, Mironov and Pevzner [5]. The method works by
finding a set of blocks in a source genomic sequence S whose concatena-
tion (splicing) fits a target gene T belonging to a homologous species. Let
S,T and the candidate exons be sequences of size O(n). The innovative
algorithm described in [5] yields an O(n3) result for spliced alignment,
regardless of filtration mode.
In this paper we suggest a new algorithm which targets the case where
filtering has been applied to the data, resulting in a set of O(n) candidate
exon blocks. Our algorithm yields an O(n2√n) solution for this case.

1 Introduction

Recognition of genes in eukaryotic DNA is seriously complicated by noisy regions
(introns) that interrupt the coding regions (exons) of genes. The gene-prediction
via spliced alignment approach, due to Gelfand, Mironov and Pevzner [5, 15, 21]
incorporates similarity analysis into gene prediction by attempting to find a set
of potential exons in a genomic sequence whose concatenation is highly similar
to one of the already known gene sequences in the database.

The task of gene prediction is generally divided into two stages. The first task
is that of finding candidate exons in a long DNA sequence believed to contain a
gene. A candidate exon is a sequence fragment whose left boundary is an acceptor
site or a start codon, and the right boundary is a donor site or a stop codon.
The nucleotide sequence in Figure 1 contains marked sites where a candidate
exon may begin and end. Uppercase A-E mark identified sites where an exon is
likely to begin (start/acceptor sites), and lowercase f-j mark sites where exons
are likely to end (stop/donor sites). Candidate exons are A-f, A-g, A-h, A-i, A-j,
B-f, B-g, B-h, B-i, B-j, C-g, etc.
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Fig. 1. A nucleotide sequence (S) and four of its derived candidate genes (s1, s2, s3, s4).

The second task is that of selecting the best subset of non overlapping can-
didate exons to cover the sequence of the predicted gene. (Four of the many
possible assemblies of candidate exons as candidate genes are shown in the fig-
ure: s1 = {A− f, C − h, E − i}, s2 = {B − g, D − j}, s3 = {A− h, E − j} and
s4 = {A− g, D − i}.) Each candidate gene (a concatenation of non-intersecting
candidate exons which satisfy some natural consistency conditions [20]) is com-
pared against the target sequence, which is an already known gene from a ho-
mologous species.

An interesting combinatorial approach, using network dynamic program-
ming, which explores all possible exon assemblies in polynomial time, is described
in [5]. Assuming that S and T as well as the sizes of the candidate exons is O(n),
this algorithm yields an O(n3) solution for Sparse Spliced Alignment.

Good filtration is crucial for exon assembly, especially if targets from dis-
tant taxa are used. In [15], the authors studied the performance of the spliced
alignment algorithm for different targets on a complete set of human genomic se-
quences with known relatives and demonstrated that the average performance of
the method remains high even for distant targets. The authors analyzed several
filtration procedures of varying strength and demonstrated that weak filtration
provides better results with mammalian targets. In the case of distant targets,
the stronger filtering was more useful than in the case of close targets, and some-
times it was shown to significantly improve the prediction quality. Furthermore,
it was also explicitly shown (see http://www-hto.usc.edu/software/procrustes-
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/#salign) that the number of candidate exons generated in either weak or mod-
erate filtration modes is linear in the size of the genomic sequence: the default
(weak) filter retained approximately 1 exon per 14 nucleotides on the average,
while the moderate filter retained approximately 1 exon per 33 nucleotides.

Therefore, in this paper we re-address the spliced alignment problem for the
linear-sized candidate exon-set case. More formally, for any two substrings B
and B′ of a genomic sequence S, we write B ≺ B′ if B ends before B′ starts. A
sequence Γ = (B1 . . . , Bn) of substrings of S is a chain if B1 ≺ B2 ≺ . . . ≺ Bn.
We denote the concatenation of strings from the chain Γ by Γ ∗ = B1∗B2∗. . .∗Bn.

Definition 1. Given two sequences, S and T , of size O(n) each, and a set
β = {B1, . . . Bb} containing O(n) blocks (substrings of S), of size O(n) each.
The Sparse Spliced Alignment Problem is to find a chain Γ of strings from β
such that score(Γ ∗, T ) is maximum among all chains of blocks from β.

In this paper we suggest a new algorithm for Sparse Spliced Alignment. Our
new approach is based in efficient elimination of redundancy due to candidate-
exon overlaps. Note that dominant portions of each of the competing candidate
gene assemblies in Figure 1 are segments common to other candidates, since
the candidate exons overlap in the genomic source sequence. (For example, the
two source strings S1 and S2 share the substrings B-f, C-g, D-h and E-i.) The
authors of [5] indeed noticed this redundancy and utilized it to speed up the
naive dynamic programming algorithm. When no filtration is applied, and the
number of candidate exons generated is O(n2), their approach reduces the spliced
alignment complexity from the naive O(n4) down to O(n3). However, when
filtration is applied, and the number of candidate exons is O(n), their algorithm
still yields the same O(n3) result.

At first glance it may seem that the algorithm of [5] indeed exploits to its
maximum the power of dynamic programming in utilizing such block overlaps. A
second, more thorough examination of the problem leads to the conclusion that it
is the dependency of traditional dynamic programming on the direction in which
it is applied, as well as the fact that values in each dynamic programming table
are sensitive to the content of preceding (or symmetrically following) chained
blocks in the candidate solution, which stand in the way of further isolating the
common denominator between blocks and exploiting the overlap redundancy.

1.1 The Results of This Paper

We describe an O(n2√n) solution for Sparse Spliced Alignment, which improves
upon the previous results by O(

√
n). Furthermore, the new algorithm degrades

gracefully, so that even in the case when no filtration is applied to the exon
set, and the number of candidate exons may be O(n2), our algorithm will yield
an O(n3) complexity which is no worse than previous results. The efficiency
improvement is based in a tighter, more sophisticated elimination of overlap
redundancy among the candidate exons. The crux of the new algorithm is based
in three components.
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1. A Rectilinear Steiner Minimal Arborescence technique [6, 7, 13, 19] is ap-
plied to the analysis of the overlapping candidate exons. The Steiner technique is
a well-practiced tool in both Computational Geometry and Graph Theory prob-
lems. Its importance stems from the fact that it has applications in as diverse
areas as VLSI-layout and the study of phylogenetic trees. The application of the
Steiner tool here to the parsing of overlapping candidate exons leads to efficient
re-use of the substrings shared by multiple exon candidates and is key to the
resulting efficiency gain. (See section 4.)

2. We replace the dynamic programming tables in the network graph with
alternative DIST data structures. (See Section 3.) This will allow us to focus on
the local common denominator between overlapping blocks, and mask out the
global information which varies for each considered chain in which the blocks
are embedded.

3. In order to achieve direction flexibility in the alignment computation, a
new key operation is introduced in this paper which supports both left-to-right
and right-to-left computations. (See Section 5.) Note that related work on dy-
namic programming “against the grain” without the I/O independence feature
can be found in [9–11].

The combination of the above three components enables the new algorithm to
eliminate redundancy by applying the major part of the alignment work to mul-
tiple blocks in tandem, thus reducing the work associated with re-computation
of segments shared by several blocks.

The results of this paper apply to all distance or similarity scoring schemes
which use a scoring table with rational number values and employ a linear gap
penalty. (Note that [5] also used linear gap penalty with indel score ranging from
3 to 1 and a PAM120 matrix whose entries are in fact integers in the range
−8 . . . 12.) The interested reader is referred to http://www.nslij-genetics.org/
gene/ for a thorough “state-of-the-art” survey on the subject of computational
gene recognition.

2 Gelfand, Mironov and Pevzner’s Algorithm

The spliced alignment algorithm scans all candidate exon blocks in polynomial
time and computes the optimal alignment, as follows. The exon assembly prob-
lem is first reduced to a search for the optimal path in a graph. Nodes in this
graph correspond to candidate-exon blocks, arcs correspond to potential transi-
tions between blocks, and the path weight is defined as the weight of the optimal
alignment between the concatenated blocks of this path and the target sequence.

Figure 2 demonstrates the network alignment as suggested by [5]. Each of the
O(n) rectangles corresponds to the dynamic programming table for the align-
ment of a single candidate-exon substring Sj

i of S versus T . Clearly, each such
table is of size O(n2). The first row in each such dynamic programming table
is denoted I and the last row is denoted O. In addition, the algorithm uses a
vector, denoted the I/O vector, to maintain global information regarding the var-
ious possible chainings of the dynamic programming tables for the exon-blocks.
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Fig. 2. A example of the basic network dynamic programming algorithm, showing the
candidate exon block dynamic programming tables. Consecutive “state-shots” of the
I/O vector at the stages when it is accessed also shown. This figure continues the
example of Figure 1.

The I/O vector shown in the figures assists in the computation of the highest
scoring path through the candidate exons by reflecting global updates.

The algorithm computes the values of rows in the dynamic programming
tables in a top-to-bottom sweep-line of increasing row-index in S. Let k = 1 . . . n
denote the running index of the computed rows.

At step k of the algorithm, the following work is done:

1. First, all dynamic programming tables whose I row is at index k will be
initialized with the values of the I/O vector.

2. Then, the values of all rows internal to blocks (neither I nor O) which corre-
spond to the character at index k of S, will be computed from their preceding
row via dynamic programming.

3. Finally, for each dynamic programming table DP k
i (corresponding to the

alignment of candidate exon Sk
i versus T and whose O row is therefore at index k

of S): the I/O vector will be updated with row O of DP k
i , using the maximization

I/O[�] = max{DP k
i [k, �], I/O[�]}, for � = 1 . . . n.

Time Complexity Analysis
In Sparse Spliced Alignment there are O(n) candidate exon blocks. For each
block, a dynamic programming table of size O(n2) is computed. Therefore, the
complexity of the algorithm is O(n3).
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We note that the algorithm is further enhanced in [5] to save the work spent
on computing multiple dynamic programming tables for overlapping exon sub-
strings which end in the same index of S. For lack of space, we do not describe
this enhancement here. In the Dense Spliced Alignment case, when the num-
ber of candidate exons is O(n2), this enhancement reduces the complexity from
O(n4) down to O(n3). However, in the case of Sparse Spliced Alignment, which
is the subject of this paper, the enhanced algorithm still yields an O(n3) time
complexity.

3 An Alternative Approach to Spliced Alignment

Our new algorithm for Sparse Spliced Alignment will maintain the main frame of
the original algorithm and will similarly run a sweep-line, top-to-bottom traversal
over the network graph of candidate exon blocks. However, the new approach will
be based in replacing the dynamic programming tables for the blocks with an
alternative data structure which analyzes the DP graph (see Figure 3,6 and 9),
denoted DIST [1, 3, 8, 18].

Definition 2. DIST A
B [0 . . . n][0 . . . n]- given the DP Graph for the alignment

of a sequence A of size m versus a sequence B of size n, DIST A
B [i, j] stores the

weight of the highest scoring path from vertex (0, i) in the first row of the DP
graph to vertex (m, j) in the last row of the DP graph.

In other words, DIST A
B [i, j] stores score(A, Bj

i ) (see Figure 3).
An O(n) representation of DIST , which replaces the full O(n2) DIST , will

be used in this paper and is explained in Section 5.1.
Consider the DP graph for the alignment of any candidate exon Sj

i with T
in Figure 2. By replacing the dynamic programming table with a DIST data
structure, the alignment work involved in the computation of column O from
column I can be greatly reduced, as follows. Given DIST T

Sj
i

and input row I,

the output row O can be computed in O(n) time instead of O(n2), by employing
the techniques from [4, 12].

Intuitively, the savings can be viewed as follows: for each block, the algo-
rithm will eliminate the work which is invested by the original spliced alignment
algorithm in the computation of all dynamic programming table rows between
I and O (highlighted with dark squares in Figure 2). Clearly such an approach
could lead to an O(n2) time complexity for the computation of the optimal path
through the exon blocks, assuming that the DIST s for the comparison of each
block with T are available.

However, note that computing a single DIST for the comparison of two
O(n)-sized sequences would naively take O(n3) time. Schmidt [18] shows how to
compute such a DIST in O(n2) time. Thus, the computation of O(n) DIST s,
where each DIST represents two strings of size O(n) each, can be done in O(n3)
time. This creates a complexity bottleneck which overrides the speed-up which
was obtained in reducing the work for the network dynamic programming graph
to O(n2).
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Fig. 3. The full DIST A
B where A = “ACCADBAB”, B = “BBCAACABABCCB”,

for the Edit Distance metric. Note that ψ = 3.

Therefore, in the rest of this paper we address the challenge of how to com-
pute the DIST s for all blocks in an efficient manner that would reduce the O(n3)
DIST -construction bottleneck to O(n2√n).

4 Breaking the O(n3) Bottleneck with “Append-Prepend”
Parsing

In Section 5, the following two incremental DIST construction operations will
be described. Both operations cost O(n) time each, and will be used for efficient
computations of all DIST s for β (Definition 1).

Definition 3. DISTAppend - given a single input character a and DIST A
B , com-

putes DIST Aa
B , where Aa is the concatenation of the character a to the end of

string A.

This operation will be based on the work of [18] and is surveyed in Section 5.2

Definition 4. DISTPrepend - given a single input character a and DIST A
B ,

computes DIST aA
B , where aA is the concatenation of the character a to the

beginning of string A.

This operation will be based on a new technique, to be described in section 5.3.
Consider the candidate exons 1 . . . 9 which are shown in Figure 4. Dotted

vertical lines are used in this example to mark all start and end positions of
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Fig. 4. An example of a set of candidate exon blocks. This figure continues the example
of Figure 1. Let |P | = 1, |Q| = 4, |R| = 1, |S| = 2, |T | = 3, |U | = 3, |V | = 3, |W | = 4
and |X| = 2.

candidate-exons. Clearly, each such dotted line can be translated to at least one
I/O-vector update. The letters P, Q, . . . T are used to mark unit substrings of S,
which are uninterrupted by a beginning or end of a candidate exon.

Naively, the DIST for each candidate-exon could be generated by a series
of O(n) DISTAppend operations, or alternatively by a series of O(n) consecu-
tive DISTPrepend operations. This would yield a total of O(n2) DISTAppend
and DISTPrepend operations. Since the complexity of each DISTAppend and
DISTPrepend operation is O(n), the total work would amount to O(n3). How-
ever, a more careful construction scheme would try to order the DIST increment
operations in such a way as to minimize re-generation of unit-substrings that ap-
pear in more than one exon. For example, generating the two exons “PQ” (block
1 in Figure 4) and “QRS” (block 4) by a series of DISTAppend operations would
yield a total of 12 operations. Alternatively, suppose that the substring “Q”,
which is common to both exons, is first computed at the cost of 4 DISTAppend
operations, and then “PQ” is obtained from “Q” via a single DISTPrepend
while “QRS” is obtained from “Q” via 3 DISTAppend operations. The total
cost in this case would be 8 instead of 12, since “Q” is only generated once.
From this example we conclude that an efficient construction of a set of DIST s
for overlapping substrings dictates the following optimization problem.

Definition 5. The Append-Prepend Parsing optimization problem: Compute
the minimal-cost series of DISTAppend and DISTPrepend operations that will
generate the DIST s for all the candidate exons in β.
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4.1 “Append-Prepend Parsing” Reduced to UTRSMA

In this section we show how to solve the “Append-Prepend Parsing” optimization
problem by reducing it to a Steiner-Tree problem [7]. Furthermore, the special
features of the problem will allow us to tightly map it to a special case of directed
Steiner trees on a rectilinear grid. Such trees have the great advantage that their
size has a proven bound - a feature which is key to the efficiency gain suggested
by our algorithm.

The Rectilinear Steiner Minimal Arborescence (RSMA) is defined as follows
[19]. (Note that an arborescence is a rooted tree with all edges directed away
from the root.)

Definition 6. Given a set N of nodes lying in the first quadrant of E2 and
assuming that distances are measured in the L1 metric, the Rectilinear Steiner
Minimal Arborescence (RSMA) is to find a minimum length directed tree rooted
at the origin and containing all nodes in N, composed solely of horizontal and
vertical arcs oriented only from left to right and from bottom to top.

This problem, which is NP -Complete, was first studied by Ladeira de Matos [14].
He proposed an exponential time dynamic programming algorithm to solve the
problem. Rao, Sadayappan, Hwang and Shor [19] have suggested a heuristic 2-
approximation algorithm for the problem. Additional related work can be found
in [6, 7, 13]. We observe that the “Append-Prepend Parsing problem” (Definition
5) reduces to the following variant of RSMA.

Claim. Append-Prepend Parsing can be reduced to an RSMA variant in which
the weights of all edges in the lower-left triangle are set to zero. This problem
variant will be denoted UTRSMA (Upper-Triangular Rectilinear Steiner
Minimal Arborescence).

Proof: Consider the following n× n directed grid graph G where edge direction
is restricted to either north or east (see Figure 5). The origin of this graph is
point (0, 0) in the lowest, leftmost corner of the grid. Let (x, y) denote a point
in the grid with row number x in respect to the origin and column number y in
respect to the origin. Each node in G corresponds to a unique substring of S:
substring Sj

i is represented by node (j, n − i) in G. This index-mapping could
be more intuitively visualized as follows: the nodes in the main diagonal are
assigned consecutive characters from S, such that node (i, j) on the diagonal
corresponds the character i of S (starting with substring S1

1 in vertex (1, n) of
the grid and up to substring Sn

n in vertex (n, 1) of the grid). For any other point
p in the upper triangle, its substring can be realized by stretching a straight line
south till it hits the main diagonal and a straight line west till it hits the main
diagonal: the substring represented by p consists of the consecutive characters
on the diagonal between the two hit-points.

Clearly, only nodes in the upper-triangle, where i > n − j, correspond to
relevant substrings of S. Therefore, all edges in the upper triangle of the grid
graph are assigned unit-weights and are directed, either north or east. An edge
leaving a node in the northern direction corresponds to an extension of the
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substring represented by the node via a DISTAppend operation. Similarly, an
edge leaving a node in the eastern direction corresponds to an extension of the
substring represented by the node via a DISTPrepend operation.

Let N be a set of O(n) terminal nodes, such that each terminal node corre-
sponds to a unique candidate-exon substring: candidate-exon Sj

i in β is repre-
sented by a terminal at index (j, n− i) of G.

Consider a sequence of DISTAppend and DISTPrepend operations, start-
ing from a subset of single-character substrings of S, and generating all the
candidate exon substrings. Clearly, such a sequence can be mapped to a forest
which spans all the terminals in N , such that each tree in the forest is rooted in
the main diagonal of G and grows in the north-east direction. A minimal-weight
such forest would therefore yield a solution to the “Append-Prepend Parsing”
optimization problem.

In order to apply known RSMA algorithms to the computation of such a
minimum-weight forest in G we need to further adapt the problem to that of
computing an arborescence rooted at the origin of a full grid. Therefore, the
weights of all edges in the lower-left triangle of G are set to zero. An additional
extra terminal, denoted z1, is set at index (0, 0) of the grid, and is the designated
root. The UTRSMA problem is then to find a set of paths from z1 to all terminals
in N − z1 such that the total weight of the edges in these paths is as small as
possible (see Figure 5). �

Lemma 1. A 2-Approximation of a UTRSMA on G can be computed in
O(n log n).

Proof: Define m(a, b) to be the point with coordinates (min{xa, xb}, min{ya, yb}).
Hanan [6] proved that in an RSMA, if c has “children” a and b then c must be
m(a, b). Any point in the grid which the arborescence passes through is denoted
a steiner point.

Rao et al. [19] presented a heuristic 2-Approximation scheme for RSMA. The
basic step is: choose a pair of terminals a and b such that c = m(a, b) is as far
from the origin as possible, record connections from c to a and b, and replace a
and b in N by a new terminal at c (unless c was already a terminal). Repeat the
basic step until N is reduced to the origin. This algorithm can be implemented by
a (diagonal) line sweep approach that maintains a priority queue of the distances
from the origin to each m(a, b), where a and b are adjacent (with respect to the
sweep line). Therefore, it can be implemented in O(n log n) time. They prove
that the heuristic produces a rectilinear Steiner arborescence with a total size
which is at most twice that of the optimal solution.

We claim that running the very same algorithm on G would yield a 2-
Approximation to UTRSMA. The only modification would be in the distance
measurement, as follows.

In the original RSMA algorithm, the distance in L1 of a point (x, y) from
the origin, denoted |(x, y)|, is x+ y. In the UTRSMA version, the weight |(x, y)|
will be computed as follows:

– If point (x, y) is in the upper-triangle of G, then |(x, y)| = x + y − n.
– If point (x, y) is in the lower-triangle of G, then |(x, y)| = 0.
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Fig. 5. Append-Prepend Parsing reduced to an Upper Triangular Minimal Steiner
Arborescence problem on a Rectilinear Grid. The terminal nodes, representing the
candidate-exon substrings, are circled. The designated root z1 is located at the origin
(0, 0). This figure continues the examples of Figures 1 and 4.

The distance of any point in the upper-triangle of G from the origin, in the L1

metric, is equivalent to its distance from the main diagonal plus n, since any
point on the main diagonal (x + y = n) is of distance n from the origin in L1.
Furthermore, subtracting the same value of n from any two competing points
during a run of the diagonal sweep-line algorithm of [19] would clearly preserve
their original order. Thus, the order in which the terminals and steiner points are
processed in the original algorithm remains correctly intact when transforming
to the problem of UTRSMA on G.

As for steiner points in the lower-triangle, they can actually be selected in
any arbitrary order since the parts of the paths in the lower-triangle of G do not
contribute anything to the weight of the UTRSMA. Thus, applying the above
variant of [19] to G would yield a 2-approximation of the UTRSMA. �
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Let τG(N) denote the approximated UTRSMA obtained by running the al-
gorithm of Lemma 1 on G. The next lemma, which is based on Rao et al. [19],
defines a bound on the size of τG(N).

Lemma 2. |τG(N)| = O(n(
√

n))

4.2 The New Sparse Spliced Alignment Algorithm

The new algorithm is given below.

Algorithm Sparse Spliced Alignment:
Input: a set β of O(n) candidate-exon substrings of S and the homologous gene
sequence T .
Output: the score of the best alignment of the graph of exons threaded with T .
1. Compute an approximation τG(N) of the UTRSMA of G as described in
section 4.1.
2. Using τG(N), compute the linear encodings of the DIST s for all candidate
exons in β, using the DISTAppend and DISTPrepend operations described in
section 5.
3. Using the linear encodings of the DIST s, scan the network graph in a top-
to-bottom sweepline of increasing row index, and for each scanned block Sj

i :
3a. Initialize I with the I/O vector.
3b. Compute O from I, applying the technique from [12] to the linear en-

coding of DIST T
Sj

i

which was computed in Step 2.

3c. Update the I/O vector with O, as described in section 2.
4. Upon completion, report the maximal value in the I/O vector.

Time Complexity Analysis

A 2-Approximation τG(N) of the UTRSMA for O(n) points in an n×n grid can
be computed in O(n log n) as explained in the proof of Lemma 1. By Lemma 2,
the size of the obtained tree τG(N) is O(n

√
n).

Following the incremental order defined by τG(N), the linear encodings of
the DIST s for all exons in B are computed in O(n

√
n) steps. Each step consists

of either a single DISTAppend or a single DISTPrepend operation, each in
O(n) time (See Section 5). Altogether, the time invested in the construction of
the DIST s is O(n2

√
n).

Using the O(n) linear encodings of the DIST s, the computation of I from
O for each of the O(n) blocks is done in O(n) time using [12]. In addition, the
I/O update work for initializing the I row for each block from the I/O vector
and for updating the I/O vector with the resulting O row for each block is also
O(n) per block. Altogether, this stage contributes a term of O(n2) work to the
total complexity.

Thus, the total time complexity of the new Sparse Spliced Alignment algo-
rithm is O(n2

√
n).
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5 A DP Toolkit to Support Append-Prepend Parsing

In this section we describe the two DIST construction operations, that will en-
able us to utilize the UTRSMA approximation τG(N), which was computed as
a solution to the “Append-Prepend Parsing” of the exon-candidate set β, to ef-
ficiently construct the DIST data structures which represent the alignments of
all blocks in β with T . We will first explain the compressed, linear encoding rep-
resentation of DIST , and then describe the DISTAppend and DISTPrepend
construction operations on this data structure.

5.1 Properties of DIST That Enable Linear Encoding

For discrete scoring schemes, a more efficient encoding of high scoring paths in
the DP Graph can be achieved, by utilizing the fact that, due to the Monge
property [16] of DIST [2], the number of relevant changes, from one column to
the next, is constant. This property, also discussed in [12, 18], allows for a rep-
resentation of DIST via an O(n) number of “relevant” points. The importance
of this property will become clearer in subsection 5.2.

The HDIFF matrix on columns of DIST is defined as follows (see Figure 6).

Definition 7. HDIFFcol
A
B[i,j]= DIST A

B [i, j] − DIST A
B [i, j − 1], for i, j =

1 . . . n.

The range of possible values for HDIFFcol
A
B[i, j] depends on the scoring

scheme which is used for the string comparison, and is actually the upper
bound for the value difference between two consecutive elements in the dynamic
programming table. We will use the term ψ to denote the range bound for
HDIFF [i, j] values. As an example, if the similarity metric used is LCS, the
only possible values for HDIFF will be either 1 or 0, and ψ assumes a value of
1. For the Edit Distance metric, on the other hand, ψ is 2, since HDIFF can
only assume one of the 3 values: -1, 0, 1 [22]. Our algorithm applies to all scoring
scheme metrics for which ψ is a constant. Masek and Paterson [17] observed that
ψ is a constant for discrete scoring schemes (i.e. when the values of the applied
scoring matrices are restricted to rational numbers).

Schmidt [18] showed that since, for discrete scoring schemes, the number of
“steps” (row indices in which the series of column entries increases in value) in
each column of HDIFF is constant, each column j = 1 . . . n, can be encoded
by a sorted list of ψ = O(1) row indices ik, where ik is the highest row index
in column j, such that HDIFFcol

A
B[ik, j] = k. Altogether, HDIFFcol

A
B can be

encoded by its O(n) “steps”, using the data structure defined below (See Figure
6).

Definition 8. HLISTcol
A
B is the linear encoding of HDIFFcol

A
B. i.e.,

HLISTcol
A
B[j, k] holds the value of the highest row index i in which

HDIFFcol
A
B[i, j] = k, for j = 1 . . . n, k = 1 . . . ψ.
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A
B. (b) HLISTcol

A
B . This Figure continues the example of Figure 3.

We have shown in [12] that the linear encoding of DIST is sufficient to com-
pute I from O, thus liberating the algorithm from the time and space overhead
of maintaining the full O(n2) DIST representation. In the following sections we
will show that the linear representation of DIST suffices for the computation
of both DISTAppend and DISTPrepend, thus allowing for the efficient O(n)
computation of these operations.

5.2 Schmidt’s Algorithm for DISTAppend on the Linear Encoding
of DIST

In this section we will survey the work of [18] in describing the DISTAppend
operation. This is intended as a stepping-stone for the new DISTPrepend op-
eration which will be described in Section 5.3. Consider the DP graph for the
alignment of Aa versus B. Note that column j in DIST A

B represents the j paths
starting at row 0 of the DP graph for the alignment of A versus B, and ending
at vertex (m, j). Thus, appending a single character to the end of sequence A
corresponds to appending a new row to the last, bottom row of the DP graph
(see Figure 7). The goal of the DISTAppend operation is to compute the linear-
encoded representation of DIST Aa

B from the linear-encoded representation of
DIST A

B , namely computing all the paths which end at vertices of row m + 1 of
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Fig. 7. The DP graph for computing the similarity between A = “BCBCBDCB”
and B = “BCBADBDCD”. The highlighted edges demonstrate the extension of the
prefix “BCBCBDC” of A by appending the character ’B’.

the DP graph. More formally, the objective of the DISTAppend algorithm is to
compute HLISTcol

Aa
B from HLISTcol

A
B in a column-by column manner.

For each vertex in the newly appended row (m + 1, j), j = 1 . . . n, given
the differences: DIST A

B [i, j] − DIST A
B [i, j − 1] (i.e., entry j of HLISTcol

A
B)

and DIST A
B [i, j − 1] − DIST Aa

B [i, j − 1], the algorithm computes, in O(1),
the differences: DIST Aa

B [i, j] −DIST Aa
B [i, j − 1] (entry j of HLISTcol

Aa
B ) and

DIST A
B [i, j]−DIST Aa

B [i, j]. The series of differences DIST A
B [i, j]−DIST A

B [i, j−
1], for j = 1 . . . n, are given as input to the algorithm in the form of HLISTcol

A
B,

while the “step” values of DIST A
B [i, j]−DIST Aa

B [i, j] are computed incremen-
tally from one vertex to the next. Due to lack of space, we refer the interested
reader to [18] for the detailed description of this algorithm.

Time and Space Complexity Analysis of the DISTAppend Operation:
Given a string B of size O(n), a character a, a discrete scoring table, and the
linear encoding of DIST A

B (HLISTcol
A
B) for a string A, the linear encoding of

DIST Aa
B (HLISTcol

Aa
B ), can be computed in O(n) time and space complexity.

5.3 DISTPrepend on the Linear Encoding of DIST

Given HLISTcol
A
B and a single character a, in this section we will show how

to compute the DISTPrepend operation, i.e., compute the linear encoding of
DIST aA

B (HLISTcol
aA
B ), where aA is the concatenation of the character a to the

beginning of sequence A. Note that this simple technique is new.
Lets examine DIST A

B ’s rows and columns. Column j of this DIST represents
all the paths which originate in vertices 0 to j of the first row � (note that we say
“row �” instead of “row 0” for the sake of notation clarity) of the DP graph for A
versus B, and ending at vertex (m, j) of the graph (see Figure 8). Respectively,
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Fig. 8. The DP graph for computing the similarity between A = BCBCBDC and
B = BCBADBDCD. The highlighted edges demonstrate the extension of the suffix
“BCBCBDDC” of A by prepending the character ’B’.

row i of DIST A
B represents all the paths originating in vertex (�, i) and ending

in vertices i to n of row m of the graph . Reversing the directed edges in the
grid graph will enable us to view row i in DIST A

B as the paths ending (instead
of originating) at vertex (�, i) in the DP graph, while the values (the weights of
the paths) remain the same. Therefore we can consider the paths as going now
in the opposite direction: from right to left, bottom-up.

Appending a single character to the beginning of sequence A is equivalent
to appending a new row (row �− 1 in Figure 8) to the top of the DP graph. In
this case, in a symmetric manner to the way we viewed the Append operation
in Section 5.2, every vertex (�, i), which is the end-point of n − i paths that
originate the last row m of the DP graph, is represented as row i in DIST A

B .
Therefore, extending the DP graph by appending a row to its top end, requires
extending some representation of DIST A

B by the differences between its rows
instead of its columns. These are defined, symmetrically to the definitions of
section 5.2, as HDIFFrow

A
B = DIST A

B [i, j]−DIST A
B [i + 1, j] and HLISTrow

A
B.

Given HLISTrow
A
B, HLISTrow

aA
B could be computed in O(n) time by using a

similar, reversed variant of the algorithm described in section 5.2.
Thus, what is left to show in order to compute DISTPrepend in O(n) time

and space complexity, is how to compute HLISTrow
A
B from a given HLISTcol

A
B

in O(n) time and space complexity. We will next show a simple technique which
does that. The same technique can be applied in the opposite direction as well,
computing HLISTcol

A
B from a given HLISTrow

A
B, a fact which will enable us

to prepend and append characters to DIST alternately. The next claim can be
demonstrated by comparing Figures 6 and 9.
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Fig. 9. The linear encoding compression of DIST A
B by rows, where A =

“ACCADBAB”, B = “BBCAACABABCCB”, for the Edit Distance metric. (a)
HDIFFrow

A
B . (b) HLISTrow

A
B . This Figure continues the example of Figure 3.

Claim. Given any ordered pair (j, i) of HLISTcol
A
B, the reversed ordered pair

(i, j) will be listed in HLISTrow
A
B (i.e., index j will appear in one of the ψ

“steps” at row i of HLISTrow
A
B).

Using the above claim, HLISTrow
A
B can easily be computed from HLISTcol

A
B

in O(n) time and space via a single scan of its values.

Time and Space Complexity Analysis of the DISTPrepend Opera-
tion: Given string B of size O(n), a character a, a discrete scoring table, and
the linear encoding of DIST A

B (HLISTcol
A
B) for a string A, the linear encoding

of DIST aA
B (HLISTcol

aA
B ), can be computed as follows. First, HLISTrow

A
B is

computed in O(n) time and space complexity from HLISTcol
A
B , as shown in

this section. Then, an O(n) “reversed” version of the DISTAppend described in
Subsection 5.2 is applied to HLISTrow

A
B, yielding HLISTrow

aA
B . HLISTcol

aA
B

can then be computed from HLISTrow
aA
B in O(n) time, by a method which is

symmetric to the one shown in this section. This yields a total of O(n) time and
space complexity for computing HLISTcol

aA
B from HLISTcol

A
B .
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Abstract. Motif discovery is the problem of finding local patterns or
motifs from a set of unlabeled sequences. One common representation
of a motif is a Markov model known as a score matrix. Matrix based
motif discovery has been extensively studied but no positive results have
been known regarding its theoretical hardness. We present the first non-
trivial upper bound on the complexity (worst-case computation time) of
this problem. Other than linear terms, our bound depends only on the
motif width w (which is typically 5-20) and is a dramatic improvement
relative to previously known bounds.
We prove this bound by relating the motif discovery problem to a search
problem over permutations of strings of length w, in which the permu-
tations have a particular property. We give a constructive proof of an
upper bound on the number of such permutations. For an alphabet size
of σ (typically 4) the trivial bound is n! ≈ (n

e
)n, n = σw. Our bound is

roughly n(σlogσ n)n.
We relate this theoretical result to the exact motif discovery program,
TsukubaBB, whose algorithm contains ideas which inspired the result.
We describe a recent improvement to the TsukubaBB program which can
give a speed up of nine or more and use a dataset of REB1 transcription
factor binding sites to illustrate that exact methods can indeed be used
in some practical situations.

1 Introduction

Position-specific score matrices (hereafter just score matrices) are routinely used
in computational biology to characterize DNA and protein sequences. Many al-
gorithms have been proposed for discovering motif score matrices from unlabeled
sets of sequences which are thought to include one or more common motifs [2–
11]. Except for the last three references, all of the above methods are heuristic
algorithms which offer no guarantees regarding the quality of their solutions. One
of the exact methods implemented with the TsukubaBB [8, 9] program can solve
some problems of interest by utilizing bounding techniques which are effective
for short motif widths. In this paper we formalize the effectiveness of focusing
on motif width with a constructive proof which limits the number of solutions
which an exact algorithm might have to examine to O((wσ − w)(σ

w)σw), inde-
pendent of the length and number of input sequences. This is a very large (and
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pessimistic) upper bound, but still a dramatic improvement over the previously
best known upper bound of this sort, which is O(σw !). Approximating σw! with

(σw

e )σw

, the ratio of these two bounds is roughly
(

e(σ−1)w
σw

)σw

.
We relate the proof result to TsukubaBB and report an improvement in

the score based bound calculation used by the TsukubaBB algorithm. We close
by showing that exact programs can process some real problems in a reason-
able amount of time. We demonstrate this by measuring the running time of
TsukubaBB with a dataset of REB1 transcription factor binding sites.

2 Motif Discovery and Consistent Permutations

Motif discovery is the task of finding meaningful motif instances of some motif
(i.e. pattern) from longer unlabeled sequences. When applied to analyzing ge-
nomic sequences, this is typically simplified by fixing the motif width to be some
small integer w.

The task is to find a set of length w substrings from the input sequences that
are similar to each other. The motif is generally modeled as a w state Markov
model M , which defines a probability distribution over strings of length w. M
is a σ × w matrix in which M(i, j) represents the log probability of character i
occurring in position j of a motif instance.

For a user given parameter k (sometimes set to be the number of sequences),
the task is to find k motif instances and a motif model M which assigns a
maximal likelihood to the k instances.

Given a fixed set of k motif instances, it is easy to verify that to obtain the
model M which gives the maximum likelihood, one simply sets M(i, j) equal to
the fraction of instances in which character i occurs at position j. Unfortunately
simultaneously optimizing both M and the set of motif instances is difficult. Note
however that if we could ask an oracle what the motif model M∗ of the optimal
scoring set of motif instances is, we could easily find the actual instances. The
procedure would simply be to sort the length w substrings in the input by their
likelihood assigned to by M∗ and choose the first k substrings on this list. Note
that this does not use all of the information in M∗, just the ordering of length
w strings. Thus all that we need to ask the oracle for is a list P∗ of all possible
length w strings sorted in the order of the likelihood assigned to them by M∗.
Our main result is an upper bound on the number of possible answers the oracle
could give, i.e. the number of possible permutations of length w strings which
could be in sorted order for some motif model.

3 Bound on Number of Consistent Permutations

3.1 Intuition

Suppose that the highest scoring string for a given score matrix M is “aaaa”,
could “acac” be the (unique) second highest string? The answer is no, the score
for “acac” cannot exceed the scores of either “acaa” nor “aaac” because they
both fix one mismatch between “acac” and the consensus “aaaa”. Generalizing,
one can see that the second string in an M consistent permutation can have no
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more than one mismatch to the first string and therefore there are exactly wσ−w
candidates for a second string once the first string is known. This kind of ad hoc
reasoning gives a similar bound of wσ −w − 1 for the number of candidates for
the third string given the first two. Continuing this reasoning in an informal way
soon becomes unwieldy but this gives the basic intuition behind our proof.

3.2 Preliminaries
We consider the set of distinct strings of length w from an alphabet of size
σ. There are σw! permutations of this set. If we add some constraint to the
permutations, that number will generally be reduced. In this paper we consider
permutations that are M consistent, that is in best first score order relative to
some σ × w score matrix M of real numbers. We use the term M consistent
partial permutation to denote the first b, 1 ≤ b ≤ σw strings of some M consistent
permutation. The element M(i, j) of a scoring matrix represents the score of
the ith character from the alphabet in column j. Let t = t1t2 . . . tw denote the
character indices for a length w string t. In this paper we adopt the column
independent additive score. The score S(M, t) of t for score matrix M is:

S(M, t) =
w∑

i=1

M(ti, i)

3.3 Proof Outline
We first give a brief, informal outline of the theorem and proof. We consider the
set of all possible strings of length w from an alphabet of size σ. The main theo-
rem states that if a permutation of those strings is constrained to be consistent
with some score matrix then the number of possible permutations is drastically
reduced. Consider the choice of the b + 1th string given the first b strings of a
permutation. With no constraints the number of candidates for the next string
is σw − b, however we prove that given the constraint that the ordering must
be consistent with some scoring matrix, the number of candidates that need to
be considered is no more than wσ − w. It is important to note at the onset
that distinct strings can have the same score (indeed all strings may have the
same score) for some score matrices and thus an M consistent permutation is
not necessarily unique. With careful handling the possibility of score ties does
not change the results presented here but does complicate the proof language
somewhat. Therefore we present a simplified proof in which some statements
may require further qualification if score ties are present.

3.4 Consistent Permutation Generator
In this section we present a non-deterministic algorithm, CPG, for generating
consistent permutations.

Definition 1 Let cij be the ith distinct character to appear in column j of some
permutation P. We use the term rank for i, i.e. we say the rank, R(P, cij , j),
of cij in column j (with respect to P) is i. We refer to the string c11c12 . . . c1w

as the consensus string of P. (see Table 1.)
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Table 1. Character ranks for partial permutation “aa, ac, ca, cg” are shown.

P= aa R(P, a, 1) = 1 R(P, a, 2) = 1
ac R(P, c, 2) = 2
ca R(P, c, 1) = 2
cg R(P, g, 2) = 3

CPG extends an M consistent partial permutation Pb by adding one string,
where Pb = P1P2 . . . Pb denotes the first b strings in some permutation. The
procedure is repeated in an identical manner for each of the w columns. Without
loss of generality, we describe the procedure when applied to some column d. Note
that the characters from the alphabet can be categorized relative to information
about M implicit in Pb. Let k, 1 ≤ k ≤ σ be the number of distinct characters
appearing in column d of Pb. c1d is the consensus character for column d and has
the highest possible score of any character in column d. From these definitions,
given Pb we know the rank of c1d, c2d, . . . ckd, in column d but not the rank of
c(k+1)dc(k+2)d . . . cσd.

If Pb is empty (base case) CPG returns all possible strings of length w,
otherwise CPG can be broken into two cases:

1. For each character x of unknown rank in column d, CPG adds the string
obtained by replacing cd1 with x in the consensus string P1, or equivalently
the string: c11c12 . . . c1(d−1)xc1(d+1)c1(d+2) . . . c1w, to the set of candidates for
Pb+1. (In the next iteration of CPG x will have rank 2 in column d.)

2. For each character of known rank cid, 2 ≤ i ≤ k CPG considers the series of
strings in Pb with character c(i−1)d in column d, ordered by their position
in Pb. CPG considers the string produced by substituting cid for c(i−1)d in
column d in each string in that series and adds the first one which is not in
Pb (unless they are all in Pb, in which case it adds nothing) to the set of
candidates for Pb+1.

Except for the base case which has σw candidates, at most one candidate for each
non-consensus character in each column is generated by CPG, so the number
of candidates generated at one step is at most wσ −w. (In fact when applied to
partial permutations of size two or more, the number of candidates never exceeds
wσ − w − 1 (proof omitted)).
Theorem 1 Let Pb be a partial permutation generated by CPG, which is con-
sistent with some score matrix M . One of the possible extensions of Pb obtained
by applying CPG to Pb is consistent with M .

Lemma 1 Considering strings of length w. Let q, t, be strings with S(M, q) ≥
S(M, t) and Hamming distance H(q, t) = d > 1. At least one string r exists with
Hamming distance H(q, r) = 1, such that S(M, r) ≥ S(M, t).

Lemma 1. Proof: Let r1, r2, . . . rd denote the set of d strings such that
∀i H(q, ri) = 1, H(ri, t) = d− 1. Omitting the M in S(M, q),

S(q)− S(t) =
1

d− 1

d∑
i=1

(S(ri)− S(t))
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(Note that each term in the sum will have d−1 non-zero terms while S(q)−S(t)
has d non-zero terms). S(q) ≥ S(t), so at least one term in the summation must
be non-negative. %

Lemma 2 Let string q denote the highest scoring string not included in Pb. If
there are more than one with the same score arbitrarily pick one that has the
minimum hamming distance from some string in Pb. q has a hamming distance
of one with at least one string in Pb.

Lemma 2 Proof: The proof (omitted for space) follows easily from Lemma
1. and the assumption that Pb is M consistent. %

Lemma 3 Let s be a string with a character of known rank cij in column j
given Pb. Let s′ be the same as s except for substitution of the character of one
smaller rank, c(i−1)j in column j. S(M, s′) ≥ S(M, s).

Lemma 3 Proof: The proof (sketched here) follows from the assumption
that Pb is an M consistent partial permutation generated by CPG and therefore
c(i−1)j and cij both first appeared in Pb via CPG’s case 1, with c(i−1)j appearing
before cij . %

Theorem 1. Proof: Consider the set of one or more highest scoring strings
not in Pb. Let q be one of those strings and t be the highest scoring string
in Pb such that H(q, t) = 1. Lemma 2. guarantees that such a pair of strings
exists. Without loss of generality assume that the column in which q and t differ
is the first. Denote the candidate string produced by applying CPG to Pb for
character q1 in column 1 as u. (Note that this implies u1 = q1). For purposes
of contradiction, assume that u �= q. If q1 is a character of unknown rank in Pb

then u is the consensus sequence with q1 substituted in column 1. Thus q cannot
have a higher score than u in this case. So q1 must be of known rank. Let x
denote the character of one smaller rank than q1 in column 1. By Lemma 3. we
can assert that the string xt2t3 . . . tw = xq2q3 . . . qw has a better score than q
and therefore, by the assumed consistency of Pb, is included in Pb.

Since xq2q3 . . . qw appears in Pb, and q does not, CPG would only choose u
over q if S(xu2u3 . . . uw) ≥ S(xq2q3 . . . qw). Since q1 = u1 this contradicts our
assumption that S(q) > S(u). and completes the proof. %

3.5 Motif Discovery with CPG

The score matrix M found by (globally) optimizing a column independent score
is a deterministic function of the input sequence and the exact scoring param-
eters, (e.g. motif width w, background model, pseudocounts, number of sites
allowed per sequence, etc.). One can recover the best k scoring length w strings,
i.e. the best k scoring instances by the motif represented by M , by using an M
consistent partial permutation P. Length w strings are simply chosen one by
one according to P until a total of k strings are chosen. (The size of the partial
permutation needed to do this may be more or less than k depending on whether
strings in P appear more than once or not at all in the input sequences.) Note
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Fig. 1. Schematic picture of a näıve and CPG based tree search over permutations of
strings of length 6 and all alphabet size of 4, showing the difference in branch factor.

that the score matrix is not necessary if the partial permutation P is known.
An exhaustive search over possible partial permutations is guaranteed to in-
clude P and thus yields an exact algorithm. For partial permutations of size ≥ 2
CPG can be applied to greatly reduce the size of the search as shown in figure 1.

3.6 How Many Permutations Does CPG Really Generate?

The O(σw − w) bound on the branch factor of CPG is just an upper bound.
We have implemented CPG to investigate the question of how many complete
permutations CPG really generates. For w = 2, σ = 4 the answer is 533,224.
Note that although large, this figure is significantly less than the theoretical
upper bounds based on worst case branch factor. For w ≥ 3 the number of
complete permutations is too large for our program to compute in a reasonable
amount of time. In motif discovery we are only interested in the high scoring
candidates for motif occurrences and therefore only need the information con-
tained in a relatively small partial permutation. Table 2 shows the number of
partial permutations of size five and eight for various motif widths. Note that al-
though empirically generated these numbers also represent a worst case analysis
that is independent of the input sequences or details of the scoring parameters
(other than motif width). Exact algorithms which use extra information can be
expected to do better as discussed below.

Table 2. The number of partial permutations of size 5 and 8 generated by CPG are
shown for various motif widths with an alphabet size of 4.

motif width Perm. size 5 Perm. size 8

3 2.59 × 105 6.36 × 107

4 3.58 × 106 3.39 × 109

5 4.04 × 107 8.55 × 1010

6 3.52 × 108 1.44 × 1012

7 2.69 × 109 1.89 × 1013

8 1.88 × 1010 2.07 × 1014
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4 TsukubaBB

In the form described here CPG is primarily a vehicle for proving the upper
bound on complexity. To be practically useful CPG will need to be combined
with other bounds that are specific to the given input. This section describes a
recent improvement to the TsukubaBB exact algorithm. We close by measuring
the running time of TsukubaBB on two problems, the results of which support
our claim that exact algorithms are not just of theoretical interest.

4.1 How TsukubaBB Relates to CPG

The TsukubaBB algorithm [8, 9] was the first algorithm to focus on the fact that
the motif width is typically much smaller than the size of the input sequences.
It is a branch and bound algorithm which uses a search tree similar to that
discussed here in the context of CPG and also a concept of consistency. It is not,
however, an implementation of CPG, which we have only recently discovered (in
fact it could benefit from a redesign which incorporates the ideas in CPG more
directly.) One important difference is that the nodes in the TsukubaBB search
tree represent only strings of length w which appear in the input sequences
instead of any possible string of length w. The consistency concept is similar but
the implementation is quite different and will not be reviewed here.

4.2 Improvement to TsukubaBB Score Based Bound

TsukubaBB finds an optimal choice of k (a user specified parameter) length w
strings from a set of input sequences. It does this with an exhaustive tree search
but uses a few techniques to prune parts of the search tree where it can be
guaranteed that such pruning cannot prevent the optimal alignment from being
found. One bound TsukubaBB employs is a score based technique which depends
on the input sequences. We briefly review this bound here in order to describe a
recent improvement and further relate TsukubaBB to CPG. Let a sub-partition
Π = Π1Π2 . . . Πh of a partial partition P be a subsequence of P (i.e. a subset
of the strings in the same order as in P). Consider the total score of a multiset
(a set with possible repeats) of (length w) strings A with three components: A1

contains only strings other than Πh from Π, A2 contains one or more instances
of Πh and A3 contains enough instances of any strings not in P (and therefore
not in Π either) for A to have a total of k strings, i.e. |A1| + |A2| + |A3| = k.
Let A′

3 be some multiset of size |A3| consisting of strings found only in A1 ∪A2,
and A′ denote the union of A1, A2, and A′

3. If P is M consistent then for any
choice of A3 and A′

3.

S(M, A′) = S(M, A1) + S(M, A2) + S(M, A′
3)

≥ S(M, A) = S(M, A1) + S(M, A2) + S(M, A3)

The score matrix we are interested in is the score matrix M∗ which maximizes
the score of the optimal alignment. We don’t know the matrix M∗ while we
are searching but we can calculate the score matrix M ′ which maximizes the
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score of a given A′. TsukubaBB utilizes the fact that if P is M∗ consistent the
above equation also holds for M = M ′. This follows from the convexity of the
likelihood score function and is proved in [9]. In TsukubaBB, A is an alignment
and A1∪A2 a partial alignment. Figure 2 illustrates the TsukubaBB score bound
with a small example.

The improvement we report here is conceptually small. It is simply a better
heuristic to quickly find a choice of A′

3 which gives a low upper bound. The
heuristic is to first try setting A′

3 equal to Πh (the string in A2) repeated |A3|
times and evaluate that bound. Then try all possible replacements of one string
from A1 into A′

3. If none yields a better bound quit, do the replacement in A′
3

that yielded the best bound and reiterate. Continue until either 1) a bound
sufficiently high to prune is obtained, 2) the bound ceases to improve or 3) all
occurrences of Πh have been replaced. This heuristic is effective because while
A1 represents a parent node in the TsukubaBB search tree which has survived
pruning attempts, the new string Πh has not been tested and in most cases is not
a good match for the strings in A1. Thus adding all possible occurrences of Πh

tends to give a good starting point for greedy search. The original TsukubaBB
also uses a greedy search but does not take advantage of the difference between
Πh and the strings in A1 (the old heuristic is described in [9]). This simple
improvement can lead to a significant speed up when k, the number of motif
instances TsukubaBB is looking for, is large.

4.3 Example Running Times

A speed up of nine was obtained for a problem instance of finding 80 motif in-
stances from 80 E.coli promoter sequences with a motif width of five. Combined
with hardware speed-up this allowed this problem instance which required 111
hours three years ago [9] to be solved in just 161 minutes on a 2.8GHz Pentium
IV, 533MHz bus, commodity PC (running debian gnu linux). In a more realistic
example we ran TsukubaBB with the new bound on a problem instance with
14 sequences (and their reverse complements) taken from the yeast promoter
database SCPD [15] for REB1 transcription factor binding sites. The sequences
were of length 250 to 900 with a harmonic mean of approximately 467. The
consensus given in SCPD was of length 7 with 20 sites known. Using these pa-
rameters, pseudocounts of one for each base as a prior and the base composition
of the input sequences (with their reverse complements added, so really just g+c
content) as the background model TsukubaBB found the optimal scoring matrix
in 574 minutes on a 2.8GHz Pentium linux machine. We have confirmed that
most of the known sites found in SCPD closely match our results.

5 Discussion and Conclusion

We have presented the first positive theoretical result on the general complexity
of matrix based motif discovery. The result is an efficient algorithm if the motif
width w grows very slowly with the number of sequences n. On the other hand,
Li et al. [12, 13] proved that this problem is NP-hard (and developed a poly-
nomial time approximation scheme for a kind of column independent additive
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Fig. 2. An example of the application of the TsukubaBB score bound is shown. The
partial alignment of the input sequences (OOPS model) produced by TsukubaBB while
descending a particular path in the search tree is shown on top, with lateral arrows
indicating the correspondence between nodes in the search tree and strings chosen for
the alignment. Unlike CPG, the TsukubaBB search tree does not include nodes for
strings not found in the input such as “ac”. The bound shown at bottom is valid for
any choice shown for A′

3.

score). Akutsu et al. [1] show that the usual maximum likelihood score is hard
to approximate (APX-hard) when the motif width is allowed to be as large as
Ω(n25). This is of course an unrealistic situation. As those authors mention, a
refinement of that proof could possibly reduce n25 to a smaller order polynomial
but any reduction of the sort they use, in which each variable in an NP-hard
problem is mapped to a separate column of an alignment, will only lead to hard-
ness results for w = Ω(n) at best. In applications of interest how should w grow
with n? In some sense it should not grow at all – the number of bases a DNA
binding protein interacts with is determined by physics not statistics. In another
sense, since more sequences give more information to estimate model parame-
ters with, perhaps it should grow as a relatively slow function such as log(n). We
pose an open question: what is the complexity of matrix based motif discovery
for w = O(log n)? Note that for DNA, even for w = 20, σw is not an impossible
number for modern computers. Indeed O(σw) time exact methods for consensus,
rather than matrix based motif discovery, are easy to design (many references
can be found in [14]) and are still a popular alternative despite the fact that the
matrix methods have more expressive power.
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Abstract. In this paper we define a new class of problems that gener-
alizes that of finding repeated motifs. The novelty lies in the addition of
constraints on the motifs in terms of relations that must hold between
pairs of elements of the motifs. For this class of problems we give an
algorithm that is a suitable extension of the KMR [3] paradigm and,
in particular, of the KMRC [7] as it uses a degenerate alphabet. The
algorithm contains several improvements with respect to [7] that result
especially useful when – as it is required for relational motifs – the in-
ference is made by partially overlapping shorter motifs. The efficiency,
correctness and completeness of the algorithm is assured by several non-
trivial properties. Finally, we list some possible applications and we focus
on one of them: the study of 3D structures of proteins.

1 Introduction

In this paper we define a new class of problems that extends the traditional
inference of repeated motifs. This latter is a well-known problem that consists
of finding frequent patterns in a given input text. This problem has applications
in several data mining tasks, where data can be represented by a text. For many
such applications it is indispensable that a certain degree of approximation is
allowed among different occurrences of the same motif. For a survey on com-
binatorial algorithms for finding approximate repeated motifs, see for example
Chapter 5 of [4] or Chapter 4 of [2]. When approximate motifs are sought, the
problem becomes computationally difficult in the worst case as there can be an
exponential number of motifs satisfying the required frequency and properties.
This can even lead to unfeasibility and, in “better” cases, to a very noisy output.
For this reason there have been attempts in the literature to refine the query
in the direction of specifying the structure of the motifs [5] or of defining slim
generators for the motifs [6]. In this paper we introduce a new type of refine-
ment which consists of requiring that also relations between pairs of positions in
the motifs are conserved. This apparently complicates the problem, but we will
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exhibit an algorithm that uses a very efficient representation of the motifs and
which – thanks to some non-trivial properties – results in a relatively efficient
inference. Indeed, refining the query on the motifs reduces the output size and
thus also the explosion of candidates that often makes the problem unfeasible.
Moreover, relations allow one to constraint the motifs so that more specific prop-
erties are satisfied and thus a more sensitive tool can be conceived. The inference
of motifs with relations can find application in many tasks. We will focus our
attention on yet another application in molecular biology using as relations the
distances between the α-Carbons of protein 3D structures.

In this paper we will use two input-defined degenerate alphabets for the
description of the motifs (one for the motif elements and one for the relations)
thus allowing the maximum freedom of approximation. Given that we refer to
the paradigm of the KMR algorithm [3], we will have to adapt to the degenerate
alphabet as in KMRC [7]. In particular, we will restrict our attention to maximal
motifs for a notion of maximality that we will define. The choice of dealing with
relational motifs motivates the fact that motifs will be inferred by means of an
incremental construction by partially overlapping two suitably selected shorter
motifs. By doing so we substantially differ from [3] in the same direction as [1]
where relations in motifs had been introduced for the first time. In [1], however,
several properties were unnoticed and thus unbearable drawbacks introduced.
In this paper we will prove some properties that will allow to improve the time
and space complexity of [1] by avoiding to generate at each step an exponential
number of candidates that we will prove to be redundant.

2 The Problem

Our goal is to find approximate motifs on a input text that is a sequence over an
alphabet Σ. In this section we formalize the way we express the approximation,
and the motifs we want to infer according to this. Let the input text be a sequence
t over the alphabet Σ. We assume that it has length n and we denote this by
|t| = n. The letter at position p in t is denoted by t[p], and therefore we have
that t = t[1]t[2] · · · t[n] where t[i] ∈ Σ for all 1 ≤ i ≤ n.

Definition 1. Given the alphabet Σ, a cover on Σ is a set G={G1, G2, ..., G|G|}
with Gi ⊆ Σ for 1 ≤ i ≤ |G|, such that ∪iGi = Σ and there are no 1 ≤ i, j ≤ |G|
with i �= j such that Gi ⊆ Gj. The sets Gi’s are said groups.

The alphabet Σ of the input sequence is implicitly given by means of the
sequence itself, while that of the motifs is explicitly given by a cover on Σ
defined as above and the alphabet used is that of the groups of such cover.

Definition 2. A k-pattern is a k-long sequence on the alphabet of the groups. A
k-pattern x = x[1]x[2] · · ·x[k] with x[i]∈G for all 1≤ i≤n occurs in t at position
p if t[i + p− 1]∈x[i] for all 1≤ i≤k. In this case p is said to be an occurrence
of x. We will denote with extent the complete set of occurrences of a pattern.
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Notice that different patterns may occur at the same position and that, even
more, two different patterns may have the very same extent (this is the case
when the motifs differ in positions that in the occurrences correspond to letters
that belong to the intersections of distinct groups).

Definition 3. Let k, q be integers and t a sequence on Σ. A k-motif of t is a
k-pattern that occurs in t at least q times. The number q is named quorum.

When unnecessary or clear from the context, we will omit the k and simply
talk about pattern and motif.

Definition 4. A k-motif I of t is said to be maximal if its extent LI is not a
proper subset of LJ for any other k-motif J . It is non maximal otherwise.

Example 1. Let us consider the input sequence t̃ = xbxcxaxbxc on Σ ={a, b, c, x}
and the cover G= {C1 = {a, b}, C2 = {b, c}, C3 = {x}}. Assuming q = 2, we have
that C3C3C3, C1C3C1 and C1C3C2 are all 3-patterns. Nevertheless, the first
never occurs in t̃, the second occurs only at position 6 and thus is not a motif
either, while the third occurs in 2, 6 and 8 and hence it is a 3-motif. Moreover,
the 3-motif C2C3C2 with extent {2, 8} is not maximal in t̃ because C1C3C2 has
extent {2, 6, 8}; this latter is maximal as well as C3C1C3 with extent {1, 5, 7}.

We will say that a k-motif I is a duplication if LI = LJ for any other k-motif
J with J �= I. Notice that if I is a duplication of J , then J is a duplication of I,
as the relation is symmetrical (and transitive). If a k-motif is maximal and it is
a duplication, we will say that it is a maximal duplication.

The problem we address is to find all maximal k-motifs eliminating their
duplications. As stated so far, the problem has been solved in [7] by extending
the method of [3] to the case of maximal motifs which are approximate in that
they are expressed using the alphabet of the groups. Basically, in [7], like in [3],
maximal k-motifs are obtained in O(log k) steps where at each step the length
of the motifs is doubled by means of concatenation of shorter motifs, with the
difference that in [7] only maximal motifs are kept and hence, in particular,
each step is concluded with an exhaustive search of extents included into others
in order to eliminate them. The set inclusions detection results to be a sensible
bottleneck of the algorithm. In other words, each step of [7] is different from that
of [3] as it deals with approximate and maximal motifs, but the two algorithms
share the fact that an �-long motif is obtained by a concatenation of two (�/2)-
long motifs that occur in the input sequences at distance �/2 and in the same
relative order. Only if the length k of the sought motifs is not a power of two,
there is a final step in [7] where the motif of length k are generated by overlapping
two motifs of length k′ such that k′ <k < 2k′ and k′ is a power of two. We call
such a generation an overlap step, and the previous ones concatenation steps. If
the size of an overlap (that is, the length of the string fragment that the two
words share) is o, then we will talk about o-overlap.

The goal of this paper is to further extend the method of [7] to the case in
which O(k) steps are overlap steps. In particular, we are interested in overlaps
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of size Θ(�) length where � is the length of the motifs involved. The need of this
apparently useless drawback is motivated by the fact that we introduce relations.
Indeed, it can be shown that in this case the overall time complexity is smaller
when overlap steps are performed.

3 Properties of (Maximal) k-Motifs

In this section we prove some properties of maximal motifs that will result useful
in the next sections in order to set an upper bound on the cardinality of candidate
motifs we will have to deal with. Let us start by observing that, since several
different patterns may share an occurrence, we have that in general there is not
an unique motif that can be associated to a list of occurrences. Nevertheless, in
what follows, we will often implicitly represent a motif using its extent. These
actually represent a set of motifs. Formally, for the input sequence t, a cover G,
and a length k, the extent L represents the following set of patterns of length k
(k-motifs if |L| ≥ q where q is the quorum):

{x = x[1] . . . x[k] | x[i] ∈ G such that t[p+ i−1] ∈ x[i] ∀ 1 ≤ i ≤ k and ∀ p ∈ L}.

Example 2. In our running example t̃ = xbxcxaxbxc with G={C1 = {a, b}, C2 =
{b, c}, C3 = {x}} we have that for k = 3 the extent {2, 8} (the substring bxc
occurs at both positions) represents both C1C3C2 and C2C3C2.

Definition 5. Given a cover G = {G1, G2, ..., G|G|} on Σ, the degeneracy g of
G is the maximum number of distinct groups to which a same σ ∈ Σ belongs to.

In other words, g measures indeed how degenerate is the alphabet of the
motifs. For exact motifs we have G = Σ and g = 1, but when an approximation
is sought, we have in general g > 1 which is somehow a measure of the degree of
such approximation. In theory, g can be as big as |G|, but in practical cases it
will not. Given that we deal with a degenerate alphabet like [7], it can be useful
to view the upper bound on the number of k-motifs also in terms of g. In [7] it
is proved the following1.

Proposition 1. In an input sequence in Σn, given a cover G of Σ having de-
generacy g, for a fixed k the number of distinct k-motifs occurring in the sequence
is bounded by min(|G|k, ngk).

We now show that, even when dealing with extents only and with fixed length,
in general one can generate quite more candidates than just the |G|k different
k-motifs. We will show why, and also that our algorithm avoids this drawback.
Let us start again with a simple example.

Example 3. Let us consider again the running example t̃ = xbxcxaxbxc, q = 2,
and G = {C1, C2, C3} with C1 ={a, b}, C2 ={b, c} and C3 ={x}. Let us consider

1 In [7] the result is stated for maximal motifs. However the very same proof works
for motifs in general.
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the extent {1, 7} and length k = 3, corresponding to the substring xbx. This
latter is repeated 2 times as requested by the quorum and it corresponds to
C3(C1 ∩ C2)C3, which does not match our definition of pattern. Notice that its
extent is different from that of C3C1C3 (that is {1, 5, 7}) and C3C2C3 (that is
{1, 3, 7}) that are both maximal 3-motifs. On the other hand, (C1 ∩ C2)C3C2,
which also occurs twice (at 2 and at 8) and it is not a k-pattern, has the same
occurrences as C2C3C2.

Definition 6. A pseudopattern is a k-long sequence on the alphabet of the sub-
sets of the groups whose extent is not the extent of a k-pattern. We name it
a k-pseudomotif if it occurs at least q times and we name pseudo extent its
complete list of occurrences.

In Example 3 for k = 3 we have that {1, 7} is a pseudo extent for the
pseudomotif C3(C1 ∩C2)C3 while (C1 ∩C2)C3C2 is not a pseudomotif and thus
{2, 8} is not a pseudo extent because {2, 8} is also the extent of the motif C2C3C2.
Our concern on pseudomotifs is motivated by the fact that, given a cover G,
there are O(2|G|k) distinct pseudomotifs of length k because there are as many
pseudopatterns as the number of distinct k-long strings on the alphabet of the
subsets of G, which are not k-patterns, that is 2|G|k − |G|k. Notice, however,
that a pseudo extent can never be an extent of a maximal motif because it is
always included into the extent of a k-motif. Namely, if the pseudomotif is, say,
x = C1 · · · (Ci ∩ Cj) · · ·Ck with extent L, then by definition the k-motif m =
C1 · · ·Ci · · ·Ck has an extent which is different from L and it must necessarily
include it because m occurs wherever x does. Since we infer motifs of growing
length, it is useful to know that at each step we only need to store maximal
motifs because these are enough to produce longer ones.

Lemma 1. For each maximal k-motif, its �-long prefix and its �-long suffix (∀
0 < � < k) are maximal �-motifs.

The result of Lemma 1 actually holds for any substring and not just for
prefixes and suffixes as the proof does not depend at all from the fact that the
substring is a prefix or a suffix. Given an extent L and an integer d, we denote
with L + d the set {x + d | ∀x ∈ L}. Lemma 1 has the following consequence.

Theorem 1. The extents of all maximal k-motifs can be computed from the
extents of maximal �-motifs for a fixed � such that k/2 ≤ � < k.

As a consequence, the set of all maximal motifs of a fixed length � is sufficient
to generate any (hence possibly all of them) maximal motif of length � + d
provided � > d. Therefore, we have that in our incremental construction of
motifs we only need to have maximal motifs of intermediate length. On the
other hand, we show now with an example that the overlap of two maximal
motifs can generate a pseudomotif.

Example 4. In our running example L1 = {2, 6, 8}, L2 = {2, 4, 8}, L3 = {1, 5, 7},
and L4 = {1, 3, 7, 9} are the extents of the maximal 2-motif (respectively) m1 =
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C1C3, m2 = C2C3, m3 = C3C1, and m4 = C3C2. If we perform a 1-overlap of m3

and m2, we obtain the extent {1, 7} corresponding exactly to the pseudomotif
exhibited in Example 3. The same happens overlapping m4 and m1.

Hence, not only generating pseudo-motifs would be useless, but they would
even introduce a serious drawback on the performance of the method. Indeed,
given how many the pseudomotifs can be, generating them all could cause a
memory problem and, moreover, postponing their detection to the exhaustive
search of included extents would result very inefficient in terms of time complex-
ity. We will see in Section 4 a necessary condition on motifs that will allow us
to avoid to generate pseudomotifs.

4 The Algorithm

Depending from how close symbols for which we need to check relations have to
be in our relational motifs, the parameter d will be input defined. After this, the
first O(log d) steps are concatenation steps exactly like in [7]. After these, we
have obtained the set of all maximal �0-motifs where �0 is the smallest power of
two greater than d. Then O(k/d) steps follow, where at step i (i ≥ 0) we have
the extents of all maximal �i-motifs with �i = �0+id, with which we: (i) Perform
all possible pairwise (�i − d)-overlaps of two �i-motifs and compute the extent
of the resulting �i+1-motifs, storing from which pair of �i-motifs they have been
obtained. (ii) Keep only those whose extents have size at least q. (iii) Eliminate
non-maximal and duplicated extents. After these three steps we are left with all
maximal and non duplicated �i+1-motifs. This is iterated as long as �i < k. After
that, if �i = k then we have completed the task, and otherwise we perform a
final (2�i−k)-overlap. We now decribe how we intend to minimize the amount of
extents generated at step (i) and thus also to speed up the filtering of step (ii),
and especially of step (iii) which otherwise would be an unbearable bottleneck.
The idea is that for each ordered pair I and J of maximal �i-motifs the extent of
the �i+1 motif obtained by overlapping I and J is computed, and the fact that
I is its prefix and J its suffix is stored. Later on, whenever a motif X ′ has to be
eliminated because its extent is included into that of X , X ′ is eliminated and X
adds the prefix(es) and suffix(es) of X ′ to its. If this is the case, we say that X
inherits X ′. This storage of data about which maximal prefixes and suffixes a
motif comes from, and their inheritance for eliminated motifs is motivated by the
fact that actually the generation of a new motif will be conditioned by whether
or not a simple property concerning this data holds. This will actually allow us
to be guaranteed not to generate any pseudomotif, as we will see in next section.

At step i an �i-motif I is described by the following data: the identifier #I,
the extent LI , and a pair (PI , SI) of lists indicating the set PI of prefixes in
terms of identifiers used in step i−1 (omitting the #), and the set SI of suffixes
in terms of identifiers used in step i−1. For an efficient computation and for ease
of notation, we will also make use, at step i, of a vector Vi of length n such that
Vi[p] = {#I | p ∈ LI at step i}. The algorithm is the following.
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// Initial Phase //
1. Create an identifier for each Gi ∈ G occurring in t and compute its extent;
2. Compute V1;
3. 
0 := 1;
4. while 
0 ≤ d do begin
5. for each maximal 
0-motif I do for each x ∈ LI do
6. for each #J ∈ V1[x + 
0] do
7. LIJ := LIJ ∪ x;
8. Eliminate nonmaximal and duplications;
9. 
0 := 2
0; end

// Overlap Phase //
i := 0;

10. repeat
begin

11. Compute Vi;
12. for each maximal 
i-motif I do for each x ∈ LI do
13. for each #J ∈ Vi[x + d] do
14. if SI ∩ PJ �= ∅ then begin LIJ := LIJ ∪ x; PIJ := I ; SIJ := J end;
15. Detect and discard extents below quorum, nonmaximal and duplications;
16. for each eliminated nonmaximal or duplicated I ′ do

begin
17. choose one I such that LI′ ⊆ LI with I maximal;
18. PI := PI ∪ PI′ ; SI := SI ∪ SI′

end;
19. i := i + 1; 
i := 
i + d

end
20. until 
i > k − d;

// Final Step //
21. if 
i < k then same as lines 11 − 15 with d = k − 
i;

Notice that the pseudo-code could be written in a much more compact way
grouping the three phases into a unique cycle parametrizing the size of the
overlap. We chose to display it as it is for ease of exposition. We denote with
LIJ the set LI ∩ (LJ − d) which is the extent which is possibly generated at
lines 12-14 by overlapping the two maximal motifs I and J (in fact, lines 12-14
are executed for each x ∈ (LI ∩ (LJ − d))). Althought not explicitely processed
(due to complexity reasons), it is clear that a motif IJ obtained by an (�− d)-
overlap of I and J inherits their composition in the following way. If I (resp.
J) was a duplication, it actually represents several motifs; let G1 . . .Gd . . . G�

(resp. G′
1 . . .G′

�−d . . . G′
�) be any representation of I (resp. J). We also denote

this with I[i] = Gi (resp. J [i] = G′
i). Then we have that IJ = G1 . . .Gd(Gd+1 ∩

G′
1) . . . (G� ∩ G′

�−d)G
′
�−d+1 . . . G′

�). Therefore, IJ will be a motif only if for all
such representations of I and J we will have that for all 1 ≤ d ≤ � − d the
intersection (Gd+i ∩ G′

i) restricted to the set LIJ + d + i is equal to Gd+i or to
G′

i. In other words, definitely IJ [i] ∈ G for 1 ≤ i ≤ d and (� + 1) ≤ i ≤ (� + d),
but for all positions where the occurrences of I and J overlap, whether IJ is
a motif is in general an open question whose answer is relevant in terms of
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complexity issues and it is addressed in the next section. The following three
results guarantee correctness and completeness of the algorithm.

Theorem 2. Let q be the quorum and let I and J be maximal �-motifs such that
|LIJ | = |LI ∩ (LJ − d)| ≥ q and SI ∩ PJ = ∅. Then we have that LIJ is either a
pseudo extent or a duplication.

Theorem 3. Let LM1 , LM2 , LM ′ be three extents of �-motifs generated at step
i > 2 such that LM ′ ⊆ LM1 and LM ′ ⊆ LM2 and both M1 and M2 are maximal.
If (wlog) M1 inherits M ′ and M2 does not, then completeness is preserved.

Corollary 1. At all steps i > 2, let p + 1 extents LM1 , LM2 , ..., LMp and LM ′

of �-motifs be generated such that LM ′ ⊆ LMi for i = 1, 2, ..., p. If only one of
the p motifs inherits M ′, then the resulting set of maximal (� + d)-motifs is the
same as if all of them (or a part of them) inherit M ′. •

No pseudomotifs are generated at lines 12-14 due to the following result.

Theorem 4. Let IJ be a (� + d)-long pseudomotif that could be obtained by
overlapping two maximal �-motifs I and J . Then we have that SI ∩ PJ = ∅.

Hence, at each step it is enough to store the extents of all generated motifs,
and later on only those of all maximal motifs with their list of prefixes and suffixes
(which are at worst as many, given that each eliminated motif leaves a constant
size prefix and suffix information). Therefore, the space complexity is the size of
the former for which Proposition 1 gave us an upper bound of O(n · gk). Time
complexity in the worst case coincides with the cost of the overlapping phase.
The repeat starting at line 10 is done O(k/d) = O(k) times and its dominant
parts are the nested for cycles of lines 12 − 14 and the inclusions detection
of line 15. The former take O(n · gk) because this is the maximum number of
motifs it generates, and the latter takes O(n · g2k) assuming it is made like in
[7]. Therefore, overall the time complexity is in O(k(ngk + ng2k)) = O(kng2k).
Notice that it is at worst linear in the input size.

5 Relational Motifs

In this section we define at last the problem of inferring relational motifs that is
what motivates the use of overlap steps rather than concatenations. The novelty
starts with the fact that the input sequence is enriched with relations that hold
between pair of distinct positions. For the relations we also have an alphabet and
a cover on it that will allow a degree of approximation in terms of the relations as
well. The problem introduced in Section 2 will be enriched and as a consequence
its solution quite straightforwardly extended. This section will formalize this
starting with some basic definitions that integrate those already given earlier in
this paper. In particular we still assume there is an input string t ∈ Σn whose
pth position is denoted by t[p] and a cover G on Σ. On this string we seek k-
motifs which – so far – are strings x ∈ Gk represented by their complete extents
Lx ⊆ {1, . . . , n− k + 1}.
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Definition 7. Let R = {r1, . . . , r|R|} be the relations alphabet and r ∈ R a
relation. Let GR = {CR1, . . . , CR|GR|} with CRi ⊆ R for 1 ≤ i ≤ |GR| be a
relations cover on R where the CRi’s are denoted as relations groups and none
of them is included into another.

Similarly to the case of the cover on the alphabet Σ, a relations degeneracy
gR notion exists on GR. The input sequence is no longer just t ∈ Σn, but also
a set of relations R = {r1, . . . , r|R|} is given as well as for each pair (p1, p2) of
positions in t, with p2 > p1, the unique relation r ∈ R such that r holds between
p1 and p2. We will also denote this with r(p1, p2) and with (p1, p2) ∈ r. Note
that when considering k-long relational motifs, we only need to verify relations
between positions p1 and p2 for p2 < p1 + k. The notion of pattern is enriched
and therefore that of motifs and occurrence as well. Formally:

Definition 8. A relational k-pattern is a k-pattern plus a relation group per
each pair of its distinct positions. A relational k-pattern x with relations groups
CR1, . . . , CR|GR| (where for each CRi ∈ GR it is indicated the set of pairs (u, v)
such that (u, v) ∈ r ∈ CRi for some 1 ≤ i ≤ |GR|) is said to occur in t at
position p if the pattern x occurs at position p of t and for all pairs (u, v) ∈ CRi

we have that r(p+u, p+v) for r ∈ CRi. Finally, given the quorum q, a relational
k-motif is a relational k-pattern that occurs at least q times.

We will still denote with extent the complete set of occurrences of a relational
pattern and, moreover, a relational k-motif IR is said to be maximal if its extent
LI is not a proper subset of LJ for any other relational k-motif JR. Given that
there is one (and only one) relation per each pair of positions of the pattern,
an extent, together with the length k, denotes again a relational motif that
would be unique if it weren’t for the degenerate alphabet that holds for relations
too. Finally, the notion of prefix and suffix of a relational pattern/motif is also
straightforwardly extended as it will implicitly still represent relations.

Example 5. Let us consider as input sequence our running example of t̃ =
xbxcxaxbxc with in addition the alphabet of relations R = {r1, r2, r3} with
its cover GR = {CR1 = {r1, r2}, CR2 = {r2, r3}} having degeneracy gR = 2 and
such that ({(i, i + 1) | 1 ≤ i ≤ k − 1} ∪ {(1, 4), (2, 5), (3, 6), (2, 6), (4, 8)}) ∈ r1,
{(1, 3), (3, 5), (5, 7), (7, 9), (4, 7), (7, 10), (1, 5), (3, 7), (5, 9), (6, 10)} ∈ r2, and all
other pairs 1 ≤ i, j ≤ k are in relation r3. We have that all 2-motifs are re-
lational 2-motifs because the relations between consecutive positions is always
the same and thus definitely conserved. On the other hand, the 4-motif with
extent {2, 6} is not a relational motif because in its two occurrences the rela-
tions between the first and last positions are different and in different groups
(because (2, 5) ∈ r1 ∈ (CR1 \ CR2) and (6, 9) ∈ r3 ∈ (CR2 \ CR1)). Moreover,
the maximal 4-motif with extent {1, 5, 7} has two occurrences, 1 and 7, where
the relation between the first and last positions is in CR1 (respectively there are
(1, 4) ∈ r1 and (7, 10) ∈ r2), and again two occurrences, namely 5 and 7, where
such relation is in CR2 because (5, 8) ∈ r3 and again (7, 10) ∈ r2. Hence, this
4-motif corresponds to two distinct relational 4-motifs.
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The possibility to extend the algorithm of Section 4 to the case of relational
motifs is based on the following result that is straightforward to verify.

Theorem 5. A k-pattern is a relational k-motif if, for any 1 ≤ d < k/2:

(i) Its (k − d)-long prefix I is a relational motif.
(ii) Its (k − d)-long suffix J is a relational motif.

(iii) Its relations between all d2 pairs of positions (l, r) with 1 ≤ l ≤ d and
(k − d + 1) ≤ r ≤ k are conserved in at least q of its occurrences.

(iv) SI ∩ PJ �= ∅.

Moreover, the proofs of Lemma 1 and Theorem 1 can easily be extended to
prove the following.

Theorem 6. The extents of all maximal relational k-motifs can be computed
from the extents of maximal relational �-motifs for k/2 ≤ � < k.

We now show how the algorithm of Section 4 can be extended to take into
account also relations and how its correctness and completeness is preserved. We
name this new algorithm KMRoverlapR. The first new feature is that the extent
of a motif now represents not just a repeated pattern, but rather a repeated
relational pattern. The overlap of two relational submotifs of length � that occur
at distance d at least q times and in the same relative order necessarily results
into a (�+d)-motif (as before) that also has conserved all relations between pairs
of position that are at distance at most � and that come from the same submotif.
The only new relations that need to be checked are those between the positions
that are the at the two d-long non overlapped ends of the new motif for a total of
O(d2) checks to be done as shown in Theorem 5. Hence, at each step i, whenever
the vector Vi is checked (at lines 6 and 13 that is, when the occurrences of two
�i-patterns are detected at distance d so that their overlap is a (�i + d)-pattern),
these O(d2) comparisons are also made. In order to do so, we use a vector Wi

that stores (e.g. for d = 1) in Wi[j] the relation groups CR’s whose relations
hold between position j and position j + �i − 1 of the input sequence. This is
the only kind of relations to be checked at step i (for any d > 1, each position
of W contains d values). There are two possible results of these O(d2) checks for
the relations. In a first case we can have that in at least q occurrences of the
motif the relations are conserved as well, and then a new extent is created per
each distinct conserved relation group (this is the case of the 4-motif with extent
{1, 5, 7} in Example 5). In a second case, no relation is conserved at least q times
and the motif is discarded (like the 4-motif with extent {2, 6} in Example 5).

For all other features of the algorithm, everything can be left unchanged.
In particular, all properties concerning pseudomotifs, maximality, and the in-
heritance of prefixes and suffixes hold in the very same way when an extent
represents a relational motif rather than a “normal” one. Indeed, also the re-
lations are implicitly stored with the extents, which in KMRoverlapR have the
invariant to represent motifs (and not pseudomotifs) that are repeated and with
conserved relations. The complexity of KMRoverlapR changes with respect to
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Fig. 1. A sequence of 3D points: subsequences are shown as sets of internal distances.

that of Section 4 because now also the degeneracy gR of the relations has to be
taken into account. Similarly to what proved in Proposition 1, we can say that
there are at most n(gk + gk2

R ) relational motifs (counting both degeneracies and
including the extents). Again, this is the only theoretical upper bound we can
give, but it is far from being tight in practical cases. Then, assuming that d is
a constant and thus the cost of the O(d2) relations tests is negligible, the time
complexity of KMRoverlapR can be computed as in Section 4 and therefore it
is in O(kn(gk + gk2

R )2). Notice that in KMRoverlapR the input size is no longer
n but rather n · k because only relations between position at distance at most k
are indicated, and hence the complexity is again linear in the input size.

6 Applications to 3D Protein Structures

A promising area of application of KMRoverlapR is the inference of repeated
structures in Rd space. The relation between two points xp and xq can be dis-
cretized by the euclidian distance d(xq , xp). We find then geometrical motifs in
a multidimensional space, i.e. motifs whose occurrences are insensitive to trans-
lations and rotations. When considering only the α-Carbons in the 3D struc-
ture of the protein we obtain a sequence of points in the 3D space representing
the α-Carbons backbone of the protein. Figure 1 describes the subsequences
p1-p2-p3-p4 and p6-p7-p8-p9 in a 9-long sequence t. We consider a set of re-
lational groups {Rj = {j, ..., j + δ}} where δ represents a tolerance level: two
discretized distances d(xp, xq) and d(xp′ , xq′ ) belong to the same group whenever
|d(xp, xq)− d(xp′ , xq′)| ≤ δ. Note that as a consequence we have gR = δ + 1. In
the example of Figure 1, we consider δ = 1 and so gR = 2 and find occurrences
of a 4-long relational pattern at positions 1 and 6 in t. Hereunder we give an
example of the results obtained when searching a structural pattern repeated in
the backbone of several proteins. Note that here we have to slightly adapt the
algorithm in order to find patterns that occur at least q times in set of m protein
structures. Here m = q = 5. The distances between α-Carbon are discretized us-
ing 0.5Å-long intervals, with a tolerance level δ = 2 and so gR = 3. Here k-motifs
are obtained from (k− 1)-long motifs. The average length of the sequences con-
sidered is about 200. There are 10 relational groups (amongst 40) representing
distances appearing in the sequences. We give for some overlap steps the number
of generated k-motifs, avoided pseudomotifs and resulting maximal k-motifs:
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k−1→ k generated motifs avoided pseudomotifs maximal motifs
3→ 4 624 0 109
4→ 5 33551 38567 1110
5→ 6 448552 1778569 936
6→ 7 356070 1739419 167
7→ 8 7519 9263 27
8→ 9 1093 2189 21

It is clear that the amount of pseudo-motifs is considerable and thus that the
results of this paper are relevant for finding relational motifs by means of overlap
steps. Moreover, these results also show that the number of maximal motifs is
sensibly smaller than that of generated motifs. This motivates the validity of our
choice to focus our attention on maximal motifs. Indeed, althought in theory the
upper bound on the number of maximal motifs in the worst case is the same as
motifs (that is, they can all be maximal), in practice the difference is sensible.
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Abstract. Grammars have been shown to be a very useful way to model
biological sequences families. As both the quantity of biological sequences
and the complexity of the biological grammars increase, generic and
efficient methods for parsing are needed. We consider two parsers for
context-free grammars: depth-first top-down parser and chart parser; we
analyse and compare them, both theoretically and empirically, with re-
spect to biological data. The theoretical comparison is based on a com-
mon feature of biological grammars: the gap – a gap is an element of
the grammars designed to match any subsequence of the parsed string.
The empirical comparison is based on grammars and sequences used by
the bioinformatics community. Our conclusions are that: (1) the chart
parsing algorithm is significantly faster than the depth-first top-down
algorithm, (2) designing special treatments in the algorithms for manag-
ing gaps is useful, and (3) the way the grammar encodes gaps has to be
carefully chosen, when using parsers not optimised for managing gaps,
to prevent important increases in running times.

1 Introduction

Among models used to represent sets of strings, formal grammars introduced
by Chomsky [1] have been the subject of many studies. Searls [2] made the link
between this formalism and structural phenomena found in biological sequences,
showing the capabilities and limits of this formalism to represent biological se-
quences families. Numerous types of grammar formats are used for biological
sequences analysis. Sub-regular patterns are used in Prosite [3]; more complex
patterns have been designed using Definite Clause Grammars (DCG) [4], String
Variable Grammars (SVG) [5], Patscan patterns [6] or Basic Gene Grammars
(BGG) [7]. For all but Patscan patterns, parsing is realised through algo-
rithms available in the field of context-free grammar parsing: DCG and SVG
with depth-first top-down parsing, and BGG with chart parsing. In this article,
we focus on context-free grammars (CFG) parsers because they are generic1,
� Contact author.
1 CFGs can represent a wide range of grammatical constructs, and special treatments

can be easily added to the parsers to take into account constructs beyond context-
free.
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and are well studied2. However, to the best of our knowledge, they have never
been analysed and compared when executed on biological data. Such a compar-
ison has become important because there is a growing need for efficient parsers
for biological grammars: the quantity of biological sequences is increasing daily
and biological grammars are becomming more complex.

Our preliminary experiments made it clear to us that the respective perfor-
mances of the considered parsers on biological data are closely related to a very
common feature of biological grammars: the notion of gap. A gap is a rule de-
signed to match any subsequence of the parsed string. This article compares the
algorithms both theoretically (for grammars containing gaps) and empirically on
biological strings and grammars. Our conclusions are: (1) the chart parser (cp)
possesses a significant advantage in terms of running time over depth-first top-
down parser (dftdp), (2) designing special treatments for gaps in these parsers
is useful, and (3), when using parsers not optimised for gaps, the gap rule design
has to be carefully chosen to prevent important increases in running times.

After presenting the definitions (Section 2), we analyse the complexity of
the dftdp and the cp with respect to gaps (Sections 3 and 4). This analysis is
then empirically validated on biological data (Section 5). The appendix contains
the proofs (or sometimes hint of the proofs due to space restrictions) for the
properties of the paper.

2 Definitions

Words, languages and grammars: For any finite set S, we denote by |S|
its cardinality and by S∗ its free monoid, i.e., the set of all sequences made by
concatenating 0 or more symbols of S. An element of S∗ is called a word over S.
The length of a word w is denoted by |w|, the word of length 0 or empty word is
denoted by ε. Any set of words over S (i.e., any subset of S∗) is called a language
over S. Languages can be represented by formal systems called grammars. The
grammars we consider in this paper are Context-Free.

Definition 1. A Context-Free Grammar (CFG) is a tuple G = 〈T ,N , S,R〉
where T and N are finite sets of symbols called respectively terminals and non-
terminals. T and N are disjoint and their union is denoted by V = T ∪ N . S
is a nonterminal called the start symbol and R is the set of production rules;
each rule in R is of the form A � α where A ∈ N is called the left part of the
rule, and α ∈ V∗. �
A CFG represents a language over T using the relation → defined by:

∀u, v ∈ V∗ : u→ v ⇔ ∃ (A � α) ∈ R, ∃u1, u2 ∈ V∗, u = u1Au2, v = u1αu2.

We denote by →∗ the transitive closure of→; if u→∗ v, v is said to derive from
u. The language L(N) generated by a nonterminal N is the set of words over T
derived from N , i.e., L(N) � {u ∈ T ∗ : N →∗ u}. The language represented by
a grammar G = 〈T ,N , S,R〉 is L(G) � L(S).
2 Among others, in the field of natural language processing.
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Gaps rules: An unlimited gap is a nonterminal G such that L(G) = T ∗. For
fixed values lo, up ∈ N, a limited gap is a nonterminal G such that L(G) = {u ∈
T ∗ : lo ≤ |u| ≤ up}. Numbers lo and up are respectively the lower and upper
bounds of the limited gap, the value ra = up− lo is its range.

Gaps can be implemented using different sets of grammar rules. To define
these rules we use the following notation: N i denotes nonterminal N repeated
i times (e.g., N2 = NN , and N0 = ε) and X is a nonterminal with rules
{X � t : t ∈ T }. We study the following unlimited gap implementations: the
left-recursive gap Gl with rules {Gl � ε, Gl � Gl X}, and the right-recursive
gap Gr with rules {Gr � ε, Gr � X Gr}. We study the following limited gap
implementations, with bounds lo and up fixed, and range ra = up− lo: the linear
gap G1,lo,up, with rules {G1,lo,up � X lo G′

1,ra, G′
1,ra � Xra

e , Xe � X, Xe � ε},
and the quadratic gap G2,lo,up, with rules {G2,lo,up � X lo G′

2,ra} ∪ {G′
2,ra �

X i : i ∈ [0, ra]}. The linear and quadratic gaps are so called because they
respectively need, to represent the gap, a linear or a quadratic number of sym-
bols in function of ra. It can be checked that these implementations respect the
gap definitions, i.e.: L(Gl) = L(Gr) = T ∗ and L(G1,lo,up) = L(G2,lo,up) = {u ∈
T ∗ : lo ≤ |u| ≤ up}. We denote by Gaps the set of nonterminals we use to imple-
ment gaps, i.e., Gaps � {Gl, Gr, X, Xe} ∪{G1,lo,up, G2,lo,up, G

′
1,ra, G

′
2,ra : lo, up,

ra ∈ N, lo ≤ up}.
Other notations: In the remainder of this paper we consider that: a grammar
G = 〈T ,N , S,R〉 is given, with V = T ∪ N ; that lower case letters u, v, w, . . .
denote words over T with w being the word to parse by the grammar; that greek
letters α, β, . . . denote words over V and that lower case letters i, j, . . . denote
natural numbers.

For a word u, u[i:j] (with i, j ∈ [0, |u|], i ≤ j) denotes the subword of
u starting at position i and ending at position j excluded (e.g. abcd[0:1] =
a, abcd[2:4] = cd, abcd[1:1] = ε). u[i], u[i:] and u[:i] are respectively shortcuts
for u[i:i+1], u[i:|u|] and u[0:i].

3 Parsing Gaps Using Depth-First Top-Down Parsing

In this section we consider the study of the depth-first top-down parser (dftdp)
with respect to gaps. Subsection 3.1 describes the principle of the dftdp, then,
in Subsections 3.2 and 3.3 we study respectively the effect of the implementation
of gap rules on the dftdp and a way of speeding it up when extra information
is available on which rules represent gaps.

3.1 The Depth-First Top-Down Parser

The dftdp can parse words in any CFG which is not left-recursive, i.e. such
that ∀N ∈ N : ¬(N → α →∗ Nβ). Its worst complexity is non polynomial
(O(|w||G|)), where |G| is the sum of the length of all rules in G. However, this
parser possesses the advantages of being very easy to implement, to need only
O(|G|×|w|) memory, and is considered to be fast for most grammars in practice.
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Algorithm 1 Depth-first top-down parser, the initial call is dftdp(w,S) with
boolean accepted set to false.
1: Function dftdp(u, α)
2: if α = ε then{ if u = ε then {accepted ← true; Stop algorithm}}
3: else if α[0] ∈ N then{for all α[0] � A1 . . . An ∈ R do dftdp(u, A1 . . . Anα[1:])}
4: else if α[0] ∈ T then{if u �= ε and u[0] = α[0] then dftdp(u[1:], α[1:])}

The dftdp uses the→ relation to explore the space of all possible derivations
of S and tries to find one equal to the input word w. This space is explored in
a depth-first manner, and is pruned as soon as an incompatibility between the
input word and the derivation currently considered is found. It can be described
in a simplified manner by Algorithm 1. The word w is accepted by Algorithm 1
iff boolean accepted is true after execution.

3.2 Complexity of Parsing Gaps with DFTDP

The worst case execution time for the dftdp is when the whole space of deriva-
tions has to be explored in order to reject a word. As we focus on gaps, we
consider this worst case arising from the presence of a gap.

Concerning unlimited gaps, the dftdp does not work on left-recursive rules
implying that the right-recursive gap implementation has to be used. Property 1
shows that the dftdp has a reasonable linear behaviour in this case.

Property 1. For a call dftdp(u, Gra), with u[|u|−1] �= a, the number of recursive
dftdp calls is linear in |u|.

Concerning limited gaps, from Property 2 we can expect the quadratic im-
plementation to be far more efficient than the linear one.

Property 2. For a call dftdp(u, G1,lo,up) (resp. dftdp(u, G2,lo,up)), with |u| >
up, the number of recursive dftdp calls is linear in lo and non polynomial (resp.
quadratic) in ra = up− lo.

Conditions u[|u| − 1] �= a and |u| > up, respectively in Property 1 and 2,
ensure the worst case complexity is reached by forcing the parsed word u to be
rejected.

3.3 Adapting the Algorithm

We have seen in the previous subsection which rules are adequate to represent
gaps when using the dftdp. In this subsection, we consider the option of im-
plementing an algorithm based on the dftdp, but adapted to gap rules. The
proposed adaptation consists in changing line 3 of Algorithm 1 to obtain a spe-
cial treatment of gap rules as shown by Algorithm 2. Property 3 shows that this
modification deals with any kind of gaps in linear time, compared to quadratic
or exponential behaviour given by Property 2.
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Algorithm 2 Line 3 of Algorithm 1 with gap optimisation.
1: else if α[0] ∈ N then
2: if α[0] is a gap then if α[0] is limited then let lo and up be its bounds
3: else let lo ← 0 and up ← ∞
4: for all i ∈ [lo, min(|u|, up)] do dftdp(u[i:], α[1:])
5: else for all α[0] � A1 . . . An ∈ R do dftdp(u,A1 . . . Anα[1:])

Property 3. We denote by dftdp′ Algorithm 1 with modification of Algorithm 2,
and by G a gap nonterminal with bounds lo and up (with lo = 0 and up = ∞
if the gap is unlimited). The call dftdp′(u, Gb), with b ∈ T and u[|u| − 1] �= b
generates a number of recursive calls linear in min(|u|, up)− lo.

4 Parsing Gaps Using Chart Parsing

We study in this section the behaviour of the chart parser (cp) when it encoun-
ters gaps. Subsection 4.1 describes the cp, Subsection 4.2 examines the effect of
the gap implementation on it and Subsection 4.3 provides a way of speeding it
up when it is provided with extra information on which rules represent gaps.

4.1 Chart-Parsing

The cp can parse any CFG (most CFG parsers are limited to subsets of CFG).
Its worst complexity is polynomial, O(|w|3), and it has the advantage of repre-
senting all the alternative ways of parsing a sequence (potentially an exponential
number) into a structure of polynomial size.

We will not detail the whole algorithm, only its main abstract data types
and principles. For details on the algorithm, the interested reader can consult
[8, 9]. The basic component of chart parsing is the item, this is a structure of
the form: R � α • β@i, j. Such an item means that the α part of rule R � αβ
can derive w[i, j], more formally:

α→∗ w[i:j] (1)

Symbols • and @ are separators between respectively α and β, and between β
and the couple i, j. R is called the left part of the item, and indice j is called
the ending position of the item. Items are stored in a set called itemset. From
Equation 1, w is accepted by the grammar iff itemset contains an item of the
form S → α •@0, |w|.

In its most studied implementation due to Earley [10, 11], the cp first inserts
(in itemset) items which end at position 0, and then iteratively fills itemset
with items ending at position j (j being incremented from 1 to |w|) . The cp
stops after inserting items for j = |w|. In the Earley implementation, items also
respect the following equation:

∃γ, δ ∈ V∗ such that: S →∗ γRδ and γ →∗ w[:i] (2)
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Equation 2 represents the fact that items with a left part that cannot be reached
from S at position i of w are useless to check the acceptance of w, and therefore
do not need to be stored. The only items which the Earley implementation stores
in itemset are those which satisfy both Equations 1 and 2.

4.2 Complexity of Parsing Gaps with Chart Parsing

We will compare the gap implementations by assessing their complexity using
the number of items the cp stores in itemset. The fewer items we need to store,
the more efficient is the cp.

Property 4. Let G = Gr when considering right-recursive gaps and G = Gl

when considering left-recursive ones. For l ∈ [0, |w|], let Pl = {k ∈ [0, l] : ∃R �

α • Gβ@j, k ∈ itemset, R �= G}, and p1 = min(P|w| ∪ {|w| + 1}). Suppose
S �= G, the number of items in itemset with G as left part is S′

r for right
recursive gaps, and S′

l for left-recursive gaps with: S′
r = S′

l = 0 iff p1 > |w|;
S′

r = (1 − 5p1/2 + p2
1/2) + |w|(2.5 − p1) + |w|2/2 and S′

l ≤ (2|w| + 1)|P|w|| ≤
(2|w|2 + |w|)| iff p1 ≤ |w|.

From Property 4, for right-recursive and left-recursive gaps, itemset can contain
a number (resp. S′

r and S′
l) of items in the worst case quadratic in the size of the

parsed word. However, in practice, |P|w|| representing the number of positions
where a gap is started in w, it can be supposed small compared to |w|. Moreover,
biological grammars often model a pattern to be found somewhere in the parsed
word, implying the use of unlimited gap before the pattern, and in this case
p1 = 0. Considering these points, the following approximations can be made:
S′

r &
5|w|
2 + |w|2

2 and S′
l & 2 ∗ K ∗ |w| where K is small, showing that right-

recursive gaps imply a better behaviour of the cp than left-recursive ones.

Property 5. For l ∈ [0, |w|], let I1(l, ra) (resp. I2(l, ra)) be the set of items in
itemset having l as ending position and with G′

1,ra or Xe (resp. G′
2,ra) as left

part. We have: |I1(l, ra)| > |I2(l, ra)|+ 2ra

From Property 5, we can see that we will always have more items in itemset
when using linear limited gaps instead of quadratic limited gaps, the difference
being proportional to the ra = up − lo value of the gap for items ending at
position l. Considering all items, the difference can therefore be quite large (in
O(|w| ∗ ra)) implying that the use of quadratic gaps is recommended for chart
parsing.

4.3 Adapting the Algorithm

Some modifications of the cp have already been proposed to speed it up when
encountering particular rules: [10] propose optimisations linked with rules of the
form A � ε, and in [7] an optimisation for gap rules is briefly explained. We
adapt this last one for the Earley implementation changing the algorithm the
following way: (a) Items of the form A � α • β@i, j with A ∈ Gaps are not
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introduced in itemset. (b) Each time an item of the form R � α•Gβ@i, j, with
G a gap nonterminal, is inserted into itemset, we store R � αG • β@i, j into a
set called gapset. (c) Before the algorithm fills in itemset with items ending at
position k, we insert items R � αG • β@i, k iff item R � αG • β@i, j is present
in gapset and k ∈ [lo + j, up + j], where lo and up are the bounds of the gap, or
0, ∞ if the gap is unlimited.

With these modifications, no more item with G ∈ Gaps as left part is inserted
in itemset, but some items are inserted in gapset. The size of gapset is in the
worst case of the order of O(|w|2) like the worst case given in Subsection 4.2. In
practice, a quadratic behaviour is in fact very unlikely to happen since, as we
already argued in Subsection 4.2, the number of position where a gap can start
should be small for non artificial data (i.e., the number of possible k in items of
the form R � α •Gβ@i, k is small).

5 Experimental Comparison

The material of the experiments is available at http://www.comp.rgu.ac.uk/
staff/chb/research/data_sets/cpm05/README.html. Running times have
been obtained on a SunBlade 2500 (under SunOS 5.8).

5.1 Parsing Protein Grammars and Sequences

Data: The first experimental comparison uses patterns of the Prosite3 database
[3] as a source of grammars, and the Uniprot4 database [12] as source of se-
quences. We chose the Prosite (resp. Uniprot) database because it contains
the largest collection of hand validated protein patterns (resp. protein sequences)
in the world. Prosite patterns can be seen as grammars with low expression
power. (They represent a subset of regular languages). Their wide use by the
bioinformatics community shows that they can be considered as potentially perti-
nent subparts of more complex biological grammars. Thus, their efficient parsing
is a prerequisite to the efficient parsing of more complex grammars.

Experimental setting: For each one of a random sample of 500 Prosite
patterns, we sampled 1000 sequences from Uniprot, and parsed these sequences
with a grammar equivalent to the pattern. For each pattern-sequence couple, the
parsing time has been stored.

Results: Table 1 gives the mean parsing times for pattern-sequence couples with
the different parsers and gaps implementation. A particular event explained later
made us separate one of the patterns from the others in the last column. The
means are taken over the 499 reminding patterns and the 1000 sequences parsed
in each pattern. Figure 1 presents these results graphically as a function of the
length of the parsed word.

3 http://www.expasy.ch/prosite/
4 http://www.expasy.uniprot.org/
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Table 1. Mean execution times per sequence on 499 Prosite patterns and for the
particular pattern PDOC00354.

Experiment Mean Standard PDOC00354

Algo. Gaps time deviation mean time

cp Gl, G1 4.37ms 81.4ms 32.0ms

cp Gl, G2 4.36ms 81.4ms 16.4ms

cp optimised 1.54ms 62.4ms 1.20ms

cp Gr, G1 1.88s 4.82s 32.0ms

cp Gr, G2 1.88s 4.81s 16.5ms

dftdp Gr, G1 4.35ms 83.0ms > 86.4s∗

dftdp Gr, G2 4.31ms 82.4ms 53.2ms

dftdp optimised 0.63ms 49.8ms 0.350ms
∗ 86.4s = 24h ∗ 60mn ∗ 60s/1000 sequences

Fig. 1. Parsing time as a function of sequence length: each point is the mean parsing
time for sequences with length ±100 around the value of the x-axis. Only a subset
of the standard deviations bars were plotted to keep the graph readable. Times for
sequences lengths greater than 5000 were removed because less than 20 sequences were
available for each mean. The results of the cp with Gr gaps were removed due to their
large running time.

Considering non optimised versions of the parsers, the cp with left-recursive
gaps and the dftdp with right-recursive gaps have similar running times. For
the cp, the unlimited gap implementation has a strong affect on running time,
confirming the recommendation of Section 4.3 to use left-recursive gaps. For both
parsers, important improvments have been obtained by using the modifications
described in Section 3.3 and 4.3 (speeding up the parsers by a factor larger than
6 for the dftdp and 2 for the cp).

For all but one of the patterns, the experiments do not show any significative
difference between the linear and the quadratic gap implementations. The excep-
tion is the pattern PDOC00354: <x(10,115)[DENF][ST][LIVMF][LIVSTEQ]Vx[AGP]

[STANEQPK]. This pattern comprises a limited gap with range 105, followed by
alternative choices for each position. The differences between this pattern and
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other Prosite patterns are the position of the gap (at the beginning of the pat-
tern) and its large range. This led to an important impact on the running time
depending on the limited gap implementation. The dftdp with linear gap had
to be stopped on this pattern after 24 hours, showing the exponential blow-up
predicted in Section 3.2. As a consequence, mean running times on this pattern
have been separated from the 499 remaining in the last column of Table 1. From
this column we see that, as predicted in Sections 3.2 and 4.2, using the quadratic
gap implementation leads to better running times for all parsers, despite the fact
that the grammar is described with more symbols.

5.2 Parsing DNA Grammars and Sequences

This subsection compares parsing times for DNA grammars. These grammars
represent more elaborate concepts than those of Prosite.
Data: Different formalisms exist to represent patterns in DNA or RNA se-
quences, the one proposed by Patscan [6] has been widely used by the DNA/
RNA modeling community. A collection of such patterns can be found on the
UTRsite5 [13] which gives patterns modelling untranslated 3’ and 5’ regions
of eukariotic mRNAs. This database is used to evaluate our approach for differ-
ent reasons: (1) it is one of the rare places where a collection of patterns can be
found, (2) the high degree of variation in the patterns gives rise to a wide variety
of grammars providing a thorough test of the parsers, and (3) the patterns can
generally be translated without too much difficulty into context-free grammars.
The parsed sequences have been taken from UTRdb6, the sequence database of
UTRs associated with UTRsite.
Experimental setting: Patscan patterns of UTRsite were translated into a
CFG7. Then, we randomly sampled 5000 sequences from the UTRdb database8.
Finally we parsed the 5000 sequences in each CFG using those parsers which
had a reasonable execution time on Prosite patterns: dftdp optimised, dftdp
with quadratic limited gaps, cp optimised, cp with left-recursive gaps and with
either linear or quadratic limited gaps.
Results: Execution times for the different algorithms are given in Table 2.

The dftdp had to be stopped for several grammars after running more than
24h to parse the 5000 sequences. A possible explanation of this is that there was
an exponential blow-up for this parser due to features of Patscan patterns that
were not present in Prosite ones. This shows that the dftdp is not adequate

5 http://www2.ba.itb.cnr.it/UTRSite/
6 http://www.ba.itb.cnr.it/srs7bin/cgi-bin/wgetz?-page+top
7 An exact translation was not possible in all cases, so we sometimes modified the

patterns to obtain a slightly more general form that could be translated. We also
removed some patterns that were “too simple”, for example if the pattern was just
a subword to be found in the sequence. Also, as we do not study here parsing with
error-correcting, error limits were removed.

8 Because some of the sequences in the database are very short (some are only one
nucleic acid), we considered only sequences of length larger than 100.
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Table 2. Mean execution times per sequence on the 20 patterns of UTRdb.

Experiment Mean Standard
Algo. Gaps time deviation

cp Gl, G1 40.3ms 423ms

cp Gl, G2 40.7ms 429ms

cp optimised 27.8ms 321ms

dftdp Gr, G2
∗ 832s 2.63s

dftdp optimised ∗ 940s 2.84s

For experiments with the ∗ symbol, 4 executions were stopped after running 24 hours.

to parse complex biological grammars (even if the results of Subsection 5.1 on
simple grammars were very good).

The optimised version of the dftdp was even slower than the one using Gr

and G2,lo,up gaps. A likely explanation is based on the number Z of executions
of line 2 of algorithm 2. A blow-up implies Z to be exponential in the pattern
size, if the encountered nonterminals at line 2 are not often gaps, this line brings
few speed-up while spending an amount of ressources proportional to Z (i.e.,
exponential) to be evaluated.

The cp, on the other hand, showed a very stable behaviour: even if it is
slower than the dftdp for simple grammars, it seems more suitable for complex
ones. We also see that the optimisations we added to the cp can be useful but
are not needed if a grammar contains well designed gap rules.

6 Conclusion

We have studied two context-free grammar parsing algorithms. We have shown
that for both the original and optimised versions of parsers, the cp is faster with
respect to experimental data than the dftdp. Indeed, even if the dftdp can run
much faster than the chart parser on simple biological grammars, its complexity
increases drastically when provided with more complex grammars.

For algorithms not optimized to manage gaps, both our theoretical study of
complexity, and our empirical study conclude that rules representing gaps have
to be carefully choosen such as to obtain reasonable parsing times. On the other
hand, when optimised algorithms can be implemented, an interesting speed-up
can be achieved: between a factor of 4

3 to 6 depending on both the considered
algorithms and data.
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Proofs of Properties

Properties on the DFTDP

For properties 1 and 2, we denote by |dftdp(v, α)| the number of dftdp calls
realised when executing the call dftdp(v, α).

Property 1. The call of dftdp(u, Grb), with b ∈ T , u[|u| − 1] �= b, generates
a number of recursive dftdp calls linear in |u|.

Proof. We consider the value of |dftdp(u, Grb)| and proceed by induction. The
base case is: |dftdp(ε, Grb)| = |T |+ 3. Indeed:
|dftdp(ε, Grb)| = 1 + |dftdp(ε, XGrb)| + |dftdp(ε, b)|

= 1 + |dftdp(ε, XGrb)| + 1
= 1 + 1 + Σt∈T |dftdp(ε, tGrb)| + 1 = |T |+ 3

The induction step with a ∈ T is: |dftdp(au, Grb)| = |T | + 2 + |dftdp(u,
Grb)|+ |dftdp(au, b)|. Indeed:
|dftdp(au, Grb)| = 1 + |dftdp(au, XGrb)| + |dftdp(au, b)|

= 1 + (1 + Σt∈|T ||dftdp(au, tGrb)|) + |dftdp(au, b)|
= 1 + (1 + |dftdp(au, aGrb)|+ |T | − 1) + |dftdp(au, b)|
= 1 + (1 + 1 + |dftdp(u, Grb)|+ |T | − 1) + |dftdp(au, b)|
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We have |dftdp(au, b)| = 1 if a �= b and |dftdp(au, b)| = 1+|dftdp(u, ε)| =
2 if a = b. The induction step stays valid because the call dftdp(ε, ε) will never
be considered due to the condition u[|u| − 1] �= b (the algorithm will not stop
because of the condition of line 2, implying that all considered calls will be
executed). Therefore, we have the following recursive equation:{
|dftdp(ε, Grb)| = |T |+ 3
|dftdp(au, Grb)| = |T |+ 2 + |dftdp(u, Grb)|+ |dftdp(au, b)|

which admit as solution:

|dftdp(u, Grb)| = |T |+ 3 + Σ1≤i≤|u|(|T |+ 2 + |dftdp(u, b)|)
= |T |+ 3 + |u|(|T |+ 2) + Σ1≤i≤|u||dftdp(u, b)|
= |T |+ 3 + |u|(|T |+ 2) + |u|+ 1 + K where K is the number of letters equal to
b in u
= (|u|+ 1)(|T |+ 3) + K. �

Property 2. The call dftdp(u, G1,lo,up) (resp. dftdp(u, G2,lo,up)), with |u| >
ra generates a number of recursive dftdp calls linear in lo and non-polynomial
(resp. quadratic) in ra = up− lo.

Proof. We first consider the calls dftdp(u, G1,lo,up) (resp. dftdp(u, G2,lo,up))
generates a linear number of calls in function of lo, and then calls dftdp(u, G′

1,ra)
(resp. dftdp(u, G′

2,ra)), where the quadratic (resp. non-polynomial) complexity
is observed. Depending on the gap implementation, let Glo,up denote G1,lo,up or
G2,lo,up, and G′

ra denote G′
1,ra or G′

2,ra.

Call dftdp(u, Glo,up):

We have: |dftdp(u, Glo,up|) = 1+dftdp(u, X loG′
ra) (rule Glo,up � X loG′

ra, and
line 3 of algorithm 1). We show by induction that: dftdp(u, X loG′

ra) = (|T |+1)∗
lo+|dftdp(u, X loG′

ra)|. The base case is:|dftdp(u, X0G′
ra)| = |dftdp(u, G′

ra)|.
For lo > 0, the induction step is:

|dftdp(au, X loG′
ra)| = 1 + Σt∈T |dftdp(au, tX lo−1)|

= 1 + |T | − 1 + |dftdp(au, aX lo−1)| = |T |+ 1 + |dftdp(u, X lo−1)|
From the base case and the induction step, we have for lo ≥ 0:

|dftdp(au, X loG′
ra)| = |dftdp(u, G′

ra)|+ Σ1≤i≤lo|T |+ 1
= |dftdp(u, G′

ra)|+ lo ∗ (|T |+ 1).

We now consider separately the proof for the linear and quadratic gap imple-
mentation.

Call dftdp(u, G′
1,ra):

We have |dftdp(u, G′
1,ra)| = 1 + |dftdp(u, Xra

e )| (rule G′
1,ra � Xr

e , line 3 of
Algorithm 1).

We consider the value of |dftdp(u, Xra
e )| and proceed by induction. The

base case is:|dftdp(u, X0
e )| = |dftdp(u, ε)| = 1 due to line 2 of Algorithm 1.

For ra > 0, the induction step is:
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|dftdp(au, Xra
e )| = 1 + |dftdp(au, XXra−1

e )|+ |dftdp(au, Xra−1
e )|

= 1 + (1 + Σt∈T |dftdp(au, tXra−1
e )|) + |dftdp(au, Xra−1

e )|
= 1 + (1 + |dftdp(au, aXra−1

e )|+ |T | − 1) + |dftdp(au, Xra−1
e )|

= 1 + (1 + 1 + |dftdp(u, Xra−1
e )|+ |T | − 1) + |dftdp(au, Xra−1

e )|
= 2 + |T |+ |dftdp(u, Xra−1

e )|+ |dftdp(au, Xra−1
e )|

We have |dftdp(u, Xra−1
e )| = |dftdp(au, Xra−1

e )| due to the condition |u| > ra
and therefore: |dftdp(au, Xra

e )| = 2 + |T |+ 2|dftdp(u, Xra−1
e )|

As ∀i ≥ 1, |dftdp(u, Xra
e )| > f(|u|), where f(0) = 1 and ∀i > 0, f(i) =

2f(i− 1) = 2i, |dftdp(u, Xra
e )| > f(|u|) is not polynomial in i.

Call dftdp(u, G′
2,ra):

We have |dftdp(u, G′
2,ra|) = 1 + Σ0≤j≤ra|dftdp(u, Xj)|.

We consider the value of |dftdp(u, Xj)| (∀j ≥ 0) and proceed by induction.
The base case is:|dftdp(u, X0)| = |dftdp(u, ε)| = 1 due to line 2 of Algorithm
1. The induction step is for j > 0:

|dftdp(au, Xj)| = 1 + Σt∈T |dftdp(au, tXj−1)|
= 1 + |dftdp(au, aXj−1)|+ |T | − 1 = 1 + 1 + |dftdp(u, Xj−1)|+ |T | − 1
= |T |+ 1 + |dftdp(u, Xj−1)|
From the base case and the induction step, we have ∀j ≥ 0:

|dftdp(au, Xj)| = 1 + Σ1≤i≤j(|T |+ 1) = 1 + j(|T |+ 1)

And therefore:

|dftdp(u, G′
2,ra)| = 1 + Σ0≤j≤ra|dftdp(u, Xj)| = 1 + Σ0≤j≤ra(1 + j(|T |+ 1))

= 1 + (ra + 1) + (|T |+ 1) ∗ ra(ra+1)
2 �

Proof of Property 3. We denotes by dftdp′ the algorithm 1 with modification
of algorithm 2, and by G a gap nonterminal with bounds lo and up (with lo = 0
and up = ∞ if the gap is unlimited). The call dftdp′(u, Gb), with b ∈ T and
u[|u| − 1] �= b generates a number of recursive calls linear in min(|u|, up)− lo.

Proof. We consider the value of |dftdp′(u, Gb)|. From line 4 of algorithm 2,
this imply recursive calls of the form |dftdp′(u[i :], b)| for i ∈ [lo, min(|u|, up)].
Therefore:

|dftdp′(u, Gb)| = 1 + Σi∈[lo,min(|u|,up)]|dftdp′(u[i :], b)|
dftdp′(u[i :], b) calls imply a new call (and only one) iff u[0] = b, so if we denote
by K the number of b in u[lo : min(|u|, up) + 1], we have:
|dftdp′(u, Gb)| = 1 + (min(|u|, up)− lo) + K. �

Properties on the CP

When evaluating the performances of the cp, we will not count items in itemset
with X as left part neither those of the form N � ε • ε@i, j. Indeed counting
them would not realise a fair comparison between the gap implementations since
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optimisations of the cp exist that suppress (the vast majority of) these items
from the itemset9.

For the proofs of this section, we will use the following notations: The sym-
bol G will represent G = Gr when considering right-recursive gaps, G = Gl

when considering left-recursive gaps, G = G′
1,ra for linear limited gaps and

G = {G′
2,ra} for quadratic limited gaps. For l ∈ [0, |w|], let Pl = {k ∈ [0, l] :

∃R � α •Gβ@j, k ∈ itemset, R �= G}, and p1 = min(P|w| ∪ {|w|+ 1}).
Intuitively, Pl is the set of positions in w[0 : l+1] where an unlimited gap can

be started, or where the range of a limited gap starts to influence the algorithm10,
and p1 is the first of these positions for w[0 : |w|+ 1] = w.

For these properties, we will also suppose that S �∈ Gaps), indeed, the case
S ∈ Gaps is not useful in practice (such grammars are too simple to be used in
practice), and taking them into account complexify the proofs.

Proof of Property 4. In this subsection, for l ∈ [0, |w|], the set of items
in itemset with G as left part and ending at position l are denoted Ir(l) for
right-recursive gaps and Il(l) for left-recursive gaps.

Property 4 Suppose S �= G, the number of items in itemset with G as left part
is S′

r for right recursive gaps, and S′
l for left-recursive gaps with:

S′
r = S′

l = 0 iff p1 > |w|
S′

r = (1 − 5p1/2 + p2
1/2) + |w|(2.5 − p1) + |w|2/2 and S′

l ≤ (2|w| + 1)|P|w|| ≤
(2|w|2 + |w|)| iff p1 ≤ |w|.

Proof. Let l ∈ [0, |w|], from Lemma 1, itemset contains all and only items with
ending position equal to l and with G as left part of rule that are present in
the set Ir(l) for right-recursive gaps and Il(l) for left-recursive gaps. The size of
Ir(l) (resp. Il(l)) can be easily deduced from Lemma 1, we denote it Sr(l) (resp.
Sl(l)), with:

Sr(l) =

⎧⎨⎩
2 + l − p1 if p1 < l
1 + l − p1 if p1 = l
0 if p1 > l

and Sl(l) =
{

2 ∗ |Pl| if l �∈ Pl

2 ∗ |Pl|+ 1 if l ∈ Pl

If p1 = |w|+1, we have trivially S′
r = S′

l = 0, otherwise (p1 ≤ |w|+1) we obtain
values for Sr and S′

l by summing Sr(l) and Sr(l) for all possible l:

S′
r = Σl∈[0,|w|]Sr(l) = Σl∈[p1,|w|](2 + l − p1)− 1

= (1− 5p1/2 + p2
1/2) + |w|(2.5 − p1) + |w|2/2

S′
l = Σl∈[0,|w|]Sl(l) = |P|w||+ Σl∈[0,|w|](2 ∗ |Pl|)
⇒ S′

l ≤ |P|w||+ 2 ∗ |w| ∗ |P|w|| ⇒ S′
l ≤ |w|+ 2 ∗ |w|2 �

9 Optimisation known under the name of look-ahead implies that most items with X
as left part do not have to be stored [8]; and an optimisation due to [10] implies that
items of the form N � ε • ε@i, j do not have to be stored either.

10 For limited gaps, as the rules G1,lo,up � XloG′
1,up−lo and G2,lo,up � XloG′

2,up−lo

are similar, they will not be useful to characterize the difference between the imple-
mentations, this is why we focus on rules G′

1,ra and G′
2,ra.
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Lemma 1. Suppose S �= G, then:
Ir(l) = {Gr � •XGr@l, l : l ≥ p1} (r.1)

∪ {Gr � X •Gr@l-1, l : l > p1} (r.2)
∪ {Gr � XGr •@i, l : k ∈ Pl, k ≤ i < l} (r.3)

and
Il(l) = {Gl � •GlX@l, l : l ∈ Pl} (l.1)

∪ {Gl � Gl •X@k, l : k ∈ Pl} (l.2)
∪ {Gl � GlX •@k, l : k ∈ Pl, k < l} (l.3)

Proof. We use equations 1 and 2 to show respectively that Gl � •GlX@i, l ∈
itemset ∧ S �= Gl is equivalent to i = l ∧ l ∈ Pl ∧ S �= Gl, and that Gr �

•XGr@i, l ∈ itemset ∧ S �= Gl is equivalent to i = l ∧ l ≥ p1 ∧ S �= Gr.
From this first step, which corresponds to the content of line respectively l.1

and r.1, we can show similar properties for lines r.2, r.3 and l.2, l.3. Due to
space restrictions the full proof is not included in the paper.

Proof of Property 5. We use the following definitions in this subsection: let
I1(l, ra) be the set of items with G′

1,ra or Xe as left part of rule and l as ending
position present in itemset. Similarly, let I2(l, ra) be the set of items with G′

2,ra

as left part of rule and l as ending position present in itemset.

Property 5 |I1(l, ra)| > |I2(l, ra)|+ 2ra.

Proof. Lemma 2 shows which items are present in each of the I1(l, ra) and
I2(l, ra) sets. From Lemma 2 equations, we can see that the part 4.1 of I1 is
always larger than I2, and that parts 4.2 and 4.3 of I1 have size ra, showing
that |I1(l, ra)| > |I2(l, ra)|+ 2ra. �

Lemma 2. The I1(l, ra) and the I2(l, ra) contents respects the following equa-
tions:
I1(l, ra) ⊇ {G′

1,ra � X i+l−k
e •Xra−i−l+k)

e @k, l : k ∈ Pl, i ∈ [0, ra+k− l]} (4.1)
∪ {Xe � •X@l, l : k ∈ Pl, l ∈ [k, k + ra[} (4.2)
∪ {Xe � X •@l − 1, l : k ∈ Pl, l ∈]k, k + ra]} (4.3)

And
I2(l, ra) = {G � X l−k •Xj@k, l : k ∈ Pl, j ∈ [0, ra + k − l], l �= k ∨ j �= 0}.
Proof. For I1(l, ra), the proof consists in first showing that G′

1,ra � Xj
e •

Xera−j@k, l ∈ itemset ∧ S �= G′
1,ra is equivalent to k ∈ Pl ∧ i = k − l + j ∧ 0 ≤

i ≤ k − l + ra by using equations 1 and 2. Then it can be shown from this first
result and some more use of equations 1 and 2 that this implies the presence of
at least the items of line 4.2 and 4.3 (other items are the ones comming from
different possible values for ra). For I2(l, ra), the proof is:

{
G′

2,ra � X i •Xj@k, l ∈ itemset
S �= G′

2,ra
⇔ ∃γ, δ ∈ V∗ :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X i

�
∗ w[k, l]

S →∗ γG′
2,raδ

γ �
∗ w[0:k]

0 < i + j ≤ ra
S �= G′

2,ra
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⇔
∃m ∈ N,
∃R � αG′

2,raβ ∈ R,
∃γ′, δ′ ∈ V∗

:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i = l− k
S →∗ γ′Rδ′ → γ′αG′

2,raβδ′

γ′
�

∗ w[0:m]
α �

∗ w[m:k]
0 < i + j ≤ ra

⇔ ∃m ∈ N,
∃R � αG′

2,raβ ∈ R :

⎧⎨⎩
i = l− k
R � α • β@m, k ∈ itemset
−i < j ≤ ra− i

⇔

⎧⎨⎩
i = l− k
k ∈ Pl

−i < j ≤ ra + k − l
⇔

⎧⎪⎪⎨⎪⎪⎩
i = l − k
k ∈ Pl

0 ≤ j ≤ ra + k − l
i + j �= 0

⇔

⎧⎪⎪⎨⎪⎪⎩
i = l − k
k ∈ Pl

0 ≤ j ≤ ra + k − l
l − k + j �= 0

⇔

⎧⎪⎪⎨⎪⎪⎩
i = l− k
k ∈ Pl

0 ≤ j ≤ ra + k − l
l �= k ∨ i �= 0

�
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Abstract. Given a string x = x[1..n], a repetition of period p in x is a
substring ur = x[i..i+rp−1], p = |u|, r ≥ 2, where neither u = x[i..i+p−1]
nor x[i..i+(r+1)p−1] is a repetition. The maximum number of repetitions
in any string x is well known to be Θ(n log n). A run or maximal
periodicity of period p in x is a substring urt = x[i..i+rp+ |t|−1] of
x, where ur is a repetition, t a proper prefix of x, and no repetition of
period p begins at position i−1 of x or ends at position i+rp+|t|. In 2000
Kolpakov and Kucherov showed that the maximum number ρ(n) of runs
in any string x is O(n), but their proof was nonconstructive and provided
no specific constant of proportionality. At the same time, they presented
experimental data strongly suggesting that ρ(n) < n. In this paper, as a
first step toward proving this conjecture, we present a periodicity lemma
that establishes limitations on the number of squares, and their periods,
that can occur over a specified range of positions in x. We then apply
this result to specify corresponding limitations on the occurrence of runs.

1 Introduction

The study of strings began with an investigation of periodicity properties [15],
and periodicity of various kinds still remains today a central theme, impor-
tant both in theory and practice – for example, in data compression, pattern-
matching, computational biology, and many other areas. In this paper we present
results that specify restrictions on the nature and extent of periodic behaviour
in strings. Although these results are theoretical, their importance is very much
a product of their practical application, as we explain below.

It will be convenient throughout to represent strings in boldface (for example,
x = x[1..n]) and their lengths in italics (for example, x = |x|).
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A repetition in x is a substring ur = x[i..i+ru−1], r ≥ 2, where neither
x[i..i+u−1] nor x[i..i+(r+1)u−1] is a repetition. We call u the generator and
u the period of the repetition, and we represent it economically by an integer
triple (i, u, r). In the early 1980s three quite different O(x log x) algorithms were
published [1, 2, 12] for the computation of all the repetitions in a given string x.
In a sense these algorithms were all asymptotically optimal, since in [2] it was
shown that in fact a Fibonacci string fn contains Θ(fn log fn) repetitions.

In [11] a more compact encoding of repetitions was introduced: a run or
maximal periodicity of period u in x is a substring urt = x[i..i+ru+t−1] of
x, where ur is a repetition, t a proper prefix of u, and no repetition of period
u begins at position i−1 of x or ends at position i+ ru+ t. u is called the
generator of the run, t its tail, and a run is economically represented by a
4-tuple (i, u, r, t). Computing all the runs in x permits all the repetitions in x to
be listed in an obvious way. Main [11] showed how to compute all the “leftmost”
runs in x in time Θ(x), provided that the suffix tree [13, 16] and the Lempel-Ziv
factorization [9] of x were both available. In [3] it was shown that a suffix tree
could be computed in linear time on an indexed (bounded integer) alphabet;
since the LZ factorization is computable in linear time from the suffix tree, this
meant that the overall worst-case time requirement of Main’s algorithm was
Θ(x) on an indexed alphabet. In [8] Kolpakov & Kucherov took matters a step
further by extending Main’s algorithm to also compute non-leftmost runs in x
in time proportional to their number, and then by showing that the maximum
number ρ(x) of runs in any string x was at most

k1x− k2 log2 x
√

x, (1)

where k1 and k2 are positive constants. Thus, at least in principle, all the runs
in x could be determined in linear time.

However, there is a problem with (1): the proof is nonconstructive and gives
no information about the magnitude of the constants k1 and k2. Nevertheless
Kolpakov & Kucherov provide convincing experimental evidence that

∗ ρ(x) < x;
∗ ρ(x) is achieved by a cube-free string x on alphabet {a, b};
∗ ρ(x + 1) ≤ ρ(x)+2.

As far as we know, the only published work that addresses these fundamental
questions of periodicity is [5], where an infinite family of strings x is constructed
that is conjectured for sufficiently large x to achieve ρ(x) < x.

In order to show that in general ρ(x) < x, it seems to be necessary to establish
restrictions on the number of runs that can occur near a position in x at which
one or two runs are already known to occur. Perhaps the most famous theoretical
result available for such a purpose is the “periodicity lemma”:

Lemma 1 [4] Let p and q be two periods of x, and let d = gcd(p, q). If p+q ≤ x+d,
then d is also a period of x. �
Unfortunately this lemma provides no special information about runs, or the
squares with which runs must begin, and it places no restrictions on the positions
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at which periodic substrings may occur. To our knowledge the only result that
provides such information is the following:

Lemma 2 [10, Lemma 8.1.14] Let u2 be a repetition, and suppose w �= uk for
any k ≥ 1. If u2 is a prefix of w2, in turn a proper prefix of v2, then u+w ≤ v.

Our main result in this paper is essentially a generalization of this result, that
we call a “new periodicity lemma”.

2 New Periodicity Lemma

In this section we prove results that establish restrictions on the squares that can
occur in the neighbourhood of positions in a string at which one or two squares
already appear. We begin with two simple definitions:

Definition 3 A square u2 is said to be irreducible if u is not a repetition.

Definition 4 A square u2 is said to be minimal if no proper prefix of u2 is a
square.

Lemma 5 If u2 is minimal, then u2 is irreducible.

Proof. By Definition 4, no proper prefix of u2 is a square; thus, in particular, no
prefix of u is a square. Therefore u cannot be a repetition, and so by Definition 3
u2 is irreducible. �

The existence of a minimal square already imposes significant limitations on the
nature of other squares that can exist, as the following result shows:

Lemma 6 If x = u2 is minimal, then for all integers k ≥ 0 and w ∈ u/2..u−1:

(a) if
k + w ≤ u, k+3w ≥ 2u, (2)

x[k+1..k+2w] is not a square;
(b) if

k + w > u, k+2w ≤ 2u, (3)

either x[k+1..k+2w] is not a square or x[w′+1..w′+u] has period u−w,
where

w′ = (k+w)−u. �

Proof. Suppose that for some pair of integers k and w satisfying either (2) or
(3), x[k+1..k+2w] = w2.

First assume that k = 0. Then if (2) holds, either w = u, a contradiction, or
else w < u, contradicting the minimality of u2. On the other hand, if (3) holds,
then both w > u and w ≤ u must hold, again a contradiction. Thus we can
assume that k ≥ 1.
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(a) Suppose that (2) holds, let w′ = u−(k+w), and consider

ŵ = x[1..w−w′] = x[k+w′+1..k+w].

Since by (2)
(w−w′)− (k+w′) = k+3w−2u ≥ 0,

the substring x[1..k+w] has period k+w′. Again by (2),

(k+w) − 2(k+w′) = (k+w)− 2(u−w) ≥ 0,

so that x[1..k+w] has prefix
(
x[1..k+w′]

)2, contradicting the minimality of
u2. Thus in case (a) no such k and w can exist.

(b) Next we suppose that (3) holds, so that w < u, hence that k−w′ = u−w > 0.
Consider

w = x[w′+1..w′+w] = x[k+1..u+w′].

Since by (3) w′+w = k+(2w−u) ≥ k, the substring x[w′+1..w′+u] of length
u has period k−w′ = u−w, as required. �

To show that in case (a) of Lemma 6 the assumption that k +3w ≥ 2u
(as well as the weaker condition w ≥ u/2) is necessary, consider the example
u = 14, k = 6, w = 5:

x = u2 = abbaba(babab)(bab‖ab)(babab)ababbab.

Here w = babab and w3 is a substring of x.
To show that in case (b) of Lemma 6 the substring w2 can in fact exist,

consider the example u = 11, k = 4, w = 8 with w′ = 1:

x = u2 = babc(abcabca‖b)(abcabcab)ca.

The substring x[2..12] = (abc)3ab has period u−w = 3.
We turn now to the situation in which a minimal square and an irreducible

square occur at the same position. We first prove two basic lemmas that describe
the relationship between minimality and irreducibility, then go on to prove our
main result.

Lemma 7 If v2 is irreducible with minimal proper prefix u2, then

v > max{u+1, 3u/2}.

Proof. Observe that 1 ≤ u < v, and observe further that u+1 ≥ 3u/2 if and
only if u ≤ 2.

For u = 1, u2 = λ2 for some letter λ and the shortest irreducible square
v2 = (λ2μ)2 for some letter μ �= λ. Thus for u = 1, v ≥ 3 > u+1, as required.

For u = 2, since u2 is minimal, u2 = (λμ)2 and the shortest irreducible
square v2 = (λμλμν)2 for some letter ν. Thus for u = 2, v ≥ 5 > u+1, as
required.
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Suppose therefore that u ≥ 3, and suppose further, without loss of generality,
that v < 2u. Then

v = uu[1..v−u] = u[v−u+1..u]v[2u−v+1..v],

where y = u[1..v−u] of length v−u is a prefix of u, hence of v, and z = u[v−u+1..u]
of length 2u−v is a prefix of v, hence of u. If now we assume 2v ≤ 3u, it follows
that v−u ≤ 2u−v, so that y is also a prefix of z. Thus u has prefix y2 and so u2

cannot be minimal, a contradiction. We conclude that 2v > 3u, as required. �

Lemma 8 If x = v2 is irreducible with minimal proper prefix u2, v < 2u, then

x = u1u2u1u1u2u1u2u1u1u2,

where u1 = 2u−v, u2 = 2v−3u.

Proof. Since v < 2u, u ≥ 3 by Lemma 7. Since u1+u2 = v−u < u, u has proper
prefix u1u2. Since u−(v−u) = 2u−v = u1, u = u1u2u1. Since v = uu[1..v−u] =
uu1u2, the result follows. �

For the proof of our main result, the following definitions are helpful. A substring
of a given string x is said to be internal if and only if it is neither a prefix nor
a suffix of x. And if x = x1x2, x2 nonempty, then x2x1 = Rx1(x) is said to be
the xth

1 rotation of x.
We also make use of the following two well-known results::

Lemma 9 [14, p. 76] Let x be a string of length n and minimum period p, and
let j ∈ 1..n−1 be an integer. Then Rj(x) = x if and only if x is a repetition and
p divides j. �

Lemma 10 [14, p. 76] Let x be a string of length at least 3. If x is a repetition,
then so is every rotation of x. �

Lemma 11 (NPL) If x has minimal prefix u2 and irreducible prefix v2, u <
v < 2u, then for every w ∈ u+1..v−1 and for every k ∈ 0..v−u−1, x[k+1..k+2w]
is not a square.

Proof. Suppose that for 0 ≤ k < v−u and u < w < v, w2 = x[k+1..k+2w].
For k = 0, Lemma 2 requires that u+w ≤ v, hence that 2u < v, a contradiction.
Thus the lemma holds for k = 0, and so we assume k ≥ 1. Making use of the
notation of Lemma 8, we consider two main cases:

I 1 ≤ k < u1 (k small)

Since k+1 < u1 +1 and k+w ≥ u+2 = 2u1 +u2 +2, therefore u2u1 =
x[u1+1..2u1+u2] is an internal substring of w = x[k+1..k+w]. Then

u2u1 = x[u1+1+w..2u1+u2+w]
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is also an internal substring of w = x[k+1+w..k+2w]. Further, since

u1+1+w > u1+1+u = 3u1+u2+1,

2u1+u2+w < 2u1+u2+v = 5u1+3u2,

therefore u2u1 is an internal substring of x[3u1+u2+1..5u1+3u2] = (u2u1)2.
Thus u2u1 = Rj(u2u1) for some j > 0, and so by Lemma 9 u2u1 is a repe-
tition. Then by Lemma 10 u1u2 is a repetition, contradicting the minimality
of u2. Hence k �∈ 1..u1−1.

II u1 ≤ k < v−u (k large)

This case divides into two subcases:

II.1 k+w ≥ v (k+w large)

Observe that now w1 = x[k+1..k+w] must have prefix Rk−u1 (u2u1
2),

while w2 = x[k+1+w..k+2w] must have prefix Rj(u2u1
2) for some

j. In order that j should equal k−u1, the beginning of w2 would have
to be offset by v from the beginning of w1, implying that w = v, an
impossibility. Therefore j �= k−u1.

We conclude that w has a prefix equal to two distinct rotations of u2u1
2,

so that by Lemma 9, Rj(u2u1
2) is a repetition. Hence by Lemma 10 so

also is u = u1u2u1, contradicting the minimality of u2. Thus this sub-
case is impossible.

II.2 k+w ≤ v−1 (k+w small)

Since k ≥ u1 and w ≥ u+1, we may assume from now on that

u+u1+1 ≤ k+w ≤ v−1. (4)

Again we must divide into subcases:

II.2.1 k+2w ≥ u+v (k+2w large)

Since w ≤ v−1, II.2 implies that

k+2w ≤ 2v−u1−2,

so that w2 = x[k+1+w..k+2w] must have suffix Rj2(u2u1
2) for some

j2 ∈ 0..u1+u2. At the same time, (4) implies that w1 = x[k+1..k+w]
must have suffix Rj1(u2u1

2) for some j1 ∈ 1..u2−1.

Suppose j1 = j2. Then since w1 terminates at some position in the
second occurrence of u2 in x, so also must w2 terminate at the same



A New Periodicity Lemma 263

position in the fourth occurrence of u2 in x. But this again requires
that w = v, contradicting the assumption that w ≤ v−1.

Hence j1 �= j2 and so w has a suffix that is two distinct rotations
of u2u1

2. Again using Lemma 9 and Lemma 10, we argue that
u = u1u2u1 is a repetition, contradicting the minimality of u2.
Thus II.2.1 is impossible.

II.2.2 k+2w < u+v (k+2w small)

By (4) we can write

w1 = u2[k−u1+1..u2]u1u1u2[1..K],

where k−u1+1 ≤ K ≤ u2−1. Setting

z = w[1..z] = u2[k−u1+1..K],

we may write w = u+z, where

z = K−(k−u1). (5)

Observe that w1 has prefix y = u2[k−u1+1..u2]u1 of length y = u−k
that must also be a prefix of

w2 = x[u+u1+K+1..u+u1+K+w].

Thus y has border u2[K+1..u2]u1 of length u1+u2−K and therefore
period

(u−k)− (u1+u2−K) = z.

Hence for some integer q ≥ 1 and some proper prefix z∗ of z,

w = w1 = zqz∗t (6)
= w2 = zq−1z∗u2[1..z]t, (7)

where u2[1..z] = Rj(z) for some j ∈ 0..z−1, and because of (6),

t = u1u2[1..K],

while as a consequence of (7),

t = u2[z+1..z+u1+K], z+u1+K ≤ u2;
= u2[z+1..u2]u1[1..z+u1+K−u2], otherwise.

Thus t is a border of x1 = x[v+1..k+2w] = x[1..k+2w−v], so that
x1−t is a period of x1. Since x1 = k+2w−v = u1+z+t, it follows
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that u1+z is a period of x1. In other words, x has a prefix of length
u1+z+t of period u1+z. Since

(u1+z+t)− 2(u1+z) = (u1+K)− (u1+z)
= K−z

= k−u1, by (5)
≥ 0, by II

we conclude that x has prefix s2, where s = u1u2[1..z], in contradic-
tion to the minimality of u2. Therefore II.2.2 also is impossible. �

We can state an equivalent of Lemma 11 for runs. Observe first that by definition
every run is irreducible. Observe also that if a run of period u and tail t occurs at
position i in x, no run of the same period can occur at any position j ∈ i..i+u+t.
Thus, if we define a minimal run to be a run of generator u where u2 is a
minimal square, we can state

Lemma 12 Suppose x has a minimal run of period u as prefix and another run
of period v < 2u as prefix. Then for every positive integer k < v−u and for every
w ∈ u..v, no run of period w occurs at position k+1 of x. �

3 Discussion

We have proved two main lemmas (6 and 11) that restrict the periods w of
squares that can occur at positions i+k in x when at position i either one
(Lemma 6) or two (Lemma 11) squares are known to occur. It seems that, with
the exception of [10, Lemma 8.1.14], such properties have not previously been
studied. In particular, we hope that with the help of Lemma 11, it will be possible
to establish, or at least make progress with, the three conjectures arising out of
[8].

The Main/Kolpakov-Kucherov algorithm [8, 11] is the only known linear-
time algorithm for computing all the runs in a given string x. It is complex and,
until recently, depended for its worst-case linear behaviour on the use of Farach’s
algorithm [3], also complex and not space-efficient, for linear-time computation
of suffix trees. Since 2003 two worst-case linear-time suffix array construction
algorithms [6, 7] have been available for use in the computation of the LZ fac-
torization, but even after the substitution of suffix arrays for suffix trees in the
all-runs algorithm, significant complications remain. We expect that, with a more
precise understanding of the periodicity of runs, it will become possible to design
simpler algorithms that will compute all the runs in a string in a more direct
and more space-efficient manner.
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Abstract. Two equal length strings, or two equal sized two dimensional
texts, parameterize match (p-match) if there is a one-one mapping (rela-
tive to the alphabet) of their characters. Two dimensional parameterized
matching is the task of finding all m × m substrings of an n × n text
that p-match to an m × m pattern. This models, for example, search-
ing for color images with changing of color maps. We present an algo-
rithm that solves the two dimensional parameterized matching problem
in O(n2 + m2.5 · polylog(m)) time.

1 Introduction

Let S and S′ be two equal length strings. We say that S and S′ parameterize
match, or p-match for short, if there is a bijection π from the alphabet of S to the
alphabet of S′ such that S′[i] = π(S[i]) for every index i. In the parameterized
matching problem, introduced by Baker [9, 11], one is given a text T and pattern
P and the goal is to find all the substrings of T of length |P | that p-match to P .
Baker introduced parameterized matching for applications that arise in software
tools for analyzing source code. Other applications for parameterized matching
arise in image processing and computational biology (see [2]).

In [9, 11], an optimal linear time algorithm was given for p-matching. How-
ever, it was assumed that the alphabet was of constant size. An optimal algo-
rithm for p-matching in the presence of an unbounded size alphabet was given
in [6]. In [10], a novel method was presented for parameterized matching by
constructing parameterized suffix trees, which also allows for online p-matching.
The parameterized suffix tree was further explored by Kosaraju [16] and faster
constructions were given by Cole and Hariharan [12].

In [7], approximate parameterized matching was introduced and a solution
for binary alphabets was given. In [15], an O(nk1.5 + mk log m) time algorithm
was given for approximate parameterized matching with k mismatches, and a
strong relation was shown between this problem and maximum matchings in
bipartite graphs.
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One of the interesting problems in web searching is searching for color im-
ages, see [4, 8, 17]. If the colors are fixed, this is exact two dimensional pattern
matching [3]. However, images can appear under different color maps. The image
is the same image however each color has been recolored with a unique color.
Two-dimensional parameterized search is precisely what is needed. The fastest
algorithm for solving the two dimensional parameterized matching problem was
given in [2], and its time complexity is O(n2 log2 m).

It is an open question whether a linear time algorithm for the two dimensional
parameterized matching problem exists. In this paper we show that it is possible
to get an algorithm that is linear in the text size, but with a penalty in the
preprocessing stage. More precisely, the time complexity of our algorithm is
O(n2 + m2.5 · polylog(m)). For alphabets drawn from a large universe (larger
than polynomial in n) the time complexity increases to O(n2 log |Σ| + m2.5 ·
polylog(m)). However, this seems to be unavoidable as it was shown in [6] that
the one-dimensional parameterized matching requires Ω(n log |Σ|) time.

Due to lack of space, some proofs are omitted.

2 Preliminaries and Definitions

Let T and T ′ be two texts of size k×k. We say that there is a function matching
between T and T ′ if there is a mapping f from the alphabet of T to the alphabet
of T ′ such that T ′[i, j] = f(T [i, j]) for all i and j. If the mapping f is one-
to-one, we say that T and T ′ parameterize match, or p-match for short. Note
that the definition of function matching is asymmetric whereas the definition of
parameterized matching is symmetric. The parameterized matching problem is
defined as follows:
Input: An n× n text T and an m×m pattern P .
Output: All substrings of T of size m×m that p-match to P .

The algorithms for one dimensional parameterized matching are based on
converting the pattern and text strings into predecessor strings. The predecessor
of location i in a string S is the location containing the previous appearance
of the symbol S[i], if there is such a location. The predecessor string of S is
obtained by replacing each character in S by the distance to its predecessor, or
by 0 if the character does not have a predecessor. For example, the predecessor
string of aabbaba is 0, 1, 0, 1, 3, 2, 2. A simple and well-known fact is that:

Observation 1 S and S′ p-match iff they have the same predecessor string.

Observation 1 gives a handle on finding p-matches for 1-dimensional texts.
We would like to use a similar observation for 2-dimensional texts as well. In
order to do so we define the following.

Definition 1 (strip). Let T be an n× n text. The i-th strip of T is the n×m
substring T [1 . . n, i . . i + m− 1].

Let A be a k × l string. We define the linearization of A to be the one-
dimensional string A[1, 1], . . . , A[1, l], A[2, 1], . . . , A[2, l], . . . , A[k, 1], . . . , A[k, l].
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Definition 2 (predecessor). Let T be an n × n text, T ′ be a strip of T , and
(i, j) be a location in T . The predecessor of (i, j) w.r.t. T ′ is the location (i′, j′)
in T such that (i′ − 1)m + j′ is the predecessor of location (i − 1)m + j in the
linearization of T ′.

A pair of a location in T and its predecessor will be called a location-predecessor
pair.

3 Overview

We begin by giving an overview of the algorithm. As in many pattern matching
algorithms, we assume w.l.o.g. that n = 2m. Larger texts can be cut into 2m×2m
pieces which are handled separately.

The outline of the algorithm follows the “duel-and-sweep”-paradigm that
appeared in [3] (there it is named “consistency and verification” and was used for
2-dimensional exact matching) and is based upon ideas of duelling techniques [18,
19]. The idea of the “duel-and-sweep”-paradigm is to maintain a list of m ×m
substrings of T , called candidates, that might match to P . Starting with all
the m ×m substrings of T , the list is pruned in two stages to a list of all the
candidates which actually match. The two stages are called the duelling stage
and the sweeping stage. However, exact matching turns out to be much simpler
than parameterized matching. This is mainly because of the “witness” which is
used in the duelling stage to differentiate between two pattern alignments. In
exact matching a witness is simply one location with a mismatch between the two
alignments. However, in parameterized matching one location is not sufficient to
rule out a match. The following definition captures the concept of a witness in
parameterized matching.

Definition 3 (witness). Let P be a pattern of size m×m. Consider an align-
ment of P with itself, starting at location (a + 1, b + 1) (namely, P [x, y] in the
first copy of P is aligned with P [x+a, y + b] in the second copy of P ). A witness
relative to the offset (a, b) is a pair of locations (x, y), (x′, y′) such that one of
the following holds:

1. P [x, y] = P [x′, y′] and P [x + a, y + b] �= P [x′ + a, y′ + b].
2. P [x, y] �= P [x′, y′] and P [x + a, y + b] = P [x′ + a, y′ + b].

In the duelling stage, we use the fact that if two p-matches of P in T overlap,
then there is a p-matching between the two substrings of P that correspond to
the overlapping area of the two matches. Using a witness array for P , we can
check pairs of overlapping candidates which do not agree on their overlapping
area, and rule out at least one candidate from the pair in constant time per pair.
After this stage we remain only with candidates that agree with each over.

In the sweeping stage, we need to check the remaining candidates. This is
done by going over all the strips of T from left to right, and for each strip,
checking the candidates that are contained in the current strip.
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Suppose that the current strip starts at column y, and consider some candi-
date T ′ = T [x . . x + m − 1, y . . y + m − 1] in the strip. Suppose that we know
the predecessor for every location in the current strip of T .

Before we make the next observation, a central concept which has a similar
flavor to the witness defined above is as follows.

Definition 4 (mismatch pair). Let R and S be two equal sized 2-dimensional
strings. A mismatch pair between R and S is a pair of locations (i, j), (i′, j′)
such that one of the following holds:

1. R[i, j] = R[i′, j′] and S[i, j] �= S[i′, j′].
2. R[i, j] �= R[i′, j′] and S[i, j] = S[i′, j′].

We now observe that:

Observation 2 1. If T ′ p-matches to P , then every location-predecessor pair
inside T ′ (namely, both the location and its predecessor are in T ′) is not a
mismatch pair for T ′ and P .

2. If there is no location-predecessor pair inside T ′ which is a mismatch pair
for T ′ and P , then there is a function matching between T ′ and P .

3. If there is a function matching between T ′ and P , then there is a p-matching
between T ′ and P if and only if the number of distinct characters in T ′ is
equal to the number of distinct characters in P .

By Observation 2, the algorithm for checking the candidates will have two
steps: In the first step, we go over all the location-predecessor pairs inside the
candidate, and check whether one of these pairs is a mismatch pair. In the
second step we compute the number of distinct characters in each candidate and
compare it to the number of distinct characters in P .

In order to implement the first step, we go over al strips of T (from left to
right) while maintaining the predecessor of every location in the current strip.
Computing the predecessor of every location in the first strip of T takes O(m2)
time. When going from one strip to the next strip, only at most 6m predecessors
are changed, and we will show how to do the update in O(m) time.

Clearly, if we check each location-predecessor pair for each candidate sep-
arately, then the algorithm will not be efficient (the time complexity will be
Θ(m4) in the worst case). However, we can use the fact that after the duelling
stage, all the remaining candidates agree with each other. Therefore, for each
location-predecessor pair in T , the pair is either a mismatch pair for P and ev-
ery candidate that contains the pair, or the pair is not a mismatch pair for any
candidate. Thus, for each location-predecessor pair we need to check only two
characters in P , and if there is a mismatch, we can rule out all the remaining
candidates that contain the pair.

The second step is done by computing the number of distinct characters in
every m×m substring of T . Amir et al. [4] gave an algorithm for this problem
whose time complexity is O(m2 log m). We can solve the problem in O(m2) time,
but omit the details for space reasons. (Amir and Cole [5] also have solved the
problem in the same time bounds).
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4 Algorithm Details

From Observation 2, we need to check for each candidate whether the location-
predecessor pairs inside it are mismatch pairs. As discussed in Section 3, we will
check every location-predecessor pair only once during the entire algorithm.

The main idea is as follows: We go over the strips of T from left to right.
When going from the (y−1)-th strip to the y-th strip, there are at most 3n = 6m
new location-predecessor pairs: (1) Every location in column y + m− 1 and its
predecessor form a new pair, (2) Every location in column y+m−1 may become
the predecessor of some location in columns y, . . . , y + m − 2, and (3) Every
location in columns y, . . . , y + m− 2 whose predecessor was in column y− 1 will
form with its new predecessor a new pair. After a preprocessing step on T that
will be described in Section 5, we can find all the new location-predecessor pairs
in time O(m).

Now, we only need to check whether there is a mismatch pair among the new
location-predecessor pairs, as we already checked the old pairs in the previous
iterations. Let (r, c), (r′, c′) be some new location-predecessor pair for the y-th
strip. All the candidates that contain the locations (r, c) and (r′, c′) agree with
each other, so (r, c), (r′, c′) is a mismatch pair for all of these candidate, or for
none. Therefore, we only need to find one candidate (z, w) (with w ≥ y) that
contains both locations, and check whether P [r − z + 1, c − w + 1] = P [r′ −
z + 1, c′ − w + 1]. If these two character are not equal, then (z, w) cannot be a
match, and moreover, every candidate that contains (r, c) and (r′, c′) cannot be
a match. In other words, we can rule out every candidate whose top-left corner
is in the rectangle {r−m+1, . . . , r′}×{y, . . . , min(c, c′)}. Note that it is possible
that the predecessor of (r, c) changes at some strip y′ for y < y′ ≤ min(c, c′), so
(r, c), (r′, c′) is not a location-predecessor pair for some of the candidates that
we rule out. However, this does not affect the correctness of the algorithm.

We now need to handle two issues: How to find a candidate that contains the
pair (r, c), (r′, c′), and in a case of a mismatch, how to rule out the candidates
in the corresponding rectangle.

We first deal with the first issue. Given a location-predecessor pair (r, c),
(r′, c′), we will find the highest candidate that can contain the pair (r, c), (r′, c′),
which will be denoted (z, w). More precisely, among all the candidates in {r −
m + 1, . . . , n} × {y, . . . , min(c, c′)} (note that the rectangle here ends in row n),
(z, w) is the candidate with smallest row number (ties are broken arbitrarily).
Clearly, if (z, w) does not contain the pair (r, c), (r′, c′) (that is, if z > r′), then
there is no candidate (that begins in a column greater than y) that contains the
pair (r, c), (r′, c′).

We now describe how to find the highest candidate in constant time. To do
that, we build an n × n array A, where A[i, j] is the smallest row in which a
candidate starts, among all the candidates with start row at least i−m + 1 and
start column j. If there are no such candidates, then A[i, j] = 2m. The array A
can be easily computed by scanning the text column by column, from bottom
to top. Now, given a location-predecessor pair (r, c), (r′, c′), in order to find the
highest candidate that can contain the pair, we need to find the minimum value
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among the subrow A[r, y], A[r, y+1], . . . , A[r, min(c, c′)]. This is the range minima
problem [13], so after preprocessing each row of A in O(m) time per row, we can
find the minimum element in some subrow of A in constant time.

We now turn to the problem of eliminating candidates. As discussed above,
during the algorithm we find rectangles that do not contain a match. Instead
of eliminating the candidates at the time each rectangle is discovered, we store
the rectangle in a list L, and after obtaining all the rectangles, we perform a
candidates elimination stage.

In the candidates elimination stage, we need to remove each candidate whose
top-left corner is in some rectangle of L. This is done by moving a vertical sweep
line from left to right. We maintain two vectors V and B, where V [i] (resp.,
B[i]) is the number of rectangles in L that intersect the current sweep line, and
whose top (resp., bottom) row is i. Using these vectors, we can compute the
number of rectangles that contain each point on the sweep line, and eliminate
the candidates whose top-left corner is contained in at least one rectangle. The
time complexity of this step is linear in the number of rectangles in L, which is
at most 6m2.

5 Text Preprocessing

In this section, we show how to compute an array of pointers, which will be used
to maintain the predecessors of the current strip.

Definition 5 (left predecessor). For a location (i, j) in T with j > m, the
left predecessor of (i, j) is the predecessor of location (i, j) w.r.t. the (j−m+1)-th
strip of T .

Given the left predecessors of all the locations in T , it is straightforward to
maintain the predecessor of every location w.r.t. the current strip.

We now show how to compute the left predecessor of every location in T . We
scan the entire text bottom-up left-to-right. For each symbol σ, we keep a list
Lσ of all the locations (i, j) with j > m and T [i, j] = σ for which we haven’t
computed a left predecessor yet. The elements of Lσ are ordered according to
their scan order. When the scan of T reaches a location (x, y), we need to check
for which elements of LT [x,y] the left predecessor is (x, y), and these elements
will be removed from LT [x,y]. Moreover, if y > m and the left predecessor of
(x, y) is not in row x, then (x, y) is added to the end of LT [x,y]. For efficient
implementation of the algorithm above, we use the following properties of the
Lσ lists.

Claim 1 If (i, j) and (i′, j′) are two elements of some list Lσ, where (i, j) ap-
pears in the list before (i′, j′), then i > i′ and j < j′.

Claim 2 Let (i1, j1), . . . , (is, js) be the locations in LT [x,y] according to their
order. A location (x, y) is either the left predecessor of (i1, j1), . . . , (if , jf ) for
some 1 ≤ f ≤ s, the left predecessor of (if , jf ), . . . , (is, js) for some 1 < f ≤ s,
or the left predecessor of none of these locations.

From Claim 2, the text preprocessing stage can be implemented in O(n2) time.
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Fig. 1. The subsets of D.

6 Pattern Preprocessing

Let P be an m ×m string. We will show how to compute a witness for every
offset (a, b) that has a witness.

Let l be some integer that will be specified later. Consider an alignment of
P against itself, with offset (a, b). We say that (a, b) is a source if there is a
p-match between the overlapping areas in the two copies of P . If (a, b) is not a
source, then a there is at least one witness for (a, b). A witness (x, y), (x′, y′) is
called a witness of type 1 if it satisfies condition 1 in Definition 3, and otherwise,
it is called a witness of type 2. There are four cases that we need to consider,
according to the signs of a and b. In the following, we will handle the case when
a ≥ 0 and b ≥ 0. The other cases are symmetrical, and thus omitted.

Let (a, b) be an offset which is not a source, and let D = {1, . . . , m − a} ×
{1, . . . , m − b} be the set of locations in the overlapping area of P when P is
aligned against itself with offset (a, b). We partition D into subsets (see Figure 1):
A1, . . . , A4 are the l × l squares in the corners of D. B1, . . . , B4 are rectangles
of width or height l in the borders of D excluding the corners, and C is the
remaining part of D (namely, C = D \ (A1 ∪ · · · ∪A4 ∪B1 ∪ · · · ∪B4)). Formally,

A1 = {(x, y) ∈ Z
2 : 1 ≤ x ≤ l and 1 ≤ y ≤ l},

A2 = {(x, y) ∈ Z
2 : 1 ≤ x ≤ l and m− b− l + 1 ≤ y ≤ m− b},

etc.
We say that a witness w for (a, b) is simple if it does not satisfy any of the

following conditions:

1. w is of type 1, and one of the locations of w is in A1.
2. w is of type 1, one of the locations of w is in A2 ∪ B3 ∪ A4, and the other

location is in A3 ∪B4 ∪A4.
3. w is of type 2, and one of the locations of w is in A4.
4. w is of type 2, one of the locations of w is in A1 ∪ B1 ∪ A2, and the other

location is in A1 ∪B2 ∪A3.
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The algorithm consists of three stages:

1. Find simple witnesses.
2. Find witnesses that satisfy conditions 1 or 3 above.
3. Find witnesses that satisfy conditions 2 or 4 above.

The three stages of the algorithm are described in the next sub-sections. In each
stage, we will handle only offsets do not contain witnesses that were handled by
the previous stages.

6.1 Stage 1

This stage is similar to the algorithm of Amir et al. [2]: We create new strings
P1 and P2 by replacing every character P [x, y] in P by 8m

l +4 characters, where
each of these characters is either a pointer to some location (x′, y′) in P such
that P [x′, y′] = P [x, y], or a null pointer.

For each location (x, y) in P , we define rectangles on the grid Z2 in following
way: For i = −m

l , . . . , m
l − 1, let

Hi,(x,y) = {(x′, y′) ∈ Z
2 : y′ ≤ y and x + il ≤ x′ < x + (i + 1)l},

Ĥi,(x,y) = {(x′, y′) ∈ Z
2 : y′ ≥ y and x + il ≤ x′ < x + (i + 1)l},

Vi,(x,y) = {(x′, y′) ∈ Z
2 : x′ ≤ x and y + il ≤ y′ < y + (i + 1)l},

and
V̂i,(x,y) = {(x′, y′) ∈ Z

2 : x′ ≥ x and y + il ≥ y′ < y + (i + 1)l}.

Furthermore, let H(x,y) = {(x, y′) ∈ Z2 : y′ ≤ y}, and we similarly define the
rectangles Ĥ(x,y), V(x,y), and V̂(x,y). We say that a rectangle Hi,(x,y) (or other H
rectangle) is inside the square of P if there is at least one column of Hi,(x,y) that is
contained in {1, . . . , m}×{1, . . . , m}, namely, if 1 ≤ y+il and y+(i−1)l−1 ≤ m.
A V rectangle is inside the square of P if there is at least one row of the rectangle
that is contained in {1, . . . , m} × {1, . . . , m}.

The string P1 is constructed by replacing every character P [x, y] in P by the
characters c1, . . . , c8m/l+4 (P1 is an m× ((8m

l + 4)m) string) which are defined
as follows:

– For i = −m
l , . . . , m

l − 1, if the rectangle Hi,(x,y) is inside the square of P ,
traverse over the elements of Hi,(x,y) in a column major order (from right
to left), until reaching a location (x′, y′) for which P [x′, y′] = P [x, y], if
there is such a location. If a location (x′, y′) was found, then set cm/l+i+1 =
(x − x′, y − y′), and we say in this case that cm/l+i+1 points to (x′, y′).
Otherwise (namely, the rectangle Hi,(x,y) does not contain a character equal
to P [x, y]), set cm/l+i+1 = φ.
If the rectangle Hi,(x,y) is not inside the square of P , then set cm/l+i+1 = φ.

– For i = −m
l , . . . , m

l − 1, the character c3m/l+i+1 is built from the rectangle
Ĥi,(x,y) in the same way described above, except that the rectangle is tra-
versed from right to left, and furthermore, if the rectangle does not contain
a character equal to P [x, y], then c3m/l+i+1 = 0.
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– For i = −m
l , . . . , m

l − 1, the characters c5m/l+i+1 and c7m/l+i+1 are built
from the rectangles Vi,(x,y) and V̂i,(x,y) the same as above, except that the
rectangles are traversed in a row major order (if the corresponding rectangle
does not contain a character equal to P [x, y], we use φ for c5m/l+i+1 and 0
for c7m/l+i+1).

– The character c8m/l+1 corresponds to the rectangle H(x,y), and it is han-
dled the same as the characters c1, . . . , c2m/l. Furthermore, the characters
c8m/l+2, c8m/l+3, and c8m/l+4 correspond to the rectangles Ĥ(x,y), V(x,y),
and V̂(x,y), respectively.

The string P2 is built in two steps. The first step is the same as building P1,
except that we replace the roles of φ and 0, that is, we use φ for characters
that correspond to the rectangles Ĥi,(x,y) and V̂i,(x,y), and 0 for characters that
correspond to the rectangles Hi,(x,y) and Vi,(x,y). After the first step, P2 is an
m×((8m

l +4)m) string. In the second step, we expand P2 into a 2m×2((8m
l +4)m)

string, where all the new characters are φ.
After building P1 and P2, we solve the (standard) matching problem with

don’t care symbols on P1 and P2, where P1 is the pattern, P2 is the text, and φ
is the don’t care symbol. Moreover, using the algorithm of Alon and Naor [1], we
find witnesses for every mismatch between P1 and P2, namely, for every (a, b)
such that P1 does not match to P2[a+1 . . a+m, b+1 . . b+m], we find a location
(x, y) such that P1[x, y] �= P2[x + a, y + b].

Consider some fixed pair (a, b), and define P ′
2 = P2[a+1 . . a+m, b+1 . . b+m].

Claim 3 If P1 does not match to P ′
2, then (a, b) is not a source. Moreover, from

every witness to the mismatch of P1 and P ′
2 we can obtain a witness for (a, b)

in constant time.

The converse of Claim 3 is not true. A weaker result is given in the following
lemma.

Lemma 1. If (a, b) has a simple witness then P1 does not match to P ′
2.

Proof. Suppose that w = {(x, y), (x′, y′)} is a simple witness for (a, b). W.l.o.g.
we assume that x ≥ x′, and moreover, if x = x′ we assume that y > y′. We will
deal with the case when w is a witness of type 1, and omit the proof for the case
when w is of type 2. We consider 3 cases.

Case 1. In the first case, suppose that either x = x′ or (x′, y′) is in B1 ∪C ∪B4,
or in other words, l + 1 ≤ y′ ≤ m− b − l. We prove the lemma using induction
on x− x′.

If x = x′, we have that (x, y′) ∈ H(x,y). Thus, the character of P1 that
corresponds to H(x,y) points to some location (x, y′′) such that y′ ≤ y′′ < y
and P [x, y′′] = P [x, y]. If P [x + a, y′′ + b] �= P [x + a, y + b], then the character
of P2 that corresponds to H(x+a,y+b) either points to some location other than
(x + a, y′′ + b), or is equal to 0. In both cases, we conclude that P1 does not
match to P ′

2. If P [x + a, y′′ + b] = P [x + a, y + b], then w′ = {(x, y′′), (x, y′)} is
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a simple witness for (a, b) of type 1. We can now use the argument above on w′

and either obtain that P1 does not match to P ′
2, or obtain a new witness w′′.

We can continue this process until obtaining a mismatch between P1 and P ′
2.

Now, suppose that x > x′, and we proved case 1 of the lemma for every
witness in which the difference between the rows in the two locations is less than
x−x′. Since l+1 ≤ y′ ≤ m−b−l, it follows that the rectangle Vi,(x,y) that contains
the location (x′, y′) is inside the square of P . Therefore, the character of P1 that
corresponds to Vi,(x,y) points to some location (x′′, y′′), where x ≤ x′′ < x′.
If P [x′′ + a, y′′ + b] �= P [x + a, y + b] then we are done since the character of
P2 that corresponds to Vi,(x+a,y+b) either points to some location other than
(x′′ + a, y′′ + b), or is equal to 0. Otherwise, we use the induction hypothesis on
w′ = {(x′′, y′′), (x′, y′)}. Note that it is possible that (x′′, y′′) ∈ A1 and therefore
w′ is not simple. However, the arguments we used above still work on w′, so we
still obtain that P1 does not match to P ′

2.

Case 2. The second case is when either y = y′ or leftmost location among (x, y)
and (x′, y′) is in B2∪C∪B3. The proof for the case is symmetrical to the proof of
case 1 (we use the rectangles V(x∗,y∗) and Hi,(x∗,y∗) instead of H(x,y) and Vi,(x,y),
where (x∗, y∗) is the rightmost location).

Case 3. Assume that cases 1 and 2 do not occur. Since case 1 does not occur,
we have that either y′ ≤ l or y′ ≥ m− b− l + 1. We consider 4 sub-cases:

1. y′ ≤ l and y > y′. Since (x′, y′) is the leftmost location and case 2 does
not occur, we have that either x′ ≤ l or x′ ≥ m − a − l + 1. If x′ ≤ l then
(x′, y′) ∈ A1, and therefore w is not simple, a contradiction.
If x′ ≥ m− a− l + 1, then the rectangle H−1,(x,y) is inside the square of P ,
and it contains the location (x′, y′). Therefore, using the same arguments as
in case 1, we obtain that P1 does not match to P ′

2.
2. y′ ≤ l and y < y′. In this case, the rectangle V0,(x,y) is inside the square of

P , and it contains the location (x′, y′). Thus, P1 does not match to P ′
2.

3. y′ ≥ m− b− l + 1 and y > y′. The rectangle V−1,(x,y) is inside the square of
P , and it contains the location (x′, y′), so P1 does not match to P ′

2.
4. y′ ≥ m− b− l + 1 and y < y′. Since (x, y) is the leftmost location, it follows

that either x ≤ l or x ≥ m − a − l + 1. In the former case, the rectangle
H0,(x′,y′) is inside the square of P , and it contains the location (x, y). It
follows that P1 does not match to P ′

2. In the latter case, we obtain that w is
not simple, a contradiction. �

From Claim 3 and Lemma 1 we conclude that stage 1 of the algorithm cor-
rectly finds a witness for every offset (a, b) that has simple witnesses. The time
complexity of this stage is O(|P2| · log4+o(1) |P1|) = O(m3

l · log4+o(1) m).

6.2 Stage 2

In the following stages, we will describe only how to find witnesses of type 1, as
handling the witnesses of type 2 is symmetrical. The second stage is composed
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of four sub-stages. We will not give detailed proofs for the correctness of these
steps, as the proofs are similar to the proof of Lemma 1.

Stage 2a. In this stage we find witnesses w such that the two locations of w
are in A1. For each location (x, y) in P , we define rectangles as follows:

H2
i,(x,y) = {(x + i, y′) ∈ Z

2 : y′ ≤ y}
V 2

i,(x,y) = {(x′, y + i) ∈ Z
2 : x′ ≤ x}.

Using these rectangles, we build strings P 2
1 and P 2

2 by replacing each character
P [x, y] in P by 4l characters that correspond to the rectangles H2

i,(x,y) and
V 2

i,(x,y) for i = −l +1, . . . , l− 1. Each of the 4l characters is chosen by traversing
the appropriate rectangle similarly to the construction of P1 and P2 in stage 1.
Then, we solve the matching problem for P 2

1 and P 2
2 and find witnesses for the

mismatches. The correctness of this sub-stage follows from the fact that for two
locations in A1, one of the locations is inside the rectangles of the other location.

Stage 2b. In this stage we find all the witnesses w such that one location of w
is in A1, and the other location is in B1 ∪B2 ∪C ∪A3 ∪B4.

As in the previous stages, we create new strings by replacing each character
in P with pointers to other occurrences of the character. However, instead of
creating one matching problem instance, we will create O(m2/l) instances. The
main idea is to group the different offsets into set and build a matching problem
instance for each set, and then use the instance to find witnesses for the offsets
in the set. In each set, all the offsets are close to each other, and we use this fact
in our construction.

Consider a set of offsets (a, b), (a, b + 1), . . . , (a, b + l/2− 1) (we assume that
l is even), where b is a multiple of l. Define the rectangles

H3,a,b
(x,y) = {(x′, y′) ∈ Z

2 : y ≤ y′ ≤ y + m− b− l and 0 ≤ x′ ≤ m− a}

H4,a,b
(x,y) = {(x′, y′) ∈ Z

2 : y′ ≤ y and x ≤ x′ ≤ m− a}

H5,a,b
(x,y) = {(x′ + a, y′) : (x′, y′) ∈ H3,a,b

(x,y)}
and

H6,a,b
(x,y) = {(x′ + a, y′) : (x′, y′) ∈ H4,a,b

(x,y)}.

Next, build the strings P 3,a,b
1 and P 3,a,b

2 as follows: For every location (x, y)
with 1 ≤ x ≤ l and 1 ≤ y ≤ l/2, the string P 3,a,b

1 contains two characters
for P [x, y] corresponding to the rectangles H3,a,b

(x,y) and H4,a,b
(x,y). For every location

(x, y) with a + 1 ≤ x ≤ a + l and b + 1 ≤ y ≤ b + 3l/2, the string P 3,a,b
2

contains two characters for P [x, y] corresponding to the rectangles H5,a,b
(x,y) and

H6,a,b
(x,y). Moreover, the string P 3,a,b

2 is padded with don’t care symbols.
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As in the previous stages, we solve the matching problem for P 3,a,b
1 and

P 3,a,b
2 and find witnesses for the mismatches. If {(x, y), (x′, y′)} is a witness for

(a, b′) where b ≤ b′ ≤ b + l/2, (x, y) ∈ {1, . . . , l} × {1, . . . , l/2}, and (x′, y′) ∈
B1∪B2∪C ∪A3∪B4, then one of the rectangles H3,a,b′

(x,y) and H4,a,b′

(x,y) contains the

location (x′, y′), and it follows that P 3,a,b′
1 does not match to P 3,a,b′

2 . Moreover,
from every witness to the mismatch of P 3,a,b′

1 and P 3,a,b′
2 , we can obtain a witness

for (a, b′).
Finding witnesses with one location of the witness in {1, . . . , l} × {l/2 +

1, . . . , l} and the other in B1 ∪B2 ∪ C ∪A3 ∪B4 is done in a similar way.

Stage 2c. This stage finds all the witnesses w such that one location of w is in
A1, and the other location is in A2 ∪ B3. This stage is analogous to stage 2b,
and we omit the details.

Stage 2d. In this final sub-stage, we find all the witnesses w such that one
location of w is in A1, and the other location is in A4. Recall that

H2
i,(x,y) = {(x + i, y′) ∈ Z

2 : y′ ≤ y}.

For every set of offsets {(a+ i, b+ j) : i = 0, . . . , l−1 and j = 0, . . . , l−1} where
a and b are multiples of l, build strings P 5,a,b

1 and P 5,a,b
2 : For every location

(x, y) with m − a − 2l + 2 ≤ x ≤ m and m − b − 2l + 2 ≤ y ≤ m, P 5,a,b
1

contains 3l−3 characters for P [x, y], corresponding to the rectangles H2
i,(x,y) for

i = m− a− 3l + 2, . . . , m− a− 1. Similarly, for every (x, y) with 1 ≤ x ≤ 2l− 1
and 1 ≤ y ≤ 2l − 1, P 5,a,b

2 contains 3l − 3 characters for P [x, y], corresponding
to the rectangles H2

i,(x,y) for i = m− a− 3l + 2, . . . , m− a− 1.

The total time complexity of stage 2 is O(m2l · log4+o(1) m).

6.3 Stage 3

Let (a, b) be some offset for which no witness was found during the previous
stages. We first look for witnesses with one location in B3 ∪ A4 and the other
location in A3∪B4∪A4. Define D′ = D\(A1∪B1∪A2). For a rectangle D′′ ⊆ D′

define D′′ + (a, b) = {(x + a, x + b) : (x, y) ∈ D′′}. Since there are no simple
witnesses for (a, b), and no witnesses that satisfy condition 3 in the definition
of a simple witness, we conclude that there are no type 2 witnesses with both
locations inside D′. Therefore, we make the following observation:

Claim 4 For every rectangle D′′ ⊆ D′, the number of distinct characters inside
the region D′′ of P is less than or equal to the number of distinct characters
inside the region D′′ of P , with equality if and only if there is no witness w for
(a, b) whose both locations are in D′′.
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From Claim 4, we devise the following algorithm for finding a witness in D′:
Check the number of distinct characters inside the regions D′ and D′ + (a, b) of
P . If these numbers are equal then stop (no witness was found). Otherwise, find
a minimal rectangle D′′ in D′ for which the number of distinct characters in D′′

is strictly less than the number of distinct characters in D′′ + (a, b). Then, one
of the pairs of opposite corners of the rectangle D′′ is a witness for (a, b). The
problem with this algorithm is that we do not know how to efficiently find such
a rectangle D′′. Instead, we will find a rectangle D∗ which will be approximately
equal to D′′.

In order to find D∗, consider the following intersection counting problem:
Given a set S of points in the plane where each point has a color, preprocess S
in order to answer efficiently queries of the form “what is the number of distinct
color in the points inside the rectangle (−∞, b]×[c, d]?”. Denote by n the number
of points in S. Gupta et al. [14] showed a data-structure for this problem with
preprocessing time O(n log2 n) which answers queries in O(log2 n) time. Using
this result, we obtain the following lemma:

Lemma 2. Let P be an m×m string, and let l be an integer. After preprocessing
of P in O(m3

l log2 m) time, the following queries can be answered in O(log2 m)
time: “what is the number of distinct characters in the substring P [a . . b, c . . d]?”,
where at least one of a, b, c, d is either 1, m, or a multiple of l.

We now return to the problem of finding the rectangle D∗. The algorithm
is as follows: First, build the data-structure of Lemma 2 on P . Then, compute
the number of distinct characters inside the regions D′ and D′ + (a, b) of P .
If these numbers are equal, stop. Otherwise, find a minimal rectangle D∗ =
{x, . . . , m − a} × {y, . . . , z} ⊆ D such that the number of distinct characters
inside the regions D∗ and D∗ + (a, b) of P are not equal, and x is a multiple of
l. Finding D∗ is is done using binary search and queries to the data-structure of
Lemma 2 (note that the queries we make satisfy the conditions of Lemma 2).

Let X be the set of all locations (c, d) such that c ∈ {x, . . . , x+ l− 1}∪{m−
a− l + 1, . . . , m− a} and d ∈ {y, z}. From Claim 4 and the minimality of X , we
obtain that there is a witness w for (a, b) of type 1 whose both locations are in
X . We find such a witness as follows:

1. Initialize tables V [1 . . |Σ|] and L[1 . . |Σ|] to zeros.
2. Go over the locations in X in some order. For every location (c, d), if

V [P [c, d]] /∈ {0, P [c+ a, d+ b]} output the witness {L[P [c, d]], (c, d)}. Other-
wise, set V [P [c, d]]← P [c + a, d + b] and L[P [c, d]]← (c, d).

By Lemma 2, the time complexity of this stage is O(m3

l log2 m+m2 log3 m+m2l)
(note that the initialization of the tables V and L above takes O(1) time).
Therefore, the total time complexity for preprocessing the pattern is O((m

l +
l)m2 ·log4+o(1) m). The last expression is O(m5/2 ·log4+o(1) m) when l = Θ(

√
m).
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An Optimal Algorithm
for Online Square Detection

Gen-Huey Chen, Jin-Ju Hong, and Hsueh-I Lu�

Department of Computer Science and Information Engineering
National Taiwan University

Abstract. A square is the concatenation of two identical non-empty
strings. Let S be the input string which is given character by character.
Let m be the (unknown) smallest integer such that the m-th prefix of S
contains a square. The online square detection problem is to determine
m as soon as the m-th character of S is read. The best previously known
algorithm of the online square detection problem, due to Leung, Peng,
and Ting, runs in O(m log2 m) time. We improve the time complexity
to O(m log β), where β is the number of distinct characters in the m-th
prefix of the input string. It is not difficult to implement our algorithm
to run in expected O(m) time.

1 Introduction

Let X ◦Y denote the concatenation of strings X and Y . A square is a non-empty
string of the form X ◦ X . A string does not contain any square is square free.
Let S[i, j] denote the substring of string S starting from position i and ending at
position j. If string X equals S[i, j], we say that X starts (or occurs) at position
i and ends at position j in S.

Let S be a length-n string. Observe that there could be Ω(n2) squares in S,
e.g., when S is an all-one string. There are several O(n log n)-time algorithms
for finding compact representations of all squares in S [1, 2, 8]. In particular,
each of these algorithms outputs O(n log n) periodic substrings of S such that
any square of S occurs in one or more of those O(n log n) periodic substrings of
S. These algorithms are optimal with respect to the worst-case output size [2].

Whether S is square free or not can be determined in O(n log α) time [3, 4, 9],
where α is the number of distinct characters in S. For example, Crochemore’s
approach [3, 4] is based upon the following f -factorization (also known as s-
factorization [3], which is a variant of LZSS factorization [10]) of S. Let |S|
denote the length of string S. The f -factorization of S, obtainable in O(n log α)
time, is a partition of S into disjoint segments B1, B2, . . . , Bp for some p ≥ 1
such that the following conditions hold for each i = 2, 3, . . . , p, where j = |B1|+
|B2|+ · · ·+ |Bi−1|:
� Corresponding author. Address: 1 Roosevelt Road, Section 4, Taipei 106, Taiwan,
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Condition 1 If S[j +1] does not occur in S[1, j] (i.e., B1 ◦B2 ◦ · · · ◦Bi−1), then
Bi = S[j + 1];

Condition 2 Otherwise, Bi is the longest prefix of S[j + 1, n] that occurs in S
before position j + 1.

Suppose that S[1, i] is known to the algorithm in Θ(i) time for each i =
1, 2, . . . , n and the problem is to determine the smallest m such that S[1, m]
contains a square. (Once m is known, one can easily identify all squares of
S[1, m] in O(m) time using longest common extensions.) Although there does
not seem to be any previous work on this problem, it can be solved in O(m log β)
time, where β is the number of distinct characters in S[1, m]. For example, we
can resort to the f ′-factorization of S, whose definition is the same as that of
f -factorization except replacing its Condition 2 with the following.

Condition 2’ Otherwise, Bi is the longest prefix of S[j + 1, n] that occurs in S
and ends before position j + 1.

Let B′
1, B

′
2, . . . , B

′
p be the f ′-factorization of S. Suppose that i is the smallest

index such that |B′
1| + |B′

2| + · · · + |B′
i| ≥ m. It is not difficult to see that the

first i blocks of the f ′-factorization of S as well as a square in S[1, m] can be
obtained in O(m log β) time.

Leung, Peng, and Ting [7] studied the square detection problem in a more
restricted setting. Suppose that S is given to the algorithm character by character
and the algorithm has to recognize m as soon as it reads S[m]. Leung, Peng,
and Ting [7] gave an O(m log2 m)-time algorithm for the online square detection
problem. Our contribution, summarized in Theorem 1, is to improve the running
time to O(m log β). The O(log β) factor comes from the binary search required
by the traversal of a suffix tree. Therefore, the expected running time of our
algorithm can easily be reduced to O(m) using hash tables. Our approach is
inspired by Crochemore’s algorithm [4] using the f -factorization of S.

Theorem 1. The online detection problem for a string S can be solved in deter-
ministic O(m log β) time, where S[1, m] is the shortest prefix of S that contains
a square and β is the number of distinct characters in S[1, m].

The rest of the paper is organized as follows. Section 2 describes our algo-
rithm. Section 3 gives the implementation of our algorithm, whose time complex-
ity is analyzed in Section 3.2. We conclude the paper with some open questions
in Section 4.

2 Our Algorithm

A square X ◦X is centered at position i in S if

S[i− |X |+ 1, i + |X |] = X ◦X.

Let i1, i2, and i be positions in S with i1 < i2 ≤ i. The following concept is
crucial to our algorithm.
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– An L(i1, i2, i)-square of S is a square of S[i1, i] that ends at position i and
is centered at a position between i1 and i2 − 1 in S.

– An R(i1, i2, i)-square of S is a square of S[i1, i] that ends at position i and
is centered at a position between i2 and i in S.

See Figure 1 for an illustration.

j

S Y ZZY

i1 j i2 i

(a) L(i1, i2, i)-square

S Y ZZY

i1 i

(b) R(i1, i2, i)-square

i2

Fig. 1. L(i1, i2, i)-square and R(i1, i2, i)-square.

Our algorithm runs iteratively, where the i-th iteration receives S[i] and
detects whether there are squares in S[1, i]. More specifically, the i-th iteration
obtains the f -factorization of S[1, i] from that of S[1, i− 1]. Suppose that S[i]
belongs to the k-th block of the f -factorization of S[1, i]. The algorithm then
detects whether there are

– L(bk−1, bk, i)-squares,
– R(bk−1, bk, i)-squares, or
– R(1, bk−1, i)-squares,

where for each j = 1, 2, . . . , k, let bj denote the starting position of the j-th
block of the f -factorization of S[1, i]. If no square is detected, then the algorithm
proceeds to the next iteration. Otherwise, the algorithm outputs i and halts.

Lemma 1. If the input string S is not square free, then our algorithm correctly
outputs the smallest index m such that S[1, m] is not square free.

Proof. Since S[1, m−1] is square free, the algorithm does not halt before the m-th
iteration. It suffices to show that a square of S[1, m] has to be an L(bk−1, bk, i)-
square, an R(bk−1, bk, i)-square, or an R(1, bk−1, i)-square, where bj is the start-
ing position of the j-th block Bj in the f -factorization of S[1, m] for each
j = 1, 2, . . . , k.
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Since S[bk, m] is in Bk, by definition of f -factorization, S[bk, m] is a substring
of S[1, m−1]. Since S[1, m−1] is square free, so is S[bk, m]. If a square of S[1, m]
occurs before bk−1, then the square has to be an R(1, bk−1, m)-square. If a square
of S[1, m] occurs at a position between bk−1 and bk − 1, then the square has to
be an L(bk−1, bk, m)-square or an R(bk−1, bk, m)-square. �
Comment : Our proof of Lemma 1 is modified from that of Theorem 8.2 in [4].

3 Implementation

Longest common extensions [8] are crucial to the implementation of our algo-
rithm. For positions i ≤ j ≤ k in S,

– Let XR(i, j, k) denote the longest common right extension of positions i and
j with boundaries k, i.e., the length of the longest common prefix of S[i, k]
and S[j, k].

– Let XL(j, k, i) denote the longest common left extension of positions j and
k with boundaries i, i.e., the length of the longest common suffix of S[i, j]
and S[i, k].

It is not difficult to see the following lemma from Figure 1.

Lemma 2 (Main and Lorentz [8]).

1. S has an L(i1, i2, i)-square if and only if there is an index j with i1 ≤ j < i2
such that XR(j, i2, i) = |S[i2, i]| and XL(j − 1, i2 − 1, i1) + XR(j, i2, i) ≥
|S[j, i2 − 1]|.

2. S has an R(i1, i2, i)-square if and only if there is an index j with i2 < j < i
such that XR(i2, j+1, i) = |S[j+1, i]| and XL(i2−1, j, i1)+XR(i2, j+1, i) ≥
|S[i2, j]|.
Our implementation uses several suffix trees [6, 11]. Let T ′ be the suffix

tree of a string S′. If W ′ is a substring of S′, then there is a unique path,
denoted P (T ′, W ′), in T ′ whose label spells out W ′. Moreover, if S′ contains β′

distinct characters, then, given the ending position of P (T ′, W ′) in T ′, it takes
O(|W ′′| log β′) time to determine whether W ′ ◦W ′′ is also a substring of S′.

3.1 Detecting L(i1, i2, i)-Squares

Let i1 < i2 ≤ i3 be three given indices. Suppose that the number of distinct
characters in S[i1, i3] is O(β). The following lemma is a key ingredient in the
implementation of our algorithm.

Lemma 3. Let i be the smallest index with i2 ≤ i ≤ i3 such that S has an
L(i1, i2, i)-square. There is an algorithm AL(i1, i2, i3) that

– either determines in O((i3−i1) log β) time that i is undefined without reading
any characters in S[i3 + 1, n]

– or identifies i in O((i− i1) log β) time without reading any character of S[i+
1, n].

The rest of the subsection proves Lemma 3.
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The preprocessing. The first step is the O(|S[i1, i2]|)-time preprocessing with
which the value of XL(j, i2 − 1, i1) for any index j with i1 ≤ j < i2 can be
determined in O(1) time [5, 8]. We then build the suffix tree T1 of S[i1, i2−1]◦$,
where $ is a character not in S [11]. One can easily verify that the preprocessing
takes O((i2 − i1) log β) time.

Define z(j) = |S[j, i2 − 1]| −XL(j − 1, i2 − 1, i1) for each index j with i1 ≤
j < i2. Finally, for each node v of T1, we store an index, denoted j(v), at node
v that minimizes z(j) overall all indices j such that P (T1, S[j, i2 − 1]) passes v.
The indices j(v) for all nodes v of T1 can be computed in O(i2 − i1) time in a
bottom-up manner.

The iterative procedure. For i = i2, i2 + 1, . . . , i3, the i-th iteration does the
following. If S[i2, i] occurs in S[i1, i2 − 1] and |S[i2, i]| ≥ z(j(v)), where v is the
highest node in T1 such that the path of T1 between the root of T1 and v contains
P (T1, S[i2, i]), then the procedure reports i and halts. Otherwise, the procedure
proceeds to the next iteration.

Correctness. The condition XR(j, i2, i) = |S[i2, i]| in Lemma 2(1) is equivalent
to the condition that S[i2, i] is a prefix of S[j, i2− 1], which is also equivalent to
the condition that P (T1, S[j, i2− 1]) contains P (T1, S[i2, i]). With XR(j, i2, i) =
|S[i2, i]|, the condition XL(j − 1, i2 − 1, i1) + XR(j, i2, i) ≥ |S[j, i2 − 1]| in
Lemma 2(1) is equivalent to the condition

|S[i2, i]| ≥ |S[j, i2 − 1]| −XL(j − 1, i2 − 1, i1).

Let v be the highest node in T1 such that the path of T1 between v and the
root of T1 contains P (T1, S[i2, i]). By definition of z(j(v)), the above condition
is equivalent to the condition

|S[i2, i]| ≥ z(j(v)).

Therefore, by Lemma 2(1), the above iterative procedure does report the smallest
index i, if any, with i2 ≤ i ≤ i3 such that S has an L(i1, i2, i)-square.

Time complexity. Suppose that in the previous iteration we already have the
ending position of P (T1, S[i2, i − 1]) in T1. It takes O(log β) time to determine
whether S[i2, i] is a substring of S[i1, i2−1]. If S[i2, i] does occur in S[i1, i2−1], we
also keep the ending position of P (T1, S[i2, i]) to be used in the next iteration.
As a result, it is not difficult to verify that the time complexity described in
Lemma 3 holds.

3.2 Detecting R(i1, i2, i)-Squares

Let i1 < i2 < i3 be three given indices. Suppose that the number of distinct
characters in S[i1, i3] is O(β). The following lemma is also a key ingredient in
the implementation of our algorithm.
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Lemma 4. Let i be the smallest index with i2 < i ≤ i3 such that S has an
R(i1, i2, i)-square. There is an algorithm AR(i1, i2, i3) such that

– if i is undefined, then AR(i1, i2, i3) reports “i is undefined” in O((i3 −
i2) log β) time without reading any character of S[i3 + 1, n];

– otherwise, if S has no L(i1, i2, j)-squares for any j ∈ {i2, i2 + 1, . . . , i}, then
algorithm AR(i1, i2, i3) reports i in O((i− i2) log β) time without reading any
character of S[i + 1, n].

The rest of the subsection proves Lemma 4.

The iterative procedure. For each i = i2 +1, i2 +2, . . . , i3, the i-th iteration does
the following.

– We first compute the index ji in O(1) time such that |S[ji, i2 − 1]| =
min(|S[i1, i2 − 1]|, |S[i2, i]|).

– We then compute the suffix tree T2 of S[ji, i2−1]◦$ from that of S[ji−1, i2−
1] ◦ $ in amortized O(log β) time using, e.g., Inenaga’s algorithm [6].

– We maintain a data structure for S[ji, i2 − 1] from which the value of
XL(j, i2 − 1, ji) for any j with ji ≤ j < i2 can be computed in O(1) time.
According to [5, 8], such a data structure for S[ji, i2 − 1] can be obtained
from that of S[ji−1, i2 − 1] in amortized O(1) time.

– We maintain a data structure for S[i2, i] from which the value of XR(i2, j, i)
for any j with i2 ≤ j ≤ i can be computed in O(1) time. Similarly, according
to [5, 8], such a data structure for S[i2, i] can be obtained from that of
S[i2, i− 1] in amortized O(1) time.

– Let F (i) denote the longest suffix of S[i2, i] that is a substring of S[ji, i2−1].
We obtain the ending position of P (T2, F (i)) in T2 from the ending position
of P (T2, F (i − 1)) in amortized O(log β) time. It then takes O(1) time to
compute an index y(i) ≤ i2−1 such that an occurrence of F (i) in S[i1, i2−1]
ends at position y(i). We determine in O(1) time

XL(i2 − 1, i, i1) =
{
|F (i)| if y(i) = i2 − 1;
min(|F (i)|, XL(y(i), i2 − 1, ji)) otherwise. (1)

– Now we insert in O(1) time the index i to the set K(e(i)), where

e(i) = i + |S[i2, i]| −XL(i2 − 1, i, i1).

– If there is an index j in K(i), if

XR(i2, j + 1, i) = |S[j + 1, i]|,

then our procedure reports i; otherwise, the iterative procedure proceeds to
the next iteration.
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Correctness. First of all, one can see the correctness of Equation (1) by verifying
that both sides of the equality are equal to XL(i2 − 1, i, ji). Observe that in
the i-th iteration K(i) has collected all the indices j < i with e(j) = i. If
XR(i2, j + 1, i) = |S[j + 1, i]|, then the condition

XL(i2 − 1, j, i1) + XR(i2, j + 1, i) ≥ |S[i2, j]|

in Lemma 2(2) is equivalent to the condition e(j) ≤ i. Moreover, the condition

XL(i2 − 1, j, i1) + XR(i2, j + 1, i) > |S[i2, j]|,

which is equivalent to the condition e(j) < i, implies that S has a square end-
ing at position i − XL(i2 − 1, j, i1) + XR(i2, j + 1, i) + |S[i2, j]|. Therefore, by
Lemma 2(2), our iterative procedure outputs i if and only if S has an L(i1, i2, i)-
square.

Time complexity. According to the above explanation, it is not difficult to see
that the time complexity of Lemma 4 holds.

3.3 The Implementation

With subroutines AL(i1, i2, i3) and AR(i1, i2, i3), we prove the following lemma.

Lemma 5. Our algorithm described in Section 2 can be implemented to run in
O(m log β) time.

Proof. The implementation proceeds iteratively for i = 1, 2, . . . , n, where the
i-th iteration reads S[i] and performs the following steps.

– We obtain the suffix tree T of S[1, i] from the suffix tree of S[1, i − 1] in
amortized O(log β) time. We then determine the index ki such that S[i] is
in the ki-th block of the f -factorization of S. Observe that with the help of
T , one can compute ki from ki−1 in O(log β) time. If ki = 1, we proceed to
the next iteration.

– Knowing ki ≥ 2, we perform
• the i-th iteration of AL(ki−1, ki, ki+1),
• the i-th iteration of AR(ki−1, ki, ki+1), and
• the i-th iteration of AR(1, ki−1, ki+1)

in the above order. If any of these three i-th iterations reports i and halts,
then our implementation also reports i and halts. Otherwise, our implemen-
tation proceeds to the next iteration.

The description of our implementation ignores on purpose the fact that we
do not know the value of ki+1 in the i-iteration. However, one can verify that
this abuse to the interface of subroutines AL() and AR() is all right, since each
iteration of our implementation calls only the i-th iterations of subroutines AL()
and AR(). It follows from Lemmas 3 and 4 that our implementation correctly
outputs m in O(m log β) time. �

Now one can easily see that Theorem 1 is immediate from Lemmas 1 and 5.
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4 Concluding Remarks

As we mentioned in the introduction, each of those O(log β) terms comes from
the binary search required for choosing the right branch to go while traversing a
suffix tree of a string with O(β) distinct characters. Using hash tables, one can
implement our algorithm to run in expected O(m) time. An immediate open
question is to see if it is possible to further reduce the required running time
to worst-case O(m) time. It would also be of interest to see if the technique of
f -factorization can be extended to detect repeats of the form Xk with k > 2 in
an online manner.
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Abstract. The Knuth-Morris-Pratt (KMP) pattern-matching algorithm
guarantees both independence from alphabet size and worst-case exe-
cution time linear in the pattern length; on the other hand, the Boyer-
Moore (BM) algorithm provides near-optimal average-case and best-case
behaviour, as well as executing very fast in practice. We describe a sim-
ple algorithm that employs the main ideas of KMP and BM (with a
little help from Sunday) in an effort to combine these desirable features.
Experiments indicate that in practice the new algorithm is among the
fastest exact pattern-matching algorithms discovered to date, perhaps
dominant for alphabet size 8 or more.

1 Introduction

Since 1977, with the publication of both the Boyer-Moore [1] and Knuth-Morris-
Pratt [16] pattern-matching algorithms, there have certainly been hundreds, if
not thousands, of papers published that deal with exact pattern-matching, and in
particular discuss and/or introduce variants of either BM or KMP. The literature
has had two main foci:

– reducing the number of letter comparisons required in the worst/average
case (for example, [3–5, 7, 10, 11]);

– reducing the time requirement in the worst/average case (for example, [6, 8,
13, 14, 21]).

This contribution resides in the second of these categories: in an effort to reduce
processing time, we propose a mixture of Sunday’s variant [21] of BM [1] with
KMP [16, 19]. Our goal is to combine the best/average case advantages of Sun-
day’s algorithm (BMS) with the worst case guarantees of KMP. Experiments
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suggest that our new algorithm (FJS) is among the fastest in practice for com-
putating all occurrences of a pattern p = p[1..m] in a text string x = x[1..n] on
an alphabet Σ of size k. Based on Θ(m+k)-time preprocessing, it also guarantees
that matching requires at most 3n−2m letter comparisons and O(n) time.

Several comparative surveys of pattern-matching algorithms have been pub-
lished over the years [9, 14, 17, 18, 20] and a useful website [2] is maintained that
gives C code for the main algorithms and describes their important features.

In this paper we first introduce, in Section 2, the new algorithm, establish its
asymptotic time and space requirements in the worst case, and demonstrate its
correctness. Then in Section 3 we describe experiments that compare Algorithm
FJS with algorithms that, from the available literature, appear to provide the
best competition in practice; specifically: Horspool’s algorithm (BMH) [13], Sun-
day’s algorithm (BMS) [21], Reverse Colussi (RC) [6], and Turbo-BM (TBM)
[8]. Finally, in Section 4, we draw conclusions from our experiments.

2 The New Algorithm

Algorithm FJS combines two well-known pattern-matching ideas:

(1) In accordance with the BM approach, FJS first compares p[m], the rightmost
letter of the pattern, with the letter in the corresponding text position i′.
If a mismatch occurs, a “Sunday shift” is implemented, moving p along x
until the rightmost occurrence in p of the letter h = x[i′+1] is positioned
at i′+1. At this new location, the rightmost letter of p is again matched
with the corresponding text position. Only when a match is found does FJS
invoke the next (KMP) step; otherwise, another Sunday shift occurs.

(2) If p[m] = x[i′], KMP pattern-matching begins, starting (as KMP does) from
the lefthand end p[1] of the pattern and, if no mismatch occurs, extending
as far as p[m−1]. Then, whether or not a match for p is found, a KMP shift
is eventually performed, followed by a return to step (1).

The pseudocode for Algorithm FJS is shown in the figure below.
As discussed in [15], the real rationale for the algorithm lies in the avoidance

of Markov effects combined with efficient shifting: a match of p[m] with x[i′] can
in most circumstances be regarded as independent of a match (or mismatch) with
p[1], where KMP matching begins; if p[m] �= x[i′], then the Sunday shift provides
an efficient mechanism for sliding p across x. Viewed from one perspective,
FJS just performs KMP matching in a slightly different order: position m of
p is compared first, followed by 1, 2, . . . , m−1. Indeed, since the KMP shift is
also employed, the number of worst-case letter comparisons required for FJS is
bounded above, as we show below, by 3n−2m, compared with KMP’s 2n−m.

Preprocessing

The algorithm uses two arrays: Sunday’s array Δ = Δ[1..k] computable in Θ(m+
k) time, and the KMP array β′ = β′[1..m+1], computable in Θ(m) time.
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Algorithm 1 (Hybrid Matching)

Find all occurrences of p = p[1..m] in x = x[1..n]

if m < 1 then return
i′ ← m; j ← 1; m′ ← m−1
while i′ ≤ n do

— BM (Sunday) shift if p[m] fails to match
if p[m] �= x[i′] then

repeat
i′ ← i′+Δ

[
x[i′+1]

]
if i′ > n then return

until p[m] = x[i′]
j ← 1

— KMP matching if p[m] matches
if j ≤ 1 then

i ← i′−m′; j ← 1
while j < m and x[i] = p[j] do

i ← i+1; j ← j+1

— Restore invariant i′ = i+m−j for next shift
if j = m then

i ← i+1; j ← j+1; output i−m
j ← β′[j]; i′ ← i+m−j

The hth position in the Δ array is accessed directly by the letter h of the
alphabet, and so we need to make the assumption required by all BM-type al-
gorithms, that the alphabet is indexed [20] – essentially, that Σ = {1, 2, · · · , k}
for some integer k fixed in advance. Then for every h ∈ 1..k, Δ[h] = m−j′+1,
where j′ is the position of rightmost occurrence of the letter h in p, if it exists;
zero otherwise. Thus in case of a mismatch with x[i′], Δ

[
x[i′ + 1]

]
computes

a shift that places the rightmost occurrence j′ of letter x[i′ + 1] in p opposite
position i′+1 of x, whenever j′ exists in p, and otherwise shifts p right past
position i′+1.

To define the β′ array, consider first an array β[1..m+1] in which β[1] = 0
and for every j ∈ 2..m+1, β[j] is one more than the length of the longest border
of p[1..j−1]. Then β′[j] is defined as follows:

If j = m+1, β′[j] = β[j]. Otherwise, for j ∈ 1..m, β′[j] = j′ where j′−1
is the length of the longest border of p[1..j−1] such that p[j′] �= p[j]; if
no such border exists, β′[j] = 0.

See [2] for C code and [9, 20] for further discussion of the preprocessing arrays.

The Algorithm

The KMP part of the algorithm needs to compare position i of x with position
j of p, where j may be the result of a partial match with p[1..j−1] or of an
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assignment j ← β′[j]. On the other hand, the BMS part needs to compare
position

i′ = i+m−j (1)

of x with position m of p. Thus (1) is maintained as an invariant by FJS. Since
the assignment j ← β′[j] may actually set j to zero, (1) may not hold if j = 0
and p[m] = x[i′] at the next match; it is for this reason that the assignment
j ← 1 is made for j ≤ 1 at the beginning of the KMP section.

Correctness

The correctness of Algorithm FJS is a consequence of the correctness of BMS
and KMP. Note that a sentinel letter needs to be added at position n+1 of x to
ensure that Δ

[
x[i′+1]

]
is well defined for i′ = n. If this is undesirable, the final

alignment at x[n−m + 1..n] can be tested as a special case outside of the main
loop.

Letter Comparisons

In the worst case there may be as many as n−m+1 executions of the BM-type
match in Algorithm FJS. Then KMP-type letter comparisons could take place
on the remaining m−1 positions of the pattern over a text string of length n−1
(the final letter of x would never be subject to KMP-type matching). It is well
known (see, for example, [20]) that Algorithm KMP performs at most 2n′−m′

letter comparisons to find matches for a pattern of length m′ in a string of length
n′. Substituting n′ = n−1, m′ = m−1, we find the largest possible number of
letter comparisons by Algorithm FJS is

2(n−1)− (m−1) + (n−m+1) = 3n−2m.

It is straightforward to verify that this bound is in fact attained by p = am−2ba,
x = an. Thus

Theorem 1 Algorithm FJS requires at most 3n−2m letter comparisons in the
worst case, a bound attained by p = am−2ba, x = an. �

We see that, in terms of worst-case letter comparisons, there is a slight price to
be paid for the improved average-case efficiency of FJS.

3 Experimental Results

As mentioned in Section 1, we conducted a number of experiments to compare
Algorithm FJS with four competitors (BMH, BMS, RC, TBM) known to be
among the fastest in practice1.
1 Colussi presents two versions of RC. We used the first version, which is faster on

average but requires Θ(mn) time in the worst case; a second version matches in
worst-case Θ(n) time but is typically slower. Tests of the second version did not
produce significantly different results relative to FJS.
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Our implementations were adapted from [2], which provides well-tested C
code for many pattern-matching algorithms. This gave us a standard to mimic for
FJS, ensuring fairness and consistency. A significant change was the replacement
of calls to the C library functions memcmp() and memset(), made by a few of the
implementations, with equivalent loops. The library calls, which are optimized
for large memory regions, were four to five times slower for our tests.

Timing made use of the high-frequency hardware clocks available on modern
computers. Each test was repeated 20 times and the fastest time was kept. This
is closest to a true minimum independent of external effects such as cache misses.
All times include both preprocessing and matching.

The results presented here were taken from the test system with the most
precise timing – an AMD Athlon 2500+ PC with 512MB RAM, running Win-
dows 2000 (SP4) and using Microsoft C/C++ 12.00.8168. However, the resulting
trends were highly stable across eight environments using a variety of hardware,
operating system, and compiler vendor combinations.

Test Data
The primary corpus was drawn from a set of 1000 randomly selected texts from
Project Gutenberg [12], an online source of public domain documents. The cor-
pus contained a total of 446 504 073 letters, with individual texts ranging from
10 115 to 4 823 268 letters in length.

A second corpus was constructed using the Human Genome Project’s map of
the first human chromosome. A string of 210 992 564 nucleotides was transformed
into a bit string by mapping A, T , C, and G to 00, 01, 10, and 11, respectively.
Random substrings were then used to make texts of varying alphabet size.

Frequency of Occurrence
We constructed high- and moderate-frequency pattern sets to observe the effect
of match frequency on performance. To obtain comparable results, we fixed the
number and length of the patterns in both sets. As both values must be kept
fairly small to construct a meaningful high-frequency pattern set, we settled on
sets of seven patterns of length six.

The high-frequency set was selected by finding the seven most frequent length
six substrings in a random sample of 200 texts from our primary corpus. The
resulting set, with representing the space symbol, is as follows:

of th of the f the that , and this n the

These patterns occur 3 366 899 times in the primary corpus. Figure 1 graphs
performance on this set. The execution time for each text is the total time taken
for all patterns, where the time for each pattern is determined as described
above.

For the moderate frequency set, we constructed a set of 7 words of at least
length six sharing an expected frequency of 4 instances per 10 000 words (long
words were truncated to six letters). The actual match frequency may vary since
patterns may occur often within other words, but this tends to occur in practice
as well. After restricting all members to at most six letters the resulting set is:
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TBM BMH RC BMS FJS

Fig. 1. Execution Time versus Text Length for High-frequency Pattern Set

TBM BMH RC BMS FJS

Fig. 2. Execution Time versus Text Length for Moderate-frequency Pattern Set
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better enough govern public someth system though

These patterns occur 266 792 times in our corpus. Figure 2 graphs the results.

Pattern Length

Pattern sets were constructed consisting of nine patterns for each pattern length
from three to nine. These were selected using a similar process to the one de-
scribed above, but with an expected frequency of 2–3 times per 10 000 words.
The reduced frequency was needed to allow sufficient candidates of each length.

Length Matches Pattern Set
3 586 198 air, age, ago, boy, car, I’m, job, run, six
4 346 355 body, half, held, past, seem, seen, tell, week, word
5 250 237 death, field, money, quite, seems, shall, taken, whose,

words
6 182 353 became, behind, cannot, having, making, moment,

period, really, result
7 99 109 already, brought, college, control, federal, further,

provide, society, special
8 122 854 anything, evidence, military, position, probably,

problems, question, students, together
9 71 371 available, community, education, following, necessary,

political, situation, sometimes, therefore

Figure 3 graphs the results from this test. The time at each length is the total
time for all nine patterns in the relevant set over the entire primary corpus. As
the trends of FJS and BMS suggest that they are asymptotically the same, an
additional experiment was performed testing 90 patterns with lengths from 25 to
175, randomly selected from the corpus. FJS and BMS became indistinguishable
from about m = 100 onward. RC was burdened by its O(m2) preprocessing time,
placing last from m = 30 on. At m = 175, it was more than an order of magnitude
slower than its nearest competitor.

Alphabet Size

These tests used the secondary corpus of DNA-derived texts. This corpus con-
tained 6 texts of 500 000 letters, each over an alphabet of a different size. Each
text was searched with 20 random substrings of length 6. The results, seen in
Figure 4, suggest that Algorithm FJS may be a poor choice for k < 8 – thus,
perhaps, not optimal for DNA sequences (|Σ| = 4), but suitable for proteins
composed of amino acids (|Σ| = 20).

Pathological Cases

Periodic strings can induce theoretical worst-case behaviour in pattern-matching
algorithms. For FJS in particular, x = an, p = aba maximizes the comparison
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count. We compared performance on these strings for values of n from 10 000 to
100 000 at 10 000 letter intervals. The rank order, from fastest to slowest, was
RC, BMH, BMS, FJS, TBM; RC timed 41% faster than FJS on average.

On the other hand, patterns of the form x = an, p = am (and in particular,
m = �n/2�) maximize comparisons for many non-linear BM variants, including
BMH and BMS. Fixing the text as x = a100000, we timed the five implementa-
tions for p = a3 through p = a9. The results showed FJS to be an average of
36% faster than second-place TBM, the only Θ(n) competitor.

The worst case for the original BM algorithm can be triggered with x =
(akb)r, p = ak−1bak−1. As in the previous case, both the pattern and the text
are highly repetitive. We performed two tests on string pairs of this kind. In the
first test, we held r at 100 000 and varied k from 2 through 20. In the second test,
we held k at 10 and varied r from 100 000 through 500 000. Both experiments
indicated an advantage to FJS by 15–20% over BMS and RC and by a large
margin over all others.

4 Discussion and Conclusion

We have tested FJS against four high-profile competitors (BMH, BMS, RC,
TBM) over a range of contexts: pattern frequency (C1), pattern length (C2),
alphabet size (C3), and pathological cases (C4).

Over contexts (C1) and (C2) for English text, FJS was uniformly 10% or
so faster than BMS and RC, its closest adversaries. For very long patterns, the
Sunday skip loop dominates and FJS and BMS are interchangeable.

In terms of (C3), for small alphabets the expected incidence of p[m] = x[i′]
is high: KMP will be invoked often, slowing FJS with respect to BMS and RC.
For k ≥ 8, FJS regains its 10% or so advantage.

The overall speed advantage of FJS probably relates to its efficient average-
case processing of the most common case (initial mismatch) resulting from the
use of the skip loop to avoid repeated settings of j = 1 and Markov independence
of position m and position j in the pattern p. As discussed in [15], the first factor
appears to be the more important.

For FJS the pathological cases (C4) are those in which the KMP part is forced
to execute on prefixes of patterns where KMP has no advantage (no nonempty
borders). On the other hand, FJS performs well on periodic patterns, precisely
because of its KMP component.

The advantage of FJS over TBM seems to be related to the extra time in-
volved in TBM’s shift logic; while the advantage over BMH seems to be a com-
pound of an improved shift methodology together with the effect of the KMP
component.

In summary: we presented the hybrid algorithm FJS which combines the
benefits of KMP and BMS. It requires Θ(m+k) time and space for preprocessing,
and finds all matches in at most 3n− 2m letter comparisons. We also compared
FJS with some of the fastest algorithms available. The results suggest that FJS
is competitive with these algorithms in general, and that for k ≥ 8 it is the
algorithm of choice.
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Abstract. We explore the regular-expression matching problem with
respect to prefix-freeness of the pattern. We show that the prefix-free
regular expression gives only linear number of matching substrings in
the size of a given text. Based on this observation, we propose an effi-
cient algorithm for the prefix-free regular-expression matching problem.
Furthermore, we suggest an algorithm to determine whether or not a
given regular language is prefix-free.

1 Introduction

In 1968, Thompson [11] introduced what became a classical automaton con-
struction, the Thompson construction. It was used to find all matching strings
from a text with respect to a given regular expression in the unix editor, ed.
Subsequently, Aho [1] investigated the regular-expression matching problem as
an extension of the keyword pattern matching problem [2], where the set of
keywords is represented by a regular expression. Regular-expression matching
has been adopted in many applications such as grep, vi, emacs and perl. For
instance, with grep, we search for the last position of a matching string since
the command outputs the line that contains the matched string.

Prefix-freeness is fundamental in coding theory; for example, Huffman codes
are prefix-free sets. The advantage of prefix-free codes is that we can decode
a given encoded string deterministically. Since codes are languages and prefix-
free codes are a proper subfamily of codes, prefix-free regular languages are a
proper subfamily of regular languages. Prefix-free regular languages have already
been used to define determinism for generalized automata [6] and for expression
automata [7].

The regular-expression matching problem has been well studied in the liter-
ature. Given a regular expression E and a text T , Aho [1] showed that we can
determine whether or not there is a substring of T that is in L(E) in O(mn)
time using O(m) space, where m is the size of E and n is the size of T . Recently,
Crochemore and Hancart [5] presented an algorithm to find all end positions
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of matching substrings of T with respect to L(E) in O(mn) time using O(m)
space. Myers et al. [10] solved the problem of identifying start positions and end
positions of all matching substrings of T that belong to L(E) in O(mn log n)
time using O(m log n) space. Clarke and Cormack [4] considered an interesting
problem, the shortest-match substring search. Given a finite-state automaton A
and a text T , identify all substrings of T that are accepted by A and also form
an infix-free set. They showed that there are at most n matching substrings in T
and they suggested an O(kmn) worst-case running time algorithm using O(m)
space, where k is the maximum number of out-transitions from a state in A, m is
the number of states and n is the size of T . (If we assume that A is a Thompson
automaton, then k = 2.) In the regular-expression matching problem, there are
a quadratic number of matching substrings of a given text in the worst-case. On
the other hand, Clarke and Cormack [4] hinted that if an input regular expression
is infix-free, then there are at most a linear number of matching substrings and
it ensures a faster running time. Since the family of prefix-free regular languages
is a proper subfamily of regular languages and a proper superfamily of infix-free
regular languages, it is natural to investigate the prefix-free regular-expression
matching problem. As far as we are aware, there does not appear to have been
any prior consolidated effort to study the prefix-free regular-expression matching
problem.

We want to find all (start, end) positions of matching substrings; similar
to the work of Myers et al. [10] and Clarke and Cormack [4]. We reexamine
the regular-expression matching problem with this requirement and investigate
the prefix-free regular-expression matching problem. Moreover, we suggest an
algorithm to determine whether or not a given regular language L is prefix-free,
where L is described by a nondeterministic finite-state automaton or by a regular
expression. If L is represented by a deterministic finite-state automaton, then L
is prefix-free if and only if there are no out-transitions from any final state in
the given automaton [7].

In Section 2, we define some basic notation. We then, in Section 3, present
an algorithm to identify all matching substrings of T with respect to a regular
expression E based on the algorithm by Crochemore and Hancart [5]. The worst-
case running time for the algorithm is O(mn2) using O(m) space, where m is the
size of E and n is the size of T . We also study the infix-free regular expression
matching problem motivated by the shortest-match substring search problem.
In Section 4, we examine the prefix-free regular-expression matching problem
and propose an O(mn) worst-case running time algorithm using O(m) space. It
implies that if E is prefix-free, then we can improve the total running time for
the matching problem. In Section 5, we present a polynomial-time algorithm to
determine whether or not a given regular language is prefix-free.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. A language over Σ is any subset of Σ∗. The character ∅ denotes the
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empty language and the character λ denotes the null string. Given two strings x
and y in Σ∗, x is said to be a prefix of y if there is a string w such that xw = y.
Given a set X of strings over Σ, X is prefix-free if no string in X is a prefix of
any other string in X . Given a string x, let xR be the reversal of x, in which
case XR = {xR | x ∈ X}.

A finite-state automaton A is specified by a tuple (Q, Σ, δ, s, F ), where Q is
a finite set of states, Σ is an input alphabet, δ ⊆ Q×Σ ×Q is a (finite) set of
transitions, s ∈ Q is the start state and F ⊆ Q is a set of final states. Let |Q|
be the number of states in Q and |δ| be the number of transitions in δ. Given a
transition (p, a, q) in δ, where p, q ∈ Q and a ∈ Σ, we say p has an out-transition
and q has an in-transition. Furthermore, p is a source state of q and q is a target
state of p. A string x over Σ is accepted by A if there is a labeled path from s
to a final state in F that spells out x. Thus, the language L(A) of a finite-state
automaton A is the set of all strings spelled out by paths from s to a final state
in F . We define A to be non-returning if the start state of A does not have
any in-transitions and A to be non-exiting if a final state of A does not have
any out-transitions. We assume that A has only useful states; that is, each state
appears on some path from the start state to some final state.

We define a (regular) language L to be prefix-free if L is a prefix-free set.
A regular expression E is prefix-free if L(E) is prefix-free. In a similar way, we
define suffix-free regular languages and regular expressions. We define L to be
infix-free if, for all distinct strings x and y in L, x is not a substring of y and
y is not a substring of x. Then, a regular expression E is infix-free if L(E) is
infix-free. The size |E| of a regular expression E is the total number of character
appearances.

3 Regular-Expression Matching

The regular-expression matching problem is an extension of the pattern matching
problem, for which a pattern is given as a regular expression E. If L(E) consists
of a single string, then the problem is the string matching problem [3, 9] and
if L(E) is a finite language, then we obtain the multiple keyword matching
problem [2].

Definition 1. Given a regular expression E and a text T = w1w2 · · ·wn, the
regular-expression matching problem is to identify all matching substrings of T
that belong to L(E).

We answer the regular-expression matching problem by using Thompson au-
tomata [11]. We give the inductive construction of Thompson automata in Fig. 1.
Note that a state q in a Thompson automaton has at most two in-transitions
and at most two out-transitions. Furthermore, if q has a transition (q, a, r) and
a ∈ Σ, then state r has at most two out-transitions that are null.

Given a regular expression E over Σ, we prepend Σ∗ to E; thus, allow-
ing matching to begin at any position in T . We construct the Thompson au-
tomaton A for Σ∗E and process T using ExpressionMatching defined in Fig. 2.
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Fig. 1. The Thompson construction. Let E, F and G be regular expressions and MF

and MG be the corresponding Thompson automata for F and G, respectively. (a)
E = a + λ, (b) E = F + G, (c) E = F · G, (d) E = F ∗ and (e) E = ∅.

ExpressionMatching (A, T )

Q = null({s})
if f ∈ Q then output λ
for j=1 to n

Q = null(goto(Q, wj))
if f ∈ Q then output j

Fig. 2. A regular-expression matching procedure for a given Thompson automaton A =
(Q, Σ, δ, s, f) and a text T = w1 · · ·wn. The procedure reports all the end positions of
matching substrings of T .

Note that ExpressionMatching was already considered by Crochemore and Han-
cart [5], which is a modified version of Aho’s algorithm [1].

ExpressionMatching (EM) in Fig. 2 has two sub-functions: null(Q) and
goto(Q, wj). The function null(Q) computes all states in A that can be reached
from a state in the set Q of states by null transitions. We use depth-first traver-
sal to compute null(Q) since A is essentially a graph. We traverse A using only
null transitions. If we reach a state q that has already been visited by another
null transition, then we stop exploring from q. Therefore, each state in A is
visited at most twice since a state in a Thompson automaton has at most two
in-transitions. Thus, the null(Q) step takes O(m) time in the worst-case, where
m is the size of A. Now goto(Q, wj) gives all states that can be reached from a
state in Q by a transition with wj , the current input character. We only have
to check whether a state in Q has an out-transition with wj on it since the tar-
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get state of the current state can have only null out-transitions. Therefore, the
goto(Q, wj) step takes O(|Q|) time, which is O(m) in the worst-case. Overall,
EM runs in O(mn) worst-case time using O(m) space.

Note that EM reports all the last positions of matching substrings of T with
respect to A. It is, in some applications like grep, sufficient to have the end
positions of matching substrings. However, if we want to report exact positions
of matching strings, then we have to read T from right to left for each end
position to find the corresponding start positions. For example, we need seven
reverse scans of T to find all matching substrings in Fig. 3.

a a a a a a a abbbbbbbbT

E = a(a + b)∗a

Fig. 3. An example of finding all end positions of T for a given regular expression E
using EM. EM reports seven end positions indicated by “↑”. There are, however, 28
matching substrings of T with respect to E and some matching substrings end at the
same position.

We construct the Thompson automaton A′ for ER to find the start positions
that correspond to the end positions we have already computed. For each end
position j in T , we process wj · · ·w2w1 with respect to A′ using EM to identify
all corresponding start positions for j. In the worst-case, there are O(n) end
positions for matching substrings and we have to read T R for each end position
to find all corresponding start positions. A worst-case example is when E = (a+
b)∗ and T = abaaabababa · · ·aba. Total running time for the regular-expression
matching problem is O(mn) + O(mn) · O(n) = O(mn2); that is (search all end
positions) + [(find all corresponding start positions for each end position) × (the
number of end positions)], using O(m) space in the worst-case.

Theorem 1. Given a regular expression E and a text T , we can identify all
matching substrings of T that belong to L(E) in O(mn2) worst-case time using
O(m) space, where m is the size of E and n is the size of T .

Before we tackle the prefix-free regular-expression matching problem, we con-
sider the simpler case of E being infix-free. Note that this problem is similar
to, yet different from, the shortest-match substring search by Clarke and Cor-
mack [4]. They were interested in reporting all matching substrings that form
an infix-free set for a given (normal) regular expression and we are interested in
the case when a given regular expression is strictly infix-free.

Theorem 2. Given an infix-free regular expression E and a text T , we can
identify all matching substrings of T that belong to L(E) in O(mn) worst-case
time using O(m) space, where m is the size of E and n is the size of T .
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A brief description of the algorithm for Theorem 2 is as follows: First, we
find all end positions P = {p1, p2, . . . , pk} of matching substrings in T using EM,
where k is the number of matching substrings in T . Note that k ≤ n since L(E)
is infix-free1. Then, we construct the Thompson automaton A′ for Σ∗ER and
find all the end positions PR = {q1, q2, . . . , qk} of substrings of T R with respect
to A′ using EM. Note that PR also has k positions. We assume that both P and
PR are sorted in ascending order.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15T

Fig. 4. An example of infix-free regular-expression matching. The upper arrows indi-
cate P R and the lower arrows indicate P . We output (2,4), (5,8), (7, 11), (10,12) and
(13,15).

Since L(E) is infix-free, no matching substring can be nested within any
other matching substring. Therefore, once we have PR and P , then we output
(qi, pi) for 1 ≤ i ≤ k, where qi ∈ PR and pi ∈ P . Fig. 4 illustrates this step
when PR = {2, 5, 7, 10, 13} and P = {4, 8, 11, 12, 15}. Since we run EM twice to
compute P and PR and the output step from P and PR takes only linear time
in the size of P , which is O(n) in the worst-case, the total complexity is O(mn)
time using O(m) space.

Since all infix-free (regular) languages are prefix-free (regular) languages it
is natural to investigate more general case, the prefix-free regular-expression
matching problem.

4 The Prefix-Free Regular-Expression Matching Problem

We now consider the regular-expression matching problem for prefix-free regular
expressions.

Lemma 1. Given a prefix-free regular expression E and a text T , there are at
most n matching substrings that belong to L(E), where n is the size of T .

Proof. Assume that the number of matching substrings is greater than n. Then,
by the pigeonhole principle, there must be two distinct substrings s1 and s2

that start from the same position in T . We assume without loss of generality
that s1 is shorter than s2, which, in turn, implies that s1 is a prefix of s2 — a
contradiction. Therefore, there are at most n matching substrings. �
1 This is a special case of Lemma 1 in Section 4 since an infix-free language is also a

prefix-free language.
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We design an algorithm for the prefix-free regular-expression matching prob-
lem. First, we find all end positions of matching substrings of T = w1 · · ·wn

using EM with respect to E. Let P = {p1, p2, . . . , pk} be the set of end posi-
tions of matching substrings, where k ≤ n is the number of matching substrings.
Then, we need to search for the corresponding start position of each end position
in P . We construct the Thompson automaton A′ = (Q, Σ, δ′, s′, f ′) for ER and
scan T R = wn · · ·w1 starting from the last position pk in P . Note that ER is
suffix-free.

Definition 2. Given a position j ∈ P and a current input position i in T R in
EM, where i < j, we define Qj to be the set of states such that there is a path
from s′ to each state in Qj that spells out the substring wjwj−1 · · ·wi of T R in
A′.

The notion of a set of reachable states in Definition 2 is not new. We already
used it in EM in Fig. 2 implicitly. We now maintain sets of reachable states in
A′ for all end positions in P .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15T

Q5

Q7

Q10

Q13

Q15

Fig. 5. Once we find the set P of all end positions, then we read T R and maintain sets
of reachable states for P in EM. For example, we have Q15, Q13 and Q10 when reading
w8 of T R.

We process T R from the last position in P with respect to A′ using EM. If Qj ,
for some position j ∈ P, 1 ≤ j ≤ n, contains the final state f ′ of A′ when reading
wi of T R, where i < j, then we output the matching substring position (i, j)
and continue to read the remaining input of T R. Since each end position in P
has exactly one corresponding start position, we can delete Qj from our data
structure after identifying a matching substring. However, we may meet another
end position j−1 before finding the start position for Qj and need to maintain
another set Qj−1 of reachable states for position j−1 in P . For example, we may
have sets Q15, Q13 and Q10 when we are reading w8 of T R in Fig. 5. We have
to maintain k sets of reachable states and update k sets simultaneously while
reading each character for T R in the worst-case. As proved in Section 3, the
size of each set of reachable states can be O(m) in the worst-case. Therefore, we
need O(kmn) time and O(km) space to answer the prefix-free regular-expression
matching problem, which is O(mn2) time and O(mn) space in the worst-case.
We now show that we can reduce the complexity to O(mn) time and O(m) space
because of prefix-freeness of E.
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Lemma 2. If a state r in A′ is reached from two different states p and q, where
p ∈ Qi and q ∈ Qj, when reading a character wh in EM, where h ≤ i < j,
then both paths from p and q via r cannot reach f ′ by reading any prefix of the
remaining input in EM.

Proof. Note that it is not possible that one path reaches f ′ while the other
path does not since both paths must share the same path after reading wh

and arriving at r. Assume that both paths reach f ′ after reading some pre-
fix wh−1 · · ·wg of the remaining input from r, where g < h. It implies that
both strings wi · · ·wh · · ·wg and wj · · ·wh · · ·wg belong to L(ER). Observe that
wi · · ·wg is a suffix of wj · · ·wg. It contradicts the suffix-freeness of ER. There-
fore, if r is reached by two states from different sets of reachable states, then
both paths from p and q via r cannot reach f ′ by reading any prefix of the
remaining input in EM. �

Lemma 2 demonstrates that if a state r in A′ is reached from two different
sets of reachable states when reading a character wh in EM, then r should
not belong to the both sets since both paths cannot reach the final state by
reading any prefix of the remaining input. Therefore, each state in A′ appears
in at most one reachable set and any two sets of reachable states are disjoint
from each other as a result of reading a character in T R. Since any state r in a
Thompson automaton has at most two in-transitions, r can be visited at most
twice in EM and we need at most O(m) time to update all sets of reachable
states simultaneously at each step to read a character in EM. Note that we use
only O(m) space.

Theorem 3. Given a prefix-free regular expression E and a text T , we can
identify all matching substrings of T that belong to L(E) in O(mn) worst-case
time using O(m) space, where m = |E| and n = |T |.

5 Prefix-Free Regular Languages

A regular language is represented by a finite-state automaton or described by a
regular expression. We present algorithms to determine whether or not a given
regular language L is prefix-free based either on finite-state automata or on
regular expressions. Note that if a finite-state automaton A is deterministic,
then L(A) is prefix-free if and only if A is non-exiting.

We first consider the representation of a regular language L by a nondeter-
ministic finite-state automaton (NFA) A. If A has any out-transitions from a
final state, then we immediately know that L(A) is not prefix-free; A must be
non-exiting to be prefix-free. If A is non-exiting and has several final states, then
all final states are equivalent and, therefore, merged into a single final state.

Given an NFA A = (Q, Σ, δ, s, f), we assign a unique number for each state
from 1 to m, where m is the number of states in Q. Assume 1 denotes s and m
denotes f . We use qi, for 1 ≤ i ≤ m, to denote the corresponding state in A. If
L(A) is not prefix-free, then there are two strings s1 and s2 accepted by A and s1
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is a prefix of s2. It implies that there are two distinct paths in A that spell out s1

and s2 and these two paths spell out the same prefix s1. For example, in Fig. 6,
two paths for s1 = abcbb and s2 = abcbbab are different although they have the
same subpath for ab in common. If the path for s1 is a subpath of the path for
s2, then it implies that there is another final state that has an out-transition.
This contradicts that A is non-exiting.

fs
a b

c

c
b b a b

b
b

Fig. 6. Two distinct paths for abcbb and abcbbab.

We introduce the state-pair graph to capture the situation when two distinct
paths in A spell out s1 and s2 and s1 is a prefix of s2.

Definition 3. Given a finite-state automaton A = (Q, Σ, δ, s, f), we define the
state-pair graph GA = (V, E), where V is a set of nodes and E is a set of edges,
as follows:

V = {(i, j) | qi and qj ∈ Q} and
E = {((i, j), a, (x, y)) | (qi, a, qx) and (qj , a, qy) ∈ δ and a ∈ Σ}.

b2,3 5,4

b

a

a

b

3 4

2

51

a

a1,4 2,5 a4,1 5,2

AG

a

a a

b

3,3

1,1

2,2

5,5

4,4

b

a

a

b3,2 4,5

A

Fig. 7. An example of a state-pair graph GA for a given finite-state automaton A. We
omit all nodes that have no out-transitions in GA.

Fig. 7 illustrates the state-pair graph for a given finite-state automaton A;
L(A) = {ab, aba} is not prefix-free because the prefix ab appears on the path
from (1, 1) to (5, 4) in GA.

Theorem 4. Given a finite-state automaton A, L(A) is prefix-free if and only
if there is no path from (1, 1) to (m, j), for any j �= m, in GA.
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Proof. =⇒ Assume that there is a path from (1, 1) to (m, j) that spells out a
string x in GA. Then, by the definition of state-pair graphs, there should be two
distinct paths, one of which is from q1 to qm and the other is from q1 to qj in A,
where qm = f and qj �= f . Note that both paths spell out x in A. Since A has
only useful states, state qj must have an out-transition (qj , z1, qk), where z1 ∈ Σ.
Then, there is a transition sequence (qj , z1, qk), (qk, z2, qk+1), . . . , (qk+l−2, zl, qm),
for some l ≥ 1, such that z1 · · · zl = z. In other words, A accepts both x and xz
— a contradiction. Therefore, if L(A) is prefix-free, then there is no path from
(1, 1) to (m, j) in GA.
⇐= Assume that L(A) is not prefix-free. Then, there are two strings x and y

and x is a prefix of y in L(A). Since A is non-exiting, there should be two distinct
paths that spell out x and y in A. Since x is a prefix of y, these two paths in
A make a path from (1, 1) to (m, j), where j �= m in GA — a contradiction.
Thus, if there is no path from (1, 1) to (m, j) for any j �= m in GA, then L(A)
is prefix-free. �

Let us consider the complexity of the state-pair graph GA = (V, E) for a
given finite-state automaton A = (Q, Σ, δ, s, f). It is clear that V = |Q|2 from
Definition 3. Let δi denote the set of out-transitions from state qi in A. Then,
|δ| =

∑m
i=1 |δi|, where m = |Q|. Since a node (i, j) in GA can have at most

|δi|×|δj| out-transitions, |E| =
∑m

i,j=1 |δi|×|δj| ≤ |δ|2. Therefore, the complexity
of GA is |Q|2 nodes and |δ|2 edges.

Prefix-Freeness(A = (Q,Σ, δ, s, f))

if A is not non-exiting
then return no

Construct GA = (V, E) from A

DFS((1, 1)) in GA

if we meet a node (m, j) for some j, j �= m
then return no

return yes

Fig. 8. A prefix-freeness checking algorithm for a given automaton.

The sub-function DFS((1, 1)) in Prefix-Freeness (PF) in Fig. 8 is a depth-
first search that starts at node (1, 1) in GA. The construction GA = (V, E) from
A takes O(|Q|2 + |δ|2) time in the worst-case and DFS takes (|V | + |E|) time.
Therefore, the total running time for PF is O(|Q|2 + |δ|2).
Theorem 5. Given a finite-state automaton A = (Q, Σ, δ, s, f), we can deter-
mine whether or not L(A) is prefix-free in O(|Q|2 + |δ|2) worst-case time using
PF.
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Since O(|δ|) = O(|Q|2) in the worst-case for NFAs, the running time of PF
is O(|Q|4) in the worst-case. On the other hand, if a language is described by a
regular expression, then we can choose a construction for finite-state automata
that improves the worst-case running time. Since the complexity of the state-pair
graph depends on the number of states and the number of transitions of a given
automaton, we need a finite-state automata construction that results in fewer
states and transitions. One possibility is to use the Thompson construction [11].

Given a regular expression E for L, the Thompson construction shown in
Fig. 1 takes O(|E|) time and the resulting Thompson automaton has O(|E|)
states and O(|E|) transitions [8]; namely, |Q| = |δ| = O(|E|). Even though
Thompson automata are a subfamily of NFAs, they define all regular languages.
Therefore, we can use Thompson automata to determine prefix-freeness of a
regular language given by a regular expression. Since Thompson automata have
null transitions, we include the null transition case to construct the edges for a
state-pair graph as follows:

V = {(i, j) | qi and qj ∈ Q} and
E = {((i, j), a, (x, y)) | (qi, a, qx) and (qj , a, qy) ∈ δ and a ∈ Σ ∪ {λ}}.

The complexity of the state-pair graph based on this new construction is the
same as before; namely, O(|Q|2 + |δ|2). Therefore, we have the following result
when checking regular expression prefix-freeness.

Theorem 6. Given a regular expression E, we can determine whether or not
L(E) is prefix-free in O(|E|2) worst-case time.

Proof. We construct the Thompson automaton AT for E. Hopcroft and Ull-
man [8] showed that the number of states in AT is O(|E|) and also the number
of transitions, |Q| = |δ| = O(|E|). Thus, we construct the state-pair graph based
on the new construction that includes null transitions and determine whether or
not there is a path from (1, 1) to (m, j) for some j �= m in O(|E|2) time using
PF. �

6 Conclusions

We have investigated the regular-expression, the infix-free regular-expression
and the prefix-free regular-expression matching problems. We have shown that
the regular-expression matching problem can be solved in O(mn2) time using
O(m) space based on the algorithm of Crochemore and Hancart [5]. Whereas, we
observed that the infix-free regular-expression matching problem can be solved
in O(mn) time using O(m) space. We have extended the matching problem
for a more general case, the prefix-free regular-expression matching problem
and proved that the prefix-free regular-expression matching problem can also be
solved in O(mn) worst-case time using O(m) space.

Furthermore, we have shown that we can determine whether or not L(A) is
prefix-free for a given NFA A = (Q, Σ, δ, s, f) in O(|Q|2 + |δ|2) worst-case time
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based on the state-pair graph defined in Section 5. Finally, if a language L is
described by a regular expression E, then we can improve the running time to
O(|E|2) using the Thompson construction [11].
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Abstract. The efficiency of regular expression matching algorithms de-
pends very much on the size of the nondeterministic finite automata
(NFA) obtained from regular expressions. Reducing the size of these au-
tomata by using equivalences has been shown to reduce significantly the
search time. We consider the problem of reducing the size of arbitrary
NFAs using equivalences and preorders. For equivalences, we give an al-
gorithm to optimally combine equivalent states for reducing the size of
the automata. We also show that the problem of optimally using pre-
orders to reduce the size of an automaton is NP-hard.

Keywords: regular expression matching, finite automata, state com-
plexity, equivalences, preorders

1 Introduction

Regular expressions lie at the heart of many applications, such as linguistics,
computational biology, pattern recognition, text retrieval, and so on. A powerful
and elegant theory provides tools to easily and efficiently solve many complex
problems by mapping them to regular expressions, then obtaining nondeter-
ministic finite automata (NFA) that recognize them, and finally constructing
deterministic finite automata (DFA). However, a severe obstacle in any real
implementation of the above scheme is the size of the DFA, which can be expo-
nential in the length of the original regular expression. A simple algorithm for
minimizing DFAs exists [7], but it has the drawback of requiring first the con-
struction of the DFA to later minimize it. This might not be practical because
of memory requirements and construction cost of the DFA.

A more promising (and more challenging) alternative is directly reducing the
NFA before converting it into a DFA. This has the advantage of working over a
much smaller structure (of size polynomial in the length of the regular expres-
sion) and of building the smaller DFA without the need to go through a larger one
first. However, the NFA state minimization problem is hard (PSPACE-complete,
[14]) and, therefore, algorithms such as [15–17] cannot be used in practice. There
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are also algorithms which build small NFAs from regular expressions, see [6, 10].
These algorithms consider the total size of NFAs, that is, they count both states
and transitions, and they increase artificially the number of states to reduce the
number of transitions. As the implementation crucially depends on the number
of states, such algorithms may not help.

The idea of reducing the size of NFAs by merging states was first introduced
by Ilie and Yu [12] who used left and right equivalence relations. Later, Cham-
parnaud and Coulon [2] modified the idea to work for preorders. An algorithm
to compute the equivalences in O(m log n) time on an NFA with n states and m
transitions and an O(mn) algorithm for computing preorders are presented in
[11].

The above mentioned algorithms identify sets of states that could be merged
without modifying the language accepted by the automaton. The number of
states of the resulting NFA depends on the order in which the states are merged.
Randomly choosing the order in which these mergings take place, as used so
far, does not guarantee that the smallest NFAs that can be built with these
techniques are produced.

In this paper we investigate optimal ways to use the information in equiv-
alences and preorders to reduce NFAs. We first give an efficient algorithm for
optimally combining the left and right equivalences for achieving the maximum
reduction in the size of an NFA. We show that the same problem for preorders,
however, is NP-hard. Since, potentially, preorders could produce a better reduc-
tion, a number of open problems remain, such as looking for alternative ways,
e.g., approximation algorithms, to reduce NFAs using preorders.

Notice that we do not claim that the above techniques achieve optimal reduc-
tion in the size of nondeterministic finite automata, as this problem is PSPACE-
complete. Rather, we use the adjective “optimal” to refer to the maximum re-
duction in size that these techniques can achieve. We will explain this more
precisely in the following sections.

We expect our results to have applications to regular expression matching.
A single equivalence was shown by Ilie et al. [11] to reduce significantly the
search time, more so than the special properties of the Glushkov automaton
(see [18, 19]). It remains to be tested how much we can further speed up regu-
lar expression search using the present reduction algorithms. Several important
research directions are mentioned in the conclusions section.

2 Basic Notions

We recall here the basic definitions we need throughout the paper. For further
details we refer to [9] or [21].

Let A be an alphabet of constant size and A∗ be the set of all words over A; ε
denotes the empty word. A language over A is a subset of A∗. A nondeterministic
finite automaton (NFA) is a tuple M = (Q, A, δ, I, F ), where Q is the set of
states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states, and
δ : Q × A → 2Q is the transition mapping; δ is extended to δ : 2Q × A∗ → 2Q
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by δ(S, a) =
⋃

q∈S δ(q, a), δ(S, ε) = S, and δ(S, aw) = δ(δ(S, a), w), for S ⊆ Q,
w ∈ A∗. The language recognized by M is

L(M) = {w ∈ A∗ | δ(I, w) ∩ F �= ∅}.

For p, q ∈ Q, we denote

LL(M, p) = {w ∈ A∗ | p ∈ δ(I, w)},
LR(M, p) = {w ∈ A∗ | δ(p, w) ∩ F �= ∅},
L(M, p, q) = {w ∈ A∗ | q ∈ δ(p, w)};

when M is understood, we simply write LL(p), LR(p), and L(p, q), respectively.
The reversed automaton of M is M r = (Q, A, δr, F, I), where q ∈ δr(p, a) iff
p ∈ δ(q, a).

3 NFA Reduction with Equivalences

The idea of reducing the size of NFAs by merging states was investigated first
by Ilie and Yu [12]; see also [13]. We describe it briefly in this section.

Let M = (Q, A, δ, I, F ) be an NFA. We define ≡R as the coarsest equivalence
relation over Q that satisfies:

(P1) ≡R ∩(F × (Q− F )) = ∅,
(P2) ∀p, q∈Q,∀a∈A,

(
p ≡R q ⇒ ∀q′∈δ(q, a), ∃p′∈δ(p, a), q′ ≡R p′

)
.

The equivalence ≡R is the largest equivalence over Q which is right-invariant
with respect to M ; see [12, 13]. Given≡R, the algorithm to reduce the automaton
M is simple: while there are non-trivial equivalence classes, merge all states in
a non-trivial equivalence class and modify the transitions accordingly.

Symmetrically, the relation ≡L can be defined using the reversed automaton.
An automaton M can be reduced according to either equivalence.

Example 1. Consider, for example, the automaton in Figure 1(a) where the
equivalence classes are also shown. States 1, 2, and 3 belong to the same equiv-
alence class of ≡R, and so they would be merged into a single state as shown
in Fig 1(b). As Figure 1(c) shows, there are NFAs that can be reduced more by
simultaneously using both equivalences.

Furthermore, there might not be a unique way to use optimally both ≡R and
≡L as the following example (from [13]) shows.

Example 2. In Figure 2, the automaton from the left has only two pairs of equiv-
alent states: 1 ≡R 3 and 1 ≡L 2. We may either merge 1 with 3 or 1 with 2 but
not both, since merging all three states into one introduces the word bd which is
not in the language. Therefore, we have two different optimal ways of reducing
the automaton.
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Classes of ≡R: {0}
{1, 2, 3}
{4}, {5}
{6}, {7}

Classes of ≡L: {0}, {1}
{2}, {3}
{4, 5, 6}
{7} 70

(a)

(c)

(b)
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Fig. 1. (a) An NFA. (b) Its reduced version using ≡R. (c) Its reduced version using
≡R and ≡L.
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Fig. 2. An NFA, and its reduced versions using ≡R and ≡L.

In [13] it is posed as an open problem to find a best way to do the reduction
using both equivalences. In Section 4 we give an efficient algorithm for solving
this problem.

A classical algorithm of Paige and Tarjan [20] was used in [11] to compute
the equivalences fast. Given an automaton with n states and m transitions, the
algorithm of [11] runs in time O(m log n) and space O(m + n).

4 Efficient Use of Equivalences

We describe now an efficient algorithm for reducing the size of an NFA M =
(Q, A, δ, I, F ) by merging states according to the equivalence classes ≡R and ≡L.
In a certain sense, to be made precise below, we use the information in the two
equivalences optimally.

Each of the two equivalences ≡R and ≡L defines a partition of the set Q of
states. Let these partitions be

ΠR = {X1, X2, . . . , Xr}
ΠL = {Xr+1, Xr+2, . . . , Xr+s},

respectively. Two states p, q belong to the same set Xi, i ≤ r (i > r), if and only
if p ≡R q (p ≡L q).
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A reduction merges states belonging to the same equivalence class into a
single state. Let a reduction be X∗ = {X∗

1 , X∗
2 , . . . , X∗

� }, where each X∗
i repre-

sents a set of equivalent states that is merged into a single state in the reduced
automaton. The reduced NFA has, then, � states. Observe that each set X∗

i is a
subset of at least one of the sets Xj . Let X∗

i ⊆ Xπ(i), where 1 ≤ π(i) ≤ r + s.
Clearly, � ≤ min{r, s}.

Note that ∪�
i=1X

∗
i = Q, where Q is the set of states of the NFA. Then,

∪�
i=1Xπ(i) = Q, and so {Xπ(1), Xπ(2), . . . , Xπ(�)} is a set cover for Q from the

family of sets X = ΠR ∪ΠL.
We can identify optimal use of the equivalences by finding an optimal solution

for the instance 〈Q, X = ΠR∪ΠL〉 of the set covering problem. In the set covering
problem, given a finite set Q and a family X of subsets of Q, the goal is to find
the smallest subset of X that includes all elements in Q. Any subset of X that
includes all elements in Q is called a set cover for Q.

Let S∗ be a smallest set cover for 〈Q, X〉. To achieve the maximum possible
reduction in the size of the NFA that can be obtained with the equivalences, we
first remove duplicated occurrences of the same state from the sets in S∗; i.e., if
state p belongs to two subsets S∗

i , S∗
j ∈ S∗, then we remove p from either S∗

i or
S∗

j so that p appears in only one subset of S∗. Then, all the states in the same
subset S∗

i ∈ S∗ are merged into a single state in the reduced NFA. The reduced
NFA will be called the eq-reduced NFA.

The set covering problem is NP-hard, so the above algorithm for reducing
NFAs might not be practical. Fortunately, the instance 〈Q, X〉 of the set covering
problem defined by ≡R and ≡L is not an arbitrary one, but it has a very special
structure. In particular, every state p ∈ Q belongs to at most two of the subsets
of X . Therefore, the algorithm of Bar-Yehuda end Even [1] gives a 2-approximate
solution for this problem.

We can do better than this, though. Let us model the set covering problem
as a bipartite graph GB = (L∪R, E). Each set Xi is a vertex in this graph. Put
vertices X1, . . . , Xr in L and the rest in R. Every edge p ∈ E corresponds to a
state p of the NFA and it joins the two sets containing it (see Figure 3).

2

1,2,3

4

5

6

0

7 7

0

4,5,6

3

1

Fig. 3. Bipartite graph GB for the NFA of Figure 1(a).
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An optimal set cover for 〈Q, X〉 corresponds to a minimum vertex cover for
GB (a vertex cover for GB is a subset of vertices incident on all edges). Since
the graph GB is bipartite, a minimum vertex cover can be easily derived from a
maximum matching, which can be computed in O(m′√n) = O(n3/2) time using
the algorithm of Hopcroft and Karp [8], where m′ is the number of edges in the
bipartite graph and n is the number of vertices. The number of edges is equal
to the number n of states in the NFA, and the number of vertices is the number
of equivalence classes in ≡R and ≡L, which is at most n.

The problem of computing a minimum vertex cover for a bipartite graph
has been widely studied in the literature. For completeness, we present a simple
algorithm for finding a minimum vertex cover for GB from a maximum matching
M∗ of GB. First, build the residual network GM∗ corresponding to the matching:

– Add a source node ns to GB and connect it to every vertex in L.
– Add a sink node nt to GB and connect it to every vertex in R.
– Direct every edge in the matching from R to L. Direct every edge (ns, u),

where u is incident to an edge in the matching, from u to ns. Direct every
edge (v, nt) incident on the matching from nt to v.

– All other edges are directed from left to right.

Do a depth first search traversal on this graph starting at vertex ns, marking
every vertex that can be reached from ns. A minimum vertex cover C∗ is formed
by all marked vertices in R plus all un-marked vertices in L. Every marked vertex
v ∈ R is incident on an edge of the matching, because otherwise the path ns, u, v
used to reach v would include an edge (u, v) not incident on M∗, contradicting
that M∗ is maximum. Also, every un-marked vertex u ∈ L must be incident
on M∗ since the edge between s and u must be directed from u to s. Hence,
|C∗| ≤ |M∗|. This procedure requires linear time.

Lemma 1. C∗ is a minimum vertex cover for the bipartite graph GB, and the
size of C∗ is equal to the size of M∗.

Proof. The above algorithm simply finds a cut of capacity C∗ for a flow network
G that has the same topology as GM∗ , but in which all edges (of unit capacity)
are directed from left to right. By the max-flow min-cut theorem, we know that
the size of M∗ is equal to the capacity of a minimum cut, and thus, that the size
of M∗ is equal to the size of C∗. To see that C∗ is a vertex cover, note that a
minimum cut of G intersects every path from ns to nt. Therefore, for every edge
(u, v) of G, the path ns, u, v, nt is intersected by a minimum cut and, thus, in
the residual network GM∗ either v (but not nt) is reachable from ns or u is not
reachable from ns. This implies that either u or v belong to C∗, so edge (u, v)
is covered by C∗.

We have proved the following result.

Theorem 1. Given an NFA with n states and m transitions, there is an al-
gorithm that computes the corresponding eq-reduced automaton in O(n3/2 +
m log n) time.
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5 NFA Reduction with Preorders

Champarnaud and Coulon [2] noticed that a better reduction can be obtained
if the axioms (P1) and (P2) above are used to construct a preorder relation
instead of an equivalence. Let us denote the largest (w.r.t. inclusion) preorder
which satisfies (P1) and (P2) by ⊆R. It is then immediate that p ⊆R q implies
LR(p) ⊆ LR(q).

As in the case of equivalences, the relation ⊆L is symmetrically defined using
the reversed automaton. Then, p ⊆L q implies LL(p) ⊆ LL(q).

The reduction with preorders is more complicated than with equivalences.
We can merge two states p and q as soon as any of the following conditions is
met:

(i) p ⊆R q and q ⊆R p,
(ii) p ⊆L q and q ⊆L p,
(iii) p ⊆R q, p ⊆L q, and L(p, p) = {ε}.

However, after merging two states, the preorders ⊆R and ⊆L must be updated
such that their relation with the languages LR and LL (see above) is preserved.
For instance, in the case (i), assuming the merged state of p and q is denoted q,
the update amounts to removing from ⊆L all pairs (q, s) for which p �⊆L s. Case
(ii) is handled similarly and (iii) does not need any update.

The condition (iii) appears in [2, 3] without the requirement L(p, p) = {ε}
and, as noticed by [4], it is incorrect. In fact [4] removes this condition because
its proof is incorrect. We give below a counterexample showing that, indeed,
condition (iii) without the requirement L(p, p) = {ε} does not work.

Example 3. Consider the automaton in Figure 4. We have LL(1) = ab∗ ⊆ ab∗ ∪
{x} = LL(2) and LR(1) = b∗c ⊆ b∗c∪ {y} = LR(2), but we cannot merge states
1 and 2 as this would add xb∗y to the language.

0

1

3

2

4

5

b

b

b

b

a c

a,x c,y

a
b

c

Fig. 4. The condition (iii) without L(p, p) = {ε}; 1 and 2 cannot be merged.

Let us prove that our condition (iii) as stated above is correct. Denote the
initial automaton by M and the one obtained after merging p and q by M ′.
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Denote also the merged state in M ′ by q. We need to prove that L(M ′) ⊆ L(M).
The only problem might come from a word w ∈ L(M ′) such that w1 ∈ LL(M ′, q)
for some prefix w1 of w. This word w can be decomposed as w = w1w2w3 such
that: there is a path labelled w1 in M ′ from an initial state to q which does not
pass through q twice; there is a path labelled w3 in M ′ from q to a final state
which does not pass through q twice; and, there is a path labelled w2 in M ′

which starts and ends in q. We have then

w1 ∈ LL(M, p) ∪ LL(M, q) = LL(M, q),
w3 ∈ LR(M, p) ∪ LR(M, q) = LR(M, q), and
w2 ∈ (L(M, p, p) ∪ L(M, p, q) ∪ L(M, q, p) ∪ L(M, q, q))∗.

Since L(M, p, p) = {ε}, at least one of L(M, q, p) and L(M, p, q) must be empty.
Assume L(M, q, p) is empty. (The other case is similarly proved.) Then, using

L(M, q, q)LR(M, q) ⊆ LR(M, q) and
L(M, p, q)LR(M, q) ⊆ LR(M, p) ⊆ LR(M, q),

we obtain w ∈ LL(M, q)LR(M, q) ⊆ L(M), as claimed.
Since the preorder requirement is weaker than the equivalence requirement,

p ≡R q implies that p ⊆R q and q ⊆R p. The converse is not true in general
(see [2] for an example). Therefore, using preorders we have a chance to obtain a
better reduction of the NFA. It remains to investigate how much better. Notice
that the experiments in [3] are no longer valid since one of the conditions they
used in the reduction was invalid. The preorders ⊆R and ⊆L can be computed
in time O(mn) and space O(n2); see [11] and [3].

6 Optimal Use of Preorders Is Hard

Contrary to the case of equivalences, it is hard to find the optimal way to use
preorders to achieve best possible reductions. Again, what we mean by “optimal”
is precisely defined below. All proofs in this section will be omitted due to lack
of space.

As mentioned above, two states p, q of an automaton M can be merged into
a unique state if any of the conditions (i)-(iii) is satisfied. Given the preorders
⊆R and ⊆L, we let

p ∼=R q iff p ⊆R q and q ⊆R p, and
p ∼=L q iff p ⊆L q and q ⊆L p.

These new equivalences, ∼=R and ∼=L, are coarser than ≡R and ≡L, and they
induce two partitions πR and πL of the set of states of M . Condition (iii) induces
a partial order # on the set of states, where

p # q iff p ⊆R q, p ⊆L q and L(p, p) = {ε}.

This partial order induces a family πP of state subsets P1, P2, . . . , Pk, k ≤ n,
where each Pi has a unique maximal element mi, and two sets p, q belong to
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the same set Pi iff p # mi and q # mi. Note that sets Pi cover all sates of M ,
but they are not necessarily a partition of Q.

We formulate the “optimal” use of preorders ⊆R and ⊆L for merging the
states of M as an instance 〈Q, π〉 of the set covering problem: given a set Q of
states and a family of state subsets π = πR ∪ πL ∪ πP , the goal is to find the
smallest subset S∗ of π that includes all states of Q.

Consider an optimal solution S∗ for the above set covering problem. Let
S∗ = {S∗

1 , S∗
2 , . . . , S∗

� }; we reduce the automaton by merging all states in each
set S∗

i into a unique state. Care must be taken that a state p ∈ Q belonging
to two different sets S∗

i , S∗
j is not merged twice. To ensure this, the sets S∗ are

considered in order. First, the set S∗
1 is contracted to a single new state, and

all states that belong to S∗
1 are removed from the remaining sets S∗

2 , . . . , S∗
� .

Then, S∗
2 is contracted and all states in S∗

2 are discarded from the remaining
sets S∗

3 , . . . , S∗
� , and so on. The number of states in the final NFA M∗ is �; we

call this automaton the pre-reduced NFA.
The pre-reduced NFA M∗ has minimum size among those obtained by reduc-

ing M using preorders as explained above. This is because if there were another
NFA, say M ′ with �′ < � states, that could be obtained from M by merging
states as indicated by (i)-(iii), then the way in which the states are merged to
produce M ′ defines a solution for the set covering problem 〈Q, π〉 of size �′ < �,
contradicting the optimality of S∗.

Observe that 〈Q, π〉 is a restricted instance of the set covering problem and,
thus, the problem of optimally using preorders for reducing the number of states
of a NFA might be simpler to solve than the general set covering problem. We
show now that despite its restricted structure the set covering problem 〈Q, π〉
is still NP-hard. In fact, we show that an even more restricted version of the
problem is NP-hard.

Let us consider only instances 〈Q, π〉, π = πR ∪ πL ∪ πP , where the family
πP is a partition of Q. For these instances each state p appears in precisely 3
sets of π (one set belonging to each of πR, πL, and πP ). This particular class of
instances of the set covering problem can be modeled as 3-partite hypergraphs
HM = (Vπ , EQ), where each vertex v ∈ Vπ corresponds to a subset in π and
each hyperedge ep ∈ EQ is incident on the vertices corresponding to the three
sets Ap ∈ πR, Bp ∈ πL, and Cp ∈ πP containing p. A hypergraph is said to be
3-partite if its vertices can be partitioned into 3 disjoint sets such that every
hyperedge is incident on exactly one vertex from each partition.

Note that every set cover of 〈Q, π〉 corresponds to a vertex cover (set of
vertices incident on all hyperedges) of HM . The vertex covering problem on 3-
partite hypergraphs can be shown to be NP-hard via a reduction from the 3-SAT
problem. We explain very briefly the idea.

Recall the 3-SAT problem. Given a boolean formula f(x1, . . . , xn) = C1 ∧
C2 ∧ · · · ∧Cm, where each clause Ci contains exactly 3 literals (a literal is either
a variable xi or its negation x̄i), the problem is to decide whether there is an
assignment of values to the variables that satisfies all clauses. The 3-SAT problem
is known to be NP-hard [5].
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Given a boolean formula f(x1, . . . , xn) we build a 3-partite hypergraph Hf =
(Vf , Ef ) as follows. Let ni be the number of occurrences of xi (either as xi or
as x̄i) in f . For each variable xi we create 8ni nodes: xi1, . . . , xi ni , x̄i1, . . . , x̄i ni ,
di1, . . . , di ni , d̄i1, . . . , d̄i ni , si1, . . . , si 4ni . Nodes xij , x̄ij represent the j-th occur-
rence of the variable xi (in its j-th occurrence xi can be either negated or not).
Dummy nodes dij , d̄ij , and sij are used to ensure that the resulting hypergraph
is 3-partite. These nodes are connected forming a cycle. Each hyperedge spans
3 nodes.

Furthermore, for each clause Ck = �k1∨�k2∨�k3, we add a hyperedge incident
on the 3 nodes corresponding to the literals �ki (note that different occurrences of
the same variable are represented by different nodes). A very simple hypergraph,
for the formula f(x1, x2, x3) = x1 ∨ x̄2 ∨ x3, is shown in Fig. 5.
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Fig. 5. Hypergraph corresponding to formula f(x1, x2, x3) = x1 ∨ x̄2 ∨ x3.

The next step is to consider those 3-partite graphs as described above, which
we call 3-SAT hypergraphs, and show that the vertex cover problem on 3-SAT
hypergraphs reduces to the problem of optimally using preorders for NFA re-
duction.

Consider a hypergraph Hf built from a boolean formula f . We construct an
automaton Mf for which its preorders ⊆′

R and ⊆′
L define a hypergraph identical

to Hf , but for 2 additional, isolated hyperedges. Denote the 3 partitions of the
vertices of Hf by Rf , Lf , Pf . Let ∼=′

R, ∼=′
L, and #′ be the equivalence relations

and partial order, respectively, defined by the preorders ⊆′
R and ⊆′

L.
The idea of the construction is as follows. The automaton is built so that each

node of Hf corresponds to a set of states of Mf . Specifically, a vertex u ∈ Rf

defines a set of states that are equivalent under ∼=′
R, a vertex v ∈ Lf corresponds

to an equivalence class under ∼=′
L, and a vertex w ∈ Pf corresponds to a member

of the family of state subsets induced by the partial order #′. Furthermore, each



320 Lucian Ilie, Roberto Solis-Oba, and Sheng Yu

hyperedge of Hf incident on vertices u, v, and w, corresponds to a state of the
automaton that belongs to classes u, v, and w of Rf , Lf , and Pf , respectively.
The details of the construction are omitted due to lack of space.

The main result of this section is

Theorem 2. Given an NFA, the problem of computing the corresponding pre-
reduced automaton is NP-hard.

7 Conclusions and Further Research

We wish to point out that our algorithm for computing the eq-reduced NFA
only finds the best way of merging states with respect to the equivalence classes
ΠR and ΠL. It is possible to reduce the size of an NFA by first merging some
equivalent states in ΠR ∪ΠL to get a new NFA and new equivalence classes Π ′

R

and Π ′
L. Then, some equivalent states in Π ′

L ∪Π ′
R could be merged to produce

new equivalence classes, and so on. It is an open problem to find the best way
of reducing an NFA by using this method.

We note that our algorithm for equivalences can be iterated for better results,
but this does not solve the above problem. After reducing the size of an NFA
using the equivalences, we can compute the new right and left equivalences Π̃R

and Π̃L for the reduced automaton. Then, we apply the algorithm to Π̃R and
Π̃L. We can continue this process until no further reduction is achieved.

For preorders, we proved that the problem of optimally (as defined above)
using them to attain the maximum possible reduction in the size of the automa-
ton is NP-hard. Therefore, reductions with preorders, potentially more powerful
than those with equivalences, might be too expensive to compute. This opens a
new research topic: designing efficient approximation algorithms for using pre-
orders in reducing NFAs, and testing their performance in practice.

More theoretical and experimental work is needed to determine which of the
two relations, equivalences or preorders, is better in practice and which approach
achieves greatest speedup for regular expression matching.
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Abstract. Given strings S1, S2, and a regular expression R, we intro-
duce regular expression constrained sequence alignment as the problem
of finding the maximum alignment score between S1 and S2 over all
alignments such that in these alignments there exists a segment where
some substring s1 of S1 is aligned with some substring s2 of S2, and
both s1 and s2 match R, i.e. s1, s2 ∈ L(R) where L(R) is the regular
language described by R. A motivation for the problem is that protein se-
quences can be aligned in a way that known motifs guide the alignments.
We present an O(nmr) time algorithm for the regular expression con-
strained sequence alignment problem where n, and m are the lengths of
S1, and S2, respectively, and r is in the order of the size of the transition
function of a finite automaton M that we create from a nondeterministic
finite automaton N accepting L(R). M contains O(t2) states if N has t
states.

Keywords: Regular expression, sequence alignment, dynamic program-
ming, pattern matching, finite automaton.

1 Introduction

We introduce regular expression constrained sequence alignment (RECSA) as
the following problem: given strings S1, S2, and a regular expression R, find the
maximum alignment score between S1 and S2 over all alignments that satisfy a
regular expression constraint. An alignment satisfies the constraint if it includes
a segment in which a substring s1 of S1 is aligned with a substring s2 of S2, and
both s1 and s2 match R where a string s is said to match a regular expression
R if s ∈ L(R), i.e. s is a string in the language described by R. We precisely
explain what we mean by “substring s1 is aligned with substring s2” when we
define alignment paths in Section 3. In a simple case, if s1, and s2 are of the
same length then we say that s1 is aligned with s2 if they appear in the same
window of columns in the alignment matrix as shown in Figure 1.

Figure 1 illustrates an example in which sequences S1 = TGFPSVGKTKDDA, and
S2 = TFSVAKDDDGKSA are aligned in a way to maximize the number of matches
(this is the longest common subsequence problem). An optimal alignment with
8 matches is shown in part (a). For the regular expression constrained sequence

A. Apostolico, M. Crochemore, and K. Park (Eds.): CPM 2005, LNCS 3537, pp. 322–333, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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T G F P V G K T K D D AS - - - -

T F - S V A - - K D D D G K S A-

(a)

(b)

T S V A K D D D G K - - - AF

AK D DT - - - F P S V G K TG

S

Fig. 1. For strings S1 = TGFPSVGKTKDDA and S2 = TFSVAKDDDGKSA: (a) An alignment
with maximum number of matches, 8. (b) An alignment in which substring GFPSVGKT of
S1 is aligned with substring AKDDDGKS of S2, and both match R = (G + A)ΣΣΣΣGK(S + T)
where Σ is a fixed alphabet on which the sequences are defined. This alignment has 4
matches, and it satisfies the regular expression constraint.

alignment problem with R = (G + A)ΣΣΣΣGK(S+ T), where Σ denotes a fixed
alphabet over which sequences are defined, the alignments sought change. The
alignment in part (a) does not satisfy the regular expression constraint. Part
(b) shows an alignment with which the constraint is satisfied. The alignment
includes a region (shown with a rectangle drawn in dashed lines in the figure)
where the substring GFPSVGKT of S1 is aligned with substring AKDDDGKS of S2,
and both substrings match R. In this case, optimal number of matches achievable
with the constraint decreases to 4.

The motivation for the problem is that when computing the homology of two
protein sequences it may be important to take into account a common specific
or putative structure. Family of similar protein sequences include a conserved
region. Such conserved amino acid residues associated with a particular function
is called a sequence motif. Typically, motifs span 10 to 30 amino acid residues.
The notion of a motif was first explicitly introduced by Russell Doolittle in
1981 [5]. Discovery of sequence motifs related to a vast variety of enzymatic and
binding activities of proteins has continued at a steady rate [2], and the motifs,
in the form of amino acid patterns, were incorporated by Amos Bairoch in the
PROSITE database. PROSITE (http://www.expasy.org/prosite, mirrored in the
US at http://us.expasy.org/prosite) is maintained by Amos Bairoch and tightly
integrated with SWISS-PROT [8]. For many years, PROSITE has been a collec-
tion of sequence motifs, which were represented and stored as regular expressions.
For example, the motif in Figure 1 is the famous P-loop motif, first described in
1982 by John Walker and colleagues as “Motif A” and found later in many ATP-
and GTP-binding proteins, corresponds to a flexible loop, sandwiched between
a b-strand and an a-helix and interacting with b- and g-phosphates of ATP
or GTP [12]. In PROSITE database it is represented as [GA]-X(4)-G-K-[ST]
(ATP/GTP-binding site motif A (P-loop) (PS00017)) which means that the first
position of the motif can be occupied by either Ala or Gly, the second, third,
fourth, and fifth positions can be occupied by any amino acid residue, and the



324 Abdullah N. Arslan

sixth and seventh positions have to be Gly and Lys, respectively, followed by
either Ser or Thr.

The regular expression constraint can guide the alignments. As we observe
in Figure 1 the regular expression constraint change the optimality of the align-
ments. If the sequences contain the same motif then it is more meaningful to
seek an alignment that contains the motif (i.e. that satisfies the corresponding
regular expression constraint) over those that do not because the motif should
be part of the true alignment. In Figure 1 strings S1, and S2 are not real protein
sequences. We use them to present the advantage of using the regular expression
constraint in a simple setting with short strings.

In this paper we present an algorithm for the RECSA problem whose time
complexity is O(nmr) where r is the size of the finite automaton M we create.
M is a weighted automaton that accepts alignments that satisfy the regular ex-
pression constraint where the weights of the states in M correspond to optimum
constrained alignment scores. The algorithm is based on a given dynamic pro-
gramming formulation for sequence alignment. Instead of computing optimum
scores, it uses the dynamic programming solution to compute weights for au-
tomaton M . M has O(t2) states if N has t states where N is an automaton that
accepts the language described by the regular expression R.

The outline of this paper is as follows. In Section 2 we summarize the previous
related work, and results. In Section 3 we describe a framework for sequence
alignment. In Section 4 we describe how we create the finite automaton that we
use in our algorithm for the RECSA problem we present in Section 5. In Section
6 we include our concluding remarks, and pointers for future work.

2 Previous Related Work

Given two sequences S1 and S2 the pairwise sequence alignment [13] problem is
to compute the maximum score over all possible alignment matrixes for these
sequences. In an alignment matrix we insert special symbols ′−′ in S1, and S2,
generating respectively, sequences S∗

1 , and S∗
2 with equal length, and align the

symbols of S∗
1 , and S∗

2 by placing symbols at the same positions in the same
column. In an alignment matrix, a given scoring scheme assigns a score to each
column corresponding to the symbols appearing in the column. The score of
an alignment matrix is the sum of its column-scores. The multiple sequence
alignment is the generalization of this problem for multiple sequences.

The constrained versions of the sequence alignment problems have been stud-
ied in the literature extensively [1, 3, 4, 7, 9–11].

Tang et al. [9] introduces the constrained multiple sequence alignment (CM
SA) problem in which we are given k sequences S1, S2, . . . , Sk with maximum
length n, and a pattern P with length r, and the solution of the problem is an
alignment with optimal score such that each P [i] appears in an entire column
of the multiple sequence alignment matrix. A motivation for the problem is the
alignment of RNase sequences. Such sequences are all known to contain three
active residues His(H), Lyn(K), His(H) that are essential for RNA degrading.
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Therefore, it is natural to expect that in an alignment of RNA sequences, each
of these residues should be aligned in the same column, i.e. alignment satisfies
the constrained sequence "HKH". The CMSA problem when k = 2 is called the
constrained pairwise sequence alignment (CPSA) problem [3, 9]. Solutions for
CPSA can be used to solve the CMSA problem. We can progressively align
the sequences into a multiple alignment by using a minimum spanning tree
obtained from a pairwise distance matrix of the sequences [3, 9, 11]. Tang et al.
[9] introduces the CPSA problem, and presents an algorithm whose both time
and space requirements are O(rn4). For the CPSA problem, Chin et al. [3],
and Tang et al. [11] present improved algorithms with time complexity O(nmr)
where n, and m are the lengths of the sequences compared, and r is the length
of the pattern P .

The longest common subsequence (LCS) problem for two strings is to find a
common subsequence in both strings having maximum length. The LCS problem
has many applications, and it has been studied extensively. Tsai [10] introduces
the constrained longest common subsequence problem, and gives a dynamic pro-
gramming solution whose time complexity is O(rn2m2). For given strings S1, S2,
and pattern P whose lengths are n, m, and r respectively, the longest common
subsequence problem is to find a longest common subsequence lcs of S1 and
S2 such that P is a subsequence of this lcs. Chin et al. [7], and Arslan and
Eğecioğlu [1] give different dynamic programming solutions for the constrained
LCS problem with time complexity O(nmr). Chin et. al [7] also shows that the
constrained LCS problem is a special case of the multiple sequence alignment
problem. Arslan and Eğecioğlu [1] introduces the edit distance constrained LCS
problem as a generalization of the constrained LCS problem. The edit distance
constrained LCS problem is, given strings S1, S2, P , and distance d, to find a
longest common subsequence lcs of S1 and S2 such that this lcs has a subse-
quence whose simple edit distance from P is smaller than d. Simple edit distance
between two strings is the minimum number of edit operations required to trans-
form one string into the other where the edit operations are insert, delete, and
substitute. Arslan and Eğecioğlu [1] present an O(dnmr)-time algorithm for this
problem.

Using edit distances as a constraint in the alignments is a step toward allow-
ing patterns that may slightly differ in each sequence. Another approach pro-
posed by Comet and Henry [4] uses a method that rewards alignments containing
motifs. From the motif database the method first finds a known motif (or motifs)
in each sequence separately to determine a common motif (or motifs). Next, it
extends the dynamic programming sequence alignment solution by reconsider-
ing each region where the motif appears in each sequence simultaneously. In this
paper we continue in this direction. Protein sequences contain motifs that are
described in PROSITE format (http://www.expasy.org/txt/prosuser.txt) that
can be translated into simple regular expressions. Our main contribution in this
paper is that we present an algorithm for the RECSA problem where the con-
straint is a regular expression. This makes it possible to restrict the alignment
of protein sequences to contain a given motif.
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3 Framework

Given two strings S1 and S2, the global pairwise sequence alignment of S1, and
S2 is to find an alignment path with the maximum score.

Given two strings S1[1..n] and S2[1..m] with n ≥ m, we use the alignment
graph GS1,S2 to analyze alignments between all substrings of S1, and S2. The
alignment graph is a directed acyclic graph having (n + 1)(m + 1) lattice points
(u, v) as vertices for 0 ≤ u ≤ n, and 0 ≤ v ≤ m (Figure 2). An alignment path
for substrings S1 and S2 is a directed path from the vertex (0, 0) to (n, m) in
GS1,S2 . To each vertex there is an incoming arc from each neighbor if it exists.
Horizontal and vertical arcs correspond to insert and delete operations respec-
tively. The diagonal arcs correspond to substitutions which are either matching
(if the corresponding symbols are the same), or mismatching (otherwise). If we
trace the arcs of an alignment path, and perform the indicated edit operations
on S1 in the order of the arcs in the alignment then we obtain S2. Blocks of
insertions and deletions are referred to as gaps.

The objective of sequence alignment is to quantify the similarity between S1

and S2 under a given scoring scheme. In the simple scoring scheme, the arcs of
GS1,S2 are assigned weights determined by some real function γ.
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Fig. 2. Alignment graph GS1,S2 where S1 = CAGSGC and S2 = CAGCGTG. Matching
diagonal arcs are drawn as solid lines while mismatching diagonal arcs are shown
by dashed lines. Dotted lines are used for horizontal and vertical arcs. An example
alignment path is shown. Labels of the arcs on this path are the corresponding edit
operations where ε denotes the null string.
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The following is the classical dynamic programming formulation [13] to com-
pute the maximum global alignment scoreHi,j achieved by an optimal alignment
ending at each vertex (i, j):

Hi,j = max{ Hi−1,j + γ(S1[i]→ ε), Hi−1,j−1 + γ(S1[i]→ S2[j]),
Hi,j−1 + γ(ε→ S2[j]) }

(1)

for 1 ≤ i ≤ n, 1 ≤ j ≤ m, with the boundary conditions Hi,j = −∞ whenever
i = 0 or j = 0 except for H0,0 = 0. Then Hn,m is the global alignment score
between S1, and S2. The global alignment score can be computed in time O(nm)
using O(m) space because only O(m) entries of the dynamic programming matrix
need to be stored at any given time [13].

We say that substring s1 of S1 is aligned with substring s2 of S2 in a given
alignment if there exists in the alignment a segment whose projection on S1 is
s1, and whose projection on S2 is s2. In the alignment shown in Figure 2, s1 =
AGS is aligned with s2 = AGCGT. The corresponding segment of the alignment is
shown in thick lines in the figure.

In our algorithm for the RECSA problem we use the dynamic programming
formulation in (1) but instead of scores we compute finite automata that we
describe next.

4 Weighted Finite Automaton

We imagine alignments as strings of edit operations, and we construct an au-
tomaton M that moves on edit operations. M changes states as the alignments
are formed. M accepts those alignments in which the regular expression con-
straint is satisfied. An alignment satisfies a given regular expression constraint
if M enters a final state after reading the edit operations in the alignment. That
is, M must remember if the regular expression constraint is partially or com-
pletely satisfied by substrings s1 of S1, and s2 of S2 that are aligned together.
Since there may be many alignments accepted by M and we are interested in
finding the maximum alignment score, we assign weights to the states, and as
the alignments are formed the weights will be updated after each move.

We construct M from a given regular expression R in several steps. We first
construct a nondeterministic finite automaton A from R such that they are
equivalent, i.e. L(A) = L(R) [6]. A possibly have ε-moves. Then we construct
an equivalent nondeterministic finite automaton N = (Q, Σ, δ, q0, F ) with no ε-
moves as described in [6]. N has the same number of states as A. To summarize,
N accepts the set of strings described by the regular expression R.

We define a weighted N × N automaton as the finite automaton M =
(QM , WM , ΣM , qM

0 , FM ) which we construct as follows:

– QM = Q ×Q is the set of states. Each state of M corresponds to a pair of
states in N . M remembers in each state what part of the regular expression
has been seen in S1, and S2.
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– WM : QM → IR is a function that assigns real weights to each state in QM ,
and initially all weights are −∞. We determine the active set of states of M
by examining their weights. The active states of M have weights different
than −∞.

– ΣM = (Σ ×Σ)− {ε→ ε}. The alphabet for M is the set of edit operations
which does not include ε→ ε.

– δM : QM ×ΣM → QM . M moves on edit operations:
• For x �= ε, δM ((p, q), x→ ε) = {(p′, q) | p′ ∈ δ(p, x)}.
• For y �= ε, δM ((p, q), ε→ y) = {(p, q′) | q′ ∈ δ(q, y)}.
• For x �= ε, y �= ε, δM ((p, q), x→ y) = {(p′, q′) | p′ ∈ δ(p, x), q′ ∈ δ(q, y)}.

Once an alignment satisfies the regular expression constraint, i.e. once a final
state is reached in M , the rest of the alignment does not alter the satisfaction
of the constraint. Therefore, M has the option of staying in a final state on
any input after that final state is reached. Thus, for all x → y ∈ ΣM , and
qf ∈ FM , we also add qf to δM (qf , x→ y).

– qM
0 = (q0, q0) is the start state whose weight is 0, and stays as 0 always.

– FM = F × F is the set of final states. If M is in a final state then M has
processed an alignment that satisfies the regular expression constraint. That
is, there are substrings s1 of S1 and s2 of S2 that are aligned together in an
alignment, and both s1, and s2 take N to final states.

Figure 3 includes an example weighted N ×N automaton in part (b) for the
finite automaton N shown in part (a) that is equivalent to regular expression
R = A(C + G)∗(S + T ). For clarity, we choose as an example a simple regular
expression, and we do not show the weights of the N × N automaton in part
(b).

The active states (the states with non −∞ weights) of the automaton M
makes the following moves in two steps on input x→ y ∈ ΣM :

Step 1. For all (p, q), if there exists (p′, q′) such that (p, q) ∈ δM ((p′, q′), x→
y) and WM (p′, q′) �= −∞ then WM (p, q) = max{WM (p′, q′) + γ(x →
y) | (p, q) ∈ δM ((p′, q′), x→ y)}. New active states are those that are reach-
able from the active states on input x→ y. The weights of the active states
are updated using the weight γ(x→ y) of the edit operation x→ y, and the
weights of the states through which new states are reached.

Step 2. For all (p, q), if there does not exist (p′, q′) such that (p, q) ∈ δM ((p′,
q′), x → y) and WM (p′, q′) �= −∞ then WM (p, q) = −∞. After the move
some previously active states may become inactive. This occurs when a suffix
of S1 (or S2) partially matching the regular expression R no longer partially
matches R when the suffix is extended with x (or y). If a state is no longer
active then its weight is set to −∞.

It is important that M makes its move in these two steps, first Step 1, and
then Step 2, because otherwise, the newly reachable states (new active states),
and their weights may not be updated correctly.

For any given weighted N × N automaton M we denote by Mx→y for any
x→ y ∈ ΣM a copy of the automaton M after making the move on x→ y.
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Fig. 3. (a) Finite automaton N equivalent to R = A(C + G)∗(S + T ). (b) Weighted
N × N automaton M .

We will use multiple copies of the same weighted N × N automaton M .
The weights will be updated as the alignment computations progress. At any
given time the set of weights determine the current context in that copy of the
automaton M . Otherwise all copies are identical.

Given two weighted N ×N automata M1 and M2, we define a commutative
and associative operation maxM such that maxM{M1, M2} is a weighted N×N
automaton M with state weights calculated as follows:

for all (p, q) ∈ QM , WM (p, q) = max{WM1(p, q), WM2(p, q)}.

5 Algorithm

Let |S1| = n, |S2| = m with n ≥ m, and let N be a nondeterministic automaton
with no ε-moves equivalent to regular expression R, and let M be a weighted
N ×N automaton constructed from N as we describe in Section 4.

We denote by S[i..j] the substring of S from positions i to j, i ≤ j. Let S[i]
denote the ith symbol of string S.

We say that a substring s matches a regular expression R if s ∈ L(R).
Instead of optimal alignment scores in the classical dynamic programming

solution we will compute optimal finite automata. A weighted N×N automaton
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Mi,j is optimally weighted for S[1..i], and S2[1..j] (or we simply say that Mi,j

is optimal since S1[1..i] and S2[1..j] are implied by the indices i and j in Mi,j)
if the following two properties hold:

Property 1: For all final states (p, q) ∈ FMi,j , WMi,j (p, q) is the maximum
alignment score between S1[1..i] and S2[1..j] over all alignments that in-
clude a region in which substring s1 of S1[1..i] is aligned with substring s2

of S2[1..j], and s1, s2 ∈ L(R), i.e. N on input s1 enters final state p ∈ F ,
and on input s2 enters final state q ∈ F . If there do not exists such s1 and
s2 then WMi,j (p, q) is −∞ ((p, q) is an inactive state in Mi,j).

Property 2: For all states (p, q) �∈ FMi,j , WMi,j (p, q) is the maximum align-
ment score between S1[1..i] and S2[1..j] over all alignments that include a
region in which s1 is aligned with s2, and s1 is a suffix of S1, and s2 is a
suffix of S2, and N on input s1 enters state p ∈ Q, and on input s2 enters
state q ∈ Q. If there do not exists such s1 and s2 then WMi,j (p, q) is −∞
((p, q) is an inactive state in Mi,j).

We compute all optimal Mi,j, and output the weight max{WMn,m(p, q) | (p, q)
∈ FMn,m}. That is, the maximum regular expression constrained alignment score
is the maximum weight of the final states in the optimal automaton Mn,m.

For all i, j, 0 ≤ i ≤ n, 0 ≤ j ≤ m, both Mi,0 and M0,j are identical weighted
N ×N automaton whose state-weights are all −∞ (except for the weight of the
start state (q0, q0) which is always 0).

For all i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m

Mi,j = maxM

{
M

S1[i]→ε
i−1,j , M

S1[i]→S2[j]
i−1,j−1 , M

ε→S2[j]
i,j−1

}
(2)

Figure 4 schematically describes the computations of Mi,j . We claim that
for all i, j, Mi,j computed in (2) is optimal. The correctness can be proved by
induction on nodes (i, j). We consider an ordering for the nodes in which (i, j)
comes after its neighbors (i − 1, j), (i, j − 1), and (i − 1, j − 1) if they exist.
This ordering can be generated by two nested loops: the outer loop i = 0 to n,
and the inner loop j = 0 to m. The base case is when i = 0 for all j in which
all weights are −∞ in M0,j, and the claim is true. Assuming that the claim is
true for Mi−1,j , Mi,j−1, and Mi−1,j−1 we will show that each of the following
automata is optimally weighted for S1[1..i], and S2[1..j] when the alignments
are constrained to use the indicated arc:

1. M
S1[i]→ε
i−1,j when ((i− 1, j), (i, j)) is a required arc for the alignments,

2. M
ε→S2[j]
i,j−1 when ((i, j − 1), (i, j)) is a required arc for the alignments,

3. M
S1[i]→S2[j]
i−1,j−1 when ((i− 1, j − 1), (i, j)) is a required arc for the alignments.

Optimality of Mi,j will follow from these results since an optimal constrained
alignment at node (i, j) uses one of these arcs, and we compute maximum scores
for all possible optimal alignments (as state-weights) which partially or com-
pletely satisfy the regular expression constraint in the resulting optimal automa-
ton in (2).
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Fig. 4. Computations of weighted N × N automata.

To show that M
S1[i]→ε
i−1,j is optimally weighted for S1[1..i] and S2[1..j] when the

alignments are constrained to use the arc ((i−1, j), (i, j)), we need to show that
Property 1 and Property 2 hold for M

S1[i]→ε
i−1,j with the given requirement. In this

case, we consider only the alignments that include the arc ((i− 1, j), (i, j)). An
optimal regular expression constrained score with this requirement is obtained
from an optimal score obtained at node (i − 1, j) by adding to it the score
γ(S1[i] → ε). For Property 1 consider final states (p, q) ∈ FMi,j . There are two
cases to consider: 1) If a final state (p, q) was already an active state in Mi−1,j

then the optimality of the weight WMi,j is followed from Property 1 of Mi−1,j ,
and the fact that all optimal alignment scores in this case are constrained to
include the score γ(S1[i]→ ε). 2) If a final state (p, q) is entered newly, i.e. (p, q)
is an active state in Mi,j but not an active state in Mi−1,j then the optimality is
obtained in this case from the optimality of the weights of all non-final states in
Mi−1,j (Property 2), the fact that all optimal alignment scores in this case are
constrained to include the score γ(S1[i]→ ε), and the regular expression match
is obtained through one of these non-final states. For Property 2, the optimality
is followed from the fact that all optimal alignments in this case use the same
arc, ((i− 1, j), (i, j)).

Proving the case for M
S1[i]→ε
i,j−1 with the constraint that the alignments are

required to use the arc ((i, j − 1), (i, j)) is very similar to the case for M
S1[i]→ε
i,j−1

and arc ((i− 1, j), (i, j)) because these two cases are symmetric.
The proof of the case for M

S1[i]→S2[j]
i−1,j−1 with the required arc ((i−1, j−1), (i, j))

is also similar. In this case, 1) If a final state (p, q) was already an active state
in Mi−1,j−1 then the optimality of the weight WMi,j is followed from Property
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1 of Mi−1,j−1, and the fact that all optimal alignment scores in this case are
constrained to include the score γ(S1[i] → S2[j]). 2) If a final state (p, q) is
entered newly, i.e. (p, q) is an active state in Mi,j but not in Mi−1,j−1 then the
optimality is obtained in this case from the optimality of the weights of all non-
final states in Mi−1,j−1 (Property 2), and the fact that all alignment scores in
this case are constrained to include the score γ(S1[i]→ S2[j]). Property 2 holds
because of the fact that all optimal alignments in this case use the same arc,
((i− 1, j − 1), (i, j)). This concludes the proof.

Computing each Mi,j in formulation (2) takes time O(r) where r is the size
of the transition function of M since each transition needs to be examined a
constant number of times for each move on an edit operation as well as in each
execution of maxM . Therefore, all Mi,j can be computed, and the regular ex-
pression constrained maximum alignment score can be calculated, and returned
in time O(nmr) using O(rm) space. We note that r = O(t4) where t is the
number of states in automaton N accepting the language L(R).

6 Concluding Remarks and Future Work

We formally introduce the regular expression constrained sequence alignment
problem, and present an algorithm for it.

It is possible to adapt the algorithm to use in computing regular expression
constrained local alignments based on the Smith-Waterman dynamic program-
ming solution [13]: let Hi,j = 0 when i or j is 0, and define

Hi,j = max{ 0,Hi−1,j + γ(S1[i]→ ε), Hi−1,j−1 + γ(S1[i]→ S2[j]),
Hi,j−1 + γ(ε→ S2[j]) }

(3)

and the maximum local alignment score is max
i,j
Hi,j .

It is also possible to modify our algorithm for other scoring schemes. For
example, affine gap penalties is another common scoring scheme in which the
total penalty for a gap of size k, i.e. a block of k insertions (or deletions), is
α + (k − 1)μ where α is the gap open penalty, and μ is called the gap extension
penalty. The dynamic programming formulation for local alignment in this case
can be described as follows ([13]): let Ei,j = Fi,j = Hi,j = 0 when i or j is 0,
and define

Ei,j = max{Hi,j−1 − α, Ei,j−1 − μ}, Fi,j = max{Hi−1,j − α, Fi−1,j − μ},
Hi,j = max{0, Hi−1,j−1 + s(xi, yj), Ei,j , Fi,j}

(4)
Affine gap penalties do not increase the asymptotic complexity of the local align-
ment problem.

It is easy to see that the technique we develop in this paper is applicable
to both formulations in (3) and (4). The idea of constructing a weighted finite
automaton can be generalized to the problems in which we consider a regular
expression composed of given regular expressions. For example, we can locate
known motifs in each sequence separately, and find alignments containing these
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motifs in some order by creating, and using an automaton that combines the
automata for these motifs. We can also create, and use a weighted automaton
to align multiple sequences with a given regular expression constraint.

Our algorithm guides the alignments by forcing them to contain a pattern
which is described as a regular expression. A very important application is the
alignment of protein sequences that include a given motif.
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Abstract. We describe a linear algorithm for comparing two similar
ordered rooted trees with node labels. The method for comparing trees
is the usual tree edit distance. We show that an optimal mapping which
uses at most k insertions or deletions can then be constructed in O(nk3)
where n is the size of the trees. The approach is inspired by the Zhang-
Shasha algorithm for tree edit distance in combination with an adequate
pruning of the search space.

1 Introduction

The problem of determining the similarity between two labeled ordered trees
occurs in several areas of computer science: hierarchically structured data, image
decomposition, RNA secondary structures in computational biology . . .

There are at least two paradigms to compare ordered trees: edit distance
and alignment. The original edit distance is based on three edit operations on
nodes – insertion, deletion and substitution – and operations can apply without
any restriction in any order. Tai [10] introduced a first solution for this prob-
lem. Zhang and Shasha [12] gave a faster dynamic programming algorithm. The
time required is O(n2collapsed depth2) where n is the size of the trees and col-
lapsed depth is a parameter that depends of the shape of the tree. The value of
collapsed depth is in O(n), but it is bounded by the depth and by the number of
leaves of the trees, which makes it smaller in average. Klein [8] proposed an im-
proved algorithm in O(n3 log(n)). Further analyses of Zhang-Shasha and Klein
approaches can be found in [2, 3].

Alignment has been introduced by Jiang et al. [7] as an alternative to tree
edit. All insertions should be performed before deletions. In other words, an
alignment between two trees is obtained by applying insert operations on the
two trees so they become isomorphic when labels are ignored. Alignment is less
expressive than the edit distance approach. Figure 1 provides a typical example
where the alignment requires more edition operations than the edit distance.
Moreover, figure 2 shows that there is no bounded ratio between the scores of
the distance and the alignment. The best known algorithm for alignment runs in
O(n2d2) where d is the maximal degree of the trees. So for trees with bounded
degrees, the alignment algorithm turned to be quadratic. Recent results dealing
with local and gapped alignments have been proposed in [4, 5].
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Fig. 1. Edit distance versus alignment 1 (borrowed from [7]). The first picture shows
the optimal mapping for the two trees A and B with the edit distance: the mapping
contains a deletion and an insertion. That makes two errors. With the alignment, the
optimal mapping involves four errors. The cost of the edit operations is defined as
follows: sub = ins = del = 1.

In this article, we address the problem of comparing similar trees. We assume
that the number of errors between the two input trees can be bounded in advance
by a positive integer k. Errors are edit operations that affect the skeleton of the
tree: insertions or deletions. This question of comparing similar trees occurs
when comparing functionnaly related RNA secondary structures for instance.
A fast algorithm has been proposed for tree alignment with k errors [6]: in
this context, the method can construct an optimal alignment in O(n log(n)d3k2)
time. In particular, if both trees are of bounded degree the running time reduces
to O(n log(n)k2).

We focus here on the tree edit distance paradigm with k errors. The good
news is that it is then possible to convert the O(n4) method of Zhang-Shasha
into a linear algorithm. The approach is inspired by the known k-band method
for an optimal alignment between similar strings and uses a graph-theoretical
formalisation called edit graph. We show that if there is an optimal mapping
between the two input trees which uses at most k errors, then the edit distance
can be computed in O(nk3).

2 Graph Representation for the Tree Edit Problem

Definition 1 (Tree). A tree is a node (called the root) connected to an ordered
sequence of disjoint trees. Each node is assigned a label. ε denotes the empty
tree.
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yx

DnCn

Fig. 2. Edit distance versus alignment 2. For each natural number n, define the trees
Cn and Dn of height n + 1 and of size 3n + 2 as displayed above. This family of trees
shows that the difference between the distance and the optimal alignment can be linear
in the size of the trees. The value of the edit distance between Cn and Dn does not
depend of n: the optimal mapping is composed of the deletion of x followed by the
insertion of y. As for the optimal alignment, the cost is in O(n), since it involves at
least n − 1 deletions.

In the sequel, we shall use the following notations.

Notation 1 Let A be a tree.

– given a node x of A, A(x) denotes the subtree of A rooted at x,
– size(A) denotes the number of nodes of the tree A, and size(x) is the size

of A(x),
– depth(x) is the length of the path from the root of A to x,
– height(x) is the length of the longest path originated from x. The height of

a leaf is 0.

As usual, the edit distance relies on three elementary edit operations: the sub-
stitution, which consists in replacing a label of a node by another label, the
insertion of a node, and the deletion of a node. Each edit operation is assigned
a cost: sub, ins and del denote the costs for respectively substituting, inserting
and deleting a node.

Definition 2 (Edit distance). Let A and B be two trees. The tree edit distance
between A and B, denoted td(A, B), is the minimal cost of edit operations needed
to transform A into B. For each pair of nodes (x, y) in A×B, we write td(x, y)
for the distance between the two subtrees A(x) and B(y).

As mentioned in the introduction section, Zhang-Shasha and Klein proposed
efficient algorithms for this problem. Both methods use dynamic programming
decompositions on the input trees. We introduce an alternative formulation that
is based on a graph-theoretical representation. It is known that the alignment
of two strings can be reduced to the question of searching for an optimal path
in a grid. Let u and v be two strings of length m and n respectively. The con-
struction of the optimal alignment is based on a bidimensional array that can
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be represented as a weighted directed graph. Vertices are in 0..m × 0..n. Three
arcs are originated from each vertex (x, y):

(x, y) � (x− 1, y) labeled by del
(x, y) � (x, y − 1) labeled by ins
(x, y) � (x− 1, y − 1) labeled by sub(x, y)

The set of paths from the node (m, n) to the node (0, 0) is exactly the set of
all possible alignments between the two strings. The optimal alignment is the
path of smallest weight. One can adapt this point of view to the problem of the
edit distance for trees. This has been done in [1] or [11] for a restrained version
of the edit distance: substitution can occurs only between nodes with the same
depth. We make it more general here and apply the construction to the full tree
edit distance. The motivating idea is that a mapping between two trees induces a
sequence alignment between the two associated postorder traversal: enumerating
the nodes of the subtrees and then the root. Of course every possible path in the
grid does not lead to a correct tree mapping. The mapping should be consistent
with the structures of the trees. If the node x of A is matched with the node y of
B, then the subtrees A(x) and B(y) should be matched together too. Concerning
the graph representation, it means that every path containing the diagonal arc
(x, y) � (x − 1, y − 1) should visit the vertex (x − size(x), y − size(y)). We
take into account this constraint and modify the edit graph consequently. The
set of vertices constituting the grid is identical, as well as arcs for insertions and
deletions. Only arcs corresponding to substitution operations are modified.

Definition 3 (Tree edit graph). Let A and B be two trees of size m and
n respectively. Nodes of A and B are enumerated in the postorder notation,
indices starting at 1. The tree edit graph of A and B is a weighted directed graph
composed by nodes in 0..m× 0..n whose incident arcs are defined as follows:

deletion arc : (x, y) � (x− 1, y) labeled by del
insertion arc : (x, y) � (x, y − 1) labeled by ins

substitution arc : (x, y) � (x− size(x), y − size(y)) labeled by td(x, y)

Figure 3 gives an example of a tree edit graph. Before explaining how to compute
the labels td of the substitution arcs, we establish briefly that this construction
is correct. This is the purpose of Lemmas 1 and 2.

Definition 4 (Subgraph and top-level path). Let A and B be two trees and
let (x, y) be a pair of nodes of A × B. We write G for the edit graph of A and
B. The subgraph G(x, y) associated to A(x) and B(y) is the restriction of G to
nodes and arcs in {size(x)−x..x}×{size(y)−y..y} without the substitution arc
(x, y) � (x− size(x), y− size(y)) and with an extra arc (x, y) � (x− 1, y− 1)
labeled by sub(x, y). A top-level path of A(x) and B(y) is an optimal path in
G(x, y) from the bottom-right corner to the upper-left corner.

Given a path P in the edit graph, define M(P ) as the set of vertices that are
the origin of a diagonal arc:

M(P ) = {(x, y) ∈ A×B, (x, y) � (x − size(x), y − size(y)) ∈ P}
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Fig. 3. Edit graph. For clarity’s sake, the insertion and deletion arcs and the substitu-
tion arcs are drawned on two separate grids. The edit graph is obtained by overlaying
the two grids. All arcs are oriented from the bottom-right node to the upper-left node.

Lemma 1. Let A and B be two trees and P a path for A and B. Then M(P )
is a mapping of A to B. Conversely, let M be a mapping of A to B such that

(x, y) ∈M ∧ (x′, y′) ∈M ⇒ x �∈ A(x′) ∧ x′ �∈ A(x)

Then there is a path P in the edit graph from (size(A), size(B)) to (0, 0) such
that M = M(P ).

How to derive an optimal mapping from the edit graph ? The mapping is no
longer obtained with a single path, but with a serie of top-level paths.

Lemma 2. Let A and B be two trees. An optimal mapping can be built up
recursively as follows.

Mapping(A, ε) = ∅
Mapping(ε, B) = ∅
Mapping(A, B) = M(P ) ∪(x,y)∈M(P ) Mapping(A(x), B(y))

where P is an optimal path for A and B in the associated edit graph. The cost
of the mapping is the weight of the top-level path for A and B.

At each step, the time needed to compute the top-level path for (x, y) is in
O(size(x)×size(y)). Since a mapping contains only a linear number of match-
ing pairs, the overall computation time is O(n3).

We now come to the problem of determining the labels of the substitution
edges in the edit graph. td(x, y) is obtained as the weight of a top-level path
for A(x) and B(y). Let (h, l) be the coordinates of the first node of G(x, y):
h = x− size(x), l = y − size(y). For each (i, j) in G(x, y) distinct from (x, y),
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we denote fd(i, j, h, l) the cost of an optimal path from (k, l) to (i, j). The usual
dynamic programming algorithm for an optimal in a graph gives the following
equations for fd.

fd(h, l, h, l) = 0
fd(i, l, h, l) = fd(i− 1, l, h, l) + del
fd(h, j, h, l) = fd(h, j − 1, h, l) + ins

fd(i, j, h, l) = min

⎧⎨⎩
fd(i− 1, j, h, l) + del
fd(i, j − 1, h, l) + ins
fd(i− size(i), j − size(j), h, l) + td(i, j)

(1)

Readers that are familiar with the original formulation of Zhang-Shasha algo-
rithm may note that Equation 1 is the main recurrence formulas for the compu-
tation of the tree edit distance (lemmas 3 and 4 in [12]). The value of fd(i, j, h, l)
is exactly the distance between the subforest [h..i] of A and the subforest [l..j]
in B, denoted forestdist(h..i, l..j) in the Zhang-Shasha article.

From Equation 1, we can deduce the distance td(x, y) for A(x) and B(y).
This is

td(x, y) = min

⎧⎨⎩
fd(x− 1, y, h, l) + del
fd(x, y − 1, h, l) + ins
fd(x− 1, y − 1, h, l) + sub(x, y)

(2)

Klein’s algorithm is based on another strategy for the traversal of the grid
for finding optimal paths. For the problem of the edit distance with k errors, we
shall focus on the direct strategy of Zhang-Shasha.

3 Tree Edit Distance with k Errors

The general idea of the algorithm with k errors is to prune the edit graph to
keep only relevant vertices and arcs. For that we implement three optimisations,
that are given by lemmas 3, 4 and 5. The first property is analogous to the k-
band alignment algorithm for strings of [9]. If the trees are similar, then the best
mappings have their paths near the main diagonal in the edit graph. It means
that is is not necessary to build the entire graph.

Definition 5 (k-strip). Let k be a positive integer. For two trees A and B, we
define the set of pairs of nodes k-strip(A, B) as

k-strip(A, B) = {(x, y) ∈ G(A, B), |x− y| ≤ k}

where G(A, B) is the tree edit graph of A and B. We write k-strip(x, y) for
k-strip(A(x), B(y)).

Lemma 3. Let A and B be two trees and let x and y be two nodes in A and B
respectively. If there is a mapping between A and B which uses at most k errors
and that visits the vertex (x, y), then (x, y) ∈ k-strip(A, B).
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Definition 6 (k-relevant). Let k be a positive integer. Given two trees A and
B and a pair of nodes (x, y) in k-strip(A, B), the pair (x, y) is called k-relevant
if

|size(A)−x−size(B)+y|+|size(x)−size(y)|+|x−size(x)−y+size(y)| ≤ k.

Furthermore, we define the maximal number of errors e(x, y) for A(x) and B(y)
as

e(x, y) = k − |x− size(x)− y + size(y)| − |size(A)− x− size(B) + y|.

Lemma 4. Let A and B be two trees and let x and y be two nodes in A and
B respectively. If there is a mapping between A and B which uses at most k
errors so that A(x) is mapped to B(y), then (x, y) is k-relevant and the number
of errors to compare A(x) and B(y) is bounded by e(x, y).

Proof. If A(x) is mapped to B(y), then it implies that the path should visit four
vertices in the edit graph: (size(A), size(B)), (x, y), (x−size(x), y−size(y))
and finally (0, 0). The total amount of errors along this path is greater than
|size(A)−x−size(B)+ y|+ |size(x)−size(y)|+ |x−size(x)− y +size(y)|.
In particular, the number of errors outside A(x) × B(y) is greater than |x −
size(x) − y + size(y)| + |size(A) − x − size(B) + y|. If the total number of
errors should be bounded by k, it remains e(x, y) errors for A(x) and B(y). �

Lemmas 3 and 4 lead to the following outline for the computation of the
distance with k errors.

Procedure Distance
Input: two trees A and B, integer k
Output: fills up the array td. For each (x, y) of A×B ∩ k-strip(A, B), td(x, y)
is the distance between A(x) and B(y). The whole distance is td(size(A),
size(B)).
for (x, y) ∈ A×B ∩ k-strip(A, B) do

if not k-relevant(x, y)
then td(x, y)← +∞
else e← |x− size(x) − y + size(y)|+ |size(A) − x− size(B) + y|

compute td(x, y) with e errors with Equations 1 and 2

Equations 1 and 2 of the previous section have to be adapted to compute
td(x, y) for paths in k-strip(A, B) and fd for paths k-strip(A, B) ∩ e-strip(x, y).
In each case, borders of the search space have to be delineated explicitly. This
gives two functions ForestDist1, for fd, and TreeDist1, for td.

Function ForestDist1
Input: i ∈ A(x), j ∈ B(y), integers e, k
Output: compute the weight fd(i, j) of an optimal path from (i, j) to (x −
size(x), y − size(y))
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(� initial cases �)
if i = x− size(x) and j = y − size(y) then return 0
if i = x− size(x) then return f(i, j − 1) + ins
if j = y − size(y) then return f(i− 1, j) + del
(� general case �)
fd(i, j)← +∞
if (i− size(i), j − size(j)) ∈ k-strip(A, B) ∩ e-strip(x, y) (� substitution �)

then r ← td(i, j) + fd(i− size(i), j − size(j))
if (i− 1, j) ∈ k-strip(A, B) ∩ e-strip(x, y) (� deletion �)

then r ← min(r, fd(i− 1, j)) + del
if (i, j − 1) ∈ k-strip(A, B) ∩ e-strip(x, y) (� insertion �)

then r ← min(r, fd(i, j − 1)) + ins
return r

Note that the two last parameters for fd in Equation 1 are omitted. fd(i, j)
stands here for fd(i, j, x− size(x), y − size(y)).

Function TreeDist1
Input: x ∈ A, y ∈ B, integers e, k
Output: compute the distance td(x, y) between A(x) and B(y) with e errors
for i ∈ x− size(x)..x do

for j ∈ y − size(y)..y such that (i, j) ∈ k-strip(A, B) ∩ e-strip(x, y) do
compute fd(i, j) with function ForestDist1

return min{fd(x− 1, y) + del, fd(x, y − 1) + ins, fd(x − 1, y − 1) + sub(x, y)}

It gives raise to a algorithm in O(n2k2) that can be further improved with
the following lemma.

Lemma 5. Let A and B be two trees. Let x and i be two nodes in A, such that
i is a descendant of x. If there exists a mapping between A(x) and B which uses
at most e errors and such that the associated top-level path contains a vertex of
the form (i, j) with j in B, then depth(i) ≤ depth(x) + e + 1.

Proof. If (i, j) belongs to a top-level path for A(x) and B, then no node along
the path from x (x excluded) to i is involved in a substitution. So the top-level
path contains at least depth(i)− depth(x)− 1 deletions. �

This lemma ensures that when calculating td(x, y) with at most e errors for
A(x) and B(y), then it is not necessary to inspect pairs (i, j) where depth(i) >
depth(x) + e + 1.

Definition 7 (Truncated tree). Let A be a tree, x be a node in A. Let e be
a natural number. The truncated tree A(x, e) is defined in a unique way as the
largest subtree of A whose root is x and whose height is e. We write size(A, x, e)
for the size of A(x, e)

The functions ForestDist1 and TreeDist1 should be modified to take into
account this new property.
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Function ForestDist2
Input: i ∈ A(x), j ∈ B(y), integers e, k
Output: compute the weight fd(i, j) of an optimal path from (i, j) to (x −
size(x), y − size(y))
(� initial cases �)
if i = x− size(x) and j = y − size(y) then return 0
if i = x− size(x) then return f(i, j − 1) + ins
if j = y − size(y) then return f(i− 1, j) + del
(� general case �)
fd(i, j)← +∞
if (i− size(i), j − size(j)) ∈ k-strip(A, B) ∩ e-strip(x, y) (� substitution �)

then r ← td(i, j) + fd(i− size(i), j − size(j))
if depth(i − 1)− depth(x) ≤ e + 1 and (i− 1, j) ∈ k-strip(A, B) ∩ e-strip(x, y)
(� deletion �)

then r ← min(r, fd(i− 1, j)) + del
if (i, j − 1) ∈ k-strip(A, B) ∩ e-strip(x, y) (� insertion �)

then r ← min(r, fd(i, j − 1)) + ins
return r

Function TreeDist2
Input: x ∈ A, y ∈ B, integers e, k
Output: compute the distance td(x, y) between A(x) and B(y) with e errors,
with optimization of Lemma 5
(� traversal of A(x, e) �)
for i ∈ x− size(x)..x such that depth(i)− depth(x) ≤ e + 1 do

for j ∈ y − size(y)..y such that (i, j) ∈ k-strip(A, B) ∩ e-strip(x, y) do
compute fd(i, j) with function ForestDist2

return min{fd(x− 1, y) + del, fd(x, y − 1) + ins, fd(x − 1, y − 1) + sub(x, y)}

The time for the computation of td(x, y) with TreeDist2 is O(size(A, x, k)k),
instead of O(size(x)k) for the function TreeDist1. It remains one question to be
answered: how to implement it in a effective way. The tricky point is the traversal
of the truncated tree A(x, e). So far, nodes of A have always been ranked and
visited in postorder. We now have to be able to skip all nodes whose depth is
greather than e + 1 in A(x). For that, we combine postorder and bottom-up
traversals. We introduce two arrays that allow to translate the index of a node
from the postorder notation to the bottom-up notation, and vice-versa: for each
i ∈ {1..size(A)}, define

– bottom up(i) as the index in the bottom-up notation of the node of rank i
in the postorder notation,

– post order(i) as the index in the postorder notation of the node of rank i
in the bottom-up notation.

These two attributes may be computed with a linear time pre-processing. The
function TreeDist3 is a new version of TreeDist2 with full details.
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Function TreeDist3

Input: x ∈ A, y ∈ B, integers e,k
Output: compute the distance td(x, y) between A(x) and B(y) with e errors,
using the optimization of lemma 5 – full details.

(� initialisation of i and nextnode �)
i← x− size(x)+
nextnode← first node of depth depth(x) + e + 1 in A(x)
(� traversal of A(x, e) �)
while i ≤ x do

for j ∈ y − size(y)..y such that (i, j) ∈ k-strip(A, B) ∩ e-strip(x, y) do
compute fd(i, j) with function ForestDist2

(� computation of the index i of the next node of A to be visited �)
if depth(i)− depth(x) = e + 1

then nextnode← post order(bottom up(i) + 1)
if depth(i + 1)− depth(x) > e + 1

then i← nextnode
else i← i + 1

return min{fd(x− 1, y) + del, fd(x, y − 1) + ins, fd(x − 1, y − 1) + sub(x, y)}

The variable nextnode is introduced to perform the traversal of A(x, e). The
initialisation of nextnode is done in O(A(x, e)) using the height attribute: if the
height of x is smaller than e + 1, then nextnode is not usefull. Otherwise pick up
the first child z of x whose height is at least e, and repeat this process from z
and its first child of height at least e− 1 until a node of depth depth(x) + e + 1
is reached. So it does not affect the total complexity of TreeDist3.

Procedure FinalDistance

Input: two trees A and B, integer k
Output: fills up the array td. For each (x, y) of A×B∩k-strip(A, B), td(x, y) is
the distance between A(x) and B(y). The whole distance is td(size(A), size(B)).

for (x, y) ∈ A×B ∩ k-strip(A, B) do
if not k-relevant(x, y)

then td(x, y)← +∞
else e← |x− size(x) − y + size(y)|+ |size(A) − x− size(B) + y|

compute td(x, y) with function TreeDist3

We conclude with the complexity analysis of the procedure FinalDistance, that
is based on the size of A(x, e).

Lemma 6. Let A be a tree. Let e be a positive integer.∑
x∈A

size(A, x, e) ≤ (e + 1) size(A).

Proof. The proof is by induction on e and on the size of A. �
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Theorem 1. The procedure FinalDistance computes the tree edit distance with
k errors in O(nk3) time and O(kn) space. Moreover it is then possible to recon-
struct an optimal mapping in O(nk2).

Proof. The implementation of Finaldistance uses two bidimensional arrays td
and fd. Both are indexed by {0..size(A)} × {−k..k}:

– td stores the values td(x, y) of the distance between A(x) and B(y) for (x, y)
in k-strip(A, B). More precisely, td[x,y-x] equals td(x, y).

– fd is a permanent array with temporary values. At each call of TreeDist3
with parameters x and y, fd stores the values for optimal intermediate paths
in G(x, y). More precisely, fd[i,j-i] equals fd(i, j), the weight of an optimal
path from (i, j) to (x − size(x), y − size(y)).

The size of each array is (2k + 1)n. As noticed previously, the run time of
TreeDist3 for (x, y) is in O(size(A, x, k)k). So the whole algorithm is in∑

(x,y)∈k-strip(A,B)

size(A, x, k)k.

Lemma 6 yields the following bound:

(2k + 1)2
∑
x∈A

size(A, x, k) ≤ (k + 1)(2k + 1)k2 size(A).

Concerning the construction of an underlying optimal mapping, as for the full
edit distance, we have to consider all successive top-level paths for matching
pairs of nodes x and y (Lemma 2). A property worth to notice is that the top-
level path for A(x) and B(y) can be obtained in restricting the search to vertices
in A(x, k) × B(y) ∩ k-strip(A, B). It can be done in O(k size(A, x, k)). So the
whole trace back needs only O(nk2) time. �

4 Final Comment

Our algorithm can construct an optimal mapping for two trees A and B in
O(nk3) time if the number of errors can be bounded in advance by k. When tak-
ing the trivial bound k = size(A)+ size(B), this leads to the same asymptotic
complexity O(n4) as Zhang-Shasha algorithm. However the average complexity
would be worse, because we do not use the optimization of Zhang-Shasha that
consists in elimating redundant computations between a pair of nodes and the
pair of their leftmost children.

If k is not specified in advance, it is also possible to apply the same scheme
as in [6, 9]. The idea goes as follows. It uses iterated application of the distance
with k errors with increasing values of k. The starting value for k is |size(A)−
size(B)| and then k is doubled at each step. The stopping condition for k is
given by a relationship between the score and the number of errors.
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Abstract. Tree structured data such as HTML/XML files are repre-
sented by rooted trees with ordered children and edge labels. Knowledge
representations for tree structured data are quite important to discover
interesting features which such tree structured data have. In order to
represent tree structured patterns with rich structural features, we in-
troduce a new type of structured variables, called height-constrained
variables. An (i, j)-height-constrained variable can be replaced with any
tree such that the trunk length of the tree is at least i and the height of
the tree is at most j. Then, we define a term tree as a rooted tree struc-
tured pattern with ordered children and height-constrained variables.
In this paper, given a term tree t and an ordered tree T , we present
an O(N max{nDmax,S}) time algorithm of deciding whether or not t
matches T , where Dmax is the maximum number of the children of an
internal vertex in T , S is the sum of all trunk length constraints i of all
(i, j)-height-constrained variables in t, and n and N are the numbers of
vertices of t and T , respectively.

1 Introduction

Due to the rapid growth of Internet usage, semistructured data such as Web
documents have been rapidly increasing. Since such data have tree structures,
they are called tree structured data and represented by rooted trees with ordered
children and edge labels, according to Object Exchange Model [1]. In the field
of data mining, many researches of extracting frequent substructures from tree
structured data have been proposed [3–6, 14]. Moreover, in order to clarify not
only associations but also structural relations between substructures common to
tree structured data, some types of tree structured patterns have been proposed
[4, 7, 11, 12]. In order to directly represent such relations among tree structured
data, we propose an ordered term tree, simply called a term tree, as a tree struc-
tured pattern with ordered children and structured variables. We call an ordered
tree a tree simply. A variable consists of two vertices, called the parent port and
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the child port. A variable is replaced with any tree T by identifying the parent
port with the root of T and the child port with a distinguished leaf of T . We call
the distance between the root and the distinguished leaf the trunk length of T .
For example, in Fig. 1, both trees T1 and T2 can be obtained from a term tree s
by replacing variables having labels “x”, “y” and “z” with appropriate trees. In
this paper, we introduce a new kind of variables, called height-constrained vari-
ables (abbreviated to HC-variables), in order to present a tree structured pattern
which can also have distance relations between substructures common to tree
structured data. An (i, j)-height-constrained variable (abbreviated to (i, j)-HC-
variable) is replaced with any tree T such that the trunk length of T is at least
i and the height of T is at most j. For example, in Fig.1, T2 is obtained from
t by replacing the (1,1)-HC-variable “x(1, 1)”, the (2,3)-HC-variable “y(2, 3)”
and the (2,2)-HC-variable “z(2, 2)” with g1, g2 and g3, respectively. However, T1

cannot be obtained from t.
A term tree t is said to be linear (or regular) if all variable labels in t are

mutually distinct. We consider a problem of deciding whether or not a linear
term tree t having HC-variables matches a tree T, that is, T is obtained from
t by substituting some trees for all HC-variables in t. Efficient algorithms for
solving matching problems are necessary for designing useful data mining tools
of extracting linear term trees having HC-variables from tree structured data.
In this paper, we present an O(N max{nDmax,S}) time algorithm of solving the
matching problem for a given linear term tree t and a given tree T , where Dmax

is the maximum number of the children of an internal vertex in T , S is the sum of
all trunk length constraints i of all (i, j)-HC-variables in t, and n and N are the
numbers of vertices of t and T , respectively. Algorithms of solving a matching
problem govern the efficiency and usefulness of data mining tools having term
trees as knowledge representations.

A term tree is different from other representations of tree structured patterns
such as in [3, 4, 6, 14] in that a term tree has structured variables which can be
substituted by trees and a term tree represents not a substructure but a whole
tree structure. In [7, 13], we have considered matching problems for different
types of term trees from term trees in this paper. From the viewpoint of compu-
tational learning theory, some fundamental sets of linear ordered or unordered
term trees whose languages are polynomial time inductively inferable from pos-
itive data have been given in [7, 10–12]. Moreover, learning of term trees with
height-bounded variables from queries has been considered in [8]. Data mining
tools having term trees with erasing variables have been proposed in [9].

2 Preliminaries

We give the definition of ordered term trees with two-port variables. The general
definition of ordered term trees with multiple-port variables are given in [12].
For a set S, the number of elements in S is denoted by |S|.

Let T = (VT , ET ) be a rooted tree with ordered children, called an ordered
tree, or a tree simply, where VT is a set of vertices and ET is a set of edges.
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Fig. 1. Trees T1, T2, a term tree s, and term trees t and t′ having HC-variables.
Variables are denoted by squares each of which connects to the parent port and the
child port of the variable. A square with x shows a variable labeled with a variable
label x, and a square with x(i, j) shows an (i, j)-HC-variable with a variable label x.
The term tree t′ is obtained from t by replacing the (2, 3)-HC-variable with the variable
label y with the tree g2 and updating the ordering of each internal vertex in t′.

Let Eg and Hg be a partition of ET , i.e., Eg ∪ Hg = ET and Eg ∩ Hg = ∅.
And let Vg = VT . A triplet g = (Vg , Eg, Hg) is called an ordered term tree, or
a term tree simply. And elements in Vg, Eg and Hg are called a vertex, an edge
and a variable, respectively. The root of g is the root of T and the leaves of
g are the leaves of T . The height of a term tree g is the length of the longest
path from the root to a leaf. We denote by [v, v′] a variable in Hg such that v
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is the parent of v′. We call v the parent port of [v, v′] and v′ the child port of
[v, v′]. For a term tree g, all children of every internal vertex u in g have a total
ordering on all children of u. The ordering on the children of u is denoted by
<g

u. We assume that every edge and variable of a term tree is labeled with some
words from specified languages. A label of a variable is called a variable label.
Λ and X denote a set of edge labels and a set of variable labels, respectively,
where Λ ∩ X = φ. A term tree g = (Vg, Eg, Hg) is called linear (or regular) if
all variables in Hg have mutually distinct variable labels in X . In this paper,
we deal with linear term trees only. Thus we assume that all term trees in this
paper are linear.

Definition 1 (Height-constrained variables). Let XH be an infinite subset
of a variable label set X . For two integers 1 ≤ i ≤ j, let XH(i,j) be an infinite
subset of XH. We assume that XH =

⋃
1≤i≤j XH(i,j) and XH(i,j)∩XH(i′,j′) = ∅

for (i, j) �= (i′, j′). A variable label in XH(i,j) is called an (i, j)-height-constrained
variable label for any 1 ≤ i ≤ j. A variable [u, v] of a term tree is said to be an
(i, j)-height-constrained variable (abbreviated to (i, j)-HC-variable) if the vari-
able has an (i, j)-height-constrained variable label, and denoted by [u, v]H(i,j).

Let f and g be term trees with at least two vertices, and x a variable label
in XH(i,j) for 1 ≤ i ≤ j. Let σ = [u, u′] be a list of two vertices in g where u is
the root of g and u′ is a leaf of g. The length of the path between u and u′ is
called the trunk length of σ. The form x := [g, σ] is called a binding for x if (i)
the trunk length of σ is at least i, and (ii) the height of g is at most j.

For a variable label x ∈ X , a new term tree f{x := [g, σ]} is obtained by
applying the binding x := [g, σ] to f in the following way. Let e = [v, v′] be a
variable in f with the variable label x. Let g′ be one copy of g and w, w′ the
vertices of g′ corresponding to u, u′ of g, respectively. For the variable e = [v, v′],
we attach g′ to f by removing the variable e from Hf and by identifying the
vertices v, v′ with the vertices w, w′ of g′, respectively. A substitution θ is a finite
collection of bindings {x1 := [g1, σ1], · · · , xn := [gn, σn]}, where xi are mutually
distinct variable labels in X and gi are trees (1 ≤ i ≤ n). The term tree fθ, called
the instance of f by θ, is obtained by applying the all bindings xi := [gi, σi] on f
simultaneously. The root of the resulting term tree fθ is the root of f . Moreover,
we define the new ordering of children of an internal vertex v of fθ in the natural
way. The precise definition of the new ordering is found in [12]. For example,
let t be a term tree in Fig. 1 and θ = {x := [g1, [u1, v1]], y := [g2, [u2, v2]], z :=
[g3, [u3, v3]]} a substitution, where g1, g2 and g3 are trees in Fig. 1. Then the
instance tθ of t by θ is the tree T2 in Fig. 1. The term tree t′ in Fig. 1 is the
instance t{y := [g2, [u2, v2]]}. The number drawn between siblings of t′ indicates
the applied case [12] in updating the ordering on vertices in t′.

We say that two term trees f = (Vf , Ef , Hf ) and g = (Vg, Eg, Hg) are
isomorphic, denoted by f ≡ g, if there is a bijection ϕ from Vf to Vg such that
(i) the root of f is mapped to the root of g by ϕ, (ii) {u, v} ∈ Ef if and only if
{ϕ(u), ϕ(v)} ∈ Eg, (iii) [u, v]H(i,j) ∈ Hf if and only if [ϕ(u), ϕ(v)]H(i,j) ∈ Hg for
1 ≤ i ≤ j, and (iv) for any internal vertex u in f which has more than one child,
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and for any two children u′ and u′′ of u, u′ <f
u u′′ if and only if ϕ(u′) <g

ϕ(u) ϕ(u′′).
Let Λ be a set of edge labels. We denote by OT Λ the set of all edge-labeled
ordered trees whose labels are in Λ. For a term tree t, the term tree language
LΛ(t) of a term tree t is defined as {s ∈ OT Λ | s ≡ tθ for a substitution θ}.
OTT H

Λ denotes the set of all term trees such that all variable labels are in XH

and all edge labels are in Λ.

3 A Polynomial Time Matching Algorithm for OTT H
Λ

3.1 Algorithm Matching

We proposed polynomial time algorithms for solving the matching problems for
term trees with general variables [13]. These algorithms are based on dynamic
programming and run in O(nN) time where n and N are numbers of vertices
of a given term tree t and a given tree T , respectively. For a term tree with
HC-variables, we need more time to check whether or not there exists a binding
satisfying the constraints of a couple of HC-variables. In this section, we give a
polynomial time algorithm for the matching problem for OTT H

Λ where |Λ| = 1.
We can easily modify it to give a polynomial time algorithm for |Λ| ≥ 2.

Let T = (VT , ET ) and t = (Vt, Et, Ht) be a tree in LΛ(t) and a term tree in
OTT H

Λ , respectively. A term tree t is said to match a tree T if T is included in
LΛ(t). For a vertex u′ of a term tree t, we denote by t[u′] the term tree consisting
of u′ and all descendants of u′. We use the same notation for a tree T . For a
vertex u of a tree T and its descendant v, we denote by T [u] − T [v] the tree
consisting of u and all descendants of u except for all proper descendants of v.
We note that v is a vertex in T [u] − T [v]. For a tree T and a vertex u of T ,
the height of T , the height of T [u], and the height of T − T [u] are denoted by
height(T ), heightT (u), and heightT (u), respectively. For two vertices u and v
of a tree or a term tree, we denote by dist(u, v) the distance between u and v.

First, we give all the vertices in t the sequential numbers from 1 to |Vt| by
the breadth-first search method. We call these numbers vertex identifiers (VIDs
for short). The VID of the root of t is 1 and for any internal vertex u the
children of u have consecutive VIDs. Below we identify a vertex with its VID. A
correspondence-set (C-set for short) of a vertex u ∈ VT , denoted by CS(u), is a
subset of Vt ×N ×N , where N is the set of all nonnegative integers. The main
algorithm is described in Fig. 2. The algorithm proceeds by constructing C-sets
for each vertex of a given tree T in the bottom-up manner. After the algorithm
terminates, all C-sets satisfy the following lemma.

Lemma 1. Let u′ be the child port of an (i, j)-HC-variable of t and u a vertex
of T . After Algorithm Matching terminates, (u′, 0, 0) ∈ CS(u) if and only if
t[u′] matches the subtree T [u].

3.2 Procedure VID-Inheriting

Lemma 2. Let u′ be the child port of an (i, j)-HC-variable of t and u a vertex
of T . After Algorithm Matching terminates, the following two statements hold.
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Algorithm Matching(t, T );
input t : a term tree in OTT H

Λ with the root r; T : a tree in OT Λ with the root R;
begin

Let Rule(t) be the set of C-set-attaching rules of t;
foreach leaf 
 of T do begin

CS(
) = {(
′, 0, 0) | 
′ is a leaf of t}; heightT (
) := 0
end;
while there is an internal vertex u of T such that

u has no C-set and all children of u have C-sets do begin
CS(u) := VID-Inheriting(u,Ht) ∪ C-Set-Attaching(u, Rule(t));
heightT (u) := max{heightT (v) | v is a child of u}

end;
if (r, 0, 0) ∈ CS(R) then t matches T else t does not match T

end.

Fig. 2. Algorithm Matching: The procedures VID-Inheriting and C-Set-
Attaching play important roles in the algorithm to construct C-sets.

1. For any i′ (0 ≤ i′ < i−1), if there is a descendant v of u such that (u′, 0, 0) ∈
CS(v), dist(u, v) = i′, and heightT [u](v) ≤ j then there is an integer j′ (0 ≤
j′ ≤ heightT [u](v)) such that (u′, i′, j′) ∈ CS(u). Conversely, if (u′, i′, j′) ∈
CS(u) (0 ≤ i′ < i − 1, 0 ≤ j′) then there is a descendant v of u such that
(u′, 0, 0) ∈ CS(v), dist(u, v) = i′ and heightT [u](v) = j′ ≤ j.

2. For any i′ (i′ ≥ i− 1), if there is a descendant v of u such that (u′, 0, 0) ∈
CS(v), dist(u, v) = i′ and heightT [u](v) ≤ j, then there is an integer j′

(0 ≤ j′ ≤ heightT [u](v)) such that (u′, i − 1, j′) ∈ CS(u). Conversely, if
(u′, i− 1, j′) ∈ CS(u) then there is a descendant v of u such that (u′, 0, 0) ∈
CS(v), dist(u, v) ≥ i− 1 and heightT [u](v) = j′ ≤ j.

We give an example in Fig. 3. CS(c1) has (5, 2, 3), which means that there
is a descendant d1 of c1 such that (5, 0, 0) ∈ CS(d1), dist(c1, d1) = 2 and
heightT [c1](d1) = 3. Similarly, (5, 2, 2) ∈ CS(c3) and (5, 2, 3) ∈ CS(c4) imply
that there are d3 and d4 which are descendants of c3 and c4, respectively, such
that both CS(d3) and CS(d4) include (5, 0, 0), dist(c3, d3) = dist(c4, d4) =
2, and heightT [c3](d3) = 2 and heightT [c4](d4) = 3. It is easy to see that
heightT [u](d1) = 7, heightT [u](d3) = 5, and heightT [u](d4) = 7. Since the small-
est number among them is heightT [u](d3), we add (5, 2 + 1, heightT [u](d3)) =
(5, 3, 5) to CS(u).

Formally we describe the computation as follows. Let u be an internal vertex
of T and c1, . . . , cm be all children of u. Let u′ be the child port of an (i, j)-
HC-variable of t. For all i′ (0 ≤ i′ ≤ i − 1), let cm1 , . . . , cmk

be all children
of u such that (u′, i′, j′�) ∈ CS(cm�

) for some j′� (0 ≤ j′� ≤ j, 1 ≤ � ≤ k). M1

and M2 are the indices (1 ≤ M1, M2 ≤ m) such that the tree T [cM1 ] has the
maximum height over {T [c1], . . . , T [cm]} and the tree T [cM2 ] has the maximum
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Fig. 3. An example of VID-Inheriting.

height over {T [c1], . . . , T [cm]} − {T [cM1]}. Then, there is a descendant v of u
such that (u′, 0, 0) ∈ CS(v), dist(u, v) = i′ + 1 and heightT [u](v) = j(i′) where

j(i′) =

⎧⎨⎩
min{heightT [u](cM1), max{jM1 , heightT [u](cM2)}}+ 1

if M1 ∈ {m1, . . . , mk},
heightT [u](cM1) + 1 otherwise.

For all i′ (0 ≤ i′ < i − 2), if j(i′) ≤ j then we add (u′, i′ + 1, j(i′)) to CS(u).
And if min{j(i− 2), j(i− 1)} ≤ j then we add (u′, i− 1, min{j(i− 2), j(i− 1)})
to CS(u). Procedure VID-Inheriting for an internal vertex u of T is defined
as all the above computations of the vertex u for all child ports u′ of t.

Let S =
∑

[v′,u′]H(i,j)∈Ht
i. Let u′ be a child port of an (i, j)-HC-variable.

For any vertex u of T , CS(u) contains i elements of the form (u′, i′, j′) since
0 ≤ i′ ≤ i− 1. Then for all child ports in Ht, CS(u) contains S elements. Then
the total time complexity of VID-Inheriting is O(Sm).

3.3 Procedure C-Set-Attaching

Procedure C-Set-Attaching adds an element of the form (u′, 0, 0) to CS(u).
At first, we construct the C-set-attaching rule of a vertex u′ of t as follows.

Definition 2 (C-set-attaching rules). Let u′ be a vertex of a term tree t
and c′1, . . . , c

′
m′ all children of u′. We assume that c′� is smaller than c′�′ for any

� < �′ with respect to their VIDs. The C-set-attaching rule of u′ is of the form
u′ ← J(c′1), . . . , J(c′m′) where for � = 1, . . . , m′,

J(c′�) =
{

c′� if c′� is not a child port,
(c′�, i, j) if c′� is a child port of an (i, j)-HC-variable.

The C-set-attaching rule of a term tree t, denoted by Rule(t), is the set of all
C-set-attaching rules of internal vertices of t.

Let t be a term tree and T a tree. Let u and u′ be internal vertices of T and
t, respectively. Procedure C-Set-Attaching works so that (u′, 0, 0) ∈ CS(u) if
and only if t[u′] matches the subtree T [u] of T (Lemma 1). Let c1, . . . , cm be all
the children of u with C-sets CS(c1), . . . , CS(cm) and cp . . . , cq consecutive chil-
dren of u (1 ≤ p ≤ q ≤ m). Let c′1, · · · , c′m′ be all the children of u′ and c′p′ , · · · , c′q′
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Fig. 4. An example of C-Set-Attaching.

consecutive children of u′ (1 ≤ p′ ≤ q′ ≤ m′). We denote by t[u′, c′p′ , · · · , c′q′ ] the
term tree consisting of u′ and all descendants of c′p′ , · · · , c′q′ . Similarly we denote
by T [u, cp, · · · , cq] the tree consisting of u and all descendants of cp, · · · , cq. We
assume that for all c1, . . . , cm, Lemma 1 holds.

Let us consider an example in Fig. 4. We obtain from t a C-set-attaching rule
u′ ← c′1, c

′
2, (c

′
3, 4, 8), c′4, c

′
5, c

′
6, (c

′
7, 3, 4), (c′8, 5, 5), c′9, (c

′
10, 4, 7). This rule can be

applied to the vertex u of T in the following way. t[c′1] matches T [c1], t[c′2] matches
T [c2], t[u′, c′3] matches T [u, c3, c4, c5, c6], t[c′4] matches T [c7], t[c′5] matches T [c8],
t[c′6] matches T [c9], t[u′, c′7, c

′
8] matches T [u, c10, c11, c12], t[c′9] matches T [c13],

t[u′, c′10] matches T [u, c14]. Then we can add (u′, 0, 0) to CS(u). We reduce the
problem which decides whether or not t[u′] matches T [u] to a directed graph
reachability problem.

Let c′p′ , · · · , c′q′ be consecutive children of u′ (1 ≤ p′ ≤ q′ ≤ m′) such that all
[u, c′�′ ] (p′ ≤ �′ ≤ q′) are HC-variables and neither c′p′−1 nor c′q′+1 is a child port.
We suppose that c′�′ (p′ ≤ �′ ≤ q′) is a child port of an (i�′ , j�′)-HC-variable. Let
ND = {(c′�′ , c�) | p′ ≤ �′ ≤ q′, 1 ≤ � ≤ m}. Each vertex (c′�′ , c�) ∈ ND has an
interval [r(�′,�), s(�′,�)] ⊆ [1, m] as a vertex label which is the maximal interval
such that � ∈ [r(�′,�), s(�′,�)], heightT (ck) < j�′ for all r(�′,�) ≤ k ≤ s(�′,�)(k �= �),
and there exists a nonnegative integer γ < j�′ such that (�′, i�′, γ) ∈ CS(�).
Let AD = {((c′x′ , cy), (c′x′+1, cz)) | y < z and r(x′+1,z) ≤ s(x′,y) + 1}. Then let
D[(c′p′ , . . . , c′q′), (c1, . . . , cm)] be an auxiliary directed graph (ND, AD). It is easy
to see the following lemma.

Lemma 3. There exists a directed path from (c′p′ , cp) to (c′q′ , cq) in the auxiliary
directed graph D[(c′p′ , . . . , c′q′), (cp, . . . , cq)] if and only if t[u′, c′p′ , . . . , c′q′ ] matches
T [u, cp, . . . , cq].
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Fig. 5. A final directed graph D obtained from t and T (Fig. 4).

The construction of an auxiliary directed graph contains two steps. The first
step is to compute each interval of all vertices. The second step is to decide
whether or not there is a directed edge between any two vertices. Therefore the
total time complexity is O((q′ − p′ + 1)m2) time.

We obtain a new auxiliary directed graph by connecting two auxiliary di-
rected graphs. We suppose that c′p′

1
. . . , c′q′

1
are consecutive children of u′ (1 ≤

p′1 ≤ q′1 < m′ − 1) and c′p′
2
. . . , c′q′

2
are consecutive children of u′ (q′1 + 1 <

p′2 ≤ q′2 ≤ m′) such that both c′q′
1
, c′p′

2
are child ports of HC-variables and

neither of c′q′
1+1, . . . , c

′
p′
2−1 is a child port. Let D[(c′p′

1
, . . . , c′q′

1
), (c1, . . . , cm)] =

(ND1 , AD1) and D[(c′p′
2
, . . . , c′q′

2
), (c1, . . . , cm)] = (ND2 , AD2) be two auxiliary di-

rected graphs. Let ND = {(c′�′ , c�) | p′1 ≤ �′ ≤ q′2, p ≤ � ≤ q} and AD =
AD1 ∪ AD2 ∪ A′. A′ is the set of all directed edges obtained by the following
way. Let SC be the set of all intervals [�, � + p′2 − q′1 − 2] (p ≤ � ≤ q) such
that c′q′

1+1 ∈ CS(c�), c′q′
1+2 ∈ CS(c�+1), . . . , c′p′

2−1 ∈ CS(c�+p′
2−q′

1−2). For two
vertices (c′q′

1
, cy) ∈ ND1 with a label [r(q′

1,y), s(q′
1,y)] and (c′p′

2
, cz) ∈ ND2 with

a label [r(p′
2,z), s(p′

2,z)], we make p′2 − q′1 directed edges ((c′q′
1
, cy), (c′q′

1+1, c�)),
((c′q′

1+1, c�)), (c′q′
1+2, c�+1)), . . . , ((c′p′

2−1, c�+p′
2−q′

1−2), (c′p′
2
, cz)) if there is an inter-

val [r, s] ∈ SC satisfying the following three conditions: (i) [r, s] ⊆ [y + 1, z− 1],
(ii) r ≤ s(q′

1,y) + 1, and (iii) r(p′
2,z) − 1 ≤ s. Then we obtain a new auxiliary

directed graph D[(c′p′
1
, . . . , c′q′

2
), (c1, . . . , cm)] = (ND, AD). We denote this graph

by D[(c′p′
1
, . . . , c′q′

1
), (c1, . . . , cm)] ∗D[(c′p′

2
, . . . , c′q′

2
), (c1, . . . , cm)]. For example, we

give the final directed graph of t and T in Fig. 5 obtained from a term tree t
and a tree T in Fig. 4. Since the number of pairs of vertices which we have to
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Procedure Rule-Matching((c1, . . . , cm), u′ ← J(c′1), . . . , J(c′m′ ));
input: the children c1, . . . , cm of an internal vertex and

a C-set-attaching rule u′ ← J(c′1), . . . , J(c′m′);
begin

Step 1. At first, we divide the body of the rule u′ ← J(c′1), . . . , J(c′m′ ) into several
pieces in the following way. We find intervals [p′

1, q
′
1], [p

′
2, q

′
2], . . . , [p

′
k′ , q′k′ ] such that

for all 
′ (1 ≤ 
′ ≤ k′),
(i) all of c′p′

�′
, . . . , c′q′

�′
are child ports of HC-variables,

(ii) neither of c′q′
�′+1, . . . , c

′
p′

�′+1
−1 is not a child port,

(iii) if p′
1 > 1 then neither of c′1, . . . , c

′
p′
1−1 is not a child port, and

(iv) if q′k′ < m′ then neither of c′q′
k′+1, . . . , c

′
m′ is not a child port.

Step 2. If neither of c′1, . . . , c
′
p′
1−1 is not a child port and c′i′ ∈ CS(ci′) for all i′

(1 ≤ i′ ≤ p′
1 − 1) then

Rule-Matching((cp′
1
, . . . , cm), u′ ← J(c′p′

1
), . . . , J(c′m′ )),

else return no.
Step 3. If neither of c′q′

k′+1, . . . , c
′
m′ is not a child port and c′i′ ∈ CS(cm−m′+i′) for all

i′ (q′k′ + 1 ≤ i′ ≤ m′) then
Rule-Matching((c1, . . . , cm−m′+q′

k′ ), u
′ ← J(c′1), . . . , J(c′q′

k′
)),

else return no.
Step 4. Construct k′ auxiliary directed graphs:

D[(c′p′
1
, . . . , c′q′1

), (c1, . . . , cm)], . . . , D[(c′p′
k′

, . . . , c′q′
k′

), (c1, . . . , cm)].

Step 5. Connect the k′ auxiliary directed graphs into one directed graph D:
D := D[(c′p′

1
, . . . , c′q′1

), (c1, . . . , cm)] ∗ · · · ∗ D[(c′p′
k′

, . . . , c′q′
k′

), (c1, . . . , cm)].

Step 6. Let vstart and vgoal are two new vertices. Let Estart := {(vstart, (c
′
1, cx)) |

c1 ∈ [r(1,x), s(1,x)]} and Egoal := {((c′m′ , cx), vgoal) | cm ∈ [r(m′,x), s(m′,x)]}. Add
two vertices vstart and vgoal, and two edge sets Estart and Egoal to D.

Step 7. If vgoal is reachable from vstart then return yes else return no.

end;

Procedure C-Set-Attaching(u, Rule(t));
input: an internal vertex u of T and the C-set-attaching rule Rule(t) of t;
begin

Let c1, . . . , cm be the children of u;
CS := ∅;
forall u′ ← J(c′1), . . . , J(c′m′ ) ∈ Rule(t) do

if Rule-Matching((c1, . . . , cm), u′ ← J(c′1), . . . , J(c′m′ )) returns yes then
CS := CS ∪ {(u′, 0, 0)};

return CS
end;

Fig. 6. Procedures Rule-Matching and C-Set-Attaching.
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decide the existence of a directed edge is O(m2), this work consumes O(m2)
time. We give the formal description of Procedure Rule-Matching in Fig. 6.
We have the following lemma. The correctness follows from Lemma 3 and the
construction of the final auxiliary directed graph.

Lemma 4. Let c1, . . . , cm be the children of an internal vertex u in T and u′ ←
J(c′1), . . . , J(c′m′) a C-set-attaching rule of t. Procedure Rule-Matching for
c1, . . . , cm and u′ ← J(c′1), . . . , J(c′m′) decides whether or not t[u′] matches T [u]
in O(m′m2) time.

Procedure C-Set-Attaching for an internal vertex u of T is defined as all
procedure calls for Rule-Matching for the vertex u and all C-set-attaching
rules of t (Fig. 6). From Lemma 4, it is easy to see that C-Set-Attaching
needs O(NnDmax) time where Dmax is the maximum number of the children of
an internal vertex of T and N is the number of vertices of T . Finally we have
the following theorem.

Theorem 1. For any set of edge labels Λ, the matching problem for OTT H
Λ

is solvable in O(N max{nDmax,S}) time, where n and N are the numbers of
vertices of t and T , respectively, S =

∑
[v′,u′]H(i,j)∈Ht

i, and Dmax the maximum
number of the children of an internal vertex in T .

4 Concluding Remarks

In order to represent tree structured patterns with rich structural features, we
proposed term trees having height-constrained variables as new ordered tree
structured patterns and gave a polynomial time matching algorithm for them.
As an application of term trees having height-constrained variables, we presented
a metasearch system in [2], which provides an effective unified access to multiple
existing search sites.

In a similar way to height-constrained variables, we can define (i, j)-width-
constrained variables which can be replaced with any tree T such that the width
of T is at least i and at most j. As future works, we will consider a tree structured
pattern which can give precious knowledge to us, by combining two constraints
with respect to height and width. Then, for tree structured data, we will also
present data mining tools having such tree structured patterns as knowledge
representations.
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Abstract. Various criteria have been defined to evaluate the signifi-
cance of sets of words, the computation of them often being difficult.
We provide explicit expressions for the waiting time in such a context.
In order to assess the significance of a cluster of potential binding sites,
we extend them to the co-occurrence problem. We point out that these
criteria values depend on a few fundamental parameters. We provide
efficient algorithms to compute them, that rely on a combinatorial inter-
pretation of the formulae. We show that our results are very tight in the
so-called twilight zone and improve on previous rough approximations.
One assumes that the text is generated according to a Markov stationary
process. These results are developed for an extended model of consensus.

1 Introduction

Many statistical softwares have been designed in the last decade to search for
exceptional words and predict biological functions In silico. Using some pattern
matching algorithms to detect some candidates, one assesses their biological sig-
nificance by comparing the observed number and the expected number. The main
differences between softwares are the underlying probability models, the search-
ing algorithms and the comparison criteria. One common underlying assumption
is that the genome is randomly generated according to some probability model.
In this paper, the model can be either Bernoulli or Markov. The comparison
criteria depend on the applications and the parameters of the problem. One first
classification arises from the size of the problem, that is to say the number of
word occurrences and the text size. A typical application with large texts is the
search of recognition sites for Restriction Modification Systems in a genome. It
is shown in [1, 2] that these sites are avoided words. Symmetrically, it is proved
in [3] that the Chi-motif is overrepresented in E. Coli . One may also search for
common words in a set of (small) sequences. A typical application is the search
of regulatory signals in upstream sequences of genes that are either orthologous
or coregulated. When the signal is degenerated, each signal can be represented

A. Apostolico, M. Crochemore, and K. Park (Eds.): CPM 2005, LNCS 3537, pp. 358–370, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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by a set H1 or H2. This set is defined from experimental data, as a consensus
or a position matrix (pssm, pwm...).

Word counting results have been derived by several authors for a single
word H or a set of words H. Recently, special attention has been paid to the
simultaneous occurrence of different binding sites in upstream sequences. In-
deed, it has been observed [4] in eucaryotes that multiple transcription factors
binding to the same transcription control region are often involved in the same
transcriptional regulation. Hence, the co-occurrence and spatial relationships of
individual binding sites provides a better understanding of regulation and of
multifactorial control of gene expression. Therefore, we formalize below the co-
occurrence problem and extend previous exact formulae in this case. A second
aim of this paper is the rewriting of exact matricial expressions [5, 6] or induc-
tion algorithms [7, 8] in a suitable form. Indeed, we define a few fundamental
parameters and show that tight numerical computations depend on these param-
eters. Third, simple combinatorial interpretations as overlapping sequences are
provided for exact expressions or fundamental parameters. We provide efficient
algorithms to compute them. In passing, we define an extended consensus model
that is close to pssm (Positional Specific Scoring Matrix) and suitable for the
search of regulatory signals.

2 Main Steps and Results

Distribution formulae or algorithms always involve the possible overlaps of the
words to be counted [5, 6, 9, 10]. The correlation sets were introduced in the
seed paper [11]. We define the notion of complement and minimal complement .

Definition 1. Given two strings F and G, the overlap set of F and G is the
set of suffixes of F that are proper prefixes of G. Any suffix of G in the as-
sociated factorizations of G is named a right complement of F in G. The set
of right complements of F in G is called the correlation set of F and G and
denoted CF,G. When F = G, the autocorrelation set is AF = CF,F + ε with ε the
empty word.

Given a set H, a right complement of a word F in H is any right complement
of F in a word G in H. A right complement w of F is minimal iff no proper prefix
of w is a right complement of F in H. The set of minimal right complements
of F that belong to CF,G is denoted C̃F,G.

We assume below that all words have the same size m. The next definition
provides tools for word counting.

Definition 2. Given a set of q words H = (Hi)1≤i≤q, one denotes H(z) =
(P(H1)zm, . . . ,P(Hq)zm). The probability matrix H(z) is the q×q matrix with q
rows equal to H(z). Given two words Hi and Hj, the complement polynomial
(resp. complement minimal polynomial) is

Ci,j(z) =
∑

w∈CHi,Hj
P(w)z|w| (resp. C̃i,j(z) =

∑
w∈C̃Hi,Hj

P (w)z|w|).
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The complement matrix (resp. complement minimal matrix) is the q × q ma-
trix C(z) = (Ci,j(z))1≤i,j≤q (resp. C̃(z) = (C̃i,j(z))1≤i,j≤q) and the correlation
matrix is A(z) = I + C(z). The fundamental counting matrix is

D(z) = (1− z)A(z) + H(z).

When one counts a single word, D(z) reduces to a polynomial D(z) in the
Bernoulli case [11] or a series in a Markov model [5]. The following theorem,
where the fundamental counting matrix plays a central rôle, is stated for the
Bernoulli case in [5, 12] and for the Markov case in [6].

Theorem 1. Let R(z) =
∑

n Rn(H)zn with Rn(H) the probability that the first
occurrence of a word from H ends at position n. The generating function satisfies

R(z) = H(z) D(z)−1 1q
t, (1)

where 1q a row vector with q columns equal to 1. Let tkn(H) be the probability
that k occurrences of a word from a set H occur in a text of size n. The generating
function Tk(z) =

∑
n≥0 tkn(H)zn satisfies

Tk(z) = H(z)D(z)−1
M(z)k−1

D(z)−11q
t,

where M(z) is the minimal matrix defined as M(z) = I + (z − 1)D(z)−1.

Here, we unify the two definitions of the polynomial D(z) and the fundamental
counting matrix. Indeed, the waiting time depends on a fundamental multioc-
currence series, that we define below.

Definition 3. The fundamental multioccurrence series of a set H is

QH(z) = Trace
(
H(z)A−1(z)

)
.

When H reduces to a single word H, one has D(z) = (1− z + Q(z))A(z).
In this paper, we first extend Theorem 1 for several sets of words, in order

to address the co-occurrence problem. Counting results are also rewritten as
some functions of the fundamental multioccurrence series. Simple combinatorial
interpretations as overlapping sequences are provided for these functions. Hence,
it turns out that the so-called z-scores, and our tight numerical approximations
for the waiting time as well, depend on a few fundamental parameters. Namely,

Definition 4. Given a set of words H, one denotes P(H) =
∑

F∈H P(F),

C(H) =
∑

F,G∈H
∑

w∈CF,G
P(Fw), C̃(H) =

∑
F,G∈H

∑
w∈C̃F,G

P(Fw).

where P(H) is called the occurrence probability, C(H) is called the overlap factor
of H and C̃(H) is called the minimal overlap factor.

Note that P(H) = Trace(H(1)). Overlap factors C(H) and C̃(H) are the sum of
the coefficients of H(1)C(1) and H(1)C̃(1), respectively.
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Statistical criteria in computational biology can be expressed as simple func-
tions of parameters P(H) and C(H). Let On(H) be the number of occurrences of
words with overlap from H in a random text of size n under a Bernoulli model.
The mean E[On(H)] and the variance Var[On(H)] satisfy [13]

E[On(H)] = (n−m + 1)P(H),

Var[On(H)] = (n−m + 1)
(
P(H) + (1 − 2m)P(H)2 + 2C(H)

)
+ m(m− 1)P(H)2 − 2Ĉ(H),

where Ĉ(H) =
∑

F,G∈H
∑

w∈AF,G
|w| × P(Fw) is a slight modification of C(H).

We will show in Section 4 how to compute these quantities in an efficient way.
A correcting factor is derived for a single pattern in the Markov model in [5]

and extended for a set of patterns in [6]. As this factor mainly depends on the
stationary distribution, it can be viewed as a preprocessing.

These results allow for an efficient computation of the z-score in computa-
tional biology. When k occurrences of H are observed in a sequence of length n,
the z-score is Z(H) = k−E[On(H)]√

Var[On(H)]
. This is an empirical measure of the de-

parture from the normal distribution. High values of |Z(H)| indicate an over
representation (positive values) or an underrepresentation (negative values).

3 Waiting Time

We address below different variants of the waiting time problem. Indeed, the
meaningful event may be the apparition – or not – of a word in the sequence
under study. We consider also the co-occurrence problem.

3.1 Waiting Time Generating Functions
An analytic expression of the probability of first occurrence is derived in [11] for
the uniform model, in [13] to the biased model and in [6] to the Markov model.
Nevertheless, the results are expressed through a generating function, which
yields two problems: the computational complexity and the numerical stability.
Clearly, when the size of the set H or/and the sequence become large, a naive
computation for a given n – such as the computation by induction [7] – is compu-
tationally expensive. The computation also turns out to be quickly untractable
with the improved implementation based on the symbolic system Combstruct.
Moreover, numerical instability appears that can only be avoided with a care-
ful and tricky implementation [14]. The same problems arise with the software
RegExpCount. The set H is viewed as a regular expression, the associated au-
tomaton is built and the generating function follows [15]. Our first result in this
section is a further writing of the generating function in a more explicit form.
Theorem 2. Let H be a set of q words and Fn(H) be the probability that at
least one word in H occurs in a random sequence of size n. The generating
function FH(z) =

∑
n≥0 Fn(H)zn satisfies

FH(z) =
1

1− z
− 1

1− z + QH(z)
. (2)
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Proof. Our proof relies on new expressions for matrices D(z) and M(z) in the
Bernoulli model that extend to the Markov model.

Proposition 1. The inverse matrix of the fundamental counting matrix satisfies

D(z)−1 =
A−1(z)
1− z

(
I− H(z)A−1(z)

1− z + Trace(H(z)A−1(z))

)
. (3)

The minimal matrix M(z) satisfies

M(z) = I− A
−1(z)

(
I− H(z)A−1(z)

1− z + Trace(H(z)A−1(z))

)
.

Proof. Let us call a 1-matrix any matrix whose rows are all equal. One has that
any 1-matrix B satisfies (I+B)−1 = I− (1+Trace(B))−1B. The main arguments
for the proof of Prop. 1 are that A(z) can be inverted in some disc around 0 and
that, for any integer i ≥ 0, H(z)A(z)−i is a 1-matrix (details are omitted).

Let us return to the proof of Theorem 2. Let Rq(H) be the probability that
the first occurrence of a word from set H ends at position q. It follows from
the definition that Fn(H) =

∑
q≤n Rq(H). Hence, FH(z) = 1

1−z

∑
n Rn(H)zn =

R(z)
1−z . Using Eq. (3), we rewrite HD(z)−1 = B

1−z [I − B

1−z+Trace(B) ] with B =
H(z)A−1(z). As B2 = Trace(B)B and Trace(B) = QH(z), we get HD(z)−1 =

B

1−z+QH(z) . One rewrites H(z) = ( 1 0 ··· 0 )H(z). Then, Eq. (1) yields R(z) =
( 1 0 ··· 0 )H(z)D(z)−11q

t, and finally R(z) = 1
1−z+QH(z) ( 1 0 ··· 0 )B1q

t. For any
matrix M, the product ( 1 0 ··· 0 )M1q

t is the sum of all coefficients in the first row.
For a 1-matrix, this sum is equal to the trace. It follows that R(z) = QH(z)

1−z+QH(z)

and decomposition QH(z)
(1−z)(1−z+QH(z)) = 1

1−z −
1

1−z+QH(z) yields Eq. (2).

Our second result deals with the co-occurrences of two signals. Given two
sets H1 and H2, one studies the probability to have one occurrence from each
set in a given short sequence. Typically, each set represents potential binding
sites for a regulatory protein.

Theorem 3. Let H1 and H2 be two disjoint sets of words of size m. Denote H =
H1 ∪H2. Let F

[1,1]
n (H1,H2) be the probability that at least one word in H1 and

one word in H2 occur in a random sequence of size n. The generating func-
tion F

[1,1]
H1,H2

(z) =
∑

n F
[1,1]
n (H1,H2)zn satisfies

F
[1,1]
H1,H2

(z) =
1

1− z
− 1

1− z + QH1(z)
− 1

1− z + QH2(z)
+

1
1− z + QH(z)

, (4)

where QH(z), QH1(z) and QH2(z) are the fundamental multioccurrence series
of H, H1 and H2 respectively.

Proof. Let us consider a text of length n with n1 H1-occurrences and n2 H2-
occurrences. The total number of H-occurrences is n1 + n2 and we have

P((n1 > 0) ∩ (n2 > 0)) = 1− P(n1 = 0)− P(n2 = 0) + P(n1 + n2 = 0).
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Since by Theorem 2, [zn] 1
1−z+QH(z) is the probability that there is no word

from H in a text of size n, this equality translates to Eq. (4).

Remark. These results generalize to a Markov process. As for the mean and
variance [5], the two contributions due to the overlapping structure of H and
the Markovian process are almost independent. Indeed, it turns out that the
results are some functions of the sum of A(z) and N(z), that represent the
dependency to the overlapping structure and the dependency to the Markov
process characteristics, respectively. An induction approach [16, 17] does not
achieve such a separation. A complexity improvement follows.

3.2 Practical Computation

Our practical results rely on simple observations. When the size of the text in-
creases, the probability to find at least one occurrence increases from 0 to 1.
Indeed, for small (respectively large) n, Fn(H) is exponentially close to 0 (re-
spectively 1). Hence, the range where Fn(H) is a meaningful criteria and worth
study is in between. The location and size of this “twilight zone” depend on the
expected value of On(H), e.g. P (H), and the number of sequences where the
set H is searched for. Therefore, we assume below that nP (H) is smaller than 1.
In this range, an asymptotic expansion turns out to be very tight. More details
on the relationship between this bound and the number of sequences will be
given in an extended paper.

Theorem 4. When nP (H) is upper bounded by 1, one has

Fn(H) = 1−
(
1 + P (H)− C̃(H)

)−n (
1 + O

(
1
n

))
. (5)

The co-occurrence probability satisfies

F [1,1]
n (H1,H2) ∼ 1 + e−n log(1+P(H)−C(H))

− e−n log(1+P(H1)−C(H1)) − e−n log(1+P(H2)−C(H2)).

Remarks. Numerical evaluation shows that these formulae are very tight. Due to
the simplicity of its computation, our formulae favorably compare to intricate
and unstable computation by induction. Expansion (5) also is an improvement
on a common numerical approximation [18, 19]

Fn(H) = 1− (1− P (H))n−m+1
.

Unfortunately, this approximation does not take the words overlaps into account,
although they do induce a significant change [20]. Moreover, it is not valid in
the finite range. When H reduces to a single pattern H, a tighter approximation
holds in both cases. Namely P (H)

AH(1) is slightly more accurate than P (H)− C̃(H).

Proof. Generating functions in Eq. (2) and Eq. (4) depend on the fundamental
multioccurrence series properties. Lemma below provides a uniform approxima-
tion for the fundamental multioccurrence series.
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Lemma 1. The fundamental multioccurrence series of a set H satisfies

QH(z) = P (H)zm −
∑

H,F∈H
∑

w∈C̃H,F
P (Hw)z|Hw| + O

(
mP(H)2

)
. (6)

The root of smallest modulus of 1 − z + QH(z) is a real positive number ρ that
is greater than 1 and satisfies

ρ− (1 + P (H)− C̃(H)) = O(mP (H)2) . (7)

Proof. We first prove that

m∑
j=1

[zm+j] Trace(HA
−1(z)) =

m∑
j=1

[zm+j]QH(z) =
∑

H,F∈H
w∈C̃H,F

P (Hw)z|Hw|. (8)

One has A−1(z) = I +
∑

k≥1(−1)kCk. A non-zero term in [z�]HCk is mapped to
a word of length � which is an overlapping chain of words from H. The weight
of each chain is its probability. Such a word w can be decomposed unambigu-
ously as a product H · c̃1 · · · c̃j of one word H ∈ H and a product of j minimal
right complements. Assume now that m < |w| < 2m. There are

(
j−1
r−1

)
choices of

grouping consecutive words among the c̃i’s in order to get a valid decomposition
w = Hc1 · · · cr where the ci’s are right complements. Therefore, the contribu-
tion of w to Trace(H(I+

∑
k≥1(−1)kCk)) is z� P(w)

∑j−1
r=1

(
j−1
r−1

)
(−1)r. This sum

is z� P(w) if j = 1 (which means w = Hc̃ with c̃ a minimal right complement)
and 0 otherwise. Eq. (8) is established.

A simple combinatorial argument provides for
∑

�≥2m[z�] Trace(HA
−1(z))

the upper bound O(mP (H)2). Indeed, each monomial in the sum is associated to
an overlapping chain w of H-words. Chain w rewrites unambiguously H1w1H2w2

where H1 its prefix in H and H2 the first H-word that goes beyond position 2m.
The overall probability of such events is trivially upper bounded by P (H)mP (H).

We study now the zeros of the equation g(z) = 1 − z + QH(z). For small
values of P(H), a bootstrapping approach [21, 22] allows for a derivation of the
local development of ρ given in Eq. (7).

The Darboux theorem for the series φ(z)/g(z) implies that the n-th coefficient
of this series satisfies pn ∼ φ(ρ)

ρg′(ρ)ρ
−n. General and detailed results on its use on

rational series can be found in [23]. Using Eq. (7) for sets H, H1 and H2 yields
Theorem 4. As P (H) = O( 1

n ) in this range, we get the approximation order.

4 Efficient Computation of Fundamental Parameters

To put formulae into effect, one needs to compute efficiently for a set of words H
the fundamental quantities of Definition 4. First we present a general method for
an arbitrary set H based on a classical algorithm. If H has a particular structure
(i.e. consists of approximate words), a more efficient way is available.
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4.1 Correlation for an Arbitrary Set of Words

We resort in this section to the well-known Aho-Corasick algorithm [24, 25]
which builds from a finite set of words H a deterministic complete automaton
(not necessarily minimal) recognizing the language Σ∗H where Σ is the (finite)
alphabet. This automaton is the basis of many efficient algorithms on string
matching problems and is often called the string matching automaton. We use
a variant represented as a trie together with a failure function. Let TH be the
ordinary trie representingH, seen as a finite deterministic automaton (Q, δ, ε, T )
where the set of states is Q = Pref (H) (prefixes of words in H), the initial state
is ε, the set of final states is T = Σ∗H∩ Pref (H) and the incomplete transition
function δ is defined by δ(p, a) = pa if pa ∈ Pref (H) and undefined otherwise.
For a word u ∈ Pref (H), the failure function Border associates

Border (u) = the longest proper suffix of u which belongs to Pref (H).

In the following we identify a word u ∈ Pref (H) with the node at the end of
the branch labelled by u, so that Border defines also a map on the nodes of the
tree. There are efficient O(|H|) algorithms [24, 25] linear both in time and space
building such a tree structure together with the auxiliary Border function.

For any set H and w ∈ H, one can compute Cw,H and C̃w,H using this struc-
ture. Indeed, we associate to w ∈ H a suffix chain of nonempty words (u1, . . . , uk)
obtained by successive application of the failure function before getting ε. Then
the trie T of the right complements of H in H is obtained by merging all the
subtries rooted at the nodes labelled by the ui’s. The trie T̃ of the minimal com-
plements of H in H corresponds to the pruning of T where, along any branch, we
only keep the nodes from the root to the first terminal node (see Fig. 1). One can
easily compute the quantities C(H) and C̃(H) (or P(H)) along the construction
of these trees.

4.2 Approximate Words and Generalized Consensus

In this section, we present algorithms to compute the occurrence probability and
the correlation factor (but due to limitations of our approach not the minimal
correlation factor) for a certain kind of set of words.

a

a

c

c

a

c
a

c

c

t

a c

t

a c

Fig. 1. For the set H = {aaa,aac,aca,acc, cct}: The trie TH with (dashed)
links Border (left), the trie of the right complements of aac in H (middle) and the trie
of the minimal right complements of aac in H.
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Definition 5. A positional pattern of length m is a sequence of sets of letters
(Hi)m

i=1. Each set Hi ⊆ Σ is the set of symbols permitted at position i among
symbols of the alphabet Σ.

Hereafter we identify a positional pattern and the set of words it represents. For
instance, the pattern H = ({a,c}, {t}, {a,t}) is the set {ata,att,cta,ctt}.
To define a neighborhood, we will use in this section the Hamming distance d.

Definition 6. A neighborhood of H = (Hi)m
i=1 is a set of words N = (Ni)m

i=1

such that H ⊆ N (i.e. Hi ⊆ Ni for i = 1..m). The k-neighborhood (relative
to N ) Bk(H) of center H and radius k is Bk(H) = {w ∈ N | d(H, w) ≤ k}.

The most natural example consists in a centerH reduced to one word of length m
and a neighborhood N = Σm where all letters are allowed. However our model
enables us to consider words with some forbidden errors at specific positions.

The set of words H is called below the center of the neighbourhood. It is
the so-called consensus of the biologists. The motifs in the neighbourhood are
the approximate words, also called spurious motifs [18]. They appear in the
extraction of regulatory signals. Our definition – and our algorithms as well –
covers the case where the substitutions occur at some specific positions. It also
covers the case of an extended alphabet, for instance the fifteen iupac ambiguity
code [26]. Symmetric structures can also be addressed, as in the special case of
palindromes, where the errors must maintain the palindromic structure. This
case is of interest for the study of restriction-modification systems [2].

Note that when k errors are allowed, the number of words in the neighbor-
hood is O(mk). Therefore, a naive algorithm that examines all the words of the
neighborhood is an exponential algorithm with respect to k. Our algorithm is
polynomial in m and k for both Bernoulli and Markov models. The key idea is
to consider a word or a set of words as a formal series. One knows [23] that given
a rational language, substituting probabilities to symbols yields in the Bernoulli
model the probability occurrence. Finally if we know in advance the number of
errors allowed, we can use truncated expansion of the series.

Occurrence probability for approximate words. In this section, we com-
pute the occurrence probability of the neighborhood Bk(H).

Definition 7. For a pattern H of length m and a neighborhood N , let us define
the generating function

FH(u) =
∑

w∈N P (w)ud(H,w). (9)

The occurrence probability of Bk(H) is P(Bk(H)) =
∑k

i=0[u
i]FH(u).

Bernoulli model. In this model, Eq. (9) rewrites FH(u) =
∏m

i=1(P(Hi)+u P(Ni\
Hi)). Since we are only interested in coefficient degree less than k, it is enough
to compute the truncated expansion up to degree k. Remark that k is known in
advance and usually small in applications.
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ProbabilityBernoulli(k,H,N )

1 f(u) ← 1
2 for i ← 1 to m do
3 f(u) ← f(u) × (P(Hi) + uP(Ni \ Hi))

4 return
∑k

i=0[u
i]f(u)

Proposition 2. The algorithm ProbabilityBernoulli(), for a Bernoulli
model, computes the probability P(Bk(H)) with O(mk) time complexity and O(k)
space complexity.

One needs only to store one polynomial f(u) of degree k at a time. Moreover the
iterative step 3, updating f(u), can be computed in place so no extra storage is
needed and requires only O(k) operations since we need to multiply a polynomial
of degree k with a polynomial of degree at most 1.

Markov model. For a Markov model of order p > 0, the stationary probability
of w is P(w) =

∑
c∈Σp πc P(w|c), with P(w|c) the probability that H occurs

after c, and πc the stationary probability of c. So in this context, Eq. (9) rewrites

FH(u) =
∑

c∈Σp πcfH,c(u), where fH,c(u) =
∑

w ∈ N P(w|c)ud(w,H).

In the following algorithm we will need two notations. For a set S, δS(j) = 1
if j ∈ S and 0 otherwise. For a word c ∈ Σp and a symbol j ∈ Σ, the j-shift σj(c)
of the word c by j is the word of length p obtained by erasing the first letter of c
and adding the symbol j at the end. For instance, σg(atc) = tcg.

ProbabilityMarkov(k, H,N )

1 for c ∈ Σp do
2 fc(u) ← 1
3 for i ← m downto 1 do
4 for c ∈ Σp do
5 f ′

c(u) ← 0
6 for j ∈ Σ do
7 c′ ← σj(c)

8 f ′
c(u) ← fc′(u) × P(j|c) × δNr (j)u1−δHi

(j)

9 for c ∈ Σp do
10 fc(u) ← f ′

c(u)
11 � Use the stationary distribution π to obtain the result
12 F (u) ← 0
13 for c ∈ Σp do
14 F (u) ← F (u) + πc × fc(u)

15 return
∑k

i=0[u
i]F (u)

Without proof, let us state the complexity of this algorithm.

Proposition 3. The algorithm ProbabilityMarkov() computes for a
Markov model of order p, the probability P(Bk(H)) with O(mV p+1k) time com-
plexity and O(V pk) space complexity where V is the cardinal of the alphabet, k
is the number of errors and H is of length m.
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Overlap factor for approximate words. Our aim here is to provide a sym-
bolic computation of the overlap factor C(Bk(H)). Similarly to Section 4.2, for
each consecutive possible overlap position i, we consider a bivariate polynomial
with the Hamming distance d where u marks the number of errors relatively to
a prefix of length m and v marks the numbers of errors relatively to a suffix of
size m

Di,H(u, v) =
∑

F,G∈N
overlapping at i

P(F Gm
m−i+1)u

d(H,F)vd(H,G).

The following algorithm computes C(Bk(H)) and has O(m2k2) time complex-
ity and O(k2) space complexity. Note also that this algorithm can be readily
extended as in Section 4.2 to a Markov model of order p with alphabet of cardi-
nality V with a time complexity O(m2V p+1k2).

OverlapFactorBernoulli(k,H,N )

1 D(u, v) ← 0
2 for i ← 2 to m − 1 do
3 f(u, v) ← 1
4 for j ← m + i − 1 to m do
5 f(u, v) ← f(u, v) ×

(
P(Hj) + v P(Nj \ Hj)

)
6 for j ← m to i do
7 f(u, v) ← f(u, v) ×

(
P(Hj ∩ Hj−i+1)

+uP((Nj \ Hj) ∩Hj−i+1) + v P((Nj−i+1 \ Hj−i+1) ∩ Hj)
+uv P((Nj \ Hj) ∩ (Nj−i+1 \ Hj−i+1))

)
8 for j ← i − 1 to 1 do
9 f(u, v) ← f(u, v) ×

(
P(Hj) + uP(Nj \ Hj)

)
10 D(u, v) ← d(u, v) + f(u, v)
11 return

∑
0≤i,j≤k[uivj ]D(u, v)

5 Conclusion

We provided efficient algorithms to assess the significance of exceptional words in
a long sequence – typically a whole genome – or a set of small sequences. While
the approaches to word counting through recurrences suffer from a combinatorial
explosion when the text is Markovian or when the signal is strongly degenerated,
our formulae or algorithms allow for a fast (polynomial) computation. We are
currently working on a possible extension to structured motifs or dyads [8].
Among the possible applications, it might be interesting to compile regulatory
motifs in eucaryotic genomes, possibly the human genome, and to evaluate their
significance.
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Abstract. We consider the problem of inferring a graph (and a se-
quence) from the numbers of occurrences of vertex-labeled paths, which
is closely related to the pre-image problem for graphs in machine learn-
ing: to reconstruct a graph from its feature space representation. We
show that this problem can be solved in polynomial time in the size of
an output graph if graphs are trees of bounded degree and the lengths
of given paths are bounded by a constant. On the other hand, we show
that this problem is strongly NP-hard even for planar graphs of bounded
degree.

1 Introduction

In the past decade, there has been significant progress in kernel methods [5],
which include support vector machines [4]. In particular, kernel methods have
been applied to various classification problems in bioinformatics [16], which is
one of the main target areas of combinatorial pattern matching. In order to apply
kernel methods to bioinformatics problems, it is usually required to develop a
mapping from the set of objects in the target problem to a feature space (i.e.,
each object is transformed to a vector of reals) and a kernel function is defined
as an inner product between two feature vectors. For instance, in the spectrum
kernel method [10], each sequence is mapped to a frequency vector of fixed length
substrings (i.e. frequency of n-grams). In some cases, a feature space can be an
infinite dimensional space (Hilbert space) and some kernel trick is developed to
compute the value of a kernel function efficiently without explicitly computing
feature vectors [5].

Recently, a new approach was proposed for designing and/or optimizing ob-
jects using kernel methods [2, 3]. In this approach, a desired object is computed
as a point in the feature space using suitable objective function and optimiza-
tion technique and then the point is mapped back to the input space, where this
mapped back object is called a pre-image. Let φ be a mapping from an input
� Supported in part by Grant-in-Aid for Scientific Research on Priority Areas (C) for
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Education, Culture, Sports, Science and Technology (MEXT) of Japan.
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feature space

none
φ(x*)

φ

y

x*

Fig. 1. Inference of a graph from a feature vector. Multiple objects may be mapped to
the same point in a feature space. If there does not exist φ−1(y), it is required to find
x∗ such that dist(y, φ(x∗)) is the minimum

space G to a feature space F . Then, the problem is, given a point y in F , to find a
pre-image x in G such that y = φ(x). It should be noted that φ is not necessarily
injective or surjective. If φ is not surjective, we need to compute the approxi-
mate pre-image x∗ for which distance of y and φ(x) is minimized (see Fig. 1):
x∗ = arg minx dist(y, φ(x)). Bakir, Weston and Scölkopf proposed a method
to find pre-images in a general setting by using Kernel Principal Component
Analysis and regression [2]. Bakir, Zien and Tsuda developed a stochastic search
algorithm to find pre-images for graphs [3]. It should be noted that the pre-image
problem for graphs is very important from a practical viewpoint because it has
potential application to drug design [3] by using a suitable objective function
reflecting desired properties. Indeed, several studies have been done for design-
ing molecules with optimal values using heuristic methods (genetic algorithms)
[13, 17] though they did not use kernel methods. However, all of the above ap-
proaches are statistical, stochastic or heuristic. Thus, it seems that these do not
lead to polynomial time algorithms for solving pre-image problems exactly.

In this paper, we study algorithmic aspects of this pre-image problem. More-
over, we focus on pre-image problems for feature spaces defined by frequency
of distinct vertex-labeled paths because this type of feature space has been suc-
cessfully used for classification of both biological sequences [10] and chemical
compounds [8, 11]. As mentioned in the above, each sequence is transformed to
a frequency vector of n-grams in the spectrum kernel [10] where each n-gram
corresponds to a path of fixed length. In the marginalized graph kernel [8], each
graph is transformed to a vector of probabilities of vertex-labeled paths. Though
some kernel trick was developed for handling unbounded length paths efficiently,
it is known that the marginalized kernel works well even if bounded length paths
are used [8]. Thus, we only consider the case of bounded length paths. More-
over, we do not consider the probabilities; instead we consider for simplicity the
number of occurrences of labeled paths as in the case of the spectrum kernel
(probability corresponds to the number of occurrences if we consider regular
graphs).
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We first show that the exact pre-image problem for sequences can be solved in
polynomial time in the length of the sequence to be inferred. For that purpose, we
employ the Eulerian path approach which was originally developed for sequencing
by hybridization [14]. Next, we present dynamic programming algorithms for
both exact and approximate pre-image problems for trees of bounded degree,
which work in polynomial time in the size of an output graph when a feature
vector is defined by frequency of bounded length paths over a finite set of labels.
On the other hand, we show that the pre-image problem is strongly NP-hard
even for planar graphs of bounded degree. Though the algorithms proposed for
graphs are not practical and the gaps between the positive and negative results
are not small, these results provide new insights on the pre-image problem.

Several related problems have been studied in theoretical computer science.
As mentioned above, sequencing by hybridization and the shortest common su-
perstring problem [14] are close to the pre-image problem for sequences. Graph-
ical degree sequence problems [1], graph inference from walks [12, 15] and the
graph reconstruction problem [9] are related to the pre-image problem for graphs.
However, to our knowledge, results on these three graph problems are not di-
rectly applicable to the pre-image problem for graphs.

2 Problem Definitions

In this section, we define the problems formally.
First, we define the pre-image problem for sequences. We use feature vectors

in the spectrum kernel [10]. Let Σ be an alphabet and ΣK be the set of strings
with length K over Σ. For two strings t and s, occ(t, s) denotes the number
of occurrences of substring t in s. Then, the feature vector fK(s) of level K
for s is a |ΣK |-dimensional integer vector such that the coordinate indexed by
t ∈ ΣK is occ(t, s). That is, fK(s) is defined by fK(s) = (occ(t, s))t∈ΣK . For
example, consider string 00101111 over Σ = {0, 1}. Then, f2(s) = (1, 2, 1, 3)
because occ(00, s) = 1, occ(01, s) = 2, occ(10, s) = 1 and occ(11, s) = 3.

If K is large, the number of dimensions of a feature vector will be large (ex-
ponential of K). In such a case, many coordinates will have value 0. Thus, when
K is not a constant, we assume that a vector is represented in an appropriate
way (linear size of a target sequence) so that the coordinates having value 0 are
not included in the data structures.

Definition 1. (SISF: Sequence Inference from Spectrum Feature) Given a
feature vector v of level K, output a string s satisfying fK(s) = v. If there does
not exist such s, output “no solution”.

The above definition can be extended for the case of finding the sequence
nearest to a given feature vector. Though we consider Hamming distances in
this paper, the results in this paper may be extended for the Euclidean distance
and other appropriate distances.

Definition 2. (SISF-M: Sequence Inference from Spectrum Feature with Min-
imum Error) Given a feature vector v of level K, output a string s such that
dist(fK(s), v) is the minimum.
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Next, we define pre-image problems for graphs. Let G(V, E) be an undirected
vertex-labeled graph and Σ be a set of vertex labels. A sequence of vertices
(v0, v1, . . . , vh) of G is called a path of length h (h ≥ 0) if {vi, vi+1} ∈ E holds
for i = 0, . . . , h − 1. It should be noted that the same vertex (and the same
edge) can appear more than once in the above definition. Since most papers on
marginalized graph kernels [8, 11, 16] use this notation, we employ this definition
of a path. Let Σ≤k be the set of label sequences (i.e., the set of strings) over
Σ whose lengths are between 1 and k. Let l(v) be the label of vertex v. For a
path P = (v0, . . . , vh) of G, l(P ) denotes the label sequence of P (i.e., l(P ) =
l(v0)l(v1) . . . l(vh)). It should be noted that the length of l(P ) is the length of
P plus one. For graph G and label sequence t, occ(t, G) denotes the number of
paths P in G such that l(P ) = t. Then, the feature vector fK(G) of level K
for G(V, E) is an integer vector such that the coordinate index by t ∈ Σ≤K+1

is occ(t, G). That is, fK(G) is defined by fK(G) = (occ(t, G))t∈Σ≤K+1 . For
example, consider a star G(V, E) consisting of four vertices where the center
vertex has label 0 and the other three vertices have label 1. Then, f1(G) =
(1, 3, 0, 3, 3, 0) because occ(0, G) = 1, occ(1, G) = 3, occ(00, G) = 0, occ(01, G) =
3, occ(10, G) = 3 and occ(11, G) = 0.

It should be noted that, different from the case of the spectrum kernel, various
length paths are considered in the above definition and in the marginalized
kernel [8]. In this paper, we assume for simplicity that tottering paths (paths for
which there exists some i such that vi = vi+2) are not counted in feature vectors
because removal of tottering paths does not decrease the prediction accuracy [11].
However, all the results on graphs in this paper are also valid even if tottering
paths are not removed.

Definition 3. (GIPF: Graph Inference from Path Frequency) Given a feature
vector v of level K, output a graph G(V, E) satisfying fK(G) = v. If there does
not exist such G(V, E), output “no solution”.

The above definition can be extended for the case of finding the graph nearest
to a given feature vector as in Definition 2.

Definition 4. (GIPF-M: Graph Inference from Path Frequency with Mini-
mum Error) Given a feature vector v of level K, output a graph G(V, E) such
that dist(fK(G), v) is the minimum.

It is worthy to note that both the number of dimensions of the feature vec-
tor and the maximum coordinate value of the feature vector are bounded by a
polynomial in the size of the graph if we consider constant K.

3 Algorithms for Sequences

We can easily develop an efficient algorithm for SISF by employing Eulerian
path approach for sequencing by hybridization [14].

Suppose that a feature vector v of level K over Σ is given for the SISF
problem (i.e., occ(t, s) is given). We construct a directed multi graph G′(V, E)
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such that V = ΣK−1 and for each t ∈ ΣK there exist directed edges (t′, t′′)
with multiplicity occ(t, s), where t′ and t′′ are the prefix and suffix of t with
length K − 1, respectively. Then, we can see that there exists an Eulerian path
in G′(V, E) iff. there is a solution for the SISF problem. It should be noted
that we need not create vertices which are neither prefix or suffix of substrings
such that occ(t, s) = 0. Let n be the length of the target sequence (i.e., n =
K − 1 +

∑
t occ(t, s)). Using the result on sequencing by hybridization [14], we

have:

Proposition 1. SISF is solved in O(n) time.

For the SISF-M problem, we may construct graph G′(V, E) in the same way.
But, G′(V, E) does not necessarily have an Eulerian path. Thus, we should add
or delete edges (using the minimum number of additions/deletions) so that the
resulting graph has an Eulerian path. Though it is unclear whether or not this
can be done in polynomial time, we can solve SISF-M in polynomial time in n if
K and Σ are fixed by using a dynamic programming algorithm similar to that
in the next section (details are omitted in this version).

Proposition 2. SISF-M is solved in polynomial time in n if K and Σ are fixed.

4 Algorithms for Trees

In this section, we present dynamic programming algorithms for inference of
trees from feature vectors of constant levels. It should be noted that these do
not work in polynomial time with respect to the size of a feature vector because
a feature vector may be represented in O(log n) size, where n is the number
of vertices of the graph (i.e., n is the sum of frequencies of paths of length 0).
But, these work in pseudo polynomial time (i.e., these work in polynomial time
in n). Considering such algorithms is quite reasonable because these work in
polynomial time with respect to the size of an output graph. First, we consider
the case of inference of trees of level 1. Though the following result is very simple
and may be improved, we present it because it is useful for understanding the
algorithm for a more general case (to be shown in Theorem 2).

Theorem 1. GIPF for trees is solved in polynomial time in n for K = 1 and a
fixed alphabet.

Proof. We only show the algorithm for the case of the binary alphabet (i.e.,
Σ = {0, 1}), where extension to an arbitrary fixed alphabet is straight-forward.
We construct the table D(. . .) defined by

D(n0, n1, n00, n01, n10, n11) ={
1, if there exists tree T such that f1(T ) = (n0, n1, n00, n01, n10, n11),
0, otherwise.

This table can be constructed by the following dynamic programming pro-
cedure where the initialization part is straight-forward.
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D(n0, n1, n00, n01, n10, n11) = 1 iff.
D(n0 − 1, n1, n00 − 2, n01, n10, n11) = 1 or
D(n0 − 1, n1, n00, n01 − 1, n10 − 1, n11) = 1 or
D(n0, n1 − 1, n00, n01 − 1, n10 − 1, n11) = 1 or
D(n0, n1 − 1, n00, n01, n10, n11 − 2) = 1.

The correctness of the algorithm follows from the fact that any tree can be
constructed incrementally by adding a vertex (leaf) one by one. The required tree
(if exists) can be obtained by means of a traceback procedure as in many dynamic
programming algorithms. Since the value of each element of the feature vector
is O(n) where n = n0 + n1, the table size is O(n6) and thus the computation
time is O(n6). �

It is worthy to note that a generate-and-test approach (enumerating all trees
of size n and checking whether each tree T satisfies fK(T ) = v) does not yield
a (pseudo) polynomial time algorithm because the number of possible trees is
not bounded by a polynomial in n.

The algorithm above can be modified for GIPF-M. We only need to consider
the table such that each coordinate value is O(n) because each tree of size O(n)
can correspond to some element in that table. Therefore, we can find the feature
vector fK(T ) closest to v in polynomial time by examining each vector in the
table of polynomial size.

Corollary 1. GIPF-M for trees is solved in polynomial time in n for K = 1
and a fixed alphabet.

The above algorithm can be modified for SISF-M (see Proposition 2). For
that purpose, we construct a table D(v) incrementally according to increasing
order of n, where D(v) = 1 iff. there exists a sequence s such that fK(s) = v.

Next, we extend the algorithm for cases of K > 1, where K is a constant
and we only consider trees of bounded degree and of fixed Σ. Extension is not
straight-forward and is somewhat involved. We explain the algorithm for trees
of bounded degree 3, where it is not difficult to extend the algorithm for higher
(but bounded) degree cases.

Though we do not consider directed trees, we will treat an undirected tree
as if it were a rooted tree. Let r be the root of a tree T . The depth (denoted
by d(v)) of a vertex v ∈ T is the length of the (shortest) path from r to v. The
depth of a tree (d(T )) is the depth of the deepest vertex.

For each vertex v ∈ T , TK(v) denotes the subtree of T induced by the vertex
set {v} ∪ {w|w is a descendant of v, |P (v, w)| ≤ K}, where P (v, w) denotes
the (shortest) path from v to w.

ID(v) denotes the signature (i.e., canonical labeling in [6]) of v where the
signature is an integer number of value O(n) such that ID(v) = ID(v′) iff. TK(v)
is isomorphic to T ′

K(v′). Since we consider constant K and trees of bounded
degree, ID(v) can be computed in O(1) time for each v.

Each vertex v maintains the set of paths which contain v as the shallowest
vertex. It should be noted that each vertex needs to maintain O(1) paths since
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we consider constant K and trees of bounded degree 3. It should also be noted
that each path is maintained by exactly one vertex.

For each tree T , we associate a table E(d, id) where E(d, id) denotes the
number of vertices v such that d(v) = d and ID(v) = id. Since there are O(1)
different signatures, E(d, id) consists of O(d(T )) elements.

Let e denotes the vector consisting of E(d, id) for d = d(T ), d(T )− 1, d(T )−
2, . . . , d(T )−K. Let gK(T ) denotes e for T . It should be noted that the number
of dimensions of e is bounded by a constant.

Then, we construct table D(v, e, d) defined by: D(v, e, d) = 1 iff. there exists
a tree T such that fK(T ) = v, gK(T ) = e and d(T ) = d. Let D̂(v, e, d) be
the size of such tree T . It should be noted that the size of trees is uniquely
determined from (v, e, d) though trees may not be uniquely determined (note
that we can not maintain the whole structure of a tree). Construction of the
table is done in an incremental manner as in the case of K = 1. We only add a
new vertex at depth either d or d + 1. It should be noted that any tree can be
constructed in this manner.

First we consider the case of adding a new vertex at depth d = d(T ) to
a tree T of size n (see Fig. 2). For each (v, e, d) such that D(v, e, d) = 1 and
D̂(v, e, d) = n, we consider all ways of appending a new vertex w having label l ∈
Σ to each subtree T (v) such that d(v) = d−K and E(d−K, id(v)) > 0. We need
to consider one subtree with the same signature in the case of E(d−K, id(v)) > 1.
Then, it is easy to see that the number of ways of appending a new vertex is
bounded by a constant per (v, e, d) because the numbers of dimensions of v and
e are bounded by constants. Moreover, addition of w affects signatures of O(1)
vertices because only signatures of vertices in T (v) can change. Suppose that
(v, e, d) changes to (v′, e′, d) by addition of w to some position of T (v). Then,
D(v′, e′, d) is set to 1 (initially, all entries of the table are set to 0). It is not
difficult to see that this update of the table can be done in constant time per
(v, e, d).

Next we consider the case of adding a new vertex at depth d(T )+1 to a tree
T of size n. As in the above, we consider all ways of appending a new vertex.
In this case, we need to take care so that e′ consists of signatures of vertices of
depth between d(T )−K + 1 and d(T ) + 1. But, update of the table can still be
done in constant time per (v, e, d).

By scheduling the above two types of operations adequately, we can have the
algorithm for computing the table D(v, e, d). The correctness of the algorithm
can be seen from the following facts: any tree can be constructed by adding a
vertex one by one in the increasing order of depth, addition of a new vertex only
affects signatures of vertices in T (v), and addition of a new vertex only affects
paths (of length at most K) inside T (v). Since the size of table D(v, e, d) is
bounded by a polynomial in n and constant time is required per entry of the
table, the algorithm works in polynomial time in n. The required tree can be
obtained by using the traceback technique.

Theorem 2. GIPF for trees of bounded degree is solved in polynomial time in
n if K and Σ are fixed.
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rdepth:  0

depth:  d-K

depth:  d w

v

Fig. 2. Addition of a new vertex w to tree T . Vector e consists of signatures of vertices
with depth between d−K and d. Addition of w only affects signatures of vertices and
paths (of length at most K) in the gray part (i.e., T (v))

As in Corollary 1, we can extend this result for GIPF-M.

Corollary 2. GIPF-M for trees of bounded degree is solved in polynomial time
in n if K and Σ are fixed.

5 Hardness of Graph Inference

In this section, we prove that GIPF is strongly NP-hard, from which strong
NP-hardness of GIPF-M follows.

Theorem 3. GIPF is strongly NP-hard even for planar graphs and K = 4.

Proof. We use a pseudo polynomial time transformation [7] from 3-PARTITION,
which is known to be strongly NP-complete. Recall that 3-PARTITION is defined
as follows [7]: given a set X which consists of 3m elements xi along with their
integer weights w(xi) and a positive integer B where each w(xi) satisfies B/4 <
w(xi) < B/2, find a partition of X into A1, A2, . . . , Am such that each Ai consists
of 3 elements and

∑
xj∈Ai

w(xj) = B holds for each Ai.
We construct a feature vector of level 4 (i.e., K = 4), which is to be con-

structed from subgraphs of the target (planar) graph G(V, E), where G(V, E)
corresponds to a solution to 3-PARTITION.

We let Σ = X ∪ {ai|i = 1, . . . , m} ∪ {a, b, c, c′, d}. We identify a vertex with
its label if the vertex with the same label appears only once in a graph. For each
xi, we construct a subgraph G(xi) shown in Fig. 3. Each G(xi) is called a block.
Note that there are w(xi) vertices with label a in G(xi). Note also that three
blocks will be connected to the same vertex labeled ah though it is not specified
by the feature vector which blocks are connected to the same vertex.

Next, we connect vertex d to m vertices with labels ah’s as in Fig. 3, where
three paths of the form c′-c-b are also connected to each ah. We call the subgraph
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Fig. 3. Reduction from 3-PARTITION to GIPF, where ah corresponds to set Ah =
{xi, xj , xk}

consisting of vertices with labels d, ah’s, b, c and c′ the center graph (denoted
by Gc in Fig. 3).

The feature vector v is constructed from the following paths:

PATHS-A: all paths at most length 4 in each block or in the center graph,
PATHS-B: for each ah, we construct B paths of the form of ah-c′-c-b-a and

the corresponding B paths in the reverse direction.

Now, we show that there exists a graph G(V, E) such that fK(G) = v if and
only if there exists a solution for 3-PARTITION.

Suppose that there exists a solution A1, . . . , Am for 3-PARTITION. Then,
we construct blocks G(xi) for i = 1, . . . , 3m. We also construct a star which
consists of the center vertex with label d and vertices with labels a1, . . . , am. For
each Ah = {xi, xj , xk}, we connect G(xi), G(xj) and G(xk) to ah as in Fig. 3
(we connect each vertex with label c′ in G(. . .) to ah). Let the resulting graph be
G(V, E). Here, we show that fK(G) corresponds to the union of PATHS-A and
PATHS-B. First, note that G(V, E) contains all the blocks and the center graph.
Therefore, the multiset of paths corresponding to fK(G) contains all paths in
PATHS-A. Next, note that B paths of the form of ah-c′-c-b-a start from each ah

in G(V, E). Therefore, the multiset of paths corresponding to fK(G) contains all
paths in PATHS-B. Since each path of length at most three is contained in a block
or in the center graph, the multiset of paths corresponding to fK(G) is equivalent
to the union of PATHS-A and PATHS-B. Therefore, we have fK(G) = v.

Suppose that there exists a graph G(V, E) such that fK(G) = v. Then, the
graph must contain all blocks and the center graph as subgraphs because of the
following reasons:
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– xi appears exactly once in G(V, E),
– Paths including xi and paths including b uniquely define the structure of

block G(xi),
– Paths including d uniquely define the star consisting of d and ah’s,
– Each ah appears exactly once in G(V, E),
– Paths including ah’s uniquely define the structure of the center graph along

with the above information on paths,

where information about absence of some kinds of paths is also utilized. It is
also seen from the constraint on w(xi)’s that exactly 3 blocks can connect to
each ah. From these, we can see that G(V, E) must have the structure shown
in Fig. 3. Let G(xi), G(xj) and G(xk) be the blocks connected to ah. Then,
w(xi) + w(xj) + w(xk) = B must hold because v contains B paths of the form
of ah-c′-c-b-a. Therefore, there exists a solution for 3-PARTITION.

It is straight-forward to see that the reduction satisfies the conditions for a
pseudo polynomial time transformation [7], from which we can see that GIPF is
strongly NP-hard. �

It follows from Theorem 3 that there does not exist a pseudo polynomial
time algorithm for GIPF unless P=NP.

In the above reduction, the maximum degree of graph G(V, E) or the size
of Σ was not bounded. But, we can modify the above reduction for graphs of
bounded degree 4 and of fixed Σ, where details of construction and proofs are
omitted in this version. Let L = �log max(B, m)�. Then, we transform blocks
and the center graph as in Fig. 4, where labels of vertices should be defined by
using a kind of binary-codes. Recall that uniqueness of xi’s and ah’s plays an
important role in the proof of Theorem 3, and we use binary-codes to guarantee
the uniqueness of paths corresponding to xi’s and ah’s. It should be noted that
the maximum degree of the constructed graph is 4.

In this reduction, we use a feature vector of level 8L. It can be seen that both
the number of dimensions of a feature vector and the size of G(V, E) are bounded
by polynomials in B and m. Moreover, each coordinate value of a feature vector is
bounded by a polynomial in B and m. From these, we can see that the reduction
satisfies the conditions of a pseudo polynomial time transformation.

Theorem 4. GIPF is strongly NP-hard even for planar graphs of bounded de-
gree 4 and of fixed Σ.

6 Concluding Remarks

We have presented polynomial time algorithms for inferring sequences and trees
from path frequency. We have also proven that this inference problem is strongly
NP-hard even for planar graphs of bounded degree.

From a theoretical viewpoint, large complexity gaps remain between the pos-
itive and negative results. For example, the complexity (polynomial or NP-hard)
of the following cases should be studied:
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Fig. 4. Transformation of blocks and the center star in Theorem 4

– inference of trees from paths with non-constant K,
– inference of graphs of bounded degree from paths with constant K.

Another interesting future work is to develop approximation algorithms for NP-
hard cases.

From a practical viewpoint, the proposed algorithms for trees are not useful
because constant factors depending on K and Σ will be very large. Therefore,
faster algorithms should be developed. Algorithms for more general classes of
graphs should also be developed although algorithms for trees may still be useful
since some heuristic methods have been developed for representing chemical
structures using trees [13]. In this paper, we consider feature vectors defined
by path frequency. However, probabilities of paths are used in the marginalized
graphs kernels. Therefore, extensions for such cases should be studied.
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Abstract. In this paper we propose new solution methods for design-
ing tag sets for use in universal DNA arrays. First, we give integer linear
programming formulations for two previous formalizations of the tag set
design problem, and show that these formulations can be solved to op-
timality for instance sizes of practical interest by using general purpose
optimization packages. Second, we note the benefits of periodic tags, and
establish an interesting connection between the tag design problem and
the problem of packing the maximum number of vertex-disjoint directed
cycles in a given graph. We show that combining a simple greedy cy-
cle packing algorithm with a previously proposed alphabetic tree search
strategy yields an increase of over 40% in the number of tags compared
to previous methods.

1 Introduction

Recently developed universal DNA tag arrays [5, 11, 14] offer a flexible and
cost-effective alternative to custom-designed DNA arrays for performing a wide
range of genomic analyses. A universal tag array consists of a set of DNA strings
called tags, designed such that each tag hybridizes strongly to its own antitag
(Watson-Crick complement), but to no other antitag. A typical assay based on
universal tag arrays performs Single Nucleotide Polymorphism (SNP) genotyp-
ing using the following steps [3, 7]: (1) A set of reporter oligonucleotide probes
is synthesized by ligating antitags to the 5′ end of primers complementing the
genomic sequence immediately preceding the SNP. (2) Reporter probes are hy-
bridized in solution with the genomic DNA under study. (3) Hybridization of the
primer part (3′ end) of a reporter probe is detected by a single-base extension
reaction using the polymerase enzyme and dideoxynucleotides fluorescently la-
beled with 4 different dyes. (4) Reporter probes are separated from the template
DNA and hybridized to the universal array. (5) Finally, fluorescence levels are
used to determine which primers have been extended and learn the identity of
the extending dideoxynucleotides.

� Work supported in part by a Large Grant from the University of Connecticut’s
Research Foundation.

A. Apostolico, M. Crochemore, and K. Park (Eds.): CPM 2005, LNCS 3537, pp. 383–393, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Tag set design involves balancing two conflicting requirements: on one hand
we would like a large number of tags to allow assaying a large number of bio-
chemical reactions, on the other hand we would like the tags to work well for a
wide range of assay types and experimental conditions.

Ben Dor et al. [2] have previously formalized the problem by imposing con-
straints on antitag-to-tag hybridization specificity under a hybridization model
based on the classical 2-4 rule, and have proposed near-optimal heuristics. In Sec-
tion 3 we give an integer linear programming (ILP) formulation for this problem
and its variant in which tags are required to have equal length [12]. Empiri-
cal results in Section 5 show that these ILP formulations have extremely small
integrality gap, and can be solved to optimality for instance sizes of practical
interest by using general purpose optimization packages.

Previous works on tag set design [2, 12] require for substrings that may
form a nucleation complex and initiate cross hybridization not to be repeated
within any selected tag. This constraint simplifies analysis, but is not required
for ensuring correct tag functionality – what is required is for such substrings not
to appear simultaneously in two different tags. To our knowledge, no previous
work has assessed the impact that adding this constraint has on tag set size. In
this paper we propose two algorithms for designing tag sets while relaxing this
constraint. The first one is a modification of the alphabetic tree search strategy
in [11, 12], The second algorithm stems from the observation that periodic tags,
particularly those with a short period, use the least amount of “resources” and
lead to larger tag sets, where the limited resources are in this case minimal
substrings that can form nucleation complexes (for formal models see Section
2). In Section 4 we establish an interesting connection between the tag design
problem and the problem of packing the maximum number of vertex-disjoint
directed cycles in a given graph, and propose a simple greedy algorithm for the
latter one. Results in Section 5 show that combining the greedy cycle packing
algorithm with alphabetic tree search strategy yields an increase of over 40% in
the number of tags compared to previous methods.

2 Problem Formulations and Previous Work

A main objective of universal array designers is to maximize the number of tags,
which directly determines the number of reactions that can multiplexed using a
single array. At the same time, tag sets must satisfy a number of stability and
non-interaction constraints [4]. The set of constraints depends on factors such as
the array manufacturing technology and the intended application. In this section
we formalize the most important stability and non-interaction constraints using
the hybridization model in [2].

Hybridization model. Hybridization affinity between two oligonucleotides is
commonly characterized using the melting temperature, defined as the temper-
ature at which half of the duplexes are in hybridized state and the other half
are in melted state. However, accurate melting temperature estimation is com-
putationally expensive, e.g., estimating the melting temperature between two
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non-complementary oligonucleotides using the near-neighbor model of SantaLu-
cia [16] is an NP-hard problem [8]. Ben-Dor et al. [2, 3] formalized a conservative
hybridization model based on the observation that stable hybridization requires
the formation of an initial nucleation complex between two perfectly comple-
mentary substrings of the two oligonucleotides. For nucleation complexes, hy-
bridization affinity is modeled using the classical 2-4 rule [17], which estimates
the melting temperature of the duplex formed by an oligonucleotide with its
complement as the sum between the number of weak bases (i.e., A and T) and
twice the number of strong bases (i.e., G and C).

The weight w(x) of a DNA string x = a1a2 . . . ak is defined as w(x) =∑k
i=1 w(ai), where w(A) = w(T) = 1 and w(C) = w(G) = 2. Throughout this

paper we assume the following c-token hybridization model [2]: hybridization be-
tween two oligonucleotides takes place only if one oligo contains as substring the
complement of a substring of weight c or more of the other, where c is a given
constant. The complement of a string x = a1a2 . . . ak over the DNA alphabet
{A, C, T, G} is defined as x̄ = b1b2 . . . bk, where bi is the Watson-Crick complement
of ak−i+1.

Hybridization stability. Current industry designs require a predetermined
tag length l, e.g., GenFlex tag arrays manufactured by Affymetrix use l = 20
[1]. The model proposed in [2] allows tags of unequal length and instead require
a minimum tag weight of h, for a given constant h. In this paper we consider
both types of stability constraints, and use the parameter α ∈ {l, h} to denote
the specific model used for hybridization stability.

Pairwise non-interaction constraints. A basic constraint in this category
is for every antitag not to hybridize to non-complementary tags [2]. For a DNA
string x and a set of tags T , let NT (x) denote the number of tags in T that
contain x as a substring. Using the c-token hybridization model, the antitag-to-
tag hybridization constraint is formalized as follows:
(C) For every feasible tag set T , NT (x) ≤ 1 for every DNA string x of weight

c or more.
In many assays based on universal tag arrays it is also required to prevent
antitag-to-antitag hybridization, since the formation of such antitag-to-antitag
duplexes or antitag hair-pin structures prevents reporter probes from perform-
ing their function in the solution-based hybridization steps [4, 12]. The combined
constraints on antitag hybridization are formalized as follows
(C̄) For every feasible tag set T , NT (x) + NT (x̄) ≤ 1 for every DNA string x

of weight c or more.
In the following we use the parameter β ∈ {C, C̄} to specify the type of pairwise
hybridization constraints.

Substring occurrences within a tag. Previous works on DNA tag set design
[2, 12] have imposed the following c-token uniqueness constraint in addition to
constraints (C) and (C̄): a DNA string of weight c or more can appear as a
substring of a feasible tag at most once. This uniqueness constraint has been
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added purely for ease of analysis (e.g., it is the key property enabling the De-
Bruijn sequence based heuristics in [2]), and is not required for ensuring correct
assay functionality. To our knowledge, no previous work has assessed the impact
that adding this constraint has on tag set size. In the following we will use the
parameter γ ∈ {1, multiple} to specify whether or not the c-token uniqueness
constraint is enforced.
For every α ∈ {l, h}, β ∈ {C, C̄}, and γ ∈ {1, multiple}, the maximum tag set
design problem with constraints α, β, γ, denoted MTSDP(α|β|γ), is the follow-
ing: given constants c and l/h, find a tag set of maximum cardinality satisfying
the constraints.

Previous work on tag set design. Ben-Dor et al. [2] formalized the c-token
model for oligonucleotide hybridization and studied the MTSDP(h|C|1) problem.
They established a constructive upperbound on the optimal number of tags for
this formulation, and gave a nearly optimal tag selection algorithm based on
DeBruijn sequences. Similar upper bounds are established for the MTSDP(l|C|1)
and MTSDP(∗|C̄|1) problems in [12], which also extends a simple alphabetic
tree search strategy originally proposed in [11] to handle all considered problem
variants.

For a comprehensive survey of hybridization models, results on the associated
formulations for the tag set design problem, and further motivating applications
in the area of DNA computing, we direct the reader to [4].

3 Integer Linear Programming Formulations
for MTSDP(∗|C|1)

Before stating our integer linear program formulation, we introduce some addi-
tional notations.

Following [2], a DNA string x of weight c or more is called a c-token if all
its proper suffixes have weight strictly less than c. Clearly, it suffices to enforce
constraint (C) for all c-tokens x. Let N denote the number of c-tokens, and
C = {c1, . . . , cN} denote the set of all c-tokens. The results in [2] imply that
N = Θ((1 +

√
3)c). Note that the weight of a c-token can be either c or c + 1,

the latter case being possible only if the c-token starts with a strong base (G or
C). We let C0 ⊆ C denote the set of c-tokens of weight c+1 that end with a weak
base, i.e., c-tokens of the form S<c− 2>W, where W (S) denote a weak (strong)
base, and <c−2> denotes an arbitrary string of weight c−2. We also let C2 ⊆ C
denote the set of c-tokens of weight c that end with a strong base, i.e., c-tokens
of the form <c− 2>S.

Clearly, there is at most one c-token ending at every letter of a tag. It is easy
to see that each c-token x ∈ C0 contains a proper prefix which is itself a c-token,
and therefore x cannot be the first c-token of a tag, i.e., cannot be the c-token
with the leftmost ending. All other c-tokens can appear as first c-tokens. When
a c-token in C \ (C0 ∪C2) is the first in a tag, then it must be a prefix of the tag.
On the other hand, tokens in C2 can be the first both in tags that they prefix and
in tags in which they are preceded by a weak base not covered by any c-token.
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The ILP formulation for MTSDP(l|C|1) uses an auxiliary directed graph
G = (V, E) with V = {s, t} ∪

⋃
1≤i≤N Vi, where Vi = {vk

i | |ci| ≤ k ≤ l}. G has
a directed arc from vk

i to vk+1
j for every triple i, j, k such that |ci| ≤ k ≤ l − 1

and cj is obtained from ci by appending a single nucleotide and removing the
maximal prefix that still leaves a valid c-token. Finally, G has an arc from s to
every v ∈ Vfirst, where Vfirst = {v|ci|

i | ci ∈ C \ C0} ∪ {v|ci|+1
i | ci ∈ C2}, and an

arc from vl
i to t for every 1 ≤ i ≤ N .

We claim that, for c ≤ l, MTSDP(l|C|1) can be reformulated as the problem
of finding the maximum number of s-t paths in G that collectively visit at most
one vertex vk

i for every i. Indeed, let P be an s-t path and vk
i be the vertex

following s in P . If k = |ci|, we associate to P the tag obtained by concatenating
ci with the last letters of the c-tokens corresponding to the subsequently visited
vertices, until reaching t. Otherwise, if k = |ci|+1 (which implies that ci ∈ C2) we
associate to P the two tags obtained by concatenating either A or T with ci and
the last letters of subsequently visited c-tokens. The claim follows by observing
that at most one of the tags associated with each path can be used in a feasible
solution.

Our ILP formulation can be viewed as a generalized version of the integer
maximum flow problem in which unit capacity constraints are imposed on sets
of vertices of G instead of individual vertices. The formulation uses 0/1 variables
xv and ye for every every vertex v ∈ V \ {s, t}, respectively arc e ∈ E. These
variables are set to 1 if the corresponding vertex or arc is visited by an s-t path
corresponding to a selected tag. Let in(v) and out(v) denote the set of arcs
entering, respectively leaving vertex v. The integer program can then be written
as follows:

maximize
∑

v∈Vfirst

xv (1)

subject to

xv =
∑

e∈in(v)

ye =
∑

e∈out(v)

ye, v ∈ V \ {s, t} (2)

∑
v∈Vi

xv ≤ 1, 1 ≤ i ≤ N (3)

xv, ye ∈ {0, 1}, v ∈ V \ {s, t}, e ∈ E (4)

Constraints (2) ensure that variables ye set to 1 correspond to a set of s-t paths,
and that a variable xv is set to 1 if and only if one of these paths passes through
v 1. Antitag-to-tag hybridization constraints (C) and c-token uniqueness are
enforced by (3). Finally, the objective (1) corresponds to maximizing the number
of selected tags, since the shortest prefix of a tag that is a c-token must belong
to C \ C0.
1 Variables xv can be eliminated by replacing them with the corresponding sums

of xe’s; we use them here merely for improving readability. ILP sizes reported in
Section 5 refer to the equivalent reduced formulations obtained by eliminating these
variables.
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For a token ci = cjX ∈ C0, where X ∈ {A, T}, let ĉi = cj ā. Since both ci and
ĉi contain cj as a prefix, and cj can appear at most once in a feasible tag set
T , it follows that at most one of them can appear in T . Therefore, the following
valid inequality can be added to the the ILP formulation (1)–(4) to improve its
integrality gap (i.e., the gap between the value of the optimum integer solution
and that of the optimal fractional relaxation):∑

v∈Vi∪Vj

xv ≤ 1, ci ∈ C0, cj = ĉi, i < j (5)

The formulation of MTSDP(l|C|1) has exactly the same objective and con-
straints for a slightly different graph G. Let us define the tail weight of a c-
token C, denoted tail(C), as the weight of C’s last letter. Also, let hi = h if
ci has a tail weight of 1 and hi = h + 1 if ci has a tail weight of 2. We will
require that every tag ending with token ci has total weight of at most hi; it
is easy to see that this constraint is not affecting the size of the optimum tag
set. We now define the graph G = (V, E) with V = {s, t} ∪

⋃
1≤i≤N Vi, where

Vi = {vk
i | w(ci) ≤ k ≤ hi}. G contains a directed arc from vk

i to v
k+tail(i)
j for

every triple i, j, k such that |ci| ≤ k ≤ hi− tail(ci) and cj is obtained from ci by
appending a single nucleotide and removing the maximal prefix that still leaves
a valid c-token. Finally, G contains arcs from s to every v ∈ Vfirst, where Vfirst

is now equal to {vw(ci)
i | ci ∈ C \ C0} ∪ {vw(ci)+1

i | ci ∈ C2}, plus arcs from every
vk

i to t for every 1 ≤ i ≤ N and hi − tail(ci) < k ≤ hi.

4 Algorithms for MTSDP(∗| ∗ |multiple)

In the following we describe two algorithms for MTSDP(l|C|multiple); both
algorithms can be easily adjusted to handle the other MTSDP(∗| ∗ |multiple)
variants. The first algorithm (see [13] for a detailed pseudocode) is similar to
the alphabetic tree search algorithms proposed for MTSDP(l|C|1) in [12]. The
algorithm performs an alphabetical traversal of a 4-ary tree representing all
4l possible tags, skipping over subtrees rooted at internal vertices that corre-
spond to tag prefixes including unavailable c-tokens. The difference from the
MTSDP(l|C|1) algorithm in [12] lies in the strategy used to mark c-tokens as
unavailable. While the algorithm in [12] marks a c-token C as unavailable as
soon as it incorporates it in the current tag prefix (changing C’s status back
to “available” when forced to backtrack past C’s tail), our algorithm marks a
c-token as unavailable only when a complete tag is found.

Note that the alphabetic tree search algorithm produces a maximal feasi-
ble set of tags T , i.e., there is no tag t such that T ∪ {t} remains feasible for
MTSDP(l|C|multiple). Hence, every tag of an optimal solution must share at
least one c-token with tags in T . Since every tag of T has at most l − c/2 + 1
c-tokens, it follows that the alphabetic tree algorithm (and indeed, every algo-
rithm that produces a maximal feasible set of tags) has an approximation factor
of l − c/2 + 1.
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We call a tag t periodic if t is the length l prefix of an infinite string x∞, where
x is a DNA string with |x| < |t|. (Note that a periodic tag t is not necessarily the
concatenation of an integer number of copies of its period x as in the standard
definition of string periodicity [10].)

The following lemma shows that tag set design algorithms can restrict the
search to two simple classes of tags.

Lemma 1. For every c and l, there exists an optimal tag set T in which every
tag has the uniqueness property or is periodic2.

Proof. Let T be an optimal tag set. Assume that T contains a tag t that does
not have the uniqueness property, and let ci1 , . . . , cik

be the sequence of c-tokens
occurring in t, in left to right order. Since t does not have the uniqueness property,
there exist indices 1 ≤ j < j′ ≤ ik such that cij = cij′ . Let t′ be the tag
formed by taking the first l letters of the infinite string with c-token sequence
(cij , . . . , cij′−1

)∞; note that t′ is a periodic tag. Since c-tokens cij , . . . , cij′−1
do

not appear in the tags of T \ {t}, it follows that (T \ {t})∪ {t′} is also optimal.
Repeated application of this operation yields the lemma. �

Note that a periodic tag whose shortest period has length p contains as
substrings exactly p c-tokens, while tags with the uniqueness property contain
between l − c + 1 and l − c/2 + 1 c-tokens. Therefore, of the two classes of tags
in Lemma 1, periodic tags (particularly those with short periods) make better
use of the limited number of available c-tokens.

Each periodic tag corresponds to a directed cycle in the graph Hc which has
C as its vertex set, and in which a token ci is connected by an arc to token cj

iff ci and cj can appear consecutively in a tag, i.e., iff cj is obtained from ci by
appending a single nucleotide and removing the maximal prefix that still leaves a
valid c-token. Clearly, a vertex-disjoint packing of n cycles in Hc yields a feasible
solution for MTSDP(l|C|multiple) consisting of n tags, since we can extract at
least one tag of length l from each cycle, and tags extracted from different cycles
do not have common c-tokens. This motivates the following:
Maximum Vertex-Disjoint Directed Cycle Packing Problem: Given a
directed graph G, find a maximum number of vertex-disjoint directed cycles
in G.

The next theorem shows that Maximum Vertex-Disjoint Directed Cy-
cle Packing in arbitrary graphs is unlikely to admit a polynomial approxima-
tion scheme.

Theorem 1. Maximum Vertex-Disjoint Directed Cycle Packing is
APX-hard even for regular directed graphs with in-degree and out-degree of 2.

The proof of Theorem 1, which uses a reduction from the MAX-2-SAT-3
problem similar to the one in [6], can be found in [13]. A stronger inapprox-
imability results was recently established for arbitrary graphs by Salavatipour
2 Note that the two classes of tags are not disjoint, since there exist periodic tags that

have the uniqueness property.
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and Verstraete [15], who proved that there is no O(log1−ε n)-approximation
for Maximum Vertex-Disjoint Directed Cycle Packing unless NP ⊆
DTIME(2polylogn). On the positive side, Salavatipour and Verstraete showed
that Maximum Vertex-Disjoint Directed Cycle Packing can be approxi-
mated within a factor of O(

√
n) via linear programming techniques, matching the

best approximation factor known for the edge-disjoint version of the problem [9].
We use a simple greedy algorithm to solve Maximum Vertex-Disjoint Di-

rected Cycle Packing for the graph Hc: we enumerate possible tag periods
in pseudo-lexicographic order, and check for each period if all c-tokens are avail-
able for the resulting tag. We refer to this algorithm as the greedy cycle packing
algorithm, since it is equivalent to packing cycles greedily in order of length.

5 Experimental Results

Tables 1 and 2 give ILP statistics (number of constraints, number of variables,
and number of non-zero coefficients), LP and ILP runtime, and LP and ILP so-
lution values for MTSDP(l|C|1) and MTSDP(h|C|1). We also include the upper
bounds established in [12] and [2] for these problems, and the number of tags
found by using the alphabetic tree search algorithm in [12]. We solved all inte-
ger programs and their fractional relaxations using the CPLEX 9.0 commercial
solver with default parameters run using a single CPU on a dual 2.8 GHz Dell
PowerEdge 2600 Linux server. Missing entries did not complete in 10 hours.

The ILP solutions can be found in practical time for small values of c,
which are appropriate for universal tag array applications, such as the emerging
microfluidics-based labs-on-a-chip, where moderate multiplexing rates are suffi-
cient and ensuring high hybridization stringency is costly. For all cases where
the optimum could be computed, the difference between the optimal fractional
and integer solution values was smaller than 1, indicating why CPLEX can solve
to optimality these ILPs despite their size. Furthermore, ILP results confirm the

Table 1. ILP results for MTSDP(l|C|1), i.e., tag set design with specified tag length
l, antitag-to-tag hybridization constraints, and a unique copy of each c-token allowed
in a tag.

l c #tags Upper Bounds LP/ILP statistics
[12] ILP LP [12] #constr #vars #non-zero LP time ILP time

10 4 7 8 8.57 9 406 1878 6004 0.13 0.71

10 5 23 28 28.00 29 1008 4600 14596 2.27 5.85

10 6 67 85 85.60 96 2434 10940 34470 11.40 98.25

10 7 196 259 259.67 328 5808 25422 79274 86.70 586.67

10 8 655 – 853.33 1194 13554 57138 175492 552.74 –

20 4 3 3 3.53 3 926 4638 15244 1.05 58.46

20 5 9 10 10.50 11 2448 12240 40076 13.72 381.33

20 6 26 29 29.87 32 6354 31860 104270 182.96 12448.61

20 7 75 – 88.00 93 16528 82662 270194 2675.68 –

20 8 213 – 257.23 275 42834 213578 697292 134525.81 –
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Table 2. ILP results for MTSDP(h|C|1), i.e., tag set design with specified minimum
tag weight h, antitag-to-tag hybridization constraints, and a unique copy of each c-
token allowed in a tag.

h c #tags Upper Bounds LP/ILP statistics
[12] ILP LP [2] #constr #vars #non-zero LP time ILP time

15 4 6 7 7.00 7 610 2966 9612 0.45 9.04

15 5 18 21 21.09 21 1550 7456 23998 5.66 117.62

15 6 47 63 63.20 63 3830 18322 58752 54.43 2665.39

15 7 149 192 192.00 192 9406 44416 141638 544.95 3644.85

15 8 460 – 588.00 590 22766 105746 334904 7153.87 –

28 4 3 3 3.30 3 1286 6554 21624 1.88 132.78

28 5 8 9 9.67 9 3422 17388 57122 34.66 1137.21

28 6 22 27 27.48 27 8926 45518 149492 392.42 18987.09

28 7 64 – 78.55 78 23342 118828 389834 7711.41 –

28 8 175 – – 224 60830 309118 1013244 – –

extremely high quality of the upperbound established for MTSDP(h|C|1) in [2];
the upperbound established in [12] for MTSDP(l|C|1) appears to be somehow
weaker.

Tables 3 and 4 give the results obtained for MTSDP(∗|∗ |multiple) by the al-
phabetic tree search algorithm described in Section 4, respectively by the greedy
cycle packing algorithm (in our implementation, we impose an upper bound of
15 on the length of the cycles that we try to pack) followed by running the al-
phabetic tree search algorithm with the c-tokens occurring in the selected cycles

Table 3. Results for MTSDP(∗|C|multiple), i.e., tag set design with antitag-to-tag
hybridization constraints and multiple copies of a c-token allowed in a tag.

One c-token copy Multiple c-token copies
l/h c Algorithm in [12] Tree search Cycle packing + Tree search

tags c-tokens tags c-tokens tags c-tokens % cyclic

4 3 51 14 59 17 40 100.0
5 9 146 31 165 40 140 100.0
6 26 404 53 433 72 293 98.6

l = 20 7 75 1100 124 1179 178 928 99.4
8 213 2976 281 3095 383 2411 97.1
9 600 7931 711 8230 961 7102 96.9

10 1667 20771 1835 21400 2344 19691 95.1

4 3 58 14 61 17 40 100.0
5 8 150 32 174 40 140 100.0
6 22 398 44 432 72 300 98.6

h ≥ 28 7 64 1119 118 1200 178 934 99.4
8 175 2918 239 3037 379 2405 96.6
9 531 8431 632 8622 943 6969 96.5

10 1428 21707 1570 22145 2260 19270 94.1
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Table 4. Results for MTSDP(∗|C̄|multiple), i.e., tag set design with both antitag-to-
tag and antitag-to-antitag hybridization constraints and multiple copies of a c-token
allowed in a tag.

One c-token copy Multiple c-token copies
l/h c Algorithm in [12] Tree search Cycle packing + Tree search

tags c-tokens tags c-tokens tags c-tokens % cyclic

4 1 17 10 35 10 25 100.0
5 4 65 17 83 23 85 100.0
6 13 200 30 241 41 171 97.6

l = 20 7 37 537 68 585 97 512 99.0
8 107 1480 147 1619 202 1268 98.0
9 300 3939 362 4124 512 3799 96.3

10 844 10411 934 10869 1204 10089 95.8

4 1 22 10 36 10 25 100.0
5 4 74 17 84 23 85 100.0
6 12 213 29 238 41 178 97.6

h ≥ 28 7 32 559 64 586 97 518 99.0
8 90 1489 135 1632 199 1238 98.0
9 263 4158 329 4314 504 3760 95.8

10 714 10837 809 11250 1163 9937 93.6

already marked as unavailable. Performing cycle packing significantly improves
the results compared to running the alphabetic tree search algorithm alone; as
shown in the tables, most of the resulting tags are found in the cycle packing
phase of the combined algorithm.

Across all instances, the combined algorithm increases the number of tags by
at least 40% compared to the MTSDP(∗|∗|1) algorithm in [12]; the improvement
is much higher for smaller values of c. Quite notably, although the number of
tags is increased, the tag sets found by the combined algorithm use a smaller
total number of c-tokens. Thus, these tag sets are less likely to cross-hybridize
to the primers used in the reporter probes, enabling higher tag utilization rates
during tag assignment [3, 12].

6 Conclusions

In this paper we proposed new solution methods for designing tag sets for univer-
sal DNA arrays. We have shown that optimal solutions can be found in practical
time for moderate problem sizes by using integer linear programming, and that
the use of periodic tags leads to increases of over 40% in the number of tags, with
simultaneous increases in effective tag utilization rates during tag assignment.
Our algorithms use simple greedy strategies, and can be easily modified to incor-
porate additional practical design constraints, such as preventing the formation
of hairpin secondary structures, or disallowing specific nucleotide sequences such
as runs of 4 identical nucleotides [11].



Exact and Approximation Algorithms for DNA Tag Set Design 393

An interesting open problem is to find tight upper bounds and exact methods
for the MTSDP(∗| ∗ |multiple) formulations. Settling the approximation com-
plexity of Maximum Vertex-Disjoint Directed Cycle Packing is another
interesting problem.
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Abstract. We present efficient sensitivity-analysis algorithms for two problems
involving Markov models of sequence evolution: ancestral reconstruction in evo-
lutionary trees and local ungapped alignment under log-odds scoring. Our al-
gorithms generate complete descriptions of the optimum solutions for all possi-
ble values of the evolutionary distance. The running time for the parametric an-
cestral reconstruction problem under the Kimura 2-parameter model is O(kn +
kn2/3 log k), where n is the number of sequences and k is their length, assuming
all edges have the same length. For the parametric gapless alignment problem un-
der the Jukes-Cantor model, the running time is O(mn + mn2/3 log m), where
m and n are the sequence lengths and n ≤ m.

1 Introduction

Understanding the evolution of biological sequences is one of the basic problems in
biology. In this paper we consider a simple but widely-used Markov model, where se-
quences evolve only through random mutation. The goal is to find the most likely expla-
nation for the input data, given the model. Our work is motivated by the observation that
the answer provided by any such model is highly sensitive to the model parameters; that
is, the mutation probabilities. Slight variations in these values can result in completely
different answers. Mutation probabilities are themselves non-linear functions of evolu-
tionary distance (or time). Our main results are algorithms that compute the solution
at all possible evolutionary distances, while incurring only a slight overhead relative to
the effort needed to compute the answer for any fixed distance. In the process, we gain
some insight into the structure of these problems.

Markov models of evolution are the basis for many of the scoring schemes used
in sequence comparison. Sensitivity analysis is especially relevant in these applica-
tions, since several scoring schemes implicitly assume knowledge of the evolutionary
distance between the sequences being compared. There is a certain circularity in this,
since sequences are compared to determine their similarity, which allows one to infer
something about the evolutionary distance between them. Parametric analysis, which
considers all possible evolutionary distances between a pair of sequences, is a means
to partially break out of this vicious cycle, allowing us to identify similarities between
sequences that would be missed if a single distance were assumed in comparing them.
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Background. In the Markov model of DNA evolution considered here, sites evolve
independently according to identical random processes. The model is gapless in that
insertion and deletion events are not allowed. Mutation probabilities for one unit of
evolutionary time are given in the form of a 4 × 4 matrix M . By the Markov property,
the mutation probability matrix M (t) for t time units is simply M t (that is, M raised to
the power t). Parametric problems arise from the attempt to understand the sensitivity
of the model to changes in the entries of M and the value of t. The nature of this
dependence is clearly non-linear.

The Markov model of mutation is the basis for the two problems considered here:
phylogeny construction and local alignment. Let S be a set of species, each represented
by a sequence of the same length. An evolutionary tree or phylogeny is a rooted tree T
whose leaves are labeled by the elements of S. Tree T is a representation of the evolu-
tionary history of S; its internal nodes represent ancestral species. An internal labeling
for T is an assignment of sequences to the internal nodes of T , representing a set of
hypothetical ancestors for S. Each edge of T has a length, which is the evolutionary
distance (time) between its two endpoints. The ancestral reconstruction problem is to
find the most probable internal labeling for the tree. The probability of this optimum re-
construction is a function of the edge lengths, with different lengths possibly leading to
different reconstructions. The probability of the most likely labeling is a measure of the
likelihood of the tree [17]. An alternative measure of likelihood is the total probability
of the tree, which is the sum of the probabilities of all possible all internal labelings for
the tree. While the second notion of likelihood also depends on edge lengths, the de-
pendency is more complex than for the first notion [3, 12, 13, 16]. We shall not consider
this approach further here.

Markov models are also used to identify contiguous regions of high similarity be-
tween two sequences. Similarity in this case is measured using log-odds scoring [6],
which is computed as the logarithm of the ratio of the probability that the similarity
occurred by evolution (according to a Markov model) to the probability that this was
a purely random event. The underlying mechanism exhibits the same kind of time-
dependency as the phylogeny problem described above.

Our contributions. We present fast algorithms for computing the optimum solution
to parametric ancestral reconstruction and local ungapped alignment for all possible
evolutionary distances. Their running times are comparable to those of the algorithms
to find optimum solutions for fixed distance. For the parametric ancestral reconstruc-
tion problem under the uniform Kimura 2-parameter model (where all edge lengths are
equal), we achieve a running time of O(kn + kn2/3 log k), where n is the number of
sequences and k is their length. This is comparable to the running time for the fixed-
parameter problem. In contrast, typical approaches are slower by a factor at least equal
to the number of distinct optima. For the parametric gapless alignment problem under
the Jukes-Cantor model, we achieve a running time of O(mn + mn2/3 log m), where
m and n are the sequence lengths and n ≤ m. This is comparable to the time needed to
solve the fixed-parameter problem by dynamic programming.

The algorithms are based on two ideas, which may be useful in solving other prob-
lems. The first is that, despite the non-linearity of the time dependency, the well-known
log-transform allows us to view the problems as linear ones, at the expense of increas-
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ing the number of parameters. The second idea takes advantage of the independence
between the positions. We use the idea of “lifting” the execution of a fixed-parameter
algorithm so that it computes the optimum solution at all evolutionary distances. Im-
plemented in the obvious way, this results in a slowdown proportional to the number
of different optimum solutions. We avoid this overhead because the problems we study
are amenable to divide-and-conquer.

Related work. Our work is closely related to parametric sequence alignment, which ex-
plores the effect of parameter variation on the optimum solution to sequence alignment
problems over a range of parameter values. The goal is to build a decomposition of
the parameter space into optimality regions, that is, maximal connected regions within
which the optimum alignment is unique. Parametric pairwise alignment was first con-
sidered by Fitch and Smith [10]. Waterman et al. [18] proposed a systematic way of
finding the optimality regions. Gusfield et al. [11] gave the first bounds on the number
of regions. Fernández-Baca et al. [8] extended Gusfield et al.’s work to a broader class
of problems characterized by their scoring system; these problems include parametric
multiple sequence alignment and phylogeny construction.

The importance of parameter choice in stochastic models of sequence evolution
has been known for some time (see [1] and the references cited therein). Agarwal and
States [1] give an example of a pair of sequences for which local ungapped alignment
varies as the distance increases. In two companion papers [12, 13], Pachter and Sturm-
fels show the connection between parameter choice in statistical models and parametric
problems with feature-based scoring schemes. Among other contributions, they give
general bounds on the number of optimality regions and describe how dynamic pro-
gramming algorithms for the fixed-parameter versions of these problems can be “lifted”
to solve these same problems parametrically. Their method – the polytope propagation
algorithm – is closely related to the approach used here.

Organization of the paper. Section 2 reviews Markov models of sequence evolution and
their application to phylogenetics. Section 3 studies the effect of parameter variation on
these models, relying on the notion of linearization. Algorithms for sensitivity analysis
are presented in Section 4. Section 5 discusses open problems.

2 Models of Sequence Evolution

We now review the simple model of DNA sequence evolution studied here. Details can
be found in [6, 7, 14, 15]. Similar models exist for amino acid sequences [5, 6].

2.1 A Markov Model for Substitution

The basis for the model of sequence evolution is a 4×4 substitution matrix M = [mab],
where mab is the probability that nucleotide a is substituted by nucleotide b in one unit
of evolutionary time. Let M (t) = [m(t)

ab ] be the matrix where m
(t)
ab is the probability that

nucleotide a is substituted by nucleotide b in t units of time. By the Markov property,
M (t) = M t.



Parametric Analysis for Ungapped Markov Models of Evolution 397

We consider two important cases where the elements of M (t) can be expressed in
closed form. In the Jukes-Cantor (JC) model, m

(t)
ab = r(t) when a = b (a match) and

m
(t)
ab = s(t) when a �= b (a mismatch). Functions r(t) and s(t) are given by

r(t) =
1
4
(
1 + 3e−4αt

)
and s(t) =

1
4
(
1− e−4αt

)
, (1)

where α is a rate parameter (see [6]). Thus, mismatches have a certain probability and
matches have another (lower) one, but these probabilities are independent of the nu-
cleotides involved.

A transition is a substitution of a purine (A or G) by a different purine or a pyrimidine
(C or T) by a different pyrimidine. A transversion is a substitution of a purine by a
pyrimidine or vice versa. The Kimura 2-parameter (K2P) model allows for different
probabilities for transitions and transversions (the former being more likely than the
latter). The entries of the K2P substitution matrix are given by m

(t)
ab = r(t) when a = b,

m
(t)
ab = s(t) when a→ b is a transversion, and m

(t)
ab = u(t) when a→ b is a transition.

Functions r(t), s(t), and u(t) are given by

s(t) =
1
4
(
1− e−4βt

)
, (2)

u(t) =
1
4

(
1 + e−4βt − 2e−2(α+β)t

)
, (3)

r(t) = 1− 2s(t)− u(t), (4)

where α, β are transition and transversion rate parameters [6].
We often work with logarithms (here assumed to be base 2) of probabilities rather

than with the probabilities themselves, since, as explained below, this yields linear ex-
pressions. For the JC and K2P models, it is convenient to use the following notation

κ(t) = log r(t) λ(t) = log s(t) μ(t) = log u(t). (5)

Let A = a1a2 . . . ak and B = b1b2 . . . bk be two sequences. For each i ∈ {1, . . . , k},
ai (bi) is referred to as position i or site i of A (B). Assume that site i of B evolved
from site i of A through substitution, independently of and at the same rate as the other
positions according to the Markov model just described. Then, the probability that B
evolved from sequence A in t time units is given by

hAB(t) =
k∏

i=1

m
(t)
aibi

(6)

This expression can be simplified for the JC and K2P models. For the JC model, taking
logarithms and using (5), we have

log hAB(t) = κ(t) · x + λ(t) · y, (7)

where x is the number of matches and y is the number of mismatches. Similarly, for the
K2P model, we have

log hAB(t) = κ(t) · x + λ(t) · y + μ(t) · z, (8)

where x, y, z are the number of matches, transversions and transitions, respectively.
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2.2 Phylogenies for Molecular Sequences

Let S be a multiset {A1, . . . , An} of DNA sequences of length k. An evolutionary tree
or phylogeny for S is a rooted tree T whose leaves are labeled by S. Each edge e of T
has a length le that gives the evolutionary distance between its two endpoints.

The internal nodes of a phylogeny T for S represent unknown ancestral sequences.
An internal labeling for T is a mapping X that assigns a sequence Xv of length k to
each node v of T . For each leaf w, Xw must equal the sequence from S that labels w.

Assume that evolution along the edges of T obeys a Markov process, as described
in the previous section. Let r(T ) denote the root of T ; for every v ∈ T − r(T ), p(v)
denotes the parent of v and e(v) is the edge (p(v), v). The likelihood of an internal
labeling X for T is

LX =
∏

v∈T−r(T )

hXp(v) Xv (le(v)) (9)

The score of an internal labeling X for T is the logarithm of the LX . The score is
clearly a function of the edge lengths. Here we consider only the simplest case, the uni-
form model, where all edges have the same length t. In this case, if evolution proceeds
according to the JC model, the score of an internal labeling X is

score(X, t) = κ(t) · x + λ(t) · y, (10)

where x and y are the number of matches and mismatches in X , respectively. Under the
K2P model, the score becomes

score(X, t) = κ(t) · x + λ(t) · y + μ(t) · z, (11)

where x, y, and z are the number of matches, transitions, and transversions in X .
Given a phylogeny T and a set of transition probabilities, the ancestral reconstruc-

tion problem is to find the most likely (that is, highest-scoring) internal labeling for T .
The problem can be solved in O(nk) time using the Viterbi algorithm [6].

2.3 Log-Odds Scoring and Gapless Local Alignment

Let s be a function that assigns a real-valued score s(a, b) to every pair a, b of charac-
ters. A gapless local alignment (or simply an alignment for short) of two sequences A =
a1a2 . . . an and B = b1b2 . . . bm is a pair of equal-length consecutive subsequences
aiai+1 . . . ai+l−1 and bjbj+1 . . . bj+l−1 from A and B; its score is

∑l−1
r=0 s(ai+r, bj+r).

The optimum gapless alignment problem is to find a maximum-score gapless alignment.
Intuitively, the goal is to identify highly-related subsequences of two given sequences.
The optimum gapless local alignment can be solved in O(nm) time by dynamic pro-
gramming.

Log-odds scoring schemes are based on the Markov model of Section 2.1. The log-
odds score of the pair a, b is the logarithm of the ratio of the probability that a and b
are related through evolution and the probability that they are aligned by pure chance.
Thus, if the evolutionary distance between the two sequences is t, the log-odds score
for a, b is s(a, b) = log m

(t)
ab /qaqb, where qa, and qb are the probabilities that bases a

and b appear in any position of a sequence.
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The actual values of the s(a, b)’s depend on t and the model of evolution. We again
consider the JC and K2P models, both of which have qa = 1/4 for all a [6]. Let

κ̃(t) = κ(t) + 4 λ̃(t) = λ(t) + 4 μ̃(t) = μ(t) + 4. (12)

Thus, for the JC model, the score of an alignmentA is given by

score(A, t) = κ̃(t) · x + λ̃(t) · y, (13)

where x and y are the number of matches and mismatches. For the K2P model, the
score is

score(A, t) = κ̃(t) · x + λ̃(t) · y + μ̃(t) · z, (14)

where x, y, and z are the number of matches, transitions, and transversions in A.

3 Parametric Problems in Sequence Evolution

The problems introduced in the previous section involve finding a maximum-score fea-
sible solution. In each case, this solution depends on t. Our ultimate goal is to partition
the positive time axis into intervals of optimality; that is, into maximal intervals of time
within which a single solution is optimum. This partition, along with the optimum so-
lution within each interval, gives a complete description of the score of the optimum
solution as a function of t, for all t ≥ 0. Building this parameter space decomposition
is what we call the construction problem. While the dependence of the optimum score
on time is non-linear, by working in the log domain and temporarily ignoring certain
aspects of this dependency, we obtain a linearized problem. The auxiliary problem is
easier to analyze, but nevertheless still contains all the information needed to solve the
construction problem. We now study linearization and its implications.

3.1 Linearization

The optimization problems encountered in Section 2 have the following form. Let F
denote a (finite) set of feasible solutions. Each X ∈ F has a feature vector p(X) =
(p1(X), . . . , pd(X)) ∈ Z

d; each coordinate of p(X) is called a feature. The features
are weighted according to a parameter vector γ(t) = (γ1(t), . . . , γd(t)) to yield the
score of X as follows:

score(X, t) = p(X) · γ(t), (15)

where “·” denotes the dot product. The problem is to find the highest-scoring feasible
solution. Its score is given by the optimum score function,

Z(t) = max
X∈F

score(X, t). (16)

If we ignore the constraints imposed by the dependence on t, we obtain a linearized
problem. Abusing notation, the score function for x ∈ F in this problem is

score(X, γ) = p(X) · γ, (17)

and the optimum score function is

Z(γ) = max
X∈F

score(X, γ). (18)
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By its definition, the Z function for the linearized problem is the upper envelope
(that is, the point-wise maximum) of a set of linear functions [2]. Therefore, Z induces
a decomposition of the parameter space, Rd, into convex polyhedral optimality regions,
each of which is the maximal connected set of points for which a particular feasible
solution has maximum score. Since score(X,0) = 0 for all X , the optimality regions
are cones that meet at the origin. Furthermore, the following result is known.

Theorem 1 (Pachter and Sturmfels [13]). Let A be d-parameter linearized problem
whose set of feasible solutions is F and let P = {p(x) : x ∈ F}. Suppose that there
exist integers n1, . . . , nd such that P ⊆ [0, n1]× · · · × [0, nd]. Then the optimum score

function of A induces O

((∏d
i=1 ni

)(d−1)/(d+1)
)

optimality regions.

The decomposition induced by Z contains all the information needed to solve the
original parametric problem in t: As t varies from 0 to +∞, γ(t) traces a curve through
the parameter space defined by a set of non-linear parametric equations in t. To solve the
parametric construction problem, we must identify the regions in the linearized problem
that are traversed by this curve.

3.2 Parametric Ancestral Reconstruction

As seen in Section 2, under the K2P model, the score of an internal labeling X for a
phylogeny T is a function of three parameters, which weigh the number of matches,
transitions, and transversions in X . While we can apply Theorem 1 directly to the lin-
earized problem, we get a better bound by reducing the number of parameters as fol-
lows. Let m denote the number of edges in T . Then, x + y + z = km where k, as
before, is the sequence length. Therefore, the linearized version of equation (11) for the
score can be reexpressed as

score(A, κ, λ, μ) = κ · km + (λ− κ) · y + (μ− κ) · z. (19)

Since the term κ · km is common to all internal labelings, we can eliminate it from the
score. Define λ′ = λ− κ and μ′ = μ− κ. Then, the score function can be redefined as

score ′(A, λ′, μ′) = λ′ · y + μ′ · z. (20)

Note that y, z ≤ mk and that m = O(n), where n is the number of sequences. Thus,
Theorem 1 implies that the number of regions induced by Z is O(k2/3n2/3). In fact,
it is convenient to examine each position’s contribution to the total score of T . Denote
position i’s contribution by Zi. By independence, Z =

∑
i Zi. Then, by arguments

similar to the one just given, Zi induces O(n2/3) optimality regions.
Now consider the role of t. By Equations (2), (3), (4), (12), and (13), as t varies

from 0 to +∞, (λ′(t), μ′(t)) traces a monotonically increasing curve on the negative
quadrant that goes from (−∞,−∞) to (0, 0). The derivative of this curve is a contin-
uously decreasing function of t that goes from 1 to 0 (Fig. 1). On the other hand, by
the structure of the linearized score function, the boundaries between optimality regions
in the linearized problem are straight line segments that meet at (0, 0). Therefore, the
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Fig. 1. Left: λ as a function of μ. The straight lines represent boundaries between regions of the
decomposition. Right: Derivative of the λ-μ curve as a function of t.

curve intersects every region lying within the cone λ′ ≤ μ′ ≤ 0 exactly once. Thus,
given the space decomposition induced by the linearized problem, one can easily solve
the parametric problem relative to t.

The Jukes-Cantor model only counts matches and mismatches. As we did for K2P,
we can obtain a redefined score function score ′(A, λ′) = λ′ · y, where y is the number
of mismatches. Hence, for all λ′ < 0, the problem is to minimize the number of mis-
matches; the value of λ′, and thus t, is unimportant. Therefore, there is no parametric
problem to study in this case.

3.3 Parametric Ungapped Alignment

Consider ungapped local alignment with log-odds scoring under the JC model. There
are two parameters: the weight κ̃(t) of the matches and the weight λ̃(t) of the mis-
matches. The linearized score of an alignment A is score(A, κ̃, λ̃) = κ̃ · x + λ̃ · y,
where x and y are the number of matches and mismatches. Unlike the case for phylo-
genies, it is not possible to establish a linear relationship between x and y, so we cannot
eliminate parameters. Since 0 ≤ x, y ≤ n, where n ≤ m, Theorem 1 implies that the
number of optimality regions is O(n2/3). Note that, as for the ancestral reconstruction
problem, all optimality regions meet at (0, 0); the boundary lines between them are rays
emanating from this point.

Now consider the original non-linear problem in t. By Equations (1), (12), and (13),
as t is increased from 0 to +∞, (κ̃(t), λ̃(t)) traces a curve that goes from (+4,−∞) to
(2, 2), crossing the λ̃-axis at t = (1/4α) ln(4/3). In the process, since λ̃(t) is monoton-
ically increasing, the curve intersects every optimality region of the linearized problem
in the (+,−) quadrant exactly once. In the positive quadrant, this curve intersects every
optimality region that lies below the line λ̃ = κ̃.

4 Algorithms for Parametric Analysis

Here we present algorithms for parametric phylogenetic analysis and parametric un-
gapped alignment. Both procedures are based on the same technique. The first step is to
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build the parameter-space decomposition induced by the linearized version of the prob-
lem. Recall that this problem ignores the constraints that probabilities must satisfy and
thus considers a larger set of parameter values than actually needed. In the second step,
these constraints are re-introduced. The parameters in the linearized problem are ex-
pressed as parametric equations in t. These equations define a curve that intersects with
successive regions of the decomposition as t is varied from 0 to +∞. To solve the para-
metric construction problem, we simply find these regions. Due to space limitations, we
restrict our attention to the first step.

We construct the space decomposition induced by the linearized parametric prob-
lems by relying on dynamic programming algorithms for their fixed-parameter versions.
These algorithms use two operations on real numbers: addition and finding the maxi-
mum. Instead of running the algorithms for a single parameter, we execute them for
all parameter values. Instead of manipulating real numbers, the parametric algorithms
work with piecewise linear convex functions. Instead of addition of real numbers, the
modified algorithms add piecewise linear convex functions of the parameters, and in-
stead of taking maxima of numbers, they compute upper envelopes of piecewise lin-
ear convex functions. This is similar to Pachter and Sturmfels’ polytope propagation
method [12, 13], with two differences. A minor one is that polytope propagation works
in the dual space of convex hulls, while our method works in the original space of up-
per envelopes. A more significant difference is that the absence of gaps allows us to
use divide-and-conquer. This leads to algorithms that solve optimization problems for
all evolutionary distances in time that closely matches that needed to solve them for a
fixed distance.

4.1 Parametric Ancestral Reconstruction

Our main result is the following.

Theorem 2. The parametric ancestral reconstruction problem under the uniform
Kimura 2-parameter model can be solved in time O(kn + kn2/3 log k).

Exploiting the independence assumption, our algorithm processes each position
separately. For each i ∈ {1, . . . , k}, it constructs a function Zi(λ, μ) that gives the
optimum score for position i as a function of λ and μ. As noted in Section 3, we are
only interested in the negative quadrant of the λ–μ plane. Furthermore, observe that,
since the score of any internal labeling is 0 at (0, 0), all optimality regions are cones
that meet at the origin. This implies that to determine all the optimality regions in the
quadrant of interest, we can fix one of the parameters, say λ, at any negative value, say
−1, while varying the other. This reduces the dimensionality of the problem by one, and
leaves us with convex piecewise linear functions of one parameter. Such functions con-
sist of a succession of line segments that meet at breakpoints. The projection of these
breakpoints onto the μ axis partitions it into a sequence of intervals. An important prop-
erty of convex piecewise linear functions of one parameter is that the upper envelope
and the sum of two such functions can be computed in time linear in their total number
of breakpoints. Suppose we have Zi(λ, μ) for each i. Then, the optimum score function
is Z(λ, μ) =

∑
i Zi(λ, μ). As seen in Section 3, the number of optimality regions in-

duced by Zi is O(n2/3). We can compute the sum of the Zi’s by a process similar to
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merging. We pair the functions arbitrarily and the sum of each pair is computed. The
resulting functions are paired again and their sum computed. The pairing and adding
process is repeated until a single function remains. There log k iterations of pairing and
adding; there are k/2j−1 functions at the jth iteration, each with O(2j−1n2/3) break-
points. Thus, the total time to compute Z in this way is O(kn2/3 log k).

We claim that each Zi can be constructed in O(n) time. Due to space limitations,
we illustrate the main ideas of the algorithm by considering the special case where the
phylogeny T is a perfectly balanced, rooted binary tree. We traverse T in post-order.
Thus, when processing a vertex v of T , each of its children u and w have already been
processed. To process v means to obtain, for each possible base a ∈ {A,C,T,G}, the
function Zv,a(λ, μ) giving the score of the optimum internal labeling for the subtree
rooted at v, given that position i of the sequence labeling v has base a. Denote this by
Z

(v)
i (a, λ, μ). It is well known (see, e.g., [7]) that for each fixed choice of λ and μ,

Z
(v)
i (a, λ, μ) = max

b

(
δab + Z

(u)
i (b, λ, μ)

)
+ max

b

(
δab + Z

(w)
i (b, λ, μ)

)
, (21)

where δab equals 0 if a = b, μ if a→ b is a transition, and λ if a→ b is a transversion.
Function Z

(v)
i (b, λ, μ) has the same properties as Zi(λ, μ). If n denotes the number

of nodes in the subtree rooted at v, Z
(v)
i (b, λ, μ) induces O(n2/3) optimality regions.

Also, to construct the function, it suffices to fix λ at any negative value and treat it as
a one-parameter function of μ. Since we assume that T is balanced, there are approx-
imately n/2 nodes in each of the subtrees rooted at u and w, respectively. Thus, for

every choice of b, functions Z
(u)
i (b, λ, μ) and Z

(w)
i (b, λ, μ) induce O(n2/3) optimality

regions. We can use Equation (21) to obtain Z
(v)
i (a, λ, μ), by replacing the addition

operator for real numbers with the addition operator for functions, and the max opera-
tor for reals with the upper envelope operator for functions. The total time to construct
maxb(δab + Z

(u)
i (b, λ, μ)) is O(n2/3), since there are only 4 choices for b. (Note that

δab is itself λ, μ, or 0 adding it to Z
(u)
i only takes time O(n2/3).) Similarly, the time

to build maxb(δab + Z
(w)
i (b, λ, μ)) is O(n2/3). The number of regions in each of these

upper envelopes is O(n2/3). Thus, computing their sum takes time O(n2/3). Since we
assume the tree is balanced, the time T (n) needed to process the subtree rooted at v
satisfies the recurrence T (n) = 2T (n/2) + O(n2/3). The solution is T (n) = O(n).
Since the same procedure must be applied for all positions, the total time is O(kn),
which proves the theorem.

The result can be extended to trees that are not balanced using centroid decomposi-
tion, a technique used to evaluate expressions in trees [4] and which has been applied
to other parametric problems [9]. Details are omitted for lack of space.

4.2 Parametric Local Alignment

Our main result is the following.

Theorem 3. The parametric gapless alignment problem under the Jukes-Cantor model
can be solved in O(mn + mn2/3 log m) time.
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We only sketch the proof of this result. Let A = a1 . . . an and B = b1 . . . bm

be the input sequences, where n ≤ m. As noted in Section 3, the number of regions
induced by the linearized problem is O(n2/3). Construct the usual (n + 1) × (m + 1)
dynamic programming matrix C = [cij ] for the problem. Entry cij stores the cost
of the optimum local alignment ending at ai and bj . Since no gaps are allowed, the
value of any entry depends only on the entries along its same diagonal. Hence, we can
consider the diagonals independently. Let Zi(κ, λ) be the optimum score function of
diagonal i. It can be shown that this function induces O(n2/3) regions. The optimum
score function Z(κ, λ) is given by maxi Zi(κ, λ). We have (m + n + 1) diagonals,
with O(n2/3) breakpoints along each diagonal. Therefore, by a process of pairing and
taking upper envelopes (similar to the pairing and adding of the previous section), we
can compute Z in time O(m · n2/3 log m).

We compute each Zi(κ, λ) using divide-and-conquer. We split diagonal i into two
equal parts, recursively find an optimum local alignment for each half, and then merge
the results. This must be done with some care, since an optimal alignment for the di-
agonal might straddle both halves. For this reason, we obtain two alignments for each
half. One of them is the best alignment that contains the common entry between the
two halves; the other is the best alignment that does not contain the common entry. To
combine the answers, we consider the three possible ways in which the optimum could
arise (either in the first half, the second half, or straddling the two) and choose the one
with maximum score. To build Zi(κ, λ), this computation must be done parametrically;
that is, by adding and taking upper envelopes of piecewise linear functions. Since each
of the functions involved has O(n2/3) regions and there is only a constant number of
cases, the combination can be done in O(n2/3) time. Note that the length of a diagonal
is at most n + 1. Thus, the recurrence for the total running time for each diagonal has
the form T (n) = 2T (n/2) + O(n2/3), which solves to O(n). (Note that the recursion
must be handled with care, since a subdiagonal at deeper level in the recursion may
share its two endpoints in with other subdiagonals. This only increases the number of
cases by a constant and does not affect the overall running time.) The total time over all
diagonals is therefore O(nm).

5 Discussion

Several open problems remain. First, there is the question of the parametric behavior
of other Markov models of DNA evolution (for example, the Tamura-Nei model [7])
whose substitution matrices have more complex structures than those of JC and K2P.
Also of interest are the various models of protein evolution. Of course, the number of
distinct entries in the unit-time substitution matrices for these models is a limiting fac-
tor. Another problem is handling non-uniform edge lengths. While linearization can be
applied here, the parameter dependence seems complex. One could also attempt to ex-
tend our results to models with varying rates of evolution between positions or where
there are dependencies among sites. Finally, an important open problem is allowing
gaps. While, at least for pairwise alignment, these can be handled by polytope propa-
gation [13], it does not appear to be easy to attain the same efficiency as for gapless
models.
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Abstract. Phylogenetic reconstruction from gene rearrangements has attracted
increasing attention from biologists and computer scientists over the last few
years. Methods used in reconstruction include distance-based methods, parsi-
mony methods using sequence-based encodings, and direct optimization. The
latter, pioneered by Sankoff and extended by us with the software suite GRAPPA,
is the most accurate approach, but has been limited to small genomes because
the running time of its scoring algorithm grows exponentially with the number
of genes in the genome. We report here on a new method to compute a tight
lower bound on the score of a given tree, using a set of linear constraints gen-
erated through selective applications of the triangle inequality (in the spirit of
GESTALT). Our method generates an integer linear program with a carefully lim-
ited number of constraints, rapidly solves its relaxed version, and uses the result
to provide a tight lower bound. Since this bound is very close to the optimal tree
score, it can be used directly as a selection criterion, thereby enabling us to by-
pass entirely the expensive scoring procedure. We have implemented this method
within our GRAPPA software and run several series of experiments on both biolog-
ical and simulated datasets to assess its accuracy. Our results show that using the
bound as a selection criterion yields excellent trees, with error rates below 5% up
to very large evolutionary distances, consistently beating the baseline Neighbor-
Joining. Our new method enables us to extend the range of applicability of the
direct optimization method to chromosomes of size comparable to those of bac-
teria, as well as to datasets with complex combinations of evolutionary events.

1 Introduction

Biologists can infer the ordering and strandedness of genes on a chromosome and thus
represent each chromosome by an ordering of signed genes (where the sign indicates
the strand). These gene orders can be rearranged by evolutionary events such as inver-
sions and transpositions and, because they evolve slowly, give biologists an important
new source of data for phylogeny reconstruction [8, 16, 18]. Appropriate tools for ana-
lyzing such data may help resolve some difficult phylogenetic reconstruction problems.
Developing such tools is thus an important area of research: the recent DCAF sympo-
sium [22] was devoted to this topic, while results are rapidly accumulating [14].
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A natural optimization problem for phylogeny reconstruction from gene-order data
is to reconstruct a tree that minimizes the total number of evolutionary events. This
problem is NP-hard for most criteria – even the very simple problem of computing the
median of just three genomes (the median of k genomes is a genome that minimizes the
sum of the pairwise distances between itself and each of the k given genomes) under
such models was proved NP-hard [4, 17].

For some datasets (e.g., chloroplast genomes of land plants), biologists conjecture
that rearrangement events are predominantly inversions (also called reversals) [6]. In
other datasets (e.g., mitochondrial genomes), transpositions are viewed as more likely,
but their relative preponderance with respect to inversions is unknown. Sankoff pro-
posed the breakpoint distance (the number of pairwise gene adjacencies present in one
genome but absent in the other) as a measure of distance between genomes that is inde-
pendent of any particular mechanism of rearrangement. The breakpoint phylogeny [1]
is then the most parsimonious tree with respect to breakpoint distances. By analogy, the
inversion phylogeny is the most parsimonious tree with respect to inversion distances.

The main software package for reconstructing the inversion (or breakpoint) phy-
logeny is our GRAPPA [15]. Its basic optimization tool is an algorithm for computing the
inversion (or breakpoint) median of three genomes. Extensive testing has shown that
the trees returned by GRAPPA are superior to those returned by other methods used in
phylogenetic reconstruction based on gene orders, such as distance-based methods and
parsimony based on encodings [13, 14, 29]. The closely related software of Pevzner’s
group, MGR [3], is the only method that approaches its accuracy. Moreover, our exten-
sion using disk-covering, DCM-GRAPPA [27], runs quickly on large datasets – indeed, the
number of taxa in the dataset is no longer the main issue.

Two serious issues remain, however. Handling genomes with unequal gene con-
tent (i.e., involving duplications, insertions, and deletions of genes) remains largely
unsolved, although some progress has been made in computing pairwise distances in
such cases [9, 10, 25, 28]. Handling large genomes within GRAPPA is very expensive,
because the median computation takes time exponential in the size of the genomes; this
problem prevents its application to organismal genomes with thousands of genes. It is
this second problem that we tackle here.

2 Definitions

A phylogeny for a set S of N genomes is a (preferably) binary tree with N leaves, with
each leaf labeled by a distinct element of S. Let G be the genome with signed ordering
of g1,g2, . . . ,gn. An inversion between indices i and j (i≤ j), produces the genome with
linear ordering

g1,g2, . . . ,gi−1,−g j,−g j−1, . . . ,−gi,g j+1, . . . ,gn

A transposition on genome G acts on three indices i, j,k, with i≤ j and k /∈ [i, j], picking

up the interval gi,gi+1, . . . ,g j and inserting it immediately after gk. Thus genome G is
replaced by (assume k > j):

g1, . . . ,gi−1,g j+1, . . . ,gk,gi,gi+1, . . . ,g j,gk+1, . . . ,gn

The edit distance between two genomes is the minimum number of evolutionary
events required to transform one genome into the other. When only inversions are al-
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Fig. 1. The median problem: given gene orders 1, 2, and 3, find a gene-order 0 that minimizes
∑3

i=1 d0,i.

lowed, the edit distance is the inversion distance. The score of a tree is the sum of the
costs of its edges, where the cost of an edge is the distance (breakpoint or edit distance)
between the two genomes that label the endpoints of the edge.

For N genomes {G1,G2, . . . ,GN}, each with identical set of genes, the median prob-
lem is to find a signed gene order G0 that minimizes ∑N

i=1 d0,i, where d0,i is the distance
between G0 and Gi. Because our various genomic distances are all metrics, we must
have

N

∑
i=1

d0,i ≥
1
2

(
dN,1 +

N−1

∑
i=1

di,i+1

)
When this inequality is an equality, we call the corresponding median a perfect median.
Finding the gene order G0 is NP-hard even for the case N = 3, the case (illustrated in
Fig. 1) of most use in phylogenetic reconstruction [4, 17].

In the following, we will consider only genomes with equal gene content, that is,
with the same number of genes and where each gene appears exactly once. Clearly, this
restriction is unrealistic in biological practice; however, we use it here mostly for clarity
of exposition: all results presented in this paper can be readily applied to genomes with
unequal gene contents as long as a pairwise distance between such genomes can be
computed, as in [9, 25].

3 GRAPPA

GRAPPA is based on the approach pioneered by Sankoff and Blanchette in the software
package BPAnalysis [21], but uses various algorithmic techniques to improve its accu-
racy and speed. GRAPPA is an exhaustive search method, moving systematically through
the space of all (2N− 5)!! possible trees on N genomes. For each tree, the program
tests a lower bound to determine whether the tree is worth scoring; if so, then the pro-
gram will iteratively solve the median problems at internal nodes until convergence, as
outlined in Fig. 2. Since the scoring procedure of GRAPPA involves solving numerous
instances of median problems, a fast median solver is crucial. Two inversion median
solvers are available, both using a branch-and-bound strategy. Caprara’s solver [5] is
based on an extension of the breakpoint graph; that developed by Siepel and Moret [24]
runs a direct search. Although they are both fast when the pairwise distances among
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Initially label all internal nodes with gene orders
Repeat
    For each internal node v, with neighbors A, B and C, do

Until no change occurs
    If relabeling v with m improves the tree score, then do it    
    Solve median problem on A, B, C to yield m

Fig. 2. The GRAPPA scoring procedure.

the three given genomes are relatively small, they can become extremely slow when
the distances become larger. For example, in the worst case, Siepel’s algorithm needs
to check nd gene orders, where d is min(d12 + d13,d21 + d23,d13 + d23) and n is the
number of genes (see Fig. 1). Indeed, for large genomes, a single median problem can
take anywhere from seconds to days of computation. It is thus crucial to avoid scoring
trees unnecessarily and thus to use tight lower bounds.

4 Lower Bounding with Perfect Medians

Siepel and Moret [24] reported that almost all medians found by their algorithms were
perfect medians, i.e., they obeyed

3

∑
i=1

d0,i =
d1,2 + d1,3 + d2,3

2

When the pairwise distances were about 0.1n, all medians were perfect; as the distances
increased, the proportion of perfect medians decreased slowly – for instance, over 97%
of the medians remained perfect with pairwise distances around 0.3n [23]. Moreover,
even when the medians were not perfect, their scores exceeded the lower bound by only
one inversion. These findings indicate that an assumption that all medians are perfect
may lead to a tight lower bound.

Label a phylogenetic tree with N leaves as follows; the leaves are labeled from the
set {1,2, . . . ,N}, while the internal nodes (of which there are at most N−2) are labeled
from the set {N + 1,N + 2, . . . ,2N− 2}; we number the edges from 1 to 2N− 3 and
denote the length of edge i by di, as illustrated in Fig. 3.

Theorem 1. The sum of the perfect median scores (over all internal tree nodes) is a
lower bound on the tree score; that is, we have (see Fig. 3):

w(T ) =
2N−3

∑
i=1

di ≥
(d1,2 + d1,N+2 + d2,N+2)+ . . .+(dN−1,N + d2N−3,N−1 + d2N−3,N)

2

Because most medians are perfect, this lower bound is very close – or perhaps even
equal – to the tree score. Of course, we cannot compute this lower bound exactly
without first solving the median problems, which would defeat the entire purpose of
bounding. So we settle for a close approximation of that bound through mathematical
programming.
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Fig. 4. Equation setup for any internal nodes.

5 Setting up the Integer Linear Program

An integer linear program is composed of a linear objective function and of a collec-
tion of constraints, most taking the form of linear equations or inequations and some
requiring that certain variables assume only integer values. The scoring function for our
method is just the length of the tree; that is, our objective is to minimize the sum of the
tree edge lengths:

min
2N−3

∑
i=1

di (1)

This function introduces a total of 2N−3 variables.
Given any internal node M, its three neighbors A, B. and C, and their associated tree

edges k, k + 1, and k + 2 (see Fig. 4), we can write (if M is a perfect median):

dk + dk+1 + dk+2 =
dA,B + dA,C + dB,C

2
(2)

Each of the N− 2 internal nodes gives rise to one such equation, which we use as an
equality constraint in the integer linear program. (This approach was previously used in
the sequence alignment program GESTALT [12] to help in deriving good sequence as-
signments for internal nodes.) Equation 2 introduces three new variables per node (the
pairwise distances dA,B, dA,C, and dB,C), unless two of the node’s neighbors are leaves,
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in which case only two new variables are introduced (because one of the pairwise dis-
tances is then known). Thus, overall, Equations 1 and 2 (the latter applied at each inter-
nal node) introduce from 4N to 5N variables, depending on the tree shape. Therefore we
must add many constraints (beyond our N−2 equalities) in order to obtain a solution.

A good selection of constraints derived from triangle inequalities in the tree should
meet the following criteria:

– Since the only available data are in the distance matrix, we should use every pair-
wise distance in the set of constraints.

– Because LP solvers take more time when the number of constraints increases and
because many constraints will be redundant, the number of constraints should be
kept as small as possible.

– In order to obtain robust solutions, every variable added by Equations 1 and 2
should appear in at least one constraint.

Consider again Fig. 4: in addition to the edges of the tree (drawn with uninterrupted
lines), we have shown the pairwise connections among the three neighbors of an internal
node (drawn with dashed lines). By considering the graph resulting from the addition of
these edges connecting neighbors of internal nodes to the the set of edges of the original
tree, we get a graph with many alternate paths. We base our additional constraints on
the distances between pairs of tree leaves, as measured directly and as measured along
paths in the extended graph. Specifically, for each pair (i, j) of leaves, we can write the
inequality

di, j ≤ ∑
e∈path

d(e)

where di, j is the genomic distance between the two gene orders i and j and d(e) is the
length of edge e on the selected path from leaf i to leaf j in the graph. Since there are(n

2

)
pairs of leaves, we immediately get a large number of constraints.
However, a number of edges in the extended graph may remain unused in any con-

straint; to remedy this problem, we generate two inequalities for each pair of leaves that
are not siblings: one each for the two paths between these leaves with fewest edges.
Finding the k shortest paths between two vertices in a graph is a thoroughly studied
problem [11] and is easily done, especially when the length is just the number of edges.
Using the two shortest paths will produce N(N−2) inequality constraints, which works
well in our context, for three reasons:

– Each pairwise distance shows up in at least one inequality constraints.
– For 20 genomes (the largest problem size we need to solve within the DCM ap-

proach), we get on the order of 100 variables and 400 constraints, an instance of
quite modest size for a modern LP solver.

– There are roughly N2 constraints and at most 5N variables, so that, on average, a
variable will appear in N

5 constraints. Thus the probability that a variable does not
appear in any constraint is very small.

6 Implementation Details

We implemented this bounding computation within our GRAPPA platform. We do not
solve the integer linear program, but only its linear programming relaxation: the ILP
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itself is already an approximation and would take too long to solve exactly and many
techniques (such as randomized rounding) are readily available to use LP solutions in
order to obtain a good integer solution. We used a standard non-commercial package
for linear programming, lp solve (version 4.0).

The new bound can be used in two different contexts: (i) we can use it to improve the
pruning rate of GRAPPA; or (ii) we can use it directly as a selection criterion. The current
version of GRAPPA (2.0) already has very fast and strong pruning (often eliminating
99.9999% of the candidate trees); the LP bound, which is noticeably more expensive to
compute than the bounds currently used in GRAPPA, can be used to filter the remaining
trees in order further to reduce the number of trees that must be scored.

The LP bound offers (so far) no help in scoring a tree: the problem with medians
of large genomes remains unaffected. Thus, while the first application of the LP bound
does provide additional speedup for GRAPPA, it does not yet enable us to handle large
genomes. The second application enables us to process trees quickly: we retain the
pruning strategy of GRAPPA and simply compute a “score” (the LP lower bound) for
each remaining tree, retaining those trees with the best score. With this approach, the
size of the genomes no longer presents any computational problem, so that we can
handle datasets of up to 16 arbitrarily large genomes with GRAPPA and much larger
datasets with DCM-GRAPPA.

7 Experimental Results

We set out to test the accuracy of the second approach described above: using the LP
bound as a direct selection criterion to choose among the trees not pruned away by
GRAPPA. For this purpose, we generated datasets of 12 genomes each (datasets of that
size form the bulk of the subproblems solved in the DCM approach to reconstruction
from gene-order data when working on datasets of 1,000 genomes [27]) and chose
genomes of 200, 500, and 1,000 genes, spanning the range from large organelles (such
as plant mitochondria) to small bacteria (such as symbiotic bacteria). Our model trees
are birth-death trees, but the number of evolutionary events along an edge is set inde-
pendently of the birth-death process to avoid any semblance of a molecular clock. We
used a large range of evolutionary rates, including very high rates: letting r denote the
expected number of evolutionary events along an edge of the model tree, we used val-
ues of r in the range of 5% to 15% of the number of genes. The actual number of events
along each edge is sampled from a uniform distribution on the set {1,2, . . . ,2r}. While
all our distance computations are based on inversion distances, we generated the data
with a deliberate model mismatch to test the robustness of our bounding, using a mix
of 80% inversions and 20% transpositions. For each combination of parameter settings,
we ran 10 datasets and averaged the results.

Given an inferred tree (reconstructed phylogeny), we can assess the topological
accuracy in terms of false positives and false negatives [19] with respect to the true tree.
If an edge in the true tree is missing in the inferred tree, this edge is then called a false
negative (FN). Similarly, a false positive edge (FP) is an edge in the inferred tree but
not in the true tree. The FP and FN rates are the number of false positives (resp., false
negatives) divided by the number of edges (of non-zero length) in the true tree.
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Our baseline is the basic neighbor-joining (NJ) method [20]. We considered all
trees given the minimum score by our LP procedure and took their strict consensus.
Therefore, the trees returned by our procedure need not be fully resolved and will tend
to have somewhat better rates for false positives (FP) than for false negatives (FN). Thus
we report FP and FN rates separately rather than as a single Robinson-Foulds score. We
attempted to run GRAPPA on these datasets, but, for all but the lowest of the r values,
some median computations took days or weeks. In consequence, we could not complete
the runs, so that our comparisons are limited to NJ and our new LP-based method.

Fig. 5 shows our results for each genome size; we placed a line at the 5% error level,
the typical threshold of acceptability for accuracy in phylogenetic reconstruction [26].
Note that, while the NJ trees almost always exceed the 5% error rate in both FP and
FN, our LP-based method only exceeds that threshold for very large evolutionary rates;
for instance, with 200 genes and r = 28, some edges will have up to 56 inversions and
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Fig. 5. Average FN and FP rates as a function of r for 200, 500, and 1,000 genes.
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indicates when LP becomes significantly better than NJ).

transpositions, resulting in well over 100 breakpoints. In Fig. 6, we show the FP and FN
rates for all three genome sizes, as a function of the ratio r

n – the expected percentage
of events per edge in terms of genome size. Again, note that, when the normalized r is
15%, the breakpoint distance could reach 70% of the genome size – values at which all
past reconstruction methods based on distance fail as badly as NJ; in contrast, our new
LP bound still selects good trees at that rate.

We also ran our procedure on small chloroplast datasets that we have used in the
past (the Campanulaceae [7] and some land plants and algae [28]), with similar results.

8 Conclusions

We have used mathematical programming techniques to derive tight bounds on the total
length (score) of a phylogenetic tree and have used these bounds as a selection crite-
rion to reconstruct small phylogenies based on gene-order data for genomic sizes that
had been out of reach of existing reconstruction tools. Our experiments show that the
method works well, returning trees with accurate (better than 95%) topologies up to
very large evolutionary rates. While we have not applied the method to the reconstruc-
tion of ancestral genomes (and the solution of the median problem for genomes), we
expect that knowledge of the edge lengths (provided by the LP solution) will enable us
to speed up such reconstruction dramatically, thereby removing the last scaling problem
left in phylogenetic reconstruction from gene-order data.
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Abstract. We apply a spin image representation for 3D objects used in
computer vision to the problem of comparing protein surfaces. Due to
the irregularities of the protein surfaces, this is a much more complex
problem than comparing regular and smooth surfaces. The spin images
capture local features in a way that is useful for finding related active
sites on the surface of two proteins. They reduce the three-dimensional
local information to two dimensions which is a significant computational
advantage.

We try to find a collection of pairs of points on the two proteins such
that the corresponding members of the pairs for one of the proteins form
a surface patch for which the corresponding spin images are a “match”.
Preliminary results are presented which demonstrate the feasibility of
the method.

1 Introduction

We propose a solution to the problem of matching protein surfaces based on
a protein surface representation as a set of two-dimensional (2D) images thus
transforming the problem of matching 3D surfaces into that of matching sets
of 2D images. This method can detect similar binding sites in proteins and is
particularly useful when the proteins are unrelated by sequence or overall fold.
It does not look for a predefined template of a binding site, rather it identifies
similar spatial arrangements in proteins without any prior knowledge. We try to
find a collection of pairs of points on the two proteins such that the corresponding
members of the pairs for one of the proteins form a surface patch for which the
corresponding spin images are a “match”. Our approach is purely geometrical. At
the present we do not take into consideration other physico-chemical properties
of the atoms. These will be integrated later in the matching strategy to help
eliminate unlikely solutions.

Spin images were introduced in the area of computer vision by [6] as an ef-
ficient way of solving the object recognition and reconstruction problems. The
main contribution of this paper is the adaptation of the spin image technique
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to the problem of protein surface matching. Molecular surfaces have very com-
plicated shapes and are not as smooth as the objects generally considered in
computer vision. Thus the use of spin images for molecular recognition requires
significant variations of the original matching strategy.

There are several methods for recognizing spatial motifs in proteins, that
mostly deal with the problem of detecting a given template for a predefined
cluster of atoms in a protein structure. Good surveys are [1] and [13]. Geomet-
ric hashing has been applied to molecular recognition by [12] and by [14]. The
method by [10] looks for spatial arrangements of atoms that can be superim-
posed by a rigid transformation. A database for molecular surfaces of protein’s
functional sites is by [7]. An application of the search method to protein kinases
and to phosphate binding sites is presented in [8]. Other tools for searching for
predefined motifs consisting of constellations of atoms are SPASM and RIGOR
([9]).

The organization of the paper is the following. Section 2 contains a short re-
view of the spin image concept. Section 3 presents a new way of labeling protein
surface points based on certain features of their associated spin images. This
labeling captures important geometric information thus allowing to significantly
reduce the amount of computation needed to identify matching points. Further-
more, based on this labeling, a filtering operation can be applied to the spin
images to eliminate redundant information.

Collections of matched points are obtained from individual good matches if
some geometric consistency criteria are satisfied by nearby points on the surfaces.
To facilitate the grouping of points into surface patches, all input surface points
are mapped into a 3D matrix or grid and the matching restricted to points
within cells of the grids. The grouping and matching is described in section 4.
Finally, section 5 reports on preliminary results of the matching strategy applied
to known examples from the literature.

2 Spin Images

The concept of spin images, due to [6], will be recalled here. Consider a three-
dimensional point P on the protein surface and its normal n oriented to the
outside of the protein surface; introduce a local coordinate system or two di-
mensional basis (P, n) with origin in P and axis n. In this system, for every
other surface point Q define two coordinates (α, β) as follows: α is the perpen-
dicular distance of Q to n, and β the signed perpendicular distance of Q to
the plane T through P perpendicular to n. The two coordinates are called spin
coordinates because of the cylindrical symmetry about the normal axis of the
system: the basis can spin about its axis n with no effect on the coordinates of
points with respect to the basis itself.

For a given reference point P , the spin coordinates of all other surface points
are discretized in a two dimensional array called spin image. The array is an
accumulator of the pairs of values (α, β) relative to the surface points. Each
cell of the array or image pixel contains the number of surface points whose
coordinates provide indexes to that cell.
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The spin image of point P is created by the following simple procedure (see
[6]). For each point Q on the surface, its spin coordinates (α, β) in the local
reference frame of P are determined as follows:

α =
√

‖Q − P‖2 − (n · (Q − P ))2

β = n · (Q − P )

If the point Q satisfies some requirements to be described later, the values (α, β)
are discretized to produce two integers that are used as indexes to a 2D spin
image array, where the corresponding image pixel or cell is incremented by one.
Figure 1 shows examples of spin images, where (αi, βj) are the column index
and row index, respectively, and the origin O is the cell (0,0). The images are
displayed with darker pixels corresponding to higher accumulator value.

Fig. 1. Examples of spin images
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The spin image dimensions depend on the point P and its corresponding
tangent plane and corresponding normal n to its tangent plane T . The number
of columns depends on the maximum distance αmax from n of other points on
the surface of the object. The number of rows depends on the difference between
the maximum βmax and minimum βmin heights of other points on the surface.
Another important parameter which determines the spin image dimension, that
is the number h of its rows and k of columns of the spin image, is the pixel size
ε. If βr = βmax − βmin then,

h = ,βr

ε
-; k = ,αmax

ε
- (1)

We choose ε equal the water molecule radius, i.e. 1.5 Å.
To control the amount of information contained in a spin image, some re-

striction is introduced on the portion of space swept out by a spin image. In the
original paper by Johnson, two parameters are used, the support distance that
limits the max value for the coordinate of any point represented in a spin image
and the support angle that is the maximum angle between n and the surface
normal of points that are allowed to contribute to the spin image. By changing
the values of the control parameters, the information represented in a spin image
can vary from global to local.

In our approach, all surface points that lie above the tangent plane T in the
direction of n contribute to the spin image of P . Those are the points with pos-
itive β values in the reference frame of P . Points with negative β are considered
only when β > TB where TB is a threshold set to -8 Å in our experiments. No
limitation is imposed on α that is by definition positive. Thus the spin image is
defined for α ≥ 0 and β ≥ TB.

As a last note, the use of a 2D rather than a complete 3D coordinate system
is motivated by the ease and robustness of the computation. Systems based on
3D frames, defined, for instance, by the three axes of principal curvature, have
also been used for matching purposes, however since the determination of the
axes is not always possible they are not very robust.

3 Matching Surface Points

Protein surface computation is performed using Connolly’s method [3], based
on a probe sphere rolling on the VanDerWaal surface of the protein. The lower
envelope of the probe is then the protein surface. Among the various formats
of the output, we chose the dots format, that describes the external surface
as a cloud of 3D points each with its associated surface normal. The number of
generated points (and hence the accuracy of the surface description) is dependent
on the sphere radius: the larger the probe radius the lower the accuracy. We
decided to use a probe with the dimension almost like that of a water molecule,
with a radius of around 1.5 Å, as the default in Connolly’s method.

The first step of our matching procedure consists of matching individual
points on the two surfaces based on their associated spin images. Points on two
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surfaces with similar shape tend to have similar spin images. [6] introduced a
method of measuring the similarity between two 2D spin images based on the
linear correlation coefficient. Given two images each with N = n ×m pixels, R
is defined to be the linear correlation coefficient for the two sets of pixels. The
non independence of the pixels on the same spin image does not appear to cause
a serious problem for the matching when the filtering methods given below are
used. A high value of R indicates similarity of the two spin images.

Because our generated spin images may have different sizes, the correlation
value is computed on the two sub-images that overlap. More precisely, if the two
spin images have size n1 ×m1 and n2 ×m2, then the correlation is determined
on the two sub-images with dimensions n = min{n1, n2} and m = min{m1, m2}.

The number of pairwise image comparison to identify corresponding points
based on the correlation of their spin images is O(s ∗ t), where s and t are
the number of points that describe the two protein surfaces, respectively. This
product is usually very large even for small protein sizes. For instance for the
two proteins 1CYN (cyclophilin B) and 1BCK (cyclophiln A) considered in the
section 5 with surfaces represented by about 10,000 dots each, the number of
image comparisons would be about 108.

To speed up the computation, we apply two levels of filtering. The first
level uses a labeling of surface points into shadowed, blocked or clear, based
on certain features of their associated spin images. This labeling is fast and
furthermore captures important geometric information that is relevant to the
matching process. Thus we can restrict correspondences to points with the same
label, a significant computational advantage.

To further reduce the computation time we do some pruning on the spin
image list generated for the two proteins. For each atom on a protein surface there
are typically several surface dots associated to it in the Connolly’s representation.
We try to limit the number of such dots again exploiting the similarity of their
spin images. These two steps are described next.

3.1 Labeling Protein Surface Points

We label the protein surface points as shadowed, blocked or clear and restrict the
correspondences in the matching process to points with the same label. As we
will see this labeling can be easily obtained from the spin images.

First, a surface point P with normal n is labeled unblocked if n does not
intersect the surface at any other point lying above the tangent plane T at
P perpendicular to n. Because of discretization of spin coordinates, defining a
point P as an unblocked point means that the normal n is at a distance greater
than ε, the spin image pixel size, from any other surface point lying above the
tangent plane T . This implies that in the reference frame for the spin image there
should not be other surface points with coordinates β > 0 and α = 0. A point
is blocked if it is not unblocked. Our labeling scheme is different from previously
used surface point classifications based on identifying geometric convexity. In
fact, an unblocked point can belong either to a convex region on the surface or
to a concave one.
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Among the unblocked points we select those that belong to the convex hull
of the protein surface. These are labeled clear points. If P is a clear point, then
all other surface points are either on the tangent plane T or on the same side of
the tangent plane, opposite to n. Thus h = 0, where h is the number of rows of
the spin image corresponding to β ≥ 0 (in practice, h ≥ 2).

Unblocked points which are not clear are labeled shadowed. Examples of
shadowed, blocked and their corresponding spin images are shown in figures 2.

Fig. 2. Shadowed and blocked points

Once all spin images of a protein surface are created, labeling the points
as shadowed, blocked or clear is computationally very simple since at most the
pixels of one column of the spin image have to be examined.

An important attribute we compute for each spin image is the visible area
defined as the number of pixels of the maximal compact connected region of
0-pixels with a border on the positive part of column 0 and contained in rows 0
through c−1, where (c, 0) is the first non zero pixel of column 0. For a shadowed
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point c−1 is assumed to be h, the number of rows of the spin image with β > 0,
since all pixels (β, 0) with β > 0 are 0. The visible area of a shadowed point is
shown in figure 3. For a blocked point P , c can be interpreted as follows. By
definition, the normal n through a blocked point P intersects (or is close to) the
protein surface at one or more other points: c is the smallest positive β of all
such points. The procedure that computes the visible area is very simple since it
scans all rows 0 trough c−1, and counts on each the number of 0-pixels until the
first non zero pixel. The visible area of a clear point is assumed to be infinity.

Fig. 3. The visible area for a spin image

For the proteins considered in our tests generally the number of shadowed
points on a protein surface is bigger than that of blocked points, and only a small
number of points is labeled clear.
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3.2 Filtering the Spin Image List

As already observed, the number of spin images may be very large even for a
protein of small size. This number depends on the number of dots on Connolly’s
surface and typically for a protein of about three thousand atoms may be above
10,000 with the default parameter values of 1.5 Å of Connolly procedure. Thus
we apply a filtering procedure to significantly reduce the number of spin images
while at the same time trying to keep an accurate surface representation. First
we eliminate spin images of blocked points with small visible area since they
may not be very reliable in surface comparison. If the visible area is below a
given threshold TC then the spin image is removed from the spin image list.
TC is set to 5 in our experiments. This is done because typically in this case
the tangent plane at P crosses a significant part of the interior of the molecule
and consequently the spin image may be too much affected by global shape
information.

Second, we examine the spin images of Connolly’s dots close to the same
protein atom in an attempt to eliminate redundancy among them. Often the
spin images associated to points close in space are very similar and it makes
sense to keep only a few of them in a fast search for candidate matching regions
on the two protein surfaces. The complete spin image list might be used for
instance only to locally improve the fit between the two surface patches. Of the
several surface dots that are typically found in the vicinity of same atom, we keep
only the ones that are the most discriminative in the matching. More specifically,
if atom A is close to a dot labeled clear, only its associated spin image is kept and
all spin images of other points close to A are removed. Otherwise, if two points
close to A have the same label (either shadowed or blocked) then the correlation
value of their spin images is computed to measure the 2D spin image similarity;
if such value is above a given threshold TS, only one of the two images is kept.
More specifically, we keep the one the with larger visible area. We recall that
such area is given by the size of the connected region of 0 pixels that starts at
column 0. This region is contained in rows 0 through c if the point is blocked (see
above) or through h if the point is shadowed, where h is the number of rows of
the spin image.

At the end of this step, after all surface atoms and surface points of the pro-
tein have been considered, the number of surviving spin images is a significantly
down, typically to less than 1/3 of the original number.

4 Finding Similar Surface Patches

This section describes how we group surface points of two proteins into corre-
sponding surface patches. As we described in the previous section, point corre-
spondences are established by comparing their associated spin images: the higher
the correlation of the spin images, the better the matching between the points.

Since we are interested in local surface similarity, we concentrate our search
of groups of corresponding points to nearby points. To this end, we use a simple
data structure for storing all surface points, i.e. a three-dimensional matrix or
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grid. Given a grid cell resolution r, a surface point with coordinates (x, y, z) is
mapped into the cell (,x/r-, ,y/r-, ,z/r-). Thus points that map into the same
cell are within r

√
3 distance from each other.

Let 3DGrid1 and 3DGrid2 be the grids associated to the sets of points of two
protein surfaces. The grouping algorithm iterates over all the non-empty grid
cells of 3DGrid1 and, for each such cell, over all the non-empty cells of 3DGrid2.
For any pair of cells, one on each protein, we look for groups of corresponding
points of the two cells, as follows. First, the spin-images are generated for all
points in the two cells; then for each pair of points, one one in each cell, if their
associated spin images have the same label their correlation value is determined.
Pairs of points with a correlation value of their spin images less than some
threshold are discarded, since the points are unlikely to be on similar patches.
In our test the threshold TC is set to 0.5. The remaining pairs of points, ranked
according to their correlation value, are added to the correspondence list L
associated to the two cells.

The next step is to find subsets of correspondences from the list L based on
a grouping criterion that is the geometric consistency of distances and angles
between corresponding points and normals. More specifically, a correspondence
C = (P, P ′) between two points P and P ′ on the two protein surfaces is defined to
be geometrically consistent with a group of already established correspondences
{C1 = (Q1, Q

′
1), ..., Ci = (Qi, Q

′
i), ..., Cn = (Qn, Q′

n)} if the following criteria
are satisfied: 1) the spin images of P and P ′ are highly correlated, 2) for every
i = 1, ..., n, the distances between P and Qi and between P ′ and Q′

i are within
some user-defined tolerance, 3) for every i = 1, ..., n, the angle between the
normals at P and Qi is the same as the angle between the normals at P ′ and
Q′

i within some user-defined tolerance.
The grouping algorithm proceeds as follows. The top element of the list L,

i.e. the correspondence with the highest correlation value, is used to form the
seed of the group under construction. It is also removed from the list L. Then
the algorithm scans the list L in decreasing order with respect to the correlation
values; if a correspondence is found that is geometrically consistent with those
already in the group, then it is added to group and removed from L. When no
more correspondences can be added, but the list L is not empty, the process
starts over again with the reduced correspondence list to create a new group. In
this way we generate several solutions. They are ranked according to the number
of points within a group. Groups with fewer than a threshold number of elements
are discarded.

There is obviously a limitation in using a grid representation of surface points
and restricting matches only within cells. This scheme in fact may miss good
solutions that cross the cell boundaries. The idea of simply shifting the bound-
aries of cells by half the size of a cell and repeat the matching algorithm is not
feasible due to the high computational cost. Thus, we have resorted to a simple
strategy. Once an initial set of good matches are obtained within any two given
cells, they are used to derive a rigid transformation that superimposes the pro-
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teins. The initial solution can then be expanded to nearby points corresponding
to superimposed points with high spin similarity.

5 Experimental Results

Our preliminary tests concentrate on known examples to evaluate both the pa-
rameter values and the methodology. In all considered cases, we found the cor-
rect solution, i.e. the one corresponding to the binding site reported by the PDB,
among the top ranked solutions. For instance, in the case of proteins 1CYN and
1BCK (cyclophilin B and A respectively), that both bind with cyclosporins, the
first ranked solution corresponds to 12 over 13 residues as they are listed in
the PDB files. One residue is missing because no point of the computed protein
surface is near enough to its atoms. This fact means there is a small concavity
that was not detected while computing the external protein surface.

The 3D structure of the two input proteins is available from the PDB as a list
of 3D coordinates. The input to the algorithm is a set of 3D points or dots from
Connollys representation of the proteins. Typically, with the default parameter
of 1.5 Å for Connolly’s representation, the number of such dots is very high. For
the proteins 1CYN and 1BCK consisting of 1430 and 1559 atoms the dots are
9183 and 9403, respectively.

Figure 4 displays with RASMOL proteins 1CYN and 1BCK and highligths
in pink the atoms close to the collection of surface points corresponding to the
solution with rank 1 reported by our algorithm. Figure 5 displays in yellow the
binding sites of 1CYN and 1BCK derived from the record SITE contained in
their PDB file. Looking at the visual representation of the two sites, we can
conclude that our top solution correctly identifies atoms belonging to the active
site.

As already mentioned, further processing can be used to extend the obtained
surface patches to close atoms thus filling the gaps in the patches.

Fig. 4. Proteins 1CYN and 1BCK. The atoms close to the surface dots of the top
solution are in pink
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Fig. 5. Proteins 1CYN and 1BCK. The atoms of the SITE record of the PDB

References

1. Bartlett G.J., Todd A.E., Thornton J.M. (2003) Inferring protein function from
structure. In Structural Bioinformatics, (Bourne P.E. and Weissig H. eds), Wiley-
Liss.

2. Chua C., Jarvis R. (1996) 3D free form surface registration and object recognition,
Int. Journal of Computer Vision, 17, 77-99.

3. Connolly M.L. (1983) Solvent-accessible surfaces of proteins and nucleic acids.
Science 221,708-713.

4. Jones S., Thornton J.M. (1997) Analysis of protein-protein interaction sites using
surface patches, Journal of Molecular Biology, 272, 121-132.

5. Johnson A., and Hebert M. (1999) Using Spin-Images for efficient multiple model
recognition in cluttered 3-D scenes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 21(5), 433-449.

6. Johnson A., and Hebert M. (1998) Surface matching for object recognition in
complex three-dimensional scenes. Image and Vision Computing, 16, 635-651.

7. Kinoshita N., Furui J., Nakamura H. (2001) Identification of protein functions from
a molecular surface database. eF-site. J. Struct. Funct. Genomics, 2, 9-22.

8. Kinoshita N., Sadanami K., Kidera A., Go N. (1999) Structural motif pf phosphate-
binding site common to various protein superfamilies: all-against-all structural
comparison of protein mononucleotide complexes. Protein Engineering, 12, 11-14.

9. Kleywegt G. (1999) Recognition of spatial motifs in protein structures. Journal of
Molecular Biology, 285, 1887-12897.

10. Kobayashi N., Go N. (1997) A method to search for similar protein local structures
at ligand binding sites and its application to adenine recognition. Eur Biophys
Journal, 26, 135-144.

11. Lo Conte L., Chothia C., Janin J. (1999) The atomic structure of protein-protein
interaction sites. Journal of Molecular Biology, 285, 1021-1031.

12. Norel S. L., Fischer D., Wolfson, H. J., Nussinov R. (1994) Molecular surface
recognition by a computer vision based technique. Protein Eng. , 7, 39-46.

13. Via A., Ferre’ F., Branetti B., Helmer Citterich M. (2000) Protein surface simi-
larities: a survey of methods to describe and compare protein surfaces. Cell: Mol.
Life Sci., 57, 1970-1977.



428 Mary Ellen Bock et al.

14. Wallace A., Borkakoti N., Thornton J. (1997) TESS: a geometric hashing algorithm
for deriving 3D coordinate templates for searching structural databases. Applica-
tion to enzyme active sites. Protein Science, 6 (11), 2008-2023.

15. Zhang B., Rychlewski L., Pawlowski K., Fetrow J., Skolnick J., Godzik A. (1999)
From fold predictions to function prediction: automation of functional site conser-
vation analysis for functional genome predictions. Protein Science, 8 (5), 1104-
1115.



Mass Spectra Alignments and Their Significance
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Abstract. Mass Spectrometry has become one of the most popular
analysis techniques in Genomics and Systems Biology. We investigate
a general framework that allows the alignment (or matching) of any two
mass spectra. In particular, we examine the alignment of a reference mass
spectrum generated in silico from a database, with a measured sample
mass spectrum. In this context, we assess the significance of alignment
scores for character-specific cleavage experiments, such as tryptic diges-
tion of amino acids. We present an efficient approach to estimate this
significance, with runtime linear in the number of detected peaks. In
this context, we investigate the probability that a random string over a
weighted alphabet contains a substring of some given weight.

1 Introduction

Mass Spectrometry is one of the most popular analysis techniques in the emerg-
ing field of Systems Biology [1]: The analysis of peptide fingerprints and tandem
mass spectra for protein identification and de novo sequencing is performed daily
in thousands of laboratories around the world. The efficiency of this analysis
technique is mainly due to its unique accuracy: Masses of sample molecules can
be determined with an accuracy of parts of a neutron mass.

One central problem in the interpretation of mass spectrometry data is the
matching of mass spectra: Usually, we are given some sample mass spectrum
and a set of reference mass spectra (typically generated in silico from a sequence
database), and we want to know which of the reference mass spectra fits best
to the sample mass spectrum. To compute such peak matchings, we investigate
a general framework that allows to align any two spectra and give examples on
how to score such alignments.

As the other main contribution of this paper, we assess the quality of such
an alignment: We develop a framework for efficiently computing p-values for
restriction-type experiments, such as tryptic digestion of amino acids also known
as peptide mass fingerprinting [2]. We also report preliminary results for tandem
mass spectrometry data [3].

In particular, we are interested in the question whether a random string
over a weighted alphabet contains a (certain) substring of given weight. This
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question has been frequently addressed using heuristics and approximations [4, 5]
in order to analyze mass spectrometry data. Here, we present a surprisingly
simple recurrence relation that allows exact and efficient computation of these
probabilities.

We believe that the two-step process of first aligning spectra, then assessing
the significance of the alignment – which has proven useful in the context of string
alignments – is also beneficial for the analysis of mass spectrometry data. First,
the flexibility of scoring schemes allows to adjust to an application’s peculiarities
with a maximal degree of freedom. Second, certain scoring schemes emerge quite
naturally in a statistical context. Third, alignment scores themselves are often
quite useless for protein identification, because long proteins usually achieve bet-
ter scores than short ones. Our approach allows an efficient estimation of the
p-value of an alignment score taking into account protein lengths, and there-
fore combines the advantages of alignments and stochastical analysis. Note that
MASCOT [4, 6], the most popular program for peptide mass fingerprinting,
approaches this problem by a heuristical estimation of such p-values.

The problem of aligning mass spectra is clearly related to the well-known
Longest Common Subsequence Problem. Similar approaches were used for phys-
ical map comparison [7] and aligning gel electrophoresis patterns [8, 9].

The significance or probability of mass spectrum matchings has been con-
sidered by [10] using a two-step stochastic process, by [11] using a hypothesis
testing formulation, and by [12] using empirical statistics.

2 Definition of the Model

Solely for readability, we limit our attention to masses of molecules and ig-
nore multiple charge states in the following. We can compute the mass of a
biomolecule in silico, simply summing up the masses of its atoms. Mass spec-
trometry allows to estimate molecule masses with an exceptionally high accuracy
such as 0.1 Dalton (Da), about one tenth the mass of a neutron. Still and all,
measured masses usually differ from those theoretically predicted.

When comparing simulated and measured mass spectra, we have to take into
account the resolution constraint of mass spectrometers: If two molecules have
almost identical masses, the corresponding peaks may overlap in the measured
mass spectrum, and ultimately create a joint peak with mass somewhere in-
between the two original masses. This effect is hard to predict in silico, and
one usually predicts the reference spectrum ignoring this effect. We have to
take it into account when matching measured masses with those predicted, see
Section 4.

In the following, we simplify matters by assuming that a mass spectrum is
a set of peaks {1, . . . , n}. Every peak i has a mass mi, and eventually other
attributes such as intensity or signal-to-noise ratio. We require here and in the
following that peaks are ordered with respect to mass, that is, mi < mj holds for
1 ≤ i < j ≤ n. Due to the imperfection of mass spectrometry and biochemistry,
a sample mass spectrum may differ from an ideal mass spectrum and show
additional and missing peaks.
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Mass spectrometry measures the masses of sample molecules. For peptides as
well as nucleotides, these molecules can be viewed as strings over the (amino acid
or nucleic acid) alphabet, and the weight of a string is simply the sum of weights
of its characters: For the alphabet Σ we are given a weight function μ : Σ → R,
and we can extend the domain of μ to strings s = s1 . . . sn ∈ Σ∗ by defining
μ(s) :=

∑n
i=1 μ(si). We set μmin := minσ∈Σ μ(σ) and μmax := maxσ∈Σ μ(σ).

Depending on the experimental settings, there exists a maximal mass mmax ∈ R

such that no masses above mmax are present in any mass spectrum: for example,
mmax ≈ 3000 for tryptic digestion experiments. Then, M := [0, mmax] is the
mass range of interest, and lmax := ,mmax/μmin- is the maximal length of a
fragment that we can detect.

We will sometimes require that all masses are natural numbers. To this
end, we round the true masses to integers using some mass accuracy Δ ∈ R:
Above we have denoted integer masses for Δ = 0.1. In this discrete case,M :=
{0, . . . , mmax} is the mass range of interest, for exampleM = {0, 1, . . . , 30 000}
for tryptic digestion and accuracy Δ = 0.1.

In Section 5, we investigate mass spectra that come from biochemical exper-
iments involving character-specific cleavage, such as tryptic digestion of amino
acids. A mathematical formalism for such cleavage was introduced in [13]. We
are given a sample string s ∈ Σ∗ and a cleavage character x ∈ Σ over the al-
phabet Σ. Then, y ∈ (Σ − {x})∗ is a fragment of s, x if xyx is a substring of
xsx. Given a reference string, it is straightforward how to compute all masses in
the corresponding reference spectrum [4, 13]. We do not go into the details here
and refer the reader to the literature.

The utilized biochemistry sometimes leads to mass modifications of fragment
masses, such as +16 Da for an additional H2O group. We will ignore all mass
modifications for the sake of readability, for they can easily be incorporated.

In Section 7, we confine our analysis to collision-induced dissociation by tan-
dem mass spectrometry. There, we break the peptide string s into all prefixes
and suffixes of s.

3 Spectrum Alignment

Let S,S′ be the two spectra that we want to match. We want to construct a peak
matching, that is: a bijective map π : S∗ → S′∗ where S∗ ⊆ S and S′∗ ⊆ S′ are
the matched peaks, while all other peaks remain unmatched. We assume that
the map π is a bijection, but we describe below how to deal with many-to-one
matchings.

To find the optimal matching of S = {1, . . . , n} and S′ = {1, . . . , n′}, we
have to assign scores to any possible matching using a scoring function score for
single peak matching:

score :
(
S ∪ {ε}

)
×
(
S′ ∪ {ε}

)
→ R

where ε denotes a special “gap” character and score(ε, ε) := −∞. If we align
some reference spectrum S with a sample mass spectrum S′, then we will talk
about missing peak scores score(i, ε) and additional peak scores score(ε, j).
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In the following, we do not make any assumptions regarding the peak scoring
function score. It is clear that such a scoring function must be based on the peaks
attributes, such as mass or intensity: for example, if mi is the mass of peak
i ∈ S and m′

j the mass of peak j ∈ S′, then score(i, j) should be the higher, the
smaller the mass difference |mi −m′

j | is. Solely for simplicity, we will often limit
our attention to “masses” as the unique peak attributes in the following. The
presented framework allows us to mimic any additive or multiplicative scoring
scheme, such as that used by MASCOT [4] or log likelihood peak scoring [14].
We will discuss the details of useful scoring schemes in the next section.

Now, the score of the matching π : S∗ → S′∗ is the sum of scores of the peak
matchings:

score(π) =
∑
i∈S∗

score
(
i, π(i)

)
+

∑
i∈S\S∗

score(i, ε) +
∑

j∈S′\S′∗

score(ε, j).

We are searching for a maximal score among all matchings. As an example
using only peak masses, we define for all i ∈ S and j ∈ S′: score(i, j) = 1 if∣∣mi −m′

j

∣∣ ≤ δ and score(i, j) = 0 otherwise; and score(i, ε) = score(ε, j) = 0.
Here mi is the mass of peak i ∈ S, m′

j is the mass of peak j ∈ S′, and δ ∈ R is
some constant mass difference. Using this peak scoring, we count the number of
peaks we can match with a mass difference of at most δ.

From the fact that peak matchings should not cross, we can easily infer that
we are searching for an alignment between the spectra S and S′: This can be
efficiently done using Dynamic Programming, and we define the (well-known)
recurrence relation for the (n + 1)× (n′ + 1) matrix E by

E[i + 1, j + 1] = max
{
E[i, j + 1] + score(i + 1, ε), E[i + 1, j] + score(ε, j + 1),

E[i, j] + score(i + 1, j + 1)
}

(1)
using the familiar boundary conditions. Now, score(S,S ′) = E[n, n′] holds the
score of an optimal alignment between S,S′, and we can find all such optimal
alignments by backtracking through the matrix E.

We can easily incorporate peak attributes such as peak mass differences,
intensities, or others into this model, using the same recurrence relation which
is of particular importance when scoring missing peaks and additional peaks:
For missing peaks, recall that we have transformed the raw data of the mass
spectrum into a peak list discarding candidates whose intensity falls below a
given threshold. Hence, slight changes of this threshold can dramatically change
scores that do not take into account peak intensities. For additional peaks, similar
arguments apply.

It should be understood that for reasonable peak scorings, we do not have to
fill in the complete matrix E: We can expect that score(i, j) decreases as the mass
difference between peaks i and j increases. In particular, score(i, j) will be very
small for high mass differences, because there is no reason to match two peaks
that are, say, 1000 Da apart. On the contrary, scores score(i, ε) and score(ε, j)
are mostly independent of peak masses. So, it suffices to fill in only those parts
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of the matrix E where score(i, j) is not too small. Hence, the optimal alignment
can be calculated by sparse dynamic programming in time O(|C| + n + n′)
where C := {(i, j) : score(i, j) ≥ score(i, ε) + score(ε, j)} is the set of potential
matches.

4 Many-to-One Peak Matchings and Scoring Functions

In the previous section, we have introduced a general setting that allow to align
any two mass spectra. In the following, we concentrate on matching a single
sample mass spectrum to a multitude of reference spectra generated in silico.
We limit our attention to mass as the unique peak attribute, and ignore peak in-
tensities and other peak attributes. This is done solely for the sake of readability,
and generalization to other attributes is obligatory for applications.

Above, we have talked about peak scores score(·, ·) but so far, we have not
elaborated on how to choose such scores. To this end, we define a global peak
scoring function Ψ :M×M→ R that maps a sample peak with mass m′ ∈M
and a reference peak with mass m ∈M, to a peak score Ψ(m, m′). This map is
independent of an actual reference or sample spectrum, and even actual peaks.
Now, we can define score(i, j) := Ψ(mi, m

′
j).

A sensible global peak scoring function is as follows: We assume that sample
peak masses are normally distributed around the ideal peak mass m. The vari-
ance of this distribution may also depend on m, since large mass errors appear
more often in high mass regions, but here we concentrate on a constant variance
σ̄2 for the sake of simplicity. If we want to positively score, say, 95% of all sample
peaks (so, the mass difference must be smaller than approximately 2σ̄) then we
can define

Ψ(m, m′) := 1− P(Z > −z and Z < z)

where z := |m−m′| /σ̄ and Z ∼ N (0, 1). Clearly, Ψ(m, m) = 1 and Ψ(m, m′) ≈
0 holds for |m−m′| = 2σ̄. Choosing a “good” peak scoring function highly
depends on the underlying application, and surely is a problem of its own; we
shall not go into the details here for the sake of brevity, but note that research
on this problem is in progress.

We also have to score additional peaks score(ε, j) and missing peaks score(i, ε).
To this end, let Ψ̄ :M→ R and Φ :M→ R be two functions that score a miss-
ing peak with mass m ∈ M, or an additional peak with mass m′ ∈ M. These
functions can be defined constant, but it is also reasonable to take into account
peak intensities as well as experiences about experimental settings, to allow more
fine-grained evaluation of these events.

We introduce some notations that will be of use when calculating the signif-
icance of an alignment score. Given a fixed sample spectrum S′, we concentrate
on a single sample peak j ∈ S′ with mass m′

j : We define a peak scoring functions
ψj by

ψj :M→ R, ψj(m) := Ψ(m, m′
j) for all m ∈M.

Set ψ̄j := Ψ̄(m′
j) ∈ R for additional peaks. To simplify computations, we pos-

tulate that every peak scoring function has finite and compact support : That
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is, ψj(m) is above a certain threshold if and only if m ∈ [m1, m2] for masses
m1, m2. In the discrete case, the support {m1, . . . , m2} of ψj is denoted Uj , and
reference peaks with mass m /∈ Uj will never be matched to sample peak j. We
further require that the support of two peaks j, j + 1 ∈ S′ does not intersect,
and we can achieve this by shrinking overlapping support.

As noted above, we may want to match a single sample peak to one or more
reference peaks. The simplest incorporation of such many-to-one peak matchings
is as follows: We simply add scores of matching a sample peak j to all reference
peaks i with mass mi ∈ Uj , and if there is no such reference peak, we score peak
j by ψ̄j . Now,

scorem2o(S,S′) :=
∑
j∈S′

∑
i∈S,mi∈Uj

ψj(mi) +
∑

j additional

ψ̄j +
∑

i missing

Φ(mi) (2)

where “j additional” runs over those j ∈ S′ where there is no i ∈ S with mi ∈ Uj ;
and “i missing” runs over those i ∈ S where there is no j ∈ S′ with mi ∈ Uj .
We can compute scorem2o in time O(n n′), or O(|C|+ n + n′) where C is again
the set of potential matches.

The above score does not take into account any “interference” between refer-
ence peaks. For a particular reference spectrum S it is useful to take into account
such interferences if additional peak attributes such as intensity are known: Peak
intensities are mostly additive, and a sample peak that is matched to two or more
reference peaks should show an intensity that is the sum of intensities of the ref-
erence peaks. We can modify the spectrum alignment of Section 3 to take into
account multiple matches, by trying to align a single sample peak to more than
only the last reference peaks in the dynamic programming recurrence (1). Such
merging alignment can be computed in time O(n n′ k) where k denotes the max-
imal number of reference peaks with masses that fall into the support of any
single sample peak. Again, computations are usually faster than this worst-case
runtime suggests. We omit the details for the sake of brevity.

5 Character-Specific Cleavage of Random Strings

We now concentrate on the case that the measured mass spectra come from
biochemical experiments involving character-specific cleavage, such as tryptic
digestion of amino acids. Recall that given a cleavage character x ∈ Σ, then
y ∈ (Σ − {x})∗ is a fragment of some string s ∈ Σ∗ if and only if xyx is a
substring of xsx.

In the following, we ignore peak intensities in the reference spectrum for the
sake of simplicity. Also, we assume that we can map a single reference peak
to multiple sample peaks, as described in the previous section. We premise all
masses to be natural numbers, as indicated in Section 2.

We concentrate on a single peak in the mass spectrum with mass m. To
estimate the score contributed by this peak (see the next section), we must know
what theoretical fragments y have mass m, and what strings s will generate y
as a fragment. Let x ∈ Σ be the fixed cleavage character, and suppose that the
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string s of fixed length |s| = L was randomly drawn from ΣL, where we assume
for simplicity that all characters have identical probability 1/ |Σ| – generalization
to other character distributions is straightforward. What is the probability that
xsx contains at least one substring xyx, for y ∈ Σ∗

x and Σx := Σ \ {x}, such
that μ(y) = m holds?

First, we want to calculate the number d[m] of fragments y ∈ Σ∗
x that have

mass m. It is computer science folklore that we can compute this number using
the simple recurrence relation d[0] := 1 and

d[m] =
∑

σ∈Σ,μ(σ)≤m

d[m− μ(σ)] for m ≥ 0. (3)

Computing d[·] takes O(|Σ|mmax) time, and storing it requires O(mmax) space.
Here we also want to distinguish fragments of different lengths. For l, m ∈ N

let c[l, m] denote the number of strings y ∈ Σl
x such that μ(y) = m. We can

easily calculate c[·, ·] by initializing c[0, 0] := 1, c[0, m] := 0 for all m > 0, and
the recurrence relation

c[l, m] =
∑

σ∈Σx,μ(σ)≤m

c[l − 1, m− μ(σ)] for l ≥ 1 and m ≥ 0.

Note that c[l, m] = 0 for l < m/μmax as well as for l > m/μmin. Computing c[·, ·]
takes O(|Σ| lmaxmmax) time, and storing it requires O(lmaxmmax) space.

For fixed m ∈ N and L ∈ N we define the set of strings of length L which do
have at least one fragment of mass m as

SL,m :=
{
s ∈ ΣL : xsx contains substring xyx with y ∈ Σ∗

x and μ(y) = m
}
(4)

and for readability, we define r[l, m] := P
(
y ∈ Σl

x, μ(y) �= m
)

= 1−c[l, m]/(|Σ|−
1)l.

Theorem 1. Suppose that the string s was uniformly drawn from ΣL for some
L ∈ N. For a fixed mass m we define p̄[·, m] using the initial value p̄[0, m] = 1
and the recurrence relation

p̄[L, m] = r[L, m]
(
1− 1
|Σ|

)L

+
L∑

l=1

p̄[L− l, m] r[l − 1, m]
1
|Σ|

(
1− 1
|Σ|

)l−1

(5)

for L > 0. Then, p[L, m] := 1 − p̄[L, m] is the probability that s generates a
fragment of mass m, that is, p[L, m] = P(s ∈ SL,m) holds.

Lemma 1. With the notations of Theorem 1, the probability that xsx contains
a substring xyx with y ∈ Σ∗

x and μ(y) = m can be estimated as

p[L, m] ≈ 1−
∏

l

(
1− c[l, m]

|Σ|l+1

)2

·
(
1− c[l, m]

|Σ|l+2

)L−l−1

.
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The computations of Theorem 1 are independent of the actual sample mass
spectrum and the reference spectra, and we can compute p[L, m] during pre-
processing for the relevant mass range m = 1, . . . , mmax and string lengths
L = 1, . . . , Lmax. For any mass m, we can compute recurrence relation (5) in
O(lmax Lmax) time using one-dimensional dynamic programming, but we need
O(mmax Lmax) space to store p. For applications such as protein identification
it is feasible to do exact computations and store p in memory. Clearly, we can
leave out those rows p[·, m] where m has no decomposition as a fragment y ∈ Σ∗

x

with μ(y) = m.
If memory limitations become an issue, we use Lemma 1 to estimate p[L, m]

for large L, m.
For the tryptic digestion of amino acids, the enzyme cleaves after the C-

terminus of both lysine (K) and arginine (R) except before proline (P). We can
achieve this by a recurrence similar to (5), we omit the details for the sake of
brevity.

Example 1. We consider the alphabet Σ := {A, B, C, D} with cleavage character
x := D, and masses μ(A) = 3, μ(B) = 5, and μ(C) = 6. Computation of c[·, ·] is
straightforward, for example c[5, 20] = c[4, 14]+c[4, 15]+c[4, 17] = 4+4+12 = 20.
For m := 20, the complete column c[l, 20] reads:

l 0 1 2 3 4 5 6 7+
c[l, 20] 0 0 0 0 13 20 6 0

For computing p[L, m] we use the recurrence of Theorem 1:

L 0 1 2 3 4 5 6 7 8 9 10

p[L, m] 0 0 0 0 13
256

46
1024

163
4096

712
16384

3142
65536

13575
262144

58653
1048576

So, p[10, 20] = 58653
1048576 = 0.05593 . . . is the probability to draw a string

s ∈ Σ10 that generates a fragment of mass m = 20. Using Lemma 1 we estimate
p[10, 20] ≈ 0.0555 . . . with a relative error of less than 1 %.

6 Significance of Alignment Scores

Using alignment scores as introduced above allows us to select a best-scoring
simulated reference spectrum from, say, a database of sequences. But what are
the chances that this score can be achieved by chance alone? Clearly, we cannot
estimate this probability using only the scores obtained by aligning the sample
spectrum to all reference spectra from the protein database.

Consider peak j ∈ S′ of the sample mass spectrum S′ = {1, . . . , n′}; we want
to compute its contribution to the total score. We analyze many-to-one peak
matching for the sake of simplicity, because this allows us to model alignment
scores by independent random variables. See Section 4 for the definitions of ψj ,
Uj , ψ̄j , and Φ.
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Consider the set of outcomes Ω := ΣL to be all reference strings of given
length L. Recall that p[L, m] is the probability that the random string s generates
a fragment y with mass μ(y) = m. Our goal is to define a random variable as
the score of matching sample peak j to all “adequate” peaks of the reference
spectrum.

First, let X̃j be the random variable that sums the scores over all peaks in
the reference spectrum that we can match with peak j: For m ∈ Uj we use SL,m

from (4) and define

X̃j(s) :=
∑

m∈Uj

ψj(m) · (s ∈ SL,m)

where (·) denotes the indicator function. Assuming independence, we can easily
see

E(X̃j) =
∑

m∈Uj

p[L, m] ψj(m), Var(X̃j) =
∑

m∈Uj

p[L, m] ψj(m)2 − (E(X̃j))2. (6)

Second, if there is no peak in the reference spectrum with mass m ∈ Uj ,
then the sample peak j is an additional peak and must be penalized by adding
ψ̄j = score(ε, j) to the spectrum score. We define the random variable

X̄j(s) := ψ̄j ·
(
s /∈

⋃
m∈Uj

SL,m

)
for the “additional peak score”. To simplify computations, we assume indepen-
dence of the events that s generates fragments of distinct masses. Then, the
probability that X̄j(s) = ψ̄j holds, is

P
(
X̄j(s) = ψ̄j

)
≈ p̄j :=

∏
m∈Uj

(
1− p[L, m]

)
. (7)

We may use the estimation ln(1 − x) = −x− 1
2x2 − 1

3x3 − . . . for 0 ≤ x < 1 to
compute p̄j with high accuracy in time O(|Uj |). Now,

E(X̄j) = p̄j ψ̄j , Var(X̄j) = p̄j ψ̄2
j − (E(X̄j))2.

We estimate expected value and variance of the random variable Xj := X̃j +
X̄j as

E(Xj) = E
(
X̃j

)
+E

(
X̄j

)
, Var(Xj) = Var

(
X̃j

)
+Var

(
X̄j

)
−2 E

(
X̃j

)
·E
(
X̄j

)
(8)

in view of

Cov(X̃j , X̄j) = E(X̃j · X̄j)− E(X̃j) · E(X̄j) = −E(X̃j) · E(X̄j)

because either X̃j(s) = 0 or X̄j(s) = 0 holds for all s ∈ SL,m.
Now, we consider peaks in the reference spectrum that we cannot match to

a peak of the sample spectrum. Define M+ :=
⋃n′

j=1 Uj as the support of all
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peak scoring functions, then M− := M \M+ is the set of reference masses
that cannot be matched with any sample peak. Any reference peak m ∈ M−

is therefore a missing peak, and must be penalized by Φ(m). We define random
variables Ym for m ∈ M− by Ym(s) := Φ(m) if the reference string s generates
a fragment of mass m, and Ym(s) := 0 otherwise. We easily calculate

E(Ym) = p[L, m] Φ(m) and Var(Ym) = p[L, m] Φ(m)2 − (E(Ym))2. (9)

We can compute
∑

m∈M p[L, m]Φ(m) and
∑

m∈M p[L, m]Φ(m)2 during prepro-
cessing, what allows us to limit computations to masses m ∈M+ in (10).

Finally, the random variable X is the total score of aligning the reference
spectrum of a string s ∈ ΣL to the sample mass spectrum S′ = {1, . . . , n′}, see
(2). From the above,

X =
∑n′

j=1
Xj +

∑
m∈M− Ym

and if we assume that these random variables are independent, we infer:

E(X) =
n′∑

j=1

E(Xj) +
∑

m∈M−
E(Ym), Var(X) =

n′∑
j=1

Var(Xj) +
∑

m∈M−
Var(Ym)

(10)
Also, X is the sum of many nearly independent random variables, so X can
be approximated by a normal distribution N (μ̄, σ̄2) with mean μ̄ := E(X) and
variance σ̄2 := Var(X) using the central limit theorem.

In the above calculations, we had to assume independence of random vari-
ables though these variables are slightly correlated. To show that our estimations
are accurate in application settings we have performed simulations, see Section 8.

Suppose we have computed an alignment score sc := score(S,S′) for a sam-
ple mass spectrum S′ and a reference mass spectrum S generated in silico from
a string s. This was done using either the simple many-to-one alignment of Sec-
tion 4, or the more elaborate merging alignment. We can assess the probability
that a score greater or equal sc is achieved by a random string of length L := |s|
by chance: We compute μ̄ := E(X) and σ̄2 := Var(X) as described above, what
can be done in constant space and time O(|M+|) = O(n′ u), where u denotes
the maximal width of any support Uj . Finally, for Z ∼ N (0, 1) we estimate the
p-value

P(X ≥ sc) ≈ P

(
Z ≥ sc − μ̄

σ̄

)
.

7 Collision-Induced Dissociation of Random Strings

Now, let us focus on collision induced dissociation of peptides by tandem mass
spectrometry. Here, we break the peptide string s of known parent mass M
into all prefixes and suffixes of s. We concentrate on the main ion series (b/y-
ions) and ignore mass modifications of b/y-ions (addition H group for b-ions,
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additional H3O group for y-ions) for the sake of readability. Again, we can easily
incorporate these mass modifications as well as other ion series.

We require all masses to be natural numbers. The peaks detected in the
sample mass spectrum correspond to prefixes and suffixes of the amino acid
string s. Regarding s, we know its parent mass M := μ(s). So, we want to
uniformly sample from the set S[M ] := {s ∈ Σ∗ : μ(s) = M}. What is the
probability that any such string has a prefix or suffix y of mass μ(y) = m?
Recall that we can easily compute the number of strings s ∈ S[M ] with μ(s) = m
using (3).

The surprisingly simple result of this section is:

Theorem 2. Let d[m] denote the number of strings s ∈ Σ∗ with μ(s) = m. For
parent mass M ∈ N, let s be a string uniformly drawn from the set of strings
S[M ] with mass M . The probability that s has a prefix of mass m ∈ {1, . . . , M},
is

q̃[M, m] :=
1

d[M ]
d[m] d[M −m].

Set m̄ := min{m, M −m}, then the probability that s has a prefix or suffix of
mass m, is

q[M, m] :=
1

d[M ]

(
2d[m̄] d[M − m̄]− d[m̄]2 d[M − 2m̄]

)
.

Theorem 2 allows us to compute q[M, m] in constant time, if d[·] is known.
Analogously to Section 5, we can define random variables X̃j , X̄j , and Ym

to estimate mean and variance of alignment scores. Again, we must assume
that these random variables are independent, what is less correct than in the
previous section, because peaks with mass differences of character masses are
clearly correlated. Such dependencies are not taken into account in Theorem 2,
but it is straightforward how to generalize the theorem for dependencies of first
or even higher order. Work on this topic is currently in progress.

8 Results

We want to asses the quality of our estimations for tryptic digestion of amino
acids as described above. We use integer masses with accuracy Δ = 0.1, and
the following scoring scheme: Additional and missing peaks are penalized with
score -0.2, matched peaks are given the Gaussian score described in section 4
using a standard deviation of 2 Da and a threshold of 95%. We do the following
for L = 350, 500: We draw a random sample string of length L and simulate
its cleavage pattern under tryptic digestion. Then, we draw 250000 random
strings of length L and compute the alignment score for the respective mass
spectra. Finally, we estimate mean and variance of a normal distribution using
the method of Section 5. To demonstrate the correctness of the normal distribu-
tion assumption, quantile-quantile-plots are provided for each stringlength. The
plots in Figure 1 clearly show that our approach allows quite accurate estimation
of the distribution of scores.
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Fig. 1. Simulation results: Distribution of scores for randomly drawn strings (solid line)
and normal distribution estimated using the method of Section 5 (dashed line) as well
as quantile-quantile-plot for normal distribution for length L = 350 (left) and L = 500
(right).

9 Discussion and Improvements

We have presented a general approach for aligning two mass spectra and, in
particular, aligning a sample spectrum and a (theoretically predicted) reference
spectrum. For the latter, we show that the distribution of scores can be approx-
imated by a normal distribution for restriction type experiments. We present
a method that allows to compute the parameters of this distribution in linear
time, and therefore allows an estimation of the significance of alignment scores.
Doing so, we have combined the freedom of choosing a scoring scheme tuned
for a particular application, with the rigid estimation of p-values for obtained
scores.

Regarding substrings of a certain mass in random strings, we have presented
efficient analytical methods to compute appearance probabilities. We think that
our approach may allow for generalizations to related questions in the context
of weighted strings.

In the future, we want to further evaluate spectrum alignments of tryptic
digestion data using protein databases. In particular, scoring schemes are tested
for their discriminative power. We will perform similar experiments for simulated
mass spectra from collision-induced dissociation: As indicated in Section 7, the
dependency among random variables makes it necessary to correct the estimated
variance. We are currently applying our approach to mass spectrometry data and
comparing its resolving power to existing approaches such as MASCOT, but
this is beyond the scope of this paper to provide a rigid theoretical framework
for estimating the significance mass spectra alignments, and will be reported
elsewhere. We will integrate our algorithms into the ProDB system [15].
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14. Danćik, V., Addona, T.A., Clauser, K.R., Vath, J.E., Pevzner, P.A.: De novo
peptide sequencing via tandem mass spectrometry. J. Comput. Biol. 6 (1999)
327–342

15. Wilke, A., Rückert, C., Bartels, D., Dondrup, M., Goesmann, A., Hüser, A.T., Ke-
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